
Florian Kappe, BSc.

Coherent Control of Quantum Dots

MASTER’S THESIS
to achieve the university degree of

Diplom-Ingenieur
Master’s degree programme: Technische Physik

submitted to

Graz University of Technology

Supervisor
Assoc. Prof. Dipl.-Ing. Dr. techn. Markus Aichhorn

Institute of Theoretical and Computational Physics

In collaboration with University of Innsbruck, Institute of Experimental Physics
Supervisor: Univ.-Prof. Dr. Gregor Weihs

Graz, November, 2019



Affidavit

I declare that I have authored this thesis independently, that I have not used other than
the declared sources/resources, and that I have explicitly indicated all material which
has been quoted either literally or by content from the sources used. The text document
uploaded to TUGRAZonline is identical to the present masters thesis.

Date Signature

2



Contents

1 Abstract 5

2 Theory 6
2.1 Quantum dots . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2.1.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
2.1.2 Properties of quantum dots . . . . . . . . . . . . . . . . . . . . . 6
2.1.3 Interaction with light . . . . . . . . . . . . . . . . . . . . . . . . . 8
2.1.4 Excitation schemes . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2.2 Electro optical modulators . . . . . . . . . . . . . . . . . . . . . . . . . . 14
2.2.1 Electro-optical effects . . . . . . . . . . . . . . . . . . . . . . . . . 15
2.2.2 Phase modulators . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

2.3 Signal distortion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
2.3.1 Fourier analysis of electrical signals . . . . . . . . . . . . . . . . . 21
2.3.2 Correcting signal distortions with Fourier methods . . . . . . . . 23

2.4 Rabi Oscillations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
2.4.1 The Hamiltonian . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
2.4.2 Two level systems . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
2.4.3 Decoherence in quantum dots . . . . . . . . . . . . . . . . . . . . 29

2.5 Life time measurements . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

3 Experiment 33
3.1 Pulse generation setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

3.1.1 Optical setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
3.1.2 Electrical setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
3.1.3 Pulse shaping quality . . . . . . . . . . . . . . . . . . . . . . . . . 42

3.2 Quantum dot setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
3.2.1 Coherent excitation of the biexciton . . . . . . . . . . . . . . . . . 48
3.2.2 Investigating the life time of excited states . . . . . . . . . . . . . 53

3.3 Future improvements on the pulse generation setup . . . . . . . . . . . . 57

4 Summary, discussion and outlook 58

5 Acknowledgements 66

A Appendix 67
A.1 Three dimensional infinite well . . . . . . . . . . . . . . . . . . . . . . . . 67
A.2 Derivation of the atomic Hamiltonian . . . . . . . . . . . . . . . . . . . . 69
A.3 Solving for Rabi oscillations . . . . . . . . . . . . . . . . . . . . . . . . . 72
A.4 Life times of two coupled energy levels . . . . . . . . . . . . . . . . . . . 74

3



A.5 Natural constants . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75
A.6 Additional information . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

4



1 Abstract

The scope of this thesis is to present a fibre coupled Mach-Zehndner interferometer as an
electrically controlled optical pulse shaper. This setup is capable of producing arbitrary
laser pulse-shapes and sequences via the precise control of a phase-shifting electro-optical
modulator. The created pulses are then used to coherently excite the electronic biexciton
state of a semiconductor quantum dot. Decay out of this state results in the emission
of two photons, which are used to characterise successful coherent control via the obser-
vation of Rabi-oscillations. A lifetime measurement of the involved electronic states is
performed to further verify the quality of the pulse generation scheme.

Although the theory of quantum mechanics has been around for more than a cen-
tury, it was only in the last decades that experiments were able to observe some of its
consequences such as entanglement. This is due to the high experimental requirements
needed to observe quantum mechanical effects.

The recent advances in micro-fabrication, metrology, development of single-photon
sources and single-photon detectors have not only paved the way towards more sophis-
ticated experiments, but also lead to the development of devices and communication
protocols that rely on the fundamentals of quantum mechanics. One of the most revolu-
tionary implementations of quantum mechanics is the quantum computer. A quantum
computer replaces the classical bit, that can either be in the state zero or one, with a
quantum bit (qubit), whose state can additionally be in any superposition of zero and
one. A machine that performs calculations with qubits is expected to outperform a clas-
sical computer at certain computational tasks, like factoring large numbers or searching
a database [1,2]. Several physical systems have been proposed to realise qubits, includ-
ing trapped ions, superconducting circuits, nitrogen vacancy (NV) centers in diamond,
electron spins in quantum dots or topological majorana particles [3–7]. All of these sys-
tems interact with their environment and subsequently suffer from decoherence, i.e. the
loss of quantum information. In systems that strongly couple to the environment great
efforts have to be made in order to achieve the sufficiently long coherence times needed
for quantum computation, e.g. cooling the system to just a few millikelvin and/or pro-
viding ultrahigh vacuum. Another shortcoming of the above matter-qubits is that it
is very hard to scale those systems up in terms of qubit number due to the need of
individually addressing every qubit.

A different approach is to utilize the quantum states of photons in an all-optical im-
plementation of quantum computation [8–11]. Advantages of such a scheme are that
single photons can in principle be prepared in very large numbers given appropriate
emitters like BBO crystals, single ions or quantum dots and that photons can have a
virtually infinite coherence time [12]. This thesis aims to present a scheme to determinis-
tically control a semiconductor quantum dot such that it can be used as a single-photon
(photon-pair) source.
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2 Theory

2.1 Quantum dots

2.1.1 Introduction

In recent years quantum dots (QDs) have emerged as an interesting platform in many
scientific fields. Due to their small size of just a few nanometers, QDs show non-classical
behaviour that differs significantly from bulk materials.

Self assembled gold QDs exhibit tunable plasmonic characteristics depending on their
size and have become a viable tool in many applications of medicine like drug delivery
or cancer treatment [13,14].

Gated QDs formed in semiconducting materials by electrically deforming and ma-
nipulating the potential energy landscape have been proposed as candidates for matter
qubits used in quantum computation [6]. Spin manipulations of single electrons loaded
into QDs allow for a set of universal gates needed for state preparation [15–17]. More
complex schemes for computation utilising two QDs as a single qubit and utilising singlet
and triplet electron states as a computational basis have also been shown [18,19].

Another way of forming a potential energy landscape that leads to discrete energy
states is to embed a semiconducting material of appropriate size in a different semi-
conducting material. If the size of such a nano-structure is small in all three spatial
dimensions, it is often referred to as a zero-dimensional defect or a QD. Due to the
discrete states and energy levels formed in QDs (see section 2.1.2) they are excellent
single photon sources that can be resonantly driven by an electromagnetic field, e.g.
a laser [20]. Also, if driven into the biexciton state QDs can emit two photons that
show polarisation entanglement [21]. This can be used to entangle two spatially sepa-
rated quantum systems or as a source of entanglement used in quantum key distribution
(QKD) [22]. If exited coherently, QDs can act as deterministic entanglement sources,
which is an advantage over the commonly used spontaneous parametric down-conversion
(SPDC) photon-pair sources which rely on probabilistic processes [23–25].

2.1.2 Properties of quantum dots

Embedding a semiconductor in a material with different valence and conduction band
energies results in a potential energy landscape as illustrated in figure 1. When an
electron or an (electron)hole is introduced into this landscape its motion will become
quantized, if its de Broglie wavelength (equation (2.1)) is comparable to the dimensions
of the formed potential well.
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Figure 1: One-dimensional potential landscape formed by a QD and its
environment. Ei

j with i ∈ {QD,Env} and j ∈ {Val,Con,BG} correspond
to the respective valence and conduction band energies of the QD and the
environment and their band-gap energies. The confining potential is visible
in the middle and its size in one dimension is given by Lx. Note that both,
the conduction band and valence band energies, of the QD differ from its
environment, which results in quantum confinement of electrons and electron-
holes alike.

λDB ≈

√
2π~2

m∗kBT
(2.1)

An electron in a periodic crystal structure interacts with its surrounding and reacts
differently to external forces than a free electron would. Examples of such external forces
are electric and magnetic fields or deformation of the crystal. It is shown that if the
spatial variation of such forces remains much smaller than the periodic crystal potential
and the charge carriers energy is small compared to the energy gap, the periodic potential
can be neglected and electrons (and holes) can be treated as free particles that have an
effective mass, which differs from the free electron mass me [26]. This approximation
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is referred to as the effective mass approximation which is still valid in the quantum
regime. There one can use the conventional Schrödinger equation for a charged particle
with its effective mass while neglecting the periodic crystal potential to describe the
equations of motion of such a particle.

For an electron in a semiconductor a typical value for its effective mass is m∗ ≈ 0.1me

which gives a wavelength of λe ≈ 10 nm at room temperature T = 300 K [27].
To get an understanding of the particle’s quantisation of motion and the influence of

symmetry, the potential energy landscape can be approximated by a three dimensional
box potential. This approximation results in quantized energy levels and is valid for elec-
tron energies much lower than the potential well’s height. The calculation of eigenstates
and eigenenergies of a three dimensional quantum well are found in appendix A.1.

As a result of this calculations eigenenergies in a three dimensional system like this
depend on the three restricting lengths Lx, Ly, Lz as well as corresponding quantum
numbers nx, ny, nz ∈ N6=0.

Enx,ny ,nz =
~2π2

2m∗
(
n2
x

L2
x

+
n2
y

L2
y

+
n2
z

L2
z

) (2.2)

If some dimensions of the system are of the same size, e.g. Lx = Ly 6= Lz, there are
multiple sets of quantum numbers that correspond to the same energy. This is called a
degenerate system and plays an important role in entanglement generation.

2.1.3 Interaction with light

In the presence of an electromagnetic field an electron from the valence band can be
excited into the conduction band via the absorption of a photon. The excited electron
leaves a hole behind and the resulting electron/hole pair is called an exciton (X). Since
the dimensions of the QD are of the same order as the de Broglie wavelength of an
electron in a semiconductor their behaviour becomes quantized and only certain energies
are allowed to become occupied by the exciton. A more detailed treatment of the
quantum confinement effect on excitons in QDs is found in [28].

Exciting two electrons from the valence band into the lowest energy state of the
confining potential results in the formation of a biexciton (XX). The two electrons and
holes interact with each other and therefore the energy corresponding to a biexciton
state is not the mere sum of two exciton energies, but differs from that by an amount
called the biexciton binding energy. This shift in energy allows two-photon resonant
excitation as discussed in section 2.1.4. A theoretical treatment of biexciton states in
semiconductor QDs is found in [29].

If an exciton is present in the QD an additional charge in form of an extra electron or
hole can also become trapped in the confining potential. Together they form negatively
or positively charged excitons which are also referred to as trions (X*). More insights
into trions and excitons are found in [30].
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Investigating the angular momentum of the involved particles gives insight into the
radiative behaviour of the exciton/biexciton state. An electron in the conduction band
has a magnetic quantum number se = 1

2
and a spin me = ±1

2
. A hole has a magnetic

quantum number of sh = 3
2

and can be either a so-called light hole with spin ml
h = ±1

2

or a heavy hole with spin mh
h = ±3

2
. At the Γ-point these states are degenerate but split

as a result of the spin-orbit interaction [26].This gives a total of eight product states
|X〉 = |me〉e |mh〉h that the exciton can be in. Introducing the angular momentum
quantum number j = se + sh, se + sh − 1, ..., |se − sh| + 1, |se − sh| and the total spin
quantum number m = j, j − 1, ... − j + 1,−j the possible exciton states in basis |j,m〉
can be written as:

|2,+2〉 =

∣∣∣∣+1

2

〉
e

∣∣∣∣+3

2

〉
h

|2,+1〉 =

√
1

4

∣∣∣∣−1

2

〉
e

∣∣∣∣+3

2

〉
h

+

√
3

4

∣∣∣∣+1

2

〉
e

∣∣∣∣+1

2

〉
h

|2, 0〉 =

√
1

2

∣∣∣∣+1

2

〉
e

∣∣∣∣−1

2

〉
h

+

√
1

2

∣∣∣∣−1

2

〉
e

∣∣∣∣+1

2

〉
h

|2,−1〉 =

√
1

4

∣∣∣∣+1

2

〉
e

∣∣∣∣−3

2

〉
h

+

√
3

4

∣∣∣∣−1

2

〉
e

∣∣∣∣−1

2

〉
h

|2,−2〉 =

∣∣∣∣−1

2

〉
e

∣∣∣∣−3

2

〉
h

|1,+1〉 =

√
3

4

∣∣∣∣−1

2

〉
e

∣∣∣∣+3

2

〉
h

−
√

1

4

∣∣∣∣+1

2

〉
e

∣∣∣∣+1

2

〉
h

|1, 0〉 =

√
1

2

∣∣∣∣+1

2

〉
e

∣∣∣∣−1

2

〉
h

−
√

1

2

∣∣∣∣−1

2

〉
e

∣∣∣∣+1

2

〉
h

|1,−1〉 =

√
1

4

∣∣∣∣−1

2

〉
e

∣∣∣∣−1

2

〉
h

−
√

3

4
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2

〉
e

∣∣∣∣−3

2

〉
h

(2.3)

The coefficients of the above states are taken from a Clebsch-Gordan table.
Optical selection rules state that angular momentum has to be conserved during ab-

sorption/emission of a photon and only transitions in which the change in the spin-z
component ∆m = ∆me + ∆mh = ±1 are allowed. Since the ground state of the system
(QD with no confined charges, |0〉 = |0, 0〉 = |0〉e |0〉h) has a total spin of m = 0 only
states with m = ±1 couple to light and are referred to as bright excitons. States with
m = 0,±2 do not couple to light and are named dark exciton states respectively. A
deeper treatment of the dark exciton states can be found in [31] and chapter 4 of [32].

In the case of the biexciton state (|XX〉) the electrons/holes occupy the same elec-
tronic state and the Pauli exclusion principle leads to a total spin of zero (see figure 2).
A radiative transition into the unloaded (empty) ground state of the QD is therefore
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possible by emitting two photons, where each emission changes the spin-z component
by ±1.

Figure 2: Spin states of the biexciton. Pauli exclusion principle forces par-
ticles occupying the same energy state to be of opposite spin and the total
spin is zero. Due to the indistinguishability of the particles the actual spins
of two particles occupying the same state are interchangeable (represented
by the dashed arrows).

Light emission

As point sources, QDs, like atoms, usually emit light into the full solid angle and thus
make collecting photons emitted by a QD embedded in a planar semiconductor sample
very inefficient. This is especially true with regards to the high refractive index nEnv of
the embedding environment and consequently total internal reflection at the interface
between semiconductor and air (vacuum), as depicted in figure 3a. For a semiconductor
with refractive index nEnv = 3.5, which is a typical value for InP, only ≈ 2% of the
emitted photons are able to leave the sample structure [33]. To overcome this issue
QDs are often embedded in various cavities or photonic structures which aim to favour
emission into a specific direction/emission-mode. Some of the possible structures are
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shown in figure 3b.

(a) Light emission of a planar sample. (b) Various embedding structures.

Figure 3: (a) QD embedded in a planar sample. Emitted photons get re-
fracted according to Snell’s law and are not able to leave the sample at all
if the condition for total internal reflection α ≥ sin−1(nAir/nEnv) is met. (b)
Different forms of cavities or photonic structures used to favour specific emis-
sion directions indicated by an arrow. (I) Micropillar cavity. (II) Photonic
nanowire. (III) Photonic trumpet. (IV) Microlens. (V) Bull’s eye cav-
ity. (VI) Photonic crystal waveguide. The QD’s position is indicated by a
triangle. Figure adapted from [32].

2.1.4 Excitation schemes

There are several ways to excite an exciton/biexciton state in a QD. Besides the obvious
way of using resonant light three other schemes are discussed:

1. Above-band excitation.

2. Quasi-resonant excitation.

3. Two-photon resonant excitation of a biexciton.

Above-band excitation

In above band excitation a laser with photon energy larger than the band-gap energy of
the surrounding material is used to create electron/hole pairs in the vicinity of the QD.
Energy losses through non-radiative phonon scattering processes allow relaxation into
the exciton state (|X〉) of the QD. A recombination of electron and hole then emits a
photon at the characteristic exciton wavelength. This scheme is illustrated in figure 4a.
An advantage of above band excitation is that it is not necessary to hit the QD directly
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with the pump laser and that it can be done with a wide range of excitation wavelengths.
Residual pump light can easily be removed by dichroic filters, since its wavelength is
usually much shorter than the emitted exciton/biexciton photons. Although the process
is probabilistic it is a reliable way of preparing an exciton state and is a valuable tool to
probe the emission behaviour of QDs. On the downside, the high concentration of charge
carriers in the QD’s neighbourhood influences the local electric field and dephasing of
the QD states is increased. Also some of the energy of the pump photon is converted into
heat, which has to be taken into account in terms of stability and thermal expansion.

Quasi-resonant excitation

In quasi-resonant excitation the initial pump photon is resonant with an exited state of
the QD, whose energy is higher than that of the |X〉 state. This leads to less production
of charge carriers in the vicinity of the QD and a more stable state in terms of dephasing.
In contrast to above-band excitation it is crucial to focus the pump light onto the QD in
order to drive this transition, which makes this excitation scheme more cumbersome in
terms of alignment. The used pump wavelength has to be resonant with a higher excited
state of the QD which limits the usable pump sources. Although the transition into the
excited state is resonant and therefore can be effected deterministically, the relaxation
processes into the |X〉 state still occur randomly and limit the use of this excitation
scheme as a way to implement a deterministic single photon source. The scheme is
illustrated in figure 4b.
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(a) Above band excitation. (b) Quasi resonant excitation.

Figure 4: (a) Schematics of above band excitation: A pump photon (blue)
creates an electron (blue circle)/hole (red circle) pair in the vicinity of the
QD which relaxes into the |X〉 state via phonon-mediated energy losses. Re-
combination of the charge carriers results in an emitted photon (red) at the
exciton wavelength. (b) Schematics of quasi resonant excitation: A pump
photon (blue) creates an electron (blue circle)/electron hole (red circle) pair
in an excited state of the QD. The state relaxes into the |X〉 state and re-
combination of the charge carriers emits a photon at the exciton wavelength
(red).

Two-photon resonant excitation of the biexciton

The |XX〉 state has a total spin of zero and optical transition rules therefore forbid exci-
tation by a single photon. However, two-photon resonant excitation is allowed provided
the polarisation state of the pump light is not purely circular. In order to drive this tran-
sition most efficiently, the pump photons have to be linearly polarised which corresponds

to an equal superposition of circularly polarised photons: |H(V )〉 =
√

1
2
(|σ+〉 ± |σ−〉).

The two excitons present in the QD feel a binding energy which shifts the energy of the
biexciton as illustrated in figure 5a. This leads to the pump photons being non-resonant
with either of the transitions |0〉 → |X〉 or |X〉 → |XX〉 and coherent excitation is
achieved via a virtual state. The wavelength of the pump photons is tuned to be the
arithmetic mean of the emitted biexciton and exciton photons. Similar to quasi-resonant
excitation this scheme suppresses the creation of free charge carriers, which favours sta-
bility in terms of dephasing and the creation of charged trions. Coherent control of the
biexciton state leads to observable Rabi oscillations as discussed in section 2.4.
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(a) Energy diagram of electronic states
in a QD.

(b) Charge occupation during two-
photon resonant excitation.

Figure 5: (a) Energy diagram of the biexciton excitation process: Two
pump photons (blue) carry an energy of Ep and excite the biexciton state
|XX〉 via a virtual energy level (dashed line in the middle). The biexciton
energy if shifted by the binding energy Eb in comparison to the exciton
state |X〉 with energy EX. This shift leads to the emission of a photon at
a characteristic biexciton wavelength (red) accompanied by a photon at the
exciton wavelength (magenta). (b) Charge occupation during two photon
resonant excitation: Two pump photons (blue) simultaneously create two
electron (blue circles)/hole (red circles) pairs in the QD. Recombination of
the charge carriers emits two photons with different wavelengths (magenta
and red).

2.2 Electro optical modulators

Some materials experience a change in their optical properties if they are subjected to
an electric field. These properties include the opaqueness and the refractive index of
such materials. This is a result of molecular forces that distort the orientation, position
or shapes of the electronic arrangement in the used material.

In the solid state case such materials usually are of crystalline nature and have well
defined lattice structures and orientations. If a direct current (DC) or low frequency
alternating current (AC) electric field is applied across the material, an induced force
will distort the shape of the crystal’s electronic lattice depending on its orientation
relative to the electric field. This change shifts the phase of passing light depending
the polarisation state of the electromagnetic wave. If the interaction length is long
enough, phase shifts become macroscopical and strong enough to control the phase of
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the electromagnetic wave. Materials whose refractive index can be modulated via the
application of electric fields have multiple uses including the following:

• Prisms that can change their refractive index are used to bend light beams to
different angles and replace mechanical scanning devices.

• Phase shifters oriented correctly can act as controllable wave plates and alter the
polarisation state of passing light.

• Lenses with adjustable refractive index are controllable in their focal length.

• Correctly polarised light can be phase-modulated.

An in-depth treatment of electro-optics is found in chapter 20 of [34]. Relevant aspects
of electro-optical effects and phase-modulators are discussed in the following sections.

2.2.1 Electro-optical effects

Expanding the expression for the refractive index n(E) for a DC or low-frequency electric
field E yields the Taylor series:

n(E) = n0 + k1E +
1

2
k2E

2 +O(≥ 3) (2.4)

where n0 = n(E = 0), the refractive index at zero applied field and ki = din
dEi

, the
first and second order derivative evaluated at E = 0. In the literature it is conventional
to rewrite the coefficients ki as r = −2k1n

−3
0 and s = −k2n

−3
0 which are known as the

electro-optical coefficients. This translates equation (2.4) into

n(E) = n0 −
1

2
n3

0rE −
1

2
n3

0sE
2 +O(≥ 3). (2.5)

Materials where r � s experience a shift in refractive index that is approximately
linearly dependent on the applied electric field:

n(E) ≈ n0 −
1

2
n3

0rE. (2.6)

This effect is called Pockels effect and a medium that shows such a linear behaviour is
named a Pockels medium [35]. The electro optical coefficient r is therefore known as the
Pockels coefficient.

If the medium is centrosymmetric, like gases, liquids and certain crystal symmetries,
equation (2.5) must be invariant under the reversal of E and n(E) = n(−E). In this
case r = 0 and equation (2.5) becomes:

n(E) ≈ n0 −
1

2
n3

0sE
2. (2.7)

This behaviour is known as the Kerr effect and s is named the Kerr coefficient [36]. The
refractive index of a Kerr medium depends quadratically on the applied electric field.
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2.2.2 Phase modulators

Light passing through a medium of size L and refractive index n(E) accumulates a phase
shift of

θ =
2πn(E)L

λ0

(2.8)

where λ0 is the free space wavelength. If the medium is a Pockels medium the shift in
phase is approximately linearly dependent on the applied electric field and equation (2.6)
and equation (2.8) yield

θ ≈ θ0 −
rπn3

0LE

λ0

(2.9)

where θ = 2πn0L/λ0 is the phase acquired if no electric field is applied. In practice,
the electric field is usually obtained by applying a voltage V across two faces of the
Pockels cell and E = V/d where d is the spacing between the two contacts. This allows
equation (2.9) to be rewritten in terms of the applied voltage as

θ = θ0 − π
V

Vπ
(2.10)

where Vπ is known as the half-wave voltage and is defined by

Vπ =
λ0

rn3
0

d

L
. (2.11)

Vπ corresponds to the applied voltage at which the phase shift after passing through the
Pockels cell is π different to a passing without any voltage applied. Figure 6 illustrates
the phase shifting behaviour of a Pockels cell. As seen in equation (2.11) Vπ depends on
the material the phase-modulator is made of via rn3

0, the wavelength of the transmitted
light λ0 and a geometric factor d/L. Values for Vπ can range between just a few volts
up to several kilovolts depending on these parameters.
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Figure 6: Phase shift of light passing through a Pockels medium. Vπ is the
voltage at which the phase has shifted by π compared to θ0, the phase shift
at zero applied field.

LiNbO3 phase modulators

The electro-optical phase modulator (EOM) used in this thesis for pulse generation
(see section 3.1) is made of lithium niobate (LiNbO3). Therefore, the electro-optical
behaviour of LiNbO3 is discussed here in more detail.

In the case of an anisotropic material like LiNbO3, the simple case described in the
above section has to be expanded to account for polarisation and orientation related
effects. This leads to a generalisation of equation (2.5) that reads as

ni,j(E) = ni,j,0 −
1

2
n3
i,j,0

∑
k

ri,j,kEk −
1

2
n3
i,j,0

∑
k,l

si,j,k,lEkEl +O(≥ 3) (2.12)

which is a function of the electric field vector E = (E1, E2, E3)T . Equation (2.12)
describes the polarisation dependent refractive index where i, j, k, l ∈ {1, 2, 3} correspond
to the three spatial dimensions. The Pockels coefficients ri,j,k now consist of 33 = 27
elements and form a tensor of third rank. Similarly, the Kerr coefficient consists of
34 = 81 elements and is a tensor of fourth rank.
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Since LiNbO3 is a Pockels material ri,j,k � si,j,k,l ∀ i, j, k, l, the last term of equa-
tion (2.12) can be neglected and only the second term contributes to a change in refrac-
tive index. Because n is symmetric, i.e. ni,j = nj,i, it has six instead of nine independent
variables. It is convenient to replace the index pair (i, j) by a single index I such that
the tensor rI,k is represented by a 6×3 matrix. The mapping from (i, j) to I is described
in table 1.

Table 1: Index I corresponding to the index pair (i, j).

i, j 1 2 3
1 1 6 5
2 6 2 4
3 5 4 3

Symmetries in the crystal structure add more constraints to the Pockels coefficient
tensor r and fix some elements rI,k to be equal to zero, equal to other entries or to have
the opposite sign.

LiNbO3 is a member of the trigonal 3m symmetry group for which the corresponding
Pockels tensor reads

r =


0 −r2,2 r1,3

0 r2,2 r1,3

0 0 r3,3

0 r5,1 0
r5,1 0 0
−r2,2 0 0

 . (2.13)

Crystals that show this kind of symmetry are uniaxial and their polarisation dependent
refractive indices have the relation n11 = n22 = no, n33 = ne. If the electric field is
oriented parallel to the z-axis, such that E = ezE = (0, 0, E)T the corresponding field
dependent index ellipsoid has the form

(
1

n2
o0

+ r13E)(x2 + y2) + (
1

n2
e0

+ r33E)z2 = 1 (2.14)

The ellipsoid and the modification induced by the electric field are shown in figure 7.
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Figure 7: Left: Orientation of the electric field relative to the crystal. Right:
Index ellipsoid of a trigonal 3m symmetric crystal (solid lines). Modified
ellipsoid after applying a DC electric field along the z-axis (dashed lines).
Figure adapted from [34].

The surface of the index ellipsoid is linked to the polarisation dependent refractive
index. By intersecting a plane which passes through the origin and is perpendicular to
k, the propagation direction of the passing light, an index ellipse is constructed which
describes the refractive index felt by arbitrarily polarised light. In the case of light
passing through the crystal parallel to the x-y plane, e.g. k ‖ ey, the index ellipse looks
like the one depicted in figure 8 and the change in refractive index is approximated by

∆n11 = ∆n22 = ∆no ≈−
n3
o0r13E

2

∆n33 = ∆ne ≈−
n3
e0r33E

2
.

(2.15)
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Figure 8: Index ellipse for light with k ‖ ey (solid line). Modified index
ellipse for a static electric field E = (0, 0, E)T (dashed line).

In order to use a Pockels cell made from LiNbO3 as a phase modulator it is crucial
to control the polarisation of the transmitted light. Since r33 > r13 in LiNbO3 usually
the chosen polarisation is parallel to ez such that it is maintained and a maximal phase
shift is achieved.

Values for no0, ne0 and the Pockels coefficients of LiNbO3 can be found in [37] and
for laser light with λ = 840.0 nm are no0 = 2.2554 and ne0 = 2.1703, while the Pockels
coefficients are approximately r13 ≈ 10× 10−12 m V−1 and r33 ≈ 30× 10−12 m V−1. An
in-depth treatment of electro-optic modulators made from LiNbO3 is presented in [38]
and [39].

2.3 Signal distortion

In order to achieve fast phase modulation for pulse generation we need to apply alter-
nating current (AC) fields to the EOM. AC transmission through electrical components
suffers from frequency dependent losses and phase shifts, similar to spatial frequency
losses in optical systems, which determine the resolution of an optical imaging setup.
In imaging systems like microscopes, telescopes or cameras the quality of the transmit-
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ted images depends on the point spread functions (PSF) and optical transfer functions
(OTF) of the used optical devices like lenses, apertures or gratings. These behaviours
can be described using Fourier optics. [40]

An electrical system exhibits similar behaviour and electrical components like ca-
bles, amplifiers or resistors can also be described using Fourier analysis and an impulse
response function (IRF), which is the time domain equivalent to the PSF [41]. The
following chapter will focus on these Fourier methods. For a more in-depth description
of electrical components the reader is advised to consult [42].

2.3.1 Fourier analysis of electrical signals

The IRF is a mathematical tool to describe the output signal for a delta function input

δ(t) =
{1 for t=0

0 else
. (2.16)

An arbitrary input signal g(t) that is sent through any electrical component will have an
output signal that is the convolution of the input signal with the IRF of that component,
as shown in figure 9.

g′(t) = g(t) ~ IRF(t) =

∫ +∞

−∞
g(τ) · IRF(t− τ)dτ (2.17)
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Figure 9: Effect of a IRF on a rectangular input signal. Left : Arbitrary IRF
and delta function input. Right : Example of signal distortion by convolution
with a IRF.

Since the convolution can be transformed into a simple multiplication via a Fourier
transformation, it is convenient to work in the frequency domain,

F{g(t) ~ h(t)}(f) = F{g(t)}(f) · F{h(t)}(f) = G̃(f) · H̃(f). (2.18)

The Fourier transform of a delta function is unity across all frequencies, therefore
the Fourier transform of the IRF can be interpreted as the system’s response to all
frequencies, referred to as the frequency response function. For the arbitrarily chosen
IRF shown in figure 9 this behaviour is illustrated in a double logarithmic Bode-diagram
(see figure 10).
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Figure 10: Bode-diagram of the arbitrary IRF displayed in figure 9. Blue:
Absolute value of F{IRF(t)}(f). Red: Argument of the complex value
F{IRF(t)}(f).

2.3.2 Correcting signal distortions with Fourier methods

As discussed in the previous section, any signal sent through an electrical component
will be distorted according to equation (2.17). In order to compensate for this distortion
the effect of the IRF can be reversed by adapting the input signal accordingly. Again
working in the frequency domain this procedure is a simple multiplication by the inverse
of the frequency response function. For a desired output signal g′(t) = g(t) the input
signal ḡ(t) has to have the form

ḡ(t) = F−1{ĨRF
−1

(f) · G̃(f)}(t) (2.19)

such that

g′(t) = F−1{

1︷ ︸︸ ︷
ĨRF(f) · ĨRF

−1
(f) ·G̃(f)}(t) = g(t). (2.20)

In order to get a well defined output signal, it is therefore necessary to know the
combined frequency response function of all components between input and output. A
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straight forward way to measure this is to send a delta function input through the system
and record the Fourier transformation of the output.

Experimentally it is impossible to create a perfect delta function in time domain be-
cause of finite switching times. Instead this is realised by creating an input that consists
of a known frequency comb (see figure 11), recording the output at these frequencies and
calculating the ratio. This procedure is further referred to as a multi-tone measurement.
Since the input is a discrete set of frequencies in the frequency domain it is not a perfect
delta function input in the time domain and one has to interpolate for frequencies that
are not probed.

Figure 11: Frequency comb used to experimentally determine the frequency
response function of the electrical system. A large number of frequency com-
ponents with known positions is used in order to probe the system for fre-
quency dependent responses.

2.4 Rabi Oscillations

Rabi oscillations are the result of a quantum mechanical two-level system under the
influence of an oscillating electromagnetic field. Since this interaction is well described
and understood, Rabi oscillations have emerged to become a vital tool for state prepa-
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ration of physical qubits realised in trapped ions, superconducting transmon qubits or
QDs embedded in solid state structures [43–45]. Because of their importance in this
work, Rabi oscillations are described in more detail in the following sections, following
the semi-classical approach of [46].

2.4.1 The Hamiltonian

In order to keep things clear, the case discussed here breaks down Rabi oscillations to
a single electron in the Coulomb field of a non-moving nucleus. The general behaviour
of this simple example translates well to more complex systems. A treatment of Rabi
oscillations in two photon resonant biexciton excitation is presented in [47] and results
in a qualitatively similar behaviour as the case discussed in this chapter.

The electron is influenced by a classical electromagnetic field which is completely
described by a vector potential A(r, t) and a scalar potential U(r, t). Since the atom
on the other hand is described using a quantum formalism, this method is called a semi
classical approach. The Hamiltonian used to describe the system is:

Ĥ =
1

2m
(p̂− qA(r̂, t))2 + qU(r̂, t) (2.21)

with p̂ = −i~∇ being the momentum operator and r̂ representing the electron position
operator. Note that here A(r̂, t) and U(r̂, t) contain both, the Coulomb field of the
nucleus and the electromagnetic field that acts from the outside. A derivation of this
Hamiltonian can be found in appendix A.2.

The electromagnetic field is related to the potentials A(r, t) and U(r, t) via

E(r, t) = −∂A(r, t)

∂t
−∇U(r, t) (2.22)

and
B(r, t)) =∇×A(r, t). (2.23)

This implies an infinite amount of equivalent potential pairs (A, U) that describe the
same electromagnetic field. These potentials can be transformed into each other via so
called gauge transformations:

A′(r, t) = A(r, t) +∇F (r, t) (2.24)

U ′(r, t) = U(r, t)− ∂∇F (r, t)

∂t
(2.25)

with F (r, t) being a twice differentiable function. If the external electromagnetic field is
a linearly polarised plane wave of the form:

E = E0 cos(ωt− k · r) (2.26)
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B =
k× E0

ω
cos(ωt− k · r) (2.27)

k · E0 = 0 (2.28)

then the so called Coulomb gauge

∇ ·A(r, t) = 0 (2.29)

gives the corresponding potentials

ACo = −E0

ω
sin(ωt− k · r) (2.30)

UCo = 0. (2.31)

Using equation (2.24) and equation (2.25) the Coulomb gauge can be transformed into
the so called Göppert-Mayer gauge via

FGM(r, t) = −(r− r0) ·ACo(r0, t) (2.32)

where r0 is the position of the nucleus. This transformation leads to the potentials

AGM(r, t) = ACo(r, t)−ACo(r0, t) (2.33)

and

UGM(r, t) = UCo(r) + (r− r0) · ∂ACo(r0, t)

∂t
, (2.34)

which are used to construct the Hamiltonian

ĤGM =
1

2m
(p̂− qAGM(r̂, t))2 + VCo(r̂)− D̂ · Ê(r0, t) (2.35)

with VCo being the regular atomic Coulomb interaction between the charge of the nucleus
qN and the electron charge qe

VCo(r̂) =
qNqe
4πε0r̂

(2.36)

and

D̂ = q(r̂− r0) (2.37)

being the electric dipole operator.
Arguing that the wavelength of the electromagnetic field is much larger than the

interaction volume of the system (e.g. an atom) allows the assumption of a homogeneous
field and replacing AGM(r̂, t) with AGM(r0, t) via the long-wavelength approximation.
Utilising equation (2.33) leaves equation (2.35) in its final form
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ĤGM =
p̂2

2m
+ VCo(r̂)− D̂ · Ê(r0, t). (2.38)

This Hamiltonian can be split into two parts ĤGM = Ĥ = Ĥ0 + Ĥ1 where

Ĥ0 =
p̂2

2m
+ VCo (2.39)

is the well known atomic Hamiltonian and

Ĥ1 = −D̂ · E(r0, t) (2.40)

represents the electric dipole or interaction Hamiltonian. Ĥ1 is linked to the descrip-
tion of a classical dipole moment located at r0 in the presence of an electromagnetic
field.

A more detailed description of the Göppert-Mayer transformation and derivation of
equation (2.38) can be found in [48].

2.4.2 Two level systems

Consider a system of two eigenstates |0〉 and |1〉 with energies E0 and E1 respectively.
The difference in energy is denoted by

E1 − E0 = ~ω0. (2.41)

In matrix representation the eigenstates of Ĥ0 translate to two two-dimensional vectors
|0〉 = (1, 0)T and |1〉 = (0, 1)T and the atomic Hamiltonian (equation (2.39)) in matrix
notation is of the form

Ĥ0 =

(
−~ω0

2
0

0 ~ω0

2

)
= −~ω0

2
σZ (2.42)

with σZ = ( 1 0
0 −1 ) being the third Pauli matrix. The interaction Hamiltonian (equa-

tion (2.40)) describes the coupling of states |0〉 and |1〉 and, represented by the matrix
W , can be written as

W00 = W11 = −〈0|D̂ · E(r0)|0〉 = −〈1|D̂ · E(r0)|1〉 = 0 (2.43)

and

W10 = W01 = −〈1|D̂ · E(r0)|0〉 = −〈0|D̂ · E(r0)|1〉 = ~Ω0. (2.44)

Here a Rabi frequency Ω0 has been introduced that determines the strength of the cou-
pling between the two states. For a periodic electromagnetic field as in equation (2.26)
the full Hamiltonian of this two level system now reads as
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Ĥ = Ĥ0 + Ĥ1 = ~(−ω0

2
σZ + Ω0 cos(ωt)σX) = ~

(
−ω0

2
Ω0 cos(ωt)

Ω0 cos(ωt) ω0

2

)
(2.45)

with ω being the frequency of the electromagnetic field and σX = ( 0 1
1 0 ) representing

the first Pauli matrix. Applying a rotating wave approximation and solving for the
time dependent transition probability of a system that was prepared in the initial state
|Ψ(t0)〉 = |0〉 yields

P0→1(t0, t) =
Ω2

0

Ω2
sin2

(
Ω · (t− t0)

2

)
(2.46)

where Ω2 = Ω2
0 + ∆2 with ∆ = ω0 − ω being the detuning of the electromagnetic

and atomic transition frequencies. A detailed calculation of the transition probability
(equation (2.46)) is shown in appendix A.3.

(a) Rabi oscillations for different
amounts of detuning ∆.

(b) Pmax0→1 for different amounts of detun-
ing ∆.

Figure 12: Visualisation of equation (2.46). (a) Oscillating behaviour of
the transition probability for different amounts of detuning. Higher detun-
ing leads to a higher generalized Rabi frequency but lowers the maximum
transition probability. (b) Maximum transition probability as a function of
the detuning ∆. For ∆ = 0 a maximum transition probability of unity is
reached.

The important properties of equation (2.46) are visualized in figure 12. On the right
hand side the maximum transition probability for continuous variation of ∆ shows a
Lorentzian shape and a maximum of Pmax

0→1 = 1 is found at zero detuning. Figure 12a
shows the behaviour of P0→1 for increasing Ω · (t − t0) for different values of detuning.
This results in a scheme for deterministically preparing a quantum system if the initial
state is known.
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Usually the ground state |0〉 of the quantum system can reliably be prepared by re-
moving enough energy from the system, typically by cooling. Exposing the system to
an electromagnetic field with zero detuning lets the system evolve according to equa-
tion (2.46) and if Ω(t − t0) = (2n + 1)π with n ∈ N0 is deterministically prepared into
|1〉. This procedure of turning a resonant AC field on for a defined amount of time and
with an appropriate strength is know as a π-pulse. If the transition back into |0〉 is
radiant and emits a photon, the system can be used as a deterministic single photon
source [20]. By applying a pulse with Ω(t− t0) = (2n+1)

2
π the state can be rotated into

the superposition state |+〉 = 1√
2
(|0〉 + |1〉) which is known as a π

2
-pulse. The effect of

these two pulses on the ground state are shown in figure 13.

(a) Induced rotation on the Bloch-sphere
for a π-pulse.

(b) Induced rotation on the Bloch-sphere
for a π

2 -pulse.

Figure 13: Actions on the Bloch-sphere. Blue arrows represent the initial
states and red arrows correspond to the final states. Solid red lines indicate
the rotations performed during the interaction time.

2.4.3 Decoherence in quantum dots

In a system that consists of an embedded semiconductor QD multiple decoherence mech-
anisms like a phonon-induced shift in the Rabi frequency or a drive dependent damping
exist [49–51]. In the case of phonon-damped Rabi oscillations multiple theoretical mod-
els have been developed that describe the dynamics of a two-level system in contact
with a bosonic environment. The usual goal of these models is to derive a master equa-
tion that relates the evolution of density-matrix elements to environmental parameters.
Practical master equations always involve some approximations and for a QD system
are commonly derived in two separate regimes. The weak-coupling approach relies on
weak exciton-phonon coupling [52–54], while stronger coupling is described via a polaron
transform method and further discussed in [55–57]. A general approach that aims to
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unify those regimes via a variational master equation approach is presented in [58].
All of the above methods start by modifying the undisturbed two-level Hamiltonian

of equation (2.45) by adding additional phonon terms:

Ĥ = ω0 |1〉〈1|+ Ω0 cos(ωt)σX +
∑
k

ωkb
†
kbk +

∑
k

(gkb
†
k + g∗kbk) |1〉〈1| . (2.47)

The first two terms of the Hamiltonian describe the regular undisturbed system and
follow the same nomenclature as equation (2.45) (using Bohr units: ~ = 1). The last two
terms introduce a phonon bath, represented by an infinite number of harmonic oscillators
with frequencies ωk and creation (annihilation) operators bk (b†k). The exciton-phonon
coupling strength is denoted with gk. Depending on the used methods and regime,
several transformations and approximations are performed on equation (2.47), which
are beyond the scope of this thesis.

In [58] a comparison of weak-coupling theory, polaron theory, the variational mas-
ter equation approach and a numerical simulation of density-matrix dynamics via the
quasi-adiabatic propagator path integral (QUAPI) method is shown. These simulations
are displayed in figure 14 and are in qualitative agreement with the experimental data
presented in section 3.2.1. All of the displayed theories predict that for longer inter-
action time the excited state population converges towards 0.5 and that the maximum
achievable population probability is below unity.
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Figure 14: Exciton population dynamics calculated from the variational
master equation (gray solid curves), weak-coupling theory (red dashed
curves), polaron theory (blue dotted curves), and the QUAPI (green points)
depending on the interaction time of a resonant electric field at a temperature
of 50 K. Top left : Ω0 = π/6 ps−1. Top right : Ω0 = π/4 ps−1. Bottom left :
Ω0 = π/2 ps−1. Bottom right : Ω0 = π ps−1. Figure taken from [58].

2.5 Life time measurements

Exciting a QD and performing time-resolved photoluminescence spectroscopy gives in-
sight into the lifetimes of the excited states of the QD [59, 60]. For resonant excitation
of the biexciton state, there are two emitted photons for each excitation at different
wavelengths (see section 2.1.4). This purely resonant case can be modelled via a two
level system where one level feeds into the other as depicted by the two rate equations:

dNXX

dt
=− ΓXXNXX

dNX

dt
=− ΓXNX + ΓXXNXX.

(2.48)

NXX and NX are the respective numbers of particles in the biexciton and exciton state
and are analogous to the probability of collecting a photon emitted from the correspond-
ing energy states. ΓXX and ΓX represent the rates at which particles decay out of that
state. The lifetimes of the states are given by the inverse of the decay rates:
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τXX =
1

ΓXX

τX =
1

ΓX

.
(2.49)

Solving the coupled ordinary differential equations (ODEs, equation (2.48)) is shown in
appendix A.4 and yields the time dependent expressions for NXX and NX:

NXX =N0e
−ΓXXt

NX =N0
ΓXX

ΓXX − ΓX

(e−ΓX t − e−ΓXXt).
(2.50)

N0 represents the total number of particles excited into the biexciton state and it is as-
sumed that all particles start off in the biexciton state. The behaviour of equation (2.50)
is illustrated in figure 15 for ΓXX = 2ΓX.

Figure 15: State occupation of a coupled two level system where the XX
state feeds into the X state as described by equation (2.50). Here τX = 2τXX

and time is scaled in therms of τXX.
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3 Experiment

In the last decades several physical systems have been proposed to realise qubits for
quantum information technologies. Those systems include trapped ions, superconduct-
ing circuits, nitrogen vacancy (NV) centres in diamond, electron spins in QDs, topolog-
ical majorana particles and single photons. [3–8]. In 2000 DiVincenzo formulated five
criteria that have to be met for efficient quantum computation in any platform. These
criteria are stated in [61] and read as follows:

1. A scalable physical system with well characterised qubits.

2. The ability to initialize the state of the qubits to a simple fiducial state.

3. Long relevant decoherence times, much longer than the gate operation time.

4. A ”universal” set of quantum gates.

5. A qubit-specific measurement capability.

Two additional criteria have to be fulfilled for quantum communication:

6. The ability to interconvert stationary and flying qubits.

7. The ability to faithfully transmit flying qubits between specified locations.

A universal set of quantum gates requires the ability to perform state rotations around
at least two different axes of the Bloch-sphere plus an implementation of at least one
entanglement creating gate (e.g. a C-Not operation or a C-Phase gate). The term
flying qubit refers to an implementation of physically sending a qubit from one party to
another. QDs have emerged as a promising platform for both, the use as a solidstate
qubit via electron spin manipulation and as a source for quantum light, which is the
obvious choice for a flying qubit.

In the case of electron spin qubits the computational basis consists of the two spin
states |0〉 = |↑〉 and |1〉 = |↓〉 which are energetically split by applying a magnetic field,
known as the Zeemann-effect. Exposing the resulting two-level system to a resonant
AC field in the microwave regime results in Rabi oscillations, which corresponds to a
controlled state rotation around the y-axis, if the exposure time is controlled correctly
(see section 2.4.2). Rotations around the z-axis are achieved by simply letting the
system evolve according to its undisturbed Hamiltonian (equation (2.42)) which results
in the unitary transformation Û = e−i

ω0
2
σZt. To implement a universal set of quantum

gates, entanglement between two QDs has to be generated. This can be achieved by
electrically controlling the exchange interaction of two neighbouring QDs via a gated
potential barrier [15].

If the QD is a single photon (photon-pair) source, the two-level system of interest
consists of the empty ground-state |0〉 and a radiant state, e.g. the exciton (biexciton)

33



state |X〉 (|XX〉) (see section 2.1.3). This shifts the frequency of the AC field necessary
for Rabi oscillations from the microwave regime into the optical regime. State rotations
around the y-axis in this regime are achieved by the use of resonant laser pulses where
the amount of rotation depends on the length and field intensity of the pulses.

Recent works on QDs show that exotic states of light, like hyper-entangled photon-
pairs or photon cluster-states can be produced via precise control of excitation pulses
[62, 63]. This thesis now presents a way of creating arbitrary laser pulse shapes and
sequences via the use of a phase-shifting electro-optical modulator (EOM) and tests for
coherent control of a QD embedded in a nanowire.

Continuous wave (CW) laser light is tuned to resonantly excite the |XX〉 state of a
QD via a two photon process as discussed in section 2.1.4. A pulse generation setup,
implemented and characterised as part of this thesis, is used to shape the laser light into
arbitrary pulse shapes to control the energy deposition time during one iteration of the
performed experiments. The experimental setup is thematically and spatially split into
two parts:

1. Pulse generation setup

2. Quantum dot setup

To send pulses from the pulse generation setup towards the QD setup a polarisation
maintaining single mode fibre (PM fibre) is used.

Section 3.1 discusses the working principle of the pulse generation setup and ends with
a comparison of created pulse shapes and expected ones. Section 3.2 focusses on the
interaction of the QD sample with the pump pulses. Coherent excitation is probed via the
observation of Rabi oscillations (see section 2.4) and an extraction of different lifetimes
of the excited states of the QD sample is done by time resolved photoluminescence
spectroscopy.

3.1 Pulse generation setup

Coherent control of radiative/bright states in a QD is achieved by applying a laser pulse
to the system. A straight forward choice would be to use a pulsed laser to excite the
system, which has the advantage that pulsed lasers are readily available at different
wavelengths and high quality. However, since the repetition rate of such a laser is fixed,
creating more complex pulse sequences (e.g. spin-echo sequences) requires additional
optical components to control spacing and intensity of individual pulses [64]. An addi-
tional limitation of pulsed lasers is that it is not possible to create pulse sequences with
arbitrary pulse shapes.

In this work a pulse generation setup consisting of a fibre-coupled Mach-Zehnder
interferometer (MZI) in combination with a phase-shifting EOM is used (see optical
setup in figure 16). A first beam splitter divides a CW laser beam into the two arms
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of the MZI that are recombined at a second beam splitter. Interference at the second
beam splitter determines the ratio of the two output ports of the MZI depending on
the relative phase between the two arms. A detailed mathematical treatment of a MZI
is shown in equation (3.2). This setup can create arbitrary pulse sequences and pulse
shapes by controlling the time dependent phase shift induced by the EOM.

Figure 16: Pulse generation setup. Optical setup: Fibre coupled MZI. A
CW laser source (Laser) is coupled into one input port (AIn) of a variable
beam splitter (BS1), which splitting ratio can be tuned via the use of a
micrometer-screw. One output of BS1 is sent through a phase shifting electro-
optical modulator (EOM) before being recombined with the second output at
a fixed beam splitter with splitting ratio 50:50 (BS2). The final output ports
of the MZI are then fibre coupled towards the QD sample (AOut) and onto
a fast photo diode (DRF) via BOut. DRF monitors the state of the MZI and
is connected to the electrical part of the setup. Electrical setup: The signal
of DRF is processed on an oscilloscope (Osc) and a custom written algorithm
determines the current operating point of the MZI. A micro-controller (MC)
in combination with a home-made amplifier (AMPDC) feeds DC voltage into
a bias tee (BT) to stabilize the operating point of the MZI. Electrical pulse
shapes are generated via an arbitrary waveform generator (AWG) and am-
plified by a high frequency amplifier (AMPRF) before being sent through the
BT into the EOM. The AWG provides two different trigger signals (TA and
TB). TA is sent towards a time tagger (TT) and triggers the arrival of ex-
citation pulses while TB is used by the Osc during drift stabilisation. More
component details are found in table 2.
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Table 2: Components of the pulse generation setup depicted in figure 16.

Component Abbreviation Manufacturer Model
Laser source Laser M Squared SolsTiS
Beam splitter BS1 Evanescent Optics 905P
Phase shifting EOM EOM IXblue NIR-MPX800-LN-20
Beam splitter BS2 Thorlabs PN850R5A2
Photo diode DRF Thorlabs DXM30AF
Oscilloscope Osc Tektronix DPO71604C
Micro-controller MC National Instruments NI6009
Amplifier AMPDC Home made -
Bias tee BT Mini-Circuits ZX85-12G-S+
Arbitrary waveform
generator

AWG Keysight M8195A 65[GSa/s]

Amplifier AMPRF IXblue DR-AN-20-HO
Time tagger Tt PicoQuant HydraHarp 400

3.1.1 Optical setup

The optical setup of the experiment consists of a fibre-coupled MZI which consists of one
variable beam splitter (BS1), one fixed beam splitter (BS2) and a phase shifting electro-
optical modulator (EOM) in one of the arms. The splitting ratio of BS1 can be adjusted
via a micrometer-screw, which is needed to compensate for the different losses in the
two arms of the MZI. All fibres used are PM fibres with angled physical contact (APC)
mating, which reduces losses induced by back-reflection. A mathematical treatment of a
MZI in matrix representation is achieved by sandwiching a path dependent transmission
matrix (T1/2) in between two beam splitter matrices (BS1(2)):

IOut = BS2 · T1/2 · BS1 · IIn. (3.1)

The power in both output ports (IOut) depends on the splitting ratios of BS1(2), the losses
in both arms and the relative phase difference contained in the transmission matrix T1/2.
For the setup described above this relation can be written as

(
AOut

BOut

)
=

(
cos(φfix) i sin(φfix)
i sin(φfix) cos(φfix)

)(
T1e

iθ1 0
0 T2e

iθ2

)(
cos(φvar) i sin(φvar)
i sin(φvar) cos(φvar)

)(
AIn

BIn

)
(3.2)

where φfix(var) determines the splitting ratio of the fixed (variable) beam splitter, T1(2)

represents the transmission coefficients of the components in between BS1 and BS2
and θ1(2) describes the phases introduced in the two arms. Since the output intensity

IA(B) = ‖A(B)Out‖2 (up to a constant factor) only depends on T1/2 via the relative phase

36



difference θ1 − θ2 and the transmission ratio T1

T2
, pulling out and dropping a common

factor of T2e
iθ2 allows equation (3.2) to be rewritten as

(
AOut

BOut

)
=

(
cos(φfix) i sin(φfix)
i sin(φfix) cos(φfix)

)(
T1

T2
ei(θ1−θ2) 0

0 1

)(
cos(φvar) i sin(φvar)
i sin(φvar) cos(φvar)

)(
AIn

BIn

)
.

(3.3)
Introducing θEOM and θDC as the AC and DC phase shifts delivered by the EOM (via

AWG and BT) such that
θEOM + θDC = θ1 − θ2 (3.4)

gives two desired operation points of the MZI. Maximum contrast in the optical pulse
is reached for θEOM ∈ {0, π} and stabilizing θDC = 0 results in the desired pulse shape
in one of the output ports and an inverse shape in the other. Changing to an operating
point where θDC = π switches the two output signals.

In order to achieve the maximum visibility for the pulse sequence sent towards the
QD sample, it is necessary to adjust BS1 in such a way that it compensates for the
difference in T1 and T2. A calculation of IA and IB for θEOM ∈ {0, π} dependent on φvar

is shown in figure 17. The visibility and the contrast of the interference are defined by

Vi =
Imax

i − Imin
i

Imax
i + Imin

i

(3.5)

and

Ci =
Imax

i − Imin
i

Imin
i

(3.6)

where i ∈ {A,B}.
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Figure 17: MZI output intensity IA(B) = ‖A(B)Out‖2 for θDC = 0. The
transmission ratio T1/T2 = 0.73 is experimentally determined by measuring
the transmittance in both arms of the MZI. The argument of the beam splitter
matrix BS2 φfix = 0.83 is taken from the data sheet of BS2. Note: An ideal
50:50 beam splitter would have φfix = π

4
≈ 0.79. Vertical dotted lines mark a

splitting ratio where a visibility of 1 (Imin
A(B) = 0) is reached. Horizontal dotted

lines mark the corresponding power.

Figure 17 reveals that visibility of unity can only be reached for one output at a time
and that contrast differs depending on the output. It is therefore crucial to monitor the
output AOut (towards the QD sample) while tuning BS1 for maximum visibility.

In our experiment we achieved this by first attenuating the laser pulses leaving AOut

and then redirecting them towards a superconducting nanowire single photon detector
(SNSPD) with a time-jitter of around 27 ps. A time tagger (TT) then recorded the
arrival times of single photons and the pulse-shape was reconstructed via a histogram
(see figure 18). The trigger (TA) provided by the AWG was used to synchronise pulse
generation and measurement. Figure 18 shows the recorded signal at maximum reached
visibility of V max

A = 0.95(1) and a contrast of Cmax
A = 16(1) dB. We estimated the

uncertainties by calculating the standard deviations of V and C by comparing all points
that were recorded in the “Off” state of the pulse sequence to the maximum photon
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count.

Figure 18: Recorded signal on an SNSPD of a generated pulse sequence
used to tune BS1 for high visibility and contrast. A maximum visibility of
V max

A = 0.95(1) and a contrast of Cmax
A = 16(1) dB is reached.

Drift stabilisation

Due to thermal, acoustic and field-induced drifts in the EOM the optical setup needs
to be actively stabilised. Field-induced drifts occur due to the applied voltage and
subsequent current leakage across the EOM [65]. Stabilisation is achieved by sending
calibration pulses through the system and mapping them onto the transfer function

IA = 1− cos2(
θEOM + θDC

2
) (3.7)

of an MZI as visualized in figure 19. In order to distinguish between excitation and
calibration pulses we programmed the AWG to provide two different triggers (TA and
TB). TA is timed to be centred during the excitation sequence and is sent towards the
time tagger, while TB relates to the calibration pulse and is used by the oscilloscope
during drift stabilisation (see TA and TB in figure 19a). During the experiments one
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calibration pulse is sent every 500 excitation pulses. The phase θDC is controlled by
feeding a DC voltage into the bias tee (BT) and is stabilized to θDC = 0.

(a) Calibration pulse next to an excita-
tion pulse. The signal intensities at Low,
Mid and High are measured by the os-
cilloscope and used to determine the state
of the system. Calibration pulses are trig-
gered separately to distinguish between
excitation pulse and calibration pulse.

(b) Transfer function of a MZI in stable
operation: θDC = 0. The points Low,
Mid and High are intersections of the
transfer function with the vertical dashed
lines. A system where θDC 6= 0 has a left
or right shifted transfer function.

Figure 19: Principle of the stabilisation procedure. The points Low, Mid
and High correspond to θEOM = 0, θEOM = π

2
and θEOM = π and are mea-

sured on the oscilloscope. Utilising equation (3.7) the current value of θDC

is determined and a stabilisation algorithm calculates the necessary shift in
DC voltage.

By monitoring the values of points Low, Mid and High, which correspond to θEOM =
0, θEOM = π

2
and θEOM = π, the current value of θDC is determined. An algorithm then

calculates the necessary DC voltage shift and a micro controller (MC) in combination
with a DC amplifier (AMPDC) provides a DC voltage that keeps the system in a stable
operation mode θDC = 0.

3.1.2 Electrical setup

The heart of the electrical setup is an arbitrary waveform generator (AWG), which is
able to output signals with a sample rate up to 65 GSa/s and an analogue bandwidth
of 32.5 GHz. It also provides two triggers (TA and TB) that are used to time the arrival
of excitation and calibration pulses, respectively. Signals generated by the AWG are
amplified via a high frequency amplifier (AmpRF) before they get combined with a
DC voltage at a bias tee (BT). DC voltage is provided by a micro-controller (MC) in
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combination with a home-made amplifier (AmpDC). An oscilloscope (Osc) and a photo
diode (DRF) monitor the current state of the system. All used cables support frequencies
greater than 26 GHz and the BT has its −3 dB point around 12 GHz.

The AWG is capable of producing arbitrary signal shapes, which allows for electrical
signal correction as described in section 2.3.2.

Pulse shaping

The phase set by the EOM (θEOM) depends linearly on the applied voltage (see sec-
tion 2.2). If Vπ is introduced as the voltage at which θEOM = π and operating at a
stabilised point (θDC = 0), equation (3.7) can be rewritten as:

IA = 1− cos2(
π

2Vπ
V ). (3.8)

Rearranging equation (3.8) and making V and I time dependent gives an expression
for the necessary applied voltage for arbitrary output intensities IA(t) ∈ [0, 1].

V (t) =
2Vπ
π

arccos
(√

1− IA(t)
)

(3.9)

This allows calculating the necessary time dependent voltage V (t) applied to the EOM
for any given pulse shape.

In order to correct for electrical signal distortions the electrical components connect-
ing the AWG and the EOM are characterised following the procedure described in sec-
tion 2.3.2.

Figure 20: Setup for characterising AmpRF, BT and cables. A multi-tone
measurement is performed by sending a frequency comb through the con-
nected components and analysing the frequency response on the oscilloscope.

The AWG is capable of producing equally spaced frequency combs in which the comb
teeth (frequency components) all have the same magnitude and a relative phase of zero.
The frequency comb used for the multi-tone measurement consists of 100 equally spaced
frequencies with a starting frequency of 50 MHz and a stop frequency of 15 GHz. These
limits are chosen because the used oscilloscope has its −3 dB point around 16 GHz and
frequencies smaller than 15 GHz can be assumed to be recorded lossless. The resulting
Bode-diagram is shown in figure 21a.
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(a) Bode-diagram of all components con-
necting AWG and EOM. The components
and measurement setup are shown in fig-
ure 20.

(b) Bode-diagram of DRF and the cable
towards the oscilloscope. This diagram is
constructed by performing a multi-tone
measurement on the cable and combin-
ing it with the Bode-diagram provided by
the manufacturing company of DRF (see
appendix A.6).

Figure 21: Frequency response functions of electrical components in the ex-
perimental setup. The gain is given in dB and relates to the transmitted field
amplitude. A linear shift in the electrical signal’s phase, which corresponds
to a delay in time, is subtracted for better readability.

3.1.3 Pulse shaping quality

Applying the method described in section 2.3.2 two different pulse shapes were created
and investigated using the photo diode. The first pulse shape is of the form

IR(t) =
{ 1

2
(1+erf(

t−µ1√
2σ

)) for t<0

1
2

(1−erf(
t−µ2√

2σ
)) for t≥0

(3.10)

where erf(x) is the error function (see equation (3.11)) and is used to form smooth corners
which leads to reduced high frequency components in comparison to a pure rectangular
pulse. The distance µ2 − µ1 sets the FWHM of the pulse, while σ determines how fast
the pulse’s intensity rises and falls.

erf(x) =
2√
π

∫ x

0

e−t
2

dt (3.11)

The second pulse shape is an asymmetric exponential pulse that is described in its
non normalised form by

IE(t) = (1 + erf(
−t+ µ0

a
))e

t−µ0
b . (3.12)
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where µ0 sets the position of the pulse, while a and b determine the pulse’s rise and fall
time.

Figure 22 shows both pulses and specifies the used parameters.

Figure 22: Top: Rectangular shaped pulse described by equation (3.10)
with µ1 = −150×10−12 s, µ2 = 150×10−12 s and σ = 45×10−12 s. Bottom:
Asymmetric exponential pulse described by equation (3.12) with µ0 = 0 s,
a = 1× 10−10 s and b = 23× 10−11 s.

In order to view the created pulses, the frequency response of the photo diode (DRF)
and the cable towards the oscilloscope has to be taken into account. Figure 21b shows
the Bode-diagram of those components, which is constructed by performing a multi-
tone measurement on the cable and combining it with the Bode-diagram provided by
the manufacturing company of DRF (appendix A.6). Doing so allows simulating the
expected signal and a comparison with the recorded signal is shown in figure 23.
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Figure 23: Comparison of the simulated pulse shapes with the recorded ones.
Top: Rectangular pulse shape with FWHM of 300 ps. Bottom: Asymmetric
exponential pulse shape with FWHM of 313 ps. The small deviation of the
simulated pulse shapes from the pulses shown in figure 22 is due to the
frequency response of the photo diode and the cable towards the oscilloscope.

Figure 23 shows that the measured pulse shape is in good agreement with the sim-
ulated expected pulse shape. The small mismatch between experimental data and the
simulated curves is most likely due to the frequency response of the EOM not being
perfect (constant gain) in the region of interest.

The presented pulse generation setup is capable of reliably producing arbitrary pulse
shapes that are in good agreement with the expected results. Application of Fourier-
methods to correct for frequency dependent distortions allow applying reliable phase
shifts using the EOM. The use of a variable beam splitter to compensate for different
losses in the two arms of the MZI allows a maximum visibility of V max

A = 0.95(1) and a
contrast of Cmax

A = 16(1) dB to be reached. After generation the pulses are fibre-coupled
into a PM-fibre and sent towards the QD setup.
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3.2 Quantum dot setup

To verify the usability of the pulse shaping setup, it was tested by generating Rabi
oscillations on an existing QD setup. The QD under investigation is embedded in a
nanowire structure and was grown by Dan Dalacu and others at the National Research
Council of Canada (Ottawa) via selective-area vapour-liquid-solid growth [66–68]. A
defect of InAsP surrounded by InP acts as the QD and is accompanied by another QD
close to it, such that they interact and form a QD-molecule, as shown in the schematic
drawing of figure 24a. The nanowires on the sample were imaged by a scanning electron
microscope (SEM) and one representative image is shown in figure 24b.

Excitation light is coupled into the nanowire from the top. The nanowire acts as a
waveguide and an antenna, which emits into a well-defined spatial mode (pink cone in
figure 24a). A schematic view of the setup and light paths is presented in figure 25.
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(a) Schematic of the used nanowire
samples. Two QDs, QDR and QDL,
are formed in the nanowire core during
the growth process [68]. The nanowire
favours an emission mode parallel to its
growth axis as illustrated by the pink
cone.

(b) SEM picture of a representative
nanowire on the sample.

Figure 24: Nanowire structure with embedded QDs. The two QDs interact
with each other and can act as a QD-molecule.
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Figure 25: QD experiment. Excitation pulses generated by the MZI pulse-
shaper (see section 3.1) are fibre-coupled into the QD setup (red line). Optical
power is controlled via a motorized half wave plate (HW1) and a polariser.
Both beam splitters in the setup transmit 90% of the light’s intensity, a
powermeter (PM) measures the CW equivalent power and the power sent
towards the QD is estimated from the splitting ratio. A combination of a
motorised quarter wave plate (QWP) and a motorised half wave plate (HWP)
controls the final polarisation state of the excitation pulse. Excitation light is
focused onto the QD sample, whose lateral position is controlled via a piezo-
actuated translation stage. Photons emitted from the QD pass through two
notch filters (Nf) that suppress back-reflected pump photons before they are
sent to either a spectrometer (Spec) or are separated in energy by a grating
for further analysis (orange line). The latter spatially separates the X and
XX photons, which are then fibre-coupled towards the SNSPDs. An auxiliary
input (Aux) is used to couple an extra laser source into the setup for above
band excitation (green line). An LED illumination source can also be coupled
in via Aux and a camera (Ca) records the reflected light to image the sample.
An extensive component list can be found in table 3.

During all experiments a rectangular pulse shape as depicted in the top of figure 22
was used. The FWHM of the pulses was 500 ps and the repetition rate was set to
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100 MHz, i.e. one pulse every 10 ns. This pulse duration was chosen because trials
with shorter pulses were not able to transmit enough energy through the setup into the
sample without exceeding the damage threshold of the EOM. This is mainly due to the
high transmission (90%) of the beam splitters and could be reconsidered in future QD
setups.

Table 3: Components of the QD setup depicted in figure 25.

Component Abbreviation Manufacturer Model/Sample #
Quantum dot QD Dan Dalacu et al. [66] CBE14-041-111
Single photon de-
tector

SNPD Single Quantum Eos 720 CS

Spectrometer Spec Princeton Instruments SP2750
Powermeter PM Thorlabs PM16-130
Notch filters Nf OptiGrate BNF-902(907)-OD3-12.5
Camera Ca Watec WAT-902H Ultimate

3.2.1 Coherent excitation of the biexciton

In order to use the QD as a photon-pair source the |XX〉 state is excited via a two-
photon resonant process, which results in the emission of two energy separated photons,
as discussed in section 2.1.4. To do so in a deterministic fashion Rabi-oscillations are
utilised and the application of a π-pulse results in a reliable preparation of the |XX〉
state.

First we investigated the frequency spectrum of the QD sample using the spectrometer
(Spec), which has a wavelength accuracy of ∆λ = ±0.1 nm. After identifying the corre-
sponding emission energies of the X and XX photons the pump laser’s wavelength was
tuned to their arithmetic mean (see figure 26) so as to fulfil the condition for coherent
excitation of the |XX〉 state.

We found the emission wavelengths to be centred at λX = 894.41 nm and λXX =
895.78 nm and, as a result, set the center wavelength of the laser source to λP =
895.36 nm. The detected photon counts were integrated over a 0.4 nm window, centred
at the peaks of the QD emission lines (shaded regions in figure 26). A third emis-
sion line corresponding to the formation of a trion (X∗) was located at 897.45 nm and
back-reflected pump photons were also present in the recorded spectrum (P).
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Figure 26: Emission spectrum of the QD sample. The X emission energy is
centred around 894.41 nm, XX photons are found at 895.78 nm and a trion
(X∗) emission is observed at 897.45 nm. Back-reflected pump photons (P) are
suppressed by the two notch filters (Nf) in the setup but residual photons
are also captured with a maximum at 895.16 nm. The shaded areas indicate
the region over which the recorded counts are integrated.

A motorized half-wave plate (HW1 in figure 25) in combination with a polariser was
used to tune the arriving power of the excitation pulses and CW equivalent power was
recorded by a powermeter (PM) in front of the QD sample. By scanning through different
powers we observed Rabi oscillations by recording the emitted photon number of the
|XX〉 → |X〉 transition for a fixed duration of 1 s per excitation power.

Two-photon resonant Rabi oscillations in the dipole approximation depend on Ω2
0,

which is linearly proportional to optical power (Ω0 is the coupling strength in the dipole
approximation and is linearly proportional to the electric field, see equation (2.44)).
This leads to oscillations of the form:

C = Cπ sin2(
PCW

2Pπ
π) (3.13)

with C being the recorded photocount, Cπ the maximum photocount reached, PCW the
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recorded CW equivalent power at the PM and Pπ the power equivalent to a π-pulse. A
rise in PCW corresponds to an increase of pulse area, which is achieved by rotating HW1
in front of a polariser.

The integrated peak intensities for X, XX, X∗ and P are shown in figure 27 for in-
creasing excitation power.

Figure 27: Top: Integrated peak areas of recorded photon counts for X
(blue), XX (red), X∗ (green) and P (cyan) wavelengths. Bottom: XX in-
tensity corrected for incoherent processes (XX-X∗) and fit function equa-
tion (3.13) with Cπ = 6221(5) and Pπ = 231(2)× 10−8 W. Error estimation
is the standard deviation provided by the fit-routine.

The recorded intensities of the X and XX emissions do not show pure Rabi oscillations
as seen in the top plot of figure 27. This suggests that there are incoherent processes
that populate the |XX〉 and |X〉 states. These are attributed to the long pulse duration,
which is at the order of the state’s lifetimes and lead to natural decoherence of the Rabi
oscillations. Arguing that the same incoherent processes lead to a population of the
trion state, we corrected the XX photon count by subtracting the trion photon count,
multiplied by a scaling factor. This correction reveals Rabi oscillations of the |XX〉 state
as seen in the bottom plot of figure 27. The extracted fit parameters of equation (3.13)
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are Cπ = 6221(5) and Pπ = 231(2)×10−8 W. Error estimation is the standard deviation
provided by the fit-routine.

This assumption of incoherent processes is supported by fitting a polynomial function
of the form

I = a · P b
CW + c (3.14)

to the low PCW region of the recorded intensities for X and XX photons. The parameter
b determines the polynomial order of the rise in emission intensity. For a two-photon
process b = 2 (see chapter 1 of [69]). In a purely coherent process both slopes should
be of order sin2(PCW) ≈ P 2

CW, since they are a product of the same excitation process.
This is not the case as can be clearly seen in figure 28.

Figure 28: Slopes of the recorded intensities for X and XX photons. While
the XX intensity rises almost quadratically (b = 1.94(0.03)) the X photons
exhibit a more linear behaviour (b = 1.05(0.01)) which indicates a direct
(single-photon) excitation into the |X〉 state. Error estimation is provided
by the fit-routine and corresponds to the standard deviation.

Coherent excitation of the XX state on the same sample has been achieved by the
use of a pulsed laser source (Spectra-Physics, Tsunami) with a pulse repetition rate
(PRR) of 80 MHz and a pulse width of FWHM = 85 ps. Data from this measurement is
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presented in figure 29 and is included as a benchmark for comparison to the technique
presented in this thesis using pulse shaping from a MZI pulse generator. Note that the
normalised state population exhibits a damped oscillation which converges towards one
half. This is in agreement with QD models that include phonon-induced dephaseing as
discussed in section 2.4.3 and [58].

Figure 29: Excitation via a pulsed laser source (Spectra-Physics, Tsunami,
PRR: 80 MHz, FWHM: 85 ps). Top: Integrated peak intensities of recorded
photon counts for X, XX, X∗ and pump light (P) wavelengths. Bottom:
Normalised state population of the |XX〉 and |X〉 states. Fitting the model
of equation (3.13) reveals a maximum population probability of 0.58(1) for X
and 0.64(1) for XX after a π-pulse of strength Pπ = 94(5)× 10−8 W(dashed
line). Error estimation is the standard deviation provided by the fit-routine.
Convergent behaviour towards 0.5 is seen for larger pulse areas, which is in
agreement with the models presented in [58].

This shows that coherent control of the XX state can be achieved by the use of
suitable short laser pulses and indicates that QDs can be used as deterministic photon-
pair sources, on which state rotations can be performed by the use of a laser pulse of
appropriate length and intensity.
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The pulses created by the fibre coupled MZI pulse generation setup (section 3.1) were
not able to produce exclusively coherent excitation into the |XX〉 state. The coherent
component (Rabi oscillations) became visible only after subtracting the incoherent con-
tribution estimated from the emitted X∗ photons (see figure 27). Due to the limited
available pulse energy the bottom plot of figure 27 shows only one peak. This suggests
that the current pulse generation setup needs to be adapted in order to be used as a
reliable source for excitation pulses (see section 3.3).

3.2.2 Investigating the life time of excited states

As a second measure to verify the pulse generation scheme presented in this thesis the
lifetimes of the involved electronic states were investigated using pulses created by the
pulse generation setup. Time resolved photoluminescence spectroscopy was performed
by exciting the QD sample, separating the emitted photons in their wavelengths and
counting them on SNSPDs. Their time of arrival was recorded by a time tagger and
was synchronised to the excitation pulses via the trigger channel TA. As mentioned
in section 3.2.1 the excitation process showed a mixture of coherent and incoherent
behaviour and the model derived in section 2.5 can only be applied to some sections of
the recorded data.

We expect the emission of XX photons to show an exponential behaviour as described
in equation (2.50). The recorded data presented in figure 30 shows a bi-exponential
decay for the |XX〉 → |X〉 transition and fitting the model to the corresponding regions
extracts two different lifetimes τfast and τslow. This bi-exponential behaviour is likely a
result of the long excitation pulse itself in combination with residual laser intensity after
the excitation pulse leading to stimulated emission from the |XX〉 state. A shoulder is
visible in the XX emission around 1×10−9 s, which is assigned to two different excitation
processes. First the two-photon excitation |0〉 → |XX〉 is the most likely to happen.
After ≈ 1× 10−9 s the |X〉 state is populated via an undesired single photon excitation
|0〉 → |X〉 and excitation into the |XX〉 state happens via the transition |X〉 → |XX〉.
The observed shoulder is a result of the transition between those excitation channels.

The transition |X〉 → |0〉 shows a large incoherent behaviour and a lifetime τsingle is
assigned via an exponential fit. This decay is expected to be a result of directly popu-
lating the |X〉 state via a single-photon process. Utilising the extracted parameter for
the maximum occupation number N0 and the mean of τfast and τslow allows identifying
the photons that correspond to the coherent decay |XX〉 → |X〉 → |0〉. Fitting equa-
tion (2.50) to the identified region extracts a lifetime τdouble that is in agreement with
the model of two coupled energy levels where one feeds into the other (see section 2.5).
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Figure 30: Time resolved photoluminescence spectroscopy for CW equiva-
lent excitation power of 7.5 µW. Left : Collected photons at the XX wave-
length. A bi-exponential behaviour is observed and indicated by two expo-
nential fits (red and green). Right : Collected photons at the X wavelength.
The total count of X photons is more than five times the total number of
counted XX photons which again indicates an incoherent single-photon exci-
tation channel into the |X〉 state. An exponential behaviour is fitted into the
data and an incoherent lifetime (τsingle) is assigned to that decay (exponen-
tial fit in cyan). The peak right after the incoherent emission is a result of
coherent excitation and the model of section 2.5 is used to assign a coherent
lifetime (τdouble, fit in magenta). The imprint of the excitation pulse shape
(rectangular pulse, FWHM: 500 ps) is clearly seen in the exciton emission
which also hints at incoherent single-photon excitation.

The measurement was repeated for different CW equivalent excitation powers. The
extracted life time values are presented in table 4 and are displayed in figure 31. Uncer-
tainties are calculated by the fit-routine and are the estimated standard deviations. At
lower CW equivalent powers the peak assigned to the coherent decay |XX〉 → |X〉 → |0〉
is less prominent and the fitting routine struggles to find a well-estimated value for
τdouble. A previous lifetime measurement on the same sample resulted in two lifetimes
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τXX = 1.5(2) ns and τX = 3.1(5) ns (supplementary material of [70]). These values differ
from our extracted lifetimes by roughly one order of magnitude, which is most likely due
to the different excitation scheme utilizing a CW pump.

Table 4: Lifetimes: τfast, τslow and τsingle are obtained by fitting a single
exponential decay into the measured data. τdouble is extracted from the data
by fitting the model described in equation (2.50). Error estimation is the
standard deviation provided by the fit-routine.

PCW / µW τfast / ps τslow / ps τsingle / ps τdouble / ps
2.0 204(9) 609(2) 102(5) 681(155)
2.5 180(8) 584(3) 90(3) 1063(62)
3.0 170(8) 601(2) 84(2) 1088(55)
3.7 160(8) 642(4) 86(2) 1661(62)
4.3 142(6) 639(4) 77(2) 1428(63)
5.0 133(6) 676(3) 72(1) 1333(68)
6.0 119(5) 734(3) 68(1) 1181(67)
6.5 115(5) 809(5) 67(1) 948(78)
7.0 110(5) 905(6) 69(2) 1122(79)
7.5 101(5) 919(7) 68(2) 340(22)
8.0 97(4) 954(9) 65(1) 335(22)
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Figure 31: Extracted lifetimes for different CW equivalent excitation pow-
ers. The errorbars of τfast,τslow and τsingle are smaller than the marker size.
Uncertainties are the standard deviations resulting from the fitting routine
and are found in table 4.

Exciting the QD via pulses generated in the pulse generation setup and investigating
the lifetimes of electronic states in the QD sample reveals that the transition |XX〉 →
|X〉 occurs at two different time scales (τfast, τslow, red and green fit in figure 31). This
bi-exponential behaviour is expected to be due to spontaneous emission induced by
a residual laser field after the excitation pulses. The emission out of the |X〉 state
shows a clear imprint of the excitation pulse which indicates that direct single-photon
excitation took place during the excitation scheme. An exponential fit is used to extract
a corresponding lifetime (τsingle, cyan fit). Utilising the parameters extracted from the
XX emission, the peak indicated by the magenta fit is expected to be a result of the
transition |XX〉 → |X〉 → |0〉 and the model of equation (2.50) is used to extract a
corresponding lifetime (τdouble).
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3.3 Future improvements on the pulse generation setup

The pulse shaping quality of the presented fibre coupled MZI pulse shaper is in good
agreement with the simulations and pulse shapes can be reliably produced via the MZI
setup (see section 3.1.3). However, preparation of the |XX〉 state occurred as a mixture
of coherent and incoherent excitation. It is expected that residual laser intensity during
the “Off” state of the excitation pulses is one cause for the incoherent behaviour. In
order to tune the setup to have both, a high contrast and high visibility, the current
setup relies on a variable beam splitter to compensate for different losses in the two arms
of the MZI. This is achieved by manually adjusting the splitting ratio via a micrometer
screw and is difficult to control. The beam splitter also shows hysteresis and mechanical
relaxation which leads to unreproducible results. A better way to tune for high visibility
would be to replace the variable by a fixed beam splitter and introduce an electrically
controlled attenuator into the currently device free arm of the MZI. This would allow
purely electrical control of the pulse generation setup and could also be used in an
automated optimisation protocol. Another advantage would be that no part of the setup
would have to be manually accessible and it could be decoupled from the environment
to a greater extent, improving operation stability.

Another cause of the incoherent excitation behaviour is that the current system relies
on rather long (500 ps) pulses in order to transmit enough energy into the QD sample.
Implementing a semiconductor optical amplifier (SOA) after the MZI setup would allow
for higher optical power in shorter pulses without exceeding the damage threshold of the
EOM.
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4 Summary, discussion and outlook

In this section, the results of the performed experiments are discussed and an outlook
on possible future experiments is presented.

The goal of this thesis was to build and characterise a fibre-coupled, electrically con-
trolled MZI in order to create arbitrary laser pulse shapes and sequences. Those pulses
were then sent towards a QD to coherently excite the |XX〉 state and characterise the
subsequent photon emission (see section 3).

Utilising Fourier methods to correct for electrical signal distortion resulted in the reli-
able generation of optical pulse shapes that were in good agreement with the simulations
(see figure 23). In the current system a maximum visibility of V max = 0.95(1) accom-
panied by a contrast of 16(1) dB was reached. We expect to be able to improve these
values in the future by adapting the pulse generation setup as discussed in section 3.3.

A QD sample embedded in a nanowire structure was excited into its |XX〉 state via
two-photon resonant excitation and the emitted photons were analysed by a spectrom-
eter and superconducting nanowire single photon detectors. The use of a pulsed laser
source demonstrated Rabi-oscillations between the ground state and the |XX〉 state
and application of a π-pulse of strength 94(5)× 10−8 W resulted in a maximum state
population probability of 0.64(1) for the |XX〉 state and 0.58(1) for the |X〉 state (see
figure 29). This shows that state manipulation in a QD can be achieved by the use of
laser pulses and QDs can be used as a controllable single-photon (photon-pair) source
needed for the implementation of optical quantum computation [8].

Replacing the pulsed laser source with the fibre coupled MZI pulse shaper did not
show purely coherent excitation but introduced incoherent excitation processes due to
the need for pulse widths that were longer than the lifetimes of the electronic states,
resulting in natural dephaseing. Correcting for these incoherent processes revealed Rabi-
oscillations and a maximum emission intensity was recorded after the application of a
π-pulse of strength 231(2)× 10−8 W (see figure 27).

We performed time-resolved photoluminescence spectroscopy on the emitted photons
after excitation via the MZI pulse generation setup and thus investigated the lifetimes of
the |XX〉 and |X〉 states. Because the transition |XX〉 → |X〉 showed a bi-exponential
behaviour we assigned two different lifetimes (τfast and τslow). This bi-exponential decay
is expected to be a result of the long excitation pulses (500 ps), whose duration is at the
order of the extracted lifetimes and leads to natural dephasing of the states. Another
reason for the bi-exponential decay could be due to residual laser intensity after the
excitation pulses leading to stimulated emission from the |XX〉 state. This assumption
is supported by the decrease of τfast for higher excitation powers, as seen in figure 31.
Photons emitted from the |X〉 state showed clear evidence for undesired single-photon
excitation, i.e. a photon count that was more than five times higher than the XX photon
count and had the shape of the excitation pulse. Although most photons emitted out
of the |X〉 state could be assigned to a single-photon excitation process, we identified a
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region that corresponds to the transition |XX〉 → |X〉 → |0〉 by the use of the model
derived in section 2.5. All extracted lifetimes can be found in table 4 and figure 31.
Comparison with a previous lifetime measurement on the same sample showed two life-
times τXX = 1.5(2) ns and τX = 3.1(5) ns which are roughly an order of magnitude longer
than our values (supplementary material of [70]). This is most likely to the different
excitation scheme utilizing a CW pump.

The presented fibre-coupled MZI pulse shaper is capable of reliably producing arbi-
trary pulse shapes with good accuracy. However, it was not capable of exciting the QD
in a purely coherent way. This is attributed to the long pulse duration which is at the
order of the state’s lifetimes and residual laser light during the “Off” state of the MZI
and could be improved by the means presented in section 3.3. Resolving this issue would
enable the creation of computational useful photon states like cluster states or higher
dimensional time-bin entangled photon-pairs, using the pulse shaping setup described
in this thesis [71–73].

Similar to [74], the precise electrical control of a phase-shifting EOM, achieved in this
thesis, could also be utilised to perform phase shifting operations on single photons and
could demonstrate a ”photon sorter” for time-bin entangled photons.
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A Appendix

A.1 Three dimensional infinite well

In this section the eigenfunctions and eigenenergies of a three dimensional infinite well
are calculated. The potential of such a problem is written as

V (x, y, z) =
{0 if 0<x<Lx ∧ 0<y<Ly ∧ 0<z<Lz

∞ else
(A.1)

which describes a box of size Lx × Ly × Lz. Assuming that each direction can be
described independent of the other two the ansatz for the wavefunction is chosen as

ψ(r) = ψx(x)ψy(y)ψz(z) (A.2)

with

ψl(l) = Ale
ikll +Ble

−ikll (A.3)

where l ∈ {x, y, z}. This results in three identical one dimensional problems that can
be solved independent of each other. By invoking the first boundary condition that the
wavefunction can not exist outside the well (l ≤ 0)

ψl(l = 0) = 0 = Al +Bl (A.4)

the constant Bl is determined to be −Al which lets equation (A.3) become

ψl(l) = Aeikll − Ae−ikll =

Ã︷︸︸︷
i2A sin(kll). (A.5)

Here the identity sin(x) = 1
i2

(eix − e−ix) is used and a new constant Ã is introduced.
Invoking the second boundary condition that for l ≥ Ll the wavefunction also has to
vanish gives

ψl(l = Ll) = 0 = Ã sin(klLl). (A.6)

This condition is fulfilled if klLl = nπ with n ∈ N6=0. An expression for

kl =
nπ

Ll
(A.7)

is found. Finally, by utilising the regular normalisation condition∫ Ll

0

‖ψl(l)‖2dl = 1 =

∫ Ll

0

Ã2 sin2(
nπ

Ll
l)dl (A.8)

Ã is found to has a value of
√

2
Ll

. The final form of the one dimensional wavefunction

equation (A.3) is
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ψnl (l) =

√
2

Ll
sin

(
nπ

Ll
l

)
. (A.9)

Solving the time-independent one dimensional Schrödinger equation

−~2

2m

∂2

∂l2
ψnl (l) + V (l)ψnl (l) = Enψ

n
l (l) (A.10)

for eigenenergies En yields

En =
~2π2n2

2mL2
l

. (A.11)

The solutions to the one dimensional infinite well equation (A.9) and equation (A.11)
are illustrated in figure 32 and a detailed treatment can also be found in various intro-
ductory textbooks, e.g. [75].

Figure 32: Solutions to the one dimensional infinite well problem for eigenen-
ergies En with n ∈ {1, 2, 3}. If n is an odd number the corresponding wave-
function ψnl is symmetric around Ll/2, while for an even quantum number n
the solution is antisymmetric.
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Generalizing the solution for three dimensions via equation (A.2) gives an expression
for the eigenenergies

Enx,ny ,nz =
~2π2

2m
(
n2
x

L2
x

+
n2
y

L2
y

+
n2
z

L2
z

) (A.12)

depending on the quantum numbers nx, ny, nz ∈ N6=0. This expression is further dis-
cussed in section 2.1.2.

A.2 Derivation of the atomic Hamiltonian

A justification of the Hamiltonian 2.21 in section 2.4 is presented here by relating the
quantum mechanical motion of a charged particle under the influence of an electromag-
netic field to its classical counterpart. This derivation follows [46]. The classical equation
of motion for charged particles is called the Newton-Lorentz equation and reads as fol-
lows:

m
dv

dt
= q(v×B(r(t), t) + E(r(t), t)) (A.13)

where v is the velocity of a particle with charge q and E(r(t), t) and B(r(t), t)) are the
electric and magnetic fields acting on it. E(r, t) and B(r, t) are related to the potentials
A(r, t) and U(r, t) via:

E(r, t) = −∂A(r, t)

∂t
−∇U(r, t) (A.14)

B(r, t)) =∇×A(r, t) (A.15)

Showing that equation (2.21) results in a quantum mechanical expression that is in
agreement with the experimentally verified classical equation of motion (equation (A.13))
justifies this Hamiltonian to describe the system.

Quantum mechanical equations of motion

First, the velocity operator v̂ has to be introduced such that

〈v̂〉 =
d

dt
〈r̂〉 , (A.16)

with 〈â〉 being the expectation value of an operator â. The time derivative of an operator
is defined as:

d

dt
〈â〉 =

1

i~

〈[
â, Ĥ

]〉
+

〈
∂â

∂t

〉
(A.17)

with
[
â, Ĥ

]
= âĤ − Ĥâ being the commutator of â and Ĥ. This equation can be used

to describe the right hand side of equation (A.16). U(r̂, t) only contains the position
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operator r̂ = (x̂, ŷ, ẑ)T and therefore commutes with any element of r̂. As a result the
commutator of equation (A.17) can be written as〈[

û, Ĥ
]〉

= i~
〈
p̂u − qAu(r̂, t)

m

〉
(A.18)

where u ∈ {x, y, z}. Since the position operator does not explicitly depend on time
explicitly the second term on the right hand side of equation (A.17) is zero and equa-
tion (A.17) can be written as

d 〈û〉
dt

=

〈
p̂u − qAu(r̂, t)

m

〉
. (A.19)

This leads to an expression for the velocity operator v̂ of

v̂ =
p̂− qA(r̂, t)

m
. (A.20)

The derivative of the left hand side of equation (A.13) can again be evaluated using
equation (A.17)

d 〈v̂u〉
dt

=
1

i~

〈[
v̂u, Ĥ

]〉
+

〈
∂v̂u
∂t

〉
. (A.21)

This time the second term on the right hand side depends explicitly on time since A(r̂, t)
shows time dependence and using equation (A.20) it reads as

∂v̂u
∂t

= − q

m

∂Au(r̂, t)

∂t
. (A.22)

In order to evaluate the commutator of equation (A.21) it is helpful to rewrite equa-
tion (2.21) in terms of v̂

Ĥ =
mv̂2

2
+ qU(r̂, t). (A.23)

Utilising the properties of the commutator operation
[
Â+ B̂, Ĉ

]
=
[
Â, Ĉ

]
+
[
B̂, Ĉ

]
,[

Â, Â
]

= 0 and
[
Â, B̂Ĉ

]
=
[
Â, B̂

]
Ĉ + B̂

[
Â, Ĉ

]
the commutator of equation (A.21)

reads as [
v̂x, Ĥ

]
=
m

2
(
[
v̂x, v̂

2
y

]
+
[
v̂x, v̂

2
z

]
) + q[v̂x, U(r̂, t)] (A.24)

with u = x for a better geometrical understanding and[
v̂x, v̂

2
y

]
= v̂y[v̂x, v̂y] + [v̂x, v̂y]v̂y. (A.25)

Investigating the first commutator on the right hand side of equation (A.25) and using
equation (A.20) leads to the expression
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[v̂x, v̂y] = − q

m2
([p̂x, Ay(r̂, t)] + [Ax(r̂, t), p̂y] (A.26)

which, by applying the generalised form of the canonical commutation relation [p̂u, g(r̂)] =

−i~∂g(r̂)
∂u

and equation (A.15), can be evaluated to be equal to

[v̂x, v̂y] =
i~q
m2

(
∂Ay(r̂, t)

∂x
− ∂Ax(r̂, t)

∂y
) =

i~q
m2

Bz(r̂, t). (A.27)

Substituting into equation (A.25) yields[
v̂x, v̂

2
y

]
=
i~q
m2

(v̂yBz(r̂, t) +Bz(r̂, t)v̂y) (A.28)

and similarly for the second commutator of equation (A.24)[
v̂x, v̂

2
z

]
=
i~q
m2

(v̂zBy(r̂, t) +By(r̂, t)v̂z). (A.29)

The final commutator of equation (A.24) can be simplified by again using the gener-
alised form of the canonical commutation relation and gives

[v̂x, U(r̂, t)] =
1

m
[p̂x, U(r̂, t)] = −i~

m

∂U(r̂, t)

∂x
. (A.30)

Substituting equation (A.22) and equation (A.30) into equation (A.21) finally gives
the result

d 〈v̂x〉
dt

=
q

m
(
1

2

〈
v̂yB̂z − v̂zB̂y + B̂zv̂y − B̂yv̂z

〉
−
〈
∂U(r̂, t)

∂x
+
∂Ax(r̂, t)

∂t

〉
). (A.31)

Evaluating d〈v̂y〉
dt

and d〈v̂z〉
dt

in a similar fashion, relating the right hand side of equa-
tion (A.31) to the electric field via equation (A.14) and the cross product v×B gives
the vector equation

m
d 〈v̂〉

dt
= q

〈
v̂×B(r̂, t)−B(r̂, t)× v̂

2

〉
+ q 〈E(r̂, t)〉 (A.32)

which looks very similar to equation (A.13). Equation (A.32) is the quantum mechanical
analogue of the classical equation of motion for a charged particle in an electromagnetic
field. Showing that the Hamiltonian of equation (2.21) results in motion that is in agree-
ment with the well understood classical theory, indicates that the Hamiltonian indeed
describes the motion of charged particles and can be used to describe the interaction of
an electron bound to a nucleus under the influence of an electromagnetic field.
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A.3 Solving for Rabi oscillations

In this section the transition probability equation (2.46) is calculated starting from the
Hamiltonian shown in equation (2.45). Since the Hamiltonian consists of two separate
terms Ĥ = Ĥ0 + Ĥ1 where Ĥ0 is the regular atomic Hamiltonian, a wave-function of the
form

|Ψ〉 = α0(t)e−
i
~ Ĥ0t |0〉+ α1(t)e−

i
~ Ĥ0t |1〉 (A.33)

is a suitable ansatz. |0〉 and |1〉 are eigenstates of Ĥ0 and α0(t) and α1(t) are time
dependent variables for which the usual normalisation condition

‖α0(t)‖2 + ‖α1(t)‖2 = 1 (A.34)

must be fulfilled. Since |0〉 and |1〉 are eigenstates of Ĥ0, the time evolution can be

transformed via e−
i
~ Ĥt |n〉 = e−

i
~Ent |n〉 where |n〉 are eigenstates of Ĥ with corresponding

eigenenergies En. As stated by equation (2.41) the eigenenergies of |0〉 and |1〉 are −ω0

2

and +ω0

2
respectively and ω0 represents the atomic transition frequency. This lets |Ψ〉

become
|Ψ〉 = α0(t)e

i
~
ω0
2
t |0〉+ α1(t)e−

i
~
ω0
2
t |1〉 . (A.35)

Pulling out and dropping a common phase e
i
~
ω0
2
t leaves

|Ψ〉 = α0(t) |0〉+ e−
i
~ω0t |1〉 (A.36)

which is the same as shifting the zero-energy point such that E0 = 0. This lets the
Hamiltonian of equation (2.45) be written as:

Ĥ = ~
(

0 Ω0 cos(ωt)
Ω0 cos(ωt) ω0

)
= ~(Ω0 cos(ωt)(|0〉〈1|+ |1〉〈0|) + ω0 |1〉〈1|) (A.37)

where Ω0 describes the coupling strength in the dipole approximation (equation (2.44)).
Time evolution of quantum systems is governed by Schrödinger’s equation

i~
d

dt
|Ψ〉 = Ĥ |Ψ〉 (A.38)

and projecting onto the eigenstate 〈0| gives

i~ 〈0| d
dt
|Ψ〉 = 〈0|Ĥ|Ψ〉 (A.39)

iα̇0 = Ω0 cos(ωt)α1e
−iω0t (A.40)

with α̇i = d
dt
αi(t). Using the identity cos(x) = 1

2
(eix + e−ix) equation (A.40) can be

rewritten as
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iα̇0 =
Ω0α1

2
(e−i(ω0−ω)t + e−i(ω0+ω)t). (A.41)

Calling ∆ = ω0−ω the detuning and applying the rotating wave approximation assuming
∆� ω0 + ω gives the first order differential equation

iα̇0 =
Ω0α1

2
e−i∆t. (A.42)

Following the same steps for projecting onto the eigenstate 〈1| results in another first
order differential equation

iα̇1 =
Ω0α0

2
ei∆t (A.43)

which is coupled to equation (A.42) via α0. Decoupling these equations is achieved by
performing another time derivative on equation (A.43)

iα̈1 =
Ω0

2
α̇0e

i∆t + i∆
Ω0

2
α0e

i∆t. (A.44)

Substituting equation (A.42) and equation (A.43) into equation (A.44) yields the un-
coupled second order differential equation

0 = α̈1 − i∆α̇1 +
Ω2

0

4
α1. (A.45)

Using the ansatz α1(t) = eiλt and evaluating equation (A.45) gives

0 = λ2 −∆λ− Ω2
0

4
(A.46)

which has two solutions for λ, namely

λ1,2 =
∆±

√
∆2 + Ω2

2
. (A.47)

The general solution to this problem is given by

α1 = A exp

(
i
∆ +

√
∆2 + Ω2

0

2
t

)
+B exp

(
i
∆−

√
∆2 + Ω2

0

2
t

)
. (A.48)

If the system at t = 0 is known to be in state |0〉 the starting condition ‖α1(t = 0)‖2 =
0 defines A and B to have the relation A = −B and rewriting Ω =

√
∆2 + Ω2

0 gives

α1 = Aei
∆
2
t(ei

Ω
2
t − e−i

Ω
2
t). (A.49)

Using another identity sin(x) = 1
i2

(eix − e−ix) leads to the expression

α1 = Ai2ei
∆
2
t sin

(
Ω

2
t

)
. (A.50)
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Together with equation (A.43) this gives an expression for α0

α0 = i
2

Ω0

e−i∆tα̇1 = −A 2

Ω0

e−i
∆
2
t(i∆ sin

(
Ω

2
t

)
+ cos

(
Ω

2
t

)
Ω) (A.51)

and by invoking the second starting condition ‖α0(t = 0)‖2 = 1, A is determined by

A = −Ω0

2Ω
. (A.52)

Finally α1 can be written as

α1 = −iΩ0

Ω
ei

∆
2
t sin

(
Ω

2
t

)
(A.53)

and since ‖α1(t)‖2 is an expression for the probability of finding the system in state |1〉
at a given time t the final result is

P0→1(t) = ‖α1(t)‖2 =
Ω2

0

Ω2
sin2(

Ω

2
t). (A.54)

Equation (2.46) is thereby calculated by evaluating the time evolution of the Hamil-
tonian equation (A.37) and further discussed in section 2.4.

A.4 Life times of two coupled energy levels

In this section the model used in section 2.5 to describe the radiative behaviour of two
coupled energy levels is derived. The coupled rate equations of equation (2.48) can be
written in matrix representation as(

ṄXX

ṄX

)
=

(
−ΓXX 0
ΓXX −ΓX

)(
NXX

NX

)
(A.55)

where ṄXX = dNXX
dt

and ṄX = dNX
dt

. Solving the eigenvalue and eigenvector problem of
the coefficient matrix gives the eigenvalues λi and the corresponding eigenvectors vi.

λ1 = −ΓXX ; v1 =

(
1

− ΓXX
ΓXX−ΓX

)
λ2 = −ΓX ; v2 =

(
0
1

) (A.56)

This lets the general solution be constructed as:

(
NXX

NX

)
= Av1e

λ1t +Bv2e
λ2t = A

(
1

− ΓXX
ΓXX−ΓX

)
e−ΓXX t +B

(
0
1

)
e−ΓX t. (A.57)
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Using the starting condition NXX(t = 0) = N0, meaning that the occupation of the
|XX〉 state at t = 0 is known, determines the constant A = N0. Assuming that all
particles start off in the |XX〉 state gives the second starting condition NX(t = 0) = 0
and specifies the constant B via

NX(t = 0) = 0 = −N0
ΓXX

ΓXX − ΓX
+B ⇒ B = N0

ΓXX
ΓXX − ΓX

. (A.58)

This leads to the final expression of

NXX =N0e
−ΓXX t

NX =N0
ΓXX

ΓXX − ΓX
(e−ΓX t − e−ΓXX t)

(A.59)

which is used to model the time dependent radiative behaviour of the biexciton state
feeding into the exciton state and utilised in section 3.2.2 to extract lifetime values.

A.5 Natural constants

Table 5: List of constants of nature used in this work. If no uncertainty is
shown the value is expected to be known exactly. Values and uncertainties
are taken from [76].

Symbol Name of constant Value and standard uncertainty
~ reduced Planck constant 1.054 571 817× 10−34 J s
me electron mass 9.109 383 701 5(28)× 10−31 kg
kB Boltzmann constant 1.380 649× 10−23 J K−1

ε0 vacuum electric permittivity 8.854 187 812 8(13)× 10−12 F m−1
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A.6 Additional information

Figure 33: Bode diagram of the photo-diode (DRF, DXM30AF) provided by
the manufacturing company (Thorlabs).
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