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Abstract

Sensors are embedded in a wide range of devices and systems nowadays, be it smartphones, Cyber-
Physical Systems, or devices in the Internet of Things. Additionally, the number of so-called smart
sensors that are equipped with a computational device and a networking interface is rapidly ris-
ing. Although these devices might not be as powerful in terms of computational power, the large
number of devices and the consistent availability of these devices makes them an attractive target
for numerous types of attacks. Many recent incidents have demonstrated that a large number of
resource-constrained devices can be used in attacks that target larger systems. Default configura-
tions or standard authentication credentials are often the main weakness that allows such attacks.
Also, other weaknesses such as unprotected sensor interfaces may lead to issues where a system
is compromised by attacks targeting an embedded sensor.

Thus, the first part of this thesis investigates the question whether there are yet unknown types of
attacks that target sensor interfaces. The first interface, the sensing interface itself, is often unpro-
tected since sensor measurements are often not considered as confidential information. However,
in systems where a process is controlled based on these sensor measurements, the confidentiality
of sensor measurements is important. We demonstrate that only protecting the confidentiality of
sensor data leads to easy attacks that may cause dangerous system behavior. In this thesis, we also
investigate the impact of unprotected sensor interfaces to bypass barriers such as process isolation.
We successfully demonstrate exploiting sensor configuration interfaces as well as the sensing in-
terface itself for building sensor-based covert channels. We present three different approaches that
differ in the achievable covert-channel data rate as well as in the likelihood of such a covert chan-
nel being detected. We believe that the behavior of the stealthiest of these covert channels is not
distinguishable from normal system operation where multiple processes access a single sensor.
All presented covert channels are applicable for any system, but in particular, we were able to
demonstrate them on the well-known operating systems Linux and Android.

Due to the demonstrated security issues caused by unprotected configuration interfaces, we
demonstrate a secured configuration approach for smart sensors based on Near-Field Communica-
tion (NFC) in the second part of this thesis. On the one hand, this secured NFC-based configura-
tion interface is capable of improving the security of smart sensors by mitigating most attacks that
could target the interface. On the other hand, we think that using this well-known technology will
also improve the perceived usability when changing configuration data. However, the proposed
configuration approach is not only applicable for end users but can also be used for applying ini-
tial configurations during the manufacturing of smart sensors. The presented approach includes a
tamper-resistant hardware extension for smart sensors as well as software components that provide
secured transfer of configuration data, attestation of applied configuration data, and the password-
free authentication of devices when applying configuration data. Furthermore, this password-free
approach automatically derives authentication credentials from configuration data and thus helps
mitigating issues caused by users not changing default credentials. Finally, we present an NFC
transport-layer protocol that provides secured data transfer for NFC applications, thus mitigat-
ing the need for application-specific security mechanisms and instead providing a standardized
method for secured NFC-based data transfer. This so-called QSNFC protocol provides security as
well as efficiency by fulfilling the zero-round-trip-time requirement for recurring connections.
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Kurzfassung

Eingebettete Sensoren finden sich heute in einer Vielzahl verschiedener Geräte und Systeme, ob
in Mobiltelefonen, Cyber-physischen Systemen oder Geräten im Internet der Dinge. Zusätzlich
dazu steigt auch die Anzahl sogenannter smarter Sensoren, welche mit einer Recheneinheit und
Netzwerkfähigkeit ausgestattet sind. Obwohl all diese Geräte leistungsschwach sind und keine
starke Rechenleistung besitzen, sind sie durch ihre große Anzahl und die ständige Verfügbarkeit
interessante Ziele für viele Arten von Angriffen. Wie jüngste Angriffe gezeigt haben, können
diese leistungsschwachen Geräte benutzt werden, um Angriffe auf größere Systeme auszuführen.
Sehr oft ermöglichen unveränderte Standardzugangsdaten oder –konfigurationen solche Angriffe.
Aber auch Sicherheitslücken wie zum Beispiel ungesicherte Sensorschnittstellen können Probleme
verursachen, welche dazu führen, dass Systeme kompromitiert werden können.

Der erste Teil dieser Dissertation behandelt daher die Frage, ob es bisher unbekannte Arten von
Attacken auf Sensorschnittstellen gibt. Die Messschnittstelle des Sensors ist meist nicht geschützt,
da Sensormesswerte vielfach nicht als vertrauliche Informationen betrachtet werden. Allerdings
sollten diese Informationen in Systemen, in denen Prozesse aufgrund dieser Sensormesswerte ge-
regelt werden, als vertrauchlich behandelt werden. Diese Arbeit zeigt, dass selbst Systeme, welche
die Vertraulichkeit von Sensormesswerten sicherstellen, einfach attackiert werden können. Außer-
dem behandelt diese Dissertation die Auswirkung von ungesicherten Sensorschnittstellen, welche
ausgenutzt werden, um Prozessisolationen zu umgehen. In dieser Arbeit werden mehrere sensor-
basierte Datenkanäle gezeigt, welche aufbauend auf unterschiedlichen Sensorschnittstellen reali-
siert wurden. Die gezeigten Varianten unterscheiden sich in der erzielbaren Datenrate, aber auch
in der Wahrscheinlichkeit, dass solche Datenkanäle entdeckt werden. Die unsichtbarste Variante
dieser Datenkanäle ist nicht vom Verhalten eines Systems mit einem Sensor und mehreren Pro-
zessen unterscheidbar. Alle in dieser Arbeit gezeigten Datenkanäle können auf beliebige Systeme
angewendet werden. In dieser Dissertation werden sie an den sehr bekannten Betriebssystemen
Linux und Android demonstriert.

Basierend auf den gezeigten Schwachstellen, die auf ungesicherten Konfigurationsschnittstel-
len basieren, wird im zweiten Teil dieser Dissertation eine NFC-basierte Methode zur gesicherten
Konfiguration von smarten Sensoren präsentiert. Zum einen kann so eine Methode die Sicherheit
von Systemen verbessern, zum anderen wird in dieser Arbeit die Meinung vertreten, dass die Be-
nutzerfreundlichkeit eines Konfigurationsprozesses damit gesteigert werden kann. Der gezeigte
Ansatz ist nicht nur geeignet, um Konfigurationen beim Endbenutzer durchzuführen, sondern ist
bereits während der Produktion des Gerätes, in der Standardkonfigurationen übertragen werden
müssen, einsetzbar. Der in dieser Arbeit gezeigte Ansatz verwendet gegen Manipulation gesi-
cherte Hardware in Kombination mit Softwarekomponenten, um eine gesicherte Übertragung und
Validierung von Konfigurationsdaten zu ermöglichen, was in weiterer Folge auch ohne die Ver-
wendung von Passwörtern ermöglicht wird. Anstelle von Passwörtern werden Zugangsdaten von
der aktuellen Konfiguration abgeleitet, was impliziert, dass jede Konfigurationsänderung automa-
tisch auch die Zugangsdaten ändert und somit die Sicherheit des Systems weiter verbessert werden
kann. Abschließend wird ein gesichertes NFC-Transportschicht-Protokoll präsentiert, welches die
Notwendigkeit von anwendungsspezifischen Sicherheitslösungen überflüssig macht. Zusätzlich
ermöglicht dieses QSNFC genannte Protokoll auch einen sehr effizienten Schlüsselaustausch bei
wiederkehrenden Verbindungen, was es besonders geeignet für NFC macht.
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1
Introduction

”The S in IoT stands for security.”
– Tim Kadlec

In this chapter, we are going to motivate why security for resource-constrained devices such as
smart sensors and devices in the Internet of Things (IoT) is important. We also discuss known
security issues of smart sensors, define the problem statement of this thesis, list the contributions
that are made in this thesis, and finally give a brief outline for the remaining chapters of this thesis.

1.1 Motivation

The number of sensor-equipped devices is rapidly increasing due to sensors being embedded in a
wide range of devices. These sensor-equipped devices aim at making processes easier, safer, or
more efficient by using sensor data to improve the monitored processes in various domains such
as smart homes, smart factories, smart cities, or smart healthcare [1–4]. Such sensor-equipped
devices can often be categorized as so-called standalone smart sensors.

Huijsing et al. [5, 6] first defined a smart sensor as the combination of a sensor, analog inter-
face circuit, Analog to Digital Converter (ADC), and a bus interface. Kirianaki et al. [7] further
formalized this initial definition by Huijsing et al.:

[...] a smart sensor is one chip, without external components, including the sensing,
interfacing, signal processing and intelligence (self-testing, self-identification or self-
adaptation) functions.

Yurish [8] defined the presence of a microcontroller as a necessary but not a sufficient condition
for such sensors to be intelligent. The author furthermore introduced the term intelligent sensor for
such devices. Morris and Langari [9] relativized the difference between the definitions by stating
that there is no hard distinction between the function of intelligent and smart sensors.

Smart Sensor

Microcontroller Sensor

Network
Interface

Sensing
Interface

Intelligent
Functions

Sensor
Interface

Data
Interface

Figure 1.1: Block diagram of smart sensor based on the definition that is used in this thesis.
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Thus, in this thesis the term smart sensor is used for systems that include – among others –
a sensor and microcontroller and offer some intelligent function such as data aggregation, self-
identification, or self-adaption. In addition, it is assumed that in order to be of any use to external
systems, the smart sensor includes a networking interface of any form, such as I2C, SPI, Bluetooth,
or WiFi. A simple block diagram of such a smart sensor is shown in Figure 1.1.

Due to this definition, a large number of devices including most IoT devices and Cyber-Physical
Systems (CPSs) need to be considered as smart sensor as well. In 2016, Business Insider [10]
predicted a number of 35 billion sensor-equipped devices by 2020. Similar to that, Statista [11]
predicts the number of IoT devices to grow by 10% from 27 billion in 2019 to 30 billion in
2020, up to 75 billion by 2025. The corresponding trend from 2015 to 2025 can be seen in
Figure 1.2. An even more bold statement from Cisco and General Electrics was reported in 2014
by embedded.com. According to these estimations, 1 trillion sensors would be connected to the
Internet by 2020, with a market value of 15 trillion U.S. dollars. Compared to the actual and
predicted number of IoT devices, this number seems very high. However, if other domains such
as (connected) cars that can contain up to 200 sensors per car (multiplied by roughly 110 million
cars per year) [12] are considered, the number becomes reasonable.
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Figure 1.2: Number of IoT devices from 2015 to 2025 according to Statista [11].

1.2 Smart Sensor Security

The security of smart sensors is often neglected since these sensors often monitor non-confidential
information, such as temperature or humidity. Since this information can typically be measured
by anybody at any time, neither the confidentiality, integrity, nor the authenticity of sensor data
is protected. Even if sensors are deployed in industrial settings where confidential data might be
monitored, security is often reduced to intrusion prevention and the mitigation of eavesdropping
on sensor data [13]. However, no fully fledged security is considered for sensors in most cases,
which can make systems vulnerable to attacks due to sensor-based security weaknesses. Thus,
security needs to be considered for any component of a system, as noted by Perrig et al. [14].
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Security is sometimes viewed as a standalone component of a system’s architecture,
where a separate module provides security. This separation is, however, usually a
flawed approach [...]. To achieve a secure system, security must be integrated into
every component, since components designed without security can become a point of
attack. Consequently, security must pervade every aspect of system design.

Considering this quote, insufficiently protected sensors can be used as an initial entry point for
attacks that subsequently target other parts of a system. However, also smart sensors might be an
attractive target for attackers as the following three facts pointed out by Kolias et al. [15] highlight.

1. Number of devices: Although smart sensors and IoT devices lack computational power
compared to traditional Information Technology (IT) systems such as Personal Computers
(PCs) or servers, their large number compensates for this fact. Recent attacks such as the
Mirai botnet [16] demonstrated that a large number of resource-constrained devices can
perform powerful Distributed DoS (DDoS) attacks. In 2016, the Internet service provider
Dyn was targeted by the Mirai botnet, disabling many popular websites including Twitter,
Netflix, Reddit, and Github.

2. Always online: Due to their field of application in monitoring, most smart sensors and IoT
devices are continuously connected to the Internet. This high availability was also demon-
strated in the Mirai botnet attack, where 400,000 out of roughly 600,000 infected devices
were available to the botnet at any time. The data rate recorded in an attack performed by
the Mirai botnet peaked at 1.1Tbps.

3. Insufficient security configurations: Most smart sensors and IoT devices are deployed
by their users and never reconfigured. This means that many devices are operated using
default configuration parameters such as factory-set username and password combinations.
Studies demonstrated that between 10% and 40% of devices are vulnerable due to using
such default configurations [17–19].

Due to these facts, smart sensors and IoT devices are targets of attacks with various different po-
tential ramifications for the device owner. These ramifications range from loss of non-confidential
data up to industrial espionage or physical damage to systems that may cause a large negative fi-
nancial impact or even threaten human lives [20]. The following list gives an overview of potential
attacks, categorizing their ramifications based on the CIA Triad properties (see Subsection 2.1.2).
Many of these attacks can be performed on any embedded system, regardless of whether a sensor
is present or not. However, the presence of a sensor usually adds additional attacking points that
can be exploited by an adversary. Such sensor-based attacking points include the sensing interface
itself or a sensor’s configuration interface.

Device capture. If a device is captured, the ramifications are manifold. The adversary is able
to access data on the device, install malicious software, and run this software [21]. That is,
the adversary is capable of using the device for malicious activities such as espionage, in
botnet attacks, or as an entry point for further attacks in a system. This can lead to data loss,
noticeable or unnoticeable misbehavior of the system, or even physical damage. Thus, data
confidentiality, integrity, and availability may be compromised.

Information stealing. Data that is gathered and processed by a smart sensor can be stolen in
various ways. As mentioned previously, if a device is captured, data loss is one of the poten-
tial consequences. Since smart sensors are connected to other entities over a wired or even
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wireless communication channel, adversaries might also be capable of stealing information
that is transferred between the smart sensor and other entities. Losing information leads to
privacy issues that can be as severe as huge financial losses due to industrial espionage [22].
The property that is impacted by information stealing is data confidentiality.

Side-channel attacks. In addition to loss of confidentiality, stolen sensor measurements can
also be exploited as potential side-channel information to reveal information that is not
directly monitored by the respective sensors. For instance, attacks have been presented
where a smartphone’s ambient light sensor was used to reveal information the users were
typing on their smartphone [23]. Also, sensors might be exploited to transfer data between
otherwise isolated processes or even devices. For instance, temperature sensors were used to
transfer information between computers that were even physically separated (not touching)
from each other [24].

Deception attacks. Unlike the previous two attacks where sensor data is stolen, the adversary
injects malicious sensor data into a system in deception attacks. Similar to information
stealing, there are various ways of achieving this goal. On a captured device, sensor data
can directly be modified before this data is aggregated or sent to other entities. In addition,
sensor data can be manipulated while it is being transferred over the wired or wireless com-
munication channel over which sensor data is transmitted to other entities [25]. However,
not only data manipulation but also data injection or replay attacks can be seen as a form of
deception attack. These attacks target the integrity and availability of the system and may
lead to physical damage if malicious sensor data is used to control a physical process.

Sensor data spoofing. Similar to deception attacks, in sensor data spoofing attacks the ad-
versary tries to manipulate sensor data. However, in this type of attack, actually measured
sensor data is not manipulated, but the sensor is tricked by artificially fabricated malicious
physical properties into measuring wrong values [26]. Since the adversary needs to be ca-
pable of introducing artificial physical stimuli such that they are measured by the sensor,
these attacks require closer proximity of the adversary, as opposed to deception attacks that
are performed in software. That is, the possible distance of sensor data spoofing stimuli is
usually limited by the range of the emitting device such as lasers. These types of attacks
target a system’s integrity and availability and may also lead to physical damage.

Physical attacks. If an adversary has direct physical access to the smart sensor, so-called phys-
ical attacks or active side-channel attacks can be performed. In this type of attack, the
adversary actively tampers with the device to reveal confidential information such as cryp-
tographic keys. To do so, semi-invasive or even invasive attacks that destroy the attacked
device can be performed by the adversary. Such attacks may include probing existing inter-
faces, removing chip coatings for probing and tampering with the underlying hardware, or
trying to induce faults by injecting voltage spikes [27]. Depending on the leaked informa-
tion, the confidentiality, integrity, and availability of a system may be compromised.

Denial of Service. If an adversary is neither interested in stealing a system’s data nor in influ-
encing the system’s behavior but just in disabling the system, so-called Denial-of-Service
(DoS) attacks are performed [28]. Similar to other attack types, the adversary also has many
possibilities to perform a successful DoS attack. If a sensor is captured, it is easy to bring it
down and thus disable its own functionality as well as the correct functionality of the system
that relies on the sensor’s data. Another method of DoS attacks is, for instance, the jamming
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of the communication channel that is used to transmit sensor data from the smart sensor
to other entities in the system. The sensor might also be bombarded by a huge amount of
requests, that even if denied, lead to the sensor being incapable of performing its intended
tasks. DoS attacks generally target the attacked system’s availability.

Although attack taxonomies were defined early and some research regarding smart sensor se-
curity was done, the topic is not to be considered well researched. However, recent incidents
increased public awareness regarding IoT security and the topic thus is becoming more promi-
nent. A study by KPMG [29] revealed that 84% of IoT adopters have experienced some sort of
security breach. A recent study by Gemalto [30] concluded that only 48% of businesses are ca-
pable of detecting whether any of their IoT devices was part of a security breach. The same study
stated that the belief in IoT security as an ethical responsibility tripled from 2018 to 2019.

Although there seems to be a rising agreement about the importance of security measures for
smart sensors and IoT devices, there are several factors that may limit the adoption of security
mechanisms for these devices. Four of this factors are discussed in the following list.

1. Security awareness: As mentioned earlier, the awareness regarding the security of smart
sensors and IoT devices is very low, although recent incidents have led to the awareness
tripling from 4% of study participants in 2018 to 14% in 2019; however, compared to other
domains, this value is still very low. Without an inherent security awareness, device owners
will not adopt increased security measures [31].

2. Resource-constrained devices: Smart sensors and IoT devices are usually resource-
constrained. That means that classical and well-established security methods cannot be
applied since these methods might be too complex or resource intensive in terms of com-
putational power and energy consumption. Thus, security mechanisms tailored for these
resource-constrained devices need to be proposed such that a high level of security can be
provided without straining the device’s processor or power source too much [32].

3. Device cost: Introducing security to devices that are usually aimed at being low cost will
increase the costs of such devices considerably. However, if device costs are increased too
much, potential buyers might opt for alternatives without these cost-intensive security mea-
sures. Usually a trade-off between the provided level of security and costs can be made [33],
and this factor thus needs to be considered when introducing security measures to low-cost
devices such as smart sensors or IoT devices.

4. Usability: If security measures that negatively influence the usability of devices are in-
troduced, the device owners will tend to dislike these security measures [34]. Often, the
security measures are then disabled, thus making them even less useful than less secure
security measures with better usability. Therefore, a usability-security trade-off has to be
considered.

1.3 Problem Statement

Due to the high amount of potential attack scenarios and security vulnerabilities in systems that
contain smart sensors, the security of such systems needs to be considered as a domain for further
research. However, the limiting factors mentioned in Section 1.2 need to be considered in order
to propose security measures that are well-suited for the domain of smart sensors. Thus, in this
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thesis, potential new attack scenarios and suitable countermeasures that target smart sensors are
identified. In addition, possibilities for secured, easy-to-use, and efficient configuration of such
smart sensors are investigated since default configurations and unprotected interfaces are a major
weakness of today’s smart sensors. Based on these observations, the following Research Questions
were formulated at the beginning of this thesis.

RQ1: Are there yet unknown types of sensor-based attacks that target unprotected
interfaces of smart sensors?

RQ2: How can the trustworthiness of smart sensors be improved by facilitating a
secured, yet efficient and easy-to-use configuration update process?

The following two subsections discuss both research questions in more detail, with Subsec-
tion 1.3.1 addressing RQ1 and Subsection 1.3.2 addressing RQ2.

1.3.1 Sensor-Based Security Issues

Resource-constrained devices such as smart sensors are plagued by different potential attacks that
target the smart sensor’s correct functionality as already discussed in Section 1.2. So why would it
be beneficial to devote the first research question of this thesis to finding new sensor-based security
issues? The reason for this is that efficient countermeasures that mitigate security issues can only
be investigated if a security weakness is already known. That is, any security measure that was
presented addressed existing security issues [35]. For instance, the research on tamper-resistant
algorithms and hardware began only after side-channel attacks were used to reveal confidential
information. That is, revealing new types of vulnerabilities is very beneficial to security research.

As a first part in answering RQ1, countermeasures for existing sensor-based security issues are
briefly analyzed regarding weaknesses. One of the most common sensor-related attack types are
deception attacks. In this type of attack, sensor data is either manipulated, injected, or replayed.
Such an attack is capable of tricking a controller that relies on the provided sensor data into unsafe
operation, and thus, may cause physical damage to the system, the physical process itself, or even
to human beings. In this first part, we demonstrate that existing cryptographic countermeasures
indeed are capable of mitigating deception attacks due to targeted data manipulation; however,
these countermeasures actually make the system more prone to attacks that try to force the system
into an unstable state by rendering any sensor data useless for the controller.

As a second part in answering RQ1, we identify a sensor interface that is usually unprotected.
Exploiting this sensor interface to sabotage the sensor’s desired behavior on its own is already a
serious security issue. However, such an attack would be trivial to perform on unprotected inter-
faces and malfunctioning sensors might be easy to detect for any monitoring system. Instead, we
exploit unprotected configuration interfaces by using them as a side channel while building so-
called covert channels to transport data between otherwise isolated processes. Contrary to making
a sensor useless by exploiting the unprotected configuration interface and applying malicious con-
figuration data, we aim at actually using the sensor and its configuration interface as intended. That
is, normal sensor functionality should not be impacted, and thus, systems that monitor the sensor’s
correct functionality would detect no anomaly in its operation. Such undetected malicious opera-
tion and covert channels may compromise a system’s confidentiality, integrity, and availability by
presenting a serious security weakness that can be exploited for stealing confidential information,
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controlling isolated processes, or by allowing malicious code to be injected into a smart sensor. Of
course, we are not only going to present and demonstrate such security issues, but also discuss how
easy it would be to detect the respective malicious behavior as well as potential countermeasures
for mitigating the presented attacks.

Therefore, in answering research question RQ1, we actually demonstrate attacks targeting the
two following interfaces of a smart sensor. Figure 1.3 depicts sensor interfaces that we exploited
in this thesis and other interfaces for which no attacks were performed.

Data interface. This interface is used to transfer measured data from the sensor to other entities
in the system that are interested in the sensor’s measurements, such as a controller in a CPS.
This interface presents an actual networking interface, and thus, information is transferred
either via a wired or wireless communication channel in which the presence of an adversary
needs to be considered.

Configuration interface. This interface allows changing non-confidential configuration data
such as sampling frequencies or confidential data such as Wi-Fi credentials that are used for
connecting a smart sensor to a network. A sensor’s configuration interface might be acces-
sible via a wired or wireless communication channel such that any entity having network
access is allowed to change configuration parameters or it might be restricted to processes
that are running on the actual smart sensor itself.

Attacks targeting the sensing interface of a sensor are not covered in this thesis. Contrary to
the data interface and configuration interface which are connected to a communication interface
and can thus be exploited remotely via software attacks, the sensing interface requires physical
presence of the adversary and attacks need to be performed on the physical layer.

Sensor

Sensing
Interface

Data
Interface

Configuration
Interface

Figure 1.3: Interfaces for which attacks are presented in this thesis. Both data interface and configuration interface
are targeted, while attacks targeting the sensing interface are not covered in this thesis.

1.3.2 Secured Sensor Configuration

Most smart sensor-related attacks that were discussed in Section 1.2 can be caused by insufficiently
protected interfaces or due to default authentication credentials such as username and password
combinations that are used on the attacked devices. Therefore, the research question RQ2 of
this thesis tries to address the secured configuration of smart sensors. On the one hand, such
a configuration process might encourage smart sensor owners to change default configurations
and update security-relevant parameters more frequently. On the other hand, the configuration
interface itself might be subjected to attacks and thus be an additional attack vector that further
weakens smart sensor security. Therefore, such a configuration approach must also be sufficiently
secured to not introduce additional security weaknesses. In the following list, requirements for
such a smart sensor configuration approach are given.
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Req1 Smart sensor configuration should be possible in a secured manner such that the confiden-
tiality, integrity, and authenticity of configuration data is protected.

Req2 Secured smart sensor configuration should provide high usability such that high user accep-
tance is achieved due to the ease-of-use of the proposed solution.

Req3 The secured configuration approach should be efficient such that it is applicable to mostly
resource-constrained devices such as smart sensors.

Req4 The proposed smart sensor configuration approach should be suitable for both home and
industrial usage alike. That is, the approach should scale to large numbers of devices.

Req5 Instead of distinguishing between certain lifecycle phases, the proposed smart sensor con-
figuration approach should rely on the same mechanisms for applying configurations during
the smart sensor’s entire lifecycle. Configuration updates should be possible in any phase.

Req6 Off-the-Shelf (OTS) hardware should be supported such that no additional hardware is re-
quired for using the proposed smart-sensor configuration approach. Thus, the cost overhead
due to requiring additional hardware is kept at a minimum.

As can be concluded from this list, the three requirements security, efficiency, and usability
are demanded for a smart sensor configuration approach. However, these three entities usually
influence each other negatively [36], as depicted in Figure 1.4. As can be seen there, all three re-
quirements and their impact depend on each other. If the attribute of one requirement is improved,
usually the other two attributes experience a negative impact. For instance, improving the effi-
ciency of a smart sensor in terms of required computational power and power consumption could
be achieved by using weaker but more efficient cryptographic algorithms which weakens secu-
rity, or by having less powerful interfaces which negatively influences the smart sensor’s usability.
However, since the main goal of this thesis is to improve the trustworthiness of smart sensors, any
presented measure is aimed at increasing security. Thus, to account for the presented security-
efficiency-usability trade-off, the goal of this thesis is to keep the negative impact on efficiency
and usability as low as possible or not even influence these parameters at all while improving se-
curity. Therefore, the evaluation of the presented smart sensor configuration approach will focus
on all three of these properties and demonstrate improvements as well as the severity of potential
negative impacts on other dependent properties.

Security

Efficiency Usability

Figure 1.4: Tradeoffs between security, efficiency, and usability in smart sensor configuration approaches.

Another major requirement regarding smart sensor configuration is the possibility to use the
same configuration approach during the smart sensor’s entire lifecycle. This requirement is specif-
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ically addressed in the IoSense 2 research project to which parts of this thesis contributed. IoSense
is a European research project, with the aim of improving the flexibility of manufactured sensors.

During the smart sensor’s lifecylce, various phases starting with manufacturing of the device
until the decommissioning of the smart sensor are passed through. During any of these phases,
configurations may need to be applied to the smart sensor. In this thesis, the following four phases
are defined, three of which require updating the device’s configuration. The resulting smart-sensor
configuration lifecycle is shown in Figure 1.5.

Figure 1.5: Configuration steps during the entire lifecycle of a smart sensor.

1. Initial Commission: During manufacturing of smart sensors, initial commission is per-
formed where the default configuration of the respective sensor needs to be transferred to
the device. Such default configurations may contain general parameters such as a default
sampling frequency, but also confidential information such as initial keys.

2. Changing Requirements: Usually upon deploying the smart sensor in its intended environ-
ment, the requirements regarding the smart sensor’s operational parameters change. How-
ever, during normal operation requirements such as a sampling frequency may also change.
In addition, security-relevant operations such as key changes may need to be performed.

3. Configuration Update: To account for the changing requirements, an updated configura-
tion needs to be applied to the smart sensor. In industrial settings there might be different
authorization levels for configuration updates. Crucial configuration updates such as cal-
ibration data may only be updated by selected (external) service personnel, while other
configuration data such as sampling frequencies may be updated by any authorized person.

4. Secured Decommission: If a smart sensor is discarded from its normal operation, a secured
decommission process includes the elimination of confidential configuration data such as
production-relevant information or cryptographic keys. This can usually be done by over-
writing current configuration data either with the initial default configuration such that the
sensor can be re-sold, or with dummy data that may render the smart sensor useless.

1.4 Contributions

The contributions of this thesis are manifold in their scope, and thus, are split into several parts.
Figure 1.6 gives an overview of how each particular contribution adds to answering the research
questions that were defined in Section 1.3.

2 http://www.iosense.eu/
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Figure 1.6: Overview of contributions of this thesis with mapping to the respective research sub-questions.

1.4.1 NCS Attack Mitigation

In this thesis, we argue that current state-of-the-art crytographic countermeasures against decep-
tion attacks introduce a new potential attack vector for systems where sensor and controller are
distributed over a network. If sensor data in such systems is protected by encryption or even
Authenticated Encryption (AE) to provide data confidentiality, integrity, and authenticity, a po-
tential adversary is able to render any packet that contains sensor data useless if a single bit of
transferred data can be flipped. Therefore, in this thesis, we demonstrate this issue based on sim-
ulations and propose to use Joint Encryption and Error Correction (JEEC), a method commonly
used in satellite communication, as a potential countermeasure.

Novel concepts: We demonstrate that deception attack mitigations that are currently state of the
art for systems controlled over a network may lead to a new attack vector. We defined this new
type of attacks, as so-called bit-flip attacks for which we propose to use JEEC as a countermeasure
which was, to our best knowledge, never applied in such a context.

1.4.2 Sensor-based Covert Channels

In literature, many sensor-based covert channels have been presented that exploit sensors for trans-
ferring data over a covert channel to bypass isolation mechanisms. However, none of the pre-
sented approaches exploits the sensor’s unprotected configuration interface. Thus, in this thesis,
we present novel sensor-based covert channels that exploit these unprotected interfaces. Our work
highlights the importance of protecting a smart sensor’s configuration interface. To facilitate eas-
ier evaluation of sensor-based security weaknesses, a framework is presented that contributes to
finding security issues that can lead to such sensor-based covert channels.

Novel concepts: We demonstrate covert channels that are based on exploiting a sensor’s con-
figuration and sensing interface. These covert channels can be used to bypass process isolation
which we demonstrate for various popular systems. We also include measures to provide reliable
data transfer in our covert channel. To our best knowledge, no covert channel that is exploiting the
same weaknesses as our proposed approach was presented yet.
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1.4.3 Configuration Approach

Since the secured configuration of smart sensors is of utmost importance to prevent leakage of
confidential configuration data as well as to prevent security issues such as sensor-based covert
channels that exploit unprotected configuration interfaces, a secured, efficient, and easy-to-use
configuration approach for smart sensors is presented in this thesis. This approach comprises the
end-to-end secured transport of configuration data from a back-end to the smart sensor via Near-
Field Communication (NFC), the attestation of successfully applied configuration data, and the
password-free authentication to improve the approach’s usability.

Novel concepts: We present a smart sensor configuration approach that removes the config-
uration interface of a sensor from the network as well as from local processes. To facilitate a
configuration process, an NFC-based configuration interface is proposed. We also demonstrate
two-layered attestation methods for configuration data and a password-free authentication method.
To our best knowledge, no configuration approach that is based on NFC and provides the same
security features was presented yet.

1.4.4 Secured NFC Protocol

To facilitate secured NFC data transfer, a secured transport layer protocol is presented in this
thesis. This protocol is capable of providing data confidentiality, integrity, and authenticity while
operating underneath the application layer such that secured data transfer of arbitrary application
data can be provided to NFC-based applications. Since NFC provides a limited bandwidth, the
goal in designing this protocol is to provide security that is comparable to the Transport Layer
Security (TLS) protocol that is used in the Internet, while being as efficient as possible. Thus,
the presented protocol satisfies the Zero Round Trip Time (0-RTT) attribute where no complete
round-trip is required to agree on a shared key.

Novel concepts: We present a secured transport layer protocol for NFC that removes the neces-
sity to implement security measures in the transport layer, as is currently state of the art for NFC
applications. The protocol is tailored for the limited bandwidth provided by NFC which makes it
more feasible for NFC applications compared to other secured transport layer protocols. To our
best knowledge, we are the first to demonstrate such a protocol for NFC.

1.5 Outline of this Thesis

The remainder of this thesis is organized as follows. In Chapter 2 the key terms related to this thesis
are defined and important principles such as attacks and cryptographic primitives are presented.
Chapter 3 summarizes and discusses existing work related to sensor-based security issues as well
as to secured sensor configuration. The work conducted within the context of this thesis that is
related to sensor-based security issues is then presented in Chapter 4. Secured sensor configuration
approaches and the respective methods that were developed in the context of this thesis are then
presented in Chapter 5. The previously presented work is then evaluated with respect to security
and the induced overhead in Chapter 6. Finally, this thesis is concluded in Chapter 7 where all
obtained results are summarized. In addition, this chapter also provides some suggestions for
future work. All publications that this thesis is based on are then appended in Chapter 8.

– 11 –





2
Background

In this chapter, the key security terms related to this thesis are defined and briefly explained. Also,
the basic system model of an insecure communication channel is defined. Security primitives
that this thesis builds upon are introduced and briefly explained. In addition, contact-less NFC
communication is presented and the technology’s security is briefly analyzed.

2.1 Security Definitions

Related to security, the key attributes and requirements regarding secured systems, as well as
attack methods used by potential adversaries, are discussed in this section.

2.1.1 Basic System Model

Figure 2.1 shows the basic system model that needs to be considered in any context where secure
or insecure information exchange is performed. As can be seen, usually at least three entities,
Alice, Bob, and Eve, need to be considered. Alice and Bob intend to exchange information which
might be confidential. In general, the communication channel that Alice and Bob use needs to
be considered untrustworthy, e.g., due to using wireless communication technologies. Depending
on the threat model, the adversary Eve is considered to be capable of eavesdropping, manipulat-
ing, and inserting information into an ongoing information exchange between Alice and Bob. A
potential presence of Eve is, however, not known to the communicating partners Alice and Bob.

Eve

BobAlice

Information Exchange

Figure 2.1: Basic security related system model.

2.1.2 CIA Triad

In information security, the three most crucial attributes are summarized as the so-called
CIA triad [37]. Only if all three of the attributes confidentiality, integrity, and availability can
be achieved, a proper level of security may be provided by a system.
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Confidentiality. Confidential information should not be disclosed to an unauthorized entity that
is not intended to read this information. Only authorized entities should be able to read such
data. Thus, information that is sent over an untrusted channel needs to be protected such
that it is not easily readable by unauthorized entities.

Integrity. Information should not be altered by an unauthorized entity in a malicious and un-
noticed way. Modifications may include altering data as well as corrupting data, both of
these modifications should be detected. Thus, additional information needs to be added to
information that is sent over an untrustworthy channel to detect such modifications.

Availability. Information should be available to authorized entities at any time they intend to
access this information. If an adversary is able to prevent usage of a system, the attack
often is considered just as successful as an attack that would reveal or modify confidential
information. Thus, the availability of data that is accessible over an untrusted channel needs
to be protected by suitable countermeasures.

2.1.3 DAD Triad

Contrary to the CIA triad that is discussed in Section 2.1.2 the so-called DAD triad (disclosure,
alteration, denial [37]) describes the three major methods used by adversaries for breaking one or
multiple attributes of the CIA triad.

Disclosure. Data disclosure is achieved by unauthorized entities if access to confidential infor-
mation can be gained. That is, information confidentiality is broken.

Alteration. Whenever information is altered by an unauthorized entity, data alteration occurs. If
such modifications are not noticed, information integrity is broken.

Denial. By denying authorized entities access to information, denial takes place, and thus, the
availability attribute is broken by the adversary.

2.2 Side Channels

The term side channel was initially used by Lampson [38] to describe observable events that are
caused by code that is executed by a system. As a demonstrative example Lampson described CPU
load, which can be heavily influenced by a process running on a system. An observer can then
monitor this side channel information to gain knowledge about the running process. Typically,
side channels are categorized into active and passive side channels.

Active. To perform active side channel attacks, the adversary typically needs physical access to
the device under attack. Thus, these attacks are also called physical attacks. The adver-
sary actively tampers with the device under attack by exploiting side channels such as the
device’s power supply [39]. For example, the adversary may provoke information leakage
by injecting voltage spikes into the device under attack. The adversary also may physically
destroy the device by removing protective layers, in order to collect information such as
device voltages by probing internal data lines.

Passive. If side channel information is leaked by the device without the adversary actively pro-
voking information leakage, so-called passive side channel attacks are performed by an
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adversary. In a typical setting, one entity just observes the leaked side channel information
of another entity, typically a running process. By doing so, confidential information such as
cryptographic keys can be revealed by observing side channel information such as timings,
power consumption, or electromagnetic emanation [40–42].

2.3 Covert Channels

Side channel information that is intentionally triggered by a process can be used to build so-called
covert channels where data is transferred over a channel that is not intended for data transfer
between the involved entities. In general, a covert channel comprises a sender, a receiver, and a
side channel as depicted in Figure 2.2.

Sender. The sender is trying to transfer data that is in its possession to the receiver. Due to
system restrictions, access to conventional methods such as sockets and shared memory
may be prevented. Thus, the sender intentionally triggers leakage via a side channel that
must be observable by the receiver.

Side channel. A side channel needs the following two properties to be exploitable for building
a covert channel: (i) The sender needs to be capable of manipulating the side channel. (ii)
The receiver needs to be able to observe the leaked side channel information and ideally
distinguish transferred data from normal system behavior.

Receiver. The receiver intends to receive data that the sender is in possession of. Since commu-
nication between sender and receiver might be monitored or restricted, the receiver observes
leaked side channel information, and is thus capable of receiving the sender’s transferred
data. In addition to receiving data, sender and receiver usually also need to be synchronized
to allow data to be transferred successfully.

triggers observes
Sender Receiver

Side-
Channel

Figure 2.2: Basic architecture of a covert channel.

2.4 Tamper-Resistant Hardware

Most cryptographic algorithms can be implemented efficiently in hardware regarding their perfor-
mance and power consumption [32,43]. However, such optimized implementations typically leak
side channel information that can be exploited for revealing confidential data such as encryption
keys [44]. Other than these passive side channel attacks, physical attacks can also be performed on
hardware to reveal confidential data [27]. To prevent security breaches by mitigating such attacks,
so-called tamper-resistant hardware [45] can be used. Such hardware usually provides both, a
protected execution environment for running security-critical code as well as protected storage for
confidential data. However, due to increased security, a trade-off in terms of computation power
needs to be made. In general, tamper-resistant hardware is not as powerful as general-purpose
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controllers or dedicated hardware. Thus, Sabt et al. [46] proposed to split a system’s execution
environment into a secured world and a normal world. This so-called security by isolation prin-
ciple has also been applied in modern Central Processing Unit (CPU) designs such as ARM’s
Trustzone [47]. The provided level of security of tamper-resistant hardware is often assessed in
certification processes such as the Common Criteria (CC) security evaluation [48].

2.5 Cryptographic Primitives

The following cryptographic primitives are used for various purposes throughout this thesis.

2.5.1 Symmetric Cryptography

As its name might suggest, symmetric cryptography requires the same cryptographic key to be
used for data encryption as well as for data decryption. The security attribute provided by such
algorithms is confidentiality. Since any additional third party that is in possession of this key is
capable of reading, sending, and manipulating data, the key is considered a shared secret and needs
to be kept private [49]. Today, the most well-known and widely used symmetric cryptography
algorithm is the Advanced Encryption Standard (AES) [50]. AES can efficiently be implemented
in hardware [51]; however, such implementations often are not tamper resistant, and thus, are
prone to attacks due to leaking side channel information [52].

2.5.2 Message Authentication Codes

Similarly to cryptographic hash functions, a Message Authentication Code (MAC) typically is a
function that is capable of mapping data of arbitrary size onto a small amount of data of fixed
size. However, in addition to validating that data was not modified (integrity), a MAC also au-
thenticates data. That is, it is also validated whether the data originates from the stated source
(authenticity) [49]. Similar to symmetric cryptography, a shared secret is required to create and
verify the MAC. MAC algorithms can be created by using other cryptographic primitives such as
cryptographic hash functions [53], or symmetric cryptographic algorithms [54].

2.5.3 Authenticated Encryption

While symmetric cryptography is capable of providing data confidentiality, a MAC can provide
data integrity and authenticity. Thus, by combining these two cryptographic primitives in a secure
way, data confidentiality, integrity, and authenticity can be provided. This so-called AE provides
three modes of operation of which Encrypt-then-MAC is usually suggested due to its provided
level of security [55]. In this mode, the plain text is encrypted first; the resulting cipher text is then
used to compute a MAC. Both cipher text and MAC then need to be transmitted. A more recent
addition to the AE algorithm is so-called associated data that is only added to the MAC calculation
but not encrypted [56]. Thus, in this mode of operation, a cipher text, a plain text, and a MAC are
transmitted.
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2.5.4 Key-Exchange Protocols

Key-Exchange (KE) or key-agreement protocols facilitate a secured KE for two or more commu-
nication partners that need to rely on an unprotected, and thus, untrusted communication channel
such as the Internet. During the KE phase all involved communication partners can influence
the KE process. The final key is then composed of input from all involved communication part-
ners [57]. Although information for composing this final key is exchanged over the untrusted
communication channel, an adversary that can eavesdrop the respective information is unable to
compose the final key. The Diffie-Hellman (DH) [58] KE protocol is considered to be the most
well-known protocol of this class and is used, for instance, for KE in the widely used TLS pro-
tocol [59]. To add authentication to the KE process, a so-called Encrypted KE (EKE) [60] is
performed. In such a protocol, shared knowledge between communication partners is integrated
into the KE process in a way that only authorized partners are capable of agreeing on a final key.

2.5.5 Asymmetric Cryptography

Asymmetric cryptography, also referred to as Public-Key Cryptography (PKC) relies on public-
private key pairs. Contrary to symmetric cryptography where both parties share a common secret,
in asymmetric cryptography the private key is kept secret, while the public key can be disseminated
to other entities. Any entity can encrypt information using the public key, while only the entity
holding the private key is capable of decrypting this information. In addition to encrypting and
decrypting data, asymmetric cryptography can also be used for data authentication. The entity
that is in possession of the private key signs information using this key, while all entities that
are in possession of the corresponding public key can verify this data and that the sender was in
possession of the correct private key. Two of the most well-known algorithms of this category are
Rivest-Shamir-Adleman (RSA) [61] and Elliptic-Curve Cryptography (ECC) [62].

2.5.6 Certificates

In asymmetric cryptography, public keys are usually not authenticated, and thus, attacks could be
performed where an adversary impersonates another entity by replacing public keys [63]. There-
fore, public keys are usually distributed using so-called Public-Key Infrastructures (PKIs) and cer-
tificates where signatures are used to provide authentication. Such certificates are usually signed
by a Trusted Third Party (TTP), the so-called Certificate Authority (CA) [64].

2.5.7 Device Attestation

To verify the trustworthiness of devices, so-called attestation processes can be used. In such a
process, the verifier challenges a device to prove its trustworthiness [65]. The device that is being
attested either has an existing local verification procedure or gets one from the verifier before the
actual verification process. In most cases, the memory of devices is verified in such processes. If
the verifier and the entity that is being attested are located on different devices, attestation is per-
formed remotely [66]. Attestation is mostly used to discover unauthorized software modifications
of a system, for example, malicious changes to software that is running on a device [67].
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2.6 Near-Field Communication

NFC is a contact-less communication standard [68, 69] that is based on Radio Frequency Iden-
tification (RFID) technology and related standards. The Radio Frequency (RF) used by NFC is
13.56MHz which is similar to High Frequency (HF) RFID. The typical communication range of
NFC is approximately 10 cm over which NFC is capable of providing data rates of up to 848 kbps
using Amplitude-Shift Keying (ASK) as a modulation scheme. Generally, NFC is considered to
be a well-established technology in various domains such as payment, access control, and ticket-
ing [70–73]. One of the key factors of success for NFC is the ease-of-use of bringing two devices
into close proximity to initiate a data transfer [74]. Recently, the IoT is also believed to become
a major domain for NFC applications [75] to link the real world with the digital world. However,
this will also pose new challenges for NFC technology such as standardized secured protocols.

2.6.1 Security of NFC

Due to the limited communication range of NFC, the term security by proximity was established.
However, although NFC communication is typically limited to some centimeters, eavesdropping
of NFC communication data has been shown to be possible over distances of up to 10m for active
and up to 1m for passive communication [76]. Haselsteiner and Breitfuß [76] list and discuss the
following possible attacks that may target NFC communication.

Eavesdropping. Since communication between NFC devices is based on RF waves, eavesdrop-
ping is an obvious issue for NFC since an adversary is able to eavesdrop communication be-
tween two entities by placing an appropriate antenna within the range in that the respective
RF waves can be received.

Data corruption. An adversary that is not interested in transmitted data but still wants to ma-
nipulate a system’s functionality, might try to corrupt transferred data by interfering with an
ongoing NFC communication in a way such that transferred data is corrupted.

Data modification. If an adversary intends to send manipulated data to a device, ongoing NFC
communication can be manipulated by interfering according to the respective coding and
modulation scheme. For instance, a ’0’ value could be turned to ’1’ by raising a signal level.

Data insertion. If the adversary not only wants to manipulate single bits of information but
insert complete messages into an ongoing NFC communication between two entities, data
might be sent while one entity pauses, for instance, due to information processing taking a
certain amount of time.

Man-in-the-Middle. In a Man-in-the-Middle (MITM) attack two entities, Alice and Bob, want
to communicate with each other. However, without Alice and Bob noticing, a third and
malicious entity Mallory is placed between Alice and Bob and communicates with both.
Mallory then impersonates Bob when communicating with Alice, while impersonating Al-
ice when communicating with Bob. Thus, Mallory is able to see all ongoing communication
between Alice and Bob. However, since NFC only supports relatively short communication
ranges, MITM attacks that target NFC communication are hard to mount.

Replay. If an adversary is capable of capturing valid NFC communication, replay attacks can
be performed by sending this valid captured data to the device under attack. For instance,
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if communication for unlocking a door is captured, the adversary then might be capable of
reusing the captured data for unlocking said door.

Denial-of-Service. An adversary that successfully makes resources unavailable for its intended
users performs a so-called DoS attack.

When analyzing NFC concerning its security vulnerabilities in industrial scenarios, Plosz et
al. [77] conclude that many attacks are not prevented by the NFC standard. Van Damme and
Wouters [78] further state why NFC communication needs to be protected by suitable measures:

We can conclude that even if the NFC standard foresees some features that makes
[sic] the attacker’s life harder, perfect security can only be obtained when dedicated
cryptography is used to establish a secure channel between communicating devices.
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Related Work

In this chapter, literature related to the topics of this thesis is discussed. The chapter is split into
two sections regarding sensor-based security issues in Section 3.1 and smart sensor configuration
approaches in Section 3.2. To highlight the difference of this thesis’ contributions and related
work, a comparison of key parameters is given at the end of each section.

3.1 Sensor-Based Security Issues

In literature, sensor-related security and the respective security issues haven been mainly discussed
in the context of CPSs (e.g., [79–81]) and Wireless Sensor Networks (WSNs) (e.g., [14, 82]).
Cárdenas et al. [80] have defined various attack scenarios that could target a CPS and that are
shown in Figure 3.1. In this figure, attacks of class (A1) directly target the physical process while
attacks of class (A2) either induce false control information ũ in a way that this information differs
from correct control information u (ũ 6= u) or deny this information (DoS attack). Both of these
attack classes are not related to sensors whereas attack class (A3) includes an adversary injecting
false sensor information ỹ that differs from correct sensor information y (ỹ 6= y) or denying this
information to the controller (DoS attack). If false sensor information is injected into a system,
a so-called deception attack is performed by the adversary. Literature related to such attacks is
discussed in Section 3.1.1.

Plant / Process
(Physical System)

Controller

y

u

r

(A3)
(A2)

(A1)

Figure 3.1: Potential attacks targeting a CPS as defined by Cárdenas et al. [80].

For WSNs and smart sensors in the IoT, several studies have highlighted that default au-
thentication credentials as well as unchanged default configurations may lead to severe security
breaches [18, 83, 84]. In addition, Cam-Winget et al. [85] have discussed weaknesses of remote-
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access channels for firmware and configuration updates that can often be exploited. Thus, work
related to weak authentication schemes is presented in Section 3.1.2.

Finally, sensor data has not only been exploited for various malicious activities such as spying
on users or for industrial espionage [86, 87], but also as side-channel information that may leak
other confidential information [88]. Such side-channel information may then also be used for
building sensor-based covert channels [89]. Therefore, work related to sensor-based side-channels
and covert channels is presented in Section 3.1.3.

3.1.1 Deception Attacks

As has been mentioned by Cárdenas et al. [80], so-called deception attacks tamper with systems
by manipulating sensor data or by injecting false sensor data. Such deception attacks usually
are easy to detect if a monitoring system is in place [90]. However, to avoid the detection of
such attacks, adversaries have improved deception attacks and so-called stealthy deception attacks
have been built that are harder to detect [91, 92]. Probably the most well-known attack in this
category has been widely covered in media as Stuxnet attack [93]. In this attack, malicious code
has been injected into the control systems of uranium enrichment plants with the goal of destroying
these facilities. The attack has been performed in two phases, where in the first phase legitimate
sensor data has been learned that could then be injected to the correct controller code in order to
conceal malicious system behavior that has been intended to destroy the system under attack. This
approach has started a new era of cyber-attacks. Rather than stealing or manipulating data, the
attacker’s target is to physically destroy a system which might cause severe damage and also harm
human beings. Such safety-related issues have been mentioned as a problem for any CPS [22].

In literature, deception attacks that target Supervisory Control and Data Acquisition (SCADA)
systems (e.g., for energy or water management) are a well-covered topic. Amin et al. [94] have
presented a deception attack that targets a canal system in France. The successful attack has been
based on manipulating the system controller’s behavior by modifying sensor measurements such
that water can be stolen without being noticed. Amin et al. [95] have stated that an adversary has
to have knowledge of (i) the system dynamics, (ii) the diagnostic system, and (iii) sensor-related
signals in order to successfully perform stealthy deception attacks targeting SCADA systems.

Teixeira et al. [96] have demonstrated that state-of-the-art outlier detectors may be used to de-
tect simple deception attacks in an energy-management system. However, the authors also have
concluded that stealthy deception attacks that inject false but plausible sensor data into the control
system cannot be detected by such detectors. The authors further have suggested either adding ad-
ditional sensors to the system or securing sensors as possible countermeasures to mitigate stealthy
deception attacks [97, 98]. Bobba et al. [97] have identified so-called basic measurements that are
sufficient for a state estimator to work correctly, and have used all other measurements to detect
injected malicious data. Similarly, Dan and Sandberg [98] have suggested to encrypt measure-
ments of selected sensors to protect the system. The authors have stated that it is not feasible to
expect every sensor to be protected, and thus, the attack surface should at least be minimized by
protecting as many sensors as possible.

Ding et al. [99] as well as Ma et al. [100] have presented an approach where distributed filters
have been designed that not only rely on measurements from an individual sensor but also neigh-
boring sensors’ data while also considering the respective topology. The authors have stated that
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the error of such filters can be minimized, even in the presence of deception attacks. Although
such filter-based approaches are capable of mitigating certain deception attacks, the presence of
malicious data that influences system behavior in a negative way cannot be eliminated completely.

A special form of stealthy deception attacks, so-called replay attacks, have been discussed by
Mo and Sinopoli [101]. In a replay attack, sensor values are captured by the adversary and re-sent
to the controller at a later time. As a countermeasure, the authors have proposed a failure detector
that, depending on the controller’s performance, offers a certain detection rate but no guaranteed
detection of an ongoing replay attack.

In addition to countermeasures based on control theory, approaches utilizing cryptographic
primitives such as encryption and one-way functions have also been proposed in literature [102,
103]. However, most works have used inadequate cryptographic primitives such as the outdated
Data Encryption Standard (DES) or MD5 algorithms. Many publications have dealt with confiden-
tiality, integrity, and authenticity of sensor data in CPSs [104], however, without having considered
the detection of deception attacks (e.g., using blockchains for protecting sensor data [105]).

A comparison of approaches presented in this thesis with related work is given in Table 3.1. As
a main difference to related work, the approach presented in this thesis provides confidentiality,
integrity, authenticity, and tamper-resistance by proposing to use hardware security modules. Also,
we discuss attacks that can be performed on other state-of-the-art protection mechanisms and
demonstrate JEEC as a countermeasure that was, to our best knowledge, not yet proposed for
deception attack mitigation.

Table 3.1: Comparison with related work for deception attacks

Confidentiality

Integrity

Authenticity

Attack Detection

Remark

Basic measurements [97] 7 7 7 3 Redundancy complicates attacks
Encrypt selected sensors [98] 3 7 7 3 Attacks only complicated
Distributed filters [99, 100] 7 3 7 7 Impact of attack minimized
Failure detector [101] 7 7 7 3 Attack might not be detected
Encryption [102] 3 7 7 7 Only confidentiality provided
Encryption and hash function [103] 3 3 7 3 Combination of outdated algorithms
Blockchain for sensor data [105] 3 3 3 7 No deception attack detection

This thesis 3 3 3 3 AE combined with error correction

3.1.2 Weak Authentication Schemes

Weak, or even default username and password combinations have been a major security weakness
for smart sensors and the IoT as recent incidents such as the Mirai botnet have shown. According
to Kolias et al. [15] only 62 username and password combinations have been used to capture over
400,000 devices. Tam et al. [106] have analyzed the security versus convenience trade-off of
passwords. The authors have concluded that not only are users choosing too weak passwords, but
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they are not changing default passwords at all. If users are forced to choose strong passwords, in
many cases the users will write down the passwords or store them on electronic devices such as
their smartphones.

To mitigate this issue, so-called two-factor authentication has often been proposed to increase
security [107]. In such an authentication scheme, the user typically has to be in possession of
two objects for authenticating themselves. Typically, the first object is a shared secret such as a
password. The second object usually is a physical thing that the user must be in possession of,
such as a smart card [108]. Wang et al. [109] have discussed the issues of such schemes applied
to distributed systems. For example, the loss of one authentication factor such as the password or
a smart card which cannot be easily accounted for.

Das [107] has proposed an efficient two-factor user authentication scheme that should be es-
pecially suited for resource-constrained devices such as smart sensors. The proposed protocol,
however, has been based on one-way functions that are prone to attacks such as password guess-
ing or stolen smart cards. In addition, changing passwords has not been supported. Vaidya et
al. [110] have improved Das’ approach such that it is robust against these issues, including stolen
smart card attacks. To achieve this, the authors have suggested to include a central entity such as a
gateway node into the authentication protocol. Such central entities can then be used in a system
for key management and storing other device-specific configuration data, as has been discussed by
Delgado-Mohatar et al. [111].

All of these presented two-factor user authentication schemes have in common that the user is
required to remember at least one factor that is the password. A lost or even stolen password thus
leads to security issues in such systems. To mitigate these issues, other forms of authentication
have been proposed, such as using biometric data [112]. For smart sensors, the actual sensor might
be used to collect this biometric data, as has been proposed, for instance, by Choi et al. [113] for
collecting heart beat data. Gafurov et al. [114] have suggested to use an accelerometer sensor to
identify users based on their gait, while Okumara et al. [115] have used accelerometer sensor data
to identify a user’s arm sweep action.

All discussed approaches have in common, that some information is stored locally on resource-
constrained devices. Thus, as has been highlighted by Benenson et al. [116], credentials can be ob-
tained by adversaries through so-called node capture attacks where physical attacks are performed
on captured devices. As a potential countermeasure, Almeshekah et al. [117] have presented an
approach where actual credentials are replaced by some dummy credentials while the actual cre-
dentials are protected by measures such as tamper-resistant hardware. In addition, contrary to the
approach presented in this thesis, none of the above approaches is capable of automatically infer-
ring authentication credentials based on certain triggers such as configuration changes. By doing
so, the issue of default passwords can also be mitigated.

A comparison of approaches presented in this thesis with related work is given in Table 3.2.
As a main distinction, our presented approach not only provides two-factor authentication, but
also offers a central back-end where credentials are managed as well as tamper-resistant hardware
that mitigates side-channel attacks. In addition, our approach provides automated authentication
credential derivation based on configuration changes. To our best knowledge, we are the first to
present such an approach.
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Table 3.2: Comparison with related work for user authentication.

Two-Factor

Biometric

Managed

Inferring

Tramper Res.

Remark

Simple Two-Factor [107] 3 7 7 7 7 Based on one-way functions
Improved Two-Factor [110] 3 7 3 7 7 Third entity in authentication scheme
Managed keys [111] 3 7 3 7 7 Central key management instance
Biometric [113–115] 3 3 7 3 7 Biometric data to derive credentials
Dummy credentials [117] 3 7 3 7 3 Tamper resistant storage

This thesis 3 7 3 3 3 Configuration triggers cred. inferring

3.1.3 Side and Covert Channels

Most sensor-based side and covert-channel implementations have been based on principles that
originate from other technologies such as network-, memory-, or cache-based covert channels.
Thus, first a brief overview of these types of covert channels is given. Typically, these different
types can be categorized based on the covert channel’s data rate as shown in Figure 3.2.

Covert Channel Data Rate

Sensor-
Based

Network-
Based

Memory-
Based

Cache-
Based

Same Physical DeviceInter Device

Figure 3.2: Covert channel classification based on achievable data rate.

3.1.3.1 Cache-Based Covert Channels

Modern processors and systems typically leak side-channel information since most of these sys-
tems are optimized for performance, energy efficiency, or both [118]. One of the side channels
that can be exploited in such optimized systems is cache memory. Such cache-based side channels
do not exploit weaknesses in the implementation of the Operating System (OS), but solely rely
on the hardware-related timing difference between cache hits and cache misses. If one process is
capable of intentionally causing cache hits or cache misses for another process, a covert channel
according to the definition given in Section 2.3 can be built. Cache misses can be provoked by a
process if all data from specific cache regions is flushed [119,120]. Since cache is only accessible
to the CPU, cache-based covert channels can only be built between processes residing on the same
CPU. In general, cache-based covert channels are considered the fastest type of covert channel due
to the speed of cache memory. However, any process running on a CPU can use cache memory,
and thus, this type of covert channel is also exposed to a lot of interference from other processes.
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To mitigate issues caused by interfering cache accesses, methods such as sender and receiver syn-
chronization, data flow control, error detection, and error correction need to be applied. Maurice
et al. [121] have demonstrated a covert channel that has provided bit rates of over 45KByte/s
while achieving a Bit Error Rate (BER) of 0.

3.1.3.2 Memory-Based Covert Channels

Memory is shared across cores in modern systems, and thus, memory-based covert channels can
be established between processes that do not run on the same CPU. Similar to cache-based covert
channels, most memory-based covert channels also exploit side-channel information that is leaked
due to timing differences between certain events. Xiao et al. [122] have presented a covert channel
that is based on memory deduplication. If two or more processes share identical physical mem-
ory pages and the copy-on-write mechanism is invoked, higher latency can be observed. Wu et
al. [123] have used timing differences of memory accesses that are caused by locking the memory
bus with atomic operations. The presented covert channel has provided bit rates of up to 747 bit/s
while it also has achieved a BER of 0. Pessl et al. [124] have demonstrated a covert channel that
is based on memory address mappings and exploiting row buffers. The authors have claimed that
their covert channel offers a channel capacity of up to 2Mbit/s which, as they have claimed, is
four times as fast as memory-based covert channels that exploit the memory bus. However, the
authors have not provided information on bit rates that can be achieved with a BER of 0.

3.1.3.3 Network-Based Covert Channels

Network-based covert channels are one of the earliest known attacks for stealthy data transfer. In
contrast to cache-based and memory-based covert channels, network-based covert channels can
be used to transfer data between processes that do not reside on the same physical device [125].
In case of network-based covert channels, information is mostly hidden in protocols of different
network layers. Frikha et al. [126] have presented a covert channel where information is en-
coded in the sequence number of the 802.11 protocol’s sequence number field. Another covert
channel based on network layer protocols has been presented by Tuptuk and Hailes [89] where
information is encoded in a sensor node’s Received Signal Strength Indicator (RSSI). This value
can be altered by the sender by simply modifying transmission power, and thus, is suitable even
for very constrained devices that do not run any sophisticated networking protocol. Network-
based covert channels that exploit higher-layer protocols often hide information in Transmission
Control Protocol (TCP)/Internet Protocol (IP) header fields such as Time to Live (TTL), or time-
stamps [127–129]. However, in literature, network-based covert channels also have been pre-
sented that are independent of any network protocol but rather rely on timing differences, similar
to cache-based and memory-based covert channels. Cabuk et al. [130] have demonstrated covert
channels that encode information in the timing differences between received IP packets while in
the approach that has been presented by Ji et al. [131], information is encoded in the length of
transmitted messages.
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3.1.3.4 Sensor-Based Covert Channels

The confidentiality of sensor data is of high importance to protect user privacy and to prevent
industrial espionage. However, sensor data might not only be used directly for discovering con-
fidential information but also to record side-channel information. This side-channel information
can then be used to reveal confidential information. Sensors in mobile devices can be used in a
malicious way, for instance, to reveal passwords by measuring vibrations or ambient light while a
keyboard is used [23, 132].

Similarly, a covert channel can be built if one process is capable of intentionally triggering ef-
fects that can be measured by another process via a sensor. The term covert channel has been
coined by Lampson [38] when he reported the first sensor-based covert channel. The author has
exploited CPU load that can be increased by one malicious process and observed by another.
Brouchier et al. [133] have exploited a device’s temperature as side-channel for transmitting in-
formation in a stealthy way. These temperature-based covert channels have been shown to be
capable of transmitting data even between air-gapped computers [24]. Another physical property
that has been used to build covert channels is ultrasonic sound that is emitted by speakers and
can be sensed by a microphone [134, 135], also allowing data transfer between different devices.
Novak et al. [136] have demonstrated a covert channel that is built using light that is emitted by a
device’s flashlight and sensed by an ambient light sensor. Similar to that, Al-Haiqi et al. [137] have
presented a covert channel that uses a device’s accelerometer to measure vibrations that are caused
by another process that is capable of controlling the device’s vibration motor. Finally, Matyunin
et al. [138] have demonstrated a covert channel that uses the ElectroMagnetic (EM) field to trans-
mit information. The sender causes certain effects by triggering Input/Output (I/O) operations to
encode data while the receiver can measure the change in the observed EM field.

In contrast to approaches that require access to an actuator to trigger physically observable
effects, Tuptuk and Hailes [89] have shown a covert channel that is based on tampering with the
Least Significant Bits (LSBs) of sensor measurements. The authors have argued that any sensor
measurement should be considered a noisy estimate of the observed physical property, and thus,
subtle changes to measured values are hard to detect. Similar to this approach, the covert channels
that are presented in this thesis do not require access to actuators but tamper with configuration
values of sensors in a way that malicious activity is obfuscated as normal sensor operation.

A comparison of the approach presented in this thesis with the discussed related work regarding
sensor-based covert channels is given in Table 3.3. Compared to the state of the art, our presented
attacks (both simple and complex approach) do not require actuators to generate physically mea-
surable side-channel information, and thus, we claim that our presented attacks are harder to detect
than other state-of-the-art sensor-based covert channels. However, the simple covert channel ap-
proach requires read and write access (r/w) to sensor registers while the more complex attack only
requires read access.

3.2 Smart Sensor Configuration

In this section, we review work related to various key components of the smart sensor configuration
approach that is presented in this thesis. The related work is split into subsections covering key
provisioning, transferring general-purpose configuration data, and secured NFC protocols.
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Table 3.3: Comparison with related work for sensor-based covert channels.

Requires Actuator

Detectability

Reliability

Sensor Access (r/w)

Remark

CPU Load [38] 7 high low r High CPU load easy to detect
Temperature [24] 7 high low r Temperature controlled by CPU load
Sound [134, 135] 3 fair high r Ultrasonic sound inaudible for humans
Light [136] 3 high fair r Emitted light easily observable
Vibrations [137] 3 high high r Emitted vibrations easily observable
EM Field [138] 7 fair fair r A lot of interference by other devices
LSB Tampering [89] 7 fair high r Can be detected by redundancy

This thesis (simple) 7 low high r/w Needs privileges for configuring
This thesis (complex) 7 low high r Only triggers sensor readings

3.2.1 Key Provisioning

Secured key provisioning is a topic that has originated in the manufacturing of devices and smart-
cards where initial keys need to be transferred to the manufactured object. However, it is desirable
to allow customers to change these keys [139] in order to eliminate the knowledge of devices’
keys by manufacturers. This desire has been summarized in a principle called Bring Your Own
Key (BYOK). The BYOK principle allows device users to change initially provisioned keys and
use their self-generated keys for cryptographic functions. If users are also allowed to change
parameters of the applied cryptographic functions such as a key length, the BYOK principle is
extended to Bring Your Own Encryption (BYOE) [140].

Table 3.4: Comparison with related work for key provisioning.

Secured Transfer

Authenticated

Feasible for Sensors

Attacks Infeasible

Remark

Connected car [141] 7 7 3 7 No security provided
Time/location aware [142] 7 3 3 7 Initial key unprotected; relay attacks
Co-presence [143] 3 3 3 7 Co-presence insufficient measure
Device shaking [144] 3 3 7 7 Infeasible for stationary sensors
Continuous gesture [145] 3 3 7 7 Infeasible for stationary sensors
Proximity-based [146] 3 3 3 7 Proximity insufficient measure
Smartphone gateway [147] 3 3 3 7 Vulnerable to MITM attacks

This thesis 3 3 3 3 End-to-end encrypted from backend
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The most relevant use case for key updates by a customer is device pairing where keys need to be
transferred in order to establish a secured channel between paired devices [148]. Wireless device
pairing is often assisted by NFC which allows intuitive transfer of pairing information [149].
Steffen et al. [141] have discussed using NFC for various pairing activities inside a connected car,
or for activating additional software components which also require keys to be transferred. Similar
to that, Suomalainen [142] has discussed the practicability and security of using NFC-enabled
smartphones for pairing IoT devices. As a security measure, the author has proposed to use the
device’s context that consists of location and time. However, relay attacks that bypass such security
measures have been shown practicable for NFC [150]. Similarly, Miettinen et al. [143] have
fingerprinted context information over time to allow device pairing without any user interaction.
The authors have suggested co-presence of devices over time as the main measure which might
not be suitable for scenarios where a malicious device can be placed unnoticed next to others
with which the malicious device would then be paired. To mitigate such issues, Mayrhofer et
al. [144] have proposed an approach where the devices that should be paired need to be shaken
simultaneously. Using captured accelerometer data, a shared secret is then derived that is used for
device pairing. However, this approach might not be suitable for smart sensors that are stationary,
for instance, temperature sensors that are wall-mounted. Ahmed et al. [145] have presented a
similar approach, where a continuous gesture is requested by one device that needs to be performed
by the second device in the pairing process. To mitigate limitations for stationary devices, Zhang
et al. [146] have proposed to use a smartphone as a gateway when performing a pairing process
between two stationary devices. The smartphone is used to perform movements, the resulting RSSI
trace is recorded, and finally this sensor data is compared with the requested movement pattern.
However, in this approach any person that has physical access to devices can perform such actions,
and thus, perform the pairing process between arbitrary devices. Urien and Kiennert [147] thus
have presented approaches that use a smartphone as bridge to an authorized key management
server in the Internet. However, in their approach the smartphone is seen as trusted, and thus, an
adversary is capable of stealing keys by running malicious code on the smartphone.

A comparison of the BYOK approach presented in this thesis and related work is given in
Table 3.4. As the main difference to the state-of-the-art we claim that known attacks that target our
approach are infeasible. This is based on the usage of tamper-resistant hardware in combination
with our presented protocol. Possible issues of other approaches are listed in Table 3.4.

3.2.2 Configuration of General-Purpose Data

Device configuration is a prominent topic in the IoT due to security issues caused by using default
configurations [17, 18]. Related work regarding the most important configuration parameters,
encryption keys, is discussed in Section 3.2.1. Thus, in this section, general-purpose configuration
data is considered. That is, a configuration may contain confidential information such as Wi-Fi
keys, but also non-confidential information such as sampling frequencies or thresholds.

One approach to sensor configuration is the self-configuration of devices that not only minimizes
connection and organizational overhead [151], but may also remove the need for a configuration
interface at all. That is, although not a security measure per definition, attacks that target this
interface could effectively be mitigated. He et al. [152] have presented a neural network for self-
configuration of WSNs that is capable of finding node clusters using the topology of deployed
nodes, and thus, improving network efficiency. Similarly, Fritze et al. [153] have demonstrated
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an approach for self-configuring multi-sensor systems that automatically perform configurations
for sensor connection and fusion. Although convenient for some tasks, all self-configuration ap-
proaches have in common that initial configurations still need to be applied using traditional meth-
ods as well as the inability to self-configure confidential parameters such as encryption keys.

Due to most devices being connected to the Internet, many approaches have been presented
where the configuration interface is made accessible to the Internet. Nastic et al. [154] have pre-
sented a cloud-based approach for automatic provisioning and configuration management. The
authors have claimed that due to the large amount of devices that need to be configured, a central-
ized configuration management instance is vital for operating large systems. Perera et al. [155]
have presented a framework for automatic sensor discovery and configuration. The authors also
have proposed using a centralized instance for configuration management. In addition to a direct
connection to sensors, the authors also have suggested using smartphones that are transported by
humans or robots for bridging the connection between centralized configuration management in-
stance and sensor. However, allowing device configuration over the Internet imposes security risks
for systems that could be mitigated by only allowing local access to the configuration interfaces.

Thus, NFC technology has been proposed by Alimi and Pasquet [156] for modifying device
functionality after distribution to customers. In their approach, a payment application has been
adapted using NFC. Similarly, Wu et al. [157] have proposed to update computational RFID tags
that are capable of performing sensing activities. The update is transferred using the standard-
ized Electronic Product Code (EPC) protocol. The authors have demonstrated that configuration
updates could be applied to RFID tags over distances of up to several meters using their ap-
proach. Finally, Haase et al. [158] have presented an NFC-based configuration approach tailored
to resource-constrained sensors. The authors have demonstrated transferring arbitrary configura-
tion data using OTS smartphones. In addition, the latency of transferring large amounts of payload
over NFC also has been evaluated and considered to be feasible for most use cases.

Presented work that is related to the configuration of sensors is compared to the approach pre-
sented in this thesis in Table 3.5. Compared to related work, our approach provides data confiden-
tiality, integrity, and authenticity for configuration data while supporting arbitrary payload data.
In addition, configurations can be managed on our so-called configuration back-end, configura-
tion data can be transferred to offline mobile configuration devices, and configuration attestation
is supported. Also, in our approach, the same configuration interface is used for configuration up-
dates during the smart sensor’s entire lifecycle. To our best knowledge, we are the first to present
such an NFC-based configuration approach.

3.2.3 Secured NFC Protocols

Typically, NFC connections are protected by suitable measures due to the possibility of attacks, as
discussed in Section 2.6.1. However, although standards for the NFC transport layer, such as the
NFC Data Exchange Format (NDEF) protocol exist, no sufficiently secured transport layer proto-
col for NFC has been presented yet. The NDEF protocol contains so-called signature records [159]
that are intended for protecting a message’s integrity. However, these signature records already
have been shown to be susceptible to certain attacks [160], and thus, cannot be considered a suf-
ficient security measure. Eun et al. [161] have presented a privacy-preserving NFC protocol that
is based on randomly-generated identities and a management instance. The presented protocol is
capable of providing authorization; however it does not consider data confidentiality and integrity.
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Table 3.5: Comparison with related work for sensor configuration.

Payload Protected

Arbitrary Payload

Self-C
onfiguration

Managed / Scalable

Offline Configuration

Entire
Lifecycle

Attestation

Remark

Key provisioning 3 7 7 7 3 7 7 Only keys supported
Neural network [152] 7 7 3 3 7 7 7 Network topology learned
Sensor fusion [153] 7 7 3 3 7 7 7 Autonomous sensor fusion
Cloud-based [154] 7 3 7 3 7 7 7 Configuration management
Bridged [155] 7 3 7 3 7 7 7 Smartphone bridge
Post distribution [156] 3 7 7 3 3 7 7 Adapt application via NFC
RFID-based [157] 7 3 7 7 3 7 7 EPC protocol
NFC-based [158] 3 3 7 7 3 3 7 Initial key not protected

This thesis 3 3 7 3 3 3 3 Managed, NFC-based

Similarly, Odelu et al. [162] have presented an authentication protocol that also provides authenti-
cation based on using pseudonyms generated in a secured way. Here also, no data confidentiality
or integrity is provided. Toyoda and Sasase [163] have proposed a secret sharing mechanism that
is suitable for NFC. However, the protocol itself does neither provide authorization nor data confi-
dentiality, integrity, or authenticity. Instead, it rather needs to be seen as an enabling protocol that
helps to solve the key distribution problem. Li et al. [164] have presented mechanisms for authen-
tication and authorization between RFID tags and readers to establish a trust relationship between
these two entities as well as enable a protected data channel. Finally, Urien and Piramuthu [165]
have presented a secured transport layer protocol for NFC that is based on the TLS protocol. The
protocol is capable of providing data confidentiality, integrity, and authenticity. However, com-
pared to the approach presented in this thesis, the presented protocol entails a larger overhead in
terms of round trips which should be minimized for NFC communications.

Since no suitable secured NFC transport-layer protocol has been presented yet, many
application-specific solutions have been proposed in literature. All of these solutions have in
common that they are tailored for a specific application, and thus, have to be considered as being
application-layer protocols. In general, such protocols are not generalized well enough to be appli-
cable for other applications. Especially in the payment sector, many application-specific security
solutions have been presented due to the confidentiality of data that needs to be transferred in this
sector. Kadambi et al. [166] have proposed to extend the Payment Card Industry (PCI) Data Se-
curity Standard (DSS) in such a way that NFC-enabled mobile devices such as smartphones may
also be used for payment transactions. The PCI DSS regulates what data is allowed to be stored,
as well as the required security measures. Similar to that, Ceipidor et al. [167] have presented an
approach that adds authentication as well as data confidentiality to the existing Europay, Master-
card, and Visa (EMV) standard for mobile proximity payment. As a form of device pairing in the
payment sector, usually bringing two devices in close proximity is considered as a sufficient secu-
rity measure. However, to prevent relay attacks, Halevi et al. [168] have suggested to use sensor
data to verify whether both devices are close to each other.
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Another sector where security is of high importance is the healthcare sector. Here, data confi-
dentiality needs to be provided to protect user privacy. Dünebeil et al. [169] have proposed using
protected NFC tags to store a patient’s medical information. This information can then be used
by authorized personnel such as caretakers or emergency responders. Since such tags need to
be placed at highly visible locations, a high level of security is critical. Sethia et al. [170] have
presented an approach for a healthcare data management system that also relies on NFC-enabled
smarthpones and NFC tags. In their approach, patient data is stored on a protected health card that
could either be a traditional smartcard or data could be stored on an NFC-enabled smartphone.
Besides the payment and healthcare sectors, unconventional new use cases have also emerged
where a secured NFC channel is required. For instance, Busold et al. [171] have presented a car
immobilizer framework that can be used for flexible car access policies.

Related work for secured NFC protocols is compared to the approach presented in this thesis
in Table 3.6. Contrary to other approaches, we present an approach that provides confidential-
ity, integrity, and authenticity on the NFC transport layer. Thus, our approach enables building
secured NFC-based applications without the need to implement security-relevant functionality in
the application layer.

Table 3.6: Comparison with related work for secured NFC protocols.

Authorization

Confidentiality

Integrity

Authenticity

Efficient

Transport Layer

Remark

Signature records [159] 7 7 3 7 3 3 Considered broken
Authentication [161, 162] 3 7 7 7 3 3 Only authorization provided
Key distribution [163] 7 7 7 7 3 3 Enabling protocol
RFID authentication [164] 3 3 7 7 3 3 Trust relationship
TLS over NFC [165] 3 3 3 3 7 3 Larger overhead
Payment sector [166–168] 3 3 3 3 3 7 Application specific
Healthcare sector [169, 170] 3 3 3 3 3 7 Application specific
Car immobilizer [171] 3 3 3 3 3 7 Application specific

This thesis 3 3 3 3 3 3 Secured Transport Layer
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4
Sensor-Based Security Issues

In this chapter we present two different types of attacks that target systems via sensor interfaces.
The first type, Networked Control System (NCS) attacks, demonstrates security issues of systems
where sensor information is already protected by encrypting data. The second type, sensor-based
covert channels, demonstrates methods to exploit sensors for building stealthy communication
channels that are capable of bypassing process isolation methods.

4.1 NCS Attacks

In this section we first define the system model that is used to demonstrate NCS-based attacks.
After that we show why applying encryption in an NCS may be problematic, define a new attack
type, and propose a countermeasure to mitigate such attacks. The content of this section is mainly
based on work published in the paper Towards Trustworthy Data in Networked Control Systems:
A Hardware-Based Approach [172].

4.1.1 System Model

The system model that we are considering to model attacks in an NFC is shown in Figure 4.1 and
comprises the following entities:

Plant / 
Process

SensorActuator

Controller

Communication Channel

u y‘

yu‘

Potential
Adversary

r

Figure 4.1: System model considered for modeling deception attacks in an NCS.

Plant / Process. The plant or process that is controlled by this NCS.

Sensor. The sensor that is used for monitoring the plant’s or physical process’ controlled output.
The measurements of the sensor are denoted as y.

Controller. The controller generates an actuation signal u that is based on the received sensor
measurements y′ and the reference input r.
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Actuator. The actuator receives the actuation signal u′ and based on this signal influences the
plant or physical process.

Communication channel. The communication channel that is used to transfer controlled plant
output y from the plant or physical process to the controller and the actuating signal u
from the controller to the actuator. We do not make any assumption about the type of
communication channel that is used. However, we assume the presence of an adversary that
can eavesdrop or modify the transferred signals such that y′ 6= y and u′ 6= u.

For evaluating the proposed methods, we implemented the system model shown in Figure 4.1
in MATLAB/Simulink using the TrueTime toolbox [173] that is capable of simulating networks
including attributes such as delays and bit errors. We modelled our network as a TCP network
without bit errors and a delay of 10ms per network segment which is tolerated by the used control
algorithm. As a process we decided to use a simple DC motor that can be modelled by the transfer
function given in (4.1). The transfer function of such a DC motor only depends on the torque
constant in the numerator (which we chose as 1000), and thus, is very simple.

G(s) =
1000

s(s+ 1)
(4.1)

The controlled output of this process is the angular position of the DC servo. To control the DC
motor, a Proportional-Derivative (PD) controller [174] is used. Both the process model and the
tuned PD controller can be found in TrueTime’s examples. Figure 4.2 shows the modeled NCS.

Figure 4.2: Implemented NCS system model with network segments.

4.1.2 Issues of Encryption as a Countermeasure

To protect data in an NCS that is sent over the insecure communication channel, encryption is
often suggested as a potential countermeasure in literature (e.g., [175, 176]). However, simply
encrypting data either using homomorphic encryption or non-homomorphic encryption in an NCS
may lead to the same or even more severe problems as sending plaintext data.

Homomorphic encryption. In homomorphic encryption systems, computations can be per-
formed on the ciphertext with the decrypted plaintext matching the performed computa-
tions [177]. For example, the ciphertext of an encrypted numeric value can be doubled. The
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resulting plaintext after decryption then would contain the doubled initial numeric value.
For an NCS, this behaviour might be beneficial for performance reasons, but highly unfa-
vorable from a security point of view. As an example, an adversary might be able to capture
some sensor value, and add this value to any subsequent packet that is sent over the network,
thus, provoking malicious system behavior.

Non-homomorphic encryption. If non-homomorphic encryption schemes such as AES are
applied on sensor data, no deterministic mathematical operation can be performed on en-
crypted values. However, if only data confidentiality is protected without integrity checks,
changing one bit in a data packet may lead to severe malfunctions of the system. Table 4.1
highlights this issue where the last bit of a ciphertext CT is flipped such that if the resulting
ciphertext CT ′ is decrypted, unusable plaintext data PT ′ is obtained. That is, an adversary
only needs to be capable of switching single bits to perform powerful attacks on NCSs.

Table 4.1: Plaintext (PT ), cyphertext (CT ), corrupted cyphertext (CT ′), and resulting plaintext (PT ′).

Sensor 1 Sensor 2 Sensor 3 Sensor 4

PT 0x00000001 0x00000002 0x00000003 0x00000004
CT 0xDE154CCE 0x18E65A6E 0xBD9A0593 0xE1B82507
CT ′ 0xDE154CCE 0x18E65A6E 0xBD9A0593 0xE1B82506
PT ′ 0x2D3DB30D 0xE89541F5 0x9AFD9AED 0x03BD8985

4.1.2.1 Protecting Confidentiality and Integrity of Data

Due to the issues of only protecting data confidentiality by using homomorphic and non-
homomorphic encryption, a naive approach would be to apply methods that can protect data
confidentiality as well as integrity. For instance, AE could be applied in such a system. Using
this approach, malicious packets where an arbitrary number of bits have been modified can be
detected. The system then could simply drop these packets, since certain control algorithms such
as the used PD controller are robust against some lost packets. However, this may also impact the
systems stability as shown in Figure 4.3 where a 25% packet loss leads to the system requiring
longer to reach the desired reference value. In Figure 4.4, the system never stabilizes at the desired
reference value due to a packet loss of 50%.

4.1.2.2 Bit-Flip Attacks on protected NCSs

Due to the above demonstrated stability issues of NCS caused by dropping maliciously modified
packets, a new type of attacks can be found. This is based on the observation that it is relatively
easy to flip bits in an electronic system [178] which may entail severe consequences (e.g., [179]).
Instead of completely shutting down a system by running DoS attacks, an adversary may just
be interested in causing system misbehaviour as demonstrated in the step responses shown in
Figure 4.3 and Figure 4.4. We denote these type of attacks as bit-flip attacks. To demonstrate
the practicability of this attack, Figure 4.5 demonstrates the Packet Error Rate (PER) that can be
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Figure 4.3: Step response 25% packet loss.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Time (s)

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

A
n
g

u
la

r 
P

o
s
it
io

n
 (

ra
d
)

 
r ... Reference

y ... System Output

Figure 4.4: Step response 50% packet loss.

achieved by an adversary via certain BERs. As shown, BER of 10−3 can already lead to PER of
50% which as we have shown may result in highly unstable systems.
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1) 192 bits (4 sensors, 128/64)

2) 384 bits (4 sensors, 256/128)

3) 448 bits (12 sensors, 128/64)

4) 896 bits (12 sensors, 256/128)

Figure 4.5: BER and resulting PER for different scenarios. Packet sizes vary due to data size (number of sensor
values) and applied key lengths for encryption and MAC.

4.1.3 JEEC as a Countermeasure

To mitigate the issues caused by applying encryption in an NCS, we propose to combine en-
cryption and Forward Error Correction (FEC), denoted as JEEC. This method is an established
method in satellite communication for enhancing the security and reliability of transferred data.
JEEC can be performed in a single step or sequentially. If encryption and FEC are performed in
a single step [180], the performance of the system is improved compared to sequential execution
of these two components [181]. However, in literature there is still a debate as to whether such
single step encryption and FEC schemes provide the same level of security as conventional en-
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cryption schemes [182]. Thus, we propose to use sequential JEEC where encryption is followed
by encoding the cyphertext by an FEC encoder as shown in Figure 4.6.

FEC 
Encoder

Decryption

FEC 
Decoder

Plaintext

Protected
Codeword

Sender Receiver

Potential Adversary

Encryption

Cyphertext,
Dataword

Figure 4.6: Sequential encryption and FEC.

In the studies done in this thesis, we combined AE to protect data confidentiality, integrity, and
authenticity with so-called turbo codes that provide fast FEC [183]. This combination results in
the following advantageous properties:

• AES is a well established encryption scheme with proven security.

• AES provides modes of operation for applying AE.

• Turbo codes provide fast FEC and can efficiently be implemented in hardware.

• The performance of turbo codes regarding BERs is close to the Shannon limit [184].

The two performance indicators of such a JEEC are (i) BER and (ii) performance. The BER
of turbo codes is usually evaluated in a noisy channel which can also be seen as a communica-
tion channel with an adversary that tampers with transferred packets. For certain scenarios (non-
changing Signal-to-Noise Ratio (SNR)), turbo code FEC is capable of lowering the BER by a
factor of 104 compared to using no FEC [185]. If both AE and FEC are implemented in hardware,
a deterministic delay is imposed to the system that can be handled by most control algorithms
that are suitable for NCS. In our simulated system, modeling encryption and turbo codes with
deterministic execution times results in the step response shown in Figure 4.7.

4.2 Sensor-Based Covert Channels

As discussed in Section 2.3, sensor-based covert channels are mostly based on two principles.
Firstly, sensors are used in covert channels to observe physical properties that are triggered by
the sender. And secondly, sensor data may be used in a covert channel, for instance, to hide
information in the transmitted sensor measurements. In this section, we present four types of
sensor-based covert channels that differ from these two principles. Before doing so, we define a
system model that we use to present our attacks. After that, we demonstrate covert channels based
on hiding information in unused registers or configuration bits of sensors. We then also present
covert channels that are based on triggering sensor readings. These presented covert channels do
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Figure 4.7: Step response of the DC motor system using JEEC to mitigate bit-flip attacks. In this scenario, no
packet loss occours due to the modelled channel and the applied attack mitigation.

not only differ in the method that is used for encoding information, but also in the achievable data
rate and the probability of the covert channel being detected (denoted as detectability). Figure 4.8
shows this trade-off. In addition, a red covert channel in this figure is hard to mitigate, while a
green covert channel is easier to mitigate. To conclude this section, we present a sensor evaluation
framework that implements hardware abstraction layers and flow control methods to easily validate
whether sensors can be exploited for building covert channels. The content of this section is
mainly based on work published in the paper Sensing Danger: Exploiting Sensors to Build Covert
Channels [186].
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Figure 4.8: Trade-off between covert channel data rate and respective detectability.

4.2.1 System Model

We consider the system model shown in Figure 4.9 for exploiting weaknesses in sensors and to
build sensor-based covert channels. This system model comprises at least two distinct processes
and a shared sensor.

Process. At least two distinct processes are required in our system such that data can be trans-
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ferred between these two processes using the presented covert channels. We do not make
any assumption regarding the isolation between processes. That is, there might be no iso-
lation at all or isolation techniques, such as sandboxes, virtual machines, or even different
physical processors. Therefore, the two processes might be running on the same physical
processor or on different processors. In any case, we assume that data exchange between
these two processes might be blocked. In addition we do not make any assumption about
the exact scheduling of these two processes. If, for instance, one process is scheduled more
frequently than the other, the covert channel is still expected to work reliably.

Sensor. The actual sensor that is exploited for building sensor-based covert channels needs to
be accessible to both involved processes. That is, process isolation must not prevent access
to the sensor. We do not make any assumption regarding the type of sensor that is used in
our system model. That is, the type of sensor might range from a simple temperature sensor
to more complex sensors such as accelerometer and gyroscope combinations. In addition
we also do not make any assumption about the technology that is used for connecting the
sensor in our system. Therefore, technologies such as Inter-Integrated Circuit (I2C), Serial
Peripheral Interface (SPI), or Ethernet should be supported.

Sensor

Isolation

Process A

(e.g. sender)

Isolation

Process B

(e.g. receiver)

Figure 4.9: System model for building sensor-based covert channels.

4.2.2 Exploiting Unused Registers and Configuration Bits

In this section, covert channels that are based on exploiting unused sensor registers or configura-
tion bits are presented. The presented covert channels are based on direct access to the sensor’s
registers. That is, read and write access for these registers is required to build the covert channels.

4.2.2.1 Unused Registers

Sensors often contain unused registers that are either reserved for future use or not required in
the sensor’s current mode of operation. Similar to presented network-based covert channels, these
registers can be exploited by hiding information in them to transfer data to other processes.

Reserved registers. If registers are reserved but not used to publish information (e.g., status
flags) or to store information such as configuration parameters, these sensor registers can be
exploited for data transfer in a covert channel. Usually, these reserved registers are listed in
the sensor’s data sheet, and thus, easy to find. Although the data sheets often state that the
registers must not be changed, they are usually still read- and writeable.
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Not required registers. Registers that might be used in some modes of operation, but are un-
used in others, can also be exploited for data transfer in a covert channel. For instance, a
sensor might define a register to set a threshold that is used when threshold monitoring is en-
abled. If the sensor is configured to not monitor a defined threshold, the respective register
is not required by the current mode of operation. Configuration registers that define which
other registers are required or not are usually readable. That is, a process may be capable of
automatically finding non-required registers.

Covert Channel Design. The exploitation of unused registers facilitates a simple covert chan-
nel design. Information can simply be written into such registers by one process and read from
the same register by another process. To signal successful reception of data, the register is then
modified. In our approach we use the register’s Most Significant Bit (MSB) as a flag; therefore,
not all bits of a register can be used for data transfer.

Detectability. Although reserved registers can be written to freely, doing so might influence the
sensor’s functionality. Depending on the impact of writing to a certain register, covert channels that
are based on exploiting unused registers could easily be detected based on misbehaving sensors.

Countermeasures. To mitigate covert channels that are exploiting unused registers, several
countermeasures could be used. If write access to reserved registers is disabled, these registers
cannot be exploited anymore. In addition, disabling write access to unused registers based on the
sensor’s current mode of operation helps mitigate the exploit action of these registers. Finally,
if configuration registers are made write-only, non-required registers cannot be found in an auto-
mated way anymore. However, write-only configuration registers also complicate configuration
of sensors, since sometimes either the initial value is needed or bit-wise operations such as AND,
OR, and XOR would be required to update certain configuration bits without modifying others.

4.2.2.2 Configuration Bits

To configure sensors, so-called configuration registers are often used. For efficiency reasons,
various configuration parameters can be combined. Also, the registers might contain reserved or
unused bits that can be exploited, similar to exploiting completely unused registers.

Reserved bits. If configuration registers contain reserved bits that do not influence any config-
uration state, these bits can be exploited for transferring data. Similar to unused registers,
the sensor’s data sheet usually lists such reserved bits and often states that these bits must
not be changed to avoid unwanted sensor behavior.

LSBs of configuration values. Numerical configuration values such as thresholds may be ex-
ploited for stealthy data transfer. For instance, the LSBs of a threshold value can be used
to transfer data, similarly to exploiting header fields in network-based covert channels. If
selected carefully, manipulating these configuration values has a negligible impact on the
sensor’s functionality.

Unused configuration bits. If the number of available configuration options is smaller than
the maximum number of options that can be represented by the respective part of a config-
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uration register, these bits can also be exploited for transferring data. For instance, many
sensors have three modes of operation: shutdown (0b00), single shot (0b01), and contin-
uous mode (0b10). For these three modes of operation, two bits are required, and thus, one
bit can be changed without influencing the sensor’s behavior if it is configured to operate in
continuous sensing mode.

Covert Channel Design. Exploiting configuration bits to build covert channels follows the same
principles as exploiting unused registers. First, exploitable configuration bits need to be deter-
mined. After that, these bits are used to transfer data in a covert channel. One process uses the
selected bits to write information, while the other process reads the information from the respec-
tive parts of the selected registers. The receiver then confirms successful reception of data by
modifying a certain value. That is, one bit is required as status flag to synchronize both involved
processes. As a consequence, at least two configuration bits are required to build a covert channel
based on exploiting such bits. Building such a covert channel with only one bit would require syn-
chronization between sender and receiver which we assume to be infeasible. Compared to covert
channels that exploit whole registers, these covert channels offer lower data rates.

Detectability. Similar to exploiting unused registers, the detectability of covert channels based
on exploiting configuration bits also depends on the impact of the bits that are manipulated. For
instance, a covert channel that only toggles unused configuration bits will have no impact on the
sensor’s functionality and might even be mistaken for a badly programmed instead of malicious
process. That is, on the one hand covert channels based on exploiting configuration bits are harder
to detect, but on the other hand also offer lower data rates compared to covert channels based on
exploiting unused registers.

Countermeasures. There are also various potential countermeasures that could help mitigate
covert channels based on exploiting configuration bits. Similar to disabling write access to re-
served registers, write access to reserved configuration bits can also be disabled, thus mitigating
covert channels that exploit this type of configuration bits. If configuration registers are made
write only as we proposed previously, the recipient of transferred data is not able to read the in-
formation anymore. Therefore, this countermeasure also helps mitigate covert channels based on
exploiting configuration bits. However, as mentioned earlier, bit-wise operations will be required
for configuration registers to allow changing selected bits without modifying others.

4.2.3 Exploiting the Triggering of Sensors

Both previously discussed exploits (based on unused registers and on configuration bits) require
read and write access to the same sensor. Due to this, countermeasures can easily be implemented
to mitigate these issues. However, even if such countermeasures are implemented at a sensor, it is
still possible to build sensor-based covert channels based on the following two methods.
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4.2.3.1 Triggering Simple Sensors

If one process is capable of triggering events that update read-only registers, these registers can
be exploited to build sensor-based covert channels. For instance, most sensors include a register
where status flags indicate a finished sensing process. That is, one process may trigger the sensor,
while the other process is monitoring these status flags. Information in such a scenario can be
encoded in multiple ways.

Timing differences. Information can be encoded in the timing intervals between two sensor
readings. For example, a binary ’1’ could be transferred by triggering two sensor readings
with an interval of 100ms. A binary ’0’ would then be transferred by triggering the sensor
with a different interval, for instance, 10ms. The process that should receive the data then
needs to observe the respective status bits that indicate a finished sensing process and mea-
sure the timing intervals to decode the corresponding hidden data. However, this approach
has the drawback that the process that needs to monitor the status bits needs to poll this
information with a high frequency to provide accurate timings. In addition, both involved
processes need to be synchronized since there is no possibility of confirming successful
reception of data.

Direct encoding. If there is more than one status bit that can be triggered, information can
be directly encoded using the available status bits. For example, if a sensor is capable of
sensing more than one physical property, multiple status flags will also be present. That is,
one status bit can be used for transferring data, while the other status bit can be used as a
control flag. If all status flags would be used for data transfer, the two states were no status
flag is set due to the sensing being still in progress and the data word containing only zeros
could not be distinguished. Thus, we propose to use two status bits for transferring 1 bit of
information and for synchronizing both involved processes.

Covert Channel Design. Due to the easier possibility of synchronizing both involved processes,
we propose to use direct encoding in status bits. For simplicity reasons we are going to discuss the
covert channel design for transmitting 1 bit using 2 status flags. In its default setting, both status
flags are set to ’0’, indicating that no sensor reading is available. A ’1’ indicates that the respective
sensor reading is available. The status flag is reset to ’0’ again by the sensor if the value is read.
In our proposed covert channel design, the process that wants to transmit data simultaneously
triggers both sensors, thus setting both status flags to ’1’. Immediately after the sensor finished
the sensing process, the process wanting to send data reads one sensor value, and thus, resets
the respective status flag. The receiving process monitors the status flags. Upon reading that both
status flags are set to ’1’, the process is informed that a data bit is following. After then reading the
respective information, the receiving process resets the second status bit by reading the remaining
sensor value. The sending process is thus informed that information was read by the other process.
Table 4.2 summarizes the states that can be implemented using 2 status bits. As shown in this table,
transferring 1-bit words results in clearly distinguishable states whereas using 2-bit words results
in ambiguous states for the status bit values ’00’ and ’11’.

Detectability. Compared to writing information directly into a sensor’s register, covert channels
that are based on triggering sensor readings are harder to detect. In this covert channel design,
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Table 4.2: Status flags for two sensors and the available states for a 2-bit word and a 1-bit word respectively.

S1 S2 2-bit word 1-bit word

0 0 ’00’ and no data no data
0 1 ’01’ ’0’
1 0 ’10’ ’1’
1 1 ’11’ and sensor ready sensor ready

only the process that wants to transmit information is triggering the sensor, while the sending and
receiving processes are reading sensor values and status flags. Therefore, a system monitor might
not detect malicious behavior such as two processes alternately changing a sensor register’s value.
In addition, if the roles of sender and receiver are switched regularly for bidirectional communica-
tion, the system behavior is comparable to two processes that alternately trigger sensors, read the
respective sensor values, and poll status flags for determining the sensor’s availability.

Countermeasures. Mitigating covert channels that are based on triggering sensors is more com-
plex compared to mitigating covert channels that require write access to sensor registers. In princi-
ple, any link between triggering a sensor and information that can be observed by other processes
needs to be removed. Thus, to mitigate covert channels that are based on triggering sensors, a
sensor management instance is required that encapsulates sensor access. For example, Android’s
sensor manager only allows processes to register for sensor data. The sensor manager then deter-
mines the required sensor configuration such that all registered processes can be served. Whenever
a new sensor reading is available, all registered processes are then notified using interrupts. There-
fore, a managed sensor approach that removes any status flag dedicated to indicating available
sensor readings mitigates the presented covert channel.

4.2.3.2 Triggering Managed Sensors

If the previously discussed countermeasure of managing sensors is badly implemented, sensor-
based covert channels can still be build. Usually in a managed sensor environment, processes need
to register for sensor readings. Android, for instance, uses such a managed sensor approach [187]
where registered processes are notified of new sensor readings via interrupts. When registering
for a sensor reading in Android, the process needs to specify the desired sampling period as a
parameter. However, as also stated in Android’s documentation, this sampling period is only a
suggested delay that might be altered by other applications. Since the altered sampling frequency
can easily be detected by one process and triggered by another, a covert channel can be built
exploiting this functionality.

Covert Channel Design. Based on the observation that one process is able to influence the
sampling period of another process, a frequency encoded covert channel can be built that exploits
sensor managers that are built like Android’s implementation. To transmit data, the current sensor
reading frequency is monitored by both processes. The process that wants to transmit data then
registers to the sensor manager with a lower frequency that can be observed by the other process.
If two sensor reading frequencies below the previous sensor reading frequency can be found,
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binary values ’0’ and ’1’ can be frequency encoded, similarly to a Frequency Shift Keying (FSK)
encoding. Figure 4.10 shows an example where a binary sequence is encoded using different
sensor reading frequencies. Contrary to the other three presented covert channels, the process that
receives data cannot easily acknowledge the successful reception of data in this approach. Thus,
after sending its data, the process that transmits data needs to un-register from the sensor manager
and thereby hand over the sender role to the other process that can then acknowledge the received
data.
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Figure 4.10: Information encoded in different sensor reading frequencies. These measurements were obtained
using the ambient light sensor on a OnePlus5 running Android 8.0.

Detectability. The switching of sensor reading frequencies due to other processes registering
and un-registering listeners is expected system behavior. For example, Android expects processes
to un-register from sensors if the application is minimized. Thus, covert channels that exploit
managed sensors using this approach cannot be easily detected. However, we think that if sensor
access is audited, malicious access patterns could be detected if the auditing tool is trained suffi-
ciently. Static code analysis tools such as the popular FlowDroid [188] for Android applications
are however currently not capable of detecting our presented covert channels.

Countermeasures. To mitigate the presented covert channel that exploits managed sensors,
changes to how sensor reading frequencies are handled need to be implemented. One possible
countermeasure would be to disallow arbitrary frequencies and only support a set of well-defined
values. These values need to be selected in a way that they are multiples of each other, for ex-
ample, 10ms, 20ms, 40ms, and so on. By defining such sensor reading frequencies, the sensor
internally can be operated at the lowest selected frequency, while each process receives sensor
values with its actual defined sensor reading frequencies.

4.2.4 Sensor Evaluation Framework

To facilitate easy vulnerability testing of sensors, we implemented a modular test framework. This
framework is structured into the following four abstraction layers and is shown in Figure 4.11:
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1. The lowest layer (access abstraction) implements sensor access via various technologies.

2. The sensor abstraction layer implements sensor-specific aspects such as register mappings.

3. All presented exploits are implemented in the framework’s exploit abstraction layer.

4. Building blocks that are relevant for the covert channel’s reliability are implemented in the
covert channel abstraction layer. In this section, these building blocks are briefly presented.
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Figure 4.11: Sensor evaluation framework with different abstraction layers.

4.2.4.1 Need for Error Detection and Correction

All presented covert channels are based on information that is transferred using sensors. As other
processes (other than the processes that are transmitting and receiving data) might also access the
sensor, information might be lost. For instance, other processes might also trigger sensor readings.
Therefore, these sensor-based covert channels need to be considered a noisy channel. According to
Shannon [189], an error-free data transmission over a noisy channel can be achieved if transferred
data is sufficiently encoded using appropriate encoding schemes. Thus, in our proposed covert
channels we used Error Correcting Codes as well as Error Detecting Codes (EDCs).

4.2.4.2 Packet Structure and Flow

In our proposed covert channels we use two types of packets, Request (REQ) packets and
Response (RES) packets. Figure 4.12 shows the structure of both packet types.

REQ packet. The REQ packet only contains a Sequence Number (SQN) encoded by a
Hadamard error correcting code. In general, such a code encodes a k-bit message in a
2k-bit codeword. Due to the exponential growth of packet size, we use a 2-bit SQN which
results in a total packet size of 4 bits. The Hadamard coding scheme is proven optimal for
k ≤ 7 [190] and can recover errors as long as less than half of the bits are flipped.
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RES packet. All RES packets contain a type bit that classifies each packet as data or command
packet. Commands include, for instance, functionality to stop data transmission or to re-
verse data direction. Similarly to REQ packets, RES packets also contain a 2-bit SQN. In
addition, each packet contains either data- or command-specific information. Instead of us-
ing error correcting codes, we add EDCs to RES messages due to the previously discussed
exponential growth in size. We propose using a Berger EDC [191] that supports checking a
maximum of n = 2k − 1 bits of information with a k-bit code. Transmission errors are thus
not corrected but detected and handled by our proposed communication flow approach.

Hadamard encoded SQN
4 bit

Type
1 bit

Data / Command
var. length

SQN
2 bit

EDC
var. length

Figure 4.12: REQ packet (top) and RES packet (bottom) structures, respectively.

Data flow. Communication flow in our proposed covert channels is organized as a request-
response mechanism. One successful request-response round trip comprises the reception of a
REQ packet by the sender that is then answered by sending an RES packet. This approach is
similar to the HyperText Transfer Protocol (HTTP), where actual data is always transferred in
a response packet. To manage communication flow, both packet types contain an SQN that is
used to identify matching REQ and RES packets. The receiver is responsible for increasing the
SQN after successfully receiving the desired RES packet. By repeatedly sending packets with
the same SQN, receiver and sender can indicate that the expected packet was not yet received
and a re-transmission is desired. The proposed data flow mechanism is shown in Figure 4.13.
Re-transmissions can be caused in the following three scenarios:

Receiver Sender
Sender

not ready

Request
lost

Response
lost

Figure 4.13: Data flow principle that is used in our proposed covert channels.
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Sender not ready. When a covert channel is established, the sender might not be ready to trans-
mit the requested data and no RES packet is thus sent as answer to the receiver’s initial REQ
packet. The receiver continuously transmits its initial REQ packet until a covert channel is
successfully established due to the sender’s response.

Request lost. A REQ packet may be lost while being transmitted due to a noisy covert channel.
As in the first case, the receiver continuously transmits its REQ packet until a RES packet
is successfully received from the sender.

Response lost. Similarly to REQ packets, RES packets can also be lost while being transmit-
ted. In this case, the sender receives multiple REQ packets with the same SQN, recognizes
that its packet must have been lost and re-transmits the same RES packet again.

4.2.4.3 Bidirectional Communication and Adaptive Packet Length.

As already briefly mentioned, our proposed packet structure supports sending command pack-
ets. The presented framework supports commands to stop communication and reverse the data
direction. That is, by switching sender and receiver roles, a fully bidirectional communication is
supported by our proposed covert channels. In addition to these two commands, two commands
to increase and decrease the payload data size are also supported. This method is used to improve
covert channel reliability compared to static payload sizes.

Depending on the amount of accesses to the sensor that is used in a covert channel, an optimal
payload size may be found. If too large packets are sent and other processes thus invalidate the
sent packets, reliable data transfer might not be possible. If the RES packet size is set too small,
the achievable covert channel data rate will be very low due to the imposed overhead. This issue
is especially relevant if other processes access the sensor infrequently and no fixed interval of
no other process accessing the sensor can thus be found. Therefore, we propose to use dynamic
packet sizes, which allows decreasing the RES packet size whenever errors are detected by the
EDC. Reducing the packet size will lead to fewer re-transmissions, but generally higher protocol
overhead. Thus, packet size is increased if a certain amount of successfully transferred RES
packets is reached. Figure 4.14 demonstrates this principle based on a simple example.

(1) RES: 1 RES: 1

(2) REQ: 1

(3) R R

(a) Static RES packet size.

(1) RES: 1 RES: 1 RES: 2 RES: 3

(2) REQ: 1 REQ: 2 REQ: 2

(3) R R

(b) Dynamic RES packet size.

Figure 4.14: Static and dynamic payload sizes. (1) Sender and (2) receiver access the sensor together with (3)
another process that is reading the sensor (R).
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Based on the attacks presented in Chapter 4 we conclude that sensors offer a variety of poten-
tial exploitable interfaces. We especially identified a sensor’s configuration interface as a main
weakness as highlighted by our presented covert channels. Therefore, in this chapter, we present
methods to improve a sensor’s security by facilitating a secured sensor configuration process. We
first argue why NFC is used as communication technology based on the requirements listed in
Section 1.3.2. We then present the system model we used for implementing the presented secured
sensor configuration approach. After that, the secured smart sensor configuration approach is pre-
sented, followed by a method for attesting correct configuration states. We then present a method
for password-free authentication prior to configuration updates. Each of these sections builds upon
each other (see Figure 5.1), and thus, an architecture and framework for the secured configuration
of smart sensors is presented. Additionally, a generalized and secured transport-layer protocol
for NFC is presented that can be used for secured smart sensor configuration as well as for other
NFC-related tasks that require a secured, yet efficient, NFC-based data transfer.

Section 5.4
Configuration Attestation

Section 5.5
Password-less Authentication

Section 5.6
Secured NFC Transport-Layer Protocol

Section 5.3
Secured Smart Sensor Configuration

Figure 5.1: Bottom-up relationship between sections in this chapter.

5.1 Selecting NFC as a Configuration Interface

The proposed smart-sensor configuration approach that is presented in the following sections is
based on NFC. This section lists possible alternatives and discusses the advantages and draw-
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backs of these alternatives. Also, each technology is analyzed regarding its compatibility with the
requirements for secured sensor configuration that were listed in Section 1.3.2. Table 5.1 summa-
rizes this list and gives an overview of the requirements that are met by each technology.

Dedicated wired configuration interface. A wired configuration interface allows configu-
ration data to be transferred to the smart sensor as well as powering the device during the
configuration update process. In general, wired interfaces also provide higher data rates
and higher reliability than wireless interfaces. However, a wired interface would require
the smart sensor to be connected during manufacturing and by the customer each time a
configuration update needs to be applied.

RF Coil on Chip (CoC) configuration interface. An RF CoC configuration interface would
allow the smart sensor to be configured wireless during manufacturing as well as by the
customer. Not only can such an interface be used to transfer data, but also to power the
chip during the configuration update process [192]. However, a dedicated device for com-
municating with such an RF CoC configuration interface is required which would cause
additional costs for customers. In addition, due to the relatively small area of the antenna,
the sender and receiver must be positioned precisely to allow for data transfer which does
not go hand in hand with high usability.

RF Coil on Module (CoM) configuration interface. An RF CoM configuration interface is
very similar to an RF CoC configuration interface in terms of its properties. Due to the larger
area of the antenna, data transfer may be possible over larger distances and the positioning
of the sender and receiver does not have to be as precise as in the RF CoC case.

RFID interface. Due to its nature, an RFID interface may be used for configuration purposes
as well as, for example, for locating smart sensors. Thus, such an interface may provide
higher value due to its flexibility. Similarly to RF CoC and CoM configuration interfaces,
RFID also allows data as well as power to be wirelessly transferred. Compared to the pre-
vious two wireless interfaces, RFID requires a larger antenna area which allows successful
communication over larger distances and makes positioning the sender and receiver easier.
Ultra-High Frequency (UHF) RFID in particular supports distances of up to 100m which
makes the approach highly practical. In addition, many modern smartphones are capable of
communicating with RFID tags and RFID readers that provide higher transmitting power
are available OTS. In RFID, the roles of reader and tag are fixed, and thus, bidirectional
communication is only partly supported.

NFC interface. As discussed in Section 2.6, NFC can be seen as an extension to RFID that fully
supports bidirectional communication in the so-called peer-to-peer mode. Similarly to the
previously discussed wireless technologies, NFC also allows data as well as power to be
wirelessly transferred. The maximum communication range of NFC usually is limited to a
couple of centimeters, which makes positioning sender and receiver sufficiently easy while
minimizing negative effects due to interference with other devices and possible attacks due
to the high communication range. Also similarly to RFID, the NFC interface may also be
used for other purposes than configuring the smart sensor, which makes it also more valuable
due to its flexibility.

Bluetooth (BT) / ZigBee (ZB) interface. Technologies such as BT or ZB are usually consid-
ered more powerful than the previously discussed wireless technologies. These technologies
offer high bandwidths as well as high communication ranges and allow bidirectional data
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transfer. Also, almost all modern smartphones include a BT interface which would allow
customers to rely on existing OTS hardware. However, power transfer over these tech-
nologies is not possible, and thus, the device for which a configuration update needs to be
transferred needs to be connected to a power supply. This may be practical during the smart
sensor’s normal operation, but is inconvenient during manufacturing.

Wi-Fi interface. Wi-Fi generally is considered the most powerful of the mentioned wireless
technologies. It provides the highest bandwidth and modern smartphones as well as laptops
include Wi-Fi interfaces which would allow customers to use their existing OTS hardware
for configuration updates. However, similarly to Bluetooth and ZigBee, Wi-Fi also does
not support wireless power transfer, which makes the approach impractical for configuring
the smart sensor during manufacturing. In addition, Wi-Fi requires higher amounts of en-
ergy compared to the other discussed wireless technologies, which might also make this
technology infeasible for resource-constrained smart sensors.

Table 5.1: Comparison of possible communication technologies for smart sensor configuration.

Req1
Req2

Req3
Req4

Req5
Req6

Comment

Wired 3 7 3 7 7 7 Requires additional HW
CoC 3 7 3 7 3 7 Requires additional HW, hard to use
CoM 3 7 3 7 3 7 Requires additional HW, hard to use
RFID 3 3 3 3 3 3 Range and unidirectional communication
NFC 3 3 3 3 3 3 Application specific security
BT/ZB 3 3 3 3 7 3 Require power supply
Wi-Fi 3 3 7 3 7 3 Requires power supply, not efficient

5.2 System Model

The comparison of possible communication technologies in Table 5.1 highlights that NFC is very
well suited for a smart sensor configuration approach, based on the requirements listed in Sec-
tion 1.3.2. However, we have to note that NFC as a technology alone does not completely fulfill
Req4 that also requires the configuration approach to scale well to large numbers of devices. Thus,
we propose the following system model for an NFC-based configuration approach to account for
Req4 and also to implement security-related mechanisms that will be presented in later sections of
this chapter. The system model is shown in Figure 5.2 and comprises the following three entities:

Smart sensors. The smart sensors that should be configured using the secured smart sensor
configuration approach that is presented in this thesis. We do not assume any limitation
on the number of smart sensors that can be managed by our approach. Thus, the approach
should scale to an arbitrary number of smart sensors. The smart sensor itself may be placed
in an uncontrollable environment such as outside of buildings. Therefore, in this thesis
we assume the presence of adversaries that may be able to gain physical access to these
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smart sensors. To protect the smart sensor against these adversaries, the smart sensor model
presented in Section 5.2.1 is used.

Mobile configuration device. The mobile configuration device is used to transfer configura-
tion data to the smart sensors. To allow the system to scale well to large numbers of smart
sensors, we also do not assume any limitation in the number of existing mobile configuration
devices. In the approach presented in this thesis, OTS devices such as smartphones should
be used as mobile configuration devices, and thus, these devices need to be considered as
untrustworthy. Therefore, any configuration data that is transferred by these devices needs
to be protected such that no misuse by an untrusted mobile configuration device is possible.

Configuration back-end. The system model includes exactly one so-called configuration
back-end. This entity is responsible for managing all configurations that are currently ap-
plied to the smart sensors. The configuration back-end is considered sufficiently secured in
this thesis, and thus, as a trusted entity in our system model. The protection of the back-end
itself is considered out of scope for this thesis.

...

1 Configuration
Back-End

m Mobile 
Configuration 

Devices

n Smart
Sensors

...

Figure 5.2: System model used in the presented secured smart sensor configuration approach.

5.2.1 Extended Smart Sensor Model

To mitigate attacks that are enabled by adversaries that may be able to gain physical access to
the smart sensor, the smart sensor model that is shown in Figure 1.1 is extended by a so-called
Security Controller (SC). This extended smart sensor model is depicted in Figure 5.3. As can be
seen there, the SC is connected to the general-purpose microcontroller. All security-related oper-
ations and storage of confidential information is performed by the SC. All other operations such
as data acquisition or aggregation are performed by the more powerful general-purpose microcon-
troller. This principle of splitting storage and execution environment into a normal and protected
world is often referred to as security by isolation [46]. The SC provides the following three main
functionalities to the overall system functionality:

NFC interface. To facilitate NFC-based configuration updates, the SC adds NFC functionality
to the smart sensor. This NFC interface is not only used for data transfer, but is also capable
of powering the SC if an NFC reader is put into close proximity. The NFC interface only acts
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as a tag, and thus, is considered a passive NFC device that is not capable of communicating
with other passive NFC devices. Data that is sent via this interface is processed by the SC.

Protected storage. The SC provides tamper-resistant storage that is used for storing any con-
fidential information such as encryption keys. Even if an adversary is able to gain physical
access to the device, the adversary is efficiently hindered from extracting any information
by attacks such as side-channel attacks.

Protected execution. All security-relevant operations are executed in the SC’s protected exe-
cution environment. Similarly to the protected storage, the protected execution environment
also is tamper-resistant. That is, even physical attacks such as side-channel attacks that may
be used to extract keys are efficiently mitigated.

Extended Smart Sensor

Microcontroller Sensor

Network
Interface

Sensing
Interface

Intelligent
Functions

Sensor
Interface

Data
Interface

Security Controller

NFC
Interface

Protected
Storage

Protected
Execution

Figure 5.3: Block diagram of extended smart sensor model.

5.3 Secured Smart Sensor Configuration

For applying configuration updates to smart sensors in a secured way using a mobile configuration
device and NFC as communication technology, the general system model and the extended smart
sensor model already presented in Section 5.2 are used. This section presents the implemented
protocol and the respective security measures that were taken to protect the confidentiality, in-
tegrity, and authenticity of transferred configuration data. The content of this section is mainly
based on work published in the paper Secured and Easy-to-Use NFC-Based Device Configuration
for the Internet of Things [193].

To evaluate the presented approaches, the following three requirements regarding usability, se-
curity, and performance are defined:

1. Usability. The usability of our presented approach must be measurably better than the
usability of other configuration approaches. Instead of user studies, a comparison to state-
of-the-art configuration methods should be used to highlight the improved usability.

2. Security. A threat analysis should be performed to highlight security issues of unprotected
configuration interfaces. Our presented approach should mitigate the identified security
issues. Residual risks should only remain for issues that are infeasible to mitigate.

3. Performance. The performance of our presented approach must be evaluated based on the
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overall time that is consumed when applying a configuration update. The time should not
exceed 1 s for a reasonable configuration size such as 1 kB.

5.3.1 Untrustworthy Mobile Configuration Device

As already mentioned in Section 5.2, any OTS smartphone that offers NFC capability should be
usable as a mobile configuration device. Since the integrity of software running on such a device
cannot be easily verified, we consider the device untrustworthy. As a consequence, configuration
data should not be readable on the mobile configuration device but rather should be transferred
end-to-end protected from the configuration back-end to the smart sensor. That is, the mobile
configuration device acts as a gateway between configuration back-end and smart sensor.

5.3.2 QR / NFC Hybrid Approach

Since NFC is used for the smart sensor’s configuration interface, configuration data from the
mobile configuration device to the smart sensor is transferred using NFC. However, transferring
data from the configuration back-end to the mobile configuration device using the same technology
would require so-called NFC readers. This may be acceptable in a setting were a large number
of smart sensors are managed by our presented approach, for instance, in a company. However,
for end-users a requirement for an additional NFC reader would significantly increase the cost of
such a configuration approach, and thus, would lead to end-users refusing to use the presented
approach. We therefore suggest a Quick-Response (QR) Code and NFC hybrid approach, as
depicted in Figure 5.4. In a configuration update process, the following two phases need to be
performed:

1. Configuration data is edited on the configuration back-end’s User Interface (UI). After
finishing the editing of configuration data, a QR code is shown by the UI which needs
to be scanned by the mobile configuration device. This QR code then transfers the latest
configuration data from the configuration back-end to the mobile configuration device.

2. Configuration data that is stored on the mobile configuration device can be transferred to
any smart sensor that is equipped with an NFC interface.

Since the amount of data that can be encoded in a QR code is limited to a maximum of roughly
2900 byte [194], we propose two different modes of operation for QR-code-based data transfer.

Inline. If the configuration that should be transferred is smaller than 2900 byte the complete
configuration can be encoded in the QR code. Therefore, we denote this mode of operation
as inline QR code. These inline QR codes do not require an active network connection on
the mobile configuration device and thus would also work on smartphones without network
coverage, for example, in industrial settings.

URL. If the size of configuration data that needs to be transferred is larger than 2900 byte the
QR code only contains an Uniform Resource Locator (URL) pointing to the configuration
data on the configuration back-end from where it needs to be downloaded using a working
network connections such as Wi-Fi or 3G/4G. Therefore, this type of QR code is denoted as
URL QR code.
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Payload
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Figure 5.4: Hybrid approach used for transferring configuration data.

5.3.3 Security Measures

The extended smart sensor model that was already presented in Section 5.2.1 already highlights the
increased security due to mitigating physical attacks that may target the smart sensor. However, as
pointed out in Section 2.6.1, NFC communication can be eavesdropped up to a distance of 10m.
Also, unprotected QR codes can easily be read by any device that is equipped with a camera. Since
configuration data may contain confidential information, additional security measures need to be
taken in order to protect configuration data that is transferred either via QR code or via NFC in
our approach. To protect the confidentiality, integrity, and authenticity of configuration data, AE
is used in our approach. Also, the following information is added to the encrypted configuration
data:

Title

16 Byte

Cipher Spec

2 Byte
Encrypted Payload

Version

2 Byte

Validity

4 Byte

Sensor ID

4 Byte

Plaintext

Configuration Data

MAC

Figure 5.5: Protected configuration packet that is transferred in our approach.

Version. The version number identifies the specific configuration that should be applied. This
information protects the smart sensor from replay attacks were an outdated configuration
version should be applied over a newer configuration version.

Validity. Each configuration has a certain validity until which it can be applied to the smart
sensor. This information protects the smart sensor from valid but never applied configuration
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packets that an adversary may want to apply.

Sensor ID. The sensor ID defines for which smart sensor the configuration package is intended.
This protects the smart sensor from attacks where an adversary is capable of capturing a
protected configuration packet and subsequently tries to apply this configuration package to
a different smart sensor.

In addition to the encrypted information, the following plaintext information is also transferred:

Title. The title of the respective configuration packet. This information helps the end-user to
identify the correct configuration and is only transferred from configuration back-end to
mobile configuration device.

Cipher spec. The cipher spec field is used to define which encryption algorithm and which key
length should be used for the AE algorithm. For example, AES-GCM with a key length of
256 bits may be configured in this field. Therefore, the cipher spec information needs to be
transferred to the smart sensor.

MAC. The MAC that is generated by the AE algorithm in the encrypt-then-MAC approach. It
has to be noted that this differs to the publications [193,195] on which this chapter is based.
This information also needs to be transferred to the smart sensor.

Apart from the above-mentioned title information, all other data is transferred in both ap-
proaches, via QR code from configuration back-end to mobile configuration device as well as
from mobile configuration device to smart sensor. That is, the confidentiality, integrity, and au-
thenticity of configuration data is at all times protected by AE.

After transmitting a configuration package to the smart sensor, all checks that are shown in
Figure 5.6 are performed. The mobile configuration device is informed whether the configuration
was successfully applied or not, but no reason is given in case of error.

AE verified?

Configuration Update

Sensor ID 
matches?

Version > 
curr Version?

Reject Update

Accept Update

Configuration
still valid?

Y Y Y

Y

NNNN

Figure 5.6: Checks that are performed before applying a transferred configuration packet.

5.4 Configuration Attestation

Although the mobile configuration device is notified of successfully applied configuration updates,
no validation regarding the correct usage of configuration data is possible in the previously pre-
sented configuration approach. In addition, protected storage space is limited and non-confidential
configuration parameters such as sampling frequencies could thus be stored at the general-purpose
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microcontroller’s unprotected memory. However, this memory is usually not protected against
malicious activities that might modify its content. Therefore, we suggest to extend this approach
by an attestation mechanism that is presented in this section and that can verify the smart sen-
sor’s configuration data. The content of this section is mainly based on work published in the
paper Hardware-Secured Configuration and Two-Layer Attestation Architecture for Smart Sen-
sors [196].

Since each smart sensor is equipped with an SC for performing secured configuration updates,
a trusted hardware module that can be seen as a Root of Trust (RoT) exists in each device. Ad-
ditionally, in our system model (see Section 5.2) we assume that the configuration back-end is
sufficiently protected against any type of attack. Therefore, the configuration back-end can also
be seen as an RoT. Since the proposed system model includes two potential RoTs, we suggest
denoting the smart sensor’s RoT as Local RoT (LRoT) and the configuration back-end as Global
RoT (GRoT), as shown in Figure 5.7. The general-purpose microcontroller of a smart sensor is
denoted as no trust zone since neither storage nor execution environment provide the high level of
protection that is offered by the tamper-resistant SC.
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No Trust Zone

Microcontroller
Non-confidential configuration data

LRoT

Security Controller
Confidential configuration data

Validated by

GRoT

Validated by

Configuration Back-End
Global Configuration Storage

Figure 5.7: Attestation system model that contains two RoTs.

As outlined in Figure 5.7, both RoTs are used for attestation purposes. The LRoT validates
the general-purpose microcontroller’s memory while the GRoT is used to validate the SC’s state.
However, since we assume the LRoT to be a trusted entity, only a verification process will be
performed instead of attestation, as will be explained later in this section. The verification is used
to synchronize the configuration back-end’s database with the actual applied configuration data
such that the password-free authentication process that will be presented in Section 5.5 can be
implemented. Further advantages of such a two-layered attestation process are as follows:

• Overhead: Compared to traditional remote attestation processes, the network overhead is
minimized since only a reduced amount of data needs to be transferred for verifying the
correctly applied configuration to the GRoT.

• Security: If local attestation is used, network access can be denied to malicious smart
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sensor nodes. Thus, the overall security of a system can be increased. For instance, in a
WSN, nodes need to transfer network traffic of untrusted nodes during a remote attestation
process. During this process, the malicious node already could perform harmful activities
such as compromising the routing tree of such a network. If such nodes are locally attested,
nodes only need to communicate with trustworthy neighbouring nodes.

Although both RoTs perform validation tasks, the actual processes differ and thus, are discussed
in detail in the following two sections.

5.4.1 Local Attestation

Non-confidential data on the general-purpose controller comprises configuration data as well as
application code (binaries). Since malicious configurations and malicious code can be harmful to
the smart sensor’s functionality, we suggest to attest both using the LRoT. However, due to the
different nature of these two components, we propose to use two different attestation techniques.

Application code. Applications (binaries) usually consist of static memory content that is
changed less frequently than other memory content. According to Yang et al. [67], the mem-
ory required by binaries can usually be assumed to be two orders of magnitudes larger than
memory required for other data such as configuration data. Thus, we suggest using basic bi-
nary attestation or advanced versions thereof such as pseudo-random memory traversal [65]
to attest application code. Due to the large size, limited memory, and using advanced bi-
nary attestation methods, attacks such as pre-computation or memory copy attacks can be
mitigated. To facilitate an easy binary attestation process, additional so-called attestation
information needs to be included in each configuration package.

Non-confidential configuration data. Since configuration data requires less memory com-
pared to application code, memory copy attacks would be easy to implement. Therefore, we
propose to use so-called property-based attestation [197] for attesting non-confidential con-
figuration data. Such an attestation method requires functionality that is currently not avail-
able in many OTS tamper-resistant components such as Trusted Platform Modules (TPMs).
However, the required functionality can be implemented in the protected execution envi-
ronment that is provided by the SC that we propose in our extended smart sensor model
(see Section 5.2.1). To implement property-based attestation, certificate information is re-
quired which can also be included in configuration packages that are used when applying
configuration updates.

Both of these approaches are then jointly used by the LRoT to decide if network access is
granted or denied to the respective smart sensor node. Denying network access can be achieved by
protecting information such as the network stack with methods such as so-called sealed-storage.

5.4.2 Global Attestation

Confidential configuration data is stored in the SC’s protected storage and also protected during
transport by the security measures that are presentd in Section 5.3. Therefore, the correctness
of such configuration parameters can be assumed in our presented architecture and does thus not
need to be attested. However, the correctness of confidential configuration data is still checked to
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synchronize the configuration back-end’s database with the actually applied configurations. For
instance, if a malicious service technician does not apply security updates to any or some selected
sensors, the GRoT is capable of detecting such behavior. This attestation step can either also
use property-based attestation or, to limit the overhead of transferred data, only report the applied
configuration version to the configuration back-end. A functioning synchronization between smart
sensor configuration and the configuration back-end is then crucial for the functionality of the
password-free authentication that is presented in Section 5.5.

An overview of the validated memory content and the applied validation techniques of both, the
LRoT and GRoT, are shown in Figure 5.8. This figure also highlights the two-layered attestation
approach and the result both attestation layers entail.

 Configuration Back-End 
Database 

- GRoT

Security Controller - LRoT

General-Purpose Microcontroller - Untrusted

Application
(Binaries)

Non-Confidential
Configuration

Dynamic Memory
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(e.g. Keys, 

Network Stack, ...)
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Sensors
Configuration
Information

Validate

Validation for Network Access

Validation to Update Information
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Figure 5.8: Two-layer attestation in detail.

5.5 Password-Free Authentication

The secured smart sensor configuration approach combined with configuration attestation is capa-
ble of protecting confidential configuration data and synchronizing the state between smart sensor
and configuration back-end. However, one drawback of the presented approaches is that for the
applied symmetric encryption schemes, key material needs to be distributed in the system. The
following two methods could be used to mitigate the key distribution problem:

Asymmetric cryptography. Asymmetric cryptography is widely used to mitigate the key dis-
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tribution problem. However, compared to symmetric cryptography, longer keys are required
and the performance of asymmetric cryptography in general is worse compared to the per-
formance of symmetric cryptography [198].

KE protocols. Using KE protocols, involved entities can jointly agree on a common shared se-
cret over an insecure communication channel. Thus, keys do not need to be distributed
before having to establish a secured communication channel. However, traditional KE pro-
tocols such as DH do not provide authentication, and thus, any two entities could agree on
a common shared secret.

As argued above, both possible countermeasures come with a drawback that needs to be mit-
igated. Therefore, we propose to use an EKE protocol for authenticating while agreeing on a
common shared secret. In particular, we propose to use the so-called Simple PAssword-based
KE (SPAKE) algorithm proposed by Abdalla et al. [199]. In this protocol, an EKE can be per-
formed that relies on the well-known DH KE protocol. Figure 5.9 shows the protocol’s principle
that is applied to the Elliptic-Curve Diffie-Hellman (ECDH) protocol. The adapted protocol is
presented in this section. The content of this section is mainly based on work published in the
paper Automated Authentication Credential Derivation for the Secured Configuration of IoT De-
vices [200].

Alice agree on public Bob
parameters G,H(·)

a ← rand(Fp)

A ← aG

M ← hAG

A∗ ← A + pM

b ← rand(Fp)

B ← bG

N ← hBG

B∗ ← B + pN

N ← hBG

KA ← a(B∗+(pN)−1)

M ← hAG

KB ← b(A∗+(pM)−1)

K ← KA
!
= KB

SK ← H(hA, hB, A
∗, B∗, p,K)

Figure 5.9: Version 2 of the SPAKE protocol that is based on ECDH. Here, G is the ECC generator point, H(·)
is a one-way function, hA and hB are Alice’s and Bob’s hashed identities, and p is a shared secret
between Alice and Bob that should be based on the current configuraiton Ck in our approach.

We suggest to apply the basic ECDH-based SPAKE2 algorithm that is shown in Figure 5.9, but
base the common shared secret on the current configuration: p := H(Ck). That is, any Session
Key (SK) that is generated by this approach is now based on the currently applied configuration
Ck as well as the standard ECDH principle. This implies that any configuration update will also
automatically change the common shared secret p. For a configuration update that is sent from
Alice to Bob, the following steps are performed:

1. Alice and Bob want to perform a secured configuration update. Both currently share the
common knowledge that the kth configuration Ck is applied by Bob.
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2. Alice now prepares the (k + 1)th configuration Ck+1 for Bob which should be encrypted.
Thus, Alice and Bob perform an EKE based on Ck which yields SKk. Alice uses this key
to protect Ck+1, while Bob uses SKk to decrypt Ck+1.

3. If Bob is able to successfully decrypt and verify the configuration update Ck+1 and success-
fully verify all parameters as explained in Section 5.3, the configuration update is applied
and Alice is notified of the update result by Bob.

4. If Bob successfully applies Ck+1, he and Alice now share the same common secret that
this configuration is applied and can generate new SKs based on this configuration. If the
configuration update is rejected by Bob, he and Alice will still be able to use Ck as a basis
for future KEs.

Device
Manufacturer

Apply Initial 
Configuration

Apply Initial
Configuration

Update
Configuration

Attest
Configuration

Smart
Sensor

Configuration
Back-End

Derive CredentialsDerive Credentials

Figure 5.10: Proposed principle of common shared secrets that are based on configurations. Configuration up-
dates are performed by different entities during the smart sensor’s lifecycle.

Using this principle, configurations and thus common shared secrets between configuration
back-end and smart sensor are synchronized during the smart sensor’s entire lifecycle. The princi-
ple for the entire lifecycle is depicted in Figure 5.10. This principle entails two advantages that are
not only capable of increasing the system’s security but also improve the usability of the system.
These advantages are as follows:

C₀

ID : 0x12345
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USER : root
SECRET :
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ID : 0x12345
SINT : 5min
USER : root
SECRET :

C₀’ 
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Figure 5.11: Example of a configuration update that automatically triggers the creation of a new common shared
secret. If the user changes the sampling interval (SINT ) of a smart sensor, only this value is
changed between initial configuration C0 and configuration C1 in a traditional system. Using our
proposed approach, for both initial configuration C′

0 and subsequent configuration C′
1 a shared secret

is automatically derived.
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• The security of each smart sensor will be improved by the presented approach since one of
the biggest security weaknesses, using default authentication credentials, can be mitigated.
Since any configuration update entails a new configuration version, the common shared se-
cret will also be automatically updated when users update their device’s configuration. That
is, simple configuration updates such as changing the sampling frequency of s smart sensor
entails a new common shared secret between configuration back-end and smart sensor, as
shown in the simple example in Figure 5.11.

• Using this automated shared secret derivation process, neither do users need to change initial
authentication credentials, nor do users need to remember sophisticated username and pass-
word combinations. Instead, the configuration back-end automatically synchronizes with
the configured smart sensor and thus can be seen as a password manager for users. This
however, entails the drawback that the configuration back-end now contains confidential in-
formation that users may not want to share. Therefore, we additionally suggest to support
so-called local and mobile configuration back-ends that only fetch the initial configuration
C0 from the device manufacturer’s configuration back-end and then manage the users con-
figurations going forward. These local configuration back-ends could either be hosted on
a server by the user or running on a mobile device. In both cases, the trustworthiness of
these devices needs to be assumed. The principles of local configuration back-ends and the
resulting system models are shown in Figure 5.12.

Device Manufacturer’s
Configuration Back-End

Local
Configuraiton

Back-End

Smart
Sensors

Device Manufacturer’s
Configuration Back-End

Smart
Sensors

Mobile
Configuration

Back-End

Figure 5.12: On the left hand-side, the user self-hosts a local configuration back-end on a server instance that
is assumed to be sufficiently secured against attacks. On the right-hand side the user relies on the
device manufacturer’s configuration back-end for some smart sensors and uses a mobile configura-
tion back-end for others. In both cases, only the initial configuration C0 is fetched from the device
manufacturer’s configuration back-end.

5.6 Secured NFC Transport-Layer Protocol

The approaches presented in Section 5.3 - Section 5.5 propose a secured configuration approach
that is capable of protecting the confidentiality, integrity, and authenticity of configuration data,
while offering convenience to end users. Since the approach is tailored for configuration tasks, it
offers no flexibility for other tasks. Therefore, in this section we propose a generalized protocol
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that may be used for any task where a protected NFC channel is required. The content of this
section is mainly based on work published in the paper QSNFC: Quick and Secured Near Field
Communication for the Internet of Things [201]. Since our proposed protocol also offers per-
formance benefits compared to other protocols such as TLS, we denote it as Quick and Secured
NFC (QSNFC). These performance benefits make our presented protocol especially suited for
NFC use cases such as our presented NFC-based configuration approach. However, the protocol
is not limited to this use case and therefore not all protocol properties are tailored for requirements
of our presented NFC-based configuration approach (e.g., 0-RTT property).

Since most secured transport-layer protocols are designed to be used in the Internet, the terms
client and server are common in this context. However, in the context of NFC these two terms are
not commonly used. Therefore, we define them first:

QSNFC Client. In general, a client contacts the server and by doing so establishes a connection.
Similarly to that, the QSNFC client also tries to establish a secured communication channel
with the QSNFC server. Since the client is initiating the NFC communication, it can be seen
as the active component in NFC terminology.

QSNFC Server. The QSNFC server is contacted by the QSNFC client in the context of estab-
lishing a secured communication channel as well as in an NFC context. Therefore, the
QSNFC server could be seen as the passive component in NFC terminology.

5.6.1 Secured Transport-Layer

To provide the required flexibility, we propose a protocol that, contrary to most other secured
NFC communication approaches, can be seen as a transport-layer protocol. Thus, the need to
implement application-specific security mechanisms is eliminated. NFC applications can instead
rely on a transparent security layer provided by our proposed protocol. Figure 5.13 shows the
classification in the TCP/IP layer model of QSNFC compared to the protocol stacks of TLS and
Datagram TLS (DTLS). Similarly to these protocols, QSNFC is placed directly underneath the
actual applications and provides its capabilities for secured data transfer to the upper layer. To
transport data, the NDEF protocol is used by QSNFC whereas TLS and DTLS rely on TCP and
User Datagram Protocol (UDP) respectively. NDEF then uses so-called Application Protocol Data
Units (APDUs) to transfer data over the NFC link layer.

IP

TCP/UDP

TLS/DTLS

APDU

NDEF

QSNFC

LAN, WiFi, ... NFC Link Layer

Network Layer

Transport Layer

ApplicationApplication Application Layer

Figure 5.13: Protocol stacks based on the TCP/IP layer model for TLS/DTLS and QSNFC respectively.
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5.6.2 0-RTT Property

To facilitate the secured communication channel that is provided by QSNFC, a KE process needs
to be performed. Traditional protocols such as TLS (until version 1.2) require two round trips for
this KE process. First, parameters such as the used algorithm or key lengths are agreed on in the so-
called client hello-server hello round trip communication. After that, the actual KE is performed.
Contrary to that, so called 0-RTT protocols do not require these two round trips; instead, protected
data transfer can immediately be started, at least for recurring connections. Such recurring con-
nections are defined as connections between communication partners that already communicated
with each other in the past. Figure 5.14 illustrates the communication principle. The upcoming
TLS version 1.3 [202] as well as our proposed protocol QSNFC support this 0-RTT principle.
Similarly to Google’s QUIC protocol [203] that also supports 0-RTT connection establishment
for UDP connections, QSNFC uses cached information to speed up connection establishment for
recurring connections.

TLS 1.2 Client TLS 1.2 Server QSNFC Client QSNFC Server

Figure 5.14: Round trips required for TLS 1.2 and QSNFC respectively.

5.6.3 QSNFC Protocol in Detail

In this section, the QSNFC protocol that we propose as a quick and secured NFC transport-layer
protocol is discussed in detail.

5.6.3.1 Connection Establishment

Since the 0-RTT property can only be fulfilled for recurring connections, we propose to define a
so-called initial handshake as well as subsequent handshakes for QSNFC.

Initial handshake. On the first connection attempt, a client has no information about the respec-
tive server and a so-called initial handshake thus needs to be performed between these two entities.
To initiate the handshake, the client sends a so-called inchoate Client Hello (CH) message to the
server that only contains the client’s ID, a fresh nonce, and the crypto primitives that are supported
by the client.

The server recognizes this inchoate information and replies with a Reject (RJ) message that
contains the server’s long-term DH public value, a fresh nonce, a certificate chain, a signature of
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the long-term DH public value, the server’s ID and a timestamp protected by AE, and a signature
of the nonce that was received by the client. If the client is already in possession of a (partial)
certificate chain (e.g. from previous sessions), an optional certificate hash chain is also included in
the inchoate CH message. The server then only returns required certificates instead of the complete
certificate chain. The complete initial handshake is shown in detail in Figure 5.15.

Upon receiving the server’s RJ message, the client can verify the integrity of both nonces, the
selected crypto primitives, and authenticate the server’s long-term DH public value using the re-
spective certificate chain and signature. After successfully verifying this information, the client
sends a complete CH message containing the client’s ephemeral DH public value as well as an op-
tional payload that is already protected by a key generated from the server’s long-term DH public
value and the client’s ephemeral DH public value.

If a handshake fails, the server responds with an Abort (AB) message instead of a RJ message.
Potential causes for aborting a handshake are, for instance, insufficient crypto primitives proposed
by the client or from forged messages that are detected. AB messages contain the server’s long-
term DH public value and a signature thereof, a fresh nonce, the reason for aborting the handshake,
as well as a signature of the client’s and server’s nonces and the abort reason. Upon receiving
an AB message from the server, the client has to restart connection establishment via an initial
handshake.

Subsequent handshake. In case the QSNFC client is already in possession of the QSNFC
server’s long-term DH public value (via a previous initial handshake), a shared secret can already
be calculated. Thus, the client can send a so-called complete CH message without having sent an
inchoate CH message first. The complete CH message contains the client’s ephemeral public key
as well as a fresh nonce protected by AE. Since the client is already in possession of the server’s
long-term DH public value, a shared secret using this value and its own ephemeral public key can
be calculated. Then, data can be secured by this key and included into the complete CH message.

If the subsequent handshake is successfully verified by the server, a Server Hello (SH) message
is sent by the QSNFC server as response. This SH message contains the server’s ephemeral DH
public value and a fresh nonce, as well as optional data that is protected by AE. The complete
subsequent handshake process is shown in detail in Figure 5.16.

After QSNFC client and server are in possession of each others’ ephemeral DH public value, a
so-called forward-secure key can be calculated. That is, after the SH message is received by the
client, both communicating partners can switch to encrypting packets using this forward-secure
keys. In addition, forward secrecy is also provided by using nonces and a message counter for
client and server messages. This information provides freshness of all following messages and is
sent as so-called additional authenticated data in addition to data that is protected by AE.

Standard data. After the subsequent handshake is completed, client and server can proceed in
their communication with sending so-called Standard Data (SD) messages. These messages can
be sent by the client as well as by the server, and thus, enable bidirectional NFC-communication
that provides forward secrecy. The details for SD messages are shown in Figure 5.16. These
messages include the sender’s identity as well as data protected by AE.
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QSNFC Connection Establishment (initial handshake)
Client Server
niCH ←$RAND(1n)

inchoate CH: idc, niCH , prim, certc

(pkl, skl)←$KGen(1n)

nrj ←$RAND(1n)

t← AEskl
(ids‖time)

sk ← Sigcks(pkl)

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . accepted handshake . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
s← Sigskl

(niCH‖nrj‖
sprim‖certc)

RJ: ids, pkl, certs, s, sk, sprim, nrj , t

iv ← h(niCH‖nrj) iv ← h(niCH‖nrj)

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . aborted handshake . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
s← Sigskl

(niCH‖nrj‖
abort)

AB: ids, pkl, s, sk, abort, nrj

Figure 5.15: Initial handshake: The parameters are: the client’s and server’s ID (idc|s), the client’s supported
crypto primitives (prim), the crypo suite (sprim) chosen by the server, the long-term DH public and
secret value (pkl, skl), cached certificates (optional, from previous sessions) by the client (certc), the
server’s certificate chain (certs), niCH & nrj (both fresh nonces of length n bytes). RAND(1n)
denotes a function which returns n random bytes. The key cks is the private key corresponding to
the server certificate’s public key.

5.6.3.2 Connection Tear-Down and Cached Data Replacement

Although in the context of NFC no connection concept exists, we introduced connections by the
previously proposed QSNFC connection establishment process. During this process, key material
and other information regarding the other communication partner are exchanged and cached at
the respective entity. Still, since there is no concept such as out-of-order packet reception or
multiple streams that are known from TCP, no dedicated packet for ending a connection is required
in QSNFC. However, since storage space may be constrained, only a limited amount of data
regarding communication partners can be stored. Therefore, we propose to use cache replacement
strategies for managing stored information.
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5.6.4 Example Use-Cases and Limitations of QSNFC

As mentioned previously, QSNFC introduces client and server roles in NFC. Depending on the
context in which the proposed protocol is applied, these roles might switch due to the QSNFC’s
requirements. This is due to the fact that the client must be able to validate the certificate chain
and a higher ranked certificate might thus need to be fetched from a third entity.

Smartcard and Reader. In this scenario, the NFC reader acts as passive device and provides
the required energy to power the smartcard. Therefore, the reader is assigned the client role
since only this device can initiate the connection establishment. In addition, only the reader
will have the capability to validate the smartcard’s (server’s) certificate chain if a networking
connection is required to do so.

Smartphone and Smart Sensor. Since most modern smartphones include NFC-reader capa-
bilities, the smartphone is the entity that initiates the QSNFC handshake and thus acts as
the QSNFC client. All modern smartphones are equipped with the option of connecting to
the Internet which also is required if the IoT device’s (server’s) certificate chain needs to be
validated using a network connection.

Machine-to-Machine (M2M). In an M2M communication scenario such as Robot-to-Machine
communication, the client and server roles generaly cannot be pre-determined. Contrary
to the first two scenarios, these roles should be assigned as required by the connection
establishment sequence. In addition, it has to be considered that the client may need to be
able to verify the server’s certificate chain using a network connection.

Limitations. The proposed QSNFC protocol includes the validation and thus authentication of
the QSNFC server. However, the QSNFC client is not authenticated in the proposed protocol. This
is by design due to common scenarios such as smartcard and reader where one device is resource-
constrained and thus neither offers sufficient storage for certificate chains nor offers the capability
of using a network connection for validating these certificate chains.
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QSNFC Connection Establishment (subsequent handshake and data transfer)
Client Server
(pkc, skc)←$KGen(1n)

ski ← (skc, pkl)

ki ← KDF (ski, iv)

ncCH ←$RAND(1n)

c← AEki(ncCH‖data, pkc)
complete CH: idc, pkc, ncCH , c, t

nsh←$RAND(1n)

ski ← (skl, pkc)

ki ← KDF (ski, iv)

(pks, sks)←$KGen(1n)

c← AEki(nsh‖data, pks)
SH: ids, pks, c

sk ← (skc, pks) sk ← (sks, pkc)

k ← KDF (sk, iv) k ← KDF (sk, iv)

iv ← h(ncCH‖nsh) iv ← h(ncCH‖nsh)

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . standard data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
aad← h(iv + #SDc)

c← AEk(data, aad)

SD: idc, c

aad← h(iv + #SDs)

c← AEk(data, aad)

SD: ids, c

Figure 5.16: Subsequent handshake and standard data: The messages above the dotted line represent the subse-
quent handshake. The messages underneath the dotted line represent SD messages which can be
sent bidirectionally. The function AEk(data, aad) denotes AE of data including additional authen-
ticated data (aad) using key k. The function h(·) denotes a one-way function. The parameters for the
subsequent handshake are: the client’s and server’s ephemeral DH public and secret value (pkc|s,
skc|s), the initial key ki, the final key k and ncCH & nsh (both fresh nonces of length n bytes).
The function KDF (·) generates a shared key that is used by client and server for AE. #SDc|s are
message counters for client and server messages respectively and are used to verify freshness.
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Evaluation

In this chapter, we present evaluation results for the four contributions of this thesis that were listed
in Section 1.4. Depending on the context, we evaluate the feasibility, performance, reliability,
efficiency, or usability of our presented approaches and also discuss potential limitations.

6.1 NCS Attacks

In this section, we highlight the impact of our presented NCS attacks on a system and also dis-
cuss the feasibility of our presented bit-flip attacks and consider limitations of the proposed JEEC
countermeasure. We presented parts of this evaluation already when discussing potential counter-
measures in Section 4.1.

6.1.1 Impact

To evaluate the impact on a system controlled by a networked controller, the step response of the
system without any maliciously modified packet or lost packet is analyzed. This step response
is shown in Figure 6.1. As can be seen, the controlled system reaches the desired reference in
200ms, minimally overshooting the desired value. If the system is attacked such that maliciously
modified sensor measurements are used by the control algorithm, or packets are dropped by the
applied security mechanism, the system may become unstable. Figure 6.2 shows the step response
for a system where 25% of all packets are lost due do being maliciously modified. This system
already requires 300ms to reach the desired reference value with more overshooting happening.
The system shown in Figure 6.3 is evaluated with 50% packet loss. This leads to a system that
overshoots the desired reference value a lot during the entire analyzed time window of 800ms.

6.1.2 Feasibility of Attacks

As shown in Figure 4.5, a limited number of BERs can lead to PERs that have a highly negative
impact on the functionality of an NCS. We presented multiple scenarios, where a BER of 10−3

may lead to PERs of 0.5 or even higher. As we have shown, this may result in an unstable system
and lead to undesired system behavior that can even cause physical damage or threaten human
lives. Contrary to other attacks such as DoS attacks where the adversary usually needs more
resources to attack a system, only a limited number of deliberately induced errors is sufficient to
bring a system down in our presented bit-flip attack.
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Figure 6.1: Step response of the evaluated system without any maliciously modified or lost packets.
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Figure 6.2: Step response 25% packet loss.
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Figure 6.3: Step response 50% packet loss.

6.1.3 Limitations of Countermeasure

The presented countermeasure of using JEEC also entails the following two drawbacks:

1. If a communication technology such as Ethernet is used, at least EDC are already applied
by the network stack to detect faulty packets and to request retransmission. Thus, error
handling might be redundant to some degree if JEEC is used. However, we argue that
JEEC still is a feasible countermeasure to mitigate the presented bit-flip attacks due to the
following three reasons: (i) By using JEEC, no assumption regarding the used networking
technology needs to be made when modeling an NCS. (ii) Unpredictable retransmissions
of packets may have a negative impact on the NCS [204], (iii) JEEC that is performed in
a single step offers higher efficiency. However, examining single-step JEEC schemes is
considered out of scope of this thesis due to the topic’s complexity.

2. Applying encryption and FEC introduces additional delay to the NCS. However, determinis-
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tic delays can easily be modeled and accounted for in NCSs [205]. To provide deterministic
delays, we propose to use dedicated hardware components for encryption/decryption as well
as for FEC, as shown in Figure 6.4. By using such dedicated hardware components, a fixed
delay can be provided. However, these components will also increase device costs.

Plant / 
Process

SensorActuator

Controller

Communication Channel

u y‘

yu‘

Potential
Adversary

r

ENSCSCDE

DESCEN

Figure 6.4: NCS system model extended by tamper-resistant SC, FEC encoding (EN) and decoding (DE).

6.1.4 Proof of Concept

A proof-of-concept implementation that demonstrates the feasibility of our presented approach
was realized using the following hardware components:

1. 12V DC motor with optical encoder.

2. First Raspberry Pi3 to read the encoder and send values over its Ethernet interface.

3. Second Raspberry Pi3 with two Ethernet interfaces (one USB-to-Ethernet) that acts as the
controller. Cryptographic operations were implemented using OpenSSL.

4. Third Raspberry Pi3 with a Raspberry Pi Motorshield that acts as the actuator that includes
the motor driver.

Using this setup, the impact of our proposed bit-flip attacks was demonstrated by randomly
modifying single bits of the received sensor measurments. Depending on the setup (plaintext,
AE, JEEC) different behaviours were demonstrated. However, no performance evaluation was
performed in this setup since all cryptographic operations were performed in software. This is due
to the reason that no available Raspberry Pi3 crypto shield did support symmetric cryptography.

6.2 Sensor-Based Covert Channels

In this section, we present evaluation results for the implemented sensor-based covert channels.
We evaluated the presented covert channels regarding their achievable data rates and reliability
on the following three different platforms. For each platform we list the sensors and (if required)
registers that we exploited. We also discuss limitations of our covert channels.

1. CC2650 SensorTag running TI-RTOS 2.20 as OS

a) Texas Instruments OPT3001 ambient light sensor, Configuration, Low Limit,
High Limit registers
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2. Raspberry Pi 3 including the SenseHAT extension, running Raspbian Strech as OS

a) STMicroelectronics HTS221 humidity and temperature sensor, HTS221 TMP OUT L
and HTS221 HUM OUT L registers

b) STMicroelectronics LPS25H pressure sensor, LPS25H REF P XL,
LPS25H PRESS OUT XL, LPS25H TEMP OUT L, LPS25H THS P L,
LPS25H RPDS L registers

3. OnePlus5 as well as Android Emulator, both running Android 8.0 as OS

a) Ambient light sensor (generic interface)

6.2.1 Performance

The data rates we achieved on all three evaluation platforms are shown in Figure 6.5. Of the three
used evaluation platforms, all presented types of sensor-based covert channels could only be im-
plemented on the Raspberry Pi 3 with SenseHAT extension board. The CC2650 SensorTag only
allowed to implement covert channels based on exploiting writeable registers, while on Android’s
managed sensor framework only covert channels based on triggering sensor readings could be
implemented. One interesting aspect we noticed is that the covert channels implemented on the
CC2650 SensorTag achieved higher data rates than the same implementations on the Raspberry
PI 3. This is due to the deterministic scheduling principle of TI-RTOS where processes are sched-
uled alternately, compared to Raspbian’s non-deterministic approach. The data rates achieved by
covert channels based on triggering sensor readings achieved considerable lower data rates com-
pared to covert channels based on exploiting writeable registers. That is due to the fact that the
sensing process itself takes a certain amount of time and thus limits the number of interactions that
can be used for stealthy data transfer in a covert channel. Compared to other covert channels that
are based on exploiting hardware such as caches or memory, the achieved data rate is relatively
low. The data rate of our presented covert channels is limited by the performance of a sensor reg-
ister’s read and write operations. In case of a covert channel based on triggering a sensor, the data
rate is limited by the sampling frequency of the respective sensor. Additionally, the introduced
overhead due to our mechanisms that ensure a reliable data transfer lower the achievable data rate.

Figure 6.6 demonstrates different static payload sizes under different noise profiles. That is, we
simulated user processes that interact with the sensor in different intervals and thus interfere with
our covert channel’s data transfer. For instance, the process labelled User 5s in Figure 4.14(a)
reads the sensor every five seconds and potentially interferes with an ongoing data transfer of
our covert channel. One or even multiple of such user processes that access the same sensor
as our covert channel may be running in a real-world setting. For this evaluation, 4 kB of data
where transferred over a covert channel that is based on triggering sensors. As can be seen, larger
packet sizes decrease the overall transfer time in most scenarios due to causing less communication
overhead. However, if other user processes interact with the sensor more frequently, packet loss
is too high and transfer time grows significantly. Our proposed dynamic packet size approach,
however, is capable of mitigating such issues.
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Figure 6.6: Data rates on Raspberry PI 3 with different static payload sizes. The specified user intervals indicate
the frequency (interval between measurements) in which a user process accesses the sensor and thus
interferes with our covert channel.

6.2.2 Reliability

To evaluate the covert channel’s reliability, we test transferring an image of a sensor over a noisy
channel. Figure 6.7 shows the source image as well as the received image and highlighted errors
in the image if error detection is disabled and no retransmissions are thus made. Enabling EDC
and retransmissions in a channel without noise adds an additional overhead of 6% in transmission
time. If we introduce a user process that accesses the sensor every 10 s, transfer time is increased
and roughly 10% of the packets needed to be retransmitted (123 out of 1062 required packets).
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However, the image is then transferred successfully without any errors.

(a) Source. (b) Received. (c) Errors.

Figure 6.7: Data transfer with EDC and retransmissions disabled.

Finally, we evaluated dynamic switching of packet sizes which should improve covert channel
performance in noisy settings. Figure 6.8 shows a scenario where a user process starts to access
the sensor every second while data transfers are already running. In this figure, each black dot
represents the user process accessing the sensor while each blue, red, and green dot represents a
successfully transferred data packet by the respective covert channel. In the evaluated scenario,
we compare two static packet sizes (11 bit and 37 bit) with our proposed dynamic packet size
approach. The dynamic approach is configured such that it can switch between packet sizes of 11,
20, and 37 bit. We can identify three phases in this evaluation:

• 0 s – 30 s: There is no interference. Both covert channels with static size transfer packets
with their respective payload size. The dynamic size covert channel also transfers packets
with a payload size of 37 bit since there is no failed transfer.

• 30 s – 60 s: A user process starts to interfere, accessing the sensor every second. Both,
the static covert channel and the dynamic covert channel with 37 bit payload size, cannot
transfer packets anymore, while the covert channel with 11 bit payload size can transfer
packets with a lower frequency due to losing some packets.

• 60 s – 80 s: The dynamic packet size approach has successfully decreased packet size and
synchronized this information between sender and receiver. Data transfer starts again using
20 bit payload sized packets. As packets are still lost, the payload size is further decreased
as can be seen on the smaller intervals after 70 s.

Although the payload size chosen by the dynamic approach might not be the optimum choice for
a fixed setting, the approach allows the covert channel to function reliably for changing settings.
Therefore, we think our proposed approach offers the best reliability for an unknown setting where
infrequent interfering sensor accesses need to be expected.

6.2.3 Limitations

Depending on the type of covert channel implementation that is chosen, read as well as write
access to the sensor might be required. In addition, both involved processes need to be able to
alternately access the sensor. Depending on the technology used to access the sensor, advanced
methods such as multi-master approaches might be required, for instance, when using I2C.
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Figure 6.8: Evaluation of dynamic packet size.

6.3 Secured Sensor Configuration

In this section, our proposed secured sensor configuration approach is evaluated. We evaluate
the usability based on a real-world example, conduct an extensive threat analysis to highlight the
achieved level of security, discuss performance of secured NFC-based data transfer, and finally list
limitations of our proposed approach. For all performed evaluations, the evaluation stick shown in
Figure 6.9 that was developed in cooperation with our industrial partner Infineon was used. This
stick includes an SC and offers an NFC as well as a Universal Serial Bus (USB) interface.

Figure 6.9: NFC + Security enhancement evaluation stick.

6.3.1 Usability

To evaluate the usability achieved by our proposed secured configuration approach, we compare
the steps necessary to change initial configuration parameters for (i) our proposed approach and
(ii) the well-known temp stick smart sensor3 in the following two lists. The steps required by this

3 https://tempstick.com/manuals/setup-guide-temp-stick-th.pdf
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sensor can be seen as state of the art since also mostly all other pairing mechanisms (e.g., Google’s
Chromecast) require the installation of an application and the creation of a user account.

Our Approach

1. Install configuration app

2. Go to configuration website

3. Log in using sensor ID and password

4. Update current configuration

5. Read QR code with smartphone

6. Touch smartphone and sensor
to transfer configuration

Temp StickTM

1. Install configuration app

2. Go to configuration website or launch app

3. Create account or log in using existing one

4. Pair sensor with account using sensor ID

5. Connect smartphone to WiFi network Sensor
Setup <sensor ID>

6. Open website http://10.10.1.1

7. Configure WiFi network and WiFi password

8. Connect smartphone to previous WiFi network

9. Go to configuration website or open configura-
tion app

10. Update current configuration and apply to sen-
sor via Internet and WiFi

We argue that from these two lists the higher usability of our approach for initial configuration
updates can be concluded. Especially for non-technophile persons the changing of WiFi networks
and opening websites using an IP address might be a complex task that requires assistance. How-
ever, it has to be noted that for recurring configuration updates the required steps are similar for
both compared approaches.

6.3.2 Security

To evaluate the level of security that can be achieved by our secured sensor configuration approach,
we conduct a threat analysis [206]. In this analysis, the involved Entities (E) and Assets (A) that
need to be protected are identified first. We then list potential Threats (T) with corresponding
Countermeasures (C) that are provided by our proposed approach. If a threat cannot be entirely
mitigated by our approach, the Residual Risks (R) are also discussed. The impact of all threats
is categorized according to the STRIDE [207] threat model (Soofing, Tampering, Repudiation,
Information disclosure, Denial-of-Service, Elevation of privileges).

6.3.2.1 Entities

The following entities are identified in our proposed secured sensor configuration approach. To
better specify the scope of this thesis, we list assumptions that were made about certain entities.
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E1 The sensor that is being configured.

E2 The owner of the sensor that is being configured.

E3 The device manufacturer of the sensor that is being configured.

E4 The device manufacturer’s configuration back-end. Since we do not cover security aspects
for this entity in this thesis, we assume that the entity is sufficiently secured against attacks
such that no loss of confidential data is caused by this entity.

E5 The device owner’s local or mobile configuration back-end. We also assume that this entity
is sufficiently protected against attacks such that a loss of confidential data needs to be
considered here.

E6 A person that applies configuration updates to the sensor that is being configured. This entity
might be different to the device owner, especially in industrial settings where potentially
untrusted personnel is used to apply configuration updates.

E7 An adversary that intends to perform malicious activities. We do not make any assumption
about the score of attacks the adversary may be able to perform. However, for this analysis
we limit attacks to the sensor’s configuration interface. For this interface, we consider both
remote and local physical attacks.

6.3.2.2 Assets

The following assets that need to be protected are identified in our threat analysis.

A1 The correct functionality of the sensor that is being configured must be protected. Our
proposed configuration approach should prevent malicious activities that compromise this
correct functionality in any way.

A2 Configuration data that is transferred may include confidential information. Thus, it is es-
sential to protect its confidentiality, integrity, and authenticity.

6.3.2.3 Threats

After identifying the entities and assets for this threat analysis, the actual threats are finally identi-
fied. We do not claim that the presented list of threats is exhaustive but rather is a list of threats we
at the time of writing this thesis believe are most relevant for the security of the proposed secured
sensor configuration approach.

T01 The sensor’s configuration interface might be subjected to remote attacks.

STRIDE: S, R, I, D, E

C01 Threat is mitigated by using an NFC-based configuration interface that requires the
adversary to be in close proximity to target the configuration interface.

T02 An adversary that is in close proximity to the sensor’s configuration interface might try to
eavesdrop configuration data that is transferred to the sensor via the proposed NFC interface.

STRIDE: I
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C02 Threat is mitigated by protecting the confidentiality of transferred configuration data
with AE and the proposed protocol.

T03 An adversary that is in close proximity to the sensor’s configuration interface might try to
manipulate configuration data that is transferred to the sensor via the NFC interface.

STRIDE: S, R, E

C03 Threat is mitigated by protecting the integrity and authenticity of transferred configu-
ration data with AE and the proposed protocol.

T04 An adversary that is in close proximity to the sensor’s configuration interface might try to
capture valid configuration packets and try to apply these packets either at other sensors or
at a later time at the intended sensor to negatively impact its functionality.

STRIDE: S, R, D

C04 These so-called replay attacks are mitigated by our proposed approach where sensor
ID and configuration version number are included in the configuration packets. Thus,
the sensor is capable of rejecting malicious configuration packets.

T05 An adversary might be capable of eavesdropping NFC communication during the key agree-
ment process. Subsequently, the adversary could be able to eavesdrop and manipulate trans-
ferred configuration data.

STRIDE: S, R, I, D, E

C05 Our proposed authenticated KE approach is based on the DH KE algorithm. This
algorithm is robust against MITM attacks during KE.

T06 An adversary might learn the sensor’s initial configuration C0 or any subsequent configura-
tion Ck which are used for authenticated KE. In addition, the adversary might also be able
to capture any ongoing data that is transferred. The adversary thus might be able to infer the
current session key and decrypt transferred confidential information.

STRIDE: I

C06 Due to adding random information that is generated by the true random number gen-
erator of the proposed SC, the adversary is not able to learn all information that would
be required to derive session keys that both involved entities agreed on.

T07 The end-user might not change the initial configuration C0 and no authentication credentials
can thus be derived automatically. The adversary easily can authenticate itself against this
device and perform malicious activities.

STRIDE: S, T, R, I, D, E

C07 Although our approach cannot force end-users to change their initial configuration, a
smart sensor running its default configuration is not that useful since it is not connected
to any WiFi network or similar. Additionally, our proposed attestation approach is
capable of finding devices that are running default configurations, which is especially
useful in industrial settings.

R07 As mentioned, our proposed approach is not capable of forcing end-users to change
their initial configurations, so a residual risk remains.

– 82 –



6 Evaluation

T08 If it is assumed that an adversary is able to apply a malicious configuration, for example, due
to a sensor running on initial configuration, the device might perform malicious activities
that may impact other devices or a system.

STRIDE: S, T, I, D, E

C08 Our proposed two-layered attestation approach will prevent the sensor from accessing
the network. Thus, no other device or system will be negatively impacted by a sensor
running unintended or malicious configuration parameters.

T09 An entity might get the task to apply configuration updates to sensors, for instance, in an in-
dustrial setting. However, if this entity does not apply the configuration update intentionally
or unintentionally this might result in the sensor not functioning as expected.

STRIDE: T, D

C09 Using our proposed two-layered attestation process for secured sensor configuration,
the configuration status of each sensor can be monitored. Thus, it is easy to detect
sensors where a desired configuration update was not applied.

T10 A device manufacturer may include intentional back doors into the configuration interface
for internal use. An adversary might learn of this back door and exploit it for attacks.

STRIDE: S, T, R, I, D, E

C10 Using the proposed tamper-resistant hardware includes a CC certification process that
is capable of mitigating this threat.

T11 The cryptographic algorithms chosen by the device manufacturer might be susceptible to
attacks due to weaknesses in the algorithm or too short keys.

STRIDE: S, T, R, I, D, E

C11 In our proposed approach, all cryptographic relevant operations are performed in
tamper-resistant hardware. Using such hardware includes a CC certification process
that is capable of mitigating this threat.

T12 An adversary might perform DoS attacks targeting the NFC-based configuration interface.

STRIDE: D

C12 Due to the configuration interface being only available via NFC, the adversary has to
be in close proximity to the device under attack. Also, the interface and all relevant
operations are handled by the dedicated SC. Thus, normal sensor operation is not
impacted since the DoS attack only impacts this SC.

R12 However, DoS attacks cannot be completely mitigated by our approach. Thus, if an
adversary is capable of attacking the interface, no other configuration updates may be
applied during such attacks.

T13 An adversary that has physical access to the sensor may perform physical attacks to reveal
confidential information such as keys or confidential configuration data.

STRIDE: T, I, E

C13 All confidential information is stored in the SC’s protected storage that is tamper-
resistant and can thus mitigate such physical attacks.
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T14 An adversary that has physical access to the sensor may perform physical attacks to ma-
nipulate sensor functionality. For instance, the configuration interface may be disabled by
physically damaging the NFC antenna.

STRIDE: D

R14 Our proposed approach is not capable of mitigating such attacks.

Summarizing the threat analysis in Figure 6.10, there are 14 identified threats of which 11 are
completely mitigated, 2 are partially mitigated, and 1 cannot be mitigated.

Fully Mitigated

11

Partially Migigated

2

Not Mitigated

1

Figure 6.10: Summary of threat analysis.

6.3.3 Performance

To measure the performance of NFC-based data transfer, we evaluate various payload sizes using
a Raspberry PI 3 with NFC shield as well as a Lenovo P2 Android smartphone. Data is transferred
to the evaluation stick shown in Figure 6.9. The measured time includes NFC data transfer to
the stick, decryption and storage in the secured storage, and confirming the configuration storage.
Figure 6.11 shows the obtained results for payload sizes ranging from 128 bytes to 4096 bytes.
As can be concluded from this figure, the configuration time for smaller payload sizes does not
grow linearly due to the protocol overhead. For lager payload sizes, however, almost linear growth
in configuration times can be observed. Compared to the Android smartphone, the Raspberry PI 3
with attached NFC shield achieved lower configuration times due to the shield being a more pow-
erful reader than the NFC readers included in current smartphones. We argue that configuration
times of roughly 1 s are still acceptable for users regarding the system’s usability. Thus, we would
suggest to limit configuration payload sizes to a maximum of 2048 bytes. Since larger configu-
ration sizes that are transmitted using our proposed configuration approach will result in transfer
times of 2 s and more, user acceptance of such an approach will decline due to the negative usabil-
ity caused by such time consuming data transfers.

6.3.4 Limitations

As discussed when evaluating the performance of our proposed secured sensor configuration ap-
proach, payload sizes larger than 2024 bytes require configuration times larger than 1 s. The
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Figure 6.11: Time required to perform secured configuration updates with various payload sizes using NFC Shield
on a Raspberry PI 3 and a Lenovo P2 Android smartphone as active devices.

reasons for this rather long runtime are the limited data rate provided by NFC and the processing
time required by the tamper-resistant but resource constrained SC. Also, local attestation using
the same SC might not be possible in all proposed events. To mitigate this limitations, attestation
could be performed less frequently or more powerful dedicated hardware components could be
integrated.

6.4 Secured NFC Protocol

In this section, the security provided by QSNFC as well as the performance of QSNFC’s 0-RTT
handshakes is evaluated. As an evaluation metric, we compare the protocol overhead of different
scenarios. In addition, the protocol’s limitations are discussed in this section.

6.4.1 Security

Each packet that is transmitted using our proposed QSNFC protocol contains a protected section
for securing confidential payload. QSNFC uses AE with either initial keys or ephemeral forward-
secure keys to protect the secured payload. Depending on the type of key used, two levels of
secrecy can be provided: (i) Initial data that is secured using initial keys is protected at a level
similar to TLS session resumption with session tickets. (ii) If the forward-secure keys are used,
even greater secrecy can be provided since these keys are ephemeral. However, depending on
the application and use-case, only one message round trip is probably needed. In this case, the
initial keys will only be used to protect the data, without ever using the forward-secure keys. Any
information that is transmitted unsecured in QSNFC (e.g., server and client identifiers or public
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keys) is considered non-critical such that an adversary who learns this information would gain no
advantage. To highlight the provided security, we analyze QSNFC’s countermeasures for each of
the threats to NFC that were identified by Haselsteiner and Breitfuß [76]. We also list additional
attack types that are mitigated by QSNFC.

Eavesdropping. Confidential information in QSNFC is transferred protected by AE in any mes-
sage. Therefore, an adversary would only be able to learn public information such as iden-
tifiers or public keys.

Data corruption, data modification, data insertion. An adversary would not be able to
corrupt, modify, or insert data in the secured payload section of QSNFC without such fail-
ures being detected by AE and thus by the QSNFC protocol. However, DoS attacks are
possible by corrupting data and therefore, could cause messages to be invalid.

DoS attacks. DoS attacks cannot be mitigated by QSNFC (and any other wireless or contactless
communication protocol) since data corruption can only be detected but not prevented.

MITM attacks. By relying on certificates for authentication and on a DH based KE, MITM at-
tacks are effectively mitigated by QSNFC.

Replay attacks. By using nonces and message counters to ensure message freshness, QSNFC
is capable of mitigating replay attacks. That is, if an adversary can record messages, replay
attacks using these recorded messages are detected and mitigated by QSNFC.

Resumed handshake. Messages exchanged during initial handshake not only contain the
client’s and server’s identity, but also a nonce. These nonces are used to prevent adver-
saries for resuming an initial handshake that was initiated by two entities (certificates are
only validated in the initial handshake).

Physical attacks. Cryptographic operations that are required for our proposed KE process can
either be performed in software or in a dedicated SCs. If such SCs are used, a higher level
of security can be provided for QSNFC due to the mitigation of physical attacks.

6.4.2 Performance

To evaluate QSNFC’s performance, the following four scenarios are evaluated:

1. Full handshake needs to be performed and the certificate needs to be transferred during this
full handshake. The certificate is compressed to limit the overhead.

2. Full handshake needs to be performed, but the server’s certificate is already cached by the
client. This scenario might happen after aborted handshakes.

3. The server is already known to the client and required information is cached. Only the
subsequent handshake needs to be performed.

4. After handshakes are performed, data is transferred using SD packets.

The results of this evaluation are shown in Figure 6.12. Of course, the overhead for a full
handshake that requires transfer of a certificate or even certificate chain depends on the size of the
certificate chain that is transferred. In the evaluated scenario, only a leaf certificate was transferred.
That is, the shown overhead must be seen as an optimum in this given scenario. As can be seen
from the evaluation, the 0-RTT property for recurring handshakes significantly reduced overhead
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compared to both full handshake variants. The overhead is actually only 42 bytes larger than the
standard data transfer after the handshake. Comparing the minimal overhead for a full handshake
with certificate transfer and subsequent handshakes reveals that overhead can be reduced by at
least 90% by using our proposed subsequent handshake approach in QSNFC.
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Figure 6.12: QSNFC overhead for transferring compressed certificates or cached certificate information in full
handshake (initial followed by subsequent), subsequent handshake, and standard data.

6.4.3 Limitations

Since certificates need to be validated during the handshake process, a limitation of the QSNFC
protocol is that either a working network connection must exist or all required higher-layer cer-
tificates must be stored on the device. In an offline approach where certificates are stored on the
device, certificate revocation cannot be performed easily. The QSNFC protocol also does not sup-
port mutual authentication since only the server is required to provide a certificate that is then
validated by the client. This decision was made consciously since at least one NFC device is often
very resource-constrained (e.g., smartcards) and certificate storage and validation would thus be
infeasible for such devices.

– 87 –





7
Conclusion and Future Work

In this chapter we conclude this thesis by summarizing our findings and contributions. We also
discuss possible directions for future work that could originate from topics covered in this thesis.

7.1 Conclusion

The results obtained throughout this thesis are twofold. Firstly, we investigated sensor-related
security issues and demonstrated novel attacks. Secondly, we identified unprotected sensor inter-
faces, in particular the configuration interface, as a main security weakness and therefore proposed
a secured sensor configuration approach.

The first type of security issue we identified is the protection of sensor data. Usually, measure-
ments in NCSs are transferred either unprotected or protected by encryption. We demonstrated
that this approach may be self-defeating in a sense that it makes other attacks easier. Although
the confidentiality, integrity, and authenticity of sensor data may be protected, adversaries can
attack the system due to this protection. We highlighted this issue, defined so-called bit-flip at-
tacks in NCSs, and proposed a simple yet effective countermeasure to mitigate the drawbacks of
applying cryptography in NCSs. The second type of sensor-related security issue we identified
are unprotected sensor interfaces. This includes the sensing interface itself but also unprotected
configuration interfaces. We exploited both of these interfaces to build sensor-based covert chan-
nels, through which we transferred data between two otherwise isolated processes. In total, we
presented three different sensor-based covert channels that provide a trade-off between the achiev-
able data rate of the respective covert channel and the probability of such a covert channel being
detected. While two of our presented covert channels require read and write access through the
sensor’s configuration interface, the third type of covert channel exploits information generation by
triggering the sensor’s measurement process. We demonstrated our covert channels on well-known
platforms such as Linux and Android where even state-of-the-art code analysis tools designed to
detect covert channels are unable to identify our proposed exploits. Again, we presented simple
yet effective countermeasures to mitigate the covert channels we demonstrated. In addition, we
also provided a framework to facilitate testing if a given sensor exhibits the discussed weaknesses.
We believe that the presented security issues are only the tip of an iceberg, and many other sensor-
related security issues as well as more sophisticated countermeasures can be found. However, we
consider raising the awareness for sensor-related security issues by demonstrating these security
issues a main contribution.

In this thesis, we also presented an NFC-based configuration approach for sensors that, in our
opinion, is capable of mitigating security issues arising from unprotected or insufficiently pro-
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tected configuration interfaces of sensors. We did, however, no only propose this NFC-based
configuration interface but a complete architecture for sensor configuration. The configuration
interface that we proposed to be included in sensors is based on the usage of resource-efficient
dedicated security hardware that is tailored for resource-constrained devices such as smartcards.
Therefore, our presented security methods are also intended to be efficient. Furthermore, the
configuration interface we proposed in this thesis should be usable through the sensor’s entire
lifecycle. That is, initial configurations as well as any subsequent configuration updates can be
applied using the same interface. To secure the configuration process, we applied state-of-the-art
cryptography with relevant information to mitigate issues such as replay attacks. We also pro-
posed a novel two-layered attestation process that not only reduces attestation overhead but also
improves security by denying network access to malicious nodes. To also improve the usability of
our secured configuration approach, we further demonstrated that authenticated KE does not re-
quire the user to enter credentials but instead is capable of deriving these credentials from current
configuration information. In combination, all the mentioned contributions result in a configu-
ration framework that provides, as we think, a good trade-off between security, efficiency, and
usability. Our evaluations demonstrate that 78% of identified security threats that target a sensor’s
configuration interface can be completely mitigated, while only 7% of these threats cannot be
mitigated at all. We further demonstrated that this level of security is achieved while providing
very good usability as well as efficiency and performance that is acceptable for most configuration
scenarios. As the final contribution of this thesis, we presented a generalized transport-layer proto-
col for NFC that provides security to NFC applications, similarly to what HTTP Secure (HTTPS)
provides to TCP-based networking applications. Therefore, the protocol we proposed in this thesis
mitigates the need to implement application-specific security mechanisms as currently is done for
most NFC applications. We demonstrated that the presented protocol is capable of reducing the
connection-establishment overhead by more than 90% by fulfilling the 0-RTT requirement for re-
curring connections. Thus, we think, the proposed protocol offers the security level and efficiency
that is required by NFC applications.

7.2 Future Work

In this section, we discuss potential future work for sensor-based security issues as well as for
secured sensor configuration.

7.2.1 Sensor-Based Security Issues

In this thesis, we proposed using JEEC to mitigate bit-flip attacks on sensor data in NCSs. Al-
though we denoted the approach we suggested as being JEEC, we applied encryption followed
by FEC in a sequential way. In literature, however, attempts at combining encryption and error
correction in a single step exist. Although some approaches use the well-known AES encryption
scheme, most approaches use less-known approaches (e.g., [208]) for which security needs to be
proven by the respective community. Also, AES-based approaches, where internal matrices are
extended to provide a one-step encryption and error correction, need to be extensively evaluated
regarding their security properties. One interesting aspect could also be evaluating the impact of
using stream ciphers instead of block ciphers in an NCS where bit-flip attacks occur.
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Regarding sensor-based covert channels, ample of future work could be done in two direc-
tions. Firstly, we believe our presented covert channels are only the beginning and that many
other exploitable issues in sensors could be found for building other sensor-based covert channels.
Secondly, additional and more enhanced security measures need to be devised to mitigate existing
and newly found security issues caused by sensors and their respective interfaces. Our presented
countermeasures introduce limitations to the system such as only supporting sampling frequen-
cies that are multiples of each other. These limitations may be limited by future research to find
more advanced countermeasures, such as privilege-based sensor access or granting sensor access
to single processes based on time slots.

7.2.2 Secured Sensor Configuration

In the area of secured sensor configuration, future research could be conducted to further improve
any of the three requirements discussed in Section 1.3.2. The trade-off between security, efficiency,
and usability is of course another relevant aspect also for future research. In addition to general
research to improve any of these three requirements, we especially see potential for future work in
the following topics that are related to the work presented in this thesis.

Attestation. We only presented initial ideas regarding a two-layered attestation approach using
the exiting local trusted hardware module that we proposed to include in any smart sensor to
facilitate a secured sensor configuration process. Since attestation is a very actively researched
topic, we see potential for future research in this direction where our proposed architecture of
LRoT and GRoT is used for novel and enhanced methods of two-layered attestation. We think that
such approaches would not only be suitable for sensor networks where local attestation prevents
malicious nodes from manipulating networks but could be used in any setting where networked
devices communicate with each other.

Web-NFC. To further improve usability, we already conducted preliminary experiments with
implementing the so-called Web NFC4 draft standard on Android smartphones. This standard uti-
lizes NFC capabilities that are provided by respective devices inside a JavaScript environment. In
our preliminary experiments, we combined the Web NFC functionality with our proposed QSNFC
protocol and an HTTPS secured communication to the server to establish an end-to-end encrypted
communication channel between a potential configuration back-end and an NFC device with a
smartphone as a gateway in between. This could not only improve the security of smart sensor
configuration but also the usability of such a process. By using the proposed Web-NFC standard,
no application would need to be installed on the smartphone and the process discussed in Sec-
tion 6.3.1 could thus be improved tremendously. Therefore, we think future work should be done
regarding Web NFC’s capabilities for being applied in such a use case.

4 https://w3c.github.io/web-nfc/
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Abstract—High tech strategies such as Industry 4.0 and Smart
Manufacturing require industrial devices to be connected to
the Internet. This movement towards interconnected industrial
devices poses significant security risks as confidential data must
be transferred and stored using untrustworthy channels and
cloud servers. End-to-end private key cryptography is suitable
to protect the confidentiality, integrity, and authenticity of data.
However, private key cryptography has some drawbacks such
as the so-called key distribution problem. A possible solution,
factory installed keys, are untrustworthy as the two partners
relying on end-to-end cryptography can not be sure that no
other party is in possession of the used keys. To overcome these
problems, the Bring Your Own Key (BYOK) principle based
on Near Field Communication (NFC) and dedicated secured
hardware is presented in this paper.

Index Terms—Near Field Communication; Industrial Internet
of Things; Industry 4.0; cryptography; keys; security controller.

I. INTRODUCTION

The growth of the Industrial Internet of Things (IIoT) is
driven by initiatives such as Industry 4.0 [1], Smart Manufac-
turing [2] or Cloud Manufacturing [3]. All of these initiatives
promote the connection of production relevant devices to the
Internet to quickly respond to changing customer demands,
making them so-called smart factories [4]. Data in such smart
factories does not only need to be transferred internally, but
also to external partners to increase operational efficiency.
Smart factories aim at increasing the operational efficiency
through (i) minimizing unplanned downtime of production
relevant equipment, (ii) improving the supply chain efficiency,

To decrease downtimes, the necessary maintenance, re-
pair, and operations (MRO) schedules need to be optimized.
Maintenance providers, for example, device vendords need
to collect and analyze data such as equipment condition or
operating hours [5] in order to predict optimal MRO schedules.

To increase supply chain efficiency, it is crucial to use
Internet technologies and business-to-business supply chain
applications [6]. In an IIoT context this includes the trans-
mission of production data directly to suppliers such that the
overhead of supply chain management can be minimized.

To be able to optimally monitor and control the internal
production flow, a suitable smart factory architecture as well
as protocols need to be chosen. A possible IoT protocol that
is also suitable for industrial use cases is the Message Queue

Telemetry Transport (MQTT) protocol that was designed for
lightweight machine-to-machine communication [7]. MQTT
is based on the publish/subscribe principle and through its
architecture it is possible to transport data to internal as well
as external partners such as maintenance providers [8].

In order to be able to transfer data to external communi-
cation partners such as maintenance providers and suppliers
as well as to arbitrary internal devices, an MQTT broker that
is connected to the Internet or even hosted by a third party
can be used. In any case, the transport of confidential and
production relevant information through the Internet requires
the usage of appropriate cryptographic methods such as end-
to-end encryption using TLS.

End-to-end encryption relying on asymmetric cryptography
is infeasible for larger amounts of data; therefore, symmetric
key cryptography needs to be used. Symmetric cryptography
requires both the sender and receiver of the data to be
in possession of the same shared key. Because no direct
connection between sender and receiver can be established
in protocols such as MQTT, key exchange algorithms such
as Diffie-Hellman can not be used; a key distribution problem
results from this scenario. A device vendor that is in possession
of factory installed keys would need to distribute these keys
to the equipment customer, who then would need to distribute
some of these keys to its suppliers in a scenario such as
illustrated in Fig. 1. Moreover, in such a scenario the device
vendor would need to be trusted to securely and trustworthy
handle all keys. For instance, if the device vendor would be
selling devices to competing companies in the same business
field, the device vendor would be in possession of keys that
could be used for industrial espionage.

To mitigate these key related issues, we propose to apply the
Bring Your Own Key (BYOK) principle. Using this principle,
keys necessary for end-to-end encryption can be changed
by device owners. For example, in the scenario illustrated
in Fig. 1, the keys used to protect production relevant data
can be changed such that the device vendor is no longer
in possession of decryption keys for production data. To
allow keys to be deployed and updated in a secured but
intuitive manner, we present an NFC based approach that
also uses dedicated security controllers (SC) to increase the
security of our approach. To the best knowledge of the authors,

©2017 IEEE. Reprinted, with permission.
From Proceedings of the 18th IEEE International Conference on Industrial Technology (ICIT), March 2017.
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no such approach was presented previously. Therefore, the
contributions of this paper are as follows:

• We present a scenario in that the BYOK principle is ap-
plied to solve the problems arising from key distribution
and trust issues in factory deployed keys.

• We present a secured and NFC based interface for IIoT
devices to deploy and change keys.

• The presented NFC extension for IIoT devices is suitable
for new devices and legacy devices alike.

The remainder of this paper is structured as follows. All
involved technologies as well as related work to the BYOK
principle are discussed in Section II. In Section III, our
approach to change keys in an IIoT context is presented.
The security implications of the proposed BYOK approach
for manufacturing devices are then analyzed by means of a
threat analysis in Section IV. A prototypical implementation
of our approach is shown in Section V. In Section VI this
paper is concluded and possible future work is discussed.

II. BACKGROUND AND RELATED WORK

A. Near Field Communication (NFC)

NFC is a wireless communication technique that is based
on a subset of radio-frequency identification (RFID) standards.
Because NFC is based on RFID standards, NFC devices
are compatible with existing RFID cards and tags [9]. NFC
technology is based on inductive coupling and operates at a
radio frequency of 13.56 MHz up to a range of approximately
10 centimeters with bit rates up to 848 kbits per second [10].
Connecting NFC devices is fundamentaly different than other
technologies such as WiFi, Bluetooth or ZigBee. Two devices
automatically establish an NFC connection if they are brought
near to each other. Thus, connections need to be (i) actively
initiated by a human operator and (ii) the operator typically
needs to be in close proximity to the devices. On the one hand,
NFC offers security advantages compared to other wireless
technologies [11] because of these properties. On the other
hand, bringing one device near to another to transfer data is
an easy and intuitive principle for humans [12]. In addition,
NFC devices can be operated in passive mode which allows
NFC devices such as tags or contactless cards to be operated
without a battery or power supply [13].

NFC is seen as a promising IoT technology that will link
the real world with the digital world [14]. Nowadays, NFC (or
RFID) is already used for a wide range of applications, the
most prominent being the mobile payment sector [15]–[17].
Other application domains of NFC include ticketing [18]–[20],
healthcare [21]–[23], or pairing of wireless devices [24], [25].

B. Authenticated Encryption (AE)

AE combines symmetric cryptography with Message Au-
thentication Codes (MAC) in a secured way such that data
confidentiality, integrity, and authenticity can be provided [30].
Symmetric cryptography relies on a shared key for encryption
and decryption of data [31]. In our presented approach, the Ad-
vanced Encryption Standard (AES) is used that is considered to
be cryptographically secure using keylenghts of 256 bit [32].

TABLE I
COMPARISON WITH RELATED WORK

Work Method Remark

[24]–[26] Pairing of wireless
devices

Approaches provide no or only weak
security as information for device pair-
ing is not considered confidential.

[27]
TLS secured key
exchange between
smart cards

Proposed method for EAP-TLS enabled
smart cards. This approach is not suit-
able for IIoT devices.

[28], [29]
Android device as
NFC gateway to
Internet

Internet access necessary which might
not be possible in all industrial settings.
Also, man-in-the-middle attacks could
be performed on gateway.

Our
approach

NFC device for se-
cured key transport

Security properties discussed in threat
analysis.

As MAC algorithm, a keyed-hash message authentication code
(HMAC) [33] based on SHA-256 is used.

C. Security Controller (SC)

In our presented approach SC are used to offer a protected
processing environment as well as secured storage for the
transferred keys. SC can be embedded into systems similar
to traditional processing units [34]. The property that dis-
tinguishes SC from conventional processing units is tamper
resistance [35]. SC that provide tamper resistance mitigate
physical attacks by using appropriate countermeasures that
are tested by the Common Criteria (CC) for Information
Technology Security Evaluation [36].

D. Bring Your Own Key (BYOK)

The BYOK principle originated from the Bring Your Own
Device (BYOD) idea that allowed employees to use their own
mobile phones, tablets and laptops in company networks [37].
These devices need to be secured such that they can be trusted
to access a company’s confidential data [38].

Similar to BYOD, the BYOK principle allows own keys
to be used for cryptographic operations [39], [40]. BYOK is
mostly associated with cloud computing, where data is end-
to-end encrypted using keys provided by the customer. If in
addition to keys also cryptographic methods are provided by a
customer, the BYOK principle is extended to Bring Your Own
Encryption (BYOE) [41].

The establishment of an end-to-end secured channel using
keys provided by a BYOK method could be interpreted as
a device pairing process as well. The pairing of wireless
devices is often assisted by NFC technology [24]–[26]. Urien
et al. [27] present an approach to securely exchange tokens
between smart cards used in prepayment contexts. Related
to keys, Urien and Kiennert [28], [29] introduce an NFC
based system to update access authorizations of RFID locks.
In their approach they use Android mobile phones to establish
a Internet connection via NFC that is used to download keys
from a key server to the RFID lock. The Internet connection
required in this approach however can be a drawback because
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Maintenance Info D2

Fig. 1. Example of a smart factory with various publishers and subsribers of data, as envisioned in the Industry 4.0 initiative.

no configuration device tailored for IIoT use cases without
network capabilities can be utilized. An overview of related
work compared to our presented approach is given in Table I.

III. BRING YOUR OWN KEY

In general, the keys that are deployed using the BYOK
principle need to be generated first. We propose two different
scenarios to generate keys, depending on the trustworthiness of
the used mobile device and the corresponding operator. Both
scenarios are shown in Fig. 2.

1) If the mobile device and/or the personnel deploying
keys are considered untrustworthy, keys are generated
at a backend. The key material is then encrypted and
transferred to the mobile device, from where the keys
can be deployed at the manufacturing devices and the
corresponding connection partners. The keys are pro-
tected from being extracted and used by an adversary
due to the applied encryption.

2) If the mobile device and the personnel deploying keys
are considered trustworthy, keys can be generated and
encrypted directly at the mobile device. The key material
then needs to be transferred to the manufacturing device
and the corresponding connection partners.

NFC technology is used to transfer key material between
devices in our approach. However, NFC does not provide
cryptographic protection for transferred data. Therefore, we
protect keys transferred in our NFC based BYOK approach by
using AE to provide confidentiality, integrity and authenticity
for these transferred keys. To encrypt and decrypt data using

Generate at
Backend

Generate at
Mobile Device

Fig. 2. Deploying new keys at manufacturing device and backend. The keys
are either generated at the backend or at the mobile device itself.

AE, an initial key needs to be defined. If this is done by the
equipment vendor, these key needs to be send to the equipment
customer using a trusted channel. The equipment customer
can change these initial keys immediately after delivery of
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Encrypted
Key MACCipher Spec

2 Byte

NDEF Record

Record
Header

Fig. 3. NDEF Record containing a single transferred key protected using AE.

equipment from the vendor using the BYOK approach. Thus,
the device customer is able to take control of their hardware.
New keys protected by AE are transferred to the manufacturing
equipment using NFC and the NFC Data Exchange Format
(NDEF). NDEF packets can contain a number of NDEF
Records that contain the actual data. In our approach, a
single NDEF Record (see Fig. 3) contains the required header
information as well as a cipher spec, the encrypted key and the
MAC resulting from the AE encryption process. The cipher
spec field contains information on which algorithms to use
for decryption and MAC calculation. Encrypted key and MAC
are sent sequentially, because the encrypt-then-MAC mode of
operation was selected by us due to its security properties [42].

We propose the hardware extension for IIoT devices shown
in Fig. 4, to provide the required NFC functionality as well as
secured storage and execution environments for manufacturing
devices. A host controller is used to connect manufacturing
devices to the Internet by providing interfaces to the manu-
facturing device itself as well as to the Internet. In addition to
that host controller, we propose to include a SC that provides
an NFC interface as well as tamper resistance. The NFC
interface is used to transfer keys from the mobile device to
the manufacturing device. In addition to that, the SC can
be powered through the NFC field, such that keys can be
exchanged even if the manufacturing device is not connected
to any power supply. The transferred keys are then decrypted
and securely stored in the SC’s memory that provides tamper
resistance. Thus, it is infeasible for adversaries to extract keys
transferred to and stored at the manufacturing device. The
SC further provides tamper resistance for the cryptographic
operations necessary during end-to-end encrypted data transfer
via the Internet.

IV. THREAT ANALYSIS

A threat analysis [43] was conducted to highlight security
features and to demonstrate the achieved security level of
our presented BYOK approach. This threat analysis lists all
involved Entities (E), Assets (A) that need to be protected,
and Threats (T) resulting from our BYOK approach as well as
Countermeasures (C), Residual Risks (R) and Assumptions
(As) regarding the threats. For all involved entities, assump-
tions regarding their trustworthiness are made.

• (E1) Device Vendor: (As1) assumed honest but curious
• (E2) SC Vendor: (As2) assumed trustworthy
• (E3) Device Owner: (As3) assumed trustworthy

BYOK Enhancement

Host Controller

Security
Controller

Device
Interface

Network
Interface

NFC
Interface

BYOK

Internet

I²C
Modbus

CAN
...

Fig. 4. BOYK enhancement providing interfaces to manufacturing device,
the Internet and the mobile device used for key deployment.

• (E4) External Communication Partners (e.g. Supplier):
(As4) assumed trustworthy

• (E5) Hoster for Broker: (As5) assumed untrustworthy
• (E6) Person deploying Key: (As6) assumed untrustworthy
• (E7) Arbitrary Adversary: (As7) assumed to be able to

conduct online and physical attacks
After all entities and the corresponding assumptions are

identified, the assets that need to be protected are determined.
• (A1) Encrypted Data: The data that is confidential and

thus transferred secured by some key.
• (A2) Keys: All keys that are stored at any instance in the

BYOK process. Loss of a key would result in a loss of
confidentiality, integrity and authenticity of (A1).

• (A3) Device Functionality: A BYOK interface that is
integrated into IIoT devices must not threaten the func-
tionality of these devices in any way. If an adversary is
able to harm the functionality of an IIoT device, physical
entities and even human lives are threatened.

Considering all identified entities, assumptions, and assets,
our presented BYOK approach can now be reviewed concern-
ing potential threats. For each threat, we are going to list
countermeasures and/or residual risks if a threat can not be
mitigated. For each threat, the involved entities as well as the
affected assets are listed as well.

• (T1) Intentional or unintentional backdoors in device.
Entities/Assets: (E1), (E2); (A1), (A2), (A3)
(C1) Threats investigated in CC EAL5+ certification
process for the SC included in involved devices.

• (T2) Weak or buggy cryptography.
Entities/Assets: (E1), (E2); (A1), (A2), (A3)
(C2) Threats investigated in CC EAL5+ certification
process for the SC included in involved devices.

• (T3) Device vendor loses or distributes keys.
Entities/Assets: (E1); (A1), (A2), (A3)
(C3) Initial keys are changed through BYOK approach.
Device vendor does not own actually used keys.

• (T4) Malicious mobile device or personnel.
Entities/Assets: (E6); (A1), (A2), (A3)
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(C4) Key material is transported protected by AE, if
personnel and/or device are assumed to be untrustworthy.

• (T5) Wrong keys deployed.
Entities/Assets: (E6); (A3)
(R1) A malicious user that deploys wrong keys or does
not update keys and thus attacks communication between
devices is similar to a DoS attack that can not be
mitigated by our approach.

• (T6) Device owner does not change initial keys, uses weak
keys or loses keys in a security breach.
Entities/Assets: (E3); (A1), (A2), (A3)
(R2) Malicious behaviour by the device owner can not
be mitigated by our approach.

• (T7) Remote attacks targeting IIoT devices.
Entities/Assets: (E7); (A1), (A2), (A3)
(C5) Due to the short communication range of NFC,
remote attacks are limited to attackers having physical
access to a smart factory.
(C6) An adversary that is able to communicate using the
NFC interface is still not able to apply keys because the
encryption key is kept private by the device owner.
(C7) To mitigate the problem of eavesdropping that is
still possible for any wireless technology, the transferred
keys are protected using AE.

• (T8) Physical attacks targeting IIoT devices.
Entities/Assets: (E7); (A1), (A2), (A3)
(C8) Due to the SC providing tamper resistance, extract-
ing key material is considered infeasible for adversaries.

• (T9) DoS attack using BYOK interface.
Entities/Assets: (E7); (A3)
(C9) Traditional DoS attacks using the BYOK interface
are mitigated by the limited bit rate of NFC and the SC
handling all involved cryptographic methods. Thus, the
whole computational effort will be handled by the SC.

V. PROTOTYPE

A prototypical implementation of an end-to-end encrypted
data transfer relying on keys provided through our presented
BYOK enhancement was implemented to demonstrate the
functionality, feasibility and usability of our approach. The
setup consists of a mboile device and three Raspberry PI
3, representing a manufacturing device equipped with our
BYOK enhancement, a broker and a subscriber respectively
as shown in Fig. 5. Similar to the scenario shown in Fig. 1,
the manufacturing device is connected to the smart factory’s
internal network (blue network cable) while the MQTT broker
and the supplier are in an external network (yellow network
cable). The used mobile device is a Nexus S smart phone with
Android 4.1.2 Jelly Bean installed. The BYOK enhancement
comprises the following components:

• The used host controller is an Infineon XMC4500 micro-
controller from the Cortex M4 family that offers various
connection interfaces such as USB, I2C and Ethernet.

• The SC is connected via I2C to the host controller. In
our prototype we used an Infineon SLE78 that is CC
EAL5+ (high) certified [36] as SC. This SC includes an

Supplier
External Network

MQTT Broker
External Network

Manufacturing Device
Internal Network

BYOK Enhancement

Nexus S
Mobile Device

Fig. 5. Prototype setup using a Nexus S mobile device and three Raspberry
PI 3, as well as our proposed BYOK enhancement.

NFC interface that is able to power the SC and connected
devices such as sensors through the NFC field emitted by
active NFC devices.

VI. CONCLUSION AND FUTURE WORK

In this paper we have shown how to apply the BYOK prin-
ciple to mitigate key related problems arising in the IIoT. This
principle, usually applied in cloud computing scenarios, assists
in establishing end-to-end encrypted data transfers using IoT
protocols such as MQTT. By enabling device owners to change
factory deployed keys, this approach helps to increase trust
in publishing manufacturing relevant confidential data to the
Internet. Using NFC technology to transfer keys is intuitive
and offers security advantages compared to other wireless
technologies. The proposed BYOK hardware extension allows
keys to be deployed using NFC in a secured manner, even
if the manufacturing device is without a power supply. We
have shown a prototype that highlights the functionality and
feasibility of our approach. The presented approach is also
shown to be secured against issues that would arise due to
including an additional interface into manufacturing devices.

As future work we plan to extend our approach to not
only support key material but arbitrary configuration data. As
deploying malicious configuration data could lead to physical
damage or even threaten human lives, security of transferred
configuration data needs to be further improved compared to
our current approach.
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[25] R. Steffen, J. Preissinger, T. Schöllermann, A. Müller, and I. Schnabel,
“Near Field Communication (NFC) in an Automotive Environment,” in
International Workshop on Near Field Communication, 2010, pp. 15–20.

[26] L. Chen, G. Pan, and S. Li, “Touch-driven Interaction Between
Physical Space and Cyberspace with NFC,” in Internet of Things
(iThings/CPSCom), 2011 International Conference on and 4th Inter-
national Conference on Cyber, Physical and Social Computing. IEEE,
2011, pp. 258–265.

[27] P. Urien, M. Pasquet, and C. Kiennert, “A Breakthrough for Prepaid
Payment: End to End Token Exchange and Management Using Secure
SSL Channels Created by EAP-TLS Smart Cards,” in Collaboration
Technologies and Systems (CTS), 2011 International Conference on.
IEEE, 2011, pp. 476–483.

[28] P. Urien and C. Kiennert, “A New Key Delivering Platform Based on
NFC Enabled Android Phone and Dual Interfaces EAP-TLS Contactless
Smartcards,” in International Conference on Mobile Computing, Appli-
cations, and Services. Springer, 2011, pp. 387–394.

[29] ——, “A New Keying System for RFID Lock Based on SSL Dual
Interface NFC Chips and Android Mobiles,” in 2012 IEEE Consumer
Communications and Networking Conference (CCNC). IEEE, 2012,
pp. 42–43.

[30] M. Bellare and C. Namprempre, “Authenticated Encryption: Relations
among Notions and Analysis of the Generic Composition Paradigm,” in
International Conference on the Theory and Application of Cryptology
and Information Security. Springer, 2000, pp. 531–545.

[31] M. Bellare, A. Desai, E. Jokipii, and P. Rogaway, “A Concrete Security
Treatment of Symmetric Encryption,” in Foundations of Computer
Science, 1997. Proceedings., 38th Annual Symposium on. IEEE, 1997,
pp. 394–403.

[32] J. Daemen and V. Rijmen, The Design of Rijndael: AES - The Advanced
Encryption Standard. Springer Science & Business Media, 2013.

[33] H. Krawczyk, M. Bellare, and R. Canetti, “HMAC: Keyed-Hashing for
Message Authentication,” RFC 2104 (Informational), Internet Engineer-
ing Task Force, Feb. 1997.

[34] P. Kocher, R. Lee, G. McGraw, A. Raghunathan, and S. Moderator-
Ravi, “Security as a New Dimension in Embedded System Design,” in
Proceedings of the 41st annual Design Automation Conference. ACM,
2004, pp. 753–760.

[35] S. Ravi, A. Raghunathan, and S. Chakradhar, “Tamper Resistance
Mechanisms for Secure Embedded Systems,” in VLSI Design, 2004.
Proceedings. 17th International Conference on. IEEE, 2004, pp. 605–
611.

[36] D. Mellado, E. Fernández-Medina, and M. Piattini, “A common criteria
based security requirements engineering process for the development of
secure information systems,” Computer standards & interfaces, vol. 29,
no. 2, pp. 244–253, 2007.

[37] G. Thomson, “BYOD: enabling the chaos,” Network Security, vol. 2012,
no. 2, pp. 5–8, 2012.

[38] A. M. French, C. Guo, and J. Shim, “Current Status, Issues, and
Future of Bring Your Own Device (BYOD),” Communications of the
Association for Information Systems, vol. 35, no. 10, pp. 191–197, 2014.

[39] H. Zhang, “Bring your own encryption: balancing security with practi-
cality,” Network Security, vol. 2015, no. 1, pp. 18–20, 2015.

[40] S. Syed and M. Ussenaiah, “The Rise of Bring Your Own Encryption
(BYOE) for Secure Data Storage in Cloud Databases ,” in Green Com-
puting and Internet of Things (ICGCIoT), 2015 International Conference
on. IEEE, 2015, pp. 1463–1468.

[41] S. McGrath, “The Rise Of Bring Your Own Encryption - Information-
Week,” http://www.informationweek.com/interop/the-rise-of-bring-your-
own-encryption-/a/d-id/1320796, 9 2015, (Accessed on 12/28/2016).

[42] H. Krawczyk, “The Order of Encryption and Authentication for Pro-
tecting Communications (or: How Secure Is SSL?)),” in Annual Inter-
national Cryptology Conference. Springer, 2001, pp. 310–331.

[43] S. Myagmar, A. J. Lee, and W. Yurcik, “Threat Modeling as a Basis for
Security Requirements,” in Symposium on requirements engineering for
information security (SREIS), vol. 2005. Citeseer, 2005, pp. 1–8.

– 100 –



8 Publications

SECURECONFIG: NFC and QR-Code based Hybrid
Approach for Smart Sensor Configuration

Thomas Ulz, Thomas Pieber, Christian Steger
Institute for Technical Informatics

Graz University of Technology
Graz, Austria

{thomas.ulz, thomas.pieber, steger}@tugraz.at

Christian Lesjak, Holger Bock, Rainer Matischek
Development Center Graz

Infineon Technologies Austria AG
Graz, Austria

{christian.lesjak, holger.bock, rainer.matischek}@infineon.com

Abstract—In smart factories and smart homes, devices such as
smart sensors are connected to the Internet. Independent of the
context in which such a smart sensor is deployed, the possibility to
change its configuration parameters in a secure way is essential.
Existing solutions do provide only minimal security or do not
allow to transfer arbitrary configuration data. In this paper,
we present an NFC- and QR-code based configuration interface
for smart sensors which improves the security and practicability
of the configuration altering process while introducing as little
overhead as possible. We present a protocol for configuration
as well as a hardware extension including a dedicated security
controller (SC) for smart sensors. For customers, no additional
hardware other than a commercially available smartphone will be
necessary which makes the proposed approach highly applicable
for smart factory and smart home contexts alike.

Index Terms—Near Field Communication; Internet of Things;
smart sensor; configuration; security controller.

I. INTRODUCTION

For smart sensors [1] that are connected to the Internet it is
crucial that their configuration and firmware can be updated
in a secured and efficient way. Such smart sensors can be
deployed in a wide range of fields such as in a smart factory
or in a smart home.

Smart Factory [2]: In smart factories it is essential to
perform maintenance operations of sensors involved in the
production prcoess. By introducing a secured and easy to
use configuration interface, even untrained staff can perform
firmware updates or configuration changes. However, it is very
important to protect the confidentiality and authenticity of
configuration data as employees applying the configuration
updates could be potential adversaries. By enabling any em-
ployee or external person to perform configuration operations,
the flexibility of the already deployed sensors will be increased
while the associated maintenance costs will be decreased [3].

Smart Home [4]: Also in a smart home context, configura-
tion and firmware updates for devices need to be performed
using a secured and easy to use configuration interface. De-
vices not only include smart sensors but also other electronic
devices such as WiFi routers. Similar to the smart factory use-
case, also in a smart home context the configuration data must
be secured against various attacks for sustaining the proper

functionality of the configured devices. A configuration inter-
face included into smart home devices enables any customer
to perform firmware and configuration updates. These updates
could, for instance, even be provided by a vendor’s helpdesk.

By including such configuration interfaces into smart sen-
sors, also the Bring Your Own Key (BYOK) principle [5]
can easily be applied in both the smart factory and smart
home context. BYOK would allow customers to change vendor
supplied cryptographic keys, and thus, give them the certainty
that no third party is able to access their data.

The approach presented in this paper not only is able to
transfer cryptography keys but also arbitrary configuration
data and firmware updates. To transfer data, NFC technology
is chosen for three reasons. (i) NFC offers some security
advantages compared to other wireless technologies [6]. Also,
certain kinds of attacks such as man-in-the-middle are harder
to conduct due to the limited communication range of NFC.
(ii) The update process can be performed without an internal
power source, if the necessary hardware is powered by the
NFC field. (iii) NFC is easy and intuitive to use. Humans
easily understand the principle of bringing one device near to
another to transfer data [7].

If NFC is used to transfer data from a backend to a mobile
device and from the mobile device to smart sensors, at least
three NFC-enabled devices would be necessary. While smart
sensor and mobile device must be equipped with an NFC
interface in any case, needing an additional NFC-enabled
device such as an NFC reader for the backend is inconvenient
at least in a smart home context. Therefore, a combination of
NFC and QR-Codes is used in the approach presented in this
paper. The presented approach also relies on the functionalities
provided by a security controller (SC). We propose to use a SC
to protect the confidentiality and authenticity of configuration
data that is stored on the SC. To the best knowledge of the
authors, no other publication described a combination of these
techniques to perform updates for smart sensors. The main
contributions of this paper are:

1) The presented configuration approach allows arbitrary
configuration data including firmware updates to be
transferred in a secured manner.

2) The presented approach therefore is suitable for indus-
trial as well as smart home use-case scenarios.978-1-5090-4576-1/17/$31.00 c© 2017 IEEE
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3) A hardware extension and cryptographic methods are
presented that are applicable also for legacy sensors.

The remainder of this paper will be structured as follows. In
Section II, background information on the used technologies
as well as related work will be given. Section III presents the
proposed NFC- and QR-Code based configuration interface
for smart sensors. This interface will be evaluated with
respect to security and the imposed overhead in Section IV.
This paper will then be concluded with Section V where
possible future work is stated as well.

II. BACKGROUND AND RELATED WORK

A. Near Field Communication (NFC)

NFC is a contactless communication technology that is
based on RFID standards. It operates at a radio frequency
of 13.56 MHz, up to a range of approximately 10 cm with
supported bit rates of 106, 212, 424 and 848 kbits per second
(kbps). Also, NFC devices are compatible with many existing
RFID devices and tags as the NFC standard comprises various
RFID standards [8]. NFC is used in a diverse range of
businesses. Today, the most well-known application of NFC
is in the mobile payment sector [9]. Coskun et al. [10] note
that NFC is also widely used in mobile ticketing applications.
Another prominent field for NFC is the Internet of Things
(IoT). Atzori et al. [11] state that NFC [...] together with RFID
[...] will link the real world with the digital world.

B. Quick Response (QR) Code

A QR code is a two-dimensional code that offers various
advantages over traditional (linear) barcodes such as a much
higher data density or the possibility to read QR codes from all
directions. The higher density allows a maximum capacity of
2953 bytes. Although the encryption of a QR code’s content
is possible, encrypted QR codes can be rarely found [12].
Therefore, Conde-Lagoa et al. [13] suggest to encrypt the
content using symmetric cryptography. Soon [14] lists sample
applications such as ticketing or identification of all sorts of
items.

C. Security Controller (SC)

SCs are used to provide protected processing and storage of
data. The key differentiator when compared to traditional pro-
cessing units is the tamper resistance [15] of such SCs which
even includes invasive attacks utilizing physical access to the
hardware. However, as SCs are not as powerful as general-
purpose controllers, splitting the execution environment into
a secured world and into a normal world is suggested for
instance by Vasudevan et al. [16]. This splitting principle, also
called security by isolation or dual-execution [17], is realized
by implementing SCs as external hardware modules.

D. Configuration via NFC

Configuring devices via an NFC interface is quite a novel
topic. Wu et al. [18] discuss the possibility to reprogram
computational RFIDs (CRFIDs) over the air. In their approach,

TABLE I
COMPARISON WITH RELATED WORK

Related
Work

Necessary
Hardware

Supported
Payload

Security
Considerations

[18] RFID Card Reader,
CRFIDs

Firmware
Only None

[19] NFC-enabled
Phone, and Sensor

Arbitrary
Data

Encryption used except
for initial update; No en-
cryption on mobile device

[20] At least 2 Android
Devices for P2P

Arbitrary
Data None

[21],
[22]

RFID tags, 2 NFC
devices to pair

Pairing in-
formation None

This
Work

NFC-enabled
phone and sensor

Arbitrary
Data Discussed in Section III

the firmware of passive CRFID tags is reprogrammed using
the Electronic Product Code (EPC) protocol. Haase et al. [19]
present an NFC based configuration solution for sensors and
actuators in the home automation context. The authors propose
to extend existing hardware with an NFC module that can
then be used as a configuration interface for standard smart
phones. The authors present a hardware concept and prototype
as well as a mobile application for Android smart phones.
Serfass and Yoshigoe [20] present a framework for NFC
communication in wireless sensor networks. This Android
based framework, according to the authors, would allow P2P
transport of arbitrary data. In contrast, a more widely used
approach is to use NFC to speed up the pairing of wireless
devices [21], [22]. A comparison of related work to the
approach presented in this paper is given in Table I. As can
be seen there, all but one approach do not consider security
at all. The approach presented by Haase et al. [19] mentions
encryption but only encrypts the data while it is transferred
via NFC. The data, however, can be read and changed on
the Android smartphone. Also, no solution to transfer the
configuration data to the smartphone is given in that work.

III. SECURECONFIG

Configuring smart sensors in a smart factory as well as in a
smart home context is desirable. For a solution that is suitable
for both contexts, a couple of requirements need to be fulfilled.
To be usable in a smart factory context, a central instance that
manages all active configurations is needed. In a smart home
context, no additional hardware besides a mobile device and
sensors should be necessary to make the proposed approach
feasible for many users. Therefore, the system architecture
shown in Fig. 1 is proposed. It comprises three components.

1) Backend: Configurations are created, updated and se-
curely stored at the backend.

2) Mobile Device: The mobile device is used to transfer
configuration data provided by the backend to the smart
sensor. In our prototype we used a smartphone.

3) Smart Sensor: The smart sensor receives the provided
configuration update.
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Payload

Smart

Sensor

WiFi, 3G, 4G
NFC

Payload

Payload

PropA = value1

PropB = value2

PropC = value3

Fig. 1. Hybrid communication approach: On the left hand side, a configuration
package is fetched from the backend using a QR code. On the right hand side,
the configuration of a smart sensor using NFC is shown.

In the context of this paper, it is assumed that the data stored
on the backend is secured by appropriate security mechanisms
such as a hardware security module (HSM), and thus, data
stored at the backend is efficiently protected from loss or
manipulation.

A. NFC Enhancement

To equip any arbitrary sensor with NFC capability and a SC,
we propose a hardware component named NFC Enhancement.
The component is shown in Fig. 2. As can be seen there, it
comprises two controllers and various interfaces. The reasons
for suggesting a dedicated NFC enhancement module are:

1) By designing a dedicated hardware module with an
explicit interface to sensors, currently available (legacy)
sensors can easily be transformed into a smart sensor.
The NFC enhancement module can easily be offered
as a single PCB which is easy to integrate for sensor
vendors.

2) By including two controllers, responsibilities can be split
perfectly according to the properties of both controllers.
The sensor host controller provides interfaces to the
sensor and optionally to a network while also offering
computational power and memory for any kind of ap-
plication. The less powerful but energy efficient SC on
the other hand offers a secured execution environment
and protected storage for configuration data as well as
an NFC interface.

3) The NFC interface connected to the SC allows for ad-
hoc connectivity instead of opening the configuration
interface to a potential network connection. Also, the SC
can be powered through the NFC field which allows for
configuration updates independent of the sensor’s and
host controller’s power supply.

B. Hybrid Communication Approach

As shown in Fig. 1, different technologies for data transfer
are proposed in our approach. To transfer configuration data

NFC Enhancement

Sensor

Host Controller

Security

Controller

Sensor

Interface

Network

Interface

NFC

Interface

Fig. 2. NFC Enhancement component which can be connected to any
conventional sensor via the Sensor Interface and thus making it a smart sensor.

from the backend to the mobile device, QR codes are used. The
configurations stored on the mobile device are then transferred
to the smart sensor using NFC. The reasons for using this
hybrid approach are:

1) By using QR codes to transfer configurations to the
mobile device, no additional hardware (aside from the
mobile device) such as an NFC reader is needed by
customers. Configurations are imported by simply scan-
ning the QR codes. This makes our approach especially
suitable for smart home contexts while not limiting its
usefulness in industrial contexts. Configurations could
be printed for maintenance workers or displayed in web
based configuration interfaces for customers.

2) NFC is suggested to transfer configuration data from
the mobile device to the smart sensor. Reasons for using
NFC for this data transmission are the additional security
resulting from the limited communication range as well
as the possibility to also configure sensors that are
disconnected from their power supply. This also allows
the initial configuration of sensors by the vendor during
their assembly where no power supply is available. This
property adds additional usefulness to our approach.

As a result of using two different technologies for data
transfer, two separate data structures and methodologies need
to be applied which are discussed for both variants.

C. Quick Response Code

Due to the size limitations of a QR code’s maximum
payload, two different modes for transferring configuration
data to the mobile device are suggested.

1) The whole configuration payload is stored in the QR
code, which allows to store about 2900 bytes of data. We
denote this type as inline QR code. Inline QR codes do
not require the mobile device to have an active network
connection, thus, those codes can be distributed, for
instance, to a maintenance worker without restrictions.

2) If the configuration data is larger than the size limit of
2900 bytes, only an URL pointing to the backend is
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included in the QR code. The mobile device then needs
to fetch the configuration data from the backend using
a secure channel (TLS). This type is denoted as URL
QR code. For the download process, the mobile device
needs to have a network connection through which the
backend can be reached.

The type that is used to transport configuration data how-
ever, does not solely depend on the configuration data’s size.
A second factor is the desired security level, as no active con-
nection to the backend is needed for the inline type. Therefore,
some of the security measures mentioned in Section III-E can
not be applied.

D. Near Field Communication

To transfer configuration data via NFC, the NFC Data
Exchange Format (NDEF) [23] that uses the NFC Forum
reader/writer mode is used. NDEF abstracts the contactless
communication and is supported by mobile platforms such as
Android [24]. The proposed structure for NDEF packages is
shown in Fig. 3. As can be seen there, various security related
fields are included in addition to the (encrypted) configuration
data.

E. Security Measures

To provide confidentiality, integrity, and authenticity of the
transferred configuration data, authenticated encryption (AE)
[25] is used. As can be seen in the NDEF packet structure
shown in Fig. 3, the transferred packet comprises a couple of
security related fields as well as the encrypted payload, and a
MAC; the later two are calculated by applying AE. The AE
method of operation considered as having the best security
properties is encrypt-then-MAC [26] which is the reason why
this approach is used in our work. When using AE it is
also important to not use the same key for both encryption
and hashing; therefore, a cryptographic key derivation [27] is
applied to generate separate encryption and hashing keys from
a master key.

In addition to the aforementioned cryptographic principles,
additional information regarding the configuration data is
included in the NDEF message (see Fig. 3). This information is
used by the SC at the smart sensor to decide if a configuration
update is rejected or accepted and consequently applied. As the
confidentiality, integrity, and authenticity of this information
also needs to be protected, all but two fields are included in
the encryption process. The two unencrypted fields are:

• Realtime: The time in milliseconds since the mobile
device was started.

• Cipher Spec: Specifies the applied cryptographic algo-
rithms for the authenticated encryption.

The fields which are included in the encrypted payload are:
• Version: The configurations version number. A smart

sensor will reject configuration updates with a config-
uration number less or equal to the currently applied
configuration.

• Validity: If the transmitted realtime is later than the
specified validity, a configuration update will be rejected.

Encrypted

Payload
MAC

Cipher Spec

2 Byte

Realtime

4 Byte

Plaintext
Sensor ID

4 Byte

Validity

4 Byte

Version

2 Byte

Fig. 3. NDEF packet structure. Realtime and Cipher Specs are transferred
unencrypted. The size of the attached MAC depends on the cipher specs.

• Sensor ID: If the specified sensor ID does not match, the
configuration update is rejected.

As there is no time synchronization between the backend
and the smart sensor, the process of verifying the configu-
ration’s validity needs to be discussed in detail. Whenever a
configuration is fetched from the backend, the following steps
are performed:

1) For each configuration, a validity period ∆ needs to be
specified at the backend.

2) The mobile device sends a request to the backend,
containing the current realtime ϑ.

3) Upon encrypting the configuration data, the included
validity ν = ϑ+∆ is calculated.

4) The encrypted configuration data is sent to the mobile
device.

For our approach to function properly, we assume a secured
time source in the mobile device. In the case of an inline QR
code, no connection to the backend is established; therefore,
no validity can be specified for the included configuration data.
Due to this, the inline mode needs to be considered as less
secure than the URL mode.

IV. EVALUATION

A prototype was realized to evaluate the feasibility, usabil-
ity, and functionality of the presented approach. This proto-
type, pictured in Fig. 4, contains the following components:

1) Sensor: An air pressure sensor is used in this prototype
to demonstrate the configuration update process.

2) NFC Enhancement: The NFC enhancement prototype
that was realized is based on a concept presented by
Lesjak et al. [3] that uses an Infineon XMC4500 mi-
crocontroller (Cortex M4 family) as the general purpose
controller. This controller offers connection interfaces
such as USB and Ethernet, as well as I2C. Via this
I2C interface, a common criteria [28] EAL5+ certified
SC by Infineon is connected to the XMC4500. This SC
provides security features such as secured data storage
and code execution by using a self-checking dual CPU
concept, integrity checks for data transfers and caches,
and encrypted memory and calculations in the CPU. Fur-
thermore, this SC also includes a contactless interface
capable of NFC communication. The NFC antenna is
integrated into the NFC enhancement module as well.
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XMC4500

Security Controller

SLE78

NFC Interface to 

Mobile Device

Sensor Interface

Fig. 4. NFC enhancement prototype.

3) Mobile Device: A Nexus S smartphone was used as
NFC-enabled device in the presented prototype. On this
device, Android 4.1.2 Jelly Bean was installed to use the
latest NDEF functionality included with API level 14.

4) Backend: The backend was realized on a standard Win-
dows PC in this prototype.

This prototype then was used to measure the time necessary
for an update process. A configuration update containing 64
byte of data, for example, took roughly 200ms on average
which is similar to the time a TLS handshake would need on
such hardware.

A. Threat Analysis

To demonstrate the achieved security level, a threat analysis
which highlights Entities (E), Assets (A), Threats (T),
applied Countermeasures (C), and Residual Risks (R) is
conducted. Due to the higher security offered by the URL
QR code, this mode is discussed in this threat analysis. An
overview of the threat analysis in goal structure notation
(GSN) is shown in Fig. 5. The attack possibilities that are
analysed are the smart sensor interface as well as the mobile
device which is seen as a data channel. The backend is
assumed to be properly secured by measures such as an
appropriate firewall and a HSM, the SC at the smart sensor is
assumed to be certified to the security level EAL5+ according
to the common criteria. The assets that need to be protected
are configuration data (A1) and sensor functionality (A2).
Threats can be posted by the NFC enhancement vendor (E1),
customer (E2), mobile device user (E3) and an external
adversary (E4).

Threats resulting from intentional or unintentional back-
doors (T1), weak cryptographic algorithms (T2) and bugs

Fig. 5. Overview of threat analysis in GSN.

in cryptographic algorithms (T3) by the vendor (E1) are
investigated in the common criteria EAL5+ certification
process (C1) for the included SC. The initial encryption keys
specified for each SC could be lost in a security breach (T4)
or even disclosed in any form (T5) by the vendor (E1). This
can be mitigated by changing the initial key (C2) as part of
a configuration by the customer (E2). Any malicious mobile
device user (E3) could try to manipulate configuration
data (T6), try to apply outdated configurations (T7) or
try to apply configurations to wrong sensors (T8). The
presented security measures (C3), however, provide efficient
mitigation of these threats. If the person responsible to update
configurations (E3) does not apply the configuration at all
(T9), a potential denial of service attack results if the sensor’s
functionality is influenced by the missing configuration. There
currently is no security measure implemented to counteract
missing updates (R1). If the malicious mobile device user
(E3) or an adversary (E4) with physical access to the
sensor continuously tries to change a configuration which
is rejected by the SC, a possible DoS attack (T10) could
result. There is currently no security measure implemented
against this kind of attack (R2). Attacks that passively try to
eavesdrop (T11) configuration data are efficiently mitigated
by the implemented security measures (C3) and the security
features of NFC (C4).

B. Overhead

The overhead resulting from the implemented security mea-
sures can be split into a static and into a variable part.
The static overhead, resulting from the information added
to the encrypted configuration data and MAC, can easily be
calculated by summing up all fields with specified sizes in
Fig. 3. The resulting static overhead is Ostatic = 16 bytes.
The variable overhead depends on the chosen cryptographic
algorithms. For this evaluation, HMAC-SHA256 is assumed
as hashing algorithm which adds an additional overhead of
Ovariable = 32 bytes. The resulting total overhead in that case
would be O = Ostatic + Ovariable = 48 bytes. An overview
of the overhead relative to the configuration data size up to
4 kB of data is shown in Fig. 6. As can be seen there, when
transferring configuration data of about 300 bytes, less than
15% of the transferred data will be security imposed overhead.
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Fig. 6. Overhead in percent relative to transferred configuration data.

V. CONCLUSION AND FUTURE WORK

In this paper we present an NFC- and QR-code based hybrid
configuration approach for smart sensors which is suitable
for smart factory and smart home use cases. To provide
the necessary functionality for sensors, an NFC enhancement
module is presented. To mitigate potential security challenges
imposed by such an additional configuration interface, ap-
propriate security measures are included in our approach. It
is also shown that by including those security measures, an
acceptable amount of overhead is imposed. The feasibility
of our approach is demonstrated as a prototype which is
presented in this work. As future work we plan to include
a password based key exchange protocol such as SPAKE
[29] to require user authentication when applying updates.
Authenticated users could then read configuration parameters
from a smart sensor, directly modify them on their mobile
device and update the smart sensor’s configuration.
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Abstract—The necessity to (re-)configure Internet of Things
devices such as smart sensors during their entire lifecycle is
becoming more important due to recent attacks targeting these
devices. Allowing configuration parameters to be changed in any
phase of a smart sensor’s lifecycle allows security updates or
new key material to be applied. Also, the functionality of a
smart sensor can be altered by changing its configuration. The
challenges that need to be considered when enabling the config-
uration of arbitrary parameters are the security and usability
of the configuration interface, the secured storage of confidential
configuration data, and the attestation of successfully applied
configuration updates. Therefore, we present an NFC-based
configuration approach that relies on dedicated secured hardware
to solve these challenges. In addition to a hardware extension for
smart sensors, we also present a secured configuration protocol as
well as a two-layer configuration attestation process to verify the
correct utilization of all transmitted configuration parameters.

Index Terms—Smart Sensor; Configuration; Attestation;
Hardware Security.

I. INTRODUCTION

Sensors are seen as one of the major building blocks
of the Internet of Things (IoT) [1] where devices can be
used to interact with their physical environment only due to
embedded sensors. These sensor-equipped devices have led
to technologies such as wireless sensor networks (WSN) and
high-tech strategies such as Industry 4.0. In these technologies
and high-tech strategies, sensing nodes often perform some
sort of (pre-)processing in order to optimize properties such as
their exactness, energy efficiency, or usefulness. Such sensors
are also denoted as smart sensors [2].

Due to recent attacks targeting these devices, frequent re-
configuration is needed to mitigate certain kinds of attacks [3],
[4]. For example, frequent changes of applied encryption
keys or parameters such as a used elliptic curve could make
attacks harder. Also, security related software updates will be
needed to account for new security requirements. In addition to
security related updates, also updated functionality of devices
can be achieved. Rapidly changing environments, as well
as frequently updated requirements regarding their operation,
require smart sensors to be configurable. Weyer et al. [5] state
that configuring devices will be essential for future Industry
4.0 motivated production systems.

One way to achieve the goal of flexible smart sensors is
to make them self-configuring and adaptive [6]. Lee et al. [7]
suggest self-configuration and self-adjustment as one of five
major building blocks for cyber-physical systems (CPS) used
in Industry 4.0 scenarios. However, self-configuration of smart
sensors is not considered as mature enough to account for
all requirements of industrial scenarios where higher safety
and security standards need to be fulfilled. Therefore, manual
configuration mechanisms that are reliable while providing a
secured update process will be needed for smart sensors.

The European research project IoSense1 addresses the con-
figurability of smart sensors. As envisioned in the IoSense
project, the configuration of smart sensors should be possible
throughout the complete lifecycle of a sensor. The four phases
of a smart sensor’s lifecycle and potential example use-cases
where a (re)configuration is needed are shown in Fig. 1.

To allow smart sensors to be configured during all four
shown lifecycle phases, we propose a Near Field Communica-
tion (NFC)-based configuration approach that uses a dedicated
hardware-based secure element to provide a protected execu-
tion environment for involved security critical code as well as
secured storage for confidential configuration data. For non-
confidential configuration data, storage will be provided by a
general purpose computing environment. Due to these different
storage layers and to provide efficient configuration attestation
with minimal communication overhead, we also propose a
two-layer configuration attestation architecture. Summarized,
the contributions of this paper are:

• We present an NFC-based configuration approach suit-
able for smart sensors used in industrial environments.
To account for the enhanced security requirements of
industrial scenarios, a hardware architecture using ded-
icated hardware-based secure elements in combination
with suitable cryptographic methods are used to provide
data confidentiality, integrity, and authenticity.

• Due to providing unsecured as well as secured storage for
configuration data, and to impose an overhead as small as
possible, a two-layer configuration attestation architecture
is presented in this paper. The configuration protocol is
attestation aware to support the configuration attestation.

1http://www.iosense.eu
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Fig. 1. Four phases of a sensor’s lifecycle with configuration scenarios.

To the best knowledge of the authors, neither an attestation
aware configuration approach nor a two-layer configuration
attestation architecture were proposed in other works. The
remainder of this paper is structured as follows. In Section II,
background on involved technologies as well as related work is
discussed. The general configuration and attestation problem,
as well as a system model and corresponding assumptions,
are discussed in Section III. Section IV demonstrates our
proposed hardware-secured configuration approach, Section V
presents the corresponding two-layer configuration attestation
architecture. The presented approach is then evaluated in
Section VI by means of a demonstrator. This paper is then
concluded with Section VII.

II. BACKGROUND AND RELATED WORK

A. Device Configuration

Device configuration is an important topic in the IoT due
to the large number of devices. Many solutions have been
proposed (e.g. [8], [9]) that define interfaces such that devices
can be easily configured via the Internet. However, as most of
these solutions expose the configuration interface of devices
to the Internet without considering protocol and physical
device security, they are not suitable for industrial scenarios.
Steger et al. [10] propose a software update approach for
vehicles that relies on 802.11s mesh networks that allow
parallel updates of multiple cars. However, this approach is
not suitable for industrial smart sensor configuration due to the
following two reasons: (i) Due to many sensors being resource
constraint devices that operate on battery power, 802.11 based
technologies are considered to be too energy consuming for
smart sensor configuration purposes. (ii) The authors consider
adding hardware security modules (HSM) in their approach
but state that such a solution would lead to significant extra
costs. This is, of course, infeasible for smart sensors.

Configuration scenarios involving resource constraint de-
vices often use NFC due to the fact that NFC devices operated
in a passive mode provide excellent energy efficiency. Wu et
al. [11] present an approach to reprogramming computational
RFIDs over the air using the electronic product code pro-
tocol. Serfass and Yoshigoe [12] propose an Android-based
framework for NFC peer-to-peer communication that allows

TABLE I
COMPARISON WITH DEVICE CONFIGURATION RELATED WORK.

Related
Work

Energy
Efficient

Arbitrary
Payload

Secured
Protocol

Tamper
Resistant

Attes-
tation

[8], [9] � � � � �

[10] � � � � �

[11] � � � � �

[12] � � � � �

[13] � � � � �

[14] � � � � �

This work � � � � �

transferring arbitrary data. Similar to that, Haase et al. [13]
present an NFC-based configuration framework for sensors
and actuators used in home automation contexts. However,
due to the home automation focus, the security level provided
by that approach is considered as insufficient for industrial
scenarios. Ulz et al. [14] present a key update process for
industrial devices based on NFC. However, this approach does
not allow arbitrary configuration data to be transferred.

None of the presented approaches includes a verification
process to ensure the correct application of new configuration
data. An overview summarizing the related work regarding
device configuration is shown in Table I.

B. Configuration Attestation

The remote attestation of device characteristics such as
hardware properties, operating system, or services is a well-
covered topic in the IoT [15], for wireless sensor networks
[16], and generally for resource constraint devices [17]. Saroiu
and Wolman [18] discuss various scenarios that are affected by
untrustworthy sensor data. The authors also suggest to include
trusted computing hardware such as a trusted platform module
(TPM), Intel’s trusted execution technology (TXT), or ARM’s
TrustZone (TXT and TrustZone either use or closely relate to
TPM functionality [19]) into sensors to provide trusted data.

In fact, most proposed attestation approaches rely on trusted
computing hardware, due to the constraints and assumptions
that are often necessary for software-based attestation [20].
However, many approaches attest static parts of a system, such
as the BIOS, boot loader, or binaries that should get executed,
while we need to attest a configuration that is changing.

Regarding the attestation of changing properties, Kil et
al. [21] propose a method for dynamic system properties
attestation. In their approach, a challenger requests an attes-
tation that is then performed by the attester. The dynamic
properties that are attested are structures in an application’s
memory that need to be defined before deployment of the
application. The method also needs a BIOS that supports core
root of trust measurements which makes it infeasible for smart
sensors. SCUBA, a secure code update by attestation for sensor
networks [22] relies on indisputable code execution which is
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a software security measure shown to be susceptible to certain
attacks [20]. A promising approach is so-called property-based
attestation [23] that however requires functionality not yet
included into the TPM specification. As an alternative, the
authors assume a trusted execution environment that is needed
in their approach, which we will include in our proposed
architecture.

C. Near Field Communication (NFC)

NFC is a contactless communication standard based on
several RFID standards. The technology is well-known for its
usage in contactless payment solutions, ticketing, and access
control systems [24]. NFC operates at 13.56 MHz, typically
in ranges of 3-10 cm while supporting bit rates that are
multiples of 106 kbps (up to 848 kbps). Due to the fre-
quency spectrum used, NFC is not susceptible to interference
from other wireless technologies such as WiFi, Bluetooth, or
801.15.4 based protocols. Due to the limited communication
range, NFC provides certain security advantages compared to
other wireless technologies [25]. Although the communication
range of NFC is limited, attacks that allow eavesdropping in
distances of 10 m haven been shown. Therefore, security mea-
sures to protect the confidentiality, integrity, and authenticity
of transferred data need to be implemented.

D. Authenticated Encryption (AE)

AE comprises private key cryptography with Message
Authentication Codes (MAC) in a secured way such that
the confidentiality, integrity, and authenticity of data can
be provided [26]. The well-known private key cryptogra-
phy algorithm Advanced Encryption Standard (AES) provides
specialized modes of operation such as AES-CCM that are
capable of providing AE. AES can be implemented efficiently
in hardware with respect to performance as well as size
requirements (e.g. Rogawski and Gaj [27]). Therefore, the
usage of dedicated hardware to perform security relevant
operations in smart sensors is highly practicable [28].

E. Secure Element (SE)

The combination of processing units for secured code
execution and secured storage for data and applications is
denoted as SE. In contrast to general purpose CPUs, the
secured code execution environment mitigates exploits based
on flaws such as buffer overflows. In addition to that, the
SE also implements appropriate countermeasures to mitigate
physical attacks. SEs that are capable of mitigating physical
attacks provide so-called tamper resistance [29]. The security
level provided by SEs is assessed by a common criteria (CC)
information technology security evaluation [30] in order to be
able to compare the security provided by SEs.

III. PROBLEM DEFINITION AND SYSTEM MODEL

Before presenting our approach for smart sensor configura-
tion and configuration attestation, we define the problem we
face, and define our system model.

Fig. 2. System model for smart sensor configuration.

A. Problem Definition

When configuring smart sensors, (confidential) configura-
tion data is transferred to a device that can not be fully trusted,
even when trusted hardware components such as a trusted
platform module (TPM) are included in the smart sensor. The
configuration data also needs to be transferred to the device
using a communication channel with potential adversaries.
Therefore, we need to consider the following three problems:

1) To configure a smart sensor, confidential configuration
data needs to be sent using a communication channel
that might be accessible to potential adversaries.

2) A malicious sensor device might read configuration data
and reveals confidential information to a third party.

3) A malicious sensor device might accept a configuration
but does not apply it. Therefore, the correct functionality
of the device is compromised.

To summarize these problems, we assume an adversary that
is able to access and perform malicious operations on both the
communication channel, and the smart sensor.

B. System Model

For our configuration approach we assume the system model
shown in Fig.2 that comprises the following three entities:

Smart Sensor: The smart sensor that needs to be config-
ured. There is no limitation on the number of devices; we
generally assume n smart sensors in our system model.

Mobile Configuration Device: The mobile device used to
update configuration data on smart sensors. In our approach
there is no limitation regarding the number of configuration
devices used, so we assume a number of m mobile configura-
tion devices in our system model.

Configuration Back-End: The back-end manages and ini-
tializes all configuration changes. This means, changes need to
be done done on the back-end from where they are transferred
to the smart sensor using the mobile configuration device. In
our system model, we assume one configuration back-end.

C. Assumptions

Based on our system model, we assume a back-end that
operates as a global configuration storage to be trustworthy
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Fig. 3. NFC-based configuration architecture for a smart sensor’s confidential
as well as non-confidential configuration data.

and sufficiently secured against attacks. We further assume that
all configuration changes must be initialized and therefore au-
thorized by this back-end. Thus, the back-end has knowledge
of all smart sensor configuration versions that are configured
and managed by the given back-end.

IV. NFC-BASED CONFIGURATION

Smart sensors need to be configured during their entire
lifecycle as shown in Fig. 1. To account for this requirement,
we propose to use an NFC-based configuration interface for
the following reasons:

• NFC allows ad-hoc connections to be established instead
of exposing the configuration interface to potential adver-
saries located in a network.

• The limited communication range of NFC also offers
advantages in limiting the malicious use of this interface
due to adversaries having to be in close proximity to the
smart sensor in order to use to the configuration interface.

• If the NFC module of the smart sensor is operated in
passive mode, no energy is needed for communication.
The hardware components involved in the configuration
process can even be powered through the NFC field of the
communication partner’s NFC device, which is needed in
certain phases of a smart sensor’s lifecycle (e.g. during
manufacturing of the smart sensor).

A potential drawback of NFC is that there are no secu-
rity measures included in the NFC standard to protect the
confidentiality, integrity, and authenticity of transferred data.
Therefore, we propose to use AE in combination with ticketing
information that is used to verify if a configuration should be
accepted by a smart sensor or not. To perform all involved
cryptographic methods in a secured execution environment,
our approach relies on an SE that is combined with a general
purpose processor as shown in Fig. 3. This Config Component
implements security by isolation approach (e.g. Vasudevan
et al. [31]; normal and secured world) allows execution and
data storage to be split into confidential or critical, and non-

Fig. 4. Necessary two-layer architecture for configuration attestation due to
allowing data of two confidentiality levels.

confidential or non-critical parts. The responsibility of the SE
and sensor controller in our presented approach are:

SE: The SE offers a secured execution environment for
critical code such as AE. In addition, the SE also offers
secured storage for confidential configuration data that can be
stored in a tamper resistant manner. To enable configuration
transfer via NFC, the SE also includes an NFC interface. That
interface allows the SE to be powered by an NFC field, even
if there is no power source attached to the smart sensor. Due
to the SE providing the NFC interface, confidential data is
directly transferred to the SE and no additional interface for
configuration updates or storage needs to be exposed which
potentially also mitigates so-called API-level attacks that target
these interfaces [32].

Sensor Controller: The sensor controller includes inter-
faces to the sensor hardware, to the network, and to the
SE. Due to the fact that this controller is a general purpose
controller, it also provides an execution environment for non-
critical code as well as storage for non-confidential configu-
ration data.

Having both, secured and unsecured data storage, our
approach is able to handle confidential as well as non-
confidential configuration data. Confidential configuration data
could include information such as keys used for communica-
tion, firmware updates for the SE, or data for local decision
making in a smart sensor. Non-confidential data could, for
instance, represent settings such as the sampling rate of a smart
sensor but also firmware updates for the sensor controller.
Due to having two layers of configuration data with different
confidentiality requirements, the verification process of the
applied configuration update also needs to be done in a two-
layer architecture as shown in Fig. 4. There, LRoT denotes
the local root of trust that is used to attest non-confidential
configuration data. GRoT denotes the global root of trust that
is then used for confidential configuration attestation.
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Fig. 5. NDEF packet structure of transferred configuration data.

Independent of the confidentiality level when storing con-
figuration data, security measures need to be implemented
when transferring the configuration data using NFC to mitigate
eavesdropping, and replay attacks. Therefore, every configura-
tion that is transferred needs to be secured using the security
mechanisms shown in the NFC data exchange format (NDEF)
packet structure (see Fig.5) used in our approach. The fields
included in this NDEF packet are:

• Realtime: The realtime of the device that is sending the
configuration update. This information is used to decide
if a packet will be accepted or rejected by a smart sensor
(see field Validity). This information is not encrypted as
it is added to the NDEF package by the device deploying
the configuration due to most smart sensors not having
time synchronization.

• Cipher Specifications: This field defines the used encryp-
tion algorithm and corresponding key lengths to allow
the smart sensor to use the appropriate algorithms when
decrypting and verifying the package.

• Encrypted payload and MAC: These two fields are
generated by encrypting the plaintext payload and by
calculating the MAC of that same payload.

• Version: To mitigate replay attacks, a version number is
included in the encrypted payload. For a smart sensor to
accept a configuration update, this version number must
be larger than the current configuration version.

• Validity: The validity defines how long a given configura-
tion package is valid to also mitigate replay attacks. The
validity is checked against the included realtime from the
configuration deploying device.

• Sensor ID: The included sensor ID must match the sensor
ID stored in the tamper resistant memory of the SE for
the smart sensor to accept the configuration update.

• Plaintext: This is the transferred configuration data.
• Attestation Info: To allow the LRoT to perform attestation

operations, attestation information is also added to the
transferred data. The used attestation approaches will be
discussed in detail in the next section.

The secured NDEF data structure is used to transfer data
from the back-end to the mobile device as well as when
transferring data from the mobile configuration device to
the smart sensor. Using the same package entails that the
transferred data can not be modified in any way on the mobile
device. Since we consider the mobile configuration device
itself as well as its operator as untrustworthy, only allowing
data to be transferred secured by AE mitigates attacks enabled

by malicious devices or users.

V. TWO-LAYER CONFIGURATION ATTESTATION

Before presenting our two-layer configuration attestation
architecture, we are briefly going to discuss some terminology
related to attestation.

A. Attestation Terminology

Usually in attestation there are two roles, a challenger and
an attestor [33]. The challenger is the entity interested in the
correctness or trustworthiness of a system. That is, the output
of the attestation process. The attestor (often also prover) is the
entity that needs to prove its correctness and trustworthiness
by measuring and attesting its configuration. An attestation
process usually is assisted by some dedicated hardware that
supports trusted computing. The TPM specification of the
trusted computing group (TCG) lists two mechanisms that
are of interest when discussing device attestation: remote
attestation and sealed storage. Remote attestation defines how
to use a TPM’s secured storage, the platform configuration
registers (PCR), to implement an attestation process. Sealed
storage refers to data (information or code) that is stored
encrypted using a key calculated as a function of a TPM’s
PCR values. That is, the data is only unsealed if the attestor
is able to prove its correct state.

B. SE versus TPM

Most attestation solutions require secured hardware to be
used at the attestor. This secured hardware component is a
TPM in most cases. Sadeghi et al. [34] argue that such secured
hardware is too complex and often too expensive for most
resource constraint devices such as smart sensors. The authors
also state that although software-based attestation solutions
have been proposed, at least a basic subset of security features
in hardware will be needed. Therefore, we propose to use an
SE such as a product from Infineon’s SLE78 product family
(see [35]) in our approach for the following three reasons:

1) When using an SE such as Infineon’s SLE78 that was
designed for smart cards, secured hardware can also be
included into smart sensors that are constrained in terms
of size and available energy.

2) Although TPMs with NFC capability have been pro-
posed [36], no currently available TPM offers an NFC
interface. In contrast to that, certain SEs such as from the
SLE 78 family offer an NFC interface and the required
security properties needed for attestation.

3) The applied attestation approach that will be presented
in this paper requires a trusted execution environment
which is not included in the TPM specifications. How-
ever, security controllers are capable of providing such
a tamper resistant execution environment.

C. Two-layer Approach

Our two-layer configuration attestation approach is based on
the fact that the configuration solution presented in Section IV
supports two different levels of confidentiality for configura-
tion data. As shown in Fig. 4, non-confidential configuration
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will be attested using the SE included in our proposed config-
uration component while confidential configuration data will
be attested by the trusted back-end.

D. Non-Confidential Configuration Attestation

Non-confidential configuration data that can be changed
on the sensor controller can be either application updates
(binaries), configuration data (e.g. sampling rate), or both.
Since malicious code, as well as malicious configurations, can
be harmful, attestation is necessary for both components. Due
to the different nature of information, we suggest using two
different attestation techniques respectively.

Application (Binaries) are static memory content that is
changed less frequent than configuration data. According to
Yang et al. [37] the size needed for application binaries can
usually be assumed to be two orders of magnitudes larger
than the space required for (configuration) data. Therefore,
we propose to use basic binary attestation where a hash value
is computed over the complete application binaries. Advanced
methods such as pseudo-random memory traversal [38] can
also be implemented to prevent attacks such as memory copy
attacks, or pre-computation and replay attacks. The necessary
information to attest the correctness of updated binaries are
included in the configuration update NDEF package (attesta-
tion info, see Fig. 5) and therefore are also updated in the SE
(LRoT) whenever new application binaries or non-confidential
configuration data are transferred to the SE.

Non-Confidential Configuration Data is also stored in the
sensor controller’s memory. However, since configuration data
is much smaller and attacks such as memory copy attacks are
easy to implement, we propose to use property-based attes-
tation [23] for configuration data. As stated by the authors,
a property-based attestation mechanism requires additional
functionality that is currently not included in the TCG’s TPM
specifications. Therefore, a trusted execution environment is
needed to implement the desired functionality. In our ap-
proach, the trusted execution environment is provided by the
SE. To implement property-based attestation, certificates are
needed for each valid configuration property. The problem of
certificate revocation can easily be solved in our approach by
including certificate information in the configuration update’s
attestation information field.

The two different attestation techniques are then jointly
used to grant or deny network access to the sensor controller.
We suggest achieving this by using sealed storage to protect
code such as the whole network stack, or other information
from being accessed by an unattested sensor controller. By
restricting network access through local attestation instead
of using remote attestation, malicious smart sensors can be
isolated from the network. Thus, such sensors are hindered
from infecting other network devices or start network-based
attacks such as denial-of-service attacks, jamming, or decep-
tion attacks [39], [40]. The decision on which information
to seal in order to protect network access needs to be based
on a trade-off between parameters such as security level, and
overhead. On the one hand, sealing the network stack would

Fig. 6. Two-layer configuration attestation in detail.

require a sensor controller to prove its correctness only once
before copying the network stack to its own memory. However,
an adversary then could modify binaries or configuration after
having unsealed the network stack. On the other hand, sealing
an encryption key and requiring an attestation every time
before allowing an encrypted packet to be sent, increases the
overhead while still allowing certain kinds of attacks such as
DoS attacks. Since we only present an attestation architecture
in this paper, we refer to future work for a detailed comparison
of different approaches. Independent of the chosen sealing
approach, attestation information is stored in an SE that pro-
vides tamper resistance, attestation information is efficiently
protected from being tampered with. Therefore, adversaries
are not able to manipulate stored attestation information.

E. Confidential Configuration Attestation

Confidential configuration data is secured by the applied
security measures when transferring the data via NFC and
storing that data on an SE that provides tamper resistance.
Therefore, the correctness of these configuration parameters
is assumed in our approach. The attestation of confidential
configuration data to the global configuration database in the
back-end (GRoT) is still required to verify the successful
application of configuration data. That is, any malicious user
that does not apply a configuration update must be detected by
the GRoT. Since the second layer needs to attest configuration
parameters, property-based attestation is used to attest the
correctness of confidential configuration data.

VI. EVALUATION

To show the technical feasibility of our proposed con-
figuration component, the hardware demonstrator shown in
Fig. 7 was realized. This demonstrator comprises two different
controllers. An Infineon XMC4500 microcontroller that is
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Fig. 7. Configuration component hardware demonstrator and Android device
running the NFC configuration application.

used as the sensor controller in our approach and an Infineon
SLE 78 [35] that is used as SE. As a mobile configuration
device, we used an NFC-enabled Android smartphone. Using
this demonstrator, configuration update times (reboot of the
system not included) of about 200 ms can be achieved for
configurations consisting of 5-10 configuration parameters
including the necessary overhead imposed by the implemented
security mechanisms.

A. STRIDE Threat Analysis

To highlight the achieved security level, a threat analysis
was conducted that demonstrates the lists the threats (T) that
can be mitigated by countermeasures (C) implemented our
approach. Further, the threats are categorized by the STRIDE
model (Spoofing, Tampering, Repudiation, Information disclo-
sure, Denial of service, Elevation of privilege). Although we
do not claim this threat analysis to be exhaustive, we think the
listed threats represent the most relevant threats for a smart
sensor configuration scenario. Regarding the threat analysis,
we make the following assumptions: (i) We assume the global
configuration database back-end is sufficiently secured against
any kind of attack; therefore, it is considered as trusted entity.
(ii) Also the SE used in our approach is considered as trusted
entity. (iii) Other than that, we assume all other involved
entities as being untrustworthy. T1 (S, R, I, D, E): Adversary
that is trying to perform remote attacks on the configuration
interface. C1: Mitigated by using NFC which requires an
adversary to be in close proximity to the smart sensor. T2
(R, I): Adversary in close proximity is trying to eavesdrop
or manipulate configuration packages. C2: Mitigated by using
AE. T3 (S, D): Adversary in close proximity is trying to use a
captured configuration package to perform replay attacks. C3:
Appropriate countermeasures are included in configuration
package to mitigate these type of attack. T4 (S, R, I, D, E): An
adversary is able to inject malicious code or manipulated con-
figuration data into the sensor controller. C4: When attested,
the sensor controller is not able to unseal its network stack
stored in the SE. Thus, the malicious smart sensor is blocked
from accessing the network. T5 (S, R, D): Malicious code

in the sensor controller performs attacks (e.g. DoS) targeting
other network devices or tries to replicate the malicious code
to other devices. C5: When attested, the sensor controller is
not able to unseal its network stack stored in the SE. Thus,
the malicious smart sensor is blocked from accessing the
network. T6 (D): A malicious user tries to manipulate the
functionality of a smart sensor by not applying a necessary
configuration update. C6: The global configuration database
back-end attests the configuration state of a smart sensor;
therefore, not updated devices can easily be detected. T7 (D):
Adversary in close proximity tries to perform a DoS attack
by continuously sending malicious configuration packages to
the smart sensor. C7: The updates are rejected by the SE.
Normal operation of the smart sensor is not impacted since
the SE is powered through the mobile device’s NFC field;
therefore, no power required by the smart sensor is consumed.
Also, all cryptographic operations to decide if a package
needs to be rejected are performed at the SE, which does not
impact the normal operation of the sensor controller. T8 (S,
T, R, I, D, E): Adversary with physical access to the smart
sensor tries to perform physical and side-channel attacks to
reveal confidential data such as key material or cryptographic
algorithms. C8: The used SE mitigates physical attacks by
implementing appropriate countermeasures. The security level
is certified by CC.

VII. CONCLUSION AND FUTURE WORK

In this paper we present a hardware-secured configuration
approach based on NFC that is suitable for both confidential
and non-confidential data alike. Our approach comprises (i)
a component that can be included into future smart sen-
sors as well as into legacy devices and (ii) a NDEF-based
configuration protocol. The protocol includes information to
prevent updates from malicious users and mitigates replay
attacks. By allowing only NFC for configuration changes, the
configuration interface is not exposed to remote attacks from
the network. In addition, we also propose a two-layer con-
figuration attestation architecture to attest the correctness of
applied configuration updates. This architecture is capable of
attesting non-confidential configuration locally using an SE as
well as confidential configuration data remotely using a trusted
global configuration database. The technical feasibility of our
architecture is shown by means of a hardware demonstrator.
In addition to that, the security properties are evaluated in a
STRIDE threat analysis that highlights the increased security.

As future work we plan to investigate different methods to
grant or deny network access for smart sensors regarding their
trade-off between provided security level, and overhead.
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Abstract—The importance of Networked Control Systems
(NCS) is steadily increasing due to recent trends such as smart
factories. Correct functionality of such NCS needs to be protected
as malfunctioning systems could have severe consequences for
the controlled process or even threaten human lives. However,
with the increase in NCS, also attacks targeting these systems
are becoming more frequent. To mitigate attacks that utilize
captured sensor data in an NCS, transferred data needs to be
protected. While using well-known methods such as Transport
Layer Security (TLS) might be suitable to protect the data,
resource constraint devices such as sensors often are not powerful
enough to perform the necessary cryptographic operations. Also,
as we will show in this paper, applying simple encryption in
an NCS may enable easy Denial-of-Service (DoS) attacks by
attacking single bits of the encrypted data. Therefore, in this
paper, we present a hardware-based approach that enables
sensors to perform the necessary encryption while being robust
against (injected) bit failures.

Index Terms—Networked Control System; Security; Encryp-
tion; Forward Error Correction.

I. INTRODUCTION

Networked Control System (NCS) nowadays are gaining
popularity due to, among other things, Internet of Things
(IoT) technologies where systems such as intelligent traffic
control systems comprising of a large number of sensors and
actuators are envisioned [1]. Systems that monitor and control
a physical process through some computational device are
often generally defined as cyber-physical systems (CPS) [2].
These systems also allow the involved devices to be connected
to private and even public networks. Inspired by the IoT and
CPS, several working groups proposed high-tech strategies
such as Industry 4.0 [3] or smart manufacturing [4]. These
strategies envision so-called smart factories that connect every
device involved in the production process with each other or
even with the Internet. All of these trends have one thing in
common: devices are interconnected which allows NCS to
be implemented efficiently using the corresponding network
structures.

A general definition for an NCS is given by Gupta and
Chow [5]. The authors state that a traditional feedback control
system that is closed via a shared communication channel
should be classified as an NCS. They also highlight this as

a key characteristic common in many NCS definitions: infor-
mation in the NCS is exchanged between involved components
(sensor, controller, and actuator) using this shared communica-
tion channel. However, using a shared communication channel
results in several challenges for NCS:

1) Delays: Using a shared communication channel may
induce unreliable and non-deterministic behaviour into
an NCS [6]. If the resulting delays are too large for
an NCS with time constraints, the performance of the
NCS can be impacted [7]. This could ultimately lead to
potential physical damage to the controlled process or
even threaten human lives, for example, in traffic NCS.

2) Packet Loss: Another property common in shared com-
munication channels is the probability of packet loss.
If relevant information such as measured plant output
or control input are lost, the stability of the NCS
may be compromised [8]. Stabilization problems could
lead to compromised NCS performance, severe physical
damage of the controlled process, or even threaten lives.

3) Information Security: When transferring information
such as measured output or control input using a shared
communication channel, attacks that could compromise
the NCS functionality can easily be conducted [9].
In addition to that, an adversary that has learned the
behaviour of an NCS through eavesdropping communi-
cation, may be able to manipulate a system in a way such
that the attack remains undetected [10]. Therefore, the
trustworthiness of transferred information often needs to
be improved.

While a lot of current research is dedicated to the impact
of network delays and packet loss in NCS, not much research
has been done regarding information security as pointed out
by Byres and Lowe [11]. One of the limiting factors in NCS
related security research is the fact that security measures
require additional computational resources and time. For ex-
ample, using TLS for sensor to controller communication often
will be infeasible due to resource constraint sensor hardware.
However, the trustworthiness of sensor data is essential in NCS
as compromised data can lead to malfunctioning systems. To
improve the trustworthiness of data while imposing as little
delay as possible, algorithms and/or hardware extensions will978-1-5090-6505-9/17/$31.00 c©2017 IEEE
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be necessary. The approach presented in this paper therefore
makes the following contributions: (i) We propose the com-
bination of encryption and error correction to mitigate NCS
related attacks. (ii) To impose a minimum of delay, a hardware
extension is presented that can be integrated into sensors and
actuators. (iii) The presented approach can be applied to the
general concept of NCS; no network technology and related
security feature such as error correction is assumed.

The remainder of this paper is structured as follows. In
Section II technical background information regarding tech-
nologies used in our approach as well as related work regard-
ing NCS security solutions is given. Section IV and V show
a naı̈ve and an enhanced approach respectively that can be
used to mitigate certain kinds of attacks. This paper is then
concluded in Section VI where also potential future work is
discussed.

II. BACKGROUND AND RELATED WORK

A. Authenticated Encryption (AE)

AE generally combines a symmetric encryption scheme
with a message authentication code (MAC) to provide confi-
dentiality, integrity and authenticity of data [12]. A symmetric
(private-key) encryption scheme requires the two communi-
cating parties to be in possession of the same shared secret
key [13]. A widely used symmetric encryption scheme, the
advanced encryption standard (AES) [14], operates as a block
cipher, processing plaintext blocks of 16 bytes. For most
symmetric block ciphers specialized AE modes exist, such as
AES-CCM that can efficiently be implemented in hardware
[15] to provide reliable and fast execution of the algorithm.
Such implementations are feasible to provide encryption fast
enough for 100 Gbit/s ethernets [16].

B. Forward Error Correction (FEC)

FEC is used to detect and correct errors in data transmission
resulting from unreliable and noisy communication channels.
First applied by Hamming [17], the basic idea is to add
redundant information produced by an error correcting code
(ECC) before sending data. This redundant information allows
to detect or probably even to correct errors without requiring
the data to be transmitted again. ECCs, however, are not
limited to data transmission as one major field of application
is memory [18]. FEC can be implemented efficiently enough
to be suitable for applications relying on high speed, such as
100 Gbit/s transport networks [19]. A high performance type
of FEC are so-called turbo codes [20] that are used in 3G and
4G networks as well as in space programs [21].

C. Joint Encryption and Error Correction (JEEC)

JEEC was already discussed in research in the 1980s
where authors claimed that combining encryption and error
correction could lead to efficient implementations that could
be done in a cost effective way [22], [23]. These solutions used
the data encryption standard (DES) that nowadays is ousted by
AES. Mathur et al. [24] present an approach based on AES that
provides the same security level as AES. Gligoroski et al. [25]

discuss encryption and error correction coding done in a single
step for more recent algorithms. As the authors mention, also
sequential execution of encryption and error correction codes
is a possibility with execution performance being a drawback
of that approach.

D. Security Controller (SC)

SCs are processing units that provide a secured execution
environment for applications as well as secured storage for
data and applications. Compared to a general purpose CPU,
attacks based on issues such as buffer overflows are much
harder to exploit on an SC. In addition, SCs also provide
tamper resistance [26] that mitigates physical attacks by using
appropriate countermeasures. To assess the provided security
level of an SC the common criteria (CC) information tech-
nology security evaluation is used [27]. Because embedded
systems are often operated in untrusted environments and
thus accessible to adversaries, tamper resistance is of critical
importance [28].

E. NCS Security

In order to understand security threats in NCS, a threat
model containing potential vulnerabilities and the impact of
attacks needs to be defined first, as shown by Cárdenas et
al. [29]. The authors also highlight the differences of NCS
compared to traditional IT components: (i) frequent security
updates may not be possible for NCS and (ii) the interaction of
NCS with the physical world that greatly increases the impact
of attacks. For an NCS to be considered secured, the following
four security properties need to be fulfilled:
• Confidentiality: Data is not made available to unautho-

rized entities.
• Integrity: Data is not modified in an undetected manner

during its entire life cycle.
• Availability: System is available in order to fulfill its

intended task.
• Authenticity: Data is from the expected sender and not

injected by some other entity.
These properties can be compromised by different types of

NCS related attacks. Cárdenas et al. [9] highlight five attacking
points for CPS (see Fig. 1). Due to the similarities between
CPS and NCS, all of these five attacking points also apply
for NCS. Attacks of category A1 directly target the physical
process. A2 attacks are so-called deception attacks that are
characterized by adversaries inducing false information ỹ 6= y.
The attacks can be backed by a previous learning phase in
which the expected behaviour of the plant is learned first [10].
A3 represents Denial-of-Service (DoS) attacks on the sensor
to controller communication channel. Attacks that are charac-
terized by adversaries trying to induce false control commands
ũ 6= u are represented by A4. Here, the adversary could either
target the controller or the communication channel. A5 denotes
DoS attacks on the controller to actuator channel.

DoS attacks (A3, A5) are well covered in research with
many authors trying to account for these types of attacks in
the controller [30]. Due to the networking nature of NCS,
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Fig. 1: Potential attacking points in a CPS (adapted from
Cárdenas et al. [9]).

TABLE I: Comparison with related work. The properties
(C)onfidentiality, (I)ntegrity, (A)vailability, and (Au)thenticity
are evaluated.

Related
Work Remark C I A Au

[32], [30] Packet loss due to DoS attacks. 7 7 3 7

[33], [10] Deception attack detection. 7 7 3 7

[34] Encryption and hash algorithms ap-
plied; algorithms considered insecure. 3 3 7 7

[35] Encryption applied. 3 7 7 7

Our
approach

Suitable combination of algorithms;
tamper resistant hardware. 3 3 3 3

unintentional packet loss is a characteristic that robust control
algorithms need to account for [31]. The approaches used to
model such unintentional packet loss can then be adapted to
account for malicious packet jamming or compromising. Amin
et al. [32] use optimal control theory tools to optimize con-
troller performance such that safety specifications are satisfied
with high probability while power limitations are considered.

Replay attacks or deception attacks (A2) target sensor data
in an NCS to learn the expected behaviour of a plant and
then use that data to inject false measurements. These false
measurements can be used to hide an ongoing attack or to com-
promise the functionality of an NCS. Mo and Sinopoli [33]
discuss the impact of such attacks that can target a system in its
steady state. They also propose a method to detect an ongoing
replay attack that however decreases the performance of their
used controller algorithm. Mo et al. [36] also demonstrate
the usage of injected false sensor data to compromise the
functionality of a state estimator, thus directly targeting the
functionality of an NCS.

Urbina et al. [10] discuss the impact of stealthy deception
attacks on control system. They suggest to use a physics-based
attack detection model to detect ongoing attacks. The main
idea of their approach is to compare current properties of the
system with physics-based model of the system under normal
behaviour. Pang and Liu [34] propose to use data encryp-

Fig. 2: MATLAB/Simulink model of an NCS for a DC servo.
Both involved network connections are additionally outlined.

tion standard (DES) encryption and MD5 hashes to increase
the confidentiality, integrity, and authenticity of transferred
packets in an NCS. However, the approach by the authors
has three problems: (i) Both used algorithms, DES and MD5
are considered to be insecure nowadays [37], [38]. (ii) Plain
hash functions such as MD5 can not be used to efficiently
protect message authenticity [39]. (iii) All security measures
are implemented in software by the authors. This increases
delays as well as allows keys to be extracted by physical
attacks [40]. Gupta and Chow [35] analyze additional delay in
NCS induced by security algorithms such as DES, 3DES, and
AES. In the experiment conducted by the authors only DES
encryption is considered as fast enough to not compromise the
stability of the NCS. To compensate the overhead for other
algorithms, the authors suggest to use 1-D gain schedulers.

To increase the trustworthiness of data in an NCS, tradeoffs
between measures such as imposed delay, provided security
level, or energy efficiency need to be made [41] due to con-
straint devices. However, these tradeoffs might compromise
security. In contrast to that, the approach presented in this
paper tries to keep the associated impact of including security
such as delay as small as possible. A comparison of our
approach with presented work is given in Table I.

III. EVALUATION ENVIRONMENT

To demonstrate the impact of different measures and pa-
rameters applied to the NCS, we use a MATLAB/Simulink
simulation [42]. In addition to that, the TrueTime toolbox [43]
is used to simulate network related behaviour, scheduling of
software components, and real-time aspects. The process used
for evaluation in this paper is described by the transfer function
given in (1).

G(s) =
1000

s(s+ 1)
(1)

The system corresponding to that transfer function is a
simple DC servo motor; the measurable system output being
the angular position of that DC servo. To control this DC
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Fig. 3: Step response of the system shown in Fig. 2.

servo, a PD controller is used. Both the plant and the used
PD controller can be found in the examples included in the
TrueTime toolbox. The NCS shown in Fig. 2 comprises the
DC servo plant, the respective actuators and sensors, the PD
controller, and the simulated networks necessary for commu-
nication between components. As can be seen in Fig. 2, we
use two different networks. Network 1 handles communication
between the PD controller and the actuator, while the commu-
nication between the sensor and PD controller is handled by
network 2. The PD controller, therefore is connected to both
networks and has the same node ID 2 in all two networks. The
actuator and sensor are assigned node ID 1 in their respective
network. This setup allows us to simulate the impact of applied
measures and network parameters on different parts of the
NCS. In our case, we only manipulate the communication
between sensor and PD controller. As imposed time delays
are not a focus of this publication, the delays imposed by the
network technology applied in an NCS are set low enough
(10 ms for each transmission) for the simple PD controller to
work correctly. The resulting closed-loop step response of our
simulated NCS is shown in Fig. 3.

IV. NAÏVE APPROACH

The easiest approach to increase confidentiality, integrity,
and authenticity of information transferred in an NCS is
to use appropriate encryption algorithms. However, as we
will show, this approach is also naı̈ve in some kind as it
introduces drawbacks regarding the NCS functionality that
were to the best knowledge of the authors not discussed in
other publications.

A. Usage of AE

In contrast to the discussed related work, we propose to
use AE in the presented NCS context as this combination
of encryption and MAC is suitable to provide confidentiality,
integrity, and authenticity of information. Using encryption
only or a combination of encryption and hash algorithms [34],
[35] can not be used to provide all three mentioned security
properties. If plain encryption is used, it is sufficient for an

TABLE II: Sensor data plaintext (PT ), cyphertext (CT ), and
corrupted cyphertext (CT ′) with resulting plaintext (PT ′).

Sensor 1 Sensor 2 Sensor 3 Sensor 4

PT 0x00000001 0x00000002 0x00000003 0x00000004

CT 0xDE154CCE 0x18E65A6E 0xBD9A0593 0xE1B82507

CT ′ 0xDE154CCE 0x18E65A6E 0xBD9A0593 0xE1B82506

PT ′ 0x2D3DB30D 0xE89541F5 0x9AFD9AED 0x03BD8985

TABLE III: AES modes for AE and the corresponding perfor-
mance measures from Crypto++ [44].

Algorithm MiB/Second Cycles per Byte Table

AES GCM 2K 102 17.2 2K

AES GCM 64K 108 16.1 64K

AES CCM 61 28.6 -

adversary to change a single bit of each transmitted packet to
completely disturb the NCS functionality. As an example we
use four sensor measurements shown in Table II as plaintext
(PT ) and encrypt them in one block using AES. One bit of the
corresponding cyphertext (CT ) is modified (last bit changed
from 1 to 0) which results in a corrupted cyphertext (CT ′). If
this corrupted cyphertext is decrypted using the same key as
for encrypting PT , a corrupted plaintext (PT ′) results. As can
be seen, by just flipping one bit of the cypertext, the plaintext
does not correlate to the original sensor measurements in any
way and thus, can cause severe problems in an NCS if this
corrupt data is not detected.

To detect problems resulting from manipulated cyphertexts
and to provide data confidentiality, integrity, and authenticity
we propose to use AE. AE can be implemented by combining
encryption with a MAC. AES modes that can be used for
AE are Counter with CBC-MAC Mode (CCM) as well as
Galois/Counter Mode (GCM) [14]. We propose to choose
the corresponding mode based on the memory/execution time
tradeoff that needs to be made between those two algorithms
as shown by Crypto++ Benachmarks [44] in Table III. If
execution time is the most relevant factor, AES with GCM
should be used for AE.

B. Bit Failures and Block ciphers

If AE based on a block cipher is applied, malicious data
packages can be detected and discarted. However, this property
is problematic for NCS as a single flipped bit causes a package
containing sensor data to be dropped. For example, multi user
Ethernet has a typical bit error rate (BER) of about 10−9 [45].
The packet error rate (PER) can be calculated according to (2)
where N is the packet’s size in bits.

PER = 1− (1−BER)N (2)

For transmitting 1 kB of data (N=8000) this equates to a
PER of ≈ 8·10−6. However, if an adversary is able to inject bit
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Fig. 4: PER depending on the BER, payload size, and param-
eters of the applied cryptographic algorithms.

failures in any way, for example, by jamming wireless signals,
the PER increases rapidly as can be seen in Fig. 4. In this fig-
ure, the PER depending on the BER, the payload size and the
parameters of the applied cryptographic functions is shown.
We demonstrate four different scenarios with combinations of
AES block size, MAC length and number of sensors there. We
assumed that each sensor measurement can be represented by
a 32 bit number in this example.

1) 192 bits payload: AES block size 128 bit, 4 sensor
measurements: 1 AES block, 64 bit MAC

2) 384 bits payload: AES block size 256 bit, 4 sensor
measurements, 1 AES block, 128 bit MAC

3) 448 bits payload: AES block size 128 bit, 12 sensor
measurements, 3 AES blocks, 64 bit MAC

4) 896 bits payload: AES block size 256 bit, 12 sensor
measurements, 3 AES blocks, 128 bit MAC

An adversary that is able to manipulate just one in 1000
transmitted bits, causes a PER between 20% and 60% in our
examples (Fig. 4). To highlight the impact of such a high
PER, the system presented in Section III is simulated again
with 25% packet loss and 50% packet loss (between sensor
and controller) respectively. These simulations result in the
step responses shown in Fig. 5. For 25% packet loss the
given reference input can be achieved by the system (Fig. 5a)
although it takes longer to reach the desired reference value
when compared to the standard case shown in Fig. 3. When
simulating 50% of packet loss between sensors and controller
(Fig. 5b) the given reference input is hardly reached by the
system. Thus, by trying to prevent deception attacks, simply
applying encryption might make DoS attacks a lot easier for
adversaries.

C. Stream Ciphers

One potential technology to mitigate the problems related
to bit failures in cyphertexts are stream ciphers [46]. Stream
ciphers encrypt each plaintext bit separately by combining it in
some specified form with a corresponding bit of a keystream.
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(a) Step response of system with 25% packet loss.
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(b) Step response of system with 50% packet loss.

Fig. 5: Step responses for the system shown in Fig. 2 with
different amounts of packet loss in network 2.

Due to this property, stream ciphers are not prone to the pre-
viously described problem; flipping one bit in the cyphertext
results in one corrupted bit in the plaintext after decryption.
However, the most widely used stream cipher Rivest Cipher 4
(RC4) is considered insecure due to various vulnerabilities [47]
and was therefore removed from TLS [48]. Other stream
ciphers, such as Salsa20 [49] are not yet widely proven to be
considered. However, future developments regarding stream
ciphers need to be monitored regarding their potential impact
on NCS security.

As we have shown, simply applying encryption to prevent
deception attacks in NCS is not an applicable approach. There-
fore, in the next section, we present an enhanced approach that
mitigates the drawbacks of using encryption in NCS.

V. ENHANCED APPROACH

As simply applying encryption in an NCS has drawbacks
regarding bit failures, we propose an enhanced approach that
combines encryption and error correction to mitigate these
drawbacks. Depending on the used network technology in

– 119 –



Paper D - IEEE ETFA 2017

FEC 
Encoder

Decryption

FEC 
Decoder

Plaintext

Secured
Codeword

Sender Receiver

Potential Adversaries

Encryption

Cyphertext /
Dataword

Fig. 6: Sequential JEEC applied in our approach.

an NCS, either encryption, error correction, or both tech-
nologies are applied, for instance when using TLS over an
Ethernet channel. However, to make NCS security measures
independent of the applied network technologies, we propose
to include our approach directly into the involved components
(sensors, actuators, controller).

A. JEEC

In our approach, we sequentially combine encryption and
error correction to reduce the impact of bit failures in cypher-
texts. More specifically, we suggest to use a suitable AES
mode for AE (GCM or CCM) in combination with turbo
codes FEC. We suggest this combination of algorithms for
the following reasons:
• AES is a well established symmetric algorithm.
• AES provides modes of operation to apply AE.
• Turbo codes are very fast FEC algorithms that can be

implemented efficiently in hardware.
• The performance of turbo codes regarding the achievable

BER is close to the Shannon limit [50].
Rao [23] states that the sequential order of encryption and

error correction is irrelevant, as long as both are performed.
This, however is not true for our proposed approach. If the
error correction would be executed before encrypting the
complete data package, no advantage compared to simply
applying encryption could be achieved. Therefore, we propose
to first encrypt the plaintext, followed by performing the FEC
encoding before sending data as shown in Fig. 6.

By using this approach, a plaintext is encrypted and the
resulting cyphertext is seen as the dataword that is used as
input for the FEC encoding. The resulting codeword then
resembles the previous cyphertext plus data redundancy that
was added by the FEC encoding. On the receiving end, the data
first needs to be decoded before decrypting the corresponding
cyphertext. This process allows the transmitted data to be
protected by AE as well as by FEC in order to provide
confidentiality, integrity, and authenticity of data and to make
DoS attacks harder compared to simply applying encryption.

B. Analysis of Functionality

In contrast to our sequential approach there are also ap-
proaches that combine encryption and error correction in a
single step [24], [25]. However, we propose to use separate
encryption and error correction algorithms as the provided
functionalities are easier to verify and proof for both com-
ponents respectively. Moreover, this separation of components
allows the security relevant parts to be executed on dedicated
hardware to increase the provided level of security.

The security properties of AE based on suitable AES modes
are demonstrated in literature [12], [14]. AES is the most used
symmetric encryption algorithm, and no severe weaknesseses
in the algorithm were known at the time this publication was
written. The functionality of the proposed turbo codes FEC is
measured in the improvement in BER compared to using no
FEC. For a fixed ”signal to noise” ratio (Eb/N0), a channel
using turbo codes FEC provides a BER that is lower by a
factor of 104 compared to an unencoded channel [51]. Thus,
reducing the impact of (malicious) bit errors when transmitting
data in an NCS.

C. Anomaly Detection

In addition to mitigating problems related to bit failures, also
anomly detection [52] could be performed using the applied
FEC. A very simple approach would be to define a threshold
above the expected BER of a communication channel. If
the encountered bit errors are then monitored in a certain
time window and exceed this specified threshold, an anomaly
could be reported. However, more complex mechanisms can
be implemented based on this information. We will consider
such mechanisms for future work.

D. Hardware Enhancements

Due to the real-time aspects of NCS coupled with often re-
source constraint devices, we also propose to include dedicated
hardware components into sensors, actuators, and controllers
in order to provide reliable execution times. In addition to that,
dedicated hardware also provides additional security features
that we are going to discuss in this section. Fig. 7 illustrates an
NCS with included additional hardware components necessary
for our presented approach. In this figure, SC denotes a so-
called security controller, while EN and DE are FEC encoders
and decoders respectively.

To allow security enhancing components to be included
easily into sensors, actuators, and controllers, we propose a
so-called JEEC enhancement. Due to its included interfaces,
the JEEC enhancement shown in Fig. 8 can easily be integrated
into NCS components. The JEEC enhancement consists of the
following three components:

1) CPU: The general purpose CPU offers interfaces to
sensors and actuators as well as to the communication
channel. All necessary computations such as data pre-
processing or the network stacks are handled by this
CPU. In addition, the CPU needs to have interfaces to
the SC and FEC components.
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Fig. 7: Block diagram of NCS secured with our presented
approach. In this block diagram, EN denotes a FEC encoder
while DE denotes a FEC decoder.

2) SC: The SC is used to perform cryptographic operations
in a secured environment. In addition to that, the SC also
provides secured storage for confidential information
such as key material. To provide these two function-
alities, the SC needs to provide tamper resistance in
order to mitigate physical attacks that try to extract or
reveal confidential information. In addition, the SC also
provides protection against software based attacks. A
product line of SCs suitable for smart factories is, for
example, offered by Infineon [53].

3) FEC: The FEC component is responsible to perform
FEC calculations as efficient as possible. Due to con-
straints in size and/or price of sensors and actuators,
the FEC component can also be split into decoder and
encoder depending on the specified requirements.

Due to the necessary network functionality of components
in an NCS, a network interface needs to be included in any
case. Most of the time this also requires the inclusion of a
CPU to handle the resulting overhead. Therefore, the proposed
JEEC enhancement only requires to add an SC and the FEC
component in most cases.

E. Advantages of Approach

The presented approach of using JEEC supported by dedi-
cated hardware components has five advantages compared to
current state of the art approaches: (i) AE provides confiden-
tiality, integrity, and authenticity of data in a NCS; therefore,
deception attacks can be mitigated. (ii) The combination of AE
with FEC helps to mitigate the drawbacks resulting from bit
failures in the transferred cyphertext. Despite bit failures, the
same step response as shown in Fig. 3 can be achieved. Due
to the sequential execution of encryption and error correction,
the functionality of both components is not compromised.
(iii) The information obtained in the error correction process
can be used to perform additional anomaly detection. (iv) The
presented JEEC enhancement can easily be included in any
NCS component and thus increase the security of transferred
data in an NCS. Due to using dedicated hardware components,
constant runtime of cryptographic algorithms can be provided.
(v) The tamper resistance provided by the SC can be used to
protect confidential data if, for example, sensors are deployed
where they are accessible by potential adversaries.

JEEC Enhancement

CPU
 Data Flow Handling

SC
 Key Storage

 AE

Sensors/
Actuators

Network
Interface

FEC
 Turbo Code

Fig. 8: JEEC enhancement for components in an NCS.

VI. CONCLUSION AND FUTURE WORK

In this paper we have shown an encryption only approach
to mitigate deception attacks in NCS. We highlight drawbacks
of simply applying encryption and show the potential impact
of (injected) bit failures in a NCS. To counteract these draw-
backs, we propose to use JEEC to protect data confidentiality,
integrity, and authenticity while also limiting the impact of
adversaries that are able to artificially increase the BER
in the used communication channel. We also presented a
JEEC enhancement that can easily be integrated into NCS
components while providing increased security and keeping
delays as low as possible. As future work we plan to further
investigate stream ciphers and JEEC algorithms that are able
to perform encryption and error correction in a single step
which might provide additional advantages.
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[15] E. López-Trejo, F. Rodrı́guez-Henrı́quez, and A. Dı́az-Pérez, “An FPGA
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Abstract—Wireless communication technologies such as WiFi,
ZigBee, or Bluetooth often suffer from interference due to many
devices using the same, unregulated frequency spectrum. Also,
wireless coverage can be insufficient in certain areas of a building.
At the same time, eavesdropping a wireless communication out-
side a building might be easy due to the extended communication
range of particular technologies. These issues affect mobile robots
and especially industrial mobile robots since the production
process relies on dependable and trustworthy communication.
Therefore, we present an alternative communication approach
that uses Near Field Communication (NFC) to transfer confiden-
tial data such as production-relevant information or configuration
updates. Due to NFC lacking security mechanisms, we propose
a secured communication framework that is supported by dedi-
cated hardware-based secure elements. To show the feasibility of
our approach, an Industry 4.0 inspired production process that
uses our communication approach is evaluated in simulation.

Index Terms—Near Field Communication; Industrial Robots;
Industry 4.0; Configuration.

I. INTRODUCTION

Having a trustworthy and dependable communication
channel is essential in many scenarios, especially in industrial
settings where the production process can be influenced
negatively due to malfunctioning communication between
involved devices. This applies in particular to so-called
smart factories as envisioned in high-tech initiatives such
as Industry 4.0 [1]. Such smart factories are characterized
by rapidly changing product demands, varying utilization
of different production machinery, and usage of industrial
autonomous mobile robots (IAMRs). Since IAMRs are
involved in the production process, they need to transfer
information between them and the involved production
machinery. Although wired network technologies are usually
preferred in industrial settings, wireless technologies are
required in such Industry 4.0 setting due to the IAMRs
not being stationary devices. Therefore, industrial wireless
technologies are gaining popularity [2] although they
generally suffer from the following three problems:

1) Interference: The 2.4GHz frequency band that is used
by communication technologies such as WiFi, Bluetooth
or ZigBee is crowded due to all these technologies
using the same spectrum. In addition, also devices such
as cordless telephones, baby phones or other remote

controlled accessories could potentially operate in the
2.4GHz range [3]. The alternative 5GHz range for WiFi
is also already used by other devices such as cordless
phones, radar, and digital satellites [4]. Due to many de-
vices operating in the same frequency range, interference
will occur and affect wireless communication.

2) Insufficient Coverage: Due to certain objects in build-
ings that dampen or even shield wireless communication
(e.g. walls or large production machines) it is costly
to provide good wireless coverage for every part of
a certain area. For IAMRs this is a problem due to
the non-deterministic behavior when navigating on a
factory floor. For instance, avoiding a moving obstacle
(e.g. humans) might require the IAMR to navigate to
a certain part of the factory floor without sufficient
wireless coverage.

3) Eavesdropping: The communication range of wireless
technologies such as WiFi (and particularly sub-GHz
ISM-band protocols) ranges up to several hundred me-
ters. Due to this fact, eavesdropping ongoing commu-
nication could be possible outside an enclosed factory
environment. This fact allows potential adversaries to
eavesdrop and attack wireless communication without
physical access to the smart factory, even if the commu-
nication is sufficiently secured against remote attacks.

In order to mitigate these problems, we propose to use
Near Field Communication (NFC) in industrial settings
due to the following three reasons. (i) NFC operates at a
different frequency range than the most commonly used
wireless technologies, thus reducing the risk of interference
with other devices. (ii) NFC only supports peer-to-peer
communication. Therefore, wireless coverage for a certain
area is not required. Instead, each communication partner
needs to be equipped with NFC capable devices. (iii) Due
to the limited communication range of NFC, eavesdropping
becomes more complicated for potential adversaries compared
to other wireless communication technologies. To account for
the previously discussed Industry 4.0 settings, NFC devices
need to be mounted on any production machinery and IAMR
that wants to communicate with other involved partners. We
present a hardware extension that can be integrated into new

©2017 IEEE. Reprinted, with permission.
From Proceedings of the 8th IEEE International Conference on Radio Frequency Identification - Technology & Application (RFID-TA), September 2017.

– 123 –



Paper E - IEEE RFID-TA 2017

equipment as well as retrofit to existing legacy devices. In
combination with security mechanisms that we are going
to present in this paper, this NFC extension is capable of
providing a dependable and trustworthy communication
mechanism that does not suffer from the previously
mentioned problems of other wireless communication
technologies. Because a production machine A can not
directly communicate with a second production machine
B due to the limited communication range of NFC, the
machines will rely on the IAMRs moving between them
to transport information from A to B. This concept of
communicating originates from the early days of IT, where
network connections were not that common. In a so-called
sneakernet [5], data was transported from A to B using
mediums such as floppy disks or USB sticks. In our case, this
sneakernet concept will therefore be introduced to (robotic)
wheels.

Contributions. Briefly, the contributions of this paper are:
(i) We propose to use NFC as communication technology for
industrial contexts that involve IAMRs to mitigate drawbacks
of other wireless technologies. (ii) To provide a secured and
reliable connection that can be used in new equipment as
well as for legacy hardware, we present a hardware extension
and the software components necessary for our approach. (iii)
The feasibility of our presented approach is then shown in a
simulation of an Industry 4.0 inspired use case.

Outline. The remainder of this paper is structured as
follows. In Section II background information on the involved
technologies as well as related work is discussed. The NFC-
based communication approach for IAMRs is then presented in
Section III. Section IV discusses and evaluates the feasibility
of that approach for Industry 4.0 inspired settings. Future work
and a conclusion are then given in Section V.

II. BACKGROUND AND RELATED WORK

A. Industrial Robot Wireless Communication

Robot wireless communication has evolved from early
technologies such as infrared towards radio frequency (RF)
technologies such as Bluetooth and WiFi [6], [7]. Due to
the emergence of Wireless Sensor Networks (WSNs) and
the Internet of Things (IoT) in general, the mitigation of
interference effects is a focus in research [8], [9], [10]. Many
of the presented approaches try to minimize the effects of
interference by modifying the lower layer protocols (e.g.
MAC layer protocols). Although more robust solutions were
proposed in research, in current practice WiFi is still seen
as the de-facto standard in industrial communication due to
factors such as low cost, ease of integration, and compatibility
with almost any system. Therefore, special variants of wireless
technologies suited for industrial use have been proposed [11].

The topic of robot wireless communication is also dis-
cussed concerning robotic inspired use cases such as the
RoboCup that is seen as a testbed for future robotic solutions.

Rooker and Birk [12] show that using wireless communication
poses certain constraints that need to be considered in the
respective robotic use case. Liu et al. [13] compare different
communication technologies regarding their dependability and
delay. The authors also note that wireless communication is
especially critical in industrial settings. Santos et al. [14],
[15] present measures on how to efficiently use a shared
wireless communication channel in RoboCup competitions. In
contrast to that, Birk et al. [16] propose to use cable-based
communication for scenarios where reliable communication
is of utmost importance such as for rescue robots. However,
to the best knowledge of the authors, no satisfactory solution
suited for robot to machine communication has been presented
yet.

B. Near Field Communication (NFC)
NFC operates at an RF of 13.56MHz, typically at a range

of 3 cm-10 cm and supports bit rates of 106, 212, 424, and
848 kbps. The technology is based on several RFID standards
and operates in a so-called contactless communication mode.
The most common and well-known fields of application for
NFC are mobile payment and access control systems [17].
NFC supports the following three standardized modes of op-
eration: (i) Card Emulation Mode: The NFC device emulates
a (smart) card; no RF field is generated by the device (passive
mode). (ii) Reader/Writer Mode: The NFC device generates
an RF field that is used to communicate with a passive
device. The passive device also can be powered through the
RF field emitted by the active device. (iii) Peer to Peer
Mode: In this mode, a master/slave principle is used. The
communication’s initiator is defined as master. Independent on
the chosen mode of operation, the device pairing principle of
NFC is fundamentally different compared to other wireless
technologies such as WiFi or Bluetooth. NFC devices are
paired by bringing the two communicating devices in close
proximity of each other [18]. Other than the so-called security
by proximity principle, NFC provides no security mechanisms
at the link layer; therefore, security needs to be provided by
the application layer.

C. Authenticated Encryption (AE)
To provide data confidentiality, integrity, and authenticity

AE comprises symmetric cryptography and Message Authen-
tication Codes (MAC) [19]. Symmetric encryption (or private
key encryption) requires both communicating partners to be
in possession of the same shared secret that is then used
for encryption and decryption of data. The most commonly
used symmetric cryptographic algorithm is the Advanced En-
cryption Standard (AES) [20]. AES provides various modes
of operation that provide different characteristics regarding
execution speed or size of the implementation. Some of
these modes such as AES-CCM or AES-GCM support the
calculation of AE.

D. One-Time Ticket (OTT)
OTTs are similar to one-time passwords [21] in that they are

used to authorize an entity to access a certain service exactly
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once. An OTT is issued to a certain entity and might be valid
only for a given time. If the ticket holder tries to use the
ticket after it has expired, access to the service is rejected.
The concept of using tickets to access services is applied in
widely used protocols such as Kerberos [22].

E. Security Controller (SC)
SCs are dedicated hardware-based secure elements that are

capable of providing a secured execution environment for
security-critical code as well as secured data and application
storage. These functionalities can be offered by SCs due to
their tamper resistance [23]. An SC that provides tamper re-
sistance uses appropriate countermeasures to mitigate physical
attacks. These kind of attacks are different to remote attacks
as physical attacks are performed by adversaries who have
physical access to the system under attack. Physical attacks are
not a focus of research in robotics yet; however, the necessity
to have some instance that provides reliable execution of
software components in mobile robots was already proposed
by Tomatis et al. [24]. Although the authors implemented
their SC in software, its correct functionality is validated by a
dedicated processor to improve the safety and security of the
presented mobile robot platform.

III. NFC-BASED COMMUNICATION

To enable production machinery as well as IAMRs to
communicate using NFC technology, these devices need to be
equipped with appropriate NFC-capable hardware. Addition-
ally, a secured communication protocol needs to be applied to
provide a trustworthy and dependable data channel. Therefore,
we present NFC enhancement hardware for production ma-
chinery and IAMRs as well as a communication protocol fitted
to the presented hardware. The feasibility of our approach
will be evaluated int the context of the RoboCup Logistics
League’s (RCLL). Since the RCLL’s goal is to provide a
factory automation testbed that resembles an Industry 4.0
motivated scenario including IAMRs [25], we consider this
league as an ideal setting to evaluate our proposed approach.

A. NFC Enhancement Components
NFC communication supports different communication

modes; however, all of these communication modes require
an active (master) and a passive (slave) device in order to
establish a connection and transfer data. In an Industry 4.0
inspired use case that involves production machinery and
IAMRs, we propose to implement the IAMRs as active devices
while the production machinery will be implemented as pas-
sive device. This allocation of roles would allow the IAMRs
to communicate with production machinery independent of
the machines current (power) state. Therefore, an approaching
IAMR could, for example, turn on or activate the respective
production machine, without the passive machine having to
poll or wait for incoming connections. Both, the active and
passive NFC enhancements are shown in Fig. 1 where the
proposed hardware components are applied to an Industry 4.0
inspired simulation that was adapted from the RCLL’s official
simulation environment [26].

Robot NFC Enhancement Machine NFC Enhancement

Controller
Security

Controller I²C
NFC

NFC

Chip
NFC

Security

ControllerController
LAN LAN

I²C

Fig. 1: Concept of NFC-based robot to machine communica-
tion applied to RCLL game simulation in Gazebo.

B. Robot (Active NFC Device)

The Robot NFC Enhancement component that is the active
NFC device is shown on the left-hand side of Fig. 1 and
comprises the following three components:

1) The NFC Chip provides the necessary interface to
initiate and execute NFC communication. Due to the
component being active, the NFC chip always needs to
be powered by a power source provided by the IAMR.

2) The SC executes security related code that is required
for the proposed communication protocol. In addition,
the SC also provides secured storage for confidential
information such as key material. SCs that are suitable
for industrial use cases are offered, for example, in
Infineon’s Optiga family [27].

3) The Controller operates as an interface to the IAMR and
thus, provides interfaces to connect the NFC enhance-
ment to existing robotic hardware.

C. Machine (Passive NFC Device)

The Machine NFC Enhancement component that acts as
passive NFC device is shown on the right-hand side of Fig. 1
and comprises the following two components:

1) The SC provides an NFC interface as well as secured
execution of security relevant code. To be independent
of machine states, the SC should be powered by the NFC
field of the active device. SCs that provide this feature
can be found, for example, in Infineon’s SLE78 family.

2) The Controller acts as a gateway between SC and exist-
ing hardware and thus, provides appropriate interfaces
such as Ethernet or I2C.

D. Communication Protocol

In addition to the NFC enhancement components discussed
in Section III-A we also propose a communication protocol
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MachineRobot

Get One-Time Ticket

Valid One-Time Ticket

One-Time Ticket + Message

Confirm / Reject

Fig. 2: Sequence diagram of communication handshake.

that provides the necessary security measures entailed by the
transfer of confidential data in industrial scenarios. To protect
that data, we identify the following types of attacks that need
to be mitigated by our approach:

Eavesdropping: Although NFC has a limited communica-
tion range, data confidentiality needs to be protected such that
no unauthorized party has access to transferred data.

Manipulated Packets: Packet manipulation by potential
adversaries must be detected in order to protect data integrity.

Authorized Communication Partners: Unauthorized
senders must be detected in order to reject data sent by such
communication partners. Thus, data authenticity is protected.

Replay Attacks: Captured and re-sent data that is
unmodified must be identified and rejected in order to
mitigate replay attacks and thus, protect the system’s
functionality.

To mitigate all of the mentioned attack types, we propose
to apply AE in combination with OTTs. AE is used to
provide data confidentiality, integrity, and authenticity. In
addition, we use OTTs to detect and mitigate replay attacks.
The master requests the OTT from the slave after initiating
the communication. OTTs are directly generated at the slave
when they are requested. Upon reception of that ticket, the
master then is allowed to send a single message to the slave
using this ticket. The sequence of this simple handshake and
data sending is shown in Fig. 2.

The OTT used in our approach is composed of two
components: (i) a random number, and (ii) the issued
timestamp of a given ticket. In contrast to other approaches
such as Kerberos, where multiple tickets can be issued and
used at the same time, our approach only allows one ticket
to be valid at any time. That is, if an OTT is requested, the
ticket issuer (machine) stores the corresponding Ticket ID
that comprises a random number and the issue timestamp. If
a new ticket is requested without the old one being used, the
old OTT automatically becomes invalid since it is overwritten.
To request an OTT, the requester also needs to specify the
timestamp of the OTT request. Both request and OTT are then
only valid for a specified amount of time to mitigate replay
attacks. Due to the ticket information being confidential, it
also needs to be sent encrypted. The NDEF packet structure
we use for the whole communication process is shown in
Fig. 3. The fields included in this NDEF message are:

Encrypted

Payload
MAC

Cipher Spec

2 Byte

Plaintext
Timestamp

4 Byte

Ticket ID

4 Byte

Fig. 3: NDEF packet structure.

Cipher Spec: Specifies the algorithm and used key length
for AE. This information is transmitted unencrypted.

MAC: The MAC calculated for the entire message; trans-
mitted unencrypted.

Ticket ID: The OTT’s ID (random number) that can be
generated using a true random number generator provided by
the SC. The ticket ID is transmitted encrypted.

Timestamp: The timestamp of either the ticket request or
the ticket issuing. The timestamp is transmitted encrypted.

Plaintext: The information of the transferred message. The
plaintext is transmitted encrypted.

IV. EVALUATION

To evaluate our presented approach, we discuss two mea-
sures that are essential for determining the feasibility for
industrial use-cases: security and communication performance.

A. Security Analysis

Using the NFC enhancement components discussed in
Section III-A in combination with the protocol presented in
Section III-D the following security-related properties can be
provided by our approach:

CIA: Data Confidentiality, Integrity, and Authenticity are
provided by the applied AE that is executed in a secured
environment on the SC. The used key material that is also
confidential is protected by the tamper resistance provided by
the SC. Thus, eavesdropping, packet manipulation, and unau-
thorized access can be mitigated by our presented approach.

Replay Attacks: By using OTTs, also replay attacks are
mitigated since a captured package cannot be re-sent by an
attacker to provoke an unwanted machine state. Without this
measure, an attacker could, for example, capture a message
that configures a machine such that a certain product is
produced, and re-send this message at a later time.

B. Communication Performance

We analyze and discuss communication performance-based
on two use-cases that are prevalent in industrial scenarios.
(i) Robot to machine communication to configure a machine
for the respective production process. In network terms, this is
a unicast message. (ii) To send information such as firmware
updates or global configuration changes to all machines, a
multicast/broadcast is required.
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(a) Random machine positions.

(b) Fixed machine positions.

Fig. 4: Simulation setup for (a) randomized and (b) fixed
machine positions. The black squares are simulated machines,
red circles are moving IAMRs, blue circles represent IAMRs
interacting with machines, and white lines represent the
IAMRs’ trajectories.

C. Unicast Message

To analyze the feasibility of robot to machine communica-
tion, we compare the connection timings of a point-to-point
wireless TLS connection between two Raspberry PI 3 and our
presented approach when sending a message of 256 bytes.
In an ideal case where only the two involved devices are
in the WiFi network, we measured an average message time
including the TLS handshake of about 100ms. Compared to
our approach, the handshake also needs on average 100ms.
That means our approach is able to perform equally as fast as
TLS for small amounts of data.

D. Multicast/Broadcast Message

In addition to unicast messages, we also analyze
multicast/broadcast messages in the form of a configuration
update (e.g. firmware) that should be transported to all
machines. Since other technologies such as WiFi or Ethernet
offer a faster distribution time than our NFC-based approach,
sending urgent broadcast information such as emergency
stops is infeasible using our presented approach and needs to

be done using other technologies. However, we believe that
non-urgent configuration updates can be applied efficiently
using our approach.

In this evaluation, we investigate the difference between
using a dedicated update robot and using a wireless sensor
network (WSN) inspired algorithm to deliver broadcast mes-
sages without having a dedicated update robot. The WSN
algorithm we apply is the so-called Trickle algorithm [28]
where a node sends an update until the same update infor-
mation received from another node. As evaluation setting,
we simulate an RCLL inspired factory floor consisting of
10 production machines and a varying number of IAMRs as
shown in Fig. 4 where we consider two cases: (a) machine
positions are randomized for each simulation run and (b)
machine positions are fixed. We ran 1000 distinct simulations
for both scenarios with the number of IAMRs ranging from 1
to 10. The results of that simulation are shown in Fig. 5 where
the average time required for a broadcast to reach all machines
is plotted. As shown in Fig. 5a, having more than 4 IAMRs
would outperform having a dedicated update robot while also
being more energy and cost efficient due to not requiring
the otherwise necessary additional IAMR. When running the
same simulation setting with fixed machine positions where an
optimized update schedule for the dedicated update robot can
easily be defined (see Fig. 4b), at least 6 IAMRs are necessary
to outperform the dedicated update robot (see Fig. 5b).

V. CONCLUSION AND FUTURE WORK

In this paper we propose to consider NFC as an alterna-
tive to other wireless technologies in industrial contexts and
RoboCup competitions. To account for the security and per-
formance requirements of industrial data transfer, we present
NFC enhancement components that can be used to equip exist-
ing as well as new devices with NFC functionality. In addition
to that, we also propose a secured communication protocol
that relies on AE and OTTs to provide data confidentiality,
integrity, and authenticity while also mitigating replay attacks.
We show the feasibility of our presented approach in terms of
a security analysis as well as performance evaluations for two
messaging scenarios. As future work, we plan to also evaluate
WSN routing protocols regarding their efficiency if combined
with our NFC-based communication approach.
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(a) Random machine positions.
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(b) Fixed machine positions.

Fig. 5: Simulation results for (a) random machine positions
and (b) fixed machine positions for 1 to 10 IAMRs.
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Abstract—Public awareness regarding security aspects in the
Internet of Things (IoT) is currently rising due to regular media
presence of various IoT-related security breaches. One of the
major weaknesses of IoT devices is the absence of appropriate
mechanisms for firmware and configuration updates. In addition,
improved security concepts often result in poor usability which
discourages users from relying on these concepts. Therefore,
in this paper, we present an easy-to-use NFC-based configura-
tion approach for IoT devices that is secured by appropriate
security measures in software and hardware. Since industrial
usage of such a configuration approach entails different require-
ments than home usage, we present and compare three different
configuration processes. The applicability of our approach is
demonstrated by two prototypical implementations, as well as
a detailed security analysis. We also show that the imposed over-
head due to the implemented security measures is negligible for
most configuration updates.

Index Terms—Near field communication, Internet of Things,
security, configuration.

I. INTRODUCTION

SECURITY aspects of the Internet of Things (IoT) and the
lack thereof are a major issue due to the high number

of potentially vulnerable devices. Although IoT devices are
often resource constraint, they are still an enticing target for
attackers since these devices are often used in botnets [1], [2].
In addition to that, each device in the IoT is equipped with
some sort of sensor. This fact also increases the risk of
attacks since adversaries may be interested in the provided sen-
sor data, especially of Industrial IoT (IIoT) devices. Various
studies show that between 10% and 40% of all scanned
IoT devices are vulnerable to attacks because of issues such
as using standard settings as well as username and pass-
words [3], [4] or due to exposing their configuration interface
to the Internet [5]. Therefore, we consider the secured and

Manuscript received June 30, 2017; accepted August 21, 2017. Date of
publication August 29, 2017; date of current version November 30, 2017.
This work was supported by the Electronic Component Systems for European
Leadership Joint Undertaking through the European Union’s Horizon 2020
research and innovation programme and Germany, The Netherlands, Spain,
Austria, Belgium, Slovakia, under Grant 692480. (Corresponding author:
Thomas Ulz.)

T. Ulz, T. Pieber, and C. Steger are with the Institute for Technical
Informatics, Graz University of Technology, 8010 Graz, Austria (e-mail:
thomas.ulz@tugraz.at; thomas.pieber@tugraz.at; steger@tugraz.at).

A. Höller and S. Haas are with Infineon Technologies Austria
AG, 8020 Graz, Austria (e-mail: andrea.hoeller@infineon.com;
sarah.haas@infineon.com).

Digital Object Identifier 10.1109/JRFID.2017.2745510

easy-to-use configuration of IoT devices as a major gap in
current research.

Regarding the configuration of IoT devices, we consider two
application domains that entail different requirements in terms
of security, hardware requirements, and usability.

(i) Industrial: Industrial usage of IoT devices requires high
levels of security since malicious devices might interrupt a
production process, reveal confidential information, or even
cause physical damage and threaten human lives [6]. So-called
smart factories [7] utilize a large number of IIoT devices
for sensing the production process. Maintenance that involves
configuration updates due to updated production- or security-
requirements is essential in such an environment. By intro-
ducing a secured and easy-to-use configuration interface, even
untrained staff can perform firmware updates or configuration
changes. However, it is essential to protect the confidentiality
and authenticity of configuration data as employees apply-
ing the configuration updates could be potential adversaries.
Since in industrial settings the security aspect is of utmost
importance, other factors such as the necessity for additional
hardware components that increase the security can be seen
as negligible.

(ii) Personal: Configuration approaches for IoT devices used
in home automation or smart home [8] contexts need to pro-
vide good usability and low cost. However, also in a smart
home context, configuration and firmware updates for devices
need to be performed using a secured configuration interface.
Similar to industrial use-cases, also in a smart home con-
text the configuration data must be secured against various
attacks for sustaining the proper functionality of the configured
devices.

Independent of the domain in which IoT devices are used,
configuration updates need to be performed in every phase
of the device’s lifecycle. Fig. 1 shows a typical IoT device
configuration lifecycle that involves three major configuration
phases: initial configuration, reconfiguration, and deletion of
configuration data if an IoT device is sold or discarded. While
the initial configuration might be performed in a controlled
environment by the device manufacturer, all other reconfigu-
rations of the IoT device will be performed in the potential
presence of adversaries. Based on these observations, we
extend and adopt the NFC-based configuration approach [9]
presented at the IEEE International Conference on RFID. In
addition to the configuration approach presented in that paper,
we present different implementations that are tailored to the
needs of certain application domains.

2469-7281 c© 2017 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.
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Fig. 1. Necessary configuration phases during an IoT device’s lifecycle.

Contributions: For a configuration interface that is suitable
for a wide range of IoT devices, we identify the following
requirements:

Req1 Configuration changes for IoT devices should be
possible in a secured and easy-to-use manner.

Req2 The configuration interface must be protected against
remote attacks and misuse.

Req3 Implemented security features should provide high
usability such that users acceptance is improved.

Req4 Potential hardware extensions must be suitable for
legacy devices as well as for newly developed
devices.

Req5 Device configuration must be possible in every phase
of an IoT device’s lifecycle.

Req6 The configuration approach should be suitable for
industrial as well as home usage.

Req7 There should be no or minimal additional hardware
required to perform configuration updates.

In this paper, we present an NFC-based configuration
approach is capable of fulfilling these seven requirements. The
presented approach provides data confidentiality, integrity, and
authenticity while being intuitive to use. To account for dif-
ferent application domains such as industrial usage or home
usage, we present different implementations of our approach
that optimizes usability, and security for the respective domain.
The implemented security features comprise a secured config-
uration protocol as well as a hardware extension that includes
tamper resistant hardware to further increase provided secu-
rity. This hardware extension is applicable for legacy and new
IoT devices and enables device configuration in every phase
of an IoT device’s lifecycle. To highlight the applicability of
our configuration approach, we also present a novel smart fac-
tory inspired use case which we used as a demonstrator for
our prototype.

Outline: The remainder of this paper is organized as follows:
In Section II we give background information on methods
and technologies included in our approach and discuss related
work. Section III defines our system model and lists cor-
responding assumptions. We then present our NFC-based
configuration approach in Section IV and compare three dif-
ferent realizations of that approach. The security features
implemented in software and hardware are then presented in
Section V. In Section VI we show a prototypical implemen-
tation of our approach that was also demonstrated using a

smart factory environment. The evaluation of our approach
that includes a security analysis is discussed in Section VII.
Future work and a conclusion are given Section VIII.

II. BACKGROUND AND RELATED WORK

A. Near Field Communication (NFC)

NFC is a contactless communication standard based on
RFID technology that operates at a radio frequency of
13.56 MHz [10], [11]. The typical communication range of
NFC is approximately 10 cm while supporting bit rates that
are multiples of 106 kbps (up to 848 kbps). Although the com-
munication range of NFC is limited, a range of approximately
10 m for active and 1 m for passive devices should be consid-
ered as a rule of thumb for possible eavesdropping [12]. In
addition to eavesdropping, also other types of attacks such as
man-in-the-middle, denial-of-service or replay attacks can be
applied to unsecured NFC communication [13]. Despite these
potential issues, NFC is used in various domains due to its
intuitive device coupling mechanism that is easy to understand
for humans [14]. The mobile payment sector [15] and mobile
ticketing applications [16] are the most prominent applications
of NFC; however, NFC is also seen as a future building block
for the IoT to link the real world with the digital world [17].

B. Symmetric Cryptography

Symmetric Cryptography requires the same cryptographic
key to be used for data encryption and decryption. Due to
this, the used key is considered as shared secret between com-
municating parties and thus, needs to be kept private. The
most widely used symmetric cryptographic algorithm is the
Advanced Encryption Standard (AES) [18]. Algorithms for
symmetric cryptography such as AES are capable of providing
data confidentiality. In order to also provide data integrity and
authenticity, symmetric cryptography needs to be combined
with other security measures, such as Message Authentication
Codes (MAC).

Authenticated Encryption (AE) combines symmetric cryp-
tography with MACs in a secured way such that data integrity
and authenticity can be provided in addition to data confiden-
tiality [19]. AES provides specialized modes of operation such
as AES-CCM or AES-GCM that are capable of providing AE.

C. Tamper Resistant Hardware

Cryptographic algorithms such as AES can be implemented
efficiently in hardware with respect to performance, power
consumption, and size requirements [25]. However, such hard-
ware components might leak information that can be used to
reveal used keys or other information [26]. In addition to these
so-called side-channel attacks, also invasive physical attacks
can be used to reveal confidential information [27]. Tamper
resistant hardware [28] such as security controllers (SCs) can
be used to provide protected execution environments as well
as secured data storage that mitigate side-channel and physi-
cal attacks. However, since SCs are not as powerful as general
purpose controllers or dedicated hardware components, split-
ting the execution environment into a secured world and a
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TABLE I
COMPARISON WITH RELATED WORK. THE CHARACTERISTICS REGARDING ARBITRARY PAYLOAD, PROVIDED SECURITY,

SUITABILITY FOR PERSONAL USE, AND SUITABILITY FOR INDUSTRIAL USE ARE EVALUATED

normal world is suggested [29]. This splitting principle by
implementing SCs as external hardware modules that can then
be combined with general purpose CPUs.

D. NFC-Based Device Configuration

Although NFC is considered as an ideal technology for
device pairing [12], using it for IoT device configura-
tion is not that common. Most device pairing solutions
(e.g., [20] and [21]) have in common that only pairing infor-
mation can be transmitted and that no security measures are
integrated. Wu et al. [22] present an approach for repro-
gramming computational RFID (CRFID) tags over the air.
The authors propose to use the Electronic Product Code
(EPC) protocol to update the firmware of passive CRFID tags.
The drawbacks of the presented approach that only complete
firmware images can be flashed as well as missing security fea-
tures. Serfass and Yoshigoe [23] present a framework for NFC
communication in wireless sensor networks. This framework
allows arbitrary data to be transferred using NFC but does
not provide security measures. Haase et al. [24] propose to
NFC-enabled mobile phones for NFC-based sensor and actu-
ator configuration in smart home contexts. The authors also
discuss security measures. However, the initial device con-
figuration is unencrypted, and no key update mechanism is
provided. Ulz et al. [9] present a QR and NFC-based hybrid
configuration approach that implements security measures in
hardware and software. This approach is further extended in
this paper such that different update mechanisms are supported
to suit personal and industrial usage scenarios. Also, an auto-
mated key derivation process is included. The discussed related
work is compared with the approach presented in this paper
in Table I.

III. SYSTEM MODEL AND ASSUMPTIONS

When designing a configuration interface for IoT devices,
we are faced with the following three problems:

1) Configuration data for IoT devices might contain con-
fidential information, especially when considering IIoT
devices. This configuration data needs to be transferred
using an untrusted channel including potential adver-
saries that eavesdrop or manipulate the transferred data.

Fig. 2. System model we assume for IoT device configuration.

2) IoT and IIoT devices might be operated in unsupervised
environments, thus configuration data needs to be stored
at the device such that confidential information cannot
be extracted, even if adversaries have unlimited physical
access to the device under attack.

3) The configuration interface might be subjected to mis-
use, both unintentional and intentional.

To mitigate these problems, the configuration approach we
are presenting in this paper is based on the system model
shown in Fig. 2 that comprises the following three entities:

IoT Device: The device that needs to be configured. There is
no limitation on the number of devices; we generally assume
n IoT devices in our system model.

Configuration Device: The mobile device used to transfer
configuration data to the IoT device. We also do not limit the
number of configuration devices in our model; therefore, we
assume m such configuration devices.

Configuration Back-End: The back-end is responsible for
administrating all configurations that are done using our
presented approach. This means that the back-end needs to
keep track of all configuration changes. Therefore, we assume
one configuration back-end in our system model.

Based on our system model, we assume the configuration
back-end that operates as a global configuration storage to
be trustworthy and sufficiently secured against any kind of
attack. We further assume that all configuration changes must
be initiated and authorized by this back-end. Thus, the back-
end has knowledge of device configurations from all devices
administrated by that back-end. Regarding configuration data,
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Fig. 3. Example configuration that contains non-confidential information as
well as confidential information.

Fig. 4. Sequence of NFC communication for IoT device configuration.

no assumption concerning the content is made. That is, we
assume configuration data to contain non-confidential informa-
tion such as temperature thresholds or sampling rates, as well
as confidential information such as keys or WiFi passwords.
An exemplary configuration is shown in Fig. 3.

IV. CONFIGURATION MECHANISMS

Depending on the domain in which IoT devices are used,
different requirements regarding a configuration interface can
be defined. For example, protecting confidential information
is of utmost importance for devices used in industrial set-
tings. For IoT devices used by private persons, a configuration
approach should be as easy-to-use as possible and should not
require any costly additional hardware. Therefore, we present
three different configuration mechanisms supported by our
approach. Each of these mechanisms provides different advan-
tages and disadvantages that we are going to discuss. All
three mechanisms implement the security measures that are
discussed in Section V. However, for simplicity, we only dis-
cuss the principle process of each configuration mechanism in
this section.

A. NFC-Based Configuration

In the NFC-based configuration mechanisms, NFC and a
wireless data connection are used during device configuration
according to the protocol shown in Fig. 4. The protocol com-
prises the following three steps: 1 The configuration device
queries the IoT device for its identifier using NFC. 2 Using
this device ID, a configuration is fetched from the configu-
ration back-end. In this case, we assume that the device is
managed by that back-end and that a new configuration that
needs to be applied is available. 3 If a configuration for that
given device is available; it is transferred to the IoT device
again using NFC.

Advantages/Disadvantages:
+ This mechanism is easy to use. The device to configure

is automatically identified, and the corresponding config-
uration is fetched. Due to the fact that users only need
to bring the mobile configuration device with a working

Fig. 5. Hybrid configuration approach: On the left hand side, configuration
data is fetched from the back-end using a QR code. On the right hand side,
the configuration is transferred to the IoT device using NFC.

data connection close to the IoT device, this approach is
very well suited for remote support.

− Active data connection is required to fetch configuration
data which might not be possible in industrial settings.
Also, initial data such as a symmetric key needs to be
synchronized between IoT device and configuration back-
end (e.g., by manufacturer).

B. NFC and QR Code-Based Configuration

As second configuration mechanism, we propose a QR-code
and NFC-based hybrid configuration approach [9]. The princi-
ple of that approach is shown in Fig. 5. As can be seen there,
QR-codes are used to transfer configuration data from the con-
figuration back-end to the mobile configuration device, while
NFC is used to transfer the configuration data from the mobile
configuration device to the IoT device. Due to the limited max-
imum payload of a QR code [30] and to support different usage
scenarios, we propose the following two different modes of
operation:

1) The complete configuration payload is stored in the
QR code, which allows a maximum payload of roughly
2900 bytes of data. Therefore, we denote this type as
inline QR code. Inline QR codes do not require the
mobile configuration device to have an active network
connection. Thus, these QR codes can be distributed and
used where no working network is available.

2) If the configuration data is larger than the maximum
payload of 2900 bytes, only an URL pointing to the
configuration stored at the back-end is included in the
QR code. The mobile configuration device then needs to
fetch the configuration data from the back-end, as in the
the first mechanism. We denote this type of QR code as
URL QR code.

Advantages/Disadvantages:
+ This mechanism is easy to use. In addition to that, if

the inline mode is used, no active network connection
is required when configuring devices. The inline mode
allows using this approach in situations where no working
network connection is available. QR codes can also easily
be distributed by paper, for instance, by including the
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TABLE II
COMPARISON OF PRESENTED CONFIGURATION MECHANISMS

initial configuration of a device inside the packaging the
device is sold in. Also, as shown in Fig. 5, configurations
can be directly downloaded from the monitor where a
configuration is edited.

− The mobile configuration device needs to have a working
camera in order to scan QR codes. Also, this mech-
anism potentially favors potential user errors since the
user needs to be aware which configurations need to be
downloaded beforehand when using the inline mode.

C. Location-Aware Configuration

The third implemented configuration mechanism does not
require the device to identify itself. Instead, localization mech-
anisms are used to determine the mobile configuration device’s
position and the closest administrated IoT device. As soon
as the configuration process is initiated by the user, the cor-
responding configuration is fetched from the configuration
back-end as in the NFC-based approach. However, instead of
requesting a configuration based on the IoT device’s ID, the
estimated coordinates of the mobile configuration device are
sent to the configuration back-end. The back-end then replies
with the most probable device configuration that is then sent
to the IoT device using NFC.

Advantages/Disadvantages:
+ This mechanism is easy to use. The device to configure is

automatically identified, and the corresponding configu-
ration is fetched. Due to using localization to identify the
corresponding IoT device, NFC communication between
IoT device and mobile communication device are reduced
to a minimum.

− Active data connection is required to fetch configuration
data which might not be possible in industrial settings.
Also, the configuration back-end needs to be configured
such that the location of each administrated device is
known to the back-end. While outdoor localization using
GPS might be accurate and easy, indoor localization is
an ongoing research topic [31]. Also, indoor localiza-
tion requires an infrastructure that is used to calculate
the mobile configuration device’s position.

Fig. 6. NFC Enhancement that can be integrated into any IoT device.

In our prototypical implementation, we used a Received
Signal Strength Indicator (RSSI) based trilateration algo-
rithm [32] relying on wireless access points. The localization
quality using such an approach strongly depends on factors
such as fading, obstacles, or the temperature [33]. However,
in our setting, we were able to achieve accuracies of less than
1 m which will be sufficient for most settings.

D. Comparison

Since all three previously presented mechanisms have dif-
ferent advantages and disadvantages, we compare them in
Table II regarding their suitability for different usage scenarios
of IoT devices. As can be seen there, no algorithm is suited
best for all scenarios; thus, the applied mechanism needs to
be chosen based on the context in which IoT devices need to
be configured.

V. SECURITY MECHANISMS

A. NFC Enhancement

In order to allow new as well as retrofit IoT devices to be
equipped with the proposed NFC configuration interface, we
present a hardware extension suitable for these two types of
devices. This so-called NFC Enhancement provides a number
of interfaces for different purposes:

Sensor/Actuator Interface: This interface is used to connect
sensors and actuators that are used by the IoT device with the
NFC enhancement component.

Network Interface: This interface is used to connect the IoT
device with a network. The IoT device’s core functionality is
accessible through this interface.

NFC Interface: This interface is used for device configura-
tion. The NFC interface will also be used to harvest energy
during the configuration process such that no additional power
source is necessary for device configuration.

A concept of the NFC enhancement component containing
all three interfaces is shown in Fig. 6. The component includes
two controllers, a general purpose controller and a SC. Due
to including two controllers, responsibilities can be split per-
fectly according to the capabilities of both controllers. On the
one hand, the general purpose controller provides interfaces
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Fig. 7. NDEF packet structure used to protect configuration data.

to sensors, actuators, and to the network which requires com-
putational power. In addition, computational expensive data
aggregation, manipulation, and processing can be done by the
general purpose controller. The less powerful SC, on the other
hand, offers a secured execution environment and protected
storage. Cryptographic operations are executed by the SC, and
confidential information is stored in the SC’s protected stor-
age. The SC also offers an NFC interface that is used for
IoT device configuration. This NFC interface is also capa-
ble of harvesting energy from an NFC field such that the SC
does not require any additional power source. Due to this, IoT
devices can be configured at any time, for instance, during the
manufacturing process without attaching any power source.
In addition, SCs in our approach are considered as trusted
entity, since their correct functionality is evaluated based on a
common criteria [34] certification process. That is, all security
critical operations performed by the SC in our approach can
be considered as being properly secured and correct.

B. Data Transfer Protocol

Configuration data in our approach needs to be transferred
using different untrusted channels (NFC, QR, WiFi, . . .).
Therefore, security measures need to be applied to provide data
confidentiality, integrity, and authenticity. In addition to that,
information regarding configuration data is necessary such that
the IoT device’s SC is capable of deciding if a configuration
should be rejected or accepted and thus applied. For NFC
data transfer we implement a protocol based on the NFC Data
Exchange Format (NDEF) [35]. Due to the low overhead of
NDEF, we use the same data structure when transferring data
using QR-codes or a network connection. Although NDEF
provides some security measures such as signatures [36], we
did not rely on these measures since they are insufficient and
shown to be vulnerable to attacks [37]. Instead, confidential
information in our approach is protected by applying AE in
the MAC-then-Encrypt mode that is also used in the Transport
Layer Security (TLS) protocol [38]. The complete structure of
NDEF packets in our approach including additional security
related fields ins shown in Fig. 7. All but the Cipher Spec
field is protected by AE in our approach. This field specifies
the applied cryptographic algorithm and key size used for AE.
This information needs to be transmitted unencrypted since it
is required for decryption. All other fields are contained in the
encrypted payload.

Version: A version number identifying the specific configu-
ration version. The IoT device will reject configuration updates
with a configuration number less or equal to the currently
applied configuration.

Fig. 8. Decision process of configuration update rejection or acceptance.

Validity: If the current realtime of the IoT device is later
in time than the specified validity, a configuration update will
be rejected. For this check, we assume there is a secured time
source for the IoT device.

Device ID: If the specified device ID does not match the
actual device’s ID, the configuration is not indented for the
respective device and thus rejected.

MAC: The MAC corresponding to the transmitted plaintext.
It is calculated by a so-called one-way function [39] and is
part of the AE process.

Using the additional information together with AE, the IoT
device either rejects or accepts the configuration update. The
flowchart in Fig. 8 summarizes the decision process.

VI. PROTOTYPE

To evaluate the presented approach with respect to feasibil-
ity, usability, and functionality we implemented a prototype
comprising the presented security measures in hardware and
software. This prototype, shown in Fig. 9 consists of the
following components:

Sensor/Actuator: An air pressure sensor without any actua-
tor is used to represent the IoT device’s functionality.

General Purpose Controller: An Infineon XMC4500 micro-
controller from the Cortex M4 family was used as a general
purpose controller. This microcontroller provides connection
interfaces such as USB, I2C, and Ethernet.

SC: As SC, an Infineon SLE78 that is CC EAL5+ certi-
fied was used. The SC is connected to the general purpose
controller via I2C. The SLE78 SC provides security features
such as secured data storage and code execution while also
including a contactless interface for NFC communication.

Mobile Configuration Device: We used an off-the-shelf
Nexus S mobile phone as NFC-enabled mobile configuration
device. The device is running Android 4.1.2 Jelly Bean to
use API level 14 and above that supports the latest NDEF
functionality of Android.

Configuration Back-End: The configuration back-end that
is not pictured in Fig. 9 was realized on a standard Windows
PC in this prototype. The required functionality is written in
NodeJS such that any computer that is capable of running
JavaScript can run the back-end.

A. Smart Factory Prototype

In addition to the prototype shown in Fig. 9 we also present
a prototypical smart factory use case in which we evalu-
ated our presented approach. The evaluation is done in an
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Fig. 9. NFC Enhancement prototype comprising of an Infineon XMC4500
microcontroller used as general purpose controller and an Infineon SLE78 SC.

Fig. 10. Simulated smart factory prototype in RCLL environment.

Industrie 4.0 [40] inspired smart factory setting that is sim-
ulated in the RoboCup Logistics League (RCLL) [41]. The
league is intended as a testbed for smart factory inspired
robotic solutions where a number of autonomous mobile
robots need to transport semi-finished and finished individu-
alized products between production machines. In this process,
robots also need to configure machines such that the desired
products are manufactured. The configuration in this con-
text is done using wireless communication. The main issues
with wireless communication in industrial settings are real-
time capability and reliability [42]. Reliability of wireless
communication is most often compromised by interference of
various technologies operating in the same frequency spec-
trum [43]. Especially the 2.4 GHz and 5 GHz spectra are used
by many technologies such as WiFi, Bluetooth, or wireless
phones. Hence, when using these technologies interference is
a common problem.

We applied the NFC-based configuration approach
presented in this paper to the RCLL context and used an
existing simulation environment [44] that we extended such
that NFC related characteristics could be simulated [45].
Using this simulation environment, we investigated if the

achieved production capacity of a system is negatively
influenced if our NFC-based approach is used instead of
WiFi. Fig. 10 shows the prototype during a simulation run.
Since the point-to-point performance of our approach is
comparable to WiFi (see Section VII), no drawback in terms
of production capacity could be observed. However, due to
the limited communication range of NFC, interference caused
by robots simultaneously configuring machines was reduced,
and thus, the reliability of machine configuration could be
improved.

VII. EVALUATION

In addition to the presented prototype that demonstrates the
feasibility and usability of our presented approach, we also
evaluated the provided security level, the overhead, and the
performance of our approach.

A. Security Analysis

To demonstrate the security improvements achieved by the
implemented security measures in our approach, we present
a comprehensive security analysis. In this analysis, we list
involved Entities, Assets that are threatened and need to be
protected, the Threats, Countermeasures applied to mitigate
these threats, and Residual Risks for threats that cannot be mit-
igated. We also list Assumptions that are made in the context
of this analysis. An overview of the security analysis in Goal
Structure Notation (GSN) is shown in Fig. 11. In this notation,
the threats for each asset are highlighted. In addition, for each
threat existing countermeasures or residual risks are shown.
The assets that are protected by our secured configuration
approach are: (A1) Configuration Data: Since configuration
data may contain confidential information such as keys, the
confidentiality, integrity, and authenticity of this information
needs to be protected. (A2) Device Functionality: Correct
functionality of IoT devices must not be compromised due
to the inclusion of our proposed configuration interface. That
is, any attack targeting this interface must not disturb proper
operation of the device.

Threats for these assets can be posted by the following enti-
ties: (E1) IoT Device Manufacturer: The manufacturer of
the device. Manufacturing includes all components such as
sensors, actuators, and NFC enhancement. (E2) IoT Device
Owner: Any user that is in possession of the IoT device and
thus, allowed to make configuration changes. (E3) Person
Applying Configuration Updates: Any person that is try-
ing to apply configuration updates at the IoT device. This
could be a different person than the device owner, especially
in industrial settings. (E4) Adversary: Any adversary that can
access the IoT device’s configuration interface, either remotely
or physically.

Before investigating potential threats, certain assumptions
are made in order to restrict the scope of this threat analysis:
(As1) Configuration Back-End: The configuration back-
end that maintains all current configurations is assumed to
be properly secured against any type of attack. (As2) SC
Certification: The SC used in the NFC Enhancement com-
ponent is assumed to be certified to a CC security level of
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Fig. 11. Security analysis in GSN.

at least EAL5+ and thus, is capable of mitigating physical
attacks.

Considering all identified assets, entities, and correspond-
ing assumptions our approach is now analyzed regarding
potential threats. For each threat, one or multiple counter-
measures and potential residual risks will be given. (T1)
Backdoors: There might be intentional or unintentional back-
doors included in the configuration interfaces hardware or
software. (C1) CC Certification: The CC certification pro-
cess investigates and mitigates this type of threat. (T2) Weak
Cryptographic Algorithms: The algorithms used in the con-
figuration approach might be susceptible to attacks due to
weaknesses in the used algorithm or due to using too short
keys. (C1) CC Certification: The CC certification process
investigates and mitigates this type of threat. (T3) Bugs:
Security related functionality implemented by the manufac-
turer might include weaknesses or even bugs. (C1) CC
Certification: The CC certification process investigates and
mitigates this type of threat. (T4) Security Breach: Initial
keys stored by the manufacturer could be lost in a secu-
rity breach or disclosed in any other form, intentional or
unintentional. (C2) Easy Configuration: Changing config-
uration parameters such as the initial key can be easily
performed by users. (R1) No Update: If the initial key is not
updated, this threat cannot be mitigated. (T5) Eavesdropping
Configuration Data: An adversary might try to eavesdrop
configuration data and thus, learn confidential information.
(C3) Security Measures: The security measures presented
in this publication provide effective mitigation of this threat.
(T6) Manipulate Configuration Data: An adversary might
try to manipulate transferred configuration data, either while
being transferred from configuration back-end to mobile con-
figuration device, or while being transferred from mobile con-
figuration device to IoT device. (C3) Security Measures: The
security measures presented in this publication provide effec-
tive mitigation of this threat. (T7) Malicious Configuration:
An adversary might try to apply outdated configuration data
or configuration data that is intended for a different device.
(C3) Security Measures: The security measures presented in
this publication provide effective mitigation of this threat. (T8)
No Update: A malicious user does not apply any necessary
update. Thus, he basically performs a denial-of-service (DoS)
attack targeting the IoT device’s correct functionality. (R2)
No Countermeasure: Our approach cannot provide any coun-
termeasure against users that do not apply intended updates.

(T9) DoS Attack: An adversary might try to perform DoS
attacks targeting the configuration interface. (C4) Security
Measures and Proximity: The security measures presented
in this publication provide effective mitigation of this threat.
In addition, DoS attacks targeting the configuration interface
can only be performed by adversaries in close proximity to
the IoT device. (T10) Physical Attacks: An adversary that
has physical access to the IoT device might try to reveal con-
fidential information by performing physical attacks on the
device. (C1) CC Certification: The CC certification process
investigates and mitigates this type of threat.

The list of discussed threats as well as the respective coun-
termeasures and residual risks is not exhaustive by any means,
but it reflects the threats that we consider as most crucial
for the presented NFC-based configuration approach. Of the
eleven identified threats, nine can be effectively mitigated
while residual risks remain only for two threats. This high-
lights the improved level of security provided by the presented
configuration approach.

B. Overhead and Performance

The implemented security measures in the NDEF protocol
(see Section V-B) entail an overhead of transferred data. This
overhead can be split into a static part (Ostatic) and a variable
part (Ovariable). The static overhead resulting from the addi-
tionally included information (cipher spec, version, validity,
and sensor ID) can easily be calculated by summing up the
field sizes specified in Fig. 7.

Ostatic = 2B + 2B + 4B + 4B = 12B (1)

The variable overhead depends on the selected crypto-
graphic algorithms and the corresponding key sizes. For this
evaluation, we assume a MAC length of 32 B. In addition to
that, also the padding required by block ciphers needs to be
accounted for. For this evaluation, we assume AES that has
a block size of 16 B which entails an overhead due to the
padding of 0 B - 15 B. The total overhead O is then calculated
by summing up all incidental overheads.

O = Ostatic + Odynamic (2)

An overview of the resulting overhead relative to the trans-
ferred configuration data size up to 4 kB is shown in Fig. 12.
The sawtooth pattern results from the varying padding over-
head that oscillates in the range of 0 B - 15 B. For typical
configuration sizes of 300 B, less than 15 % of the transferred
data will result from security imposed overhead.

To evaluate the performance of our approach, we mea-
sured the time that was required to transfer a configuration
package with a typical size of 300 B. The complete data trans-
fer including key agreement, encryption and decryption, and
configuration acceptance/rejection decision process requires
roughly 350 ms. Compared to that, transmitting the same
amount of data using a secured TLS channel over a direct WiFi
connection between two Raspberry PIs takes roughly 200 ms.
However, it has to be considered that the processing power
of a Raspberry PI is by far larger than the used components
in our prototype and that a direct WiFi connection was used
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Fig. 12. Percentage of overhead relative to transferred configuration data.

between the devices. Therefore, the timing difference between
these two approaches can be assumed as negligible.

VIII. FUTURE WORK AND CONCLUSION

In this paper, we present a secured NFC-based configura-
tion approach that is suitable for personal and industrial IoT
devices alike. To account for the different requirements in
these two domains, we present different configuration mecha-
nisms that provide different advantages and disadvantages. In
order to provide data confidentiality, integrity, and authentic-
ity we present security measures in hardware and software.
The NFC enhancement component we present, can be used
for new and retrofit IoT devices. The NDEF based protocol
we present is secured by applying authenticated encryption in
combination with additional information that is used to val-
idate configuration data. The feasibility and usability of our
approach are demonstrated by two prototypes, while the pro-
vided security, the resulting overhead, and the performance are
also evaluated. As future work, we plan to further extend our
approach such that the correct change of configuration data
can be attested in our system.
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An increase of distributed denial-of-service (DDoS) attacks launched by botnets such as Mirai has raised 
public awareness regarding potential security weaknesses in the Internet of Things (IoT). Devices are 
an attractive target for attackers because of their large number and due to most devices being online 
24/7. In addition, many traditional security mechanisms are not applicable for resource constraint IoT 
devices. The importance of security for cyber-physical systems (CPS) is even higher, as most systems 
process confidential data or control a physical process that could be harmed by attackers. While indus-
trial IoT is a hot topic in research, not much focus is put on ensuring information security. Therefore, 
this paper intends to give an overview of current research regarding the security of data in industrial 
CPS. In contrast to other surveys, this work will provide an overview of the big CPS security picture 
and not focus on special aspects.

In recent years, customers’ demands for personalized products increased rapidly (Adomavicius & 
Tuzhilin, 2005). To account for these customer requests, traditional mass production facilities need to 
be altered such that personalized products can be manufactured in a cost-effective way. One possible 
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way to achieve this goal is to make factories smart by enabling the interconnection of all devices in-
volved in the manufacturing process. The term Smart Factory was introduced by Zuelke (2010) when 
he described his vision of a factory-of-things. According to Zuelke, in such a factory-of-things, smart 
objects could interact with each other using Internet of Things (IoT) and cyber-physical systems (CPSs) 
concepts (Weiser, 1991) (Mattern & Floerkemeier, 2010), (Lee, 2008). Recent high-tech initiatives such 
as Germany’s Industry 4.0 further extend the vision of smart factories beyond providing cost effective 
personalized products. In these initiatives, smart factories utilize self-organizing multi-agent systems 
that operate without human assistance. In addition, also big data analysis will play a major role in future 
smart factories in order to optimize production processes.

To account for the envisioned functionalities of a smart factory, devices ranging from battery operated 
sensors up to big data servers need to be interconnected. Due to the diversity of devices which might be 
resource constraint, standard web protocols such as HTTP often cannot be applied, thus making Web of 
Things (WoT) concepts infeasible. Instead, lightweight protocols and concepts from the IoT can be applied. 
IoT concepts in industrial contexts offer advantages but also critical disadvantages. One advantage is the 
possibility to control and reconfigure machines such that personalized products can be manufactured 
(Gibson, Rosen, Stucker et al., 2010). However, connecting production machinery to the Internet also 
results in issues that do not arise in traditional production facilities. Machinery that is accessible through 
the Internet implicates security and safety issues; security breaches in industrial contexts may lead to the 
loss of highly confidential data or may even threaten employees’ lives (Cheng, Zhang, & Chen, 2016).

Security, however, is often not considered in industrial IoT research as current main topics in research 
are enabling technologies and production strategies. Therefore, the intention of this work is to present an 
overview of current security related research on industrial IoT and CPSs. In contrast to other works, the 
authors intend to give a broad overview of security aspects, not focusing on single special topics. This 
broad overview, however, is given in a compact form to present the big picture of IoT and CPS security. 
An overview of all topics discussed in this work is presented in the big picture shown in Figure 1.

This work is structured as follows. As background information, attack taxonomies are given and dif-
ferent types of attacks are discerned in Section Attack Taxonomies. Also in this Section, challenges of 
CPS security and differences compared to traditional IT systems are discussed. This section also lists 
current research trends regarding CPS security. To highlight the importance of IoT and CPS security, 
recent attacks targeting IoT devices and CPSs are presented in Section Attacks. The subsequent sections 
discuss security enhancing technologies on different layers as shown in Figure 1. Section Network Secu-
rity lists network related security problems and solutions. Issues and fixes related to device security are 
discussed in Section Device Security where hardware and software related topics are discussed. This work 
is then concluded with Section Conclusion where also current hot research topics are briefly discussed.

Attacks in information security often are associated with the resulting “CIA” (Confidentiality, Integrity, 
Availability) triad security attributes that are broken by the respective attack. The three security attributes, 
as defined in principle by Saltzer and Schroeder (1975), are:
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• Confidentiality: The property of information that is protected from unauthorized persons, entities 
or processes.

• Integrity: The property of information that is protected from being modified in an authorized, 
undetected manner during its entire life-cycle.

• Availability: Describes the property of information being available when it is needed such that the 
information system can serve its purpose.

Besides these three most commonly referred to security attributes, there are also many other attributes 
such authenticity, possession, or non-repudiation.

Attacks on cyber-physical systems can be further divided into two categories (Ravi, Raghunathan, 
Kocher, & Hattangady, 2004). Attacks corresponding to the first category, logical attacks can be con-
ducted using existing communication interfaces. Logical attacks typically target software weaknesses 
and can be done remotely. The second category of attacks, physical and side-channel attacks, usually 
requires an attacker to have physical access to the hardware. An attacker that is able to physically access 
the targeted hardware is then able to attack both, the software and hardware weaknesses of a system.

Figure 1. Big picture of IoT and CPS related security measures as discussed in this work
Source: Big Picture.
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Logical attacks can target either a single device or a whole network. Hansman and Hunt (2005) give 
a categorization of possible attacks on network and computer systems. Most of these attacks can also 
occur in CPSs or IoT systems.

• Viruses and Worms: Malicious software components executed at the targeted system. The mali-
cious code is often spread and even updated via a network. Viruses and worms might compromise 
data confidentiality and integrity as well as the availability of systems.

• Exploits: By using weaknesses in a software or hardware implementation, attackers are able to 
perform various operations such as injecting malicious code or revealing secret data. Exploits 
include, for example, buffer overflows or various code injections (e.g. SQL-injection, cross site 
scripting). These attacks also target the confidentiality, integrity and availability of a system.

• Denial of Service (DoS): In DoS attacks, the aim is to make the service provided by the targeted 
system unavailable. This can be achieved in various ways such as flooding a server with a high 
amount of requests. This kind of attack targets the availability of a system.

• Network Attacks: In this type of attack, network related vulnerabilities are used to attack a sys-
tem. The goal is often to redirect traffic to a malicious system. Examples of attacks include man-
in-the-middle attacks or DNS spoofing. The targeted CIA attributes are confidentiality, integrity 
and availability.

• Password Attacks: Attackers try to reveal users’ password in order to gain unauthorized access 
to a system. THIS can be done, for example, via brute force attacks or dictionary attacks. All three 
CIA attributes might be compromised by such attacks.

The above listed attacks are general attacks on network and computer systems. Pasqualetti et al. (2013) 
discuss logical attacks that are mainly relevant for CPSs. In contrast to the previously mentioned attacks, 
these attacks often target information regarding the physical process attached to a CPS.

• Deception Attacks: In deception attacks, wrong data (such as sensor data or control data) is in-
jected into the CPS. On the one hand, an attacker might inject data that is false and unrelated to 
the system; however, such attacks might easily be detected. On the other hand, an attacker might 
first try to learn a system’s behavior and then inject data based on the learned standard behavior 
(stealthy deception attack) which is harder to detect. This type of attack targets the integrity and 
as a possible consequence also the availability of a CPS.

• Replay Attacks: In replay attacks, an attacker first captures data produced by a CPS which also 
can be encrypted. After capturing that data, the attacker then injects this data into the system at a 
later point in time. In contrast to deception attacks, an attacker does not necessarily need to have 
any knowledge about the sent data. This type of attack also targets the integrity and availability 
of a CPS.
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Physical and side-channel attacks always compromise the confidentiality, integrity, and availability of 
CPSs due to the information revealed by them. These attacks can be categorized by two criteria: an 
attacker’s behavior and the attack’s degree of invasiveness. First, an attacker’s behavior can be used to 
distinguish attacks (Kocher, Lee, McGraw, Raghunathan, & Moderator-Ravi, 2004):

• Active Attack: An attacker actively tries to induce faults into the hardware, for example, by inject-
ing power spikes. In unprotected devices, this may lead to failures in the executed software which 
then might reveal keys or weaknesses of the implementation.

• Passive Attack: An attacker passively observes physical properties of the hardware, for example, 
a CPU’s power consumption. These physical properties might reveal details about the implemen-
tation or even confidential data such as keys.

The second type of categorization can be done depending on an attack’s degree of invasiveness 
(Kocher, Lee, McGraw, Raghunathan, & Moderator-Ravi, 2004):

• Invasive Attack: In invasive attacks, there is no limit regarding the actions an attacker might take. 
Possible actions include removing the packaging, probing internal bus lines or even permanent 
changes to the circuits of a hardware element.

• Semi-Invasive Attack: In semi-invasive attacks the attacker does not change the attacked hard-
ware. Although semi-invasive attacks often include the de-packaging of hardware, no physical 
contact with the internal components is made. Desired faults are injected by, for example, using 
radiation or light to attack the hardware.

• Non-Invasive Attack: In non-invasive attacks the attacker observes properties of the hardware 
without damaging or changing it. Such properties include side-channels (Le, Canovas, & Clédiere, 
2008) such as the power consumption or the timing of a certain part of software.

An overview of potential attacks, categorized by these two criteria can be seen in Table 1. All of 
these attacks can be applied to CPSs.

CPSs are, by definition, seen as an embedded system or controller that is attached to a physical pro-
cess. The physical process can be monitored using sensors or actively influenced by a CPS using actua-
tors. A wide range of systems can be classified as CPS, such as smart grids, process control systems, 
(autonomous) robotic systems, (autonomous) car systems, medical devices, and many more. Such systems 
provide various potential points of attack inside a CPS as depicted in Figure 2. There, y is seen as the 

Table 1. Physical attacks categorized according to Section Attack Taxonomies

Active Passive
Invasive Circuit Changes, Forcing, … Probing, …
Semi-Invasive Light Attacks, Radiation Attacks, … Inspecting the Hardware, EM Attacks, …
Non-Invasive Spike Attacks, Low Voltages, … Side-Channel Attacks (Power, Timing, …)
Attacks extracted from (Weingart, 2000) and (Anderson, Bond, Clulow, & Skorobogatov, 2006).
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output of a process, for example, sensor measurements and u are the control commands sent to the 
physical process. The potential attacks on such CPSs and their implications can be categorized into five 
groups (adapted from Cardenas, Amin, & Sastry, Secure Control: Towards Survivable Cyber-Physical 
Systems, 2008). A1 are attacks targeted directly at the physical process itself. The aim of such attacks 
could be actuators or even a physical attack against the plant. A2 are so called deception attacks. In these 
kinds of attacks the adversary induces false information ɶ≠  by attacking, for instance, a sensor. Pos-
sible information that can be forged includes measurements or the time associated to measurements. A3 
represent DoS attacks where an attacker prevents the controller from receiving the physical process’ 
output. A4 represent attacks where an adversary attacks the controller and induces false control com-
mands ɶ≠ . These manipulated control commands could harm and destroy the physical process. A5 
is similar to A3; an adversary attacks the data transportation from the controller to the physical process. 
Because of its nature, this attack is also a DoS attack.

The challenges regarding IoT security are manifold (Jing, Vasilakos, Wan, Lu, & Qiu, 2014); therefore, the 
authors identify four major challenges. (i) A high number of insecure devices is supposed to be already 
connected to the Internet. Many devices were shown to be vulnerable to simple intrusion attacks by a 
large scale study (Cui & Stolfo, 2010). The study results show that about 13 percent of all discovered 
devices are configured with factory default passwords; the carna botnet revealed 1.2 million devices with 
weak passwords or no password set at all (Le Malécot & Inoue, 2014). (ii) There is believe that current 
security measures such as public-key infrastructures will not scale to the large number of IoT devices 
(Roman, Najera, & Lopez, 2011). (iii) As most IoT devices are highly constraint devices, finding a single 
weak link to attack could be an easy task for attackers. Therefore, efficient security algorithms need to 
be developed to mitigate attacks. (iv) Being in control of a single device could already lead to failures 
of many services. Thus, each involved component needs to be secured.

In the context of CPSs, even more security challenges arise compared to traditional ICT systems 
(Cardenas et al., 2009). For example, a challenge could arise through the necessity for security related 

Figure 2. Potential points of attacks inside a CPS
Adapted from (Cardenas, Amin, & Sastry, Secure Control: Towards Survivable Cyber-Physical Systems, 2008). Source: Attack 
Points.
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software updates that often require reboots of the updated system or additional redundant systems to 
prevent reboots. Reboots are critical as the physical process also needs to be stopped in order to avoid 
potential problems. Restarting a physical process such as a power plant will take magnitudes longer 
than restarting, for example, a personal computer (PC). Regarding the CIA attributes a shift in priori-
ties between CPSs and ICT systems can be found. Protecting data confidentiality is crucial for systems 
processing private data while for CPSs that interact with a physical process their availability is in most 
cases more important than data confidentiality. Another challenge is the need for real-time availability 
of CPSs. Many traditional IT systems such as web services only need to provide availability of their 
service with no requirements regarding real-time aspects. However, the major difference between CPSs 
and traditional IT systems is that CPSs are connected to a physical process. Attacks might target the 
physical process itself or intend to damage the process which even might threaten human lives. In tra-
ditional it systems, attacks mostly target the processed information.

Lun et al. (Lun, D’Innocenzo, Malavolta, & Di Benedetto, 2016) describe current trends and hot 
topics in research related to CPS security. We expand this list by current research trends regarding the 
challenges mentioned by us:

• Countermeasures against special attacks targeting CPSs (deception, false data injection, etc.) 
(Kim & Poor, 2011; Lo & Ansari, 2013)

• Prevention, detection and mitigation of attacks (Chaojun, Jirutitijaroen, & Motani, 2015), (Huang, 
Li, Campbell, & Han, 2011)

• Ensuring integrity of data in case of attacks (Kwon, Liu, & Hwang, 2014), (Vuković & Dán, 2014)
• Security measures for resource constraint devices such as sensors (Mishra, Shoukry, 

Karamchandani, Diggavi, & Tabuada, 2015; Mo, Weerakkody, & Sinopoli, 2015; Höller, Druml, 
Kreiner, Steger, & Felicijan, 2014)

• Security concepts for specific CPS application fields (e.g. Power Grid, Autonomous Vehicles, 
etc.) (Xue, Wang, & Roy, 2014; Zhu & Basar, 2015)

• Security measures for controllers (Dadras, Gerdes, & Sharma, 2015; Urbina et al., 2016)

Lun et al. also state that focus regarding CPS application is almost entirely on power grids. The re-
search interest in the field of communication aspects is very low which is surprising as communication 
is an essential topic for all networks. This work shows that many topics are addressed currently but many 
more need to be approached to provide solutions for real world applications of CPSs.

Cyber-attacks targeting CPSs became the focus of public attention in recent years. The probably best 
known cyber-attack that focused on physically destroying a target was Stuxnet. Stuxnet’s only goal, con-
trary to traditional worms, was to harm a target instead of stealing, manipulating or erasing information. 
However, Stuxnet was not the first attack that harmed a physical process. Some other and earlier attacks 
are listed in Table 2 (collected and adapted from Miller & Rowe, 2012).
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All attacks listed in Table 2 reportedly successfully manipulated or destroyed a physical process. Re-
cently, attacks have not tried to harm a physical process or device, but have tried to capture devices in 
order to use them in botnets (Dagon, Gu, Lee, & Lee, 2007). Because of their large number, IoT devices 
are a favored target to be used in botnets (Pa, et al., 2015). In addition, IoT devices are online 24/7, 
which makes them even better suited to be used in botnets. In 2014 both, Sony’s and Microsoft’s gam-
ing platforms were attacked by a large number of infected IoT devices (Somani, Gaur, & Sanghi, 2015). 
The number of infected devices is rising since, culminating in a recent attack that reached traffic peaks 
of 620 gigabits per second (Gallagher, 2016). In this attack, an IoT botnet called Mirai was involved in 
attacking DNS services. The Mirai botnet comprises of devices such as WiFi routers and IP cameras. 

Table 2. Attacks

Attack Reported Description and Sources
Siberian Pipeline 
Explosion (1982)

The first known cyber-attack targeting critical infrastructure. A trojan planted in a control system caused the 
explosion of a Siberian pipeline (Daniela, 2011).

Chevron Emergency 
Alert System (1992)

Chevron’s alert system was disabled by a fired employee. The undetected attack threatened people in 22 states 
in the USA and parts of Canada (Denning, Cyberterrorism: The Logic Bomb versus the Truck Bomb, 2000).

Worcester, MA 
Airport (1997)

An attacker successfully disabled a telephone computer that serviced Worcester Airport. The outage affected 
services such as the aviation control tower, the airport fire department or the airport security and thus 
threatened human lives (Denning, Cyberterrorism: The Logic Bomb versus the Truck Bomb, 2000).

Gazprom (1999) Attackers supported by a disgruntled employee gained access to the central switchboard that controls the 
gas flow in pipelines. The attackers reportedly used a trojan horse to gain access (Denning, Cyberterrorism: 
Testimony Before the Special Oversight Panel on Terrorism Committee on Armed Services US House of 
Representatives, 2000).

Davis-Besse Nuclear 
Power Plant (2003)

The Davis-Besse nuclear power plant in Ohio, USA was infected by a worm that disabled the plant’s safety 
parameter display system and the plant process computer for several hours (Beggs, 2006).

CSX Corporation 
(2003)

Train signaling systems in Florida, USA were shut down by a fast spreading worm. There are no major 
incidents caused by this attack; however still many lives were threatened by it (Nicholson, Webber, Dyer, Patel, 
& Janicke, 2012).

Stuxnet (2010) Stuxnet attacked Iranian nuclear facilities exploiting zero-day vulnerabilities. The worm tried to destroy 
centrifuges by frequently switching between high and low speeds which ultimately led to the failure of these 
centrifuges (Langner, 2011).

Night Dragon (2011) Five global energy and oil companies were attacked by a combination of social engineering, trojans and using 
Windows exploits. The attacks are said to have been ongoing for about two years. Although no damage has 
been detected, data such as operational blueprints were stolen (Nicholson, Webber, Dyer, Patel, & Janicke, 
2012).

Flame (2012) Flame, a piece of malware was found on computers operating in Iran, Lebanon, Syria, Sudan and other places 
in the Middle East and North Africa. The malware was used to extract documents but also opened a backdoor 
that allowed adding any new functionality that could be used to harm the systems under attack (Lee D., 2012).

HAVEX (2014) The HAVEX malware primarily targeted the energy sector, collecting data from attacked systems and leaving 
backdoors to control systems. Through these backdoors, the connected physical process could be controlled 
in a malicious way and therefore could also be manipulated or destroyed by attackers (Hentunen & Tikkanen, 
2014).

Black Energy (2015) Initially known as a botnet (Lee, Jeong, Park, Kim, & Noh, 2008), Black Energy changed its purpose in 2015. 
Ukrainian power plants infected were infected with a trojan through a backdoor opened by Black Energy. The 
trojan then tries to destroy the system by deleting certain files relevant for booting the system (ICS-CERT, 
2016).

Mainly collected and adapted from (Miller & Rowe, 2012).
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According to a study, the number of DDoS attacks in 2016 increased by 71 percent when compared 
to 2015 (Daws, 2016). The attacks originated from countries shown in Figure 3. As the number of IoT 
devices will continue to grow, also the number of associated attacks will increase.

In the context of initiatives such as Industry 4.0 (Referat, 2013), more CPSs are going to be connected 
to the Internet. These CPSs process confidential data and control production relevant processes. There-
fore, securing the data transfer between these devices is of high importance. According to the Internet 
protocol suite, there are four layers: Link Layer, Internet Layer, Transport Layer and Application Layer 
(see Figure 4). All four of these layers are capable of providing different security measures that are go-
ing to be discussed in this section. In most cases, security measures on multiple levels are needed as 
sufficient security cannot be provided by one layer due to information not being available. For instance, 
information such as IP addresses that might be required to detect certain kinds of attacks are not avail-
able at the link layer.

On the link layer, there are a couple of protocols that are used in the IoT. The protocols that are of most 
interest when discussing security are wireless protocols, as this type of communication offers by far 
more weaknesses than wired communication. For example, eavesdropping in a wireless network can be 
as easy as positioning a malicious device in the communication range of the attacked devices. However, 

Figure 3. Top origins of DDoS attacks
(Daws, 2016). Source: DDoS Origins.
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also wired communication technologies can be attacked if communication is not properly secured. The 
technologies that are seen as most promising (Zorzi, Gluhak, Lange, & Bassi, 2010) for the IoT are 
Wireless LAN, Near Field Communication and 802.15.4 based technologies such ZigBee. Therefore, 
these three technologies are analyzed regarding their security vulnerabilities in industrial usage (Plósz, 
et al., 2014).

• Wireless LAN (Wi-Fi): Wi-Fi is a wireless communication technology that has its origin in 
personal computers. Wi-Fi operates in frequency bands of 2.4 GHz or 5 GHz with a communica-
tion range of approximately 100 meters. This rather high range allows adversaries to attack Wi-Fi 
networks without being, for instance, in the same building. Wi-Fi standards include authentica-
tion and encryption mechanisms such as WEP and WPA. The security of Wi-Fi communication 
therefore relies on the confidentiality of these keys. If, for instance, an adversary is in possession 
of a Wi-Fi network’s WPA key, ongoing communication can be read by the adversary. Therefore, 
key cracking key cracking by eavesdropping Wi-Fi communication is one of the biggest threats 
against this technology.

• Near Field Communication (NFC): NFC is a wireless communication technology that is based 
on RFID standards. NFC has a typical communication range of 10 cm and operates at a radio 
frequency of 13.56 MHz. Because of NFC’s limited communication range, attacks need to be 
conducted in close proximity to the NFC devices. Although communication is limited to a couple 
centimeters, eavesdropping might be possible in a range of up to 10 m (Haselsteiner & Breitfuß, 
2006). Currently there is no dedicated NFC standard for authentication and access control. 

Figure 4. TCP/IP protocol architecture layers with protocols discussed in this work
Source: TCP.
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Therefore, unauthorized access to NFC devices is seen as the most critical issue with NFC. To 
mitigate the problem of unauthorized access, application layer security must be implemented.

• 802.15.4/ZigBee: Zigbee is intended to be used in low power wireless networks. ZigBee operates 
in the ISM (industrial, scientific and medical) radio bands and allows for communication up to 
a range of approximately 20 m. The 802.15.4 standard allows higher layers to provide security; 
therefore, ZigBee implements security features such as authentication, encryption, and key es-
tablishment. ZigBee also defines a so-called Trust-Center that is a special node responsible for 
storing network keys (Lennvall, Svensson, & Hekland, 2008). The biggest weakness of ZigBee 
is rogue nodes that might not be detected. Also, in many installations master keys are factory in-
stalled (Baronti et al., 2007). If these keys are extracted by an adversary with physical access to a 
device, security of the attacked network is severely threatened.

Plósz et al. (2014) list potential attacks for each of the three technologies, Wi-Fi, NFC, and ZigBee. 
All attacks are then assessed according to their likelihood and impact. This assessment yields a final 
rank highlighting the risk of each attack. Attacks with a major or even critical risk are listed in Table 
3. The threats listed are of different nature, mostly depending on the wireless technology’s architecture 
and communication range.

Improving security at the link layer usually is a complex task, as the overhead imposed by security at 
this layer is significant compared to the transmitted payload. Because most CPSs are resource constraint 
devices, a large number of 802.11 based networks operate without any cryptographic protection (Hurley, 
2003). To mitigate this issue, Karlof et al. (Karlof, Sastry, & Wagner, TinySec: A Link Layer Security 
Architecture for Wireless Sensor Networks, 2004) present a link layer security architecture tailored for 
resource constraint devices. The authors have chosen to implement security measures at the link layer, 

Table 3. Link Layer protocols and possible attacks with major or critical risks

Threat Highest Risk
Wi-Fi WEP Shared Key Cracking Confidentiality

WPA-PSK Cracking Confidentiality
Application Login Theft Confidentiality, Authenticity
Intercepting TCP, SSH, SSL Confidentiality, Integrity, Authenticity
Evil Twin Access Point Confidentiality, Availability, Integrity, Authenticity
Device Cloning Confidentiality, Integrity, Authenticity

NFC Clone or Modify Portable Reader Device Confidentiality, Authenticity
Wormhole / Relay Attack Authenticity
Rogue Node Confidentiality, Availability, Integrity, Authenticity
Unauthorized Access to Node Confidentiality, Authenticity

ZigBee Rogue Node Confidentiality, Integrity, Authenticity
Device Cloning / Firmware Replacement Confidentiality, Integrity, Authenticity
Security Parameter Extraction by Physical Access Confidentiality, Authenticity
Plaintext Key Capture Confidentiality, Integrity, Authenticity

Plósz et al., 2014.
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because CPSs often communicate in a many-to-one pattern. In this pattern, many sensors and actuators 
communicate their data to a central base station, which makes traditional end-to-end security such as 
SSH, TLS or IPSec infeasible. The approach uses authenticated encryption to secure the transported 
payload at the link layer.

Security measures implemented at the Internet layer increased in popularity when the Internet Engineer-
ing Task Force (IETF) started the IP Security Working Group. The goal of this working group was to 
design cryptographic security for IPv6 that could also be ported to IPv4 (Oppliger, 1998). The result, 
IPSec, is widely known and supported nowadays as it is capable of providing data confidentiality and 
integrity by mitigating network attacks. IPSec is very popular and integrated in IPv6; therefore, the focus 
for the rest of this section will be on approaches that are capable to detect attacks at the Internet layer.

IETF introduced IPv6 for Low power Wireless Personal Area Networks (6LoWPAN) for resource 
constraint IoT devices. 6LoWPAN enables these devices to be connected to the Internet by compressing 
standard IPv6 headers. Kasinathan et al. (2013) present an approach that includes an Intrusion Detection 
System (IDS) and DoS detection into 6LoWPAN. A network based IDS analyzes the 6LoWPAN traffic 
to detect intrusion attempts and to raise alerts in case of detected attacks. The IDS approach helps to 
detect and mitigate network and DoS attacks and thus, increases confidentiality, integrity and availabil-
ity of a CPS. The presented network based approach requires the inclusion of IDS Probe nodes that are 
allowed to analyze all packets, irrelevant of the actual recipient. In case of an attack, the IDS then alerts 
the DoS protection manager that then further collects data to verify the potentially ongoing DoS attack. 
The authors claim that their distributed hybrid approach is capable of detecting DoS attacks reliably.

The Routing Protocol for Low-Power and Lossy Networks (RPL) is a standardized routing protocol 
for IoT devices that use 6LoWPAN. Attacks against routing protocols were successfully applied against 
wireless sensor networks (WSNs) as well (Karlof & Wagner, 2003). Wallgren et al. (Wallgren, Raza, & 
Voigt, 2013) propose to place IoT IDSs at the root nodes of RPL routing trees, thus, giving the IDS a 
global view. This allows the routing protocol, for instance, to exclude malicious nodes from the routing 
tree in order to prevent network attacks. By excluding malicious nodes, confidentiality, integrity, and 
availability of a CPS can be increased. In their approach, ICMPv6 messages protected by IPSec with 
ESP are used to detect anomalies in the network. Wallgren et al. also show that the inclusion of an IDS 
introduces only a small overhead in power consumption of about 10 percent.

Transport Layer Security (TLS) is considered to be of utmost importance in IoT applications (Garcia-
Morchon, Kumar, Struik, Keoh, & Hummen, 2013). Although considered by some as an application 
layer protocol, the authors put TLS into the transport layer as its name suggests. Similar to the Internet 
layer, conventional protocols of the transport layer cannot directly be applied to IoT devices because 
of resource limitations. Especially in low-power lossy networks, protocols such as conventional TLS 
cannot be applied. TLS is a stream oriented protocol building on TCP that suffers from frequent packet 
loss in the form of delays. As an alternative to TLS, the Datagram Transport Layer Security (DTLS) 
protocol that is using UDP was introduced. DTLS provides the same protection mechanisms as TLS 
and does not influence the underlying packet transport. Thus, DTLS is able to provide confidentiality 
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and integrity of transferred data by mitigating network attacks. A gateway from the Internet (TLS) to a 
lossy IoT network (DTLS) is proposed by Brachmann et al. (2012) in order to be able to provide end-
to-end security between networks. The DTLS protocol is often used to implement IoT related security 
mechanisms such as a two-way authentication (Kothmayr, Schmitt, Hu, Brünig, & Carle, 2013) that uses 
X.509 certificates and an Elliptic Curve Diffie Hellman (EC-DH) key agreement process. By using this 
approach, both communication partners are authenticated and an encrypted communication is enabled. 
Kothmayr et al. (2013) show that securing a connection using DTLS imposes minimal overhead for the 
involved devices and also conclude that the usage of dedicated security hardware such as Trusted Plat-
form Modules (TPM) will further decrease the overhead in power consumption and delay. TPMs and 
other security related hardware concepts will be discussed in Section Device Security.

Application layer protocols are an essential part when discussing communication in the context of IoT. 
There is a wide range of protocols that also might be suitable for an industrial context. IoT application 
layer protocols such as MQTT, CoAP, or DDS typically provide a very low protocol overhead that en-
ables these protocols to efficiently transport the huge amount of data created by IoT devices. To meet 
the security requirements of industrial IoT applications, these existing protocols need to be adapted. 
Therefore, existing IoT application layer protocols will be evaluated regarding their built-in security 
features and the available security extensions for the protocols.

• MQTT: MQTT is based on the publish/subscribe principle and uses a client-server architecture 
(Standard, 2014). Clients publish messages to a specific topic or subscribe to a topic using a so-
called broker. The broker is a server which manages the distribution of messages in the network. 
MQTT Messages are sent using TCP to enable reliable message delivery. Before clients can send 
and receive messages, they have to connect to the broker. The CONNECT message, sent by the cli-
ent, contains optional fields for username and password that can be used for authentication. These 
fields are the only built-in security features MQTT provides. Due to these scarce security mecha-
nisms, OASIS highly recommends the use of TLS (Dierks, 2008) to secure messages from at-
tackers. Unfortunately, TLS suffers from attacks such as BEAST or CRIME (Sarkar & Fitzgerald, 
2013). To overcome the issues with TLS and to provide reliable security for MQTT, Singh et 
al. (Singh, Rajan, Shivraj, & Balamuralidhar, 2015) propose the use of Key/Cipher text Policy-
Attribute Based Encryption (KP/CP-ABE) that relies on lightweight Elliptic Curve Cryptography 
(ECC). ABE using lightweight ECC supports broadcast encryption. Encrypting a broadcast mes-
sage enables many clients to decrypt a message. ABE are of the types Ciphertext Policy based 
ABE (CP-ABE) and Key Policy based ABE (KP-ABE). CP-ABE provides private key generation 
over a set of attributes and uses an access tree to encrypt the data. KP-ABE generates a user’s 
private keys based on an access tree depending on the user’s privileges. In KP-ABE the data is 
encrypted over a set of attributes. The combination of CP/KP-ABE provides data confidentiality 
and also provides access control. Another approach to secure MQTT was made by Niruntasukrat 
et al. (Niruntasukrat, et al., 2016) who proposed an authorization mechanism based on the OAuth 
1.0 authentication algorithm. With this algorithm, a device can generate an access token to be al-
lowed to subscribe to a specific resource. This authorization only approach is designed for highly 
constraint devices which cannot carry TLS or perform cryptographic functions.
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• CoAP: CoAP relies on the request/response principle between endpoints using a client/server ar-
chitecture (Shelby, Hartke, & Bormann, 2014). Clients can request specific resources using URIs 
with HTTP media types such as GET. Requests and responses are sent using UDP to keep the pro-
tocols footprint small. Although CoAP uses UDP for transport it also offers modes for guaranteed 
message delivery. CoAP itself does not provide any security features. To secure the sent messages 
anyway, the RFC 7252 requires the implementation of DTLS (Modadugu & Rescorla, 2004) but 
allows the NoSec mode to be used where DTLS can be disabled. DTLS, similar to TLS, results 
in a huge overhead compared to CoAP’s overhead. Therefore, Raza et al. (2013) propose Lithe, a 
lightweight DTLS integration for CoAP. The integration is, among others, done by using the prin-
ciple of 6LoWPAN header compression mechanisms (Hui & Thubert, 2011). The header com-
pression for DTLS reduces the overhead for the complete handshake headers by about 33%. There 
are also other approaches such as proposed by Capossele et al. (2015) or Ukil et al. (2014) that try 
to secure CoAP by manipulating DTLS to reduce the packet overhead and number of messages.

• XMPP: XMPP is based on a client/server architecture (Saint-Andre, Smith, Tronçon, & Troncon, 
2009) and uses XML to structure the data sent between clients and servers. All clients in a spe-
cific domain are connected to one server. Servers can connect to other servers to enable inter do-
main communication. The communication between client and server can be secured using TLS; 
the communication between servers however does not necessarily need to be secured. Therefore, 
the RFC 6120 (Saint-Andre, 2011) recommends end-to-end encryption between clients in differ-
ent networks to provide data security. One approach to secure XMPP was done by Celesti et al. 
(2013), who proposed SE Clever. SE Clever is the secure extension of an existing middleware for 
cloud computing. The security extensions enable XMPP to (i) sign the sent XML files with private 
key of the sender, (ii) attach content encrypted with receiver’s public key to the message body, (iii) 
attach a session key for symmetric encryption, and (iv) attach signed timestamps. These exten-
sions enable a secure XMPP middleware without establishing TLS connections.

• DDS: DDS is a protocol for real-time, high-performance data exchange between clients (Pardo-
Castellote, 2003) that relies on the publish/subscribe principle but does not require a broker to 
distribute messages. DDS clients simply publish data to topics and other clients subscribe to the 
topics. DDS’ architecture is similar to the one of bus systems where every client is connected to 
the bus. Data is transported using TCP, UDP or any other transport specification. DDS does not 
provide any security features; therefore, TLS or DTLS should be used to protect the data from 
manipulation or theft.

• AMQP: AMQP is a message-oriented protocol based on publish/subscribe and point-to-point 
communication (Vinoski, 2006). AMQP uses a broker to distribute messages. The broker provides 
an exchange service and a message queue service. The exchange service is used to send data to 
a specific receiver where the data is stored in a queue the receiver can read from. The exchange 
service uses point-to-point communication with the broker as a forwarding device. The message 
queue service copies the same message to each client that has subscribed to the message topic. 
The message queue service uses the publish/subscribe principle for data distribution; the messag-
es are sent using TCP but AMQP can be extended to also use UDP. AMQP does not provide any 
security features; therefore, Vinoski (2006) recommends the use of TLS to provide data security. 
Besides TLS no other security extensions for AMQP were proposed yet.

• OPC-UA: OPC-UA is based on a client/server architecture using the request/response principle 
(Mahnke, Leitner, & Damm, 2009). Each client needs an OPC-UA client implementation that 

– 152 –



8 Publications

uses the OPC-UA communication stack to create request messages. The client’s communication 
stack communicates with the server’s communication stack by sending the request messages. 
The server’s communication stack forwards the request to the server implementation. The server 
implementation provides the response which is sent to the client by using the server’s and client’s 
communication stacks. Furthermore, subscriptions and notifications can be sent between client 
and server using a publish/subscribe principle (Cavalieri, Cutuli, & Monteleone, 2010). OPC-UA 
provides two different communication modes for message exchange. The first mode, UA Web 
Services, uses web services secured with HTTPS to communicate. The second mode is named UA 
Native and sends data in plain text using TCP. Besides HTTPS, OPC-UA provides a huge amount 
of built-in security features. The security features include:

• Session Encryption: Transmitted messages are encrypted with 128 bit or 256 bit keys.
• Message Signing: Messages are signed to prevent data manipulation.
• Sequenced Packets: Sequencing eliminates the possibility of replay attacks.
• Authentication: OpenSSL certificates are used to authenticate systems or applications.
• User Control: Login credentials must be provided by users to access applications.

Because OPC-UA already provides extended security features, no proposed security extensions exist 
for this protocol. Due to these security features, OPC-UA generates a huge overhead compared to other 
protocols.

When connecting CPSs to the Internet, securing the device itself is as important as securing the commu-
nication between devices. Communicating over an unsecured channel might threaten the confidentiality 
and integrity of transferred data. Leaving weaknesses at a device itself, however, might lead to bigger 
issues such as the device being overtaken. Such an overtaken device could then forward confidential data 
to adversaries’ servers, use the device in botnet related attacks or even manipulate the device’s intended 

Table 4. Security analysis of existing IoT application protocols

Built-In Security Extended Security Provides
MQTT User/Password Authentication TLS, KP/CP-ABE (Singh, Rajan, Shivraj, & 

Balamuralidhar, 2015), Authorization (Niruntasukrat, et al., 
2016)

Confidentiality, 
Integrity

CoAP None DTLS, Lithe (Raza, Shafagh, Hewage, Hummen, & Voigt, 
2013)

Confidentiality, 
Integrity

XMPP None TLS/SASL, SE Clever (Celesti, Fazio, & Villari, 2013) Confidentiality, 
Integrity

DDS None TLS/DTLS Confidentiality, 
Integrity

AMQP None TLS Confidentiality, 
Integrity

OPC-UA Sequencing, Encryption, 
Authentication, Signing, User Control

None Confidentiality, 
Integrity
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behavior. The security of a whole network is threatened if an adversary possesses a single device belong-
ing to it. The adversary might apply any type of physical attack to reveal confidential data or even keys 
stored on the device under attack. These keys could then be used to connect malicious devices to the 
network without anyone noticing. To counteract all kinds of attacks at the device level, so-called tamper 
resistance needs to be achieved in software as well as in hardware. A system’s tamper resistance can be 
split into four different steps (Ravi, Raghunathan, & Chakradhar, 2004):

• Attack Prevention: Attack Prevention techniques should complicate attacks that target CPSs and 
thus make the attacks infeasible. Possible techniques include packaging, special hardware design, 
and software design.

• Attack Detection: Attack Detection should detect potential attacks as soon as possible to mini-
mize the effect of them. Possible techniques include, for example, a run-time detection of mali-
cious memory accesses.

• Attack Recovery: Attack Recovery is essential in the case of a detected attack to take appropriate 
countermeasures and to check that the system returns to a normal operation state. Possible tech-
niques include, for example, locking the system or rebooting the system.

• Tamper Evidence: Tamper Evidence is responsible for keeping track of past attacks that can be 
used for inspection later. Tamper evidence be protected from being reversed. Thus, techniques 
such as seals or wires that have to be cut can be used.

Tamper resistance is a security feature that often is associated with hardware components. However, 
also software measures can and need to be taken to provide tamper resistance of executed code (Lie, 
et al., 2000). Horne et al. (Horne, Matheson, Sheehan, & Tarjan, 2001) propose a self-checking code 
mechanism that can be integrated into existing code segments to provide tamper resistance. Aucsmith 
et al. (1996) present an approach for tamper resistant software that uses so-called Integrity Verification 
Kernels to check if software is operating as intended. Integrity verification kernels are self-modifying, 
self-decrypting, self-checking and installation unique code segments that communicate with other kernels 
to create an interlocking trust model. Software tamper resistance is able to mitigate physical and side-
channel attacks that passively inspect a device and try to reveal data from information such as timings. 
Thus, these approaches are able to provide data confidentiality. The authors also list design principles 
for tamper resistant software (Aucsmith, 1996):

• Secret Dispersion: Secret Dispersion is used to evenly spread confidential information through-
out the whole system. For instance, if a key is distributed in the whole memory instead of being 
stored in a single location, an attacker is hindered from revealing the whole secret by randomly 
guessing and observing the correct position in memory.

• Obfuscating and Interleaving: This principle converts a program into a state that is harder to un-
derstand for humans without changing the functionality of the obfuscated code. Obfuscated code 
is used to hide its logic and purpose to prevent tampering and reverse engineering.

• Installation of Unique Code: Installation of unique code is used to mitigate class attacks (Ouyang, 
Le, Liu, Ford, & Makedon, 2008) by checking that each code has a unique component. Uniqueness 
can be added to software by different unique code sequences or encryption keys.
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• Interlocking Trust: This is the principle of code components relying on other code segments to 
effectively perform their tasks. Not only are code segments responsible for their own functional-
ity, but also for maintaining and verifying the integrity of other components. Thus, each software 
component is monitored by another component of the system which forms an interlocking trust 
relationship between components.

Although software tamper resistance can increase a system’s security, it has two major drawbacks 
compared to tamper resistant hardware. First, most CPSs are constrained in their processing capabilities 
which limits the feasibility of adding security features in software. Second, software tamper resistance 
has been shown to be prone to many attacks (Oorschot, Somayaji, & Wurster, 2005), (Wurster, van 
Oorschot and Paul, & Somayaji, 2005). Therefore, software tamper resistance cannot be relied on to 
provide a device’s security without other security measures.

IDSs are another measure to increase CPS security by potentially detecting viruses, worms, DoS attacks, 
network attacks, or password attacks. Thus, increasing the confidentiality, integrity, and availability of 
CPSs. Mitchell and Chen (2014) state the importance of IDSs for CPSs as an unnoticed adversary could 
set up an attack that is more harmful than attacks that are immediately recognized. The authors further 
categorize CPS IDSs by their detection technique and the used audit material. The detection technique 
defines how such IDSs need to be trained and how misbehaving code is detected.

• Knowledge Based Approach: These approaches identify runtime features based on specific pat-
terns of misbehavior (Whitman & Mattord, 2011). Because knowledge based approaches only 
react to known bad code segments, the false positive rate of such approaches is usually low.

• Behavior Based Approach: These IDSs approaches identify runtime features that differ from 
the ordinary (Whitman & Mattord, 2011). Depending on what is defined as ordinary, these IDSs 
need to be trained live or on supervised data. The advantage of such approaches is that they do not 
need to previously see the exact code they need to detect. However, the machine learning aspect 
increases the false positive rate.

In the context of CPSs, there are two possible ways to collect data for analysis.

• Host Based IDS: Host based IDSs analyze logs recorded on a single node. The advantage of host 
based approaches is their independence of other nodes and the corresponding ease of detecting 
host-level misbehavior (Mitchell & Chen, 2014).

• Network Based IDS: These approaches analyze network activity to find compromised nodes 
(Kasinathan, Pastrone, Spirito, & Vinkovits, 2013). The advantage of this approach is that other, 
dedicated, and non-compromised nodes are used to identify misbehaving nodes in a network. 
Dedicated nodes could be equipped with external power sources and more computational power 
(Wallgren, Raza, & Voigt, 2013).

However, in the context of CPSs, also other indicators such as the physical process itself could be used 
for intrusion detection. Cardenas et al. (2009) state that traditional IDSs only analyze device or network 
logs while control systems could be used to monitor the physical process. Anomalies in the physical 
process could be an indicator for an ongoing attack that might not be detected by traditional IDSs.
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Secure hardware components need to provide a number of security properties in order to increase the 
overall security of a system (Vasudevan, Owusu, Zhou, Newsome, & McCune, 2012). The properties 
considered most important are the following three:

• Isolated Execution: A fundamental concept in hardware security is the so-called security by 
isolation concept (Vasudevan, Owusu, Zhou, Newsome, & McCune, 2012). In this concept, an 
execution environment is split into two worlds, the normal world and the secure world. The nor-
mal world is then used as general-purpose execution environments (GPEE) while the secure world 
servers as a secure execution environment (SEE). The security by isolation principle can be real-
ized using different hardware elements (Anderson, Bond, Clulow, & Skorobogatov, 2006), on a 
single CPU (ARM TrustZone (Winter, 2008), Intel Trusted Execution Technology (TXT), AMD 
SVM), or in software (Madnick & Donovan, 1973). Isolated execution allows software develop-
ers to run certain parts of their software in complete isolation from other code that is executed 
at the same device. Current operating systems (OS) provide isolation at a process level. Security 
by isolation helps to mitigate the impact of viruses and worms as well as exploits. Also, passive 
physical and side-channel attacks can be mitigated and thus, confidentiality, and integrity of CPSs 
is increased. The drawback with this approach is that, if the OS itself is compromised, also the 
isolation mechanisms are circumvented. Also, Bond and Anderson (2001) highlight that secured 
execution environments can be targeted by so-called API attacks. The simplest form of such an 
attack is to issue valid API commands in an unexpected sequence. To account for this type of at-
tack, measures such as security analysis (for example Common Criteria Certification (Mellado, 
Fernandez-Medina, & Piattini, 2007)) needs to be conducted.

• Secured Storage: The need to store confidential data such as key material on a CPS highlights 
the importance of secured storage. A secured storage therefore should be capable of guaranteeing 
data integrity and secrecy for any kind of data. Storage secured by software measures is consid-
ered to be insecure, as any physical attack can be applied to storage media that is extracted from 
its coating (Vasudevan, Owusu, Zhou, Newsome, & McCune, 2012). A (now already outdated but 
simple) possible approach to mitigate physical attacks is to seal the storage by embedding it inside 
a protective coating that makes the hardware resistant against invasive attacks (Tuyls, et al., 2006). 
Such protective coatings enable read-proof hardware by being sprayed on traditional hardware. 
The coating is doped with several random dielectric particles that help to (i) absorb light and UV-
light, (ii) make the coating very hard, (iii) provide a certain capacitance of the coating that can be 
measured by sensors inside of it. These properties not only mitigate physical attacks but also help 
to identify an ongoing attack by sensing the coating’s capacity.

• Trusted Path: To provide confidentiality, authenticity and availability for a connection between 
software and a peripheral such as a sensor, a trusted path needs to be used (Zhou, Gligor, Newsome, 
& McCune, 2012). Trusted Path are essential to mitigate the problem of malicious applications 
that try to manipulate data such that a CPS or the associated physical process could be damaged.

Besides these three mentioned properties, Vasudevan et al. (2012) list two additional important prop-
erties. Remote Attestation is used to verify the origin of messages from software modules, for example, 
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a remote server could verify the correctness of a client’s OS kernel and application. Remote attestation 
therefore provides data integrity. Secure Provisioning allows data to be sent to a specific software part 
running on a specific hardware module. For example, data could only be sent to services that were 
previously verified using remote attestation. Secure provisioning therefore also provides data integrity. 
Stankovic (2014) notes that in order to meet the security requirements defined for CPSs, hardware support 
is needed in addition to software mechanisms. He further states that so-called tamper resistant hardware 
modules will be essential in providing encryption, authentication, attestation, and secured storage.

• Security Co-Processors: These are one example of such tamper resistant hardware components 
(Smith & Weingart, 1999). The security principle used by security co-processors to increase secu-
rity is isolated execution. Security co-processors are used as trusted devices that execute critical 
software parts in a tamper resistant environment. The software components that are most fre-
quently executed on security co-processors are cryptographic algorithms such as encryption, de-
cryption, signing and verification (Mclvor, McLoone, & McCanny, 2003). The execution of cryp-
tographic algorithms is especially vulnerable to physical attacks as so-called side-channel attacks 
can be used to reveal key material or other confidential data (Standaert, Malkin, & Yung, 2009), 
(Mangard, Oswald, & Popp, 2008). Because side-channel weaknesses might make other security 
measures such as secured storage useless, the focus in cryptographic co-processor design is often 
in eliminating all side-channels (Tiri, et al., 2005). In addition to cryptographic operations, there 
are also other use-case scenarios for security co-processors such as intrusion detection. Zhang et 
al. (2002) propose to run IDS software on a tamper resistant co-processor instead of a host pro-
cessor for increased security. This approach has four advantages according to the authors: (i) the 
intrusion detection is independent from other software components, (ii) the interface between the 
security- and host processor is very simple, so it is hard to exploit, (iii) the security co-processor 
can boot the device into a well-known state, (iv) statements made by the software running on a 
security co-processor can be fully trusted. Security co-processors will be especially useful in the 
context of cyber-physical systems (Feller, 2014) where, for instance, controller software could be 
executed in a secure manner. If CPSs are used in industrial processes, many new scenarios such as 
smart maintenance (Lesjak, et al., 2015) need to be considered for which security co-processors 
provide confidentiality, integrity, and availability.

• Trusted Platform Modules (TPM): TPM are standardized hardware components often asso-
ciated with personal computers because of their size and power requirements. TPMs typically 
comprise of several components such as a cryptographic co-processor and secured storage. The 
CIA attributes provided by a TPM are therefore a combination of the attributes provided by these 
components. TPMs are capable of providing confidentiality, integrity, and availability for CPSs. 
Because of the size requirements, CPSs often emulate a TPM’s functionality in software (Aaraj, 
Raghunathan, & Jha, 2008), (Strasser & Stamer, 2008), which poses security risks as well as 
problems regarding the power consumption of CPU-intensive cryptographic operations. TPMs 
are decreasing in size, so they nowadays are also included into CPSs (Kinney, 2006) and even 
smartcards (Akram, Markantonakis, & Mayes, 2014).

• TPM can be used to increase security in CPSs in various other ways too. Hutter and Toegl (2010) 
present a TPM that is extended by NFC functionality to provide a trusted channel between two 
devices. The TPM chip is further used for remote attestation that provides trust that the device is 
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not modified in a malicious way. Kothmayr et al. introduce a two-way authentication (Kothmayr, 
Schmitt, Hu, Brünig, & Carle, 2013) and end-to-end encryption (Kothmayr, Schmitt, Hu, Brünig, 
& Carle, 2012) that relies on TPMs in both devices to generate and store RSA keys, and to perform 
cryptographic operations. Because many IoT devices are resource constraint, the authors argue 
that TPMs not only need to be included for tamper resistance but also to handle the overhead im-
posed by using cryptographic security measures. According to Hu et al. (Hu, Tan, Corke, Shih, & 
Jha, 2010), including TPM into CPSs increases the system’s overall price by an average of only 
5 percent.

Another possible security feature when using TPM is the so-called authenticated boot as specified 
by the Trusted Computing Group (TCG). Authenticated boot is a passive method that stores integrity 
measures such as hashes of software components on the TPM. When booting a device, the integrity 
measure is applied again and compared against the stored value before loading and executing the soft-
ware. This security mechanism, however, can only be used to protect a software’s integrity at boot time; 
malicious code that is loaded at run time cannot be detected by such a TPM assisted system. A simple 
solution to that problem would be to reboot a potentially compromised system to restore a secured system 
state (Hendricks & Van Doorn, 2004). Raciti and Nadjm-Tehrani (2012) address the problem of many 
CPSs such as smart meters: the unsecured connection between sensor and controller. They argue that 
although TPM are included in many solutions nowadays, vulnerabilities persist that still allow CPSs to 
be attacked. To mitigate some problems, Raciti and Nadjm-Tehrani suggest to include an anomaly detec-
tion system in addition to a TPM chip in order to detect potential attacks targeting the communication 
between sensor and controller.

Tamper resistant hardware is shown to increase security by mitigating various types of physical and 
also logical attacks. However, as prices for such hardware devices are decreasing, also low cost attacks 
targeting tamper resistant hardware are possible (Anderson & Kuhn, 1997), (Bao et al., 1997). Anderson 
and Kuhn (Anderson & Kuhn, Tamper Resistance - a Cautionary Note, 1996) state that trusting a system 
because of its tamper resistant components is problematic as such systems are broken frequently.

The number of IoT devices is rapidly rising and forecasted to reach 50 billion devices by 2020 (Evans, 
2011). Initiatives such as Industry 4.0 and Smart Manufacturing will further boost this trend, as they 
envision connecting production machinery to the Internet. These so-called cyber-physical production 
systems are attractive targets for adversaries for a number of reasons.

• The number of connected devices is still rapidly increasing while most devices are online 24/7.
• A large number of currently connected devices has no proper security mechanisms implemented 

or is using default credentials.
• Most of the CPSs are resource constraint which does not allow to implemented traditional security 

measures.
• Many CPSs process confidential data. Attacks can therefore be used for industrial espionage.
• Attacks might aim at damaging the physical process which could threaten human lives.
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Trends in emerging CPS threats (Marinos, Belmonte, & Rekleitis, 2015) show that the number of 
all top 10 attacks such as DoS attacks, cyber espionage and physically damaging attacks are increasing 
compared to last year’s report. This further highlights the importance of CPS security.

Due to these reasons, an overview of CPS security is given in this work. To be able to categorize 
attacks as well as the applied countermeasures, the authors have given attack taxonomies for logical as 
well as for physical attacks. The authors also have shown recent major attacks that increased the public 
attention regarding IoT security. After that, security measures are discussed for two major aspects of 
CPSs: on a network level and on the device level. On the network level, all TCP/IP layers and their pro-
tocols have been evaluated regarding potential security measures. On device level, software measures 
and potential security increasing hardware components have been presented. Simply combining some 
of the presented security measures however might harm a system more than it improves its security 
(Krawczyk, 2001). Also, a tradeoff between security and other parameters such as overhead needs to be 
made. Therefore, this publication tends to present an overview of current security related topics rather 
than suggest to apply certain solutions.
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CIA: Security attributes confidentiality, integrity, and availability that need to be protected. Many 
attacks target one or multiple of these attributes.

Industrial IoT: Inspired by initiatives such as Industry 4.0 or Smart Manufacturing, IoT concepts 
are applied to industrial machinery. These machines are connected to the Internet, thus making them 
accessible from everywhere.

Intrusion Detection System: Used to monitor networks or devices to detect ongoing attacks. In 
combination with other measures, also successfully defeated attacks should be detected by IDSs.

Logical Attack: Logical attacks can be conducted using existing interfaces to a device, such as net-
work interfaces or a debug interface. This type of attack can be done remotely without physical access 
to the device.

Network Security: Due to IoT devices and even CPS being connected with other devices and even 
the Internet, security at the network layer needs to be provided. Security measures can be applied at 
different network layers such as the transport layer.

Physical Attack: Physical attacks require physical access to the device under attack. This type of 
attack can be invasive, semi-invasive or non-invasive, which denotes the severity of modifications an 
attacker performs with the attacked device.

Tamper Resistance: Devices that should not reveal any confidential information need to be tamper 
resistant. Tamper resistance is achieved mostly through hardware measures but can also be realized in 
software only.
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Abstract—Near Field Communication (NFC) is used for a wide
range of security-critical applications such as payment or access
control. Although such applications require secured data transfer,
the NFC protocol does not include transport layer security.
Other protocols that are built on top of NFC, such as the NFC
data exchange format (NDEF), only provide insufficient security
measures. Therefore, implemented security solutions are often
application specific and do not follow well-established standards.
To facilitate NFC usage in the Internet of Things (IoT) where
millions of devices need to be secured, an efficient and sufficiently
secured NFC-based protocol needs to be developed. In this paper,
we present the Quick and Secured NFC (QSNFC) protocol. Our
protocol is capable of performing more efficient key agreements
for recurring connections, and thus, can be used as an efficient
alternative to the Transport Layer Security (TLS) protocol.

Index Terms—Near Field Communication; Internet of Things;
Secure Communication; Transport Layer Security.

I. INTRODUCTION

The Internet of Things (IoT) is rapidly growing due to
devices being used in a wide range of domains such as smart
homes, transportation, healthcare, or industrial scenarios. To
assist the rapid growth in the number of application domains
as well as in the number of IoT devices, several enabling
technologies are required. Al-Fuqaha et al. [1] identify the
latest developments in Radio Frequency Identification (RFID),
smart sensor technology, and communication technologies
and protocols as such enabling technologies. Together with
RFID, the authors also mention Near Field Communication
(NFC) as a very promising technology for the IoT since many
smartphones nowadays are equipped with NFC-enabling tech-
nology. In the context of IoT related communication protocols,
security is an often neglected aspect as highlighted by the
increase in IoT related security breaches [2]. Such security
breaches can be fatal if IoT devices are used in domains
where malicious functionality could harm human lives such
as industrial settings [3], or in healthcare applications [4].
To provide secured communication for IoT devices, protocols
that are well known from the traditional Internet cannot be
used due to their performance requirements. Especially, if
considering NFC, protocols based on the Transmission Control
Protocol (TCP) entail a large communication overhead and
thus, are infeasible for most devices and scenarios.

Although it is often believed that the limited communication
range of NFC obviates the need for dedicated security mea-
sures [5], Haselsteiner and Breitfuß demonstrate that eaves-
dropping data is possible up to 10m [6]. If transferred data
is protected by weak security measures or even transferred
unprotected, attacks are threatening the confidentiality of crit-
ical information [7], [8]. Plósz et al. [9] compare the provided
security of various wireless communication technologies with
NFC. The authors state that although there are several security
related mechanisms defined in the NFC standard, many attacks
are possible despite these mechanisms. Chen et al. [10] and
Chatta et al. [11] list a large number of attacks that are
feasible for attackers to perform due to weak or insufficient
security in the NFC protocol. To mitigate such problems,
many approaches for secured NFC communication have been
proposed (see Section III Background and Related Work).
However, the drawback with these approaches is that no
standardized protocols are used. On the one hand, this fact
complicates the use of NFC in IoT applications since the
security of each application specific protocol needs to be
proven separately. On the other hand, applying protocols with
proven security features that where designed for the Internet
to NFC communication entails a large overhead.

Contributions. We make the following contributions in this
paper. We demonstrate Quick and Secured NFC (QSNFC), a
protocol that is suited for NFC-equipped IoT devices. The
provided security features are similar to TLS, while the
protocol will require fewer messages to be exchanged during
key agreement. Thus, the presented protocol will be suitable
for any NFC-based IoT scenario, while allowing easy security
proofs. To the best knowledge of the authors, no comparable
protocol for NFC has been presented yet.

Outline. The remainder of this paper is structured as fol-
lows. We define our system model and list corresponding as-
sumptions in Section II. In Section III, background information
on involved technologies as well as related work for secured
communication are given. Our QSNFC approach is presented
in Section IV and evaluated regarding its performance and
security in Section V. Section VI discusses example use-cases.
This paper is then concluded with Section VII where also
future work will be discussed.978-1-5386-1456-3/18/$31.00 © 2018 IEEE
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QSNFC Client 1

QSNFC Client 2

QSNFC Client n

QSNFC Server 1

QSNFC Server 2

QSNFC Server m

Fig. 1: System model in our proposed QSNFC approach: Over
time, clients are capable to connect to an arbitrary number
of servers. Servers can manage connections from an arbitrary
number of clients (not simultaneous).

II. SYSTEM MODEL AND ASSUMPTIONS

The system model we are considering when designing the
QSNFC protocol is shown in Fig. 1. As shown in that model,
the protocol is supposed to support an arbitrary number of
QSNFC clients as well as an arbitrary number of QSNFC
servers. Although the notion of server-client is not common
in NFC solutions, we use these terms here to be compatible to
other network related protocols such as TLS. Thus, we identify
the following four entities in our system model:

QSNFC client: The QSNFC client is the entity that tries to
establish a secured communication channel with the QSNFC
server. Since this entity is initiating the NFC communication,
it can be seen as the active component in NFC terms.

QSNFC Server: The QSNFC server is contacted by the
QSNFC client in order to establish a secured communication
channel. In NFC terms, the QSNFC server would be denoted
as the passive component.

Communication channel: The communication channel that
we assume in our system model is an NFC channel with the
potential presence of an undetected adversary.

Adversary: The adversary present in our system model
is assumed to be capable of eavesdropping and modifying
ongoing NFC data. There is no assumption regarding the range
in which these malicious activities are feasible.

III. BACKGROUND AND RELATED WORK

A. Key Agreement and Transport Layer Security (TLS)

If two or more parties need to agree on a shared secret in the
potential presence of an adversary, key agreement protocols are
used. Usually, key agreement is performed between two parties
over an unsecured channel such as the Internet. The final
shared secret that is used as a key is composed of influences
from all involved parties without revealing the key to any
potential adversary that is capable of eavesdropping the key
agreement process. One of the most widespread key agreement
protocols is the Diffie-Hellman (DH) protocol [12] that is
used for key agreement in the TLS protocol [13]. TLS uses
TCP as transport protocol and is used to secure connection
oriented applications such as web browsing, emails, or instant
messaging. Due to its connection oriented nature, it introduces
a lot of overhead which might not be suitable for resource
constraint devices. Therefore, the Datagram Transport Layer
Security (DTLS) protocol [14] was introduced, which uses the

User Datagram Protocol (UDP) as its transport protocol. Both
protocols have in common that at least one communication
round trip time (RTT) is required for the key agreement
process when establishing a secured channel.

B. Authenticated Encryption (AE)

AE is capable of providing data confidentiality, integrity,
and authenticity by combining symmetric cryptography with
Message Authentication Codes (MAC) in a secured way [15].
The widespread Advanced Encryption Standard (AES) pro-
vides modes of operation (e.g. AES-CCM, which is used in
TLS) that are capable of providing AE [16].

C. Zero Round Trip Time (0-RTT)

The Internet Engineering Task Force (IETF) is currently
working on the new TLS 1.3 standard that also includes a
0-RTT requirement [17]. The requirement specifies that the
key agreement for recurring connections should not require
a traditional handshake and thus, no round trip communi-
cation. Recurring connections are specified by the IETF as
connections where the two communication partners previously
already have established a secured channel, including the 1-
RTT handshake required by the key agreement. Protocols that
meet the 0-RTT requirement are, for example, OPTLS [18]
and Google’s Quick UDP Internet Connections (QUIC) pro-
tocol [19] that is designed for UDP connections.

D. Quick UDP Internet Connections (QUIC)

QUIC is a protocol presented and developed by Google
to enable the transfer of websites via Hypertext Transfer
Protocol (HTTP) over UDP instead of TCP [20]. The main
goal of QUIC is to improve the perceived performance of web
applications, compared to HTTP over TCP. This improvements
are achieved by relying on multiplexed UDP connections
and by using 0-RTT secured connections that are capable
of providing the same level of security as TLS [21]. To
make the protocol robust while using unreliable UDP packet
transfer, QUIC also includes mechanisms to deal with packet
loss, congestions, and error corrections. QUIC is integrated in
current versions of Chrome and Chromium and according to
Google deployed on thousands of their servers [22]. Also, an
IETF working group for QUIC was founded in 2016.

E. Secured Near Field Communication (NFC)

NFC is a contactless communication technology that is
based on several Radio-Frequency Identification (RFID) stan-
dards. Similar to High Frequency (HF) RFID, NFC operates
at a frequency of 13.56MHz and has a relatively short
communication range of typically up to 10 cm with a bit rates
of up to 848 kbps. NFC is used in a very diverse range of
fields, the most well known and widespread of them being
payment applications. The IoT is believed to be a new major
field for NFC applications [23] that will post new challenges
for NFC technology, such as standardized secured protocols.

Although security is not a major topic in RFID related
research, some promising approaches have been presented.
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TABLE I: Comparison with related work. We compare the
security attributes confidentiality, integrity, and authenticity. In
addition, we state if a standardized protocol is used and if the
used protocol is efficient in terms of communication overhead.

Confiden
tia

lity

Integ
rity

Authen
tic

ity

Stan
dard

ize
d

Efficie
nt

Secret sharing [24] 7/3 7 7/3 7 7
Secure UHF-RFID Tag [25] 3 7 3 7 7
Mobile payment [26]–[28] 3 3 3 7 7
Healthcare [29], [30] 3 3 3 7 7
Car immobilizer [31] 3 3 3 7 7
TLS over NFC [32] 3 3 3 3 7
QSNFC [this work] 3 3 3 3 3

For instance, Toyoda and Sasase [24] present a secret sharing
mechanism that aims at confidentialiy distributing keys. Li
et al. [25] present authentication and authorization mecha-
nisms between tag and reader such that a trust relationship
between these two devices can be established. However, due
to the more powerful communication capabilities of NFC,
more complex algorithms can be realized compared to RFID.
Especially in the payment sector where security is of ut-
most importance, many application specific security solutions
are presented [26]–[28]. Also in healthcare, where security
weaknesses could directly impact the health of users or even
threaten their lives, concepts for secured NFC communication
are presented [29], [30]. Of course, there are also many other
useful application scenarios for secured NFC communication,
such as, for example, an NFC-based car immobilizer [31].
All of these approaches have in common that they implement
application specific security mechanisms which is critical
regarding the use of NFC in IoT devices since no general
security assessment for the technology can be made. Urien and
Piramuthu [32] try to mitigate this problem by proposing to
use TLS over NFC. However, the TLS protocol was designed
for TCP-based connections, and thus, entails a large protocol
overhead. A comparison is given in Table I.

IV. QUICK AND SECURED NFC

A. Classification in Layer Model

Before specifying our proposed QSNFC protocol in detail,
we are going to classify it according to the TCP/IP protocol
architecture layer as shown in Fig. 2. In that figure, the
similarities to TLS and DTLS are highlighted. Similar to TLS
and DTLS our QSNFC protocol resides directly underneath
the actual application and provides capabilities for secured
data transfer to the upper layer. As a transport protocol,
the NFC Data Exchange Format (NDEF) that is based on
application protocol data unit (APDU) packets is used. NDEF
itself provides limited security measures, such as signature
records. However, these security measures are shown to be
vulnerable to certain attacks [33]. Therefore, we use NDEF as
a transport protocol for QSNFC only, without relying on any
of the available security features of NDEF.

IP

TCP/UDP

TLS/DTLS

APDU

NDEF

QSNFC

LAN, WiFi, ... NFC Link Layer

Network Layer

Transport Layer

ApplicationApplication Application Layer

Fig. 2: Protocol stacks for TLS/DTLS and QSNFC re-
spectively, layered according to the TCP/IP model. Both
TLS/DTLS and QSNFC reside underneath the application
layer and provide their functionality to higher layers, while
relying on lower-layer protocols to perform data transfer.

TLS Client TLS Server QSNFC Client QSNFC Server

Fig. 3: Round trips required for TLS and QNFC. The TLS
connection setup requires two round trips, while the QSNFC
connection setup requires one round trip the first time two
devices establish a connection and zero rount trips after that.

B. Connection Establishment

Since data transfers using QSNFC rely on secured data
channels, key agreement needs to be performed. To meet the
0-RTT requirement for recurring connections, the client needs
to cache information about the server if a successful initial
handshake is performed. The performance of subsequent
handshakes can then be improved by using this cached
information. Fig. 3 demonstrate the handshake process in
comparison to TLS. To identify cached information, QUIC
uses a set of URI, hostname, and port number. Since this
information is not available in NFC, unique identifiers will
be used to identify entities. However, the handshake process
itself that comprises of initial and subsequent handshake is
not modified.

Initial handshake. Since on the first connection attempt the
client has no cached information about the respective server,
an initial handshake needs to be performed. To initiate this
handshake, the client sends a so-called inchoate client hello
(CH) message to the server, which recognizes the inchoate
information and replies with a reject (RJ) message. This RJ
message contains the following information:

(i) The server’s long-term DH public value. This public key
is used for the generation of subsequent keys and thus,
needs to be cached by the client.
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QSNFC Connection Establishment

Client Server

inchoate CH: idc

(pkl, skl)←$KGen(1n)

t← Encskl(ids, time)
RJ: pkl, certs, Sig(pkl), ids, t

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

(pkc, skc)←$KGen(1n)

ski ← (skc, pkl)
complete CH: idc, pkc,Encski(data), t

ski ← (skl, pkc)

(pks, sks)←$KGen(1n)
SH: ids, pks,Encski(data)

sk← (skc, pks) sk← (sks, pkc)

Fig. 4: Connection establishment in QSNFC. All message types are inherited from QUIC [22]; only the content of these
messages is adapted to be better suited for NFC. The messages above the dotted line represent the initial handshake. The
messages underneath the dotted line represent the subsequent handshake only. The parameters are: the client’s and server’s id
(idc|s), the long-term DH public and secret value (pkl, skl), the server’s and client’s ephemeral DH public and secret value
(pks|c, sks|c), the server’s certificate (certs), the initial key (ski) and the final shared key (sk).

(ii) A certificate chain that authenticates the server and that
needs to be verified during the initial handshake.

(iii) A signature of the long-term DH public value that is
signed using the private key from the provided certificate
chain’s leaf certificate.

(iv) A source address token that contains the server’s unique
ID and a nonce from the server. This information is pro-
tected using AE. The client needs to send this token back
to the server in subsequent handshakes to demonstrate
ownership of the server’s identity.

After the client has received this information, it can
authenticate the server’s long-term DH public value using
the provided certificate chain and signature. In addition, the
certificate chain is validated using a higher-ranking certificate.
After that, the client sends a complete CH that contains the
client’s ephemeral DH public value as well as an optional
payload that can already be encrypted using a key generated
from the server’s long-term DH public value and the client’s
ephemeral DH public value.

Subsequent handshake. Since the client already is in
possession of the server’s long-term DH public value, it can
calculate a shared key using its own ephemeral DH public
value. The client can then send a complete CH, without first
sending a inchoate CH message as is done in the initial
handshake. Thus, the first RTT from the initial handshake is
not required and encrypted data can be sent to a known server
instantly.

If the handshake is successful, a server hello (SH) message
is sent by the server as response to the complete CH. The SH
is encrypted using a key generated from the server’s long-term
public DH public value and the client’s ephemeral DH public

QSNFC Message
(NDEF Text Type)

Unsecured 
Payload

Secured
Payload

Fig. 5: Basic structure of QSNFC messages. A text record type
NDEF message comprises unsecured and secured payload.

value. The SH message also contains the server’s ephemeral
DH public value. The complete connection establishment is
shown in Fig. 4. After both involved entities are in possession
of each others’ ephemeral DH public value, a forward-secure
key can be calculated for the connection. Thus, after the SH
message is sent and received, both communicating entities
switch to encrypting packets with the forward-secure keys.

C. Connection Tear Down

Although there is no connection concept in NFC, we
previously discussed connection establishment. During this
connection establishment, keys between server and client
are exchanged and stored at the communication partners. In
addition, also information regarding the other communication
partner, such as a source address token need to be cached.
However, since there are no concepts such as out-of-order
packet reception or multiple streams that are known from TCP-
based connection, also no connection tear down is needed in
our QSNFC protocol. Methods regarding the replacement of
cached keys and information will be discussed in Section IV-E.
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D. Packet Structure

The basic packet structure of each QSNFC message is
shown in Fig. 5. As can be seen there, any QSNFC message
comprises unsecured as well as secured payload inside a text
record type NDEF message. Similar to TLS and DTLS that
use TCP and UDP as their transport protocols, we build
QSNFC on top of NDEF messages for the following two
reasons: (i) NDEF is a standardized data exchange format for
NFC. Similar to TLS over TCP and DTLS over UDP we can
utilize it as transport protocol without any modification to the
underlying protocol. (ii) The security aspect of data transfer
is cleanly separated from the data transfer aspect. That is,
limitations such as maximum APDU size do not need to be
considered in our proposed QSNFC protocol.

The handshake protocol shown in Fig. 4, comprises four
different message types: CH messages, RJ messages, SH
messages, and standard data messages (SD) that are shown
in Fig. 6. The specified field lengths are calculated for 128 bit
keys. All of these four message types contain three unsecured
message attributes that are common to all of them.
• Type: The message’s type with allowed options 0b00

CH, 0b01 RJ, 0b10 SH, and 0b11 SD.
• LenP: Specifies the length of unsecured payload con-

tained in this message. The length of this field is 2Byte.
• LenE: Specifies the length of secured payload contained

in this message. The length of this field is 2Byte.

CH messages can be either an inchoate CH message or a
complete CH message. The packet structure for both of these
two types is shown in Fig. 6a. If a client initiates the initial
handshake by sending an inchoate CH message, the Client ID
is set accordingly with each other attribute being empty.
• Client ID: A unique ID identifying the client. The Client

ID is contained in inchoate CH as well as in complete
CH messages. The size of this attribute is 8Byte.

• Public Key Client: The client’s ephemeral DH public
value according to the handshake protocol shown in
Fig. 4. This attribute is only set for complete CH mes-
sages and is 16Byte in size.

• Source Address Token: Only sent by the client for com-
plete CH messages. The value is obtained in the server’s
RJ message during initial handshake and stored at the
client, for instance, in an SE. This attribute’s size 16Byte.

• Encrypted Payload: In case of complete CH messages,
also an encrypted payload is contained (see Fig. 4). The
size of this field is determined by the LenE attribute.

RJ messages are sent as a response to inchoate CH messages.
The message contains information from the server that is
required to perform connection establishment and key agree-
ment. In contrast to other message types, no additional arbi-
trary payload can be included in RJ messages. The structure
of RJ messages is shown in Fig. 6b.
• Server ID: A unique ID identifying the server. The Server

ID is used by the client to match cached information to
the correct server. This attribute has a size of 8Byte.

Type
2 Bit

Client ID
8 Byte

LenP
2 Byte

Public Key Server
16 Byte

Source Address Token
16 Byte

LenE
2 Byte

Encrypted Payload
(LenE – 16) Byte

(a) CH message structure.

Type
2 Bit

LenP
2 Byte

Long Term Public Key
16 Byte

LenE
2 Byte

Source Address Token
16 Byte

Signature
8 Byte

Certificate Chain
(LenP – 30) Byte

Server ID
8 Byte

Encrypted Payload
0 Byte

(b) RJ message structure.

Type
2 Bit

LenP
2 Byte

LenE
2 Byte

Encrypted Payload
LenE Byte

Server ID
8 Byte

Public Key Client
16 Byte

(c) SH message structure.

Type
2 Bit

LenP
2 Byte

LenE
2 Byte

Encrypted Payload
LenE Byte

S/C ID
8 Byte

(d) SD message structure.

Fig. 6: Message structures for CH, RJ, SH, and SD messages.
The specified field lengths are are calculated for 128 bit keys.

• Long Term Public Key: The long-term DH public value
that is used for key agreement and to calculate initial
keys. Using this key, the client is capable of sending
encrypted payload inside complete CH messages. The
Long Term Public Key has a length of 16Byte.

• Signature: A signature of the Long Term Public Key that
is used by the client to validate the integrity of that key.
The signature has a size of 8Byte.

• Certificate Chain: The certificate chain that is used by the
client to authenticate the server. Also, the private key of
the certificate chain’s leaf certificate is used to create the
previously mentioned Signature. The Certificate Chain
has a variable length, depending on the issued certificates.

• Source Address Token: This token is used by the client in
subsequent handshakes. It includes the server’s identifier
and a nonce, and is protected by AE using the server’s
private key. The attribute has a size of 16Byte.

• Encrypted Payload: In RJ messages, only the Source
Address Token is contained in the encrypted payload.

SH messages are sent by the server in response to a successful
connection establishment. The structure of this message type
is shown in Fig. 6c.

• Server ID: A unique ID identifying the server. The Server
ID is used by the client to match cached information to
the correct server. This attribute has a size of 8Byte.

• Public Key Server: The servers’s ephemeral DH pub-
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lic value according to the handshake protocol shown
in Fig. 4. After reception of this attribute, server and
client can calculate a forward-secure key to protect data
transferred with subsequent SD messages. The size of this
attribute is 16Byte.

• Encrypted Payload: SH messages can contain arbitrary
payload that needs to be transferred from the server to
the client. This information is protected by AE using the
previously established initial keys.

SD messages are exchanged between server and client after
successful handshakes. Thus, after a forward-secure key was
established between these two entities, SD messages with
minimal protocol overhead can be used to transfer arbitrary
payload in an efficient but secured way.
• S/C ID: The respective ID of either server or client is

included to identify the sender of an SD message. The
length of this attribute is 8Byte.

• Encrypted Payload: Payload of arbitrary length that
is protected by AE using the previously established
ephemeral forward-secure keys.

E. Cached Data Replacement

The 0-RTT capability of QSNFC entails that information
such as public keys and source address tokens need to be
cached at server and client side. Since many NFC-enabled IoT
devices are resource constraint in terms of memory capacity, a
mechanism for cached data replacement needs to be included
in our proposed QSNFC protocol. Depending on the use-case
scenario in which the protocol is used, different replacement
strategies might be better suited than others. Therefore, we
briefly discuss three cached data replacement methods that
are suitable for IoT devices due to their minimal overhead in
terms of complexity and resource requirements [34].
Least Frequently Used (LFU): In the LFU algorithm, an
access counter for each cached dataset is kept that counts the
number of usages of that respective cached dataset. After a
fixed number of connection establishments, all counters are
reset. If a dataset needs to be evicted from memory, the dataset
with the smallest access count is selected for replacement.

+ Only counters are needed which is a minimal overhead.
– The required regular reset of counters might lead to the

eviction of often used datasets.
Least Recently Used (LRU): The LRU algorithm is a special
variante of the LFU algorithm. Instead of counters, timestamps
are kept for each cached dataset. Whenever a dataset is
accessed, the timestamp is updated. If a datasets needs to be
evicted from memory, the dataset that was accessed the farthest
back in history is selected for replacement.

+ Frequently accessed datasets not falsely evicted.
– Resource constraint devices such as smart cards do not

provide the required timestamps.
First In First Out (FIFO): Cached datasets are kept in a
queue. Each new dataset is added at the front of the queue. If
a dataset needs to be evicted from memory, the last element
in the queue is selected for replacement.

+ Smallest overhead of all three methods.
– Dataset that gets cached first gets evicted first although

that element might be the most used one.

V. EVALUATION

A. Security Analysis

As shown in the packet structures (see Fig. 5), each
packet that is transmitted using our proposed QSNFC protocol
contains a section dedicated to secured payload. To protect
the confidentiality, integrity, and authenticity of this secured
payload, AE with either initial keys or ephemeral forward-
secure keys is used. Depending on which type of key is used,
two levels of secrecy can be provided: (i) Initial data that
is protected using initial keys is protected at a level similar
to TLS session resumption with session tickets. (ii) If the
forward-secure keys are used, even greater secrecy can be
provided since these keys are ephemeral. However, depending
on the application and use-case, probably only one message
round trip is needed. In this case, the initial keys only will
be used to protect the data, without ever using the forward-
secure keys. Any information that is transmitted unsecured in
QSNFC (e.g. server and client identifiers, or public keysis) is
considered non-critical. That means, an adversary would gain
no advantage by learning this information. To highlight the
provided security, we analyse the countermeasures provided
by QSNFC for each of the threats to NFC that were identified
by Haselsteiner and Breitfuß [6].
Eavesdropping: Since confidential information is transmitted
protected by AE at any step of QSNFC (during the handshake
and SD messages), an eavesdropper would only be able to
learn information that is considered public, such as server and
client identifiers, or public keys.
Data Corruption, Data Modification, Data Insertion: An
adversary would not be able to corrupt, modify, or insert data
in the secured payload section of QSNFC without such failures
being detected by the protocol since the secured payload is
protected by AE. However, denial-of-service (DoS) attacks
cannot be mitigated by QSNFC since an adversary can corrupt
transferred information at any time, and thus, cause data to be
invalid. Also, if an adversary is able to modify information
such as server or client identifiers, successful DoS is possible.
Denial-of-Service (DoS) attacks: DoS attacks cannot be
mitigated by QSNFC (and any other wireless or contactless
communication protocol since data corruption can only be
detected but not prevented.
Man-in-the-Middle (MITM) attacks: By relying on certifi-
cates for authentication, and on a DH based key agreement,
MITM attacks mitigated by QSNFC.
Physical attacks: Cryptographic operations that are required
for our proposed key agreement process can either be per-
formed in software, or in a dedicated hardware secure element,
such as SIM cards or security controllers. To provide a higher
level of security, tamper-resistant security controllers need to
be used, such that potential adversaries are not able to extract
confidential information using physical attacks [35].
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Fig. 7: Comparing three scenarios: initial and subsequent hand-
shake (HS), subsequent HS, and standard data (SD) messages.

B. Protocol Overhead

To analyze the protocol overhead entailed by
additional security mechanisms, we analyze three different
communication scenarios: (i) Server and client have never
complete a handshake, so an initial handshake followed by a
subsequent handshake is required. (ii) Server and client only
need to perform the subsequent handshake. (iii) Standard
data transfer using SD messages that can be exchanged
after a completed handshake. An overview of the resulting
overhead for all three scenarios is shown in Fig. 7. The
resulting overheads that can be seen there are 1182Byte
for initial+subsequent handshake, 72Byte for subsequent
handshake only, and 24Byte for an exchange of two SD
messages. The largest part of the overhead required by
the initial handshake results from the included certificate
chain. For this evaluation, we used a self-signed certificate
that was generated with the following two commands:
openssl ecparam -name secp521r1 -genkey
-out key.pem and openssl req -new -x509
-key key.pem -out cert.pem -days 365. The
generated certificate already has a size of roughly 1000Byte.
Using a chain of certificates would result in an even larger
overhead. By not requiring initial handshakes for recurring
connections, roughly 90 percent of overhead can be avoided,
compared to traditional protocols such as TLS that involve
key agreements. Thus, it can easily be seen why introducing
a secured protocol for NFC that is capable of fulfilling the
0-RTT requirement is crucial.

C. Necessary Trade-off

Since most IoT devices are resource constraint, the adoption
of a secured communication protocol also entails drawbacks
for these devices in terms of complexity, energy consump-
tion, cost, and memory requirements. However, since we see
a secured communication channel as a given requirement,
we only compare our presented approach to other protocols
that involve key agreement, specifically TLS. While QSNFC
significantly reduces the protocol overhead for recurring con-

nections, additional, non-volatile memory is required to store
cached information. While the additional memory required
by QSNFC might be unproblematic for most IoT devices,
very constraint devices might require additional memory to be
added. This additional requirement will likely cause a slight
increase in complexity, energy consumption, and subsequently
device costs compared to using TLS. This means, a trade-
off between communication efficiency and device complexity,
energy consumption and costs needs to be considered.

VI. EXAMPLE USE-CASES

Depending on the use-case scenario, the roles of server and
client might be assigned differently, since a client must be
able to validate the certificate chain provided by the server
(see Section IV-B). For validation, the client either needs to
be in possession of a higher-ranking certificate or have an
active Internet connection. Therefore, we list three use-cases
that we see as the most common scenarios for our QSNFC
protocol and briefly discuss the role assignment.
Card and Reader: The reader in this scenario acts as active
NFC device and provides the required energy to power the
smartcard through its NFC field. Therefore, in this scenario
the reader should be assigned the client role and initiate
the connection establishment. Also, a reader will have the
capability to validate the server’s (smartcard) certificate chain
over the Internet in most cases.
Smartphone and IoT Device: In this scenario, the smartphone
should initiate the QSNFC handshake and thus, act as a client.
Since all modern smartphones are equipped with ample storage
and Internet connections, the required validation of the server’s
certificate chain is also feasible in such a setting.
Machine-to-Machine (M2M): In M2M communication set-
tings such as Robot-to-Machine, the assignment of client and
server role cannot be determined in general. The roles should
be assigned accordingly, such that the validation of the server’s
certificate chain is feasible for the client.

VII. CONCLUSION AND FUTURE WORK

To foster the use of NFC-technology in IoT devices and
use-cases, a standardized and secured, yet efficient proto-
col is required. Currently, either application specific security
solutions, or protocols that entail too much overhead such
as TLS are used to secure NFC-based data transfers. The
protocol presented in this publication, QSNFC, is designed
with both standardized security mechanisms and efficiency in
mind. The protocol fulfils the 0-RTT requirement to increase
the performance of recurring connections between devices.
Data confidentiality, integrity, and authenticity for transferred
data is provided by relying on AE, while the imposed protocol
overhead is kept at a minimum. As a trade-off compared to
traditional protocols that involve key agreement such as TLS,
our proposed algorithm requires more local memory to store
cached information. As future work, we plan to investigate
protocol improvements that further reduce the protocols over-
head. Thus, making secured NFC data transfer even more
efficient and suitable for IoT devices.
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Abstract—The number of embedded systems and resource
constrained devices is steadily increasing due to trends such as
the Internet of Things (IoT) and the Industrial IoT. With that,
also the frequency and extent of cyber-attacks that target these
systems are rapidly increasing. Not only are most devices not
adequately secured against such attacks, but also use default
settings and authentication credentials. These problems are
especially critical if the devices are deployed in industrial contexts
where managing configurations and authentication credentials is
a complex and inconvenient process. Therefore, in this paper,
we present a device configuration approach that automatically
derives authentication credentials from device configurations. We
demonstrate that the additional performance required by our
approach is acceptable while the provided security is reasonable
when compared to traditional authentication approaches such as
passwords. The security benefits of our approach are highlighted
by an extensive security and threat analysis that demonstrates
that 9 out of 10 identified threats are mitigated by our approach.

Index Terms—Embedded Security; Device Configuration; Au-
tomated Credential Derivation; Authenticated Key Exchange.

I. INTRODUCTION

Internet of Things (IoT) devices are constantly exposed
to potential adversaries and threats due to them being con-
nected to the Internet continuously [1], [2]. Not only are
privately used IoT devices targeted by attacks [3], but also
IoT devices used in industrial contexts. Providing security for
such Industrial IoT (IIoT) devices is especially crucial since
security weaknesses might reveal confidential information,
harm industrial processes, or in extreme cases, might cause
physical damage and threaten human lives [4]. In addition
to these safety critical issues, also privacy concerns due to
industrial espionage caused by infeasible IoT device security
need to be considered [5]. Several studies have shown that
among the security weaknesses of IoT devices, using weak or
even default authentication credentials is one of the primary
reason for successful attacks [6], [7], [8]. Cam-Winget et
al. [9] point out that very often remote access channels
used for firmware and configuration updates are vulnerable
to such weaknesses. In order to mitigate these issues, using
sophisticated authentication mechanisms such as two-factor
authentication could be one possible solution. However, due
to most IoT devices being resource constrained, applying such
concepts will not be possible [10]. Thus, most systems still rely
on traditional authentication credentials such as username and

password combinations. In order to increase the security of IoT
devices still using such authentication credentials, passwords
must frequently be changed while complying with password
composition policies (i.e., requiring symbols and numbers in
passwords). However, enforcing such policies often leads to
even weaker passwords being chosen by users [11].

Therefore, in this paper, we present an automated creden-
tial derivation process used for secured configuration of IoT
devices. To alleviate users of the need to choose sophisticated
authentication credentials, our proposed approach will derive
these credentials from previously applied configuration up-
dates. As an example, let us consider a simple WiFi door sen-
sor that can be used for monitoring purposes. We assume the
only configuration parameters of such a sensor are its sampling
frequency (SINT), a username (USER), and the corresponding
password (PASSWORD). Fig. 1 shows an exemplary initial
configuration C0 in which SINT is set to an interval of 10
minutes and no PASSWORD for the default USERNAME root is
configured. In this example, a user might change the sampling
interval SINT but not the default PASSWORD, as highlighted
in our example. In contrast to that, if our proposed approach
is applied, updating SINT from configuration C ′0 to the value
in C ′1, will also cause the default PASSWORD to change.

To obviate the need for users to remember these automat-
ically generated authentication credentials, we demonstrate
two mechanisms that are used to manage the authentication
credentials for IoT devices. We also propose a hardware
architecture that is capable of providing tamper resistance to
protect confidential information. To demonstrate the provided
security level of our proposed approach, we will compare the
achievable authentication credential strength to a traditional
password-based approach.

Contributions. In this paper, we present an automated
authentication credential derivation process that improves the
security of IoT devices while not complicating their usage.
Authentication credentials are automatically derived whenever
a configuration update is performed. Thus, insecure default
passwords are changed as soon as the device is configured for
its first use. Configurations are managed by a central instance,
such that users do not need to remember their authentication
credentials. To the best knowledge of the authors, no such
contribution was previously made.
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C₀

ID : 0x12345
SINT : 10min
USER : root
PASSWORD :

C₁

ID : 0x12345
SINT : 5min
USER : root
PASSWORD :

C₀  

ID : 0x12345
SINT : 10min
USER : root
PASSWORD : 0x77a6...

C₁ 

ID : 0x12345
SINT : 5min
USER : root
PASSWORD : 0xad6e...

Fig. 1. Example configuration update changing the sampling interval SINT
only (C0 → C1) compared to using our proposed approach where the same
change would trigger the automated credential derivation (C′

0 → C′
1).

Outline. The remainder of this paper is organized as fol-
lows. In Section II we give background information on tech-
nologies used in our approach and discuss related work. We
then define our system model and discuss assumptions made
regarding this model in Section III. Our proposed automated
credential derivation process is then presented in Section IV
and evaluated in Section V. We then conclude this paper in
Section VI where also potential future work is discussed.

II. BACKGROUND AND RELATED WORK

In this section, we give background information on tech-
nologies involved in our proposed approach, as well as discuss
related work for IoT device configuration.

A. Key Agreement Protocols

Key agreement protocols are used to perform key agree-
ment between two or more communication partners over an
unsecured channel such as the Internet. Usually, during key
agreement, all involved partners can influence the key agree-
ment process. The final key is composed of influences from all
involved partners without revealing the key to any adversary
that is capable of eavesdropping communication over the
unsecured communication channel. One of the most widely
used key agreement protocols, Diffie-Hellman (DH) [12], is
used in the Transport Layer Security (TLS) protocol.

Encrypted key exchange (EKE) protocols belong to the
category of key agreement methods that use passwords to
authenticate the partners involved in the key agreement pro-
cess [13]. The password is used as shared knowledge between
involved partners and is incorporated into the key agreement
process such that only partners that are in possession of the
correct password can mutually agree on a key. The resulting
session key is considered to be appropriately secure even if the
shared knowledge is drawn from a small set of values. In the
Simple Password-Based Encrypted Key Exchange (SPAKE)
protocol [14] a modified DH algorithm that uses a shared
password for key derivation during key agreement is used.

B. Tamper Resistant Hardware

Tamper resistant hardware provides a secured execution
environment (SEE) as well as secured storage. Therefore, these
components can be used for the execution of critical code parts
such as cryptographic algorithms and for storing confidential
information such as key material. A device that is labeled as

TABLE I
COMPARING THE ATTRIBUTES CONFIGURATION MANAGEMENT

(MANAGED), SUFFICIENT SECURITY (SECURED), AND AUTOMATED
CREDENTIAL DERIVATION (CRED. DERIV.) WITH RELATED WORK.

Related work Managed Secured Cred. deriv.

Perera et al. [22] 3 7 7
Nastic et al. [23] 3 7 7

Perumal et al. [24] 3 7 7
Santoso and Vun [25] 3 3 7

Ulz et al. [26] 3 3 7
This work 3 3 3

tamper resistant [15] is capable of mitigating physical attacks
such as non-invasive and invasive side-channel attacks [16] by
applying appropriate countermeasures. The level of security
that is provided by a certain SE can be assessed based on
the common criteria (CC) information technology security
evaluation [17], such that SEs can be compared based on their
provided security level.

C. Authentication for IoT Devices

Jan et al. [18] state that authenticating devices before
communicating with these devices is critical, especially in the
IoT where a high number of potentially unsecured devices
are present. The authors, however, highlight that due to most
devices being resource constrained, no complex cryptographic
operations can be performed. For example, an approach that
performs mutual authenticated Diffie-Hellman key exchange
using public keys by Xu et al. [19] might be infeasible due to
the need to store many public keys. Roman et al. [20] state that
an infrastructure for mutual authentication for IoT devices will
be needed to account for such resource constrained devices.
The authors also discuss an important principle that is applied
in this paper: system security for constrained devices should
rely on what I have and what I know. Liu et al. [21] discuss
authentication protocols for the IoT and state that such a
protocol has several tasks, one of them being key switching.

D. Related Work Secured Device Configuration

Configuring devices in the IoT is an active topic in research
due to the various challenges presented by the large number
of resource constrained devices. One approach to handle the
large number of devices that need to be configured is to use
self-configuration mechanisms [27], [28]. If self-configuration
is not applicable, manual configuration processes, as well as
initial provisioning methods need to be secured and simplified
as stated by Truong et al. [29]. To support the configuration
process, Nastic et al. [23] suggested using a central config-
uration management solution. Perumal et al. [24] presented
an IoT device management framework that is suitable for
smart home scenarios. In this framework, IoT device can be
managed by a smartphone. However, configurations are stored
and transferred unprotected. Regarding the distribution of
configuration updates, using the Internet is the most common
approach [23], [22], and thus, security needs to be considered.
However, most solutions do not consider complete system
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Fig. 2. Proposed principle of using configuration updates for automated
credential derivation. Configuration updates are performed by different entities
during an IoT device’s entire lifecycle.

security (protocol, device, and overall system) but rather cover
specific security aspects. Santoso and Vun [25] presented a
secured configuration architecture for smart home appliances.
The approach relies on mutual authentication based on a pre-
shared secret. In their approach, a smartphone is used to
manage existing configurations. However, the authors did not
elaborate on how this shared secret is initially transferred
to the device. They also did not specify, if a shared secret
can be changed, for instance, if a device is resold. Ulz et
al. [26] demonstrated an approach based on Near Field Com-
munication (NFC) and dedicated hardware security elements.
This approach only allows configuration updates via NFC and
includes a secured communication protocol. However, the used
symmetric cryptography results in a key distribution problem
that was not covered by the authors. Still, since this approach is
very promising, we extend it by the automated authentication
credential derivation that is presented in this paper. A summary
of related work is shown in TABLE I.

III. SYSTEM MODEL AND ASSUMPTIONS

For our automated authentication credential derivation and
IoT device configuration approach, we assume a system model
that comprises the three entities shown in Fig. 2.

The IoT Device is the device for which configuration
updates secured by automatically generated authentication
credentials should be performed. On this device, the con-
figuration update process, as well as the configuration data,
need to be protected by appropriate security measures. Also,
the authentication credential derivation process needs to be
protected by appropriate security measures. We assume that
potential attackers will be able to gain physical access to
this device; therefore, appropriate countermeasures to protect
confidential information need to be taken.

The Device Manufacturer (DM) produces the IoT device.
Since in most cases devices are shipped pre-configured, the
DM is responsible for applying initial configurations that lead
to automatically generated initial authentication credentials as
well. We assume the DM trustworthy.

The Configuration Back-End (CBE) is used to manage
device configurations for an arbitrary number of IoT devices.

Any configuration change except the initial configuration is
initiated from this entity. The initial configuration is applied
by the DM, and thus, this information needs to be imported
into the CBE in our approach. We assume the CBE to be
adequately secured against any type of attack. That is, the
confidential information that is stored there is assumed to be
protected against security breaches.

As can be seen in the system model shown in Fig. 2, any
update process initiated from the CBE triggers a configuration
attestation process from the IoT device. We assume such an
attestation process that is capable of attesting the currently
applied configuration to a remote instance to be existent in
our system model, since the focus of this paper is on the auto-
mated credential derivation process. Configuration attestation
processes that are suitable for IoT devices have been presented
in literature [26], [30], [31].

IV. AUTOMATED CREDENTIAL DERIVATION

In this section, our proposed automated authentication cre-
dential derivation process for the secured configuration of
IoT devices is presented. We will discuss the basic process
and the session key generation. After that, our approach is
compared to traditional password-based authentication. We
then list mechanisms that are specific to private or industrial
use of IoT devices. Finally, we briefly discuss the hardware
architecture we propose for a secured IoT device configuration
process.

A. Basic Process

To automate the authentication credential derivation
process, applied configurations of IoT devices are used in
our approach. Any configuration update will thus trigger
the derivation of new authentication credentials. The basic
process is shown in Fig. 3. For this example we assume
two entities, Alice and Bob that want to perform a secured
configuration update. We assume that both Alice and Bob are
in possession of the same shared secret, the k-th iteration of
Bob’s configuration, Ck. Having this information, Alice and
Bob perform a session key generation based on Ck that yields
the session key SKk. Alice then encrypts the configuration
update that results in the k+1-th configuration Ck+1 with this
session key and sends it to Bob who is able to decrypt that
information using SKk. After verifying and either applying
or rejecting the configuration update, Bob informs Alice
about the configuration applied to again establish the same
level of shared knowledge. If Bob applies Ck+1, he and
Alice will be able to generate a session key based on this
information. If Ck+1 is rejected, Alice and Bob still will be
able to use Ck as basis for their session key generation process.

Advantages. Using this mechanism entails the following
two advantages for users, compared to traditional authentica-
tion mechanisms such as passwords:

1) Device security is increased since any configuration
change triggers the automated creation of new authen-
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Alice Bob

generate SKk(Ck)

key exchange data

ESKk
(Ck+1)

confirm reception

verify and
apply Ck+1

ok/nok
attest configuration

confirm reception

Fig. 3. Sequence diagram demonstrating the configuration update and
attestation process where Alice wants to send new configuration data to Bob.
Both communicating partners are in possession of knowledge regarding the
currently applied configuration and thus, the shared knowledge needed to
generate a session key SK.

tication credentials. It is basically impossible to operate
devices using default authentication credentials.

2) Users do not need to remember sophisticated passwords
since authentication credentials are automatically de-
rived from device configurations which are managed by
CBE. Thus, users basically use the CBE as a password
manager.

B. Session Key Generation

The session key generation shown in the sequence diagram
in Fig. 3 will be performed by using SPAKE2 [14] which is
an EKE protocol. This protocol uses a username and password
combination in the key derivation of the session key generation
process. The protocol is shown in Fig. 4. Since SPAKE2
relies on Elliptic-Curve Diffie-Hellman (ECDH) [32] the ECC
generator point G and a one-way function H(·) are defined
as public parameters between Alice and Bob. After that, the
respective user identities uA and uB as well as a shared secret
p are used in the key derivation process to generate a session
key SK. It is important to distinguish two types of secret
in this information flow: (i) the shared secret (p) that is used
for mutual authentication between involved parties and (ii) the
session key (SK) that is generated by the algorithm to encrypt
subsequent communication. A new shared secret p′ could then
be transferred using the encrypted channel.

Modifications: If we now apply the SPAKE2 algorithm to
our process previously defined in Fig. 3, only a minor adoption
to the algorithm needs to be made. For the session key SK
to be dependent on the currently applied configuration Ck, we
redefine the shared secret between Alice and Bob as

p := H(Ck).

By applying this definition, each session key generated
will be dependent on Ck. However, defining Ck as shared

Alice agree on public Bob
parameters G,H(·)

a ← rand(Fp)

A ← aG

M ← hAG

A∗ ← A + pM

b ← rand(Fp)

B ← bG

N ← hBG

B∗ ← B + pN

N ← hBG

KA ← a(B∗ + (pN)−1)

M ← hAG

KB ← b(A∗ + (pM)−1)

K ← KA
!
= KB

SK ← H(hA, hB , A
∗, B∗, p,K)

Fig. 4. SPAKE2 protocol [14] that is modified in our presented approach.
In this protocol, G is the ECC generator point, H(·) is a one-way function,
hA and hB are Alice’s and Bob’s hashed identities respectively, and p is a
shared secret between Alice and Bob.

secret in the EKE process also implies that Ck is used for
mutual authentication between Alice and Bob. Therefore,
configuration data needs to be treated as confidential
information as was assumed in our system model. The
advantage of this approach is that any change to a
configuration made will automatically trigger an authentication
derivation process based on the new configuration and thus,
will mitigate the problem of vulnerable IoT devices due to
relying on default username and password combinations.

C. Comparison to Password-Based Authentication

Assumptions. Since we are relying on the security provided
by the SPAKE2 algorithm, we refer to the corresponding secu-
rity proof by Abdalla and Pointcheval [14]. Further, we assume
that the device is using the hardware architecture proposed in
Section IV-E and thus, provides sufficient countermeasures to
mitigate physical or side-channel attacks.

To evaluate the achievable level of security provided by
our presented approach, we will discuss the strength of our
authentication credentials by applying the Password Quality
Indicator (PQI) presented by Ma et al. [33]. The authors
discuss why entropy alone cannot be used as a quality indicator
for passwords and define the PQI(D,L) where D is the
Levenshtein distance between two strings and L is the effective
password length. According to Ma et al. a credentials are
considered good if D ≥ 3 and L ≥ 14. Since in our
approach authentication credentials are automatically derived
from configurations, we need to apply these parameters to
configuration data.

Ma et al. [33] define D as the Levenshtein distance between
passwords and a dictionary of words. To be applicable for
our evaluation, we not only need to consider a dictionary
but a set of observable parameters. Such parameters could
include, for example, a WiFi name. Both D and L are then
applied to the values of configuration key-value pairs only.
Applied to the simple example shown in Fig. 1, we would use
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DM s CBE

Local CBE

IIoT
Devices

DM s CBE

IoT
Devices

Mobile CBE

Fig. 5. Context specific mechanisms for configuration management. A local
CBE is deployed to manage IIoT device configurations. Consumer IoT devices
are either managed by the manufacturer’s global CBE or by a mobile CBE.

a set of {wifi1, root} for authentication credential derivation.
Obviously, this results in D = 1 and L = 9 which is
considered insecure by our measure. In comparison, passwords
with a length of 9 characters and a Levenshtein distance of 1
can be considered quite common (e.g., password1). This shows
that in general, our proposed approach would not be more
secure than relying on user-defined passwords. To mitigate
this problem, a configuration update could be automatically
extended by random data that can be securely generated by a
true random number generator (TRNG) [34] provided by most
Secure Elements (SEs). In our approach, we suggest to extend
configurations that are created at the CBE with a so-called
nonce. The nonce is generated by the CBE and added as a
configuration parameter to the encrypted configuration. The
IoT device then is capable of extracting the transferred nonce
from applied configuration updates. By doing so, both D and
L can be increased to an arbitrary length. Similar approaches
have been shown to enhance the security of password-based
authentication methods [35].

D. Context Specific Mechanisms

Depending on the context in which an IoT device is oper-
ating, different mechanisms for device configuration manage-
ment and password reset are required. Therefore, we propose
different system architectures that are shown in Fig. 5. In
industrial scenarios where IIoT device configurations contain
confidential information that needs to be kept private, a local
CBE can be deployed in an internal network. As can be
seen in the left half of Fig. 5, such a local CBE needs to
import initial configurations from the respective DMs. After
that, the previously discussed device configuration and update
process is performed between managed IIoT devices and the
local CBE only. Since the local CBE can be viewed as
a single point of failure, appropriate measures to properly
secure information need to be taken. In personal settings it
is infeasible to deploy a local CBE. Therefore, we propose
two different system architectures that are shown in the
right half of Fig. 5. On the one hand, a DM’s CBE can

(I)IoT Device

Secure Element

Microcontroller

 Secured Execution Environment
 Protected Storage

 General Computing / Storage
 Network Interfaces

Fig. 6. Proposed hardware architecture for (I)IoT devices.

be used for device configuration management. In this case,
the configuration update and attestation process is performed
between these two entities. If similar to the industrial scenario
confidential configuration data needs to be kept private, we
propose the use of a mobile CBE, such as also present in
the system model presented by Ulz et al. [26]. Compared
to the other two system architectures, data loss might be
more probable when using such a mobile CBE. Therefore,
a configuration reset and thus, authentication credential reset
mechanism needs to be included in our presented approach as
well. A configuration reset will be required whenever a CBE’s
configuration database is inconsistent such that the currently
applied configuration on the managed device is not known
to the configuration database. Such inconsistencies could be
caused by loss of data on a mobile or local CBE. As a potential
measure, we propose to include a hard-reset method into IoT
devices that reset the currently applied configuration to the
initial configuration C0 which can be easily imported again
into any CBE. The download of initial configurations could be
achieved, for example, by downloading the information from
DM’s CBE or by applying QR codes to the respective devices
that contain the required information. This approach would
be similar to current approaches where default credentials are
printed on stickers that are attached to the devices.

E. Hardware Architecture

Configurations stored on devices may contain confidential
information such as key material or production-relevant infor-
mation in the case of industrially used devices. To protect this
confidential information, appropriate security measures need
to be taken in hardware as well. Since attackers might be
able to gain physical access, we propose to use the hardware
architecture shown in Fig. 6 that suggests including an SE
into IoT devices. In our proposed architecture, this SE is
responsible for performing security critical operations such as
the automated credential derivation presented in this paper. In
addition, confidential configuration data is stored in the SE due
to its tamper resistant nature. The micro-controller is used for
general purpose computing tasks, and thus, a dual-execution
principle is applied [36]. In addition, the device’s required
network interfaces are provided by the micro-controller.

– 181 –



Paper I - IEEE SIES 2018

Fig. 7. Research IoT device prototype used for performance evaluation.
The upper hexagon shaped board contains the XMC4500 microcontroller, the
SLE78 SE is embedded in the lower hexagon shaped board.

V. EVALUATION

The evaluation of our presented credential derivation pro-
cess is twofold. First, we discuss the overhead compared
to traditional authenticated key exchange algorithms in a
performance analysis. Second, we also analyse the security
properties of our presented approach in a threat analysis.

A. Performance Analysis

To evaluate our proposed approach for automated authen-
tication credential derivation, we use a research prototype
according to the hardware architecture shown in Fig. 6. The
prototype comprises an Infineon XMC4500 microcontroller
and an Infineon SLE78 SE. The protoype is shown in Fig. 7.
Since in our proposed architecture all security relevant op-
erations are executed on the SE, the complete EKE process
is implemented on this controller. To highlight the extent
of runtime overhead resulting from the modified SPAKE2
algorithm, we conducted a performance analysis. As shown by
Pieber et al. [37], running SPAKE2 on resource constrained
hardware such as Infineon’s SLE78 results in a larger run-
time when compared to traditional ECDH. Depending on the
configuration size, our approach requires extended hashing
operations compared to the standard SPAKE2 implementation.
As a baseline, we consider SPAKE2 with block sizes of 16
Bytes each for username and password, resulting in the hash
function being executed on 32 Bytes of data. Fig. 8 shows the
resulting overhead when hashing configurations of different
sizes instead of a single password. As can be seen there,
a configuration of 512 Bytes would result in an increase
of runtime of roughly 10% compared to the basic SPAKE2
implementation. However, in their paper, Pieber et al. [37]
show that pre-computing the required hash values can reduce
the runtime of a SPAKE2 implementation to values similar
to traditional ECDH. Of course, pre-computing these values
based on applied configurations is also a possibility for our
proposed approach. Thus, mitigating the additionally required
runtime during session key generation.
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Fig. 8. Relative runtime increase due to applying hash function to con-
figurations of different sizes. As a baseline we use a standard SPAKE2
implementation that requires a 32 Bytes hash operation for the password.

B. Threat Analysis

To demonstrate the robustness of our presented approach
against various types of attacks, we conduct a threat
analysis [38]. In this analysis, we identify the involved
Entities (E) and Assets (A) that need to be protected by
our approach. We then list potential Threats (T), and
Countermeasures (C) that are provided by our approach to
mitigate these threats. If a threat is not entirely mitigated by
our approach, the residual Risks (R) are also listed. In addition,
we categorize all threats according to the STRIDE threat
model [39]. Threats are categorized by their potential impact,
according to the following criteria: Spoofing, Tampering,
Repudiation, Information disclosure, Denial of service, and
Elevation of privilege. Although we do not claim that our
presented threat analysis is exhaustive, we do think that it
adequately highlights the security of our proposed automated
authentication credential derivation process.

Entities. The following entities are identified in our automated
authentication derivation process. If necessary, we list assump-
tions regarding the respective entity to narrow the scope of this
threat analysis.

(E1) The IoT or IIoT device that is being configured.
(E2) The DM’s CBE. Since the security aspects of a CBE

are out of scope for this paper, we assume that the DM’s
CBE is sufficiently secured against attacks such that no
loss of confidential data will occur there.

(E3) The device user’s local or mobile CBE. We also assume
that the users’s CBE is sufficiently secured against attacks
such that no confidential data will be lost by attacks
targeting the user’s CBE.

(E4) A potential adversary. We do not make any assumption
about the extend of attacks an adversary is able to
perform. That is, we assume the adversary is able to
perform remote attacks as well as physical attacks.
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Assets. We identify the following assets that need to be
protected by our proposed approach.

(A1) The IoT device itself must be protected from malicious
actions that might be enabled by security weaknesses.

(A2) The configuration data that is transferred must be
protected since it might contain confidential information
such as keys or production relevant information for IIoT
devices.

Threats. After identifying involved entities and assets that
need to be protected, we are going to list identified threats,
categorize them based on the STRIDE threat model, and list
corresponding countermeasures or residual risks.

(T1) An adversary might be able to eavesdrop transferred
data, and thus, be able to learn confidential information.
STRIDE: I
(C1) Transferred configuration data is encrypted using
session keys. Therefore, data confidentiality is provided.

(T2) An adversary might act as man-in-the-middle (MITM)
and impersonate the CBE and the IoT device respectively.
STRIDE: S, T, R, I
(C2) When using the generated session key for au-
thenticated encryption, data confidentiality, integrity, and
authenticity can be provided.

(T3) The adversary can act as MITM during key agreement.
STRIDE: S, T, R, I, E
(C3) Since our approach is based on SPAKE2, MITM
attacks are mitigated by mutual authentication and the
DH principle.

(T4) An adversary easily can learn the initial configuration
C0, record all data transfers and thus, infer any subse-
quent authentication credential.
STRIDE: S, T, R, I, E
(C4) Since session keys that cannot be learned by the ad-
versary are used to protect transferred data, the adversary
cannot learn any subsequent authentication credential.

(T5) An adversary might learn a configuration Ck by ob-
serving the IoT device’s environment and behaviour. The
adversary then is able to infer the current session key.
STRIDE: S, T, R, I, E
(C5) Random information that is added to configuration
data and transferred to the IoT device mitigates this threat.

(T6) The IoT device’s user might not change the initial con-
figuration C0, and thus, no new authentication credential
is derived automatically.
STRIDE: S, T, E
(C6) A devices that is running on default configurations
will not be useful for the user. For instance, the device
must at least be connected to a network.

(T7) An adversary might perform attacks such as trying to
provoke buffer overflows to compromise the device and
reveal confidential information.
STRIDE: T, I
(C7) Since all cryptographic operations are performed at
the SE, and confidential information is also stored there,

such attacks are mitigated by the SE’s security measures.
(T8) An adversary might perform physical attacks targeting

the device to reveal confidential information.
STRIDE: T, I
(C8) In our approach, we are using tamper resistant
SE. The SE’s level of security is verified by the CC
certification process.

(T9) Intentional or unintentional backdoors might exist in
software or hardware (e.g. for debugging purposes) that
can be exploited by an adversary.
STRIDE: S, T, R, I, D, E
(C9) When including a CC certified SE, the trustwor-
thiness of all hardware and software components of the
device need to be verified in a certification process.

(T10) Denial-of-Service (DoS) attacks targeting the proposed
configuration interface with automated authentication cre-
dential derivation.
STRIDE: D
(C10) Since all cryptographic operations are performed
at the SE, normal operation of the IoT device is not
influenced by DoS that target the configuration interface.
(R10) However, a residual risk remains, since such DoS
attacks will of course drain the device’s battery by
triggering operations at the SE.

VI. CONCLUSIONS AND FUTURE WORK

In this paper, we present a novel automated authentication
credential derivation process that is suited for personal as
well as industrial used IoT devices. Instead of relying on
users to change authentication credentials, configuration up-
dates trigger the automated derivation of new authentication
credentials. To increase the usability of our approach, we do
not require users to remember these authentication credentials
any more. We propose a system architecture that, besides
managing configurations, also keeps track of a user’s derived
authentication credentials. To account for different usage sce-
nario of devices, we present and discuss different configuration
update and configuration-reset mechanisms, that we deem
suitable for industrial or personal scenarios respectively. Thus,
while increasing system security due to automatically triggered
authentication credential updates, usability compared to tradi-
tional approaches is also improved. The runtime evaluation of
our presented approach highlights that the resulting overhead
due to using a modified SPAKE2 algorithm is in an acceptable
range. The threat analysis then demonstrates, that 9 out of 10
threats can effectively be mitigated by our proposed approach.
The only residual risk, DoS attacks that drain the device’s
battery, cannot be mitigated by any other known approach
other than turning the device off.

As future work, we plan to investigate methods for initial
key and configuration provisioning at the DM’s facility that
is capable of protecting this confidential information from the
DM that is deploying the data on the device. This would allow
customers to pre-configure devices such that the authentication
credentials are only known to them to further improve the
usefulness of our approach.
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Abstract: Recent incidents have shown that sensor-equipped devices can be used by adversaries to perform malicious
activities, such as spying on end-users or for industrial espionage. In this paper, we present a novel attack
scenario that uses unsecured embedded sensors to build covert channels that can be used to bypass security
mechanisms and transfer information between isolated processes. We present covert channels that require
read- and write-access for sensor registers as well as a covert channel that transfers data by just triggering
sensor readings so that malicious behavior cannot be distinguished from normal sensor usage. For each pre-
sented covert channel we discuss the trade-off between data rate and the likelihood of being detected as well as
potential countermeasures. The fastest covert channel we implemented achieves a data rate of 4844 bit/s while
the stealthiest but slower covert channel cannot be distinguished from normal user behavior. To highlight the
significance of these security issues, we used popular platforms, such as Linux and Android, to evaluate the
presented covert channels. However, we do not make any assumption regarding the device’s platform, and
thus we believe that the presented exploits pose a significant security risk for any sensor-equipped device.

1 INTRODUCTION

Nowadays, sensors are embedded into nearly ev-
ery device to improve the device’s usefulness. Appli-
cations of such sensor-equipped devices are basically
unlimited and include, for example, environmental
monitoring (Srbinovska et al., 2015), healthcare ap-
plications (Nguyen et al., 2016), or industrial appli-
cations (Chi et al., 2014). Also, modern smartphones
contain multiple embedded sensors that are used to
improve user experience (Yu et al., 2015). Regardless
of the application domain, embedded sensors are seen
as an enabling technology for improved functional-
ity such as context awareness (Perera et al., 2014).
However, including embedded sensors into everyday
objects also entails several security risks. The most
addressed security issue regarding sensors is the pri-
vacy aspect of sensor data (Suo et al., 2012). Since
sensors observe the environment, they sense private
information, such as health care data (Yi et al., 2016)
or industrial processes (Sadeghi et al., 2015). A loss
of such private sensor data can lead to severe conse-
quences that can even result in severe financial losses
for a business if intellectual property or customer data
is lost in a security breach. Therefore, the privacy of
sensor data usually is considered to be of high impor-
tance. The second security issue related to sensors is

the trustworthiness of sensor data (Suo et al., 2012).
In so-called deception attacks (Kwon et al., 2013), an
adversary influences a system’s behavior by manip-
ulating sensor data. If the manipulated sensor data is
used to control a system or a process, the system could
be physically damaged or even threaten human lives
due to its malicious behavior (Derler et al., 2012).
Therefore, the trustworthiness of sensor data also is
considered to be of high importance. Finally, insuf-
ficient and too coarse permissions for accessing sen-
sors also present security issues in sensors that need
to be addressed (Shrivastava et al., 2017). However,
such issues most often are associated with privacy
concerns. In this paper, we are going to exploit in-
sufficiently secured sensor interfaces to transfer data
between two processes that are otherwise prevented
from exchanging data. A so-called covert channel
poses an immense security risk for systems since the
security implications range from leaking private in-
formation to compromising a system so that its in-
tended behavior is either manipulated or disabled. We
present three different covert channels that provide a
trade-off in covert channel data rate and the likeli-
hood of such a covert channel being detected by a user
or some software mechanism such as auditing sensor
usage (Mirzamohammadi et al., 2017). The data is
transferred by exploiting unprotected sensor registers

©2019 INSTICC. Reprinted, with permission.
From Proceedings of the TODO (TODO), February 2019.
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in all three presented approaches. We do not claim
that the list of covert channels presented in this pa-
per is exhaustive. Instead, with this paper we want to
bring attention to such security issues and highlight
the importance of mitigating them.

Contributions. In brief, we make the following
contributions in this paper. To the best of our knowl-
edge, we are the first to present these concepts. We
present three sensor-based covert channels that are en-
abled by unprotected registers in embedded sensors.
These covert channels differ in the achievable data
rate and the channel’s likelihood of being detected.
In addition, we present countermeasures to mitigate
the presented covert channels. We also demonstrate
a sensor-based covert channel that is based on ex-
ploiting a security weakness in Android’s sensor man-
agement system. To facilitate the evaluation of sen-
sors regarding exploitable vulnerabilities, we devel-
oped an easy-to-use modular and extendible frame-
work. We provide this framework on GitHub1.

Outline. The remainder of this paper is structured
as follows. In Section 2, we are going to briefly intro-
duce side-channels and covert channels, and catego-
rize these attacks. We list other state-of-the-art covert
channels in Section 3 and discuss their performance.
After that, we define the underlying system-model we
assume and discuss possible resulting threats in Sec-
tion 4. In Section 5, we demonstrate our register-
based covert channels and discuss potential counter-
measures. Section 6 discusses covert channels based
on exploiting Android’s sensor manager. The frame-
work we developed for evaluating sensor-based covert
channels is then presented in Section 7. In Section 8,
we evaluate the presented covert channels as well as
our framework’s functionality. This paper is then con-
cluded with Section 9.

2 COVERT CHANNELS

The term covert channel was coined by Lamp-
son (Lampson, 1973) in 1973 when he defined a
covert channel as a communication channel that is
not intended for information transfer at all. Usu-
ally, covert channels facilitate information transfer
between processes that are otherwise prohibited from
communicating with each other by the system. In or-
der to build a covert channel, the data that needs to
be transferred is embedded in events that are observ-
able by other processes such as a processes’s system
load (Lampson, 1973). Such observable events are
denoted as so-called side-channels.

1https://github.com/Grundplatte/SensIO

triggers observes

Sender
Side-

Channel
Receiver

Figure 1: Basic concept of a covert channel.

Side-Channels can be exploited for either active
or passive side-channel attacks. In active side-channel
attacks, an attacker actively tampers with the device,
thus requiring physical access (Genkin et al., 2016).
In passive side-channel attacks, the effects that are
caused by one process are observed by another pro-
cess. This can be used to reveal confidential informa-
tion such as cryptographic keys by monitoring pro-
cesses for unintentionally leaking side-channel infor-
mation, such as timing, power consumption, or elec-
tromagnetic emanation (Kim and Quisquater, 2007;
Longo et al., 2015; Luo et al., 2015). If a process in-
tentionally triggers such observable effects, data can
be transferred by the process and received by another
process, thus establishing a so-called covert channel.

Covert Channels in general comprise three enti-
ties, a sender - receiver pair, and the side-channel that
is used to build the respective covert channel. Figure 1
illustrates a basic covert channel and the data flow be-
tween these entities. (i) The sender is in possession
of data that it wants to transfer to the receiver. How-
ever, the system prevents the sender from using con-
ventional methods, such as shared memory or sock-
ets, to transfer its data. Therefore, the sender utilizes
side-channel information that can be manipulated by
the sender. The (ii) side-channel is used by the sender
and receiver as a stealthy transport medium for their
data transfer. (iii) The receiver needs to be capable
of observing the side-channel’s state changes. In ad-
dition, it must be synchronized with the sender so that
the start and end of the transferred data stream can be
correctly identified. In an ideal scenario, the receiver
is also able to distinguish between state changes of
the side-channel that are either caused by the sender
or by normal system operation.

Depending on a side-channel’s nature, different
data rates can be achieved. The achievable speed de-
pends on two factors. The first determining factor is
the component’s speed, i.e. sensor-based covert chan-
nels (Carrara and Adams, 2016) will be slower than
covert channels based on components that are opti-
mized for performance such as memory. The second
determining factor is the word size that can be trans-
ferred. A covert channel that is capable of transmit-
ting a multi-bit word per time unit will be faster than a
covert channel that only can transfer a 1-bit word per
time unit. A basic overview that compares the achiev-
able covert channel data rates for the most common
side-channels is shown in Figure 2. We also classified
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Figure 2: Classification of different covert channel types
according to the covert channel data rate.

the covert channels based on their scope. The faster
covert channels (memory- and cache-based) require
the sender and receiver to reside on the same physical
device so that both processes share the same memory
or cache. In contrast to that, sensor- and network-
based covert channels can transfer data between pro-
cesses that are running either on the same physical de-
vice or on different devices as long as they can access
the same shared medium.

3 RELATED WORK

In this section, we list related work for exploiting
different system components.

3.1 Cache-Based Covert Channels

Modern processor- and system-architectures entail
leaking side-channel information due to these sys-
tems being optimized for performance or energy ef-
ficiency (Wang and Lee, 2006). One of these side-
channels that leak information is cache memory.
Cache-based side-channels do not rely on weaknesses
in the operating system (OS) or a virtual machine
monitor, and thus, these attacks are considered to be
highly practical (Liu et al., 2015). The side-channel
that is exploited for cache-based covert channels is
the timing difference between a cache hit and a cache
miss. If a process is capable of intentionally caus-
ing cache hits or misses, data can be encoded in these
events. A cache miss can be provoked by flushing all
data from cache regions (Osvik et al., 2006; Yarom
and Falkner, 2014; Gruss et al., 2016). A very fast
and reliable cache-based covert channel that is capa-
ble of bit rates over 45 KByte/s with a bit error rate of
0% was presented in literature (Maurice et al., 2017).

3.2 Memory-Based Covert Channels

Since the memory in modern processors and systems
is shared between cores, memory-based side-channels
are used to reveal confidential information and to
build covert channels (Zhang et al., 2012). One com-
monly used method for inter-process communication,

shared memory, is usually prohibited by process iso-
lation, such as sandboxes or virtual machines. How-
ever, side-channel information can be used to bypass
these protection mechanisms, for example by exploit-
ing memory deduplication (Xiao et al., 2013). Other
side-channels exploit timing differences while lock-
ing the memory bus (Wu et al., 2011). A DRAM-
based side-channel was presented (Pessl et al., 2016)
for which the authors claimed raw bit rates of up to
2 Mbit/s while the bit error probability stayed below
1%. However, the authors did not state a bandwidth
for 0% bit errors.

3.3 Network-Based Covert Channels

Exploiting network protocols to build network-based
covert channels is one of the earliest known meth-
ods for stealthy data transfer. Network-based covert
channels are used to bypass network protection mech-
anisms such as firewalls or virtual local area networks
(VLANs) that otherwise are used to monitor or pre-
vent unwanted data transfer (Zander et al., 2007a). To
hide transferred data in network packets, various pro-
tocols at different network layers are exploited. On
the network layer, information can be hidden in proto-
col headers such as in the 802.11 protocol’s sequence
control field (Frikha et al., 2008), or in the Received
Signal Strength Indicator (RSSI) (Tuptuk and Hailes,
2015). On the Internet and Transport layer, many ap-
proaches use Transmission Control Protocol/Internet
Protocol (TCP/IP) header fields to hide data in net-
work packets (Ahsan and Kundur, 2002; Giffin et al.,
2002; Zander et al., 2007b). On the application layer,
various protocol fields can be used to hide informa-
tion (Ameri and Johnson, 2017). Also, covert chan-
nels that work independently of any network protocol
were presented (Cabuk et al., 2004; Ji et al., 2009).

3.4 Sensor-Based Covert Channels

Malicious use of sensors and their data traditionally
involves spying on events or humans to reveal confi-
dential information (Perrig et al., 2004). If an event
(e.g. entering a password) triggers physical effects
such as vibration that can be measured by a nearby
sensor, sensor-based side-channels can be used for
malicious activities (Aviv et al., 2012). Also other
sensors such as ambient light sensors can be used to
steal confidential information on a smartphone (Spre-
itzer, 2014). In the same manner, sensor-based covert
channels can be built by triggering physical effects
from one process and by measuring these effects
from another process. For instance, covert chan-
nels based on the temperature of devices were pre-
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Figure 3: Underlying covert channel system-model.

sented (Brouchier et al., 2009; Guri et al., 2015). In
contrast to approaches that require the modification of
physically observable values, covert channels might
also tamper with measured sensor values for stealthy
data transfer (Tuptuk and Hailes, 2015).

4 SYSTEM- & THREAT-MODEL

In this section, we present the system model that
is used to exploit embedded sensors and discuss the
threat-model and potential impact of covert channels.

4.1 System-Model

To exploit security weaknesses in sensors for build-
ing sensor-based covert channels, we consider the
system-model shown in Figure 3. This model is com-
prised of at least two potentially isolated processes
and a shared sensor. The isolation between processes
(e.g. sandboxes) prevents any direct data exchange
between these processes. However, in our system-
model both processes can access the same shared sen-
sor. We do not make any assumption regarding the
type of sensor that is present in this system.

4.2 Threat-Model

In our threat-model, we identify two scenarios that are
enabled by transferring data over a covert channel. An
isolated process might be able to send private data or
receive instructions via this covert channel.

1. We assume that an isolated process A holds confi-
dential information that an attacker wants to com-
municate to another process B. For instance, pro-
cess A might monitor a video stream to detected
movements in a security system. However, pro-
cess A is prohibited from sharing the video stream.
If process A is capable of transferring information
stealthily to process B using a covert channel, data
privacy is broken.

2. As second scenario, we assume that process A is
capable of controlling some physical process such

Covert Channel Data Rate

D
e
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ct
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it
y

Triggering
Sensor

Configuration
Bits

Unused
Registers

Figure 4: Trade-off between data rate and detectability of
our presented covert channels.

as a robot’s actuators. To prevent malicious con-
trol actions, process A is isolated from the net-
work. Instead, control actions are solely triggered
by sensor data. However, an attacker might be
able to send control commands to process A via
process B and a covert channel.

To successfully establish a sensor-based covert
channel between two processes, an attacker needs to
be capable of executing modified code in both in-
volved processes. We assume that an attacker is ca-
pable of running the required malicious code through
any state-of-the-art attack such as code injection (Poe-
plau et al., 2014).

5 SENSOR REGISTER EXPLOITS

In this section, we present three exploits of em-
bedded sensors that we use to build sensor-based
covert channels. All three exploits are based on di-
rect access to the sensor. That is, access to the sen-
sor is not limited by any mechanism such as managed
sensor access (Milette and Stroud, 2012). In all three
approaches, sensor registers are used to transfer infor-
mation between processes. The approaches differ in
the achievable covert channel data rate and the like-
lihood of detecting such a covert channel (detectabil-
ity). Also, the required effort for mitigating the differ-
ent covert channels differs. A comparison of all three
approaches regarding these three attributes is shown
in Figure 4, where green indicates a covert channel
easy to mitigate and red indicates a covert channel that
is hard to mitigate.

5.1 Unused Registers

Embedded sensors usually contain unused registers
that are either reserved or not required by the sensor’s
current mode of operation. Similar to network-based
covert channels, these registers can be exploited for
transferring data.

Reserved registers are registers that are nei-
ther used by the sensor to publish information (e.g.
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status flags), nor to store data such as configura-
tion parameters for the sensor. Sensors, such as
the HTS221 (STMicroelectronics, 2016) humidity and
temperature sensor or the LSM9DS1 (STMicroelec-
tronics, 2015) magnetometer, accelerometer, and gy-
roscope, contain many such reserved registers. The
reserved registers are listed in the respective data-
sheets. Although the data-sheets often state that these
registers must not be changed, they are often still
read- and writeable.

Unused registers are registers that might be used
in some sensor operation modes, but are unused
in other modes. For instance, many sensors such
as the LSM9DS1 sensor allow to set thresholds (e.g.
INT THS * registers) that are used to activate flags that
indicate if the threshold is exceeded. However, if the
threshold monitoring is disabled (in the ACT THS reg-
ister), the threshold registers are unused, and thus can
be used for data transfer in a covert channel. Since the
register that indicates which thresholds are monitored
is readable, a malicious process easily can determine
which threshold registers are unused.

5.1.1 Covert channel design

Unused registers facilitate a very simple covert chan-
nel design. Information can be written into a register
by one process, while the other process reads the reg-
ister and subsequently confirms reception of data by
modifying the same register. In our design, we use the
register’s MSB as a flag to signal successful reception
by the receiver. Therefore, not all bits of a register
can be used for data transfer. Such a covert channel
that is hiding information in registers is comparable
to network-based covert channels that use reserved
protocol fields or bits (Rezaei et al., 2013) for hiding
transferred data. Depending on the sensor’s register
size, the amount of data that can be transferred in one
transmission varies. Both HTS221 and LSM9DS1 con-
tain 8 bit registers which allows 7 bits of data to be
sent in each transmission.

5.1.2 Detectability

Reserved registers can be read and written to; how-
ever, writing values to these registers might have an
impact on a sensor’s correct functionality. Depend-
ing on the resulting impact of writing arbitrary values
to such a register, covert channels that are based on
writing and reading these registers could easily be de-
tected. In comparison to that, a covert channel that
is based on not required registers is harder to detect.
As long as the register’s value has no impact on the
sensor’s functionality, the covert channel does not in-
fluence the sensor’s behavior.

5.1.3 Countermeasures

To mitigate a covert channel based on unused reg-
isters, various countermeasures can be used. (i) If
write access to reserved registers is disabled, these
registers cannot be exploited to build covert channels.
(ii) Write access to unused registers must be disabled
whenever a register is not required in the sensor’s cur-
rent mode of operation. Whenever the register content
is required, write access for the respective register can
be granted again by the sensor. (iii) Write-only con-
figuration registers could mitigate such covert chan-
nels since the receiver would not be capable of read-
ing transmitted data anymore. However, write-only
registers also complicate updating the register’s value,
if the current value would be required first. For exam-
ple, updating only a certain part of the register such as
a threshold’s exponent without modifying the remain-
ing bits, requires bit-wise operations, such as AND, OR,
and XOR, for registers.

5.2 Configuration Bits

Embedded sensors are configured using so-called
configuration registers. In these registers, various dif-
ferent settings are often combined for efficiency rea-
sons. Similarly to exploiting whole registers that are
unused, certain bits of these configuration registers
can often also be exploited.

Reserved bits of configuration registers can be
used to transfer data in a covert channel. For example,
bits [7:6] in the HTS221 sensor’s AV CONF register are
reserved bits that do not influence any configuration
state. However, similar to unused registers, the data-
sheet states that these bits must not be changed to not
cause unwanted sensor behavior.

LSBs of configured values such as thresholds can
be used to hide transferred data in a covered channel.
This approach is similar to hiding data in the LSBs
of header fields in network-based covert-channels. If
chosen correctly, manipulating the LSBs of, e.g., a
threshold value only has a negligible impact on the
sensor’s expected functionality.

Unused configuration bits can be present in con-
figuration registers if the number of available options
is smaller than the maximum number that can be rep-
resented by the respective part of the configuration
register. For instance, in the OPT3001 (Instruments,
2014) ambient light sensor’s configuration register,
2 bits are reserved for a configuration parameter that
has three available options. As shown in Table 1, if
the MSB (Mode[1]) is set to ’1’, the LSB (Mode[0])
can be used to transfer data in a covert channel.
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Table 1: OPT3001 ambient light sensor modes of operation.

Mode Mode[1] Mode[0]

shutdown 0 0
single-shot 0 1
continuous 1 0
continuous 1 1

5.2.1 Covert channel design

A covert channel that is based on exploiting config-
uration bits can be based on the same principles as a
covert channel that exploits unused registers. In a first
step, the targeted configuration bits need to be deter-
mined. After that, these bits are used to transfer data
in a covert channel by encoding data in these avail-
able bits. The recipient of data reads the respective
bits and confirms if data is successfully read. Simi-
larly to exploiting unused registers, one bit is required
that is used as status flag for confirming that the re-
ceiver successfully read the transferred data. There-
fore, such a covert channel requires at least two avail-
able bits. If only one bit is available, both sender
and receiver must be synchronized by other measures
such as a clock which slows down the covert chan-
nel. Compared to a covert channel that is able to ex-
ploit a whole unused register, a covert channel that is
only able to utilize some bits of a register will provide
lower covert channel data rates.

5.2.2 Detectability

Depending on the configuration bits that are exploited
to build the covert channel, the detectability also
varies. If reserved bits are used, correct sensor func-
tionality might be influenced, and this may lead to
easy detection of the covert channel. If bits that only
have a minimal or no impact on the sensor’s function-
ality are manipulated, the covert channel is harder to
detect. However, toggling configuration parameters
might cause sensors to restart their current measure-
ment. Therefore, data transfer must be timed in order
to minimize such detectable effects.

5.2.3 Countermeasures

To mitigate covert channels that are based on ex-
ploiting configuration bits, the following countermea-
sures can be implemented on a sensor. (i) Disabling
write access to reserved bits mitigates misuse of these
bits by covert channels. (ii) Write-only configura-
tion registers mitigate covert channels that are based
on exploiting configuration bits since the recipient of
data is unable to read the register. However, simi-
lar to countermeasures for unused registers (Subsec-

tion 5.1.3), bit-wise operations, such as AND, OR, and
XOR, will be required for registers.

5.3 Triggering Sensors

Both register exploit methods (unused registers and
configuration bits) require read- and write-access to
the same register. However, as briefly discussed in
the respective countermeasure subsections, counter-
measures to mitigate these exploits can easily be im-
plemented in software or hardware. Nevertheless, ex-
ploiting embedded sensors via registers is still pos-
sible even if these countermeasures are implemented
on a sensor. If there are read-only registers at a sensor
that can be updated by certain events, and these events
can be triggered by one process, a covert channel ac-
cording to the definition shown in Figure 1 can still
be built. For example, on most sensors status flags in
registers are used to indicate a finished sensing pro-
cess. If the sensor is not operated in a continuous
sensing mode but in a single-shot mode, one process
is capable of updating these status flags by triggering
sensor readings. The status flags can then be used to
encode information in various ways. For example, in-
formation can be encoded in timing differences, or, if
multiple status bits exist, directly in these status bits.

Timing differences between sensor readings can
be used to encode information. For example, a binary
’1’ could be transferred by requesting sensor read-
ings with a time interval between readings of 100 ms
(10 Hz). A binary ’0’ would then be transferred by
using a different timing interval, for example, 50 ms
(20 Hz). The receiver then needs to observe the status
bit to get timing intervals and to infer the correspond-
ing data. However, the drawback of such an approach
is that sender and receiver need to be synchronized
to guarantee precise timings. In addition, the receiver
would need to poll status bits with a high frequency.

Directly encoding information in status bits is
possible if there is more than one status bit that can
be triggered by the sender. For example, sensors that
are capable of sensing more than one physical prop-
erty also contain multiple status flags to indicate a fin-
ished sensing process for each property. For example,
the HTS221 (STMicroelectronics, 2016) temperature
and humidity sensor includes status registers for both
physical properties. Using both registers, a 2-bit word
can be encoded by triggering either no, one of both,
or both sensors simultaneously. However, similarly
to measuring timing differences, this approach would
require precise synchronization between sender and
receiver to distinguish a transferred ’00’ from the sta-
tus flags default value that often is also set to ’00’.
To discard this requirement, data can be encoded by
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Table 2: Status flags for two sensors and the available states
for a 2-bit word and a 1-bit word respectively.

S1 S2 2-bit word 1-bit word

0 0 ’00’ and no data no data
0 1 ’01’ ’0’
1 0 ’10’ ’1’
1 1 ’11’ and sensor ready sensor ready

triggering one sensor to transmit a binary ’1’, and by
triggering the other sensor to transmit a binary ’0’.
Both mentioned approaches are compared in Table 2.

5.3.1 Covert channel design

Since covert channels based on encoding information
in status bits do not require synchronization between
processes, we consider this type of covert channel
more practical. Therefore, we are going to discuss
a covert channel based on transmitting a 1-bit word
using the status flags of two distinct sensors. In its
default setting, the sensor’s status flag is set to ’0’ and
indicates that no sensor reading is ready at the mo-
ment. If a sensor reading is available, the respective
status flag is set to ’1’. If the sensor’s measured value
is read, the status flag is reset to ’0’ again. In our
covert channel, the sender triggers both sensors. Af-
ter the sensing process is completed, the sender reads
one of the two sensor measurements to reset the re-
spective status flag. Information is encoded as a 1-bit
word according to Table 2. The receiver can observe
the same status flags, and thus receive the transmitted
information. The reception of data is confirmed by
the receiver by resetting both status flags. Using the
encoding shown in Table 2 in an example, the binary
sequence ’11010’ would be encoded by resetting the
status flags from the sensors S1, S1, S2, S1, S2 re-
spectively. Since the sensing process requires a cer-
tain amount of time, this covert channel’s data rate is
lower compared to covert channels that directly write
information into a sensor’s registers.

5.3.2 Detectability

Compared to directly writing into a sensor’s registers,
a covert channel that is based on triggering sensors is
harder to detect. Since only the sender triggers sen-
sor readings, while the receiver is only observing sta-
tus flags, no malicious activity might be noticed when
monitoring sensor activities (Mirzamohammadi et al.,
2017). The behavior that can be observed in such
a case are two processes where one process is using
sensors frequently, while the other process is check-
ing the availability of these sensors. If the roles of
sender and receiver are switched (Section 7.2), the

covert channel’s behavior is comparable to two pro-
cesses that alternately access the same sensors.

5.3.3 Countermeasures

To mitigate covert channels that are based on trigger-
ing sensors, more complex countermeasures are re-
quired in comparison to covert channels that exploit
read- and write-able registers. In principle, any link
between the event that can be triggered by a process
and observable information needs to be removed. To
mitigate all three discussed covert channels, a sensor
management instance that encapsulates sensor access
is required. As an example, the Android Sensor Man-
ager (Milette and Stroud, 2012) only allows processes
to register for sensor data they are interested in. The
manager then determines the superset of all requested
sensor configurations. Whenever a new sensor read-
ing is available, all registered processes are notified
via an interrupt. Therefore, such a managed approach
would remove any status flag that indicates available
sensor readings or exceeded thresholds, and thus mit-
igates covert channels based on such information.

6 MANAGED SENSOR EXPLOITS

Contrary to the previous sensor-based covert
channel designs, Android uses a managed sensor ap-
proach (Milette and Stroud, 2012) where processes
need to subscribe to a sensor manager to get sen-
sor readings based on events. Thus, access to sensor
registers as well as manually triggering sensor read-
ings is not possible in Android. However, in this sec-
tion we demonstrate two different approaches how we
exploit the Android sensor manager to build sensor-
based covert channels based on triggering sensors.

When registering a listener for any sensor that is
supported by the respective hardware platform us-
ing Android’s built in sensor manager, the method
SensorManager.registerListener() is used that
takes the type of sensor as well as a sampling period
as parameters. As stated in Android’s API documen-
tation, this sampling period is only a suggested de-
lay that might be altered by other applications. Typi-
cally, the sampling period can be set based on values
predefined in Android (normal, UI, game, fastest) or
specified arbitrarily. Thus, if one process registers a
listener with a given sampling period which is then
influenced by another process, data can be transferred
between these processes using this covert channel.
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Figure 5: Different sensing intervals in Android.

6.1 Covert Channel Design

Based on the observation that a process may influence
the sampling period of other processes, we present
two methods for covert channels in Android.

Frequency encoded. Android’s sensor manager
provides sensor measurements to all registered pro-
cesses with the lowest sampling period specified by
all registered processes. If the receiver registers a lis-
tener with a sampling period that is even lower than
the current lowest sampling frequency, it signals to the
sender that it now is ready to receive data. That is, by
specifying the sensors’s lowest sampling period, all
processes now receive sensor measurements with the
sampling period specified by the receiver. The sender
now can encode information by registering with ei-
ther the same sampling period as the receiver or with
an ever lower sampling period, as shown in Figure 5.
Thus, information is encoded by different sampling
periods or sensing frequencies.

Outlier intervals. Whenever a new listener is reg-
istered using Android’s sensor manager, one sensor
measurement is provided with a time interval to the
previous measurement that can clearly be detected as
outlier. Depending on the hardware, we observed ei-
ther outliers of too low (Figure 5) or too high (Fig-
ure 6) sampling periods. That is, even if a process
already is registered for a sensor using the lowest pos-
sible sampling period supported by the hardware, in-
formation can still be transferred by registering new
listeners to provoke such outliers. As shown in Fig-
ure 6, the interval between outliers can then be used
to encode information that is transferred over the re-
spective covert channel.

6.2 Detectability

Covert channels based on registering sensor listen-
ers cannot easily be detected since the switching of
sampling periods due to other processes registering
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Figure 6: Registering sensor listeners in Android.

and un-registering listeners is expected behavior. A
process that is minimized is expected to un-register
its listener, while re-registering them if the process
is activated again. However, if sensor access is au-
dited (Han et al., 2017), malicious access patterns
could be detected if the auditing tool is trained accord-
ingly. In contrast, popular code analysis tools such as
FlowDroid (Arzt et al., 2014) are currently not capa-
ble of detecting our presented covert channels. How-
ever, also these tools can be appropriately trained such
that the presented covert channels can be found.

6.3 Countermeasures

To mitigate the presented covert channels, changes to
Android’s sensor manager need to be implemented. If
arbitrary sampling periods are banned and only pre-
defined sampling periods are used, the sampling peri-
ods need to be defined such that they are multiples of
each other. For example, if the predefined sampling
period fastest is defined as 10 ms, game could be de-
fined as 20 ms, UI as 80 ms, and normal as 160 ms.
By doing so, the sensor internally can provide sen-
sor measurements with the system’s lowest specified
sampling period, while each process receives sensor
measurements with its specified sampling period only.

7 TEST FRAMEWORK

To facilitate easier vulnerability testing of em-
bedded sensors, we present a modular covert chan-
nel framework that is structured into the following
four abstraction layers. Hardware specific aspects are
implemented in a hardware abstraction layer that is
comprised of the following three sub-layers: (i) The
lowest layer (access abstraction) implements access
to embedded sensors through various technologies,
such as I2C or SPI. (ii) The sensor abstraction layer
implements sensor specific aspects such as register
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Figure 7: Packet structures of REQ and RES packets.

mappings. (iii) All sensor-based exploits that are pre-
sented in Section 5 are implemented in the exploit
abstraction layer. (iv) Protocol specific functionality
(Subsections 7.1 – 7.3) is implemented in the covert
channel abstraction layer.

7.1 Error Detection and Correction

As other processes might also access sensors, a covert
channel needs to be considered a noisy channel. How-
ever, an error-free data transmission through a noisy
channel can be achieved if the data is sufficiently
encoded by appropriate coding schemes (Shannon,
1948). In our covert channel framework, we use Error
Correcting Codes (ECCs) as well as Error Detecting
Codes (EDCs) to reliably transfer our messages, as
will be discussed in Section 7.2.

7.2 Packet Structure and Flow

The packet structures of request (REQ) and response
(RES) packets in our approach are shown in Figure 7.

REQ packet. The only information contained in a
REQ packet is the Sequence Number (SQN) encoded
by a Hadamard ECC. In general, a Hadamard ECC
encodes a k bit message in a 2k bit codeword. Due to
the exponential relationship between payload size and
codeword size, we use a 2 bit SQN, resulting in a total
size of 4 bits. The Hadamard ECC is proven optimal
for k ≤ 7 (Bouyukliev and Jaffe, 2001). In case of
transmission errors, the ECC ensures that information
can be recovered and errors are detected as long as
less than half of the bits are flipped.

RES packet. All RES packets start with a type
field that specifies whether the message contains data
or a command. Commands that are supported by our
covert channel framework are shown in Table 3. Iden-
tical to REQ packets, RES packets also contain a 2 bit
SQN. Due to their length, we do not use ECCs for
RES packets. Instead, a Berger EDC (Berger, 1961)
is used to detect transmission errors that need to be
handled by the communication principle implemented
in our framework. A k bit Berger code is capable of
checking a maximum of n = 2k−1 bits information.
Thus, the resulting data/command and EDC lengths
can be derived from the packet’s total size (Table 4).

Table 3: Supported commands.

Code Description

0 Increment packet data size (Section 7.3)
1 Decrement packet data size (Section 7.3)
2 Stop data transmission
3 Reverse data direction

Table 4: Valid size options.

Data [bits] EDC [bits] Packet [bits]

5 3 11
13 4 20
29 5 37
61 6 70

To manage communication flow in our presented
covert channels, we employ a request/response mech-
anism. A successful request/response cycle is com-
prised of the reception of a REQ packet by the sender
and the reception of the RES packet by the receiver.
Similar to HTTP, the actual data that is transferred is
contained in the RES packet. Both, REQ and RES
packets contain a SQN that is used to manage commu-
nication flow. Matching REQ and RES packets can
be identified by their matching SQN. The receiver in-
creases the SQN after successfully receiving the cor-
responding RES packet, as shown in Figure 8. By re-
peatedly sending the same SQN, receiver and sender
can indicate that the expected packet was not success-
fully received. Retransmissions are caused in three
scenarios:

1. When establishing the covert channel, the sender
might not be ready to send the requested data and
no matching RES packet is sent to the receiver’s
initial REQ packet. The receiver continuously
transmits this initial packet until a covert channel
is established, thereby synchronizing the states of
receiver and sender.

2. A REQ packet can be lost due to a noisy data
channel. The receiver repeatedly sends its REQ
packet until a matching RES packet is received.

3. A RES packet can also be lost due to a noisy data
channel. The sender repeatedly sends its RES
packet until a REQ packet with an incremented
SQN is received.

The commands supported by our covert channel
framework (Table 3) also include two commands re-
lated to data flow. (i) To indicate the end of an on-
going data transfer, the sender sends a stop command
to the receiver. (ii) The roles of sender and receiver
can be reversed by sending the respective command.
Thus, our covert channel also supports bidirectional
communication.

– 193 –



Paper J - INSTICC ICISSP 2019

Receiver Sender
Sender

not ready

Request
lost

Response
lost

Figure 8: Data flow and handling of lost packets.

7.3 Adaptive Packet Length

Information is transferred by interacting with a sensor
in all presented sensor-based covert channels. Thus,
other processes that also interact with the same sen-
sor might introduce bit errors into our covert chan-
nel. These bit errors can be detected by our approach
due to RES packets containing an EDC. However, as
shown in Figure 9(a), this leads to frequent retrans-
missions of large chunks of information.

As already briefly discussed in Section 7.2, our
covert channel supports dynamic packet sizes that can
be used to minimize negative effects caused by bit er-
rors. In addition, our framework also supports finding
packet size templates for finding optimal sizes.

Finding Size Template. Although decreasing the
size of RES packets may lead to less retransmissions,
the overhead increases due to additional REQ pack-
ets (Figure 9(c)). Therefore, we propose analysing
the potential covert channel before starting any data
transmission. That is, the sender only observes the
channel for sensing activity and tries to calculate an
optimal packet size if other processes are accessing
the sensor frequently (Figure 9(b)).

Dynamic Packet Size. If an optimal packet size
cannot be determined, e.g., if another process is ac-
cessing a sensor infrequently, a covert channel might
be unable to transfer any data. Therefore, we intro-
duce a dynamic packet size approach. Whenever bit
errors are detected using the EDC, it is assumed that
another process is accessing the same sensor as the
current covert channel. As a consequence, the packet
size is reduced, which is indicated by sending the re-
spective command (Table 3). Reducing the packet
size results in a lower amount of retransmitted data
as shown in Figure 9(c). Packet sizes are increased
again if a certain amount of successfully transferred
RES packets is exceeded.

(1) RES: 1 RES: 1

(2) REQ: 1

(3) R R

(a) Static size.
(1) RES: 1 RES: 2 RES: 3

(2) REQ: 1 REQ: 2

(3) R R

(b) Size Template.
(1) RES: 1 RES: 1 RES: 2 RES: 3

(2) REQ: 1 REQ: 2 REQ: 2

(3) R R

(c) Dynamic Size.
Figure 9: Different transfer modes. (1) sender, (2) receiver,
and (3) another process reading the sensor (R).
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Figure 10: Evaluation of covert channel data rates.

8 EVALUATION

To evaluate the presented covert channels and the
functionality of our covert channel framework, we use
the following three hardware platforms and OSs:

1. CC2650 SensorTag; TI-RTOS 2.20

2. Raspberry Pi 3, Sense HAT; Raspbian Strech

3. OnePlus 5 & Android Emulator; Android 8.0

8.1 Covert Channel Data Rates

To evaluate data rates and to validate the classification
shown in Figure 4, we measured data rates on differ-
ent platforms. The data rates we achieved in our eval-
uation are shown in Figure 10. As can be seen there,
only the Raspberry Pi 3 with attached Sense HAT
allows all three covert channels to be implemented.
On the CC2650 SensorTag, only unused registers and
configuration bits can be exploited. Contrary to that,
the only side-channel that can be exploited in Android
is triggering sensors. Both covert channels imple-
mented on the CC2650 SensorTag running TI-RTOS
achieve higher data rates compared to our implemen-
tations on the Raspberry Pi 3 due to the determinis-
tic scheduling of TI-RTOS. Processes in TI-RTOS are
scheduled alternately, compared to the indeterministic

– 194 –



8 Publications

0 20 40 60 80 100
Payload ϕ [bit]

0

20

40

60

80

100

χ
[b

it
]/

Π
[b

it
/s

]

Total packet size χ(Γ, Σ, ϕ) [bit]

Maximum data rate Π(∆, Γ, Σ, ϕ) [bit/s]

Figure 11: Covert channel data rate according to (1).
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Figure 12: EDC and retransmissions disabled.

scheduling of Raspbian. Compared to that, the covert
channel based on triggering sensors does not offer a
very high data rate. However, the maximal achiev-
able covert channel data rate Π depends on the time
∆ required for a sensor reading. Π is then defined in
dependence of the payload size ϕ, and the total round
trip size χ(ϕ,Γ) that is comprised of all protocol fields
(Γ), EDC (dlog2(Γ+ϕ)e), and ECC (Σ).

Π(∆,Γ,Σ,ϕ) = ϕ/(χ(Γ,Σ,ϕ)∆) (1)
χ(Γ,Σ,ϕ) = Γ+Σ+ϕ+ dlog2(Γ+ϕ)e (2)

These two functions are evaluated and plotted
for a range of different payload sizes in Figure 11.
The covert channel data rate converges to a value of
24 bit/s on a Raspberry Pi 3 platform. Since we do
not consider any delay caused by the bus or program
execution in (1), we consider our achieved covert
channel data rate of 20 bit/s on that platform, close
to the theoretical maximum.

8.2 EDC Retransmission Functionality

To evaluate the implemented EDC and retransmission
functionality (Section 7.1), as well as the overhead
resulting from such retransmissions we simulated a
noisy covert channel. As evaluation setting, a covert
channel based on triggering sensors on a Raspberry
Pi Sense HAT was used. Noise on these registers
was introduced by running a process that accesses the
same sensor as our covert channel every 10 s. We then
transferred an image (4 kB) over this noisy channel.
Figure 12 shows the original image as well as the re-
ceived image that contains roughly 100 pixel errors if
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Figure 13: Evaluation of different packet sizes.

our EDC based retransmission of packets is disabled.
Enabling these features results in an error-free image
being transferred over our covert channel.

Overhead. Enabling EDC and retransmissions
in a setting without noise introduces an transmission
time overhead of roughly 6%. While the image with
disabled EDC and retransmissions is transferred in
2998 s, transferring the image with EDC and retrans-
missions requires 3169 s. If noise is introduced by a
process that is accessing the sensor every 10 s, trans-
fer time increases to 3989 s in this setting as the noise
requires 123 of 1062 packets to be retransmitted.

8.3 Static / Dynamic Packet Size

To evaluate the performance of different packet sizes
that are supported by our framework (Table 4), we test
these packet sizes with noise generated by different
noise profiles. We test profiles with no interfering user
actions as well as well as profiles where users access
the same sensor that our covert channel is using. The
evaluation results in Figure 13 highlight that there is
no packet size that is capable of providing the fastest
transfer time for each noise profile. However, if sen-
sor access by the user is cyclic, our template method
is able to provide best results for each noise profile.

If noise is introduced by a user that is access-
ing the sensor infrequently, or if no user was present
during our template phase, the dynamic switching
of packet sizes implemented in our covert channel
framework is capable of ensuring a reliable and fast
data transfer. Figure 14 evaluates such a scenario
where a user starts to access the same sensor that
our covert channel is using after the data transfer al-
ready started. In our evaluation, we compare two
static packet sizes of 11 bits and 37 bits as well as
our dynamic packet size mechanism that is configured
to switch between packet sizes of 11 bits, 20 bits and
37 bits. We can identify the following three phases
shown in Figure 14, where each data point represents
the successful submission of one data packet or an

– 195 –



Paper J - INSTICC ICISSP 2019

0 10 20 30 40 50 60 70 80
Time [s]

(1)

(2)

(3)

(4)

Si
gn

al
[-

]

(4) Static 37 bit
(3) Dynamic
(2) Static 11 bit
(1) User 1s

Figure 14: Evaluation of dynamic packet size.

interfering sensor access, respectively. (i) In the in-
terval from 0 s to 30 s no interfering sensor access oc-
curs. The dynamic packet size is set to 37 bits since
this ensures the fastest data transfer. Both static vari-
ants transfer packets without errors. (ii) After 30 s,
the user process starts to interfere, and thus packets
with a size of 37 bits cannot be transferred any more
due to the generated noise, as shown in Figure 9(a).
Smaller packets are successfully transferred with a
lower probability in this phase. Our dynamic packet
size approach is now sending command messages to
decrease the packet size. (iii) Starting at 58 s, the dy-
namic packet size approach can successfully transfer
packets again due to decreasing the packet size.

8.4 Comparison to State-of-the-Art

The currently fastest data rates were reported for
cache- and DRAM-based covert channels. The
Flush+Flush (Gruss et al., 2016) cache-based covert
channel is capable of data rates of up to 3.8 Mbit/s
while the fastest DRAM-based covert channel
achieves data rates of up to 2 Mbit/s. However, when
comparing these covert channel data rates, it has to
be considered that modern CPU caches and DRAMs
are capable of achieving bandwidths in the range of
20 Gbit/s to 100 Gbit/s (Molka et al., 2015). That
is, the presented covert channels use roughly 1% of
the technology’s possible bandwidth. Other mem-
ory based covert channels (Luo et al., 2015) pro-
vide a data rate of 747 bit/s and are slower than our
fastest covert channel. The fastest reported network-
based covert channel supports data rates of up to some
kbit/s (Zander et al., 2007b); however, it also has to
be considered for these covert channels that the net-
work technology would provide a bandwidth of at
least 100 Mbit/s. Other sensor-based covert channels
reported data rates of 345 bit/s, which matches our
second fastest covert channel. If considering the rel-
atively low bandwidth provided by the I2C bus that
is used in our evaluation, we claim that our presented

covert channel implementations provide highly com-
petitive data rates and bus utilization compared to the
state-of-the-art.

9 CONCLUSION

In this paper, we presented novel exploits that
target unsecured sensor interfaces. We use these
exploits to demonstrate three different sensor-based
covert channels that provide a trade-off between the
achievable covert channel data rate and the likeliness
of detecting the malicious behavior. Our fastest covert
channel provides data rates of up to 4844 bit/s, while
the slowest covert channel only provides a data rate of
20 bit/s but will not be distinguishable from normal
user behavior. Our presented Android covert chan-
nels are not detected by state-of-the-art code analysis
tools. We do not claim that the presented list of ex-
ploits is exhaustive, but rather believe that other issues
can and will be found in current embedded sensors.
To facilitate testing other platforms for security weak-
nesses, we provide our covert channel framework on
GitHub. All countermeasures suggested in this pa-
per can easily be implemented on embedded sensors.
Therefore, this paper highlights the importance of im-
plementing such countermeasures to mitigate sensor-
based covert channels and to prevent future sensor-
related security issues.
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Sadeghi, “Smart Keys for Cyber-Cars: Secure Smartphone-based NFC-enabled Car Immo-
bilizer,” in Proceedings of the third ACM Conference on Data and Application Security and
Privacy, pp. 233–242, ACM, 2013.

[172] T. Ulz, T. Pieber, C. Steger, R. Matischek, and H. Bock, “Towards Trustworthy Data in
Networked Control Systems: A Hardware-Based Approach,” in Emerging Technologies
and Factory Automation (ETFA), 22nd IEEE International Conference on, pp. 1–8, IEEE,
2017.

[173] A. Cervin, D. Henriksson, B. Lincoln, J. Eker, and K.-E. Arzén, “How Does Control Timing
Affect Performance? Analysis and Simulation of Timing using Jitterbug and TrueTime,”
IEEE control systems, vol. 23, no. 3, pp. 16–30, 2003.

[174] H. Li, Y. Luo, and Y. Chen, “A Fractional Order Proportional and Derivative (FOPD) Mo-

– 210 –



Bibliography

tion Controller: Tuning Rule and Experiments,” IEEE Transactions on Control Systems
Technology, vol. 18, no. 2, pp. 516–520, 2009.

[175] W. Zeng and M.-Y. Chow, “Optimal Tradeoff Between Performance and Security in Net-
worked Control Systems Based on Coevolutionary Algorithms,” IEEE Transactions on In-
dustrial Electronics, vol. 59, no. 7, pp. 3016–3025, 2011.

[176] K. Kogiso and T. Fujita, “Cyber-Security Enhancement of Networked Control Systems Us-
ing Homomorphic Encryption,” in 2015 54th IEEE Conference on Decision and Control
(CDC), pp. 6836–6843, IEEE, 2015.

[177] X. He, M.-O. Pun, and C.-C. J. Kuo, “Secure and Efficient Cryptosystem for Smart Grid
Using Homomorphic Encryption,” in 2012 IEEE PES Innovative Smart Grid Technologies
(ISGT), pp. 1–8, IEEE, 2012.

[178] Y. Monnet, M. Renaudin, and R. Leveugle, “Designing Resistant Circuits against Malicious
Faults Injection Using Asynchronous Logic,” IEEE Transactions on Computers, vol. 55,
no. 9, pp. 1104–1115, 2006.

[179] Y. Xiao, X. Zhang, Y. Zhang, and R. Teodorescu, “One Bit Flips, One Cloud Flops: Cross-
VM Row Hammer Attacks and Privilege Escalation,” in 25th {USENIX} Security Sympo-
sium ({USENIX} Security 16), pp. 19–35, 2016.

[180] D. Gligoroski, S. J. Knapskog, and S. Andova, “Cryptcoding-Encryption and Error-
Correction Coding in a Single Step.,” in Security and Management, pp. 145–151, Citeseer,
2006.

[181] H. Kaneko and E. Fujiwara, “Joint Source-Cryptographic-Channel Coding Based on Linear
Block Codes,” in International Symposium on Applied Algebra, Algebraic Algorithms, and
Error-Correcting Codes, pp. 158–167, Springer, 2007.

[182] Q. Chai and G. Gong, “Differential Cryptanalysis of Two Joint Encryption and Error Cor-
rection Schemes,” in 2011 IEEE Global Telecommunications Conference-GLOBECOM
2011, pp. 1–6, IEEE, 2011.

[183] C. Berrou and A. Glavieux, “Turbo Codes,” Encyclopedia of Telecommunications, 2003.

[184] C. Berrou, A. Glavieux, and P. Thitimajshima, “Near Shannon Limit Error-Correcting Cod-
ing and Decoding: Turbo-Codes (1),” in Communications, 1993. ICC’93 Geneva. Technical
Program, Conference Record, IEEE International Conference on, vol. 2, pp. 1064–1070,
IEEE, 1993.

[185] M. A. Jordan and R. A. Nichols, “The Effects of Channel Characteristics on Turbo Code
Performance,” in Military Communications Conference, 1996. MILCOM’96, Conference
Proceedings, IEEE, vol. 1, pp. 17–21, IEEE, 1996.

[186] T. Ulz, M. Feldbacher, T. Pieber, and C. Steger, “Sensing Danger: Exploiting Sensors to
Build Covert Channels,” in Information Systems Security and Privacy (ICISSP), Proceed-
ings of the 5th International Conference on, pp. 100–113, INSTICC, SciTePress, 2019.

[187] G. Milette and A. Stroud, Professional Android Sensor Programming. John Wiley & Sons,
2012.

[188] S. Arzt, S. Rasthofer, C. Fritz, E. Bodden, A. Bartel, J. Klein, Y. Le Traon, D. Octeau, and
P. McDaniel, “FlowDroid: Precise Context, Flow, Field, Object-sensitive and Lifecycle-
aware Taint Analysis for Android Apps,” ACM SIGPLAN Notices - PLDI ’14, vol. 49,

– 211 –



Towards Trustworthy Smart Sensors

no. 6, pp. 259–269, 2014.

[189] C. E. Shannon, “A Mathematical Theory of Communication,” Bell System Technical Jour-
nal, vol. 27, no. 3, pp. 379–423, 1948.

[190] I. Bouyukliev and D. B. Jaffe, “Optimal binary linear codes of dimension at most seven,”
Discrete Mathematics, vol. 226, no. 1-3, pp. 51–70, 2001.

[191] J. M. Berger, “A Note on Error Detection Codes for Asymmetric Channels,” Information
and Control, vol. 4, no. 1, pp. 68–73, 1961.

[192] M. Zargham and P. G. Gulak, “Fully Integrated On-Chip Coil in 0.13µm CMOS for Wireless
Power Transfer Through Biological Media,” IEEE Transactions on Biomedical Circuits and
Systems, vol. 9, no. 2, pp. 259–271, 2015.
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