
Univerza v Ljubljani

Fakulteta za računalnǐstvo in informatiko

Matej Hrlec

Brezžični protokol in podpora za

navidezno resničnost za upravljanje

brezpilotnih zrakoplovov

MAGISTRSKO DELO

ŠTUDIJSKI PROGRAM DRUGE STOPNJE

RAČUNALNIŠTVO IN INFORMATIKA

Mentor: asst. prof. Friedrich Fraundorfer, PhD

Somentor: izr. prof. dr. Matija Marolt

Ljubljana, 2019

University of Ljubljana

Faculty of Computer and Information Science

Matej Hrlec

Wireless protocol and virtual reality

support for controlling unmanned

aerial vehicles

MASTER’S THESIS

THE 2ND CYCLE MASTER’S STUDY PROGRAMME

COMPUTER AND INFORMATION SCIENCE

Supervisor: Asst. Prof. Friedrich Fraundorfer, PhD

Co-supervisor: Assoc. Prof. dr. Matija Marolt

Ljubljana, 2019

Rezultati magistrskega dela so intelektualna lastnina avtorja in Fakultete za ra-

čunalnǐstvo in informatiko Univerze v Ljubljani. Za objavljanje ali izkorǐsčanje

rezultatov magistrskega dela je potrebno pisno soglasje avtorja, Fakultete za ra-

čunalnǐstvo in informatiko ter mentorja1.

1V dogovorju z mentorjem lahko kandidat magistrsko delo s pripadajočo izvorno kodo

izda tudi pod drugo licenco, ki ponuja določen del pravic vsem: npr. Creative Commons,

GNU GPL. V tem primeru na to mesto vstavite opis licence, na primer tekst [8].

Izjava o avtorstvu magistrskega dela

Spodaj podpisani Matej Hrlec sem avtor magistrskega dela z naslovom:

Brezžični protokol in podpora za navidezno resničnost za upravljanje brezpi-

lotnih zrakoplovov

S svojim podpisom zagotavljam, da:

• sem magistrsko delo izdelal samostojno pod mentorstvom doc. prof. dr.

Friedrich Fraundorferja in somentorstvom izr. prof. dr. Matija Marolt,

• so elektronska oblika magistrskega dela, naslov (slov., angl.), povzetek

(slov., angl.) ter ključne besede (slov., angl.) identični s tiskano obliko

magistrskega dela,

• soglašam z javno objavo elektronske oblike magistrskega dela v zbirki

”Dela FRI”.

• izvorna koda je objavljena na javnem skladǐsču:

https://github.com/HrlecMatej/RCAndVRSupportForDrones

V Ljubljani, 22. oktober 2019 Podpis avtorja:

I would start by extending my thanks to Assist. Prof. Dr. Friedrich

Fraundorfer for being my mentor during my stay in Graz, providing a topic

to work on and finding time to discuss ideas for the thesis. This would be

followed by thanks to Assoc. Prof. Dr. Matija Marolt, who not only mentored

me for my Bachelor’s Thesis, but again did so for my Master’s and also helped

me with the registration process.

First, I would thank Dr. Jesús Pestana Puerta for helping me get thor-

ough the hurdles of setting up ROS. Through his tutelage I learned a lot

about drone development and had quite a programming exercise with concur-

rent work on Android while at the same time battling time to get our test

flight going.

Second, I am grateful to MSc (soon-to-be Dr.) Werner Alexander Isop

for instructions on drone development during Camera Drones lecture and

later bringing me up on his project of meshing together VR and drones with

a plethora of innovative ideas, which I am sure will be soon concluded with

his PhD.

Since I spent much time there, I would like to express gratitude to the

Institute of Computer Graphics and Vision for providing me a nice and cosy

place to conduct my work and commend all the staff there for their friendli-

ness.

Special thanks to my faraway friend Dartimos, who proof-read the docu-

ment for nothing but gratitude in return.

My families contributions for bringing me up to this point and being by

my side all throughout my life had also an unquantifiable beneficial impact

that could never be repaid. And last, I am thankful for my partner Manuela’s

support and love through more or less all of our joint (now finishing) student

life.

Contents

Razširjeni povzetek i

I Uvod . i

II Pregled podobnih del . iii

III MAVLink podpora za DJI letalnike iv

IV ROS vtičnik za navidezno resničnost x

V Sklep . xiv

1 Introduction 17

1.1 Motivation . 20

1.2 Contributions . 21

1.3 Framework specifications . 22

2 Tools 25

2.1 Robot Operating System . 25

2.2 DJI M100 . 26

2.3 MAVLink . 27

2.4 HTC Vive . 29

2.5 Parrot Bebop 2 and RotorS 30

2.6 RViz . 31

2.7 OGRE . 33

2.8 OpenVR and SteamVR . 33

3 DJI drone MAVLink support 35

3.1 Related work . 35

CONTENTS

3.2 Connection options . 38

3.3 Creating a MAVLink dialect 39

3.4 File transfer over the link . 41

3.5 Android project . 42

3.6 ROS project . 48

3.7 Integration with QGroundControl 51

3.8 Flight test . 53

3.9 Throughput test . 54

3.10 Result . 55

3.11 Challenges . 59

4 VR-HMD ROS interface 61

4.1 Related work . 61

4.2 Plugin system . 65

4.3 Plugin startup . 65

4.4 Virtual scene setup . 67

4.5 Stereo cameras setup . 68

4.6 Render loop . 69

4.7 Reading out pose estimates 73

4.8 Vive controllers integration . 75

4.9 Simulation in Gazebo . 76

4.10 Adaptive view management 78

4.11 Our approach . 79

4.12 Result . 79

4.13 Challenges . 81

5 Conclusion and future work 83

5.1 Concluding remarks . 83

5.2 Future work . 85

List of used acronyms

acronym meaning

API Application Programming Interface

AOI Area of Interest

GCS Ground Control System

GPS Global Positioning System

GUI Graphical User Interface

HMD Head-Mounted Display

IDE Integrated Development Environment

RC Remote Controller

ROS Robot Operation System

SfM Structure from Motion

UAV Unmanned Aerial Vehicle

VR Virtual Reality

Povzetek

Naslov: Brezžični protokol in podpora za navidezno resničnost za upravl-

janje brezpilotnih zrakoplovov

Naraščajoča priljubljenost potrošnǐskih brezpilotnih letalnikov je posled-

ica bistvenega napredka pri avtonomnosti avtopilotov in enostavnosti uporabe.

V našem magistrskem delu smo zato želeli razviti nova orodja za brezpilot-

nike, ki bi lahko bile v pomoč pri prihodnjih raziskavah.

Zagotovili smo robustno in prilagodljivo rešitev za komunikacijo, ki temelji

na protokolu MAVLink. Telekomunikacijska povezava je vzpostavljena preko

daljinskega upravljalnika med DJI brezpilotnikom, računalnikom in tabličnim

računalnikom Android. Doseg in zanesljivost naše rešitve smo preizkusili v

simuliranem in zunanjem okolju, kjer se je izkazalo, da je sposobna krmiliti

brezpilotnika pri letu. Prikazali smo tudi koncept za integracijo z obstoječo

zemeljsko kontrolno postajo. Da bi omogočili dodatne metode vizualizacije

in manipulacije, smo razvili popolnoma integrirano orodje za ROS, ki temelji

na OpenVR API-ju. Slednji zagotavlja vmesnike za uporabo večine očal za

navidezno resničnost in krmilnikov preko vizualizatorja RViz. Hkrati smo

preučili uporabo omenjenega orodja pri prilagodljivem upravljanju pogleda

v raziskovalnem scenariju, kjer je operaterju letalnika zagotovljen pregled

nad interesnim območjem preko sekundarne navidezne kamere ali letalnika.

Ključne besede: brezpilotnik, letalnik, zrakoplov, DJI, ROS, MAVLink,

Android, C++, pluginlib, avtonomni let, navidezna resničnost, RViz.

Abstract

Title: Wireless protocol and virtual reality support for controlling unmanned

aerial vehicles

The growing popularity and affordability of consumer drones is driven by

continuous advances on ease of use and autonomy. In our work we aspired

to provide more development options for UAVs, by looking into tools to help

with future research.

We provided a robust and scalable solution for communication based on

MAVLink protocol between DJI drones, its onboard computer, and an An-

droid tablet computer, where the telecommunication link is established over

the remote controller. We tested the range and reliability of our framework

in simulated and real-life environments where it proved fully capable of steer-

ing a drone on flight missions. We also did a proof of concept integration

with an existing ground control station. To allow for additional methods

of visualization and manipulation, we also developed a fully ROS-integrated

tool based on the OpenVR API that provides support for most VR headsets

and controllers through RViz visualizer. We furthermore looked into using

that tool for adaptive view management in an exploration scenario, where

the drone operator is provided an overview of the area of interest through a

secondary virtual camera or drone.

Keywords: drone, unmanned aerial vehicle, DJI, ROS, MAVLink, An-

droid, C++, pluginlib, autonomous flight, virtual reality, RViz.

Razširjeni povzetek

I Uvod

S pojavom cenovno ugodnih brezpilotnikov je začela njihova prodaja strmo

rasti. Medtem ko so jih včasih uporabljali predvsem v vojski, za letalsko fo-

tografijo ali kot majhne igrače za zabavo, sodobni civilni letalniki izpolnjujejo

najrazličneǰse naloge tako za osebne kot tudi za komercialne namene. Upora-

bljajo se lahko npr. za celovit pregled industrijskih objektov, fotografiranje

in snemanje posebnih dogodkov, kot npr. porok in odprtja olimpijskih iger,

v kmetijstvu za pastirstvo in pregledovanje pridelkov, v iskalnih in reševalnih

misijah na težko dostopnih krajih, za pomoč pri prodaji nepremičnin s kako-

vostnimi slikami nepremičnin, za dostavo manǰsih paketov in pregledovanje

velikih površin.

Največji izdelovalec brezpilotnikov je DJI, ki za svoje produkte razvija la-

stno programsko opremo. API-ji za letalnike zagotavljajo hitre in učinkovite

klice funkcij, na primer za prenos videa, osnovne podatke o letu ali daljinsko

krmiljenje. Težava izhaja iz zelo omejenih možnosti ustvarjanja aplikacij po

meri in prenosa poljubnih podatkov. Trenutno uporabljena rešitev za zagon

programov in sprejemanje podatkov je uporaba Wi-Fi povezave med zemelj-

sko nadzorno postajo in računalnikom, vgrajenim v brezpilotnik. Slabost

tovrstne povezave so omejitve v dosegu komunikacije.

V tem stoletju je kot posledica preboja računalnǐske tehnologije, zlasti

majhnih in močnih mobilnih tehnologij, prǐslo do velikega napredka v ra-

zvoju navidezne resničnosti (NR) [27]. Zagon v veliki meri sloni na razvoju

i

ii CONTENTS

pametnih telefonov z visokoločljivimi zasloni in zmogljivo podporo za 3D

grafiko, obenem pa je zniževanje cen njihovih strojnih komponent omogočilo

razvoj nove generacije lahkih NR naprav. Industrija video iger je razvoj po-

trošnǐske NR še dodatno pospešila. Krmilniki gibanja, prepoznavanje potez,

senzorji kamer v globini in naravni človeški vmesniki so že del trenutne iz-

bire potrošnikov. Večina cenovno dostopnih očal se ponaša z visokoločljivimi

zasloni, sledenjem do 6 stopinj svobode in običajno tudi možnostjo uporabe

ročnih krmilnikov.

V prvem delu magistrskega dela se osredotočamo na zagotavljanje robu-

stne in razširljive rešitve za komunikacijo med brezpilotnim letalom DJI M100

in tabličnim računalnikom z operacijskim sistemom Android, ki je priložen

daljinskemu krmilniku drona (RC). Telekomunikacijska povezava je dosežena

prek RC-ja. Ta preskusna povezava je v skupni rabi z običajno komuni-

kacijsko povezavo RC to drone, le majhna pasovna širina je rezervirana za

komunikacijsko povezavo tabličnega računalnika. Na vgrajenem računalniku

drona je medprocesna komunikacija dosežena s programsko opremo Robot

Operating System (ROS).

Ker je pasovna širina komunikacijske povezave med tablico in dronom

zelo omejena, mora biti protokol sporočanja lahek in jedrnat, kar nas je

pripeljalo do izbire komunikacijskega protokola Micro Air Vehicle Link (MA-

VLink). Določili smo arhitekturo programske opreme, nov sklop sporočil,

podobnih ROS-u, in protokol za prenos datotek, ki nam nudi okvir za dose-

ganje učinkovite in prilagodljive komunikacije med brezpilotnimi letali serije

DJI M in pametnim vmesnikom App. Z zasnovo ogrodja, ki uporablja MA-

VLink, zagotovimo učinkovito uporabo zelo omejene pasovne širine brezžične

povezave in omogočimo daljinsko upravljanje brezpilotnika brez uporabe sta-

cionarnih zemeljskih nadzornih postaj, kot so namizni računalniki.

Izvedli smo nabor eksperimentalnih preizkusov letenja v zunanjem oko-

lju, s katerim smo testirali zanesljivost sistema, in niz preskusov za merjenje

pretočnosti prenosa. Nadalje smo si ogledali učinke razdalje na hitrost pre-

nosa, pasovno širino, latenco in doseg.

II. PREGLED PODOBNIH DEL iii

Odločili smo se za uporabo tako očal kot krmilnikov in jih vključili v

rešitev za letenje z brezpilotnimi letali z NR. Za prikaz prizorǐsča pilotu smo

uporabili eno najbolj priljubljenih naprav NR v času pisanja, HTC Vive s

krmilniki Vive, ki se uporabljajo za manipulacijo, in bazne postaje Vive, ki

omogočajo sledenje tem komponentam. Osnovno ogrodje je ROS Indigo za

Ubuntu 14.04, pri čemer paketi med seboj komunicirajo prek ROS sporočil.

Navidezna scena, ki smo jo uporabili pri testiranju, je narejena v Googlovi

programski opremi za 3D modeliranje Sketchup. Fizikalna simulacija zrako-

plova Parrot Bebop 2 in sveta je bila narejena v RotorS, ki je MAVLinkov

simulator za Gazebo. Vizualizacija je bila izvedena v RVizu, ki je namenski

3D vizualizator za ROS. 3D prizor se je nato uporabil v vtičniku, kjer se z

gonilnikom OGRE 3D izrǐsejo ločeni pogledi za zaslona na napravi Vive. Ti

pogledi se pošljejo v kompozitor, ki ga zagotovita OpenVR in SteamVR.

II Pregled podobnih del

Ker so mobilne naprave v nasprotju z računalniki prenosljive, so raziskovalci

[7] zasnovali zemeljsko nadzorno postajo (angl. ground control station -

GCS) na operacijskemu sistemu Android. Z UAV-jem komunicira s pomočjo

protokola TCP/IP, preko katerega se periodično pošiljajo paketi s podatki o

koordinatah GPS, pospeških in hitrosti. Pomanjkljivosti so, da se UAV še

vedno upravlja s standardnim daljinskim upravljalnikom ter da ni prenosa

slike in avtonomnih zmogljivosti.

V raziskavi [3] so naredili pregled različnih možnih arhitektur za komu-

nikacijo med posameznimi ali skupinami brezpilotnikov ter njihovo uporabo

za vodenje podvodnih brezpilotnih vozil. Obravnavali so jih znotraj domene

letečih ad-hoc omrežij (FANET), ki so ob nizki hitrosti primerna za uporabo

v klasičnih mobilnih omrežjih. Poleg tega predlagajo še uporabo omrežij na

zahtevo in lokacijske protokole.

Nedavno je bil objavljen podoben prispevek [21] o integraciji nadzorne

postaje QGroundControl z brezpilotniki DJI z uporabo funkcij, ki jih ponuja

iv CONTENTS

SDK. Ogrodje prestreže ukaze, poslane iz GCS-ja na dron, in pokliče ustrezne

funkcije iz SDK-ja. Slabost je, da je QGroundControl omejen le na nabor

funkcij, ki jih ponuja DJI, in ne omogoča pošiljanja poljubnih podatkov preko

kanala Data Transparent Transmission. Tudi povezava je omogočena le preko

TCP/IP.

Integracijo sistema ROS in 3D pogonov za igre so raziskali za uporabo v

Unity [5] in Unreal Engine [17]. Skupna jima je uporaba spletnih vtičnic

za povezavo med odjemalcem in strežnikom, kjer se 3D objekti prenašajo

preko predpisanih tipov. Sicer pa je uporaba informacij in ukazov, ki bi jih

lahko VR oprema posredovala ostalim ROS vozlǐsčem, otežena, saj vtičnika

ne omogočata direktne integracije s sistemom za izmenjavo sporočil, ki je

ključni del ROS-a. Njuna prednost je v možnosti uporabe vseh naprednih

senčilnikov, vizualizacijskih tehnik in ostalih orodij, ki jih ta dva moderna

pogona za igre omogočata. Vizualizacijsko orodje RViz [11] je po drugi

strani grafično manj dovršeno, vendar je že integrirano v ekosistem ROS in

posledično bolj dostopno razvijalcem, ki so ga navajeni. Vizualizator upo-

rablja grafični pogon OGRE, ki skozi abstrakcijo omogoča uporabo mnogih

sistemskih knjižnic, npr. OpenGL, WebGL in Direct3D.

III MAVLink podpora za DJI letalnike

III.I Možnosti povezav

Razvili smo dva načina za prenos sporočil MAVLink med vgrajenim računalnikom

in sistemom GCS, in sicer preko daljinskega upravljalnika ali Wi-Fi-ja. Osre-

dotočili smo se na prvega, saj je bolj uporaben v primerih, ko je potrebna

stabilna povezava na dolgih razdaljah in žrtvovanje pasovne širine ni težava,

npr. pošiljanje meritev in podatkov o letu. Mobile SDK ponuja tudi ločen

kanal za sprejemanje video prenosa iz kamere. S tem in z možnostjo prenosa

paketov podatkov po meri s sporočili MAVLink je okvir uporaben v večini

primerov, zlasti za lete z dalǰsim dosegom v zunanjih okoljih.

Kadar je potrebna večja pasovna širina, na primer pri prenosu velikih

III. MAVLINK PODPORA ZA DJI LETALNIKE v

paketov podatkov za obdelavo na zemeljski nadzorni postaji, se lahko komu-

nikacija vzpostavi tudi s TCP/IP, najpogosteje prek povezave Wi-Fi. To je

mogoče storiti z usmerjevalnikom kot posrednikom med mobilno napravo in

brezpilotnikom, lahko pa jih neposredno povežemo tudi z mobilno dostopno

točko. V obeh primerih letalnik potrebuje modul za Wi-Fi. Ta način je upo-

raben predvsem za lete v zaprtih prostorih, kjer je za povečanje dosega v več

prostorih mogoče uporabiti številne usmerjevalnike z istim imenom omrežja

(SSID).

III.II Ustvarjanje MAVLink narečja

Ustvarili smo nov nabor definicij sporočil, imenovan MAVLink narečje. Sporočila

so po strukturi podobna sporočilom ROS, ki jih bomo potrebovali za izva-

janje misije leta, in uporabljajo časovne žige ROS, ki so pomembni za sin-

hronizacijo izvajanja tem. Omogočajo nam pošiljanje ukazov za spremembo

položaja in naklona, preklapljanje med različnimi načini leta in prenos po-

datkov o letu na mobilno napravo. Ustvarili smo tudi protokol za prenos

datotek, ki zagotavlja mehanizme za nadomestitev, s katerimi poskušamo

zagotoviti garancijo za prenos. Upoštevati moramo tudi razliko med paketi

in sporočili v našem kontekstu. Velikosti paketov so omejene na 100 B zaradi

DJI jevega protokola za prenos podatkov Data Transparent Transmission, a

ker so sporočila MAVLink običajno večja, so v tem primeru razdeljena na

več paketov in poslana po kosih. Zato moramo imeti v mislih, da lahko pri

ponovnem sestavljanju na strani prejemnika dobimo pokvarjene/neurejene

pakete različnih sporočil.

Za ustvarjanje izvorne kode za knjižnico MAVLink smo uporabili [15]

orodje za ustvarjanje kode, ustvarjeno v Pythonu, ki ponuja ukazne vrstice

in pripomočke na grafičnem vmesniku. Za generiranje kode v specifičnih

programskih jezikih uporablja definicije MAVLink narečij. Po spremembi

definicije sporočila je treba to ponoviti tako za C++ kot za Javo, da zagoto-

vimo sinhronizirano razčlenitev sporočil. Izvorne datoteke C++ se samodejno

ustvarijo pri sestavljanju knjižnice MAVLink.

vi CONTENTS

III.III Android projekt

Androidna aplikacija, ki deluje na tabličnem računalniku, uporablja mobilni

SDK DJI za interakcijo z brezpilotnikom s povezavo preko daljinskega upra-

vljalnika. Za dostop do avtopilota se je potrebno najprej registrirati kot

razvijalec DJI in določiti namen svoje aplikacije, sledi pridobitev kode za

avtorizacijo. Najlažji način za integracijo SDK-ja je uporaba skripte Gradle

build za uvoz knjižnic preko Mavena. Aplikacija se ob zagonu poskusi pove-

zati s kakršnimkoli izdelkom DJI, v tem primeru z daljinskim upravljalnikom,

ki letalniku pošlje poizvedbo o specifikacijah.

Zanimata nas predvsem dve funkciji povratnega klica SDK-ja, ena za

sprejemanje podatkov in druga za pošiljanje podatkov. Obe kot vhodni ar-

gument zahtevata funkcijo, ki se sproži, ko je prenos uspešno opravljen. Ker

lahko obstaja samo ena funkcija, ki se v obeh primerih imenuje funkcija po-

vratnega klica, je treba posebno pozornost nameniti organiziranju ukazov v

čakalno vrsto. Za pridobitev izvorne kode in razčlenjevalca sporočil MAVLink

uporabljamo generator kod, ki ustvari kodo za branje sporočil v jeziku Java.

Poenostavljena predstavitev celotnega delovnega toka je razvidna iz tega di-

agrama 3.3.

Povratni klic za prejemanje podatkov se sproži, ko je prejet kateri koli

paket, ki ima pravilen kontrolni seštevek (angl. checksum). Parameter funk-

cije nato poda paket kot niz bajtov, ki jih je treba razčleniti, da bi prejeli

kakršnekoli koristne podatke. Da bi to dosegli, uporabimo pomožni razred,

ki ga ponuja generator kode MAVLink Java, ki razčleni bajt po bajt in vrača

trenutni napredek sestave sporočila, kar nam tudi pove, katero polje sporočila

je bilo nazadnje prejeto. Prva vrednost, ki se jo pričakuje, je čarobna številka,

ki nam pove različico protokola MAVLink. Če se zgodi napaka, se razčlenilec

resetira in čaka na prihod novega sporočila, medtem ko ignorira preostale

bajte. Napaka se lahko zgodi, če so paketi nepravilno urejeni, če je sporočilo

večje od 100 B, če kontrolni seštevek ni pravilen ali če overitveni ključ ne

more dešifrirati sporočila. Ko je sporočilo končno sestavljeno, uporabimo

objekta, ki odda vsakemu naročenemu ukazu najnoveǰsi element. Te ulovijo

III. MAVLINK PODPORA ZA DJI LETALNIKE vii

naročniki in izvedejo ustrezne akcije.

Pri odločanju, katero sporočilo naj bo poslano ob določenem času, upo-

rabimo čakalno vrsto prvi noter in prvi ven oz. sklad (FIFO) na niti v

ozadju. Ta čakalna vrsta vsebuje ukaze, katerih naloga je izvesti operacijo,

ki vključuje tudi pošiljanje podatkov letalniku. Če v določenem trenutku ni

nobenih ukazov na voljo, nit spi. V nasprotnem primeru se vzame prvega v

vrsti, sestavi se ustrezno MAVLink sporočilo in se ga kodira v niz bajtov. Ta

se nato razdeli na pakete v velikosti do 100 B in se jih pošlje drug za drugim

s funkcijo za pošiljanje povratnih klicev. Če RC uspešno pošlje vse pakete,

ukaz kliče svojo povratno funkcijo za uspeh in zapusti sklad.

Uspeli smo razviti odzivno aplikacijo, ki v nobenem trenutku ne blokira

uporabnǐskega vmesnika in uporabniku ne preprečuje opravljanje novih na-

log. Na primer pri pošiljanju velike datoteke letalniku sistem ne bo visel in

bo zmogel vmes izvajati druge ukaze, saj se novo sporočilo za pošiljanje na-

slednjega dela datoteke ustvari šele po tem, ko se je preǰsnji sam razrešil, kar

omogoča, da nov uporabnǐski vhod stopi v čakalno vrsto prej. To bi se lahko

izkazalo kot koristno, saj omogoča letenje brezpilotnega letala tudi med pre-

nosom novih parametrov misije. Vse posodobitve uporabnǐskega vmesnika

se izvedejo tudi v ločeni niti, spet kot čakalna vrsta. Zato ukazu, ki izda

zahtevo za risanje, ni treba čakati, da se razreši, ampak lahko nadaljuje z

njegovo izvedbo. Dodajanje preprostih novih sporočil je precej enostavno,

saj zahteva le določitev funkcije preslikave vhodnih vrednosti.

III.IV ROS projekt

Naš ROS paket je bil inicializiran znotraj standardnega catkin delovnega

prostora. Ustvarili smo vozlǐsče (angl. node) ROS. Ta si ime skupine deli z

drugimi vozlǐsči, ki delujejo na vgrajenem računalniku, poskrbi za inicializa-

cijo upravljavca vozlǐsč in ustvari primerek razreda, ki smo mu rekli Tran-

sparentTransmissionAPI (TTApi). Ta TTApi omogoča uporabo MAVLink

mosta preko daljinskega upravljalnika z Data Transparent Transmission ali

TCP/IP, ustvari razčlenjevalnik sporočil MAVLink in inicializira dva razreda,

viii CONTENTS

ki skrbita za sprejemanje in pošiljanje sporočil. Njegova delovna zanka spi v

skladu s hitrostjo zanke, katere različne vrednosti smo kasneje raziskali 3.9.

Kaj se zgodi, ko je sporočilo MAVLink ali sporočilo ROS prejeto, je

določeno v naših vtičnikih. Njihova naloga je inicializirati naročnike in funk-

cije za pošiljanje sporočil. Da se jih prosto zamenjati, da se zagotovi različne

nabore funkcij ali za obdelavo različnih MAVLink narečij. Upravljajo jih z

ROS paketom pluginlib, ki dinamično nalaga vtičnike s pomočjo infrastruk-

ture za gradnjo ROS.

Obdelovalci sporočil so ustvarjeni tako, da jih povežejo z edinstvenim ID-

jem sporočila MAVLink, medtem ko so naročniki običajne ROS vrste. To

je koristno za spreminjanje in razširitev vedenja ogrodja, ne da bi bilo treba

vedeti, kako deluje preostala koda.

Običajno pošiljamo sporočila MAVLink, ko prejmemo vhod iz sistema

ROS, na primer telemetrične podatke z letalnika. Naročnine na teme ROS

so opredeljene v vtičnikih in vsaka ima povezan povratni klic. Odgovorni so

za inicializiranje ustreznega sporočila MAVLink in izpolnjevanje polj. To se

nato serijsko pretvori v splošno sporočilo MAVLink in poda razčlenjevalniku,

ki to razčleni v polje bajtov, kar se nadalje razdeli na pakete v velikosti do

100 B, ki se uporabljajo kot parameter za odjemalca storitev ROS, ki ga nudi

Onboard ROS SDK. Nato avtopilot pošlje pakete aplikaciji Android preko

sprejemnega modula. Za razliko od mobilnega SDK-ja ne dobimo povratnih

informacij, ali je bil prenos uspešen ali ne.

Za prejemanje sporočil imamo naročnino na temo, ki jo ponuja SDK in

nam da polje bajtov, kadar pride nov paket. To se razčleni bajt po bajt,

dokler ni mogoče pridobiti celotnega sporočila MAVLink ali se pojavi na-

paka ali mora preprosto priti več paketov, preden je mogoče sestaviti celotno

sporočilo. Sledi klic funkcije iz vtičnikov, ki uporabljajo to vrsto sporočila,

označeno z msgid. Povratni klic nato izvede potrebna dejanja, kot je letenje

na položaj ali pristanek ali v primeru prenosa datoteke počasno zbiranje po-

datkov iz več sporočil. Potencialno lahko imamo tudi več funkcij, ki prejmejo

isto sporočilo, in vsaka opravi nalogo, določeno v svojem vtičniku.

III. MAVLINK PODPORA ZA DJI LETALNIKE ix

III.V Integracija s QGroundControl

Ko smo uspeli prikazati zanesljiv koncept za naše komunikacijsko ogrodje za

MAVLink, smo preučili tudi možnost, da bi ga vključili v obstoječo zemeljsko

nadzorno postajo. Izbrali smo QGroundControl, saj tudi ta deluje preko

MAVLink protokola, je odprtokoden in deluje na večini operacijskih sistemov.

QGroundControl podpira samo TCP/IP, zato za povezavo z letalnikom 3.5

potrebuje UDP ali TCP most.

Kot del protokola MAVLink naj bi vsako vozilo vsako sekundo pošiljalo

sporočilo Heartbeat, s čimer sporoča svoje zmožnosti in potrdi stabilno pove-

zavo. S tem je vgrajeni računalnik identificiral naš brezpilotni zrakoplov kot

generični MAVLink avtopilot. Poslali smo preproste podatke o telemetriji,

ki so prikazani na desni strani in omogočajo sledenje statusu brezpilotnika.

Aplikacija omogoča načrtovanje kakršnih koli letalskih nalog in ukaze pošlje

kot zaporedje sporočil MAVLink. Ta so zakodirana kot sporočila MAVLink

Command, ki se izvajajo korak za korakom in zahtevajo posebne potrditvene

odgovore obeh strani. Podatki so prav tako strukturirani na način, ki se

močno razlikuje od strukture v DJI ROS. MAVROS ponuja nekaj vtičnikov

za ravnanje s pretvorbo iz ROS-a v slog MAVLink, vendar v obratni smeri

kot v naši situaciji, kar bi pomenilo veliko delovno obremenitev in bi bilo

izven obsega projekta. Kljub temu smo pokazali, da je okvir sposoben za-

gotoviti most med ekosistemom ROS in odprtokodno MAVLink zemeljsko

nadzorno postajo.

III.VI Test prenosa

V okviru naloge smo testirali tudi učinek razdalje in velikosti poslanih pa-

ketov na hitrost pretoka podatkov. Prva slika prikazuje število izgubljenih

sporočil ob pošiljanju na letalnik 3.7. Do 200 metrov razdalje se je izgubilo

zelo malo paketov, nato pa je zanesljivost nenadoma padla. Zdi se, da velikost

sporočila ne vpliva nujno na verjetnost izgube. Kot je najbrž pričakovano,

se je pretok 3.8 zmanǰsal z razdaljo, čeprav se paketi najprej niso začeli izgu-

x CONTENTS

bljati. Opazimo lahko, da oddaljenost močno vpliva na količino poslanih po-

datkov. Razlika med najmanǰso in največjo razdaljo je približno štirikratna.

Ko smo ustvarili grafe za pretok podatkov, prejetih z letalnika, smo re-

zultate strnili v najmanǰso in največjo razdaljo. Posebej smo še prikazali

učinek hitrosti zanke. Na 3.7 lahko opazimo, da hitrost zanke vozlǐsča, ki

ustreza številu poslanih paketov na sekundo, močno vpliva na število izgu-

bljenih paketov. Meritve so zelo nestabilne, vendar lahko vidimo, kako vǐsje

hitrosti zanke povečajo izgubo paketov. Pri najhitreǰsem paketnem prenosu

100 Hz lahko vidimo, da se približno tretjina izgubi pri največji velikosti pa-

keta. Opazimo pa tudi 3.8, da lahko s povečanimi hitrostmi zanke še vedno

dosežemo veliko bolǰsi pretok.

IV ROS vtičnik za navidezno resničnost

IV.I Uporaba vtičnika za RViz

Naše ogrodje za podporo NR je zasnovano tako, da ga uporabljamo kot

vtičnik, ki ga uvozimo v RViz, in nam omogoča interakcijo s sceno s slušalkami

in krmilniki, ki podpirajo OpenVR. Upravlja se s paketom ROS pluginlib, ki

dinamično nalaga vtičnike s pomočjo orodja za gradnjo ROS-a. Upravljalec

vtičnikov ga registrira in inicializira glede na vsebino datoteke package.xml.

To omogoči uporabo vtičnika v kateri koli instanci aplikacije RViz in ga je

mogoče preprosto dodati z grafičnega vmesnika za izbiro vizualizacij, saj

podeduje osnovni razred zaslona RViz. Dodatno prilagajanje izvajanja je

zagotovljeno z uporabo polj, ki jih je mogoče uporabiti za preklapljanje med

upodabljanjem navidezne scene ali prikazovanjem video toka stereo kamer na

očalih. To omogoča krmiljenje navidezne kamere s premikanjem HMD-ja ali

prostim ogledom prizora in spreminjanjem naročnikov na teme (angl. topic)

video pretoka. Pregled delovanja zagona vtičnika in zanke upodabljanja je

prikazan na tej sliki 4.2.

IV. ROS VTIČNIK ZA NAVIDEZNO RESNIČNOST xi

IV.II Zagon vtičnika

Ob vključitvi našega vtičnika v grafičnem vmesniku RViz se najprej sproži

poskus inicializacije OpenVR in poskus povezovanja s katerokoli vključeno

strojno opremo za NR. Če so očala za NR najdena, zahtevamo ekskluziven

dostop do vizualizacije na njegovih zaslonih z zagonom API-ja v aplikacijskem

načinu. Kadar želimo brati le lokacijske podatke, lahko zahtevamo samo

pravico za branje, kar bo kasneje koristno za uporabo krmilnikov.

Ob uspehu API naloži vse podatke za specifično strojno opremo, ki se

uporabijo za nastavitev stvari v OGRE. Ustvarimo tudi dinamične spremen-

ljivke, ki jih lahko spreminjamo med izvajanjem v Rvizu, in njihove ustrezne

povratne klice. Z njimi spreminjamo orientacijo scene zaradi gibanja slušalk,

preklop na stereo-video prenos in spreminjanje tf poslušalcev in oddajnikov.

Nato nadaljujemo s sklicevanjem na delujoči primerek zaslonskega konteksta

RViz, glavno povezavo, ki jo ima zaslon s preostankom RViz, in nam omogoča

dostop do upraviteljev okvirjev in izbire. Dobimo tudi referenco na upravite-

lja scen OGRE, ki upravlja hierarhijo scene, in upravitelja tekstur, ki pozneje

ustvari teksture, ki bodo korelirale z očmi. Nato imamo dve različni nasta-

vitvi za OGRE, odvisno od izbire ciljev upodabljanja: navidezni prizor ali

prikazovanje video toka s stereo kamerami.

IV.III Nastavitev navidezne scene

Začnemo z ustvarjanjem vozlǐsča za uprizoritev prizora, ki predstavlja položaj

glave in je relativen glede na svetovni koordinatni okvir, nanj pa pritrdimo

dva na novo ustvarjena objekta za kameri. Za pravilno projekcijo v OpenVR

potem pridobimo matrike za prevajanje iz očesnega prostora v prostor scene,

ki zagotovijo stereo dispariteto. Uporabimo jih na kamerah, ki predstavljajo

oči.

Če se uporabnik odloči za preklop na stereo-video pretok, pridobimo

objekte za upodabljanje obeh tekstur in odstranimo njihova navidezna vi-

dna polja (angl. viewport), da preprečimo odvečno upodabljanje. Prav tako

xii CONTENTS

spremenimo teksture OpenVR, da sedaj referencirajo teksturi stereo kamer.

IV.IV Zanka za uprizoritev

Začetek iteracije upodabljanja začne RViz, ki najprej obdela svoj uporabnǐski

vmesnik in glavni zaslon v ozadju. Po tem se pokliče povratni klic za poso-

dobitev v našem vtičniku, kjer se obravnavajo preobrazbe, upodabljanje in

oddajanje okvirja v kompozitor OpenVR. Slike, ki so bile v virtualnih prizo-

rih pritrjene na teksture OGRE, so že izdelane in pripravljene za uporabo.

To pa pomeni, da je treba pred premikanjem kamere brezpilotnika in njegove

kamere upoštevati en okvir zamika, čeprav to v resnici ni problem.

Prva stvar, ki jo naredimo, je zahteva za transformacijo tf iz sveta v pozo

navidezne kamere. Vozlǐsče prizorǐsča, ki predstavlja postavitev glave, je

nastavljeno na kardansko glavo, da simulira gledanje skozi kamero.

Sledi klic blokade v kompozitor OpenVR, kar nam omogoči dostop do

položaja opreme za NR in je potrebno za pozneǰsi klic oddaje. To se reši

le približno 2–3 ms pred tem, ko ga mora kompozitor pripraviti na branje,

zato so očala Vive omejena na 90 Hz. V tem času je potrebno izračunati po-

trebne transformacije in pripraviti teksture za izris slike v očalih. Gledǐsče v

navidezni sceni je odvisno od postavitve baznih postaj Vive, lokacije uporab-

nika znotraj prostora, rotacije očal, kompenzacije vrtenja glede na nastavitve

dinamičnih spremenljivk vtičnika in tf transformacije (ki v našem primeru

predstavlja lokacijo kamere na kardanski glavi letalnika). Po vseh teh ope-

racijah dobimo končno transformacijo kamere v navidezni sceni, ki jo s tf

oddamo za kasneǰsi izračun lokacije krmilnikov.

V zadnjem koraku lokacijo kamere rahlo zamaknemo za razdaljo med očmi

in skupaj s teksturami ter opredelitvijo obsega UV koordinat posredujemo

v OpenVR kompozitor. Če je bilo to storjeno znotraj časovnega okvirja, bo

uporabnik končno dobil izrisan prizor v očalih.

IV. ROS VTIČNIK ZA NAVIDEZNO RESNIČNOST xiii

IV.V Branje ocenjenega položaja

Za uporabo očal in krmilnikov za manipulacijo in interakcijo s sceno smo

ustvarili vozlǐsče ROS za branje ocenjenega položaja. Tako kot vtičnik se vo-

zlǐsče začne z inicializacijo API OpenVR, čeprav tokrat zahtevamo le dostop

za branje. Če je uspešen, nam posreduje ID-je, ki jih kasneje uporabimo za

dostop do podatkov.

Glavna zanka torej ne uporablja blokirnega klica za prejem posodobljenih

pozicij kot prej, saj ne potrebujemo sinhronizacije upodabljanja. Vedno zah-

tevamo nove podatke o položaju in jih razčlenimo v tf preobrazbo. Nato jih

objavimo v drevesu tf ločeno 4.5od preostalih tf okvirjev, ki jih uporabljamo

v drugih paketih in vtičniku. To je zato, ker Vive uporablja poljubno koor-

dinatni izhodǐsče, ustvarjeno med Steam’s Room Setup, ki je uporaben samo

za določanje relativnih transformacij iz položaja očal v krmilnike v resničnem

svetu.

Poleg premika in usmeritve krmilnikov nas zanima tudi branje pritiskov

na gumbe. To beremo kot analogne vrednosti z 2D sledilne ploščice in

sprožilca ter dvojǐsče vrednosti z ostalih gumbov. Te podatke objavljamo

kot sporočilo ROS Joy Sensor, ki lahko nosi poljubno število pritiskov gum-

bov in vrednosti osi. To pomeni, da vsako sprejemno vozlǐsče potrebuje

posebno razčlenitev, da lahko pravilno interpretira podatke. Imamo tudi par

naročnikov ROS, za katere lahko objavimo zahtevo po vibracijah.

IV.VI Simulacija v Gazebu

Za zaznavanje trkov in fizikalno simulacijo smo vključili Gazebo kot sklop

paketov ROS. Z njim smo v navidezno upodobitev uvozili urbano območje,

brezpilotne letalnike in interaktivne krmilnike kot fizične objekte. Če bi na

tej točki uporabljali krmilnike kot navidezne roke v sceni, bi bili omejeni le

na interakcijo z okolico, ki je v dosegu roke.

Za razširitev možnosti interakcije s sceno smo uporabili metodo dolgega

dosega rok. Položaj dobimo kot transformacijo med svetom in navideznimi

xiv CONTENTS

krmilniki. Tako pridemo do položaja, do katerega bi se roke želele premikati

v simuliranem prizoru.

Uporabljamo tudi vhod sprožilnega gumba. Oddaljenost roke se line-

arno pomakne od telesa, sorazmerno s tem, kolikor je pritiska na sprožilec.

Usmerjeni vektor je določen s položajem krmilnika in pripadajočo ramo 4.6.

Za začetek interakcije s prizorom lahko uporabimo gumb za prijem (angl.

grip).

IV.VII Upravljanje prilagodljivega pogleda

Nadaljevali smo s prilagajanjem navideznega okolja s teleoperacijo, ki bi

uporabniku nudila okolju prilagojeno gledǐsče, ki bi se samodejno prilagajalo

za izbolǰsanje varnosti in nemoteno delovanje uporabnika.

Naš načrt je bil zagotoviti dva vmesnika za vizualizacijo okolja. Eden

izmed njih je upodabljanje navideznega prizora, kar je uporabno za izvajanje

simuliranih letov ali letenje na prostem v svetu, kjer ne bi pričakovali veliko

dinamičnih sprememb. Druga možnost je ogled sveta s stereo kamero na

krovu drona, ki bi omogočila takoǰsen pogled na trenutni prizor, resničen ali

simuliran. Za povečanje razumljivosti scene v teh dveh različnih primerih

uporabljamo navidezni pogled preko očal za NR, kar bi lahko tudi zmanǰsalo

zapletenost naloge zaradi razumevanja globine.

Naš prototip postavi gledǐsče v orbito brezpilotnika, kjer ostane in sledi

na določeni razdalji. Uporabnik lahko intuitivno prilagodi kot gledanja z gibi

očal za NR 4.7. Če na primer pogledamo levo, se bo navidezna kamera preu-

smerila okoli navpične osi zrakoplova, s pogledom navzdol pa jo bo usmerila

okoli vodoravne osi. Z uporabo naravnih gibov glave kot metode vnosa bi

moral uporabnik imeti možnost, da hitro najde primerno gledǐsče.

V Sklep

V magistrskem delu smo raziskali možnosti razširitve orodij za razvijalce

brezpilotnikov, ki podpirajo ROS. Predlagali in implementirali smo ogrodje,

V. SKLEP xv

ki omogoča dodajanje novih ukazov za letalnike DJI na večjih razdaljah z

uporabo daljinskega upravljalnika in integracijo podpore za NR za večino

sodobnih očal v RViz.

Začeli smo z iskanjem različnih orodij, ki se uporabljajo za komunika-

cijo med letalnikom in zemeljsko nadzorno postajo. Izbrali smo protokol za

sporočanje MAVLink, deloma tudi zato, ker se uporablja v številnih odpr-

tokodnih avtopilotih in zaradi prilagodljivosti definicij sporočil. Daljinski

upravljalnik ima zelo majhno pasovno širino, vendar ima zaradi svojega do-

meta veliko prednost pred Wi-Fi povezavo. Uporablja se lahko v odprtih ter

zaprtih prostorih, česar mobilna omrežna povezava ne bi omogočala. Osre-

dotočili smo se na zagotavljanje ogrodja za dodajanje novih sporočil, ki bi

jih lahko uporabili za pošiljanje ukazov, podatkov dnevnika, stanja leta in

podatkov zunanjih senzorjev. Uvedli smo tudi protokol za zanesljiv pre-

nos datotek med napravami, ki lahko vsebujejo konfiguracijske parametre za

misije letenja ali računalnǐske rezultate. Skratka, zagotovili smo povezavo

med mobilno platformo in vgrajenim računalnikom ROS, kar bi razvijalcem

omogočilo večjo prožnost pri ustvarjanju lastnih API-jev za letenje.

V nadaljevanju smo se lotili neposredne integracije podpore NR v ekosi-

stemu ROS, da bi omogočili lažji razvoj in oblikovanje prototipov. Ustvarili

smo vtičnik, ki je neposredno na voljo v RViz in ga uprizori njegov po-

gon OGRE. Vmesnik do očal za NR je izveden z uporabo OpenVR. Stereo

slike lahko prikažemo tako, da jih generiramo iz virtualne scene, kjer od po-

slušalca tf prejmemo položaj kamere in nato uporabimo stereo projekcijo.

Tudi video tok lahko prejmemo s stereo kamere in ga neposredno prikažemo

v očalih. Predstavili smo primer uporabe upravljanja pogleda, kjer glavni

letalnik opravlja svojo nalogo. Sledi mu navidezna kamera ali sekundarni

letalnik, ki je tam, da bi zagotovil bolǰsi pregled nad prizorom. Uporabnik

spreminja gledǐsče s premikanjem položaja očal. Ideja je, da lahko operater

pridobi alternativno gledǐsče na območju operacij in ga prilagodi z intui-

tivnimi gibi glave, ne da bi potreboval dodatni krmilnik. Da bi omogočili

nadaljnjo interakcijo z okoljem in omogočili na primer prilagajanje poti leta,

xvi CONTENTS

smo uvedli tudi podporo za odčitavanje položaja krmilnikov in pritiskov na

gumbe.

Chapter 1

Introduction

With the advent of affordable and easy to use drones we have seen a steep rise

in their sales for personal and commercial use. Even though they used to be

commonly associated with aerial photography, small toys for entertainment

and military use, the modern civilian drones fill a variety of roles. They can

be used for inspecting the integrity of industrial facilities, taking pictures

and videos of special events like the opening of the Olympic Games or a

wedding, in agriculture for shepherding and surveying of crops, search and

rescue missions in hard-to-reach places, help in the sales of real estate by

making wholesome pictures of the properties, for performing deliveries of

smaller packages, and surveying vast stretches of land.

This demand is showing an exponential growth of commercial drone sales

[25]. This provides a strong incentive for active research to provide new

capabilities, enhance existing capabilities and find new use-cases especially

for Unmanned Aerial Vehicles (UAV). To this end, robust and lightweight

components have been created and competent autopilot boards have been de-

veloped. By using different sensors, computer vision algorithms, and various

artificial intelligence, autonomous flight is currently a research topic receiving

a significant amount of attention.

Out of many competing companies Dà-Jiāng Innovations (DJI) has come

atop as the market share leader in civilian drone sales, industrial use and

17

18 CHAPTER 1. INTRODUCTION

almost every software category [1]. It has 72% of the global market share

and in the medium price range of $1000-$2000 it even managed to capture

87% of the market share. Its market share has been steadily increasing for

many years with no signs of slowing down. This is both troubling and a good

reason to work with their brand of drones. As part of their effort on providing

their own custom tailored software, the APIs they provide quick and efficient

function calls, for things such as transmitting video, basic flight data or

remote steering. The issue stems from very limited options in creating custom

applications and transmitting arbitrary data. Currently, a WiFi connection

to a ground control station (GCS) is used and the onboard computer on the

drone runs the programs and receives the data. Unfortunately, this limits

the range of the communication and portability.

Furthermore, this century has seen rapid advancement in the development

of virtual reality (VR), driven by breakthroughs in computer technology,

especially small and powerful mobile technologies [27]. Carried on the back

of the rise of smartphones with high resolution displays and 3D graphics

capabilities, while also driving down the prices of their hardware components,

a new generation of lightweight VR devices have been developed. The video

game industry has led the drive in the development of consumer VR. Motion

controllers, gesture recognition, depth-sensing cameras sensors and natural

human interfaces are already a part of most common VR sets available to

consumers.

The recent years have seen the release of quite a few digital VR headsets

in the price range of around 200-500 Euro; namely Samsung Odyssey VR,

Oculus Rift, Sony Playstation VR and HTC Vive. All of them have different

quirks to cater to different consumers, but what they share are high resolution

displays, tracking of up to 6 degrees of freedom (DOF) and most also provide

the option of using hand-held controllers. There was also the release of a few

interim VR products such as Google Cardboard, a do-it-yourself headset

that uses your smartphone as a screen. Companies like Samsung have taken

this concept further with products such as the Galaxy Gear, which is mass

19

produced and contains “smart” features such as gesture control.

In the first part of our work, we focused on providing a robust and scalable

solution for communications between a DJI M100 drone and an Android

tablet computer, which was attached to the drone’s Remote Controller (RC).

The telecommunication link was achieved through the RC. This data link is

shared with the usual RC-to-drone communication link, with only a small

bandwidth reserved for the tablet-to-drone communication link. On the on-

board computer of the drone, the inter-process communication is achieved

using the Robot Operating System (ROS) middleware.

Since the bandwidth of the tablet-to-drone communication link was very

limited, the messaging protocol had to be lightweight and concise, which led

us to select the Micro Air Vehicle Link (MAVLink) communication proto-

col. We defined a software architecture, a new set of ROS-like messages, and

a file transmission protocol which, when compiled into appropriate source

code, provided us with a framework for achieving an efficient and adaptable

communication between DJI M Series drones and a smartphone App Inter-

face. By using MAVLink, the designed framework provided efficient usage of

limited bandwidth within the wireless link and allowed us to remotely control

the drone without the use of a stationary GCS.

We performed a set of experimental flight tests in an outdoor environment

to try out the system’s reliability and a set of static tests to measure the

packet transmission throughput as well as to get further insight into the

effects of distance on the packet transmission by measuring data bandwidth,

latency and range.

We chose to use both a headset and controllers by combining them into

a VR solution for drone flight. We used one of the most popular VR devices

at the time of writing, HTC Vive, for displaying our scene to the pilot,

with Vive controllers used for manipulation and Vive base stations providing

tracking for those components. The underlying framework we used was ROS

Indigo for Ubuntu 14.04, with the heap of packets communicating with each

other via ROS messages. The virtual scene used for testing was built up in

20 CHAPTER 1. INTRODUCTION

Google’s 3D modeling software Sketchup. The physics simulation of a Parrot

Bebop 2 and the world was done in RotorS, which was a MAVLink based

Gazebo simulator. The visualization was then done in RViz, which was a

dedicated 3D visualizer for ROS. The 3D scene was then used in a plugin,

where the OGRE 3D engine was used to render separate views for the Vive

head-mounted display (HMD) and then they were sent to the compositor

provided by OpenVR and SteamVR.

1.1 Motivation

We started by focusing on the communication protocol between a mobile

platform and the DJI M100 drone. DJI autopilots provide few options for

easy development unlike other open-source autopilots. While this is not an

issue for an average user, since the software DJI provides for its drones is of

high quality, it does not give many tools for developers to work with. Our

main motivation was creating a prototype of a GCS, which would provide an

open-source wireless interface between an Android device and the onboard

computer, which could later be integrated into an existing GCS application.

The communication link is based on the link between the RC and the autopi-

lot board (or flight controller board). The main reason for choosing the use

of the shared communication link is that the RC to Drone communication

link has been engineered for reliability, and should provide a safe, although of

limited bandwidth, means of communication between our smartphone App

interface and the on-board computer of the drone.

Our framework should provide a scalable software for adding new mes-

sage definitions in XML, which are then compiled into appropriate Java and

C++ files. The systems had to be then designed in such a way, so that

adding new messages required only code, which told which task needed to be

executed. This would provide an easier way to test new algorithms made at

the ICG for drones and provide a very mobile Android platform instead of

the traditional GCS based on a laptop computer. We also needed a way to

1.2. CONTRIBUTIONS 21

transmit any file, which would allow us to, for example, send and execute a

specific mission configuration. Another very benefit of using an open-source

messaging protocol was that we avoided being limited to the functionalities

provided by the SDKs. This ability to quickly reconfigure was important for

research purposes.

When working on the VR interface, our goal in mind was providing an

alternative means of visualization and interaction with the world for a drone

pilot in a search and rescue scenario. We used the virtual viewpoint of the

HMD interface in this setup, to follow the Bebop 2 drone respectively. The

drone performed the task of searching and flying on its precomputed path

followed by the virtual viewpoint of the HMD, with which we planned to

interact with by using Vive controllers. We would be able to provide an

optimal view vantage position to the pilot, so he can get a better overview

of the area in interest and reduce mental load.

To provide VR capabilities for use in the most popular ROS 3D visualizer

RViz, we used the ROS’ package pluginlib to create a plugin. This would

then use the built-in 3D graphics engine OGRE and Valve’s OpenVR API

that provided access to the VR hardware from multiple vendors. We would

provide two options for visualizations, First, stereo video streams from ROS

topics and, second, rendering the virtual scene in RViz for both eyes. The

Vive controller’s relative position and orientation to the HMD would then

be used for interacting with the world from another package. The headsets

movements would also be used to control the movement of the virtual camera

by adapting the view-port.

1.2 Contributions

The main contribution of both the communication protocol and the VR in-

terface is to act as tools that can be used to conduct further research and

develop of emerging solutions.

Our MAVLink based communication protocol provides better portability

22 CHAPTER 1. INTRODUCTION

by only requiring an Android device, while also allowing us to use the great

range of an RC. The interface also allows use of a normal TCP/IP connec-

tion. Another important point is this framework helps with opening up the

DJI drones for further open-source development. The drawback is that it

requires implementing new message definitions when one wishes to add new

capabilities. Although, we eased some of these difficulties through clever use

of programming patterns.

The VR interface on the other hand allowed the use of SteamVR com-

pliant devices with along with the OpenVR SDK directly in ROS. While

there were up-to-date options for using VR equipment, they required inter-

faces to be used through game engines, so we designed the plugin primarily

for its use in the ecosystem’s most popular visualizer, RViz. It could then

either visualize the virtual world or stream video from stereo cameras, while

also capturing the input of corresponding controllers. We showed a simple

adaptive view management use-case with a pair of drones, where one was

controlled with an HTC Vive, demonstrating the usage of our plugin as a

tool for VR supported robot interaction.

1.3 Framework specifications

The main goal of the communication framework developed during this project

was to achieve an efficient and adaptable communication between DJI M

Series drones and an Android device as well as providing an ROS integrated

VR interface for use in drone flight scenarios, with RViz as the visualization

tool.

The following is a list of the main characteristics fulfilled by the developed

framework:

• The exchange of data is achieved using the DJI’s Data Transparent

Transmission, which shares the communication link with the RC-to-

drone communication.

1.3. FRAMEWORK SPECIFICATIONS 23

• The framework should be able to deal with disconnections of the com-

munication link, which may happen intermediately due to it being wire-

less.

• Responsive user interface, for instance the transmission of big files,

which should not render the communication link unusable for other

types of messages.

• Usage or design of a communication protocol with as little package

overhead as possible.

• Capacity of modifying and designing new message definitions, so that

new sensors and features can easily be included into a drone application.

• Setup of the framework to use a reasonable amount of the bandwidth,

so that a good balance between packet loss and package transmission

speed can be achieved. This setup should be supported on experi-

ments that measure the actual achievable bandwidth of the DJI’s Data

Transparent Transmission.

• Possibility of transmitting big files, for example allowing to send a

specific mission configuration for the drone.

• Easy to maintain code-base. The Android project uses a command

pattern, where each new message defines a new command, with inheri-

tance providing shared functionalities. The ROS package uses a plugin

system, where each new functionality is defined in a separate plugin,

which can be ported between different projects.

• Integrated with the ROS Indigo and RViz visualization tool.

• Uses modern VR headset HTC Vive for viewing the scene.

• Uses an abstraction of VR hardware layer by using up-to-date OpenVR

and SteamVR without requiring specific version as was previously re-

quired.

24 CHAPTER 1. INTRODUCTION

• Is able to support any other SteamVR enabled device.

• Enables the use of Vive controllers as intuitive tools to manipulate the

world, by modeling them as hand extensions

• Allows viewing of the virtual scene or through a stereo camera video

stream, or a mix of two.

• Achieves a stable frame rate and has no stuttering.

• Using the virtual viewpoint of the HMD to facilitate better overview

over the environment by the pilot.

Chapter 2

Tools

2.1 Robot Operating System

The Robot Operating System [18] (ROS) is an open source middleware

software, which provides a management system for robotic components. The

services provided include hardware abstraction, low-level device control, mes-

sage transmission between different processes and package management. In

practice such a system is based on a number of independent nodes, which

communicate by using a publish/subscribe messaging system, potentially

running on any number of computers. Programming solutions in this frame-

work are usually provided as packages, which you can then overlay and import

in any other project [22]. The version that we used is called Indigo, which

runs only on Ubuntu 14.04 LTS. We also considered using [13] as a substitute

to ROS, since it promises better performance and less latency, and provides

interoperability with ROS, but in the end decided against it since the latter

framework has wider usage and we are more knowledgeable in its use.

Development was first done on my laptop, which worked out fine for work

on the communication protocol. We later switched to PCs in the Deskotheque

- the drone space for ICG - because we struggled with graphics drivers prob-

lems due to issues with integrated graphics card. Programming was mostly

done in Java and C++ language, with some Python on scripts from other

25

26 CHAPTER 2. TOOLS

Figure 2.1: An image of the DJI M100 from the ICG during our flight test

in the field.

packages. Android Studio and QTCreator were my IDEs of choice.

2.2 DJI M100

This quadcopter is DJI’s first attempt at providing a fully-integrated flight

platform specifically targeted at developers. Its hardware expansion bays can

carry any configuration of sensors and devices up to 1 kg 2.1. It also provides

ultrasonic sensors and depth cameras for automatic obstacle detection.

The two new DJI’s SDKs released together with the drone provide a pos-

sibility of creating advanced flight controls and custom mobile applications.

On the Linux computer, mounted on the drone, we use the Onboard SDK

ROS, which provides an interface to the autopilot that our ROS nodes use

for guidance. For sending commands to the drone we use the Mobile SDK

for Android, which provides support for accessing common sensor data, video

streams and other functionalities. Most importantly to us it provides a chan-

nel for custom data transmission. We use a USB connection between the RC

and the Android device to connect to the drone 2.2.

2.3. MAVLINK 27

Figure 2.2: An image showing the RC connected to the tablet via a USB

cable. On the screen we can see our demo application for MAVLink commu-

nication.

The link for sending arbitrary data is called Data Transparent Transmis-

sion and is part of the DJI Mobile SDK for Android and iOS. The specified

upstream bandwidth is 1 KB/s and downstream is 8KB/s. The message size

is also limited to 100B at one time. As is apparent the link is very limited in

the amount of traffic that can be handled. It does not provide support for

dropped and corrupted packets, which have to be provided by the protocols

using it if needed.

2.3 MAVLink

This is the messaging protocol we chose for our binary telemetry. Is is a

lightweight, header-only message protocol for communicating with small un-

manned vehicles. It is used mostly for communication between UAVs and

GCSs, and for intercommunication between the subsystems. It is used by

many autopilots, such as Parrot, Ardupilot, PX4 and more. It is not sup-

ported in any way on the DJI drones, since they mostly provide only propri-

28 CHAPTER 2. TOOLS

Table 2.1: MAVLink 2 packet format. Bold text denotes required fields.

Default name Bytes Description

magic 1 Protocol magic marker

len 1 Length of payload

incompat flags 1 Flags that must be understood

compat flags 1 Flags that can be ignored, if not understood

seq 1 Sequence of the packet

sysid 1 ID of the sender drone

compid 1 ID of the sender component

msgid 3 ID of the message

target system 1 Optional field for point-to-point messages

target component 1 Optional field for point-to-point messages

payload max 253 A maximum of 253 payload bytes

checksum 2 X.25 CRC

signature 13 Signature which ensures, that the link is tamper-proof

etary software for operating the systems and communication on their vehicles.

We are using the newer MAVLink 2 version, which uses a message format

that can be represented in the following way 2.1. The MAVLink message

parser recognizes the protocol version by the magic field, although all mes-

sages are still backwards compatible by ignoring unrecognized fields. Every

message needs its own unique message ID and the definition of its other

payload fields in XML files, which can then be generated into appropriate

source code for the supported languages, of which C++ and Java are inter-

esting to us. The fields sysid and compid are set by the sender drone for

identification purposes. Many common messages are point-to-point, there-

fore requiring target drone specification, otherwise the messages are sent in

broadcast mode. Checksum X.25 is used to verify messages integrity and

ignoring corrupted chunks. Other fields are then generated automatically by

the MAVLink code generator with the same values across different program-

ming languages.

2.4. HTC VIVE 29

Figure 2.3: An image of the HTC Vive headset and controllers used during

the project.

2.4 HTC Vive

Developed and released by HTC and Valve in 2016 this virtual reality headset

[26] is one of the most popular currently. We chose this one because the ICG

had the full equipment for it already and we wanted to be able to use the

controllers.

The main hardware piece is the HMD itself, which is capable of a refresh

rate of 90 Hz and a 110 degree field of view. The display is made out of a

pair of organic light-emitting diode panels, each at a a display resolution of

1080x1200 pixels per eye, which puts it at 2160x1200 total pixels, requiring

quite heavy processing power to run at the recommended refresh rate. See-

through display is possible with the use of the front facing camera and allows

the user to observe their surroundings without removing their headset. The

HMD’s position in space is tracked by the infrared (IR) sensors in the casing’s

divots, which track the IR pulses from the base stations. Additional sensor

input for orientation correction is given by a G-Sensor and gyroscope.

The Vive Controller also has IR sensors to detect the base stations, pro-

30 CHAPTER 2. TOOLS

Figure 2.4: An image of the Bebop2 used in the Deskotheque.

viding them with full 6 DOF movements. It hosts an array of addition input

methods with grip grip buttons, a dual-stage trigger and a 2D track pad.

The approximate update rate given by the SteamVR Tracking system is at

about 250Hz. They are connected to the HMD via a wireless link.

The Base Stations, also called Lighthouses, are a tracking system that

can cover a field of about 20m2. They emit 60 pulses of IR rays per second,

that are then detected by the headset and controllers. They are supposed

to provide sub-millimeter precision, although there were issues of tracking if

one of the base stations rays were occluded.

2.5 Parrot Bebop 2 and RotorS

The drone we use is Parrot Bebop 2, both in the RotorS simulation or for

a possible real-world flight, although any MAVLink enabled autopilot could

also be used. This particular model is especially lightweight at 0.5kg and

up to 25min of flight time, so quite useful for surveying a scene, although it

can’t carry much other equipment.

Gazebo is an open-source simulator [12] that expedites algorithm testing,

2.6. RVIZ 31

robot design and flight simulations using realistic scenarios. It provides the

functionalities to accurately and efficiently simulate robots and drones in

complex indoor and outdoor environments. It comes packaged with a robust

physics engine, customizable graphics, and convenient programmatic and

graphical interfaces. Different simulation models for specific robot platforms

are then provided by the community. Integration with ROS is provided

by using the package gazebo ros pkgs [10], which provides ROS messages,

services and dynamic reconfiguration of parameters.

The specific variant of simulator we use is called RotorS, a MAVLink

gazebo simulator [9]. It provides some drone models from the AscTec com-

pany, but the simulator is not limited for the use with these. There are

simulated sensors coming with the simulator such as an inertial measure-

ment unit, a generic odometry sensor, and the visual-inertial sensor, which

can be mounted on the drone. The geometry of the world is used for collision

detection, and the scene can also have additional extra forces like wind to

make the simulated drone unstable. Any new interactions with the scene

could be provided by writing additional plugins. The positions and other

information about objects of interests are then published as ROS topics for

use in RViz.

2.6 RViz

ROS visualization (RViz) is a 3D visualizer [11] for displaying sensor data,

state information, camera data, infrared distance measurements, etc. from

ROS. It is the most widely used tool for displaying data because of deep

integration with the ROS ecosystem and provides direct interaction methods

with the scene. Like Gazebo it also uses plugins to extend and add new

functionalities.

We use it to display the models, included in our simulated test scene, in

their correct position and the rest of the world as a static model. We also

created two video streams from where the drone would have the stereo setup

32 CHAPTER 2. TOOLS

Figure 2.5: An image of the model of the world, created in SketchUp. It is

used both for physics simulation in Gazebo and for visualization in RViz.

of cameras, which we later use as one the possible VR display inputs. We

created the scene in Google’s Sketchup, a 3D modeling software with the

use of publicly available assets. We very quickly then encountered problems

with low frames per second (FPS) in RVIZ. This is a problem, because 90

FPS is necessary in Vive to prevent stuttering, which is very jarring on the

eyes. The tool uses an old version of OGRE graphics engine, which does

more computation on the CPU then newer graphics engines would. It also

uses only one core for the render loop of the whole scene, which makes the

problem even more pronounced and the power of the graphics card does not

have much impact. We tackled this problem by reducing the complexity of

the scene, cleaning up the geometry and removing excess polygons created

during designing of a model.

To handle translations and rotations between different components in the

scene we use a ROS package called tf. Our system uses many 3D coordinate

frames that change over time, such as a world frame, drone frame, Vive HMD

frame, etc. tf keeps track of all these frames over time, and allows querying

for the current cumulative transformation from one frame to another. This

is useful for example getting the relative position of controllers in relation to

your shoulders, which allows for an arm-extension technique.

2.7. OGRE 33

2.7 OGRE

The 3D graphics engine used in RVIZ and our Vive plugin is called Object-

Oriented Graphics Rendering Engine (OGRE) [14]. It provides an abstrac-

tion of nuances between different implementations of 3D APIs like Direct3D

and OpenGL, and operating systems. The design follows the principles

of encapsulation and polymorphism to ease state management and provide

context-specific actions to be done in a graphics engine.

It is split into two version, with the newer one supporting abstractions

of much newer render systems. Because ROS follows a design policy of long

software support, many of its components then also use older frameworks,

RViz is limited to older CPU bound OGRE version. All plugins created in

RViz inherit all instances of OGRE’s manager classes, which provide abstrac-

tions for programmatically creating new objects in the scene, viewports and

textures needed for rendering to the HMD. It also provides us a with a full

complement of support classes for matrix and vector multiplication, helpful

for camera and controllers manipulation.

2.8 OpenVR and SteamVR

OpenVR is a cross-platform open-source VR API for use with many headsets,

and is developed by Valve to support their SteamVR gaming application.

Due to its openness and support from its creators, OpenVR actually allows

the use of almost any of the major high-end headsets by providing access

to pose estimates and triggers of HMDs and their accessories. The API is

implemented as a set of C++ interface classes, full of pure virtual functions,

whose implementations by headset’s drivers. When an application initializes

the system it will return the interface that matches the header in the SDK

used by that application. The rendering to the displays is then handled by a

compositor provided by SteamVR. By choosing to develop our RViz plugin

with this API, we will be able to run it all of those platforms with very little

modifications, although all our testing has been done only with the Vive

34 CHAPTER 2. TOOLS

HMD. The API also provides support for many rendering systems, although

RViz’s OGRE instance limits us to use of OpenGL.

Chapter 3

DJI drone MAVLink support

3.1 Related work

Due to the great advantage in portability when using mobile devices com-

pared to computers, there are existing solutions [7] on designing a ground

control station based on Android Operating System. It communicates with

UAV via TCP/IP by using an Ethernet connection, through which periodic

packets are sent with GPS coordinates, accelerations and speed data. This

data was then displayed on the Android device with as Compass, text fields

and an Open Street Map interface. The drawbacks are that the UAV is still

managed with a standard remote control, since the data link only transmits

telemetry data and no commands. The transmission also only operates on a

single statically defined message definition, since the goal of this study was

showing the possibility of using a mobile device as a GCS. They concluded

that this kind of system will become a potential instrument in UAV-related

systems.

In the [3] study an overview of the various possible architectures for

communication between individual or groups of unmanned vehicles and their

use for the management of underwater drones has been done. They were

dealt with within the domain of Flying Ad-Hoc Networks (FANET), which

are suitable for use on classic mobile networks at low speeds and proposed

35

36 CHAPTER 3. DJI DRONE MAVLINK SUPPORT

the use of on-demand networks and location protocols. The use of UAVs in a

network allows them to perform their tasks with better awareness that could

be helpful in the decision making in missions, and such are expected to be

used in many more important applications.

We have looked through open-source solutions involving MAVLink as the

messaging medium, with MAVROS [16] standing out because of its semi-

official support and active community development. The aim of this ROS

package is to provide support for MAVLink extendable communication be-

tween MAVLink enabled autopilots and GCSs, and a computer running ROS.

Its goal is to support all autopilots whose message definitions can be found

in the standard MAVLink dialect set by being a bridge between ROS and

MAVLink. We were first looking into using this package to parse messages

on the drone, since on the first look it seems to fit our problem area and the

scant documentation did not make the purpose obvious. The problem is that

it is made to support already MAVLink enabled autopilots by parsing their

messages to their ROS equivalents and vice versa. They do take care of con-

version between different reference frames used by ROS and MAVLink, and

provide many utility functions and a plugin system, which we later adopted

for our purposes. The nodes provided do also support communication with

a GCS but only by forwarding the MAVLink messages directly from the

autopilot, hence basically behaving as a proxy. Therefore the shortcoming

is they do not cover communication between a GCS and a ROS node di-

rectly, with MAVLink behaving only as a medium of exchange. This is a

problem, because DJI’s drones use their own SDK to send commands to the

autopilot and as previously stated, have no innate support for MAVLink.

What we required is the mobile device being able to send orders to the drone

and receiving telemetry data back from it. This necessitated creation of a

standalone project described in the following subsection.

A popular open-source GCS we looked at is QGroundControl, which pro-

vides the operator a simulation environment for flight control and configu-

ration of multiple UAVs, although it’s made to work only with ArduPilot

3.1. RELATED WORK 37

or PX4 Pro powered vehicles. To provide the possibility of fully integrating

our application with it as a plugin, we designed our application to be built

with a similar coding style as used in MAVROS, which already has an imple-

mentation of a bridge to it. The mission designer allows building of complex

missions with multitude of task, saving them and repeating them on will.

Extending the existing framework with an automated mission planning as

shown in [20] is very useful for increasing the autonomy of UAVs and re-

ducing operator workload. It shows design and development of a system for

replanning and integration of an automated mission planner inside QGround-

Control by extending on its interface for automated mission planning. This

work shows a way of adding new functionalities to this actively developed

GCS. Future work could be done on integrating our communication protocol

for DJI drones by using the Wi-Fi and RC connection interface used in our

Android application described in later sections, which would be a great boon

to future of open-source development on DJI drones. Recently there has been

a similar contribution [21] integrating QGroundControl with DJI drones, by

use of functionalities provided by the SDK. The wrapper unpacks commands

sent from the GCS to the drone and calls appropriate functions from the

SDK. The limitations are that it’s only limited to the feature set provided by

DJI and provides no way of sending custom data over the Data Transparent

Transmission. The connection is also only possible over TCP/IP.

DJI has provided their official solution for connecting an onboard em-

bedded system with a GCS using mavlink protocol [6]. Dji2mav package

is designed as a library and can be included in various platforms. It is im-

plemented in C++ and depended on the MAVLink library. It connects the

onboard computer with GCS over UDP network protocol, where it decodes

and encodes MAVLink messages. It has access to the autopilot via DJI’s

Onboard SDK ROS, which allows it to get data from the drone’s sensors,

execute missions and follow waypoints. The Onboard SDK has since got a

complete rewrite, and we could have only used this package by downgrading

autopilot version, since DJI announced they won’t be updating the project

38 CHAPTER 3. DJI DRONE MAVLINK SUPPORT

anymore. It is also written in a way that wouldn’t allow new message defi-

nitions or adding functionalities easily, and so we choose to build upon the

better structured MAVROS codebase.

3.2 Connection options

We provided two ways to transmit MAVLink messages between the onboard

computer and the GCS. The one we focused on was transmission via the RC,

which is more useful in cases where a stable long-range connection is required,

and sacrificing bandwidth is not an issue e.g. sending measurements and

flight data. The Mobile SDK also provides a separate channel for receiving a

video stream from the gimbal camera. With that and the ability to transmit

custom data packets with MAVLink messages, the framework is useful in

most use-cases, especially for longer range flights in outdoor environments.

When high bandwidth is required, such as when needing to transmit big

packets of data for processing on a GCS, the connection can be instead es-

tablished over TCP/IP, most commonly over a Wi-Fi connection. This can

be done with a router as an intermediary between the mobile device and the

drone, with higher grade ones still being able to offer decent range. Alter-

natively we can directly connect them with a mobile hotspot. In both cases

the drone also requires a Wi-Fi module to be able to use that functionality.

The common use-case would be for indoor flights, where a number of routers

with a common service set identifier (SSID) can be used to extend range over

multiple rooms.

While testing we also used a setup, where my laptop hosts a hotspot,

which the mobile device connects to. The laptop is meanwhile also connected

directly to the onboard computer with a Ethernet cable. While this obviously

can’t be used for field flights, it serves its use for testing the Android and

ROS projects. Android Studio IDE supports directly debugging applications

on a mobile device over a TCP/IP connection. Since QTCreator does not

support a similar feature for onboard computers, debugging was done by logs

3.3. CREATING A MAVLINK DIALECT 39

accessed over Secure Shell (SSH).

3.3 Creating a MAVLink dialect

We created a new message definition set called a MAVLink dialect. The

messages there are similar in structure to ROS messages we will need to run

the flight mission and they all use ROS’ timestamps, which are important

for synchronizing the execution of topics. They allow us to send position and

rotation commands, switch between different flight modes and transmit flight

data to the hand-held device. We also created a file transmission protocol,

which provides fallback mechanisms to try to provide transfer guarantee. We

should also note the difference between packets and messages in our context.

The packet sizes are limited to 100B because of the DJI’s Data Transparent

Transmission, but the MAVLink messages are usually bigger than that, which

are in such case split into multiple packets and sent piecemeal. Therefore we

have to keep in mind we can get out-of-order/corrupted packets of different

messages when reassembling them on the receiver’s side.

One example of a message definition and its enum is provided here 3.3.

This one corresponds to a common ROS message PoseStamped for setting

a setpoint or receiving a drone’s position [23]. We tried to provide a sim-

ilar structure to messages in our dialect to allow much easier parsing and

forwarding of MAVLink messages to ROS topics/services and vice versa. It

also does not require conversion of data from NED coordinate system to ENU

or any such similar challenges, which is a common problem when trying to

work with the common MAVLink message set.

<enum name=”DJI TOPIC NAME”>

<description>

An enum holding the combinations of topic names and header frames.

</description>

<entry value=”0” name=”DJI TOPIC NAME SETPOINT”>

40 CHAPTER 3. DJI DRONE MAVLINK SUPPORT

<description>Setpoint.</description>

</entry>

<entry value=”1” name=”DJI TOPIC NAME DRONE POSITION”>

<description>Drone position.</description>

</entry>

</enum>

<message id=”50004” name=”DJI POSE STAMPED”>

<description>Set position in pose stamped format.</description>

<field type=”uint8 t” name=”target system”>System ID</field>

<field type=”uint32 t” name=”sec”>

Timestamp − Seconds since epoch

</field>

<field type=”uint32 t” name=”nsec”>

Timestamp since epoch = sec + nsec ∗ 10ˆ−9

</field>

<field type=”uint8 t” name=”topic name” enum=”DJI TOPIC NAME”>

See DJI TOPIC NAME enum

</field>

<field type=”double[3]” name=”position”>Position</field>

<field type=”double[4]” name=”orientation”>Orientation</field>

</message>

As for the message definition itself, it first defines its id, which has to be

unique, and the name of the message. The description is there to describe

the purpose of the message. A field can have many different types and to

have it lightweight, a developer should try and select one that takes the least

necessary bytes. Currently it is not possible to use inheritance or composition

to combine messages together. Arrays can be of any size, as long as they do

not surpass the maximum message size, but variable length is not possible.

As a kind of compromise all trailing zeros in a message, which usually come

from not filling in the last array to its fullest, are trimmed. Enums can be

also separately defined and shared between multiple message definitions and

the value transmitted is a char. Most messages also define a field with an

3.4. FILE TRANSFER OVER THE LINK 41

ID of the targeted, and sometimes also of the sending, drone. This is used

to ignore messages not meant for a particular system. A message without a

target ID is used for broadcasting.

To create source code for the MAVLink library we used [15] this code

generation tool created in Python, which provides command line and GUI

utilities. It uses the message definition files to provide code for your projects

in the specified languages. After any message definition change this has to

be rerun for both C++ and Java to provide synchronized message parsing.

The C++ source files are also automatically generated when compiling the

MAVLink library by providing the XML file in the same directory as all

other message sets. To have it setup for usage as a package in the ROS

system the compilation is done with catkin. Since Java is currently not

officially supported for MAVLink 2, we have found two outstanding bugs

that prevented successful message parsing when receiving on the drone, but

we have managed to narrow down the problem and report the solution on

the code generator repository. With those fixes we could run the Python

generator, which creates appropriate Java classes for all message definitions.

3.4 File transfer over the link

We defined a sub-protocol for sending files across the link, supporting guar-

anteed delivery of messages by resending lost pieces. To perform this action

the user first has to select a file he wants to transfer over the link on the

mobile application. The request for transmission is then sent to the drone,

where it is accepted unless there are problems creating a new file. When the

approval is received, the Android application starts sending file parts, pack-

aged into MAVLink messages, which are then reassembled on the drone’s

ROS node 3.1. When the last piece has been received on the drone or a

timeout happens while waiting for a new piece, we try to find lost pieces. If

there any missing, we request the pieces in intervals 3.2 instead of each sepa-

rately to decrease the number of necessary messages. This procedure repeats

42 CHAPTER 3. DJI DRONE MAVLINK SUPPORT

Figure 3.1: A diagram of file transmission when no messages get lost.

itself, until we have received everything. At that point the file is saved on

the onboard computer’s disk and we send a message, which tells the Android

application that it may cease waiting for new requests.

One limitation of this file transfer protocol is the very limited bandwidth

available, which means a 1.5MB file takes about an hour to be sent. This

still makes it useful for sending mission parameters files, which are usually

saved in YAML format in ROS, because such text files are usually a few KB

in size. With our lost parts retrieval we provide a transmission guarantee

unless the link is lost for a longer time.

3.5 Android project

The Android application running on the tablet uses the DJI’s Mobile SDK to

interact with drone using the RC. To be allowed to access the drone you must

first register as a DJI Developer and specify the intentions of your application

to get an authorization code. The easiest way to integrate the SDK is to use

the Gradle build script to import it over Maven. To get a reference to the

3.5. ANDROID PROJECT 43

Figure 3.2: A diagram of file transmission, where parts of the file from

number a to b are lost. To complete the file the drone first has to make a

request for those missing parts.

44 CHAPTER 3. DJI DRONE MAVLINK SUPPORT

drone, we use the DJI SDK manager to register the application. If approved,

the application tries to connect to the product, in this case the RC, which

sends an inquiry about the specifications to the drone. On success we get

a reference to an object representing the correct model of the drone, in our

case the DJI M100. If the connection is lost at any point, the application

waits until it can be reestablished. We are mostly interested in two callback

functions provided by the SDK, one for receiving data and the other for

sending it. Both of them require you to provide a function, which fires

when a transmission goes through successfully. Because there can only ever

exist one function, which is referenced to as the callback function, in both

cases special care had to be taken to create some kind of a queuing system.

To get source code and the parser for MAVLink messages we use the code

generator 3.3 and copy the generated Java code to our project. A simplified

representation of the whole workflow can be seen in this diagram 3.3.

To allow field testing of the framework we created a simple graphical user

interface (GUI) 3.4. It provides buttons for changing the drone’s setpoint by

changing its position in the 3D space and changing its orientation. There are

also commands for the drone to take-off, hover on place, fly on the previously

plotted trajectory and land on the spot. At the same time we receive drone’s

GPS and local position, and odometry data. We can also start a transmission

of any file from the Android device on the fly while also showing the progress

of that action.

3.5.1 Receiving data

The callback for receiving data triggers when any packet, that passes the

DJI’s checksum test, is received. The function’s parameter then provides

the payload as an array of bytes, which have to be parsed to receive any

meaningful data. To achieve that we use the helper class provided by the

MAVLink Java code generator, which takes a byte at a time and returns the

current progress of message regeneration, which tells us which message’s field

was received last. The first value this objects expects is the magic number,

3.5. ANDROID PROJECT 45

Figure 3.3: A diagram of the workflow on the drone and the Android appli-

cation.

46 CHAPTER 3. DJI DRONE MAVLINK SUPPORT

Figure 3.4: A screenshot of the Android application running on the tablet

used for testing.

which tells us the MAVLink protocol version. If an error happens, the parser

resets and waits for an arrival of a new message while ignoring any leftover

bytes. The error can happen if the packets are received out of order, the

message is are bigger than 100B in size, if the MAVLink’s checksum fails

or the authentication key can’t decrypt the message. When a message is

finally reassembled, we use a type of an object called a Subject, that emits

the most recent item it has observed to each subscribed command, which use

an Observer to receive that.

3.5.2 Sending data

To decide which message should be sent at a given time we use a first in,

first out (FIFO) queue on a background thread. This queue holds commands,

whose task is to do an operation that also involves sending data to the drone.

If there are none available at a particular moment the thread sleeps. Other-

3.5. ANDROID PROJECT 47

wise the first is taken out, which then generates its corresponding MAVLink

message and encodes it into a byte array. This is then split into packets of

size up to 100B, and sent one after the other with the help of a send call-

back function. If the RC successfully transmits out all packets, the command

performs its on-success callback and leaves the queue.

3.5.3 Command pattern

The code that reacts to and creates MAVLink messages is structured in a

command pattern, which is used so as to facilitate easy addition of new mes-

sage types and their corresponding commands. The abstract class that is the

parent to all commands is called a CommandMessage. It requires a generic

class that extends the MAVLinkMessage, which in of itself is an abstract class

for all specific MAVLink messages, and handles encoding of said messages.

The most important abstract function is execute, whose implementations are

provided by abstract classes Send- and ReceiveCommandMessage, which are

children of the aforementioned parent class. It also provides wrappers for

calling the execution of the command asynchronously and/or with a time-

out. When a command successfully finishes it will also trigger a callback

function if provided, but should it fail a fallback function will be called if

provided. All child classes, which provide implementations for commands,

have all message fields in their constructor, because messages may require

multiple repackaging should their transmission fail. If a message requires a

follow-up command it has to provide the necessary code in the on-success

function, and fallback mechanisms in the on-failure function.

The SendCommandMessage’s execute function adds the current com-

mand to the FIFO queue, which runs in the background. If the command

is unsuccessfully resolved, it requeues itself up to four times, but should this

not be sufficient its rollback function is called. This class also takes care of

generating and encoding the correct MAVLink message, that is filled with

the correct sequence number and all its payload data. All fields have to be

defined in the child implementations. All children then have to provide an

48 CHAPTER 3. DJI DRONE MAVLINK SUPPORT

implementation for the function which creates and fills a MAVLink message

with all the specified fields.

ReceiveCommandMessage on the other hand subscribes to the RC in its

execute function. This generates an Observable instance that waits to receive

the correct message. Before a subscription callback could trigger, we filter

the message by the msgid and additional predicates that a command can

individually define. These predicates usually use sysid and compid to verify

if a particular message was really meant for it. Children then have to only

provide a function which fills in the fields of the command.

What we managed to achieve with all of this is a very responsive appli-

cation, that does not block the UI at any point and prevent the user from

performing new tasks. As an example lets say we performed an action to send

a big file to the drone. The system won’t hang and be unable to perform any

other commands, because we generate a new command to send a new part

of the file only after the previous one resolved itself, allowing a new user’s

input to come into the queue before it. This could prove useful because it

allows flying the drone around even while transmitting new mission param-

eters. Any UI updates are also done on a separate thread, again as a queue.

Consequently the command that issues a draw request does not have to wait

for it to be resolved, but can continue with its execution. Adding simple

new messages is also quite trivial, since it only requires defining a mapping

function for the input values.

3.6 ROS project

The prerequisite is compiling the MAVLink framework as has been described

in this subsection 3.3. This allows us to use it as a ROS package, which

we overlayed over our own to get the necessary header files. Additionally

we use MAVROS, since it provides some utility features for dealing with

MAVLink messages easier, although that was not strictly necessary. To not

have dependency issues, the packages have to be on very specific versions,

3.6. ROS PROJECT 49

with further issues of them being prepared to work with the newer ROS

Kinetic, which required updating a number of other dependencies by hand.

Our package was initialized inside a standard catkin workspace. We cre-

ated a ROS node, which shares the group name with other nodes running on

the onboard computer. It takes care of node handler initialization and creates

an instance of a class we called TransparentTransmissionAPI (TTApi). This

TTApi instance provides a way to use a MAVLink bridge over the RC with

Data Transparent Transmission or TCP/IP as needed, creates a MAVLink

message parser and initializes two classes that take care of receiving and

sending messages. Its work loop sleeps according to the loop rate, whose

different values we researched later on 3.9.

3.6.1 Plugin system

What happens, when a MAVLink message or a ROS message is received,

is defined in our plugins. Their job is to initialize subscribers and message

sending functions. They can be freely swapped around to provide different

feature sets or to handle different MAVLink dialects. They are managed with

a ROS package pluginlib, which dynamically loads plugins using the ROS

build infrastructure. They are registered and initialized by a plugin provider

according to the contents of the package.xml file in our TTApi package, which

imports the specified MAVLink dialects. All plugins have to extend a par-

ent plugin class, which handles initialization, MAVLink message subscription

management and handler registrations for the decoded messages. The han-

dlers for messages are created by binding them with with the MAVLink

message’s unique id, while subscribers are a usual ROS one. This is useful

for modifying and extending the framework’s behavior without the need to

know, how the rest of the code operates.

50 CHAPTER 3. DJI DRONE MAVLINK SUPPORT

3.6.2 Adding new functionalities

By using the plugin system and the subscription pattern, we allow a very

straightforward way of adding new functionalities. We do so by creating a

new C++ source file, whose name we add to the icg plugins.xml file, which

registers the new plugin in our TTApi. After that we can use any preexisting

plugin to replicate the class structure. A developer can then easily add new

subscriptions to topics the usual ROS way or add handler functions, which

respond to newly added MAVLink message definitions. Since the rest of

the system, according to our testing, seems to be robust, we remove the

need to consider the operation of the rest of the code when adding new

functionalities. This should allow an ease of adding code for more field testing

of new algorithms and solutions developed at ICG or elsewhere with the help

of the onboard computer and the tablet.

3.6.3 Sending data

We usually send out MAVLink messages, when we receive input from the

ROS system, such as telemetry data from the drone. The subscriptions to

ROS topics are defined in the plugins, and each one has a callback func-

tion associated with it. They are responsible for initializing an appropriate

MAVLink message and using the ROS message to fill in the fields.

This is then forwarded to a sender class which serializes it into a generic

MAVLink message and gives to a parser, which packs the payload into a byte

array. This array is further split into packets of size up to 100 B, which are

used as a parameter for a ROS service client provided by the Onboard ROS

SDK, on a topic called send data to mobile. The autopilot then handles the

sending of the packets to the Android application over the receiver module.

Unlike with the Mobile SDK we do not get any feedback if the transmission

was successful or not, since they made the function just always return true. If

we were able to know, how fast the autopilot can handle packet transmission

it would probably make sense to create a queue system similar to the ones

3.7. INTEGRATION WITH QGROUNDCONTROL 51

used in the Android application.

3.6.4 Receiving data

We created a class that has a subscription to a topic provided by the SDK,

which gives us byte arrays whenever a new packet arrives. This packet is

then fed into the parser byte by byte, until a complete MAVLink message

can be retrieved, a parse error occurs or simply more packets have to arrive

before a full message can be assembled.

What follows is a call to a handler function that uses this message type,

denoted by the msgid. This is done by the subscription management of

MAVLink messages provided in the base plugin class. Each a handler func-

tion uses a template, where the first argument is a pointer to a raw message

and the second is the MAVLink message we receive from the parser. The

callback function then performs the necessary actions such as flying to a po-

sition or landing, or in the case of file transmission slowly assembles the data

over many messages. We can potentially also have multiple handlers that

receive the same message, and each one performs the task defined in their

plugin.

3.7 Integration with QGroundControl

As we managed to provide a proof-of-concept for our MAVLink framework,

we also looked into a possibility of integrating it into an existing GCS. The ad-

vantages that would provide is using regularly updated software, already used

by the community, with all necessary features for drone flying implemented.

Our choice was QGroundControl, since it already supports MAVLink, and is

uniquely cross-platform.

It works by giving the running QGroundControl application a MAVLink

System ID, which it then uses as an identifier in MAVLink messages it

sends out. This identifier should be unique in case of using multiple GCSs.

QGroundControl only supports TCP/IP, requiring a UDP or TCP bridge

52 CHAPTER 3. DJI DRONE MAVLINK SUPPORT

Figure 3.5: A sample configuration we used to connect the drone over

TCP/IP to QGroundControl and a map view with a mission inside the ap-

plication.

to connect to a drone 3.5. For our proof-of-concept we simply connected

my laptop with the onboard computer with a Ethernet cable, and used it’s

network IP.

As part of the MAVLink protocol, every vehicle is supposed to send out

a Heartbeat message every second, which identifies it’s capabilities by an

enum and shows a continuous stable connection. By having the onboard

computer send one out in a loop, the QGroundControl recognized our drone

as MAVLink enabled generic autopilot with full feature set. We submitted

simple telemetry data, which shows on the right hand side and would allow

to track the status of the drone. The application allows us to plan any kind of

flight mission, and sends out the commands as a series of MAVLink messages

upon execution. Those are encoded as MAVLink Command messages, which

are executed step by step and require specific acknowledge answers from both

sides. The data is also structured in a way that differs a lot from the way DJI

ROS handles them. MAVROS provides some plugins for handling conversion

from ROS to MAVLink style, although we would have to prepare our own to

do it the other way around, which would be a big workload and out of the

3.8. FLIGHT TEST 53

Figure 3.6: An image of the drone flying during our field test.

scope of the project. Still, we showed the framework is capable of providing

a bridge between the ROS ecosystem and the open-source enabled MAVLink

GCS.

3.8 Flight test

Since the start of the project we have planned to try out our solution in an

outside environment. When we were satisfied with our solution and tested it

in a simulated environment, we went to a flight-field Modellflugplatz UMFC

Stocking, reserved for model aircraft flying. We tried out all the different

commands for movement, rotation, landing, taking-off, canceling, ordering

new actions and changing between RC modes to do a kind of a stress test. We

concluded it with ordering the drone to do a flight on a preprogrammed flight

path. We had no problems with any of the commands not being accepted

or the drone reacting with latency, and were able to constantly receive flight

status data. With that field test, we have shown a real-life integration of

MAVLink and ROS for DJI drones, where the light-weight Android GCS

performs as expected of any other desktop application.

54 CHAPTER 3. DJI DRONE MAVLINK SUPPORT

3.9 Throughput test

To perform the throughput test, we prepared an algorithm on the Android

application, which counts the number of packets successfully sent/received

and the necessary time to do so. It was done on an outside flat environment,

between the buildings of the campus, on distances of 10, 50, 100, 150 and

200 metres from the drone. The packets sent ranged in size from 1 to 100

B with steps of 10 B in size. Packets with a payload of 0 B cannot be sent

because the DJI SDK will simply ignore them. Every step involved sending

100 packets under the same parameters and calculating averages. Sending

packets from the Android application required less measurements, because

you always get a callback when a transmission is resolved. On the other

hand we get no feedback on the ROS side of things, since the SDK there

provides no such functionality. Because of that we tested the throughput by

increasing the loop rate of the ROS node from 10 to 100 Hz in steps of 10

Hz. That then basically directly correlates to the number of packets we try

to send. The problem is that the SDK starts dropping the packets, without

trying to send them, if we are request their transmission to quickly, since it

does have a queue to manage that.

The first figure shows the number of lost messages, when sending them to

the drone 3.7. Very little packets are dropped until we reached the distance

of 200 m, where the reliability suddenly plummeted. Size of the message

doesn’t seem to necessarily have an impact on likelihood of losing it.

As probably expected, the throughput 3.8 was decreasing by distance,

even though the packets weren’t dropped at first. We can notice that the

distance has great effect on the amount of data transmitted. Difference

between the smallest and largest distance is about fourfold.

The results suggest that the throughput would get very low if we increased

the distance further, which would make the link very slow at transmitting

data files with our protocol. Commands should mostly go through though,

since our application retries sending the message multiple times. Further-

more, even when sending largest messages of 100 B at the smallest distance,

3.10. RESULT 55

the upload speed is only half of the advertised.

When we created the graphs for throughput of the data received from the

drone we congested the results into the smallest and largest distance, and

showed loop rates in bigger steps. We can observe 3.7 that the loop rate of

the node, which correlates to the number of packets sent per second, has a

strong influence on the number of lost packets. The measurements are very

unstable, but we can see how higher loop rates have a bad impact on packet

loss. With the quickest packet transmission of 100 Hz we can see around a

third of them get lost on the largest packet size.

But we can see 3.8 that we can still get much better throughput with

increased loop rates. The benefit of using the higher transmission rate de-

pends a lot on the type of the message. We can afford to lose position

and odometry updates from the drone, since having a higher loss rate but a

higher update rate is preferable. On the other hand losing mission commands

and file parts would probably slow it down, due to waiting for a repetition

or recovery. Optimally, DJI would in the future introduce a way to queue

ROS messages, which would eliminate most problems with the update rate.

We would still need to consider not overstacking the queue with odometry

or similar messages, since that would make the mission important ones be

delayed.

3.10 Result

We successfully developed a robust and scalable framework for Drone to

Tablet message transmission over a very low throughput RC link. Addi-

tionally, the interface was also made to support a normal TCP/IP link over

Wi-Fi or Ethernet. The application was tested with a flight in an outside

environment on a DJI M100 drone, where it performed with no issues.

The applications running on the Android tablet and on the onboard com-

puter are able to reliably handle communication between each other, and

both provide easy ways to add new functionalities, which should be very use-

56 CHAPTER 3. DJI DRONE MAVLINK SUPPORT

Figure 3.7: A graph of the number of messages lost out of 100, when sent

from the Android application to the ROS node on the drone.

Figure 3.8: A graph of the average throughput during our field test, when

sending messages from the Android application to the ROS node on the

drone.

3.10. RESULT 57

Figure 3.9: A graph of the number of messages lost out of 100, when receiving

messages from the the ROS node on the drone on our Android application.

Figure 3.10: A graph of the average throughput during our field test, when

receiving messages from the the ROS node on the drone on our Android

application.

58 CHAPTER 3. DJI DRONE MAVLINK SUPPORT

ful for any future testing of algorithms running on DJI drones with a ROS

on-board computer. We have provided a convenient way to extend the capa-

bilities of our Smartphone App, on top of the capabilities already provided

by the DJI Mobile SDK, by the use of the command pattern. This allows

easy addition of new message types, since most of them require only defining,

how the data fields are filled-in. Features of the software run on the on-board

computer is extendable in a very ROS-like way. To receive a new MAVLink

message, you need to only add a subscription, where the argument is your

desired class. To send them, you again need to only define, how the data

fields are filled-in.

MAVLink as a messaging protocol turned out to be a good choice, be-

cause it offers an easy way of adding new definitions to the drone application

at hand, and a very efficient payload size. With it’s use in many other drone

and robotics projects we are confident it will receive continuous development.

MAVLink did seem to have a disadvantage of being somewhat poorly docu-

mented, especially for the changes from version one to two. Although that

issue shouldn’t be a problem for any later work on our applications, since

there shouldn’t be a need to tweak the base code for message transmission

anymore.

The throughput measurements also give us insight into the capabilities in

terms of data transmission speed over longer distances with varying sizes of

packets. It did unfortunately show that the actual possible speed is at most

half of the one advertised by DJI. Interestingly, distance did not seem to

have much effect on throughput when receiving messages, but sending them

slowed down by a factor of four. At the time we did not have a way to test

our link at even greater distance, but it seems the Transparent Transmission

Link would work

All in all, we are satisfied with the results of the project and we believe,

they can be further used to at least help ICG with testing drone algorithms

on a portable platform.

3.11. CHALLENGES 59

3.11 Challenges

The main challenges we faced during development of the framework were

lackluster and outdated MAVLink and MAVROS documentation. The for-

mer also had two critical bugs that made MAVLink messages encoded by the

Java interface provided by Parrot developers unreadable due to checksum

mismatch, when optimization is done on removing trailing zeros. Only after

days of digging through source code of three projects did we narrow it down

to this fault, and we took care to report it afterwards. DJI’s RC link also

had undocumented behaviour on packet transmission to or from the onboard

computer. This was also overcome by looking through source code and test-

ing. Another layer of challenge came from working with different systems

with different programming languages.

60 CHAPTER 3. DJI DRONE MAVLINK SUPPORT

Chapter 4

VR-HMD ROS interface

4.1 Related work

As interaction with robots covers many disciplines with contributions from

computer scientists, robotics, design and others it encouraged development

of common visualization and interaction tools. This paper [4] shows an ap-

proach to animating robots and programming interaction methods for users.

As they put it forward, one should look to existing animation and program-

ming tools of a game engine to give interaction designers the tools they need.

The result of their approach was an interactive tool that uses Unity for inter-

action and serial communication to access hardware. This does not require

a middleware solutions like ROS and programming solutions by hand, and

is therefore useful for people less knowledgeable in C++ or Python. On the

other side we have communication interfaces implemented over a ROS bridge

to game engines, such as ROS# [5] and UnrealCV [17]. Their commonality

is use of Rosbridge, a package providing a JSON API to ROS functionality

for prescribed 3D object for non-ROS programs via a web socket. The use of

this bridge does preclude direct integration with the messaging system, a key

part of ROS system. Information and commands from VR equipment there-

fore needs handling over proxy ROS nodes. Their advantage is the ability to

use all advanced shading, visualization techniques and other tools these two

61

62 CHAPTER 4. VR-HMD ROS INTERFACE

modern game drives provide.

The visualization tool RViz [11], on the other hand, is graphically less

complete, but already integrated into the ROS ecosystem. It is the default

visualizer packaged with ROS distributions, actively developed by the com-

munity and consequently more accessible to the developers who are accus-

tomed to it. Adding new display objects representing sensor data and state

information is made easy and configurable with its GUI. It can display video

streams from cameras, depth images, measurements and other data, with the

possibility of extending its functionalities with plugins, all of which provides

for quick prototyping.

There was already work on directly integrating HTC Vive as a RViz

plugin [2]. This work itself is based on a similar plugin for Oculus Rift and

Vrui VR Toolkit. Both of them are tightly knit to only work with those

two headsets. It allows RVIZ to render to the HTC Vive using OGRE by

providing an additional render output in RVIZ. It does that by setting up

custom projection matrices for lens correction and two cameras as viewports.

The textures also have to be rendered to for every color channel and eye

separately, and are then applied to a material and used in shaders to combine

into the final rendered image, which require extra rendering passes. It also

uses a custom written driver to access headset’s pose and coordinate system

correction allowing the user to immerse himself in the simulated world. To

display the rendered scene it requires the HMD to behave as an extended

desktop, where it then creates a new desktop window with a mirror view.

The issues stem from the fact that this work is based on SteamVR, OpenVR

and Vive drivers from two years ago, so it already requires a careful setup by

downgrading to the specified version since Linux distributions were not yet

officially supported. The Linux kernel prevents newer graphics cards from

using the HMD as an extended desktop, which this project relied on, but

allows access to the displays only by submitting rendered frames through

dedicated software, in our case SteamVR.

There had been few publications on the topic of adaptive view manage-

4.1. RELATED WORK 63

Figure 4.1: Snippets of the representation of the work done in the two papers.

The upper image relates to the camera control done by an additional robotic

arm [19] and the bottom to the virtual camera in an indoors drone flight [24].

ment, and event then most of them dealing with ground based robots. The

older techniques of using static cameras or full 360◦ views seemed to be much

better researched.

In a paper on steering in complex 3D structures [24], researchers tried

dealing with the issue of providing a user an automatic viewpoint inside

the confined spaces. The drone flight was done manually by using the Vive

controllers, with people that had no prior experience. They used a virtual

environment, built by reconstructing a real one as a point cloud and then

visualized in the Vive headset. The adaptive viewpoint works in such a way,

that during ”safe” flight the camera would be following behind the drone,

but when an obstacle got nearer to the drone, it would start shifting sideways

to try to provide the best viewing angle to help get around it. The obstacles

are detected by simple raycasting and the result then averaged over a small

time span to get smooth movement. In the user study they conducted, part

64 CHAPTER 4. VR-HMD ROS INTERFACE

of the users was limited to using only the first person view, visualized as a

static 2D plane in space. The second was also provided the possibility of

looking at the 3D model, which they moved manually with the controllers to

try and get a good perception of the scene. And the third had the possibility

of switching their view to an adaptive one, which would automatically move

the camera to a point calculated as optimal. The results were encouraging,

with the users using the adaptive view having the least collisions and best

times, since they did not have to spend as much time orienting themselves

in the world.

We also looked into an adaptive view provided by a robotic hand holding

a camera [19]. The idea here was that a robot operator has to perform a

task in a limited space via teleoperation by using the robotic arm. The

typical issue is view obstruction, especially when having to do more detailed

work, because the geometry of the arm would get in the way. This is usually

solved by using many static cameras, both in the environment and on the

hand. The researchers here tried to provide a solution, where an additional

robotic arm would be placed in the space. Their method avoids occlusions

with the manipulation arm to improve visibility. Context and detailed views

of the work area is provided by varying the distance of the camera to the

target. They achieve that by zooming when arm movements are slow and

the user is therefore probably performing a sensitive task, and vice versa. By

utilizing motion prediction they follow the user’s subsequent manipulation

actions, and actively correct the view to avoid disorienting the user as the

camera moves. The arm manipulation is done with a gamepad, where the

coordinate of the arm remains static even as the camera moves. They also

achieved better results than using static cameras or by having the camera

be attached to the manipulator arm. They suggested the results suffered

from the lack of depth cues, and recommended use of an VR headset in an

reconstructed virtual environment.

4.2. PLUGIN SYSTEM 65

4.2 Plugin system

Our VR framework is structured to be used as plugin, which we import into

RViz, and allows us to interact with the scene with a OpenVR supported

headset and controllers. It is managed with a ROS package pluginlib, which

dynamically loads plugins using the ROS build infrastructure. It is regis-

tered and initialized by a plugin provider according to the contents of the

package.xml file. It can then be used in any running instance of RViz by

simply adding it through the visualizations selection screen, because it in-

herits RViz’s Display base class. Extra runtime customization is provided

by the use of properties that can be used to change between rendering of

the virtual scene or showing the stereo camera video stream in the displays,

enabling steering of the virtual camera by HMD movement or free viewing

of the scene and changing the video stream topics. An overview of both the

plugin startup and the render loop are provided in this figure 4.2.

4.3 Plugin startup

Including our plugin in a running instance of RViz first triggers an attempt

to initialize OpenVR and trying to connect to any attached VR hardware. If

a virtual reality headset is found, we request an exclusive access to rendering

to its screens by trying to run the API in application mode. Alternatively

we could only request read-only rights for reading out positional data, as

will be useful later for controllers. If successful, the API loads all vendor

specific data needed for setting up things in OGRE. We also create dynamic

variables, that can be changed during runtime in RViz, and their relevant

callback functions. They modify scene orientation due to headset movement,

switching to a stereo video stream and changing tf listeners and broadcasters.

We then continue by getting a reference to the running instance of RViz’s

display context, which is the main connection a Display has into the rest of

RViz, providing us with access to frame and selection managers. We also get

a reference to OGRE’s scene manager, which handles the scene hierarchy,

66 CHAPTER 4. VR-HMD ROS INTERFACE

Figure 4.2: Simplified diagrams of the workings of the plugin setup on the

left and the render loop on the right. Both them should provide an overview

over the procedure necessary to run the Vive headset with RViz.

4.4. VIRTUAL SCENE SETUP 67

and texture manager, to later create textures that will correlate to eyes. We

then have two different setups for OGRE, depending on our choice of render

targets: a virtual scene or displaying a video stream from stereo cameras.

4.4 Virtual scene setup

We create a scene node at the root of the scene, which will represent the head

position, and is relative to the world’s coordinate frame, and we attach to

it two newly created camera objects. We get the translation matrices from

eye space to head space from OpenVR, which provide stereo disparity, and

apply them to the eye cameras.

The API then provides us with the recommended size for the intermediate

render target that the distortion pulls from. We use that width and height

to create two 2D OpenGL textures with the texture manager, which act as a

render target for the cameras. We follow that up by creating a viewport for

each of the texture’s render targets, and attach the cameras to them. These

viewports represent virtual eyes in the scene, and be rendered to at every

RViz’s render loop. They still require their appropriate projection matrices to

achieve the correct stereo distortions, and those are again given by the API.

At the end of the procedure we also create two OpenVR textures, which

hold a pointer by providing the OpenGL ID of the two OpenGL textures we

created previously, and will be later submitted to the HMD. We also set the

UV coordinates range for the textures to default values of 0 to 1.

If the user decides to switch to the stereo video stream, we get the render

targets of the two texture and remove their viewports, to prevent excess

rendering. We also tell the OpenVR textures to now point to the stereo

cameras textures.

68 CHAPTER 4. VR-HMD ROS INTERFACE

Figure 4.3: On the bottom left there is the usual Displays setup in RViz.

On the top we can see video stream given by the stereo cameras, overlayed

over the virtual world in the background. On the right bottom we can see

the scene in the default view provided by RViz.

4.5 Stereo cameras setup

To visualize views of the drones stereo camera we first need to receive their

video stream. We start by creating a transport hint, which basically tells

ROS to deliver compressed images to save on the necessary bandwidth. This

is then used to make two subscriptions to ROS topics, which use the same

callback function with only the differentiation between the eye used.

When an image is received, we read out the pixel format and use that

information to convert the image from its compressed form to bitmap with

the help of an OpenCV bridge. The image is also converted from BGR color

format to RGB.

If this is the first image we received for that eye, we must first create a

4.6. RENDER LOOP 69

texture for it. We read out the width and height of the image and make an

equally sized texture. To get the best performance out of frequent reloading

of images, we need to set some buffer settings. We make it dynamic, signalling

that CPU will often modify this buffer, which then retains it in Accelerated

Graphics Port (AGP) memory instead on the video memory. The write

only flag tells it that we will only be writing, which is not true of course,

although it makes the buffer always create a pointer to new memory, basically

allowing rewriting the contents while the previous one is read out by OpenVR

compositor and submitted to the HMD. Last thing we need is that it is

discardable, which tells the buffer we will be often recreating the contents,

and does therefore not care about losing the previous contents. Such setup

is needed, otherwise it prove to be a big bottleneck because of bandwidth

limitations in buffer access between the CPU and GPU. This is followed

by getting the OpenGL ID of the newly created resource and setting it in

OpenVR texture as a pointer.

In any case, the next step is copying the bitmap image to the buffer. This

is achieved by creating an OGRE pixel box, which is basically a 2D panel.

We set it to the same size and pixel format as the texture, and provide it

a pointer to the byte array of the bitmap image. We then request direct

access to stereo camera’s texture and copy the pixel box to it. We set the

UV coordinates range for the textures to values of -0.2 to 1.2, to stretch the

received image over a smaller surface. This was necessary, because the result

is otherwise too zoomed in and we also do not get any strange warping effects

like we would when rendering the virtual scene.

If the user switches from stereo camera view to the virtual scene, we have

only need to stop the subscribers to the ROS topics.

4.6 Render loop

The start of the render iteration starts by RViz first handling its GUI and

main display in the background. After that the update callback function in

70 CHAPTER 4. VR-HMD ROS INTERFACE

our plugin is called, where the transformations, rendering and frame sub-

mission to the OpenVR compositor is handled. The viewports, that were

attached to the OGRE textures in the virtual scenes, are already rendered

to and ready to be used. This does mean there is a one frame delay before

the movement of the drone and its camera is taken into account, although

that was not really an issue.

The first thing we do is request for a tf transformation from the world

to the pose of the virtual camera. If we are not able to get that, all other

operations are meaningless and so we would skip the render frame. Although

that never happens unless the tf tree is somehow broken. The scene node,

representing the head, is set to the gimbal’s location to simulate looking

through the camera. We set that as the position of the RViz scene node

representing the camera, while rotation will still require a few more steps to

compute.

We follow this up with a blocking call to the OpenVR compositor, to

provide us with the position of the VR hardware, which is required for the

later submission function call to work. This is only resolved about 2-3ms

before the frame needs to be prepared for read-out by the compositor, and

is therefore limited to 90Hz with the Vive headset. We transform HMD’s

OpenVR 3x4 matrix into an Ogre 4x4 one by just extract its orientation as

a quaternions x to z.

From this point on we had some issues with taking correct coordinate

system transformations into account. All of them are right-handed, with

OGRE and OpenVR using Y as the up axis, and ROS Z 4.4. When getting

the rotational matrix for our headset from OpenVR, we also have to account

that the orientation of pitching is inverted, to reflect the way it’s used in

real-life flying. To get our eye correction we therefore need to rotate around

X axis by 90◦ and around Z by −90◦.

4.6. RENDER LOOP 71

Figure 4.4: A representation of the two coordinate systems, former being

used in ROS and latter in OGRE and OpenVR.

Quaternions have the following format: [x y z w]. Here we take in the

rotation of the gimbal camera in our scene. We already change the direction

of rotation and inverting the yaw due to the way OpenVR represents HMD’s

pose:

OgreCameraRot =


GimbalRotX

GimbalRotY

GimbalRotZ

GimbalRotW

 ∗


0

0

0

−1

 ∗


0

0

−1

1



Next we take into account plugin’s parameter for switching between free-

look and virtual camera movement with HMD rotation. In the former case

we multiply the orientations of the camera, the eye correction and the HMD.

In the latter we have to inverse the cameras yaw and multiply that with the

eye orientation.

72 CHAPTER 4. VR-HMD ROS INTERFACE

We are correcting rotations due to differences in OGRE’s and OpenVR’s

coordinate systems. We do that by rotating around the X and Z axis by Π

/2:

EyeRotCorrection =


OgreCameraRotX

OgreCameraRotY

OgreCameraRotZ

OgreCameraRotW

 ∗


1

0

0
π

2

 ∗


0

1

0
π

2


When calculating the final rotation quaternion, which will be used in the

RViz scene node for the virtual camera, we can ignore the roll in the HMD’s

orientation. When we are working only with a simulation, and we are using

a secondary drone with the camera, we can compensate the tilt that happens

due to acceleration and deceleration. This makes the flight feel smoother and

causes less nausea due to shaking. This could be achieved in a real-life flight

by having a 6-DOF gimbal, which would try to rotate the camera to keep

the view horizontal.

We calculate the final rotation, which will be set to RViz node representing

the virtual camera. . This makes the flight feel smoother and causes less

nausea due to shaking:

RV izNodeRot =


EyeRotCorrectionX

EyeRotCorrectionY

EyeRotCorrectionZ

EyeRotCorrectionW

 ∗


HmdRotX

0

HmdRotZ

HmdRotW


We follow that up by preparing a tf frame, that will represent the HMD’s

position relative to the camera. We will use that later to put the controllers in

the scene. That means the translation is simply zero, with orientation again

needing special care. The issue here is that the controllers do not receive

their position relative to the base stations, but relative to the HMD, plus

again taking into account differences between OpenVR and ROS coordinate

4.7. READING OUT POSE ESTIMATES 73

systems. We negated the values of x and y. We then shifted x, y and z by

one position, because of the difference in which axis is up. So we ended up

with a quaternion like this: [-z, -x, y, w]. We can then finally publish the

transform to our tf tree.

At this point we are ready to display the frames in the headset. We submit

them to the compositor by getting the enum value of the eye, OpenVR texture

and the definition of UV coordinates range. When both have been sent to

SteamVR, and if they have been sent fast enough, we will now see the result

in the HMD.

4.7 Reading out pose estimates

To use the HMD and controllers to manipulate and interact with the scene,

we created a ROS node to read out pose estimates. Like the plugin also

starts by initializing the OpenVR API, although this time it request only

read-only access. If successful, it provides us with IDs, that we later use to

access data. It will fail, if there is no other instance of OpenVR running in

application mode on the computer, so we repeat the initialization until the

RViz plugin is running. We need to do it as such, since it is not possible to

run multiple processes with direct access to the VR hardware. Although in

this case this is not a problem, since we are only interested in reading out

positions and button presses.

The main loop is then not using a blocking call to receive the updated

positions like before, since we do not need render synchronization. We always

request for new positional data, which is not necessarily updated yet, and

parse it to a tf transform. We then publish them to a separate tf tree 4.5 from

the rest of all the tf frames we use in other packages and the plugin. This

is because Vive uses an arbitrary coordinate frame created during Steam’s

Room Setup, which is useful only to us to determine relative transformations

from the HMD to the controllers in the real world.

Besides the translation and orientation of the controllers we are also inter-

74 CHAPTER 4. VR-HMD ROS INTERFACE

Figure 4.5: An overview of the relative transformations related to the virtual

camera and the Vive headset.

4.8. VIVE CONTROLLERS INTEGRATION 75

ested in reading out the button presses. The 2D trackpad can take any value

between -1 and 1 on the X and Y axes. The trigger button similarly goes

from 0 to 1, but all other buttons just output binary values. We publish this

data as a ROS Joy Sensor message, which can take an arbitrary number of

button presses and axes values as input. This does mean that any receiving

node needs special parsing to interpret the data correctly.

We also have a pair of ROS subscribers, to which we can publish a request

for vibration. That could be useful as haptic feedback to inform the user of

problems or potential failures in performing a task. To trigger it the message

needs to provide only a float between the values 0 and 3999, with the highest

number causing the strongest response.

4.8 Vive controllers integration

Vive controllers were an additional VR accessory that we wanted to use for

interaction inside the virtual environment. They let you wirelessly interact

with the scene, providing very responsive and accurate localization. It has a

multi-function analog trackpad, a dual-stage trigger, grip button and haptic

feedback. The sensor data for them is provided by SteamVR at the speed

of 250-1000Hz. We read out and publish the data in a node, separate from

our visualization plugin. This allows us to use pose and triggers in any other

ROS node, without creating bottlenecks by running too many calculations

inside the render loop, which would inevitably slow it down.

A separate node then handles the transformation to the correct HMD tf

frame in the virtual scene. The main loop also runs at a high frequency,

so it is able to very quickly update the translation and orientation of the

controllers in the real world, although synchronization with the virtual scene

is still limited by the speed of the render loop in the plugin, which is at most

90-times per second with the Vive HMD. We start by requesting the newest

tf transformation between the headset and its controllers, where both are

relative to the base stations. This is followed up by sending a pose message,

76 CHAPTER 4. VR-HMD ROS INTERFACE

where we set its header frame ID to the HMD transformation from the virtual

scene. Alternatively we also offer the same information by publishing it as

a tf transform. Both of them have an effect of positioning the controllers in

the virtual scene relative to the virtual view. This gives then the impression

of simply having virtual, highly responsive hands.

4.9 Simulation in Gazebo

To provide collision detection and physics simulation we included Gazebo as a

set of ROS packages. With that, we imported the virtual scene with the urban

setting, drones and interactive controllers as physical objects. If we just used

the controllers as the virtual hands in the scene now, we would be only limited

to interacting with vicinity at the reach of the hand. Additionally, it would

also ignore any collisions with the virtual scene.

To extend scene interaction options, we used a method of extending the

reach of the hands. The pose is looked up as a transformation between the

world and the virtual controllers. This gives us a position to which the hands

would like to move in the simulated scene. After one tick we republish these

new positions, which can be the same as the original ones if nothing was

interacted with, so that we can visualize it in RViz.

We also use the input of the trigger button as given by the Joy sensor

message. The distance of the hand is then scaled linearly away from the body

proportional to how much the trigger was depressed. The directional vector

is given by the position of the controller and its corresponding shoulder 4.6.

Although for that to feel as intuitive movement the user has to hold the hand

up, usually at the same height as the shoulder. To start interaction with the

scene we can then also use the grip button.

When we were testing out this solution we quickly realized, that even

though we have stereo vision by using VR hardware, it is sometimes still

problematic to judge the depth and the distance to the points of interest.

Therefore we plan to add straight lines, perpendicular to the world plane, to

4.9. SIMULATION IN GAZEBO 77

Figure 4.6: On the top we can see the mirror view of the current display in

the headset. Here we are moving the virtual camera around the drone, in a

kind of an orbit by rotating the HMD. The visualized hands correspond to

the controllers position in the real world, and can be used to interact with

the scene. On the right bottom we can see the scene in the default view

provided by RViz.

78 CHAPTER 4. VR-HMD ROS INTERFACE

act as visual guides.

4.10 Adaptive view management

We continued the adaption of the immersive virtual environment with tele-

operation that would provide a user with environment-adaptive viewpoints,

which would be automatically adjusted to improve safety and smooth user

operation. The idea is that the method tries to avoid occlusions with the

surrounding environment to improve visibility, provide context and detailed

views of the area of interest (AOI) by changing the virtual cameras distance

to the drone, utilizes motion prediction to cover the space of the user’s next

manipulation actions, and actively corrects views to avoid disorienting the

user as the camera moves.

This approach comes from the fact that visual support is necessary for

smooth teleoperation, as even quality control interfaces would not help if we

are dealing with an obfuscated or unclear view of the manipulation space.

A default solution would be to simply use the drone’s camera to observe

the world in first person. The problem of that is that you always have to

interrupt an ongoing task, if you wish to look around the environment to get

an overview and more context, by manually moving the drone to a vantage

point, which is time-consuming and an additional mental load on the user,

since he would also have to memorize the layout of the world in the meantime.

This is partially solved by using a virtualized world and looking it up in a

visualizer, since you could look at the 3D world reconstruction in real-time,

although that would again mean switching between the cameras views and

manual manipulation of the view in the virtual scene. One solution for that

is using a collection of static cameras arranged in a workspace, although a lot

of them would probably not be able to see the AOI and are not that useful

in an outdoor scenario because of the possible size of the area.

4.11. OUR APPROACH 79

4.11 Our approach

Our plan was to provide two interfaces for visualization of the environment.

One of them is rendering a virtual scene, which is useful for performing

simulated flights or flying outdoors in a world, where we would not expect

much dynamic changes. Such a scene could be built before the assisted

flight by an auxiliary drone going over the scene, which would take a set of

pictures, which would be used for reconstructing a 3D environment of the

area. The second option is viewing the world through the drone’s onboard

stereo camera, which would provide an immediate view of the current scene,

real or simulated. To increase the comprehensibility of handling the view

in those two different cases we use the HMD’s virtual view for both, which

would potentially also reduce the complexity of the task due to depth cues.

The virtual camera’s job is to perform similar view management like the

virtual camera in [24]. It needs to avoid any collisions with the world and

the Bebop 2 drone, while also providing a view over the interest area. Our

prototype places the viewpoint in orbit of the drone, where it then stays and

follows at a fixed distance. The user can intuitively adjust the viewing angle

by looking around with the HMD 4.7. If we for example look left, the virtual

camera will shift around the drones yaw axis, and by looking down, it will

orbit it around the pitch axis. By using the natural movements of the head

as an input method, the user should be able to quickly to find a viewpoint

he deems necessary.

4.12 Result

We have successfully developed a VR-HMD interface for visualization in

RViz. To test the solution we extensively used HTC Vive, although by ab-

stracting the VR hardware layer through the use of OpenVR most other

SteamVR enabled devices should be usable with minimal or no tweaking

required. The plugin will remain usable for the foreseeable future with the

newest software, since we managed to remove specific version requirements

80 CHAPTER 4. VR-HMD ROS INTERFACE

Figure 4.7: Representation of radial movements around the actor drone done

by the virtual camera in relation to the user’s yaw and pitch movements.

4.13. CHALLENGES 81

in a similar previous plugin. The performance and rendering speed manages

to achieve stable recommended frame rate. Since we can visualize the virtual

scene or the stereo camera video streams, it is usable both in simulated and

real-world scenarios. The integration of Vive controllers in the virtual scene

also allows their use for manipulation in different HRI scenarios. As a proof-

of-concept we setup a VR prototype, where VR controllers and the headset is

used to manipulate artificial hands and move a drone. This shows a possible

use in future UAV exploration missions, where the virtual viewpoint would

follow a drone in the most efficient way providing optimal viewpoints to the

drones pilot.

An extension of that method is to use the drone’s waypoints on its current

mission and measuring the speed, which we could use to adjust the distance

of the virtual camera, thereby changing the zoom level. By moving slower,

that probably means the drone is approaching a critical point, where a user’s

attention would be then needed to perform or supervise a necessary task.

During faster transit around the scene it would zoom out to provide a better

overview and context of the whole environment. The next step is taking

into account the hand controllers movement to allow the user to have some

control over what the interest area. By moving the controllers towards the

edge of the viewing frustum a user can influence the calculated interest area

by shifting it towards something a user needs to manipulate to fulfill his task.

The aforementioned methods are planned to be used and tested as part of a

concept for a natural UAV exploration interface, introduced by my advisor

W. A. Isop, replacing the virtual camera by a second physical drone and

interacting with their flight paths.

4.13 Challenges

Because VR is mainly used in Windows environments, especially in gaming,

there were a lot of compatibility issues and constant problems with freezing

and unresponsiveness with HDM drivers on Ubuntu - usually solved by simply

82 CHAPTER 4. VR-HMD ROS INTERFACE

unplugging the headset. SteamVR’s configuration interface for developers is

also mostly unresponsive in Ubuntu, so everything had to be done manually

via configuration-file editing. Another problem was also that the Vive’s dis-

play worked as extended desktop on older graphics-mode on newer graphics

cards. To conform to that we had to completely rewrite the VR plugin to use

newer graphics drivers, SteamVR and OpenVR, which coincidentally made

this the focus of this project. We had some issues also with specific versions

of packages you have to use in tandem with Indigo, although troubleshoot-

ing such things was usually sufficiently covered in their description. Similarly

to the MAVLink interface, there were issues with lack of documentation on

OGRE and RViz integration, and no description on how render loops and

background threads are handled. This meant surfing through the source code

and blind testing was again necessary.

Chapter 5

Conclusion and future work

5.1 Concluding remarks

In this thesis we explored the possibilities of extending developer tools for

ROS supported drones. We proposed and implemented a framework that

allows use of custom commands for DJI drones over greater distances by

using the RC and integration of VR support for most modern headsets in

RViz.

We started by looking into different frameworks, used for UAV to GCS

communication. We choose the MAVLink messaging protocol, partially since

it is used in a number of open-source autopilots and due to its message defi-

nitions customizability. While there were similar solutions already existing,

none of them tried implementing a communication link over the RC. While

its main drawback is the very low bandwidth, it has a great range advan-

tage to a Wi-Fi connection. It can be used in enclosed spaces, something

that a mobile network connection would not guarantee. We focused on pro-

viding a framework which would need minimal work to add new messages,

which could be used for transmitting commands, log data, flight status and

external sensor data. To that end we implemented an Android GCS and a

pluginlib-supported ROS package. We also implemented a protocol to reli-

ably transmit any files between devices, which could contain configuration

83

84 CHAPTER 5. CONCLUSION AND FUTURE WORK

parameters for flight missions or computing results. Image, video, telemetry

and sensor data would still preferably be transmitted over functions provided

by the Mobile SDK, as they offer greater bandwidth than the Data Transpar-

ent Transmission. In short, we provided a linkage between a mobile platform

and the onboard ROS computer, granting developers a better flexibility in

creating their own flight APIs.

We used our demo application to demonstrate it is possible to fully control

the drone over the custom data link. It provides basic flight controls for

directly steering the drone, in a similar fashion as can be done with the

RC sticks. We display telemetry data, which is received from the drone

in regular intervals. To demonstrate the file transmission protocol, we can

send a configuration file for a flight trajectory and then execute it. We

started our tests on the framework by first measuring the throughput of

messages over varying distances and message payloads. This was followed up

by trying out our GCS in a DJI flight simulator, and once we were satisfied

any unfortunate accidents would not occur, we went to a a flight-field. The

real-life experiment, where we completed a number of flights, went through

without any issues, demonstrating the feasibility of our approach.

In the next part we explored ways of directly integrating VR support

inside the ROS ecosystem, with the goal of providing a way to visualize and

interact with the environment without needing outside tools. The idea was

to allow easier development and prototyping by closely coupling our solution

with the ROS-native RViz visualizer. To that end we again based it on the

pluginlib system, where the plugin is then directly available in RViz and

drawn by its OGRE engine. The interface to an HMD is implemented by

using OpenVR, a SDK that abstracts the hardware layer. The stereo images

can be displayed in two different ways. First is by rendering them from an

virtual environment, where we receive the position of the camera from a tf

listener and then apply stereo projection. Second is by streaming images

from a stereo camera, which we directly display in the headset.

Since our thesis rests on support for UAV missions, our use case presents

5.2. FUTURE WORK 85

view management for a drone on an exploration mission, where the operator

is required to perform some input to route around obstacles and finding

targets. It is followed by a virtual camera or a secondary drone, which are

there to provide a greater overview of the scene. The viewpoint is controlled

by user’s yaw and pitch VR-HMD rotations. The idea is the operator can

get a secondary viewing angle on the area of operations and adjust it with

intuitive HMD movements, without needing an additional controller. To

allow further interaction with the environment and to provide a way to for

example adjust the flight path, we also implemented support for reading out

VR controllers position and button presses. Our solution was only tested

in a virtual environment on an HTC Vive, although any other SteamVR-

supported device should work as well.

5.2 Future work

The next sensible step for our MAVLink framework would be to integrate

it to any of the supported GCS, of which we think QGroundControl would

be the best choice due to its cross-platform compatibility. By emulating this

project [21], we could provide a way of allowing integration of custom new

messages and commands, that can be transmitted not just over TCP/IP, but

over the RC as well. We have already tested this out by simply transmitting

a MAVLink Hearbeat message, and QGroundControl was able to identify the

connection as coming from a drone. If the integration would be completed,

it would provide a fully functioning and actively developed GCS as a testing

platform for further research and real-life flight missions.

As for our VR development, it could be worth exploring on further options

of providing adaptive view management with the secondary drone/virtual

camera. Actor drone, headset and controllers movement could be jointly used

to calculate and predict an optimal viewing angle and height. Similar to [24]

automatic view adjustment might achieve better mission performance than

in cases, where only the actor drone’s view is available or manual adjustment

86 CHAPTER 5. CONCLUSION AND FUTURE WORK

of the secondary is necessary. The challenge would be to make it work in

unknown environments, where your would also have to take care for collision

avoidance of a potential secondary drone.

Bibliography

[1] Skylogic Research Drone Analyst. 2017 drone market sector report,

2017. [Online; accessed 2018-May-09]. 18

[2] Andre Gilerson. Rviz plugin for the htc vive, 2016. [Online; accessed

27-August-2018]. 62

[3] Catalina Aranzazu Suescun and Mihaela Cardei. Unmanned aerial ve-

hicle networking protocols. 01 2016. iii, 35

[4] C. Bartneck, M. Soucy, K. Fleuret, and E. B. Sandoval. The robot en-

gine — making the unity 3d game engine work for hri. In 2015 24th

IEEE International Symposium on Robot and Human Interactive Com-

munication (RO-MAN), pages 431–437, Aug 2015. 61

[5] R. Codd-Downey, P. M. Forooshani, A. Speers, H. Wang, and M. Jenkin.

From ros to unity: Leveraging robot and virtual environment middle-

ware for immersive teleoperation. In 2014 IEEE International Confer-

ence on Information and Automation (ICIA), pages 932–936, July 2014.

iv, 61

[6] DJI developers. Dji sdk dji2mav, 2016. [Online; accessed 2018-February-

11]. 37

[7] Thach D. Do, Juhum Kwon, and Chang-Joo Moon. Ground system

software for unmanned aerial vehicles on android device. International

Journal of Computer, Electrical, Automation, Control and Information

Engineering, 7(2):250 – 255, 2013. iii, 35

87

88 BIBLIOGRAPHY

[8] Faculty of Computer and Information Science. Kr nekam tole kaže, 2018.

[Online; accessed 21-September-2018].

[9] Fadri Furrer, Michael Burri, Markus Achtelik, and Roland Siegwart.

Robot Operating System (ROS): The Complete Reference (Volume 1),

chapter RotorS—A Modular Gazebo MAV Simulator Framework, pages

595–625. Springer International Publishing, Cham, 2016. 31

[10] Gazebo and ROS community contributors. Ros package

gazebo ros pkgs, 2018. [Online; accessed 20-August-2018]. 31

[11] Hyeong Ryeol Kam, Sung-Ho Lee, Taejung Park, and Chang-Hun Kim.

Rviz: A toolkit for real domain data visualization. Telecommun. Syst.,

60(2):337–345, October 2015. iv, 31, 62

[12] N. Koenig and A. Howard. Design and use paradigms for gazebo,

an open-source multi-robot simulator. In 2004 IEEE/RSJ Interna-

tional Conference on Intelligent Robots and Systems (IROS) (IEEE Cat.

No.04CH37566), volume 3, pages 2149–2154 vol.3, Sept 2004. 30

[13] L. Meier, D. Honegger, and M. Pollefeys. Px4: A node-based mul-

tithreaded open source robotics framework for deeply embedded plat-

forms. In 2015 IEEE International Conference on Robotics and Automa-

tion (ICRA), pages 6235–6240, May 2015. 25

[14] OGRE contributors. About, ogre - open source 3d engine, 2018. [Online;

accessed 24-August-2018]. 33

[15] PARROT developers. Mavlink code generator, 2018. [Online; accessed

2018-June-11]. v, 41

[16] PARROT developers. Mavros overview and installation instructions,

2018. [Online; accessed 2018-June-15]. 36

[17] Weichao Qiu and Alan Yuille. Unrealcv: Connecting computer vision

to unreal engine. In Gang Hua and Hervé Jégou, editors, Computer

BIBLIOGRAPHY 89

Vision – ECCV 2016 Workshops, pages 909–916, Cham, 2016. Springer

International Publishing. iv, 61

[18] Morgan Quigley, Ken Conley, Brian Gerkey, Josh Faust, Tully Foote,

Jeremy Leibs, Rob Wheeler, and Andrew Y Ng. Ros: an open-source

robot operating system. In ICRA workshop on open source software,

volume 3, page 5. Kobe, Japan, 2009. 25

[19] Daniel Rakita, Bilge Mutlu, and Michael Gleicher. An autonomous dy-

namic camera method for effective remote teleoperation. In Proceedings

of the 2018 ACM/IEEE International Conference on Human-Robot In-

teraction, HRI ’18, pages 325–333, New York, NY, USA, 2018. ACM.

63, 64

[20] Camacho David Ramirez-Atencia Cristian. Extending qgroundcontrol

for automated mission planning of uavs. Sensors, 18(7):2339, 2018. 37

[21] Rogue Squadron, Defense Innovation Unit Experimental. Android-based

mavlink wrapper for dji drones, 2018. [Online; accessed 2019-January-

12]. iii, 37, 85

[22] ROS community contributors. Ros concepts, 2018. [Online; accessed

23-August-2018]. 25

[23] ROS community contributors. Ros posestamped message, 2018. [Online;

accessed 2018-May-25]. 39

[24] John Thomason, Photchara Ratsamee, Kiyoshi Kiyokawa, Pakpoom

Kriangkomol, Jason Orlosky, Tomohiro Mashita, Yuki Uranishi, and

Haruo Takemura. Adaptive view management for drone teleoperation

in complex 3d structures. In Proceedings of the 22Nd International Con-

ference on Intelligent User Interfaces, IUI ’17, pages 419–426, New York,

NY, USA, 2017. ACM. 63, 79, 85

90 BIBLIOGRAPHY

[25] Tractica community contributors. Commercial drone shipments to sur-

pass 2.6 million units annually by 2025, 2018. [Online; accessed 10-May-

2018]. 17

[26] Virtual Reality and Augmented Reality Wiki community contributors.

Htc vive, 2018. [Online; accessed 19-August-2018]. 29

[27] Virtual Reality Society. What is virtual reality?, 2018. [Online; accessed

25-August-2018]. i, 18

	Razširjeni povzetek
	Uvod
	Pregled podobnih del
	MAVLink podpora za DJI letalnike
	ROS vticnik za navidezno resnicnost
	Sklep

	Introduction
	Motivation
	Contributions
	Framework specifications

	Tools
	Robot Operating System
	DJI M100
	MAVLink
	HTC Vive
	Parrot Bebop 2 and RotorS
	RViz
	OGRE
	OpenVR and SteamVR

	DJI drone MAVLink support
	Related work
	Connection options
	Creating a MAVLink dialect
	File transfer over the link
	Android project
	ROS project
	Integration with QGroundControl
	Flight test
	Throughput test
	Result
	Challenges

	VR-HMD ROS interface
	Related work
	Plugin system
	Plugin startup
	Virtual scene setup
	Stereo cameras setup
	Render loop
	Reading out pose estimates
	Vive controllers integration
	Simulation in Gazebo
	Adaptive view management
	Our approach
	Result
	Challenges

	Conclusion and future work
	Concluding remarks
	Future work

