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Abstract

The liquid-phase density of selected high-melting transition metals up to
the highest accessible temperatures is determined in this work. The metal
samples were resistively heated from room-temperature up to the boiling
point by means of ohmic pulse-heating, while monitoring their temperature
and thermal expansion. Small modifications to the measurement setup were
made to enhance the data quality and collect data at higher temperatures
while reducing arising uncertainties. Normal spectral emissivity data were
used to correctly assess the sample temperature via pyrometry. An uncer-
tainty estimation according to the guide to the expression of uncertainty in
measurement (gum) was conducted.

Additionally, the critical point of these metals (i.e., critical temperature and
critical density) as well as their phase diagram in the temperature-density-
plane were estimated by extrapolating the obtained density data according
to a simplified theoretical model, recently proposed by Schröer and Pott-
lacher.
This extrapolative approach is limited by the specimen’s boiling point, which
poses a natural upper temperature limit for the input data. Therefore, efforts
were taken to increase the boiling point by performing high-pressure pulse-
heating experiments. As a consequence, density data over a broader temper-
ature range, i.e., closer to the critical point can be obtained. In the course
of high-pressure pulse-heating experiments, a higher thermal expansion
compared to that obtained in low-pressure experiments was observed for
selected metals. The reason for this discrepancy is systematically searched
for in this thesis.

Liquid-phase density and critical point data of the metals niobium, tantalum,
tungsten, iridium and rhenium are presented and compared to data reported
in the literature. In addition, various thermophysical properties were derived
for the low-melting metal aluminum.
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Zusammenfassung

Die vorliegende Arbeit beschäftigt sich mit der Bestimmung der flüssi-
gen Dichte von ausgewählten hochschmelzenden Übergangsmetallen. Die
Metallproben wurden mithilfe einer ohm’schen Pulsheizmethode von Raum-
temperatur bis zu deren Siedepunkt erhitzt, während die Probentemperatur
und thermische Ausdehnung mitgemessen wurden. Kleinere Modifika-
tionen am Messaufbau wurden vorgenommen um die Datenqualität zu
verbessern, Unsicherheiten zu reduzieren und als Folge Daten bei höheren
Temperaturen zu bestimmen. Außerdem wurde der normale spektrale
Emissionsgrad berücksichtigt um eine korrekte Temperaturzuweisung zu
ermöglichen. Die Unsicherheiten der erhaltenen Daten wurden gemäß des
gum-Leitfadens abgeschätzt.

Zusätzlich wurden die kritische Temperatur und die kritische Dichte sowie
das Phasendiagramm der jeweiligen Metalle aus den experimentellen Dichte-
daten abgeschätzt. Die Abschätzung basiert dabei auf einer unlängst von
Schröer und Pottlacher vorgeschlagenen Extrapolation dieser Daten zu
höheren Temperaturen. Der extrapolative Ansatz wird durch den Siede-
punkt des untersuchten Metalls beschränkt, da das Einsetzen des Siedens
eine natürliche Temperaturobergrenze der Daten bedingt. Um zu höheren
Temperaturen zu gelangen wurden Hochdruck-Pulsheizexperimente durch-
geführt; hierbei wird der Siedepunkt durch den höheren statischen Druck
erhöht, wodurch Daten über einen größeren Temperaturbereich erhalten
werden können. Für ausgewählte Metalle wurde während dieser Experi-
mente eine höhere Expansion als in Niederdruckexperimenten beobachtet.
Die Ursachen hierfür werden in dieser Arbeit systematisch gesucht.

Die Dichte der flüssigen Phase sowie der kritische Punkt der Metalle Niob,
Tantal, Wolfram, Iridium und Rhenium werden präsentiert und mit Lit-
eraturdaten verglichen. Zusätzlich wurden mehrere thermophysikalische
Daten von Aluminium bestimmt.
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1. Introduction and Motivation

Thermophysical properties of liquid metals at high temperatures and pres-
sures, such as the density, are of interest in many areas of engineering and
science. For instance, a metal’s liquid density is used to calculate mass
balance in refining operations or serves as input quantity in simulations
that model thermal natural convection phenomena in furnaces and ladles
as well as casting and solidification processes [1–3]. In fact, various physical
models show a relatively strong sensitivity on density input data compared
to other thermophysical properties [4].
But apart from the application of density data for simulations to improve
production processes or better understand physical models, thermal expan-
sion data are also needed in calculating other thermophysical properties,
such as electrical resistivity, thermal conductivity and diffusivity as well as
viscosity and surface tension.

While the density of pure metals is mostly well known in the solid phase, the
situation is different for the liquid phase. Especially for some high-melting
metals, an inconsistency can be observed between data previously reported
by our work group and data given in the literature, which are inconsistent
in themselves (compare Fig. 1.1). In addition, these data often do not reach
far into the liquid phase or exhibit rather large uncertainties, if reported
at all. This observation is also a consequence of the high temperatures
involved and the resulting technical and physical difficulties, e.g., sample
containment due to its high reactivity. These considerations and observa-
tions motivate a complementary revisit on the liquid density of selected
high-melting metals.
Two main methods capable of such measurements emerge in this context:
Levitation methods, where a liquid metal droplet is either electromagneti-
cally or electrostatically levitated, and highly dynamic pulse-heating methods,
where typically wire-shaped specimens are heated up to their boiling point

1
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Figure 1.1.: Density as a function of temperature of relevant high-melting pure metals at
the end of the solid and in the liquid phase. Solid thick line: Data by this work
group [5] and references therein, dashed line: Liquid and undercooled density
by Paradis and Ishikawa et al. (jaxa group) [2, 6–12], dotted line: Gathers and
Shaner et al. (iex group) [13–16], dash-dotted line: Hixson and Winkler [17–19],
solid thin line: Thévenin et al. [20].

within microseconds. The first method delivers liquid-phase data in the
vicinity of the melting point and in the undercooled liquid state. But when
the aim is to obtain data far beyond the melting point, the pulse-heating
method is the method of choice.

While a variety of thermophysical properties were previously acquired
simultaneously in typical pulse-heating experiments at Graz University of
Technology, A. Schmon suggested in his doctoral thesis to conduct exclusive
density measurements to improve data quality [21].
The selection of metals to be revisited, using the Schmon approach, is based
on three requirements: First, normal spectral emissivity data should be avail-
able for the chosen metals to ensure a correct temperature evaluation. Such

2



data were previously reported by our work group [22] for metals that can
be investigated with a pyrometer at the standard wavelength of pyrometry,
i.e., λ = 650 nm. The application of normal spectral emissivity data as a
function of temperature is crucial for a correct temperature evaluation [23].
Second, the metals have to be ductile enough to be acquirable in the form
of thin homogeneous sample wires that are typically used in pulse-heating
experiments and third, the metals must not be radioactive.
Potential candidates fulfilling the above mentioned requirements are de-
picted in Fig. 1.1, where the density at the end of the solid and in the liquid
phase reported by different authors are plotted. Based on this figure, the
elements niobium, tantalum, tungsten, rhenium and iridium were chosen
for a careful reinvestigation within the scope of this thesis.

Apart from the relevance of density data by itself, measuring a liquid metal’s
density as a function of temperature eventually also maps part of its phase
diagram in the temperature-density plane. According to simplified models
[24], the extrapolation of the density behavior to higher temperatures allows
to estimate the metal’s phase diagram and its critical point. This particular
point in the phase diagram is not only of pure scientific interest, it is also
very important in high temperature technologies, such as in aerospace
and power engineering. In the latter, the data are needed for potential
fission-reactor accident calculations and future fusion reactor designs [25].
Besides, the material’s phase diagram and its critical point are of immediate
interest in astrophysics and planetary physics, where modelers rely on data
describing the response of metals under extreme conditions [26].

While an introductory chapter on various density measurement methods
was already given in the doctoral thesis of A. Schmon [21], the next chapter
will introduce the topic of the critical point and phase diagrams in more
detail.

3





2. The Critical Point

Accessing the critical point of high-melting metals experimentally is very
difficult due to the high pressure and temperature involved. Experimental
data thus only exist for low-melting metals, while a variety of models is
applied to estimate the critical point for experimentally inaccessible high-
melting metals. In this chapter, fundamentals on the critical point, as well
as previous and recent approaches of experimental, semi-empirical and
theoretical nature are discussed.

2.1. Fundamentals

For understanding the term critical point, it is useful to explain the term
equation of state (eos) first. The equation of state links the state variables of
a substance that depend on each other, such as pressure p, volume1 V and
temperature T to each other. In a general form, the equation of state f may
be expressed as

f (p, V, T) = 0 . (2.1)

Thus, the eos describes a surface in three-dimensional space spanned by the
coordinates p, V and T. Such a surface, or three-dimensional phase diagram,
is schematically depicted in Fig. 2.1. Each point on this surface corresponds
to an equilibrium state of the system. For easier visualization, projections
of this surface into one of the three planes spanned by the state variables
are often considered, two of which are plotted in Fig. 2.1. In both the pV-
and the pT-projection, the critical point is labeled, being the termination
in the vapor pressure curve (pT-projection) and the meeting point between

1or density ρ.
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2. The Critical Point

Figure 2.1.: Schematic three-dimensional phase diagram of a substance as a function of
pressure p, volume V and temperature T, and projections into the pV- and
pT-plane. The substance can be present in solid, liquid and vapor phase. Isobars
(p = const.) and isotherms (T = const.) are indicated by dashed lines on the
phase diagram surface. The critical point, being the termination of the vapor
pressure curve is labeled in the projections. Graph taken from [1].

saturated liquid and saturated vapor line (pV-projection). In this point, all
properties of the coexisting phases, i.e., liquid and vapor phase, are equal
to each other. Note that at pressures below pc, the volume V will increase
discontinuously upon a phase change from the liquid to the vapor phase
(jump in volume with increasing temperature, first order phase transition).
However, at or above pc, the jump in volume vanishes and the attributes
liquid and gaseous become obsolete. Above the critical point the substance
is said to be present as a supercritical fluid.

6



2.2. Direct experimental determination

2.2. Direct experimental determination

Possibilities for direct experimental determination of the critical point
(pc, Vc, Tc) of low-melting metals2 were previously reported by Pottlacher
and Boboridis, e.g., [27, 28], using a pulse-heating technique. In these ap-
proaches, the static pressure acting on the sample was increased in succes-
sive experiments while searching for indications of reaching the critical point.
The pressure dependence of the following quantities are such indications:

1. Persistent stability of the sample geometry,
2. Vanishing shock waves,
3. Changes of sample resistivity.

From the measured data, also the critical temperature Tc and the critical
volume Vc may be estimated, as the sample temperature and its volume
are also monitored throughout the experiment. A prerequisite for this
direct approach is that the critical pressure of the investigated metal resides
below the pressure achievable with the experimental apparatus, in this case
p ≈ 5000 bar. Hence, this approach cannot be used to determine the critical
point of high-melting metals, whose critical pressures are well above this
achievable pressure.

Persistent stability of the sample geometry

Upon the phase change from the liquid to the vapor phase at the sample’s
boiling point, the sample’s volume will increase discontinuously, compare
Fig. 2.1. This jump in volume destroys the sample (phase explosion) and
is clearly visible on images that are captured throughout the experiment.
Increasing the static pressure p to a value above the sample’s critical pressure
pc will thus lead to a vanishing of this phase explosion as there is no first
order phase transition any more.

2Lead, zinc, indium and gold.
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2. The Critical Point

Vanishing shock waves

As a consequence of the vanishing phase explosion above pc, no boiling
shock wave will emerge from the sample surface if the static pressure is
higher than the sample’s critical pressure. This is a further indication that
the chosen static pressure is equal to or greater than the critical pressure of
the sample.

Changes in sample resistivity

With a static pressure above the sample’s critical pressure, the slope of
electrical resistivity as a function of enthalpy will increase only slightly,
whereas for p < pc, there will be a sharp increase due to the phase change
from liquid to vapor.

Another direct experimental approach is the application of shock wave
methods, as described by Fortov and Lomonosov [29].

2.3. Estimation of the critical point

Apart from few direct possibilities to obtain the critical point of metals,
various semi-empirical and theoretical approaches exist. This section lays
out possibilities reported in the literature to estimate the critical temperature,
critical density and critical pressure. Finally, possibilities for obtaining the
equation of state or a projection of it (phase diagram) are discussed.

2.3.1. Methods for estimating the critical temperature

Several empirical relations exist that relate the critical temperature to a more
easily obtainable physical property, such as its boiling temperature or the
heat of vaporization at normal pressure.

8



2.3. Estimation of the critical point

Relation to boiling point

guldberg rule Stated by Guldberg in 1890, the critical temperature Tc
may be related to the boiling temperature Tb at atmospheric pressure by an
empirically determined factor A via

Tc = A · Tb . (2.2)

The proportionality factor A stated in the literature differs depending on the
experimental data used to calibrate the relationship. Ohse and Tippelskirch
cite a Guldberg factor of A = 1.764 [30]. Lang points out, that the factor
appears to be group dependent [31]. For group I elements, he states a factor
of A = (2.49 ± 0.22), but also indicates the strong variance in the data
used to derive this factor. Based on theoretically predicted Tc values, Lang
proposes A = (3.69± 0.20) for high-melting metals of the groups IV, VI and
VIII. According to Hess and Schneidenbach, the factor originally stated by
Guldberg was A = 1.5, while he states A = (2.07± 0.04), calibrating the
relationship to the well known critical temperatures of potassium, rubidium
and caesium [32].

gates-thodos rule In 1960, Gates and Thodos [33] proposed a power-law
relationship between the critical temperature Tc and the boiling temperature
Tb at atmospheric pressure via the two coefficients A and B,

Tc = A · TB
b , (2.3)

where A = 1.4732 K1−B and B = 1.0313. The empirical law was calibrated
using experimentally determined critical temperature and boiling point data
of 17 elements in a Tb-range between approximately 4 K to 800 K.

A similar law with different constants was proposed by Blairs taking into
account experimental data of various metallic and non-metallic liquids [34].
Blairs states A = 1.2574 K1−B and B = 1.0788.
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2. The Critical Point

Relation to entropy of vaporization

grosse method In 1961, Grosse made considerations to relate the entropy
of vaporization3 ∆Sv to the critical temperature Tc, as ∆Sv approaches
zero at the critical point, much like the enthalpy of vaporization or the
surface tension do [35]. Grosse applied the principle of corresponding
states, implying that the molar entropy of vaporization ∆Sv should be
equal for different liquids at the same reduced temperature T/Tc. Knowing
the enthalpy of vaporization thus allows to deduce a critical temperature.
Critical temperatures of high-melting metals reported in [35] are based on
the behavior of mercury only.

Relation to heat of vaporization

kopp-lang rule This rule, originally proposed in 1967, relates the critical
temperature Tc to the heat of vaporization ∆Hv at the normal boiling point
via a proportionality constant A,

Tc = A · ∆Hv . (2.4)

The factor originally stated by Kopp4 was A = 26.8 K ·mol · kJ−1 and modi-
fied by Lang5 to A = 28.73 K ·mol · kJ−1 [30, 31]. Several years later, Hess
and Schneidenbach proposed A = (28.0± 0.5)K ·mol · kJ−1, obtained by
calibration with experimental data on the alkali metals [32].

Relation to surface tension

Several models exist, that relate the critical temperature to the surface
tension. Authors reporting such models are for instance Grosse in 1962 [36]
and Bohdansky in 1968 [37].

3∆Sv = ∆Hv/T, with enthalpy of vaporization ∆Hv, and temperature T.
4Original value: A = 0.112 K ·mol · cal−1, conv. with 1 cal = 4.1868 J.
5Original value: A = 0.1203 K ·mol · cal−1, conv. with 1 cal = 4.1868 J.
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2.3. Estimation of the critical point

In 2006, Blairs and Abbasi related the hard sphere diameter a as well as the
surface tension σ and the molar volume V, all at the liquidus temperature,
to the critical temperature Tc via

a5/2 = A ·
[

V
(

σ

Tc

)1/4
]
− B , (2.5)

with the coefficients A = 8.9833× 10−19 m−1/2 ·mol · (K ·m ·N−1)1/4 and
B = 1.0459 × 10−25 m5/2. The empirical relation was calibrated using a
variety of literature data to calculate the term V(σ/Tc)1/4 and relate it to
a5/2, where a was derived from the empirical relation

a3 = (1.484± 0.025)× 10−24 ·V . (2.6)

Further relationships

goldstein scaling proposal Proposed by Goldstein et al. in 1989 [38]
and used by Hess and Schneidenbach [39], there is a scaling relation between
the critical temperature and the plasmon energy at the critical point. As
a consequence, the critical temperature Tc may be related to the electron
density at the critical point ne,c via the proportionality constant A:

Tc = A · √ne,c , (2.7)

with A = (4.42± 0.25)× 10−8 cm3/2 ·K.

isochoric thermal pressure coefficient method In 1993, Blairs and
Abbasi used this method for the estimation of critical temperatures. The
approach links the critical temperature to the speed of sound, the density
and the isobaric heat capacity [40].
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2. The Critical Point

2.3.2. Methods for estimating the critical density

rule of rectilinear diameter To estimate the critical density of a
material, the rule of rectilinear diameter often is applied. This rule, stated
in 1887 by Cailletet and Mathias [41], assumes that the average density6 of
a liquid ρl, and its saturated vapor ρv, decreases linearly as a function of
temperature T,

1
2
· (ρl + ρv) = A− B · T , (2.8)

where A and B are constants. The critical density may thus be estimated by
linear extrapolation of experimental low-temperature liquid-density data
up to an otherwise obtained critical temperature.
However, there is evidence that the phase diagram diameter does not
decrease linearly with temperature, especially in the vicinity of the critical
point [24, 39].

2.3.3. Methods for estimating the critical pressure

compressibility factor Following the van der waals equation of state,
a critical compressibility factor Zc may be defined as

Zc =
pc

Rs · ρc · Tc
, (2.9)

where Rs is the specific gas constant and pc, ρc and Tc are the critical values
for pressure, density and temperature. Knowing the critical values for
compressibility, temperature and density thus allows to calculate the critical
pressure. The critical compressibility factor ranges between approximately
0.2 to 0.3 for alkali metals, but can be significantly higher for other elements,
e.g., Zc = 0.45 for indium [28].

6This average value is often referred to as the “phase diagram diameter”.
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2.3. Estimation of the critical point

vapor pressure A three-term vapor pressure equation may be fitted to
experimental data, described by

ln(pv) = A +
B
T
+ C · ln(T) , (2.10)

where pv is the vapor pressure, T is the temperature, A, B and C are co-
efficients. At least for heavier alkali metals such a three-term equation is
reported to describe the vapor pressure up to the critical point [42]. Extrap-
olating this equation to an otherwise determined critical temperature then
allows to estimate a critical pressure. However, Hess and Schneidenbach
state that experimental data well above the atmospheric pressure are needed
in order to obtain meaningful coefficients [39, 42].

Hess proposed another approach to estimate both pc and Tc by making use
of the Likalter relation [43],

p = A · (T · Ei)
2 , (2.11)

where p is the pressure, T the temperature and Ei the ionisation energy of
the undisturbed atom. Based on the alkalis, Hess et al. proposed A = (1.66±
0.12)× 10−6 bar ·K−2 · eV−2 [42]. Somewhere along the curve described by
equation (2.11), the critical point must be found. Consequently, the (Tc, pc)-
pair may be obtained by intersecting the Likalter relation (equation (2.11))
with an extrapolated vapor pressure curve (equation (2.10)) [28, 42].

2.3.4. Methods for predicting the equation of state

Some of the following approaches do not give a whole equation of state, but
rather yield a projection into a plane spanned by two state variables, e.g.,
density and temperature. In that case, an estimation of a two-dimensional
phase diagram is obtained.

13



2. The Critical Point

Classical van der Waals EOS

The equation of state proposed by van der waals in 1873 takes the form

p =
RT

v− b
− a

v2 , (2.12)

with pressure p, temperature T and molar volume v. The parameter a is
a measure for the attractive forces between the particles, and b takes into
account the non-zero volume that one mole of particles occupies. R is the
universal gas constant.

The critical parameters (critical volume, pressure and temperature) may be
calculated from the parameters a and b via

vc = 3b, pc =
a

27b2 , Tc =
8a

27bR
, (2.13)

but yield unsatisfactory results for metals with a high-boiling point [27].

Hard sphere and soft sphere van der Waals EOS

Young and Alder proposed an improvement to the classical van der Waals
eos in 1971 using hard-sphere-theory [44]. Pottlacher pointed out that the
model (hsvdw) yields unfeasible data for liquids under pressure [27].

In 1977, Young made modifications which led to the soft sphere model for
liquid metals (ssvdw) [45]. This model is based on Monte Carlo simulations
and has various adjustable parameters. These parameters were chosen in
accordance with experimental data of enthalpy (thus heat capacity) and
volume as a function of temperature. Due to a systematic error in tempera-
ture measurement of the chosen experimental data, the resulting estimates
for the critical temperature given in [45] might be too low, while critical
volumes might be rather high [46].

A very good review on these two theories may be found in [46].
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2.3. Estimation of the critical point

Other recent EOS approaches

Approaches exist to construct semi-empirical multi-phase wide-range eos,
where the construction is based on data obtained at high temperatures and
high pressures [29, 47]. Amongst others, the data used originate from mea-
surements of the isothermal compressibility (diamond anvil cells), isentropic-
compression, sound velocity, isobaric expansion and shock compressibil-
ity.

Other recent approaches include first-principle quantum-molecular-dynamics
(qmd) calculations of thermodynamic properties of liquid metals, e.g., [48,
49], and the use of scaling relations to derive binodals and the critical point
based on properties of metals under normal conditions [50].

Schröer-Pottlacher approach

In 2014, Schröer and Pottlacher proposed an approach to estimate the
critical temperature and critical density as well as the phase diagram in the
ρT-plane on the basis of experimental liquid-phase density data [24].

It is this approach that was used during this thesis to test it on experimen-
tally obtained density of transition metals. The different steps outlined on
the following pages are graphically shown in Fig. 2.2.

estimation of the critical temperature

A model function shall be fitted to the experimentally determined liquid-
phase density regression ρ+(T) to obtain an estimate for the critical temper-
ature Tc. The model function takes the form

ρ+(T)− ρdiam(T) = b · (Tc − T)β , (2.14)

where T is the temperature, b is a constant and β is an exponent. The
so-called phase diagram diameter ρdiam(T) in equation (2.14) is the av-
erage between the liquid density and the saturated vapor density7, i.e.,

7In the following, subscript “+” indicates the liquid density while subscript “−”
indicates the saturated vapor density.

15



2. The Critical Point

ρdiam(T) = (ρ+(T) + ρ−(T))/2. The vapor density ρ−(T) can be assumed
to be zero in the experimentally accessible region. Therefore, ρdiam(T) may
be approximated by ρdiam(T) = ρ+(T)/2 in the following considerations.
The left hand side of equation (2.14) thus reduces to ρ+(T)/2 yielding the
model function

ρ+(T) = 2 · b · (Tc − T)β . (2.15)

This function is fitted twice to the liquid phase density ρ+(T), assuming
either an Ising or a mean-field exponent β,

β =

{
1/3 Ising behavior
1/2 mean-field behavior .

For each of the chosen exponents β, two fitting coefficients are obtained
according to equation (2.15), namely the phase diagram width bβ and the
critical temperature Tc,β, presuming the respective model. In lack of any
further knowledge, the average of the two obtained critical temperatures is
considered as a reasonable estimate for the critical temperature, i.e.,

Tc =
(Tc,1/3 + Tc,1/2)

2
. (2.16)

Although this heuristic approach appears somewhat arbitrary, the authors
could show that this approach yields good consistence with experimentally
obtained critical temperatures of the alkali metals and thus seems to be
justifiable.

constructing simplified ising and mean-field phase diagrams

In a next step, the rule of rectilinear diameter is applied, where again
ρdiam(T) = ρ+(T)/2 is assumed,

ρdiam(T) = alin · (Tmax − T) , (2.17)

yielding the fitting coefficients alin and Tmax. Assuming the validity of this
rule, a simplified Ising (β = 1/3) and mean-field (β = 1/2) phase diagram
may thus already be given by combining equations (2.17) and (2.14),
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2.3. Estimation of the critical point

ρ±,β(T) = alin · (Tmax − T)± bβ · (Tc,β − T)β , (2.18)

where “+” again indicates the saturated liquid line and “−” indicates the
saturated vapor line of the phase diagram.

estimation of the critical density

With the critical temperature being fixed (equation (2.16)), the critical density
is now estimated in two ways, traditionally assuming a linear diameter (rule
of rectilinear diameter), or as recently proposed a non-linear temperature
variation (theory of complete scaling).

A model equation is fitted to the diameter data and extrapolated up to Tc
according to

ρdiam(T) = ρc,γ + aγ · (Tc − T)γ , (2.19)

where

γ =

{
1 rule of rectilinear diameter
2/3 theory of complete scaling: non-linear diameter .

Depending on the exponent used, two estimates for the critical density ρc,γ
are obtained among the fitting coefficients. Again, the average between these
two obtained critical densities is taken as a reasonable estimate for ρc,

ρc =
(ρc,1 + ρc,2/3)

2
. (2.20)

constructing a phase diagram based on the estimates for critical

density and critical temperature

With the obtained estimates for Tc and ρc, the diameter data ρdiam are fitted
up to Tc according to a simplified phase diagram diameter model,

ρdiam(T) = ρc

(
1 + a · (Tc − T) + c · (Tc − T)2/3

)
, (2.21)
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2. The Critical Point

yielding the phase diagram diameter coefficients a and c. In this simplified
approach, the final phase diagram may then be expressed with

ρ±(T) = ρdiam(T)± b · (Tc − T)1/3
(

1 + b2 · (Tc − T)2/3
)

, (2.22)

where “+” and “−” again indicate the liquid and vapor saturation line,
respectively. The phase diagram coefficients b and b2 are obtained by fitting
the liquid saturation line equation (“+” in (2.22)) to the experimental density
regression, making use of the just derived mathematical expression for
ρdiam(T).

Figure 2.2.: Density data from experiments (◦) and extrapolations (dashed lines) according
to the Schröer-Pottlacher approach to obtain critical temperature Tc and critical
density ρc and an estimate for the phase diagram ρ± (solid lines). For detailed
information on the various lines the reader is referred to the text.
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3. Experimental Method and Data
Evaluation

This chapter gives detailed information about the method of ohmic pulse-
heating, a method that resistively heats metallic sample wires from room-
temperature up to the gas phase in order to derive thermophysical properties
over a wide temperature range. Furthermore, a concise description of the
formulas used in the derivation of these properties from the measured base
quantities is given in this chapter.

3.1. Ohmic pulse-heating

With the dynamic method of ohmic pulse-heating, a thin metallic wire
specimen with typically 0.5 mm in diameter and a length between 40 mm to
60 mm is resistively heated from room-temperature over the liquid phase up
to the boiling point by passing a strong current pulse through it. The energy
that is needed for this process is provided by a capacitor bank with a ca-
pacitance of 540 µF. This capacitor bank can be charged to voltages between
3 kV to 10 kV by a high voltage power supply (ptag 2040 l). Once the stored
energy is discharged through the wire specimen, currents of up to 10 kA
will run through it. In order to start and stop the pulse-heating experiment
by switching these high currents, a combination of Krytrons and Ignitrons
(bk508, eev) is used. Depending on the sample material, specifically its
resistance and heat capacity as well as the chosen experimental parameters,
it takes between 35 µs to 80 µs to heat a wire from room-temperature up to
the boiling point, where it explodes due to the discontinuous increase in
volume. It is desirable to stop the current flow over the wire at the time of
explosion to suppress plasma discharges. The remaining capacitor energy is
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3. Experimental Method and Data Evaluation

then dissipated in crowbar resistors.
To influence the rise time of the current in a pulse-heating experiment, a
series resistor in the circuit can be chosen between either 1/2 Ω or 1/4 Ω.
Changing to a lower resistance helps in heating samples with high electrical
conductivity such as, e.g., aluminum.
For the circuit diagram of the pulse-heating setup used at Graz University
of Technology, the reader is referred to the Appendix, Fig. A.1.

Typical heating rates that are achieved with the ohmic pulse-heating setup
in Graz are on the order of 108 K · s−1. This fast heating implies several
advantages that are inherent to fast pulse-heating techniques:

1. First, the experiment is long over before the vertically standing liquid
metal wire can collapse due to gravity. Thus, measurements can be
performed on a liquid metal sample.

2. Second, there is no time for chemical reactions of the sample ma-
terial with its surrounding atmosphere1 - the experiment is quasi-
containerless.

3. And third, high heating rates suppress any axial expansion of the
sample wire [21, 51, 52]. Therefore, it is sufficient to monitor the radial
expansion of the wire during heating in order to deduce volume
expansion data.

Even though the heating rates are very high, the sample remains in thermo-
dynamic equilibrium. Hence, the experiment can be considered as quasi-static
[53].

3.1.1. Measured quantities

During the whole experiment, several raw signals are measured as a function
of time. These raw signals correspond to the voltage drop U(t) along the

wire2, the current I(t) through the wire, the normal surface radiance J(t)

of the wire and its thermal radial expansion d(t) . They are used in a

1N2 or Ar in low-pressure experiments, distilled H2O in high-pressure experiments.
2The voltage drop can only be measured with the low-pressure setup, while the

high-pressure sample chamber was not designed for it, compare Sec. 3.1.2.
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3.1. Ohmic pulse-heating

subsequent data evaluation to derive various thermophysical properties, see
Fig. 3.6 and Sec. 3.2.
The first three quantities mentioned above are sampled at 10 MHz and
are stored on a 14 bit transient recorder card (m2i.4032, Spectrum), which
resides in a Faraday room. These signals are transferred to the Faraday
room via bnc cables, that are fed through copper tubes. By this means, all
measurement lines are shielded from the highly inductive currents that
result from the discharge3. A LabVIEW script is used to record the raw
signals (master thesis T. Macher [54]).
To monitor the thermal radial expansion of the wire, a highly intense
background illumination is provided during the experiment by a commercial
photoflash, compare Sec. 3.3.1. Shadow images of the expanding wire are
acquired every 2.5 µs, corresponding to a sampling rate of 0.4 MHz. The
image information is stored on a separate pc with the software WinSIS
(Theta System).

Fig. 3.1 shows a typical set of measured signals during a pulse heating
experiment. Dotted lines indicate data points before the pulse heating start
and the regions of insensitivity and saturation in the case of the pyrometer
signal J(t). Note the pronounced horizontal plateau in the J(t) trace that
occurs during the melting process.

Voltage drop U(t)

The voltage drop U(t) along the wire is measured using two molybdenum
knife edges with a thickness of 0.1 mm that are attached to the wire in a
distance of approximately 40 mm to each other, see Fig. 3.3 (b). For bet-
ter wire contact, a small triangular-shaped piece is cut out of each knife’s
contact end. During the experiment, the voltage drop, divided via high
impedance voltage dividers, is recorded from each of these knife edges
towards common ground. The difference signal is later used for further
evaluation to cancel out the contact resistance between voltage knife and
wire.

3 dI
dt |t=0 ≈ 700 A · µs−1.
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Figure 3.1.: A set of typical measurement signals obtained during pulse-heating as a
function of time: Current I(t), the two voltage signals U1(t), U2(t) and the
surface radiance signal J(t). The dotted lines of J(t) show regions of pyrometer
insensitivity and saturation.

Current I(t)

The current I(t) is measured with an inductive current probe with real-time
integration element (Model no.: 3025, Pearson electronics) which is in serial
connection to the wire.

Surface radiance J(t)

The surface radiance J(t) is monitored with a pyrometer throughout the
experiment and is used to evaluate the sample’s temperature afterwards.
Depending on the material’s melting point, four pyrometers with central
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3.1. Ohmic pulse-heating

Table 3.1.: Specifications of pyrometers used during this thesis.
λc . . . Central wavelength of interference filter
fwhm . . . Full-width-at-half-maximum of interference filter

# Diode λc / nm fwhm / nm Temperature range

1 Si 649.7 37.2 T & 2000 K
2 InGaAs 2350 458 600 K . T . 1700 K

wavelengths between 0.65 µm and 2.3 µm are available. For detailed infor-
mation on the pyrometers used during this theses, consult Tab. 3.1.

Fig. 3.2 shows a schematic drawing of a pyrometer that was built at Graz
University of Technology. It consists of a 1:1 imaging system that allows a
precise adjustment of the wire specimen with the aid of a tiltable mirror (2)
and a justage microscope with built-in scale (3). The position of the pyro-
meter is adjusted such that the wire center rests at 1.0 mm on the scale. In
the measurement mode, the mirror is tilted upwards and frees the light path.

Figure 3.2.: Schematic drawing of a pyrometer. 1 achromatic lenses, 2 tiltable mirror, 3
justage microscope with scale, 4 interference filter, 5 rectangular-shaped field
stop, 6 optical fiber towards photo diode. Image taken from [55].
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3. Experimental Method and Data Evaluation

In this mode, the light emitted from the wire passes an interference filter
(4) which transmits light exclusively in a narrow wavelength interval and
thus defines the measurement wavelength of the pyrometer. Subsequently,
the light passes a field stop (5) and is led to a shielded photo diode and
electronics via fiber optics (6).

Thermal radial expansion d(t)

In order to obtain a sufficiently fast image acquisition rate, a specialized
ccd camera system is used (pco imaging, controller unit by Theta System and
Graz Univ. of Technology) in combination with a high-power photoflash for
shadow imaging (Multiblitz X10AC/DC, 1000 W · s).
The high frame rate is achieved in two steps. First, the incoming photons
are converted into electrons with the help of a photocathode. The gener-
ated electrons are then multiplied with a micro-channel-plate (mcp) and
subsequently reconverted into electrons with a phosphorscreen (P46). This
process amplifies the incoming light by a factor of about 104 and allows
to use camera exposure times of less than 0.5 µs on the ccd sensor of the
camera (sensor size: 384 pixel× 572 pixel).
The second measure to obtain a high image acquisition rate is to use only a
few pixel lines of the sensor for shadow image acquisition, while using the
mechanically masked remainder of the chip as fast buffer storage for previ-
ously acquired images. This allows to greatly enhance the image acquisition
rate as the time-consuming read-out of the sensor can be postponed to a
time after the experiment. For a more in-depth description of the setup to
measure thermal expansion, please refer to the doctoral thesis of A. Schmon
[21].
During the bigger part of this work, the sensor was masked such that only
8 lines are open for exposure. Typically, an exposure time of 300 ns was used,
leading to the above mentioned frame rate of 4× 105 fps, i.e., one image
every 2.5 µs.

While all the above described quantities were previously measured simul-
taneously during pulse-heating experiments, A. Schmon proposed in his
doctoral thesis to conduct exclusive expansion measurements, i.e., measure-
ments without voltage knives [21]. By this means, sideways forces acting on
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3.1. Ohmic pulse-heating

the wire are eliminated which results in non-moving wires and thus greatly
enhances the measurement quality. In addition, the wire length between the
brass electrodes is reduced to about 40 mm for expansion measurements
compared to roughly 60 mm in measurements with voltage knives. This
measure further stabilizes the wire and makes an exact vertical alignment
easier.

Geometric properties

When measuring electrical data, the distance between the two voltage knives
l0 is determined with a cathetometer before the experiment (Vernier scale,
division 0.02 mm). This length is primarily used in the evaluation to calculate
the mass of the investigated wire piece.

The room-temperature wire diameter is measured with a laser micrometer
(ls-7010, Keyence Corporation, combined uncertainty: 2 µm) at three different
axial positions, where the sample is rotated in steps of 120◦ at each axial
position. The arithmetic mean of these nine diameter values is used as the
actual room-temperature diameter in the evaluation.

3.1.2. Setups for different isobaric conditions

In the group of Thermophysics and Metalphysics, the pulse-heating setup can
be changed to conduct either low-pressure or high-pressure experiments,
compare Tab. 3.2. Each of these experiments are isobaric experiments, where
the focus resides on different physical aspects. The low-pressure setup
has the advantage of a relatively comfortable voltage drop measurement,
which allows to deduce properties such as specific enthalpy and resistivity.
This is not possible with the high-pressure setup. On the other hand, the
high-pressure setup allows to greatly increase the sample’s boiling point by
increasing the ambient pressure and thus enlarge the accessible temperature
range to a high extent. When studying phase diagrams or investigating
critical parameters of metals [28] this setup is the better choice.
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Table 3.2.: Characteristics of the two pulse-heating setups for different isobaric conditions.
Measurable quantities are indicated with a checkmark.

Low-pressure setup High-pressure setup

Pressure ≈ 2.3 bar 1 bar to 5000 bar
Ambient medium N2 or Ar distilled H2O

Enlarge liquid range 5 X

Temperature T(t) X X
Expansion d(t) X X
Voltage U(t) X 5

Current I(t) X X

Low-pressure experiments are typically conducted in nitrogen (alphagaz

1 N2, 99.999 % (5.0)) at a pressure of approximately 2.3 bar. In these low-
pressure experiments, the pressure is no experimental variable. The reason
for the slight overpressure is to effectively inhibit flash arcs during the
experiment4.
In high-pressure experiments, distilled water is used as ambient medium.
Among many other advantages, water is safer than gas due to its much
smaller compressibility. The pressure can be chosen between 1 bar to 5000 bar.
However, the pressure should exceed the critical pressure of water, pc,H2O =
220.64 bar [56], to avoid the formation of a water steam tube around the
heated wire. To withstand such high pressures, a sample chamber was
designed by G. Pottlacher in his doctoral thesis [27].

Apart from the sample chamber, the discharge circuit and experimental prin-
ciple remain the same for both setups. These two setups will be discussed
in the following sections.

4N2 is usually preferred over Ar, as the dielectric strength of N2 is higher than that of
Ar. Flash arcs, which would lead to an erroneous enthalpy measurement, are thus inhibited
more effectively.
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3.1. Ohmic pulse-heating

Low-pressure setup

Fig. 3.3 (a) shows the low-pressure pulse-heating setup. The capacitor
bank (1) and Krytrons to start and stop the pulse-heating experiment (2)
can be seen at the top of the image. In the image center, the discharge
chamber with inserted sample holder is visible (3). This chamber is equipped
with three float glass windows5 for optical diagnostics, i.e., shadow image
acquisition for expansion measurements and surface radiance monitoring for
subsequent temperature deduction. A gas in- and outlet (4) is connected to
the chamber to pressurize it during the experiment and purge it afterwards.
The measurement devices visible in Fig. 3.3 are the inductive current probe
(5), which is connected in series with the wire sample, the shielded voltage
measurement lines (6), the pyrometer (13) with gray filter (14) in front of it,
and the ccd camera (12).
To acquire shadow images of the expanding wire, the light of the photoflash
(7) is collimated with a simple convex lens6 (8) before passing a notch-filter
(9). This filter7 minimizes the intensity of the flashlight at the measurement
wavelength of the pyrometer. The light then passes an adjustable iris (10)
that cuts out possibly remaining non-parallel light rays8. At the opposite
side of the sample chamber, an imaging lens9 (11) creates a shadow image on
the photocathode of the ccd camera. For fine adjustment, the imaging lens
and the pyrometer can be moved in three axes with micrometer screws. Note
that the pyrometer view is orthogonal to the flash direction to minimize any
stray light potentially being reflected into the pyrometer.

The sample holder is shown in Fig. 3.3 (b). The brass electrodes (17) are
firmly squeezed with the clamps to electrically contact the sample wire (15).
Also shown in this figure are the thin contacts for voltage drop measurement
(voltage knives (16)).

5Dimensions: (48× 48× 5)mm.
6Focal length collimator lens: f = 60 mm.
7For pyrometer at 650 nm: Chroma zet647nf, fwhm ≈ 34 nm.
8Diameter: ∅ = 18 mm.
9Focal length imaging lens: f = 80 mm.
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(a) (b)

Figure 3.3.: (a) Low-pressure pulse-heating setup: 1 capacitor bank, 2 Krytrons, 3 sample
chamber, 4 gas in- and outlet, 5 Pearson probe, 6 voltage measurement lines,
7 photoflash, 8 collimator lens, 9 notch filter, 10 iris, 11 imaging lens, 12 ccd

camera, 13 pyrometer, 14 gray filter holder.
(b) Sample holder: 15 wire specimen, 16 voltage knives, 17 brass electrodes
and brass clamps.

High-pressure setup

The high-pressure setup is shown in Fig. 3.4 (a). The photoflash (1) is used
in the exact same manner as with the low-pressure setup - it provides back-
ground illumination for the expansion measurement. The light is collimated
with a convex lens10 (2) and led through a notch filter (not visible in this
image). It then enters the sample chamber that is made of solid stainless
steel vew n 701 (3) and can hold 0.25 l of water with the sample holder
inserted. The inner diameter of this solid steel chamber is 60 mm, its walls
have a thickness of 90 mm. Via two cylindrical sapphire windows11, the
flashlight enters and exits the sample chamber. These sapphire windows

10Focal length collimator lens: f = 60 mm.
11Radius r = 15 mm, thickness d = 20 mm.
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3.1. Ohmic pulse-heating

(a) (b)

Figure 3.4.: (a) High-pressure pulse-heating setup: 1 photoflash, 2 collimator lens + notch
filter, 3 sample chamber, 4 water in- and outlet, 5 bore for pressure compen-
sation, 6 beam splitter, 7 imaging lens, 8 pyrometer lens + gray filter holder, 9
pyrometer.
(b) Sample holder: 10 sample (wire), 11 brass electrodes and brass clamps.

have a clearance of 10 mm and are used because of their high mechanical
strength and transmittance in the visible range.

To build up and release pressure, distilled water is pumped into or released
from the sample chamber via a thin steel tube (4) with 6 mm outer and
1 mm inner diameter. A beamsplitter (6), that provides approximately 50 %
of original intensity in each direction, splits the outcoming light into pyro-
meter and camera direction. This is necessary as the high-pressure vessel is
equipped with only two windows.
The light traveling towards the ccd camera (not visible in this image) is im-
aged with a movable lens12 (7). Another lens (8) is used in the high-pressure
setup, to widen the incoming light and thus magnify the wire13 before

12Focal length imaging lens: f = 160 mm.
13Focal length concave lens: f = −200 mm.
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3. Experimental Method and Data Evaluation

entering the pyrometer (9). By this means, a similar (high) magnification
compared to the low-pressure setup is achieved, which ensures that the
pyrometer’s spotsize relative to the wire diameter is not larger than in
experiments with the low-pressure setup.

Fig. 3.4 (b) depicts the sample holder used in high-pressure experiments. A
sample wire (10) and brass electrodes (11), firmly squeezed by brass clamps
to connect the wire to the electrical circuit, are visible. A typical distance
between the electrodes is 40 mm, but it can be changed by using shorter or
longer electrodes.

Not shown in Fig. 3.4 is the plug with an external thread that is connected
to the sample holder and drilled into the sample chamber from above to
seal it (special steel vew v 155). Care has to be taken to avoid any metallic
or granular residuals on the thread and to use enough petrolatum14 on the
external thread to avoid a rough-running process.
Also not visible is the equipment for the generation of pressure. Distilled
water is pumped into the closed chamber with the aid of two pumps, a
manually operated pump (Enerpac 11-400 a1398c) and an electric screw
press (Dunze 625-700-3) that is used in combination with a step motor (Berger
Lahr rdm 51117/50). The piping is equipped with one-way valves (Nova Swiss
520.3433-1, 1.4571 nw1.6) and a needle-valve (Dunze 61 89417) to release the
pressure after the experiment. A manometer (Dunze 504-100-2, 61 89417)
monitors the pressure. The electronics for motor control, pressure setting
and display were built by J. Friedrich15.

3.1.3. Time sequence

The experiment’s time sequence is controlled via a 5 V ttl pulse generator.
The generated pulses trigger the data acquisition, the photoflash, the pulse
heating and finally stop the pulse-heating at predefined times that can
be changed in increments of 0.1 µs. A typical time sequence is shown in
Fig. 3.5.

14Better known as Vaseline R©.
15Institute of Experimental Physics, Electronics Workshop.
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3.2. Data evaluation

Figure 3.5.: Time sequence in a typical pulse-heating experiment. First, photoflash and
data acquisition are activated. Pulse-heating is started shortly before the flash
reaches its intensity maximum. When its intensity maximum is reached and
the pyrometer becomes sensitive to the sample’s surface radiation, the camera
sequence is started.

First, the photoflash and the electrical data acquisition are started. The
pulse-heating start is delayed by about 190 µs relative to the flash start
to account for the intensity rise time of the flash. After another delay of
approximately 20 µs, the camera sequence is started. Shadow images of the
radially expanding wire are thus acquired during the time of maximum
flash intensity and within the temperature range of pyrometer sensitivity.
The vertical bars in Fig. 3.5 at a given color indicate the instants in time at
which images are taken. The width of these bars symbolizes the exposure
time of a single image. To obtain expansion values in between the sampled
temperature values, the camera start in a successive experiment is shifted
relative to the pulse-heating start, as symbolized by the changing color of
the vertical bars (compare also Sec. 3.3.2).

3.2. Data evaluation

This section gives the mathematical and physical background for the data
evaluation. Fig. 3.6 shows a flowchart of obtained base quantities (squares)
in a typical pulse-heating experiment and thereof derived physical quan-
tities (circles). These derived physical quantities, commonly referred to as
thermophysical properties, can be grouped into directly obtained quantities (1st

and 2nd step) and into quantities that indirectly follow via physical models
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3. Experimental Method and Data Evaluation

(3rd step).
Part of the first group are the specific enthalpy H(T), the heat capacity of
the liquid metal cp, the electrical resistivity rVE(T), the volume expansion
V(T)/V0, and the density ρ(T).
Applying physical models, these thermophysical quantities can be used to
calculate the thermal conductivity λ(T) and thermal diffusivity a(T) and
give estimates for the critical density ρc and the critical temperature Tc.

For the evaluation of temperature, specific enthalpy and uncorrected elec-
trical resistivity, the matlab script Hotwire, written by F. Sachsenhofer [57]
and updated by T. Macher [54] is used. This script also allows to correct
the measured voltage drop for any inductive parts. In the following, U(t)
represents this corrected voltage drop along the wire.
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3.2. Data evaluation
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3. Experimental Method and Data Evaluation

3.2.1. Temperature

The temperature measurement via pyrometry is based on planck’s law of
radiation, that describes the spectral radiance Lλ,B(λ, T) of a black body16

at a given wavelength λ and temperature T via

Lλ,B(λ, T) =
c1

π · λ5 ·
[
exp

( c2

λ · T
)
− 1
]−1

, (3.1)

with the two constants17 c1 and c2.

However, real radiators such as the specimen under investigation, emit radi-
ation less efficiently than a black body, which is described by the emissivity
ε(λ, T). This quantity is the ratio of the spectral radiance of a real body
Lλ(λ, T) to the spectral radiance of a black body Lλ,B(λ, T) at the same
temperature and wavelength,

ε(λ, T) =
Lλ(λ, T)

Lλ,B(λ, T)
≤ 1 . (3.2)

Gathering pyrometer related properties, such as geometrical factors, trans-
mission of the optics, properties of the interference filter used and remaining
constants in (3.1) to a calibration constant K, the pyrometer signal J(T) can
be expressed via

J(T) = K · ε(λ, T) ·
[
exp

( c2

λ · T
)
− 1
]−1

. (3.3)

The pyrometers used during this work were not calibrated directly at a
black body or a tungsten strip lamp, but calibrated indirectly. In this indirect
calibration procedure, the phenomenon of latent heat is utilized - when the
specimen undergoes the phase transition from solid to liquid, the energy
that is put into the sample will not further elevate its temperature, but rather
lead to a breaking of crystal bonds and thus a transition to the liquid phase.

16Subscript “B” for black body.
17c1 = 2 · π · c2 · h, with c, the speed of light in the medium and h, the planck constant.

c2 = c · h/kB, with kB, the boltzmann constant.
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3.2. Data evaluation

Therefore, a plateau is visible in the radiance-over-time diagram during the
several µs-long melting process, compare Fig. 3.1. Assigning the known
melting temperature to this plateau value allows to deduce the temperature
as a function of time (indirect calibration).

Depending on whether information on the normal spectral emissivity ε(λ, T)
at the measuring wavelength λ is available or not, two approaches are
used.

No information on normal spectral emissivity available

If no information on the normal spectral emissivity ε at the pyrometer’s
measuring wavelength λ is available, assumptions have to be taken. Relating
the pyrometer signal J(T) at any temperature T, as given in equation (3.3), to
its expression at the melting temperature J(Tm), results in equation (3.4),

T(t) =
c2

λ · ln

 J(Tm)
J(T) ·

�
�
�
�>
≈1

ε(λ,T)
ε(λ,Tm)

·
[
exp

(
c2

λ·Tm

)
− 1
]
+ 1


, (3.4)

where c2 is the second radiation constant. Note that the subscript “m”
indicates values at the melting point. To be able to proceed, it is assumed
that the emissivity remains constant with respect to its value at the beginning
of the liquid phase ε(λ, Tm), i.e., ε(λ, T)/ε(λ, Tm) ≈ 1. Pottlacher and Seifter
showed that this assumption is feasible, as long as the measurements do
not reach too far away from the melting point [23, 58].

When the goal is to obtain thermophysical properties up to the highest
temperatures accessible, as it is in this work, this approach can not be used
as it can lead to systematic temperature errors of up to 500 K at the highest
temperatures.
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3. Experimental Method and Data Evaluation

Information on normal spectral emissivity available

If data on the normal spectral emissivity of the investigated material are
available, the pyrometer signal can easily be converted to true tempera-
tures.

In a first step, the calibration constant K is evaluated according to equation
(3.5), by assigning the known radiance temperature at melting18 Tr,m to the
pyrometer signal at melting, J(Tr,m), via

K = J(Tr,m) ·
[

exp
(

c2

λ · Tr,m

)
− 1
]

, (3.5)

where c2 is again the second radiation constant and λ is the mean effective
wavelength of the pyrometer. Note that the radiance temperature at melting
Tr,m is in this work directly derived via the literature value for the true melt-
ing temperature Tm and the normal spectral emissivity ε(λ, Tm), reported
previously by our group [22], via equation (3.6),

Tr,m =
c2

λ · ln
{

1
ε(λ,Tm)

·
[
exp

(
c2

λ·Tm

)
− 1
]
+ 1
} . (3.6)

The radiance temperature as a function of time Tr(t) is then calculated from
the pyrometer signal J(Tr(t)) and the calibration constant K, with

Tr(t) =
c2

λ · ln
(

K
J(Tr(t))

+ 1
) . (3.7)

Finally, the calculated radiance temperature as a function of time is con-
verted to a true temperature T(t) making use of the normal spectral emis-
sivity ε(λ, Tr),

T(t) =
c2

λ · ln
{

ε(λ, Tr) ·
[
exp

(
c2

λ·Tr(t)

)
− 1
]
+ 1
} . (3.8)

18Note that the index “r” indicates radiance temperatures. They have to be used because
the normal spectral emissivity is given as a function of radiance temperature.
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3.2. Data evaluation

3.2.2. Volume expansion and density

Fig. 3.7 (a) and (b) depict two images that consist of a sequence of shadow
images where each image slice has a resolution of 8 pixel× 384 pixel (hori-
zontal streaks) being 2.5 µs apart in time. While Fig. (a) is a “cold” sequence
captured prior to the pulse heating start, Fig. (b) shows the actual radial
expansion (“hot” sequence), and finally the phase explosion during pulse
heating (bright region). To deduce a diameter of the wire at a specific instant
in time, the gray scale values Ig of each image slice i are summed up in
vertical direction, i.e.,

Ii(x) =
8

∑
y=1

Ig(x, y), x ∈ [1, 384] , (3.9)

yielding an intensity profile I(x), as exemplified in Fig. 3.7 (c), for each
image slice i. The full-width-at-half-maximum (fwhm), indicated in the
figure, is then used as the wire diameter d(t) at a specific instant in time
t. This evaluation is done for each of the processable image slices in the
hot and cold image sequence, by manually choosing an upper and a lower
intensity level using the matlab script Wiredia. The fwhm is then calculated
with sub-pixel resolution by using a linear interpolation between the discrete
I(x) values.

To derive the relative thermal radial expansion, the diameter of each image
slice i captured during pulse-heating, di, is related to the corresponding
image slice captured prior to pulse-heating, d0,i. This is important, as d0
oscillates with an amplitude of approximately ± 1 pixel and a period of i =
9 images due to electronic effects of the camera system19. As the expansion
measurement is time-synchronized with the recording of the remaining base
quantities, a temperature T can be assigned to each of the diameter values.
The relative volume expansion as a function of temperature V(T)/V0 can
then be calculated with the previously derived diameter values via

19Using wires with a diameter of 0.5 mm results in a pixel diameter of approximately
100 pixel - therefore, the oscillation amplitude corresponds to approximately ± 1 % of the
imaged diameter.
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Figure 3.7.: (a) Image sequence captured prior to the pulse-heating start. (b) Image sequence
taken during the pulse-heating experiment. Radial expansion of the wire
and the phase explosion (bright horizontal band) can be observed. Time and
temperature can be assigned to each of the image slices. (c) Exemplary intensity
profile of one streak-image to deduce a precise diameter (fwhm) for density
determination. Images taken from publication II of this work [59].

(
V(T)

V0

)
=

(
d(T)2

��π

��4
· l(T)

)
·
(
��4

d2
0��π
· 1

l0

)
. (3.10)

Under the prerequisite, that no axial expansion occurs during the heating
process, i.e., l(T) = l0, equation (3.10) can be further simplified and the
volume expansion can be expressed by the square of the radial expansion,

(
V(T)

V0

)
l(T)=l0
=

(
d(T)

d0

)2

. (3.11)

To fulfill this prerequisite of non-axial expansion, the heating-rates have to
be sufficiently high [21, 51, 52]. Heating rates chosen too low would cause
a bending of the wire as the distance between the electrodes is fixed, and
thus the wire would start to move radially. Thankfully, this problem can be
diagnosed easily with shadow imaging.

T. Hüpf supposed in his doctoral thesis, that the inhibited axial expansion is
eventually compensated by an increased radial expansion [52] which makes
it possible to derive the density ρ(T) from thermal radial expansion data
and the room-temperature density ρ0 via
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3.2. Data evaluation

ρ(T) = ρ0 ·
(

d0

d(T)

)2

. (3.12)

The room-temperature densities ρ0 used in this work were carefully selected
from the literature.

This approach was used throughout the years at the pulse-heating laboratory
in Graz, but also found application in other pulse-heating facilities, such as
at the Lawrence Livermore Laboratory [14]. Furthermore, comparing density
results obtained with equation (3.12) to results obtained with completely dif-
ferent static methods, such as the electrostatic levitation method (Ishikawa,
Paradis et al., e.g., [60]), indicates that the pulse-heated wires are indeed
showing an increased radial expansion that relates to the sample-specific
volume expansion.

3.2.3. Specific enthalpy and heat capacity

The enthalpy H is the sum of a system’s internal energy U and the product
of pressure p and volume V,

H = U + pV , (3.13)

and is a measure for the system’s energy content. The total differential of H
can be written as

dH = dU + p dV + V dp . (3.14)

Considering that pulse-heating is an isobaric process (p = const.), it follows
with the differential of the inner energy, dU = δQ− p dV, that the change
in enthalpy equals a change in heat,

dH = δQ . (3.15)

This specific enthalpy H(t) originating from the transformation of electrical
energy into the heat Q(t) via the specimen’s resistivity, can be obtained by
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integrating the electrical power over time t and relating it to the mass m of
the investigated wire piece,

H(t) =
1
m

∫ t

0
U(t′)I(t′)dt′ . (3.16)

The mass m is calculated from the room-temperature density ρ0 that is
usually adopted from the literature and its geometric dimensions, i.e.,
diameter d0 and length between the voltage knives l0:

m = ρ0 ·
d2

0 · π
4
· l0 . (3.17)

Note that the derived H(t) describes the sample’s enthalpy starting at room-
temperature.
The specific heat capacity at constant pressure cp, which is the amount of
heat per unit mass that is needed to raise the sample’s temperature by 1 K,
can then be calculated via

cp =

(
∂H
∂T

)
p

. (3.18)

3.2.4. Electrical resistivity

The electrical resistivity at initial geometry rIG, that is without considering
any thermal expansion, can be derived according to

rIG(t) =
U(t)
I(t)

· d2
0 · π

4 · l0
, (3.19)

where U(t) and I(t) are the voltage drop and the current though the sample
at time t, d0 and l0 are the wire diameter and length between the voltage
knives at room-temperature. Clearly, with this description the electrical
resistivity is underestimated, because the wire expansion is neglected.
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3.2. Data evaluation

The physically correct expression, considering the sample’s volume expan-
sion (subscript “ve”) is given via

rVE(t) =
U(t)
I(t)

· d(t)2 · π
4 · l(t) , (3.20)

where now the actual diameter d(t) and the actual length l(t) are considered.
Because of the fast heating rates, axial expansion of the sample is inhibited -
thus, the distance between the voltage knives remains constant, i.e., l(t) =
l0 (compare Sec. 3.2.2). Therefore, the correct electrical resistivity can be
obtained by multiplying the electrical resistivity at initial geometry, rIG, with
the measured radial expansion squared:

rVE(t) = rIG(t) ·
(

d(t)
d0

)2

. (3.21)

3.2.5. Thermal conductivity and diffusivity

The thermal conductivity λ(T) is a thermophysical quantity describing
how well a material conducts heat via thermal conduction in response to a
temperature gradient.

Whenever the thermal conduction mechanism is dominated by electronic
contribution, such as close to a pure metal’s melting point and in its liquid
phase, the thermal conductivity λ can be approximated by the empirical
wiedemann-franz law. This law relates the thermal conductivity to the
electrical conductivity σ = 1/rVE (with rVE, the electrical resistivity) and the
temperature T via a proportionality factor L,

λ(T) =
L · T

rVE(T)
. (3.22)

During this work, the theoretical lorenz-number L = L0 = π2/3 · (kB/e)2

[61, 62] was applied, where kB is the boltzmann constant20 and e is the

20New SI-value: kB = 1.380 649× 10−23 J ·K−1.
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elementary charge21. According to the redefinition of SI base units that
took effect in May 2019 (new SI) [63], a theoretical lorenz-number of
L0 = 2.443× 10−8 V2 ·K−2 ensues.

The thermal diffusivity a(T) is a property that describes how the spatial
distribution of temperature changes with time as a consequence of thermal
conduction due to a temperature gradient present. It can be calculated
via the thermal conductivity λ(T), the density ρ(T) and the specific heat
capacity cp,

a(T) =
λ(T)

cp · ρ(T)
. (3.23)

Applying the wiedemann-franz law to equation (3.23) and representing
the electrical resistivity with (3.21), and the density ρ(T) with (3.12), allows
to estimate a(T) even without measuring thermal expansion:

a(T) =
L · T

cp · rIG · ρ0
. (3.24)

3.3. Improvements on thermal expansion
measurement

During the measurements on aluminum it became obvious that the photo-
flash used for shadow-imaging had to be replaced. Occurring problems
included delayed flash starts but also total flash failures. These problems
greatly reduced the number of processable expansion measurements. But
also other issues limited the measurement quality in thermal expansion
measurements such as the time sequence typically used, where the image
acquisition is started before the pulse-heating experiment is started. Finally,
the number of pixel lines open for exposure was reduced from 16 to 8

pixel lines, to double the frame rate and thus improve efficiency compared
to previous experiments. These issues are discussed in more detail in the
following subsections.

21New SI-value: e = 1.602 176 634× 10−19 C.
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3.3. Improvements on thermal expansion measurement

3.3.1. High power photoflash

The new flash purchased is a Multiblitz X10AC/DC with an energy of
1000 W · s that was the strongest studio flash on the market at at the time
of purchase. The necessary electronics to start the flash at a prechosen time
were built by J. Friedrich22. Fig. 3.8 shows the spectrum emitted by the flash
in a wavelength range between 350 nm and 1050 nm. Most of the energy is
emitted in the visible range, peaking at about 550 nm.
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Figure 3.8.: Spectrum of the high-power photoflash Multiblitz X10AC/DC at maximum
power level (pl 10): Normalized intensity Inorm as a function of wavelength λ.
Spectrum acquired with an Ocean Optics usb4000 spectrometer.

Fig. 3.9 depicts the normalized intensity development as a function of time
for different power levels (pl). Decreasing the power level to pl 9 reduces
the maximum intensity to 60 % of the maximum achievable intensity. A
further reduction to pl 8 leads to 40 % of maximum flash intensity. For
thermal expansion measurements with the ohmic pulse-heating setup, a

22Institute of Experimental Physics, Electronics Workshop.
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further power level reduction is by no means feasible, therefore, pl 7 to pl

1 are omitted in this graph. Note that reducing the power level also shifts
the maximum flash intensity towards earlier times. To obtain high-contrast
shadow images of the expanding wire samples, a maximized background
illumination is desirable. For this reason, all expansion measurements in
this work were conducted at the maximum power level (pl 10).

The inset in Fig. 3.9 shows a zoomed-in flash intensity at pl 10 as a function
of time. The flash intensity varies by only ± 0.6 % of the mean intensity
value over a 50 µs time interval (220 . t/µs . 250). Even with very strong
gray filters applied in front of the pyrometer for widening the measurable
temperature range, the time between pyrometer onset and saturation rarely
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Figure 3.9.: Relative intensity Irel as a function of time t of the high-power photoflash
Multiblitz X10AC/DC at different power levels (pl). Measurements obtained
with a pyrometer at a wavelength of λ = 650 nm. The inset shows a zoomed-in
region with maximum flash intensity at pl 10. The flash intensity remains
constant with a deviation of approximately ± 0.6 % of the mean intensity Imean
in the time interval between 200 and 250 µs.

44



3.3. Improvements on thermal expansion measurement

exceeds 25 µs. In fact, as a result of the high heating rates during pulse-
heating, the pyrometer is typically only sensitive for as little as 10 µs to
20 µs. For this reason, measurements were timed such that the pyrometer
onset approximately coincides with t ≈ 210 µs. By this means, the mean
intensity deviation during a typical pyrometer measurement time decreases
to less than ± 0.3 %. This is favorable as a non-constant superposition of
flashlight onto the pyrometer signal due to stray light would directly affect
the derived temperature and thus induce a systematic error.

As outlined in Sec. 3.1.2, additional precautions are taken to minimize flash
stray light reaching the pyrometer, such as an orthogonal direction for tem-
perature and expansion measurement and the use of a notch-filter. Therefore,
the influence of the flash characteristic on temperature measurement should
only play a minor role.

3.3.2. Altered time sequence

The typical time sequence in pulse-heating used in previous works consisted
of four steps [21]: Step 1, the flash (F) is started. Step 2, the camera sequence
(C) is started. Step 3, the pulse-heating process is engaged (P1) and step 4,
the pulse-heating is stopped (P2).

In principle, there is nothing wrong with this time sequence. However,
when looking at the cup-shaped intensity profiles obtained in expansion
measurements, a noticeable decrease in contrast can be observed during the
measurement sequence. This is most likely related to a decay in phosphor
screen sensitivity over measurement time. This circumstance is plotted
in Fig. 3.10. The maximum intensity Imax of such a cup-shaped profile is
related to the minimum intensity Imin and normalized. As can be seen,
the contrast decays with ongoing time, i.e., as a function of image number.
Considering that it takes approximately 20 µs until the sample temperature
is high enough to be detected by the pyrometer, implies that no temperature
can be attributed to the first eight images (2.5 µs per image). At image nine,
indicated by a dashed red line, the contrast already decreased to 60 % of
first-image-contrast. In other words, in the F-C-P1-P2 sequence, the images
with highest contrast are useless because no temperature can be attributed
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Figure 3.10.: Normalized wire contrast Imax/Imin in a typical image sequence. The inset
shows a (vertically stretched) wire shadowgraph. The red dashed lines indicate
the typical image at which a temperature allocation is possible for the first time
in measurement, if the camera sequence is started prior to the pulse-heating
start (F-C-P1-P2). A strong contrast reduction of the processable images is the
result.

to them.
Therefore, camera start and pulse-heating start were swapped (F-P1-C-P2,
compare Fig. 3.5). The time delay between pulse-heating start and camera
sequence start is chosen such that the first image acquired is already in the
pyrometer sensitive region.

Fig. 3.11 shows how changing the time sequence results in a strongly in-
creased signal-to-noise ratio. The two expansion measurements depicted
were acquired under the same experimental conditions, such as wire length
and diameter, capacitor charging voltage, exposure time etc. The left expan-
sion measurement was started shortly before the pulse-heating was started
(previous sequence: F-C-P1-P2), while the right image acquisition started at
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3.3. Improvements on thermal expansion measurement
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Figure 3.11.: Comparison of expansion sequence and corresponding cup-shaped intensity
profile at the same reference temperature Tref, obtained with different time
sequences, F-C-P1-P2 (left) and F-P1-C-P2 (right). The F-P1-C-P2 sequence
enhances the signal-to-noise ratio at a given temperature.
F . . . flash start, P1 . . . pulse-heating start, P2 . . . pulse-heating stop and C . . .
camera start.

the pyrometer onset time (new sequence: F-P1-C-P2). The red frames mark
the image slice at approximately the same time after the pulse-heating start,
thus at the same reference temperature Tref. Deriving the corresponding
cup-shaped intensity profiles according to equation (3.9) illustrates how the
data quality is increased by this simple measure. This measure is particularly
useful if the experimenter wants to obtain thermal expansion values up to
the boiling point, because the thermal radiation of the wire increasingly
reduces the contrast as the temperature rises.

Ing. R. Dämon23 designed a galvanic isolation device that was necessary to
swap camera and pulse-heating start.

23Institute of Experimental Physics, Electronics Workshop.
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4. Thermal Expansion
Discrepancies in High-Pressure
Experiments

The high-pressure vessel was put into operation to extend the accessible
temperature range between the melting point and the sample’s boiling
point by raising the latter. By this means it was anticipated to resolve
the non-linear nature of the density as a function of temperature when
approaching the critical point. Resolving such a non-linear density behavior
would greatly enhance the extrapolation validity.

However, T. Hüpf discovered in his doctoral thesis that the thermal radial
expansion of two investigated materials (Nb and Ni80Cr20) was higher when
measured with the high-pressure setup compared to that obtained with
the low-pressure setup [52]. If at all, one might expect that the thermal
expansion is slightly lower compared to that in low-pressure experiments,
due to the high static pressure acting on the expanding sample. However,
the compressibility of refractory metals is typically very low1, and should
only have a negligible effect on expansion measurement which makes these
experiments feasible in the first place.

T. Hüpf performed various tests to investigate this phenomenon but did
not find a reason for the observed discrepancy [52]. Hüpf pointed out that
the trouble-shooting is inherently difficult due to the two experimental
constraints that are closely linked to each other, the static pressure and the
atmosphere used:

1compare Tab. 4.2.
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4. Thermal Expansion Discrepancies in High-Pressure Experiments

1. Low-pressure experiments are performed in an inert gas atmosphere
at almost ambient pressure. The pressure can not be varied on a large
scale.

2. High-pressure experiments are performed in water atmosphere at ele-
vated pressures (at least above the critical pressure of water, pc,H2O =
220.64 bar [56], to preclude boiling of the latter).

Switching between the two setups thus implies a change in pressure and a
change in atmosphere used. Importantly, the physically intuitive assump-
tion that the discrepancy has no physical reason but must be an artefact
instead could be proven by T. Hüpf by monitoring the electrical resistivity
of a sample in both setups. As the high-pressure setup is not capable of
measuring electrical resistivity in absolute means, he first validated in ex-
periments with the low-pressure setup that water as ambient medium has
no impact on the sample’s electrical resistivity. In a second step, he checked
whether increasing the pressure in successive high-pressure experiments
would affect the measurements of a resistivity related quantity2. No change
in electrical resistivity was reported [52].

Fig. 4.1 (a) shows the relative volume expansion (squared relative radial
expansion) of niobium and tantalum, measured during this work3. Full
symbols represent data acquired with the high-pressure setup in H2O at
pressures between 1 kbar to 3 kbar, open symbols represent data acquired
with the low-pressure setup in N2 at 2.3 bar. The approximate deviation
between the two data sets for each metal shows an increasing deviation
with temperature, as depicted in Fig. 4.1 (b). This deviation is stronger for
niobium than for tantalum, and reaches a value higher than + 25 % at the
highest comparable temperature. While Fig. 4.1 (b) suggests that the data
for niobium coincide at the beginning of the liquid phase, this is actually
a result of the inadequate linear fit close to the melting temperature. The
high-pressure data for tantalum deviate already by + 6 % at the melting
point and further increase to + 16 % at the highest comparable temperature.

2In these experiments, the voltage drop was measured between current infeed and
outfeed.

3Samples were cut from the very same wire material for low-pressure and high-pressure
experiments.
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Figure 4.1.: Thermal expansion discrepancy between high-pressure and low-pressure ex-
periments for Nb and Ta. (a) Measured relative radial expansion squared
(d(T)/d0)

2 (relative volume expansion) as a function of temperature T for
niobium (circles) and tantalum (triangles) in high-pressure experiments (filled
symbols, 1 kbar to 3 kbar, H2O) and low-pressure experiments (open symbols,
2.3 bar, N2). (b) Deviation between high-pressure and low-pressure experiments.
The deviation increases with temperature.
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4. Thermal Expansion Discrepancies in High-Pressure Experiments

4.1. Possible effects of changed conditions on
measured quantities

As indicated above, changing between the two setups implies a change in
atmosphere used and in pressure. In the following, possible influences of
these two conditions on the monitored quantities, temperature and thermal
expansion, are discussed.

4.1.1. Pressure

The high static pressure itself should not pose a problem for thermal expan-
sion measurements as discussed below.

Possible influence of pressure on temperature measurement

change in melting temperature In high-pressure experiments it is
usually argued to widen the liquid phase by greatly increasing the material’s
boiling point. However, the melting point of a material under pressure is
also affected by a high static pressure. Tab. 4.1 lists the effects of pressure
on the two metals Ta and Nb - the melting point increases with increasing
pressure. For experiments up to 3000 bar (0.3 GPa) this implies a change
in melting temperature of 7 K to 15 K for Ta, depending on the literature
source considered, and a change of less than 11 K for Nb at 3000 bar.

Table 4.1.: Change in melting temperature Tm with pressure p for tantalum (Ta) and
niobium (Nb).

Element dTm · dp−1 / K ·GPa−1 Reference

Ta (24± 2) [64]
Ta 49 [65]
Nb 36 [65]
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4.1. Possible effects of changed conditions on measured quantities

Fig. 4.2 shows the possible systematic error due to an increased, but uncon-
sidered melting temperature for Ta in a worst-case scenario. The pyrometer
signal was evaluated twice, assigning two different temperatures to the same
plateau value. The solid blue line shows the resulting temperature without
considering the change in melting temperature. The dashed blue line shows
the temperature evaluated with the melting temperature increased by 15 K.
Not considering the rise in melting temperature results in an underesti-
mation of temperature, but the deviation, indicated by the solid red line,
ranges between only −0.3 % to −1 % of the “true” value. Note that a change
of 15 K is a rather conservative assumption, and newer values suggest only
half of it for Ta (compare Tab. 4.1, [64]). Ignoring the effect of pressure on
the melting temperature thus results in an effect that is one to two orders of
magnitude too small to explain the measurement results.
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Figure 4.2.: Effect of a pressure-related increased melting point Tm on the temperature
evaluation for Ta at 3000 bar. The blue lines show the temperature T as a
function of time t assuming an unchanged melting point (solid line), and a
melting point increased by 15 K (dashed line). The solid red line shows the
temperature error ∆T that results if the rise in melting temperature is not
considered.
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4. Thermal Expansion Discrepancies in High-Pressure Experiments

Possible influence of pressure on thermal expansion measurement

compressibility of metals A static pressure p acting on a metal wire
may decrease its volume V, and thus its density. The relative volume change
at a temperature T as the pressure is changed can be described via the
material’s isothermal compressibility κT,

κT = − 1
V
·
(

∂V
∂p

)
T

. (4.1)

Tab. 4.2 lists the isothermal compressibility of several metals investigated
with the high-pressure setup in this work. One could argue that the rel-
ative volume change due to the increased static pressure ranges below
V/V0 = −0.2 % for a typical static pressure of 1 kbar. The effect of a high
static pressure on a metal’s density is therefore negligible. Consequently,
differences in the experimental data on different isobars are within exper-
imental uncertainty intervals, as was also reported by Gathers et al. [25].
Independently, a high compressibility could only explain a decreased ther-
mal expansion under high pressure compared to the expansion at lower
pressure, but not an increased thermal expansion.

Table 4.2.: Isothermal compressibility κT at the melting point and percentual volume change
V ·V−1

0 per kbar for the metals niobium (Nb), tantalum (Ta), rhenium (Re) and
iridium (Ir). Data from [66].

Element κT / GPa−1 V ·V−1
0 / % · kbar−1

Nb 0.0123 -0.123

Ta 0.0168 -0.168

Re 0.0092 -0.092

Ir 0.0082 -0.082

Furthermore, two other reasons exclude the high static pressure as potential
explanation for an apparent enlarged thermal expansion:
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4.1. Possible effects of changed conditions on measured quantities

First, the measured radial expansion sequence is related to a sequence
that is acquired at the same static pressure prior to the pulse-heating start.
Therefore, compressibility effects or a possible change in the optical path
due to the increased static pressure are compensated for.
Second, high-pressure ohmic pulse-heating experiments were carried out in
the past by other laboratories, such as at the Lawrence Livermore Laboratory,
to obtain various thermophysical properties, including volume expansion
(Gathers, Shaner, Hodgson, e.g. [25]). Comparing our data obtained at
atmospheric pressure (low pressure-setup) with the literature (high-pressure
data and data measured in vacuum) does not indicate a significant physical
pressure dependence of the quantities measured [59].
However, a significant difference between the high-pressure setup used here
in Graz and other high-pressure pulse-heating facilities is the medium used
to build up pressure: Other groups use inert gases (Ar or He), not water, to
exert pressure on the specimens.

Therefore, the problem seems to be related rather to the atmosphere used,
than to the increased pressure itself, or there is some kind of setup-related
systematic error that is made in conjunction with the high-pressure experi-
ments.

4.1.2. Atmosphere

As indicated above, distilled water is used at the high-pressure pulse-heating
setup in Graz to pressurize the sample chamber. Influences of the water
atmosphere on the measured properties are imaginable.

Possible influence of atmosphere on temperature measurement

absorptivity of water The surface radiance emitted by the heated wire
propagates through the water before reaching the pyrometer. If there is
a time-dependent increase in absorptivity due to a temperature gradient
evolving in the water, the measured surface radiance may be attenuated and
yield apparent decreased temperatures.
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4. Thermal Expansion Discrepancies in High-Pressure Experiments

The change of radiance intensity I(x) relative to the incident intensity I0 after
traveling a distance x may be described with the lambert-beer-bouguer

law,
I(x) = I0 · exp(−α(λ, T) · x) , (4.2)

where α(λ, T) is the absorptivity of the medium, that depends on the light’s
wavelength λ and the temperature T of the medium. According to [67],
the absorptivity of water at the measuring wavelength of the pyrometer
(λ = 650 nm) and at T = 22 ◦C is

α650 nm = (0.340± 0.003)m−1 .

However, the change in absorptivity of water with temperature in a range
between 15 ◦C to 60 ◦C is reported to be as small as

(
dα

dT

)
650 nm

= (5± 4)× 10−5 m−1 ·K−1

at 650 nm [68]. Considering a water temperature rise to 100 ◦C would there-
fore increase the absorptivity by approximately 1 %, but most likely only in
a very thin tube around the wire.

This means, that the effect on temperature measurement of a possibly
evolving dynamic temperature rise of the water surrounding the heated
wire can be neglected.

Possible influence of atmosphere on thermal expansion measurement

water steam tube Conducting pulse-heating experiments in water, but
without raising the static ambient pressure above the critical pressure of wa-
ter would likely cause the formation of a water steam tube around the wire.
On the recorded shadow images, this steam tube would not be identifiable
as such, but rather appear like the expanding wire itself. Therefore, such an
effect could explain an apparent enlarged thermal expansion.
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4.1. Possible effects of changed conditions on measured quantities

(a) (b)

Figure 4.3.: Expansion sequence of Nb obtained in water (a) at 1000 bar and (b) at 1 bar.
The red lines indicate the evolution of the wire diameter that is found in the
experiment at 1000 bar. A water steam tube emerges around the wire if the
static pressure does not exceed the critical pressure of water and leads to an
apparent enlarged expansion (b).

Fig. 4.3 shows the expansion sequence of two Nb wires that are heated
in water under the same conditions such as wire length, wire diameter,
load voltage, but with different static pressures present. Fig. 4.3 shows the
expansion sequence of a wire in water pressurized to 1000 bar (a) and in
water at 1 bar (b). The expansion sequence at 1 bar yields a higher thermal
expansion than the sequence at 1000 bar. As indicated above, the most likely
explanation is that a water steam tube is forming around the wire if the
pressure does not exceed the critical pressure of water, as is the case for
Fig. 4.3 (b). This experiment, that was repeated several times, indicates that
some energy is transferred to the water during pulse-heating.

However, all thermal expansion experiments were conducted at pressures
generously exceeding the critical pressure of water and thus resulting in
expansion sequences similar to that depicted in Fig. 4.3 (b), which already
show an increased expansion compared to experiments conducted in gas
atmosphere at low-pressure.

index of refraction Due to the heating of the wire and its resulting
radial expansion, there could be a dynamic temperature and/or pressure
increase in the water during the experiment. This may change the index
of refraction of the water and might directly affect the expansion sequence
due to refraction. Since this effect can happen under heating conditions
only, referencing this “hot” image sequence to the “cold” image sequence
captured before the experiment would introduce a systematic error.
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4. Thermal Expansion Discrepancies in High-Pressure Experiments

(a) (b)

Figure 4.4.: Schematic representation of an index of refraction gradient in water surround-
ing a pulse-heated wire (grey circle) and the effect on passing light rays. (a) The
inner region exhibits a higher index of refraction than the outer region. The
light rays are refracted towards the optical axis. (b) The inner region exhibits
a lower index of refraction than the outer region. The light rays are refracted
away from the optical axis.

Fig. 4.4 schematically depicts the effect of light passing the wire if (a)
the index of refraction close to the wire, n1, is higher than the index of
refraction at a greater distance to the wire, n2, or vice versa (b). The blue
color represents a region with a high index of refraction.

To investigate this potential problem, T. Hüpf performed tests, where he
guided a laser beam close-by the heated wire and monitored its position on
the ccd camera throughout a pulse-heating experiment. No deflection of
the laser beam was observed. However, given the intuitive plausibility of
this hypothesis and the fact that no experimental details were given, makes
complementary investigations inevitable to preclude this effect as potential
error source.

4.1.3. Systematic error

Besides the changed conditions, pressure and atmosphere, a systematic
setup-related error could be the cause for the observed apparent enlarged
expansion.
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4.1. Possible effects of changed conditions on measured quantities

Possible systematic effect influencing the temperature measurement

flash straylight The high-pressure vessel has only two windows, as
opposed to three in the low-pressure sample chamber. Therefore, no separate
window for temperature measurement is present. As a consequence, the
high-pressure experiments either have to be split in separate temperature
and thermal expansion measurements, or a beam-splitter has to be used
at the exit-window to permit simultaneous measurements. The second
approach is preferable, since it doubles the time efficiency compared to
separate experiments. Furthermore, the temperature-expansion behavior is
measured in the very same experiment and not matched over time. However,
several problems arise choosing this approach.

One of these problems is a temperature error that can be introduced, if
flash straylight reaches the pyrometer. The measured signal is then a su-
perposition of the wire’s surface radiance with the straylight. Therefore,
a notch filter was acquired (Chroma zet647nf, fwhm ≈ 34 nm), to filter
light at the pyrometer wavelength out of the flashlight. Problematically, no
notch filters with an fwhm slightly higher than that of the pyrometer’s
interference filter4 were available off the rack, resulting in a small yet non-
zero remaining straylight intensity reaching the pyrometer’s sensor. As a
consequence, it was tried to subtract a flash-“baseline” that was recorded
prior to the pulse-heating experiment from the pyrometer signal obtained
during heating. Two problems occurred testing this approach:

1. The flash intensity shows variations of up to ± 5 % in successive exper-
iments, thus another systematic error is introduced when subtracting
a flash baseline from the pyrometer signal obtained during pulse-
heating.

2. As the wire expands during pulse-heating, the amount of straylight
reaching the pyrometer is smaller than in unheated conditions. Hence,
the subtracted baseline signal is too large, the temperature evaluated
therefore too high.

4Compare Tab. 3.1.
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Figure 4.5.: Temperature and current reproducibility in high-pressure experiments. (a)
Using a flash-baseline subtraction delivers erroneous temperature traces (solid
lines), while the absence of flashlight yields highly reproducible temperature
curves (dotted lines). (b) The current traces show a high reproducibility and
can be used as plausibility check when performing a time-matching between
separate temperature and expansion measurements.
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4.1. Possible effects of changed conditions on measured quantities

Fig. 4.5 (a) shows the temperature as a function of time for different exper-
iments on niobium. The distance between the wire contacts and the load
voltage were kept constant. The solid lines indicate temperatures that result
from the above described baseline subtraction. Resulting temperature traces
are highly irreproducible and yield temperatures that are too high. Dotted
lines show the evaluated temperature signal that results if the flash is not
triggered (separate temperature measurement). The resulting temperature
traces are highly reproducible for successive experiments. In some experi-
ments, gray filters (gf) were used to resolve the highest temperatures, while
in others, the temperature traces are capped due to the saturation voltage
of the pyrometer’s photo diode. The dotted green line was obtained with a
direct pyrometer view, all other traces were recorded via the beam-splitter.
No difference in evaluated temperature is visible.

Fig. 4.5 (b) shows the raw current signals as a function of time for various
experiments on niobium (including the experiments shown in Fig. 4.5 (a)).
Because of the fixed sample length and the unchanged load voltage, the
current traces are highly reproducible. Furthermore, the data show no
pressure dependence in the investigated pressure regime.

Given the high reproducibility it was decided to conduct temperature and
thermal expansion experiments separately and time-match the obtained data
afterwards. The acquired current traces serve as plausibility check. Note
that this decoupled measurement approach has further advantages over the
simultaneous measurement of temperature and thermal expansion. First,
the beamsplitter is not needed in expansion measurements, it can be moved
out of the way - the intensity reaching the camera is thus increased which is
advantageous for expansion measurements. Second, the notch filter becomes
irrelevant because there is no need for flash light in exclusive temperature
measurements. This also increases the background illumination intensity
and enhances the signal-to-noise ratio in acquired shadow images.

Possible systematic effects influencing the expansion measurement

linearity Another systematic effect could be a nonlinear behavior of the
imaging system. Thankfully, the linearity of the system can be easily checked
by acquiring shadow images of unheated wires with different diameters.
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Figure 4.6.: Linearity check of the imaging system used in the high-pressure setup. Data
points imaged at a pressure of 1000 bar. Uncertainties represent a 95 % confi-
dence interval. The imaging system behaves linearly.

This was done for wires with diameters of 0.5, 0.75 and 1.0 mm. As plotted
in Fig. 4.6, the imaging system behaves linearly.

wire movement A moving wire is always a source for potential system-
atic errors in thermal expansion measurements. While a wire movement
perpendicular to the camera axis can be diagnosed easily, a movement
towards or away from the camera could be difficult to recognize and may
yield apparent enlarged expansion values.

Measures to ensure a non-moving wire are:

1. Increase the stability by using short wires (≈ 40 mm length).
2. Prevent bending of the wire due to axial expansion caused by a heating

rate, that is too low.
3. Prevent lateral forces acting on the wire by ensuring vertical alignment.

From this perspective, either a changing index of refraction, or a wire
movement remain as possible candidates to explain the thermal expansion
discrepancy.
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4.2. Discrepancy of the discrepancy - consistent expansion for Ir and Re

4.2. Discrepancy of the discrepancy - consistent
expansion for Ir and Re

High-pressure expansion data under water atmosphere for the metals nio-
bium and tantalum, showing a thermal expansion discrepancy, were shown
already in Fig. 4.1. Such experiments were also conducted for the metals
iridium (Ir) and rhenium (Re). Interestingly, the above discussed discrep-
ancy does not occur for neither iridium nor rhenium as shown in Fig. 4.7.
Within experimental uncertainty, the data sets obtained in nitrogen with the
low-pressure setup (open symbols) are equal to the expansion data acquired
in water with the high-pressure setup (filled symbols). High-pressure data
for both metals were acquired at pressures between 2 kbar to 3 kbar.
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Figure 4.7.: Relative thermal radial expansion squared (d(T)/d0)
2 (relative volume expan-

sion) as a function of temperature T for iridium (circles) and rhenium (triangles)
in high-pressure experiments (filled symbols, 2 kbar to 3 kbar, H2O) and low-
pressure experiments (open symbols, 2.3 bar, N2). No discrepancy between the
low-pressure and high-pressure data sets are observable.
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4. Thermal Expansion Discrepancies in High-Pressure Experiments

4.3. Further investigations

While a thermal expansion discrepancy was observed for the metals niobium
and tantalum, no such discrepancy could be found for iridium and rhenium
- these two metals behaved consistently, independent of the pulse-heating
setup used. If a change in the index of refraction throughout an experiment
would cause the discrepancy, this would imply that different metals act
differently on the water. Imaginable explanations for this could for instance
be a very different thermal conductivity that allows a different amount
of heat to flow into the water, changing its refractive index. In any case,
similarities or distinctions between the two groups should be visible when
comparing their thermophysical properties.

4.3.1. Comparison of thermophysical properties and
experimental parameters

Fig. 4.8 shows a comparison of the thermophysical properties specific en-
thalpy H(T), electrical resistivity ρel(T), thermal diffusivity a(T) and ther-
mal conductivity λ(T) for the metals Nb, Ta, Ir and Re. a and λ data are
given in the liquid phase only, with iridium as exception. No trend towards
clustering into the groups Ir, Re and Nb, Ta is visible for any property.

Tab. 4.3 lists the specific heat capacity in the liquid phase for these metals.
No grouping can be seen in the specific heat capacity. When calculating the
absolute heat capacity Cp for predefined geometric dimensions via the room
temperature density, it becomes obvious that Ir and Re exhibit a 30 % to
60 % higher Cp than Nb and Ta. However, the sample’s heat capacity should
not affect the properties of the surrounding medium, but only affect the
amount of energy needed to raise the sample’s temperature and thus reach
the boiling point.

From this perspective, a dynamic gradient in the water’s index of refraction
seemed rather unlikely, because it should occur independently of the metal
investigated.
However, when comparing the heating rates applied for the different met-
als, it becomes obvious that a smaller heating rate was achieved for the
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Figure 4.8.: Comparison of thermophysical property data as a function of temperature T
for the metals Nb, Ta, Ir and Re. Clockwise starting from the top left graph:
Specific enthalpy H, thermal diffusivity a, thermal conductivity λ and electrical
resistivity r. The dashed lines in the r(T) plot depict uncorrected resistivity
data of the respective metals. Data on Nb by Wilthan et al. [69] except for λ(T)
which was derived using r-data given by Gallob et al. [70] and the Wiedemann-
Franz-law (wfl). Data on Ir by Cagran and Pottlacher [71]. Data on Re by Hüpf
et al. [72], data for a and λ derived via wfl. Data on Ta by Pottlacher and Seifter
[23] and by Jäger et al. [73] (solid green line in λ(T) plot). Symbols in λ(T)
plot are recommended values by Mills et al. [74] for the beginning of the liquid
phase.
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Table 4.3.: Comparison of the specific heat capacity cp and the absolute heat capacity Cp
for liquid Nb, Ta, Ir and Re wires with 0.5 mm diameter and 40 mm length. The
absolute heat capacity is calculated from the sample’s mass m via the room
temperature density ρ0 and its geometric dimensions.

ρ0 / kg ·m−3 Ref. m / g cp / J · kg−1 ·K−1 Ref. Cp / 10−2 J ·K−1

Nb 8570 [75] 0.067 466 [69] (3.13± 0.02)
Ta 16 654 [76] 0.131 226 [23] (2.95± 0.02)
Ir 22 560 [77] 0.177 233 [71] (4.13± 0.03)
Re 21 020 [76] 0.165 283 [64] (4.67± 0.03)

problematic metals Nb and Ta, than for Ir and Re, compare Fig. 4.9. While
heating rates of approximately 2× 108 K · s−1 were reached for Nb and Ta,
values between (4 to 5) × 108 K · s−1 were achieved for Ir and Re.
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Figure 4.9.: Smoothed heating rates (∆T/∆t) as a function of time (t− tonset), with tonset,
the pyrometer onset temperature in typical high-pressure experiments. The
heating-rates for the metals showing no thermal expansion discrepancy (Ir, Re)
is higher by a factor two than the heating-rates for the metals showing the
discrepancy (Nb, Ta).
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These considerations support the speculation that the discrepancy may be a
systematic effect due to a moving wire.

4.3.2. Ensuring a non-moving wire

The above speculations support the hypothesis of a potentially problematic
sample-holder that may introduce a lateral force acting on the wire. In this
sample holder, a little protruding nose is used to tension the wire by firmly
pulling it over said nose while it is clamped on the other end. Once the
wire is tensioned and completely upright, the wire is also fixed at this end.
Using this approach for metals with a very high stiffness, such as Ir and
Re, produces highly problematic expansion sequences with inclined flanks
because a lateral force is introduced into the wire. This force is freed once
the wire becomes liquid. Evaluating such an expansion sequence can lead to
an apparent increased expansion of up to 17 %. Data for Ir and Re were thus
acquired without tensioning the wire over the above mentioned nose. Due
to their high stiffness, these wires could be mounted upright and force-free
without tensioning them. In the case of Ta and Nb, exhibiting lower stiffness
values, the tensioning turned out to be necessary in order to produce an
apparent valid expansion sequence5.

The assumption was that Ta and Nb wires may move along the imaging
axis due to a sample-holder induced lateral force acting on the wires. As a
result, the sample holder was modified to meet the following demands:

1. Provide a possibility to tension the wires without introducing a lateral
force,

2. Ensure central and vertically upright positioning of wire,
3. Electrodes must be easily changeable,
4. Use as much as possible of the original sample holder.

The result is depicted in Fig. 3.4 (b). The electrodes used were adopted from
the low-pressure setup. They are drilled into brass pieces that connect the
sample holder to the discharge circuit and are as such easily changeable.
At the upper sample holder side, a small bore allows to vertically feed the

5Using the same approach as with Ir and Re results in moving wires.
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(a) (b)

Figure 4.10.: (a) Centering disc to ensure perfect vertical alignment of the electrodes and
thus the wire. (b) Application of the centering disc on the lower electrode in a
high-pressure sample-holder.

wire through the sample holder. The wire is fixed at the bottom via a brass
clamp. The tensioning of the wire is done via the big recess hole in the
upper electrode where the tensioning force is now acting along the wire
axis, but not lateral to it as before. The specimen is then cut off from the
wire in this hole.
In addition, a centering disc (cd) was cnc-machined to ensure absolute
vertical symmetry, compare Fig. 4.10.

Experiments on Nb at a static pressure of p = 1 kbar were repeated with
the new sample holder and for different heating rates (∆T/∆t):

• ≈ 2.0× 108 K · s−1 Same heating rate as previously, compare Fig. 4.1
• ≈ 2.9× 108 K · s−1 Increased heating rate
• ≈ 4.6× 108 K · s−1 Further increased heating rate, w/o and w/ cd

Care was taken to only change one parameter or condition at a time. Fig. 4.11

depicts the result and relates it to the previously obtained low-pressure and
high-pressure data (compare Fig. 4.1).
Comparing the filled green circles to the filled grey circles, both acquired at
the same heating rate, indicates that the mounting mechanism of the old
sample holder (sh) poses no problem for Nb - the data perfectly coincide.
Increasing the heating rate (squares and triangles) leads to a small decrease
in the slope of thermal expansion data, but using the centering disc (cd)
seems to again shift the data up to higher values.

68



4.3. Further investigations

1500 2000 2500 3000 3500 4000 4500 5000 5500 6000 6500 7000

T / K

1

1.1

1.2

1.3

1.4

1.5

1.6

1.7

1.8

(d
/
d
0
)2

/
1

LP-setup
2.0× 108 K·s−1, old SH, 1 to 3 kbar
2.0× 108 K·s−1, new SH, 1 kbar, w/o CD
2.9× 108 K·s−1, new SH, 1 kbar, w/o CD
4.6× 108 K·s−1, new SH, 1 kbar, w/o CD
4.6× 108 K·s−1, new SH, 1 kbar, w/ CD

Figure 4.11.: Influence of an adapted sample holder (sh), ensuring absence of lateral forces,
and increased heating-rates on the thermal expansion (d/d0)

2 of Nb as a
function of temperature T at 1 kbar in water. cd indicates the use or non-use
of a centering disc. Neither the old sample holder, nor too low heating-rates
can explain the discrepancy between data obtained with the high-pressure
setup and data obtained with the low-pressure (lp) setup.

The statistics are not sufficient and the question remains whether the heating
rate has a significant influence on apparent thermal expansion data, but
the conclusion can be drawn that the discrepancy between high-pressure
expansion data in water and low-pressure expansion data in nitrogen re-
mains, independently of measures taken to avoid a wire movement - neither
the old sample holder, nor potentially too-low heating rates can explain the
observed apparent enlarged expansion.

Note that in these experiments, some data points for the thermal expansion
at the end of the solid phase were captured as well. Interestingly, the
discrepancy seems to be very small or even absent prior to the melting
transition.
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At this point it becomes striking how inferior the precision of these data
is compared to data acquired with the low-pressure setup. As the sample
holder and the heating-rates can be eliminated from the trouble-shooting
process, the only remaining hypothesis to explain the thermal expansion
discrepancy is that of a dynamically changing index of refraction.

4.3.3. Index of refraction

With all other potential effects made implausible, the hypothesis of a chang-
ing index of refraction during the heating experiment is the only potential
problem remaining. The question is: How is the index of refraction n(T, p)
affected by a temperature and/or pressure change and how does this change
affect the acquired wire image.

Effect of temperature and pressure on the index of refraction

The effect of temperature on the index of refraction of H2O is plotted in
Fig. 4.12 (a) for different isobars (wavelength λ = 514.5 nm). At each of these
isobars, the index of refraction decreases with increasing temperature, until
the boiling point at the given pressure is reached and the index of refraction
drops discontinuously6 to n ≈ 1, its value in the vapor phase. Above the
critical pressure of water, the index of refraction drops continuously. The
higher the temperature, the bigger the change in refractive index with
pressure and temperature. At 20 ◦C, a change from 500 bar to 1000 bar
increases the index of refraction by 0.48 %. The same increase in pressure at
a temperature of 500 ◦C yields an increase of 8.3 % in n.

Fig. 4.12 (b) depicts a simplified drawing of the wire with two circular
regions around it. If the temperature close to the wire is heated to a temper-
ature T1, while the region at a greater distance to the wire remains at the
cooler temperature T2, light emitted from the wire would be refracted away
from the optical axis, since n1 < n2.

6Note that the jump plotted here is not discontinuous due to the insufficient data
resolution.
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Figure 4.12.: (a) Index of refraction n(T)|p of H2O as a function of temperature T for
different isobars. Data taken from [78]. (b) Simplified model of refraction at
an interface with discrete jump in index of refraction, where T1 > T2, thus
n1 < n2.

Fig. 4.13 shows the effect of pressure on the index of refraction of H2O
on different isotherms at λ = 514.5 nm. The index of refraction increases
with increasing pressure. The change in index of refraction with pressure is
higher for higher temperatures. At a pressure of 500 bar, a temperature rise
from 20 ◦C to 500 ◦C decreases the index of refraction by 19 %. At a pressure
of 1000 bar, the same rise in temperature decreases the index of refraction
by 13 %.

Fig. 4.13 (b) depicts the path of light that is emitted from the wire, if the
pressure in a tube close to the wire, p1, exceeds the pressure that is pertinent
at a greater distance, p2. As in this case n1 > n2, the light is refracted
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Figure 4.13.: (a) Index of refraction n(p)|T of H2O as a function of pressure p for different
isotherms. Data taken from [78]. (b) Simplified model of refraction at an
interface with discrete jump in index of refraction, where p1 > p2, thus
n1 > n2.

towards the optical axis. Pressure and temperature have an opposite effect
on the index of refraction of water. The next step is to investigate how these
different effects affect the imaging of the wire.

Raytracing simulation in a toy system

To investigate the effect of a changing index of refraction as a consequence
of a temperature rise, a simplified ray tracing simulation7 was conducted.

7https://ricktu288.github.io/ray-optics/simulator/.
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The aim was to show the principle direction of refractive index effects acting
on the resulting image size. For that purpose, point sources at the edges of
the wire were used to construct the image of these points, as indicated in
Fig. 4.14.

(a) T1 = T2 ⇒ n1 = n2 = 1.35

(b) T1 = 550 ◦C > T2 = 20 ◦C ⇒ n1 = 1.10 < n2 = 1.35

Figure 4.14.: Raytracer simulation to study the effect of a hot water tube surrounding the
wire on the image size. (a) If no temperature difference is present, a certain
image size results. (b) If the water tube around the wire is hotter than at a
farther distance, the image size is decreased compared to case (a). Refractive
indices at indicated temperatures and a pressure of 1 kbar taken from [78].
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Fig. 4.14 (a) shows the simulation for the case where no water temperature
difference is present. A certain image size is the result. Fig. 4.14 (b) depicts
the effect of a hot water tube evolving around the wire on the image size. In
this case, the resulting image size is decreased compared to case (a), where
no temperature difference was present.

This simulation proves that a hot water tube around the wire can not explain
the apparent increased expansion observed in high-pressure experiments,
but would lead to an apparent decreased expansion. As the effect of pressure
on the index of refraction acts in the opposite direction, a dynamic pressure
increase as depicted in Fig. 4.13 (b), could explain the observed thermal
expansion discrepancy.

Note that an absolute raytracing simulation is very difficult, if not impossible
without knowing precise conditions of the system, such as the time evolution
of the temperature and pressure gradient in the tube surrounding the water,
and also the diameter of this tube. Without knowing these conditions,
deviations in light path8 are estimated to be variable between 0◦ to 20◦.

Laser experiments

T. Hüpf performed laser experiments in the past, where he shot a laser
close by a heated wire, but did not find a deviation of the laser spot that
would indicate a dynamic change in the index of refraction [52]. However,
given the above considerations, it was decided to repeat the experiments. A
schematic depiction of the experimental setup can be seen in Fig. 4.15. A
laser9 is shot into the high-pressure (hp) chamber. Two kind of experiments
were performed on niobium at a static pressure of 1 kbar and at a heating
rate of 4.6× 108 K · s−1:

1. Diffraction experiment: Laser hits wire directly.
2. Refraction experiment: Laser passes wire in a small distance.

8Calculation using snell’s law: Angle of refraction as a function of angle of incidence
for different temperatures.

95 mW at a wavelength of 635 nm.
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In both cases, the manipulated laser light was monitored with the system’s
ccd-camera, using an exposure time of 1 µs.

Figure 4.15.: Schematic setup for laser diffraction and refraction experiments to investigate
a potential change in index of refraction during pulse-heating experiments.
No lenses are used in the optical path in order to avoid a widening of the
laser beam.

diffraction experiments A diffraction pattern emerges if the laser hits
the wire directly. The change of this pattern, i.e., the relative distance of
the peaks, was monitored throughout pulse-heating experiments on Nb
at 1 kbar. Fig. 4.16 (a) and (b) show the result for two experiments. The
distance between the diffraction peaks of the heated wire (thick colored
lines) decreases as the temperature increases.

Possible explanations for this behavior are either a change in refractive
index, with a pressure gradient present, or the diffraction is merely caused
by the change of wire diameter itself. According to babinet’s principle, the
opaque wire with diameter d acts identically to a slit with width d - as
such, an increasing wire diameter due to thermal expansion would decrease
the distance between the diffraction peaks, much like a wider slit would
produce diffraction peaks being closer to each other. Therefore, the question
arises whether the observed diffraction pattern can be explained by thermal
expansion only.

If yes, there is no change in the refractive index during heating, but if no,
there must be some kind of change in the optical path and as such a change
in the index of refraction.

To tackle the problem, the effect of a potential change in the refractive index
was eliminated from the experiment, by investigating the diffraction pattern
of unheated wires but with different diameters, again in water at 1 kbar, and
comparing it to the corresponding diffraction pattern of the heated wire. The
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Figure 4.16.: Laser diffraction pattern of two pulse-heated niobium wires (a) and (b) at
1 kbar - intensity I as a function of relative pixel position x− xWire. Thin grey
lines indicate the intensity signal of the respective image prior to pulse-heating.
Colored thick lines show the diffraction pattern caused by the heated wire.
Time t and temperature T increase from top to bottom. The distance between
the diffraction peaks decreases as the temperature increases.

referencing temperature was chosen at 7000 K, which corresponds to image
4 in Fig. 4.16 (a) and (b).

Two wires were processed to exhibit the diameters that the low-pressure
nitrogen and the high-pressure water experiments suggest at 7000 K. For
this purpose, expansion data as given in Fig. 4.11 were extrapolated up to
this temperature. The resulting diameter expected, d(7000 K), was obtained
via equation (4.3),

d(7000 K) =

√(
d(7000 K)

d0

)2

· d0 , (4.3)

where d0 = 0.5 mm is the diameter at room temperature. Diffraction experi-
ments for the resulting two diameters were conducted:

lp nitrogen experiment d(7000 K) = (0.579± 0.013)mm
hp water experiment d(7000 K) = (0.65± 0.03)mm
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Figure 4.17.: Laser diffraction patterns of unheated wires (thin gray lines) with diameters
that are expected from low-pressure nitrogen experiments (d ≈ 0.58 mm) and
from high-pressure water experiments (d ≈ 0.65 mm) compared to the corre-
sponding diffraction image under heating-conditions at the same temperature
(thick line, d(7000 K)). Intensity I is plotted as a function of relative pixel
position x− xWire. Data obtained at a pressure of 1 kbar.

Fig. 4.17 shows the result of this experiment. The thick colored line, indicted
by d(7000 K) represents the diffraction pattern of a heated-wire at 7000 K as
already depicted in Fig. 4.16 (b), image 4. The thin solid lines represent the
diffraction image of the unheated wires with diameters that are predicted
in the low-pressure and high-pressure experiments, as outlined above.

The unheated wire with 0.58 mm in diameter produces a diffraction image
with peaks that are further apart (smaller obstacle) than those obtained
at the same reference temperature under heating conditions. Therefore,
the physical wire expansion alone can not explain the diffraction pattern
observed under heating conditions. There must be an additional effect under
heating conditions that makes the wire appear larger than it is.
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Another interesting conclusion can be drawn: The unheated wire with
0.65 mm in diameter produces the same diffraction image as the heated-wire
at the reference temperature - the diffraction method and expansion method
thus yield the same results. This is a valuable indication of the consistency
between the diffraction and the expansion method. Hence, the experiment
further corroborates the above result, that the thermal expansion alone is
not enough to explain the diffraction pattern under heating-conditions.

refraction experiments For refraction experiments, the laser spot was
positioned with a micrometer screw such that the light passes the wire in
a distance of (1.5± 0.5)mm. Experiments were performed on both sides
of the wire. The line profile of the laser spot was then calculated for each
image slice captured during heating by summing over the pixel lines of the
respective image. From each line profile, the centroid position, indicated by
red circles, was calculated by numerical integration10. Fig. 4.18 show the
resulting line profile time evolution for laser experiments on the left (a) and
on the right side (b) of the wire (time propagates from top to bottom). A net
refraction of the laser spot towards the wire is visible which was observed
in three successive experiments. This proves that an index of refraction
gradient is in fact evolving during pulse-heating. For the better of the liquid
phase, the index of refraction is higher in the vicinity of the wire than at
greater distances, thus leading to a refractive effect towards the optical axis
(compare Fig. 4.13 (b)).

Fig. 4.18 (c) and (d) show the centroid position for successive image slices,
corresponding to (a) and (b), relative to the first image in more detail. The
shift reaches values of up to 3 pixel which corresponds to approximately
15 % of the line profile’s fwhm. Taking a look at the thermogram for these
experiments, depicted in Fig. 4.19, correlates the first strong deflection to-
wards the wire (image no. 5) to the melting transition. At melting, the
volume of the wire shows a discontinuous increase which may generate a
shock wave. In fact, such melting shock waves were previously observed
in pulse-heating experiments by G. Pottlacher [27]. The shockwaves, being
longitudinal waves, travel at the speed of sound according to the pressure
and temperature present. Assuming a temperature of 40 ◦C, the speed of
sound at 1 kbar is c = 1698 m · s−1 [79]. Within 1 µs, the time between melt-

10
gauss’s area formula. A linear baseline was subtracted from the data before integration.
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Figure 4.18.: Refraction of laser light passing a heated Nb wire from two sides at p = 1 kbar.
(a) and (b) show the time evolution of the laserspot’s line profile, intensity
I as a function of pixel position x. Time propagates downwards. Red circles
indicate the centroid position at a specific image. (c) and (d) show the above
obtained centroid positions xcentroid relative to the position observed at the first
image. A net refraction of the laser beam towards the wire can be observed.

ing onset and acquisition of image 5, the shockwave will have propagated
approximately 1.7 mm which is in perfect agreement with the distance of
the laser spot to the wire surface. Due to its longitudinal nature, a pressure
minimum must follow the pressure maximum which might explain the
opposed laserspot movement at image 6, shortly after the melting transition
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Figure 4.19.: Temperature T as a function of experimental duration t for Nb at the experi-
mental conditions present in laser refraction experiments. Vertical lines mark
the instants in time at which images are taken.

occurred.

If the laserspot is moved to a distance of (3.5 ± 1.0)mm to the wire, a
refractive effect cannot be observed anymore. This indicates that the shock
wave’s energy is dissipated quickly - as a result, the misleading effect is
confined to a potentially very small region surrounding the wire. This may
also be the reason, why T. Hüpf did not observe a laser deflection in his
experiments.

The laser refraction experiment was repeated for Ir, a metal that exhibited
no signs of a thermal expansion discrepancy. The obtained evolution of the
laser line profile and the relative centroid positions are depicted in Fig. 4.20.
Consistent with the absence of a thermal expansion discrepancy, no laser
deflection is observable for Ir in the liquid phase (apart from the melting
shockwave). The deflection observed during melting is much stronger than
for Nb. This may be related to the higher jump in volume ∆V during the
melting transition (compare Fig. 4.7 and Fig. 4.1), where ∆VIr ≈ 8 % and
∆VNb ≈ 3 %. It is a sheer speculation that this property might play a role in
the explanation of the differently acting index of refraction for these two
metals.
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Figure 4.20.: Refraction of laser light passing a heated Ir wire at p = 1 kbar. (a) shows the
time evolution of the laserspot’s line profile, intensity I as a function of pixel
position x. Time propagates downwards. Red circles indicate the centroid
position at a specific image. (b) shows the obtained centroid positions xcentroid
relative to the position observed at the first image. Apart from image no. 9

(during melting transition) no net refraction of the laser beam towards the
wire can be observed.

4.3.4. Conclusive remarks

It was proven in laser diffraction and laser refraction experiments, that
light passing a heated Nb wire in a small distance is deflected (1 kbar, H2O
as medium). Due to the direction of this deflection, the most promising
explanation for the observed thermal expansion discrepancy is a change in
the index of refraction that originates from a dynamic pressure rise during
the pulse-heating process in the vicinity of the wire.

The hypothesis that the observed deflection is responsible for the thermal
expansion discrepancy is corroborated by the fact that this deflection is
absent in an experiment on iridium, a metal that does not exhibit the
discussed thermal expansion discrepancy.

The investigations conducted in this chapter show that it can be problematic
for several metals, such as Nb and Ta, to measure the density with the
high-pressure setup. Problems are:
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• The potentially present influence of the sample material on the index
of refraction of water,
• The significantly higher experimental effort due to the decoupled

temperature and expansion measurement,
• A smaller wire resolution in the expansion measurement due to geo-

metric constraints,
• Less background intensity for imaging due to the utilization of water

as ambient medium.

Apart from the arising problems, the non-linear density regime (as a function
of temperature) approaching the critical point could not be reached.
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5. Results and Discussion

Summarized results for density as a function of temperature as well as
critical point and phase diagram data are given in this chapter. Details on
specimen wires used in this thesis are specified in Tab. 5.1. Liquid-phase
density polynomials are stated in Tab. 5.2. Phase diagram and critical point
data are summarized in Tab. 5.3 and Tab. 5.4. For detailed results and
discussion of the metals Al, Ta, Nb and W, the reader is directly referred to
the corresponding publication, appended at the end of this thesis.

Table 5.1.: Specifications of the wire specimens used in this thesis. The purity is specified
in wt. %. “ann.” abbreviates annealed, “as dr.” abbreviates as drawn.

Purity Condition Supplier Catalog no. id no.

Al 99.999 Temper as dr. Advent AL501115 Gi2389

Ta 99.9 Temper ann. Advent TA550615 Gi1109

Nb 99.9 Temper ann. Advent NB537115 Gi1592

W 99.95 Clean Goodfellow W005160/18 LS73129JF
Ir 99.9 Temper ann. Advent IR524809 Gi2147

Re 99.99 Temper ann. Advent RE545909 Gi4101

5.1. Density as a function of temperature

Tab. 5.2 summarizes the density results obtained during this work. Data
on aluminum are omitted here because they were measured by A. Schmon
within the scope of his doctoral thesis [21]. Where possible, high-pressure
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density data were combined with low-pressure density data to improve
statistics and thus increase significance. This is the case for Ir and Re,
metals which did not show a thermal expansion discrepancy. Regressions
obtained from these combined data are indicated with a diamond symbol
(�). Furthermore, regressions derived from exclusive high-pressure (•) or
low-pressure (◦) data are given, if reasonable. High-pressure data for metals
exhibiting a thermal expansion discrepancy, such as Ta and Nb, are omitted.
Note that W was not investigated using the high-pressure setup, therefore,
only low-pressure density data are given.

Table 5.2.: Fit-coefficients a and b for the liquid-phase density ρ as a function of temperature
T in the form ρ(T) = a− b · T. The temperature range of applicability is given.
The relative density-uncertainty U(ρ) · ρ−1 at a fixed temperature T is given
from the beginning of the liquid phase (first value) up to the highest temperature
measured (second value), compare Sec. 6.1.3. All uncertainties are reported at a
95 % confidence level (k = 2).
◦ . . . Derived from low-pressure (lp) data
• . . . Derived from high-pressure (hp) data
� . . . Derived from combined lp and hp data

a b U(ρ) · ρ−1 Temperature range
103 kg ·m−3 kg ·m−3 ·K−1 1 K

◦ Ta 17.25 ± 0.17 0.68 ± 0.04 0.014 to 0.023 3280 ≤ T ≤ 6400

◦ Nb 8.52 ± 0.09 0.304 ± 0.019 0.013 to 0.022 2745 ≤ T ≤ 5847

◦ W 19.8 ± 0.4 0.71 ± 0.08 0.028 to 0.038 3687 ≤ T ≤ 5631

◦ Ir 22.38 ± 0.26 0.99 ± 0.07 0.016 to 0.025 2719 ≤ T ≤ 4880
• Ir 22.8 ± 0.5 1.16 ± 0.08 0.028 to 0.079 2719 ≤ T ≤ 9160
� Ir 22.96 ± 0.20 1.17 ± 0.05 0.012 to 0.049 2719 ≤ T ≤ 9160

• Re 20.9 ± 0.4 0.76 ± 0.06 0.025 to 0.073 3485 ≤ T ≤ 11 800
� Re 21.0 ± 0.4 0.77 ± 0.05 0.021 to 0.065 3485 ≤ T ≤ 11 800
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5.1. Density as a function of temperature

Tantalum

The reader is referred to publication II appended at the and of this thesis
[59]: Density of Liquid Tantalum and Estimation of Critical Point Data

Niobium

The reader is referred to publication III appended at the end of this thesis
[80]: Density of Liquid Niobium and Tungsten and the Estimation of Critical Point
Data

Tungsten

The reader is referred to publication III appended at the end of this thesis
[80]: Density of Liquid Niobium and Tungsten and the Estimation of Critical Point
Data

Iridium

Density as a function of temperature of iridium is depicted in Fig. 5.1.
The plotted linear regression was calculated combining high-pressure and
low-pressure data sets and considering their individual uncertainties. The
corresponding fit coefficients are given in Tab. 5.2 (� Ir). Experimental data
are tabulated in the Appendix (Tab. B.1 and B.2).

For temperature deduction, a normal spectral emissivity ε as function of
radiance temperature Tr was adopted from Cagran and Pottlacher [71],

εIr(684.5 nm, Tr) = 0.3293 + 7.988× 10−6 · Tr ,

valid in the range 2365 K < Tr < 3650 K. The normal spectral emissivity was
assumed to continue linearly above a radiance temperature of 3650 K. A true
melting temperature of Tm = 2719 K was adopted from [81]. To convert the
measured volume expansion into density data, a room-temperature density
of ρ0 = (22 562± 20) kg ·m−3 was applied [77].
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2 : Hüpf et al.
3 : Gathers et al.

Figure 5.1.: Density ρ as a function of temperature T of iridium. The dotted vertical line
marks the melting temperature. Symbols and solid line: This work’s exper-
imental data and corresponding linear regression of the combined data set.
All uncertainties are given at a 95 % confidence level (k = 2). Dashed lines
represent data reported in the literature: Ishikawa (priv. comm. 2019), Hüpf et
al. [82], Gathers et al. [15].

The obtained density as a function of temperature exhibits a very good
consistence with the literature at the end of the solid phase and at the
beginning of the liquid phase, where a density of ρ(Tm,l) = (19.78± 0.24)×
103 kg ·m−3 ensues from the combined linear regression1. This value is in
excellent agreement to all three literature sources, residing within the stated
k = 2 uncertainty interval.

Ishikawa2 reports a density value at the liquidus point that is 0.74 % lower
than this work’s value. The decrease in density with temperature reported
by Ishikawa is slightly less pronounced than in this work but in very good

1Subscript “l” in Tm,l indicates the liquid phase.
2Private communication via email: T. Ishikawa, 2019.
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5.1. Density as a function of temperature

agreement. The author used a levitation method, undercooling a liquid metal
droplet in vacuum. Owing to the undercooling, density data at temperatures
below the melting temperature are to be understood as an extension of the
liquid phase.

Previous data reported by our group3 (Hüpf et al. [82]) are in excellent
agreement at the beginning of the liquid phase, being 0.35 % higher than
this work’s data. However, the extraordinary strong decrease of liquid-
phase density with temperature reported could not be reproduced. Data
reported by Hüpf et al. were acquired with the low-pressure setup in inert
gas atmosphere.

Gathers et al. [15] report a value at the beginning of the liquid phase that
is 0.92 % higher than this work’s value. The consistence in both solid and
liquid phase is remarkable and resides within or very close to the 95 %
uncertainty interval throughout the whole reported data range. These data
were acquired with a pulse-heating technique at a pressure of 0.3 GPa in
inert gas atmosphere. This result is particularly interesting as it once more
reinforces that typical pressures applied in high-pressure pulse-heating
experiments only have a negligible impact on density measurements.

High-pressure experiments on Ir allowed to extend the accessible temper-
ature range by more than 4000 K compared to low-pressure experiments.
The reported data reach more than 2000 K further into the liquid phase
than previously reported literature data do. Even though the temperature
range was greatly increased, a non-linear behavior of density as a function
of temperature could still not be be resolved.

Rhenium

Density as a function of temperature of rhenium is depicted in Fig. 5.2.
The given linear regression was calculated combining low-pressure and
high-pressure data sets and considering their individual uncertainties. The
corresponding fit coefficients are given in Tab. 5.2 (� Re). Experimental data
are tabulated in the Appendix (Tab. B.3 and B.4).

3Published thermal expansion data were converted into density data with the above
stated room-temperature density.
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5. Results and Discussion

For temperature deduction, a normal spectral emissivity ε as function of
radiance temperature Tr was adopted from Cagran et al. [83],

εRe(684.5 nm, Tr) = 0.3130− 8.5186× 10−6 · Tr ,

valid in the range 2870 K < Tr < 4100 K. The stated emissivity polynomial
was assumed to be valid also at radiance temperatures beyond 4100 K. A
melting temperature of Tm = 3458 K was adopted from [75] for temperature
calibration. To derive density data from the measured thermal expansion
data, a room-temperature density of ρ0 = (21 020± 20) kg ·m−3 was applied
[76].

Only a few valid data points in the liquid phase could be obtained with the
low-pressure setup because of evolving inhomogeneities in sample diameter.
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Figure 5.2.: Density ρ as a function of temperature T of rhenium. The dotted vertical line
marks the melting temperature. Symbols and solid line: This work’s exper-
imental data and corresponding linear regression of the combined data set.
All uncertainties are given at a 95 % confidence level (k = 2). Dashed lines
represent data reported in the literature: Paradis et al. [6], Hüpf et al. [72],
Thévenin et al. [20], Hixson and Winkler [19].
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5.1. Density as a function of temperature

These inhomogeneities, leading to an apparent increased expansion, render
an evaluation impossible. Fortunately, this problem could be suppressed by
increasing the static pressure acting on the sample’s surface (high-pressure
experiments).

At the beginning of the liquid phase, the combined data evaluation yields a
density of ρ(Tm,l) = (18.3± 0.4)× 103 kg ·m−3.

This value is in excellent agreement with that reported by Paradis et al. [6],
being only 0.34 % higher than this work’s value. The concordance of the
slope of liquid density as a function of temperature with this work’s data is
in extraordinary agreement. Data reported by Paradis et al. were acquired
by investigating a levitated liquid metal droplet at a pressure of 10−5 Pa in
a super-cooled state. Data reported below the melting temperature are thus
an extension of the liquid phase density to lower temperatures.

Data reported previously by our group4 (Hüpf et al. [72]) show a deviation
in density already at the end of the solid phase. At the beginning of the
liquid phase, the Hüpf value is 5.2 % higher than this work’s data suggests,
thus outside the uncertainty boundaries. Especially the decrease in density
with temperature reported in these previous data is questionably strong
and inconsistent with this work’s data as well as other data reported in
the literature. The data were acquired with the low-pressure setup in inert
gas atmosphere. Given the arising problems observed when using this very
same setup suggests that evolving inhomogeneities in sample diameter may
be the reason for the strong density gradient reported by Hüpf et al.

Density data reported by Thévenin et al. [20] are inconsistent at the end of
the solid phase. These density data are as low as other authors report at
the beginning of the liquid phase. In the liquid phase, the slope of density
as a function of temperature is highly consistent with this work’s data and
most of the literature data. The value at the beginning of the liquid phase is
2.6 % lower than this work’s value and thus just outside the 95 % confidence
interval. These data were acquired with a pulse-heating setup at a pressure
of 0.12 GPa in an argon gas atmosphere.

4Published thermal expansion data were converted into density data with the above
stated room-temperature density.
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5. Results and Discussion

Density data reported by Hixson and Winkler [19] are in very good agree-
ment both at the end of the solid and at the beginning of the liquid phase.
At the beginning of the liquid phase, the reported value is 1.9 % higher than
this work’s data suggest. Hixson et al. used a high-pressure pulse-heating
system operating at 0.2 GPa in an inert gas atmosphere.

Performing high-pressure experiments on Re allowed to greatly extend the
temperature range up to almost 12 000 K, surpassing the highest temperature
accessed in this work’s low-pressure experiments by more than 7000 K. No
non-linearity of the density as a function of temperature could be observed
in the accessed temperature range.

5.2. Critical point data and phase diagrams

The phase diagram and critical point of the metals were estimated by
density extrapolation according to the algorithm published by Schröer and
Pottlacher [24]. Summarized phase diagram and critical point data are given
in Tab. 5.3 and Tab. 5.4.

Table 5.3.: Estimated phase diagram parameters of the investigated high-melting metals
according to equations (2.22) and (2.21). Temperature range of validity from
melting temperature Tm up to the critical temperature Tc of the respective metal.
a, c, b and b2 are the obtained fitting coefficients, ρc is the critical density.
◦ . . . Derived from low-pressure (lp) density regression
� . . . Derived from combined lp and hp density regression

ρc Tc a c b b2
kg ·m−3 K 10−5 K−1 10−3 K−2/3 kg ·m−3 ·K−1/3 10−4 K−2/3

◦ Ta 3322 13 389 5.16 1.57 298 3.48
◦ Nb 1722 14 231 4.42 1.42 147 3.13
◦ W 3945 14 357 4.50 1.43 338 3.16
� Ir 3636 12 015 8.28 2.13 379 5.11
� Re 3472 16 248 5.66 1.66 319 3.91
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5.2. Critical point data and phase diagrams

Table 5.4.: Summarized values and corresponding uncertainties for critical temperature Tc
and critical density ρc of the investigated high-melting metals. Stated uncertain-
ties represent the possible change due to the uncertain density fit coefficients.
◦ . . . Derived from low-pressure (lp) density regression
� . . . Derived from combined lp and hp density regression

Tc ρc
103 K 103 kg ·m−3

◦ Ta 13.4 ± 0.7 3.32 ± 0.09
◦ Nb 14.2 ± 0.9 1.72 ± 0.05
◦ W 14.4 ± 1.6 3.95 ± 0.19
� Ir 12.0 ± 0.4 3.64 ± 0.15
� Re 16.3 ± 0.9 3.47 ± 0.22

Tantalum

The reader is referred to publication II appended at the and of this thesis
[59]: Density of Liquid Tantalum and Estimation of Critical Point Data

Niobium

The reader is referred to publication III appended at the end of this thesis
[80]: Density of Liquid Niobium and Tungsten and the Estimation of Critical Point
Data

Tungsten

The reader is referred to publication III appended at the end of this thesis
[80]: Density of Liquid Niobium and Tungsten and the Estimation of Critical Point
Data
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5. Results and Discussion

Iridium

Fig. 5.3 depicts the estimated phase diagram of iridium and its correspond-
ing critical point. For the critical temperature Tc and the critical density ρc
one obtains

Tc = (12.0± 0.4)× 103 K ,

ρc = (3.64± 0.15)× 103 kg ·m−3 .

When available in the literature, (Tc, ρc)-pairs were plotted along with this
work’s data in Fig. 5.3. It can be observed that this work’s critical density is
lower than those reported in the literature, while the critical temperature
resides at an intermediate position compared to the three literature sources
considered.

The value reported by Hess and Schneidenbach [39], using the Likalter
relation together with a vapor pressure curve, resides at a density of ρc =
10.0× 103 kg ·m−3 which is very close to the value observed at the highest
temperatures experimentally accessed. The reported value thus appears
to be rather high for the critical density. However, the critical temperature
Tc = 10 636 K is in good concordance with this work’s prediction.

Data reported by Gathers et al. [15] using the soft sphere van der Waals
model (ρc = 5.6369× 103 kg ·m−3, Tc = 10 335 K) show a satisfactory agree-
ment with this work’s critical point, although the data appear to show
higher consistency with this work’s simplified Ising phase diagram.

The critical point reported by Fortov et al. [84], ρc = 6.77× 103 kg ·m−3,
resides at a density value that is incompatible with this work’s experimen-
tally obtained liquid phase density. Even when extrapolating this work’s
density data linearly, Fortov’s critical point can not be reached. The reported
critical temperature of Tc = 15 380 K appears rather high as well (Grosse
method).

Further critical temperatures reported in the literature range between values
as low as Tc = 9723 K (Hess and Schneidenbach [39], Guldberg rule) to
values as high as Tc = (17 760± 790)K (Lang [31], Kopp-Lang rule). Very
good consistence is also achieved with a recently reported value by Blairs
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Figure 5.3.: Density ρ as a function of temperature T of iridium up to the critical point (cp).
Open circles represent data points generated from the density regression. Thin
solid lines show the estimated phase diagram (pd) according to a simplified
Ising and mean-field behavior. The best estimate for the phase diagram ρ± is
indicated by a thick solid line, terminating in the critical point (star). The corre-
sponding phase diagram diameter ρdiam is plotted as dotted line. Critical points
reported in the literature are indicated by red dots: Hess and Schneidenbach
[39], Gathers et al. [15], Fortov et al. [84].

and Abbasi [34], Tc = 11 498 K (Guldberg rule) and with a prediction
reported by Hess and Schneidenbach [39], Tc = 12 009 K (Goldstein scaling
proposal).

A critical pressure of pc = 0.950 13 GPa [15] up to pc = 1.55 GPa [39] is
reported in the literature.

The influence of temperature range accessed in density measurements on
the estimated critical point was investigated for Ir, depicted in Fig. 5.4.
The extrapolation algorithm was repeated for density fits ranging from the
melting temperature to the highest temperature reached in low-pressure
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Figure 5.4.: Estimated critical temperature Tc and critical density ρc of Ir as a function of
input data’s temperature range, ranging from the melting temperature up to
Tmax. The algorithm provides a lower limit for the critical temperature and an
upper limit for the critical density.

experiments (Tmax ≈ 5000 K) and from the melting point to the highest
temperature reached in high-pressure experiments (Tmax ≈ 9000 K). The
fit equation used for the analysis was kept constant applying the coef-
ficients derived from the combined data evaluation (� Ir, Tab. 5.2). In
the considered temperature range, the estimated critical temperature in-
creases by ∆Tc/∆Tmax ≈ 0.37 K ·K−1 while the critical density decreases
by ∆ρc/∆Tmax ≈ 0.18 kg ·m−3 ·K−1 with increasing Tmax. Over the whole
considered temperature range, the critical temperature thus increases by
15 %, the critical density decreases by 18 %. Therefore, the algorithm used
generally provides a lower limit for the estimated critical temperature, and
an upper limit for the estimated critical density.

Rhenium

Fig. 5.5 shows the critical point and estimated phase diagram of rhenium.
For the critical temperature Tc and the critical density ρc one obtains by
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5.2. Critical point data and phase diagrams

extrapolation

Tc = (16.3± 0.9)× 103 K ,

ρc = (3.47± 0.22)× 103 kg ·m−3 .

The obtained critical point exhibits the lowest critical density among previ-
ously reported values. The value reported by Young and Alder applying
the hard-sphere van der Waals model [44], ρc = 5.37× 103 kg ·m−3, is in
satisfactory consistence with the simplified mean-field phase diagram, but it
is considerably higher than this work’s value. However, the reported critical
temperature Tc = 17 293 K is in good agreement with our value.
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Figure 5.5.: Density ρ as a function of temperature T of rhenium up to the critical point (cp).
Open circles represent data points generated from the density regression. Thin
solid lines show the estimated phase diagram (pd) according to a simplified
Ising and mean-field behavior. The best estimate for the phase diagram ρ±
is indicated by a thick solid line, terminating in the critical point (star). The
corresponding phase diagram diameter ρdiam is plotted as dotted line. Critical
points reported in the literature are indicated by red dots: Young and Alder
[44], Fortov et al. [84].
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5. Results and Discussion

Fortov et al. report a critical density of ρc = 6.32× 103 kg ·m−3 and a critical
temperature of Tc = 19 600 K [84] (Grosse method). This extraordinary high
critical temperature could only be reached, if our experimental data were
extrapolated linearly up to this very high temperature.

Further critical temperature values reported in the literature range from Tc =
12 138 K (Hess and Schneidenbach [39], Guldberg rule) to Tc = (20 660±
540)K (Lang [31], Kopp-Lang rule), where values reported earlier tend
to be higher than more recent values. This is also the case for a critical
temperature reported in 1961 by Grosse, Tc = 20 500 K [35] (Grosse method).
More recent values given by Blairs and Abbasi [34] indicate that the critical
temperature is lower than that: Tc = 14 608 K (modified Gates-Thodos rule)
and Tc = 13 398 K (relation to surface tension).

For the critical pressure of rhenium, values of pc = 0.157 GPa [84] and
pc = 0.148 77 GPa [44] are stated in the literature.
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6. Uncertainty Estimation

This chapter focuses on the uncertainty analysis of density and critical point
data as these quantities are mainly addressed in this thesis. For uncertainty
estimation of properties such as enthalpy or electrical resistivity as a function
of temperature, the reader is referred to the doctoral thesis of B. Wilthan
[85].

6.1. Density uncertainty

The uncertainty estimation of density data measured by means of ohmic-
pulse heating faces some difficulties when conducted according to the guide
to the expression of uncertainty in measurement (gum) [86].

The gum principle can only be easily applied if there is a functional relation
between the measurand Y and all N input quantities Xi:

Y = f (X1, X2, ..., XN) . (6.1)

In such a case, the combined1 standard uncertainty uc(y), where y and xi
are estimates of Y and Xi, is given by

u2
c(y) =

N

∑
i=1

(
∂ f
∂xi

)2

︸ ︷︷ ︸
c2

xi

u2(xi) . (6.2)

Here, cxi are the so-called sensitivity coefficients, describing how f changes
with a small change in xi, and u(xi) is the standard uncertainty of the i-th

1Subscript “c”.
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6. Uncertainty Estimation

component of x. In case of density ρ(T) obtained by ohmic pulse-heating,
we can define a functional relation according to

ρ(T) = ρ0 ·
(

d0

dT

)2

, (6.3)

where ρ0 is the density at room temperature (literature value), and d0 and
dT are the diameters at room temperature and at a specific temperature T
recorded throughout an experiment.

As the temperature dependence is only given implicitly in dT, the analysis
is divided into three parts:

1. The uncertainty of each data point in x- and y-direction is calculated
according to the respective functional relation of temperature and
density.

2. A regression for the density behavior is calculated and the least-
squares formula is used to obtain the uncertainties of the slope b and
the intercept a according to the gum. By this means, the individual
uncertainties of the data points are included in the uncertainties of the
regression coefficients.

3. The linear fit equation is treated according to the gum together with
the uncertainties of slope b, intercept a and temperature T to ob-
tain a fit uncertainty in y. Uncertainties in x are thus converted into
uncertainties in y.

All uncertainties are considered to be uncorrelated, yielding a worst-case
estimate for the uncertainty.

6.1.1. Step 1 - uncertainty of data points

In this first step, the uncertainties of the single data points are calculated
from their functional relations.
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6.1. Density uncertainty

Uncertainty in x: Temperature

The temperature uncertainty is obtained with the matlab program MAPHS
written by T. Macher [54]. It is based on the doctoral thesis of B. Wilthan
[85] and directly calculates the expanded uncertainty of the temperature
U(T),

U(T) = k · uc(T) , (6.4)

with the coverage factor k = 2 (95 % confidence).

Considered influencing parameters are the effective wavelength, the skin
effect, alignment of the pyrometer, the temperature dependence of the
calibration constant, the resolution of the transient recorder card and the
uncertainty of the literature value for the melting temperature.

Uncertainty in y: Density

According to equation (6.2), the combined uncertainty uc(ρ) of the data
points in y-direction can be estimated by

u2
c(ρ) =

(
∂ρ

∂d0

)2

u2(d0) +

(
∂ρ

∂dT

)2

u2(dT) +

(
∂ρ

∂ρ0

)2

u2(ρ0) , (6.5)

with the standard uncertainties of the evaluated diameters u(d0) and u(dT),
and the standard uncertainty of the room-temperature density u(ρ0). Note
that an uncertainty in ρ0 would result in a systematic shift of all data to
higher or lower values, but would not change the (statistical) uncertainty of
an individual data point. This systematic contribution will thus be neglected
as far as the uncertainty of the individual data points are concerned. It will
however later contribute to the total uncertainty.
The values for u(d0) and u(dT) can be estimated by evaluating the same
diameter several times and calculating the standard deviation of the mean
value. The procedure was repeated for all image slices. The maximum of
the so-obtained standard deviations was doubled to account for possible
systematic effects and taken as uncertainty, independent of temperature:
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6. Uncertainty Estimation

u(d0) =

{
0.16 pixel low-pressure experiments
0.46 pixel high-pressure experiments

u(dT) =

{
0.30 pixel low-pressure experiments
0.54 pixel high-pressure experiments.

From equation (6.5) and with the functional relation defined in equation
(6.3) we obtain the two sensitivity coefficients

cd0 = ρ0 ·
2d0

d2
T

, cdT = −ρ0 ·
2d2

0

d3
T

. (6.6)

6.1.2. Step 2 - uncertainty of fit coefficients

Now we need to obtain the uncertainty of the slope b and the intercept
a of our linear regression. For this we use the relations derived by Matus
[87] that allow to include the uncertainties of the individual data points
(xi, yi) =̂ (Ti, ρi) into the uncertainties of the two fit coefficients a and b.

We take the usual definition for the mean values x̄ and ȳ,

x̄ =
1
n

n

∑
i=1

xi, ȳ =
1
n

n

∑
i=1

yi , (6.7)

where n is the number of data points. In addition we define

Sxx ≡
n

∑
i=1

(xi − x̄)2 , Sxy ≡
n

∑
i=1

(xi − x̄)(yi − ȳ) . (6.8)

In the typical linear regression in y, the slope b and intercept a are then
given by

b =
Sxy

Sxx
, a = ȳ− bx̄ . (6.9)

Note that both equations in (6.9) are given as f (x1, ..., xn, y1, ..., yn). There-
fore, equation (6.2) can be applied to calculate the combined uncertainties
according to the gum.
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6.1. Density uncertainty

Uncertainty of the slope b

The combined uncertainty of the slope b is given by

u2
c(b) =

n

∑
i=1

(
∂b
∂xi

)2

u2(xi) +
n

∑
i=1

(
∂b
∂yi

)2

u2(yi) . (6.10)

The sensitivity coefficients in this case are

cxi,b =
(yi − ȳ)− 2b(xi − x̄)

Sxx
, cyi,b =

(xi − x̄)
Sxx

. (6.11)

Uncertainty of the intercept a

The same procedure is now conducted for the intercept a:

u2
c(a) =

n

∑
i=1

(
∂a
∂xi

)2

u2(xi) +
n

∑
i=1

(
∂a
∂yi

)2

u2(yi) + u2(ρ0) , (6.12)

with the sensitivity coefficients

cxi,a =
Sxy + nx̄(yi − ȳ)− 2bnx̄(xi − x̄)

nSxx
, cyi,a =

Sxx − nx̄(xi − x̄)
nSxx

.

(6.13)
Note that the last term in equation (6.12) accounts for the uncertainty in
density due to the uncertainty of the literature value ρ0 which was neglected
in Step 1.

6.1.3. Step 3 - uncertainty of fit equation

In this last step, we want to calculate the uncertainty of the fit ρfit at a given
temperature T.

In a general form, the fit is given by the equation

ρfit(T) = a + b · T . (6.14)
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6. Uncertainty Estimation

Therefore, we can again apply the gum method and transform the tem-
perature uncertainty into a density uncertainty. For better readability, the
temperature dependent density obtained via the fit ρfit(T) is now referred
to as ρfit.

u2
c(ρfit) =

(
∂ρfit

∂a

)2

u2(a) +
(

∂ρfit

∂b

)2

u2(b) +
(

∂ρfit

∂T

)2

u2(T) , (6.15)

where the sensitivity coefficients are now given as

ca,ρfit = 1 , cb,ρfit
= T , cT,ρfit = b . (6.16)

The expanded uncertainty is then calculated as

U(ρfit) = k ·
√

u2
c(ρfit) , (6.17)

with k = 2 (95 % confidence).

6.1.4. Uncertainty budget

We start with equation (6.15) to calculate the relative contributions of the
four quantities d0, dT, T and ρ0 on the fit uncertainty. We replace u2

c(b)
and u2

c(a) by equations (6.10) and (6.12) and write out the variance u2(yi)
according to equation (6.5).

Rewriting equation (6.15) and sorting the terms then yields

u2
c (ρfit(xi)) = x2

i

n

∑
i=1

c2
xi,bu2

xi
+ b2u2

xi
+

n

∑
i=1

c2
xi,au2

xi︸ ︷︷ ︸
u2(T)

+ x2
i

n

∑
i=1

c2
yi,b(c

2
d0

u2
d0
) +

n

∑
i=1

c2
yi,a(c

2
d0

u2
d0
)︸ ︷︷ ︸

u2(d0)

+ x2
i

n

∑
i=1

c2
yi,b(c

2
dT

u2
dT
) +

n

∑
i=1

c2
yi,a(c

2
dT

u2
dT
)︸ ︷︷ ︸

u2(dT)

+u2(ρ0) ,

(6.18)
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6.2. Critical point uncertainty

where the sensitivity coefficients as given in equation (6.16) were already
applied because of their simple nature. The relative contribution at the
value xi ≡ Ti of one of the four quantities d0, dT, T, ρ0 (abbreviated as · · · ),
referred to as Index in gum-language, is then simply computed by

Index(· · · ) = u2(· · · )
u2

c (ρfit(xi))
, (6.19)

and can be plotted as a function of T.

6.2. Critical point uncertainty

The uncertainty of the critical point is estimated by monitoring the effect of
changed algorithm input quantities, i.e., intercept a and slope b of the density
regression, on the resulting critical point. The algorithm was conducted
three times, for pairs of intercept and slope2 that are changed in a worst-case
fashion according to their uncertainties:

1. (a, b): Normal density behavior,
2. (a + u(a), b + u(b)): High and flat density behavior,
3. (a− u(a), b− u(b)): Low and steep density behavior.

Here, u(x) denotes the k = 1 uncertainty of x, derived above.

The doubled standard deviation for critical temperature and density, result-
ing from the three evaluations is then given as a measure for the uncertainty
of the critical point. Note that this uncertainty is only a measure of how
the critical point can change due to the uncertain fit coefficients, but cannot
account for a possibly inappropriate model.

2Recall ρfit(T) = a + b · T , b < 0.
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7. Conclusion and Outlook

The liquid-phase density of niobium, tantalum, tungsten, iridium and rhe-
nium was experimentally determined by means of low-pressure and high-
pressure ohmic pulse-heating. As proposed by A. Schmon, exclusive density
measurements were conducted.
An extraordinary good consistence can be observed between the newly
obtained data and the very precise data reported by the jaxa group (Paradis
et al.). This is particularly true for the density at the beginning of the liquid
phase that deviates by less than 1 % from the jaxa data in all cases except
for tungsten. However, also in the case of tungsten, the data reported by
Paradis et al. are within the stated uncertainty interval. The very steep
decrease of the density versus temperature in the liquid phase, that was
previously reported by our work group for most of the investigated metals,
could not be reproduced. The strong decrease in density with temperature
in these previous studies might be related to the simultaneous measurement
of density and electrical data, using voltage knives that exert lateral forces
onto the wire, as indicated by A. Schmon.

On the road to further push the upper temperature limit and even resolve
the non-linear density regime, the high-pressure pulse-heating setup was
reestablished. As previously reported by Hüpf, a discrepant behavior be-
tween density data obtained in nitrogen at low pressure and density derived
in high-pressure experiments in water atmosphere could be confirmed. Inter-
estingly, the described discrepancy, leading to an apparent enlarged thermal
expansion in high-pressure experiments, does not occur for all investigated
metals. Investigations indicate that the observed effect can be correlated to
a dynamic change in the index of refraction during pulse-heating. However,
the reason why this dynamic change does not occur for all elements remains
to be unveiled and stimulates further research.
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7. Conclusion and Outlook

The original aim of directly measuring density data points in the non-linear
region of the phase diagram, and thus positively affect the extrapolative
estimate of critical point data, could not be achieved by means of high-
pressure ohmic pulse-heating. The critical point and the phase diagram of
the investigated metals were thus obtained from the derived linear density
regressions, applying the Schröer-Pottlacher algorithm. For the investigated
metals, this algorithm yields values for the critical temperature that are
located in the lower middle range compared to the estimates reported in
the literature. A trend of decreasing critical temperature predictions over
the years can be observed.
The critical density derived by means of the Schröer-Pottlacher approach
was found to be rather low compared to estimates reported in the literature.
This may partially be correlated to the frequent application of the rectilinear
diameter rule in the literature.
In general, the Schröer-Pottlacher algorithm yields satisfactory results but
is strongly dependent on the temperature range of the input data. As long
as no non-linearity in the density-temperature behavior is observed, i.e., as
long as the obtained density shows a linear decrease with temperature, the
algorithm provides a lower limit for the critical temperature, and an upper
limit for the critical density. In other words, a density regression reaching to
higher temperatures will result in a higher critical temperature and a lower
critical density estimate.
The influence of the uncertainty of the density fit coefficients on the resulting
critical point was investigated. For the metals studied in this thesis, estimates
of the critical density may vary between approximately 3 % to 6 % and
estimates of the critical temperature by roughly 4 % to 11 % due to the
uncertain fit coefficients.

Future high-pressure experiments would strongly benefit from a combined
temperature and thermal expansion measurements. In that context, acquir-
ing a tailored dichroic beam splitter, that reflects (close to) 100 % of the light
at the pyrometer’s narrow wavelength range, while transmitting (close to)
100 % in the remaining spectral region, would be a possibility. Together with
an appropriate notch filter placed after the flash, the problem of decoupled
temperature and expansion measurement could be solved.
Another improvement may be the application of a high intensity laser as
background illumination instead of the commercial photoflash. An addi-
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tional advantage of a laser would be its monochromatic wavelength, that
could be chosen in a suitable spectral distance to the pyrometer’s measur-
ing wavelength. Also a great improvement for the expansion measurement
would be the acquisition of a modern high-speed camera exhibiting a better
image- and time resolution.
To tackle the problem of a changing refractive index in high-pressure ex-
periments, two measures are imaginable. First, a medium may be used that
exhibits a lower sensitivity of the index of refraction at the wavelength used
for backlighting. Second, the wavelength of the background illumination
may be changed to a regime, where the index of refraction is insensitive to
pressure or temperature changes. In that context, an X-ray imaging system
may be an interesting possibility.
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short summary

A comprehensive set of thermophysical properties was obtained for alu-
minum making use of the ohmic pulse-heating and the electromagentic
levitation method. All data are extensively compared to those reported in
the literature.
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Thermophysical Properties of Liquid Aluminum

MATTHIAS LEITNER, THOMAS LEITNER, ALEXANDER SCHMON,
KIRMANJ AZIZ, and GERNOT POTTLACHER

Ohmic pulse-heating with sub-microsecond time resolution is used to obtain thermophysical
properties for aluminum in the liquid phase. Measurement of current through the sample,
voltage drop across the sample, surface radiation, and volume expansion allow the calculation
of specific heat capacity and the temperature dependencies of electrical resistivity, enthalpy, and
density of the sample at melting and in the liquid phase. Thermal conductivity and thermal
diffusivity as a function of temperature are estimated from resistivity data using the
Wiedemann–Franz law. Data for liquid aluminum obtained by pulse-heating are quite rare
because of the low melting temperature of aluminum with 933.47 K (660.32 �C), as the fast
operating pyrometers used for the pulse-heating technique with rise times of about 100 ns
generally might not be able to resolve the melting plateau of aluminum because they are not
sensitive enough for such low temperature ranges. To overcome this obstacle, we constructed a
new, fast pyrometer sensitive in this temperature region. Electromagnetic levitation, as the
second experimental approach used, delivers data for surface tension (this quantity is not
available by means of the pulse-heating technique) and for density of aluminum as a function of
temperature. Data obtained will be extensively compared to existing literature data.

DOI: 10.1007/s11661-017-4053-6
� The Author(s) 2017. This article is an open access publication

I. INTRODUCTION

ALUMINUM is a silvery-whitish light metal. It is the
third most common element occurring in the crust of the
earth. The world aluminum statistics reports, for March
2016, the production of 4856 metric tons of aluminum
worldwide. Aluminum is used in all kinds of industries,
ranging from cans for drinks and foils to wrap food, to
the building industry for roofing and windows, to the
automotive and aerospace industries, where it is used for
lightweight structures.

In production, aluminum is first melted and then
undergoes different forming processes, such as casting,
pressure die casting, and continuous casting. In current
industrial practice, computer-based simulations allow
modeling of casting, melting and remelting processes,
heat transport, solidification shrinkage, residual stress,
heat treatment, welding, forging, rolling, and cutting, or
even predictions of microstructures. A key limitation to
the successful introduction of these models is the lack of
thermophysical data. Thus, experimentally obtained
thermophysical properties of pure metals are of great
importance as input parameters for various simulation
tools and will lead to a better scientific understanding of

liquid metals and alloys as well as help in the final
production to reduce waste.
Within this article, we will present a full set of

experimentally obtained thermophysical properties of
solid and liquid aluminum that can be used as input
parameters for numerical simulations. The data pre-
sented are extensively compared to existing literature
values and the range of experimental uncertainty is
given for each property.

II. EXPERIMENTAL PROCEDURE AND DATA
REDUCTION

A. Ohmic Pulse-Heating Experiments

High-purity aluminum wires (99.999 at. pct) with a
diameter of 0.5 mm (Catalogue No. AL501115, Advent)
were investigated using an ohmic pulse-heating tech-
nique. The details of the experimental pulse-heating
setup have already been described extensively in Refer-
ences 1 through 3.
The samples with about 60 mm length were treated

with abrasive paper (grade 1200), cleaned with acetone,
and subsequently resistively heated under N2 atmo-
sphere at a pressure of 2.3 bar, starting at room
temperature. A current pulse peaking at about 10 kA
was discharged through the specimens and measured
using an inductive coil (Model Number 3025, Pearson
Electronics). At the same time, the voltage drop against
common ground was measured using two Mo-foil
voltage knives attached horizontally to the wire with
subsequent voltage division. Due to the high heating
rates of about 2 9 108 K s�1 needed to avoid a loss of
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contact, the experiments had a relatively short duration
of about 35 ls.

To relate the time-resolved voltage drop and current
behavior to a temperature, the surface radiance was
simultaneously monitored by a Peltier-cooled IR
pyrometer operating at a mean effective wavelength of
keff = 2315 nm with approximately 390 nm effective
bandwidth. In order to in-situ calibrate the pyrometer,
the surface radiance at the melting plateau, observed in
the radiance-over-time development, was assigned to the
melting temperature of Al, i.e., Tm = 933.47 K
(660.32 �C).[4] Expressing the measured pyrometer sig-
nals by Planck’s law of radiation, the surface radiance
J(T) measured at any time t can then be related to the
observed radiance J(Tm) at the melting point by simply
taking the ratio and solving for T:

T ¼ c2

keff � ln J Tmð Þ
JðTÞ � e keff;Tð Þ

e keff;Tmð Þ � e
c2

keff �Tm � 1
n o

þ 1
� � ; ½1�

where c2 = 0.014388 m K is the second radiation con-
stant. Due to the lack of spectral emissivity data at the
extreme measuring wavelength, it was further assumed
that the emissivity e takes the value that is true at the

melting point, i.e.,
e keff;Tð Þ
e keff;Tmð Þ ¼ 1, over the entire temperature

range. Note that the assumption of constant emissivity is
mostly feasible in the liquid phase, while this is usually not
the case for the solid phase. The data presented in this
publication thus focus on the liquid phase, while the solid
phase data are also given as an overall estimate.

To obtain data for the density D(T), an adapted fast
CCD system taking shadowgraph images of the backlit
expanding wire was used (details in Reference 5). The
shadow images with an exposure time of 600 ns were
captured about 5 ls apart. The diameter d(T) as a
function of temperature can then be obtained by evalu-
ating the full-width-at-half-maximum in the calculated
intensity profile of each image. By relating this temper-
ature-dependent diameter to the diameter d0 imaged
before the experiment, the density can be derived using a
room-temperature value of D0 = 2.70 9 103 kg m�3.[6]

The constraint d0
d½298 Kð25 �CÞ� ¼ 1 and, therefore, D[298 K

(25 �C)] = D0 was applied for the solid phase data fitting.

D Tð Þ ¼ D0 �
d0

d Tð Þ

� �2

: ½2�

Note that using this approach, longitudinal expansion
must be inhibited to a high degree. This is ensured by
applying high heating rates, which have shown to result in
an increased radial thermal expansion at the cost of absent
longitudinal expansion.[7,8] Furthermore, it is crucial to
achieve a nonmoving vertical liquidmetal column in order
to deduce precise diameters from the intensity profiles.
Therefore, density measurements were conducted as sep-
arate experiments without voltage knives that can push the
metal column. Inaddition, thewire lengthwas shortened to
about 40 mm to increase its stability.[8]

For nondensity experiments conducted with the
pulse-heating apparatus, the electrical resistivity and
the specific enthalpy can be derived. From the
measured time-dependent voltage drop U(t) across
the investigated length l, the time-dependent current
I(t), and the diameter at room temperature d0 (mea-
sured with a Keyence LS-7010 laser micrometer), the
specific resistivity at initial geometry (IG) is obtained
as

qIG tð Þ ¼ U tð Þ
I tð Þ � d

2
0p

4 � l : ½3�

In order to correct for thermal volume expansion
(VE), the radial expansion data obtained for density
measurements are used. The correction is made under
the assumption of absent longitudinal expansion, which
is justified due to the experimental constraints, as
described previously.

qVE Tð Þ ¼ qIG Tð Þ � d Tð Þ
d0

� �2

½4�

Furthermore, the time-dependent specific enthalpy
H(t) starting from room temperature can be derived by
integrating the power over time and relating it to the
sample mass m that is calculated from room-tempera-
ture density D0 and diameter d0, as well as the distance
between the voltage knives l,

H tð Þ ¼ 1

m
�
Z t

0

U t
0

� �
� I t

0
� �

dt0: ½5�

Due to the isobaric characteristics of the experiment,
the specific heat capacity at constant pressure cp can be
evaluated from the slope of the H(T) curve:

cp ¼ @H

@T

� �

p

: ½6�

In order to estimate thermal conductivity k(T), the
Wiedemann–Franz law was used. The Lorenz number
was assumed constant at the theoretical value of
L = 2.45 9 10�8 V2 K�2. This assumption is justified,
as the phonon conductivity of Al is reported to be very
small (for more information, see Klemens and
Williams.[9])

kðTÞ ¼ L � T
qVEðTÞ

: ½7�

Thermal diffusivity a(T) can be estimated using
thermal conductivity k(T), specific heat capacity at
constant pressure cp, and density D(T). Note that
applying the Wiedemann–Franz law to the respective
equation and inserting Eqs. [4] and [2] yields an
expression independent of thermal expansion.
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aðTÞ ¼ kðTÞ
cp �DðTÞ �

L � T
cp � qIGðTÞ �D0

: ½8�

Thermal diffusivity, therefore, can be estimated with a
relatively low uncertainty.[10]

B. Electromagnetic Levitation Experiments

An electromagnetic levitation (EML) setup was used
to investigate the surface tension of liquid aluminum as
well as to obtain additional reference data for the
density of aluminum in the liquid phase. A detailed
description of the EML setup was already part of
precedent publications.[11–14]

In the EML experiments, small aluminum samples of
high purity (99.999 at. pct) with a mass in the range of
100 to 140 mg were investigated. The samples were cut
off from a high-purity aluminum rod with a diameter of
5.0 mm (Catalogue No. AL501907, Advent). Each
sample was cleaned with acetone in an ultrasonic bath,
followed by determining the mass on a precision
balance.

A clean environment in the probe chamber was
ensured by first evacuating the chamber to a pressure
lower than 5 9 10�6 mbar and then flooding it close to
atmospheric pressure (850 mbar) with high-purity gas
mixtures of argon with 2.4 vol. pct hydrogen (AirLiq-
uide Arcal10) and helium with 4 vol. pct hydrogen
(AirLiquide custom gas mixture). The ratio of the gas
mixtures was adapted throughout the experiment in
order to control the heat dissipation from the sample
and, thus, realize different sample temperatures. The
idea of using hydrogen-enriched gas mixtures was to
hinder aluminum oxide (alumina) formation and reduce
already present aluminum oxide on the sample surface
back to aluminum and vapor.[15]

The contactless temperature measurement was per-
formed via a commercial NIR pyrometer (IMPAC IGA
6 Advanced, LumaSense), operating in the bandwidth of
1.45 to 1.80 lm. The temperature values recorded by the
software (InfraWin 5.0.1.52) relate to the blackbody
temperature (Tbb) of the detected radiance. In order to
obtain the true temperature, the emissivity at a reference
temperature was determined by assigning the recorded
blackbody temperature at the solidification plateau of
the sample under investigation to the real melting
temperature of Al, i.e., Tm = 933.47 K (660.32 �C),[4]
using formula [9], as given in Reference 16

e ¼ exp
c2
k
� 1

Tm
� 1

Tbb

� �� �
½9�

with c2 = 0.014388 m K, the second radiation con-
stant. Assuming that emissivity e does not change its
value in the liquid phase over the entire temperature
range, the true temperature (Tt) of each recorded
blackbody temperature value can be recovered:[16]

Tt ¼
1

Tbb
þ k
c2

� ln e
� ��1

: ½10�

In the EML experiment, a high-frequency current
(�380 kHz) is applied to the levitation coil that gener-
ates an inhomogeneous radio frequency electromagnetic
field, inducing eddy currents in the sample material.
These eddy currents, according to Lenz’s rule, generate
an opposing electromagnetic field leading to a repulsive
force that pushes the sample towards areas of lower field
strength.[17]

Simultaneously, the ohmic losses of the eddy currents
heat the sample to the liquid phase. Stable temperatures
are obtained when heat dissipation by the atmosphere in
the chamber and induced heating power are balanced.
When liquefied, oscillations of the sample around its

equilibrium shape can be observed. Those variations in
the radius of the sample can be described mathemati-
cally by spherical harmonics Yl

m. Lord Rayleigh
deduced a relation between the frequency of the
oscillation of a spherical droplet and the surface tension
(c) that acts as the restoring force, but it is only valid
under nonterrestrial conditions where the sample is
force free and not rotating.[18] The fundamental fre-
quency, called Rayleigh frequency (vR), is obtained for
l = 2 and is fivefold degenerated (with M being the
sample’s mass):

m2R ¼ 8 � c
3 � p �M : ½11�

Under terrestrial conditions, those requirements are
violated and the degeneracy is removed. Instead of one
single oscillation frequency, up to five different oscilla-
tion modes can be observed for aspherical, rotating
droplets. Cummings and Blackburn[19] derived a sum
rule that recovers the original Rayleigh frequency from
those five oscillation frequencies so that the surface
tension can be calculated from the frequencies observed
in the experiment by

c ¼ 3

8
� p �M � 1

5
� m22;0 þ 2 � m22;1 þ 2 � m22;2
� ��

�m2s � 1:9þ 1:2 � z0
a

� �2
� ��

;

½12�

z0 ¼
g

2 � 2 � p � msð Þ2
; ½13�

a ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3 �M

4 � p �D
3

r
; ½14�

where z0 is proportional to the relative position of the
droplet in the field; g is the gravitational acceleration;
and a is the radius of the sample, which can be calcu-
lated from the sample’s mass M and density D. The
term ms in Eqs. [12] and [13] is the mean value of the
squared translation frequencies in all three spatial
dimensions denoted by vi with i = 1, 2, 3.

m2s ¼
1

3
�
X3
i¼1

m2i : ½15�
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The value v2,0 in Eq. [12] is the observed frequency for
the oscillation mode l = 2, m = 0. The terms v2,1 and
v2,2 in Eq. [12] can be calculated by

m2;m ¼ 1

2
� m2;þmðXÞ þ m2;�mðXÞ
	 


½16�

since the split of the observed frequencies for the
oscillation modes l = 2, m = 1, 2 due to the rotation
of the sample with frequency X denoted by m2,±m(X) is
symmetrical.

The sample movement and oscillations were recorded
from the top taking advantage of the vertical axis
symmetry. A high-speed camera recorded 4096 images
per temperature point. The framerate of the camera,
typically 600 frames per second (fps) at a resolution of
1024 px Æ 1024 px, had to be decreased to a value as low
as 200 fps for low sample temperatures to allow shutter
times as high as 5 ms. This adjustment was necessary in
order to ensure a sufficient brightness on the recorded
images, since the spectral radiance in the visible range
declined to a very low level at temperatures close to the
melting point.

The image series were analyzed using an edge-detec-
tion software that detects position and size of the sample
on the images. The software generates a table that holds
for each image the coordinates of the center of mass as
well as the radii as a function of the azimuthal angle in
steps of 5 deg. Using this table, a spectrum of the
coordinates as well as of the radii can be obtained by
applying a fast Fourier transform to the according time
series.

In order to identify the five oscillation frequencies,
additional spectra of the sum and difference of two
arbitrary perpendicular radii were used, as presented in
Reference 13.

For the density measurement, a series of 4100
shadowgraph images acquired from the side were
recorded at a framerate of 120 fps for each temperature
point. From these shadowgraph images, the mean shape
of the sample was determined by a software using edge
detection algorithms to determine the position and size
of the sample in the images.

High-precision ball bearing spheres of known diam-
eter levitated by an argon airflow through the cooling
nozzle were used to relate the area of the sample on the
shadowgraph images to a real (metric) quantity. Assum-
ing vertical axis symmetry of the droplet, the volume is
calculated and, with the known sample mass, the density
is determined.

III. RESULTS AND DISCUSSION

This section discusses and summarizes the new results
in graphical form. It also provides the necessary
polynomial coefficients to calculate the physical proper-
ties at desired temperatures (Table I). Furthermore, a
collection of data values in steps of 50 K is given in
Table II. The deviation of reported literature values
with respect to our newly obtained values is given in
parentheses within the text. Note that an aluminum

oxide layer (nanometers) will always form on the
surface. The effect on temperature reduction is negligible
within the investigated temperature range, however, due
to the transparency of the oxide at the measuring
wavelength.[20,21]

A. Density

Density was determined by means of pulse-heating
and EML. In Figure 1, the results are depicted together
with literature values. Extrapolating the quadratic
least-squares fit describing the solid phase to the melting
temperature, we obtain a density of 2514 kg m�3 for the
onset of melting. Upon melting, the density decreases to
a value of 2391 kg m�3. The data obtained by averaging
seven levitation experiments show a similar temperature
coefficient but are shifted to lower values. However, the
uncertainties of the two datasets overlap.
For comparison to other EML experiments, datasets

generated from the fit coefficients reported in References
22 and 23 are depicted in Figure 1. Whereas the data of
Schmitz et al.[23] are in good agreement with the
reference data from the literature, the data of Peng
et al.[22] show a shift to lower density values similar to
our data, but the shift and its cause are not discussed.
The shift of EML data to smaller density values in this
publication is assumed to stem from a slight systematic
overestimation of the measured sample volume caused
by strong deformation oscillations or even a slight static
deformation caused by the levitation coils, resulting in a
violation of vertical axis symmetry. The fact that heavy
samples showing larger deformations also show a bigger
scatter in the density data is a strong indication for this
thesis. The authors plan to extend the current experi-
mental setup in a manner that will permit simultaneous
observation of the sample from two sides in order to
account for this effect by detecting deformations that
violate vertical axis symmetry.[8]

The accordance of the pulse-heating data to reported
literature data is promising. Assael et al.[24] recommend
values for the liquid phase density of Al that deviate less
than 0.8 pct from our data over the entire liquid phase.
At the onset of melting, Mills[25] reports a density of
2558 kg m�3 (+1.8 pct) and 2380 kg m�3 after the
melting transition (�0.5 pct). Touloukian[26] reports a
decrease from 2542 kg m�3 (+1.1 pct) to 2379 kg m�3

(�0.5 pct) upon melting. In Smithells Metals Reference
Book,[27] we find a value of 2385 kg m�3 (�0.3 pct) at
the beginning of the liquid phase. Drotning[28] reports a
density of 2389 kg m�3 (�0.1 pct) directly after melting.
From specific volume data reported by Gathers,[29] the
density at the beginning of the liquid phase was
calculated as 2418 kg m�3 (+1.1 pct). His measure-
ments were conducted at a pressure of 0.3 GPa.

B. Electrical Resistivity

Figure 2 depicts electrical resistivity as a function of
temperature. Data of electrical resistivity and specific
enthalpy were obtained by averaging six consecutive
measurements. The dashed line represents the melting
temperature, while the solid lines show the applied
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least-squares fits. Due to the fast heating rates, the
transition from the solid to the liquid phase is smeared
out rather than being pronounced as expected for pure
elements. The fits, therefore, were extrapolated to the
melting temperature. Note that data in the solid phase
must be regarded as an estimate, since the temperature

determination is based on the assumption of a non-
changing emissivity in the liquid phase.
In the initial geometry, a value of qIG = 0.1147 lX m

is obtained at Tm. At the end of melting, we see a value
of 0.2272 lX m. Consequently, we observe a jump in
resistivity of 0.1125 lX m upon the melting process.

Table I. Polynomial Coefficients to Describe the Results of the Present Study for Density D and Electrical Resistivity at Initial

Geometry qIG, and Corrected for Volume Expansion qVE, Specific Enthalpy H, Thermal Conductivity k, Thermal Diffusivity a, as
well as Surface Tension c of Al as a Function of Temperature T

Property
Unit

Polynomial Coefficients
y = a+ bT+ cT2

Range T (K) Statey a b c

D(T) kg m�3 2648 0.322 –4.99 9 10�4 592 £ T £ Tm s
D(T) kg m�3 2670 �0.299 — Tm £ T £ 1680 l
D*(T) kg m�3 2553 �0.267 — Tm £ T £ 1495 l
qIG(T) lX m �0.014 1.379 9 10�4 — 712 £ T £ Tm s
qIG(T) lX m 0.128 1.063 9 10�4 — Tm £ T £ 1491 l
qVE(T) lX m �0.030 1.638 9 10�4 — 712 £ T £ Tm s
qVE(T) lX m 0.097 1.681 9 10�4 — Tm £ T £ 1491 l
H(T) kJ kg�1 �379 1.199 — 712 £ T £ Tm s
H(T) kJ kg�1 48 1.127 — Tm £ T £ 1491 l
k(T) W m�1 K�1 248 �0.067 — 712 £ T £ Tm s
k(T) W m�1 K�1 33.9 7.892 9 10�2 �2.099 9 10�5 Tm £ T £ 1491 l
a(T) 10�5 m2 s�1 7.023 –9.31 9 10�4 — 712 £ T £ Tm s
a(T) 10�5 m2 s�1 0.965 0.31 9 10�2 �6.306 9 10�7 Tm £ T £ 1491 l
c*(T) mN m�1 993 �0.127 — Tm £ T £ 1550 l

The terms s and l denote the solid and liquid phase, respectively. Measurements performed with EML are marked with an asterisk. The
temperature range of applicability is given. Tm = 933.47 K (660.32 �C) designates the melting point.

Table II. Thermophysical Properties of Al for Different Temperatures T

T (K) T (�C) D (kg m�3) qIG (lX m) qVE (lX m) H (kJ kg�1) k (W m�1 K�1) a (10�5 m2 s�1) c (mN m�1)

600 326.85 2662 — — — — — —
650 376.85 2646 — — — — — —
700 426.85 2629 — — — — — —
750 476.85 2609 0.0894 0.0929 520 197.8 6.325 —
800 526.85 2586 0.0963 0.1010 580 194.4 6.278 —
850 576.85 2561 0.1032 0.1092 640 191.1 6.232 —
900 626.85 2534 0.1101 0.1174 700 187.7 6.185 —
(s)933.47 660.32 2514* 0.1147* 0.1228* 740* 185.5* 6.154* —
(l)933.47 660.32 2391* 0.2272* 0.2539* 1100* 89.3* 3.309* 874.9*
950 676.85 2386 0.2290* 0.2567* 1119* 89.9* 3.341* 872.7*
1000 726.85 2371 0.2343* 0.2651* 1175* 91.8* 3.434* 866.3*
1050 776.85 2356 0.2396* 0.2735* 1231* 93.6* 3.525* 860.0
1100 826.85 2341 0.2449* 0.2819* 1288* 95.3* 3.612* 853.6
1150 876.85 2326 0.2502 0.2903 1344 96.9 3.696 847.3
1200 926.85 2311 0.2556 0.2987 1400 98.4 3.777 840.9
1250 976.85 2296 0.2609 0.3071 1457 99.8 3.855 834.5
1300 1026.85 2281 0.2662 0.3155 1513 101.0 3.929 828.2
1350 1076.85 2266 0.2715 0.3239 1569 102.2 4.001 821.8
1400 1126.85 2251 0.2768 0.3323 1626 103.2 4.069 815.5
1450 1176.85 2236 0.2821 0.3407 1682 104.2 4.134 809.1
1500 1226.85 2222 0.2874 0.3492 1739 105.1 4.196 802.8
1550 1276.85 2207 — — — — — 796.4
1600 1326.85 2192 — — — — — —
1650 1376.85 2177 — — — — — —

*Values extrapolated to the melting temperature Tm: solid state (s) and liquid state (l).
D: density obtained via pulse-heating, qIG: electrical resistivity at IG, qVE: electrical resistivity corrected for VE, H: specific enthalpy, k: thermal

conductivity, a: thermal diffusivity, and c: surface tension.
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The data obtained in IG were corrected using the
thermal expansion data measured for density determi-
nation. For the corrected electrical resistivity qVE, values
of 0.1228 and 0.2539 lX m were observed at the onset
of melting and at the end of melting, respectively. This
yields an increase in resistivity of 0.1311 lX m upon
melting.

The recommended values reported by Ho et al.[30]

were not corrected for thermal expansion. At the
melting point, they report a resistivity of
0.10516 lX m (�8.3 pct). Simmons and Balluffi[31]

observe a corrected value of 0.10733 lX m (�12.6 pct)
at the melting point. Brandt and Neuer[32] found a
corrected resistivity value of 0.1092 lX m (�11.1 pct) at
the onset of melting and 0.2410 lX m (�5.1 pct) at the
end of melting. This yields a jump of 0.1318 lX m upon
melting, which is in excellent accordance with our newly
obtained data (+0.5 pct). The data for the liquid phase
reported in Smithells Metals Reference Book[27] were
also corrected for thermal expansion. They recommend
a value of 0.2425 lX m at the beginning of the liquid
phase (�4.5 pct). Gathers reports liquid phase data for
both the uncorrected and the corrected electrical resis-
tivity.[29] These measurements were conducted under a
pressure of 0.3 GPa but still show good agreement with
our data. For the uncorrected and corrected resistivity,
values of 0.233 lX m (+2.6 pct) and 0.261 lX m
(+2.8 pct) are reported after the melting transition.
The coefficients of the four least-squares fits are sum-
marized in Table I, including the range of applicability.

C. Enthalpy

Specific enthalpy as a function of temperature is
depicted in Figure 3, where the value at room temper-
ature was chosen as zero. Upon melting, we observe a
jump from 740 to 1100 kJ kg�1 yielding a heat of fusion
of DH = 360 kJ kg�1.
A considerable amount of reference data for specific

enthalpy and specific heat is present in the literature.
Unfortunately, the available data are given in numerous
different units, which complicates intuitive comparison.
In order to keep the integrity of the discussed literature
data, these values are given in their original units.
However, for the sake of comparison, the literature data
were additionally converted into SI units and are
summarized in Table III.
Mills reports a value of 663 kJ kg�1 (�10.4 pct) at the

beginning and 1060 kJ kg�1 (�3.6 pct) at the end of
melting.[25] This results in a heat of fusion of
DH = 397 kJ kg�1 (+10.3 pct). Values reported by
McDonald[33] are 4328 cal mol�1 (�9.3 pct) for the
onset and 6888 cal mol�1 (�2.8 pct) at the end of
melting, yielding a latent heat of DH = 2560 cal mol�1

(+10.3 pct). Values of Schmidt et al.[34] show an
increase from 17,430 J (g-atom)�1 (�12.7 pct) to
28,130 J (g-atom)�1 (�5.2 pct) upon melting. Conse-
quently, they report a heat of fusion of
DH = 10,700 J (g-atom)�1 (+10.2 pct). The recom-
mended data given by Desai[35] are 18,090 J mol�1

(�9.4 pct) at the beginning of melting and
28,670 J mol�1 (�3.4 pct) at the end, yielding
DH = 10,580 J mol�1 (+8.9 pct). Desai states an
uncertainty of 1.4 pct for his data.
Specific enthalpy data are also reported by Marchidan

and Ciopec,[36] Buyco and Davis,[37] and Ditmars
et al.[38] for the solid phase only. Marchidan and Ciopec
report data up to a temperature of 879.26 K (606.11 �C)
that are in close agreement to the literature data
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Fig. 1—Density of Al. The dashed line marks the melting tempera-
ture. The solid lines represent the least-squares fits to best describe
the experimental data determined in this work. Solid circles: Data
obtained by pulse-heating. Solid triangles: Data obtained by EML.
Diamonds: Peng et al.,[22] pentagons: Schmitz et al.,[23] stars: Assael
et al.,[24] up-triangles: Mills,[25] squares: Touloukian,[26] big circles:
Smithells Metals Reference Book,[27] crosses: Drotning,[28] and
down-triangles: Gathers (0.3 GPa).[29]

Fig. 2—Electrical resistivity of Al in initial geometry (open circles)
and corrected for volume expansion (solid circles). The dashed line
marks the melting point. The solid lines show the least-squares fits
to the experimental data determined in this work. Diamonds: Brandt
and Neuer,[32] down-triangles: Gathers, measured at 0.3 GPa,[29] big
circles: Smithells Metals Reference Book,[27] crosses: Simmons and
Balluffi,[31] and pentagons: Ho et al.[30]
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discussed earlier in the text. The data of Buyco and
Davis, on the other hand, 201.1 cal g�1 (+13.8 pct) at
the beginning of melting, show a significant offset
compared to the values discussed earlier, but are
consistent with the value of Ditmars, i.e.,
22,521 J mol�1 (+12.8 pct), at melting. At the begin-
ning of the liquid phase, Gathers proposes a value of
1068 kJ kg�1 (+2.9 pct).[29] These measurements were
conducted under a pressure of 0.3 GPa but are in close
agreement to the other data reported. The fit coefficients
for enthalpy vs temperature are listed in Table I.

The specific heat at constant pressure is obtained from
the slope of the temperature-dependent specific
enthalpy. From Table I, cp in the liquid phase is
1.127 kJ kg�1 K�1.

Mills[25] reports a value of cp = 1.18 J g�1 K�1

(+4.7 pct), and McDonald reports 7.59 cal mol�1 K�1

(+4.5 pct).[33] Buyco and Davis[37] present a

recommended value of cp = 0.2813 cal g�1 K�1

(+4.5 pct). Desai recommends a value of
cp = 31.757 J mol�1 K�1 (+4.4 pct) with an uncer-
tainty of 3 pct.[35] The specific heat in the liquid phase
proposed by Schmidt et al.[34] varies between
cp = 27.8 J (g-atom grad)�1 (�8.6 pct) and
cp = 29.9 J (g-atom grad)�1 (�1.7 pct) with an uncer-
tainty of 3 pct.

D. Thermal Conductivity

In Figure 4, thermal conductivity estimated from our
data using the Wiedemann–Franz law is presented as a
function of temperature. The liquid phase data conform
well with the reported literature data.
At the beginning of melting, we obtain a value of

k = 185.5 W m�1 K�1. A drop in thermal conductivity
is observed, resulting in 89.3 W m�1 K�1 at the end of
melting.
Touloukian et al.[39] report k = 211 W m�1 K�1

(+13.7 pct) at the onset and k = 90.7 W m�1 K�1

(+1.6 pct) at the end of the melting process. For the
solid phase, Mills[25] proposes a thermal conductivity on
the basis of the Touloukian et al. values. At the
beginning of the liquid phase, Mills reports a value of
k = 91 W m�1 K�1 (+1.9 pct). Smithells Metals Ref-
erence Book[27] states k = 94.03 W m�1 K�1 (+5.3 pct)
at the end of melting. Brandt and Neuer[32] calculated a
value of k = 209.6 W m�1 K�1 (+13 pct) at the end of
the solid phase and k = 95.3 W m�1 K�1 (+6.7 pct) at
the beginning of the liquid phase. It can be seen from
Figure 4 that their data are in close agreement to the
values reported by Mills and Touloukian et al. as well as
the recommended data given in Smithells Metals Refer-
ence Book for the liquid phase. Giordanengo et al.[40]

report a value at the beginning of the liquid phase that is
consistent with those of Smithells Metals Reference
Book and Brandt and Neuer, i.e., k = 96.2 W m�1 K�1

(+7.7 pct). The slope at the beginning of the liquid
phase, however, is higher so that the deviation with
respect to our data rises to 12.3 pct at a temperature of
1400 K (1127 �C).
The data of Brandt and Neuer[32] indicate that the

Wiedemann–Franz law, together with the theoretically
predicted Lorenz number, is indeed also applicable at
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Fig. 3—Specific enthalpy of Al. The dashed line indicates the melt-
ing temperature. The solid lines mark the applied linear fits to the
experimental data determined in this work (solid circles). Up-trian-
gles: Mills,[25] squares: McDonald,[33] diamonds: Schmidt et al.,[34]

stars: Desai,[35] circles: Marchidan and Ciopec,[36] hexagons: Buyco
and Davis,[37] crosses: Ditmars et al.,[38] and down-triangles: Gath-
ers, measured at 0.3 GPa.[29]

Table III. Comparison of Specific Enthalpy Values at the End of the Solid Phase HS(Tm) and at the Beginning of the Liquid

Phase Hl(Tm) as well as the Heat of Fusion DH. In addition, the Specific Heat cp in the Liquid Phase is Given

HS(Tm) (kJ kg�1) Hl(Tm) (kJ kg�1) DH (kJ kg�1) cp (kJ kg�1 K�1)

This work 740 1100 360 1.127
Mills[25] 663 1060 397 1.18
McDonald[33] 671.5 1069 397.2 1.18
Schmidt et al.[34] 646.03 1042.6 396.6 1.03
Desai[35] 670.50 1062.6 392.1 1.1771
Buyco and Davis[37] 841.8 — — 1.178
Ditmars et al.[38] 834.73 — — —
Gathers[29] — 1068 — —

For conversion into SI units, the factor 4.186 cal mol�1 and a molar weight of 26.98 g mol�1 were used.
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the end of the solid phase. It can be shown that our
lower thermal conductivity in the solid phase is a direct
result of our higher electrical resistivity applied in the
Wiedemann–Franz law.

E. Thermal Diffusivity

By applying the Wiedemann–Franz law, thermal
diffusivity can be estimated via the uncorrected electrical
resistivity, the room-temperature density, and the speci-
fic heat derived from our H(T) behavior (Figure 5). At
the end of the solid phase, we report a value of
a = 6.154 10�5 m2 s�1. Upon melting, thermal diffu-
sivity decreases. At the end of the melting transition, we
obtain a value of a = 3.309 10�5 m2 s�1.

Thermal diffusivity at the end of the solid phase
reported by Mills[25] is a = 7.1 9 10�5 m2 s�1

(+15.4 pct). Touloukian et al.[41] gives a value of
a = 6.80 9 10�5 m2 s�1 (+10.5 pct). The discrepancy
in the solid phase is again caused by the discrepancy in
solid phase electrical resistivity. The behavior in the
liquid phase is consistent with literature data, Mills
reporting a = 3.2 9 10�5 m2 s�1 (�3.3 pct) and Tou-
loukian et al. giving a provisional value of
a = 3.52 9 10�5 m2 s�1 (+6.4 pct) at the end of
melting. The coefficients needed for the calculation of
the newly obtained fits are summarized in Table I.

F. Surface Tension

Surface tension was determined by means of EML.
Figure 6 depicts the results of six experiments together
with reference data from literature. Due to the low
radiance in the visible spectrum of aluminum at low

temperatures, data could be obtained just as close as
1014 K ± 21 K to the melting point. The surface tension
at themelting point was extrapolated from the linear fit of
the data yielding a value of 875 mN m�1. Datasets
generated from the fit coefficients reported in 44 and 45
are added to Figure 6 or comparison with other electro-
magnetic levitation experiments.
Numerous publications of surface tension data of

pure aluminum based on different measurement
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techniques are available, but only selected publications
are used here for comparison since the specification
whether or not the sample material was oxygen satu-
rated is crucial. Our samples are assumed to be oxygen
saturated as the oxygen contamination of the surface is
practically inevitable unless enormous effort is expended
in the preparation of the experiment (e.g., vacuum
transfer chamber) since a nanometer-thick oxide layer[42]

will form immediately after exposure of the sample to
regular air.

Mills[25] data, based on a literature review by
Keene,[43] have been suggested to represent oxygen
saturated aluminum. The experimental data of this
work are in good agreement with the reference values
of Mills, who reported a surface tension of
871 mN m�1 (�0.5 pct) at the melting point. Our
data coincide within measurement uncertainty with
recent data from Brillo and Kolland.[44] Using an
EML setup, they reported a surface tension of
866 mN m�1 (�1.0 pct) at the melting point. For
the sake of completeness, data from Kobatake et al.[45]

for pure aluminum under oxygen-reduced conditions
are also depicted in Figure 6, showing a significantly
higher surface tension value at the melting point of
979 mN m�1 (+11.9 pct) and a steeper slope for the
temperature dependence.

G. Viscosity

Although our laboratory is not capable of measuring
viscosity, for the sake of completeness, we cite the
equation recommended by Assael et al.[24]

log10
g
g0

� �
¼ �a1 þ

a2
T

933 � T Kð Þ � 1270;

where g0 = 1 mPa s, a1 = 0.7324, and a2 = 803.49 K.
This equation is reported with a standard deviation of
13.7 pct at the 95 pct confidence level.

H. Critical Point Data

By extrapolating the liquid density data obtained by
pulse-heating, the critical temperature Tc and the critical
density qc were estimated according to the algorithm
given in the publication of Schröer and Pottlacher,[46]

implemented in MATLAB R2016a.

Tc ¼ 4:5
þ1:1

�0:7

� �
	 103 K

qc ¼ ð0:55
 0:04Þ g cm�3:

Morel et al.[47] estimated Tc and qc with different
methods. Giving a full review, they recommend a critical
temperature of Tc = (6.7 ± 0.8) 9 103 K, which is
almost 50 pct higher than our estimated value. How-
ever, the estimated values reported by different authors
show a broad variation, ranging from 5115 K (5388 �C)
(+13.6 pct)[48] to 9502 K (9775 �C) (+111 pct).[49]

Also, further reported literature values for the critical
density are as low as qc = 0.28 g cm�3 (�49 pct)[50] and
as high as qc = 1.03 g cm�3 (+87 pct).[51] The critical
density values reported by Morel et al.[47] are
0.566 g cm�3 (+2.9 pct) and 0.556 g cm�3 (+1.1 pct),
respectively, which is in close agreement to our value.

IV. UNCERTAINTIES

The uncertainties in this work were estimated accord-
ing to the Guide to the Expression of Uncertainty in
Measurement[52] and are reported with a coverage factor
of k = 2. Note that errors in the temperature determi-
nation due to the unknown behavior of the emissivity
cannot be considered. The effect will be notable, in
particular, in the solid phase, while in the liquid phase,
the resulting error is typically very small. An elaborate
investigation of the individual contributions to the
uncertainty budgets for the setup at Graz, University
of Technology, can be found in References 53, 8, and 54.
As a detailed description would go well beyond the
scope of this document, we give the overall uncertainties
for the reported quantities in Table IV. The uncertain-
ties for the critical temperature and the critical density
were estimated from the uncertainty of the two coeffi-
cients of the D(T) equation.

V. CONCLUSIONS

Thermophysical properties of aluminum were mea-
sured using two approaches. First, by means of ohmic
pulse-heating, density, electrical resistivity, and specific
enthalpy were obtained. Subsequently, thermal conduc-
tivity and thermal diffusivity were estimated from the
derived data. Second, EML was used to measure the
surface tension and the density in the liquid phase.
The newly obtained results, ranging about 600 K into

the liquid phase, show excellent agreement with the
literature data. The data are represented in the form of
fit equations as well as in tabular form and provide
another set of independent data for this important
material.

Table IV. Relative Expanded Uncertainties (k = 2) for the Density D Obtained by Pulse-Heating, the Electrical Resistivity at IG

qIG and Corrected for VE qVE, the Jump in Resistivity DqIG and DqVE, Specific Enthalpy H, Latent Heat DH, Specific Heat

Capacity at Constant Pressure cp, Thermal Conductivity k, Thermal Diffusivity a and Surface Tension c

D qIG DqIG qVE DqVE H DH cp k a c

s ±3.3 pct ±3.4 pct
±5.7 pct

±4.8 pct
±8.9 pct

±3.5 pct
±12 pct

±5.3 pct ±6.1 pct ±8.2 pct —
l ±3.8 pct ±2.4 pct ±4 pct ±3.3 pct ±4 pct ±5 pct ±5.4 pct ±1.5 pct

The terms s and l denote the solid and liquid phases.
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In addition, critical temperature and critical density
were estimated by extrapolating the liquid phase density
to high temperatures. The so-obtained critical tempera-
ture is considerably lower thanmost values reported in the
literature. The critical density, however, lies somewhere in
the middle field in the broad range of reported values.
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7. T. Hüpf: Ph.D. Thesis, Graz University of Technology, Graz, 2010.
8. A. Schmon: Ph.D. Thesis, Graz University of Technology, Graz,

2016.
9. P.G. Klemens and R.K. Williams: Int. Met. Rev., 1986, vol. 31 (5),

p. 208.
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short summary

Density as a function of temperature was measured for tantalum by means
of low-pressure ohmic pulse-heating. The critical point was estimated from
the obtained liquid-phase density data. All data are extensively compared
to those reported in the literature.
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Abstract
In order to determine the density of tantalumover the entire liquid phase (at the pressure
applied) and several hundred K into the super-heated region, the method of ohmic
pulse-heating was applied. For this purpose, images of the thermal radial expansion of
the resistively heated sample wires were taken with an adapted CCD system. A newly
integrated high-power photoflash and improved triggering of the experiment allowed
the acquisition of high-contrast shadow images of the expanding wires. To reduce
the uncertainty arising from simultaneous pyrometric temperature measurement, the
change in normal spectral emissivity as a function of temperature was additionally
taken into account. In thiswork, the density versus temperature relationship of tantalum
is reported and compared to existing literature data. From the newly obtained liquid-
phase density, critical point data of tantalum, such as critical temperature and critical
density, were estimated via an extrapolation procedure. Furthermore, an estimate of the
phase diagram in the density versus temperature plane is given. The work is concluded
by a rigorous density uncertainty estimation according to the guide to the expression
of uncertainty in measurement (GUM).
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1 Introduction

Critical point data for high-melting metals are scarce but of fundamental interest.
Due to the extremely high temperature and pressure at this point, it cannot easily be
reached experimentally for high-melting metals. However, extrapolating the liquid-
phase density according to theoreticalmodels allows researchers to estimate the critical
point [1]. Even though density data for high-melting metals exist in literature, they
often suffer from large uncertainties or are not consistent with each other. The situation
is aggravated by the fact that the data often do not reach far beyond the melting point.

In order to obtain the best starting conditions for the extrapolation procedure, two
aspects are crucial. First, density data should extend as far as possible into the liquid
phase, and second, the data should exhibit smallest possible uncertainties. To meet
both requirements, the density of liquid tantalum was re-measured in this work by
means of ohmic pulse-heating.

For recent density data of this group, please refer to [2–4]. For previous critical
point data estimation on low-melting metals, please refer to, e.g., [5,6].

2 Experimental Procedure and Data Evaluation

Tantalum wires with a diameter of 0.5 mm and a length of 40 mm (Co. Advent,
purity: 99.9 wt%, catalogue no.: Ta550615, charge no.: Gi1109, temper annealed)
were resistively heated under N2 atmosphere (2.3 bar) by means of ohmic pulse-
heating, starting at room temperature (293 K). The slight overpressure that ensues
in the sample chamber inhibits flash arcs between sharp edges of the sample-holder.
Before each experiment, the samples were treated with abrasive paper (grade 1200)
and subsequently cleaned with acetone.

The energy for the experiment is provided by a 500µF capacitor bank that can be
charged up to 10 kV. Upon triggering the experiment, a current pulse peaking at about
10 kA is discharged over the sample. Due to its ohmic resistance, the wire is heated
from room temperature to the liquid phase until it explodes due to the sudden increase
in volume at the liquid–gas-phase boundary. Heating rates of the order 108 K · s−1

are reached. As a consequence of the high heating rates applied, the experimental
duration is very short, in this case 43µs. Measurements can thus be performed on the
expanding liquid metal column that, due to its inertia, is vertically standing during the
experiment. Besides, radiative losses, chemical interactions and evaporation effects are
largely inhibited due to the short timescale. Still, the sample remains in thermodynamic
equilibrium (private communication Prof. G. Pottlacher with Prof. F. Hensel, Univ.
Marburg, Germany, 1986) . For a more in-depth description of the pulse-heating setup,
please refer to previous publications from this working group, e.g., [3,7,8].

Investigations in the past have also indicated that high heating rates result in an
increased radial wire expansion while inhibiting longitudinal expansion [9,10]. Ohmic
pulse-heating can thus be applied to deduce the material’s temperature-dependent
density by monitoring the thermal radial expansion and, at the same time, record the
temperature. In total, data of seven independent experiments were evaluated.
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Fig. 1 Radiance-over-time
development in a pulse-heating
experiment on tantalum. To
calculate the calibration constant
of the pyrometer, the signal at
the melting plateau J (Tr,m) is
assigned to the radiance
temperature at melting Tr,m

2.1 Temperature

In order to deduce the sample temperature, the surface radiance of the sample is mon-
itored pyrometrically as a function of time (sampling rate: 10 MHz). The pyrometer
used operates at a mean effective wavelength of λ = 652 nm with a filter full-width-
at-half-maximum of 27 nm.

In order to convert the recorded pyrometer voltage signal to a temperature, each
experiment is self-calibrated at the melting plateau, which can be observed in the
radiance-over-time development (see Fig. 1). Following Planck’s law of radiation, the
calibration constant K can be calculated from

K = J (Tr,m) ·
{
exp

(
c2

λ · Tr,m
)

− 1

}
, (1)

where Tr,m is the radiance temperature at melting, J (Tr,m) is the pyrometer signal
at the melting plateau, and c2 = 14.388µm K is the second radiation constant. The
radiance temperature at the melting point is calculated from the literature value for
the true melting temperature (Tm = 3280K [11]) and the normal spectral emissivity
of tantalum at the melting point that was reported by Cagran et al. (εm = 0.366) [12].

Knowing the calibration constant K , the pyrometer signal J (Tr) is converted into
a radiance temperature Tr with

Tr = c2

λ · ln
(

K
J (Tr)

+ 1
) . (2)

Finally, the true temperature T abovemelting is deduced from the radiance temperature
Tr, and the liquid-phase normal spectral emissivity ε(λ, Tr), according to

T = c2

λ · ln
{
ε(λ, Tr) ·

[
exp

(
c2

λ·Tr
)

− 1
]

+ 1
} , (3)
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(a) (b) (c)

Fig. 2 (a) Image sequence captured prior to the pulse-heating start. (b) Image sequence taken during the
pulse-heating experiment. Radial expansion of the wire and the phase explosion can be observed (bright
horizontal band). Time and temperature can be assigned to each of the image slices. (c) Exemplary intensity
profile of one streak image to deduce a precise diameter (FWHM) for density determination. These profiles
are calculated by summation over the lines of the respective images

with the normal spectral emissivity given as

ε(684.5 nm, Tr) = 0.49 725 − 4.63 794 × 10−5 · Tr , (4)

which is valid in the range 2820K < Tr < 4400K [12].
Note that the normal spectral emissivity wasmeasured at a wavelength of 684.5 nm,

whereas the pyrometer operates at a mean effective wavelength of 652 nm. However,
due to the feasibility of a gray-body assumption in this narrow wavelength interval,
the cited emissivity can be applied to Eq. 3 as stated in (4). It is important to mention
that in the given experiment, an assumption of a temperature-independent liquid-phase
emissivity for temperature deduction would result in an error of more than − 400 ◦C
at the highest temperatures measured.

Due to the strong surface treatment dependence of the emittance in the solid phase,
see, e.g., [13], it is difficult to find valuable reference data. The temperature in the solid
phase was thus calculated under the assumption that the emittance is independent of
temperature and takes the value that is true at the melting point.

2.2 Thermal Radial Expansion and Density

The thermal radial expansion of the wire is monitored by an adapted CCD system that
is mounted orthogonally to the direction of the pyrometer view. The expanding wire
is backlit by the collimated light of a newly integrated high-power photoflash (Multi-
blitz X10, 1000 Ws). The shadowgraph is imaged with the adapted CCD system that
first converts the incident photons into electrons (photocathode), then amplifies the
signal (multi-channel-plate) and finally reconverts the electrons into photons (phos-
phor screen) for subsequent imaging onto a CCD chip (sensor, 384× 572 pixel). The
sensor is mechanically masked such that only 8 pixel lines are uncovered and thus
ready for exposure. The rest of the chip serves as a fast buffer storage unit for the
recorded streak images that are shifted into the masked region after acquisition. This
way, numerous images can be recorded for each experiment (see Fig. 2a, b), because
the time-expensive reading of the chip information can be postponed.
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Time synchronization is provided by a common trigger pulse such that all measured
quantities share the same time basis. A point in time and, therefore, a temperature can
thus be assigned to each of the recorded image slices. Due to the high intensity of
the photoflash, the exposure time could be decreased to 300ns. The setup now takes
images about every 2.5µs, which corresponds to a frame rate of 4×105 fps. For more
technical details about the CCD system, see, e.g., [10,14].

Figure 2 depicts a typical image sequence that is acquired before the pulse-heating
experiment (a) and a sequence that is taken during the experiment (b). Note that the
time propagates from top to bottom. By evaluating the full-width-at-half-maximum of
the calculated intensity profiles (Fig. 2c) of each streak image, the volume expansion
V (T )/V0 ≡ (d(T )/d0)2 and from that the density ρ(T ) can be calculated via

ρ(T ) = ρ0 ·
(

d0
d(T )

)2

, (5)

where ρ0 is the room temperature density and d0 and d(T ) are the evaluated diameters
obtained from the image sequence. Due to the experimental constraints, the quadratic
radial expansion represents the volume expansion as indicated above.

Note that the contrast of the streak images decreases as a function of time (see
Fig. 2a). As it takes about 20µs counted from the initiation of pulse-heating, until the
sample’s surface radiance is high enough to be detected by the pyrometer, the camera
start is timed accordingly to obtain high-contrast streak images with steep edges in
the intensity profiles.

To obtain a homogeneous distribution of expansion values with respect to temper-
ature, the camera start is shifted by steps of 0.5µs between consecutive experiments.

2.3 Critical Point Data

The estimation of critical point data such as critical temperature Tc and critical density
ρc is based on an extrapolation of the liquid-phase density ρ(T ), as proposed by
Schröer and Pottlacher [1].

Themain idea is to fit the liquid-phase density, indexed by a plus, according to Ising
behavior ρ+ ∝ (Tc,I − T )

1/3 and mean field behavior ρ+ ∝ (Tc,mf − T )
1/2, yielding

estimates for the critical temperature (fit coefficients) according to the model used. A
final estimate for the critical temperature Tc is obtained by taking the arithmetic mean
between the two values Tc,I and Tc,mf .

Once this value has been obtained, estimates for the critical density ρc are deter-
mined in two ways. First, the rule of rectilinear diameter is applied, meaning that
ρdiam = ρc,lin +alin · (Tc −T ) is fitted to the diameter (ρ++ρ−)

2 , which can be approxi-
mated by ρdiam = ρ+

2 in the measuring region (compare Fig. 4). One of the two fitting
parameters yields the critical density ρc,lin. In the second approach, the phase diagram
diameter is fitted according to ρdiam = ρc,2/3 + a2/3 · (Tc − T )

2/3, again giving an
estimate for the critical density, i.e., ρc,2/3. The average of these two critical densities
is taken as final estimate for ρc.
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The phase diagram is then obtained by fitting the diameter ρdiam according to

ρdiam = ρ+
2

= ρc

(
1 + a · (Tc − T ) + c · (Tc − T )

2/3
)

, (6)

yielding the fitting parameters a and c. The liquid-phase density ρ+ is then fitted
following Eq. 7,

ρ± = ρdiam ± b · (Tc − T )
1/3

(
1 + b2 · (Tc − T )

2/3
)

, (7)

and the parameters b and b2 are obtained. ρ− describes the gas phase density.
For Alkali metals, estimates for critical data Tc and ρc, obtained by taking the arith-

metic mean between the extrapolated values presuming Ising or mean field behavior,
were in good agreement with experimentally determined critical point data [1]. Thus,
this approach was applied here too.

3 Results and Discussion

In this section, results are depicted in graphical form and compared to those appearing
in the existing literature. Relevant details about the references used for density com-
parison are listed in Table 1. Note the differences in experimental pressure applied.
However, due to the low isothermal compressibility of liquid Ta, κT = 0.0168GPa−1

(at the melting point) [15], pressure-related deviations in density should be less than
0.5%. The experimentally obtained liquid-phase density values are listed in Table 3.
The regression to the data is given in the form of a polynomial (Table 2).

3.1 Density

Toderive density data from themeasured thermal radial expansion, a room temperature
density of ρ0 = 16 654 kg · m−3 was adopted from [20]. The result is depicted in Fig. 3
together with data given in the literature and shows a linear decrease with increasing
temperature. A linear regression to the density data in the liquid phasewasmade.At the
beginning of the liquid phase, a density of ρ(Tm,l) = (15.01 ± 0.21) × 103 kg · m−3

is obtained by evaluating the fit equation given in Table 2. Based on the boiling
temperature of tantalum Tb = 5731K [20], a super-heating of about 670 K is achieved
before the wire explodes (Table 3).

The data reported by Gathers [16], Berthault et al. [17] and Jäger et al. [18] were
originally given as volume expansions V (T )/V0. In the first two articles, either the
specific volume V0 or the room temperature density was also stated and the density
could thus be calculated straightaway. For the data of Jäger et al., the ρ0 value given
above was applied to convert the volume expansion into density.

Paradis et al. [19] measured the density of tantalum in the liquid and supercooled
liquid state via an electrostatic levitation technique. The comparison between Paradis’s
data and the data of thiswork is thus of particular interest due to the completely different
methods applied.
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Table 2 Fit coefficients for the liquid-phase density of tantalum in the form ρ(T ) = a − b · T
Equation a/kg · m−3 b/kg · m−3 · K−1 Temperature range

ρ(T ) = a − b · T (17.25 ± 0.17) × 103 (0.684 ± 0.034) 3280 ≤ T /K ≤ 6400

The density uncertainty calculated with the given fit increases from 1.4% at the beginning of the liquid
phase to 2.3% at the highest temperature. Uncertainties are given with k = 2. Note that an additional,
insignificant digit is given for the slope b in order to retain the original fitting curve. This curve is used in
a second step to estimate critical point data

Table 3 Experimental values of density as a function of temperature ρ(T ) for tantalumderived from thermal
expansion measurements

T /K ρ(T )/kg · m−3 T /K ρ(T )/kg · m−3 T /K ρ(T )/kg · m−3

2084 16 131 3299 14 941 4715 14 370

2102 16 128 3303 14 972 4765 13 716

2145 16 094 3304 15 132 4855 13 837

2263 15 924 3343 15 010 4877 14 029

2455 15 731 3361 15 028 4978 14 071

2616 15 891 3467 14 850 5090 13 710

2670 15 566 3586 14 805 5286 13 624

2672 15 776 3631 14 520 5289 13 894

2698 15 675 3653 14 743 5406 13 248

2855 15 659 3663 14 601 5490 13 352

2912 15 670 3804 14 666 5521 13 598

3035 15 495 3864 14 420 5589 13 473

3127 15 512 4045 14 509 5734 13 286

3166 15 273 4143 14 495 5856 13 149

3168 15 416 4174 14 221 5938 13 459

3175 15 326 4244 14 241 6095 12 932

3259 15 344 4252 14 351 6186 13 051

3273 15 424 4382 14 427 6217 12 907

3281 15 274 4466 14 108 6349 12 755

3290 15 111 4658 14 341 6400 12 944

The density values were obtained with a room temperature density of ρ0 = 16 654 kg · m−3. Combined
expanded temperature uncertainty for the liquid phase (T > 3280K), Uc(T )/T = 0.017 at the beginning
of the liquid phase up to Uc(T )/T = 0.028 at the highest temperature measured. Combined expanded
density uncertainty Uc(ρ)/ρ = 0.013. Uncertainties reported with a level of confidence 0.95 (k = 2)

As can be seen in Fig. 3, the newlymeasured density data are in excellent agreement
with the data found by Paradis et al. At the melting point, Paradis et al. reported
ρ(Tm) = 15.0 × 103 kg · m−3 which corresponds to a deviation of only − 0.07%
with respect to the value derived in this work. The uncertainty is stated with < 2%.
To deduce the temperature, they assumed a constant emissivity behavior in the liquid
phase. Also note the difference of ten orders of magnitude in the experimental pressure
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Fig. 3 Density of tantalum as a function of temperature. The vertical dotted lines delineate the melting
and boiling temperatures. Above the boiling point, the sample is in a super-heated (S.h.) liquid state. Full
circles and solid line: experimental data obtained during this work and corresponding liquid-phase linear
regression. Gathers [16]: dashed line with diamond, Berthault et al. [17]: dashed line with star, Jäger et
al. [18]: dashed line with triangle, Paradis et al. [19]: dashed line with square, measurements in the liquid
and undercooled liquid state

applied and the difference between a heating rate of 108 K · s−1 in our experiments as
compared to a cooling rate of about − 1.7 × 103 K · s−1 achieved by Paradis et al.

The data obtained in the present study are also in very close agreement with the
data reported earlier by our group (Jäger et al. [18]) as well as the data published by
Berthault et al. From the data of Jäger et al., a density at the beginning of melting of
ρ(Tm,l) = 14.8×103 kg · m−3 can be derived. This corresponds to a deviation of only
− 1.4% with respect to our data. This is remarkable, since they used different wire
diameters (0.25mm), a heating rate that is higher by one order of magnitude (about
109 K · s−1), and took photographs of the expanding wire with a Kerr-cell camera,
which can only take one picture per experiment (30 ns exposure time). Also note that
these experimentswere performed at a pressure that is three orders ofmagnitude higher
than in our experiments. A constant emissivity in the liquid phase was assumed in the
temperature deduction. Jäger et al. state an uncertainty of 8% for volume expansion.
However, as the coverage factor is not reported in the original publication, it is not
converted into a density uncertainty here. The same is true for the data given by
Berthault et al.; they state an uncertainty of 2% for volume expansion. The data given
by Berthault et al. are even lower, ρ(Tm,l) = 14.58× 103 kg · m−3 (− 2.9%), but still
in reasonable agreement with our data. It was also assumed that the emissivity does
not change in the liquid phase. These experiments were performed under a pressure
of 0.2 GPa.
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Fig. 4 Estimated phase diagram (thick solid line) with nonlinear diameter ρdiam (dotted line) and critical
point of tantalum. Open circles: Data generated by the linear regression of this work’s experimental density
data. Dashed lines: Extrapolation of the density data (fifty data points) according to mean field and Ising
behavior as well as linear and nonlinear extrapolation of the phase diagram diameter. Thin solid lines: Phase
diagrams according to mean field and Ising behavior

The high-pressure data measured by Shaner et al. [21] and later corrected by
Gathers are about 3.8% lower at the beginning of the liquid phase (ρ(Tm,l) =
14.44 × 103 kg · m−3). The discrepancy further increases at higher temperatures due
to the difference in slope. Gathers estimated the emissivity from the pyrometer signal
via a numerical procedure. No uncertainty is given.

3.2 Critical Point Data

The critical point in the (ρ, T )-plane was estimated according to the proposal of
Schröer and Pottlacher [1] as briefly outlined in Sect. 2.3. Figure 4 shows density
data points far away from the critical point that are used for the extrapolation (data
calculated from the linear regression, Table 2). Fifty data points are fitted according to
mean field and Ising theory (dashed lines). The straight dashed line shows the phase
diagram diameter fit according to the rule of rectilinear diameter. Once these data
have been obtained, the phase diagram according to the Ising model and to mean field
theory can be plotted (thin solid lines). As outlined in Sect. 4.2, the phase diagram
diameter is also fitted in a nonlinear manner (curved dashed line).

The final estimate of the phase diagram is depicted as a thick solid line, described
by Eq. 7. The dotted line shows the nonlinear diameter of the estimated phase diagram
according to Eq. 6. The fit coefficients needed to describe the phase diagram are listed
in Table 4. Uncertainty bars show the range of variation of the critical point due to the
uncertainty of the density-fit parameters, see Sect. 4.2.
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Table 4 Parameters of the estimated phase diagram of tantalum according to Eqs. 6 and 7

a/10−5K−1 c/10−3K−2/3 b/10−1K−1/3 b2/10−4K−2/3

5.16 1.57 2.98 3.48

For the critical temperature Tc and the critical density ρc, we obtain

Tc = (13.4 ± 0.7) × 103 K

ρc = (3.32 ± 0.09) g · cm−3

Critical temperatures estimated in the literature range from Tc = 8865K [22] to
values as high as Tc = 22 000K [23] depending on the method and input data used.
For a detailed listing of several theoretically predicted Tc values, we would like to
refer the reader to the publication of Blairs and Abbasi [24] and the references therein.

A rather recent work by Blairs and Abbasi [25] should also be mentioned in this
context. Critical temperatures for metals, obtained via two different methods, are
reported by these authors and compared to selected literature values. For tantalum,
they obtain Tc = 13 284K and Tc = 14 238K in their study. Both of these values are
in excellent agreement with the result of this study.

Fortov et al. [26] report Tc = 13 380K, ρc = 3.83 g · cm−3, which is in very good
agreement with our data. In addition, they report a critical pressure of pc = 0.707GPa.
In their publication, a phase diagram can be found together with other (Tc, ρc)-values.
In general, a downward trend of the reported critical temperatures can be observed
over the years. Older reported values peak between 20000 K and 22000 K, while
more recent values peak in the range between 12000 K and 14000 K. For the critical
density, values reported in the literature range between ρc = 1.9 g · cm−3 [22] and
ρc = 6.72 g · cm−3 [27].

4 Uncertainties

This section deals with uncertainty estimation according to theGuide to the expression
of uncertainty in measurement, shortly referred to as GUM [28].

4.1 Density

The data point error bars depicted in Fig. 3 were calculated from the respective func-
tional relationships according to the GUM principle and are given with a coverage
factor of k = 2. The uncertainties of the diameters were estimated by repeated image
evaluation. This results in a standard deviation of up to u(d0) = 0.08 pixel for cold
images and up to u(d(T )) = 0.15 pixel for hot images, respectively. These maximum
observed values were doubled to account for possible systematic effects and taken as
worst case estimate for diameter uncertainty, independent of time. The temperature
uncertainty was calculated as discussed in [29].
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(a) (b)

Fig. 5 Uncertainty of liquid-phase density-fit estimated according to GUM. (a) Expanded uncertainty and
relative expanded uncertainty (k = 2) as a function of temperature. (b) Uncertainty budget as a function of
temperature

In a second step, the uncertainties of the intercept a and the slope b of the linear
density regression were calculated according to GUM, see [30], by including the
individual x- and y-uncertainties of the data points. The room temperature density
uncertainty was adopted from [31], u(ρ0) = 20 kg · m−3, and was combined with the
uncertainty of the intercept after completing the evaluation described above.

Finally, the uncertainty of the fit at any fixed temperature T was calculated accord-
ing to GUM by employing the uncertainties of the fit coefficients and the temperature
uncertainty to the fit equation. The absolute and relative expanded fit uncertainty
(k = 2) thus obtained is depicted as a function of temperature in Fig. 5a. In addi-
tion, the percentual contributions of temperature T , room temperature diameter d0,
temperature-dependent diameter d(T ) and room temperature density ρ0 to this uncer-
tainty are shown in Fig. 5b. As can be seen, the temperature-dependent diameter d(T )

accounts for more than one half of the uncertainty over the entire liquid measuring
range.

4.2 Critical Point Data

The uncertainty of the critical point (Tc, ρc) was estimated from the GUM conform
uncertainties of the intercept a and the slope b, b > 0, in the liquid-phase density
regression. The critical point was calculated for the pairs (a, b), (a + u(a), b − u(b))
and (a − u(a), b + u(b)), where u(x) denote the uncertainties of x with k = 1.
The uncertainties of the critical point are then given as the doubled (k = 2) stan-
dard deviation of the mean value calculated from the three evaluations. Note that this
reported uncertainty thus only represents the uncertainty range that originates from
the uncertainty of the density regression coefficients.
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5 Conclusion

The density of tantalum was re-measured as a function of temperature over the liquid
phase and into the super-heated region. The change in normal spectral emissivity over
the measuring range was taken into account in order to minimize the uncertainty due
to temperature measurement. The experimental data agree very well with previously
published results and exhibit uncertainties of less than 2.3%.

From the liquid-phase density behavior, the critical temperature and critical density
were estimated and compared with theoretical results reported in the literature. The
concordance is remarkably good.
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8. Publications

8.3. Density of Liquid Niobium and Tungsten and
the Estimation of Critical Point Data
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short summary

Density as a function of temperature was measured for niobium and tung-
sten by means of low-pressure ohmic pulse-heating. The critical point was
estimated from the obtained liquid-phase density data. All data are exten-
sively compared to those reported in the literature.
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Density of Liquid Niobium and Tungsten
and the Estimation of Critical Point Data

M. LEITNER and G. POTTLACHER

Density as a function of temperature was measured for the liquid transition metals niobium and
tungsten by means of ohmic pulse-heating. The generated data are extensively compared to the
existing literature data, and the uncertainty is critically assessed according to the guide to the
expression of uncertainty in measurement (GUM). Starting from the obtained liquid-phase
density regression, the phase diagram, and the critical point, i.e., critical temperature Tc and
critical density qc of niobium and tungsten are estimated. The so-obtained critical point for
these two high-melting metals is compared to the data available in the existing literature.

https://doi.org/10.1007/s11661-019-05262-5
� The Author(s) 2019

I. INTRODUCTION

THE knowledge of a metal’s density as a function of
temperature is frequently crucial for many scientific
considerations and technological applications. It is used
as an input parameter in simulations that model thermal
natural convection phenomena in furnaces and ladles, to
calculate mass balance in refining operations or under-
stand and model solidification processes, to name a
few.[1,2] Density as a function of temperature is also
needed for the calculation of thermal conductivity from
thermal diffusivity and vice versa, or in the measurement
of surface tension and viscosity. In fact, various models
show a relatively strong sensitivity on input density data
compared to other input-properties.[3] Density data of
liquid transition metals, however, are often either
scarcely available or are very inconsistent with each
other. This is also a consequence of the high tempera-
tures that are involved when dealing with liquid metals.
These temperatures are typically above several thousand
K for transition metals, which leads to a number of
technical challenges. It is for this reason that a comple-
mentary revisit on liquid density data appears to be
appropriate for several transition metals, such as nio-
bium and tungsten.

The density of liquid metals is not only of direct
technology-related interest, but also of fundamental
scientific interest. Measuring a material’s density as a
function of temperature means that a part of this

material’s phase diagram is mapped in the tempera-
ture–density projection. Extending the measured density
to higher temperatures leads the way to the material’s
critical point. For high melting metals, this unique
point can be at extremely high temperatures well above
10,000 K and at extreme pressures of several hundred
MPa. For this reason, the critical point of these metals
can be reached experimentally only with great effort, if
at all. However, measuring the liquid density at lower
temperatures, e.g., via ohmic pulse-heating, still allows
extrapolating of the measured data points according to
simplified theoretical models.[4] By this means one can
give an estimation of the critical density, critical
temperature and the material’s phase diagram in the
temperature–density projection. Critical point data of
high-melting metals might even be useful one day in
future ultra-high temperature technologies, such as for
aerospace and energy applications.
This paper is organized as follows: Section II provides

details on the experimental procedure and the ohmic
pulse-heating setup is briefly explained. Section III
presents and discusses the obtained temperature–re-
solved density data and gives the estimated phase
diagrams of niobium and tungsten together with their
critical point. In Section IV, uncertainties of the
presented data are assessed.

II. EXPERIMENTAL PROCEDURE AND DATA
EVALUATION

Wire-shaped W and Nb specimens with a diameter of
0.5 mm and a length of 40 mm were investigated using
an ohmic pulse-heating apparatus (OPA) as described in
Reference 5. Before the experiments, the specimens
(niobium: Co. Advent, purity: 99.9 wt pct, catalog no.:
NB537115, Gi1592, condition: temper annealed.
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Tungsten: Co. Goodfellow, purity: 99.95 wt pct, catalog
no.: W 005160/18, LS73129 J F, condition: clean) were
treated with abrasive paper (grade 1200) and cleaned
with acetone. Subsequently, the wire-samples were
subjected to a strong current pulse. Within 45 ls (Nb)
and 53 ls (W), the wires are thus heated from room
temperature into the liquid phase until boiling sets in
and the wire explodes.

During the experiment, the temperature and thermal
expansion are recorded, as described in the following
sections. The sample (surface) radiance is monitored by
means of pyrometry to account for the short timescales.
Simultaneously, a fast CCD-camera acquires images of
the expanding wire at specific instants in time that can
subsequently be related to a corresponding temperature.
The experiments were conducted under an inert N2

atmosphere with a slight static overpressure of about 1.5
bar.

A. Temperature

The surface radiance of the sample is monitored
throughout the experiment by using a pyrometer with a
central wavelength of k ¼ 650 nm and a
full-width-at-half-maximum of 27 nm. Data points are
collected every 100 ns. Neutral density filters were
employed to break down the pyrometer signal by a
constant fraction and thus enlarge the measurable
temperature region. After concluding the experiment,
the known radiance temperature at melting is assigned
to the visible inflection in the thermogram, i.e., the
melting plateau, to derive a radiance temperature TrðtÞ
as a function of time t. The radiance temperature at
melting is for this purpose calculated using the literature
value for the true melting temperature Tm and the
normal spectral emissivity at melting em. Together with
the temperature-dependent normal spectral emissivity
eðk;TrÞ of the metal, the pyrometer signal is then
converted into a true temperature T(t) following Eq. [1]:

TðtÞ ¼ c2

k � ln eðk;TrÞ � exp c2
k�TrðtÞ

� �
� 1

h i
þ 1

n o ; ½1�

where c2 is the second radiation constant. Table I sums
up the utilized values and parameters to derive the true
temperature T(t) for tungsten and niobium. For a more
detailed description of the temperature deduction as well
as an exemplary thermogram, please refer to a previous
publication.[6]

B. Thermal Radial Expansion and Density

Thermal radial expansion is investigated by means of
fast shadow-imaging. During the experiment, a high-
power photoflash (Multiblitz X10, 1000 Ws) provides
intense background illumination to produce shadow
images of the expanding wire at specific instants in time.
These instants are time-synchronized with the
pulse-heating experiment. By this means, a temperature
can be assigned to each shadow image taken. The
CCD-camera system (Co. PCO imaging with controller
unit by Co. Theta System and Graz Univ. of Technol.) is
capable of acquiring one image every 2.5 ls, compare
e.g., References 6 and 7. After the experiment, summing
over the pixel lines of each image gives a cup-shaped
intensity profile. The full-width-at-half-maximum of
these intensity profiles obtained by this means corre-
sponds to the diameter d of the wire at a specific time
and thus temperature T. In relating this temperature-de-
pendent diameter d(T) to the diameter at room temper-
ature d0, density can be derived by using the literature
value for the room-temperature density q0. Note that
longitudinal expansion of the wire is inhibited thanks to
the short timescales of the experiment. Thus, the

measured relative radial expansion squared ðdðTÞ=d0Þ2
equals the relative volume expansion VðTÞ=V0 of the
sample. The density as a function of temperature qðTÞ
can thus be calculated via

qðTÞ ¼ q0 �
d0

dðTÞ

� �2

: ½2�

For niobium, we used a room-temperature density of
8:57� 103 kgm�3 as given in the CRC Handbook of
Chemistry and Physics.[8] For tungsten, a room-temper-
ature density q0 of 19256 kgm�3 was adopted from
Ming and Manghnani,[9] found in the NIST Alloy data
web application.[10] Note that this density value is only
0.2 pct lower than that given in the CRC Handbook of
Chemistry and Physics.[8]

C. Critical Point Data

The measured liquid-phase density as a function of
temperature was taken to estimate the critical tempera-
tureTc, critical density qc , as well as the phase diagram in
the (q,T)-plane. The estimation is done by an extrapola-
tion algorithm following the method in the publication of
Schröer and Pottlacher.[4] In this approach, the measured
liquid-phase density is extrapolated according to simpli-
fied Ising- and mean-field behavior to estimate critical
temperature and critical density.

Table I. Utilized Data for Temperature Deduction of the Metals Niobium and Tungsten

Metal eð684:5 nm;TrÞ=1 Validity Range Melting Temperature Tm

Niobium 0.345 2422<Tr=K<3700 2745 K (2472 �C)
Tungsten 0.4407 � 1:3916� 10�5 Tr 3207<Tr=K<4400 3687 K (3414 �C)

Normal spectral emissivity e at a wavelength of 684.5 nm as a function of radiance temperature Tr in K taken from Cagran et al.[33] Melting
temperature Tm adopted from Bedford et al.[34]
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A simplified phase diagram, given by the Eqs. [3] and
[4], is then also constructed from the measured liq-
uid-phase density qþ;measðTÞ by extrapolating up to the
critical temperature according to Eq. [3],

q�ðTÞ ¼ qdiam � b � ðTc � TÞ1=3 1þ b2 � ðTc � TÞ2=3
� �

:

½3�

In this equation, the subscript ‘+’ indicates the satu-
rated liquid line and ‘�’ indicates the saturated vapor
line of the phase diagram—the equation describes how
the density changes as a function of temperature up to
the critical point. qdiam is the so-called phase-diagram
diameter, i.e., the mean value between the saturated liq-
uid density and the saturated vapor density at a given
isotherm, ðqþ þ q�Þ=2. It is extrapolated up to the criti-
cal temperature Tc according to Eq. [4], where qdiam
itself can be calculated from the measured liquid-phase
density qþ;measðTÞ that is located in the low-temperature
branch of the binodal, i.e., qdiam � qþ;meas=2;

qdiamðTÞ ¼ qc 1þ a � ðTc � TÞ þ c � ðTc � TÞ2=3
� �

: ½4�

The extrapolations described above yield the fitting
coefficients b, b2, a and c. For a more detailed
description of the formalism, please refer to the original
publication[4] or to a previous publication.[6]

Note, that this algorithm delivered remarkably good
results when compared to experimentally obtained
critical point data of the alkalis.[4] In addition, this
approach was tested on the transition metal tantalum,
which also delivered good concordance compared to the
literature, see Reference 6.

III. RESULTS AND DISCUSSION

In this section, density as a function of temperature
for the two metals niobium and tungsten is reported and
discussed. From these data, the critical point as well as
the phase diagram of the two metals are estimated.

A. Density

The measured liquid density of niobium and tungsten
are plotted and compared to experimental data given in
the literature. The liquid-phase density regressions are
tabulated in Table II. The experimentally obtained data
points are listed in Tables III (niobium) and IV
(tungsten).

1. Niobium
Nine independent experiments were performed with

niobium. The derived density is shown in Figure 1
together with literature values. At the beginning of the
liquid phase, we obtain a density value of
qðTm;lÞ ¼ ð7:69� 0:09Þ � 103 kgm�3, where the sub-
script ‘l’ indicates the liquid phase. This is in excellent
agreement with the literature, but at a slightly lower
value. Ishikawa et al.[11] report a value that is 0.5 pct
higher, Gallob et al.[12] are higher by 0.7 pct, Hixson and
Winkler by 0.4 pct,[13] Shaner et al. by approximately 1
pct.[14] Interestingly, the change of density with temper-
ature shows significant inconsistency within the litera-
ture. While Paradis et al. are closest with an about 28 pct
stronger density gradient, the deviation of the slope
reported earlier by our group[12] is about 189 pct.
However, the technique used then was a very simplistic
shadowgraph method[7] which also delivered a seemingly
higher thermal expansion with other metals.[15]

2. Tungsten
Figure 2 shows the density of tungsten as a function

of temperature, derived from eight independent
pulse-heating experiments. At melting, the density drops
by approximately 5 pct to a value of qðTm;lÞ ¼ ð17:2 �
0:5Þ � 103 kgm�3.
The data given in the literature appear to cluster into

lower and higher density data. Allen[16] and Calverley[17]

report a density at the beginning of melting, qm;l, that is
1.9 and 2.4 pct higher than our value. The value given in
the CRC Handbook of Chemistry and Physics[8] is also
2.4 pct higher than our value. Datapoints reported by
Koval et al.[18] as well as Hess et al.[19] show very good
agreement, both at the end of the solid phase and during
the liquid phase. In particular, the data given by Koval
et al. are in extraordinary agreement, while the data
points given by Hess et al. start to deviate from our data
at higher temperatures in the liquid phase. Data given
by Paradis et al.[2] also agree reasonably well with our
data. At the melting point, they deviate by 2.8 pct. For
the sake of comparison, the density measured by Paradis
et al. of an undercooled liquid W-droplet was extrap-
olated into the liquid phase.
The second set of data found in the literature (Seydel

and Kitzel,[20] Berthault et al.,[21] Hixson and Winkler[22]

as well as Hüpf et al.[23]) is significantly lower. At the
beginning of the liquid phase, those authors report
values that are between 4 pct (Hixson and Winkler) and
5.7 pct (Berthault et al.) lower than our value for
qðTm;lÞ. Interestingly, the density data in the solid phase
also show a somewhat unusual broad variation.

Table II. Fit-Coefficients for the Liquid-Phase Density of Niobium and Tungsten in the Form qðTÞ ¼ a� b � T. Uncertainty
reported with a level of confidence 0.95 (k = 2)

Metal a=kgm�3 b=kgm�3 K�1 Temperature Range UðqÞ=q

Niobium ð8:52� 0:09Þ � 103 ð0:304� 0:019Þ 2745 � T=K � 5847 0.013 to 0.022
Tungsten ð19:8� 0:4Þ � 103 ð0:71� 0:08Þ 3687 � T=K � 5631 0.028 to 0.038

The relative density-uncertainty UðqÞ=q at a fixed temperature T is given from the beginning of the liquid phase up to the highest temperature
measured.
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B. Critical Point Data

The critical point of niobium and tungsten was esti-
mated according to the publication of Schröer and
Pottlacher.[4] Starting from the critical temperature Tc

and critical densityqc, the phase diagramwas estimated as
described in Section II�C. Table V gives the parameters
needed toplot these phase diagrams in the (q,T)-plane.On
the way to estimate the phase diagram, a simplified Ising

Table III. Niobium: Experimental Values of Density as a Function of Temperature qðTÞ Derived from Thermal Expansion

Measurements

T/K T/�C qðTÞ/kgm�3 T/K T/�C qðTÞ/kgm�3 T/K T/�C qðTÞ/kgm�3

1983 1710 8307 2747 2474 7766 3589 3316 7465
2006 1733 8159 2750 2477 7788 3620 3347 7374
2057 1784 8252 2751 2478 7884 3670 3397 7363
2151 1878 8103 2764 2491 7635 3702 3429 7331
2175 1902 8202 2771 2498 7704 3931 3658 7428
2232 1959 8199 2774 2501 7677 3948 3675 7355
2300 2027 8175 2792 2519 7747 3957 3684 7358
2368 2095 8052 2870 2597 7766 4027 3754 7406
2417 2144 8154 2871 2598 7625 4068 3795 7301
2460 2187 7897 2911 2638 7609 4086 3813 7257
2475 2202 7995 3015 2742 7482 4120 3847 7248
2607 2334 8011 3024 2751 7649 4132 3859 7270
2618 2345 7965 3107 2834 7590 4199 3926 7342
2639 2366 7905 3135 2862 7471 4447 4174 7288
2705 2432 8048 3156 2883 7586 4453 4180 7180
2719 2446 7769 3160 2887 7439 4462 4189 7210
2726 2453 7858 3279 3006 7412 4687 4414 6993
2732 2459 7867 3400 3127 7530 4742 4469 7186
2736 2463 7809 3435 3162 7422 4997 4724 6937
2740 2467 7925 3462 3189 7530 5005 4732 7096
2741 2468 7873 3582 3309 7367 5797 5524 6664
2747 2474 7889 3584 3311 7560 5848 5575 6672

The density values were obtained with a room-temperature density of q0 ¼ 8570 kgm�3.[8]

Combined expanded temperature uncertainty for the liquid phase [T>2745K (2472 �C)]: UcðTÞ=T ¼ 0:015 at the beginning of the liquid phase up
to UcðTÞ=T ¼ 0:026 at the highest temperature measured. Combined expanded density–uncertainty UcðqÞ=q ¼ 0:013. Uncertainties reported with a
level of confidence 0.95 (k ¼ 2).

Table IV. Tungsten: Experimental Values of Density as a Function of Temperature qðTÞ Derived from Thermal Expansion
Measurements

T/K T/�C qðTÞ/kgm�3 T/K T/�C qðTÞ/kgm�3 T/K T/�C qðTÞ/kgm�3

2296 2023 18,697 3680 3407 17,867 3981 3708 17,105
2334 2061 18,734 3680 3407 17,619 4105 3832 16,863
2401 2128 18,939 3681 3408 17,658 4149 3876 17,171
2414 2141 18,708 3681 3408 18,207 4191 3918 17,026
2564 2291 18,755 3684 3411 17,974 4275 4002 16,561
2605 2332 18,765 3684 3411 17,738 4352 4079 16,870
2749 2476 18,670 3685 3412 18,072 4364 4091 16,734
2772 2499 18,555 3687 3414 17,524 4420 4147 16,418
2774 2501 18,498 3687 3414 18,076 4546 4273 16,774
2918 2645 18,640 3689 3416 17,571 4642 4369 16,223
3001 2728 18,697 3690 3417 17,579 4766 4493 16,442
3121 2848 18,581 3691 3418 17,301 4862 4589 16,100
3192 2919 18,509 3693 3420 17,779 4892 4619 16,477
3302 3029 18,491 3698 3425 17,165 4926 4653 16,178
3336 3063 18,164 3701 3428 17,287 4981 4708 15,873
3351 3078 18,343 3767 3494 17,052 5192 4919 16,358
3458 3185 18,267 3828 3555 17,205 5438 5165 15,959
3556 3283 18,261 3847 3574 16,989 5631 5358 16,080
3663 3390 18,008 3904 3631 16,849

The density values were obtained with a room-temperature density of q0 ¼ 19256 kgm�3.[9]

Combined expanded temperature uncertainty for the liquid phase [T>3687K (3414 �C)]: UcðTÞ=T ¼ 0:018 at the beginning of the liquid phase up
to UcðTÞ=T ¼ 0:025 at the highest temperature measured. Combined expanded density-uncertainty UcðqÞ=q ¼ 0:013. Uncertainties reported with a
level of confidence 0.95 (k ¼ 2).
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Fig. 1—Density of niobium as a function of temperature. The
vertical dashed line marks the melting point. Full circles and solid
line: Experimental data obtained during this work and
corresponding liquid-phase linear regression. Uncertainties given at a
95 pct confidence level (k ¼ 2).
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Fig. 2—Density of tungsten as a function of temperature. The
vertical dotted line indicates the melting point. Full circles and solid
line: This work’s experimental data and corresponding liquid-phase
linear regression. Uncertainties given at a 95 pct confidence level
(k ¼ 2). In this plot, data of Paradis et al.[2] were extrapolated into
the liquid phase.

Table V. Parameters of the Estimated Phase Diagram of Niobium and Tungsten According to Eqs. [3] and [4]

Metal qc=kgm
�3 Tc=K a=10�5K�1 c=10�3 K�2=3 b=10�1 K�1=3 b2=10

�4 K�2=3

Niobium 1722 14,231 4.42 1.42 1.47 3.13
Tungsten 3945 14,357 4.50 1.43 3.38 3.16

Temperature range of validity from melting temperature Tm up to the critical temperature Tc of the respective metal. a, c, b and b2 are the
obtained fitting coefficients, qc is the critical density.
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Fig. 3—Niobium: Estimated phase diagram (thick solid line) with
nonlinear diameter (dotted line) and critical point (star). Open circles:
Data generated by the linear regression of this work’s experimental
density data. Thin solid lines: Phase diagrams according to a simplified
mean-field and Ising behavior. Literature values for the critical point
are given (red circles) (Color figure online).
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Fig. 4—Tungsten: Estimated phase diagram (thick solid line) with
nonlinear diameter (dotted line) and critical point (star). Open circles:
Data generated by the linear regression of this work’s experimental
density data. Thin solid lines: Phase diagrams according to a simplified
mean-field and Ising behavior. Literature values for the critical point
are given (red circles) (Color figure online).
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and mean-field approach is used, compare Reference 4.
The resulting phase diagrams are also plotted in Figures 3
and 4. In addition, (Tc; qc)-pairs were plotted when found
in the literature, see Minakov et al.[24] as well as Hess and
Schneidenbach.[25]

1. Niobium
For niobium, the extrapolation yields a critical point

of

Tc;Nb ¼ð14:2� 0:9Þ � 103 K

qc;Nb ¼ð1:72� 0:05Þ � 103 kgm�3:

The estimated phase diagram is depicted in Figure 3
together with data reported in the literature. Data in the
literature showawide range fromTc ¼ 9989K reportedby
Young[26] to values as high asTc ¼ 19;580K, published by
Lang.[27] Compared to these literature values, and to the

summarized values found in the comprehensive summaries
on critical point data given by Blairs and Abbasi[28] and
Hess and Schneidenbach,[25] our value for the critical
temperature is located in the middle range.
Data for the critical density range from 2:32�

103 kgm�3 as reported by Hess and Schneidenbach[25]

to 3:94� 103 kgm�3, published by Young.[26] The crit-
ical density reported by us is the lowest value among
those found in the literature.

2. Tungsten
Figure 4 shows the estimated phase diagram and

critical point of tungsten. The evaluation yields a critical
point of

Tc;W ¼ð14:4� 1:6Þ � 103 K

qc;W ¼ð3:95� 0:19Þ � 103 kgm�3:
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Fig. 5—Uncertainty of the liquid-phase density-regression estimated according to the GUM. Expanded uncertainty and relative expanded
uncertainty (k ¼ 2) as a function of temperature for niobium (a) and tungsten (c). Uncertainty budget as a function of temperature for niobium
(b) and tungsten (d).
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Plenty of previous considerations on the critical point
can be found in the literature. The reported values range
from Tc ¼ 7650K, published by Blairs and Abbasi[29] to
values as high as Tc ¼ 23;000K, reported by Grosse.[30]

Comparing our value to the multitude of predictions
listed by Minakov et al.[24] and Blairs and Abbasi[28,29]

shows that our critical temperature is in the lower
middle range of reported literature values. The same is
true for our critical density prediction; it is also in the
lower middle range compared to the literature.

IV. UNCERTAINTIES

Uncertainties for the experimental density values were
calculated according to the guide to the expression of
uncertainty in measurement, shortly referred to as
GUM.[31] The uncertainty of the regression coefficients
are also calculated according to GUM, by including the
individual datapoint uncertainties in x- and y- direc-
tions.[32] As a result, Figures 5(a) and (c) show the
expanded density uncertainty at a 95 pct confidence level
at a given temperature T, i.e., the temperature uncer-
tainty is converted into a density uncertainty via the
slope of the density regression. We discussed the
approach in more detail in our previous publication
on tantalum.[6] For the room-temperature density
uncertainty, we adopted uðq0;NbÞ ¼ 14 kgm�3 and

uðq0;WÞ ¼ 20 kgm�3 from Reference 9. Figures 5(b)
and (d) show the temperature-resolved uncertainty
budget for the two investigated metals.

An uncertainty for the critical point was estimated by
using the uncertainties of the density fit-coefficients
listed in Table II. The extrapolation procedure was
not only conducted for q ¼ aþ b � T, but also for
q ¼ ðaþ juðaÞjÞ þ ðbþ juðbÞjÞ � T and q ¼ ða�
juðaÞjÞ þ ðb� juðbÞjÞ � T, where b<0 and u(x) denotes
the standard uncertainty of x (k ¼ 1). The doubled
standard deviation of the mean value of these three
critical point results is reported as uncertainty. Note that
this uncertainty therefore only gives a rough idea of how
much the critical point can vary due to the uncertainty
of the density fit.

V. CONCLUSION

The temperature-dependent density of liquid niobium
and liquid tungsten were determined using the ohmic
pulse-heating technique. In our experiments, the
obtained density gradient of liquid niobium turned out
to be lower than the various different values reported in
the literature, while the density at the beginning of the
liquid phase is in very good agreement with the data
from the literature comparison. For tungsten, the
situation is different. Here, the density gradient fits in
well with reported literature values, but there is a shift to
lower density values of up to 5.7 pct at the beginning of
the liquid phase for some authors. Others report values
at melting that are up to 2.4 pct higher.

The obtained density–temperature relationship was
used to estimate a phase diagram and the critical
temperature in addition to the critical density of
niobium and tungsten. Comparing the obtained values
to the literature shows that our values for the critical
temperatures of niobium and tungsten are in the (lower)
middle range of the reported values. Our estimate for
the critical density turned out to be at the lower end of
those found in the literature.
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12. R. Gallob, H. Jäger, and G. Pottlacher: High Temp. - High Press.,

1985, vol. 17, pp. 207–13.
13. R. Hixson and M. Winkler: High Press. Res., 1990, vol. 4,

pp. 555–57.
14. J.W. Shaner, G.R. Gathers, and W.M. Hodgson: Proceedings of the

Seventh Symposium on Thermophysical Properties, A. Cezailiyan, ed.,
American Society of Mechanical Engineers, Gaithersburg, Maryland,
May 10–12, 1977, pp. 896–903.

15. G. Pottlacher, T. Neger, and H. Jäger: Int. J. Thermophys., 1986,
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Appendix A. Circuit diagram

Figure A.1.: Circuit diagram of the ohmic pulse-heating setup at Graz University of Tech-
nology. Image taken from [57].
HVPS . . . high voltage power supply, S . . . switch, C . . . capacitor bank,
RCROW . . . crowbar resistor, IG1 . . . start Ignitron, IG2 . . . stop Ignitron, RV . . .
series resistor, RC and LS . . . resistance and inductance of the circuit, RS and LS
. . . resistance and inductance of the sample, KE1 and KE2 . . . knife edges for
voltage measurement, R1 to R4 . . . voltage dividers, PG . . . ttl pulse generator,
A . . . amplifier, PY . . . pyrometer, BPF . . . interference filter, L . . . lens, F . . .
fiber, D . . . photo diode, PP . . . Pearson probe for current measurement, DC . . .
discharge chamber, PC . . . personal computer, I . . . current signal, UHOT and
UCOLD . . . voltage signals, J . . . pyrometer signal, AD . . . transient recorder
card.
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Appendix B. Experimental data

Table B.1.: Iridium: Experimental values of density ρ as a function of temperature T
obtained in low-pressure pulse-heating experiments (atm.: N2 at 2.3 bar).
Density values were derived applying a room-temperature density of ρ0 =
22 562 kg ·m−3. Combined expanded uncertainty between the beginning of
the liquid phase (Tm = 2719 K) up to the highest temperatures measured:
Uc(T)/T = 0.016 to 0.022, Uc(ρ)/ρ = 0.013. Uncertainties stated at a 95 %
confidence level (k = 2).

T / K ρ / kg ·m−3 T / K ρ / kg ·m−3

2173 21600 3009 19321

2237 21383 3084 19256

2412 21247 3164 19030

2462 21367 3276 19021

2514 21109 3331 19331

2534 21336 3383 18586

2613 21290 3511 19021

2708 21092 3633 18987

2715 19965 3701 18294

2716 20595 3810 18700

2718 20793 3820 18582

2718 20951 3889 18122

2720 19844 4003 18667

2723 19946 4178 18487

2724 20642 4230 17930

2726 21340 4285 18333

2729 19664 4350 18070

2731 20412 4388 17716

2735 20586 4756 17470

2768 19354 4843 17942

2844 19791 4882 17663

2884 19400
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Table B.2.: Iridium: Experimental values of density ρ as a function of temperature T
obtained in high-pressure pulse-heating experiments (atm.: H2O at 2 kbar to
3 kbar). Density values were derived applying a room-temperature density of
ρ0 = 22 562 kg ·m−3. Combined expanded uncertainty between the beginning
of the liquid phase (Tm = 2719 K) up to the highest temperatures measured:
Uc(T)/T = 0.018 to 0.037, Uc(ρ)/ρ = 0.038 to 0.034. Uncertainties stated at a
95 % confidence level (k = 2).

T / K ρ / kg ·m−3

2695 20632

2714 20229

2836 19809

3080 19280

3409 19167

3828 18391

3993 18221

4378 17745

4775 17204

4965 16823

5355 16710

5755 15985

5972 15567

6386 15303

6756 15134

7051 14393

7521 14137

7829 13830

7997 13502

8482 13003

9163 12717
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Appendix B. Experimental data

Table B.3.: Rhenium: Experimental values of density ρ as a function of temperature
T obtained in low-pressure pulse-heating experiments (atm.: N2 at 2.3 bar).
Density values were derived applying a room-temperature density of ρ0 =
21 020 kg ·m−3. Combined expanded uncertainty between the beginning of
the liquid phase (Tm = 3458 K) up to the highest temperatures measured:
Uc(T)/T = 0.018 to 0.021, Uc(ρ)/ρ = 0.013. Uncertainties stated at a 95 %
confidence level (k = 2).

T / K ρ / kg ·m−3

2284 19985

2478 20176

2698 19744

3065 19432

3117 19879

3164 19274

3401 19080

3449 18916

3468 19026

3473 18748

3477 19558

3728 17931

3773 18471

4460 17748
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Table B.4.: Rhenium: Experimental values of density ρ as a function of temperature T
obtained in high-pressure pulse-heating experiments (atm.: H2O at 1.8 kbar to
3 kbar). Density values were derived applying a room-temperature density of
ρ0 = 21 020 kg ·m−3. Combined expanded uncertainty between the beginning
of the liquid phase (Tm = 3458 K) up to the highest temperatures measured:
Uc(T)/T = 0.020 to 0.043, Uc(ρ)/ρ = 0.039 to 0.036. Uncertainties stated at a
95 % confidence level (k = 2).

T / K ρ / kg ·m−3

3444 18727

3595 18354

3630 18256

3899 18104

4299 17690

4552 17379

4935 17097

4947 16803

5584 16413

5656 16710

6128 16333

6234 15957

6828 15361

6915 15251

7308 15186

7616 14822

8079 14212

8382 14252

8580 14443

9173 14031

9409 13695

9887 13405

10738 13004

11801 12265
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Oberflächenspannung flüssiger Metalle.” In: Z. Metallkde. 68.3 (1977),
pp. 213–218.

[32] H. Hess. “Critical Data of Metals-Estimations for Tungsten.” In: Phys.
Chem. Liq. 30.4 (1995), pp. 251–256. doi: 10.1080/00319109508030672.

[33] D. Gates and G. Thodos. “The Critical Constants of the Elements.” In:
A.I.Ch.E Journal 6.1 (1960), pp. 50–54. doi: 10.1002/aic.690060110.

160

https://www.oldcitypublishing.com/journals/hthp-electronic-archive-home/hthp-electronic-archive-issue-contents/hthp-volume-11-number-5-1979/
https://www.oldcitypublishing.com/journals/hthp-electronic-archive-home/hthp-electronic-archive-issue-contents/hthp-volume-11-number-5-1979/
https://www.oldcitypublishing.com/journals/hthp-electronic-archive-home/hthp-electronic-archive-issue-contents/hthp-volume-11-number-5-1979/
http://dx.doi.org/10.1103/PhysRevB.75.214103
http://dx.doi.org/10.1016/S0022-3093(96)00234-7
http://dx.doi.org/10.1016/S0022-3093(96)00234-7
http://dx.doi.org/10.1007/s00193-009-0224-8
http://dx.doi.org/10.1007/s00193-009-0224-8
https://www.oldcitypublishing.com/journals/hthp-electronic-archive-home/hthp-electronic-archive-issue-contents/hthp-volume-9-number-4-1977/
https://www.oldcitypublishing.com/journals/hthp-electronic-archive-home/hthp-electronic-archive-issue-contents/hthp-volume-9-number-4-1977/
https://www.oldcitypublishing.com/journals/hthp-electronic-archive-home/hthp-electronic-archive-issue-contents/hthp-volume-9-number-4-1977/
http://dx.doi.org/10.1080/00319109508030672
http://dx.doi.org/10.1002/aic.690060110


Bibliography

[34] S. Blairs and M. H. Abbasi. “Correlation between surface tension and
critical temperatures of liquid metals.” In: J. Colloid Interface Sci. 304.2
(2006), pp. 549–553. doi: 10.1016/j.jcis.2006.07.072.

[35] A. Grosse. “The Temperature Range of Liquid Metals and an Estimate
of their Critical Constants.” In: J. Inorg. Nucl. Chem. 22.1-2 (1961),
pp. 23–31. doi: 10.1016/0022-1902(61)80225-x.

[36] A. Grosse. “The Realtionship between the Surface Tensions and En-
ergies of Liquid Metals and Their Critical Temperatures.” In: J. Inorg.
Nucl. Chem. 24.2 (1962), pp. 147–156. doi: 10.1016/s0022-1902(62)90
147-1.

[37] J. Bohdansky. “Temperature Dependence of Surface Tension for Liquid
Metals.” In: J. Chem. Phys. 49.7 (1968), pp. 2982–2986. doi: 10.1063/1
.1670540.

[38] R. E. Goldstein, A. Parola, and A. P. Smith. “Fluctuating pseudoatoms
in metallic fluids.” In: J. Chem. Phys. 91.3 (1989), pp. 1843–1854. doi:
10.1063/1.457089.

[39] H. Hess and H. Schneidenbach. “On the Estimation of Critical Point
Data of Transition Metals.” In: Z. Metallkde. 87.12 (1996), pp. 979–984.

[40] S. Blairs and M. H. Abbasi. “Internal Pressure Approach for the
Estimation of Critical Temperatures of Liquid Metals.” In: Acustica
79.1 (1993), pp. 64–72. url: https://www.ingentaconnect.com/conte
nt/dav/aaua/1993/00000079/00000001/art00010.

[41] L. Cailletet and E. Mathias. In: Compt. Rend. 104 (1887), pp. 1563–1571.

[42] H. Hess, E. Kaschnitz, and G. Pottlacher. “Thermophysical Properties
of Liquid Cobalt.” In: High Pressure Res. 12.1 (1994), pp. 29–42. doi:
10.1080/08957959408201653.

[43] A. Likalter. “On Critical Parameters of Metals.” In: Teplofiz. Vys. Temp.
23.3 (1985), pp. 465–472.

[44] D. A. Young and B. J. Alder. “Critical Point of Metals from the van
der Waals Model.” In: Phys. Rev. A 3.1 (1971), pp. 364–371. doi: 10.11
03/physreva.3.364.

[45] D. A. Young. A Soft-Sphere Model For Liquid Metals. Tech. rep. UCRL-
52352. Lawrence Livermore Laboratory, 1977. doi: 10.2172/5154392.

161

http://dx.doi.org/10.1016/j.jcis.2006.07.072
http://dx.doi.org/10.1016/0022-1902(61)80225-x
http://dx.doi.org/10.1016/s0022-1902(62)90147-1
http://dx.doi.org/10.1016/s0022-1902(62)90147-1
http://dx.doi.org/10.1063/1.1670540
http://dx.doi.org/10.1063/1.1670540
http://dx.doi.org/10.1063/1.457089
https://www.ingentaconnect.com/content/dav/aaua/1993/00000079/00000001/art00010
https://www.ingentaconnect.com/content/dav/aaua/1993/00000079/00000001/art00010
http://dx.doi.org/10.1080/08957959408201653
http://dx.doi.org/10.1103/physreva.3.364
http://dx.doi.org/10.1103/physreva.3.364
http://dx.doi.org/10.2172/5154392


Bibliography

[46] G. R. Gathers. “Dynamic Methods for Investigating thermophysical
Properties of Matter at very high Temperatures and Pressures.” In:
Rep. Prog. Phys. 49.4 (1986), pp. 341–396. doi: 10.1088/0034-4885/49
/4/001.

[47] V. E. Fortov, K. V. Khishchenko, P. R. Levashov, and I. V. Lomonosov.
“Wide-range multi-phase equations of state for metals.” In: Nucl.
Instrum. Methods Phys. Res., Sect. A 415.3 (1998), pp. 604–608. doi:
10.1016/s0168-9002(98)00405-7.

[48] L. Miljacic, S. Demers, Q.-J. Hong, and A. van de Walle. “Equation of
state of solid, liquid and gaseous tantalum from first principles.” In:
Calphad 51 (2015), pp. 133–143. doi: 10.1016/j.calphad.2015.08.005.

[49] D. V. Minakov, M. A. Paramonov, and P. R. Levashov. “Consistent
interpretation of experimental data for expanded liquid tungsten near
the liquid-gas coexistence curve.” In: Phys. Rev. B 97.2 (2018), p. 024205.
doi: 10.1103/PhysRevB.97.024205.

[50] A. L. Khomkin and A. S. Shumikhin. “Critical points of metal vapors.”
In: J. Exp. Theor. Phys. 121.3 (2015), pp. 521–528. doi: 10.1134/S10637
76115090162.
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