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Kurzfassung 

Das Konzept dieser Arbeit ist die semi-automatische Bestimmung von Trennflächenscharen 

und deren Orientierungen durch das Bearbeiten von 3D Punktwolken. 

Für diesen Zweck wird eine semi-automatische Methode in MATLAB implementiert, welche 

weitestgehend ohne menschliche Unterstützung funktioniert. Eine überwachte Methode, bei 

der eine verantwortliche Person die Daten bearbeitet, wird als Vergleich durchgeführt. Die 

Bearbeitung erfolgt dabei mit der Freeware CloudCompare und den kommerziellen 

Programmen RiSCAN PRO, sowie der Rocscience Software Dips 7.0. 

Drei Datensätze, welche in Kaili, China aufgenommen wurden, werden untersucht und die 

räumliche Veränderung der Orientierungen der Trennflächenscharen bestimmt. Weiters wird 

eine kinematische Analyse durchgeführt, welche es erlaubt Aussagen bezüglich der 

potentiellen Gebirgsstabilität zu treffen. 

Die überwachte Methode erweist sich als robust, aber zeitaufwändig für die durchführende 

Person. Dazu unterliegt sie einer Beeinflussung durch den Bearbeiter. Die semi-automatische 

Methode ist Großteils automatisiert, zu hohem Maße reproduzierbar und überwiegend frei 

von menschlichem Einfluss. Qualitativ liefert die semi-automatische Methode gute 

Ergebnisse für Scharen, welche als deutliche Flächen in der Öffnungsfläche auftreten. 

Verzerrte Orientierungen oder sogar das vollständige Fehlen von Scharen kann auftreten, 

wenn Trennflächen hauptsächlich durch Spuren in der Öffnungsfläche vertreten sind. Daher 

müssen Ergebnisse der semi-automatischen Methode überprüft werden, bevor Gewissheit 

über ihre Genauigkeit erreicht ist. 

In Kaili wurden fünf subvertikale Kluft Scharen, welche ihre Orientierung über alle drei 

Lokalitäten kaum verändern und eine Schichtung, welche in allen Fällen einen geringen 

Einfallswinkel jedoch unterschiedliche Einfallsrichtungen aufweist, bestimmt. Die 

kinematische Analyse zeigt, dass keilförmiges Versagen der Hauptversagenstyp ist. Da in 

dieser Arbeit lediglich die geometrische Disposition für Versagen untersucht wird, müssen 

weitere Trennflächeneigenschaften wie Verwitterung, Durchgängigkeit, Konnektivität und 

Rauigkeit lokal bestimmt werden um die Stabilität genauer zu bewerten. 



Abstract 

The concept of this thesis is the semi-automatic extraction of information regarding the 

orientation of discontinuities in a rock mass, by processing 3D point cloud data. 

For this purpose, a semi-automatic methodology, which works to the greatest extent without 

human assistance, is implemented in MATLAB. Further a supervised methodology, where a 

person in charge edits the data, is executed for comparison. It is performed with the freeware 

CloudCompare and the commercial software RiSCAN PRO as well as the Rocscience software 

Dips 7.0. 

Three data sets, detected in Kaili, China are investigated and the spatial change in 

discontinuity set orientations is determined.  Further a kinematic analysis allows a statement 

on the potential stability of the rock slope. 

The supervised methodology proves robust but time consuming for the geologist in charge 

and susceptible to human bias. The semi-automatic methodology is mostly automated, 

highly reproducible and not influenced by human bias. It delivers qualitatively comparable 

results to the supervised methodology for discontinuity set orientations, which are 

represented by distinct planes in the face. Biased orientations or even the complete absence 

of sets in the results are possible if discontinuity sets are mainly represented in the face by 

traces. For this reason, the semi-automatic methodology must be verified by a geologist, 

before certainty on the results’ accuracy is achieved. 

Five sub vertical fracture sets, which maintain their orientation over the three locations and 

a bedding plane, which slightly dips in changing directions, are detected. The kinematic 

analysis indicates wedge sliding as the primary failure mode in the area of Kaili. As the 

geometric disposition is investigated in this thesis, further discontinuity parameters like 

weathering, persistence, connectivity and roughness must be determined locally, to assess 

the slope stability. 
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1. Introduction 

With remote sensing methods, such as laserscanning or photogrammetry, the morphology 

of an area can be recorded with high resolution. The result are large digital lists of points’ 3D 

coordinates, called point clouds, which represent the surface. The objective of this thesis is 

the extraction of discontinuity orientation in rock slopes by using terrestrial laserscan (TLS) 

data. The basic idea is that the rock face consists of discontinuities, as these planes of 

weakness are exposed when rock detaches from the rock mass. Consequently, measuring the 

orientations observed in a rock face implies measuring discontinuity orientations. A semi-

automatic approach, where planes are computed and measured automatically is performed 

and compared to a supervised approach, where the planes for measurements are manually 

modelled through the point cloud. The role of discontinuities, such as bedding or fracturing, 

is major when it comes to rock slope stability. Parallel to discontinuity planes shear and 

tensile strength are reduced and permeability is increased. Discontinuities create an 

anisotropic, non-continuous rock, which behaves directional. The most important 

discontinuity properties are orientation, spacing, persistence and roughness, however 

orientation has been ascribed the primary role. Consequently, an accurate and precise 

determination of the discontinuity orientations is the key aspect for a thorough stability 

analysis [1]. 

“Since joint planes introduce such strongly directional weaknesses, the most important joint 

attribute can be considered to be orientation.” (Goodman 1989) 

In most cases systematic discontinuity sets, thus discontinuities which form subparallel to 

each other, allow the extrapolation of measured orientations to a certain extent [1]. It is 

geologically reasonable that similar stress conditions have acted in an area and created 

similar discontinuities. In this thesis data from three laser scans in the region of Kaili (China) 

is processed and the resulting orientations are compared, to asses if this extrapolation is 

possible, or if there is a significant spatial change in discontinuity orientations. Another 

objective is the continuation of processing the obtained orientation data for the purpose of a 

kinematic stability analysis of the rock slope. This analysis investigates the geometry of the 

discontinuities with respect to the face orientation. A simple extension is made by including 

the friction angle to the considerations. The three failure modes planar sliding, wedge sliding 

and toppling are analysed. 
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2. Development in discontinuity orientation extraction 

2.1. Traditional techniques 

Discontinuity information is often obtained by conventional fieldwork, for instance scanline 

or window mapping surveys. The basic idea behind scanline mapping is to define a line at an 

outcrop. Along this line every discontinuity is recorded in terms of orientation, persistence, 

spacing, roughness and further parameters. In window mapping every discontinuity within a 

defined area is recorded [2]. This fieldwork is time consuming, therefore expensive, cannot 

be carried out in inaccessible or hazardous areas and is affected by human bias. Often the 

results are subjective and not reproducible [3]. 

2.2. Modern techniques 

Remote surveying techniques like photogrammetry or terrestrial laserscanning allow the fast 

and large-scale collection of data. These techniques are ahead of traditional methods 

concerning data quality and quantity. They have the capability of recording up to hundreds 

of thousands of points in a short time, which contain the morphologic information of huge 

areas. The advanced processing power allows the analysis of this large data volume, to gain 

the valuable discontinuity information from the raw 3D point cloud, obtained by the 

laserscan. To extract this information from the point cloud, however, there is the necessity of 

proper data editing. In recent decades this topic has been subject to various studies. 

Interactive computer-based methods allow to pick planes manually and receive a 

measurement from the software similar to traditional methods, where a field geologist 

measures individual discontinuity orientations with a compass. Interactive methods are 

supervised by a judging geologist, who maps plane by plane. This approach has been 

implemented in commercial software such as PolyWorks and ShapeMetrix 3D [4]. In this 

thesis a supervised methodology, where the individual planes are selected and measured, 

using the software RiSCAN PRO, is executed (section 4.1.1). 

The semi-automatic approach has been of interest for research in recent years. The aim is to 

automatically derive orientation information from the data without, or only little, human 

assistance [5]. 3D surface reconstruction is an automatic method to establish a realistic model 

of mathematically described planar elements (triangles or facets) through the points of the 

point cloud. Slob et al. (2005) implemented this method by creating a mesh of triangles from 
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the point cloud and measuring each triangle orientation [6]. The software PlaneDetect [7] 

and Split-FX [6] are commercial programs based on this method. A different automatic 

approach that received a lot of attention is the direct point cloud segmentation. It classifies 

each point of the point cloud dependent on its geometric properties, which are determined 

by the geometry the point forms with its neighbouring points. The result is the identification 

of homogenous regions in the point cloud, composed of points with similar geometric 

properties [8]. For the purpose of rock mass characterisation similar geometric properties are 

equivalent to the membership to the same planar structure or discontinuity. The main 

advantage of point cloud segmentation is that surface reconstruction is not required and the 

original point cloud data is used. Consequently, there is no loss in data and less computing 

power is necessary [4]. For the point cloud segmentation edge-based and bottom up region-

based methods are generally used for identifying simple geometric objects like planes. The 

edge-based method finds edges in the point cloud and classifies points within the developing 

shapes with the same label. This approach is rather sensitive to noise and uneven point cloud 

densities, which are common properties of laserscan data from geologic outcrops. The 

bottom up region-based method starts with a seedpoint, from which a growing process is 

initiated, until the geometric properties differ. This approach is more robust to noise, 

however sensitive to the location of the initial seedpoint and tends to inaccuracies near 

discontinuity boundaries [8] [9]. For rock mass characterisation this method is described by 

Slob (2007) who uses the bottom up region-based approach to label points belonging to the 

same planar structure with identical labels. The basic principle is that a random seed point is 

selected from the point cloud and its k-nearest neighbours are searched. Then a planarity 

criterion is carried out on this subset of points. The most common algorithm for this planarity 

criterion is the Principal Component Analysis (PCA), which determines the degree of planarity 

and the normal vector of the best fit plane. If the planarity criterion is fulfilled the points are 

labelled with the same integer value and new seedpoints on the edge of the subset are 

selected. This procedure continues and the plane grows, until the planarity condition fails. 

Then a new random seedpoint is selected and the label increases with the value of one. 

Eventually each point of the point cloud is labelled with an integer number describing its 

membership to a plane and the plane normal vector is obtained giving the plane’s orientation 

[5]. This approach is followed in this thesis for the semi-automatic methodology (section 

5.1.2). Other authors such as Jaboyedoff et al. (2007), Gigli & Casagli (2011), Riquelme et al. 
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(2014), Buyer & Schubert (2016) and Guo et al. (2017) follow a similar approach but resign 

from the process of growing planes. Instead the normal vector orientation of every point of 

the point cloud, which fulfils the planarity criterion, is recorded. This method is implemented 

in various software like DSE (Discontinuity Set Extractor) [10], DiAna [11] and Coltop 3D [9].  

There is general agreement among authors on the depiction of the obtained orientation data. 

The Kernel Density Estimation (KDE) is used to depict the densities of calculated normal 

vectors, which are displayed in a stereographic projection. KDE is a non-parametric 

probability density function, which means the distribution shape is only dependent on the 

data itself. A smoothing parameter distinguishes it from usual histograms [10]. The KDE is 

suitable for displaying the density for millions of normal vector measurements. From the KDE 

density peaks can be detected, which serve as starting points for the clustering analysis. 

To eventually assign each point to a discontinuity set and calculate discontinuity set 

parameters like mean orientation and Fisher-k value, clustering algorithms are executed. 

Various algorithms for instance DBSCAN [10], Fuzzy k-means [7] [5] [6] or Firefly and Fuzzy-

c means [4] are implemented for this purpose by different authors. 
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3. Data 

3.1. Field of work 

The processed laser scans were recorded in the surroundings of the town Kaili, which is the 

metropolis of the autonomous region Qiandongnan, in the southeast of the Chinese province 

Guizhou (figure 1). As already multiple rockfalls have occurred in this area, an extensive 

analysis of the kinematic stability is a matter of particular interest. 

 

figure 1: The geographic location of Kaili, in the southeast of China, is tagged in the image. 
(bing.com/maps) 

 

The investigated lithology is limestone. Karst phenomena and dissolution processes clearly 

play a vital role when it comes to failure in this particular area. Dissolution increases the 

discontinuity size, persistence and connectivity, which leads to a permanent decrease in 

resisting forces. Often episodically acting factors, like heavy rainfall or earthquakes, finally 

trigger the rockfall. Water acts as a trigger due to seepage forces acting downward, or 

buoyancy forces in water-saturated fractures, leading to a decrease of normal stresses and a 

consequent drop in shear strength. In the lower aerial photography of figure 2 a sinkhole, 
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which most likely contributed to the failure, by allowing more water to infiltrate the rock 

mass, is visible. In figure 3 a hole in the upper part of the face is witnessed. It is most likely 

connected to the sinkhole and was created by continuous dissolution, which weakened the 

rock mass. This feature may have contributed to a saturation of the failure planes and 

triggered the rock fall. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 figure 2: The two aerial photos show the outcrop Long Chang. The upper photo was taken before, 
the lower photo after the rock fall event. The sinkhole in the upper middle of the lower photo is clearly 
visible and indicates high karst activity. 
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In the photography of figure 4 the persistent, relatively horizontal bedding plane and multiple 

sub-vertical fractures are clearly visible. The determination of the accurate orientation of the 

discontinuities is the aim of this thesis. As the high karst erosion rates altered the face and 

created rounded shapes, the discontinuity set identification could turn out to be more 

difficult. Due to karst processes, it is likely that random orientations are witnessed, which do 

not represent a certain fracture set but are created by dissolution. 

 

 

 

 

 

 

 

 

figure 3: The hole in the middle part of the photography, taken at the 
outcrop Long Chang, was created by karst processes and led to the 
infiltration of water into the rock mass. 

figure 4: The photography shows the Long Chang outcrop. The reddish area 
is freshly exposed by the rockfall event. The sub-horizontal bedding and 
multiple sub-vertical fracture sets are observed. 
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3.2. Data size and resolution 

The data incorporates three laserscans of the locations Long Chang, Xiang Qi Jiang Kou and 

Lao Hu Po coalmine. As parts of the data have very low point densities or include noise, 

primarily vegetation, it is first manually cropped with the segmentation tool of the software 

CloudCompare to extract areas of higher and more constant point density. This results in 

three point clouds, ranging between 1.5 and 4 million points each. The point densities are 

generally low and fluctuating between 20 and 100 points/m2. Both the low point density and 

the variability in point density in the data, may affect the result and possible biases must be 

taken into account. 

Varying point densities occur due to the position of the scanner regarding the outcrop face, 

while data acquisition. Normally multiple scanner positions are used. Linearly stacked 

scanner positions lead to a lower point density on planes approaching subparallel orientation 

to the scanner’s line of sight. This bias is known as the line of sight or occlusion bias [12]. As 

the scanner is normally placed perpendicular to the outcrop face, planes normal to the face 

have the lowest densities and might be underrepresented in the point cloud and 

consequently in the result. This instance is contrary to the Terzaghi bias (orientation bias) in 

scan line surveys, where discontinuities normal to the scanline orientation, therefore 

perpendicular to the face, are intersected more often in relation to discontinuities subparallel 

to the face and are consequently overrepresented [13]. 

M. Sturzenegger & D. Stead (2008) describe a scale or resolution bias in point cloud data of 

low point density, which leads to a shift in set orientation or a complete neglecting of sets. 

Discontinuity sets with a small persistence compared to the point spacing are overlooked 

[14]. For discontinuities to be detected it is necessary that their size is significantly greater 

than the point spacing of the point cloud. In this data, for a point density of approximately 75 

points per m2 and the fact that at least 25 points are necessary for the plane algorithm to 

detect a plane, every object smaller than 0.3 m2 cannot be detected. This bias is similar to the 

truncation bias in scanline surveys, where traces below a certain length are neglected [15]. It 

is only dependent on the data resolution and can be prevented by using a higher point 

density.  
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For the data in this thesis both the line of sight and the resolution bias can be relevant. They 

both rather affect planes perpendicular to the face (figure 5), as these are usually smaller than 

the planes forming the overall face orientation and have lower point densities. An 

overrepresentation of the face orientation and a possible neglection of discontinuity sets 

perpendicular to the face could tamper the results and must therefore be considered. 

 

 

 

 

 

 

 

 

 

 

 

figure 5: This unprocessed point cloud of the outcrop Long Chang shows the variability in point 
density, dependent on the surface orientation. Horizontal and vertical traces with low densities, 
perpendicular to the overall face orientation are witnessed. A combination of line of sight bias and 
resolution bias could lead to a neglection of these sets. 
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4. Aim of the work 

The primary aim of this work is the implementation of various algorithms, using the software 

MATLAB, which allow a semi-automatic determination of discontinuity set orientations from 

a raw 3D point cloud. The semi-automatic approach implies as little human assistance as 

possible, to increase reproducibility and economic efficiency and decrease human bias. A 

further advantage is the capability of processing big data volume. 

As mentioned in section 2.2. this topic has been of interest for research in engineering 

geology. The direct point cloud segmentation is an effective method which has been 

implemented by multiple authors [3] [4] [5] [9] [10] [11] due to the relatively simple 

implementation and the delivery of good results. For these reasons it is also used in this work 

for the implementation of the semi-automatic methodology. 

Most authors [3] [4] [9] [10] [11] compute the normal vector orientation of each point of the 

point cloud (section 5.1.1.1.) and display their density distribution in a stereographic 

projection, using the Kernel Density Estimation (section 5.1.2.2.). This way discontinuity sets, 

which consist of large planes with high point densities, are overrepresented. Discontinuity 

sets consisting of smaller planes with a lower point density therefore might be missed. Due 

to the line of sight bias, discussed in section 3.2., discontinuities perpendicular to the face 

orientation often have lower point densities. Furthermore, the same discontinuities are 

usually smaller compared to those that form the overall face orientation. This combination 

can lead to discontinuity sets perpendicular to the face being overlooked, as they are too 

small compared to the point spacing. This instance is described by the resolution bias in 

section 3.2. 

In this thesis better results are expected when growing planes from the points of the point 

cloud (section 5.1.2.1.) and using one normal vector measurement for each grown plane. This 

approach is described by Slob (2007). With this procedure small planes or planes with low 

point densities affect the results equally as larger planes or planes with higher point densities. 

This method may decrease the overrepresentation of the face orientation and allow 

discontinuity sets perpendicular to the face to be detected more reliably. The 

implementation of the algorithms for the semi-automatic methodology is explained in detail 

in section 5.1.2. 
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For testing the algorithms, three point clouds captured in Kaili, China (section 3) are 

processed with the semi-automatic methodology and a supervised methodology, which is 

based on the thorough and time intensive assessment of a geologist. The results of the 

supervised approach serve for comparison to evaluate the accuracy of the semi-automatic 

methodology. The supervised methodology is expected to deliver robust results, which are 

however partly subjective due to the editors’ influence. 

A secondary aim of the thesis is a simple semi-kinematic stability analysis. It is executed with 

the orientation data obtained by both methodologies. Three failure modes planar sliding, 

wedge sliding and toppling are investigated only by considering the orientations of the 

discontinuities relative to the face orientation. This analysis is a rough estimate which does 

not consider further discontinuity set parameters such as size, persistence, connectivity and 

roughness.  
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5. Discontinuity set orientations 

5.1. Methodology 

5.1.1. Supervised methodology 

This section describes the supervised methodology for the extraction of structural 

information from point cloud data using the software CloudCompare, Riegel’s RiSCAN PRO 

and Rocscience’s Dips 7.0. The work process consists of four steps. First the point normal 

vectors are computed, using the software CloudCompare. Secondly the point cloud is 

segmented in sub point clouds, which represent the single discontinuity sets by using 

CloudCompare’s interactive scalar field filter. Then a discontinuity model is established with 

RiSCAN PRO, by modelling planes through the points of the segmented point clouds. With 

the Rocscience software Dips the orientations of these planes are depict, clustered and the 

eventual set orientations determined. 

5.1.1.1. Computation of normal vectors 

As unprocessed point cloud data is merely a depiction of points in 3D space, certain 

calculations are necessary to derive information about the orientation of structures. Various 

algorithms are used to compute the normal vectors to each point. As the normal vector to a 

single point is mathematically not reasonable, it is always necessary to include the 

neighbouring points to compute the orientation. The freeware CloudCompare provides four 

algorithms to calculate the normal vectors to each point of the dataset. To identify the most 

accurate method, a point cloud representing three orthogonal planes is modelled and the 

different algorithms are executed (figure 6). The Hough Transformation proves to be the only 

method which does not allow errors near corners. All other methods calculate normal vector 

orientations, which are not represented by any planes, for points close to corners. 
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The Hough Transformation is a method which was developed in 1962 to detect lines, circles 

and other objects in 2D space [16]. The 3D Hough transformation is an enhancement of this 

method. The principle idea is that an infinite number of possible planes pass through any 

point. To depict all these potential planes a transformation from 3D cartesian space, 

described by the parameters x, y and z to 3D parametric space is performed (figure 7). This 

space, also called Hough space, is defined by the Euclidean distance from the origin 𝜌, the 

plane normal azimuth θ (from 0° to 360°) and the angle between the plane normal and the 

horizontal direction φ (from 0° to 90°). The transformation to parameter space follows 

equation 1 [17]. 

𝜌 = sin(θ) ∗ cos(φ) ∗ x + cos( θ) ∗ cos(φ) ∗ 𝑦 + sin(φ) ∗ 𝑧          (1) 

 

figure 6: The four algorithms of the software CloudCompare, to calculate the normal vector to each 
point are executed on a model of three perpendicular planes. The red lines represent the orientation 
of the calculated normal vectors. Only the Hough transformation algorithm (top left) shows correct 
normal vectors close to edges. 
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Using the transformation equation, every point of the dataset is described by a sinusoidal 

curved plane in the parameter space, as shown in the lower images of figure 7. This curve 

includes all possible planes passing through the point. The intersection of these sinusoidal 

curved planes in the Hough space indicates a planar structure through these points and 

displays its plane equation parameters 𝜌, θ and φ. For indicating discontinuity sets the 

parameters of the plane normal vector θ representing the trend and φ representing the 

plunge, are enough to fully describe the plane orientation. As natural surfaces are not 

perfectly planar, the parameter space is rasterized in accumulator cells. A threshold value 

defines a minimum of planes passing through a cell in parameter space to represent a plane 

[17]. 

 

figure 7: The three planes, in the upper images, displayed in cartesian coordinates, are defined by the 

parameters x, y, z. In the lower images the points are transformed into Hough space, defined by the 

parameters φ (angle between plane normal and horizontal direction), θ (azimuth of plane normal) 

and 𝜌 (distance to the origin). In Hough space all possible planes through a point are displayed by a 

sinusoidal curved plane. The intersections of planes in Hough space indicate points lying on one plane 

in the cartesian coordinate system. The φ and θ axes in the lower image are labelled in radiant. 
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The example in figure 7 shows three planes consisting of six points each in the upper images. 

The planes are converted into Hough space in the lower images. The axes are labelled in 

radiant. The six points of the red plane converted in Hough space are depict by six sinusoidal 

curved planes. They intersect at a Euclidean distance 𝜌 of 1, a plunge φ of 90° (π/2) and in this 

case the whole range of the trend θ from 0° to 360° (0 to 2π). Consequently, the normal vector 

can be declared 000/90. For the green plane 𝜌 is 1, φ is 0° and θ is 90° and 270°. The normal 

vector is 090/00. For the blue plane 𝜌 is 1, φ is 0° and θ is 0° and 180°. The normal vector is 

180/00. 

5.1.1.2. Segmentation of the point cloud 

With CloudCompare it is possible to convert the calculated plane normal vectors, which 

include 3D data of xyz coordinates, to the scalar fields dip direction and dip value. Both scalar 

fields have one value for each point of the point cloud. The points can be coloured according 

to the scalar fields to display the orientation of the rock face graphically, as shown in the 

stereographic projections of figure 8.  

 

 

 

 

figure 8: In the left stereographic projection, the colour in which the points of the point cloud are 

depict when using the dip direction scalar field, dependent on their normal vector trend, is shown. In 

the right stereographic projection, the colour in which the points are displayed when using the dip 

value scalar field, dependent on the normal vector plunge, is shown. 
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The discontinuity set intervals must be defined by a judging geologist, based on the thorough 

analysis of the point cloud. For the extraction of the individual sets CloudCompare’s 

interactive scalar field filter is a useful tool. It enables the immediate visualisation of the 

selected boundaries in the point cloud model. The segmented point clouds are the data used 

for further plane modelling with RiSCAN PRO, as they facilitate the identification and 

selection of points belonging to one planar feature. Therefore, it is crucial to define 

reasonable set boundaries for the segmentation as this will influence the result. Each 

segmented point cloud can be displayed in unique colours in a set model. At this point rough 

set boundaries are determined but no actual plane measurements have been made. 

5.1.1.3. Plane modelling 

The segmented point clouds, where each roughly represents a discontinuity set, are imported 

one at a time into the software RiSCAN PRO. Planes are modelled through the points and the 

plane orientations are determined. This task can be considered as the equivalent to 

traditional field measurements of plane orientations. The goal is to obtain reasonable 

measurements for the further stability analysis. The graphic plane model which is generated 

with RiSCAN PRO can be compared to the set model, described in the end of section 5.1.1.2., 

to control the quality of the measured planes. 

5.1.1.4. Clustering 

For the final determination of the discontinuity set orientations the measurements carried 

out with RiSCAN PRO are imported into the Rocscience software Dips. It offers the clustering 

of all measurements, to eventually derive the final set orientations, based on the plane 

orientation measurements. Further stability analysis is also executed with the software Dips. 
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5.1.2. Semi-automatic methodology 

The semi-automatic discontinuity extraction algorithm is fully implemented in MATLAB® 

(The Mathworks Inc.). A bottom up region based direct point cloud segmentation approach 

is followed [5] [8] [9]. The procedure consists of three parts. First plane growth starts from a 

random seedpoint and continues until the planarity criterion is violated. For the planarity 

criterion the Principal Component Analysis (PCA) is used [18]. Every point is assigned to a 

discontinuity plane and the plane’s normal vector is determined. Secondly, for the 

identification of the number of discontinuity sets and their rough centres, the Kernel Density 

Estimation (KDE) displays the density of the plane’s normal vectors in a stereographic 

projection. Eventually a spherical clustering algorithm determines the membership of each 

point to a certain discontinuity set and identifies the final set centres. 

5.1.2.1. Plane growth 

The input data is a matrix with n rows, where n is the number of points of the point cloud, and 

three columns of xyz cartesian coordinates to each point ([n x 3] matrix). The x coordinate is 

oriented towards east, the y coordinate towards north and the z coordinate consequently 

represents the elevation. The first output is a [n’ x 7] matrix, with n’ < n as some seedpoints 

fail the planarity condition and are consequently deleted. The seven columns again include 

the cartesian coordinates xyz of each point in column one to three.  Further, a plane index in 

column four, which assigns each point to a plane, and the three columns five to seven, which 

contain random integers between 0 and 255 as red, green and blue values (RGB) for each 

plane index, to enable the depiction of the planes in a plane model, are added. The second 

output matrix contains one normal vector to each identified plane and the corresponding 

plane index.  

In figure 10 the individual steps of the plane growing algorithm are depicted. The algorithm 

starts by the selection of a random seedpoint from the input matrix. The next step is the k-

nearest neighbours search, which identifies the k points with the smallest Euclidean distance 

to the seedpoint. In this work the parameter k was set to 25. For the search a k-D tree 

structure is necessary to provide acceptable computing time. The k-D tree structure divides 

the space in subspaces along one axis of the coordinate system, to obtain spaces with equal 

data points. This subdivision is executed multiple times along the three cartesian axis, which 
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leads to the formation of a tree like structure (figure 9). The searching process then uses this 

structure and follows the branches to the seedpoint’s subspace, instead of executing the 

search in the hole dataset [6]. Although this method leads to errors on subspace boundaries 

it is necessary for the computing efficiency. In MATLAB the k-nearest neighbour search, 

including the establishment of a k-D tree structure is implemented in the function 

‘knnsearch()’ with the query matrix, the seedpoint and the value for k as input. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The result of the nearest neighbour search is a subset of k+1 points, containing the seedpoint 

and its nearest neighbours. For this subset the planarity analysis is performed. The planarity 

criterion is based on the Principle Component Analysis (PCA), which is a tool for multivariant 

data analysis. It geometrically finds the best fit plane to the selected points [18]. This method 

is equivalent to a least squares solution [9]. It is the most common algorithm for plane 

detection in geotechnical engineering [4] [5] [9] [10]. 

First the covariance matrix of the k+1 points of the subset is computed. The covariance matrix 

is a symmetric matrix (the matrix is equal to the transposed matrix) with the variances as 

elements of the principal diagonal and covariances as the remaining elements (formula 2). 

The formulas for the three variances are given in formula 3 to 5. The formulas for the three 

figure 9: The four figures show the process of k-D tree structure development. First the unstructured 

point cloud (top left) is divided along the x-axis into two subspaces with the same number of points 

(top right). Then both subspaces are divided along the y-axis again (bottom left and right). In a next 

step this process would be performed along the z axis. 
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covariances are given in formula 6 to 8. In MATLAB the covariance matrix is computed with 

the function ‘cov()’ and a [n x 3] matrix (xyz coordinates of the subset’s points) as input [19]. 

[

𝑣𝑎𝑟 𝑥 𝑐𝑜𝑣 𝑥𝑦 𝑐𝑜𝑣 𝑥𝑧
𝑐𝑜𝑣 𝑦𝑥 𝑣𝑎𝑟 𝑦 𝑐𝑜𝑣 𝑦𝑧
𝑐𝑜𝑣 𝑧𝑥 𝑐𝑜𝑣 𝑧𝑦 𝑣𝑎𝑟 𝑧

]          (2) 

 

𝑣𝑎𝑟 𝑥 =
1

𝑘 + 1
∑[𝑥𝑖 − x̅]2          (3) 

𝑘+1

𝑖=1

 

𝑣𝑎𝑟 𝑦 =
1

𝑘 + 1
∑[𝑦𝑖 − y̅]2          (4)

𝑘+1

𝑖=1

 

 𝑣𝑎𝑟 𝑧 =
1

𝑘 + 1
∑[𝑧𝑖 − z̅]2          (5)

𝑘+1

𝑖=1

 

𝑐𝑜𝑣 𝑥𝑦 = 𝑐𝑜𝑣 𝑦𝑥 =
1

𝑘 + 1
∑[𝑥𝑖 − x̅][𝑦𝑖 − y̅]          (6)

𝑘+1

𝑖=1

 

𝑐𝑜𝑣 𝑥𝑧 = 𝑐𝑜𝑣 𝑧𝑥 =
1

𝑘 + 1
∑[𝑥𝑖 − x̅]

𝑘+1

𝑖=1

[𝑧𝑖 − z̅]          (7) 

𝑐𝑜𝑣 𝑦𝑧 = 𝑐𝑜𝑣 𝑧𝑦 =
1

𝑘 + 1
∑[𝑦𝑖 − y̅]

𝑘+1

𝑖=1

[𝑧𝑖 − z̅]          (8) 

 

From the quadratic [3x3] covariance matrix the Eigenvectors and Eigenvalues are computed. 

Eigenvectors 𝑣⃗ are vectors to a quadratic matrix A which are, when multiplied with the matrix, 

only stretched or compressed but not distorted. The multiplication with this matrix 

consequently gives the same results as multiplying with a distinct scalar λ (formula 9). This 

scalar λ is the Eigenvalue and represents the extent of stretching or compressing. When λ𝑣⃗ is 

subtracted from this equation it results in a homogeneous linear system of equations. For the 

subtraction λ is multiplied with the identity matrix I (formula 10). 

 

𝐴 ∗ 𝑣⃗ = λ ∗ 𝑣⃗          (9) 

 

[𝐴 − λ ∗ I] ∗ 𝑣⃗ = 0          (10) 
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This system has a non-trivial solution for the Eigenvector only if the matrix [A- λI] is singular. 

Consequently, the determinant of this matrix must be zero (formula 11 and 12). 

 

𝑑𝑒𝑡|𝐴 − λ ∗ I| = 0          (11) 

 

𝑑𝑒𝑡|𝐴 − λ ∗ I| = 𝑑𝑒𝑡 |

𝑎11 − λ 𝑎12 𝑎13

𝑎21 𝑎22 − λ 𝑎23

𝑎31 𝑎32 𝑎33 − λ
|          (12) 

 

When calculating the determinant of a [3x3] matrix a polynomial of the third degree, the 

characteristic polynomial, occurs. By solving the characteristic polynomial, the three 

Eigenvalues λ1, λ2, λ3 are determined and the Eigenvectors are calculated by solving the 

homogeneous linear system of equations from formula 10. In MATLAB the Eigenvectors and 

Eigenvalues are computed with the function ‘eig()’ with the covariance matrix as input [6]. 

Geometrically the Eigenvector with the highest Eigenvalue is the direction of maximum 

variance, with the Eigenvalue as a magnitude for the variance in this direction. The 

Eigenvector with the second highest Eigenvalue is perpendicular to the first Eigenvector and 

is oriented in the direction of the highest variance in this plane. These two vectors span the 

best fit plane through the data points. The Eigenvector with the smallest Eigenvalue is 

perpendicular to this plane and describes the planes’ normal vector. The planarity condition 

is derived from the Eigenvalues. A perfect plane would show variances in two directions only, 

leading to an Eigenvalue of zero for the third Eigenvector. As geologic discontinuities do not 

form perfect planes the planarity criterion is formulated as a relation between the smallest 

Eigenvalue and the sum of the three Eigenvalues (formula 13). This relation is denominated 

as η and must be smaller or equal to a threshold value ηmax (formula 14) to fulfil the planarity 

condition [10]. In this implementation ηmax was set to a value of 0.2 as suggested by Riquelme 

et al. (2014). η=0 means perfect planarity as λ3=0. η=0.33 indicates no planarity as λ1=λ2=λ3. 

η =
λ3

λ1 + λ2 +  λ3
          (13) 

 

η ≤ η𝑚𝑎𝑥           (14) 
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figure 10: The first step in plane growth is the random point selection (red point, top left), followed by 

the k nearest neighbour search (red points, top right). Then the Principal Component Analysis (PCA) 

is executed on the subset of points (bottom left). It determines the first two principal components 

(blue lines), which span the plane and the third component perpendicular to them (red line), which 

represents the plane’s normal vector. If the planarity criterion is fulfilled, new seedpoints on the edge 

of the subset are selected (green points, bottom right). This algorithm is repeated, and the plane 

grows until the planarity criterion is violated. 

 

If the criterion is violated the seedpoint is deleted from the input matrix and a new random 

seedpoint is selected. If the planarity criterion is valid all points of the subset are stored in the 

output matrix with a plane index in the fourth column, starting with the integer one, 

increasing by one for each new plane. Furthermore, the points are deleted from the input 

matrix. The value of the third Eigenvector, representing the plane’s normal vector is stored in 

a matrix. To enable the growth of the plane new seedpoints on the edge of the subset are 

selected. In this implementation the five points of the subset with the biggest Euclidean 

distance to the seedpoint are selected as new seedpoints. 

Further, a second criterion is formulated to ensure that the normal vector (third Eigenvector 

𝑣⃗3) of the subset is within a threshold angle 𝜀 to the average normal vector 𝑣̅⃗3, which is 

calculated from all normal vectors stored with the same plane index. This criterion is based 

on the definition of the scalar product of the two unit-vectors 𝑣⃗3 and 𝑣̅⃗3 (formula 15). In this 

work 𝜀 is set at a value of 20°. 
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𝑎𝑟𝑐𝑐𝑜𝑠〈𝑣⃗3, 𝑣̅⃗3〉 ≤ 𝜀          (15) 

 

In this manner the plane grows by assigning the same plane index to the points and storing 

them in the output matrix until one of the two planarity conditions fails. The average normal 

vector of the plane is calculated from the third Eigenvectors of all subsets and stored in the 

second output matrix. The plane index rises with the value of one, a new random seedpoint 

is selected from the input data and the growth of the next plane starts. 

This procedure continues until the input matrix is empty, so all points have either been 

labelled with a plane index or deleted. A third threshold value ψ, which specifies the limit of 

points necessary to form a plane, is used in this work. The value is set to 51 points. Points that 

belong to planes which do not fulfil this criterion are deleted. Eventually each point in the 

output matrix receives three further columns with equal RGB values for equal plane indices, 

to depict the planes in unique colours in a plane model. 

5.1.2.2. Kernel Density Estimation 

The depiction of all plane normal vectors as dots in a stereographic projection leads to an 

image that is hardly interpretable. For this reason, a density function is established to find the 

cluster centres. The Kernel Density Estimation is a non-parametric method to estimate a 

bivariant density function [10]. A non-parametric function shape is not predefined by a 

parameter but dependent on the data [20]. Contrary to usual histograms the bandwidth 

(bw.), which is a smoothing parameter, is defined [19]. To compute the KDE the xyz data of 

the normal vectors must be transformed in xy data of a stereographic projection. The equal 

angle projection allows the presentation of 3D data in a two-dimensional medium. First the 

normal vector’s xyz data is transformed in its trend α and plunge β. The geometric relations 

can be derived from figure 11. For this purpose, first all normal vectors are oriented, pointing 

in the lower hemisphere of the unit sphere. Therefore, vectors with positive z-values are 

multiplied with (-1). The trend is calculated with formula 16, the plunge with formula 17. 

 

𝛼 = arctan
𝑥

𝑦
         (16) 

𝛽 = arcsin|𝑧|         (17) 
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When calculating the arc sine of z its absolute value is used, so positive angles are returned 

for the plunge. For the calculation of α a distinction of cases must be made, dependent on the 

unit circle quadrant, as the arc tangent is used. In the first quadrant formula 16 can be used 

without modification. In the second quadrant (x < 0, y > 0) 2*pi is added to the result. In the 

third (x < 0, y < 0) and fourth quadrant (x > 0, y < 0) pi is added. 

 

 

figure 11: This figure exemplifies the correlation between trend α, plunge β and the 3D coordinates 
xyz of the unit vector (red line with the value 1). α is equal to the arc tangent of x over y, while β is only 
dependent on the z value and is equal to the arc sine of the absolute value of z. 

 

The two-dimensional xy data of the stereographic projection is derived from α and β. First a 

transformation of α and β to the polar coordinates of the stereographic projection θ, with 

values from 0 to 2*pi and the radius 𝜌, with values from 0 to 1, is executed. The angle θ is 

equal to the trend α. In a stereographic projection the projection plane lies on the equator 

and the projection centre in the zenith. An isosceles triangle forms between the sphere 

centre, the zenith and the piercing point of the normal vector in the lower hemisphere, as 

depict in figure 12. The tangent of the acute angle is equal to the radius 𝜌 (formula 18). 

 

𝜌 = 𝑡𝑎𝑛 (
𝑝𝑖

4
−

𝛽

2
)          (18) 
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The transformation from polar coordinates to 2D cartesian coordinates follows the simple 

trigonometric relations from formula 19 and 20. 

 

𝑥 = sin(α) ρ          (19) 

 

𝑦 = cos(α)ρ          (20) 

 

The computed xy coordinates are the input parameters for the Kernel density estimation 

function. In MATLAB the function ‘ksdensity()’ for bivariant data is available and is used for 

this purpose. The input are the data points’ xyz coordinates, a grid of equally spaced points 

for which the density is calculated and the bandwidth. In this work the bandwidth is set to a 

value of 0.03. Contour lines with equal probability densities are plotted with the MATLAB 

function ‘contour()’. The isolines are computed in 1% steps from 1 to 5% and subsequent in 

5% steps. The result of the KDE plot is the foundation for the definition of the number of 

discontinuity sets and allows an estimation of the initial cluster centres for the following 

clustering analysis. 

 

 

figure 12: This figure illustrates the relation between the 
plunge β and the radius 𝜌 in the stereographic projection. 
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5.1.2.3. Spherical k-means clustering 

The k-means clustering algorithm is a relatively fast clustering algorithm but very sensitive to 

outliers. As the noise has already been eliminated by the planarity criterion the algorithm 

seems suitable for this task. The standard k-means algorithm consists of two parts. First each 

data point is assigned to the nearest centroid, using a Euclidean distance criterion. Therefore, 

not only the number of centroids but also initial centroid positions need to be provided. In the 

second part the new centroids are calculated from the mean of the assigned data points. This 

procedure is repeated for a defined number of iterations [21]. The spherical k-means 

clustering is based on the same principle. Spherical k-means clustering differs in the criterion 

for the assignment to a cluster. Therefore, a minimum angle between the data vectors 𝑛⃗⃗ and 

the centroid 𝑐 is searched. The aim is to minimize the cosine dissimilarity from formula 21 

[21]. 

 

∑ 1 − cos(𝑛𝑖⃗⃗⃗⃗ , 𝑐𝑗⃗⃗⃗ ) = ∑ 1 −
〈𝑛𝑖⃗⃗⃗⃗ , 𝑐𝑗⃗⃗⃗ 〉

|𝑛𝑖⃗⃗⃗⃗ |, |𝑐𝑗⃗⃗⃗ |
𝑖,𝑗𝑖,𝑗

          (21) 

 

When centroids and normal vectors are unit vectors the cosine dissimilarity is simplified to 

formula 22. 

 

∑ 1 − 〈𝑛𝑖⃗⃗⃗⃗ , 𝑐𝑗⃗⃗⃗ 〉

𝑖,𝑗

          (22) 

 

The minimum cosine dissimilarity defines the membership of each normal vector to a 

centroid. In a second step new cluster centres 𝑐 are computed, based on the mean of all 

vectors assigned to this centroid. This vector mean is calculated by dividing the sum of all 

assigned normal vectors 𝑅⃗⃗ (formula 24) by the vector’s absolute value |𝑅⃗⃗| (formula 23) as in 

formula 25. By iteration of these two steps the centroids converge to a stable position. 
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|𝑅⃗⃗| = √(∑ 𝑛𝑥)
2

+ (∑ 𝑛𝑦)
2

+ (∑ 𝑛𝑧)
2

          (23) 

 

𝑅⃗⃗ = ∑ 𝑛⃗⃗𝑖

𝑖

          (24) 

 

𝑐 =
𝑅⃗⃗

|𝑅⃗⃗|
          (25) 

 

A further condition ensures that the newly calculated cluster centres do not deviate more 

than a defined angle δ from the initial cluster centres, to avoid the extensive shift of the 

estimated set orientations. If the deviation is higher than this angle the shift is reduced to the 

maximum allowed angle δ. The angle δ is set to 5° in this thesis. 

As input a [n x 3] matrix with the computed normal vectors to each plane, the number of 

iterations of the algorithm, the number of sets k and a [k x 2] matrix with the trend and plunge 

of the initial centroids, which are estimated from the KDE, are provided. In this work the 

number of iterations is set to ten. For the clustering the centroid’s trend α and plunge β are 

transformed in the xyz coordinates of the normal unit-vector in the lower hemisphere, 

according to the formulas 26, 27 and 28. This transformation is the reversal of the formulas 

16 and 17 and the trigonometric correlation can be derived from figure 11. 

 

𝑥 = sin(𝛼) ∗ cos(𝛽)         (26) 

 

𝑦 = cos(𝛼) ∗ cos(𝛽)         (27) 

 

𝑧 = − sin(𝛽)         (28) 

 

The output is a [n x 4] matrix with the xyz coordinates of the normal vectors and a 

membership index to a set in the fourth column and a [k x 4] matrix with the xyz coordinates 

of the final centroids and their set indices. 
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For the correct membership assignment of steep planes and subsequent normal vectors with 

small plunge, which plot near the edge of the half sphere, the normal vectors are projected in 

both hemispheres before the cluster analysis. This enables the correct identification of 

membership for normal vectors that lie on opposing sides of the projection. For the 

evaluation the cluster centroids of the lower hemisphere are used and those of the upper 

hemisphere are deleted. All normal vectors are then again oriented in the lower hemisphere, 

which equals the negative z direction. 

The mean set normal vector is already provided by the cluster analysis with the centroid 

vectors 𝑐. Their xyz information is transformed to trend and plunge by formula 16 and 17. The 

plane dip direction and dip value are calculated from the trend α and plunge β according to 

formula 29 and 30. 

 

𝑑𝑖𝑝 𝑑𝑖𝑟𝑒𝑐𝑡𝑖𝑜𝑛 =  𝛼 ± 𝜋          (29) 

 

𝑑𝑖𝑝 𝑣𝑎𝑙𝑢𝑒 =  
𝜋

2
− 𝛽          (30) 

 

The cone of confidence 𝜗 is a value for the reliability of the centre orientation [22]. It can be 

computed for different confidence levels P and is dependent on the number of normal vectors 

of the discontinuity set n and their vector sum |𝑅⃗⃗|. In this work confidence levels of 99% 

(P=0.01) and 95% (P=0.05) are implemented by using formula 31 [22].  

 

𝜗 = 𝑎𝑟𝑐𝑐𝑜𝑠 {1 −
𝑛 − |𝑅⃗⃗|

|𝑅⃗⃗|
[(

1

𝑃
)

1
𝑛−1

− 1]  }          (31) 
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A concentration parameter k, which is a value for preferred orientation, is computed using 

formula 32. It describes a spherical normal distribution, which is also known as Fisher 

distribution and therefore is only an approximation for asymmetric distributions [22] [23]. 

The Fisher-k value is dependent on the number of normal vectors of the set n and their vector 

sum |𝑅⃗⃗|. The k value has big values for high concentrations and small values for low 

concentrations. 

 

𝑘 =
𝑛 − 1

𝑛 − |𝑅⃗⃗|
          (32) 

 

To depict the k value graphically the spherical aperture 𝜔 from formula 33 is calculated. 𝜔 is 

a cone’s half opening angle and can be depict as small circle in the stereographic projection 

[22]. For the assumption of a spherical normal distribution 68% of the discontinuities of a set 

lie inside the circle.  Contrary to the k-value it has big values for low concentrations and small 

values for high concentrations. 

 

𝜔 = 𝑎𝑟𝑐𝑠𝑖𝑛
√

2
1 −

1
𝑛

𝑘
          (33) 
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5.2. Results 

5.2.1. Supervised methodology 

5.2.1.1. Long Chang 

Using CloudCompare’s graphic depiction of the scalar fields dip direction and dip value and 

the interactive scalar field filter, six sets are segmented (section 5.1.1.2.). Each set is displayed 

in unique colours in figure 13 and the sets are merged in figure 14. The used segmentation 

intervalls are listed in table 1. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Each segmented discontinuity set is imported in the software RiSCAN PRO, where planes are 

modelled through the points, and a measurement of each plane is made (figure 15) (section 

5.1.1.3). These measurements are imported in the software Dips and a clustering algorithm 

calculates the average set orientation (figure 16) (section 5.1.1.4.). 

figure 13: The six discontinuity sets of Long Chang, segmented from the original point 
cloud during the supervised methodology, are displayed in unique colours. The 
segmentation intervals are determined using CloudCompare’s scalar fields dip 
direction and dip value. 
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figure 14: The six segmented and uniquely coloured discontinuity sets of the east facing Long Chang 

outcrop are displayed in the set model obtained from the supervised methodology. It is the merge of 

the six sets from figure 13. 

 

 

 

 

 

 

 

 

 

 

figure 15: The plane model is created with the software RiSCAN PRO. The colours correspond to the 
colours of the set model in figure 14, the segmented sets in figure 13 and the colours in the 
stereographic projection of figure 16. One measurement for each plane is made and imported in the 
software Dips to compute the stereographic projection of figure 16. 
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table 1: The segmentation intervals of dip direction and dip value, derived during the supervised 
methodology for the Long Chang data, are listed for each set. The colours correspond to the colours 
in the set model (figure 14), plane model (figure 15) and stereographic projection (figure 16). 

set colour dip direction dip value 

red 30 – 60 and 210 - 240 40 - 90 

green 60 – 93 and 240 - 269 40 - 90 

blue 93 – 129 and 269 - 301 40 - 90 

magenta 129 – 160 and 301 - 335 40 - 90 

yellow 160 – 210 and 340 - 30 40 - 90 

cyan 200 - 360 0 - 40 

 

 

 

 

 

 

 

 

 

 

 

 

 

figure 16: The measurements of the planes computed with the software RiSCAN (figure 15) are 
clustered using the software Dips and ascribed to a discontinuity set. In the right box the mean 
discontinuity set orientations are listed. The colours of the sets in the projection correspond to the 
colours of the models in the figures 13 to 15. 
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5.2.1.2. Xiang Qi Jiang Kou 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

figure 17: The upper figure shows the set model of the north facing Xiang Qi Jiang Kou outcrop 
received from the supervised methodology. The lower figure depicts the plane model created with 
RiSCAN PRO. For each plane of the plane model one measurement is made and plotted in the 
stereographic projection of figure 18. Each discontinuity set is represented by one colour, which 
coincides with the set colours of table 2 and the stereographic projection in figure 18. 
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table 2: The segmentation intervals of dip direction and dip value for each set, determined during the 
supervised methodology for the Xiang Qi Jiang Kou data, are listed in the table. 

set colour dip direction dip value 

red 30 – 60 and 210 - 240 40 - 90 

green 60 – 100 and 240 - 280 40 - 90 

blue 100 – 130 and 280 - 310 40 - 90 

magenta 130 – 165 and 310 - 345 40 - 90 

yellow 165 – 210 and 345 - 30 40 - 90 

cyan 200 - 360 0 – 40 

 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

figure 18: The stereographic projection is computed with the software Dips. The orientation data is 
obtained by measurements of the planes from the plane model in figure 17. 
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5.2.1.3. Lao Hu Po coalmine 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

figure 19: The upper figure displays the set model of the northeast facing Lao Hu Po coalmine, 
computed during the supervised methodology. The lower figure displays the plane model created with 
the software RiSCAN PRO. 
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table 3: The segmentation intervals of dip direction and dip value for each set, used for the supervised 
methodology for the Lao hu Po coalmine data, are listed in the table. 

set colour dip direction dip value 

red 5 – 45 and 185 - 225 40 - 90 

green 45 – 75 and 225 - 255 40 - 90 

blue 75 – 105 and 255 - 285 40 - 90 

magenta 105 – 145 and 285 - 325 40 - 90 

yellow 145 – 185 and 325 - 5 40 - 90 

cyan 200 - 360 0 - 40 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

figure 20: The stereographic projection of Lao Hu Po coalmine is computed with the software Dips. 
The orientation data is obtained by measurements of planes from the plane model, computed with 
the software RiSCAN PRO (figure 19). 
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5.2.2. Semi-automatic methodology 

5.2.2.1. Long Chang 

For the nearest neighbour search k is set to 25. For the planarity criterion η is set to 0.2, ε is 

set to 20° and ψ is set to 51 points. The first output of the semi-automatic methodology is a 

matrix with assigned plane indices to each point of the point cloud. For the depiction of each 

individual plane in a plane model, random values of red, green and blue between 0 and 255 

are computed for every plane index. All computed planes for Long Chang are displayed in 

figure 21. Further the normal vector of each plane is calculated, as the vector mean of the 

normal vectors of all points with the same plane index (section 5.1.2.1). 

 

 

 

 

 

 

 

 

figure 21: In the plane model of the semi-automatic methodology for Long Chang each plane, which 
fulfils the planarity conditions, is displayed in one colour. 

 

The computed 3D normal vectors are transformed in 2D coordinates of the stereographic 

projection and the Kernel Density Estimation (section 5.1.2.2) is computed (figure 22) to 

define the number of sets and the starting centroids for the following clustering analysis. A 

bandwidth of 0.03 is used and isolines are drawn in 1% steps from 1 to 5% and in 5% steps 

from 5 to 95%. The highest densities in figure 22, coloured in red, represent the discontinuity 

set parallel to the face, which is oriented east southeast. Sets perpendicular are strongly 

underrepresented. From the KDE six sets are determined. Their normal vectors are listed in 

table 4. 
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table 4: The table lists the six initial centroids for the cluster analysis, determined based on the Kernel 
Density Estimation. 

set trend plunge 

1 005 00 

2 045 00 

3 075 00 

4 108 00 

5 155 00 

6 120 78 

 

For the clustering analysis (section 5.1.2.3) the initial centroids from table 4 are used and the 

number of runs is set to 10. The results are plotted in the stereographic projection of figure 

23. The Fisher k-value and the spherical aperture are computed. To each point of the point 

cloud the same set colour which is used in the stereographic projection is assigned, to create 

the set model depict in figure 24. 

figure 22: The Kernel density estimation displays a probability density function of 

the computed normal vectors of each plane. Isolines of 1% steps from 1 to 5% and 

subsequent 5% steps are drawn to optimally visualise density peaks. Additionally, 

higher densities are coloured in red, whereas lower densities are coloured green. 
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figure 24: The set model of the semi-automatic methodology for Long Chang consists of five-sub 
vertical sets and a nearly horizontal bedding. 

 

 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

figure 23: In the stereographic projection every plane normal vector is plotted as a coloured dot, 

dependent on its ascription to a set by the clustering algorithm. The set centres are depict as black 

dots and the spherical aperture (formula 33) is drawn as a black circle. The colours correspond to those 

of the set model in figure 24. 
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figure 25: The upper figure shows the plane model of Xiang Qi Jiang Kou, computed by the plane 
growing algorithm during the semi-automatic methodology. The lower set model is created by 
plotting each point in the colour of the set, the clustering algorithm assigned it to. 

 

5.2.2.2. Xiang Qi Jiang Kou 
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figure 26: The KDE of the normal vectors of each plane, computed 
during the semi-automatic methodology, for Xiang Qi Jiang Kou, is 
the foundation for the estimation of cluster centres (table 5) for the 
clustering analysis. High densities are coloured red, low densities are 
coloured green. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

table 5: In this table the initial set normal vector centres for the cluster analysis are listed. They are 
estimated based on the KDE in figure 26. 

set trend plunge 

1 010 00 

2 045 00 

3 075 00 

4 110 00 

5 155 00 

6 000 65 
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figure 27: The result of the cluster analysis is the assignment of each point to one discontinuity set.  
Each set is given a colour for depiction, which corresponds to the colour of the set model in figure 25. 
Set centres are represented by black dots. The black circles display the spherical aperture (formula 
33). 
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figure 28: The upper figure shows the plane model computed during the semi-automatic methodology 
for the Lao Hu Po coalmine data. It is created by the plane growing algorithm. The lower figure shows 
the set model which is obtained from the clustering of the planes and assigning them to distinct sets. 

5.2.2.3. Lao Hu Po coalmine 
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figure 29: The KDE for Lao Hu Po coalmine displays the density 
distribution of the normal vectors of each plane, computed by the 
plane growing algorithm, in a stereographic projection. High 
densities are coloured red, low densities are coloured green. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

table 6: In this table the initial set normal vector centres for the cluster analysis are listed. They are 
estimated based on the KDE in figure 29. 

set trend plunge 

1 025 00 

2 055 00 

3 095 00 

4 125 00 

5 175 00 

6 050 65 
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figure 30: The spherical clustering algorithm assigns each normal vector in the stereographic 
projection to one set. The average orientation of the set is calculated and depict as black dot. The 
spherical aperture (formula 33) is derived from the k-value (formula 32) and drawn as black circle. 
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5.3. Comparison of the methodologies 

The supervised methodology is a robust methodology, which however requires the working 

time of a skilled geologist. The modelling of planes with the software RiSCAN PRO is time 

consuming but necessary to receive plane orientation measurements for the clustering with 

the software Dips and to eventually derive numerical values for the orientations. The 

precision and reproducibility of the results is dependent on the person in charge. Especially 

the task of defining set boundaries, based on the dip value and dip direction scalar fields and 

the interactive scalar field filter, using CloudCompare, is influenced by the editor, therefore 

subjective and possibly affected by human bias. 

The semi-automatic methodology starts with the plane growing algorithm. This task is time 

and computing power consuming, however the same applies to the normal vector 

computation of the supervised methodology. The semi-automatic methodology is favoured 

from an economical point of view because, apart from the selection of initial cluster centres 

for the clustering analysis, based on the Kernel Density Estimation, the methodology is fully 

automatic. Consequently, it only requires computing power instead of a geologist’s working 

time. Further the automatization has the advantage of high reproducibility and is not 

influenced by human bias. The already mentioned selection of initial cluster centres, which 

still requires a geologist’s judgement, and the random selection of seedpoints during the 

plane growth, are the only points in time in the work process, at which the reproducibility 

could be disturbed. In this thesis the random selection of seedpoints did not have a significant 

impact, as multiple computation of the plane growing algorithm returned similar results. The 

planarity criterion and the criterion for minimum points of the semi-automatic methodology 

also remove remaining noise and non-planar structures of the rock mass, which would tamper 

the results. This becomes obvious by comparing the number of points of the input matrix to 

the number of points of the output matrix. About 20% of the data points are deleted as they 

do not fulfil the planarity criteria. When comparing the models in figures 33 to 39, holes of 

deleted points in the semi-automatic model are witnessed. This ejection leads to a loss of 

data on the one hand but to an increase of the remaining data quality on the other hand. With 

the semi-automatic methodology, a multiple of the plane measurements, compared to the 

supervised methodology, are made. 
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A further aim of the plane growing algorithm is to achieve a result less biased by the face 

orientation. As the line of sight bias and the resolution bias (section 3.2) both rather 

advantage planes parallel to the face, because they are usually bigger and have higher point 

densities, sets normal to the face could be overlooked. It is assumed that these biases are 

increased when measurements of the normal vectors of all points of the point cloud are depict 

in a stereographic projection, by using a Kernel Density Estimation, like Riquelme et al. (2014) 

suggests. In this thesis the plane growing algorithm according to Slob (2007) is implemented, 

where every plane which is grown results in only one measurement. With this methodology 

planes consisting of few points are weight the same as planes consisting of many. This should 

lead to an improved detection of small planes of low point densities. In figure 31 two 

stereographic projections show Kernel Density Estimations of normal vectors for the location 

Long Chang. The left image shows the KDE computed with the normal vectors of all points 

of the point cloud, which are calculated during the supervised methodology, using the 

software CloudCompare (section 5.1.1.1.). The right image shows the KDE computed with the 

normal vectors of the planes, grown during the semi-automatic methodology (section 

5.1.2.1.). The comparison shows slightly better results for the KDE computed with normal 

vectors obtained by the plane growing. The vertical discontinuity set with dip direction north 

becomes more distinct in the right image. This confirms the assumption that the plane 

growing algorithm improves the detection of discontinuity sets perpendicular to the face. 

The density peak in the left image, with the trend 310 and plunge 65, does not represent a 

discontinuity set but originates from noise or curved, weathered structures and does not 

appear in the right image. This attests that noise and non-planar structures are removed 

efficiently by the planarity criteria of the plane growing algorithm. Furthermore, the 

clustering algorithm is a lot faster when only one measurement per plane is considered 

instead of one measurement for each point. From a traditional point of view using 

measurements of computed planes is the logic approach compared to the use of 

measurements of each point. It resembles methodologies like scanline surveys where every 

discontinuity plane is recorded and weight the same independent from its size. 
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figure 31: The images show Kernel Density Estimations of normal vectors in a stereographic projection 
for the location Long Chang. High densities are coloured in red. The left image depicts the densities 
of the normal vectors of every point of the point cloud, whereas the right image displays the densities 
of normal vectors of all planes, computed during the semi-automatic methodology. The comparison 
shows slightly higher performance for the depiction of plane normal vectors (right image). 

 

table 7: The average set dip direction/ dip value for all three datasets, for both methodologies are 
listed. For the semi-automatic methodology, the initial centre estimation, based on the KDE and the 
final orientations, derived from the clustering analysis are listed. 

set 1 2 3 4 5 6 

Long Chang 

(automatic – initial estimation) 

045/90 075/90 288/90 155/90 005/90 300/12 

Long Chang 

(automatic – final orientation) 

049/87 080/89 291/87 150/89 004/86 299/17 

Long Chang (supervised) 039/87 073/88 112/89 144/87 181/89 306/09 

Xiang Qi Jiang Kou 

(automatic – initial estimation) 

225/90 75/90 110/90 155/90 190/90 180/25 

Xiang Qi Jiang Kou 

(automatic – final orientation) 

220/89 070/89 115/89 154/89 185/89 179/30 

Xiang Qi Jiang Kou (supervised) 226/89 080/90 115/89 148/88 186/89 174/19 

Lao Hu Po coalmine 

(automatic – initial estimation) 

205/90 235/90 275/90 305/90 355/90 230/25 

Lao Hu Po coalmine 

(automatic – final orientation) 

209/88 238/89 270/89 305/89 000/89 232/30 

Lao Hu Po coalmine (supervised) 208/89 060/90 089/90 126/90 348/89 239/18 
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The final mean discontinuity set orientations derived from both methodologies are listed in 

table 7. The comparison of the results of both methodologies shows maximum differences in 

the dip direction of 10° for the Long Chang and Xiang Qi Jiang Kou data and 12° for the Lao 

Hu Po coalmine data. The dip value of the sets 1 to 5, which are all sub-vertical, is nearly the 

same for both methodologies. Considering the low data resolution and the general 

difficulties in set orientation determination due to the high variation in discontinuity 

orientation (section 3.2.), these results are similar. A statement about superior accuracy of 

any methodology regarding these results cannot be made. The figures 33 to 39 show the 

similarities of the two models. A slight shift in set orientations between the models can be 

observed. In table 7 also the initial centre orientations for the clustering algorithm, derived 

from the KDE during the semi-automatic methodology, are listed. They do not differ more 

than 5° from the final orientation, as this condition is implemented in the clustering algorithm 

(section 5.1.2.3.). 

The dip value of the sixth set from table 7, which is geologically a bedding plane, is between 

8° and 12° higher in the results of the semi-automatic methodology. In figure 32 planes were 

modelled along the bedding plane traces using the software CloudCompare. With this 

method the accurate bedding orientation can be determined. Measurements of these 

modelled planes confirm the results of the supervised methodology. During the supervised 

methodology the planes, which are modelled for orientation measurements, are assessed 

geologically by the editor and can be deleted or processed if they do not seem reasonable. In 

this case the bedding traces, mostly represented by missing points in the point cloud, were 

observed and supported the modelling of correct bedding planes. This task cannot be 

performed by the semi-automatic algorithm. Since the bedding planes are rarely visible, but 

mostly only their traces, only few bedding planes are grown during the semi-automatic 

methodology and thus only few orientation measurements are made. The weathered, curvy 

shapes between the sub-horizontal bedding plane and the vertical fracture sets, best visible 

in figure 37 and 38, shift the bedding orientation to a higher dip value. This results in a 

noticeable error for the dip value of the bedding set in the results of the semi-automatic 

methodology. Results obtained by the semi-automatic methodology therefore must always 

be verified by a geologist before certainty on their accuracy is achieved, especially if 

discontinuities in the point cloud are mainly represented by traces rather than distinct planes. 
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The cone of confidence ϑ (section 5.1.2.3., formula 31), which is a value for the reliability of 

the centre orientation, proved to be not presentable, as for big numbers of normal vectors ϑ 

converges to zero. This suggests a high confidence, which is not reached to this extent, as the 

assignment of the computed planes to the sets is not definitely and only determined by the 

clustering algorithm. 

 

 

figure 32: In the right image planes were modelled through the horizontal traces of Long Chang, using 
the software CloudCompare. In the left image the traces are visible as missing points in the raw point 
cloud. The modelled planes are oriented in the direction 310/08 and confirm the result for the bedding 
obtained by the supervised methodology. 

 

table 8: This table gives a brief overview on the advantages and disadvantages of the discussed 
methodologies. 

Supervised methodology Semi-automatic methodology 

Requires geologist’s working time For the bigger part automated 

Reproducibility is dependent on editor High reproducibility 

Human bias is possible Hardly influenced on human bias 

Noise is removed by manual segmentation Plane growth removes noise and non-planar 

structures 

Low number of plane measurements, manually 

with software RiSCAN 

High number of plane measurements, fully 

automated 

Planes represented by traces in the rock mass 

can be considered 

Only distinct planes can be measured (not 

traces) 

The result is already verified by the geologist in 

charge. 

The result must be verified! 
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figure 33: The three images show the same detail of 
the hole, created by karst formation, at Long Chang 
(depict in figure 2 to 4). (top image: photography, 
middle image: supervised model, bottom image: 
semi-automatic model) 

figure 34: The images (top: photography, 
middle: supervised model, bottom: semi-
automatic model) show the intersection at 
Long Chang, which was part of the most 
recent rock fall.  
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figure 35: The three images (top: photography, 
middle: supervised model, bottom: semi-automatic 
model) each show the same detail in the north of the 
Long Chang outcrop. 

figure 36: Three images (top: photography, middle: 
supervised model, bottom: semi-automatic model) 
of the same detail, in the centre of the outcrop 
Long Chang, are displayed for comparison. 
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figure 37: In the uppermost photography of the outcrop Xiang Qi Jiang Kou two details are marked by 
black rectangles. The models of the upper tower-like structure are displayed in the two left images 
(upper: supervised, lower: semi-automatic). The two models of the lower face are displayed in the 
right images (upper: supervised, lower: semi-automatic). The models show, even though computed 
with different methodologies, high similarity. A transition between the horizontal bedding planes 
(cyan) and the sub vertical fractures can be observed, which is formed by rounded, weathered shapes. 
Measurements of these planes, during the semi-automatic methodology, led to a dip value for the 
bedding plane which is too high. 
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figure 39: The left figure shows a detail in the model created with the supervised methodology at the 
location Lao Hu Po coalmine. The right image shows the same detail in the semi-automatic model. 

  

 

 

 

 

 

figure 38: The upper image shows a detail of the Lao Hu Po coalmine outcrop from the supervised 
model. The lower image shows the same detail from the semi-automatic model. Rounded shapes 
between the relatively horizontal bedding planes (cyan) and the steep fracture planes have formed 
due to weathering and led to the error of the bedding orientation in the results of the semi-automatic 
methodology. 
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6. Stability analysis 

The correct determination of the discontinuity set orientation is the critical aspect for the 

stability analysis of a rock mass. The presentation of two methods to obtain this data is the 

main issue of this thesis, however eventually a statement about the stability regarding 

different failure modes must be made. By considering the orientations of the discontinuities 

in relation to the face, it can be stated whether failure is geometrically possible. Though the 

geometrical disposition, which is analysed here, is necessary, it only describes the possibility 

of failure, while other discontinuity parameters such as persistence, connectivity, filling, 

roughness and the existence of rock bridges are not considered. A simple extension to the 

purely kinematic consideration is made by including the friction angle, which is assumed to 

be 30°. 

6.1. Failure Modes 

The maintained discontinuity set data is processed by a simple stability analysis, concerning 

the three failure modes planar sliding, wedge sliding and toppling. These failure modes occur 

in discontinuous rock where the intact rock strength is significantly higher than the strength 

of the discontinuities [24]. 
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6.1.1. Planar sliding 

Planar sliding is a mechanism where a block slides on a single discontinuity plane. For this 

failure mode two conditions must be fulfilled. First the dip direction of the sliding plane must 

be sub-parallel to the face dip direction. The maximum allowed deviation from parallelism 

can be determined by lateral limits, which in this project are set to 20° as suggested by 

Hudson and Harrison (1997). The second purely kinematic condition requires the 

discontinuity plane to be less steep than the face, to allow the daylighting of the sliding plane. 

This criterion is extended for the semi-kinematic consideration. The dip value of the sliding 

plane must be steeper than the angle of friction, so the driving forces exceed the resisting 

forces [24]. 

6.1.2. Wedge sliding 

For wedge sliding two planes, along which simultaneous sliding occurs, are necessary. The 

sliding direction is the intersection’s trend. The intersection’s trend must not deviate more 

than 90° from the face’s dip direction and the dip of the face must exceed the plunge of the 

intersection, to enable the daylighting of the intersection. The intersection must dip steeper 

than the friction angle, assuming both planes have the same friction angle. For wedge sliding 

there are no lateral limits, as there is a further degree of freedom due to the second plane 

involved. However, intersections with a trend closer to the face’s dip direction are more 

critical [24]. 

6.1.3. Toppling 

There are two forms of toppling. Flexural toppling occurs in layered rock, consisting of 

column shaped blocks, which steeply dip in the direction opposite to the face, causing a slip 

between the columns and consequent bending. Direct toppling occurs with more compact 

block forms, when the centre of gravity lies outside the contact plane between the block and 

the rock mass, leading to the overturning of the block [24]. For this project direct toppling 

was considered, as the general block form is compact and not column shaped. Direct toppling 

occurs when two criteria are fulfilled. First a sub vertical intersection of two planes, which dips 

into the face, exists. Second a release plane, which forms complete blocks, is necessary [24]. 

 

 



57 
 

6.2. Methodology 

For the stability analysis of the three failure modes discussed in section 6.1. the face 

orientation, discontinuity normal vectors and calculated intersections are plotted in a 

stereographic projection. The data obtained from both methodologies is processed 

separately. First, the discontinuity set which forms the overall face orientation is determined. 

The face orientations for all three locations and both methodologies are listed in table 9 

(supervised methodology) and 10 (semi-automatic methodology). All measurements of 

discontinuities assigned to the set which forms the overall face, are excluded from the 

analysis, as it is assumed that discontinuities of the same set do not intersect. For the data of 

the supervised methodology, the software Dips is used to carry out the kinematic analysis. 

The input parameters are the face orientation, the friction angle, and the lateral limits. For 

the semi-automatic methodology, a simple semi-kinematic analysis is implemented with 

MATLAB. The computed mean normal vectors and the spherical aperture, to depict the 

variability in orientation, are displayed. Ten Intersections are calculated from the remaining 

five mean normal vector orientations, as the set representing the face orientation is excluded. 

This is achieved by computing the cross product of every normal vector pair. In this plot only 

the mean intersection orientation is depicted without considering its variability. To display 

the variability all possible intersections are calculated and plotted in an independent 

stereographic projection using the Kernel Density Estimation (section 5.1.2.2.). 

For planar sliding a critical area for normal vectors, which lies inside the great circle of the 

plane perpendicular to the face, outside the angle of friction drawn from the centre and inside 

the lateral limits, is coloured in red. Intersections are critical regarding wedge sliding when 

they plot in the red area, which is defined outside the great circle of the face and inside the 

friction angle drawn from the perimeter. Intersections that lie in the yellow area of the 

stereographic projection computed with Dips, which is the secondary critical zone for wedge 

sliding, are less steep than the friction angle but sliding can occur, as one of the two planes is 

steeper than the friction angle. For direct toppling two criteria must be fulfilled. First, 

intersections plot in the red area, which is defined as the sector inside the plane perpendicular 

to the face and inside the lateral limits. Second, normal vectors must plot inside the semicircle 

of the friction cone, drawn from the centre, that lies opposite to the face, to function as 

release planes. Only if both criteria are fulfilled, direct toppling is geometrically possible. 
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6.3. Results 

6.3.1. Supervised methodology 

The results for the kinematic analysis, computed with the software Dips using the data 

obtained by the supervised methodology, for all three outcrops Long Chang, Xiang Qi Jiang 

Kou and Lao Hu Po coalmine are displayed in the figures 40 to 42. Each figure shows the 

stereographic projections for all three failure modes, at one outcrop. The face orientations 

used are listed in table 9. 

table 9: The face’s dip direction and dip value, which are used for the kinematic analysis of the data 
obtained from the supervised methodology, are listed. 

 dip direction dip value 

Long Chang 112 89 

Xiang Qi Jiang Kou 006 90 

Lao Hu Po coalmine 28 90 

 

At all three locations planar failure is geometrically unlikely as there are rarely discontinuities 

which daylight the face within the lateral limits of 20°. Only few normal vectors plot in the 

critical red area. This instance changes if lateral limits are raised or if the face orientation is 

slightly changed, however generally the risk of planar failure is low.  According to this analysis 

none of the three outcrops is at risk for direct toppling, as only one of two criteria is fulfilled. 

Steep intersections trending towards the face exist, however there are no release planes 

dipping in the same direction as the face. At all three locations the bedding plane dips with a 

small angle towards the face and therefore cannot function as such. Outcrops where the 

bedding plane dips out of the face have probably existed but have eroded faster, as this 

constellation is at high risk for direct toppling. Consequently, in this thesis only relatively 

stable configurations regarding the bedding plane were observed. The problematic failure 

mode at all investigated locations is wedge sliding. The five subvertical fracture sets form 

steep intersections trending in all directions. Intersections that daylight the face, which 

means in the stereographic projection they plot outside the great circle of the face and inside 

the friction angle drawn from the perimeter, are critical. The critical blocks consist of one or 

more sub-vertical fractures and a bedding plane on the top-side, which is necessary to form 

complete blocks. 
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figure 40: The three stereographic projections show the risk of planar failure (topmost image), wedge 
failure (middle image) and direct toppling (lowermost image) for Long Chang. 
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figure 41: The risk of planar failure (topmost image), wedge failure (middle image) and direct toppling 

(lowermost image) for Xiang Qi Jiang Kou is depict in the three projections. 
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figure 42: The three stereographic projections show the risk of planar failure (topmost image), wedge 
failure (middle image) and direct toppling (lowermost image) for Lao Hu Po coalmine. 
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6.3.2. Semi-automatic methodology 

The results of the kinematic analysis for the semi-automatically derived data, computed with 

MATLAB, are depict in the figures 43 to 45 for all three locations Long Chang, Xiang Qi Jiang 

Kou and Lao Hu Po coalmine. Each image depicts the risk of all three discussed failure modes 

at one location. For wedge failure at all three locations a further stereographic projection is 

depict in figure 46, where all computed intersections are displayed using the Kernel Density 

Estimation, to show the variability in the intersections’ orientation. The used face 

orientations are listed in table 10. 

table 10: This table lists the face orientations of the three outcrops used for the stability analysis of 
the semi-automatic methodology. 

 dip direction dip value 

Long Chang 111 90 

Xiang Qi Jiang Kou 005 90 

Lao Hu Po coalmine 029 90 

 

As the orientations derived from both methodologies are similar, the kinematic analysis 

delivered the same results as well. The risk of planar failure for all three outcrops is low as 

only the edges of the spherical apertures intersect the critical, red area of the stereographic 

projection. Direct toppling is also not classified as a critical failure mechanism at all three 

locations for this analysis. Even though intersections plot in the critical, red area, there are 

not any normal vectors, which plot in the yellow area of the stereographic projection, to 

function as release planes. Wedge sliding is the only critical failure mode for all three 

locations, as the steeply dipping discontinuity sets form steep intersections. It must be 

considered that even if intersections plot outside the critical, red area of the figures 43 to 45, 

the variability in the intersections’ orientation is not displayed in these projections. 

Consequently, intersections just outside the red area are critical indeed. In figure 46, where 

the densities of all intersections are displayed, this variability becomes visible. High densities 

are observed in the critical area. The intersections are calculated by computing all possible 

cross products between the normal vectors of every pair of sets. Intersections where the 

bedding plane is involved are hardly represented in this plot, because their densities are low, 

as only few bedding planes were computed during the plane growing process. 
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figure 43: The three images show the risk of planar sliding (uppermost), wedge sliding (middle) and 
direct toppling (lowermost) for the data obtained by the semi-automatic methodology for the 
location Long Chang. 
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figure 44: The risk of planar sliding (uppermost), wedge sliding (middle) and direct toppling 
(lowermost) at the location Xiang Qi Jiang Kou is determined, using the data of the semi-automatic 
methodology. 
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figure 45: The three images show the risk of planar sliding (uppermost), wedge sliding (middle) and 
direct toppling (lowermost) for the data obtained by the semi-automatic methodology for the 
location Lao Hu Po coalmine. 
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figure 46: All possible intersections of planes, grown during the semi-automatic methodology, are 

calculated and depict in the stereographic projection using the KDE. The red surface represents 

the critical area for intersections, which are at risk for wedge sliding. The uppermost image depicts 

the risk of wedge sliding for Long Chang, the middle image for Xiang Qi Jiang Kou and the 

lowermost image for Lao Hu Po coalmine. Densities increase from green to red. 
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7. Conclusion 

The comparison of the two methodologies showed that a semi-automatic methodology can 

be superior to a supervised methodology in terms of human working time, data quantity and 

reproducibility. If there are no discontinuities, which are mainly represented by traces in the 

face, the data quality of the supervised method can also be reached. A geologist’s judgement 

and control, however, is still necessary if the measuring of planes, represented by the points 

of the point cloud, is not enough to derive the correct orientations of all discontinuity sets. 

The plane growing algorithm proved to be a beneficial tool to automatically receive a great 

number of real plane measurements. It is superior to the use of normal vector orientations of 

all points, as discontinuity sets perpendicular to the face can be identified more reliable and 

noise and non-planar structures are removed more efficiently. The depiction of big normal 

vector data in a stereographic projection by using a Kernel Density Estimation, proved to 

deliver good results. 

Generally, three qualifications must be fulfilled to enable the delivery of correct discontinuity 

set orientations by the semi-automatic methodology. Firstly, the point cloud resolution must 

be high enough to avoid a resolution bias (section 3.2). Secondly, all discontinuity sets are 

mainly represented by distinct planes in the face, rather than by traces. This condition is 

necessary as the plane growing algorithm (section 5.1.2.1.) can only grow and measure 

planes, which are formed by points of the point cloud. Thirdly, clear discontinuity sets exist in 

the rock mass and their variances in orientation are moderate. This criterion must be 

complied to receive clear density peaks in the Kernel Density Estimation (section 5.1.2.2.), 

which serve as initial centres for the clustering analysis and to justify the assignment of 

individual plane measurements to certain discontinuity sets. A simplification of the 

discontinuity orientations of a rock mass to a mean orientation and spherical aperture of 

discontinuity sets is, for any methodology, only reasonable for clear sets with moderate 

variances.  

The advantages and disadvantages of the semi-automatic methodology need to be 

confirmed and further investigated by applications on different data sets. 
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The discontinuity analysis showed six discontinuity sets. Five fracture sets, which dip sub-

vertical were detected at all three locations. The bedding, which at all locations dips slightly 

into the face, changes the dip direction across the field. It is assumed that faces with bedding 

planes dipping out of the rock mass have eroded fast, as direct toppling is highly critical for 

this constellation of discontinuities. The extrapolation of the received orientation data to 

adjacent outcrops is reasonable if the orientation of the bedding plane is considered 

discretely. 

Regarding the rock mass stability, wedge failure turned out to be the critical failure mode. 

Blocks are formed by one or more intersections of sub-vertical fractures and are completed 

on their top side by sub-horizontal bedding planes. Planar sliding is not critical, as there are 

no discontinuities striking sub-parallel to the face, except for the bedding plane, which 

however dips into the rock mass. Direct toppling is not critical as release planes are missing. 
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