
Arnur Nigmetov, MSc

Comparison of Topological Summaries

DISSERTATION

zur Erlangung des akademischen Grades

Doktor der technischen Wissenschaften

eingereicht an der

Technischen Universität Graz

Betreuer:

Univ.-Prof. Dr.-Ing. Michael Kerber

Institut für Geometry

Graz, November 2019

Affidavit

I declare that I have authored this thesis independently, that I have not
used other than the declared sources/resources, and that I have explicitly
indicated all material which has been quoted either literally or by content
from the sources used. The text document uploaded to tugrazonline is
identical to the present doctoral dissertation.

Date Signature

ii

Abstract

In this thesis we study the problem of computing distances between common
descriptors of Topological Data Analysis (TDA).

First, we consider the classical case of 1-parameter persistence. Here a so-
called barcode is a complete discrete invariant that captures all homological
information at all scales. We provide algorithms to compute the bottleneck
and the Wasserstein distances between barcodes. We also released an im-
plementation of the algorithms; this software is now widely used in TDA
community. The efficiency of the algorithms is verified by experiments.

Second, we consider the matching distance. We provide an algorithm and
implementation to approximate the matching distance between 2-parameter
persistence modules. The theoretical complexity of the algorithm is sig-
nificantly better than the complexity of a recent algorithm (by Lesnick,
Oudot and Kerber) that computes it exactly. We also demonstrate exper-
imentally that our implementation makes computation of the matching
distance feasible in practice.

Last, we consider a more abstract setting. Suppose that we need to work
in a metric space such that an evaluation of a single distance is a costly
operation. (examples: almost every metric space of topological summaries).
We present a general strategy that allows us to approximate a matrix of
pairwise distances between some set of points, reducing the number of
distance computations.

iii

Contents

Abstract iii

1 Introduction 3

2 Background 11
2.1 Conventions and Notation . 11

2.2 Categories . 12

2.3 Simplicial Complexes . 16

2.4 Homology . 19

2.5 Filtrations . 22

2.6 Persistence Modules and Interleaving Distance 24

2.7 1-Parameter Persistence . 27

2.8 Reeb Graphs and Merge Trees 30

2.9 Algorithmic Aspects . 32

2.10 What is Omitted? . 34

3 Efficient Computation of Bottleneck and Wasserstein Distances 35
3.1 Introduction . 35

3.2 Background . 37

3.3 Bottleneck matchings . 42

3.4 Wasserstein matchings . 48

3.5 Wasserstein matchings for repeated points 54

3.6 Parallelization of Wasserstein distance computation 59

3.7 Conclusion . 61

4 Efficient Computation of Matching Distance 65
4.1 Introduction . 65

4.2 Preliminaries . 66

4.3 The approximation algorithm 68

v

Contents

4.4 The Bound primitive . 74

4.5 Experiments . 85

4.6 Conclusion . 97

5 Metric Spaces with Expensive Distances 101
5.1 Introduction . 101

5.2 Background . 104

5.3 Blind spanners . 106

5.4 Experiments on spanners . 109

5.5 Additional Experimental Results on Spanners 113

5.6 Approximate nearest neighbors 115

5.7 Proof of theorem 5.3 . 118

5.8 Experiments on approximate nearest neighbors 122

5.9 Conclusion and future work . 125

5.10 Appendix: remark on doubling dimension 126

Bibliography 129

vi

Acknowledgements

First of all, I thank my adviser Michael Kerber. There is a countless number
of reasons, including his scientific guidance, lectures, and support in all
organizational matters.

I also thank Dmitriy Morozov for the opportunity to visit him for three
summers in a row. This was a great experience, and I learnt a lot from the
projects that we worked on, and from inspirational conversations about
science and programming.

I am very grateful to Michael Lesnick and Ulrich Bauer for their consent to
be reviewers of this thesis and the valuable remarks.

Johannes Wallner never refused to help me, both in his capacity of the head
of the institute of geometry, and in private matters, like lending a drill.
I think that every PhD student of Mathematics in Graz knows and likes
Leonardo Alese, and it was a pleasure to share office with him, as well as
with other students of Michael, Hannah and René. Of course, thanks go also
to all other members of the institute, current and former, for the warm and
friendly atmosphere.

Last, but not least, I thank my family, in particular, my wife Marina.

To my grandmothers, Rosa and Gemma (1932-2017).

1

1 Introduction

This thesis is about Topological Data Analysis (TDA). Before we give the
outline of the following chapters, let us briefly discuss TDA in general. A
usual way of explaining the main idea of topological data analysis is that it
‘allows one to describe the shape of data with topological means’. We will
generally refer to the objects that are computed in TDA as either topological
summaries or topological descriptors.

Historically, TDA started with studying 1-parameter persistent homology,
and the first descriptor was a barcode. This topological summary and other
descriptors defined in its terms, such as persistence landscapes [28], are,
probably, used most often in applications of TDA. The classical pipeline of
1-parameter persistent homology looks as follows.

1. Input: finite set S of points in Rn.
2. For each r, consider a closed ball Br(p) of radius r around each point

p of S, and build the space Xr =
⋂

p∈S Br(p).
3. Replace the continuous nested family of spaces Xr with a finite nested

family (filtration) of abstract simplicial complexes, namely, the nerves
of the collection of balls {Br(p) | p ∈ S} for critical values of r, i.e., the
values where the topology of Xr changes.

4. Apply a homology functor to the filtration of complexes. The result is
an algebraic object called persistence module.

5. Compute the barcode of the persistence modules. A barcode is a finite
multiset of intervals [bi, di). Each interval encodes the value of radius
r = bi where a homological feature is born (a hole is formed in Xr),
and the value of radius r = di where the feature dies (the hole in Xr is
filled). Draw the barcode in plane as the multiset of points (bi, di). This
graphical representation of a barcode is called a persistence diagram,
and we will often use these terms as interchangeable.

3

1 Introduction

Each of these steps poses many interesting questions. One can consider an
arbitrary metric space instead of Rn, or even a more general situation, as in
[58], [57]. Computation of the nerve at step 3 can be too expensive or not
suitable for a concrete problem, and we can replace the nerve (also called
Čech complex) with another complexes, such as Vietoris-Rips, Delaunay, or
α-complex. In step 4, we usually mean the homology with coefficients in
some finite field. There exist generalizations to the case of integral homology
[92]. The fact that the homological information is fully summarized in the
form of a barcode can be generalized to persistence modules with infinite-
dimensional vector spaces. The zigzag persistence works with a family of
spaces Xi, in which the inclusion maps can go in either direction: Xi ←↩ Xi+1
or Xi ↪→ Xi+1 [35]. Since we want to apply these techniques to real data,
the algorithmic aspects of all the aforementioned computations play an
extremely important role. How can we compute the complexes? How can
we compute the barcode? Is it possible to approximate the answer, if the
input is too large? All these algorithmic problems were extensively studied,
and we provide a short list of references in the next chapter.

The topic of this dissertation is related to the next phase: having computed a
barcode, what can we do with it? Direct interpretation of a single persistence
diagram is hard. However, in many scenarios we have multiple inputs (e.g., a
set of 3D-shapes). Suppose that we found a distance (an extended metric) on
the space of barcodes. The distance allows us to make quantitative statements
about the similarity of these inputs. For example, we can formalize what we
mean by topological simplification. Moreover, a matrix of pairwise distances
can be fed into many machine learning or statistical algorithms. Last, but
not least: all these steps can be performed by the user who knows very little
about homology, but cares about a concrete problem related to real-world
data.

Not all distances are equally useful. On the one hand, we want small per-
turbations of the input data sets to cause only small changes in the distance
between their barcodes. On the other hand, we want to tell apart different
inputs, and for this purpose it is better to have a distance that changes fast.
A useful distance must provide some trade-off between these two properties.
The two most popular distances on the space of barcodes are the bottleneck
and the Wasserstein distances. The bottleneck distance is universal, i.e., the
most discriminative among all stable distances (the adjectives ’stable’ and

4

’discriminative’ have a precise meaning here). The Wasserstein distance is
stable in some weaker sense, but it is more discriminative. Roughly speak-
ing, the bottleneck distance captures only the largest difference between all
bars, while the Wasserstein distance sums the differences between the bars
of the two barcodes. There are some other distances, though. The standard
Hausdorff distance between sets in R2 is a stable, but rather weak distance,
hence it is not so useful in practice. On the other hand, there are several
different ways of linearizing the space of barcodes, that is, embedding bar-
codes in some Hilbert or Banach functional space. One such approach was
already mentioned — persistence landscapes of Bubenik do exactly this.
Another way of implicit embedding into Hilbert spaces is the famous kernel
trick from machine learning. Obviously, any linearization defines its own
distance, by the norm of the functional space. Normally one wants to have a
stable embedding, hence these distances are also weaker than the bottleneck
distance. See also [36] for some fundamental limitations on embeddings.

So far we only discussed 1-parameter persistence. There are applications
that require studying the evolution of spaces indexed by more than one
parameter, and multi-parameter persistence is currently a very active part
of TDA. However, there are fundamental mathematical reasons that explain
why this theory is significantly more difficult than in the 1-parameter case.
In particular, a multi-parameter persistence module cannot be described by
a single discrete invariant: there is no analogue of barcode. Therefore, it is
the persistence module itself that serves as a topological summary in the
multi-parameter setting.

The role played by the bottleneck distance in the 1-parameter case is taken
by the interleaving distance — it is universal (the most discriminative among
stable distances). The 1-parameter specialization of the interleaving distance
is exactly the bottleneck distance. Unfortunately, even the problem of 3-
approximating the interleaving distance for 2 parameters was proven to be
NP-hard. Luckily, there exists a distance that is stable and can be computed
in polynomial time — the matching distance. Roughly one can describe
it as the maximal bottleneck distance (with some weighting) between 1-
parameter projections of the persistence module on all lines which go in
the positive direction. The universality of the interleaving distance implies
that the matching distance gives a lower bound on the interleaving distance.

5

1 Introduction

There also exists a bottleneck distance for multi-parameter persistence modules,
which provides an upper bound on the interleaving distance [51].

Finally, let us talk about the applications of TDA. They are extremely diverse,
and include neuroscience, medicine (classification of dicesases, drug design),
cosmology, geology, shape analysis, etc. We refer the reader to the article [63].
The bibliography in this survey, published 2 years ago, contains 51 items,
and most of the papers on this list are devoted to concrete applications of
persistent homology to real data. If we agree that Reeb graphs and merge
trees can be classified as topological summaries and hence belong to TDA,
then the number of applications will, probably, increase by an order of
magnitude (this is not completely fair, because merge trees and Reeb graphs
had been studied in the context of visualization before the term TDA was
coined).

This thesis considers different problems connected with computing distances
between topological summaries, always aiming for implementations useful
in practice, even if the algorithms only give an approximate answer. We
guarantee an approximation ratio of 1 + ε, so that the user has full control
over the relative error.

The thesis is organized as follows.

Background

In Chapter 2, we collect the necessary definitions and recall the most impor-
tant results which are directly related to the topic.

Bottleneck and Wasserstein distances

In Chapter 3, we work with the Wasserstein and bottleneck distances be-
tween persistence diagrams. Given two persistence diagrams X and Y, we
define a complete bipartite graph by connecting each point of X with each
point of Y (there is one very important, but more technical detail - we must
add some points on the diagonal b = d, so that both partitions of the graph

6

have the same cardinality). This graph has a natural weighting induced by
the `∞-distance in the (b, d)-plane, and, by construction, admits a perfect
matching. The bottleneck cost of a perfect matching is the length of the
longest edge; the q-Wasserstein cost is the sum of all lengths raised to the
power q (q must be a real number from [1, ∞)). The bottleneck distance is the
minimum of bottleneck costs over all perfect matchings, and the Wasserstein
distance is the minimum of the Wasserstein costs (raised to power 1/q,
similarly for Lq-spaces). In order to compute the bottleneck distance, we use
a variant of binary search, i.e., we implement the primitive is less(X, Y, c),
which returns true if and only if the bottleneck distance between X and Y
is less than c. In other words, this primitive checks whether the graph has a
perfect matching using edges of length at most c. Efrat et al. showed [60]
how one can modify the Hopcroft-Karp algorithm for checking the existence
of perfect matching for the case of geometric graphs, thus bringing down
the complexity of this problem to O(n1.5logn). Instead of the complicated
(and asymptotically optimal) geometric data structure used in their paper
for Euclidean distances, we use k-d trees, the data structure that is known
to perform well in practice.

The problem of Wasserstein distance computation is exactly the assignment
problem. Many algorithms were proposed for solving it; there are two
papers known to us that consider the assignment problem in the geometric
context. We decided to use the auction algorithm proposed by Bertsekas. In
this algorithm we consider the points of one diagram as bidders competing
for the points of the other diagram (which in this context are often called
goods or items). Each item has a price (a dual variable), the cost of an item
for a bidder is the sum of its price and the cost (i.e., length) of the edge
connecting the bidder and the item. We modify k-d trees to incorporate the
weighting information, so that the search for the best item is performed
efficiently.

The Hera software that implements our algorithms has been applied in
practical problems, e.g., in physics [91], in action recognition [103], in med-
ical problems [13]. It significantly outperformed the alternatives that had
been available for distance computation when it was released, and now
Hera is integrated into Dionysus 2 library.

7

1 Introduction

Matching distance

In Chapter 4, we switch to bi-filtrations. Let us define the matching distance.
Fix two bi-filtrations Xr,s and Yr,s. Consider an arbitrary line with positive
slope in the (r, s)-plane. We can project the bi-filtrations onto this line,
getting filtrations X`, Y`, and compute the bottleneck distance between
them. The matching distance is defined as

dM(X, Y) := sup
`

w(`)W∞(X`, Y`).

Here w(`) is the weight of the line `. The weighting is necessary, because for
lines with slope close to 0 or 1, the bottleneck distance will usually tend to
infinity. It was shown recently [73] that the matching distance can be com-
puted exactly in polynomial time. However, the exponent of this algorithm
is rather high. The natural strategy to approximate the matching distance
is to compute the expression f (`) := w(`)W∞(X`, Y`) for some sample of
lines `. For sampling, we need to parameterize the set of lines with positive
slope; we assume that the parameters vary over some axis-aligned rectangle.
Then the most naive approach is to put some grid over the rectangle and
compute f (`) for all lines ` parameterized by the centers of the grid cells.
This approach has two drawbacks. First, there is no guarantee of the relative
error. Second, the computation of f (`) is an expensive operation, which we
would like to avoid whenever possible, and we expect that this straight-
forward algorithm would require a fine grid with many cells to produce a
reliable answer. How can we guarantee the quality of our approximation? It
is clear that f (`) is continuous with respect to the standard topology on the
set of lines. If we can quantify this statement, i.e., if we can find a function
ψ(`1, `2) such that

| f (`1)− f (`2)| < ψ(`1, `2), (1.1)

then we can use the function ψ to compute the upper bound for the matching
distance. The actual ψ will depend on the parameterization scheme that
we choose; it is natural to expect that ψ will depend monotonically on
the parameters and tend to 0 as lines `1,2 approach each other. If we are
able to provide a function ψ with these properties, then we can use it to
compute the upper bound of the matching distance, if we only know the
values of f at grid nodes. Equation (1.1) also provides the remedy against

8

the second issue of the naive algorithm. Instead of starting with some fine
grid directly, we can use a hierarchy of grids. We start with a coarse grid
and keep refining it until we reach the relative error specified by the user.
When we need to refine a cell, it can happen that the value at its center is
small enough, so that our estimate ensures that, for each line ` in this cell,
f (`) is less than the maximal value of f that we have computed so far. We
conclude that there is no need to refine this cell, since it has no chance to
improve the maximum.

This idea was applied to matching distance approximation in [20]. Our
algorithm has the same structure, but we changed the parameterization
scheme and performed a more accurate analysis of how f (`) changes.
The function ψ that is used in [20] is what we call a global bound: it only
depends on the dimensions of the cell. We show that a local bound (a bound
that takes into account the cell coordinates) can significantly accelerate the
computation of dM by reducing the number of computations of f .

Expensive metrics

The last chapter is motivated by two observations. First, none of the distances
considered in this thesis can be computed in O(1) time. If the input has size
n, then the complexity of our algorithms for bottleneck, Wasserstein, and
matching distances is polynomial; there is also a whole family of distances
between merge trees and, more generally, Reeb graphs, which are NP-hard
to compute. Secondly, we are normally interested not in computing a single
distance between two given inputs, but, for a given set of n topological
descriptors, we want to know all pairwise distances. The situation when
the number of descriptors n is significantly smaller than the size of each
of them is not uncommon, so it is reasonable to assume that the cost of
one distance computation is much higher than any operation which is
polynomial in n but does not involve a distance computation. We call this
model a metric space with expensive distances. Let G be a graph with
vertices {xi} from a metric space (X, ρ), to each edge (xi, xj) of G assign
the weight ρ(xi, xj) and let ρG denote the graph metric on G induced by the
weighting. The graph G is called a t-spanner, if ρG is a t-approximation of

9

1 Introduction

the original metric: ρG(xi, xj) 6 tρ(xi, xj) for all i, j. Our goal is to compute
a spanner efficiently in the sense of our model, where computation of a
single distance costs much more than other operations. Since we work in
the general setting of an arbitrary metric space, the only tool that we have is
triangle inequality. The idea is to use the distances that are known to us at
the moment to get upper and lower bounds on the distances that have not
yet been computed. We show experimentally that this strategy works well
for approximating distances between persistence diagrams coming from a
shape dataset, reducing both the number of distance computations and the
running time even for the diagrams of moderate size.

We also consider an approximate nearest neighbor problem. Here we are
given a set of points P = {p1, . . . , pn}; as a preprocessing step we compute
all pairwise distances between points of P. Given a query point q, we range
over all points of P (in random order) and try to use the distances between
pi and q that we computed before to decide whether we need to compute the
distance between q and the current point. Assuming doubling property, we
can prove that in expectation we only need to compute O(log n) distances
between q and points of P. We also run experiments that confirm these
theoretical estimates.

10

2 Background

As explained in the previous chapter, the main objects for this thesis are
distances between topological descriptors. In this chapter we collect the
definitions of these descriptors and distances. There is no original work in
this chapter, and most of the material can be found, for instance, in books
[54], [65], [94].

Therefore we omit all proofs, only marking some statements that can be
easily derived from definitions. Regarding generality, we choose the most
general formulation, if it is not harder to state than a less general one;
otherwise, we choose a more restrictive alternative.

2.1 Conventions and Notation

We assume the following notions to be known:

• Sets, equivalence relations, quotients.
• Groups, rings, fields, modules. Homomorphisms, isomorphisms and

quotients of these structures.
• Vector spaces over arbitrary fields, linear maps, quotient spaces.
• Topological spaces, continuous maps.
• Metric spaces. Note that by metric we always mean an extended metric,

i.e., all standard metric axioms must hold, but the metric can take
value +∞.

For a set X, we write idX for the identity mapping (x 7→ x for all x ∈ X).
We write 2X for the power set of X, and |X| for the cardinality of X. We use

11

2 Background

square brackets for equivalence classes, if the equivalence relation ∼ is clear
from the context:

[x] = {y ∈ X such that x ∼ y }.

R denotes the field of real numbers; Z denotes the ring of integers; Z/p
denotes the field with p elements (p is prime). The symbol 0 can denote the
number 0, the zero vector space over any field, the abelian group with one
element, the zero vector in any vector space, and so on.

The sup-norm of a function f : X → R is

‖ f ‖∞ := sup
x∈X
| f (x)|.

If x ∈ Rd, then ‖x‖∞ denotes the `∞-norm:

‖(x1, . . . , xd)‖∞ := max{|xi|}.

We define the sup-norm for functions f : X → Rd, x 7→ (f1(x), . . . , fd(x)) by
putting

‖ f ‖∞ := sup
x∈X
‖ f (x)‖∞ = sup

x∈X
max

i
| fi(x)|.

Let (X, ρ) be a metric space. Br(x) denotes the closed ball of radius r with
center x:

Br(x) = {y ∈ X | ρ(x, y) 6 r}.

Note that Br(x) = ∅ for r < 0. Sn denotes the n-dimensional sphere in the
Euclidean space.

2.2 Categories

In this thesis we do not need any deep results from category theory. However,
in many situations a definition of some concrete objects, say, persistence
modules, becomes more concise and natural, when phrased in the language
of categories and functors. Categorification is also an important trend in
TDA (see, for example, [48], [29], [10], or [8]). Therefore we include this
short section and freely use categorical notions in the sequel.

12

2.2 Categories

Definition 2.1. A category C consists of the following data:

• Class of objects (notation: Ob C).
• Class of morphisms (notation: Mor C).
• Mappings dom : Mor C → Ob C and cod : Mor C → Ob C. For a mor-

phism f , the object dom f is called the domain of f , and the object cod f is
called the codomain of f . Notation: if a and b are the domain and codomain
of f , then one writes f : a → b and says that f is a morphism from a to b.
For each pair of objects (a, b) the class of morphisms from a to b must be a
set, which is denoted homC(a, b) and is often called a hom-set.
• The composition law: for each triple of objects a, b and c there is a mapping

homC(b, c) × homC(a, b) → homC(a, c), denoted by f , g 7→ f ◦ g. The
composition law must be associative: (f ◦ g) ◦ h = f ◦ (g ◦ h) whenever
the composition is defined. A pair of morphisms (f , g) with f : b → c and
g : a→ b is called a composable pair.

• Identity morphisms. For each object a, the set homC(a, a) must contain a
special element ida that serves as the left and right identity with respect to
composition: ida ◦ f = f and h ◦ idb = h.

Note that Mor C is a disjoint union ∪a,b homC(a, b) over all objects a, b, so it
is enough to specify the hom-sets. Normally one does not need to worry
about the difference between classes and sets in this definition, but this is
not always true: in [30] the authors show that the most general definition of
persistence modules immediately leads to well-known problems.

Definition 2.2. A morphism f : a → b is an isomorphism, if there exists a
morphism g : b→ a such that f ◦ g = idb and g ◦ f = ida. Objects a, b are called
isomorphic, if there exists an isomorphism f : a→ b.

Definition 2.3. A functor F from category C to category D consists of a mapping
F : Ob C → Ob D and a mapping F : Mor C → D such that the following
conditions are satisfied:

1. If f ∈ MorC(a, b), then F(f) ∈ MorD(F(a), F(b)).

2. F maps identity to identity: F(ida) = idF(a).

3. F respects composition: F(f ◦ g) = F(f) ◦ F(g) for each composable pair
f , g ∈ Mor C.

13

2 Background

It is easy to prove that a functor takes isomorphisms to isomorphisms.

Definition 2.4. A category C is a subcategory of category D, if Ob(C) ⊆ Ob(D),
Mor(C) ⊆ Mor(D), and the composition of morphisms in C agrees with the
composition in D, i.e. f ◦C g = f ◦D g for all composable pairs of morphisms
f , g ∈ Mor(C).

Definition 2.5. Let F, G be functors C → D. A natural transformation from
F to G is a collection of morphisms ϕ(c) homDcat(F(c)G(c)), one for each object
c of C, such that for each morphism f ∈ homC(c1, c2) we have G(f) ◦ ϕ(c2) =
ϕ(c1) ◦ F(f). If such a natural transformation exists, we write ϕ : F .−→ G.

Examples. Category Set. The objects of this category are all sets. The
set homSet(a, b) is the set of all mappings from set a into set b, and the
composition of morphisms is the usual composition of mappings.

A morphism in Set is an isomorphism exactly when it is a bijection. This
example shows that one cannot replace the word ’class’ in the definition of
a category with the word ’set’, since the class of all sets cannot be a set. The
categories Ab, Top, and vectF (defined below) are subcategories of Set.

Category Ab. The objects of this category are all abelian groups, the set
homAb(a, b) is the set of all homomorphisms from group a into group b.
Isomorphisms in Ab are usual isomorphisms of the abelian groups (same
is true for all categories of algebraic objects, such as group, rings, fields,
modules over some fixed ring, etc).

Category Top. The objects of this category are all topological spaces, and
morphisms are continuous maps between them. Isomorphisms in Top are
called homeomorphisms. In TDA, we normally consider spaces that can be
built from elementary blocks, say, cubes or simplices, using only a finite
number of them; that is, we normally work in a subcategory of Top.

Category TopPair. An object of this category is a pair (X, A), where X is
a topological space and A is a subspace of X. A morphism from (X, A) to
(Y, B) is a continuous map f : X → Y such that f (A) ⊆ B.

Category HTop. Let us first recall the definition of homotopy.

14

2.2 Categories

Definition 2.6. Let X and Y be topological spaces, and f , g be continuous maps
X → Y. A homotopy between f and g is a continuous map H : X× [0, 1]→ Y
such that H(x, 0) = f (x) and H(x, 1) = g(x) for all x ∈ X. If a homotopy
between f and g exists, they are said to be homotopic, and we write f ∼ g.

Informally, f and g are homotopic, if f can be continuously deformed into
g. It is easy to prove that ∼ is an equivalence relation, which is compatible
with composition in the following sense: if f1,2 : X → Y and g1,2 : Y → Z
are continuous maps such that f1 ∼ f2 and g1 ∼ g2, then g1 ◦ f1 ∼ g2 ◦ f2.
This means that we can define composition of the equivalence classes by
putting [f] ◦ [g] := [f ◦ g] for f : Y → Z and g : X → Y. We obtain the
category HTop whose objects are topological spaces and whose morphisms
are not mappings, but equivalence classes of mappings (checking all axioms
of category is straightforward). The identity morphism of a space X is,
of course, the homotopy class of the identity map [idX]. Isomorphisms in
this category play an important role in topology and are called homotopy
equivalences. They can be described directly, without referring to categorical
notions.

Definition 2.7. Let X and Y be topological spaces, f be a continuous map X → Y,
and g be a continuous map Y → X. We say that the pair (f , g) is a homotopy
equivalence between spaces X and Y, if f ◦ g ∼ idY and g ◦ f ∼ idX. Two
topological spaces are homotopy equivalent, if there exists a homotopy equivalence
(f , g) between them. Each of the mappings f , g can also be called a homotopy
equivalence.

Category vectF. Let F be a field. The objects of vectF are finite-dimensional
vector spaces over F, the morphisms are F-linear maps.

Poset as category. Recall that a relation � on a set X is a partial order, if
it is reflexive (a � a), antisymmetric (a � b and b � a imply a = b), and
transitive (a � b and b � c imply a � c). Given a partially ordered set
(poset) (X,�), we define the category X by setting Ob X = X. If elements
a and b are not comparable, then we put homX(a, b) = ∅, else we put
homX(a, b) to contain a single element. The composition of morphisms is
well-defined, because � is transitive. The only isomorphisms in X are the
identity morphisms. These categories also play a significant role in TDA.

15

2 Background

Examples of functors that are relevant to TDA: homology and persistence
module. They will be defined in next sections.

2.3 Simplicial Complexes

Definition 2.8. The set of points {p1, . . . , pn} in RN is affinely independent, if
the set of vectors {p2 − p1, . . . , pn − p1} is linearly independent.

Obviously, a subset of an affinely independent set is affinely independent.
Note that the empty set and the set of cardinality 1 are affinely independent
by definition.

Definition 2.9. A geometric simplex T of dimension d > 0 is a convex hull of
d + 1 affinely independent points V = {v0, . . . , vd} in Rn. Every point vi is called
a vertex of the simplex. A geometric simplex defined by a subset of V is called a
face of T.

Examples: a 0-dimensional simplex is a single point, a 1-dimensional simplex
is a line segment between two points, a 2-dimensional simplex is a triangle
(with its interior), etc. We can use geometric simplices as building blocks,
glueing them together along faces to obtain new spaces.

Definition 2.10. A set of geometric simplices K = {σi|i ∈ I} is a geometric
simplicial complex, if

1. for each σi ∈ K, all faces of σi belong to K, and
2. for all i, j ∈ I the intersection σi ∩ σj is a face of both σi and σj.

We say that K is a triangulation of X = ∪i∈Iσi. A simplex σ ∈ K is maximal, if
it is not a face of any other simplex from K.

We may sometimes abuse the terminology by referring to X itself as a geo-
metric simplicial complex, if it is clear from the context, which triangulation
is meant. We always assume that geometric simplicial complexes are finite.
The first condition in this definition implies that a geometric simplicial
complex is fully determined by its maximal simplices.

16

2.3 Simplicial Complexes

For example, let us take 4 points a, b, c, d ∈ R3 such that the triangles {a, b, c},
{a, b, d}, {a, c, d}, and {b, c, d} intersect only along their common edges. We
define a geometric simplicial complex K by taking these 4 triangles as
its maximal simplices. The union of the triangles is the boundary of the
tetrahedron spanned by {a, b, c, d}. From the topological point of view, we
constructed a 2-dimensional sphere by taking 4 triangles and glueing them
along their edges. Most importantly, in order to identify this complex as a
sphere, we only needed to know which vertices span a simplex in this space.
This motivates the definition of abstract simplices and abstract simplicial
complexes.

Let V be a fixed set, which we assume to be finite. We refer to elements of
V as vertices.

Definition 2.11. An abstract simplex of dimension k on a set of vertices V is
a subset of V of cardinality k + 1. Simplex τ is a face of simplex σ, if τ ⊆ σ. An
abstract simplicial complex on V is a set of simplices K such that if σ ∈ K, then
all faces of the simplex σ belong to K.

Note that K must be finite, since |V| < ∞. If we remove from an abstract sim-
plicial complex K all simplices of dimension greater than m, the remaining
simplices form a subcomplex of K. This subcomplex is called the m-skeleton
of K. Simplices of dimension 1 are called edges of K.

Definition 2.12. Let K1 and K2 be two abstract simplicial complexes with vertex
sets V1 and V2. A mapping f : K1 → K2 is a simplicial map, if a) for each v1 ∈ V1
considered as a 0-dimensional simplex of K1, its image f (v1) is a 0-dimensional
simplex in K2 and b) for each σ = {v1, . . . , vd+1} ∈ K1 its image f (σ) must be
equal to { f (v1), . . . , f (vd+1)} ∈ K2.

Thus a simplicial map is completely defined by its restriction onto vertices.
Notice that different vertices of K1 can be mapped to the same vertex of K2,
so a d-dimensional simplex is mapped to a simplex of dimension at most d.
All simplicial complexes and simplicial maps between them form a category
Simp. If there exists an isomorphism between two complexes, we say that
these complexes are isomorphic, or have the same combinatorial structure, or
are combinatorially equivalent.

17

2 Background

A geometric simplicial complex {σi} can be viewed as an abstract simplicial
complex K: take V to be the union of all vertices of all σi-s and add an
abstract simplex τ to K if and only if the geometric simplex spanned by the
vertices of τ is one of the σi-s.

Definition 2.13. A geometric simplicial complex X = ∪i∈Iσi is a geometric
realization of an abstract simplicial complex K, if K is isomorphic to X viewed as
abstract simplicial complex.

It is easy to prove that a) every (finite) abstract simplicial complex K has a
geometric realization, and b) all geometric realizations of K are homeomor-
phic to each other. This allows us to use abstract simplicial complexes in
context where one expects a topological space.

As we observed, every geometric simplicial complex yields an abstract
simplicial complex. Here is another way of building abstract complexes.

Definition 2.14. Let U = {Uα | α ∈ A} be a finite collection of sets. Its nerve
N(U) is an abstract simplicial complex on A defined as follows:

N(U) = {σ |
⋂

α∈σ

Uα 6= ∅}.

In words: a simplex σ = {α0, . . . , αd} belongs to N(U) if and only if the intersection
of the corresponding elements Uαi of U is not empty.

Typically the sets Uα are subspaces of some topological space. The following
theorem, which is usually called the nerve lemma, plays a very important
role in TDA.

Theorem 2.15. Suppose that each Uα ∈ U is a closed and convex subset of Rd.
Then the nerve N(U) is homotopy equivalent to

⋃
α Uα.

This theorem allows us to replace a continuous object, which can be very
complicated from the computational point of view, with a simple combina-
torial object, the nerve, without losing the information about the homotopy
type. On the other hand, the dimension of the nerve can be much higher
than d. There are other variations of the nerve lemma. For example, one can
require Uα to be open and all intersections to be contractible (homotopy
equivalent to a point).

18

2.4 Homology

2.4 Homology

Let F be either the ring of integers Z or some field, K be an abstract
simplicial complex. By definition, its group of d-chains Cd(K, F) is a free F-
module generated by all d-simplices of K. In other words, a d-chain in K with
coefficients in F is a formal linear combination of d-dimensional simplices
of K with coefficients from F, and Cd(K, F) is the set of all d-chains with
operations defined in a natural way. There is one important technicality here.
For each simplex σ ∈ K, we fix some ordering of its vertices, σ = [v0, . . . , vd].
Let s be a permutation of {0, . . . , d}, and ε(s) be its sign. If we rearrange the
vertices of σ, then we put [vs(0), . . . , vs(d)] := (−1)ε(s)σ. Note that if 1 = −1
in F, then the order of vertices does not matter. We define the boundary of
σ as the (d− 1)-chain

∂σ :=
d

∑
k=0

(−1)k[v0, . . . , v̂k, . . . , vd],

where v̂k means that the vertex vk is omitted. We extend the mapping ∂ to
all chains by linearity:

∂(∑ λiσi) := ∑ λi∂σi.

Thus, for each dimension d > 0, we have an F-linear map ∂ : Cd(K, F) →
Cd−1(K, F). We are going to suppress K and F for brevity, and as long as
there is no ambiguity, Cd is just a shorthand notation for Cd(K, F). Let

Zd = Zd(K, F) := ker ∂ : Cd → Cd−1 for d > 0

and
Bd = Bd(K, F) := im ∂ : Cd+1 → Cd for d > 0

The elements of Zd are called cycles, and the elements of Bd are called
boundaries. Zero-dimensional cycles are an exceptional case: here we set
Z0 := C0. Thus Zd ⊆ Cd and Bd ⊆ Cd for all d > 0. The most fundamental
fact is that every boundary is a cycle, i.e., Bd ⊆ Zd. The proof amounts to a
straightforward verification of ∂ ◦ ∂ = 0.

Definition 2.16. The d-th homology group of K with coefficients in F is the
quotient

Hd = Hd(K, F) := Zd/Bd.

19

2 Background

Note that Hd(K, F) depends only on (d+ 1)-skeleton of K. We write [c] ∈ Hd
for the equivalence class of a cycle c ∈ Zd and call it a homology class of c.
Recall that the boundary operator was defined for some fixed orientation of
simplices; it can be proven that Hd(K, F) does not depend on this choice. If
F is a field, then Zd and Bd are finite-dimensional vector spaces, therefore
Hd is also a finite-dimensional vector space. If F is Z, then Zd and Bd are
free finitely-generated abelian groups, and Hd is a finitely-generated, but
not necessarily free abelian group.

Let f : K1 → K2 be a simplicial map. We extend it to chains (keeping the
same symbol f) by setting

f (∑ λiσi) := ∑ λi f (σi).

We define Hd(f) : Hd(K1)→ Hd(K2) by Hd(f)([c]) := [f (c)]. One can check
that Hd(f) is well-defined. Now we can say that Hd(K, F) is functorial in
K. If F = Z, then Hd(·, Z) is a functor Simp → Ab, and if F is a field,
then Hd(·, F) is a functor Simp→ vectF. In case F = Z, the abelian group
Hd can be computed by bringing the matrix of the boundary operator ∂
to Smith normal form. For field coefficients we need to perform Gaussian
elimination, which is much easier from the computational point of view.
Unfortunately, this simplification comes at a price: the homology of X with
field coefficients contains less information about the topology of X. More
precisely, if we know Hd(X, Z) for all d, then we can determine Hd(X, F)
for any field F (but not vice versa) via the universal coefficient theorem.

We defined Hd for abstract simplicial complexes. Let X be a triangulable
topological space (i.e., X is a geometric realization of some abstract simplicial
complex K). We define the simplicial homology Hd(X, F) of the space X with
coefficients in F to be Hd(K, F). The fact that Hd(X, F) is well-defined
(does not depend on the choice of triangulation K) is not easy to prove. In
fact, simplicial homology is not the best choice for mathematical purposes,
because a) the class of triangulable spaces is too small, even if one allows
infinite simplicial complexes (for instance, not all topological manifolds
are triangulable) and b) as we just remarked, the topological invariance
of simplicial homology is relatively hard to establish. Nevertheless, we
choose this definition, because it is simple and well-suited for algorithmic
purposes. Simplicial complexes and simplicial maps are easy to represent in
the computer.

20

2.4 Homology

There are other ways to define homology of a topological space (not nec-
essarily triangulable), but all these definitions give the same result when
applied to triangulable spaces. One of these variants is called singular homol-
ogy. It is used in most textbooks on algebraic topology, and we do not define
it here. We only remark that singular homology with integral coefficients is
actually a functor HTop→ Ab. This compact formulation implies that:

• If X and Y are homotopy equivalent, then they have the same homol-
ogy in all dimensions: Hd(X) ∼= Hd(Y) for all d > 0 (in particular,
spaces of different dimension can have the same homology).
• If maps f , g : X → Y are homotopic, then they induce the same map

in homology.
• If f : X → Y is a homotopy equivalence, then the induced map in

homology Hd(f) : Hd(X)→ Hd(Y) is an isomorphism.

All these statements also hold for simplicial homology.

Relative homology and cohomology. Let A ⊆ X be a subcomplex of X.
We say that a chain c ∈ Cd(X) is a relative cycle, if its boundary belongs to
Cd−1(A), and write Zd(X, A) for the set of d-dimensional relative cycles. We
say that c is a relative boundary, if there exists a chain c′ ∈ Cd(A) such that
c− c′ is a boundary, and write Bd(X, A) for the set of relative boundaries.
The relative homology group Hd(X, A; F) of the pair (X, A) is defined as
the quotient Zd(X, A)/Bd(X, A). Again, it would be more accurate to call
Hd(X, A) the simplicial relative homology group. There exists a singular
relative homology, which is defined for arbitrary topological spaces. We
mention the relative homology theory here because it is used in one of the
variants of TDA, so-called extended persistence [43].

We can dualize the chain groups, i.e., consider F-linear maps from chains
into F. The space of such maps is called the group of cochains. The boundary
operator determines its dual, the coboundary operator d that goes in the
opposite direction, from cochains of dimension n to cochains of dimension
n + 1. We define cocycles and coboundaries in the same way as we did
for cycles and boundaries. Since the identity d ◦ d = 0 holds, the quotient
group is well-defined, and it is called the cohomology group. Apart from its

21

2 Background

importance in pure mathematics, cohomology is also useful in TDA, see
[47].

2.5 Filtrations

Recall that we regard Rd as a poset with (a1, . . . , ad) � (b1, . . . , bd) if and
only if ai 6 bi for all i = 1 . . . d.

Definition 2.17. A multi-filtration of a topological space X is a map a 7→ Xa that
associates to each a ∈ Rd a subset Xa of X such that Xa ⊆ Xb whenever a � b. A
multi-filtration of a simplicial complex K is a map a 7→ Ka that associates to each
a ∈ Rd a subcomplex Ka of K such that Ka ⊆ Kb whenever a � b. For a simplex
σ, every minimal element of the closure of the set {a ∈ Rd | σ ∈ Ka} is called
a critical value of σ in the multi-filtration. 1 If all simplices in K have only one
critical value, the multi-filtration is called 1-critical.

We always assume that all spaces Xa are triangulable. If d = 1, we omit
the prefix multi and just say filtration, or even monofiltration. Note that all
monofiltrations are 1-critical.

Definition 2.18. We call a multi-filtration of spaces (respectively, complexes) Xa
nice, if

1. For all a ∈ Rd and for all sufficiently small ε, the inclusion Xa → Xa+ε is a
homotopy equivalence (respectively, identity).

2. There exist finitely many numbers c1, . . . , cN with the following property. If
a = (a1, . . . , ad) satisfies ai 6= cj for all i, j, then for all sufficiently small ε,
the inclusion Xa−ε → Xa is a homotopy equivalence (respectively, identity).

We always assume that multi-filtrations are nice. Note that this definition
is not standard, and is rather restrictive. However, it is sufficient for the
purposes of this thesis: the most popular classes of multi-filtrations usually
satisfy these requirements, and they provide sufficiently many examples
of how topological descriptors can be obtained. Nice multi-filtrations are

1Usually this set is closed and has only finite number of minimal elements.

22

2.5 Filtrations

obviously discrete objects that can be easily represented in the computer.
We can think of them as finite grids formed by simplicial complexes which
are connected by inclusion maps. Additionally, we need to store the real
coordinates associated to the grid nodes.

Examples. Čech complexes. Let S = {x1, . . . , xn} be a finite set of points in
a metric space, and let Xr be the union of closed balls of radius r centered
at xi,

Xr := ∪iBr(xi).

One can prove that {Xr} is a nice filtration.

Definition 2.19. The nerve of the set {Br(xi)} is called the Čech complex of S
and denoted Čr(S). In other words,

Čr = {σ ∈ 2S | ∃y ∈ Rd such that ‖y− xi‖ 6 r for all xi ∈ σ}.

Obviously, r 7→ Čr(S) is a filtration of abstract simplicial complexes. By
theorem 2.15, Čr(S) is homotopy equivalent to Xr. Let σ be a subset of S.
The critical value of σ in Čr is the diameter of the minimal enclosing ball of
σ.

Vietoris-Rips complexes.

Definition 2.20. The Vietoris-Rips complex with radius r of the set S is the
abstract simplicial complex VRr with the set of vertices S given by the following
rule:

VRr(S) = {σ ∈ 2S | diam(σ) 6 2r}.

It is known [54] that Čr(S) ⊆ VRr(S) ⊆ Č√2r(S) (in Rn with Euclidean
distance). Thus Vietoris-Rips complexes can be interpreted as approximation
of the Čech complexes. The advantage of the corresponding filtration is
that we only need to consider pairwise distances between elements of σ; for
higher-dimensional simplices we are greedy, adding them to the complex
once we have all their edges.

23

2 Background

Sublevel-set multi-filtration. Let f : X → Rd be a function on a triangulable
space X. For y ∈ Rd, we put

SLy = SLy(X, f) := {x ∈ X | fi(x) 6 yi for all i = 1, . . . , n}

Obviously, y 7→ SLy is a multi-filtration of topological spaces. Again, we
assume that this multi-filtration is nice (this is true, for instance, if f is a
piecewise-linear map). The Čech filtration is a special case of the sublevel-set
multi-filtration: put f to be the distance from its argument to S.

Lower-star multi-filtration. Let K be an abstract simplicial complex on a set of
vertices V, and let ϕ : V → Rd be some function. For y ∈ Rd, we put

LSy(K) := {σ ∈ K | ϕi(v) 6 yi for all v ∈ σ, for all i = 1, . . . , d }

The filtration y 7→ LSy(K) is called the lower-star multi-filtration of K defined
by the function ϕ.

2.6 Persistence Modules and Interleaving
Distance

What happens if we apply the homology functor to a multi-filtration? We
obtain a family of vector spaces indexed by the points of Rd; these vector
spaces are connected by the linear maps induced by the inclusion maps of
the multi-filtration. Such objects are called persistence modules, and in this
section we define them formally.

Let us fix some field F; as usual, vectF denotes the category of finite-
dimensional vector spaces over F.

Definition 2.21. A persistence module in d parameters is a functor M from Rd

(regarded as a poset category) to vectF. If a and b are elements of Rd such that
a � b, we write M(a � b) for the linear map M(a)→ M(b). These linear maps
are called structure maps. A morphism ϕ from persistence module M1 to M2 is
a natural transformation M1

.−→ M2. In other words, ϕ is a collection of linear

24

2.6 Persistence Modules and Interleaving Distance

maps ϕ(p) : M1(p) → M2(p) such that for each p � q the following diagram
commutes

M1(p) M1(q)

M2(p) M2(q)

M1(p�q)

ϕ(p) ϕ(q)

M2(p�q)

Persistence modules form a category, and a morphism ϕ is an isomorphism
in categorical sense if and only if ϕ is a point-wise isomorphism (for all
p ∈ Rd, the linear map ϕ(p) is an isomorphism). By zero module we mean
the module that assigns the zero vector space to each p ∈ Rd. We denote
the zero module by 0.

Definition 2.22. A direct sum of persistence modules M1 and M2 is defined point-
wise: (M1 ⊕M2)(p) := M1(p)⊕M2(p), and (M1 ⊕M2)(q � p) := M1(q �
p) ⊕ M2(q � p). A module M is called indecomposable, if M ∼= M1 ⊕ M2
implies M1

∼= 0 or M2
∼= 0.

Theorem 2.23. Every persistence module M is isomorphic to a direct sum of
indecomposable modules:

M ∼=
⊕
α∈A

Mα,

modules Mα are uniquely (up to isomorphism and re-indexing) determined by M.

This theorem is a special case of the Krull-Schmidt-Azumaya theorem. A
proof can be found, e.g., in [25].

Definition 2.24. An interval in a poset (P,�) is a non-empty subset I ⊆ P
that satisfies the following property: for all a, c ∈ I and for all b ∈ P such that
a � b � c, the element b also belongs to I.

Let I be an interval in Rd. We define a corresponding interval module MI as
follows:

MI(p) =

{
F, if p ∈ I,
0, otherwise.

25

2 Background

MI(a � b) =

{
idF, if a ∈ I and b ∈ I,
0, otherwise.

It is easy to check that MI is indecomposable. However, an indecomposable
module need not be an interval module. Actually, there exist indecompos-
able modules that are not even thin, i.e., at some points the corresponding
vector space has dimension greater than 1.

Our definition of a persistence module is rather restrictive: a persistence
module in our sense is finite-dimensional at each point. A more general def-
inition replaces Rd with an arbitrary poset and allows infinite-dimensional
vector spaces. Studying persistence modules in this generality is a subject in
its own even for 1-parameter case, see books [94], [39].

Fix a real ε > 0 and let ε denote the point (ε, . . . , ε) of Rd. We define a shift
functor S(ε) as follows. For a persistence module M, we put S(ε)(M)(p) :=
M(p + ε) and S(ε)(M)(p � q) := M(p + ε � q + ε). For a morphism
ϕ : M1 → M2, we set S(ε)(ϕ)(p) := ϕ(p + ε). It is easy to see that S(ε) is
indeed a functor.

Definition 2.25. Let M be a persistence module, ε be a non-negative real num-
ber. The ε-transition morphism ϕε

M is a morphism M → S(ε)(M) defined by
ϕε

M(p) := M(p � p+ ε). Two persistence modules M1 and M2 are ε-interleaved,
if there exist morphisms ψ1 : M1 → Sε(M2) and ψ2 : M2 → Sε(M1) such that
S(ε)(ψ1) ◦ ψ2 = ϕ2ε

M2
and S(ε)(ψ2) ◦ ψ1 = ϕ2ε

M1
. The interleaving distance

between M1 and M2 is the infimum of ε such that M1 and M2 are ε-interleaved:

DI(M1, M2) = inf ε > 0 s. t. M1 and M2 are eps-interleaved.} (2.1)

One can prove that DI is a distance. The infimum in the definition of DI is
actually attained, as proved in [78]. In particular, if DI(M1, M2) = 0, then
the modules M1 and M2 are 0-interleaved, i.e., isomorphic.

Definition 2.26. A distance d on the space of persistence modules is called stable,
if for all functions f1,2 : X → Rn, and for all m > 0

d(Hm(SL(f1)), Hm(SL(f2))) 6 ‖ f1 − f2‖∞

Recall that SL(fi) denotes the sublevel filtration.

26

2.7 1-Parameter Persistence

The following theorem (proven in [78]) states that the interleaving distance
is the most discriminative among all stable distances (for prime fields).

Theorem 2.27. 1. DI is stable for all fields F.
2. If F is Q or Z/p, and d is a stable distance, then d(M1, M2) 6 DI(M1, M2)

for all M1, M2.

The fact that Hm(·, F) is functorial allows us to construct a persistence mod-
ule from a given multi-filtration. This module depends on dimension m and
on the field of coefficients F. Nevertheless, we will abuse the terminology
by referring to a distance between any of these modules as ’the distance
between the two given multi-filtrations’, because we will consider m and F

being fixed (say, by the user).

2.7 1-Parameter Persistence

In 1-parameter case, the theory of persistence becomes much simpler, be-
cause we can explicitly describe all indecomposable modules.

Theorem 2.28. If a 1-parameter persistence module M is indecomposable, then M
is isomorphic to an interval module, M ∼= MI for some I.

Intervals in R can be closed, open, or half-open. We are usually interested
in persistence modules that are obtained by applying homology to a nice
filtration, hence we can assume that the intervals are of the form [b, d),
where d can be ∞. Thus, we only consider persistence modules M that can
be decomposed as M ∼= ⊕j∈J M[bj,dj)

, where bj ∈ R and dj ∈ R∪ {∞}.

Definition 2.29. Each interval [bj, dj) is called a bar, and the multiset of all
intervals [bj, dj), j ∈ J is called the barcode of the module M. A persistence
diagram of M is a multiset that contains all points on the diagonal (b, b) with
infinite multiplicity, and points (bj, dj) with the same multiplicity that the bar
[bj, dj) has in the interval decomposition of M.

27

2 Background

We call a multiset of points in R2 a persistence diagram, if this multiset consists
of all points of the diagonal {(b, b) | b ∈ R} with infinite multiplicity and of
finitely many points from the upper half-plane {(b, d) ∈ R2 | b < d}, each
with finite multiplicity. The latter part of a diagram is called the off-diagonal
part.

Definition 2.30. Let X, Y be two persistence diagrams, let η be a bijection η : X →
Y; the supremum of `∞ distances between x ∈ X and its image under η is called the
bottleneck cost of η. The bottleneck distance between X and Y is the infimum of
the bottleneck cost over all bijections η : X → Y:

W∞(X, Y) = inf
η

sup ‖x− η(x)‖∞.

Intuitively, we are trying to match the points of X and Y in such a way
that minimizes the maximal distance between matched points. If we want
to minimize not only the maximal distance, but their total sum, we get
1-Wasserstein distance. Analogously to Lq, we can generalize this definition
by taking the sum of distances raised to the power of q, where q is a fixed
real number from [1, ∞).

Definition 2.31. The q-Wasserstein distance between X and Y is

Wq(X, Y) = inf
η

(
∑

x∈X
‖x− η(x)‖q

∞

) 1
q

.

By the bottleneck or Wasserstein distance between 1-parameter persistence
modules we mean the corresponding distance between the persistence
diagrams of these modules; same for filtrations. Again, the latter case is a
slight abuse of the language, because it depends on dimension in which we
take the homology and the field of coefficients, but this should not lead to
any confusion.

While it is straightforward to verify that W∞ and Wq define extended metrics
on the set of persistence diagrams, it is not immediately obvious that they
are even computable, because the definitions involve bijections between
multi-sets of cardinality continuum. However, a standard lemma, which is

28

2.7 1-Parameter Persistence

explained in the next chapter, reduces the computation of W∞ and Wq to
the problem of finding an optimal matching in a finite graph.

The following theorem was proven in [78].

Theorem 2.32. The interleaving distance between 1-parameter persistence modules
is equal to the bottleneck distance between their persistence diagrams.

In particular, the bottleneck distance is stable. Clearly, the Wasserstein
distance can exceed the bottleneck distance, hence Wq cannot be stable by
theorem 2.27. Nevertheless, the Wasserstein distance is stable in some weaker
sense, see [44]. Some simple properties of the Wq and W∞ are summarized
in the following lemma, the first 2 items of which hold for q ∈ [1, ∞].

Lemma 2.33. 1. W[q] is shift-invariant: if we replace each point (p1, p2) in
the diagrams X and Y with the point (p1 + a, p2 + a), the distance does not
change.

2. W[q] is homogeneous: for fixed λ > 0, if we replace each point (p1, p2) in the
diagrams X and Y with the point (λp1, λp2), the distance is multiplied by λ.

3. limq→∞ W[q](X, Y) = W∞(X, Y).

In particular, if we take two mono-filtrations and add the same constant
to the critical value of each simplex, the bottleneck distance between them
does not change. If we multiply each critical value with the same λ > 0, the
distance is also multiplied by λ.

Matching distance. Let M1,2 be two 2-parameter persistence modules.
For each line L with positive slope in R2, fix a point pL ∈ L. Let ~eL =
(cos γ, sin γ) be the unit vector that is parallel to L and has positive coor-
dinates. We identify L with R as follows: the Euclidean metric in plane
induces the metric on L, pL plays the role of 0, and the positive direction on
L is the direction of ~eL. The restrictions of M1,2 on L become 1-parameter
persistence modules. We denote them by restr(Mi).

Definition 2.34. The matching distance between M1 and M2 is

dM(M1, M2) := sup
L

w(L)W∞(restr(M1), restr(M2)),

where L ranges over all lines with positive slope, and w(L) := min(cos γ, sin γ).

29

2 Background

dM is well-defined: if we replace the point p with any other point of L, the
bottleneck distance will not change by Lemma 2.33. The matching distance
is stable and provides lower bound for the interleaving distance [77].

2.8 Reeb Graphs and Merge Trees

Let f be a continuous real-valued function on a triangulable space X.

Definition 2.35. We define two points x, y ∈ X to be equivalent, x ∼ y, if
f (x) = f (y) and both x and y belong to the same connected component of the
level set f−1(c) (here c = f (x) = f (y)). Function f factors through the canonical
projection π : X → X/ ∼: there exists a unique f̄ : X/ ∼→ R such that f =
f̄ ◦ π. The pair (X/ ∼, f̄) is called the Reeb graph of f .

We also refer to the quotient space X/ ∼ as the Reeb graph of f . It can be
proven that Reeb graphs are really graphs (i.e., 1-dimensional simplicial
complexes), if a) X is a smooth manifold and f is a so-called simple Morse
function or b) X is a compact polyhedron and f is piecewise-linear, see [53].
If we replace level sets with sublevel sets, we get the definition of a merge
tree:

Definition 2.36. We define two points x, y ∈ X to be equivalent, x ∼ y, if
f (x) = f (y) and both x and y belong to the same connected component of the
sublevel set f−1((−∞, c]) (here c = f (x) = f (y)). The quotient space X/ ∼
(or the pair (X/ ∼, f̄), where f̄ is obtained by factoring f through the canonical
projection) is called the merge tree of f .

We write R(f) for the Reeb graph of f and MT(f) for the merge tree of f .
Note that the Reeb graph depends only on the 2-skeleton of the domain,
hence it loses all information about homology in dimensions greater than
1. On the other hand, the Reeb graph and merge tree contain strictly more
information than the barcode in dimension 0: it is straightforward to read
off the persistence diagram from these descriptors, and two functions with
different merge trees can have equal 0-dimensional persistence diagrams.

30

2.8 Reeb Graphs and Merge Trees

Let us define the interleaving distance between merge trees, introduced by
Morozov, Beketayev and Weber. Following [83], we extend a merge tree with
an arc from the root to +∞. First, we define a shift map of the merge tree.
Let ε > 0 and define iε : MT[f]→MT[f] as

iε([(x, y)]) := connected component of f̄−1((x, y+ ε)) which contains [(x, y)]

Geometrically, iε is moving points in MT f by ε upwards (i.e., to the greater
values of f̄). Now let MT[f] and MT[g] be two merge trees, let ε be a positive
number, and let i2ε : MT[f] → MT[f] and j2ε : Tg → Tg corresponding 2ε-
shift maps.

Definition 2.37. Two continuous maps α : MT[f] → MT[g] and β : MT[g] →
MT[f] are ε-compatible, if

ĝ(α(x)) = f̂ (x) + ε, f̂ (β(x)) = ĝ(x) + ε (2.2)

β ◦ α = i2ε, α ◦ β = j2ε (2.3)

The interleaving distance dI(MT[f],MT[g]) is defined as

inf{ε : ∃ε-compatible α : MT[f]→MT[g], β : MT[g]→MT[f]} (2.4)

In [2], the authors prove that it is NP-hard to approximate the interleaving
distance between merge trees with a factor better than 3 (they use this
result as a lemma to prove a similar hardness result for Gromov-Hausdorff
distance). There are several other distances on the space of Reeb graphs. The
paper [5] introduced the functional distortion distance between Reeb graphs
and proved that it is equal to the interleaving distance when restricted to
merge trees. In [48], the authors use the language of (co)sheaf theory and
category theory to define Reeb graphs and the interleaving distance between
them. This generalized interleaving distance is equivalent to the functional
distortion distance (proved in [11]). The papers [38], [64] consider intrinsic
metrics on the Reeb graphs. Finally, the edit distance between Reeb graphs is
singled out by the property of being universal ([8]).

31

2 Background

2.9 Algorithmic Aspects

Barcodes (persistence diagrams). Computation of 1-parameter persis-
tence is very well studied. Suppose that we are given a filtered simplicial
complex Kt, Kt ⊆ Kt+1. We index its simplices {σi | i = 1 . . . N} in a way that
is compatible with the filtration and dimension: if i < j, then neither can the
simplex σi have dimension greater than dimension of σj, nor can σi appear in
the filtration earlier than σj (formally, min{t | σi ∈ Kt} 6 min{t | σj ∈ Kt}).
The boundary operator ∂ in this case can be written as a block matrix D,
and computation of the barcode boils down to a special form of Gaussian
elimination of this matrix, when columns are added from left to right only
(one exception is an output-sensitive algorithm proposed in [40], which
computes only bars of length exceeding some user-defined threshold). The
first algorithms for computing the barcode appeared in [55] by Edelsbrunner,
Letscher, and Zomorodian, (only for subcomplexes of S3) and in [107] by
Zomorodian and Carlsson. Several important algorithmic optimizations,
data structures, and parallel and distributed algorithms were suggested in
[41], [6], [47], [24]. In particular, computations can be significantly acceler-
ated by combining the clearing optimization with computation of persistent
cohomology instead of homology. Forman’s discrete Morse theory can also
be helpful in persistence computation.

While the theoretical worst-case complexity of most of these algorithms is
cubic (and this is tight, [82]), they perform quite well in practice. There is
also an algorithm that runs in matrix multiplication time O(Nω), [86], but it
seems to be more of theoretical interest. There are many implementations
available now. An incomplete list of them includes:

• JavaPlex;
• Perseus (based on discrete Morse theory approach);
• CHomP;
• PHAT (shared-memory parallel implementation);
• DIPHA (distributed computation of persistence);
• GUDHI;
• Dionysus;
• Eirene;

32

2.9 Algorithmic Aspects

• Ripser (the fastest software for computing the barcode using Vietoris-
Rips filtration).

Dimension 0 is a special case, where one only needs to track the connec-
tivity information. Not surprisingly, the algorithms here are based on the
UnionFind data structure, which is very efficient. Therefore, in dimension
0 it is possible to process extremely large data sets, producing diagrams
with millions of points.

Reeb graphs and merge trees. Computation of these topological sum-
maries is also an extensively developed area, which is explained by the
large role that they play in scientific visualization. For Reeb graphs, the
state of the art algorithm is the one by Parsa [87]. For merge trees, we only
mention the classical approach based on Kruskal’s minimum-spanning-tree
algorithm. Most of the algorithms in this area have the worst-case theoretical
complexity of O(n log n), where n is the total number of edges, faces, and
triangles. They also perform well in practice. As for implementations, we
can mention the Topology Tool Kit, ttk. On the other hand, computation of
distances between these descriptors is in statu nascendi. As far as I know, the
only paper that has some positive (fixed-parameter tractability) results in
this realm of NP-hardness is [61].

Multi-parameter persistence. Working with multi-parameter persistence
is much harder than in the 1-parameter case. The paper [34], which intro-
duced the notion, contained algorithms that are based on Gröbner basis.
The interleaving distance was proven to be NP-hard to approximate in [23]
(part of the reduction used in the proof in [23] appeared before in [22]). The
RIVET software [100] can process different kinds of input, e.g., computing
the function-Rips bi-filtration from a given data set. RIVET can visualize
2-parameter persistence modules, compute their minimal presentations, the
matching distance and Hilbert function.

33

2 Background

2.10 What is Omitted?

The main purpose of this chapter is to be a glossary for the following
chapters, not to be a survey of TDA. We did not even mention many topics
that are not necessary for definitions of W∞, DI , dM, and Wq. Perhaps,
the most glaring omission is the interpretation of persistence modules as
graded modules over polynomial rings and presentations of persistence
modules. The reason is that a proper explanation of these notions would
make the background section too large. On the other hand, the algorithm
given in Chapter 4 generalizes to presentations of persistence modules in a
straightforward way, and no algorithmic details are lost, if we only consider
bi-filtrations. A short and incomplete list of other omitted topics:

• Further examples of filtrations and multi-filtrations, such as α-complexes,
witness complexes, Delaunay filtrations ([54], Chap. III).
• We can also build spaces from cubes, not simplices. The cubical variant

of singular homology goes back to J.-P. Serre’s PhD thesis [96]. The
homology of cubical spaces was also studied in the applied context. In
particular, the ring structure of cubical cohomology is considered in
[71]. Persistent cubical homology can be computed by an algorithm
from [104]. See also the book [70]. Cellular homology applies to spaces
built from cubes, but here we have more relaxed conditions that the
maps attaching cubes to each other must satisfy. It may be necessary
to work with CW-complexes even if the original problem is phrased
for simplicial complexes [56].
• Persistence modules as quiver representations, Gabriel’s theorem

([94]).
• Zigzag persistence [35];
• Generalizations and variations of the stability theorem (see [9], [26],

[21] and the book [39]);
• Connections to Forman’s discrete Morse theory ([80]);
• Connections to (co)sheaf theory ([45], [46]);
• Mapper was introduced in [97] and studied in [49], [37], [50].
• Further applications of TDA, including applications of persistence in

pure mathematics (spectral geometry, symplectic geometry, see [90],
[88], [89]).
• Statistical aspects of TDA.

34

3 Efficient Computation of
Bottleneck and Wasserstein
Distances

The material of this chapter first appeared in the ALENEX paper [74],
and the extended version was published in the Journal of Experimental
Algorithms [72].

3.1 Introduction

We defined the bottleneck and Wasserstein distances in Chapter 2. As we
mentioned in Chapter 1, their computation is reduced to finding optimal
matchings in a graph whose vertices are points in plane, and the weight of
the edges is induced by some norm in R2. This metric structure leads to
asymptotically improved algorithms that take advantage of data structures
for near-neighbor search. This line of research dates back to Efrat et al. [60]
for the bottleneck distance and Vaidya [102] for the 1-Wasserstein case.
Rich literature has developed since then, mainly focusing on approximation
algorithms for Euclidean metrics in low and high dimensions; see [1] for a
recent summary.

Our contributions. Our contribution is two-fold. First, we provide an
experimental study illuminating the advantages of exploiting geometric
structure in assignment problems: we compare mature implementations of
bottleneck and Wasserstein distance computations for the geometric and

35

3 Efficient Computation of Bottleneck and Wasserstein Distances

purely combinatorial versions of the problem and demonstrate that exploit-
ing the spatial structure improves running time and space consumption
for the matching problem. Second, by focusing on the setup relevant in
topological data analysis, we provide the fastest implementation for com-
puting distances between persistence diagrams, significantly improving
the implementation in the Dionysus library [81]. The latter prototypical
implementation was the only publicly available software for the problem.
Given the importance of this problem in applications, our implementation
is therefore addressing a real need in the community. Our code is publicly
available.This chapter contains the following specific contributions:

• For bottleneck matchings, we follow the approach of Efrat et al. [60]:
they augment the classical combinatorial algorithm of Hopcroft and
Karp [68] with a geometric data structure to speed up the search for
vertices close to query points. We do not implement their asymptot-
ically optimal but complicated approach. We instead use a k-d tree
data structure [69] to prune the search for matching vertices in remote
areas (also proposed by the authors). As expected, this strategy outper-
forms the combinatorial version that linearly scans all vertices. Several
careful design choices are necessary to obtain this improvement; see
Section 3.3.
• For Wasserstein matchings, we implement a geometric variant of the

auction algorithm, an approximation algorithm by Bertsekas [15]. We
use weighted k-d trees, again with the goal to reduce the search range
when looking for the best match of a vertex. A data structure similar
to ours appears in [4]. Our implementation outperforms a version
of the auction algorithm that does not exploit geometry, which we
implement for comparison, both in terms of running time and space
consumption. Both our implementations of the auction algorithm
dramatically outperform Dionysus, albeit computing approximations
rather than the exact answers as the latter. Dionysus uses a variant of
the Hungarian algorithm [85]; see Section 3.4.
• We extend our auction implementation to the case of points with

multiplicities, or masses. While this problem can be trivially reduced
to the previous one by replacing a multiple point with a suitable
number of simple copies, it is more efficient to handle a point with
multiplicity as one entity, splitting it adaptively only when fractions

36

3.2 Background

are matched to different points. An extension of the auction algorithm
to this case has been described by Bertsekas and Castañon [18]. We
refer to it as auction with integer masses. Our implementation exploits
the geometry of the problem in a similar way as the auction for simple
points. Handling masses imposes a certain overhead that slows down
the computation if the multiplicities are low. However, our experiments
show that the advantage of the auction with integer masses becomes
apparent already when the average multiplicity is around 10, and the
performance gap between the two variants of the auction increases
when the average multiplicity increases; see Section 3.5.

3.2 Background

Assignment problem. Given a weighted bipartite graph G = (At B, E, w),
with |A| = n = |B| and a weight function w : E → R+, a matching is a
subset M ⊆ E such that every vertex of A and of B is incident to at most
one edge in M. These vertices are called matched. A matching is perfect if
every vertex is matched; equivalently, a perfect matching is a matching of
cardinality n; it can be expressed as a bijection η : A→ B.

For a perfect matching M, the bottleneck cost is defined as max{w(e) | e ∈
M}, the maximal weight of its edges. The q-Wasserstein cost is defined as
(∑e∈M w(e)q)1/q; for q = 1, this is simply the sum of the edge weights. A
perfect matching is optimal if its cost is minimal among all perfect matchings
of G. In this case, the bottleneck or q-Wasserstein cost of G is the cost of an
optimal matching. If a graph does not have a perfect matching, its cost is
infinite. For q > 1, the q-Wasserstein cost can be reduced to the case q = 1
with the following simple observation.

Proposition 3.1. The q-Wasserstein cost of G = (A t B, E, w) equals q-th root
of the 1-Wasserstein cost of G′ = (A t B, E, wq), where wq means that all edge
weights are raised to the q-th power.

We call a graph G = (A t B, E, w) geometric, if there exists a metric space
(X, d) and a map ϕ : A t B → X such that for any edge e = (a, b) ∈ E,
w(e) = d(ϕ(a), ϕ(b)). In this case, we generally blur the distinction between

37

3 Efficient Computation of Bottleneck and Wasserstein Distances

Figure 3.1: An example of G for two persistence diagrams with 2 off-diagonal points each.
Skew edges are dashed gray, edges connecting diagonal points are dotted black.

vertices and their embedding and just assume for simplicity that A t B ⊂ X.
The motivating example of this work is X = R2 and d(x, y) = ‖x− y‖∞.

Persistence distance as a matching problem. Recall that persistence dia-
grams consist of finitely many off-diagonal points with finite multiplicity
and all the diagonal points with infinite multiplicity. The task of comput-
ing W∗(X, Y) can be reduced to a bipartite graph matching problem; we
follow the notation and argument given in [54, Ch. VIII.4]. Let X0, Y0 de-
note the off-diagonal points of X and Y, respectively. If u = (x, y) is an
off-diagonal point, we denote its orthogonal projection on the diagonal
((x + y)/2, (x + y)/2) as u′, which is the closest point to u on the diagonal.
Let X′0 denote the set of all projections of X0, that is X′0 = {u′ | u ∈ X0}.
With Y′0 defined analogously as {v′ | v ∈ Y0}, we define U = X0 ∪ Y′0 and
V = Y0 ∪ X′0; both have the same number of points. We define the weighted
complete bipartite graph, G = (U tV, U ×V, c), whose weights are given
by the function

c(u, v) =

{
‖u− v‖∞ if u ∈ X0 or v ∈ Y0

0 otherwise
. (3.1)

Points from U and V are depicted as squares and circles, respectively, in
Figure 3.1 on the left; all the diagonal points are connected by edges of
weight 0 (plotted as dotted lines). The following result is stated as the
Reduction lemma in [54, Ch. VIII.4]:

38

3.2 Background

Lemma 3.2.

• W∞(X, Y) equals the bottleneck cost of G.
• Wq(X, Y) equals the q-Wasserstein cost of G. This is equal to the q-th root

of the 1-Wasserstein cost of Gq, which is the graph G with cost function cq,
raising all edge costs to the q-th power.

Note that G is almost geometric: distances between vertices are measured
using the L∞-metric, except that points on the diagonal can be matched for
free to each other if they are not matched with off-diagonal points. Can this
almost-geometric structure speed up computation? This question motivates
our work.

It is possible to simplify the above construction. We call an edge uv ∈ U×V
a skew edge if u ∈ X0, v ∈ X′0 and v is not the projection of u, or if v ∈ Y0,
u ∈ Y′0 and u is not the projection of v (skew edges are shown with dashed
lines in Figure 3.1).

Lemma 3.3. For both bottleneck and Wasserstein distance, there exists an optimal
matching in (Gq, cq) that does not contain any skew edge.

Proof. Fix an arbitrary matching M and define the matching M′ as follows:
For any uv ∈ M ∩ X0 ×Y0, add uv and u′v′ to M′. For any skew edge ab′ of
M with a the off-diagonal point (either in X0 or Y0), add aa′ to M′. Also add
to M′ all edges of M of the form aa′, where a is an off-diagonal point. It is
easy to see that M′ is a perfect matching without skew edges, and its cost is
not worse than the cost of M: indeed, the skew edge ab′ got replaced by aa′

which is not larger, and the vertices on the diagonal possibly got rearranged,
which has no effect on the cost.

Lemma 3.3 implies that removing all skew pairs does not affect the result of
the algorithm, saving roughly a factor of two in the size of the graph.1

We prove another equivalent characterization of the optimal cost which will
be useful in Section 3.5: The previous lemma showed that, conceptually,
increasing the weight of each skew edge to ∞ does not affect the cost of an
optimal matching. We show now that even decreasing the weight of a skew

1Dionysus uses the same simplification.

39

3 Efficient Computation of Bottleneck and Wasserstein Distances

edge ab′ to the weight of aa′ has no effect on the optimal cost. Formally, let
us define G̃ = (U tV, U ×V, c̃) with a new weight function c̃ as follows:

c̃(u, v) =

‖u− v‖∞ if u ∈ X0 and v ∈ Y0

‖u− u′‖∞ if u ∈ X0 and v ∈ X′0
‖v− v′‖∞ if u ∈ Y′0 and v ∈ Y0

0 otherwise

. (3.2)

Lemma 3.4. For both bottleneck and Wasserstein distance, there exists an optimal
matching in G̃ that does not contain any skew edge.

Proof. The proof of lemma 3.3 carries over word by word.

Lemma 3.5. The weighted graphs G and G̃ have the same bottleneck and Wasser-
stein cost.

Proof. Let C be the cost for G, and C̃ be the cost for G̃ with respect to bottle-
neck or Wasserstein distance. Since c̃ 6 c edge-wise, C̃ 6 C is immediate.
For the opposite direction, fix a matching M̃ that realizes C̃ and has no skew
edge (such a matching exists by Lemma 3.4). By the absence of skew edges,
the cost M̃ is the same if the cost function c̃ is replaced by c. This implies
C 6 C̃.

K-d trees. K-d trees [69] are a classical data structure for near-neighbor
search in Euclidean spaces. The input point set is split into two halves at the
median value of the first coordinates. The process is repeated recursively
on the two halves, cycling through the coordinates used for splitting. Each
node of the resulting tree corresponds to a bounding box of the points in its
subtree. The boxes at any given level are balanced to have roughly the same
number of points. Given a query point q, one can find its nearest neighbor
(or all neighbors within a given radius) by traversing the tree. A subtree
can be eliminated from the search if the bounding box of its root node
lies farther from the query point than the current candidate for the nearest
neighbor (or the query radius). Although the worst case query performance
is O(

√
n) in the planar case, k-d trees perform well in practice and are

easy to implement. In Section 3.3 we use the ANN [84] implementation

40

3.2 Background

(a) Example of a normal diagram. (b) Example of a real diagram.

Figure 3.2: Examples of persistence diagrams.

of k-d trees, changing it to support the deletion of points. For Section 3.4
we implemented our own version of k-d trees to support the search for a
nearest neighbor with weights.

Experimental setup. All experiments in this chapter were performed on a
server running Debian wheezy, with 32 Intel Xeon cores clocked at 2.7GHz,
with 264 GB of RAM. Only one core was used per instance in all our
experiments.

We experimentally compare the performance both on artificially generated
diagrams as well as on realistic diagrams obtained from point cloud data.
For brevity, we restrict the presentation to two classes of instances. In the
first class, we generate pairs of diagrams, each consisting of n points. The
points are of the form (a− |b|/2, a + |b|/2) where a is drawn uniformly in
an interval [0, s], and b is chosen from a normal distribution N(0, s), with
s = 100. In this way, the persistence of a point, |b|, is normally distributed,
so the point set tends to concentrate near the diagonal. This matches the
behaviour of persistence diagrams of realistic data sets, where points with
high persistence are sparse, while the noise present in the data generates the
majority of the points, with small persistence. For every set of parameters,
we generate 10 independent pairs of diagrams. We refer to this class of
experiments as normal instances (Figure 3.2(a)). To get a diagram of the
second class, we sample a point set P of n points uniformly at random from
either a 4-, or a 9-dimensional unit sphere. The 1-dimensional persistence

41

3 Efficient Computation of Bottleneck and Wasserstein Distances

diagram of the Vietoris–Rips filtration of P serves as our input. We use the
Dipha library2 for the generation of these instances. Note that persistence
diagrams generated in this way have different numbers of points. We refer
to this class of experiments as real instances (Figure 3.2(b)). For each set of
parameters (sphere dimension and number of points sampled), we have
generated 6 test instances and computed pairwise distances between all
(6

2) = 15 pairs.

Our plots show the average running times and the standard deviation as
error bars. For the real class, the x-axis is labelled with the number of points
sampled from the sphere, not with the size of the diagram. The size of the
persistence diagrams, however, depends practically linearly on the number
of sample points, with a constant factor that grows with dimension: the
largest instance for dimension 9 is a diagram with 5762 points, while for
dimension 4 the largest diagram is of size 1679.

Our experiments cover many other cases. We tested various choices of s, the
scaling parameter in the normal class, and of the sphere dimension in the real
class. We also tried different ways of generating diagrams, for instance, by
choosing n points uniformly at random in the square [0, s]× [0, s], above the
diagonal. In all these cases, we encountered the same qualitative difference
between the tested algorithms as for the two representative cases discussed
in this chapter.

3.3 Bottleneck matchings

Our approach follows closely the work of Efrat et al. [60], based on the
following simple observation. Let G[r] be the subgraph of G that contains
the edges with weight at most r. The bottleneck distance of G is the minimal
value r such that G[r] contains a perfect matching. Since the bottleneck cost
for G must be equal to the weight of one of the edges, we can find it exactly
by combining a test for a perfect matching with a binary search on the edge
weights.

2https://github.com/DIPHA/dipha

42

https://github.com/DIPHA/dipha

3.3 Bottleneck matchings

The algorithm by Hopcroft and Karp. Efrat et al. modify the algorithm by
Hopcroft and Karp [68] to find a maximum matching. We briefly summarize
the Hopcroft–Karp algorithm; [60] provides an extended review. For a given
graph G[r], the algorithm computes a maximum matching, i.e., a matching
of maximal cardinality. G[r], with 2n vertices, has a perfect matching if and
only if its maximum matching has n edges.

The algorithm maintains an initially empty matching M and looks for an
augmenting path, i.e., a path in G[r] that alternates between edges inside and
outside of M, with the first and the last edge not in M. Switching the state
of all edges in an augmenting path (inserting or removing them from M)
augments the matching, increasing its size by one.

The algorithm detects several vertex-disjoint augmenting paths at once.
It computes a layer subgraph of G[r], from which it reads off the vertex-
disjoint augmenting paths. Both the construction of the layer subgraph and
the search for augmenting paths are realized through a graph traversal
in G[r] in O(m) time, where m is the number of edges. Having identified
augmenting paths, the algorithm augments the matching and starts over,
repeating the search until all vertices are matched or no augmenting path
can be found. As shown in [68], the algorithm terminates after O(

√
n)

rounds, yielding a running time of O(m
√

n) = O(n2.5).

Geometry helps. The crucial observation of Efrat et al. is that for a ge-
ometric graph G[r], the layer subgraph does not have to be constructed
explicitly. Instead one may use a near-neighbor search data structure, de-
noted by Dr(S), which stores a point set S and a radius r. It must answer
queries of the form: given a point q ∈ R2, return a point s ∈ S such that
d(q, s) 6 r. Dr(S) must support deletions of points in S. As the authors
show, if T(|S|) is an upper bound for the cost of one operation in Dr(S),
the algorithm by Hopcroft and Karp runs in O(n1.5T(n)) time for a graph
with 2n vertices. For the planar case, Efrat et al. show that one can con-
struct such a data structure (for any Lp-metric) in O(n log n) preprocessing
time, with T(n) = O(log n) time per operation. Thus, the execution of the
Hopcroft–Karp algorithm costs only O(n1.5 log n).

Naively sorting the edge weights and binary searching for the value of r

43

3 Efficient Computation of Bottleneck and Wasserstein Distances

takes O(n2 log n) time. But this running time would dominate the improved
Hopcroft–Karp algorithm. In order to improve the complexity of the edge
search, the authors use an approach, attributed to Chew and Kedem [42],
for efficient k-th distance selection for a bi-chromatic point set under the
L∞-distance; see [60, Sec.6.2.2] for details.

With this technique, the computation of a maximum matching dominates
the cost of finding the k-th largest distance, giving the runtime complexity
of O(n1.5 log2 n) for computing the bottleneck matching. Using further
optimizations [60, Sec.5.3], they obtain a running time of O(n1.5 log n) for
geometric graphs in R2 with the L∞-metric.

It is not hard to see that the analysis carries over to the case of persistence
diagrams (also mentioned in [54, p.196]). Let G1 = (U tV, U ×V) be the
graph defined in Lemma 3.2. In the algorithm, Dr(S) is initialized with
the points in V, which are subsequently removed from it. We additionally
maintain a set S′ of diagonal points contained in S. When the algorithm
queries a near neighbor of a diagonal point of U, we return one of the
diagonal points from S′ in constant time, if S′ is not empty. The overhead of
maintaining S′ is negligible. We summarize:

Theorem 3.6. The bottleneck distance of two persistence diagrams can be computed
in O(n1.5 log n).

Our approach. Our implementation follows the basic structure of Efrat
et al., reducing the construction of layered subgraphs to operations on
a near-neighbor data-structure Dr(S). But instead of the rather involved
data structure proposed by the authors, we use a simpler alternative: we
construct a k-d tree for S. When searching for a point at most r away from a
query point q, we traverse the k-d tree, pruning from the search the subtrees
whose enclosing box is further away from the query than the current best
candidate. When a point is removed from S, we mark it as removed in the
k-d tree; in particular, we do not rebalance the tree after a removal. We also
keep track of how many points remain in each subtree, so that we can prune
empty subtrees from the subsequent searches. The running time per search
query can be bounded by O(

√
n) per query, with n the number of points

44

3.3 Bottleneck matchings

Figure 3.3: Illustration of the exact computation step: the exact bottleneck distance must be
realized by a point in B (circles) in an annulus around A (crosses). The width of
the annulus is determined by the approximation quality. In this example, there
are 6 candidate pairs.

originally stored in the search tree. We remark that using range trees [14],
the worst-case complexity could be further reduced to O(log n).

Initial tests showed that the naive approach of pre-computing and sorting
all distances for the binary search dominates the running time in practice.
Instead of implementing the asymptotically fast but complicated approach
of Efrat et al., we compute a δ-approximation of the bottleneck distance,
which we can then post-process to compute the exact answer. Let dmax
denote the maximal L∞-distance between a point in U and a point in V in
G1. First, we compute, in linear time, a 3-approximation of dmax as follows.
We pick an arbitrary point in U, find its farthest point v0 ∈ V, and find
a point u0 ∈ U farthest from v0. Then, ‖u0 − v0‖∞ 6 dmax 6 3‖u0 − v0‖∞
(from the triangle inequality). Setting t = 3‖u0 − v0‖∞, the exact bottleneck
distance o must be in [0, t] and we perform a binary search on [0, t] until
we find an interval (a, b] that satisfies (b− a) < δ · a. We return b as the
approximation. It is easy to see that b ∈ [o, (1 + δ)o).

At each iteration of the binary search, we reuse the maximum matching
constructed before (if the true distance is below the midpoint of the current
interval (a, b], we remove edges whose weight is greater than (a + b)/2,
otherwise the whole matching can be kept).

To get the exact answer, we find pairs in U × V whose distance is in the
approximation interval, (a, b]. For such a pair (u, v), v lies in an L∞-annulus
around u with inner radius a and outer radius b. So we find for every u ∈ U
the points of V in the corresponding annulus and take the union of all such

45

3 Efficient Computation of Bottleneck and Wasserstein Distances

pairs as the candidate set. In the example in Figure 3.3, points in U are
drawn as crosses, points in V as circles, and there are 6 candidate pairs.

We compute the candidate pairs with similar techniques as used for range
trees [14]. Specifically, we identify all pairs (u, v) whose x-coordinate dif-
ference lies in (a, b]. We can compute the set Cx of such pairs in O(n log n +
|Cx|) time by sorting U and V by x-coordinates. For each pair (u, v) in Cx,
we check in constant time whether ‖u− v‖∞ ∈ (a, b] and remove the pair
otherwise. We then repeat the same procedure using the y-coordinates. To
compute the exact bottleneck distance, we perform binary search on the
vector of candidate distances.

Let c denote the number of candidate pairs. The complexity of our procedure
is not output-sensitive in c because |Cx|+ |Cy| can be larger than c — so too
many pairs might be considered. Nevertheless, we expect that when using
a sufficiently good initial approximation, both |Cx|+ |Cy| and c are small,
so our method will be fast in practice.

Experiments. We compare the geometric and non-geometric bottleneck
matching algorithms. We set δ = 0.01 and compute the approximate bottle-
neck distance to the relative precision of δ, using k-d trees for the geometric
version and constructing the layered graph combinatorially in the non-
geometric version. Figure 3.4 shows the results for normal and real instances.
We observe that the geometric version scales significantly better, and runs
faster by a factor of roughly 10 for the largest displayed normal instance
with 25000 points per diagram. We remark that the memory consumption
of the geometric and non-geometric versions both scale linearly, and the
geometric version is larger by a factor of roughly 4 throughout. For 25000
points, about 60MB of memory is required.

We used linear regression to fit curves of the form cnα to the plots of
Figure 3.4 (left). For the non-geometric version, the best fit appeared for
α = 2.3, roughly matching the asymptotic bound of Hopcroft–Karp. For the
geometric version, we get the best fit for α = 1.4; this shows that despite
the pessimistic worst-case complexity, the algorithm tends to follow the
improved geometric bound on practical instances.

46

3.3 Bottleneck matchings

0.1 0.5 1 1.5 2 2.5

·104

0

50

100

150

points in a diagram

Se
co

nd
s

non-geometric
geometric

500 7501,000 1,500 2,000 2,500

0

2

4

points on a 9-sphere

Se
co

nd
s

non-geometric
geometric

Figure 3.4: Running times of the bottleneck distance computation on normal data (left) and
real data (right) for varying number of points.

The above experiment does not include the post-processing step of comput-
ing the exact bottleneck distance. We test the geometric version above that
yields a 1% approximation against the variant that also computes the exact
distance from the initial approximation, as explained earlier in this section.
Our experiments show that the running time of the post-processing step
is about half of the time needed to get the approximation. Although there
is some variance in the ratio, it appears that the post-processing does not
worsen the performance by more than a factor of two.

Figure 3.5 compares our exact (geometric) bottleneck algorithm with Diony-
sus, the only publicly available implementation for computing bottleneck
distance between persistence diagrams. Dionysus simply sorts the edge
distances in increasing order and performs a binary search, building the
graphs G[r] and calling the Edmonds matching algorithm [59] from the
Boost library to check for a perfect matching in G[r]. Already for diagrams
of 2800 points, our speed-up exceeds a factor of 400.

47

3 Efficient Computation of Bottleneck and Wasserstein Distances

1,000 1,500 2,000 2,800
10−1

100

101

102

103

points in a diagram

Se
co

nd
s

Dionysus
geometric

500 1,000 1,500 2,000 2,500
10−1

100

101

102

103

points on a 9-sphere

Se
co

nd
s

Dionysus
geometric

Figure 3.5: Comparison of our exact geometric bottleneck algorithm with Dionysus for
normal (left) and real (right) input.

3.4 Wasserstein matchings

We now fix q > 1 and describe an algorithm for computing the q-Wasserstein
cost of a weighted graph (U tV, E, w). Recall from Proposition 3.1 that we
can restrict to the 1-Wasserstein case by switching to the cost function wq.
Moreover, we assume that U = {u1, . . . , un} and V = {v1, . . . , vn} are finite
sets, and we identify the elements with their indices.

Auction algorithm. The auction algorithm of Bertsekas [15] is an asymmetric
approach to find a perfect matching in a weighted graph that maximizes
the sum of its edge weights. One half of the bipartite graph is treated as
“bidders”, the second half as “objects.” Initially, each object j is assigned zero
price, pj = 0, and each bidder i extracts a certain benefit, bij, from object j.
Since we are interested in the minimum cost matching, we use the negation
of the edge weight as the bidder–object benefits, that is, bij = −wq(i, j). If the
edge (i, j) is not in the graph, bij = −∞. The auction algorithm maintains a
(partial) matching M, which is empty initially. When M becomes perfect, the
algorithm stops. During the execution of the algorithm, matched bidders in
M are called assigned (to an object), and unmatched bidders are unassigned.

48

3.4 Wasserstein matchings

The auction proceeds iteratively. In each iteration, one unassigned bidder i
chooses an object j with the maximum value, defined as the benefit minus
the current price of the object, vij = (bij − pj). Object j is assigned to the
bidder; if it was assigned before, the previous owner becomes unassigned.
Let ∆pij denote the difference of vij and the value of the second best object
for bidder i; ∆pij can be zero. The price of object j increases by ∆pij + ε,
where ε is a small constant needed to avoid infinite loops in cases where
two bidders extract the same value from two objects. Without ε, the two
could keep stealing the same object from each other without increasing its
price.

Our variant of the algorithm is called Gauss–Seidel auction: an iteration
consists of only one bid, which is always satisfied. An alternative, called
the Jacobi auction, proceeds by letting each unassigned bidder place a bid in
every iteration. If several bidders want the same object, it is assigned to the
bidder who offers the highest price increment, ∆pij + ε. The Jacobi auction,
which was used in the ALENEX paper [72], has a drawback if many objects
provide the same value to many bidders. In that case, it may happen that
all of these bidders bid for the same object in one iteration, and all but
one of them remain unassigned. Since a Jacobi iteration is more expensive
than a Gauss–Seidel iteration, this may result in worse performance. Indeed,
our experiments show that switching to Gauss–Seidel auction improves the
runtime by an order of magnitude.

How do we choose ε? Small values give a better approximation of the exact
answer; on the other hand, the algorithm converges faster for large values
of ε. Bertsekas suggests ε-scaling to overcome this problem: running several
rounds of the auction algorithm with decreasing values of ε, using prices
from the previous round, but an empty matching, as an initialization for the
next round. Following the recommendation of Bertsekas and Castañon [17],
we initialize ε with the maximum edge cost divided by 4 and divide ε by 5
when starting a new round.

Iterating this procedure long enough would eventually yield the exact
Wasserstein distance [15]; however, the number of rounds of ε-scaling would
in general be too high for many practical problems. Instead, we use a
termination condition that guarantees a relative approximation of the exact
value. We fix some approximation parameter δ ∈ (0, 1). After finishing a

49

3 Efficient Computation of Bottleneck and Wasserstein Distances

round of the auction algorithm for q-Wasserstein matching for some value
ε > 0, let d := dε be the q-th root of the cost of the obtained matching. We
stop if d satisfies

dq 6 (1 + δ)q(dq − nε), (3.3)

and return d as the result of the algorithm. We summarize the auction in
Algorithm 1.

Lemma 3.7. The return value d of the algorithm satisfies

d ∈ [o, (1 + δ)o),

where o denotes the exact q-Wasserstein distance.

Proof. Because we raise all edge costs to the q-th power, the matching
minimizing the sum of the edge costs has a cost of oq. Let dq be the cost
of the matching computed by the auction algorithm, after the last round
of ε-scaling, for a fixed ε. By the properties of the auction algorithm ([16],
Proposition 1), it holds (after every round) that

oq 6 dq 6 oq + nε.

Taking the q-th root yields the first inequality immediately. For the second
inequality, note that

(1 + δ)qoq > (1 + δ)q(dq − nε) > dq,

where the last inequality follows from the termination condition of the
algorithm. Taking the q-th root on both sides yields the result.

Bidding. The computational crux of the algorithm is for a bidder to deter-
mine the object of maximum value and the price increase. The brute-force
approach is for each bidder to do an exhaustive search over all objects.
Doing so requires linear running time per iteration. But let us consider
what the search actually entails. Bidder i must find the two objects with
highest and second-highest vij values. Recall vij = bij − pj = −wq(i, j)− pj,
and maximizing this quantity for a fixed i is equivalent to minimizing
wq(i, j) + pj.

50

3.4 Wasserstein matchings

Algorithm 1 Auction algorithm

function Auction(X, Y, q, δ)
. Input: two persistence diagrams X, Y with |X|, |Y| 6 n, q > 1, δ > 0
(maximal relative error)
. Output: δ-approximate q-Wasserstein distance Wq(X, Y)

Initialize d← 0 and ε← 5
4 · (max. edge length)

while dq > (1 + δ)q(dq − nε) do
ε← ε/5
Let M be an empty matching
while there exists some unassigned bidder i do

Find the best object j with value vij and the second best object
k with value vik for i

Assign j to i in M and increase the price of j by (vij − vik) + ε

d← q-th root of the cost of the (perfect) matching M
return d

The first way to quickly find these objects uses lazy heaps. Each bidder
keeps all the objects in a heap, ordered by their value. We also maintain
a list of all the price changes (for any object), as well as a record for each
bidder of the last time its heap was updated. Before making a choice, a
bidder updates the values of all the objects in its heap that changed prices
since the last time the heap was updated. The bidder then selects the two
objects with the maximum value. We note that this approach uses quadratic
space, since each bidder keeps a record of each object.

The second way to accelerate the search for the best object uses geometry
and requires only linear space. Initially, when all the prices are zero, we can
find the two best objects by performing the proximity search in a k-d tree.
But we need to augment the k-d tree to take increasing prices into account.
We do so by storing the price of each point as its weight in the k-d tree.
At each internal node of the tree we record the minimum weight of any
node in its subtree. When searching, we prune subtrees if the q-th power of
the distance from the query point to the box containing all of the subtree’s
points, plus the minimum weight in the subtree, exceeds the current second
best candidate.

Once a bidder selects the best object, it increases its price. We adjust the

51

3 Efficient Computation of Bottleneck and Wasserstein Distances

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

·104

103

104

105

106

107

points in a diagram

K
ilo

by
te

s

non-geom.
geom.

Figure 3.6: Comparison of memory consumption of geometric and non-geometric versions
of auction algorithm on normal instances.

subtree weights in the k-d tree by increasing the chosen object’s weight and
updating the weights on the path to the root. If the minimum weight does
not change at some node on the path, we interrupt the traversal.

The case of persistence diagrams requires special care. We can distinguish
between diagonal and off-diagonal bidders and objects. Diagonal bidders
should bid for only one off-diagonal object, according to Lemma 3.3. Since
the distance between diagonal points is 0, the value of a diagonal object j
for a diagonal bidder i is just the opposite of its price, vi,j = −pj, and we
keep all diagonal objects in a heap ordered by the price. When a diagonal
bidder needs to find the best two objects, it selects the top two elements of
the heap and compares them with the only off-diagonal object to which it
can be assigned.

On the other hand, off-diagonal bidders can bid for every off-diagonal object
and only for one diagonal object (its projection). We use one global k-d tree
to get the best two off-diagonal objects and then compare their values for
the bidder with the value of bidder’s projection, so only off-diagonal objects
are stored in the k-d tree.

52

3.4 Wasserstein matchings

0.2 0.4 0.6 0.8 1

·104

100

101

102

points in a diagram

Se
co

nd
s

non-geometric
geometric

500 1,000 1,500 2,000

10−1

100

101

102

103

points on a 4-sphere

Se
co

nd
s

Dionysus
non-geom.

geom.

Figure 3.7: Comparison of non-geometric and geometric variants of the auction algorithm
on normal (left) and real (right) input, also with Dionysus on the real input.

Experiments. Figure 3.7 illustrates the running times of the auction algo-
rithm on the normal data, using lazy heaps and k-d trees. In both cases, we
compute a relative 0.01-approximation. The advantage of using geometry is
evident: the algorithm is faster by roughly a factor of 4 for diagrams with
1000 points, and the factor becomes close to 20 for diagrams with 10000
points. We used linear regression to empirically estimate the complexity,
and the geometric algorithm runs in O(n1.6), while for the non-geometric
algorithm the estimated complexity is super-quadratic, O(n2.3). The non-
geometric version only shows competitive running times because of the
described optimization with lazy heaps. This results in a severe increase in
memory consumption, as displayed in Figure 3.6.

Again, we compare our geometric approach with Dionysus, which uses
John Weaver’s implementation3 of the Hungarian algorithm [85]. Figure 3.7
(right) shows the results for real instances. The speed-up of our approach
increases from a factor of 50 for small instances to a factor of about 400 for
larger instances. For the normal data sets, the speed-up already exceeds a
factor of 1000 for diagrams of 1000 points; we therefore omit a plot.

We emphasize that our test is slightly unfair, as it compares the exact

3http://saebyn.info/2007/05/22/munkres-code-v2/

53

http://saebyn.info/2007/05/22/munkres-code-v2/

3 Efficient Computation of Bottleneck and Wasserstein Distances

algorithm from Dionysus with the 0.01-approximation provided by our
implementation. While such an approximation suffices for many applica-
tions in topological data analysis, the question remains how much overhead
would be caused by an exact version of the auction algorithm. A naive
approach to get the exact result is to rescale the input to integer coordinates
and to choose ε such that the approximation error is smaller than 1. We
plan to investigate different possibilities to compute the exact distance more
efficiently.

3.5 Wasserstein matchings for repeated points

For a weighted, complete, bipartite graph G = (U tV, U ×V, w), we call
two vertices u1, u2 ∈ U identical if for all v ∈ V, w(u1, v) = w(u2, v). A
pair of identical vertices in V is defined symmetrically. If G is a geometric
graph, two points with coinciding locations are identical. In the context
of persistence diagrams, this situation is common in applications, where
the range of possible scales on which features appear and disappear is
often discretized. The discretization places all points of the persistence
diagram on a finite grid. For a fixed discretization of a fixed range, more
and more identical points appear as the data size grows. This raises the
question whether diagrams with many identical points can be handled more
efficiently.

Auction with integer masses. We use a variant of the auction algorithm [18],
which we explain next. The input consists of two sets U and V of multi-points,
each given by its coordinates and integer multiplicity m > 1; a multi-point
represents m identical points at the given location. For brevity, we refer to
the multiplicity as mass. The total mass of both sets is the same. In analogy
to the auction algorithm from Section 3.4, we refer to the elements of the re-
spective sets as multi-bidders and multi-objects. The elements of a multi-object
are not, in general, assigned to the same multi-bidder; their prices can also
differ. However, if two elements of a multi-object are assigned to one multi-
bidder, the algorithm guarantees that their prices are equal. The algorithm
decomposes a multi-object into slices, where each slice represents a fraction

54

3.5 Wasserstein matchings for repeated points

3 1 3

Figure 3.8: Correspondence between assignments and matchings. On the left-hand side
there are two multi-bidders, each of mass 4, and 4 slices with masses 3, 3, 1, 1.
A corresponding perfect matching is on the right-hand side.

of the multi-object that is currently not distinguished by the algorithm.
Formally, a slice is a four-tuple (j, mi,j, pi,j, i) identifying the multi-object j
it belongs to, the mass of the slice mi,j, its price pi,j, and the multi-bidder i
that it is currently assigned. The decomposition of multi-objects into slices
defines an assignment, which can be interpreted as a matching M in the
original graph (see Figure 3.8): A slice (j, mi,j, pi,j, i) corresponds to mi,j
edges in M from mi,j elements of the multi-bidder i to mi,j elements of the
multi-object j (hereby interpreting multi-bidders and multi-objects as sets
of identical bidders/objects). Unassigned slices correspond to unmatched
vertices. We call an assignment perfect if the induced matching is perfect,
and the cost of the assignment is the cost of the corresponding matching.

The auction with integer masses is a procedure converging to an assignment
with minimal cost. It uses the same high-level structure as the auction
described in Section 3.4, which we will refer to as the standard auction. It
employs ε-scaling with the same choices of parameters. One round of ε-
scaling maintains an assignment and runs until the assignment is perfect,
that is, all multi-bidders are fully assigned to multi-objects. Every round
proceeds in iterations. In each iteration, one multi-bidder with unassigned
mass is selected at random. It acquires enough slices (possibly taking them
away from other multi-bidders) to assign all its missing mass and increases
the prices of these slices.

Specifically, an iteration proceeds as follows. We fix a multi-bidder with
some unassigned mass u > 1, and let s1, . . . , st be the slices assigned to
it. Conceptually, the algorithm takes all possible slices except for s1, . . . , st
and sorts them by their value to the multi-bidder in decreasing order. We
denote the sorted slices by st+1, . . . , sN; let vi denote the value of si to the
multi-bidder.

55

3 Efficient Computation of Bottleneck and Wasserstein Distances

The multi-bidder takes the first k slices st+1, . . . , st+k such that their total
mass m is at least u. If m > u, we split the “leftover” slice from st+k whose
mass is m− u and whose price and owner remain unchanged; we denote
this newly created slice as s̃t+k. Now, the total mass of the slices st+1, . . . , st+k
is exactly u, and we assign them to the multi-bidder.

Next, we increase the prices of all t + k slices assigned to the multi-bidder.
Let sl with l > t + k be a slice determined as follows: if the slices s1, . . . , st+k
belong to at least two different multi-objects, sl is the slice containing the
(m + 1)-st unit of mass, that is, sl is set to st+k+1 if we did not split the
leftover slice, and to s̃t+k otherwise. If all the t + k slices are of a single
multi-object, then sl is defined to be the first slice among st+k+1, . . . , sN that
belongs to a different multi-object. Let vl be the value of sl to the multi-
bidder. We increase the prices of the slices {si}16i6t+k by vi − vl + ε to make
them as valuable to the multi-bidder as the slice sl, up to ε.

The original paper that presents this approach [18] describes the Jacobi
version of the algorithm, i.e., all bidders with unassigned mass submit bids
in one iteration, and the mass goes to the bidder who offered the highest bid.
The above description is the Gauss–Seidel variant of the same algorithm,
and it is straightforward to verify that the same proof of correctness works
for it, too. From the discussion in [18], it follows that one can use the same
formula as for the standard auction to estimate the relative error of the
matching obtained after each round of ε-scaling. Therefore, we can use the
same termination condition as in (3.3) and the proof of Lemma 3.7 carries
over. We refer to [18] for further details.

Diagonal points. Let X0 and Y0 be the of the off-diagonal mult-points
of two persistence diagrams. Recall that for the computation of the q-
Wasserstein distance, we introduce the projection sets Y′0 and X′0 (also as
a set of multi-points with masses inherited from their pre-images) and set
X := X0 ∪ Y′0 and Y := Y0 ∪ X′0, which are sets of multi-points with equal
total mass. We can run the auction with integer masses, using the cost
function cq, with c as in (3.1), and return the q-th root of the obtained cost as
our result. However, we get a major improvement from using the modified
cost function c̃, defined in (3.2). The modified function decreases the costs

56

3.5 Wasserstein matchings for repeated points

of all skew edges; accordingly, c̃q treats all points in X′0 as identical and all
points in Y′0 as identical.

In terms of the auction with integer masses, this means that we only
need one additional multi-bidder (with large mass) to represent all projec-
tions of multi-objects to the diagonal, and vice versa. Specifically, writing
X0 = {x1, . . . , xk} for the off-diagonal multi-bidders, let mX denote their
total mass. Let Y0 = {y1, . . . , y`} denote the off-diagonal multi-objects with
total mass mY. We introduce one additional multi-bidder Y′0 := {xk+1} (rep-
resenting all projections of multi-objects), with mass mY, and one additional
multi-object X′0 := {y`+1} with mass mX. The bidder–object benefits are set
up according to (3.2) (recall that x′i denotes the projection of xi onto the
diagonal):

bi,j =

−‖xi − yj‖

q
∞, i 6 k and j 6 `

−‖xi − x′i‖
q
∞, i 6 k and j = `+ 1

−‖yj − y′j‖
q
∞, i = k + 1 and j 6 `

0, i = k + 1 and j = `+ 1

Implementation. We implemented a geometric version of the auction with
integer masses, where the best slices of the off-diagonal multi-objects are
determined using one global k-d tree, similar to Section 3.4. Here, each
leaf of the k-d tree represents a multi-object, and its weight corresponds
to the price of its cheapest slice. For a fixed off-diagonal multi-bidder, we
can compute an upper bound on the value of all multi-objects stored in
a subtree of the k-d tree. During a search, we maintain a candidate set of
slices whose total mass exceeds the unassigned mass of the multi-bidder,
and we can prune a subtree if that upper bound is below the value of the
worst candidate. The weights in the k-d tree are updated as in Section 3.4.
The additional information required to compute the price increases are
gathered by similar techniques; we omit the details. We did not implement
a non-geometric version using lazy heaps because it would suffer from the
same quadratic space complexity as in the standard auction.

Again we need to deal with the diagonal multi-object and multi-bidder
separately. We maintain a heap with the slices of the diagonal multi-object

57

3 Efficient Computation of Bottleneck and Wasserstein Distances

sorted by the price and a heap with the slices of all multi-objects (including
the diagonal one) sorted by their value for the diagonal bidder. The diagonal
bidder finds the best slices by simply traversing the latter heap. An off-
diagonal bidder first uses the k-d tree to find the best slices of off-diagonal
objects. Then it starts traversing the heap with slices of the diagonal object,
replacing the off-diagonal slices with the diagonal ones as long as the
diagonal slices offer better values. When the value of the next diagonal
slice in the heap is below the minimal value of the currently accumulated
slices, we stop traversing the heap with diagonal slices. When slice prices
are increased, we immediately update the heaps.

Experiments. As input, we turn the aforementioned instances of normal
type into diagrams with integer masses. For each point of the original dia-
gram, we assign mass m, drawn uniformly from the range [dk/2e, b3k/2c],
so that the average mass of a point is k. In our experiments, we compare the
standard auction and the auction with integer masses for k = 1, 10, 50, 100.

We generated normal instances with 1,000 to 10,000 points, in increments
of 1, 000, with 10 instances per size. Figure 3.9 shows the average running
times. There is an overhead for mass 1 (a factor of roughly 4.5 in the figure).
This ratio is not constant: the overhead becomes larger when the number
of points grows. We also observe that it depends on the parameters of
the distribution from which the points were drawn. For average mass 10,
the auction with masses is comparable to the standard auction. For higher
masses, 50 and 100, the advantage of the former is evident.

There is no clear dependence between the running time and the average
mass. We took 4 instances with 10000 points each and tried larger average
masses (with the same [dk/2e, b3k/2c] distribution). Figure 3.10 illustrates
the result. We can see that the running time does not increase much when
the average mass increases, and may even decrease. That seems to depend
very much on the particular instance and the distribution of masses inside
it.

The memory consumption of auction with integer masses usually scales
linearly with the number of points (for fixed average mass). In principle, the
memory size can grow proportional to the total mass of the point sets when

58

3.6 Parallelization of Wasserstein distance computation

all slices shrink to size one, but such intensive slicing did not appear in our
examples.

3.6 Parallelization of Wasserstein distance
computation

One of the reasons for choosing the auction algorithm was that it is easy to
parallelize. We had a very concrete case in mind: computing Wasserstein
distance (for q = 2 or q = 3) between diagrams with approximately 106

points in a massively parallel setting (using 104 − −105 cores). Shared
memory parallelism is not so interesting for this example, because the
number of cores on a typical machine is rarely larger than 16, in most cases
being 8. Even if we had perfect scaling, acceleration by a factor of 16 would
not be enough for processing diagrams of this size. In this short section,
which is not published in [72], we discuss a problem that we encountered
(and could not solve) trying to make a parallel version efficient.

A natural choice for parallelization is the Jacobi variant of the algorithm,
in which during the bidding phase each unassigned bidder must submit a
bid, and then each item that received a bid goes to the bidder who offered
more than others. The expensive part of this process is searching for the
most attractive item and exactly this process can be parallelized, since in the
bidding phase the bidders do not interact with each other at all. However,
we immediately discovered that most of the bidders are assigned in the
first rounds, and in a long sequence of the following rounds, only a small
fraction of bidders has to submit bids. Figure 3.11 shows how the number
of unassigned bidders decreases as the auction algorithm is running; the
data is for a random sample of cardinality 50,000 from a real diagram (the
total number of bidders is 100,000, because we add diagonal projections).
Since we are interested in massively parallel setting, these long tails with
small number of unassigned bidders make such a trivial parallel variant
practically useless.

We can try the following heuristics. If there are only a few unassigned
bidders, then their contribution to the total cost of the final matching is

59

3 Efficient Computation of Bottleneck and Wasserstein Distances

probably negligible. If we can find a way to guarantee lower and upper
bounds for the Wasserstein cost after each round of the algorithm, when
some bidders are unassigned, and not only at the end, when we have a
perfect matching, we could stop the algorithm earlier.

For a point p = (px, py) of a persistence diagram, let pers(p) denote its
persistence, i.e., pers(p) = (py − px)/2. Thus, pers(p) is the cost of matching
p with its projection on the diagonal.

Lemma 3.8. Let M̃ be a partial matching computed by the auction algorithm at
the end of some round, and let γ be defined by the equation

γq = Σ′persq(b) + σ′′persq(i),

where ∑′ is taken over all unassigned bidders b, and ∑′′ is taken over all unassigned

items i. If we return q
√

c(M̃) as an approximation of the Wasserstein distance, then
the relative error is at most

γ + q
√

c(M̃)− q
√

c(M̃)− nε

q
√

c(M̃)− nε
,

where c(M̃) is the cost of M̃.

Proof. We need to show that c(M̃) + γ is an upper bound for the optimal
cost, and c(M̃)− nε is a lower bound for the optimal cost. Assuming these
statements, the lemma follows from a simple calculation similar to the one
made in the proof of Lemma 3.7.

The upper bound part becomes obvious, if we use the definition of the
Wasserstein distance that takes infimum over all bijections between all points
of the persistence diagrams. The partial matching M̃ defines a bijection
between the assigned bidders and items, and all the rest is mapped to the
diagonal; the cost of the resulting bijection is exactly the sum of the cost of
M̃ and γ, and this cost cannot be less than the cost of an optimal bijection.

The lower bound part easily follows from the properties of the auction algo-
rithm. Recall that for each assigned bidder the ε-complementary slackness
conditions are satisfied. This means that the cost of the matching M̃ is by

60

3.7 Conclusion

at most nε greater than the cost of the maximal (non-perfect) matching
of the bipartite graph obtained by deleting the bidders that are currently
unassigned. Deletion of some of the bidders can only decrease the optimal
cost, since all items are kept.

Thus we can maintain the number γ and stop the algorithm before reach-
ing a perfect matching, using the lemma to guarantee that the cost of the
partial matching is close enough to the true optimal cost. Note that updat-
ing γ is easily done in constant time, along with updating the matching.
We tested this optimization on some relatively small examples. First, we
determined the value of ε that will yield the desired relative error, and
then we ran the normal auction algorithm and the variant that maintains
γ. As expected, this early termination really helped to eliminate the long
tail of non-parallelizable rounds. However, if we start with ε small enough
to guarantee some reasonable relative error, say, 0.1, then the number of
rounds increases (compared to the ε-scaling variant) by a factor that cannot
be compensated by parallelization. We also tried using this lemma as a
heuristics, stopping the auction early at each phase of ε-scaling. The out-
come was even worse: the algorithm does not terminate in reasonable time
at all. The reason for this behavior is that by stopping earlier phases of
ε-scaling before a perfect matching is computed, we introduce large errors
to the price values. While the long tail of rounds with a small number of
unassigned bidders changes the cost of the current matching only slightly,
it performs another very important task: computing better approximation
of the prices for the next phase, and the quality of this approximation is
crucial.

3.7 Conclusion

We have demonstrated that geometry helps to compute bottleneck and
Wasserstein distances. Our approach leads to a faster computation of dis-
tances between persistence diagrams. Therefore, we expect our software
to have an immediate impact on the computational pipeline of topological
data analysis.

61

3 Efficient Computation of Bottleneck and Wasserstein Distances

For bottleneck matchings, an interesting question would be how our k-d
tree implementation compares in practice with the (theoretically) more time
efficient, but more space demanding alternative of range trees, and with
other point location data structures.

For Wasserstein matchings, we plan to further improve our implementation
of the auction algorithm. Simple heuristics can also improve special cases.
For example, if X and Y are persistence diagrams and S ⊂ X ∩ Y is the
set of common off-diagonal points, it holds for q = 1 that Wq(X, Y) =
Wq(X \ S, Y \ S), as one shows very easily. This property allows to remove
common points in the diagram before applying the auction algorithm.
We also wonder how the auction approach compares with the various
alternatives proposed in [31], and for which of these approaches can
geometry help compute the Wasserstein distance efficiently, either exactly
or approximately.

A natural approximation scheme for computing the Wasserstein distance for
very large instances consists of placing a finite grid over R2 and “snapping”
points to their closest grid vertex. The result is an instance with a potentially
high multiplicity in each grid vertex. The problem with this approach is the
approximation error introduced by the discretization step. A crude error
bound is the total number of points in both diagrams multiplied by the
diameter of the grid cells. An interesting question is to evaluate more refined
discretization schemes with respect to their practical performance.

Acknowledgements

We thank Sergio Cabello for pointing out that the worst-case complexity of
k-d trees and range trees remains valid under deletions of points, and for
further valuable remarks on an earlier draft.

62

3.7 Conclusion

0.2 0.4 0.6 0.8 1

·104

0

50

100

weighted points

Se
co

nd
s

average mass = 1

non-weighted
weighted

0.2 0.4 0.6 0.8 1

·104

0

500

1,000

weighted points

Se
co

nd
s

average mass = 10

non-weighted
weighted

0.2 0.4 0.6 0.8 1

·104

101

102

103

weighted points

Se
co

nd
s

average mass = 50

non-weighted
weighted

0.2 0.4 0.6 0.8 1

·104

101

102

103

104

weighted points

Se
co

nd
s

average mass = 100

non-weighted
weighted

Figure 3.9: Comparison of non-weighted and weighted variants of the auction algorithm
on normal data for mass 1 (upper-left) and average masses 10 (upper-right), 50
(lower-left) and 100 (lower-right).

63

3 Efficient Computation of Bottleneck and Wasserstein Distances

200 400 800 1600 3200 6400 12800

0

500

1,000

1,500

Average mass

R
un

ni
ng

ti
m

e,
s

Instance 1.
Instance 2.
Instance 3.
Instance 4.

Figure 3.10: Dependence of the running time from the average mass for four particular
instances of size 10000. Note the exponential scale on the x-axis.

2 2.5 3 3.5 4 4.5

·105

0

2

4

6

8
·104

Round

#
un

as
si

gn
ed

bi
dd

er
s

Figure 3.11: # unassigned bidders in the 3rd phase of ε-scaling (Jacobi variant of the auction
algorithm). Data is for two diagrams with 50, 000 off-diagonal points in each.
Numeration of rounds (x-axis) started from the 1st phase.

64

4 Efficient Computation of
Matching Distance

This chapter is based on a manuscript authored by Michael Kerber and
me.

4.1 Introduction

As mentioned in Chapter 1, approximation of the interleaving distance
is NP-hard. In this chapter, we work with the matching distance, which
provides a computationally tractable lower bound on DI . The starting point
for our approach is the paper [20] by Biasotti et al.

Let us summarize their algorithm. We parameterize the space of all lines
of interest as a bounded rectangle R ⊂ R2. For a point p in the rectangle,
let f (p) denote the bottleneck distance of the two persistence diagrams
obtained from the restrictions of the bi-filtrations to the line parameterized
by p. The major ingredient of the algorithm is a variation bound which
tells how much can f vary when each parameter is perturbed by a fixed
amount. For any subrectangle S ⊆ R with center c, knowing f (c) and the
variation bound yields an upper bound of f within S. We then obtain an
ε-approximation with a simple branch-and-bound scheme, subdividing R
with a quad-tree in BFS order and stopping the subdivision of a rectangle
when its upper bound is sufficiently small.

Our contributions are the following:

65

4 Efficient Computation of Matching Distance

1. We simplify the approximation algorithm of [20]. In particular, we elim-
inate all trigonometric functions — our algorithm needs to compute
only polynomial expressions.

2. We provide a simple yet crucial algorithmic improvement: instead of
using the global variation bound for all rectangles of the subdivision,
we derive adaptive local variation bounds for each rectangle individ-
ually. This results in much smaller upper bounds and avoids many
subdivisions in the approximation algorithm.

3. We experimentally compare our version of the global bound with the
usage of the adaptive bounds. We show that the speedup factor of the
sharpest adaptive bound is typically between 3 and 5, depending on
the input bi-filtrations.

4. We plan to release our code as part of the Hera library.

4.2 Preliminaries

The general definition of the matching distance was given in definition 2.34.
However, in this chapter we will only consider persistence modules coming
from 1-critical bi-filtrations. We will write a bi-filtration of a complex K
as (K, ϕ), where the function ϕ : K → R2 provides critical values of all
simplices. If ϕ(σ) = (px, py), then the simplex σ is present in the bi-filtration
at all points of the upper-right quadrant of (px, py).

Slices. For all concepts in this paragraph, see Figure 4.1 for an illustration.
We will refer to a non-vertical line L with positive slope as a slice. For every
slice, we distinguish a point O, called the origin of the slice. We let L denote
the set of all slices. Since the slope is positive, for any two distinct points p, q
on L either p � q or q � p holds. Hence, � becomes a total order along L.

Recall the definition of the weight w(L). Let γ denote the angle between the
slice L and x-axis. We call L flat if γ 6 π

4 (i.e., if its slope is at most 1) and
steep if γ > π

4 . Then we set

w(L) :=

{
sin γ if L is flat
cos γ if L is steep.

66

4.2 Preliminaries

0.2

0.4 0.8

1.2

0.12 0.46

0.6

0.69

1.04

Figure 4.1: Left: The slice parameterized by (π
6 , 0.1). For two critical values of the bi-

filtration from above, we illustrate the construction of the point q (displayed
by a cross shape). The push of the critical value is then simply the Euclidean
distance to the point (0, 0.1), which is the origin of the slice. Right: The non-
weighted restriction on the slice. Each simplex gets its push as critical value
(values rounded to two digits).

Given p ∈ R2, let q be the minimal point on L (with respect to 6) such
that p 6 q. Geometrically, q is the intersection of L with the boundary of
the upper-right quadrant of p, or equivalently, the horizontally-rightwards
projection of p to L if p lies above L, or the vertically-upwards projection of
p to L if p lies below L. Since q lies on L, q can be uniquely written as

O+ λp

(
cos γ
sin γ

)
where γ is the angle between L and x-axis, and λp ∈ R. We say that
λp is the push of p to L, which can be formally written as a function
push : R2 ×L→ R. Geometrically, the push is simply the (signed) distance
from the point q to the origin of the slice. For a bi-filtration F = (K, ϕ),
the composition push(·, L) ◦ ϕ is a function K → R. This function yields
a mono-filtration of K, which we call the non-weighted restriction of F onto
L. The non-weighted restriction will be denoted restr(F, L). See Figure 4.1,
right for an example.

Recall that the matching distance between two bi-filtrations F1 = (K1, ϕ1)
and F2 = (K2, ϕ2) is

dM(F1, F2) := sup
L∈L

w(L) ·W∞(restr(F1, L), restr(F2, L)),

where W∞ is actually the bottleneck distance between the persistence mod-
ules obtained by applying a homology functor Hn(·, F) to the non-weighted
restrictions.

67

4 Efficient Computation of Matching Distance

Since W∞ is shift-invariant, we can assume that all critical values of F1,2 are
in the positive (upper-right) quadrant.

Let us now define the weighted push of a point p to a slice L as

wpush(p, L) = w(L)push(p, L),

and let FL denote the mono-filtration induced by σ 7→ wpush(ϕ(σ), L). We
call FL a weighted restriction of F onto L. Note that FL equals restr(F, L) except
that all critical values are scaled by the factor w(L). Using homogeneity of
W∞, we see that we can define the matching distance as

dM(F1, F2) := sup
L∈L

W∞(F1
L , F2

L). (4.1)

We will use this equivalent definition of the matching distance in the re-
maining part of the chapter, and ’restriction’ will always mean ’weighted
restriction’.

4.3 The approximation algorithm

The idea of the approximation algorithm for dM is to sample the set of
slices through a finite sample, and choose the maximal bottleneck distance
between the (weighted) restriction encountered as the approximation value.
In order to execute this plan, we need to parameterize the space of slices
and to compute the restriction of a parameterized slice efficiently.

Slice Parameterization. Every slice has a unique point where the line
enters the positive quadrant of R2, which is either its intersection with the
positive x-axis, the positive y-axis, or the point (0, 0). From now on, we
always use this point as the origin of the slice.

We call a slice an x-slice if its origin lies on the positive x-axis, and call it a
y-slice if its origin lies on the positive y-axis (slices through the origin are
both x- and y-slices). Recall also that a slice is flat if its slope is less than
1, and steep if it is larger than 1. Thus, a slice belongs to one of the four

68

4.3 The approximation algorithm

(I)

(IV)

(III)

(II)

Figure 4.2: A steep y-slice (I), a flat y-slice (II), a steep x-slice(III) and a flat x-slice. The
slopes are 2 for the steep and 1

2 for the flat slices, and the origin is at (0, 2)
for the y-slices and at (2, 0) for the x-slices. Consequently, all four slices are
parameterized by (1

2 , 2).

types: flat x-slices, flat y-slices, steep x-slices and steep y-slices. Every slice
is represented as a point (λ, µ) ∈ (0, 1]× [0, ∞) where the interpretation of
the parameters depends on the type of the slice as follows: Recall that γ is
the angle of the slice with the x-axis. Then

λ =

{
tan(γ), if L is flat
cot(γ), if L is steep

,

in other words, λ is the slope of the line in the flat case, and the inverse of
the slope in the steep case. With O = (Ox,Oy) the origin of L,

µ =

{
Ox if L is x-slice
Oy if L is y-slice

.

Note that the same pair of parameters can parameterize different slices
depending on the type. Figure 4.2 illustrates this.

Weighted pushes. We next show a simple formula for the value of wpush(p, L)
depending on the type of the slice.

Lemma 4.1. With the chosen parameterization and choice of origin on L, wpush(p, L)
is computed according to the formulas given in Table 4.1 and Table 4.2.

69

4 Efficient Computation of Matching Distance

y-slices L is flat L is steep
p above L py − µ λ(py − µ)
p below L λpx px

Table 4.1: Formulas for weighted push of (px, py) onto a y-slice L = (λ, µ).

Proof. The proof of the lemma is a series of elementary calculations. Let
us consider, for example, the case of a flat y-slice. In this case the slice
L = (λ, µ) is given by{(

0
µ

)
+ ρ

(
cos γ
sin γ

)
| ρ ∈ R

}
,

If p = (px, py) is above L, we consider the point q = (qx, qy) which is the
intersection of L and the line y = py. Obviously, qy = py, and, since q lies
on L, the second coordinate yields the equation

ρ =
qy − µ

sin γ
=

py − µ

sin γ
.

By definition, ρ is the push of p to L and since L is flat, we have that
w(L) = sin γ.

If p is below L, we have, by the first coordinate,

ρ =
qx

cos γ
=

px

cos γ
,

and multiplying with the weight yields

wpush(p, L) = sin γ
px

cos γ
= px tan γ = pxλ

The other cases are proved analogously.

All 8 expressions in Table 4.1 and 4.2 involve only addition and multipli-
cation without trigonometric functions. Hence we can extend them con-
tinuously to case λ = 0, which corresponds to horizontal lines (in the flat
case) or vertical lines (in the steep case). With this interpretation, we can

70

4.3 The approximation algorithm

x-slices L is flat L is steep
p above L py λpy
p below L λ(px − µ) px − µ

Table 4.2: Formulas for weighted push of (px, py) onto an x-slice L = (λ, µ).

Y

Figure 4.3: Illustration for the fact that slices with larger value of µ can be ignored.

extend L to a set L̄ in (4.1), containing these limit cases, without changing
the supremum.

Next, we observe that we can restrict our attention to a bounded range of
µ-parameters. For that, let X denote the maximal x-coordinate and Y be the
maximal y-coordinate among all critical values of F1 and of F2. For a y-slice
(steep or flat) L = (λ, µ) with µ > Y, let L′ = (λ, Y) be the parallel slice with
origin at (0, Y). All critical values of F1,2 are below L and L′ by construction
(recall that all critical points are assumed in the upper-right quadrant), hence
we obtain the push by projecting vertically upwards. Looking at the second
row in Table 4.1, we see that the weighted pushes are independent of µ,
and therefore equal for L and L′. Hence, the weighted bottleneck distances
along L and L′ are equal: W∞(F1

L , F2
L) = W∞(F1

L′ , F2
L′). See Figure 4.3 for an

illustration. We conclude that for y-slices it suffices to consider 0 6 µ 6 Y
in (4.1) without changing the matching distance. An analogous argument
shows that for x-slices, it is only necessary to consider 0 6 µ 6 X.

Summarizing the last two observations, we arrive at the following statement.
There are sets L1 of flat x-slices, L2 of steep x-slices, L3 of flat y-slices, and
L4 of steep y-slices (with each set containing some vertical/horizontal lines

71

4 Efficient Computation of Matching Distance

as limit case) such that

dM(F1, F2) = sup
L∈L1∪...∪L4

W∞(F1
L , F2

L) (4.2)

and such that L1 and L2 are parameterized by the rectangle [0, 1]× [0, X]
and L3 and L4 by [0, 1]× [0, Y]. Note that all these boxes are compact, which
means that the supremum becomes a maximum.

Approximation. We present an approximation algorithm that, given two
bi-filtrations F1 and F2 and some ε > 0 returns a number δ such that

dM(F1, F2)− ε 6 δ 6 dM(F1, F2).

We assume that the two bi-filtrations are given as simplicial complexes,
i.e., a list of simplices, where each simplex is annotated with two real
values denoting the critical value of the simplex. In the description, we set
T := {x-flat, x-steep, y-flat, y-steep} for the type of a slice. The algorithm is
based on the following two primitives:

Eval(F1, F2, L) Computes W∞(F1
L , F2

L), where L is specified by the triple
(λ, µ, t) where (λ, µ) are the parameterization of L and t ∈ T denotes
its type.

Bound(F1, F2, B, t) If B is an axis-parallel rectangle and t ∈ T, the pair (B, t)
specifies a set of slices L0. The primitive computes a number µ ∈ R

such that
W∞(F1

L , F2
L) 6 µ

for every L ∈ L0.

With these two primitives, we can state our approximation algorithm: from
now on, we refer to axis-parallel rectangles as boxes for brevity. We start
by computing maximal coordinates X and Y of critical values of F1 and
F2 and enqueueing the four initial items ([0, 1] × [0, Y], y-steep), ([0, 1] ×
[0, Y], y-flat), ([0, 1]× [0, X], x-steep), and ([0, 1]× [0, X], x-flat) into a FIFO-
queue. We also maintain a variable ρ storing the largest bottleneck distance
encountered so far, initialized to 0.

Now, we pop items from the queue and repeat the following steps: for an
item (B, t), let L denote the slice that corresponds to the center point of

72

4.3 The approximation algorithm

B. We call Eval(F1,F2,L) and update ρ if the computed value is bigger
than the current maximum. Then, we compute µ ←Bound(F1,F2,B,t). If
µ > ρ + ε, we split B into 4 sub-boxes B1, . . . , B4 of equal dimensions (using
the center as splitpoint) and enqueue (B1, t), . . . , (B4, t). When the queue is
empty, we return δ← ρ. This ends the description of the algorithm.

Assuming that the above algorithm terminates (which is unclear at this
point because it depends on the implementation of the Bound primitive), we
claim that the returned value is indeed an ε-approximation.

Proof. We need to show that the result of the approximation algorithm δ
satisfies the following inequalities:

dM(F1, F2)− ε 6 δ 6 dM(F1, F2).

Firstly, the value ρ is non-decreasing during the algorithm. Call a box
terminal if it does not get subdivided during the algorithm (in other words,
considering the set of boxes processed in the algorithm as a quad-tree,
terminal boxes correspond to leaves in the quad-tree). By construction, we
have that for each terminal box and each slice L specified by the box

W∞(F1
L , F2

L) 6 µ 6 ρ + ε 6 δ + ε

Moreover, the terminal boxes form a cover of the initial boxes; more precisely,
the union of all terminal boxes with type y-steep is equal to [0, 1]× [0, Y],
and similarly for the other three types. Note that the initial boxes correspond
to the sets L1, . . . ,L4 from (4.2). Hence, writing T for the set of all slices
contained in a terminal box, we have that T = L1 ∪ . . . ∪L4 and it follows
that

dM(F1, F2) = sup
L∈L1∪...∪L4

W∞(F1
L , F2

L)

= sup
L∈T

W∞(F1
L , F2

L) 6 δ + ε

proving the first inequality. On the other hand, since ρ is always a bottle-
neck distance for some slice, we have that ρ 6 dM(F1, F2) throughout the
algorithm, hence also δ 6 dM(F1, F2).

73

4 Efficient Computation of Matching Distance

A variant of the above algorithm computes a relative approximation of the
matching distance, that is, a number δ such that

dM(F1, F2) 6 δ 6 (1 + ε)dM(F1, F2).

The algorithm is analogous to the above, with the difference that a box
is subdivided if µ > (1 + ε)ρ, and at the end of the algorithm (1 + ε)ρ is
returned as δ. The correctness of this variant follows similarly. However,
as we will see at the end of Section 4.4, the algorithm terminates only if
dM(F1, F2) > 0, and its complexity depends on the value of the matching
distance.

What is needed to realize the Eval primitive? First, we have to compute
the weighted pushes of each critical value of F1 and of F2, which we can
do using Lemma 4.1 in time proportional to the number of critical values.
Then, we have to compute the persistence diagrams of F1 and of F2, and
compute their bottleneck distance. Both steps are well-studied standard
tasks in persistent homology, and several practically efficient algorithms
have been studied. We use Phat [12] for computing persistence diagrams
and Hera [72] for the bottleneck computation.

4.4 The Bound primitive

Recall that the input of Bound is (F1, F2, B, t), where (B, t) specifies a collec-
tion of slices of type t. In what follows, we will identify points in B with
the parameterized slice, writing L ∈ B to denote that L is obtained from
a pair of parameters (λ, µ) ∈ B with respect to type t (which we skip for
notational convenience).

Let Lc be the slice corresponding to the center of B. Now define the variation
of a point p ∈ R2 for B as

v(p, B) := max
L∈B
|wpushp(L)−wpushp(Lc)|,

where wpushp(L) = wpush(p, L). In words, the variation denotes how
much the weighted push of the point p can change when the slice is changed

74

4.4 The Bound primitive

within the box B. For a bi-filtration F, we define

v(F, B) := max
p critical value of F

v(p, B).

The next lemma shows that the variation yields an upper bound for the
bottleneck distance within a box.

Lemma 4.2. With the notation as before, we have that for two filtrations F1, F2

that
sup
L∈B

W∞(F1
L , F2

L) 6 v(F1, B) + W∞(F1
Lc

, F2
Lc
) + v(F2, B)

Proof. By triangle inequality of the bottleneck distance,

W∞(F1
L , F2

L) 6 W∞(F1
L , F1

Lc
) + W∞(F1

Lc
, F2

Lc
) + W∞(F2

Lc
, F2

L).

Looking at the first term on the right, we have two filtrations of the same
simplicial complex, and every critical values changes by at most v(F1, B) by
definition of the variation. Hence, by stability of the bottleneck distance,

W∞(F1
L , F1

Lc
) 6 v(F1, B).

The same argument applies to the third term which proves the theorem.

Note that the second term in the bound of Lemma 4.2 is the value at the
center slice, which is already computed in the algorithm. It remains to
compute the variation of a bi-filtration within B. This, in turn, we do by
analyzing the variation of a point p within B. We show

Theorem 4.3. For a box B, let L1, . . . , L4 be the four slices on the corners of B.
Then

v(p, B) = max
i=1,...,4

|wpushp(Li)−wpushp(Lc)|

The theorem gives a direct algorithm to compute v(p, B), just by computing
the weighted pushes at the four corners (in constant time) and return the
maximal difference to the weighted push in the center. Doing so for every
critical point of a bi-filtration F yields v(F, B), and with Lemma 4.2 an
algorithm for the Bound primitive that runs in time proportional to the

75

4 Efficient Computation of Matching Distance

number of critical points of F1 and F2. We refer to this bound as local linear
bound (where the term “linear” refers to the computational complexity), or
as L-bound.

To prove the theorem, it will be convenient to define

D(λ, µ) := |wpushp(Lλ,µ)−wpushp(Lc)|,

where Lλ,µ is the slice corresponding to (λ, µ). It follows immediately that

v(p, B) = max
(λ,µ)∈B

D(λ, µ).

and the theorem states that D is maximized in one of the corners of B. The
next lemma reveals the structure of D along vertical and horizontal line
segments within B.

Lemma 4.4. Let B = [a, b]× [c, d]. For any λ0 ∈ [a, b], the function

D(λ0, ·) : [c, d]→ R

is maximized at c or at d. Likewise, for µ0 fixed, the function

D(·, µ0) : [a, b]→ R

is maximized at a or at b.

Proof. First, we briefly sketch the argument for D(λ0, ·). For all four types of
B, the function D(λ0, µ) is either of the form |sµ + t| for constants s, t ∈ R, a
constant function, or a continuous combination of the two forms, depending
on the location of p with respect to the slices (λ0, µ) with µ ∈ [c, d]. In either
case, the function has no isolated local maxima, and therefore attains its
maximum over [a, b] on the boundary.

Throughout the proof, we write w := wpushp(Lc), which is a constant
independent of λ or µ. Let us consider the case of flat y-slices first. For
λ0 ∈ [a, b] fixed, write Ltop for the slice (λ0, d) and Lbottom for the slice
(λ0, c). There are three possible locations of the point p: it can be above both
Lbottom and Ltop, below both of them, or above Lbottom and below Ltop.

76

4.4 The Bound primitive

In the first case, D takes the form

D(λ0, µ) = |py − µ− w|

on the whole interval [c, d] (cf. Table 4.1). This is a “V-shaped” function
which takes its maximum at a boundary point.

In the second case, D takes the form

D(λ0, µ) = |λ0px − w|

which is a constant function, clearly also being maximal at either boundary
point.

In the third case, there is a unique point ξ ∈ [c, d] such that p lies on the
slice parameterized by (λ0, ξ). Then, on the interval [c, ξ], D is a V-shaped
function as above, and on [ξ, d], D is a constant function (and the two
branches coincide at ξ, since D is continuous). It follows that also in this
case, D(λ0, ·) is maximized at a boundary point.

The analysis of the function D(·, µ0) for µ0 ∈ [c, d] is very similar. We write
Ltop for the slice (b, µ0) and Lbottom for (a, µ0). Note that the slices (λ, µ0)
for λ ∈ [a, b] correspond to the slices obtained when rotating from Lbottom to
Ltop in counterclockwise direction with fixed origin (0, µ0). There are same
three possible cases as above for the location of p with respect to Ltop and
Lbottom.

If p is above both slices, D takes the form

D(λ, µ0) = |py − µ0 − w|

on [a, b], which is a constant function. If p is below both slices, D takes the
form

D(λ, µ0) = |λpx − w|
which is a V-shaped function. If p is in-between the slices, there is again a
unique ξ such that p lies on the slice (ξ, µ0), and the function splits into a
V-shaped branch and a constant branch. This proves the statement for the
case of flat y-slices.

The other three cases are analogous: In all of them, the functions D(λ0, ·)
and D(·, µ0) are either V-shaped, constant, or a combination of both.

77

4 Efficient Computation of Matching Distance

Proof. (of Theorem 4.3) Let (λ, µ) be any point in B. By Lemma 4.4 we
can move (λ, µ) vertically to either the lower or upper boundary without
decreasing the D-value. Then, using Lemma 4.4, we can move the point
horizontally to one the corners, again without decreasing the D-value. The
statement follows.

A coarser bound. We have derived a method to compute v(p, B) exactly
which takes linear time. Alternatively, we can derive an upper bound as
follows:

Theorem 4.5. Let B be a box [λmin, λmax] × [µmin, µmax] with center (λc, µc),
width ∆λ = λmax − λmin and height ∆µ = µmax − µmin. Then, for any point
p ∈ [0, X]× [0, Y], v(p, B) is at most

1
2 (∆µ + X∆λ) for flat y-slices
1
2 (λc∆µ + (Y− µmin)∆λ)} for steep y-slices
1
2 (λc∆µ + (X− µmin)∆λ) for flat x-slices
1
2 (∆µ + Y∆λ) for steep x-slices.

Importantly, the bound is independent of p, and hence also an upper bound
for v(F, B) that can be computed in constant time; we refer to it as local
constant bound or C-bound.

Proof. The proof of Theorem 4.5 is based on deriving a bound of how
much wpushp(L) and wpushp(L′) can differ for two slices L = (λ, µ) and
L′ = (λ′, µ′) in dependence of |λ− λ′| and |µ− µ′|. This bound, in turn, is
derived separately for all four types of boxes and involves an inner case
distinction depending on whether p lies above both slices, below both slices,
or in-between. In either case, the claim of the statement follows from the
bound by plugging in the center slice of a box for either L or L′.

Let us start with the case of flat y-slices. We first prove that for any two
slices L = (λ, µ) and L′ = (λ′, µ′) and any p ∈ [0, X]× [0, Y], it holds that

|wpushp(L)−wpushp(L′)| 6 |µ− µ′|+ X|λ− λ′|

78

4.4 The Bound primitive

We consider three cases: if p is above both L and L′,

|wpushp(L)−wpushp(L′)| = |(py + µ)− (py + µ′)| = |µ− µ′|,

and the bound clearly holds. If p is below both slices,

|wpushp(L)−wpushp(L′)| = |λpx − λ′px| 6 px|λ− λ′|,

and the bound holds, because X is the maximal possible value of px. Finally,
if p is above L and below L′ (or vice versa), then the line segment connecting
(λ, µ) and (λ′, µ′) contains at least one point (λ̃, µ̃) such that the slice L̃
defined by these parameter values contains the point p. Since p is on L̃, we
can use either formula for the weighted push in the left column of Table 4.1
for L̃. Together with the triangle inequality, we obtain:

|wpushp(L)−wpushp(L′)|
=|wpushp(L)−wpushp(L̃)|+ |wpushp(L̃)−wpushp(L′)|
=|(py − µ)− (py − µ̃)|+ |λ̃px − λpx|
6|µ̃− µ|+ px|λ̃− λ′|
6|µ′ − µ|+ X|λ′ − λ|,

where the last inequality holds, because µ̃ is between µ and µ′, and λ̃ is
between λ and λ′.

The first case of the statement follows at once by setting L′ to be the center
of the box B, and L to be any point in B since in this case, |λ′ − λ| 6 ∆λ/2
and |µ′ − µ| 6 ∆µ/2.

Next we consider the case of steep y-slices. We claim that for any two slices
L = (λ, µ) and L′ = (λ′, µ′) and any p ∈ [0, X]× [0, Y], it holds that

|wpushp(L)−wpushp(L′)|
6λ|µ− µ′|+ (Y− µ′)|λ− λ′|

We consider the same three cases as above. If p is below both L and L′, the
weighted pushes are both equal to px, and the difference is 0. If p is above

79

4 Efficient Computation of Matching Distance

both L and L′, we calculate

|wpushp(L)−wpushp(L′)|
=|λ(py − µ)− λ′(py − µ′)|
=|λ(py − µ)− λ(py − µ′) + λ(py − µ′)− λ′(py − µ′)|
6|λ(µ′ − µ)|+ |(λ− λ′)(py − µ′)|
=λ|µ′ − µ|+ (py − µ′)|λ− λ′|.

Note that in the last line, we use that py − µ′ is positive, which follows from
p being above L′, and px > 0.

In the third case, p is above L and below L′. Instead of the line segment
connecting them, we consider the path from (λ, µ) to (λ′, µ′) that first goes
vertically to (λ, µ′), and then horizontally to (λ′, µ′). Also on this path, there
is a slice L̃ such that p is on L̃. Then, by triangle inequality, the difference of
the weighted pushes for L and L′ is at most

|wpushp(L)−wpushp(L̃)|+ |wpushp(L̃)−wpushp(L′)|

and the second term is equal to 0. Hence, using the previous calculation,
the difference can be bounded by

λ|µ̃− µ|+ (py − µ̃)|λ− λ̃|

Now, if L̃ is on the vertical branch of the path, λ = λ̃, and the second term
vanishes. If L̃ is on the horizontal part, µ̃ = µ′, and the bound above is equal
to

λ|µ′ − µ|+ (py − µ′)|λ− λ̃|
and the bound follows because |λ− λ̃| 6 |λ− λ′|.

Using this estimate on |wpushp(L)−wpushp(L′)|, the theorem statement
for steep y-slices follows by choosing L as the center slice, and L′ as any
other slice in B. Note that using choosing L′ as the center slice instead yields
the (seemingly) different bound

1
2
(λmax∆µ + (Y− µc)∆λ)},

but it can be verified by a simple calculation that both bounds are equal.
The bounds for x-slices are proved analogously.

80

4.4 The Bound primitive

Termination and complexity. We show next that our absolute approxima-
tion algorithm terminates when realized with either the local linear bound
or the local constant bound. In what follows, set C := max{X, Y}. In the
subdivision process, each box B considered is assigned a level, where the
level of the four initial boxes is 0, and the four sub-boxes obtained from a
level-k-box have level k + 1. Since every box is subdivided by the center, we
have immediately that for a level-k-box, ∆λ = 2−k, and ∆µ 6 C2−k. Using
these estimates in Theorem 4.5, we obtain

v(Fi, B) 6
1
2
(C2−k + C2−k) = C2−k. (4.3)

for i = 1, 2 and every level-k-box B considered by the algorithm. Note that
the local constant bound yields a bound on v(Fi, B) that is not worse, and
so does the local linear bound (which computes v(Fi, B) exactly). Hence we
have

Lemma 4.6. Let B be a level-k-box considered in the algorithm. Then, µ, the result
of the Bound primitive in the algorithm, satisfies

µ 6 W∞(F1
Lc

, F2
Lc
) + 2C2−k

both for the local linear and local constant bound.

We can now easily derive a maximal level k such that no box on level k gets
subdivided:

Lemma 4.7. A level-k-box with

k :=
⌈

log
2C
ε

⌉
(where the logarithm is with base 2) does not get subdivided by the algorithm.

Proof. We have to show that µ 6 ρ + ε, where µ is the upper bound com-
puted by the Bound primitive, and ρ is largest weighted bottleneck distance
encountered at the moment when the algorithm decide whether to sub-
divide B. Note that in this moment, ρ > W∞(F1

Lc
, F2

Lc
) is ensured because

81

4 Efficient Computation of Matching Distance

the latter value has been computed in the previous step. Hence, using the
previous lemma,

µ 6 W∞(F1
Lc

, F2
Lc
) + 2C2−k 6 ρ + 2C2−k 6 ρ + ε,

where the last step follows from the choice of k.

Theorem 4.8. Our algorithm to compute an absolute ε-approximation terminates
in

O(n3
(

C
ε

)2

)

steps in the worst case (both for the linear and constant bound).

Proof. With k as above, the worst case is that the algorithm considers all
boxes of level k. In that case, the total number of boxes considered is

4(40 + 41 + . . . + 4k = O(4k)

Plugging in k yields that 4k = (2k)2 = O(
(

C
ε

)2
) as the number of considered

boxes. On each box, the algorithm evaluates the weighted bottleneck dis-
tance at the center slice, which requires the computation of weighted pushes,
of two persistence diagrams, and of their bottleneck distance. Complexity-
wise, the dominating step is the persistence computation, which we do
in O(n3) steps (this complexity can be reduced to O(nω), where ω is the
matrix multiplication constant [86]). The complexity bound follows.

A similar bound can be derived for the variant of computing a relative
approximation.

Theorem 4.9. If dM(F1, F2) > 0, our algorithm to compute a relative (1 + ε)-
approximation terminates in

O(n3
(

C(1 + ε)

ε dM(F1, F2)

)2

)

steps in the worst case.

82

4.4 The Bound primitive

For the proof, we need the following lemma stating that ρ will eventually
be a close approximation of the matching distance.

Lemma 4.10. Write dM := dM(F1, F2) and assume dM > 0. For

k > 1 +
⌈

log
(1 + ε)2C

ε dM

⌉
,

it holds that when the algorithm considers a level-k-box, we have that ρ > dM /(1+
ε).

Proof. Let L∗ be a slice such that the matching distance is realized as
W∞(F1

L∗ , F2
L∗). Note that the algorithm handles all boxes of level < k be-

fore handling any box of level k. Now, we distinguish two cases:

The first case is that L∗ lies in some box of level < k for which the algorithm
did not subdivide further. That means that µ 6 (1 + ε)ρ′, where µ is an
upper bound for the box and ρ′ is the value of ρ at this moment of the
algorithm. Note that since L∗ lies in B, µ > dM must hold. Also, ρ′ 6 ρ
because ρ only increases. It follows that

dM 6 µ 6 (1 + ε)ρ′ 6 (1 + ε)ρ

proving the statement for the first case.

The second case is that L∗ lies in some level-(k− 1)-box B which has been
subdivided. By the way how µ is computed, we have that

µ 6 W∞(F1
Lc

, F2
Lc
) + 2C2−(k−1),

where Lc is the center slice of the box. Moreover, as before, dM 6 µ holds,
and W∞(F1

Lc
, F2

Lc
) 6 ρ because ρ is updated using Lc. In summary, we obtain

dM 6 ρ + 2C2−(k−1)

The bound on k ensures that

2C2−(k−1) 6 2C2log ε dM
2C(1+ε) =

ε dM

1 + ε

83

4 Efficient Computation of Matching Distance

so we obtain

ρ > dM−2C2−(k−1) > dM−
ε dM

1 + ε
=

dM

1 + ε
.

Lemma 4.11. If dM > 0, a level-k-box with

k := 1 +
⌈

log
(1 + ε)2C

ε dM

⌉
does not get subdivided by the relative approximation algorithm.

Proof. Let B be some level-k-box. We have to show that µ 6 (1 + ε)ρ for B.
Note that

µ 6 W∞(F1
Lc

, F2
Lc
) + 2C2−k 6 ρ +

ε dM

(1 + ε)

Moreover, the k in question satisfies the assumptions of Lemma 4.10, so we
have that dM 6 (1 + ε)ρ, and we obtain

µ 6 ρ +
ε dM

(1 + ε)
6 (1 + ε)ρ

Proof. (of Theorem 4.9) The proof is analogous to the proof of Theorem 4.8,
noting that the algorithm has to consider

O(4k) = O(

(
(1 + ε)2C

ε dM

)2

)

boxes, and the cost for each box is O(n3), as follows from the previous
lemmas.

84

4.5 Experiments

4.5 Experiments

Experimental setup. Our experiments were performed on a workstation
with an Intel(R) Xeon(R) CPU E5-1650 v3 CPU (6 cores, 3.5GHz) and 64 GB
RAM, running GNU/Linux (Ubuntu 16.04.5). The code was written in C++
and compiled with gcc-8.1.0.

We generated two datasets, which we call GH and ED, following [20].
Unfortunately, we were unable to get either the code or the data used by
the authors. Each of the 70 files in the datasets is a lower-star bi-filtration
of a triangular mesh (2-dimensional complex), representing a 3D shape.
We also generated dataset RND of larger random bi-filtrations with up to
2,000 vertices. We give a more detailed description of the datasets in the
next paragraph. In all our experiments we used persistence diagrams in
dimension 0. In the experiments with the datasets GH and ED, we computed
all pairwise distances; in the experiments with RND we computed distances
only between bi-filtrations with the same number of vertices. We used the
relative error threshold, which we call ε in this section throughout (i.e., we
always compute 1 + ε-approximation).

Datasets.

Lower-star bi-filtrations. Both datasets GH and ED are based on a Non-
Rigid World Benchmark [27], a collection of 3D-shapes represented as
triangular meshes. A triangular mesh is a geometric realization of a 2-
dimensional simplicial complex, and, if we fix a function ϕ : V → R2 on the
vertices of a mesh, this gives rise to the lower-star bi-filtration (defined at
the end of Section 2.5).

For GH, we use the function ϕGH = (ϕGH
1 /K1, ϕGH

2 /K2) defined as fol-

85

4 Efficient Computation of Matching Distance

lows:

ϕGH
1 (v) = integral geodesic distance of v; (4.4)

ϕGH
2 (v) = HKS at t = 1000; (4.5)

K1 = max
v

ϕGH
1 (v); (4.6)

K2 = max
v

ϕGH
2 (v). (4.7)

HKS in the formula for ϕGH
2 stands for Heat Kernel Signature. It is computed

by solving the discrete analogue of the heat equation on smooth manifolds
(where the discrete Laplacian replaces the Laplace-Beltrami operator). The
heat kernel was introduced in [99], and became a very popular tool in shape
analysis; we used the publicly available code from [101] to compute it.

Let s(v, w) be the length of the shortest path that connects v and w on the
mesh and does not go through the interior of any of the mesh triangles. The
integral geodesic distance ϕGH

1 (v) is a weighted sum over vertices w 6= v
of s(v, w); it was introduced in [67], and we refer the reader to this paper
for further details and motivation. We compute s(v, w) using Dijkstra’s
algorithm on the graph that consists of the mesh vertices and edges with
weight of an edge being Euclidean distance between its endpoints.

Normalization constants K1, K2 ensure that the maximal coordinates X and
Y are 1.

Let us now describe the dataset ED. We fix a mesh with vertices V =
{v1, . . . , vn}, and let b be its center of mass, b := 1

n ∑n
i=1 vi. Vector ~w is

defined as

~w := ∑n
i=1(vi − b)‖vi − b‖

∑n
i=1 ‖vi − b‖2 .

Let π~w be the plane passing through w and orthogonal to ~w, let `~w be the line
passing through w and parallel to ~w; let d(v, `) and d(v, π) denote Euclidean
distances from the point v to the line ` and plane π. The critical values of

86

4.5 Experiments

ED bi-filtrations are given by the function ϕED = (ϕED
1 /K1, ϕED

2 /K2):

ϕED
1 (vi) := 1− d(vi, `~w)

maxk=1,...,n d(vk, π~w)
; (4.8)

ϕED
2 (vi) := 1− d(vi, π~w)

maxk=1,...,n d(vk, π~w)
; (4.9)

K1 := max
v

ϕED
1 (v); (4.10)

K2 := max
v

ϕED
2 (v). (4.11)

These formulas can be found on page 1743, Section 4.3 of [20]. The ED
dataset can be easily computed, since the formulas involve only elementary
geometric calculations.

We generated 70 bi-filtrations that cover different classes of the benchmark
(male and female figures in different poses, seahorses, cats, etc), hence we
have 2, 415 pairs to test.

Note that GH and ED are different from [20], because the authors also
applied additional transformations to the meshes before computing the
bi-filtrations. We skipped this step, because it is not clearly described and
hard to reproduce.

Random bi-filtrations. In order to see the scaling on larger inputs, we
generated random bi-filtrations as follows. The input parameters are the
number of maximal simplices M, total number of vertices N, and the
dimension of maximal simplices D. We randomly generated M distinct
subsets of cardinality D + 1 of the set {1, . . . , N}, and for each of these
maximal simplices σ we chose the x and y coordinates of ϕ(σ) uniformly at
random from [0, 1000]. Assume now that we defined ϕ on all simplices in
some dimension d + 1 6 D, and we want to define ϕ(τ) on a simplex τ of
dimension d. We know that ϕ(τ) must appear in the bi-filtration before any
of its co-faces. To ensure that, we intersect all rectangles with the bottom
left corner at (0, 0) and the upper right corner at ϕ(σ), where σ ranges over
all simplices such that τ is a face of σ and ϕ(σ) is defined. This intersection
is itself a rectangle; we pick an integral point in this rectangle uniformly
at random as ϕ(σ). We generated 6 random bi-filtrations of dimension 1

87

4 Efficient Computation of Matching Distance

for each N ∈ {500, 1000, 2000}, with M = 4N. These bi-filtrations form the
dataset RND.

Comparison of different bounds. First, we experimentally compare the
performance of our algorithm with the L-bound from Theorem 4.3 and
with the C-bound from Theorem 4.5. Obviously, the L-bound is sharper, so
it allows us to subdivide fewer boxes and in this sense is more efficient.
However, it is not a priori clear that the L-bound is preferable, since its own
computation takes O(n) time per box, in contrast to the constant bound.

There are two natural optimizations of the algorithm with the L-bound.
Note that the value returned by Bound is used only to decide whether we
have to subdivide the current box: we subdivide, if the bound is less than
(1 + ε)ρ, where ρ is the lower bound, the maximum of all W∞(F1

L , F2
L) we

have computed so far. The first optimization is to compute the C-bound, and,
if it is less than (1 + ε)ρ, stop subdividing (the L-bound cannot be greater
than the C-bound). Otherwise we range over all critical values p, computing
their variation. As second optimization, we stop once we encounter a point
p whose variation is large enough to ensure that the L-bound will be greater
than (1 + ε)ρ.

Secondly, we compare the local bounds L and C with a global bound, that
is, a bound that depends only on the size of the box (a bound of that sort
is used in [20]). This bound is provided by Equation (4.3), we call it the
G-bound. 1

Recall that the dominating step in the complexity analysis (and in practice)
is the computation of persistence, and we perform two such computations
when we call the Eval primitive. Therefore we are interested in the number
of calls of Eval; for brevity, we refer to this number simply as the number
of calls.

In Table 4.3, we give the average number of calls and timings for different
datasets and values of ε. Actually, the variance behind the average in these
tables is large, so we additionally provide Table 4.4 and Table 4.5, where we

1The constant factors in the G-bound are smaller than in the global bound derived in
[20].

88

4.5 Experiments

#Calls Time (min)

L C G L C G

GH, ε = 0.5 938 2502 11082 2.08 3.67 18.78

ED, ε = 0.1 1455 3920 27529 2.58 3.26 25.96

ED, ε = 0.5 169 531 2112 0.28 0.42 1.67

Table 4.3: Average number of calls and average running time with the L-, C- and G-bounds
for different datasets and relative error ε.

report the average, maximal, and minimal ratios of the number of calls and
time that the algorithm needs with different bounds. For instance, the third
line of Table 4.4 shows that for all pairs from ED that we tested with relative
error ε = 0.5, switching from the local constant bound to the local linear
bound reduces the number of calls by a factor between 1.78 and 4.92.

Table 4.5 shows that, as expected, the C-bound always performs better than
the G-bound, with the average speedup around 2. The L-bound brings an
additional speedup by a factor of 1.5-2 in terms of the running time; the
number of calls is reduced more significantly, by a factor of 3. However,
the second from the right column of Table 4.5 shows that the running time
can sometimes moderately increase, if we switch to the L-bound from the
C-bound. If we compare the G-bound with the L-bound directly (these
numbers are not present in Table 4.5), the best speedup factor is 15.6, the
worst one is 1.14, and the average is between 3 and 5, depending on the
dataset.

Breadth-first search, depth-first search, and error decay. In the formula-
tion of our algorithm we used a queue. This means that we traverse the
quad-tree in breadth-first order: a box from level k + 1 added to the queue
will be processed only after all boxes from level k. It is possible to use a
priority queue instead of a queue, and use level as priority to do a depth-first
traversal. It is also possible to make a greedy algorithm, where the box with
the highest value of the weighted bottleneck distance at its center is always
picked first. We experimented with these variants and found no significant

89

4 Efficient Computation of Matching Distance

#Calls: G / C #Calls: C / L

Dataset, ε Avg Min Max Avg Min Max

GH, ε = 0.5 1.80 1.21 3.28 3.10 1.51 7.02

ED, ε = 0.1 2.93 1.43 5.07 3.00 1.88 6.82

ED, ε = 0.5 1.94 1.17 2.81 3.29 1.78 4.92

RND, ε = 0.1 6.06 2.76 10.58 2.08 1.91 2.47

Table 4.4: Comparison of number of calls between the global, local constant, and local linear
bounds. G / C denotes the ratio of the G-bound compared with the C-bound; C
/ L denotes the ratio of the C-bound compared with the L-bound.

Time: G / C Time: C / L

Dataset, ε Avg Min Max Avg Min Max

GH, ε = 0.5 1.66 1.00 3.18 2.03 0.75 6.32

ED, ε = 0.1 3.12 1.44 5.21 1.64 0.81 3.40

ED, ε = 0.5 2.08 1.07 3.38 1.59 0.92 3.89

RND, ε = 0.1 5.73 2.83 10.67 1.93 1.66 2.20

Table 4.5: Comparison of the running time between the global, local constant, and local
linear bounds.

90

4.5 Experiments

difference. The explanation is that a good lower bound is achieved after a
small number of iterations in every variant, and the remaining part of the
computations is mostly to certify the answer.

Nevertheless, we see a scenario where the priority queue formulation is
reasonable. If we want to calculate the best possible bounds for the matching
distance within a given time limit, it is easy to modify our algorithm for this
case. We use the upper bound (the output of the Bound primitive) as priority.
When the time is over, it suffices to peek at the top of the priority queue to
get the current upper bound, and we can output the lower bound ρ and the
relative error that we can guarantee at this point. It is instructive to plot how
the relative error decreases as the algorithm runs. We provide one such plot
in Figure 4.4. For instance, we can see that it takes approximately 3.5 times
longer to bring the relative error below 0.1 than below 0.2, if we use the
constant bound. This agrees with the complexity estimate in Theorem 4.9.

One detail in this plot is relevant for the experiments of the previous
paragraph. If we choose a relative error ε0 and draw a horizontal line ε = ε0
in Figure 4.4 until it intersects the plotted curves, then the x-coordinate of
the intersection is the time that our algorithm needs to guarantee a 1 + ε0
approximation with the corresponding bound. We can see that the difference
between the time needed with the global bound and the time needed with
the constant bound is not large for some values of ε0, but a small change
of ε0 can rapidly increase it. Clearly, this is highly input-specific, and this
partially explains the large variation in the improvement ratios that we
observed above, when we ran experiments with fixed ε.

Reduction rate. The only measure reported in [20] is what the authors
called the reduction rate. It is defined as 1− c/4k, where c is the number of
calls, k is the level of the deepest box in the quad-tree, on whose center the
algorithm actually performs a call (i.e., computes the weighted bottleneck
distance), and 4k is the total number of boxes on level k. What does the
reduction rate measure? Suppose that for some reason we decided to look
at the k-th level of the quad-tree only. We can simply compute the weighted
bottleneck distance at the center of each of the 4k boxes and output the
largest result; this would be a brute force approach. If we have a bound and
guess the level k correctly, then we can guarantee the desired approximation

91

4 Efficient Computation of Matching Distance

0 1 2 3 4 5

·105

0

0.2

0.4

0.6

0.8

1

Time (msec)
R

el
at

iv
e

er
ro

r
ε

ε, C-bound
ε, G-bound

Figure 4.4: Error decay with time for
the C- and G-bounds.

quality. The reduction rate shows which fraction of the 4k calls we avoid
by switching to the quad-tree algorithm; if it is 0.99, this means that we
avoided 99% of calls.

We give our reduction rates (average, minimal, and maximal) in Table 4.6.
The best reported reduction rate in [20] for ε = 0.1 is 94.7% (GH) and
93.8% (ED), with average values of 60.6% and 57%; minimal values are not
provided. Our maximal values for the global bound approximately agree
with theirs, and our average values are by roughly 10% higher.

This means that with the G-bound we can on average avoid not 57% of calls,
as in [20], but 71%. This should be expected, because the G-bound has a
smaller constant factor, see the end of Section 4.6. The advantage of the
local and constant bounds becomes evident in the worst case; we never have
reduction by less than 86% with the local bound, while the global bound
can go as low as 30%.

Scaling on random bi-filtrations. In datasets GH and ED, the number
of vertices is around 3, 000. However, since these datasets are lower-star
bi-filtrations, the cardinality of the persistence diagrams of the restrictions is
smaller, typically between 20 and 60 points. In dataset RND, the cardinality
of the diagrams in dimension 0 is almost equal to the number of vertices,

92

4.5 Experiments

Global Local Constant

Max Avg Min Max Avg Min

GH 92.95 69.47 56.43 96.95 86.97 75.77

RND 64.44 56.28 32.88 96.64 91.23 81.86

ED 97.45 71.00 30.78 98.01 89.07 69.35

Local Linear

Max Avg Min

GH 98.52 93.53 86.47

RND 98.33 95.79 91.25

ED 99.30 96.49 86.39

Table 4.6: Reduction rate for ε = 0.1, in percents.

so it is larger by an order of magnitude even for 500 vertices. We use this
dataset to show how our algorithm scales on larger inputs.

In Table 4.7, we see how the running time and the number of calls grows as
we increase the size of the input. As in Table 4.3, the variance hidden behind
the averaged numbers is large, but the bounds compare in the expected
way: the linear bound outperforms the constant bound, and the constant
bound outperforms the global bound.

#Calls Time (sec)

#vert. L C G L C G

500 164 435 655 6.5 15.1 23.3
1000 893 2354 4222 197.2 505.7 983.5
2000 1233 3256 5995 911.8 2277.8 4254.3

Table 4.7: Average number of calls and average running time with bounds L, C, and G for
random bifiltrations with different number of vertices. Relative error ε = 0.5.

93

4 Efficient Computation of Matching Distance

Time: G / C Time: C / L

#vert. Avg Min Max Avg Min Max

500 1.66 1.42 2.37 2.38 1.92 2.81

1000 1.76 1.37 2.22 2.53 2.34 2.77

2000 1.76 1.38 1.96 2.63 2.33 2.83

Table 4.8: Scaling on dataset RND, running time ratios for bounds G, C and L. Relative
error ε = 0.5

In Table 4.8 and Table 4.9, we provide the ratios of the running time and
the number of calls. These tables are similar to Table 4.5 and Table 4.4. For
example, the first 3 columns of Table 4.8 were obtained as follows. For each
pair of random bi-filtrations with the same number of vertices, we measure
the time with the global bound and with the constant bound, and take their
ratio. The average of these ratios is in the first column, the minimum is in
the second column, and the maximum is in the third one.

Note that the ratios in these tables do not change much as we go from 500

vertices to 2,000. If we compare the constant bound and the linear bound,
we notice that the ratios in Table 4.9 are very stable. The linear bound always
reduces the number of calls by a factor of approximately 2.5. The running
time ratios in Table 4.8 increase for larger inputs, getting closer to the ratios
of the number of calls. This is actually expected, since the complexity of the
Eval primitive is super-linear, so the time spent in Eval starts to subsume
the time spent on computing the L bound. One should not expect that the
ratio will grow with n: a better bound only reduces the number of calls of
Eval, but cannot accelerate the computation of Eval itself.

Heatmaps. Recall that we have 4 rectangles L1, . . . ,L4 that parameterize 4
different types of slices. Each slice passing through the origin is at the same
time an x-slice and a y-slice, and each slice with slope 1 is both flat and
steep. Therefore we can glue the rectangles Li together by identifying the
points that represent the same slice, and we get a single domain L with the
slice y = x in the center, as in Figure 4.5 (the coordinates in this figure do

94

4.5 Experiments

#Calls: G / C #Calls: C / L

#vert. Avg Min Max Avg Min Max

500 1.60 1.28 2.22 2.67 2.52 2.78

1000 1.68 1.25 2.03 2.65 2.57 2.80

2000 1.76 1.34 2.02 2.61 2.48 2.74

Table 4.9: Scaling on dataset RND, #calls ratios for bounds G, C and L. Relative error
ε = 0.5

0

X

−Y

b

flat

x−slices

flat
y−slices

steep

x−slices

steep

y−slices

α

π
2

π
4

Figure 4.5: Decomposition of the domain L into 4 types.

not agree with the coordinates we use inside each Li for parameterization
in Section 4.3). We can visualize values of the weighted bottleneck distance
by computing it at the center of each box of the quad-tree (of L) on a fixed
level, and using these values for the heatmap. The brighter a pixel of the
heatmap, the larger the value of W∞(F1

L , F2
L) for the corresponding slice L.

In Figure 4.6 and Figure 4.7, we show two examples (they were computed
on the ED dataset) of heatmaps. For pair A, in Figure 4.6, high values of the
weighted bottleneck distance are concentrated in a small bright spot around
the center. We can expect that, whichever bound we use, the algorithm will
need only a few subdivisions in the darker area to ensure that these boxes
cannot improve the lower bound. The opposite is true for the heatmap of
pair B, Figure 4.7, where a large part of all 4 quadrants has almost equal
high values. The algorithm will need to subdivide the boxes covering this
part until they become so small that the upper bound on each of them

95

4 Efficient Computation of Matching Distance

will be within the error threshold. These expectations are confirmed by the
experimental results. It takes 325 calls to approximate the matching distance
with ε = 0.1 for pair A, and 838 calls for pair B, if we use the linear bound
in both cases.

Pair B is also an example of a case when the local constant bound does not
improve the performance in comparison with the global bound. Indeed,
since for pair B we have X = Y = 1, the global bound and the local constant
bound agree on two of the four quadrants (flat y-slices and steep x-slices, see
Equation (4.3)), hence there will be no difference in the algorithm’s behavior
there, and in this example all four quadrants require many subdivisions.

Figure 4.6: Heatmap A. Figure 4.7: Heatmap B.

Additional plots. In Section 4.5, we plot the dependence of relative error
on the number of calls for the local constant and local linear bounds. The
plot is for the same input as Figure 4.4. Note that the plots are closer to
each other than the plots for the global and the local constant bound in
Figure 4.4, and, if we chose to use time as the x-axis, the difference would
become even smaller.

In Section 4.5, we plot the evolution of the lower bound ρ and the upper
bound µ (for the same input). Note that the lower bound stabilizes very
early.

96

4.6 Conclusion

4.6 Conclusion

Comparison with [20]

Many ideas used in this chapter appear in [20] in some form. For instance,
the idea of restricting the parameter space to a bounded region (see the
discussion after our Lemma 4.1) corresponds to Lemma 3.1 in [20]. However,
instead of completely disregarding the region outside of the bounded region,
they introduce two points in this domain, which seems unnecessary and
complicates the algorithmic description. As another example, our upper
bound in theorem 4.5 corresponds to their bound from Lemma 3.3 (with
worse constants, which we discuss below). The proof of their lemma contains
a case distinction, where they consider, expressed in our notation, the case
of two flat slices, two steep slices, and the mixed case of a flat and a steep
slice. By our choice of splitting the parameter space in 4 parts, we can ensure
that all slices within a box are of the same type, which makes the (tedious)
analysis of mixed cases unnecessary.

Moreover, we improve on [20] in several algorithmic ways: foremost, our
local bounds provide better estimates of the variation and lead to fewer
subdivisions. Moreover, when we subdivide boxes, we keep the aspect ratio
of the box the same in the next iteration. This allows us to cover the initial
box with 4k boxes of level k. The approach in [20] uses squares instead and
hence requires C4k boxes on level k. Since their algorithm has to subdivide to
a level of O(C/ε) in the worst case (same as ours), the complexity becomes
O(n3 C3

ε2), which is a factor C worse. Finally, the approaches differ in the
choice of the parameterization. Their approach, restated in geometric terms,
represents a slice L by two parameters (λ, β), where λ is the sine of the
angle of the L with the x-axis, and the origin is chosen as the point (β,−β).
While this approach has the pleasant effect of avoiding a case distinction
between x-slices and y-slices, it has two downsides: first of all, the bounding
rectangle in parameter space contains more slices than in our version, and
the fact that the origin is further away from the critical points (which all
lie in the upper-right quadrant) leads to a worsening of the bounds in
Theorem 4.5. This partially explains the discrepancy of their upper bound

97

4 Efficient Computation of Matching Distance

of (16C + 2)δ (Theorem 3.4 in [20]) and the bound of 4Cδ that could be
achieved with our methods.

Generalizations.

We have restricted to the case of bi-filtrations in this work. Generalizations
in several directions are possible. First of all, instead of bi-filtrations, our
algorithm works the same when the input is a pair of presentations of
persistence modules [79, 73, 23]. Since a minimal presentation of a bi-
filtration can be of much smaller size than the bi-filtration itself, and its
computation is feasible [79, 52], switching to a minimal presentation will
most likely increase the performance further. We plan to investigate this in
future work. Moreover, the case of k-critical bi-filtrations can be handled
with our methodology, just by defining the push of a simplex as the minimal
push over all its critical values. A careful inspection of our argument shows
that this adaption does not lead to any complication. Finally, an extension of
our approach to 3 and more parameters should be possible in principle, but
we point out that the space of affine lines through Rd is 2(d− 1) dimensional.
Hence, already the next case of tri-filtrations requires a subdivision in R4,
and it is questionable whether reasonably-sized instances could be handled
by an extended algorithm.

As the experiments show, in some cases the cost of computing the L-bound
makes the variant with the C-bound faster. However, parallelization of the
L-bound is trivial, and we believe that on larger instances it will make the
L-bound the best choice.

Finally, since the matching distance can be computed exactly in polynomial
time [73], the question is whether there is a practical algorithm for this
exact computation. Our current implementation can serve as base-line for a
comparison between exact and approximate versions of matching distance
computations.

98

4.6 Conclusion

0 1,000 2,000 3,000 4,000 5,000

0.2

0.4

0.6

0.8

1

#calls

R
el

at
iv

e
er

ro
r

ε

ε, L-bound
ε, C-bound

Figure 4.8: Error decay for C- and L-bounds.

0 100 200 300
0

1

2

3

4

#calls

Lo
w

er
an

d
up

pe
r

bo
un

ds
,ρ

an
d

µ

ρ, C-, L-, and G-bound
µ, C-bound
µ, L-bound
µ, G-bound

Figure 4.9: Lower and upper bounds (for C- and L-bounds).

99

5 Metric Spaces with Expensive
Distances

This chapter is based on preprint [75].

5.1 Introduction

In the previous chapters we worked with concrete distances (bottleneck,
Wasserstein, matching distance). While the implementations of our algo-
rithms collected in Hera are used in practice ([91], [13]), the complexity of
the algorithms still makes them prohibitive for sizable inputs. On the other
hand, there exist special methods for computing the 0-th persistence, which
are capable of processing fairly large filtrations. As for matching distance, if
one wants a high-quality approximation, (with relative error less than 1 %),
than the run time is measured in hours even for bi-filtrations of moderate
size.

On the other hand, in applications it is typical to have not just a pair of
topological descriptors to compare, but rather a sample of them. The two
frequently appearing problems can be formalized as follows. Let P :=
{p1, . . . , pn} be a set of n points in a metric space (M, δ).

Approximate Nearest Neighbor Given ε > 0 and a point q ∈M, find pi ∈ P
such that, for all j = 1, . . . , n,

δ(q, pi) 6 (1 + ε)δ(q, pj)

Spanner Given ε > 0, compute a weighted graph G with vertices in P such
that for any u, v ∈ P, the shortest path distance between u and v is at
most (1 + ε)δ(u, v).

101

5 Metric Spaces with Expensive Distances

While both these problems are extensively studied, the common assumption
is that the cost Cδ of computing a distance in the metric space is a constant,
and the performance of algorithms is expressed in terms of the number of
points n. This assumption is motivated by the most natural setting, when
M = Rd. In situations with expensive distance computations, it makes
sense to study a different cost model, where only the number of distance
computations is taken into account. For instance, that means that quadratic
time operations in terms of n are not counted towards the time complexity,
as long as these operations do not query any distance in M. We also ignore
the space complexity in our model.

We will restrict to the case of doubling spaces, that is, the doubling dimension
of M is bounded by a constant. In that situation, standard constructions
from computational geometry provide partial answers: Using net-trees [93],
we can construct a ε-well-separated pair decomposition (WSPD) [32] us-
ing O(n log n) distance queries; a WSPD in turn yields a (1 + ε)-spanner
immediately. Net-trees can also be used to compute approximate near-
est neighbors performing O(log n) distance computations per query point.
Krauthgamer and Lee [76] investigated the black box model, and proved that
ANN search for ε < 2/5 can be done efficiently (i.e., in polylogarithmic
time, with polynomial preprocessing and space) if and only if the dimension
is O(log log n); their bounds count the number of distance computations.
However, for our relaxed cost model, we pose the question whether simpler
constructions achieve comparable, or even fewer distance computations.

We also propose a slight variant of our model: we assume that we also
have access to an (efficient) 2-approximation algorithm for the distance
queries. Queries to this approximation algorithm are not counted in the
model, hence we can assume that for each pair of points (u, v), we know a
number Au,v with δ(u, v) 6 Au,v 6 2δ(u, v). This induces an approximate
ordering of all distances in the metric space, and it is plausible to assume
that such an ordering will simplify algorithmic tasks on metric spaces, at
least in practice.

Contributions. We propose simple algorithms for spanner construction and
approximate nearest neighbor search and evaluate them theoretically and
experimentally in the defined cost model.

102

5.1 Introduction

Our algorithms are based on the following simple idea: since distance com-
putations are expensive and should be avoided, we try to obtain maximal
information out of the distances computed so far. This information consists
of lower and upper bounds for unknown distances, obtained from known
distances by triangle inequality (see Figure 5.1). We remark that updat-
ing these bounds involves Ω(n2) arithmetic operations whenever a new
distance has been computed, turning the method useless in the standard
computational model.

5

6
2 1

3

46

5

p1

p3

p4

p2

Figure 5.1: The computed distances are shown as edges in a graph. Note that the exact
distance of p1 and p2 is unknown. The shortest path from p1 to p2 has length 9,
which clearly constitutes an upper bound on the distance by triangle inequality.
However, we can also infer that δ(p1, p2) > 3: otherwise, the path from p3 to
p4 via p1 and p2 would be shorter than the edge (p3, p4), again contradicting
triangle inequality.

We propose several heuristics of how to explore the metric space to obtain
accurate lower and upper bounds with a small number of distance com-
putation. Once the ratio of upper and lower bound is at most (1 + ε) for
each point pair, the set of all computed distances forms the spanner. The
experimentally most successful exploration strategy that we found is to re-
peatedly query the distance of a pair with the worst ratio of upper and lower
bound. We call the obtained spanner the blind greedy spanner, as opposed to
the well-known greedy spanner that precomputes all pairwise distances and
only maintains upper bounds [3]. We demonstrate experimentally that on
a collection of persistence diagrams of moderate size, computing a blind
greedy spanner is faster than (approximately) computing all (n

2) distances.
Remarkably, we were not able to improve the quality when knowing ini-
tial 2-approximations of all point pairs. We also compare with a spanner
construction based on WSPD. Our simple algorithms gives much smaller

103

5 Metric Spaces with Expensive Distances

spanners on the tested examples. Nevertheless, we leave the question open
whether our construction yields a spanner of asymptotically linear size.

For approximate nearest neighbor, we devise a simple randomized incre-
mental algorithm and show that the number of distance queries needed
is O(log n) in expectation. Our proof is based on the well-known observa-
tion that the nearest neighbor changes O(log n) times in expectation when
traversing the sequence of points, combined with a packing argument cer-
tifying that only a constant number of distances needs to be computed
in-between two minima. Our experimental results match the theoretical
predictions.

5.2 Background

Doubling dimension.

Definition 5.1. A metric space is called doubling with doubling constant k, if
every ball of radius r can be covered by at most k balls of radius r/2, and k is the
smallest number having that property. The doubling dimension of a doubling space
is defined as log k (we always use log to denote the logarithm with base 2).

A subspace of a space with doubling dimension d is always of doubling
dimension 6 2d.

In the remainder of the chapter, we will assume throughout that every
considered metric space has a constant doubling dimension.

Well-Separated Pair Decomposition.

Definition 5.2. Given t > 1, two disjoint subsets A, B of a metric space (M, δ)
are called t-well-separated, if

∀a ∈ A ∀b ∈ B δ(a, b) > t max(diam(A), diam(B))

A well-separated pair decomposition (WSPD) is a set of unordered pairs of sets
{{A1, B1}, . . . , {As, Bs}} such that each pair {Ai, Bi} is t-well-separated, and for
every unordered pair {a, b} of distinct points of M there exists a unique j such that
a ∈ Aj and b ∈ Bj.

104

5.2 Background

The notion of WSPD was introduced by Callahan and Kosaraju [33] for
Euclidean spaces. Har-Peled and Mendel [93] introduced the notion of net-
trees and generalized the results of [33] for WSPD, proving the following:

1. A net-tree for a metric space with n points can be constructed in
2O(dim)n log n expected time.

2. If {{A1, B1}, . . . , {As, Bs}} is an ε/16-WSPD on M, and ai ∈ Ai, bi ∈ Bi
for i = 1 . . . s are chosen arbitrarily, then we get an ε-spanner by taking
s edges (ai, bi).

3. For ε ∈ (0, 1], an ε-WSPD of size nε−O(dim) can be constructed in
2O(dim)n log n + nε−O(dim) expected time. The algorithm uses the net-
tree structure.

The algorithm of constructing a net-tree is complicated and not easy to
implement. Beygelzimer et al. [19] introduced the notion of a cover tree,
which is a simpler data structure than net-trees. We mention in passing that
cover trees can also be used for building a spanner (this can be proven with
the same methods), and we use cover trees for building WSPD spanners in
one of our implementations.

Spanners and known constructions. Let (M, δ) be a finite metric space
with n points. One way to encode the metric space is a complete weighted
graph on M, where the weights correspond to the distances of the points.
A subgraph G of this graph is called a (1 + ε)-spanner for (M, δ) if for any
pair of points (u, v), the shortest path distance duv of u and v in G satisfies
du,v 6 (1 + ε)δ(u, v). In other words, the shortest path metric of G is a good
approximation of the actual distance for every pair of points. Clearly, it is a
necessary condition that G is connected, hence every spanner must have at
least n− 1 edges.

The greedy spanner [3] is a simple algorithm to compute linear-sized span-
ners:

function GreedySpanner(P, ε)
E← ∅
Sort all pairwise distances of points in P
for all pairs (pi, pj) in increasing order do

dij ← Shortest path distance in (P, E)
if dij > (1 + ε)δ(pi, pj) then

105

5 Metric Spaces with Expensive Distances

Add weighted edge (pi, pj, v) to E
return (P, E)

The greedy spanner is guaranteed [3] to return a spanner of size O(n) (for
constant doubling dimension and fixed ε > 0); in an experimental study [62]
it was also shown to return the sparsest graph. However, it has to compute
all (n

2) pairwise distances for sorting; this means that in our cost model, the
greedy spanner has the worst possible performance.

On the other hand, spanner constructions based on Well-Separated Pair De-
composition [33, 93] only compute O(n log n + nε−d) distances to construct
a (1 + ε)-spannerin doubling dimension d. The spanner size is O(nε−d).
Assuming ε and d again as constants, this construction yields a O(n)-size
spanner using only O(n log n) distance computations. However, the algo-
rithm is significantly more involved.

5.3 Blind spanners

We introduce a new framework for constructing spanners which we call
blind spanners: the idea is to maintain, for every pair of points (pi, pj), a
lower bound aij and an upper bound bij for δ(pi, pj), initially set to 0 and

∞, respectively. While there exists some pair for which
bij
aij

> (1 + ε), we
pick one of them, compute its distance and update the lower and upper
bounds of all pairs with respect to the newly acquired information. Here is
the pseudocode:

function BlindSpanner(P, ε)
E← ∅
ai,j ← 0 for all 1 6 i, j 6 n
bi,j ← ∞ for all 1 6 i, j 6 n, i 6= j
while ∃i 6= j : bi,j/ai,j > 1 + ε do

(i, j)← GetNextEdgeToAdd()
v← δ(pi, pj)
Add weighted edge (pi, pj, v) to E
UpdateBounds(i, j, v)

106

5.3 Blind spanners

In this pseudocode we adopt the convention that a positive number divided
by 0 is ∞ and ∞ is larger than any real number, thus making the predicate
in the while loop well-defined.

We give the details of the UpdateBounds procedure next. Suppose that
δ(pi, pj) = v ∈ R has been computed. First, we reset ai,j, aj,i, bi,j and bj,i to
v, since the distance of pi and pj is exactly v. To update the upper bound of
some entry bk,`, we observe that the shortest path from pk to p` might now
go through the new edge. Hence, we update

bk,` ← min
i,j
{bk,`, bk,i + v + bj,`, bk,j + v + bi,`}

Repeating this for all k, ` yields the updated upper bounds. Note that this
results in O(n2) arithmetic operations, but no distance computation.

For the lower bound, we observe that for any 1 6 k, ` 6 n,

v− bk,i − b`,j

is a lower bound for δ(pk, p`). Indeed, this follows from the triangle inequal-
ity

δ(pi, pj) 6 δ(pi, pk) + δ(pk, p`) + δ(p`, pj)

by rearranging terms and plugging in the upper bounds for δ(pi, pk) and
δ(pk, p`). An analogue bound holds with i and j swapped.

Moreover, the inequalities

aj,` − v− bk,i 6 δ(pk, p`)

aj,k − v− bj,i 6 δ(pk, p`)

hold by triangle inequality, and the same is true with i and j swapped. This
yields six lower bounds for δ(pk, p`), and ak,` is updated to the maximum
of these six lower bounds and its current value.

Heuristics. The last missing ingredient of our algorithm is the procedure
GetNextEdgeToAdd, that is, how to select the next distance to be computed.
We propose two natural choices

BlindRandom Among all pairs (i, j) where
bi,j
ai,j

> (1 + ε), we pick one
uniformly at random

107

5 Metric Spaces with Expensive Distances

BlindGreedy Pick the pair (i, j) which maximizes the ratio
bi,j
ai,j

. If the maxi-
mizing pair is not unique, choose among the maximizing pairs uni-
formly at random.

The idea behind BlindGreedy is that we query an edge for which we know
the least, in that way hoping to gather most additional information about
the metric space. Also, our conventions imply that in BlindGreedy the
edges with ai,j = 0 or bi,j = ∞ have the highest priority, so the algorithm
first ensures that the graph is connected and there are positive lower bounds
for every edge before it will start adding any other edges. Based on this
observation, we also tested variations of the BlindRandom algorithm,
where the algorithm first enforces connectedness and/or lower bounds (i.e.,
if there are infinite upper bounds, then the algorithm can only choose one
of the corresponding edges, etc).

The next two heuristics assume the existence of a 2-approximation algorithm
for distance computation. Denoting by Ai,j the number satisfying δ(pi, pj) 6
Ai,j 6 2d(pi, pj), we sort all pairwise distances according to the values Ai,j.
This yields a roughly sorted sequence of distance, because when δ(pi, pj) >
2δ(pk, p`), then Ai,j > Ak,` is guaranteed. We propose two further heuristics
that attempt to make use of this sorted sequence.

BlindQuasiSortedGreedy Traverse the pairs in increasing order with re-
spect to Ai,j.

BlindQuasiSortedShaker Alternates between pairs with small and large
Ai,j by traversing in increasing order of Ai,j in odd iterations and in
decreasing order in even iterations.

BlindQuasiSortedGreedy tries to mimic the greedy spanner and hence
appears as a natural choice at first sight. However, anticipating the experi-
mental results, the heuristic yields very poor results. The reason is that no
pair acquires useful lower bounds when only short distance are queried (the
greedy spanner does not have this issue because it knows the distance and
hence does not need lower bounds). Generally speaking, short distances
are good for sharp upper bounds, whereas long distances are useful for
lower bounds. This motivates BlindQuasiSortedShaker which alternates
between short and long distances.

108

5.4 Experiments on spanners

5.4 Experiments on spanners

We performed two types of experiments: on points sampled from a low-
dimensional Euclidean space and on persistence diagrams with q-Wasserstein
distance Wq. Clearly, our model is not meaningful in Euclidean spaces be-
cause distance computations are cheap. However, in this case we can easily
check the performance of our heuristics on a variety of easily controllable
data sets. In order to test the BlindQuasiSorted algorithms, we multiply
the true distance by a factor from [1, 2] chosen uniformly. By sparseness of a
graph with n vertices we always mean the number of edges of the graph
divided by (n

2), the number of edges in the complete graph on n edges.

We tested the algorithms for ε ∈ { 0.01, 0.1, 0.2, 0.5 } on the following sets of
points in dimensions d = 2, 3, 4, 5:

1. In the uniform test set points are sampled uniformly at random from
the unit cube in Rd.

2. In the normal test set points are sampled from the standard normal
distribution in Rd.

3. In the clustered test set we first sample cluster centers uniformly at
random from [0, 10000]d, and then we add normally distributed noise
around each of the centers. The number of clusters is chosen so that
each cluster contains 50 points.

4. The test set exp consists of points of the form (2ξ1 , . . . , 2ξd), where ξi’s
are i.i.d. random variables with uniform distribution on [1, 25].

In addition to the standard Euclidean norm on Rn, we used also `1 and `∞
norms. In all these experiments, the algorithms that we tested compared
in the same way, so we only present results for the uniform point set in
dimension 2.

Figure 5.2 shows the number of edges of the spanner for various variants
of blind and non-blind spanner constructions. Note that for all blind span-
ner variants, the number of computed distances is equal to the spanner
size, while for the non-blind greedy spanner, this number is always (n

2)
and for WPSD it is lower bounded by the size of the spanner. We can see
that, even though none of the blind spanners produces spanners of the

109

5 Metric Spaces with Expensive Distances

same quality as the standard greedy algorithm, BlindGreedy and all vari-
ants of BlindRandom perform significantly better than both variants of
BlindQuasiSorted.

WSPD spanners performed poorly in our experiments on non-clustered
data. We implemented two versions of WSPD: one for the Euclidean case,
using quad-trees and the algorithm from [66], and WSPD for general metric
spaces with cover trees (using the base τ = 1.3). They both give similar
results, and we can only conclude that the advantage of WSPD shows up
on larger point sets than the ones we deal with.

200 400 600 800

0

1

2

3
·105

Points

#
Ed

ge
s

Blind quasi-sorted greedy
Blind quasi-sorted shaker

WSPD
Blind random

Blind random, lower bound first
Blind greedy

Greedy

Figure 5.2: Number of edges in blind spanners generated by different variants of the blind
algorithm. Greedy non-blind algorithm and WSPD algorithm are included for
comparison. The plot is for uniformly distributed points in dimension 2, ε = 0.1.

From our experiments, we conclude that the algorithm with the highest
chance of saving a significant amount of distance computations on real data
is BlindGreedy. Even though BlindRandom also substantially reduces the
number of computed distances, its performance is worse; other algorithms
that we tested do not produce sparse spanners. While it would seem plausi-
ble that access to approximate value of the distance could be exploited in

110

5.4 Experiments on spanners

q = 1 q = 2 q = 3

Greedy Bl. greedy Greedy Bl. greedy Greedy Bl. greedy

ε = 0.1 0.14 0.28 0.32 0.72 0.41 0.78

ε = 0.2 0.06 0.19 0.13 0.44 0.20 0.52

ε = 0.5 0.02 0.10 0.03 0.20 0.05 0.27

Table 5.1: Sparseness of BlindGreedy and Greedy spanners for 450 original persistence
diagrams with Wasserstein distance Wq.

q = 1 q = 2 q = 3

Br.-force Bl. greedy Br.-force Bl. greedy Br.-force Bl. greedy

ε = 0.1 2605 1266 3719 4085 11781 13557

ε = 0.2 2209 878 3338 2574 10541 9383

ε = 0.5 1744 483 2835 1233 9418 5146

Table 5.2: Time required to approximate all pairwise distances with BlindGreedy algo-
rithm, compared to brute-force. Data is for 450 original persistence diagrams
with Wasserstein distance Wq, time in seconds.

the spanner construction, we could not find a working heuristic; BlindQua-
siSortedGreedy and BlindQuasiSortedShaker produce extremely dense
spanners. More data from experiments in Rn can be found in Section 5.5.

The other data sets that we used are the persistence diagrams computed
from the McGill shape benchmark [106]. More precisely, we generated two
sets of diagrams, original and perturbed. The original diagrams were computed
on the points of the 450 original point clouds from the shape data set; we
only used persistence in dimension 0, since the diagrams in this dimension
are larger in size. For the perturbed data set, we added random noise to points
of the original shapes, creating 10 modified versions of each of them; then
we computed persistence diagrams in dimension 0 of these modified shapes.
Persistence diagrams were computed with the DIPHA library [7]. Wasser-
stein distance were computed approximately with the software library Hera

using a relative error of 0.01. We restricted to approximate computation

111

5 Metric Spaces with Expensive Distances

because computing the Wasserstein distance exactly (using the Hungarian
algorithm) has been reported to be very expensive [72].

Sparseness values of BlindGreedy spanner on the whole original data set for
different values of ε and q are presented in Table 5.1; the Greedy algorithm is
used as baseline. We observe that for higher values of q the advantage of our
algorithm fades away. A plausible explanation is that for higher values of q,
the doubling dimension becomes larger; this is confirmed by the increase in
size of the greedy spanner. For W1 we observe more encouraging figures,
avoiding 70 % of distance computations for ε = 0.1; for a 1.5-approximation,
we reduce the number of distances computed by a factor of 10.

0 200 400 600 800

0

0.2

0.4

0.6

Diagrams

#
Ed

ge
s

/
#

A
ll

di
st

an
ce

s

Greedy, ε = 0.1
Blind greedy, ε = 0.1

Greedy, ε = 0.2
Blind greedy, ε = 0.2

Greedy, ε = 0.5
Blind greedy, ε = 0.5

Figure 5.3: Sparseness of BlindGreedy spanner algorithm. The plot is for perturbed persis-
tence diagrams, ε = 0.1, 0.2, 0.5 with W1 distance.

We also compare the time that is needed to compute the matrix of all pair-
wise distances naively with the time that is needed to approximate it with
BlindGreedy spanner. The timings are given in Table 5.2. We compared
our approach for a fixed ε with the time to compute all pairwise-distance
between the persistence diagrams using Hera, using the same approxima-
tion parameter ε. Let us emphasize that the diagrams we have are rather
small, with average cardinality 350 points. Nevertheless, on this data set
BlindGreedy spanner provides a substantial improvement in terms of real
running time, and we expect this advantage to grow for diagrams of larger
cardinality.

112

5.5 Additional Experimental Results on Spanners

In order to see the growth of the spanner size, we use the perturbed data set,
drawing from it random samples. We plot the sparseness of the spanners
obtained by Greedy and BlindGreedy algorithms in Figure 5.3 for different
values of ε, always using the W1 distance. As expected, the ratio of computed
distances decreases as the number of diagrams grows. In Figure 5.4 we
show the growth of the spanner size relative to the number of diagrams.
For ε = 0.5 the BlindGreedy spanner starts to stabilize (i.e., demonstrates
linear growth) for larger values of n.

0 200 400 600 800
0

10

20

30

40

50

Diagrams

#
Ed

ge
s

/
#

D
ia

gr
am

s

Greedy, ε = 0.2
Blind greedy, ε = 0.2

Greedy, ε = 0.5
Blind greedy, ε = 0.5

Figure 5.4: Ratio # edges / # diagrams for BlindGreedy spanner. The plot is for 0-
dimensional diagrams of perturbed McGill data ε = 0.1, 0.2, 0.5 with W1 dis-
tance.

5.5 Additional Experimental Results on Spanners

In this section we include plots that give more information about the behav-
ior of BlindGreedy spanner in Euclidean space.

Figure 5.5 shows the ratio of the number of edges to the number of points.
The ideal behavior is demonstrated by the non-blind greedy spanner, for
which this ratio stays practically constant, confirming the linear growth.
None of the blind algorithms seems to have this property, but among
them the BlindGreedy spanner is the best one. If we assume that the
number of edges is proportional to nα, then we can try to estimate α by

113

5 Metric Spaces with Expensive Distances

200 400 600 800

10

20

30

40

Points

#
Ed

ge
s

/
#

Po
in

ts
Blind random, lower bound first

Blind greedy
Greedy

Figure 5.5: Ratio # edges / # points for different variants of spanner algorithms. The plot is
for normally distributed points in dimension 2, ε = 0.1.

Figure 5.6: Results of BlindGreedy spanner for different dimensions.

114

5.6 Approximate nearest neighbors

linear regression (after taking log). We give in Table 5.3 the estimated
exponents α for BlindGreedy and standard greedy algorithms. Note that
even for the greedy algorithm these estimated exponents can be significantly
larger than 1, which is explained by the fact that the number of points on
which we computed spanners is not large enough to clearly see the linear
dependence.

The plot in Figure 5.6 compares performance of BlindGreedy in different
dimensions. We see that already in dimension 4, it produces a graph with
roughly 1

2(
n
2) edges for 700 points, which clearly shows some degrading for

higher dimensions.

The plot in Figure 5.7 compares the BlindGreedy and Greedy algorithms
on uniform point sets for different choices of ε. Dependence on ε is approx-
imately the same for both algorithms. Since it is not clearly seen from the
picture, we also note that the ratio of the number of edges decreases for
smaller values of ε: for ε = 2 the blind greedy spanner contains almost 6

times more edges than the greedy spanner, while for ε = 1/32 the ratio is
2.6

5.6 Approximate nearest neighbors

We consider the standard problem of finding an approximate nearest neigh-
bor: given n points P = { p1, . . . , pn }, a query point q and a real number
ε > 0, find pi such that δ(pi, q) 6 (1 + ε)mink δ(q, pk). We also use the
shorthand notation

ri := δ(pi, q).

dimension Greedy (non-blind) Blind greedy
2 1.08 1.12

3 1.24 1.41

4 1.42 1.77

Table 5.3: Estimated exponents in the |E| = C|V|α dependence of the number of edges on
the number of points. The data is for ε = 0.1 and for uniform points.

115

5 Metric Spaces with Expensive Distances

0 0.5 1 1.5 2
0

2,000

4,000

6,000

epsilon

#
Ed

ge
s

Greedy, dim = 2

Blind greedy, dim = 2

Figure 5.7: Number of edges in the blind greedy and greedy spanners for different values
of ε. Data is for 400 normally distributed points in R2 and R3.

We assume for simplicity that all exact pairwise distances δ(pi, pj) are
already computed (a slight modification of the algorithm can also be applied
if only a spanner is available). Our goal is to reduce the number of computed
distances δ(pi, q) involving the query point q.

Our approach can be summarized as follows. Fix a random permutation of
the points of P and consider the points in that order (to simplify notation,
we re-index them, so the order is again p1, . . . , pn). During the loop, we
maintain lower bounds of each pi to the query point q, which are initially all
set to 0. We also remember the closest neighbor c that we have seen so far
and its distance v to q. We refer to the point c as the candidate. We maintain
the invariant that c is an approximate nearest neighbor to q for the points
{p1, . . . , pi}. When reaching the point pi, we check whether the lower bound
ai satisfies ai >

v
1+ε . If so, c remains an approximate nearest neighbor and

we do not query the distance of pi to q. Otherwise, we compute δ(pi, q) and
update the lower bounds of all points according to the newly computed
distance. If pi is closer to q than c, we update c and v accordingly. At the
end of the loop, c is an approximate nearest neighbor. The pseudocode
follows.

116

5.6 Approximate nearest neighbors

function ApproximateNearestNeighbor(P, q, ε)
[p1, . . . , pn]← random permutation of P
ai ← 0 for i = 1, . . . , n . ai is lower bound for δ(pi, q)

c← p1, v← δ(p1, q) . c keeps the current candidate
UpdateBounds(p1, v)
for i = 2 . . . n do

if ai >
v

1+ε then
continue

else
Compute ri = δ(pi, q)
UpdateBounds(pi, ri)
if ri < v then

c← pi, v← ri

return c, v

We remark that we obtain an exact nearest neighbor algorithm when setting
ε to 0, which means replacing the condition in the if-statement of the loop
with ai > v.

The procedure to maintain the lower bounds ai is very simple and follows
directly from triangle inequality.

procedure UpdateBounds(pi, ri)
for k = i + 1, . . . , n do

ak ← max(ak, |δ(pi, pk)− ri|)

Theorem 5.3. If (M, δ) is a doubling space, then, for any fixed ε > 0 the algorithm
computes O(log n) distances δ(pi, q) in expectation.

The full proof is given in Section 5.7, and we only sketch the main ideas
here. First, we notice that points “far away” from the current candidate c
can be disregarded in the algorithm. More precisely, if pi is outside of the
ball of radius 2δ(c, q) centered at c, the lower bound for pi will be so large
that the distance to of pi to q does not have to be queried. Second, whenever
a distance of q to some pj is computed, we can disregard all points “very
close” to pj. Precisely, points in a ball of radius εδ(pj, q) will not invalidate
the current candidate to be an approximate nearest neighbor and hence, no
distance query for such points is needed.

117

5 Metric Spaces with Expensive Distances

Now, traversing the points P in random order, we call a point a minimum if
it is closer to q than all previous points. Note that minima do not necessarily
correspond to the candidates in the algorithm because we look for an ap-
proximate neareast neighbor only. Standard backwards analysis [95] shows
that the expected number of minima encountered is O(log n). The first two
ideas together with a packing argument show that between two consecutive
minima, the algorithm queries only a constant number of distances, and the
bound follows.

The proof strategy fails for ε = 0 because the ε-ball around pj as described
above degenerates, and the packing argument fails. Indeed, as the example
in Figure 5.9 (in Section 5.7) shows, there are point sets where the expected
number of distance computations for exact nearest neighbor is linear.

Finally, a fast 2-approximation algorithm for δ leads to a straight-forward
optimization: compute a 2-approximation of δ(pi, q) for all 1 6 i 6 n and
let m denote the minimal approximate distance encountered. Then, we can
discard all points whose approximate distance is larger than 2m, and run
the above algorithm on the remaining points.

5.7 Proof of theorem 5.3

The following lemma is just a reformulation of the well-known packing
lemma for doubling spaces (see [98], Sect. 2.2).

Lemma 5.4. Let (M, δ) be a metric space of doubling dimension d, and let P be
a subset of a ball B(x, R) in M such that the distance between any two distinct
points of P is at least r. Then

|P| 6
(

4R
r

)d

Proof. We can cover B(x, R) with 2d ball of radius R/2, each of these balls
we can cover with 2d balls of radius R/4, etc. Repeating this process m :=

118

5.7 Proof of theorem 5.3

dlog R
r/2e times, we cover B(x, R) with 2md balls of radius at most r/2. Since

a ball of radius r/2 can contain at most one point from P,

|P| 6 2md = 2dlog R
r/2 ed 6 2(1+log R

r/2)d =

(
4R
r

)d
.

Lemma 5.5. Assume ri = δ(pi, q) is computed in the algorithm, and let j > i.

1. If δ(pi, pj) > (1 + 1
1+ε)ri, the algorithm will not compute the distance of pj

to q.
2. If δ(pi, pj) 6

ε
1+ε ri, the algorithm will not compute the distance of pj to q.

Lemma 5.5 can be summarized as follows: if δ(pi, q) is computed in the
algorithm, further distance computations of points very close to pi or very
far from pi will be avoided.

r2 + r1/(1 + ε)

q
r1/(1 + ε) p2

p3

p4

p5

p6p7p8p9

p1

Figure 5.8: First two steps of the ANN algorithm. The small black ball between the dashed
circle and the solid circle has radius v1ε/(1 + ε); it is the ball that we use in the
packing argument, because it is smaller than any of the lightly shaded balls that
correspond to points like p2 and p4, that is, the points that do not improve v.

119

5 Metric Spaces with Expensive Distances

Proof. The algorithm computes ri by assumption and updates all lower
bounds. For pj, it sets aj ← max(aj, |δ(pi, pj)− ri|). If δ(pi, pj) > (1 + 1

1+ε)ri,
it follows that

aj > (1 +
1

1 + ε
)ri − ri =

ri

1 + ε
.

Likewise, if δ(pi, pj) 6
ε

1+ε ri,

aj > ri − δ(pi, pj) > ri −
ε

1 + ε
ri =

ri

1 + ε
.

Figure 5.9: Example of a point set where exact nearest neighbor search cannot be accelerated
by maintaining bounds. The exact nearest neighbor is the point p1, next point
pi is placed in the curvilinear triangle formed by the balls around the query
point, p2 and pi−1. Even verifying that p1 is the true nearest neighbor cannot be
done without computing all distances δ(pi, q). Indeed, every computed δ(pi, q)
allows to exclude the region in the corresponding ball around pi, but all these
balls contain only one pi.

120

5.7 Proof of theorem 5.3

In both cases, after the point pi is handled, v 6 ri clearly holds. Since v is
only decreasing and aj is only increasing in the algorithm, it follows that
aj >

v
1+ε when pj is handled, so the algorithm proceeds without a distance

computation.

In Figure 5.8 we illustrate this. First, p1 is chosen as the current candidate,
and we must compute δ(p2, q). After that the algorithm will not compute
distance to any of the points inside the heavily shaded ball or outside the
lightly shaded ball that are centered at p2, because their lower bounds allow
us to discard them.

In what follows, we let ci denote the candidate at the end of the i-th iteration
of the loop, and vi the distance to δ(ci, q), i = 1, . . . , n. Clearly, v1, . . . , vn is
a decreasing sequence. With the previous lemma, we can derive an upper
bound for the number of distance computations in an arbitrary subsequence
of p1, . . . , pn as follows.

Lemma 5.6. Among the points pk, . . . , p` with 1 6 k < ` 6 n, the algorithm
computes at most (

4(2 + ε)vk
εv`

)d

distances to q.

Proof. By the first part of Lemma 5.5, every point in pk, . . . , p` whose dis-
tance to q is queried lies in the ball of radius (1 + 1

1+ε)vk =
2+ε
1+ε vk around ck.

Moreover, if the distance of two points pi and pj with k 6 i < j 6 ` is com-
puted, the second part of Lemma 5.5 implies that δ(pi, pj) >

ε
1+ε ri >

ε
1+ε v`.

Hence, all points in pk, . . . , p` for which the algorithm computes the distance
have a pairwise distance of at least ε

1+ε v`. The statement follows by applying
Lemma 5.4. See Figure 5.8.

A consequence of the lemma is that as long as a candidate c is fixed in the
algorithm, the number of computed distances is a constant (since vk = v`).
This means that to prove theorem 5.3, it would suffice to show that the
candidate changes only a logarithmic number of times in expectation. Let us
consider Figure 5.8 again. Notice that the point p5, which is closer to q than
p1, also will not be a candidate, and at least one of the points p6, p7, p8, p9

121

5 Metric Spaces with Expensive Distances

in the annulus between the dashed and solid circle, which are farther from
q than p5, will be chosen as c. This shows that in our algorithm the distance
from the candidate to q can drop slower than in the brute-force algorithm,
thus theorem 5.3 does not immediately follow from standard backwards
analysis, and we need to modify it slightly.

Proof. (of theorem 5.3) In the sequence p1, . . . , pn, let pk be a point such that
ri < rk for all 1 6 i 6 k− 1. We call an element of this form a minimum of
the sequence. A standard backwards analysis argument [95] shows that the
probability of pk being a minimum is at most 1/k, so that the number of
minima in the sequence is O(log n) in expectation.

Note that for ε > 0, a minimum pk is not necessarily the candidate ck
because a previous point in the sequence close to pk might have caused the
lower bound ak to be in the interval [vk

1+ε , vk], which leads to not computing
the distance rk. However, it is true that vk 6 (1 + ε)rk, because otherwise, ck
would not be an approximate nearest neighbor of {p1, . . . , pk}.

Now, let pk, p` be two consecutive minima in the sequence (we also allow
that ` = n + 1 if k is the last minimum in the sequence). Note that v`−1 > rk
because each vj is equal to ri for some i 6 j, and in the sequence r1, . . . , r`−1,
rk is minimal by construction. Using Lemma 5.6, the number of distance
computations among the points pk, . . . , p`−1 is at most(

4(2 + ε)vk
εv`−1

)d

6
(

4(2 + ε)(1 + ε)rk
εrk

)d

=

(
4(2 + ε)(1 + ε)

ε

)d

,

which is a constant depending only of ε and d, irrespective of the length of
the sequence. Since p1, . . . , pn decomposes into O(log n) such sequences in
expectation, the result follows.

5.8 Experiments on approximate nearest
neighbors

In order to experimentally evaluate the performance of our algorithm, we
generate random point sets and random query points, and for each query

122

5.8 Experiments on approximate nearest neighbors

point run the algorithm 10 times. The average number of distances to
the query point that were actually computed is the measure that we are
interested in. We average the results over 10 different instances of the point
set and query point in order to see the trend clearer; thus each point on the
plots in this section is the result of averaging of 100 runs of the code (10
instances, 10 random permutations per instance).

Figure 5.10: Ratio
computed distances/ log(n)
for ANN algorithm. Data
is for uniformly distributed
points.

Figure 5.11: Number of computed dis-
tances for different dimen-
sions. Points are chosen uni-
formly, ε = 0.01.

We used the following methods of generating random points:

1. Uniform. Points are sampled uniformly at random from the unit cube
in Rd.

2. Normal. Points are sampled from the normal distribution.

Query points were sampled from the uniform distribution on the cube
[−10, 10]d and from the normal distribution centered at the origin with
scale 100, thus we get query points that are ”inside” the point set and
also ”outside”. We sample data in dimensions up to 20 and for ε ∈
{ 0.001, 0.005, 0.01, 0.05, 0.1 }, the maximal number of points is 30, 000.

In order to empirically verify the upper bound O(log n), we plot the number
of computed distances divided by the logarithm of the number of points
in Figure 5.10 (for d = 2). We see that this ratio, though fluctuating a
lot, remains in the interval [1, 4]. This not just confirms the theoretical
upper bound, but also shows that the algorithm in the low-dimensional

123

5 Metric Spaces with Expensive Distances

case really computes only a very small number of distances to the query
point. As expected, in high dimensions the algorithm does not perform as
well. In Figure 5.11 we plot the average number of computed distances for
d = 2, 5, 10. While for d = 2 the growth is hardly noticeable, for d = 10 the
sublinearity of the growth becomes clear only when the number of points is
relatively large, approaching 30000.

Similar experiments were performed on perturbed data set of persistence
diagrams, which was described in Section 5.4. For a given number n, we
randomly select n diagrams from the data set and from the remaining
diagrams we randomly choose 20 query points. In Figure 5.12 we plot the
average ratio of computed distances to log(n) for W1 and W2 metrics. The
average ratio appears to fluctuate around 7 for W1 and around 8 for W2,
which even makes the algorithm reasonable for practical application, if
pairwise distances are already available.

0 1,000 2,000 3,000 4,000

6

7

8

9

10

Diagrams#
C

om
pu

te
d

di
st

an
ce

s
/

lo
g(

#
D

ia
gr

am
s)

Average ratio, W1
Average ratio, W2

Figure 5.12: Ratio # computed distances/n for ANN algorithm. The plot is for perturbed
persistence diagrams, ε = 0.01 with W1 and W2 metrics.

124

5.9 Conclusion and future work

5.9 Conclusion and future work

We have introduced a new cost model for the analysis of algorithms for
metric spaces that fits the situation that computing an individual distance
is more costly than other types of primitive operations. Our theoretical re-
sults assume that the metric space has a low doubling dimension. However,
in our motivating example of collections of persistence diagrams or Reeb
graphs, this assumption does not hold. For instance, the space of persis-
tence diagrams has an infinite doubling dimension; see also Section 5.10.
Nevertheless, realistic data sets are usually not just a random sample in
that infinite-dimensional space, but have structures (e.g. clusters of close-by
diagrams) which should be favorable for our approach. Moreover, the size of
the BlindGreedy spanner can itself be considered as a piece of information
about the dimensionality of the data set under consideration.

In particular, our experiments on real persistence diagrams show that the
blind spanner can significantly accelerate computation of all pairwise dis-
tances. We must admit that, while in our theoretical model we completely
ignore dependency on the number of points n, the Ω(n3) complexity of
our algorithms makes it practically non-competitive, when n becomes large.
On the other hand, this overhead is relatively easy to estimate in advance,
just by knowing n, and make a decision, whether BlindGreedy is worth
trying.

On the theoretical side, the obvious next question is whether our strategy for
blind spanners yields a linear spanner in expectation. It has been brought
to our attention1 that the size of the blind spanner is upper bounded by the
weight of the WSPD which is the sum of the cardinalities of all pairs in a
WSPD. The weight of a WSPD can be quadratic, but preliminary experi-
mental evaluation on worst-case examples do not show such a quadratic
behavior. Therefore, we postpone the theoretical analysis of the spanner
construction to an extended version of this article.

The existence of a 2-approximation algorithm did not help us to signifi-
cantly reduce the number of exact distance computations, although it seems

1Yusu Wang, personal communication

125

5 Metric Spaces with Expensive Distances

obvious that knowing the all approximate distances is useful. We pose the
question what heuristic could make more use of this feature.

5.10 Appendix: remark on doubling dimension

We provide examples showing that the maps function f 7→ Dgm(f) and
function f 7→ R(f) can increase the doubling dimension by the largest
possible factor.

Let n be an integer. Define a piecewise-linear function fn : [0, 1] → R as
follows: f is linear on [0, 1/2] and on [1/2, 1], and fn(0) = 0, fn(1/2) = n,
fn(1) = n− 1. As a finite metric space under sup-norm, the set { fn | n > 2}
is isometric to N (‖ fi − f j‖∞ = |i− j|), hence this set is 1-dimensional. The
0-dimensional persistence diagram Dn := Dgm0(fn) of fn (with sublevel
filtration) consists of two points: (0, ∞) for the connected component of the
left branch, and (n− 1, n) for the component of the right branch. It is easy
to see that the bottleneck distance between Di and Dj is 1/2 for all i 6= j.
Therefore the doubling dimension of the set {Dn | n = 1, . . . , k} is log k, the
highest possible. Thus, the functions fi provide an example of our claim for
the map function 7→ its persistence diagram.

It takes a bit more work to construct a similar example for Reeb graphs or
merge trees. We will do it for merge trees, using the interleaving distance
defined in definition 2.37. First, for a fixed A > 0, let g0 be a piecewise-linear
function defined by g0(A) = A and g0(x) = 0 for x ∈ (−∞, 0] ∪ [2A,+∞).
Put gi(x) = g(x + i). For each k ∈ N, we can find some large enough
A such that ‖gi − gj‖ = |i − j| for all 1 6 i, j 6 k. Thus the functions gi
form a 1-dimensional discrete metric space, and they all have the same
merge tree: MT(gi) = MT(gj). Second, given a merge tree T, we can always
construct a function f such that MT f = T. See Figure 5.13 for an example
(digression: this fact can be used for visualization of a function on some
high-dimensional domain by a function defined on a rectangle, see [105]).

Third, for each a > 0, it is easy to construct a collection of merge trees Ti
such that DI(Ti, Tj) = a, see Figure 5.14.

126

5.10 Appendix: remark on doubling dimension

Figure 5.13: Given a merge tree T, it is always possible to construct a function f whose
merge tree is T.

Figure 5.14: Equidistant family of merge trees.

Now, from a collection Ti we can construct the corresponding functions hi.
Appending these functions to the functions gi, we get the desired family of
functions fi: on the one hand, the shifts of the large peaks in gi ensure ‖ fi −
f j‖ = |i− j|, on the other hand, DI(MT(fi),MT(f j)) = a, because attaching
the common tree of gi to the trees of hi does not change the interleaving
distance. An illustration of the construction is shown in Figure 5.15.

Figure 5.15: Idea of constructing fi. The left part shows the graphs of g1, g3, before the
identification process that computes the merge tree. The right part shows the
merge trees of h1, h3; their graphs have already been collapsed to merge trees.

127

Bibliography

[1] Pankaj K. Agarwal and R. Sharathkumar. “Approximation algo-
rithms for bipartite matching with metric and geometric costs.” In:
Symposium on Theory of Computing, STOC 2014, New York, NY, USA,
May 31 - June 03, 2014. 2014, pp. 555–564.

[2] Pankaj K. Agarwal et al. “Computing the Gromov-Hausdorff Dis-
tance for Metric Trees.” In: ACM Trans. Algorithms 14.2 (Apr. 2018),
24:1–24:20. issn: 1549-6325.

[3] Ingo Althöfer et al. “On sparse spanners of weighted graphs.” In:
Discrete & Computational Geometry 9.1 (1993), pp. 81–100.

[4] Alexander Andrievsky and Andrei Sobolevskii. WANN: An Imple-
mentation of Weighted Nearest Neighbor Search. Manual, available at
http://www.mccme.ru/~ansobol/otarie/software.html. 2008.

[5] Ulrich Bauer, Xiaoyin Ge, and Yusu Wang. “Measuring distance
between Reeb graphs.” In: Proceedings of the thirtieth annual symposium
on Computational geometry. ACM. 2014, p. 464.

[6] Ulrich Bauer, Michael Kerber, and Jan Reininghaus. “Clear and
compress: Computing persistent homology in chunks.” In: Topological
methods in data analysis and visualization III. Springer, 2014, pp. 103–
117.

[7] Ulrich Bauer, Michael Kerber, and Jan Reininghaus. “Distributed
computation of persistent homology.” In: 2014 proceedings of the
sixteenth workshop on algorithm engineering and experiments (ALENEX).
SIAM. 2014, pp. 31–38.

[8] Ulrich Bauer, Claudia Landi, and Facundo Memoli. “The Reeb Graph
Edit Distance is Universal.” In: arXiv preprint arXiv:1801.01866 (2018).

129

http://www.mccme.ru/~ansobol/otarie/software.html

Bibliography

[9] Ulrich Bauer and Michael Lesnick. “Induced matchings of barcodes
and the algebraic stability of persistence.” In: Proceedings of the thirti-
eth annual symposium on Computational geometry. ACM. 2014, p. 355.

[10] Ulrich Bauer and Michael Lesnick. “Persistence Diagrams as Dia-
grams: A Categorification of the Stability Theorem.” In: arXiv preprint
arXiv:1610.10085 (2016).

[11] Ulrich Bauer, Elizabeth Munch, and Yusu Wang. “Strong Equiva-
lence of the Interleaving and Functional Distortion Metrics for Reeb
Graphs.” In: 31st International Symposium on Computational Geome-
try (SoCG 2015). Schloss Dagstuhl-Leibniz-Zentrum fuer Informatik.
2015.

[12] Ulrich Bauer et al. “Phat - Persistent Homology Algorithms Toolbox.”
In: J. Symb. Comput. 78 (2017), pp. 76–90.

[13] Francisco Belchi et al. “Lung topology characteristics in patients
with chronic obstructive pulmonary disease.” In: Scientific reports 8.1
(2018), p. 5341.

[14] Mark de Berg et al. Computational Geometry: Algorithms and Applica-
tions. 3rd ed. Santa Clara, CA, USA: Springer-Verlag TELOS, 2008.
isbn: 978-3540779735.

[15] Dimitri Bertsekas. A distributed algorithm for the assignment problem.
Tech. rep. Laboratory for Information and Decision Sciences, MIT,
1979.

[16] Dimitri Bertsekas. “The auction algorithm: A distributed relaxation
method for the assignment problem.” In: Annals of Operations Research
14.1 (1988), pp. 105–123.

[17] Dimitri Bertsekas and David Castañon. “Parallel synchronous and
asynchronous implementations of the auction algorithm.” In: Parallel
Computing 17.6 (1991), pp. 707–732.

[18] Dimitri Bertsekas and David Castañon. “The auction algorithm for
the transportation problem.” English. In: Annals of Operations Research
20.1 (1989), pp. 67–96. issn: 0254-5330.

130

Bibliography

[19] Alina Beygelzimer, Sham Kakade, and John Langford. “Cover Trees
for Nearest Neighbor.” In: Proceedings of the 23rd International Confer-
ence on Machine Learning. ICML ’06. Pittsburgh, Pennsylvania, USA:
ACM, 2006, pp. 97–104. isbn: 1-59593-383-2.

[20] Silvia Biasotti et al. “A new algorithm for computing the 2-dimensional
matching distance between size functions.” In: Pattern Recognition
Letters 32.14 (2011), pp. 1735–1746.

[21] Håvard Bakke Bjerkevik. “Stability of higher-dimensional interval de-
composable persistence modules.” In: arXiv preprint arXiv:1609.02086
(2016).

[22] Håvard Bakke Bjerkevik, Magnus Bakke Botnan, and Michael Kerber.
“Computing the interleaving distance is NP-hard.” In: arXiv preprint
arXiv:1811.09165 (2018).

[23] Håvard Bjerkevik, Magnus Botnan, and Michael Kerber. “Computing
the interleaving distance is NP-hard.” arXiv:1811.09165.

[24] Jean-Daniel Boissonnat, Tamal K Dey, and Clément Maria. “The
compressed annotation matrix: An efficient data structure for com-
puting persistent cohomology.” In: European Symposium on Algorithms.
Springer. 2013, pp. 695–706.

[25] Magnus Bakke Botnan and William Crawley-Boevey. “Decompo-
sition of persistence modules.” In: arXiv preprint arXiv:1811.08946
(2018).

[26] Magnus Botnan and Michael Lesnick. “Algebraic stability of zigzag
persistence modules.” In: Algebraic & geometric topology 18.6 (2018),
pp. 3133–3204.

[27] Alexander M Bronstein, Michael M Bronstein, and Ron Kimmel. “Effi-
cient computation of isometry-invariant distances between surfaces.”
In: SIAM Journal on Scientific Computing 28.5 (2006), pp. 1812–1836.

[28] Peter Bubenik. “Statistical topological data analysis using persistence
landscapes.” In: The Journal of Machine Learning Research 16.1 (2015),
pp. 77–102.

[29] Peter Bubenik and Jonathan A Scott. “Categorification of persistent
homology.” In: Discrete & Computational Geometry 51.3 (2014), pp. 600–
627.

131

Bibliography

[30] Peter Bubenik and Tane Vergili. “Topological spaces of persistence
modules and their properties.” In: Journal of Applied and Computational
Topology 2.3-4 (2018), pp. 233–269.

[31] Rainer E. Burkard, Mauro Dell’Amico, and Silvano Martello. Assign-
ment Problems, Revised Reprint: Society for Industrial and Applied
Mathematics (SIAM, 3600 Market Street, Floor 6, Philadelphia, PA
19104), 2009. isbn: 9781611972238.

[32] Paul B. Callahan and S. Rao Kosaraju. “A Decomposition of Multidi-
mensional Point Sets with Applications to K-nearest-neighbors and
N-body Potential Fields.” In: J. ACM 42.1 (Jan. 1995), pp. 67–90. issn:
0004-5411.

[33] Paul B Callahan and S Rao Kosaraju. “A decomposition of multidi-
mensional point sets with applications to k-nearest-neighbors and
n-body potential fields.” In: Journal of the ACM (JACM) 42.1 (1995),
pp. 67–90.

[34] G. Carlsson and A. Zomorodian. “The Theory of Multidimensional
Persistence.” English. In: Discrete & Computational Geometry 42.1
(2009), pp. 71–93. issn: 0179-5376.

[35] Gunnar Carlsson and Vin De Silva. “Zigzag persistence.” In: Founda-
tions of computational mathematics 10.4 (2010), pp. 367–405.

[36] Mathieu Carrière and Ulrich Bauer. “On the Metric Distortion of
Embedding Persistence Diagrams into Separable Hilbert Spaces.” In:
35th International Symposium on Computational Geometry (SoCG 2019).
Schloss Dagstuhl-Leibniz-Zentrum fuer Informatik. 2019.

[37] Mathieu Carriere and Steve Oudot. “Structure and stability of the one-
dimensional mapper.” In: Foundations of Computational Mathematics
18.6 (2018), pp. 1333–1396.

[38] Mathieu Carrière and Steve Oudot. “Local equivalence and intrinsic
metrics between Reeb graphs.” In: arXiv preprint arXiv:1703.02901
(2017).

[39] Frédéric Chazal et al. The structure and stability of persistence modules.
Springer, 2016.

132

Bibliography

[40] Chao Chen and Michael Kerber. “An output-sensitive algorithm for
persistent homology.” In: Computational Geometry 46.4 (2013), pp. 435–
447.

[41] Chao Chen and Michael Kerber. “Persistent homology computation
with a twist.” In: Proceedings 27th European Workshop on Computational
Geometry. Vol. 11. 2011, pp. 197–200.

[42] L. Paul Chew and Klara Kedem. “Improvements on Geometric Pat-
tern Matching Problems.” In: Algorithm Theory - SWAT ’92, Third
Scandinavian Workshop on Algorithm Theory, Helsinki, Finland, July 8-10,
1992, Proceedings. 1992, pp. 318–325.

[43] David Cohen-Steiner, Herbert Edelsbrunner, and John Harer. “Ex-
tending persistence using Poincaré and Lefschetz duality.” In: Foun-
dations of Computational Mathematics 9.1 (2009), pp. 79–103.

[44] David Cohen-Steiner et al. “Lipschitz functions have L p-stable per-
sistence.” In: Foundations of computational mathematics 10.2 (2010),
pp. 127–139.

[45] Justin Curry. “Sheaves, cosheaves and applications.” In: arXiv preprint
arXiv:1303.3255 (2013).

[46] Justin Curry, Robert Ghrist, and Vidit Nanda. “Discrete Morse the-
ory for computing cellular sheaf cohomology.” In: Foundations of
Computational Mathematics 16.4 (2016), pp. 875–897.

[47] Vin De Silva, Dmitriy Morozov, and Mikael Vejdemo-Johansson.
“Dualities in persistent (co) homology.” In: Inverse Problems 27.12

(2011), p. 124003.

[48] Vin De Silva, Elizabeth Munch, and Amit Patel. “Categorified reeb
graphs.” In: Discrete & Computational Geometry 55.4 (2016), pp. 854–
906.

[49] Tamal K Dey, Facundo Mémoli, and Yusu Wang. “Multiscale mapper:
Topological summarization via codomain covers.” In: Proceedings of
the twenty-seventh annual acm-siam symposium on discrete algorithms.
SIAM. 2016, pp. 997–1013.

133

Bibliography

[50] Tamal K Dey, Facundo Mémoli, and Yusu Wang. “Topological Anal-
ysis of Nerves, Reeb Spaces, Mappers, and Multiscale Mappers.” In:
33rd International Symposium on Computational Geometry (SoCG 2017).
Schloss Dagstuhl-Leibniz-Zentrum fuer Informatik. 2017.

[51] Tamal K Dey and Cheng Xin. “Computing Bottleneck Distance for 2-
D Interval Decomposable Modules.” In: 34th International Symposium
on Computational Geometry (SoCG 2018). Schloss Dagstuhl-Leibniz-
Zentrum fuer Informatik. 2018.

[52] Tamal Dey and Cheng Xin. “Generalized Persistence Algorithm for
Decomposing Multi-parameter Persistence Modules.” arXiv:1904.03766.

[53] Barbara Di Fabio and Claudia Landi. “Reeb Graphs of Piecewise
Linear Functions.” In: International Workshop on Graph-Based Represen-
tations in Pattern Recognition. Springer. 2017, pp. 23–35.

[54] H. Edelsbrunner and J. Harer. Computational Topology. An Introduction.
American Mathematical Society, 2010. isbn: 0-8218-4925-5.

[55] Herbert Edelsbrunner, David Letscher, and Afra Zomorodian. “Topo-
logical persistence and simplification.” In: Proceedings 41st Annual
Symposium on Foundations of Computer Science. IEEE. 2000, pp. 454–
463.

[56] Herbert Edelsbrunner and Georg Osang. “The Multi-cover Persis-
tence of Euclidean Balls.” In: 34th International Symposium on Com-
putational Geometry, SoCG 2018, June 11-14, 2018, Budapest, Hungary.
2018, 34:1–34:14.

[57] Herbert Edelsbrunner, Ziga Virk, and Hubert Wagner. “Topological
Data Analysis in Information Space.” In: 35th International Symposium
on Computational Geometry, SoCG 2019, June 18-21, 2019, Portland,
Oregon, USA. 2019, 31:1–31:14.

[58] Herbert Edelsbrunner and Hubert Wagner. “Topological Data Anal-
ysis with Bregman Divergences.” In: 33rd International Symposium
on Computational Geometry (SoCG 2017). Schloss Dagstuhl-Leibniz-
Zentrum fuer Informatik. 2017.

[59] Jack Edmonds. “Paths, Trees, and Flowers.” In: Canadian Journal of
Mathematics 17 (1965), pp. 449–467.

134

Bibliography

[60] Alon Efrat, Alon Itai, and Matthew J. Katz. “Geometry Helps in
Bottleneck Matching and Related Problems.” In: Algorithmica 31.1
(2001), pp. 1–28.

[61] Elena Farahbakhsh Touli and Yusu Wang. “FPT-algorithms for com-
puting Gromov-Hausdorff and interleaving distances between trees.”
In: 27th Annual European Symposium on Algorithms (ESA 2019). Schloss
Dagstuhl-Leibniz-Zentrum fuer Informatik. 2019.

[62] Mohammad Farshi and Joachim Gudmundsson. “Experimental study
of geometric t-spanners.” In: Journal of Experimental Algorithmics (JEA)
14 (2009), p. 3.

[63] Massimo Ferri. “Persistent topology for natural data analysis—A sur-
vey.” In: Towards Integrative Machine Learning and Knowledge Extraction.
Springer, 2017, pp. 117–133.

[64] Ellen Gasparovic et al. “Intrinsic Interleaving Distance for Merge
Trees.” In: arXiv preprint arXiv:1908.00063 (2019).

[65] Robert W Ghrist. Elementary applied topology. Vol. 1. Createspace
Seattle, 2014.

[66] Sariel Har-Peled. Geometric approximation algorithms. 173. American
Mathematical Soc., 2011.

[67] Masaki Hilaga et al. “Topology matching for fully automatic sim-
ilarity estimation of 3D shapes.” In: Proceedings of the 28th annual
conference on Computer graphics and interactive techniques. ACM. 2001,
pp. 203–212.

[68] John E. Hopcroft and Richard M. Karp. “An n5/2 Algorithm for Max-
imum Matchings in Bipartite Graphs.” In: SIAM Journal on Computing
2.4 (1973), pp. 225–231.

[69] Jon L. Bentley. “Multidimensional binary search trees used for asso-
ciative searching.” In: Communications of the ACM 18 (1975), pp. 509–
517.

[70] Tomasz Kaczynski, Konstantin Mischaikow, and Marian Mrozek.
Computational homology. Vol. 157. Springer Science & Business Media,
2006.

135

Bibliography

[71] Tomasz Kaczynski and Marian Mrozek. “The cubical cohomology
ring: an algorithmic approach.” In: Foundations of Computational Math-
ematics 13.5 (2013), pp. 789–818.

[72] M. Kerber, D. Morozov, and A. Nigmetov. “Geometry Helps to
Compare Persistence Diagrams.” In: Journal of Experimental Algorithms
22 (Sept. 2017), 1.4:1–1.4:20. issn: 1084-6654.

[73] Michael Kerber, Michael Lesnick, and Steve Oudot. “Exact computa-
tion of the matching distance on 2-parameter persistence modules.”
In: 35th International Symposium on Computational Geometry (SoCG
2019). 2019, 46:1–46:15.

[74] Michael Kerber, Dmitriy Morozov, and Arnur Nigmetov. “Geometry
Helps to Compare Persistence Diagrams.” In: 2016 Proceedings of
the Eighteenth Workshop on Algorithm Engineering and Experiments
(ALENEX). SIAM. 2016, pp. 103–112.

[75] Michael Kerber and Arnur Nigmetov. “Metric Spaces with Expensive
Distances.” In: arXiv preprint arXiv:1901.08805 (2019).

[76] Robert Krauthgamer and James R Lee. “The black-box complexity
of nearest-neighbor search.” In: Theoretical Computer Science 348.2-3
(2005), pp. 262–276.

[77] Claudia Landi. “The rank invariant stability via interleavings.” In:
arXiv preprint arXiv:1412.3374 (2014).

[78] Michael Lesnick. “The theory of the interleaving distance on multi-
dimensional persistence modules.” In: Foundations of Computational
Mathematics 15.3 (2015), pp. 613–650.

[79] Michael Lesnick and Matthew Wright. “Computing Minimal Pre-
sentations and Bigraded Betti Numbers of 2-Parameter Persistent
Homology.” arXiv:1902.05708.

[80] Konstantin Mischaikow and Vidit Nanda. “Morse theory for filtra-
tions and efficient computation of persistent homology.” In: Discrete
& Computational Geometry 50.2 (2013), pp. 330–353.

[81] Dmitriy Morozov. Dionysus library for computing persistent homology.
mrzv.org/software/dionysus. 2010.

136

mrzv.org/software/dionysus

Bibliography

[82] Dmitriy Morozov. “Persistence algorithm takes cubic time in worst
case.” In: BioGeometry News, Dept. Comput. Sci., Duke Univ 2 (2005).

[83] Dmitriy Morozov, Kenes Beketayev, and Gunther Weber. “Interleav-
ing distance between merge trees.” In: Discrete and Computational
Geometry 49.22-45 (2013), p. 52.

[84] David M. Mount and Sunil Arya. ANN: A Library for Approximate
Nearest Neighbor Searching. http://www.cs.umd.edu/~mount/ANN.
2010.

[85] James Munkres. “Algorithms for the Assignment and Transportation
Problems.” In: Journal of the Society of Industrial and Applied Mathemat-
ics 5.1 (Mar. 1957), pp. 32–38.

[86] N. Milosavljevic, D. Morozov, and P. Skraba. “Zigzag persistent
homology in matrix multiplication time.” In: ACM Symposium on
Computational Geometry (SoCG). 2011, pp. 216–225.

[87] Salman Parsa. “A Deterministic O(m log m) Time Algorithm for
the Reeb Graph.” In: Discrete & Computational Geometry 49.4 (2013),
pp. 864–878.

[88] Iosif Polterovich, Leonid Polterovich, and Vukašin Stojisavljević. “Per-
sistence barcodes and Laplace eigenfunctions on surfaces.” In: Ge-
ometriae Dedicata 201.1 (2019), pp. 111–138.

[89] Leonid Polterovich and Egor Shelukhin. “Autonomous Hamiltonian
flows, Hofer’s geometry and persistence modules.” In: Selecta Mathe-
matica 22.1 (2016), pp. 227–296.

[90] Leonid Polterovich, Egor Shelukhin, and Vukašin Stojisavljević. “Per-
sistence Modules with Operators in Morse and Floer Theory.” In:
Moscow Mathematical Journal 17.4 (2017), pp. 757–786.

[91] Michael Robinson et al. “Geometry and topology of the space of
sonar target echos.” In: The Journal of the Acoustical Society of America
143.3 (2018), pp. 1630–1645.

[92] Ana Romero et al. “Defining and computing persistent Z-homology
in the general case.” In: arXiv preprint arXiv:1403.7086 (2014).

137

http://www.cs.umd.edu/~mount/ANN

Bibliography

[93] S. Har-Peled and M. Mendel. “Fast Construction of Nets in Low
Dimensional Metrics and Their Applications.” In: SIAM Journal on
Computing 35 (2006), pp. 1148–1184.

[94] S. Oudot. Persistence theory: From Quiver Representation to Data Anal-
ysis. Vol. 209. Mathematical Surveys and Monographs. American
Mathematical Society, 2015.

[95] Raimund Seidel. “Backwards Analysis of Randomized Geometric
Algorithms.” In: New Trends in Discrete and Computational Geometry.
Ed. by Janos Pach. Springer, 1993.

[96] Jean-Pierre Serre. “Homologie singulière des espaces fibrés.” In: Ann.
of Math 54.2 (1951), pp. 425–505.

[97] Gurjeet Singh, Facundo Mémoli, and Gunnar E Carlsson. “Topologi-
cal methods for the analysis of high dimensional data sets and 3d
object recognition.” In: SPBG. 2007, pp. 91–100.

[98] Michiel Smid. “Efficient Algorithms.” In: ed. by Susanne Albers,
Helmut Alt, and Stefan Näher. Berlin, Heidelberg: Springer-Verlag,
2009. Chap. The Weak Gap Property in Metric Spaces of Bounded
Doubling Dimension, pp. 275–289. isbn: 978-3-642-03455-8.

[99] Jian Sun, Maks Ovsjanikov, and Leonidas Guibas. “A Concise and
Provably Informative Multi-scale Signature Based on Heat Diffu-
sion.” In: Proceedings of the Symposium on Geometry Processing. SGP
’09. Berlin, Germany: Eurographics Association, 2009, pp. 1383–1392.

[100] The RIVET Developers. RIVET. Version 1.0. 2018. url: http://rivet.
online.

[101] Chris Tralie. pyhks. https://github.com/ctralie/pyhks. 2018.

[102] Pravin M. Vaidya. “Geometry Helps in Matching.” In: SIAM J. Com-
put. 18.6 (1989), pp. 1201–1225.

[103] Vinay Venkataraman, Karthikeyan Natesan Ramamurthy, and Pavan
Turaga. “Persistent homology of attractors for action recognition.”
In: 2016 IEEE international conference on image processing (ICIP). IEEE.
2016, pp. 4150–4154.

138

http://rivet.online
http://rivet.online
https://github.com/ctralie/pyhks

Bibliography

[104] Hubert Wagner, Chao Chen, and Erald Vuçini. “Efficient computation
of persistent homology for cubical data.” In: Topological methods in
data analysis and visualization II. Springer, 2012, pp. 91–106.

[105] Gunther Weber, Peer-Timo Bremer, and Valerio Pascucci. “Topologi-
cal landscapes: A terrain metaphor for scientific data.” In: IEEE Trans-
actions on Visualization and Computer Graphics 13.6 (2007), pp. 1416–
1423.

[106] Juan Zhang et al. “Retrieving articulated 3-d models using medial
surfaces and their graph spectra.” In: International workshop on en-
ergy minimization methods in computer vision and pattern recognition.
Springer. 2005, pp. 285–300.

[107] Afra Zomorodian and Gunnar Carlsson. “Computing persistent
homology.” In: Discrete & Computational Geometry 33.2 (2005), pp. 249–
274.

139

	Abstract
	Introduction
	Background
	Conventions and Notation
	Categories
	Simplicial Complexes
	Homology
	Filtrations
	Persistence Modules and Interleaving Distance
	1-Parameter Persistence
	Reeb Graphs and Merge Trees
	Algorithmic Aspects
	What is Omitted?

	Efficient Computation of Bottleneck and Wasserstein Distances
	Introduction
	Background
	Bottleneck matchings
	Wasserstein matchings
	Wasserstein matchings for repeated points
	Parallelization of Wasserstein distance computation
	Conclusion

	Efficient Computation of Matching Distance
	Introduction
	Preliminaries
	The approximation algorithm
	The Bound primitive
	Experiments
	Conclusion

	Metric Spaces with Expensive Distances
	Introduction
	Background
	Blind spanners
	Experiments on spanners
	Additional Experimental Results on Spanners
	Approximate nearest neighbors
	Proof of thm:annbound
	Experiments on approximate nearest neighbors
	Conclusion and future work
	Appendix: remark on doubling dimension

	Bibliography

