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Abstract

With the increasing development of technology nowadays a diverse number of
possibilities have arisen but new challenges come into play too.�ese developments
havemade it possible tomove towards Industry 4.0 and the so-called Smart Factories.
It is the new manufacturing system where everything is supposed to be connected.
�is can have a big impact like in supporting decision making, in shortening the
production life-cycle or in enabling highly customizable product manufacturing,
which can be achieved by making use of the right data. �e data that �ows within
a Smart Factory can be of an enormous volume, is heterogeneous and they do
not come only from a single data source. However, the systems have to bring the
created data into play somehow. �e challenge here is to transform the created Big
Data to the more valuable Smart Data, so that later in the process, analytics like
Predictive Maintenance or Retrospective Analysis can be performed successfully
on those data. �is is also the aim of this Master’s �esis. In order to solve this
problem, a prototype service called Smart Data Service has been developed so
that the raw incoming data streams are aggregated and put together in a more
reduced but valuable format, known as Smart Data. For the testing purposes and
the evaluation of the work, it was necessary to additionally develop a Smart Factory
Simulator, which is supposed to emulate di�erent scenarios of a manufacturing
setup. Two use cases have been taken into consideration for evaluating the Smart
Data Service - aggregating data that would be useful for applying Retrospective
Analysis and aggregating data that would be useful for Predictive Maintenance.
Finally, the results show that the aggregated Smart Data can have considerable
value for performing Retrospective Analysis as well as Predictive Maintenance.
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1 Introduction

It is evident that technology has been taking massive big steps and in recent decades
it has moved forward at a very quick rate. It certainly has impacted many areas like
communications, medicine [6] and health care [12], journalism, it has impacted
how the information is spread, how we socialize [8], our education systems [7], our
diverse industries like the food industry, the automobile industry [21], the aviation
industry, it has even a�ected the way we produce goods [17].

One of the areas that have been a�ected a lot and are of special interest are di�erent
industries and the way we manufacture products. �is brings us to a word that we
hear a lot nowadays - Industry 4.0 or the Fourth Industrial Revolution. What is it
exactly? To explain it, it is necessary to understand the history of the industrial
revolution.

An industrial revolution, is considered to be a disruption and a fundamental change
in the way industries work, and how they a�ect the economic and social systems.
�roughout history, there are four well-known phases of the industrial revolution.

• �e �rst industrial revolution began around the year 1760 until the year 1840.
It is characterized by the invention of steamed engines and the construction
of railroads [22].

• �e use of electricity and assembly lines for mass production symbolize the
second industrial revolution which took place between 1870 and 1914 [22].
Assembly lines and mass production got particularly popularized by Ford
Motor Company when they made use of the method for the production of
Ford Model T.

• �e third industrial revolution is known as the computer era which started
in the year 1960, and spread with the development of personal computers
and continued until the invention of the internet in the 1990s [22].

• �e fourth industrial revolution is considered to have begun with the start of
the 21st century. �is one is distinguished by powerful developed machines

1



1 Introduction

Figure 1.1: Phases of industrial revolutions 1

and sensors where everything seems to be connected and digitalized and
assisted by machine learning and arti�cial intelligence. �is has encouraged
to create the so-called Smart Factories, that enable the production of highly
customizable products, shorter life-cycles, more e�ciency, and incorporation
of physical and virtual systems [17]. It is exactly this that makes the di�erence
with the previous industrial revolution.

Now, that we have a brief explanation of Industry 4.0 and the Smart Factories, it
is important to note that while Smart Factories are build of multiple connected
machines, sensors and systems communicating together, the data that they produce
is of great importance so that we can extract valuable information from them by
performing di�erent analytics, but before that the data needs to be prepared.

�e main purpose of this Master’s �esis is to develop a prototype service that can
ingest data from di�erent sources in a Smart Factory and prepare and transform

1https://www.netobjex.com/wp-content/uploads/2018/12/1-1.
png (Accessed on: 2019-09-23)
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them for further processing. �is type of prepared data is referred to as Smart
Data [24]. In the context of my work, Smart Data is the state of data which are
not anymore raw but are transformed and from which we can extract valuable
information. �is is essential because Smart Data is used together with di�erent
predictive and preventive algorithms in order to mainly reduce overall costs and
make the whole manufacturing process smoother. An example of a predictive
measure is the reduction of unplanned downtimes as a result of regular maintenance
to prevent machine failure [11].

Another important part of my work is the Smart Factory Simulator, which generates
di�erent sensory information based on a given con�guration. It is meant to simulate
a real-world Smart Factory and it is necessary for testing the prototype service and
for evaluating the results.

In the process of designing and developing the above-mentioned service I will as
well try to answer the following research question:

• To what extent is it possible to automate the aggregation of raw incoming
data streams?

�e outline of the �esis is as follows:

• In the Background chapter, the main underlying technologies that have been
used in this work will be explained.

• Next, in the State of the Art chapter, several research papers related to the
above research question will be described and analyzed.

• �e next chapter describes the use cases that are of special interest and the
derived requirements necessary to develop the system.

• In the Method section, everything related to the work that has been done
will be explained. First starting with the general concepts and then diving
into more details and describing the implementation as well.

• �e Evaluation chapter shows how the work was tested and describes the
results as well.

• And �nally, in the Conclusions section, the whole work is wrapped up.

3





2 Related Work

2.1 Background

�is section gives a short description of some of the most important technologies
that were used to develop the prototype for collecting data and aggregating them
into the so-called Smart Data. In the process of developing the prototype service,
the following technologies have been considered important.

2.1.1 MQTT Protocol

MQTT stands for Message�euing Telemetry Transport. It is a lightweight and
open publish/subscribe messaging protocol and also an ISO Standard 1. �e pub-
lish/subscribe is a messaging pa�ern, where the publisher decouples itself from
subscribers and it sends messages only to speci�c topics or classes. Subscribers
can decide on which topics they want to listen to and receive messages that were
published there. �e main advantage of this messaging pa�ern is the loose coup-
ling, where subscribers and publishers do not know anything speci�c about one
another, they are completely decoupled by a message broker, the one that collects
the messages from publishers and distributes them to the subscribers 2. �e pub-
lish/subscribe pa�ern is not to be confused with the messaging queue pa�ern. �e
main di�erences are:

• In the message queue pa�ern, a message is stored until it is consumed by a
client, whereas in the publish/subscribe this is not the case.

1https://www.iso.org/standard/69466.html (Accessed on: 2019-10-03)
2https://en.wikipedia.org/wiki/Publish-subscribe pattern

(Accessed on: 2019-10-03)
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• In the publish/subscribe pa�ern, a message can be consumed by multiple
clients, but in the message queue pa�ern only by one.

• In the message queue pa�ern, queues have to be created explicitly before
they can be used, which can be cumbersome. On the other hand, the pub-
lish/subscribe pa�ern creates topics on the �y.

�e MQTT protocol is designed to work on top of the TCP/IP protocols. Because it
is so lightweight and has a small footprint - it only requires two bytes of data for a
minimal message and the maximum is 256 megabytes 3 - it is considered especially
suitable for Internet of �ings (IoT) and Machine to Machine communication
(M2M) among other usages. It is important to note that, in MQTT the messages
that are published, are arranged in hierarchical topics and this gives the possibility
to subscribers to listen to the root topic, and thus receive messages from all the
underlying topics, or subscribe only to speci�c ones and ignore the others.�is o�ers
us the opportunity to organize the published messages in di�erent groups/topics.
Another important characteristic of the MQTT protocol is the so-called�ality-
of-Service (QoS), where each client that is connected to the broker can specify it.
With the help of the �ality-of-Service, we can set the importance of the messages
to be published and received. MQTT o�ers three types of QoS:

• 0 - At most once: this is also known as �re and forget, where each message
is sent only once and there is no acknowledgment if the message has been
received successfully.

• 1 - At least once: here the message can be sent multiple times until there is
an acknowledgment that the message has been received. �is QoS can also
lead to duplicates.

• 2 - Exactly once: this is the highest level of QoS o�ered by MQTT, where the
message is guaranteed to be delivered exactly one time.

3https://en.wikipedia.org/wiki/MQTT (Accessed on: 2019-10-03)
4https://upload.wikimedia.org/wikipedia/commons/8/82/

MQTT protocol example without QoS.svg (Accessed on: 2019-10-03)
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2.1 Background

Figure 2.1: MQTT Protocol 4
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2.1.2 Apache Kafka

�is technology has been developed by LinkedIn, which was open-sourced later
- now called Apache Ka�a. �e main purpose of Apache Ka�a is to be used as
a reliable real-time data streaming platform. Ka�a platform tries to unify the
streaming of data by o�ering high throughput as well as low latency 5. Apache
Ka�a also follows the publish/subscribe messaging pa�ern, but the di�erence
with MQTT here is that it is highly scalable, and it stores the streams of data in a
fault-tolerant way 6. �e most important APIs of this platform are:

• Consumer API - is used for ingesting data by subscribing to a topic in a Ka�a
broker

• Publisher API - is used to publish data to a topic
• Connector API - is a special API that allows Ka�a to connect to other sys-
tems or applications, the same as publishers and consumers, and make these
connectors reusable

• Streams API - is useful when we want to process streams of input data coming
from one or more topics and output them to a topic or multiple topics

Data records in Ka�a are also organized in topics or categories. When persisted, a
data record contains the following structure:

• a key
• a value, and
• a timestamp

In Ka�a, a data record is saved in a partitioned log, where each of the partitions
is an ordered list of data records, as illustrated in Figure 2.2. When reading from
Ka�a topics, an o�set is kept by each consumer, which can also be controlled by
them 2.3. �is o�set is a small footprint, hence a large number of consumers is not
a problem for a Ka�a broker.

5https://en.wikipedia.org/wiki/Apache Kafka (Accessed on: 2019-10-03)
6https://kafka.apache.org/intro.html (Accessed on: 2019-10-03)
8https://kafka.apache.org/23/images/log anatomy.png (Accessed on:

2019-10-08)
8https://kafka.apache.org/23/images/log consumer.png (Accessed

on: 2019-10-08)
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Figure 2.2: Ka�a Topic 7

Figure 2.3: Ka�a Consumer O�set 8
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Because Ka�a is made to run in a cluster, partitions are distributed across multiple
Ka�a brokers which can run in di�erent servers, thus enabling for high scalability.
At the same time, each partition is replicated on other servers, keeping the data safe
andmaking fault tolerance possible. It is important to note that each of the partitions
has a master server or the so-called ”leader” which serves as the main server for
reading/writing in this particular partition. If the ”leader” fails for some reason
then its job is overtaken from another slave partition or the so-called ”follower”.
Each of the servers plays the role of a ”leader” for one or more partitions and the
role of a ”follower” for other partitions.

Apache ZooKeeper

It is also important to emphasize that Ka�a platform makes use of Apache Zoo-
Keeper in the background, which is a centralized service for facilitating highly
reliable and safe distributed coordination 9.

Kafka Connect

Because in this project the data has to be distributed from MQTT broker to Ka�a
and from Ka�a to In�uxDB, it is important to make use of Ka�a Connectors so
that we can move data from source to destination using reusable components. In
Ka�a Connect, there are two di�erent types of connectors: a Source connector,
and a Sink connector. �e job of a Source connector is to ingest data from another
system or application and publish them into di�erent topics in Ka�a, and the job
of a Sink connector is to consume the data records from a Ka�a topic and forward
them to other applications or systems. In this context, the MQTT Source Connector
has been used and a custom In�uxDB Sink Connector has been developed to ful�ll
the needs of this project.

2.1.3 InfluxDB

In�uxDB is a time-series database (TSDB) built by In�uxData. Time-series databases
(TSDB) di�er from traditional Relational Database Management Systems (RDBM)

9https://zookeeper.apache.org/
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in that they are specialized and optimized in storing and retrieving time-series
data that are organized in pairs of times and values. Time-series data are usually
data that comes from constantly generating data sources like application metrics,
di�erent kinds of events, or IoT and sensor data. �ese types of databases can
summarize data, compress data, and scan large sets of data faster than traditional
RDBMS. Among many other TSDBs, In�uxDB is one of the most popular ones
because of its performance 10.

Structure

�e data in In�uxDB are organized in:

• measurements,
• series, and
• points.

A measurement is similar to a table in RDBMS. In In�uxDB, a measurement is
constructed from multiple series that are grouped together. Series are formed by a
grouping of di�erent pairs of tagsets, which are key-value pairs of tags(di�ers from
a �eld in that it is indexed). Whereas points are created by grouping multiple pairs
of �eldsets and a timestamp. �e performance of In�uxDB is optimized mainly by
indexing the so-called time ”tag”, by default, as well as other de�ned tags from
the user. �erefore querying data based on tags is faster than �elds, which are not
indexed. �e allowed data types in In�uxDB are integer, �oat, string and boolean.
�is is not always the case with other TSDB.

In�uxDB also supports a SQL-like language to write and read the data from data-
bases which is rather familiar when compared with other RDBMS. Another im-
portant feature is the In�uxDB API which is a way to query data in In�uxDB 11.
Besides the In�uxDB API there is also a wide range of clients that support di�erent
languages in order to communicate with In�uxDB 12.

10https://db-engines.com/en/ranking/time+series+dbms (Accessed on:
2019-10-08)

11https://docs.influxdata.com/influxdb/v1.7/guides/querying
data/ (Accessed on: 2019-10-08)

12https://docs.influxdata.com/influxdb/v1.7/tools/api client
libraries/ (Accessed on: 2019-10-08)
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Figure 2.4: Containers vs Virtual Machines 13

2.1.4 Docker

Docker is a platform that is used to organize and deploy applications in packages
called containers. It is not the same as virtual machines because Docker runs on
top of OS, thus using OS-level virtualization 2.4. A big advantage of Docker is that
it is extremely lightweight and uses resources e�ciently. In comparison to virtual
machines, we can start multiple Docker containers in a single virtual machine
while on the other hand to create multiple virtual machines it requires many more
resources. With this, Docker is another important factor that makes it possible so
that the systems can get highly scalable.

Docker is also �exible in organizing containers in the way that the user wants.
By default, containers are isolated from other containers but di�erent ports and
communication channels can be enabled and containers can be placed in the same
virtual network so that they can interact with one another. Another important
part of the Docker platform is also Docker Compose. It is a tool that allows us
to con�gure and run multiple docker containers at once, which is much more
convenient than running each container individually. �is tool has been used in
this project to set up the whole infrastructure and start it with one command -
”docker-compose up”. Apart from this, there is also a tool called Docker Swarm. It

13https://www.docker.com/blog/containers-replacing-virtual-machines
(Accessed on: 2019-10-08)
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is a container orchestration tool, which is mainly used to run docker containers in
a cluster - similar to Kubernetes. Nevertheless, Docker Swarm is out of the scope
of this project and it has not been used.

2.1.5 JSF

JavaServer Faces or JSF is a standard that is part of the Java Enterprise Edition (JEE)
which is used to develop component-based user interfaces for di�erent web applic-
ations. �is technology enables us to develop reusable user interface components
and to connect them with data sources on the backend, as well as binding them
with di�erent events and triggering method calls on the backend which can be
rather practical and time-e�cient 14. In this project, JavaServer Faces has been used
together with Primefaces, which is an open-source framework that o�ers more
than 100 di�erent ready-to-use JSF components, to develop the user interface of
the prototype, which has been developed for this thesis.

2.2 State of the Art

In the process of developing and writing this Master’s �esis, a diverse number of
sources and search engines have been used in order to �nd scienti�c papers that
were considered relevant to this topic. Even though there exist multiple possibilities,
mainly the following sources were used:

• Google Scholar 15

• IEEE Xplore Digital Library 16

• Microso� Academic 17

• World Wide Science 18

• ScienceDirect 19

14https://javaee.github.io/javaserverfaces-spec (Accessed on: 2019-
10-08)

15https://scholar.google.com (Accessed on: 2019-10-14)
16https://ieeexplore.ieee.org (Accessed on: 2019-10-14)
17https://academic.microsoft.com (Accessed on: 2019-10-14)
18https://worldwidescience.org (Accessed on: 2019-10-14)
19https://sciencedirect.com (Accessed on: 2019-10-14)
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In order to come up with relevant search results, the following search keywords
were used:

• Smart Data
• Big Data
• Smart Production
• Smart Factories
• Industry 4.0
• Data Aggregation in IoT
• Dimensionality reduction
• Predictive maintenance
• Automated decision making
• Decision making support

Starting with the paper [17], authors de�ne a Smart Factory as a context-aware
Factory, which is achieved by data records collected from di�erent sources, that
should support people and machines in doing their jobs. �e Big Data that is gener-
ated and collected from a Smart Factory, as stated in the paper [14], is associated
with the following known characteristics:

• Variety
• Volume
• Velocity
• Variability
• Complexity
• Value

Of special interest here, is the Value property. �ere is value in Big Data, but the
value has to be extracted by users running certain queries and acquiring important
and �ltered information, otherwise, as stated in [9], Big Data in a vacuum can be
useless. When there is value or knowledge present in data, which can be gathered
from Big Data, then this knowledge is known as Smart Data [16]. In [10], there
is a distinction made between Big Data and Smart Data. �e job of the Big Data
is said to be data processing, whereas Smart Data is involved in the value of the
data and the ability to enable decision-making. Smart Data is the way how the
data is collected, aggregated, reduced, summarized and brought together in order
to get valuable information for decision-making. Similar tasks are also described
in the process of transforming Big Data into valuable insights for smart energy

14
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management using Big Data, proposed as a solution by the authors of the paper
[27]. As stated above, to support people and machines in doing their jobs, predictive
and preventive analytics algorithms can be applied to the Smart Data to reduce
costs and potentially avoid machine failures, or on the other hand, the quality of
the produced items can be increased by analyzing defects that become visible from
Smart Data [11]. All of these needs these days come as a requirement for producing
highly customizable products and as a demand for globalization.

In [11], authors describe a guide on how to convert a factory to a Smart Factory.
�ey emphasize four main areas of the IoT architecture in a Smart Factory:

• Manufacturing Applications
• Enterprise Applications
• IoT Platform
• Data Visualization and Control

�e IoT Platform area, according to the authors, is considered as the critical part
that converts a factory to a Smart Factory.�is area, as seen in Figure 2.5, is respons-
ible for enabling connectivity for machines sending sensor data, ingesting them,
transforming and persisting them to an RDBMS, or closely related technologies
like NoSQL or Hadoop Distributed File System (HDFS). Importantly, Hadoop o�ers
a solution for storing data in a distributed way, in multiple nodes, and enabling
parallel processing, which is useful for huge amounts of data [3]. It is stated that
data can come in various forms - structured, unstructured, semistructured, events,
time-series, logs and that they are converted to the systems standard data format,
however, there is no detailed description on how these data are mixed and matched
and how they are aggregated and turned into Smart Data. In [13] too, data ingestion
is seen from authors as an important requirement for building a Big Data analysis
pipeline in a manufacturing environment, where data transformation, noise reduc-
tion, and �ltering among other tasks take place. Nonetheless, the summarization or
aggregation of data is not further described.

�e authors of the paper [4] start by stating the importance of the Big Data and
the rate of growth, where according to the source, every day around 20 quintillion
bytes of data are produced, which can be in any format, structured, semistructured
or unstructured data. All of this has become possible nowadays because of the
reduction of costs of sensor-enabled devices. When these sensor-enabled devices
communicate and are connected with one another and exchange information, then
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Figure 2.5: IoT and Big Data architecture. [11]

this is known as the Internet of �ings or IoT. Sensors can be of di�erent types and
can provide all kinds of information, be it temperature, some kind of pressure or
anything else. Because of the heterogeneity of the data that is collected, the overall
integration and transforming them into the so-called Smart Data becomes a real
challenge. Based on this paper, the collected data can be sent as raw or already
as aggregated, or there is a possibility so that the aggregation occurs later. It is
important to note, that aggregation plays an important role in producing Smart
Data. However, according to the paper, speci�c domain knowledge is required in
order to know how the data can be aggregated and extracted to come up with
Smart Data that contain value and that make sense in this context. Likewise, in
”Data Mining - Practical Machine Learning Tools And Techniques”, the authors
emphasize the importance of a suitable degree of aggregation. �ey highlight an
example where raw telephone communication data is not useful for analyzing the
behavior of a customer unless they are aggregated by the user and by a speci�c
period of time, be it by week, month or year. �at’s why selecting the appropriate
aggregation of data is crucial and requires domain knowledge.

Next, in the paper [19], authors give a summary of Big Data analysis methods in a
smart manufacturing system. In their �ndings, among other important areas, they
highlight the importance of saving the data that has been collected from di�erent
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sources. �e enormous amount of data generated each millisecond from numerous
sensors in machines can be aggregated in order to reduce the amount of data that
is sent. At the same time, this aggregation is seen as an intermediate format, before
feeding them for further processing in data mining, arti�cial intelligence or machine
learning. In other words, this intermediate format is known as Smart Data. It is not
speci�ed that the aggregation functions are automatically chosen but it is said that
averages, sums, minimums, maximums, or shapes of distribution can be chosen.
According to the authors, the importance here is that the aggregated data do not
lose worthy information, from which valuable insights can be extracted.

In the paper [15], authors have proposed a platform for Big Data analytics in smart
manufacturing environments. �ey applied the system in a die casting factory in
South Korea. In the process of casting, 75 di�erent data parameters have been col-
lected from various sensors and controllers for analytics. All these data information
are saved in the so-called legacy system. Data from di�erent sources are merged
here, and they are mapped using some identi�cation number. In case there are de-
fects, the quality review outcomes are entered manually by workers. It is important
to note, that the prototype service that has been developed for this thesis uses a
similar approach for item identi�cation. Following, the data cleaning is performed
so that no invalid values are allowed, among them null values are removed as well.
A�erward, the authors allow for the selection of the representative value of the
collected parameter data such as mean, minimum, maximum in order to come up
with an answer as to what the reason for the defect was. Finally, these aggregated
data have been analyzed using a correlation matrix and in conclusion, a number
of di�erent process parameters like high speed, maximum speed, and low-speed
stroke, were heavily associated with defects caused in the production process.

In the paper ”Analyzing Big Data: Social Choice and Measurement” [20], the au-
thors highlight the importance of the summarization of the so-called Big Data by
reducing their multidimensionality into something that delivers more value and
more insights, a reduced value that tells more and that is easier to comprehend.
According to the authors, data is considered as big, not only based on the number
of variables and the number of data, but also on the complexity of the data that is
being delivered. Social networks, data from brain scans, and genomes can be con-
sidered as examples of this complexity in data or examples of Big Data. Such data
always needs to be reduced, and this reduction can be achieved through aggregating
higher-dimensional data into lower-dimensional models. It is important to note
that, with aggregation and data reduction there is a need for a decision to be made
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on what to consider as more important and what to leave out of the aggregated
values. To argue with all this, authors take as an example a network analysis where
they analyze the Florentine Marriage Network, which describes the martial ties
between 15 families in Florence in the 15th century. �ey take into consideration
three di�erent centrality aggregation functions, which are mainly supposed to tell
the degree of connection and the importance of the nodes (people) in relation to the
whole network. �e authors conclude that, based on which centrality aggregation
function is chosen, then some aspects of the network can be lost. More precisely, it
is emphasized that there is no perfect aggregation function that can automatically
know and retrieve the most valuable information from the data. �ey refer here to
the knowledge that they received from choosing a centrality aggregation function
for the network analysis example.

In a di�erent domain, ”Big Data Reduction for a Smart City’s Critical Infrastructural
Health Monitoring” [25], authors propose a platform called BigReduce as a solution
that would be used in the so-called smart cities for infrastructure health monitoring
by sending di�erent events in case of damage of constructions like bridges or
buildings. Here authors use two di�erent schemes to reduce the weight of Big Data
processing in IoT, the Big Data reduction scheme and the Big Data decision-making
scheme. Of special interest is the Big Data reduction scheme, where authors de�ne
it as an important step that helps in deciding which data should be sent over the
network for further analytics. In contrast to the solution developed in the prototype
service, the data reduction scheme in the above-mentioned paper is achieved by
reducing the amount of data that is collected and that will be sent, at the sensor
level, basically by using event-based decision, if there is no health-event triggered,
then less data is collected.

Complementary to these �ndings, in the paper ”A Fast Large-size Production Data
Transformation Scheme for Supporting Smart Manufacturing in Semiconductor
Industry” [23], authors propose a data transformation solution for a Big Data
platform in manufacturing environments. �e main idea is to insert the data from a
local database and convert it into a workpiece-centric pa�ern, that is supposed to be
bene�cial for further processing and analytics. �e work that is presented, is split
into the injectionmodule, partitionmodule, and aggregationmodule. In the injection
module, the data from the local database is injected and persisted into a distributed
columnar database in the Big Data platform, thus ensuring scalability. Partition
module would partition the persisted data into smaller parts that would contain
only records of a particular item. And the aggregation module is meant to bring
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Figure 2.6: �e architecture of the Big Data processing-based workpiece-centric transformation.
[23]

together all the production data of a workpiece into a single and uni�ed record, all
of this using parallel distributed processing to achieve high speed and performance.
�is scheme is illustrated in �gure 2.6. Authors indicate the importance of parallel
distributed processing in Big Data platforms, because of the huge amounts of data
that systems need to deal with. Parallel distributed processing of data aggregation
is out of the scope of this thesis and has not been taken into consideration while
developing the prototype service.

In the paper ”Big Data and Machine Learning for the Smart Factory—Solutions
for Condition Monitoring, Diagnosis and Optimization” [18], authors again as in
previous papers, point to the importance of data reduction. Here, they propose
di�erent clustering algorithms for anomaly detection and condition monitoring,
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however, these clustering algorithms can come to their limits when dealing with
huge amounts of data, which is in fact one of the characteristics of Smart Factories in
contrast to traditional factories, as highlighted among other points in [26]. Sensors
in a Smart Factory usually produce lots of data, so in order to cope with this issue,
authors state that the input data has to be preprocessed and reduced in order for the
clustering algorithms to deal with them correctly. �ey state di�erent possibilities
for data reduction, like the Multidimensional Scaling method or using the Principal
Component Analysis.

�e authors of the paper ”Highly Scalable and Flexible Model for E�ective Aggreg-
ation of Context-based Data in Generic IIoT Scenarios” [2] give a proposition of a
way to collect and aggregate heterogeneous data coming from multiple sources in
the industrial internet of things or IIoT. �e approach used in this work is mainly
derived from Complex Event Processing methods, where only relevant data is stored
and aggregated in order to get meaningful insights, all of it coming from numerous
data sources. It is stated once again, that the plenty of data that is generated in the
industrial internet of things, makes it unfeasible to analyze each parameter value
separately without summarizing data into Smart Data. Authors use a network-
centric method, where they consider only actions that �ow over the network as
important, thus collecting and aggregating only data related to them. �ey also
highlight that the data that is generated from a single host, which can be a machine,
can have an impact on cause and e�ect but they were not taken into consideration
as such without looking at the action �ow over the network.

In ”A Journey from Big Data to Smart Data” [5], like in many other sources, authors
start by stating the importance of Smart Data concerning Big Data and the value
that has to be generated from them. Nevertheless, in contrast to other papers,
authors introduce here a ”closed-loop” approach between Big Data and smart data.
�e idea is that there should be a connection between the two. When Big Data is
generated and before they are aggregated into Smart Data, they are compared to
the already existing Smart Data - so generally making a real-time comparison of an
existing state with an expected state. �is should serve the real-time monitoring
and decision making, especially in the marketing or sales, which are also part of
the use cases of the mentioned paper.

Just as important, the paper ”IoT Integration for Adaptive Manufacturing” [1]
gives a general architecture of an IIoT system in a manufacturing environment for
aggregating data and reacting accordingly to the received results in an automatic
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way. Among other signi�cant areas, data collection plays a major role. �e authors
describe their main idea of data aggregation using two steps. In the �rst step, a
speci�c so�ware middleware named iIoT-Collect is used. Its main job is to discover
devices in a production environment and give the possibility to the user to register
new devices and con�gure them. �e job of the second step is to forward the sensor
data to a Message�eue (MQ) server, which can then distribute the data further to
the systems that make use of them, either storing in a NoSQL database or parsing
and converting to information so that the system can react accordingly.

Additionally, in ”An architecture for aggregating information from distributed” [28],
authors propose a system for collecting data from distributed data nodes. Here,
authors assume that the produced data from heterogeneous nodes are �rst persisted
in those nodes and only then their platform comes into play, so that the data is
aggregated from a diverse number of sources, which is also the main focus of their
work. Besides aggregation and heterogeneity of data, they also consider scalability
issues. Nevertheless, according to their platform, each distributed data node should
publish the collected data regarding a traced item in a unique URI and persist it in
a query resolution server. In this way, when aggregating data for a particular item,
a query resolution server knows how to �nd all the items based on the previously
provided URIs and put them together. �is way, the data coming from di�erent
sources for a particular item are aggregated. It is also important to notice that, there
were no data reduction or summarization methods mentioned in the paper.

Finally, taking into consideration all of the readings, to the extent of my knowledge
I come to conclude that there isn’t a fully automated way of aggregating data from
multiple sources and reducing them in order to turn them into Smart Data. Domain
knowledge seems to be necessary in order to decide how each parameter should be
aggregated and which aggregation function makes more sense in various contexts.
�ere also isn’t a fully automated way of aggregating data from heterogeneous
sources, without having some prior reference IDs somewhere, or some links between
data. Hence, the work presented in this thesis does not represent a fully-automated
data aggregation, but it is more directed towards an approach, where a domain
expert person is the one that should con�gure meaningful aggregation functions
for Smart Data generation. �e intention is to provide ample support to �nd the
right aggregation mechanism. graphicx
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�e following is a general description of the use cases and requirements for the
development of the prototype service. During the development phase of the service,
an imaginary T-Shirt factory has been used as an example for be�er understanding
and explanation, and the same will be used here in order to derive the use cases
and requirements.

�is imaginary T-Shirt factory may have a di�erent number of machines, all of
which are supposed to generate a diverse number of data when a T-Shirt is be-
ing produced. As it is illustrated in Figure 3.1, the factory includes the following
machines and a production line in the order as shown below:

1. Pa�ern making machine
2. Cu�ing machines
3. Edge seaming machine
4. Sewing machines, and
5. Pressing machine.

So, when a T-Shirt is produced, it should go through these �ve di�erent machines
until it is completed. A�er each �nished good, the performance of each machine
has to be evaluated, and this is done by the so-called quality gate. In the best-case
scenario, all of the produced T-Shirts are shipped to the customers and they are
of the best quality, but this is not always the case, thus sometimes it is possible
so that some goods are returned because of their low quality. In this situation, it
is important to �nd out what could have caused this drop in quality. �e answer
can be achieved using retrospective analysis, but only if the data that the selected
algorithm is applied to, is aggregated and prepared correctly so that they deliver the
right information. �is is also the �rst use case. �e second use case has to do with
the maintenance of machines in a factory. �ere is a possibility that some machines
might get broken a�er some time, and this could impair the whole production
process. Hence, maintenance is an inevitable task in factories. Nevertheless, the
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Figure 3.1: �e production line of the imaginary T-Shirt Factory
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right time to perform machine maintenance is hard to guess - it can be too early,
which drives the costs high, or it can be too late, which disturbs the production
process and again increases the overall costs. Based on this, the second use case is
about making the smart data available so that a prediction when a machine might
get broken can be achieved. In this way, the costs can be reduced by performing
machine maintenance just at the right time.

Referring to those use cases, the following requirements for developing the system
to support data collection and aggregation have been considered necessary:

• Data generation - there should be a way to generate machine data that has
to be collected

• Data transportation - in order to collect the generated data, there should be a
de�ned way of transmi�ing those data to the prototype service

• Data storage - when the generated sensory information arrives, it is obvious
that it has to be persisted somewhere, and

• Data aggregation - the last and the most important requirement is to o�er
a possibility, where the data generated from machines can be aggregated
in such a way so that it delivers valuable information for use in further
analytics. �e requirement here is that the responsible user should have the
possibility to decide how each parameter received from the machines should
be aggregated. �is implies that the user that performs this task, should have
domain knowledge and understand which aggregation mechanism makes
more sense in a particular context.
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4.1 Concepts

What follows is a description of the developed system as a whole, how each com-
ponent is supposed to communicate and interact with each other. �e more detailed
description of the most important components that have been developed can be
found in the implementation section. �ere have been many di�erent technolo-
gies used in order to achieve the �nal result, however, the diagram 4.1 shows the
architecture of the system and its most important components.

�e two main components in this diagram are the Smart Factory Simulator and
the Smart Data Service, which in fact are the two endpoints of this architecture.
�e data is meant to �ow from the Smart Factory Simulator to the Smart Data
Service. �e Smart Factory Simulator can contain a variable number of machines
and event sources that generate data while producing items. �ese machines are
con�gured to send those generated data via a transport protocol in a lightweight
JSON format. Using this kind of approach, data coming from heterogeneous sources
is simulated.

It is relevant to mention that, the transport protocol does not persist the received
messages in its topics, but instead, it immediately forwards the same information
to the registered subscribers. �erefore, another message queueing platform is
necessary for further ingesting the data and persisting in its topics. Even though
the purpose of this work is not scalability, the message queueing platform can be run
in clusters. It is also important to emphasize that, the transport protocol decouples
the data generation from data collection and can easily be replaced by some other
protocol without much intervention, which makes the system �exible.

Following the data �ow in this pipeline, which is represented using dashed lines and
arrows to show the direction at which the data is �owing, we come to the connectors.
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Figure 4.1: System Architecture
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�ese �rst connectors are in fact subscribers to the topics of the transport protocol
and publishers to the topics in the message queueing platform. A�er the data is
published in the message queueing platform, the outgoing connectors play the
role of subscribers of those topics, collect the data and persist them in an external
database by creating a table per each topic, as it is illustrated in the referenced
diagram.

In the end, using the Smart Data Service user interface, the user has access to the raw
data collected in the In�uxDB, and by utilizing the aggregation mechanisms of the
Smart Data Service new measurements containing Smart Data can be generated.

Besides the described components, it is also important to highlight that each of
those components run in their own docker container, as depicted in the diagram
with a small docker icon. Docker plays an important role in building this infra-
structure because using docker-compose the whole system is con�gured in a single
con�guration �le and can be started using only one command - ”docker-compose
up”.

�is summarizes the brief description of the architecture and presents a big picture
of the system that has been developed.

4.2 Implementation

4.2.1 Smart Factory Simulator

In this section, I will explain the details of the implementation of the Smart Factory
Simulator. Simulators try to model real-life systems and they enable to perform
di�erent tests for di�erent scenarios and apply diverse implementations to ob-
serve the outcomes, without the need to test those implementations on real-life
systems, which normally takes longer and can be more troublesome based on
circumstances.

As already mentioned, the simulator is an important part of my work. It is used
to simulate a Smart Factory and generate sensory and other types of information
based on the user-de�ned given con�guration. �is implies that the Smart Factory
simulator is a dynamic one because it can be exactly speci�ed how it should
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Figure 4.2: Structure of JSON (JavaScript Object Notation)

behave. Of course, there is always room for improvement, but on this occasion, it
is su�cient.

Smart Factory Simulator is split into the con�guration part and the implementation
part.

Configuration

�e con�guration of the simulator is de�ned inside a JSON (JavaScript Object
Notation) �le. JSON is a data-interchange open standard that is lightweight and
easy to read andwrite. It is supported by almost all di�erent programming languages
because it is easy to parse and only makes use of two structures: a�ribute-value
pairs and an ordered array list 1. It is already very popular and it is being used
extensively and in many cases is serving as a replacement of XML.

With JSON it is possible to de�ne all di�erent kinds of con�guration combinations
in our simulator. �e �rst part of the con�guration �le, although the order is not
necessarily important - it can only be more readable because of logical order, repres-
ents connection properties to an MQTT (Message�euing Telemetry Transport)

1https://json.org (Accessed on: 2019-09-24)
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Figure 4.3: MQTT connection properties

broker where the simulator will connect and send the generated data. �e following
connection properties are de�ned under the root node:

• �e connection URL to the MQTT broker
• Username for MQTT authentication, if present
• Password for MQTT authentication, if present
• �e name of the root topic where the simulator will be sending data

�e �gure 4.3 shows an example of the connection properties.

�e next part of the con�guration �le are the machines and the machine groups.
Here it is possible to describe the diverse types of machines that the user wants to
have in the simulating Smart Factory. �e following JSON properties are available
inside a machine node:

• �e id of the machine
• �e data frequency (milliseconds)
• �e total duration of the frequency (milliseconds)
• �e amount of data to be produced per frequency
• �e type of data to be generated

It is important to note that the id of the machine and the ids of produced data
must be unique and cannot contain any spaces. �is has implications both in the
parsing/processing of the data by the simulator as well as further in the developed
infrastructure (MQTT topics, Ka�a Connectors, Ka�a Topics, and In�uxDB meas-
urements). �e data that can be generated are of the following types:

• A �xed prede�ned curve with a lot of data points to be followed, which have
to be de�ned in another JSON �le
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Figure 4.4: An example of random added noise to machine generated data

• A random integer or �oat that is distributed uniformly on the speci�ed range
• A random value that is generated using a normal or Gaussian distribution,
and

• A random value that is generated using a Cauchy distribution

We need di�erent kinds of randomness to approximate the data coming from real-
life machines. A more advanced feature of the simulator is to add additional noise
to the generated data so that sometimes the produced values can be unpredictable.
Figure 4.4 illustrates generated data with and without added noise. Added noise,
in this case, is generated using the Cauchy distribution, which adds a wonderful
random �uctuation to the graph. �is is especially important if we want machines
sometimes to be faulty, which is the case in the real-world scenario, where not
everything is perfect and doesn’t go the way we want. With this in mind, we can
also de�ne the quality constraint for each data type and decide what values a�ect
the quality of the produced item. Do the generated values have to be within a range,
under a certain value or above a certain value to produce items of good quality. An
example of the complete con�guration of a machine can be seen in 4.5.
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Figure 4.5: Example of the con�guration of a machine
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Figure 4.6: An example of machine groups in a production line

�ere is another extended functionality that the simulator o�ers. �e user has the
possibility to de�ne multiple machines and group them. �is should normally be
done for machines that are similar in nature and that are used to perform the same
task in the production line, but the selection of the machine is randomized for each
produced item. �is happens when there is more demand on a particular task in the
production process and the load has to be split on multiple similar machines. So, in
reality, di�erent items can go through di�erent lines of production. It can easily
happen that one of the machines inside a group doesn’t perform as well as the
others, thus some of the produced items at the end must be of lower quality. �is
increases more the overall randomness of the simulator. �is kind of production
process is illustrated in 4.6.

A�er specifying the con�guration of machines and machine groups, it is possible
to de�ne the quality gate as well. Its main purpose is to calculate the quality,
how each of the machines involved in a production process has performed. When
combining the above-mentioned quality constraints of a machine with added noise,
especially using Gaussian distribution or Cauchy distribution, then the generated
data-values will vary. �e quality is then determined based on these values, it drops
proportionally based on how many generated data-values exceeded or were outside
of the allowed quality constraint range and how many of them were within the
allowed range.

In real-life scenarios, besides a diverse set of machines, we can have other sources
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that generate and send data to the MQTT broker, which can play an important
role later in analytics. An example of this can be the data coming from an MES
(Manufacturing Execution System) which tell more about the item that is being
manufactured, or some kind of events stating that a machine is broken or that
maintenance has been performed on a machine. Smart Factory Simulator makes it
possible to integrate the following types of event sources:

• An event stating when an item has entered a machine in a production process
• An event stating when an item has exited a machine in a production process
• An event stating that maintenance has taken place for a speci�c machine,
and

• An event stating that a machine is faulty

�e last two possibilities to specify events can be combined with additional noise
(the same way as before in machines) to add randomness when a machine will be
broken or when maintenance will occur, e.g. a�er a speci�c number of produced
items plus a random function or a�er a de�ned duration plus a random function.
An example of the con�guration of events is shown in Figure 4.7.

Finally, the user can set the production line of the Smart Factory, from start to
end, thus having the possibility to de�ne the exact order of machines and machine
groups if present, where an item will go through in the production process.

Implementation

For the implementation of the Smart Factory Simulator, the Java programming
language together with some useful libraries has been used.

Firstly, the con�guration part, where everything is wri�en in JSON format, needs to
be parsed in some way so that the values are properly collected. For this, a library
called JSON-B or JSON Binding v1.0.1 2 has been used, so that the con�guration
can be directly mapped to Java classes.

2http://json-b.net (Accessed on: 2019-09-25)
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Figure 4.7: Example of events con�guration
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Secondly, for the generation of random noise using Gaussian distribution or Cauchy
distribution, which is ubiquitous in the simulator, a lightweight Java library has
been used, namely Apache Commons Math v3.6.1 3.

�irdly, because we need to send these generated data to an MQTT broker, then an
MQTT client is necessary, and for this, the Eclipse Paho MQTT Client v1.2.1 4 has
been used. �is client is helpful and enables easy con�guration on how the client
should connect to the broker and how should the messages be sent.

Finally, for building and managing the application and its dependencies, the Apache
Maven v3.6.0 5 has been used, and to put everything together and run the simulator
in a containerized environment, Docker v.19.03.1 6 was the preferred option.

Figure 4.8 gives a big-picture of the UML Class Diagram for the most important
classes so that the reader can have a be�er understanding of the whole concept of
how the simulator works. �ree main colors have been used to group classes of
similar functionality - blue, green and gray. SmartFactorySimulator is the main class
where the application starts running and therefore has a blue color to distinguish
it from other classes. Classes that are colored with green are classes that play a
fundamental role in the main functionality of the simulator. Last but not least,
classes colored with gray are helper classes that support other classes on meeting
their goals.

�e SmartFactorySimulator class is illustrated with all of its methods in more detail
in �gure 4.9. �e basic idea of this class is to read the con�guration �le speci�ed in
the arguments when starting the simulator, which in this case, is speci�ed inside the
Docker�le. A�er reading the con�guration �le and mapping it to a Con�g object
4.10, which is done using the JSON-B library, it starts creating machines, machine
groups, quality gate, �xed prede�ned data-points, event sources, etc, depending
on the properties mapped in the Con�g object. �en, the whole simulation starts
when the method ”startSimulation” is invoked. In this method, for each item that is
produced, it iterates over the production line that has been con�gured and invokes
the appropriate simulation methods of the iterating objects. In case, there is a
machine group in the production line, the SmartFactorySimulator class makes

3http://commons.apache.org/proper/commons-math (Accessed on: 2019-
09-25)

4http://eclipse.org/paho (Accessed on: 2019-09-25)
5urlh�ps://maven.apache.org (Accessed on: 2019-09-25)
6https://www.docker.com (Accessed on: 2019-09-25)
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Figure 4.8: UML Class Diagram - Big picture
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Figure 4.9: SmartFactorySimulator Class

Figure 4.10: Mapping the JSON con�guration �le to Con�g class

use of the helper class MathUtils to get a randomly generated number in order to
make a random decision, which of the machines in the group should be selected.
Furthermore, the Mq�Utils helper class, which makes use of the above-mentioned
Eclipse Paho MQTT Client, is used to set the connection options for the MQTT
broker. For each time that a new IMq�Client is created, it uses the same connection
options.

All the machine objects are at this point already created and contain the neces-
sary con�gurations to simulate the machines and generate sensory data-values.
�e properties ’dataFrequency’, ’amountOfDataPerFrequency’, and ’totalDuration-
PerCycle’ control how o�en should data be sent, how many data-points should
be generated per one message that is sent, and for how long should a cycle last
respectively - meaning how long does it take for the machine to �nish one item.
Within this period, the method ’generateData’ is called many times in order to
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Figure 4.11: Code snippet from generateData method in Machine class

get the desired data just like it was con�gured as is shown in the following code
snippet 4.11.

If there is already a con�gured JSON �le that contains �xed prede�ned data-points,
then those points will be followed one-by-one from the ’generateData’ method and
it will add additional noise to it if it is con�gured so. �is gives the user a lot of
options and literally it is possible to de�ne di�erent custom paths of data-values,
known also as templates, that some sensor in the machine should follow.

A�er the data is generated it is wrapped in a Message class with the current
timestamp and with the help of the IMq�Client it is sent to the MQTT broker. �e
same is true for the MachineGroup class and the�alityGate class, although the
�alityGate instead of generating data, calculates the quality of each performing
Machine against the de�ned quality constraints. �e more violations of the quality
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constraints there are, the less the quality of the machine will be. �e more detailed
illustration can be seen in the following UML diagram 4.12.

It is important to note that, machines themselves, normally cannot track the item
that is being produced. To simulate real factories, events should send data when an
item entered a speci�c machine and when it exited, when some machine is broken,
and when maintenance has occurred. �ere are of course many other events that
can be sent but this should be su�cient for this project. �e generation of the last
two events should usually be con�gured with some additional noise, because in
real-life scenarios they aren’t really predictable, especially the event stating that
a machine is broken. Here too, the MathUtils helper class is used to generate the
randomness. �e �gure 4.13 shows more details of the classes that are used to
generate and send events and the relationships that they have with other classes.

41



4 Method

Figure 4.12: Detailed UML Class Diagram of machines and machine groups
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Figure 4.13: Detailed UML Class Diagram of events
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4.2.2 Smart Data Service

�is section describes how the Smart Data Service works in detail and the most
important pieces of its implementation. Smart Data Service is a web-based applic-
ation that is developed mainly using Java EE 8 technology 7. �e reason for this
is that the UI is considered more suitable for the user to interact with the service
and select aggregation functions in a more convenient way. Another reason is that
using a web-based application the need for extra installations is avoided. In order
to run this Java EE 8 web-based application, an application server is required, and
the Payara Server 8 has been used.

Starting with the index page 4.14 of the Smart Data Service, it is obvious that the
user-interface is split into three parts, the top area which contains the title, the
le� section which contains the main navigation menu, and the central area which
contains the content of the currently opened page. All other pages make use of
the same format, hence a template was created using the JSF Facelets 9. When
developing using JSF Facelets templates, the template is always derived by a child
page and only the parts that need to be changed are updated. �is gives us a lot
of �exibility. In the content area of the index page, the user has the possibility
to choose between two options for data aggregation based on the target analysis,
namely:

• Retrospective Analysis, and
• Predictive Maintenance

�ose available options are directly linked with the already described use cases in
Chapter 3.

7https://javaee.github.io/ (Accessed on: 2019-10-20)
8https://payara.fish (Accessed on: 2019-10-20)
9https://javaee.github.io/tutorial/jsf-facelets001.html (Ac-

cessed on: 2019-10-20)
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Figure 4.14: Smart Data Service - Index Page

Retrospective Analysis

�is page, which can be seen in Image 4.15, enables the user to aggregate the data
in such a way that they will be valuable for �nding out what was the reason that
caused defects in produced items within a Smart Factory. All of this data that is seen
here is referred to as the raw data that has already been collected and stored in the
In�uxDB. �e machines that sent raw data are displayed in di�erent tabs, as it can
be seen the Figure 4.15. In this example, there are nine di�erent machines: Cu�ing-
M1, Cu�ing-M2, Cu�ing-M3, EdgeSeaming, Pa�ernMaking, Pressing, Sewing-m1,
Sewing-m2, and Sewing-m3. Inside the content of each tab, there is a table that
enables the user to select the parameters (Column) that have been sent from this
particular machine, an aggregate function that will be used for the aggregation of
this particular parameter, as well as a new column name that will be used when
creating the newly aggregated data or Smart Data.�e currently available aggregate
functions are de�ned within a Java Enum, named AggregateFunction.�e following
are the available functions:

• Minimum
• Maximum
• Mean
• Median
• Mode
• Count
• Sum
• First
• Last
• Spread
• Standard deviation
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Figure 4.15: Smart Data Service - Retrospective Analysis Page

�e combination of those functions gives the user multiple alternatives to generate
meaningful Smart Data. A�er de�ning all aggregate functions for the machines
that are of particular interest for this task, then the user is asked to specify the new
table name where the Smart Data will be stored and the period in which the raw
collected data has to be aggregated. Most importantly, a�er clicking the Aggregate
bu�on, the Smart Data Service has to collect data from di�erent machines, which
are equivalent to di�erent tables in the In�uxDB as it can be seen in the System
Architecture Diagram in 4.1, and put them together in a single row that contains
multiple columns with values of already speci�ed aggregate functions. Each of
these newly created rows corresponds to a single produced item. Because in the
raw collected data we have multiple tables for di�erent machines, and because
each machine table sends only raw sensory information, there should be a way
to distinguish a collection of data for one produced item from the collection of
data of another produced item. To solve this issue, it is assumed that the necessary
information is sent via another data source called MES (Manufacturing Execution
System), thus creating a table named MES. �e data stored in the MES table is of
the following format:

• Timestamp
• ID of the machine
• ID of the item being produced
• Start production/End production

With all those information available from the MES table, the Smart Data Service
automatically knows the production line that an item traversed and the time it
entered a speci�c machine and the time it exited it. �is kind of information is
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Figure 4.16: Raw Data generated by a Machine

crucial because raw data sent from machines contain only sensor values and no
information about the current item that is being produced. �at’s why it was
necessary to assume that this data comes from the MES data source.

With the available information from the MES table, as illustrated in Figure 4.16,
the Smart Data Service can now select the right data collection for a speci�c
item in each machine table. A�er it gets the collection of raw data from each
machine table, then it applies the aggregate functions that were already de�ned
by the user. �ose aggregate functions reduce these collections of data to a single
value, therefore making it possible to have a single row for a single produced item
containing valuable information for further analytics. In addition, this row contains
also quality information for each machine that produced the item and a boolean
value stating if the item was returned from the customer or not.

A�er the Smart Data table is generated, then it appears in the menu as a link on
the le� part of the template.

When selecting one of the links from the menu on the le� side of the template,
then a view that shows Smart Data is displayed, more precisely a table containing

47



4 Method

Figure 4.17: Retrospective Analysis - Smart Data

this valuable information. An example of this table can be seen in Figure 4.17. �is
page view enables the user to see the generated results immediately and it o�ers as
well three di�erent options to extract the Smart Data:

• CSV (Comma-Separated Values) format
• Excel format, and
• PDF format.

Predictive Maintenance

In the Predictive Analytics page, the user can generate similar Smart Data which will
be helpful in predicting future machine failures or appropriate times for performing
maintenance on a machine. �e page view, as it can be seen in Figure 4.18, has a
similar construction like the Restrospective Analysis page.

�e �rst thing that the user should do in this page is to select the machine for which
the Smart Data should be generated. �e dropdown selection component can be
seen on the right side of the page content. A�er that, it is possible to add additional
aggregation functions for the data sent by this particular machine, though it is not
necessarily required to do so. A�er specifying the new table name for Smart Data
that will be generated and the timespan in which to collect data, then the data can
be aggregated by clicking on the Aggregate bu�on.
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Figure 4.18: Smart Data Service - Predictive Maintenance Page

Most importantly, among data that is aggregated using the de�ned aggregate
functions by the user, there are also generated data about di�erent events that state
if the machine has been broken or not, how many items have been produced since
the last event, how much time has passed since last maintenance, and how much
time has passed since last broken event. To generate these kinds of information,
raw data from other data sources have to be collected and calculated. In the T-Shirt
factory example, there are two additional data sources that send event data giving
information if a machine has been broken or if maintenance has been performed
in a machine. �erefore, by combining these two event sources, one can come up
with valuable information.

In contrast to Retrospective Analysis, here the aggregate functions are not applied
always to the collection of raw data of a single item, but to the collection of raw
data of the number of items that were produced since the last event that was sent.
Figure 4.19 shows the table view of the generated Smart Data from the Predictive
Maintenance function.

�e UML diagram 4.20 shows the most important classes of the developed prototype
service. �e Smart Data Service makes use of the so-called Layered Pa�ern, and
it can be clearly seen from the UML diagram that it has two di�erent layers - the
Presentation Layer and the Business Layer. �e classes in the Presentation Layer
correspond to the page views that the user can see and interact with, whereas
on the other hand in Business Layer the main class is SmartDataService, which
contains the main logic behind the whole developed service. Other classes in the
UML diagram that have gray color are more of helper classes or data transfer classes.
It is important to note, that the class In�uxDBConnection produces a connection
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Figure 4.19: Predictive Maintenance - Smart Data

to the In�uxDB database and makes use of the In�uxDB Java Client Library 10. �is
In�uxDB connection is then injected and used by the SmartDataService class.

10https://github.com/influxdata/influxdb-java (Accessed on: 2019-10-
20)
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Figure 4.20: Smart Data Service - UML Diagram
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�is section explains how the evaluation has been performed and what has been
used, as well as what kind of parameters or con�gurations have been applied.

In order to evaluate the functionality of the Smart Data Service, as already stated
before, the Smart Factory Simulator is required for accepting randomly generated
data. �e results of the Smart Data Service are evaluated as positive if we are
able to show that the value in the produced Smart Data suggest that a successful
application of:

• Retrospective Analysis, and
• Predictive Maintenance

might be possible. To show this, correlation matrices have been used.

With this in mind, a couple of di�erent con�gurations were used so that di�erent
scenarios can be tested. For the �rst use case - Retrospective Analysis - three
di�erent examples have been taken into consideration.

1. Smart Factory Simulator has been con�gured in that way so that only the
Pa�ernMaking machine causes sometimes that the produced T-Shirts are
of lower quality than expected. When the T-Shirts are of lower quality they
might get returned from the customers, but this is decided based on probabil-
ity. �e quality of the Pa�ernMaking machine drops based on the number
of sensor values that exceed the precon�gured maximum value. Around 110
di�erent T-Shirts were produced from the imaginary factory and around 30
T-Shirts were returned from the customers because of their low quality.

2. In the second example, a group of machines has been taken into consider-
ation - namely machines used for cu�ing. In this Smart Factory Simulator
con�guration, we have three cu�ing machines that might cause a drop in
quality of T-Shirts - Cu�ing-M1, Cu�ing-M2, and Cu�ing-M3. When items
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are produced, it is randomly decided which cu�ing machine should be used.
Machine quality drops if a sensor value is higher than the maximum con-
�gured value. From 126 produced T-Shirts, 34 have been reported as returned
items.

3. �e third example is similar to the second example but instead, the quality of
the cu�ing machines decreases if the value of a sensor of the machine drops
below a minimum con�gured value. In this case, a total of 100 T-Shirts were
produced and 35 were returned.

For the second use case - Predictive Maintenace - a large dataset has been generated
where around 500 di�erent T-Shirts were produced. In this process, machines have
been broken and maintenance has been performed as well. All of this has been
con�gured using probability when a machine might get broken. �e following
examples were considered:

1. �e Pa�ernMaking machine was con�gured in that way so that it did not
get broken that o�en. Many more maintenances have been performed - 44
maintenance events and 8 broken events.

2. �e Cu�ing-M2 machine was con�gured so that it gets broken more o�en
than it gets �xed. In total there were 22 broken events and 10 maintenance
events sent.

3. �e maintenance events and the broken events sent for the Cu�ing-M1
machine were as follows - 10 maintenance events and 7 broken events.

5.1 Results

5.1.1 Retrospective Analysis

Referring to the �rst example for Smart Data aggregation, Chart 5.1 reveals that
the number of returned items is strongly associated with the performance of the
Pa�ernMaking machine. It seems that 0.9 is the border of the quality at which most
of the items are returned.

In the aggregated Smart Data, a cluster function has been applied, thus grouping
values of sensor ”s1” in three categories:
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• values between 0 - 190
• values between 190 - 1400, and
• values between 1400 - 5000.

�e correlationmatrix 5.2 illustrates that there is an association between the last two
de�ned clusters - ”s1-cluster[190,1400]”, ”s1-cluster[1400,5000] - and the number
of returned items. More precisely, sensor values between 1400 and 5000 are more
likely to cause an item to get returned, whereas on the other hand sensor values
between 190 and 1400 not. Important to emphasize, there exists a close relationship
as well between those clusters and the quality of the Pa�ernMaking machine. �e
same is not true for the �rst cluster.

In the second example of the �rst use case, faulty produced T-Shirts could be caused
by one of the three cu�ing machines - Cu�ing-M1, Cu�ing-M2, or Cu�ing-M3.
Referring to Figure 5.3 it is reasonable to say that there is a correlation between
the returned items and the quality of the Cu�ing-M1 and Cu�ing-M2 machines,
but not with Cu�ing-M3. �e maximum aggregated value of machine Cu�ing-M2
seems to have an association with the returned items, but the same is not true for
the machine Cu�ing-M1. Nevertheless, using the possibility o�ered by the Smart
Data Service to freely chose aggregation functions seems to improve the situation.
In Figure 5.4, the data has been aggregated using the sum function and the cluster
function. �e relationship between the sum function and the returned items, as
well as the cluster function and the returned items, is noticable. Once again, these
functions correlate with the quality of the respective machine.

Figure 5.5, which refers to the third example, and which is similar to the previous
one, shows once again the connection between the quality of the machines and the
items that have been returned. However, in this case, because the quality drops if
sensor values fall below a certain point, it is important to notice that by choosing
the minimum aggregation function we can deliver more valuable information. If we
aggregate the values using the sum function, the correlation is not always accurate,
as it can be seen in machine Cu�ing-M2 and Cu�ing-M3.

Referring to the illustrations, the valuable information from the above generated
Smart Data suggests that those can be suitable for a successful application of
Retrospective Analysis.
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Figure 5.1: �ality of the Pa�ernMaking machine and the returned items

Figure 5.2: Correlation matrix of the �rst Retrospective Analysis example
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Figure 5.3: First correlation matrix of the second Retrospective Analysis example
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Figure 5.4: Second correlation matrix of the second Retrospective Analysis example
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Figure 5.5: Correlation matrix of the third Retrospective Analysis example
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5.1.2 Predictive Maintenance

Figure 5.6, which refers to the �rst example of the Predictive Maintenance case,
where the number of performed maintenances is higher than the number of broken
events, reveals themeaningful correlation between the duration since last performed
maintenance and the health of the machine as well as the number of items produced
since last event and the health of the machine. �e relationship exists also between
the number of produced items since the last event and the time since the last
maintenance event. �e times that the machine is broken are hardly noticeable
from the correlation matrix but in order to minimize the downtimes, maintenance
intervals have to be slightly shortened.

�e same valuable information from the aggregated Smart Data can be noticed in
the next two examples. �e correlation matrix of the second example 5.7, hints that
there is a close relationship between the number of produced T-Shirts since the
last event and the broken events. �is means that in order to predict the next best
maintenance time, the number of produced items of the machine should be taken
into consideration.

In the last example 5.8, the number of performed maintenances and the number
of times that the machine has been broken, are quite close to one another. Again
like in the previous examples, there is a strong correlation between the number of
produced items since the last time and the time since the last broken event or the
time since the last maintenance event.
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Figure 5.6: Correlation matrix of the �rst Predictive Maintenance example
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Figure 5.7: Correlation matrix of the second Predictive Maintenance example
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Figure 5.8: Correlation matrix of the third Predictive Maintenance example

63



5 Evaluation

5.2 Discussion

In this subsection, the results presented above are put into perspective. Even though
there are di�erent ways to display results, the method used for the evaluation of
the Smart Data Service was considered to be su�cient for showing that those
Smart Data contain valuable information and that they suggest that a successful
application of Predictive Maintenance or Retrospective Analysis can be feasible.
�e correlation matrices used in the Results section reveal that the generated
Smart Data using the prototype service can carry relevant information. �ere is the
chance that this value in the aggregated data can be considerably increased by the
possibility of choosing the right aggregation function as it was shown already from
the examples in the Results section. Such solid correlations between the variables
suggest that those Smart Data might be suitable for Retrospective Analysis and
Predictive Maintenance.

However, it is important to emphasize that this solution has not been tested in a
real-world scenario. Some assumptions have been made so that the system would
work. An example of such an assumption is that the Manufacturing Execution
System (MES) sends information telling which item is being produced in which
machine in what period. �is information was required to know which raw data
should be selected from each machine because normally machines do not send
information about which item is being produced. However, when testing this work
in a real-world scenario, this might not be the case, and there might be the need to
�nd another workaround. Another important assumption is the way that the events
are sent and received. It was assumed that the events for telling if a machine is
broken or if maintenance has been performed are not sent from the machine directly
but from another source. �is can also be di�erent in a real-world scenario and
there can be other events, which in this work were not taken into consideration.

Regarding design decisions, the usage of MQTT Protocol, Apache Ka�a, In�uxDB,
and Docker was considered important, because the whole system can be scalable.
Even if the usage of the MQTT Protocol would not be relevant in a real-world
scenario, the substitution of it with e.g. OPC UA would not be such a problem
because the MQTT is loosely coupled with other systems. An Apache Ka�a Source
Connector for the OPC UA would be necessary in this case. Another important
component is the In�uxDB and in order to use it in a real Smart Factory, it would
probably be necessary to run it in a cluster, which is already supported. Nevertheless,
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the proposed system does not support parallel processing and this can easily be
a bo�leneck in a real-world scenario. In order to overcome this, a more suitable
solution would be to use the Hadoop platform, which is based on the MapReduce
programming model. Hadoop supports distributed storage and processing for Big
Data.
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In thisMaster’s�esis, a prototype service is presented that is designed for collecting
raw data from di�erent incoming sources in a Smart Factory and transforming
them into more valuable information which can serve for further analytics and
processing. �us, the prototype service transforms the ingested raw data coming
from multiple sources into the so-called Smart Data. �e end result of the Smart
Data is usually a row in the database with multiple columns containing valuable
information for a produced item in a Smart Factory.

To the extent of my knowledge and the performed research, there does not exist
such a service that is able to collect and aggregate data automatically in that way, so
that it always contains the right valuable information that can be used for further
analytics. Because the context from where the raw data is coming is crucial, the
domain knowledge is necessary for choosing the right aggregation function. �is
is the reason that the prototype service o�ers di�erent aggregation mechanisms
and gives the possibility to the user to choose appropriate functions.

Finally, the Smart Data Service has been evaluated using the developed Smart
Factory Simulator and based on the results and the illustrations used, they show
that by giving the responsibility to the appropriate user for choosing the right
aggregationmechanism, the generated Smart Data can contain valuable information
that might be used for further analytics.
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6.1 Future Work

�e following points were considered relevant for the future development of the
Smart Data Service:

• Smart Factory Simulator: Extend the functionality of the Smart Factory Sim-
ulator so that it generates more heterogeneous data and it enables be�er
control over the generation of events. �e simulator would be easier to use
and more understandable if there is a GUI for con�guring and visualizing the
imaginary Smart Factory.

• Real-life scenario: Put the Smart Data Service to the test using a real-life
Smart Factory and analyze the results.

• New aggregation possibilities: Extend the number of possible aggregation
functions in the Smart Data Service and thus make the service more �exible.
One possibility would be to o�er a way so that the user can de�ne aggregation
functions using wri�en formulas. Another interesting functionality would
be to allow the user to de�ne aggregation conditions based on the values of
cross-reference variables.

• Scaling: Extend the Smart Data Service infrastructure so that it has be�er
support for scaling. Apache Ka�a running in a cluster with multiple nodes to-
gether with the Hadoop platform for parallel processing and data distribution
is a suggestion for the solution to this problem. A�er the right infrastructure
is built, stress-test the prototype service using enormous amounts of data.
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