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Abstract

Recommender systems are widely used in many domains. Despite large research

e↵orts regarding, e.g., context-aware recommender systems, it remains a

fundamental problem that recommendations are biased towards popularity. This

can be mainly attributed to the long-tailed distribution of items. In particular,

recommendation of music is heavily influenced by this e↵ect, due to particularities

of music. Especially listeners of non-mainstream music from the long tail perceive

low recommendation quality. Our work is inspired by recent research in fair music

recommendations concerned with proving non-mainstream users being

disadvantaged by today’s recommendation algorithms. We apply unsupervised

clustering and classification to identify non-mainstream music styles. Subsequently,

we link users to their favorite music style and thus, obtain user groups of di↵erent

taste. This opens the opportunity to conduct in-depth analyses of non-mainstream

users in regard to their music taste, demography, culture and listening behavior.

We found that there are indeed di↵erent types of non-mainstream users: Complex

(i.e., Blues, Soul), Festival (i.e., Punk, Hardrock), Relax (e.g., Ambient, Postrock)

and Heavy Listeners (e.g., Deathmetal, Blackmetal). Among several findings,

results indicate that Heavy and Festival Listeners are of younger age than others.

Interestingly, Complex and Relax Listeners tend to exhibit more diverse music

taste and favor future developments. Hence, our research shows that cultural

aspects can be utilized to further describe this understudied group of

non-mainstream users. In addition, we extend previous work in the sense that we

not only illustrate the discrimination of non-mainstream users, but also provide

significant evidence that recommendation quality for this subset of users varies for

di↵erent types of listeners. Thus, performance of state-of-the-art recommendation

algorithms in regard to non-mainstream users could be improved by considering

both, the notion of mainstreaminess and music styles within the long tail.
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Zusammenfassung

Empfehlungssysteme werden in vielen verschiedenen Bereichen genutzt. Trotz

großem Forschungsaufwand bezüglich Empfehlungssystemen, die Kontext

betrachten, besteht nach wie vor das Problem der Beeinflussung durch Popularität.

Aufgrund der Besonderheiten von Musik sind Musikempfehlungen besonders stark

betro↵en. Die Qualität der Empfehlungen ist im Speziellen für Nutzer schlecht, die

eher unpopuläre Musik hören. Forschung im Bereich der fairen

Musikempfehlungen zeigt die Benachteiligung von Hörern unpopulärer Musik. Dies

wirkt als Inspiration für diese Arbeit. Wir identifizieren verschiedene

Musikgeschmäcker und klassifizieren Nutzer anhand ihrer Lieblingsmusik. Dies

ermöglicht es uns, Hörer unpopulärer Musik in Anbetracht ihres Geschmacks, ihrer

Demographie, ihrer Kultur und ihrer Interaktion mit Musik näher zu analysieren.

Hörergruppen von vier Stilen konnten dabei identifiziert werden: Komplex (e.g.,

Blues, Soul), Festival (e.g., Punk, Hardrock), Ruhig (e.g., Ambient, Postrock) und

Heavy (e.g., Deathmetal, Blackmetal). Wie wir herausfanden sind Heavyhörer und

Festivalhörer jünger als andere Nutzergruppen. Weiters zeigen Hörer der Stile

Komplex und Ruhig einen höheren Grad an Vielseitigkeit. Unter anderem legen

die zuletzt angeführten Nutzer weniger Wert auf den Erhalt von Tradition, als

Heavyhörer und Festivalhörer. Unsere Forschungsergebnisse zeigen, dass mittels

kultureller Aspekte Nutzer mit unpopulärem Musikgeschmack näher beschrieben

werden können. Zusätzlich erweitern wir die aktuelle Forschung, indem wir nicht

nur verifizieren, dass Nutzer unpopulären Geschmacks von modernen

Empfehlungsalgorithmen benachteiligt werden, sondern zeigen auch, dass die

Qualität der Empfehlungen für diese Nutzer ebenso durch ihren Musikgeschmack

beeinflusst wird. Kurzgefasst kann die Qualität der Empfehlungen für Nutzer

unpopulären Geschmacks verbessert werden, indem man auch verschiedene

unpopuläre Musikstile betrachtet.
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”I found myself in the position of that child in a story who noticed a bit

of string and - out of curiosity - pulled on it to discover that it was just

the tip of a very long and increasingly thick string ... and kept bringing

out wonders beyond reckoning.”

Benoit B. Mandelbrot, Fractalist
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Chapter 1

Introduction

Music recommendation systems (MRS) aim to provide tracks, artists, genres or

playlists, the user may like. Typically, contextual information [Cheng and Shen,

2014, Park et al., 2006, Levy and Sandler, 2008] or previous listening history

[Zheleva et al., 2010] are exploited to find well-suited music. [Schedl et al., 2018]

described several particularities of music recommendations, for instance, the

abundance of music data and a user’s listening intent, situation or emotions.

Furthermore, there exists only a weak linkage between low-level descriptions (e.g.,

audio signals) and high-level descriptions (e.g., genre annotations, emotions) of

music. This so called semantic gap [Celma et al., 2006, Aucouturier, 2009] poses

problems in the field of music recommendations, since pieces of music similar in

their abstract, high-level descriptions do not have to be similar in their low-level

descriptions. That means, the notion of similarity of a system that solely relies on

music data deviates from a user’s notion of similarity. As a consequence, there

exists a discrepancy between what a user perceives similar to her music taste and

what a recommender system regards as well-suited for a user. Thus, recommender

systems have to grasp contextual aspects, in order to alleviate this gap. Many

factors are thought to heavily influence the perceived quality of music

recommendations, but to this end, are hard to include into a recommender system.

Caused by the aforementioned aspects, research strives to develop sophisticated

methods [Schedl and Hauger, 2015, Kowald et al., 2019] and models [Van den

Oord et al., 2013, Zheng et al., 2019]. Another strand of research is devoted to

model user-behavior [Zangerle and Pichl, 2018]. Despite the large body of

approaches destined to improve music recommendations, recent research shows

9
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that (i) methods fail to give stable results over varying datasets, all representing

some kind of user to item rating (e.g., Epinions1, citeulike-a2, Pinterest3) [Dacrema

et al., 2019] and (ii) are uncapable of providing satisfying recommendation quality

for users of non-popular, unorthodox taste [Schedl and Bauer, 2017]. The notion of

mainstreaminess [Bauer and Schedl, 2019] gained importance in research concerned

with studying subpopulations that do not comply with global taste.

[Abdollahpouri et al., 2019b] found that recommendations for users of low

mainstreaminess are biased towards popular items and hence, lack in resembling a

user’s non-mainstream listening behavior. Research o↵ers several approaches to

tackle this crucial issue [Steck, 2018, Abdollahpouri et al., 2019a], laying strong

focus on personalized recommendations. Since music consumption is partially

guided by the user’s psychological profile, background and intent, practitioners

likely profit from research work not only concerned with recommender systems,

but with shedding light on music consumers themselves. As an example,

psychologists linked music preferences to personal characteristics [Delsing et al.,

2008]. Additionally, [Mulder et al., 2007] defined several groups of music listeners

with distinct music taste and listening behavior.

In this work, we strive to attach to both, computer scientists’ and

psychologists’ work. More specifically, we aim to understand the understudied

group of non-mainstream users with unorthodox music taste. Those users’

preferred music style is modelled by exhibiting low-level and high-level descriptions

of tracks. We furthermore aim to outline non-mainstream user’s characteristics,

which serve as starting point for future work that is driven by providing fair

recommendations for both, users of mainstream and non-mainstream taste.

Additionally, this thesis intends to identify distinct groups of non-mainstream

users and eventually depict their unique listening behavior, demography and

culture.
1
http://www.trustlet.org/downloaded epinions.html

2
http://www.cs.cmu.edu/ chongw/data/citeulike/

3
http://sites.google.com/site/xueatalphabeta/
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1.1 Research Questions

In this section we define four research questions which, as we think, are of high

importance for alleviating the aforementioned issues regarding the role of

non-mainstream music listeners in the field of today’s music recommender systems.

RQ1: How can non-mainstream music styles be identified and concisely

described? This research question is driven by the observation that music typically

exhibits very di↵erent patterns in terms of audio signals. There exists an

abundance of high-level descriptors of music like, e.g., genres, which - in this case -

constitutes a large taxonomy of genres. Anyway, [Van den Oord et al., 2013] noted

that it is hard to relate low-level descriptors to easily interpretable ones like genres

or tags. The reason for this are properties of widely used metrics for measuring the

similarity of tracks via their audio signals [Pohle et al., 2006]. This research

question aims to alleviate (i) the issue of finding groups of similar music and (ii)

producing high-level descriptions of these groups.

RQ2: Which user groups of non-mainstream music exist? Often, recommender

systems are faced with the problem of popularity bias. This notion refers to the

probability of a user receiving mostly popular or mainstream music being high.

Here, we intend to determine user groups based on the found music styles in RQ1

and subsequently analyze them thoroughly. This clear, but yet exhaustive

description of a user’s music taste could possibly be used as additional input

feature for a recommender system. Thus, recommendations for users of unpopular

music taste may improve.

RQ3: How does the music consumption of non-mainstream users deviate from

each other? Users usually listen to various kinds of music. Similarly, the set of

users is very heterogeneous. Investigating the consumption behaviour could clarify

why a user listens to certain types of music. For instance, a uniform distribution of

listening events over time would hint that the task of music consumption is not of

primary interest to the user. Furthermore, analyzing the properties of listened

tracks (e.g., number of distinct genres) could constitute descriptions of users.
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RQ4: How do user groups listening to non-mainstream music di↵er in terms of

culture and demography? Recent research emphasizes the large influence of user-

specific features on music consumption. In particular, psychological factors impact

the way a user listens to music. Furthermore, a user’s economic situation, social

environment, insecurity, self-confidence, etc. are assumed to play an important role

in music consumption. This research question is driven by the strive to describe

certain types of users by means of their mind and psychology.

1.2 Scientific Contributions

This thesis constitutes four scientific contributions that are all linked to the

aforementioned research questions:

1. We reduce the gap between low-level and high-level descriptions of music by

distinguishing di↵erent music styles based on acoustic features of tracks and

a subsequent explanation via genres.

2. Users of low mainstreaminess are clustered depending on their preferred music

style and hence, quantitative and qualitative analyses give insights into their

listening behavior, culture, demography and interactions with the long tail of

music. Hence, we satisfy the need to shed light on the understudied set of

users favoring less popular music from the long tail.

3. Our experiments show that unorthodox users are indeed disadvantaged by

state-of-the-art recommender systems. Furthermore, we provide evidence that

even if recommendation algorithms would entirely focus on unorthodox users,

di↵erences in recommendation quality do still exist for user groups preferring

certain non-popular music styles.

4. We furthermore discuss the implications and consequences of our findings for

fair music recommendations.

In order to answer the research questions stated in Section 1.1, we conduct several

experiments. A coarse overview of the experimental setup employed in this thesis is

illustrated in Figure 1.1.
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Figure 1.1: Experimental setup for this thesis. First, we select a subset of users that

exhibit a low level of mainstreaminess and hence, are users of unorthodox music

taste. Then we identify distinct styles of music based on acoustic properties of tracks

(RQ1). Subsequently, the aforementioned subset of users is classified into several

user groups of di↵erent preferred music style (RQ2). In a further step, user groups

are investigated in regard to their listening behavior (RQ3). Similarly, we analyze

user groups with respect to personal aspects, i.e., demography and culture (RQ4).

Eventually, di↵erences in recommendation quality between users of popular and

non-popular taste are illustrated, followed by evaluating recommendation quality

for user groups of di↵erent, non-popular music taste.

1.3 Structure

The course of this work is structured as follows: In Chapter 2, previous work that

is related to fair music recommendations is covered. Here, we aim to provide
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fundamental knowledge, which is necessary to fully understand this thesis.

Furthermore, an overview of state-of-the-art research is given. Chapter 3 deals

with the methodology of how we tackle the previously stated research questions.

For instance, methods used for identifying di↵erent music styles and user groups

are outlined. Additionally, we describe the evaluation procedure and explain

several metrics. The results of the conducted experiments are given in Chapter 4,

among with our interpretations and various statistical analyses. We eventually

provide evidence that there is indeed a demand for further research concerned with

fairness in recommender systems. In Chapter 5, our findings are summarized

alongside with ideas that might be of interest for future work.



Chapter 2

Related Work

The goal of this chapter is to give an understanding of a broad body of related

work. Therefore, we o↵er a quick overview of all key topics relevant for this thesis

and give insights into contemporary research. More precisely, we cover the main

principle of recommender systems, sophisticated recommender systems that include

contextual information, recommendations in the music domain and finally, music

recommendation to users that do not conform to mainstream. Additionally, we

explain how this thesis deviates from previous research and what it contributes to

the problems of today’s research in the topic of fair music recommendations.

2.1 Recommender Systems

In general, recommender systems (RS) aim to provide a user with items he may like.

These recommendations are the result of the RS exhibiting various informations from

di↵erent sources. Typically, these informations include, e.g., attributes describing

the content, ratings of items and listening counts of music tracks. Due to today’s

vast amount of information, these systems face the serious problem of what subset of

information is best suited for providing the best recommendations. Hence, filtering

approaches are used to filter information relevant to a certain user. [Bobadilla et al.,

2013] highlight the main three filtering methods widely used in state-of-the-art RS.

Collaborative Filtering. This method is motivated by the fact that a user’s

opinions are typically influenced by friends and/or acquaintances. Hence,

recommendations can be based on information a user’s neighbors provide. Users of

15
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similar taste prefer similar items. As an alternative formulation, similar items get

consumed by similar users. Say, user U1 watched movie I1. User U2 watched I1 and

I2. As I1 got watched by U1 and U2, but U2 also watched I2, U1 may also like to

watch U2. These depiction leads to two ways of implementing collaborative

filtering (CF): user-based and item-based. The recommendations of user-based CF

rely on users similar to each other, whereas recommendations of item-based CF

rely on items that are rated similarly by a set of users.

Additionally, two further categories can be distinguished: memory-based and

model-based. The first technique exploits previous user to item interactions, e.g.,

ratings. It relies on information that is already in the past/memory. Therefore it is

coined memory-based CF. The second technique, model-based CF, aims to

construct models that identify complex patterns based on training data. For

instance, it can be observed that users within a certain range of age prefer to listen

to a specific kind of music. Hence, a model M : U 7! I is learnt that maps a set of

users U to a set of items I, based on the age of users.

[Su and Khoshgoftaar, 2009] highlighted several shortcomings of memory-based

and model-based CF. Most importantly, memory-based CF depends on users rating

- in some way - their preference for a certain item, which means that recommending

items with no ratings is impossible. Similarly, new users have not defined their

item preferences yet and therefore, similar users cannot be found. This certain

problem is coined ”cold-start” problem. Model-based CF relies on building a model

mapping from users to items. Building such a model is usually very expensive in

terms of computational e↵ort. Hence, a trade-o↵ between prediction performance

and scalability has to be made.

Content-based Filtering. Assuming we can quantify a user’s preferences by

means of a so called user-profile. Similarly, assume that also the content of items

can be described by so called item-profiles. Content-based Filtering (CBF)

recommends items of which the item-profile is similar to the user-profile.

[Lops et al., 2011] provide a high level architecture for CBF. First, item-profiles

have to be constructed in order to get a description of items. This can be achieved
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by considering, e.g., an item’s audio signals [Cano et al., 2005], tags [Cantador

et al., 2010] or an already provided quantification. Secondly, a user-profile has to

be learned. That means that a user should be described by his item preferences,

e.g., any kind of combination of his consumed items’ item-profiles. This could be

realized by employing a so called Vector Space Model [Salton et al., 1975] and

eventually computing a weighted average of item-profiles, which then constitutes

the user-profile. Alternatively, a user could also freely provide a custom-made

user-profile. This user-profile can then be finetuned iteratively by utilizing

methods from the field of Information Retrieval [Rocchio, 1971]. Lastly, the system

recommends items to a user that have a large degree of similarity to the

user-profile.

Unfortunately, CBF is prone to overspecialization. Due to CBF’s methodology,

it is clear that the set of recommendations only comprises very similar items, which

results in low diversity. Furthermore, it remains a major concern of how to extract

meaningful features from unstructured data, in order to build a description of items.

Hybrid Recommender Systems. As shown in the previous paragraphs about

CF and CBF, both have major disadvantages. Hence, research proposes the

realization of RS that combine CF and CBF, coined hybrid recommender systems

(HRS). HRS successfully mitigate certain shortcomings of CF and CBF, by

combining user-related and content-related information. For instance, as CF is

unable to conduct good recommendations for a new user, CBF can alleviate this

issue under some circumstances (e.g, user manually defines preferences).

Clearly, recommendations of CF and CBF have to be combined in some

way. [Burke, 2002] provides a survey of HRS and furthermore presents seven

aggregation schemes:

1. Weighted: An aggregation is constructed by computing the weighted average

of the recommendation scores. For instance, linear combination.

2. Cascade: In this schema, one RS is built on top of another. The

recommendations of the first RS are further finetuned by the second one on

top. The second RS basically serves as correction mechanism.
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3. Switching: Based on some switching criterion, either the first or the second

RS has the power to present its recommendations. For instance, a switching

criterion could be the inability to construct good recommendations. If a certain

score is too low for one RS, the other RS gets its chance to do better.

4. Mixed: Here, recommendations of multiple RS are presented simultaneously.

For instance, a user buys item I1. CF (”Persons who bought I1 also bought

I2.”) and CBF (”You like I1? You may also like I2.”) recommendations are

presented.

5. Feature Combination: Include neighborhood features typically used in CF into

CBF as additional features.

6. Feature Augmentation: The recommendations of one RS serve as input for the

second one. For instance, CBF finds similar items and in a subsequent step,

CF takes this additional features and conducts the actual recommendations.

7. Meta-level: In this approach, a model is learnt. Hence, the model is a concise

representation of a user’s taste. This representation is the input for a

succeeding RS.

The selection of one of these aggregation schemes heavily depends on the application

domain. Furthermore, one schema only solves a certain subset of problems in CF

and CBF. Thus, one may decide carefully on what problems to focus on.

2.2 Context-Aware Recommender Systems

The consumption behavior of individuals is typically heavily influenced by

temporal, social, personal, demographic, situational and economic factors.

According to [Schmidt et al., 1999], these factors can be split into human- and

physical-induced. Human factors include the user itself (e.g., habits), the social

environment (e.g., music preferences of friends) and the task (e.g., exploration of

new content). Physical factors include the surrounding conditions (e.g., weather),

the infrastructure (e.g., input device) and the location (e.g., music consumption

while driving). The configuration of these factors defines the context. In other

words, context describes the circumstances under which a user conducts certain
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actions. Classic RS are context-agnostic. They lack in incorporating contextual

influences of the user, as they consider the problem of providing well suited items

to a user as two-dimensional. More formally, classic RS conduct a two-dimensional

mapping Ratings : Users ⇥ Items. Hence, performance declines for varying

contexts, since the quality of recommendations changes depending on the context.

The aforementioned thoughts motivate development and research in the field of

context-aware recommender systems (CARS). Contrary to classic RS, the

incorporation of a user’s context plays a fundamental role within these systems.

They consider recommendations not as two-dimensional, but as three-dimensional

problem. Formally, they incorporate context by considering the mapping

Ratings : Users⇥ Items⇥ Contexts. In general, the performance improves, since

recommendations now consider the distinct context of a user.

Hence, CARS are required to have knowledge of a user’s context. [Adomavicius

and Tuzhilin, 2011] classified contextual factors further into fully observable,

partially observable and unobservable. This is of relevance, since CARS usually

focus on leveraging contextual factors of a certain degree of observability. For

instance, matrix factorization techniques [Koren et al., 2009] include unobservable

factors, as they extract latent factors from the user to item relationships.

Furthermore, contextual information may not stay valid over time. As, e.g.,

occupation likely is a relevant contextual factor for most users, it may be

non-relevant after retiring. Thus, [Koren et al., 2009] defined additional properties

of contextual factors: static and dynamic.

Another problem is the structure of contextual factors. RS cannot interpret raw

values obtained from, e.g., sensors as human beings can do. Therefore, research

strives to build abstract concepts upon contextual factors’ raw values [Shin et al.,

2009]. Interestingly, [Lee et al., 2010] introduced a rigid mathematical framework

for context abstraction. They utilized Fuzzy Set Theory [Zadeh, 1965], as they

found that several contexts do not exhibit clear boundaries and hence, fuzziness is

required. Also, names of music playlists have been utilized to build groups of tracks

with similar context (e.g., ”summer” playlists) [Pichl et al., 2015].



2.3. MUSIC RECOMMENDATIONS 20

In practice, it is a crucial question of how to integrate context into a RS.

[Haruna et al., 2017] outlined three approaches: prefiltering, postfiltering and

contextual. Prefiltering excludes data that is not relevant in the current context

before computing recommendations. Recent work utilizes a grouping of users

according to similar contexts [Chen et al., 2014]. Postfiltering postpones this

selection by choosing items that are relevant in the current context only after

recommendations are computed [Ramirez-Garcia and Garćıa-Valdez, 2014].

Contextual approaches aim to directly include contextual factors into the model.

This can be achieved by utilizing matrix factorization [Baltrunas et al., 2011],

tensor factorization [Karatzoglou et al., 2010], or by enhancing matrix

factorization with convolutional networks [Kim et al., 2016]. Please note that

research regarding directly including contextual information into the model clearly

focuses on matrix factorization techniques.

Due to their rich capabilities, CARS are applied in several fields of everyday

life. For instance in the learning domain [Verbert et al., 2012], in the tourist

industry [Van Setten et al., 2004, Meehan et al., 2013] or regarding mobile

applications [Böhmer et al., 2010, Woerndl et al., 2007]. In addition, [Haruna

et al., 2017] provides an exhaustive overview of several application areas.

2.3 Music Recommendations

In music recommendation systems (MRS), di↵erent abstractions of music can be

recommended to a user. For instance, tracks, albums, genres, artists or playlists.

Typically, collaborative, content-based or hybrid approaches are used, whereas

hybrid systems achieve good results by incorporating both, collaborative and

content information into its model. In most cases, features of audio signal are used

as content information.

Music Information Retrieval. This highly active research area is concerned

with building content-based models that are capable of extracting meaningful

information out of music data. [Typke et al., 2005] classified Music Information

Retrieval (MIR) systems into two groups. The first group deals with structured

music data (i.e., genre annotations). The second group tackles the problem of MIR



2.3. MUSIC RECOMMENDATIONS 21

in unstructured music data (e.g., audio signals). As [Casey et al., 2008] noted, the

so called semantic gap poses a fundamental problem in the field of MIR. This gap

illustrates the di↵erences in systems that utilize, e.g., low-level audio signals and

systems that utilize high-level, abstract features like genre annotations or emotions

of music. Hence, it is very hard to include both, low- and high-level features into a

RS, as the connection between these two types is missing. In other words, it is

very hard to infer high-level descriptions based on low-level descriptions of music

data and vice versa.

Research regarding MRS is driven by the high value of this topic in industry

and society. Additionally, MRS are also of high interest for research, since they

introduce problems, di↵erent from other domains in RS. Challenges like the Recsys

challenge 2018 for automatic music playlist continuation [Zamani et al., 2018] aim

to foster research in MRS by providing an overview of contemporary

state-of-the-art approaches.

[Schedl et al., 2018] lists several particularities of MRS. Music is assumed to be

easier to dispose, since the duration is in general much shorter than for, e.g., movies.

Music is usually consumed sequentially and successive items follow a clear pattern

in terms of style. In other words, the rate of change for a sequence of listened tracks

tends to be small. Di↵erent types of listeners can be distinguished. For instance,

listeners, who prefer to repeatedly listen to a small set of tracks and listeners, who

prefer to explore a wide variety of music. The latter depiction illustrates that music

consumption is heavily influenced by the psychology and intent of a user. Music

typically tries to trigger a certain type of emotion. Similarly, a user’s emotions

influence the preferred type of music. Interestingly, [Jin et al., 2018] investigated two

personal characteristics of users, coined musical sophistication and visual memory

capacity. In their work, they observed that high musical sophistication positively

correlates with the perceived quality of recommendations. Anyway, the previous

aspects pose problems for MRS. Next, consider music that is listened whilst at work

and music that is played inside a bar. The type of music that we consume heavily

depends on our current situation. Hence, music consumption di↵ers for varying

contextual factors.
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MRS exploit several types of information. According to [Schedl et al., 2015],

high-level descriptors like genres or low-level descriptors like acoustic features have

been applied in research. As mentioned before, context, especially contextual

information about the listener, can be exploited for music recommendation. For

instance [Cheng and Shen, 2014] proposed a contextual method that combines the

popularity of items with a user’s current location. Other contextual information

includes the user’s emotional state, the music taste of friends, acquaintances or

colleagues. Furthermore, music taste di↵ers significantly for users of varying

homecountries.

Today’s research strives to incorporate the aforementioned informations into

modern MRS. Early approaches to music recommendation included the utilization

of statistical models modelling listening sequences of users [Zheleva et al., 2010], or

contextual systems like [Park et al., 2006]. Caused by (i) the large amount of

available music data and (ii) the large body of factors related to music taste, deep

learning methods gained popularity in this domain. [Schedl, 2019] reviewed recent

approaches in utilizing Deep Neural Networks (DNNs) for music recommendations.

For instance, DNNs have been applied for the matter of learning sequential

models [Zheng et al., 2019, Sachdeva et al., 2018] or generating music [Huang and

Wu, 2016]. Unfortunately, current research in [Dacrema et al., 2019] conducted

experiments in which classic methods like collaborative filtering or matrix

factorization outperform models employing Deep Learning. They found that the

good performance of DNNs can be mainly attributed to unsuited evaluation.

Furthermore, hybrid models that incorporate information about both, user and

content have been developed [Lee et al., 2018]. Additionally, [Van den Oord et al.,

2013] inferred latent factors from audio signals in order to find the missing linkage

between high-level music characteristics and low-level signals.

2.4 The Long Tail of Items in the Music Domain

On various occasions in, e.g., nature, society or economy, it can be observed that the

distribution of observations follows a long-tailed distribution. Here, a small subset

of, e.g, tracks forms the head and the remaining set of tracks forms the tail, where

the head comprises the majority of observations. In the music domain, the head
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is often referred to as mainstream resp. popular music. This uneven distribution

induces a strong bias towards popular items in music recommendations. Hence,

research strives to develop methods, which facilitate less popular items from the

long tail. Furthermore, users exist that solely listen to non-mainstream music from

the long tail.

Popularity Bias. In general, MRS aim to provide tracks, artists, genres or

playlists that are of high interest to a user. For this matter, often ratings of users

towards items are utilized. Unfortunately, many RS su↵er from popularity bias.

This phenomenon describes the observation of popular items being more likely to

be recommended than less popular items. As [Celma, 2010] pointed out, only 1%

of digital tracks contributed 80% to all sales in 2007. Hence, purchases of digital

tracks follow a long tailed distribution. Buyers focus on a small subset of highly

popular tracks, whereas they resign buying tracks from the long tail, which

corresponds to tracks with only minor popularity.

Reconsidering MRS, popular tracks have been listened by a majority of users.

Therefore, rating data is imbalanced, which induces a tendency of RS to

recommend popular items. Those items may have been consumed by all users, but

most likely they do not reflect a user’s personal taste in music. [Abdollahpouri

et al., 2019b] conducted an in-depth analysis of movie recommendations for

di↵erent types of users. They observed that the portion of popular movies in the

recommendations is far larger than the portion of popular movies in a niche-user’s

history. This shows the prevalence of strong popularity bias in the field of RS. To

tackle this problem, [Steck, 2018] proposed to calibrate recommendations to

comply with the popularity distribution of a user’s consumption history. Another

interesting approach is outlined in [Abdollahpouri et al., 2019a]. The authors

introduce a novel objective function that steers the contribution of the long tail via

a weight parameter.

Mainstreaminess in the Music Domain. Recent research in [Schedl and

Bauer, 2017] has shown that MRS lack in providing satisfying recommendations

for users of unorthodox taste. This problem arises from the model-tuning in

contemporary RS. Typically, the evaluation of such models follows the well-known
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schema of splitting the dataset into training- and testset. Both sets comprise a

random selection of ratings, items and users. Eventually, the recommendation

quality is assessed by utilizing accuracy measurements, which quantify the average

deviation between recommendations and real information in the testset. Due to

the accuracy measurement, the MRS is unaware of a possibly large deviation for a

certain subset of users or items. This indicates a strong need for considering

fairness in music recommendations. This group of users, for which the MRS does

not perform well, are usually those of low mainstreaminess.

[Bauer and Schedl, 2019] introduced an abundance of mainstreaminess metrics.

Basically, their metrics rely on the correlation in music consumption between a

user and a larger population (i.e., country or global). Research in [Schedl and

Hauger, 2015] suggests to conduct recommendations on user groups of di↵erent

mainstreaminess. They showed that popularity-based recommendation methods

perform best on users of high mainstreaminess, but fail for users of low

mainstreaminess. Eventually, the authors also indicate that considering the notion

of mainstreaminess can indeed improve recommendations.

2.5 Summary

In general, recommender systems aim to find a set of items that are thought to be

of interest to a certain user. To filter the abundance of available data, several

approaches can be applied. User-based Collaborative Filtering identifies similar

users and thus, infers items to be recommended. Equivalently, item-based

Collaborative Filtering identifies similar items and hence, provides a user with a

set of new items that are similar the the ones he already liked. Content-based

Filtering models a user’s preferences by a so called user-profile. Similarly,

item-profiles are built that describe properties of items. Eventually, items are

recommended, for which the item-profile is similar to the user-profile. Hybrid

methods utilize both, collaborative- and content-based methods in order to

alleviate certain problems and improve the quality of recommendations. Often,

e.g., music consumption is heavily influenced by our location, social situation, etc.

Context-aware recommender systems consider the contextual configuration of a

user. Hence, these systems do not only utilize the relationship between users and
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items, but also the relationship towards context. Research in the field of music

recommender systems strives to tackle several problems that are not as prevalent

in other domains. For instance, music is easy to dispose, has short duration and

successively consumed items tend to be similar. Most importantly, the perceived

quality of recommendations varies for di↵erent types of listeners, as individuals’

music consumption is typically influenced by psychology and context. Especially in

the music domain, a long-tailed distribution of music can be observed. That means

that a small subset of, e.g., tracks is very popular, whereas the majority of tracks

is far less popular and hence, lives within the long tail. Thus, a few popular tracks

are dominating the consumption behavior of users. Furthermore, there exists a set

of users that prefers listening to less popular music from the long tail. music

recommender systems face the problem of very bad recommendation quality for

this certain type of users.

We identify two works similar to this thesis. [Schedl and Bauer, 2017] split

users into groups of di↵erent mainstreaminess. They show that contemporary

recommender systems focus on users of high mainstreaminess and provide rather

poor recommendation quality for user of low mainstreaminess. Contrary to their

contributions, we do not only show a disadvantage for users of low

mainstreaminess, but illustrate varying recommendation quality for di↵erent

non-popular music styles. [Kowald et al., 2019] introduced a novel algorithm,

which outperforms widely used baselines, also on low-mainstreaminess users.

Furthermore, they provide descriptive statistics of this understudied group of users.

In this work, we do not aim to find well-performing recommendation methods, but

contribute a further in-depth analysis of the music taste of unorthodox users.



Chapter 3

Methodology

This chapter aims to explain our approach to tackle the research questions. In order

to answer research question RQ1 (RQ1: How can non-mainstream music styles

be identified and concisely described? ), we apply clustering to find collections of

tracks, which represent music of similar style. Those styles are then described by

acoustic features, genres and personas. Considering RQ2 (Which user groups of non-

mainstream music exist? ) we introduce a classification schema to gain knowledge

about the music preferences of user groups. In order to answer RQ3 (How does the

music consumption of non-mainstream users deviate from each other? ), we employ

metrics that quantify music consumption behavior. Furthermore, we examine the

relation between user groups and music styles. Eventually, we utilize the rich body

of attributes within the used dataset and conduct an explorative analysis of of

user groups based on several cultural dimensions and personal information. This

answers RQ4 (How do user groups listening to non-mainstream music di↵er in terms

of culture and demography? ).

3.1 Dataset

Throughout the course of this work we utilize the LFM-1b dataset, which is widely

used in the area of music recommendations. Its variant, Cultural LFM-1b, is a

strict subset of LFM-1b, but comprises di↵erent additional features for both, users

and music. We furthermore analyze Non-Mainstream Cultural LFM-1b, which is a

dataset representing only users of low mainstreaminess.

26
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The overall goal of this thesis is to provide insights into how to handle music

recommendations for user groups that do not align with common behavior. Hence,

analyzing user groups via their personal attributes and their personal listening

behavior is crucial. For the following properties of LFM-1b, we conclude that it is

well suited for the matter of this work:

1. Freely available

2. Large amount of listening events and users

3. Demographic features of users

4. Availability of subsets with additional features

5. Already used in research

3.1.1 LFM-1b

This dataset was introduced by [Schedl, 2016] for the purpose of evaluating music

recommender systems. It represents more than 120,000 Last.fm users and their

more than one billion listening events. Each listening event is characterized by

artist, album, track and timestamp.

Entity Count

Users 120,322

Artists 3,190,371

Tracks 32,291,134

Listening Events (LEs) 1,088,161,692

Min. LEs per user 4

Q1 LEs per user 999

Median LEs per user 3,410

Q3 LEs per user 15,283

Max. LEs per user 654,936

Avg. LEs per user 8,878.762 (± 15,962.078)

Table 3.1: Descriptive statistics of the LFM-1b dataset. The value within the

parenthesis is the standard deviation.
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User-specific demographic features are provided as well. This combination of

features serves as playground for evaluating and analyzing personalized music

recommender systems. The authors used the 250 top tags to get the corresponding

artists and their top fans, which results in 465,000 active users. The detailed

listening events are then obtained for a randomly chosen subset of 120,322 users.

The data fetched comprises events ranging from January 2013 up to August 2014.

Please find a short summary of LFM-1b in Table 3.1.

3.1.2 Cultural LFM-1b

The Cultural LFM-1b dataset [Zangerle et al., 2018] is a subset of LFM-1b and

provides further features regarding music and user demographics. Tracks are

described with in total eleven acoustic features and users are linked to cultural

aspects in addition to their personal attributes. These acoustic features were

queried utilizing the Spotify API1. Hence, each track is characterized by its Spotify

Audio Feature Descriptions2. Exhaustive descriptive statistics of Cultural LFM-1b

can be found in Table 3.2.

Entity Count

Users 55,190
Artists 337,840
Tracks 3,471,884
Listening Events (LEs) 351,469,333
Min. LEs per user 1
Q1 LEs per user 1,242
Median LEs per user 5,028
Q3 LEs per user 8,750
Max. LEs per user 345,014
Avg. LEs per user 6,373.780 (±9, 118.109)

Table 3.2: Descriptive statistics of the Cultural LFM-1b dataset. The value within
the parenthesis is the standard deviation.

Cultural aspects of users are captured by Hostede’s dimensions and by the

World Happiness Report 2018. Hofstede studied the cultural aspects of nations

1
https://developer.spotify.com/web-api

2
https://developer.spotify.com/documentation/web-api/reference/tracks/get-audio-features
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and hence, introduced four cultural dimensions in [Hofstede et al., 2005].

Subsequently, additional two dimensions were introduced in [Hofstede, 2011].

Hofstede’s work encountered severe criticism. [Baskerville, 2003] and [Jones, 2007]

pointed out that Hofstede assumes the population of a nation to be cultural

homogeneous and that cultures can be partitioned into nations. In the following,

we explain all dimension of Hofstede:

Power distance is the degree to which individuals reckon power to be unevenly

distributed within society. Individualism is the extent to which individual interests

are of higher importance than group interests. Masculinity is the extent to which

masculine dimensions like heroism and material reward are of higher importance

than feminine dimensions like cooperation and caring for the weak. Uncertainty

avoidance quantifies how a society prefers to neglect unorthodox beliefs and

approaches. Long-term orientation measures how individuals of a certain society

are future-driven and not tradition-oriented. Indulgence is the tendency of

allowing gratification of basic human drives like enjoying life and having fun.

The World Happiness Report [Sachs et al., 2018] comprises a formerly called

happiness index (now Life Ladder) and other happiness-related attributes, which

quantify the social and economic situation of a country’s population. In total, it

includes life ladder, log gdp per capita, social support, healthy life expectancy at

birth, freedom to make life choices, generosity, perceptions of corruption, positive

a↵ect, negative a↵ect, confidence in national government, democratic quality,

delivery quality, standard deviation of life ladder, standard deviation / mean of life

ladder, gini index, gini index (average 2000-2015), gini index of household income.

Due to the abundance of features, we chose to select only those, which are of

primary interest to us. These dimensions are given in the following:

Social support is the degree to which individuals of a society can rely on their

family and/or friends if they need them. Perceptions of corruption is the degree

to which persons of a country think their government is corrupt. Log GDP is the

logarithm of the gross domestic product per capita. Life Ladder quantifies the

subjective happiness. Life expectancy is the expected lifespan an individual is at

health. Generosity quantifies if individuals of a country are willing to spend money

for charity. Freedom measures the perceived freedom to make life-relevant choices.
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Users

In the following paragraphs we depict di↵erent interesting properties of the set of

users. Starting with their demographic properties (i.e., age, gender, country), we

continue analyzing also the corresponding listening events.

As one can observe in Table 3.3, the vast majority of users is male, whereas only

a quarter of users is female. A minor portion of users decided to choose their gender

as neutral, which nevertheless can be caused by not considering themselves as either

female or male, or by not wanting to share this personal information. Hence, this

dataset is clearly biased towards men.

Gender Count Percentage

Male 36,506 66.15 %

Female 13,937 25.25 %

Neutral 4,663 8.45 %

Table 3.3: Gender distribution of users. This dataset is obviously biased towards

men. Furthermore, notice that it is unclear whether neutral indicates neutral gender,

or users not providing gender information.

Figure 3.1: Histogram of age distribution. This dataset includes a bias towards

users, whose age is in the range 20 to 28.
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The illustration in Figure 3.1 shows the age distribution of users. We can see

that the distribution is heavily skewed to the right, with a median of 23 years and

the first and third quantile located at 20 years resp. 28 years. Hence, 50 % of users

have an age between 20 and 28. Please note that 21.99 % did not specify any age.

These observations indicate that this dataset is biased towards users with an age

in the range of 20 to 28. Furthermore, it is questionable, whether the left- and

rightmost values represent users with less than 10 or more than 100 years.

Table 3.4 shows the homecountries of users. Here, only the top ten countries

with the highest number of users are listed. The dataset is clearly biased towards

the United States, since they represent roughly twice the amount of Russia’s users,

which is the second most popular country. Interestingly, the top seven countries

represent 59.18 % of all users. We identify these as countries, dominantly prevalent

in this dataset. Hence, analyses based on the country distribution have to take this

into account.

Country Count Percentage

United States 10,255 18.58 %

Russia 5,024 9.10 %

Germany 4,578 8.30 %

United Kingdom 4,534 8.20 %

Poland 4,408 8.00 %

Brazil 3,886 7.00 %

Finland 1,409 2.55 %

Netherlands 1,375 2.49 %

Spain 1,243 2.25 %

Sweden 1,231 2.23 %

Table 3.4: Distribution of users’ homecountries. Only the top ten countries

are listed. Three types of countries can be distinguished: (1) countries with a

contribution of � 10%, (2) countries with a contribution of < 10% and � 5% and

(3) countries with a contribution of < 5%. This yields a strong community bias

towards the United States.
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In general, mainstreaminess denotes how well an individual user’s behavior

complies with the behavior of a population. Non-mainstream subpopulations can

pose serious problems even for state-of-the-art recommender systems. Therefore, a

lot of research, e.g., [Bauer and Schedl, 2019] has been devoted to find suitable

mainstreaminess metrics, where most rely on the correlation between the listening

behavior of a reference population and a user within this population. Including

such a metric enhances this dataset in a way, such that we have three major

advantages:

1. Measure spread of user’s music preferences.

2. Assess, how popularity-based recommenders would perform.

3. Split users into groups exhibiting di↵erent levels of mainstreaminess.

Users belong to a certain mainstreaminess group in their homecountry. If we

changed the homecountry, a user does not necessarily belong to the same

mainstreaminess group. Country-agnostic mainstreaminess metrics can mitigate

this problem. Hence, we choose to compare a user’s behavior to the behavior of

the global population. Furthermore, correlation of rank ordering has been shown

to work well in the context of music [Pohle et al., 2006, Schedl and Bauer, 2017].

The Cultural LFM-1b dataset conveniently comprises several mainstreaminess

measurements. The aforementioned thoughts indicate that M global

R,APC

is suitable for

the matter of measuring mainstreaminess independent of homecountry. [Bauer and

Schedl, 2019] defined mainstreaminess of a user u relative to the global population

with respect to the listening events per artist as

M global

R,APC

(u) = ⌧(ranks(APC), ranks(APC(u))) (3.1)

where ⌧ denotes Kendall’s ⌧ [Kendall, 1948], APC is the number of events per

artist, APC(u) is the events per artists of u and ranks provides a ranking of

artists. In this work, the term “mainstreaminess” of users refers to this certain

metric.

Figure 3.2 illustrates the distribution of user’s mainstreaminess. Firstly, there is

only a very limited number of users, whose behavior strongly correlates positively
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or negatively with global behavior. Clarifying, only few users either heavily comply

with, or dislike global taste. Secondly, the majority of users lies around the mean of

0.171 (± 0.099). Hence, most users only partially comply with global taste. Anyway,

this hints that the majority of users is indeed influenced by the global popularity of

music.

Figure 3.2: Mainstreaminess M global

R,APC

distribution of users. The distribution is

slightly shifted towards 0.2. On average, users’ taste is positively correlated with

the taste of the overall population.

Hofstede’s Dimensions and World Happiness Report

In order to describe the population of users in the Cultural LFM-1b dataset with

Hofstede’s dimensions, we illustrate the distribution of the aforementioned

dimensions over all users in Figure 3.3.

In general, we can see that Hofstede’s cultural dimensions exhibit a high degree

of variability. Anyway, several interesting observations can be made. For instance,

users apparently tend to value their individual needs higher than the needs of

others. They also believe that power is distributed among all parts of the

population, rather than focused on small entities, e.g., the government.

Furthermore, wealth and success seem to be favored against feminine dimensions

like caring for others. Users also tend to not face disapproval of luxury and

pleasure. Eventually, note that this dataset comprises users of several
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homecountries. Hence, the latter observations are likely biased towards prominent

countries and thus, deeper analyses have to consider this issue.

Figure 3.3: Distribution of Hofstede’s cultural dimensions over users. Clear cultural

tendencies of users in this dataset can be observed. Anyway, this illustration is

thought to be heavily biased towards some dominant countries.

Figure 3.4: Distribution of World Happiness Report’s dimensions. Only the most

recent data was taken into consideration. This illustration is thought to be heavily

biased towards some dominant countries. Most noteworthy, there are strong

indications that this dataset represents users of di↵erent happiness.
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All seven selected dimensions of the World Happiness Report are illustrated in

Figure 3.4. We observe that Social Support exhibits rather limited variance. In the

case of Log GDP, the distribution indicates that users of small wealth and income

may be underrepresented in this dataset. The majority of users apparently has the

ability to choose freely how to live their life. Interestingly, Life Ladder and Life

expectancy are similarly distributed. This hints a relation between happiness and

the expected number of years to live. Furthermore, governments seem to be in

general accused of corruption, since most users are unconfident of their government

in this respect. Again, note that all observations could be biased towards

overrepresented countries and hence, in-depth analyses have to tackle this problem.

Tracks and Artists

Within the Cultural LFM-1b dataset, listening events capture the act of a user

consuming music. Music can be organized hierarchically in track and artist. Each

hierarchical level exhibits another granularity of music preference. Hence, an

explorative analysis of the aforementioned levels can clarify what entities influence

the users’ music taste.

Figure 3.5: Distribution of the number of tracks per artist on a log-log scale. This

very uneven distribution indicates that most artists only have few track attributed

to them, whereas some artists produced an abundance of tracks.

The distribution of artists with a certain number of tracks attributed to them is

shown in Figure 3.5 on a logarithmic scale. We see that the vast majority of artists
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produced only a comparatively small number of tracks. Only a few artists exhibit

a large amount of tracks. Therefore, high listening count of single tracks does not

have to coincide with high listening count for artists and vice versa. Additionally,

a user is more likely to listen to artists with a lot of tracks than listening to artists

with only a small number of tracks. Interestingly, we observe one outlier with

approx. 200,000 of tracks. This observation corresponds to the artist [unknown],

thus, it represents tracks for which the artist information is not known.

Similar observations can be made about the distribution of the number of

albums per artists in Figure 3.6. One di↵erence lies in the slope of the curve. The

relationship between artists and albums behaves much more smoothly than the

relationship between artists and tracks. This hints that the e↵ect of some artists

dominating the set of albums is not as prevalent as in the artist to track

distribution.

Figure 3.6: Distribution of the number of albums per artist on a log-log scale. It

can be observed that most artists only produced a small number of albums, whereas

few artists have an abundance of albums attributed to them.

Acoustic Features

In the Cultural LFM-1b dataset, all tracks are linked to their acoustic features. This

descriptors are obtained by utilizing the Spotify API and yield acoustic information

about the tracks. We utilize a selection of nine acoustic features:

Danceability quantifies how suitable the track is for dancing. Energy refers to
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the perceptual intensity and activity of the track. Loudness is the loudness in

decibels. Speechiness denotes the fraction of spoken words. Acousticness is the

confidence whether a track is acoustic. Instrumentalness refers to the probability

that the track is purely instrumental and contains no vocals. Liveness measures the

presence of audience in the recording. Valence quantifies the musical positiveness

conveyed. Tempo denotes the tempo of the track in beats per minute.

Figure 3.7: Acoustic features of tracks in Cultural LFM-1b. In general, most tracks

are of low speechiness and instrumentalness. Anyway, tracks seem to exhibit a large

variety of energy.

Furthermore, the acoustic features’ distributions are illustrated in Figure 3.7. As

one can see, the tracks in this dataset show a very low degree of instrumentalness.

Hence, most tracks include vocals. Similarly, most tracks exhibit at least some

contribution of instruments, as the number of mostly spoken recordings is very

small. Furthermore, live-recordings seem to be in the minority. Even though all

levels of energy are present in this dataset, tracks tend to be of rather high energy.

Listening Events

Analyzing listening events sheds light on a user’s individual music consumption

behavior. It clarifies, which tracks, albums or artists a user listened to.

Furthermore, we can get insights into the temporal aspects of music consumption.
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Figure 3.8: Distribution of listening events of users on a log-log scale. It can be

observed that most users have less than 10,000 listening events. Anyway, a small

subset of users consumes music excessively.

The distribution of the number of users with a certain amount of listening

events is depicted in Figure 3.8. Both axes are scaled by the decadic logarithm.

This illustration shows that the number of listening events heavily increases, as the

number of users decreases. Hence, there is only a small subset of users that have a

very large amount of listening events. Most users do not consume music as

excessively as the latter group. Furthermore, the number of users with more than

10,000 listening events seems to be rather stable. Anyway, note that most users

have less than 10,000 listening events. This also verifies the statistics in Table 3.2.

There is a crucial information worth considering: The listening events per user are

not normalized over time. As the number of listening events usually increases the

longer a user is active, this could deteriorate our findings. Please note that,

ignoring the first few observations, this distribution roughly follows a power law.

We illustrate the distributions of listening events over tracks and artists in

Figure 3.9. As already outlined on several occasions, some tracks dominate the

listening behavior of users. The majority of tracks has only a small number of

listening events related to them. The latter findings are also valid in the case of

the distribution over artists.
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(a) (b)

Figure 3.9: Distribution of listening events of (a) tracks and (b) artists. Interestingly,

the distributions look very similar. Hence, the presence of some dominant tracks

resp. artists is prevalent on both levels.

The temporal distribution of listening events per user is depicted in Figure 3.10.

One can observe the mean being in the evening at around eight p.m. Hence we

can conclude that the average user tends to focus her music consumption to the

evening, whilst maintaining a steady increase throughout the day. In the morning

at around six a.m., listening events are at their minimum. Apparently, most users

decrease their music consumption on the weekend. Furthermore, we observe an even

distribution during the week.

(a) (b)

Figure 3.10: Temporal distribution of listening events. It can be observed that music

consumption increases steadily throughout daytime (a). Furthermore, users tend to

consume more music during the week than on Saturday and Sunday (b).
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3.1.3 Non-Mainstream Cultural LFM-1b

Music preferences and listening behavior is likely to be di↵erent for users that do

not behave like most of the population. Therefore, we only consider data from this

low mainstreaminess group (LowMs) within the Cultural LFM-1b dataset.

Dataset generation

In a first step, we ignore users with less than approx. 5,000 an more than approx.

15,000 listening events (see Figure 3.11), causing the listening events to be quite

evenly distributed. In a second step, we partition the users into groups of di↵erent

mainstreaminess. As illustrated in Figure 3.12, we split them in accordance to the

maximal gradient. We reckon this method to be well suited, because it indicates,

at which point the area of the bulk starts. This partition results in groups of

low (LowMs) and normal (NormMs) mainstreaminess, which have cardinalities of

|LowMs| = 2,074 and |NormMs| = 10,740.

LowMs = {u 2 U : M global

R,APC

(u)  0.097732} (3.2)

NormMs = {u 2 U : 0.097732 < M global

R,APC

(u)} (3.3)

where U denotes the set containing all users within the listening event threshold.

Figure 3.11: Density of listening events of the LFM-1b users, which provide country

and mainstreaminess information. The upper and lower bound depict the area, in

which the gradient is within ± 1e-6. This results in 12,814 users.
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Figure 3.12: M global

R,APC

distribution of the 12,814 users within the listening event

threshold. This split leads to two user groups of di↵erent mainstreaminess.

The focus of this work clearly lies on LowMs. We furthermore aim to represent

a user of this group by her music preferences. Hence, knowledge about the music

signal itself (i.e., acoustic features) and genre information is necessary. The

inclusion of a high-level descriptor, i.e., genres seems promising, since they describe

tracks in a concise and clear way. In contrast to acoustic features, explaining a

user’s taste in terms of listened genres is easy to understand and interpret.

For these reasons, we modify the Cultural LFM-1b dataset in a way, such that

tracks without genre annotations are excluded. In addition, we also omit tracks,

the 2,074 users did not listen to. Genre information was retrieved by utilizing the

Spotify API. We observe that a large amount of tracks, especially those listened

by LowMs, is not annotated with genres. Hence, the number of tracks within this

dataset decreases tremendously compared to LFM-1b and Cultural LFM-1b, as can

be seen in Table 3.5.
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Item Value

Users 2,074

Tracks 147,156

Artists 14,316

Spotify Track Genres 1,191

Listening Events (LEs) 4,725,664

Min. LEs per user 1

Q1 LEs per user 1,210

Median LEs per user 1,959

Q3 LEs per user 3,103

Max. LEs per user 10,536

Avg. LEs per user 2,279.626 (± 1,471.687)

Table 3.5: Descriptive statistics of LowMs (contains only tracks with genres). The

value within the parenthesis is the standard deviation.

Mitigating dominant countries and genres

Heavily uneven distributions can cause a bias within the observations. This could

mislead our analysis. Table 3.4 gives clear evidence that a few countries occur much

more frequently than others. Hence, statistics and analyses will be biased towards

them. Therefore, we assign a score to every country, such that frequent countries

have a low score and rarely occurring countries have a high score. This behavior can

be achieved by the Inverse Document Frequency (IDF) [Jones, 1972] measurement

from the field of Information Retrieval. For users’ homecountries, we have

IDF (c) = log10

✓
| U |
| U

c

|

◆
(3.4)

where U is the set of users and U
c

is the set of users with homecountry c.

Similar to the distribution of users’ homecountries, there exists also a bias in

the distribution of genres, users from LowMs listen to. We found that the majority

of tracks is annotated with genres like, e.g., rock and pop. At a later point in this

work, we explain di↵erent collections of tracks via their genres. Since dominating
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genres would mislead this explanation, we again take advantage of an IDF-scoring.

For genres, we have

IDF (g) = log10

✓
| T |
| T

g

|

◆
(3.5)

where T is the set of tracks and T
g

is the set of tracks annotated with genre g.

The results of this scoring can be seen in Figure 3.13. We ordered countries

according to their IDF-scores. In the case of the country distribution, the slope is

roughly constant for all countries above the threshold. As there is a nonconstant

increase between countries below and above the threshold, the six countries with an

IDF-score smaller than 1.5 can be considered as the reason for the bias. Therefore,

country-related analyses should handle those countries with care. Similarly, we

ordered genres according to their IDF-score. With the same arguments as in the

country case, we conclude that the six genres below the threshold dominate. Hence,

analyses of genres should take care of a bias induced by those genres.

(a) (b)

Figure 3.13: IDF-distribution of (a) countries and (b) genres. Countries below

the threshold are identified as dominant countries. In ascending order, those are:

US, RU, DE, UK, BR and PL. Similarly, genres below the threshold are identified

as dominant genres. In ascending order, those are: rock, pop, electronic, metal,

alternativerock and indierock.
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3.2 Technical Details

In order to have the possibility to conveniently handle and share this large collection

of data, we built a database utilizing MariaDB3. It only represents the Cultural

LFM-1b dataset and not LFM-1b, since the acoustic features and cultural aspects

are necessities for this work. We also did not select a certain group of users (e.g.,

LowMs) for the simple reason of having the option to compare di↵erent users of

unequal mainstreaminess. The resulting database consists of in total nine tables

and has a size of approx. 20 Gb. An exhaustive summary and explanation of

all entities captured in the database is provided in Table 3.7. Please find further

descriptive statistics and relations in Table 3.6.

Table Attributes Entries

acoustic features track id, . . . 3,446,151

albums album id, artist id, . . . 15,418,379

artists artist id, . . . 3,148,535

events user id, artist id, album id, track id, . . . 349,797,888

hofstede country, . . . 47

tracks track id, artist id, . . . 29,840,402

user mainstreaminess user id, country, . . . 53,111

users user id, country, . . . 55,176

world happiness country, . . . 1,562

Table 3.6: Descriptive database statistics and relations. Same color indicates linkage

between two attributes. Furthermore, we provide the number of a table’s entries.

3
https://mariadb.com
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Entity Attribute Description

User

user id unique user identifier

country homecountry

age age in years

gender gender of user (M, F or N)

playcount number of listening events

registered timestamp unix timestamp of register time

mainstreaminess correlation with population’s taste

Artist
artist id unique artist identifier

artist name name of artist

Album

album id unique album identifier

album name name of album

artist id unique artist identifier

Track

track id unique track identifier

track name name of track

artist id unique artist identifier

acoustic features all music descriptors

Listening Event

user id unique user identifier

artist id unique artist identifier

album id unique album identifier

track id unique track identifier

timestamp unix timestamp of event

Table 3.7: Description of entities and their attributes within our database. Please

note that this database represents a structured view on the available data in the

LFM-1b dataset.

3.3 Identification of User Groups

Our goal is to classify individual users into di↵erent user groups. These user groups

should deviate from each other in terms of music taste and consumption behavior.

As will be shown in this section, we achieve this by utilizing acoustic descriptors
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in order to cluster tracks. These clusters represent collections of similar tracks. By

investigating the interactions of users with these clusters, we obtain a description of

users’ listening behavior and taste. Subsequently, each user is assigned to a track

cluster. All user groups describe di↵erent personas, which all prefer di↵erent music

styles. Summarizing, we perform four steps:

1. Reduce dimensionality of tracks’ acoustic features, such that we can ease the

task of clustering and conduct a visual, qualitative analysis.

2. Cluster tracks, for the sake of finding clusters representing tracks of similar

music and such that we can clearly distinguish clusters via their included

tracks.

3. Assign each user to exactly one music cluster.

4. Study resulting user groups with respect to their listening behavior,

demographics and cultural aspects.

3.3.1 Track Clustering

We found that loudness does neither improve nor deteriorate results. Therefore, we

exclude loudness from our calculations. As already noted above, clusters should be

explained by the genres assigned to the contained tracks. To achieve this, only

genre annotated tracks are used, which LowMs listened to.

First and foremost, we transform the data into a latent representation. With

this, in our case, two dimensional space, we have the advantage of less

computation time. Furthermore, it gives opportunity to qualitatively inspect

clustering results, as two-dimensional data is usually easy to visualize.

We empirically investigated a large body of dimensionality reduction

techniques. In the following paragraph, we outline reasons, why certain techniques

might not work for this type of data. Please note that these arguments only

represents our subjective assessment. Principal Component Analysis

(PCA) [Tipping and Bishop, 1999] and its nonlinear variants did not work, since

they rely on the covariance matrix of all observations. Hence, only global and no



3.3. IDENTIFICATION OF USER GROUPS 47

local informations are considered. Furthermore, this method is prone to noise.

Locally Linear Embedding (LLE) [Roweis and Saul, 2000] is a manifold learning

method, which relies on the assumption that the area around a reference point is

linear. In our case, we expect the manifold to be nonlinear even only in small

areas. Multidimensional Scaling (MDS) [Kruskal, 1964] also assumes distances

between points to be linear. Contrary to the latter aforementioned methods

Isomap (IMAP) [Tenenbaum et al., 2000] does not utilize a linear distance metric,

but the geodesic distance. If datapoints are considered as graph, the geodesic

distance is defined as the sum of edge weights in the shortest path between two

points. Unfortunately, these weights are computed by the euclidean distance,

hence, the similarity or distance between two points still is heavily influenced by a

linear measurement. Spectral Embedding (SE) [Ng et al., 2002] can utilize both, a

gaussian kernel or the nearest neighbors as similarity measurement. Firstly, a

gaussian kernel determines the distance of points by the Mahalanobis distance.

Secondly, the distance to the k nearest neighbors is computed by the Minkowski

distance. Both distance metrics are linear. t-SNE [Maaten and Hinton, 2008] again

models similarity in the high-dimensional space by means of a gaussian kernel.

Summarizing, we assume that the latter methods gave unsatifsying results because

of two reasons. One, PCA and its variants only consider the global structure of

data, not aspects of finer granularity. Two, LLE, MDS, IMAP, SE and t-SNE rely

on the assumption that the local neighborhood of a reference point is linear, as

they employ linear distance metrics. Since we expect datapoints to lie on a

manifold, methods modelling global structure cannot be used. We hypothesize

that this manifold exhibits complex and nonlinear structures even in local areas,

thus, methods utilizing linear similarity measurements are not advantageous.

We found that Uniform Manifold Approximation and Projection (UMAP)

[McInnes et al., 2018] works best. This novel method is very similar to t-SNE, but

(i) is motivated by Riemannian Geometry and (ii) employs a nonlinear high

dimensional metric space, i.e., Fuzzy Simplical Sets [Spivak, 2009b], which is a

modification of Simplical Sets [Spivak, 2009a]. Another reason is that UMAP is

rather insensitive to noise, as it clamps noisy observations into very distant but

dense regions. Furthermore, it has already been widely used for music datasets in

[Zangerle and Pichl, 2018], [Baig et al., 2018], [Moore et al., 2012] and



3.3. IDENTIFICATION OF USER GROUPS 48

[Levy and Sandler, 2008]. Our experiments entirely use the implementation of

McInnes4.

Parameter Explanation Value

n neighbors number of neighbors used to learn manifold 15

min dist defines how tightly points are packed together 0.1

n components dimensionality of latent space 2

metric distance metric euclidean

Table 3.8: Parameters for UMAP. The small number of neighbors enables this

method to learn finer structures, which is necessary for this type of data.

Furthermore, we also insisted on packing datapoints tightly together to help the

succeeding clustering algorithm.

In addition, we expect only minor di↵erences of the acoustic features between

tracks. Hence, the number of neighbors is chosen rather small. Therefore, UMAP

learns the manifold structure based on only a small set of neighbors. This results

in a preservation of fine structures. For the sake of clustering, it is an advantage to

have similar datapoints clumped together. This leads to our decision, to allow

UMAP to arrange datapoints in such a way, by defining the corresponding

parameter appropriately. Please find an exhaustive list of the applied parameters

in Table 3.8.

UMAP fails to preserve densities, but succeeds in preserving proximities.

Therefore, proximal datapoints in the original space would have a similar distance

to each other in the latent space. That leads to the clusters not exhibiting the

same density. Hence, we conduct a broad empirical analysis of clustering methods.

Widely used density based clustering methods, e.g., Density-Based Spatial

Clustering of Applications with Noise (DBSCAN) [Ester et al., 1996] are not

capable of dealing with multiple densities. K-Means [Bishop, 2006] also fails

caused by varying densities. Furthermore, its assumption that clusters are centered

around the mean is not true for this dataset. Hence, results are unsatisfying. Since

4
https://umap-learn.readthedocs.io
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Gaussian Mixture Models (GMM) [Reynolds, 2015] are the generalization of

K-Means and thus, assume clusters to be disk-shaped, a GMM is not an approach

to favor. In A�nity Propagation (AP) [Frey and Dueck, 2007], so called exemplars

represent datapoints within a cluster. The exemplars are selected via a simple

message-passing system. Anyway, AP requires large computational resources and

tends to find disk-shaped clusters. Spectral Clustering (SC) [Shi and Malik, 2000]

inherits some disadvantages of K-Means, since it includes the subsequent

calculation of K-Means. We achieve good clustering results for a sample of the

data when using Hierarchical Agglomerative Clustering (HAC) [Murtagh and

Legendre, 2014]. Since this approach is heavily memory-consuming, it is infeasible

to apply on the complete dataset. Furthermore, this bottom-up method merges

observations, which minimize variance. Variance is not suited for measuring the

goodness of clusters, if we aim to consider varying inter-point distance. Ordering

Points To Identify the Clustering Structure (OPTICS) [Ankerst et al., 1999] is a

successor of DBSCAN, aiming to tackle the issue of clusters with varying densities.

To some extent, it can be seen as hierarchic version of DBCSAN. Anyway,

OPTICS requires sensitive parameters to be selected. Furthermore, the selection of

clusters based on the concept of reachability seems not advantageous in our

problem setting. In summary, we hypothesize that hierarchic clustering methods

that can handle varying densities could lead to the required quality of results.

A further improvement of OPTICS is Hierarchical Density-Based Spatial

Clustering of Applications with Noise (HDBSCAN) [McInnes et al., 2017], which

does not require as precise parameter tuning. This is achieved, by building a

cluster hierarchy over di↵erent parameter values. Hence, it selects clusters that are

stable, i.e., remain present for di↵erent parameter configurations. HDBSCAN also

provides a parameter to define the conservativeness of a clustering. High

conservativeness leads to tightly packed clusterings, while some datapoints

between clusters may not be classified. In our case, this is a clear advantage, since

clusters should yield nicely separated and nonoverlapping collections of tracks with

di↵erent musical properties. Conventiently, we utilize an implementation of

McInnes5. The parameters in Table 3.9 are obtained by evaluating the sum of

squared errors within clusters via the elbow method [Thorndike, 1953].

5
https://hdbscan.readthedocs.io
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Parameter Explanation Value

min cluster size minimal size of a resulting cluster 1,375

min samples defines how conservative clustering is 1,375

Table 3.9: Parameters for HDBSCAN. To focus on clearly prevalent clumps of

datapoints, we require that clusters have to have a certain size. For the matter

of retrieving clusters of tracks with nonoverlapping acoustic features, we employ a

rather conservative clustering.

3.3.2 Classification of Users

In order to find user groups of di↵erent listening behavior and music taste, we exploit

the results of the track clustering. In Section 3.3.1 we elaborated how clusters of

tracks can be obtained. Every cluster represents a collection of tracks of di↵erent

music style. Subsequently, users can be assigned to a single track cluster by utilizing

a certain classification schema. For every user we measure how each track cluster

influences the user’s music taste. This can be realized by introducing weights.

w(u) = (w1, w2, . . . , wN

) (3.6)

where N is the number of track clusters and w
i

is the weight of user u to track

cluster i, where w
i

is the normalized amount of listening events of u towards tracks

within i.

Based on these weights, a user classification could be achieved by assigning a

user to the highest weighted track cluster. Unfortunately, this classification would

lead to the majority of users getting assigned to the cluster containing most tracks.

Clearly, the more tracks inside a cluster, the higher the chance of an arbitrarily

chosen user to have listened to tracks within this cluster. In most cases, this simple

classification would not represent users’ music preferences well. Hence, taking both,

weight and cluster size into account, is advantageous. Similar to 3.1.3, we propose

a more sophisticated method that employs IDF-scoring to reduce the influence of
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clusters containing an extraordinary amount of tracks.

IDF (C
i

) = log10

✓
| C1 | + | C2 | + · · ·+ | C

N

|
| C

i

|

◆
(3.7)

where C
i

is the set of tracks in track cluster i and the number of clusters is N .

The weights of a user can be modified to take also the cluster size into account by

applying

w̃(u) = (w1 · IDF (C1), w2 · IDF (C2), . . . , wN

· IDF (C
N

)) (3.8)

Utilizing the new weights w̃, we can execute our original approach to assign each

user to the highest weighted cluster, without the deterioration induced by heavily

varying cluster sizes. Summarizing, u is classified to be part of user group U
Ci , if

w̃
i

(u) is the maximum of the user to track cluster weights. Hence a user group is

defined as

U
Ci = {u 2 U : argmax

1iN

w̃
i

(u)} (3.9)

3.4 Recommendations

Previous scientific work like [Schedl and Hauger, 2015] shows that user groups of

di↵erent mainstreaminess are faced with a varying accuracy of recommendations.

Thus, we aim to (i) outline this problem and (ii) provide indications that also the

preference of certain non-popular music styles causes a decline in recommendation

quality. For this matter we employ several recommendation methods and measure

the performance via a body of evaluation metrics. Please note that we utilize the

Python-based and open-source Surprise library [Hug, 2017] for algorithms NORM,

BASE, KNN and partially PL. Furthermore, TOP was motivated by recent work in

[Kowald et al., 2019].

3.4.1 Algorithms

In this section we provide descriptions of multiple recommendation algorithms used

in this work. Here, we focus on very basic methods, since we strive to show the

aforementioned di↵erences in recommendation quality between users of low and
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normal mainstreaminess. Hence, the usage of more sophisticated algorithms would

not be advantageous. As simplification, we define the set of listening events to be

LE = {(u, t) : user u listened to track t, where u 2 U, t 2 T} (3.10)

where U is the set of users, T is the set of tracks and u = (r
u,t1 , ...ru,t|T |). Hence,

the set of listening events between user u and track t is given by

LE
t

(u) = {(u, t) 2 LE} (3.11)

where the rating of user u towards track t is |LE
t

(u)|, which is the number of

times u listened to t.

We observed in Figure 3.9 that the distribution of listening events per track is

very uneven and skewed. Hence, we expect the distribution of ratings per user to

be skewed. This deteriorates recommendations, since rating-scales of users exhibit

major di↵erences. Therefore it would be not possible to produce meaningful

extrapolations of a user’s rating based on other users or based on the average

rating of all users. Motivated by [Schedl and Bauer, 2017], we scale all ratings of a

user to a range of [0, 1000] via

r
u,t

= 1000 · r
u,t

�min(r
u

)

max(r
u

)�min(r
u

)
(3.12)

Hence, for any user, the most listened track has rating 1000, whereas the least

listened track has rating 0. Anyway, the large range of 1000 is chosen such that

di↵erences between listening events are still present.

Mainstream-Aware Baseline (TOP)

This method recommends k tracks with the most listening events over all users. It

serves as crude baseline, based solely on the popularity of tracks.

T̃
k

(u) =
k

argmax
t2T

|LE
t

| (3.13)
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Please be aware, that the ratings are now likely not within the range between 0 and

1000. Hence, we again apply the scaling as post-processing step.

Random Predictor (NORM)

This algorithm is a simple baseline, which models ratings via a normal

distribution. It estimates mean and variance of ratings within the training set by

utilizing Maximum Likelihood Estimation (MLE) [Fisher, 1922].

µ
ML

=
1

|R
train

|
X

ru,t2Rtrain

r
u,t

(3.14)

�2
ML

=
1

|R
train

|
X

ru,t2Rtrain

(r
u,t

� µ
ML

)2 (3.15)

r̃
u,t

⇠ N (R
train

|µ
ML

, �2
ML

) (3.16)

Due to the normality assumption, a rating of user u to track t is a sample from a

normal distribution with the maximum likelihood estimates as parameters.

Power Law Predictor (PL)

The illustration in Figure 3.8 indicates that the number of listening events behaves

like a power law. Since rating r
u,t

is defined as the number of times user u listened

to track t, ratings do not follow a normal distribution as assumed in the NORM

baseline, but follow a power law distribution. Hence, we design a random prediction

baseline, which samples ratings from a power law, fitted to the listening counts of

all users in LowMs and NormMs. In general, power law distributions are given by

L(x1, . . . , xn

|c,↵) =
nY

i=1

c · 1

x↵

i

(3.17)

First and foremost, scaling c can be omitted, since we generate a probability

density function and thus, scaling would not give any di↵ering results. Anyway it

could happen that the fist few observations cannot be explained by a power law

distribution. Hence, an additional parameter x
min

is introduced, which serves as

lower bound to the power law behavior (i.e., only points x > x
min

are considered).
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The latter modifications can be denoted as

L(x1, . . . , xn

|↵) /
nY

i=1

↵� 1

x
min

✓
x
i

x
min

◆�↵

(3.18)

As precisely described in [Clauset et al., 2009], ↵ is found by utilizing Maximum

Likelihood Estimation. The optimal x⇤
min

is obtained via selecting the model with

the highest Bayesian Information Criterion (BIC) [Schwarz et al., 1978]. Fitting a

power law distribution to observations x
i

was conducted by utilizing the rich library

in [Alstott et al., 2014]. Eventually, this baseline is given by

L(x1, . . . , xn

|↵) /
nY

i=1

↵� 1

x⇤
min

✓
x
i

x⇤
min

◆�↵

(3.19)

↵
ML
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nX

i=1

x
i

x
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!�1

(3.20)

r̃
u,t

⇠ L(x1, . . . , xn

|↵
ML

) (3.21)

for x
i

2 R
train

.

Baseline Estimation (BASE)

Baseline Estimation exploits the fact that users and items have an inherent bias.

Furthermore, there do exist tracks that exhibit non-normal distributed ratings. The

overall mean of ratings µ provides a general notion of how ratings are globally

distributed. Furthermore, b
u

models the the user bias (i.e., the tendency to give

higher or lower ratings). The user bias can also be understood as deviation of a

user’s average rating to the global expectation. The deviation of a track’s average

rating to the global expectation is denoted as the track bias b
t

.

µ =
1

|R
train

|
X

ru,t2Rtrain

r
u,t

(3.22)

r̃
u,t

= µ+ b
u

+ b
t

(3.23)

Please note that b
u

and b
t

are found via minimizing a Least Squares Optimization

Problem with Alternating Least Squares (ALS).
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Parameter Explanation Value

method optimization algorithm als

reg i item regularization 10

reg u user regularization 15

n epochs the number of iterations for the method 10

Table 3.10: Parameters for BASE.

k-nearest Neighbors (KNN)

User-based Collaborative Filtering (CF) [Shardanand and Maes, 1995] employs the

idea of similar users having similar tastes. Cosine similarity is widely used in

contemporary research in order to quantify similarity between two vectors

sim(v1, v2) =
vT1 v2

||v1||2 · ||v2||2
(3.24)

where v1, v2 2 Rn and || · ||2 is the L2-norm.

In this work, the rating is defined as the number of times a user listened to a

certain track. Due to the dot product, cosine similarity would be forced towards one

despite our scaling procedure. Hence, we chose to define the similarity of two users

as the Pearson Similarity [Freedman et al., 2007], which is, in this case, the cosine

similarity of the users’ u, v mean-centered ratings.

sim(u, v) =

P
t2T (ru,t � r̄

u

)(r
v,t

� r̄
v

)
pP

t2T (ru,t � r̄
u

)2
pP

t2T (rv,t � r̄
v

)2
(3.25)

CF aims to find a set of k nearest neighbors for a certain user u. These nearest

neighbors are the k users, which exhibit the highest degree of similarity towards u.

N
k

(u) =
k

argmax
v2U

sim(u, v) (3.26)

As the computation of the similarity requires a set of common items between two

users, we define that the similarity is zero, if there is no common item. By empirical

investigations, we set the number of neighbors to 40. Please find an explanation of
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parameters for this algorithm in Table 3.11.

Parameter Explanation Value

k number of neighbors 40

min k minimal number of neighbors to compute similarity 1

metric similarity metric pearson

Table 3.11: Parameters for KNN.

Each user is represented by a vector, which encodes her music taste. In our

case, the user-profiles are vectors containing the number of times a user listened to

a distinct track. Hence, the top-k recommendations can be found by utilizing CF

as follows:

r̃
u,t

=
1

|N
k

(u)|
X

v2Nk(u)

sim(u, v) · r
v,t

(3.27)

The popular k nearest neighbor algorithm realizes Collaborative Filtering and

improves the previously mentioned crude algorithm by introducing a normalization

over the similarities.

r̃
u,t

=

P
v2Nk(u)

sim(u, v) · r
v,tP

v2Nk(u)
sim(u, v)

(3.28)

3.4.2 Evaluation of Recommendations

In order to answer the research questions stated in Section 1.1, exhaustive evaluation

of our results is necessary. Therefore, we utilize several metrics, widely used in the

field of recommender systems and information retrieval. The term “relevant item”

refers to an item that is of interest to a user. Often, this term is used to denote

the groundtruth in the context of developing and evaluating recommender systems.

The selection of evaluation metrics is partially inspired by [Gunawardana and Shani,

2015]. For the reason of notational convenience, we define a binary function

1
u,i

(X ) =

8
<

:
1, if i-th item in X is relevant for user u

0, otherwise
(3.29)
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The outlined evaluation methods in this section are designed to measure either

the quality of recommended items and their ordering or the error of predicted

ratings. The first class considers the top-k recommendations, whereas the second

class measures the error of predicted ratings.

1. Top k recommendations: Precision, Recall, F1-Score, Mean Reciprocal Rank,

Mean Average Precision, Normalized Distributed Cumulative Gain.

2. Rating prediction: Root Mean Squared Error, Mean Absolute Error, Fraction

of Concordant Pairs.

Please note that predicted ratings can be easily transformed into top-k

recommendations. This is achieved by selecting and recommending only the k

highest rated items per user.

T̃
k

(u) =
k

argmax
t2T

r̃
u,t

(3.30)

where the predicted rating r̃
u,t

is computed by any rating prediction algorithm.

Hence, the performance of rating predicting algorithms can be measured by means

of top-k recommendation evaluation strategies.

Some models used in this evaluation require several parameters to be defined.

One may be tempted to conduct model selection prior to evaluation. But for the

matter of this works this is not necessary. We aim to show that there is a lack of

recommendation quality for users of low mainstreaminess. Hence, any reasonable

well working model enables us to compare recommendations between users of low

mainstreaminess and other users. Thus, we resign doing a exhaustive model

selection and continue with empirically selecting well-suited parameters for the

models.

In particular, our experiments are aimed to show that di↵erences in

recommendation quality exist for user groups of varying mainstreaminess and

preferred music style. Thus, we perform following steps:

1. Performing 5-fold cross-validation on data from LowMs and a random sample

of NormMs, where the number of samples is equal to the cardinality of LowMs.

This step is equivalent to five runs with distinct 80%/20% splits.
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2. Report averaged error metrics on entire dataset.

3. Report averaged metrics on NormMS.

4. Report averaged metrics on LowMs.

Thus, we comply with the widely used practice of training a model on 80% and

testing on 20% of ratings. Please note that the sampling of users from NormMs is

motivated by having equally-sized user groups. Anyway, we verified that the

mainstreaminess distribution of samples and NormMs are equivalent. After

conducting the 5-fold cross-validation procedure, we average the error

measurements and compute the standard deviation. Please note that this split is

conducted randomly. Hence, the number of ratings in the training- resp. test set

may vary per user.

Following notation is used in this section: T
k

(u) is the set of the k relevant

tracks of user u, T̃
k

(u) is the set of k recommended tracks, U is the set of users,

R : Users⇥ Tracks is the real rating matrix, where r
u,t

is the rating of u for track

t. Similarly, R̃ : Users ⇥ Tracks is the predicted rating matrix, where r̃
u,t

is the

predicted rating of user u for track t. As mentioned before, we define the rating r
u,t

to be the number of times, u listened to track t, scaled to the range of [0, 1000]. In

the following, we explain all metrics based on tracks. Anyway, note that instead of

tracks, any kind of items could be used.

Precision (P)

Precision is the fraction of recommended tracks that are relevant divided by the

number of recommended tracks. It defines, how precise recommendations are.

Precision for a single user, considering only the top-k recommended items, can be

defined as

P@k(u) =
|T

k

(u) \ T̃
k

(u)|
k

(3.31)

We can aggregate the user-wise precision for a set of users with

P@k =
1

|U |
X

u2U

P@k(u) (3.32)
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Recall (R)

Recall is the fraction of recommended tracks that are relevant divided by all relevant

tracks. It defines, what percentage of relevant tracks is recommended. Recall for a

single user, considering only the top-k recommended tracks, can be defined as

R@k(u) =
|T

k

(u) \ T̃
k

(u)|
|T

k

(u)| (3.33)

Similar to precision, we can aggregate the user-wise recall for a set of users with

R@k =
1

|U |
X

u2U

R@k(u) (3.34)

F1-Score (F1)

Usually, both, high precision and high recall are considered to be worthwhile.

Unfortunately, increasing precision eventually leads to decreasing recall and vice

versa. F1 o↵ers a tradeo↵ between both metrics. Since both measurements

represent rates, F1 is defined as their harmonic mean.

F1@k =
1

1
2

�
1

R@k

+ 1
P@k

� =
2

R@k

R@k·P@k

+ P@k

R@k·P@k

= 2 · P@k ·R@k

P@k +R@k
(3.35)

Mean Reciprocal Rank (MRR)

The ordering of recommended items is very important. Clearly, we want the most

relevant track to occur very early within the recommendations. Mean Reciprocal

Rank is the average of the reciprocal ranks of the first recommended track that is

relevant. Please note, that this method only considers the first track.

MRR@k =
1

|U |
X

u2U

1

rank(u)
(3.36)

rank(u) = min i, s.t. 1
u,i

(T̃
k

(u)) = 1, 0 < i  k (3.37)

where rank(u) is the rank of the first recommended item that is relevant for u.
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Mean Average Precision (MAP)

Often, it is not only wanted to recommend relevant tracks, but to place them among

the first (i.e., most important) recommendations. Average Precision takes also the

rank of correctly recommended tracks into account. Hence, it penalizes correctly

recommended tracks, which do not lie within the first recommendations.

AP@k =
1

|U |
X

u2U

1

|T
k

(u)|

kX

i=1

1
u,i

(T̃
k

(u)) · P@k(u) (3.38)

Mean Average Precision averages Average Precision over di↵erent values of k.

MAP@k =
1

k

kX

i=1

AP@i (3.39)

Normalized Distributed Cumulative Gain (nDCG)

Similar to MRR and MAP, Discounted Cumulative Gain [Järvelin and Kekäläinen,

2002] penalizes non-relevant tracks appearing among the first recommendations and

relevant tracks not appearing among the first recommendations. Intuitively, the

logarithmic term is a scaling w.r.t. the position of the recommended track. Hence,

the earlier a relevant track occurs within the recommendations, the higher the DCG

is. [Wang et al., 2013] provide sound justifications for the logarithmic scaling. The

DCG for the first k recommendations is given by

DCG@k =
kX

i=1

21u,i(T̃k(u)) � 1

log2(i+ 1)
(3.40)

The Ideal Discounted Cumulative Gain (IDCG) is equivalent to the optimal DCG.

It represents the DCG of the set of relevant track. In other words, it represents the

DCG of “perfect” recommendations.

IDCG@k =
kX

i=1

21u,i(Tk(u)) � 1

log2(i+ 1)
(3.41)
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Eventually, DCG is normalized by the IDCG. Hence, we get

nDCG@k =
DCG@k

IDCG@k
(3.42)

Root Mean Squared Error (RMSE)

Root Mean Squared Error is the square root of the mean squared error between

real and predicted rating. Hence, it is very similar to the standard deviation. This

is advantageous, since the results of RMSE typically are easy to interpret, as they

are on the same scale as the ratings. This technique tolerates small errors (i.e.,

|r
u,i

� r̃
u,i

| < 1) and penalizes large errors (i.e., |r
u,i

� r̃
u,i

| � 1) in a quadratic

manner.

RMSE =

vuuut
1

|R|
X

ru,i2R
r̃u,i2R̃

(r
u,i

� r̃
u,i

)2 (3.43)

Mean Absolute Error (MAE)

In some applications, it may be interesting, to not scale errors in any way.

Therefore, Mean Absolute Error only averages the absolute di↵erence between real

and predicted rating.

MAE =
1

|R|
X

ru,i2R
r̃u,i2R̃

(|r
u,i

� r̃
u,i

|) (3.44)

Fraction of Concordant Pairs (FCP)

[Koren and Sill, 2013] pointed out that RMSE and MAE fail in representing

individual rating scales among users. Hence, they introduced the method of

calculating the Fraction of Concordant Pairs. Often, ratings are predicted in order

to recommend the top rated items to a user. Hence, it is crucial that an algorithm

predicts ratings that preserve the ordering of the real ratings. This is achieved by
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counting the number of concordant n
c

(u) and disconcordant n
d

(u) pairs per user.

n
c

(u) = |{(i, j) : r̃
u,i

> r̃
u,j

^ r
u,i

> r
u,j

}| (3.45)

n
d

(u) = |{(i, j) : ¬(r̃
u,i

> r̃
u,j

^ r
u,i

> r
u,j

)}| (3.46)

for r
u,i

, r
u,j

2 R and r̃
u,i

, r̃
u,j

2 R̃. Subsequently, n
c

(u) can be normalized by

FCP (u) =
n
c

(u)

n
c

(u) + n
d

(u)
(3.47)

Of course, it holds that n
c

(u) + n
d

(u) = |R⇥R| is the number of all possible pairs.

This measure can be aggregated to represent the FCP for a set of users U as

FCP =
X

u2U

n
c

(u)

n
c

(u) + n
d

(u)
(3.48)

3.5 Miscellaneous Methods

Min-max-scaling refers to scaling the values of vector x, such that the scaled

vector x̄ has its minimum at zero and its maximum at one.

x̄ =
x�min(x)

max(x)�min(x)
(3.49)

Adjusted cosine similarity handles items having di↵erent rating scales by

subtracting the average item rating r̄
i

. Hence, it weakens the influence of highly

dominant items. For users u, v and the set of items I, this method is given by

sim(u, v) =

P
i2I(ru,i � r̄

i

)(r
v,i

� r̄
i

)
pP

i2I(ru,i � r̄
i

)2
pP

i2I(rv,i � r̄
i

)2
(3.50)



Chapter 4

Results and Discussion

After conducting all steps described in Chapter3, this section aims to outline some

interesting observations. Our analysis is three-fold. Firstly, we investigate a

clustering of tracks by means of their acoustic features and genres. In order to

concisely describe the properties of a cluster, typical personas listening to a

cluster’s tracks are listed. Secondly, we provide exhaustive statistics of users’ music

taste, listening behaviour and demographics. Thirdly, we compare the results of

several recommendation algorithms applied on groups of varying mainstreaminess

and on user groups with distinct music tastes. The goal of this chapter is to

enhance our crude explorative analysis of the Cultural LFM-1b dataset and in

particular, focus on properties of low mainstreaminess users.

Since a description of tracks by their acoustic features and genres is desired, we

decide to exclude tracks with any invalid acoustic features. Furthermore, dominant

genres are removed, as they would deteriorate and blur results. The term

“dominant genre” refers to genres below the threshold depicted in Figure 3.13. For

the sake of readability, we resign explaining this pruning procedure at any

reasonable point in this section. Descriptive statistics of the modified dataset

introduced in this chapter can be found in Table 4.1.

Furthermore, illustrations of acoustic features (Figure 4.2), Hofstede’s

dimensions (Figure 3.3) and World Happiness Report (Figure 3.4) underwent

min-max-scaling, which is thoroughly described in Equation 3.49. This procedure

was chosen for an easy comparison between several dimensions.

63
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Item Value

Users 2,074

Tracks 145,131

Artists 14,243

Spotify Track Genres 1,185

Listening Events (LEs) 4,682,141

Min. LEs per user 1

Q1 LEs per user 1,198

Median LEs per user 1,945

Q3 LEs per user 3,078

Max. LEs per user 10,536

Avg. LEs per user 2,258.630 (± 1,457.310)

Table 4.1: Descriptive statistics of Cultural LFM-1b for LowMs. Only tracks with

nondominant genres and valid acoustic features are considered. The value within

the parenthesis is the standard deviation.

4.1 Track Clusters

We aim to find clusters, where each cluster represents a collection of tracks similar

in their acoustic features. In order to do so, dimensionality reduction with UMAP

was conducted. Subsequently, we performed clustering with HDBSCAN.

The resulting clusters are illustrated in Figure 4.1. As can be seen, four

clusters are obtained. In this work, the size of a cluster denotes the number of

tracks within a cluster, not its diameter. Thus, to what we refer to as size of a

cluster does not necessarily coincide with the visual extent shown, since the track

clusters heavily deviate from each other in terms of density.

First and foremost, we observe that not all tracks are assigned to a cluster. In

particular, 13,988 tracks could not be classified, since they lie in between clusters.

Furthermore, the sizes vary heavily. Since the clustering of tracks was conducted

utilizing the two dimensional latent representation of tracks’ acoustic features, this
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Figure 4.1: Clusters of tracks, obtained by considering tracks’ acoustic features.
These four clusters comprise a very di↵erent number of tracks, i.e., 11,588 (C1),
85,663 (C2), 6,446 (C3) and 27,446 (C4). Furthermore, 13,988 tracks could not be
assigned to a cluster.

observation indicates that there exist certain configurations of acoustic properties

that are more widely used among tracks than others. In this work, C
i

is defined

as the set of tracks in track cluster i. Mainstreaminess is usually related to the

listening events per user. Anyway, cluster C2 can be said to represent mainstream

within the set of tracks, with user-interactions pushed aside, as it contains the vast

majority of tracks.

The illustration in Figure 4.2 depicts the distributions of each clusters’ acoustic

features. Danceability and tempo do not show any apparent di↵erences worth

interpreting. Thus, we conclude that including danceability and tempo might not

yield any advantages. Contrary to that, all remaining dimensions indicate

moderate or strong di↵erences between track clusters. Energy, speechiness,

acousticness, valence and liveness give strong evidence that there is a large

di↵erence between pairs C1, C3 and C2, C4. Furthermore, they indicate that C1 is

similar to C3 and C2 is similar to C4. Instrumentalness hints that C1 and C2

comprise tracks with a large amount of vocals. In contrast, tracks from C3 and C4

exhibit only a minor contribution of vocals. Thus, instrumentalness is the only

dimension that makes it possible to distinguish four clusters and not only two.
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Therefore, we point out the importance of instrumentalness, as it (in combination

with the other dimensions) could serve as encoding for the track clusters.

Figure 4.2: Distribution of acoustic features of all track clusters. Danceability and

tempo show only minor di↵erences. Interestingly, energy, speechiness, acousticness,

valence, liveness and instrumentalness indeed show deviations between clusters.

Please note that instrumentalness makes it possible to distuingish four and not

only two track clusters.
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Due to the large similarity between pairs of clusters in terms of acoustic features,

we aim to further precise our interpretations by analyzing the genres of a cluster’s

tracks. Hence, let T
g

be the set of tracks, annotated with genre g and C
i

be the set

of tracks assigned to cluster i. Then the term frequency TF
i

(g) refers to the number

of tracks with genre g within track cluster C
i

.

TF
i

(g) = |T
g

\ C
i

| (4.1)

Additionally, let IDF (g) be the idf-score of genre g. Contrary to the idf-score,

TFIDF
i

(g) does not only consider the importance of g, but also its frequency.

Thus, frequent but unimportant genres contribute to this scoring as well as less

frequent but important ones. The tfidf-score of g for cluster i can be computed via

TFIDF
i

(g) = TF
i

(g) · IDF (g) (4.2)

Eventually, a tfidf-scoring of genres within each cluster is achieved. Utilizing this

technique, track clusters are explained by their top scoring genres. This is

advantageous over explanations via acoustic features, since genres can be more

easily interpreted.

The top genres of each cluster are illustrated in Figure 4.3. These tfidf-score

distributions depict the genres serving as description of each track cluster. In

particular, the distributions for C1 and C3 show interesting behavior. These two

track clusters include genres (singersongwriter and folk for C1, ambient for C3)

with a much higher tfidf-score than other genres. This e↵ect cannot be observed in

any other track cluster. The aforementioned high-scoring genres can be said to be

mainstream within their track cluster. This behavior could be caused by two

things. Firstly, a genre with low importance (i.e., low idf-score) may occur much

more frequent in a single cluster than it does over all tracks. Secondly, globally

dominant genres do not have to be equal to the dominant genres of a single

cluster. If this was the case, genres only dominating their track cluster would

survive the pruning procedure proposed in Figure 3.13. As a counterexample, the

distributions for C2 and C4 exhibit a genre distribution of roughly linear increase.

Hence, C2 and C4 do not comprise any dominant genres.
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(a) (b)

(c) (d)

Figure 4.3: IDF-distribution of track clusters based on genres. From top left to

bottom left clockwise: IDF-distribution for (a) C1, (b) C2, (c) C3 and (d) C4. We can

see distributions, where the idf-score increases linearly, hence there are no dominant

genres. In contrast, uneven distributions indicate the presence of dominant genres.

Based on the top genres and the acoustic features, we define several personas,

where each persona represents the typical kind of music within the corresponding

track cluster. Persona P
i

describes the music style within track cluster i.

1. Person P1 (Complex Music): Low-energetic, mostly acoustic and complex

music. In particular folk, singersongwriter, jazz, blues.

2. Person P2 (Festival Music): high-energetic, non-acoustic music. This is the

most mainstream cluster within LowMs music. In particular hardrock, punk,

hiphop.
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3. Person P3 (Relax Music): low-energetic, acoustic, slow and instrumental

music. In particular ambient, experimental, newage, classical.

4. Person P4 (Heavy Music): high-energetic, non-acoustic, fast and instrumental

music. In particular electronica, deathmetal, industrial.

The depiction in Figure 4.4 illustrates the top 30 genres and their relative genre

importance. Relative genre importance is defined as the fraction of listening events

per genre within a track cluster.

Figure 4.4: Relative genre importance denotes the fraction of listening events per

genre within a track cluster. Notice the presence of dominant genres in clusters C1

and C3.

It can be observed that for C2 and C4, importance is roughly uniformely

distributed. Contrary to that, C1 and C3 clearly exhibit a nonuniform distribution.

In these two clusters, a few genres get much more attention from users than other

genres. Please note that C2 and C4 are the largest track clusters. Removing the

dominating genres (i.e., rock, pop, electronic, metal, alternativerock, indierock) as

a preprocessing step did not work well for the smaller clusters C1 and C3. The

calculation of IDF (g) relies on the number of tracks, which are annotated with a

certain genre g. The larger the cluster, the higher the chance of the cluster

comprising some of the dominating genres. Hence, it is obvious that the

dominating genres coincide with the top genres of the larger clusters and deviate

from the top genres of the smaller ones. Removing the dominating genres removes



4.1. TRACK CLUSTERS 70

the top genres of C2 and C4, but not all of C1 and C3.

Anyway, we see in Table 4.2 that after pruning, also C2 and C4 exhibit very

di↵erent genres. Hence, dominant genres in C1 and C3 are only dominant within

their cluster. Another reason for this phenomenon could be the presence of subgenres

linked to a main genre. Obviously, tracks of a certain subgenre are very likely to

be also annotated with the main genre. Hence, the main genre gains popularity.

In conclusion, dominating genres of all tracks do not entirely coincide with the top

genres of each cluster, but the intersection is larger for large track clusters than for

small ones.

Track Cluster Top Genres in terms of listening events

C1 singersongwriter, folk, folkrock, easylistening, indiepop

C2 hardrock, punk, hardcore, poprock, hiphop

C3 ambient, experimental, postrock, electronica, downtempo

C4 experimental, electronica, ambient, deathmetal, postrock

Table 4.2: Top genres of each track cluster in terms of listening events. The top

genres show interesting patterns for all track clusters. Except C3 and C4, which

share a large subset of top genres.

Inspired by recent work of [Antenucci et al., 2018], we introduce

ArtistHeterogeneity, which is aimed to measure the diversity in terms of a user’s

listening behavior. Let T (u) be the set of distinct tracks, a user u listened to and

artist(t) be the artist of track t, then

ArtistHeterogeneity(u) = log2

 
|T (u)|

|{artist(t) : t 2 T (u)}|

!
(4.3)

Similarly, we modify the latter equation to consider genres, hence, let genre(t) be

the genre of track t, then

GenreHeterogeneity(u) = log2

 
|T (u)|

|{genre(t) : t 2 T (u)}|

!
(4.4)

where a low heterogeneity-score indicates high diversity.
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As can be seen in Table 4.3, track clusters exhibit very di↵erent

heterogeneity-scores for both, artists and genres. In general, C2 and C4 have the

highest heterogeneity-score. Hence, those clusters exhibit a large number of

distinct tracks compared to the number of distinct artists and genres. This

observation could be biased by the cluster size, as the number of distinct tracks

grows much faster than the number of artists and genres. The logarithmic scaling

should mitigate this issue. Anyway, that is no contradiction to the intent of using

these measurements, which is to measure diversity.

Track cluster AH GH

C1 1.8012 4.1741

C2 2.9388 6.2778

C3 1.5450 3.6034

C4 2.3341 5.0769

Table 4.3: Track clusters’ artist- and genre-heterogeneity. Artist-heterogeneity (AH)

indicates that clusters C1 and C3 comprise tracks of a variety of artists. Equivalently,

genre-heterogeneity hints that C1 and C3 also exhibit a more diverse set of genres

than C1 and C4.

4.2 User Groups

In this section we outline the user-focused analysis. Based on the number of tracks

within a cluster that users listened to (i.e., weight), users are assigned to exactly

one track cluster. In order to weaken the influence of large clusters, these weights

are scaled by an idf-scoring of clusters. User u is said to belong to U
Ci , if cluster Ci

is the highest weighted track cluster. Please note that one user from LowMs did

not listen to any classified tracks, thus, this user is not assigned to any user group.

As a consequence, |U
C1 [ U

C2 [ U
C3 [ U

C4 | 6= |LowMs|. Eventually, the resulting

user groups are investigated regarding their demographics, behaviour and

properties of consumed music.

Analogous to the investigations concerning the top genres per track cluster in

Figure 4.4, we conduct an analysis of the top genres per user group. Figure 4.5
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illustrates the distribution of the top 30 genres per user group. Interestingly, the

user-based distribution exhibits exactly the same properties as in the track-based

case. This indicates a very strong correlation of a user group’s listening events with

the listening events of its corresponding track cluster. The top 5 genres of a user

group U
Ci coincide with the top 5 genres of its linked track cluster C

i

by at least

80% as Tables 4.2 and 4.4 prove. Therefore, music taste of a user group is very

similar to the type of music its corresponding track cluster o↵ers.

Figure 4.5: Top 30 genres of user groups. Relative genre importance denotes the
fraction of listening events per genre within a user group. Notice the presence of
dominant genres in clusters U

C1 and U
C3 .

User Group Top Genres in terms of listening events

U
C1 singersongwriter, folk, indiepop, folkrock, poprock

U
C2 hardrock, punk, hardcore, poprock, emo

U
C3 ambient, experimental, electronica, downtempo, postrock

U
C4 experimental, ambient, electronica, deathmetal, hardock

Table 4.4: Top genres of each user group in terms of listening events. The top genres
show interesting patterns for all user groups. Except C3 and C4, which share a large
subset of top genres.
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Note Since some paragraphs in the remainder of this chapter are concerned with

the analysis of di↵erent types of music listeners, we occasionally refer to the

personas introduced in Section 4.1. As a short reminder, U
C1 : Complex Listener,

U
C2 : Festival Listener, UC3 : Relax Listener and U

C4 : Heavy Listener.

The correlation matrix of user groups based on weights (i.e., listening events towards

track clusters) is provided in Figure 4.6. Some correlations can be explained in more

detail by the previously conducted analysis of acoustic features. Complex Listeners

tend to listen to similar tracks as Relax Listeners. Furthermore, Complex Listeners

do not like the genres hiphop, punk, hardrock, deathmetal and electronica. It is

apparent that Festival Listeners rather stay within their preferred type of music,

as they refuse to listen to deathmetal, ambient, electronica, jazz or soul. This

observation does not comply with our previous analysis of acoustic features. Relax

Listeners choose to additionally listen to genres like folk, jazz and blues. Surprisingly,

completely di↵erent genres such as deathmetal, blackmetal and triphop also attract

Relax Listeners. Heavy Listeners value relaxing music, but neglect to listen to

typical festival music.

Figure 4.6: Correlation between user groups, where the correlation is based on each
user’s weights. Interestingly, U

C2 tends to heavily dislike relaxing music and metal.
Furthermore, U

C3 and U
C4 apparently do not like to listen to festival music. U

C2

seems to not explore music styles other than festival music.
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The depictions in Figure 4.7 illustrate the contribution (i.e., weight) of the track

clusters to the user groups. Again, to reduce the influence of large track clusters,

weights are scaled with the cluster’s idf-score. It can be observed that the two largest

user groups (i.e., Festival Listeners U
C2 and Heavy Listeners U

C4) mainly prefer to

listen to their favorite type of music, whilst not listening exhaustively to tracks from

other track clusters. In contrast, U
C1 (i.e., Complex Listeners) and U

C3 (i.e., Relax

Listeners) listen to a variety of music styles, as their consumption behavior is much

more uniformly distributed over track clusters. These observations give evidence

of U
C1 and U

C3 exhibiting a higher degree of omnivorousness than U
C2 and U

C4 .

Omnivorousness refers to the breath of an individual’s music taste [Atkinson, 2011].

Additionally, the aforementioned observations are backed by the Kullback-Leibler

Divergence between the weight distribution and a uniform distribution.

Figure 4.7: Visualization of normalized weights w̃, averaged over all users of a certain

user group. As one can see, U
C2 and U

C4 tend to focus on their preferred style of

music, whereas U
C1 and U

C3 seem to distribute their listening events more evenly

on all music styles.
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User Group KL(P
w̃

||U4)

U
C1 0.3272

U
C2 0.5181

U
C3 0.2311

U
C4 0.3796

Table 4.5: Kullback-Leibler Divergence between the probability distribution of

normalized weights P
w̃

and a uniform distribution with four events, representing

four track clusters. Numerical results indicate that U
C2 and U

C4 tend to focus on

their preferred style of music and U
C1 and U

C3 seem to distribute their listening

events more evenly on all music styles.

User Group AH GH

U
C1 1.8068 13.5003

U
C2 2.0110 16.3864

U
C3 1.8053 12.6542

U
C4 2.1539 13.7443

Table 4.6: User groups’ artist- and genre-heterogeneity. Artist-heterogeneity (AH)

indicates that U
C1 and U

C3 tend to listen to various artists. Furthermore, genre-

heterogeneity (GH) shows evidence for U
C2 being the least diverse user group.

In analogy to the artist- and genre-heterogeneity of track clusters, we conduct

the same measurement for user groups. The results are depcited in Table 4.6.

Similar to track clusters, U
C1 and U

C3 show the highest degree of artist- and

genre-heterogeneity. This gives indication of these two user groups being the most

diverse ones in terms of artists and genres. More interestingly, we can compare the

artist-heterogeneity of track clusters in Table 4.3 with the artist-heterogeneity of

user groups. It can be observed that the di↵erence in artist-heterogeneity between

U
C2 and C2 is very large. This hints that the music style resp. persona

representing C2 (i.e., Festival Listener) does deviate from the observed listening

behavior of U
C2 . This raises concerns that the Festival Listener is not a good

exemplar for U
C2 and does not represent its music style well. Contrary to that,

e.g., U
C1 and C1 do not show any di↵erence. Hence, we conclude that the observed
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listening behavior of users assigned to U
C1 does indeed coincide with the music

style described by C1 (i.e., Complex Listener).

In order to assess the cohesiveness of user groups, we measure the pairwise

similarity within each user group. Each user is represented by a vector comprising

the number of listening events per genre. Motivated by observing multiple genres

with a extraordinarily high number of listening events in Figure 4.4, we choose to

utilize adjusted cosine similarity as measurement, since highly popular genres

would deteriorate the results. Clearly, neglecting the presence of user groups and

hence, considering all users from LowMs yields the smallest similarity. U
C1 and

U
C3 exhibit the highest degree of similarity. Please note that this behavior can be

caused by the fact that those two user groups are far smaller than the other two.

Hence, they may not comprise a large variety of usertypes. Furthermore, U
C2

includes pairs of users that seem to have only minor common music taste. The

latter finding is also backed by the large variance of 0.1350.

Figure 4.8: Average pairwise user group similarity based on genres. The similarity

measure chosen is the adjusted cosine similarity. U
all

denotes the set of all users.

Furthermore, the average similarities between a user and all other users in the user

group show variances 0.1329 (U
C1), 0.1350 (U

C2), 0.1146 (U
C3), 0.1099 (U

C4) and

0.1252 (U
all

).

Descriptive statistics for all four user groups can be found in Table 4.7. The

ordering in terms of user group size apparently corresponds to the size of the track



4.2. USER GROUPS 77

clusters. Anyway, we were able to significantly weaken the deterioration caused by

the largest track cluster C2 via the idf-scaling, as only approx. 43% of users are

assigned to this track cluster, whereas it contains approx. 65% of tracks.

Furthermore, it can be observed that the number of distinct genres, tracks and

artists is not correlated to either user group or track cluster size. We have shown

in Section 4.1 that C1 and C3 are highly specialized track clusters.

User Group |U | |A| |T | |G| |LE| |Avg.G/T |

U
C1 396 9,673 76,520 1,085 783,090 5.061

U
C2 900 11,453 104,266 1,095 2,094,082 4.590

U
C3 102 5,621 32,172 918 186,921 5.772

U
C4 675 11,710 111,872 1,128 1,618,048 4.792

Table 4.7: Descriptive statistics of all user groups. |U | is the number of users, |A|
is the number of distinct artists, |T | is the number of distinct tracks, |G| is the

number of distinct genres, |LE| is the number of listening events and |Avg.G/T | is
the average number of genres per track.

Furthermore, U
C1 and U

C3 have only a small number of listening events

compared to U
C2 and U

C4 . Therefore, it is surprising that users assigned to those

clusters achieve to listen to nearly all genres. This leads to the conclusion that the

majority of tracks are annotated with a variety of genres. Additionally, this

behavior can be explained by a simple experiment. Assume a user chooses

randomly, which genres, tracks or artists to listen to. If this decision is made

independently for 50,000 times, it can be observed that the number of distinct

genres and artists saturates at some point. The results of this experiment are

depicted in Figure 4.9.

Additionally, |Avg.G/T | indicates tracks listened by U
C3 being annotated with

slightly more genres than tracks listened by other user groups. This observation can

be caused by two things. Firstly, tracks listened by U
C3 may exhibit more genres and

subgenres (e.g., ambient, dark ambient). Secondly, users may have a more diverse

taste in music and thus, listen to more complex tracks. Please note that there is a

large overlap in genres listened by di↵erent user groups.
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Figure 4.9: Convergence of the number of distinct genres, tracks and artists. In

total, 50,000 samples from the uniform distribution over genres, tracks and artists

are drawn. Fraction observed denotes the fraction of genres, tracks and artists

observed during sampling.

User Group |Avg.G/U | |Avg.T/U | |Avg.LE/U | |Avg.LE/T/U |

U
C1 235.987 584.692 1,977.500 0.026

U
C2 212.516 552.461 2,326.758 0.022

U
C3 228.775 522.010 1,832.559 0.057

U
C4 249.733 729.640 2,397.108 0.021

Table 4.8: User-related statistics of all user groups. |Avg.G/U | is the average number

of distinct genres a user has listened to, |Avg.T/U | is the average number of distinct

tracks a user has listened to, |Avg.LE/U | is the average number of listening events

per user and |Avg.LE/T/U | is the average number of listening events per track of

a user.

The statistics outlined in Table 4.8 are based on the interactions between users

and tracks resp. genres. The goal is to give insights into user-related properties of

music consumption. It can be seen that U
C2 listens to less distinct genres than

other user groups. Similarly, users from U
C3 tend to listen to fewer distinct tracks.

This observation can be strengthend by the standard deviation of 345.526 being

small compared to 391.666 (U
C1), 383.139 (U

C2) and 451.342 (U
C4). With the same
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arguments as before, we can conclude that users from U
C4 neglect listening

repetitively to the same tracks. Furthermore, notice that U
C1 and U

C3 are much

less active in terms of listening events than U
C2 and U

C4 . Surprisingly, such a

behavior cannot be observed for the average number of tracks played. We found

that U
C3 tends to repetitively listen to the same set of tracks, as the number of

listening events per track is high for this user group. This observation could be

induced by the scarcity of tracks in C3.

User Group LE
work

|Avg.LE
day

/U |

U
C1 41.073% 17.658

U
C2 40.089% 25.019

U
C3 42.570% 23.891

U
C4 42.003% 24.478

Table 4.9: Temporal statistics of all user groups. |LE
work

| is the fraction of listening

events throughout a workday (i.e., 7-18 on businessdays) and |Avg.LE
day

/U | is the
average number of listening events of a user per day.

Several interesting observations can be made about the temporal listening

behavior of di↵erent user groups. Statistics in Table 4.9 indicate that users from

U
C2 tend to focus their music consumption to their spare time and not to work

time. On average, users from U
C1 listen to less music per day than others. Digging

deeper, listeners of genres like jazz, folk, blues and soul do not listen to as many

pieces of music per day as other listeners. This observation could be influenced by

the length of tracks since, e.g., blues tracks’ duration is in general much longer

than the duration of punk tracks.

As already noted in Section 3, users from some homecountries (i.e., US, RU,

DE, UK, BR, PL) dominate this dataset. When analyzing demographic properties,

this leads to a strong bias towards those countries. Table 4.10 verifies that

country-based analyses would not make sense, since the dominant countries would

deteriorate results. Hence, statistics shown in Table 4.11, Figure 4.10 and

Figure 4.11 are obtained by only considering users from nondominant countries.

Additionally, all users without valid age and country information are excluded.

This leads to modified user groups, where each user group Ũ
Ci is a proper subset of
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the unmodified user group U
Ci . The cardinalities (i.e., number of users) are

|Ũ
C1 | = 180, |Ũ

C2 | = 306, |Ũ
C3 | = 35 and |Ũ

C4 | = 245.

User Group Top Countries

U
C1 US, DE, BR, UK, ES

U
C2 US, DE, BR, UK, RU

U
C3 US, RU, DE, UK, JP

U
C4 US, RU, DE, UK, PL

Table 4.10: Top 5 homecountries of user groups without omitting dominant

countries. Obviously, most user groups are biased towards US, DE, BR, RU and

UK.

Table 4.11 indicates that Ũ
C4 has the highest degree of mainstreaminess within

LowMs. Interestingly, young people value metal and festival-like music. In

contrast, slower and acoustic music is clearly preferred by individuals of higher

age. The male to female ratio is very large for Ũ
C3 and Ũ

C4 . Please notice that

these two user groups comprise tracks of high instrumentalness. Thus, males seem

to favor music that exhibits less vocals. After excluding dominant countries, we

perceive a much clearer picture of user groups’ homecountries. We find that

spanish and dutch listeners prefer rather complex music. Finns tend to listen to

metal and surprisingly, to festival music. Furthermore, japanese and indian

listeners focus more on relaxing music.

User Group |Avg.MS| |Avg.Age| M/F Top Countries

Ũ
C1 0.041 27.925 63%/37% ES, NL, FR, SE, IT

Ũ
C2 0.043 23.910 67%/33% AU, FI, ES, FR, NL

Ũ
C3 0.041 31.691 82%/18% JP, ID, NL, TR, BE

Ũ
C4 0.048 24.538 82%/18% UA, FI, CA, IT, AU

Table 4.11: Demographic statistics of all user groups. |Avg.MS| is the average

mainstreaminess, |Avg.Age| is the average age, M/F is the male to female ratio and

Top Countries denotes the top 5 homecountries omitting dominant countries.
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An illustration of Hofstede’s cultural dimensions can be found in Figure 4.10.

Heavy Listeners apparently believe that power is distributed unequally within

their society. Additionally, they - together with Relax Listeners - show a large

degree of masculinity. Therefore, masculine properties like heroism and wealth are

valued more than feminine dimensions like, e.g., caring for others. Despite

hofstede’s term of masculinity not being directly related to the gender, the

population of these user groups is mainly male. Complex Listeners do not tolerate

unorthodox beliefs and despise ambiguity and uncertainty. Long-term orientation

is high for Relax Listeners. Hence, they are future-oriented rather than

tradition-driven. Furthermore, they encourage adaption and pragmatic

problem-solving. Interestingly, the cultural properties of Complex and Relax

Listeners could be justified by the higher average age of these user groups.

Figure 4.11 illustrates the distributions of the World Happiness Report’s

dimensions. Complex Listeners show a higher degree of happiness than all

remaining user groups. Furthermore, they are expected to have the longest span of

life. Interestingly Relax Listeners tend to believe that they have the freedom to

make life choices by themselves and not being under influence from others. Festival

and Heavy Listeners perceive the corruption in their homecountry as high, whereas

Relax and Complex Listeners do not reckon the amount of corruption to be as

serious. Perceived corruption is apparently high for user groups of lower age.

Please note that it was verified that no user group has more than half of its users

from a single homecountry. Hence, equal medians in Generosity are a coincidence.
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Figure 4.10: Distribution of Hofstede’s cultural dimensions of user groups Ũ
C1 , ŨC2 ,

Ũ
C3 and Ũ

C4 . It can be observed that Ũ
C4 (i.e., Heavy Listeners) tend to believe

that power is not distributed equally among society. Furthermore, Ũ
C3 (i.e., Relax

listeners) are much more future-oriented than other user groups.
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Figure 4.11: Dimensions of the World Happiness Report of user groups Ũ
C1 , ŨC2 ,

Ũ
C3 and Ũ

C4 . This depiction indicates that Ũ
C1 (i.e., Complex Listeners) are slightly

happier than other user groups. Furthermore, users from Ũ
C3 apparently have the

freedom to make choices by themselves. Please note that Ũ
C3 is a user groups with

rather high average age.
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4.3 Recommendations

For the sake of assessing how well-known recommendation algorithms perform on

groups of di↵erent mainstreaminess and other subsets of users we train a selection

of algorithms and evaluate them on groups of di↵erent mainstreaminess and taste.

4.3.1 Rating Prediction

Here, we perform 5-fold cross-validation and average the error metrics. As can

be observed, BASE gives the best results in terms of Mean Absolute Error (MAE)

and Root Mean Squared Error (RMSE). KNN outperforms all competing methods in

terms of Fraction of Concordant Pairs (FCP). The reason for KNN’s problems could

be the high level of sparsity (i.e., All: 99.87%, NormMs: 99.78% and LowMs: 99.86%).

Additionally, a one-tailed t-test was conducted (↵ = 0.005), with the nullhypothesis

of the MAE for NormMs being larger or equal to the MAE for LowMs. We favor

MAE over RMSE, since we aim to get a clearer picture on the rating prediction

performance [Willmott and Matsuura, 2005].

Group Metric TOP NORM PL BASE KNN

LowMs

MAE ***63.9866 ***88.7751 ***472.3068 ***63.4515 ***69.0510

RMSE 124.9542 136.8513 607.4750 107.5587 118.5350

FCP 0.4850 0.4504 0.5002 0.5189 0.5463

NormMs

MAE 56.4509 83.0046 478.5724 53.2003 60.4767

RMSE 108.7255 125.3239 606.9077 92.4414 102.1099

FCP 0.5086 0.4509 0.5001 0.5201 0.5472

All

MAE 59.2702 85.1634 476.2283 57.0354 63.6845

RMSE 115.0657 129.7564 605.8299 98.3811 108.5464

FCP 0.5046 0.4506 0.5001 0.5199 0.5468

Table 4.12: Prediction errors for groups of di↵erent mainstreaminess and several

recommendation methods. For all measurements marked with ***, a one-tailed t-

test (↵ = 0.005) indicates that the MAE is significantly higher than for NormMs.

The best performing methods are written in bold. Interestingly, BASE outperforms

all its competing methods in terms of MAE and RMSE. For FCP, KNN gives the

best results.



4.3. RECOMMENDATIONS 85

We found significant evidence that the MAE for LowMs is higher than for

NormMs for all methods. In other words, rating prediction is significantly worse

for users of unorthodox, non-popular music taste.

Within the previous paragraphs, we showed that contemporary recommendation

algorithms perform significantly worse for users of unorthodox taste than for users

that like popular music. In the remainder of this section, we conduct further in-depth

analyses, since we question how recommendation quality varies for di↵erent music

styles preferred by non-mainstream users. Hence, a set of algorithms is trained

only on data from LowMs. Again, we employ 5-fold cross-validation and average

the MAE. Eventually, we evaluate each algorithm separately for each user group.

The MAE for all four user groups can be found in Table 4.13. In concordance

to the results of the analogous experiment for LowMs and NormMs in Table 4.12,

BASE performs best. Notably, most methods seem to have problems with U
C2 .

One reason for this finding could be the high degree of sparsity for U
C2 ’s rating

matrix. In particular, we note that there might be a relationship between MAE and

sparsity, as the sparsities of user groups (U
C1 : 99.57%, U

C2 : 99.74%, U
C3 : 98.72%

and U
C4 : 98.72%) are correlated to the MAE for most methods.

User Group TOP NORM PL BASE KNN

U
C1 65.6952 93.6594 482.6342 63.9458 72.7809

U
C2 68.7394 95.3009 479.3241 65.9453 75.9294

U
C3 62.1081 92.5584 488.0025 60.8146 72.5826

U
C4 62.9007 92.9105 483.3543 61.5985 73.0778

U
all

65.6132 93.9407 481.9690 63.6613 74.0654

Table 4.13: MAE of five recommendation algorithms learnt directly on data of

all user groups (i.e., LowMs). The best method for each user group is in bold.

BASE clearly outperforms all other methods. Surprisingly, TOP yields better

recommendations than, e.g., KNN. We hypothesize that the low MAE for U
C3 may

by attributed to the low sparsity of this user group’s rating data.

As the di↵erences between user groups in Table 4.13 are not obvious, we

perform a further statistical analysis and provide evidence that the MAE indeed
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significantly deviates between pairs of user groups. Firstly, ANOVA (↵ = 0.05)

shows that the MAEs of all user groups are not equal. In a second step, post-hoc

analysis via Tukey-HSD (↵ = 0.05) is conducted. Significant pairwise di↵erences

are reported in Table 4.14. Pairs are marked with **, if both, ANOVA and

Tukey-HSD are significant over all folds. All algorithms agree on pairs U
C2 , UC3

and U
C2 , UC4 exhibiting significant di↵erences. This gives strong evidence for a gap

in recommendation quality between one, Festival Listeners and Relax Listeners

and two, Festival Listeners and Heavy Listeners. Furthermore, the two best

performing methods (i.e., TOP and BASE) may be more valuable. They indentify

more significant di↵erences than NORM, PL and KNN.

TOP NORM PL BASE KNN

User Groups U
C1 U

C2 U
C3 U

C4 U
C1 U

C2 U
C3 U

C4 U
C1 U

C2 U
C3 U

C4 U
C1 U

C2 U
C3 U

C4 U
C1 U

C2 U
C3 U

C4

U
C1 ** ** ** ** ** ** **

U
C2 ** ** ** ** ** ** ** ** ** ** **

U
C3 ** ** ** ** ** **

U
C4 ** ** ** ** ** **

Table 4.14: Significant di↵erences between pairs of user groups (marked with **),

as determined by ANOVA (↵ = 0.05) and a subsequent Tukey-HSD test (↵ = 0.05).

Results for PL varied among folds, hence, we are not able to provide any significant

results. Anyway, note that all remaining methods agree on a significant di↵erence

between pairs U
C2 , UC3 and U

C2 , UC3 . Interestingly, no method found evidence that

the MAEs for U
C3 and U

C4 deviate significantly from each other.

Anyway, no algorithms found evidence for the MAEs of U
C3 and U

C4 being

di↵erent. Reconsidering the top genres of each user group in Table 4.4, we see that

the top three genres in terms of listening events are identical. Hence, both user

groups focus on a common set of genres. As the models are trained on all data

from LowMs, there exist more ratings for these common genres than for other

ones. In other words, U
C3 and U

C4 share a common subset of training data. This

could explain the slightly smaller MAEs for both user groups. Additionally, we like

to point out that the predicted ratings for U
C3 are influenced by ratings from U

C4

and vice versa. The algorithms aim to find the best model for U
C3 and U

C4

simultaneously. Thus, increasing accuracy for one group must not lead to a

decrease in accuracy for the second group. As a consequence, the learnt model
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attains a state, in which no group is disadvantaged. We hypothesize that this leads

to an adaption of MAE for both, U
C3 and U

C4 .

4.3.2 Top-k recommendations

In a real scenario, recommender systems do not present predicted ratings to a user,

but items. Hence, we recommend k tracks to each user and measure how well these

recommendations fit the best rated 30 tracks in a user’s testset. Similar to the

previous paragraph, we conduct 5-fold cross-validation and average the results.

Group Metric TOP NORM PL BASE KNN

LowMs

F1@5 0.0833 0.0758 0.0746 0.0959 0.1196

F1@10 0.1377 0.1255 0.1247 0.1568 0.2036

MRR@10 0.0305 0.0281 0.0276 0.0348 0.0424

MAP@10 0.2602 0.2347 0.2297 0.3039 0.3842

nDCG@10 0.1372 0.1248 0.1231 0.1576 0.2002

NormMs

F1@5 0.1044 0.0832 0.0833 0.1055 0.1209

F1@10 0.1617 0.1297 0.1302 0.1654 0.2019

MRR@10 0.0416 0.0341 0.0342 0.0417 0.0466

MAP@10 0.2968 0.2211 0.2218 0.2993 0.4501

nDCG@10 0.1633 0.1285 0.1289 0.1656 0.1959

All

F1@5 0.0938 0.0795 0.0789 0.1007 0.1202

F1@10 0.1497 0.1276 0.1274 0.1611 0.2027

MRR@10 0.0361 0.0311 0.0308 0.0383 0.0445

MAP@10 0.2758 0.2279 0.2258 0.2945 0.3632

nDCG@10 0.1503 0.1267 0.1259 0.1616 0.1980

Table 4.15: Top-k recommendations evaluation metrics for groups of di↵erent

mainstreaminess and several recommendation methods. The best performing

methods are written in bold. KNN clearly outperforms all competing methods.

Interestingly, only TOP yields major di↵erences between LowMs and NormMs.
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Contrary to the results for rating prediction, KNN clearly outperforms all other

methods. Furthermore, a noteable di↵erence in recommendation quality for LowMs

and NormMs can only be observed for TOP. We partially attribute this to the

suboptimal experimental setup, since the random split in train- and testset is suited

for rating prediction and not for top-k recommendations. Time dependent splits

may be favored [Kowald et al., 2019] in this regard. Anyway, results indicate that

the recommendation of popular items does perform bad on users of unorthodox

taste.

4.4 Discussion

Our observations provide insights into the understudied group of users (i.e.,

LowMs) that prefer to listen to non-mainstream, non-popular music. In the

following, we discuss our key findings.

In a first step, we analyzed music listened by LowMs in order to identify

di↵erent music styles. Hence, dimensionality reduction and subsequent clustering

of tracks was performed. This posed several problems. As our empirical

investigation of dimensionality reduction and clustering approaches showed, most

state-of-the-art methods yield unsatisfying results. We attribute this to the

nontrivial notion of similarity of tracks in their acoustic features. To tackle this

problem, dimensionality reduction utilizing Riemannian Geometry and hierarchic,

density-based clustering were chosen as best-working methods. Eventually, we

found four clusters of tracks, each representing a distinct style of music in terms of

acoustic features. Furthermore, we explained each style by high-level genres and

thus, were able to concisely describe di↵erent music styles and back results in

[Mulder et al., 2007] solely with properties of music.

We then defined personas, which are intended to serve as exempar for users

that prefer a certain music style. The latter users are found via modelling the

influence of music styles in terms of listening events and subsequently, choosing the

most promising style resp. persona for each user. For this matter, we found that

artificially degrading the influence of large, dominant music styles is necessary.
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Several interesting observations can be made about the listening behavior of

these user groups. We showed that Festival and Heavy Listeners tend to focus on

their preferred music style, whereas Complex and Relax Listeners exhibit a higher

degree of omnivorousness and hence, tend to also explore music of other styles.

Furthermore, Complex and Relax Listeners listen to a broader body of distinct

artists and genres. Despite the observation that Heavy Listeners rather focus on

metal music, they surprisingly exhibit the highest level of disparity in terms of

music taste among all user groups. I.e., users classified as Heavy Listeners deviate

in their music taste from each other. Interestingly, Complex Listeners tend to

listen to the same set of tracks over and over again. It remains an open question,

whether this is induced by the scarcity of complex music or free choice.

Furthermore, we did not expect listeners of complex music to consume less music

per day than other types of users.

Additionally, we analyzed user groups based on their demography and culture.

Noteably, users of very specialized music styles, i.e., complex and relaxing music,

tend to be older than users preferring other styles of music. Furthermore, Relax

Listeners show a high level of future orientation. Heavy Listeners believe that

power is distributed unequally within society and also asses wealth and financial

stability as being important. Festival and Heavy Listeners perceive the presence of

corruption in their homecountry higher than Complex and Relax Listeners. Please

note that this negatively correlates with the average age of user groups.

Experiments were conducted in which we apply state-of-the-art

recommendation algorithms on users of low (LowMs) and normal (NormMs)

mainstreaminess. We provide significant evidence that LowMs is disadvantaged

with respect to recommendation quality. In this regard, we verified recent work in

[Schedl and Bauer, 2017]. This previous work is extended by evaluating

recommendations on the aforementioned user groups of di↵erent preferred music

style. By rigid statistical analyses, we present strong evidence that the

recommendation quality varies between user groups. Thus, we illustrate the need

for not only utilizing the notion of mainstreaminess, but also non-popular music

styles within LowMs, in order to improve recommendation quality for users of

unorthodox taste.



Chapter 5

Conclusions and Future Work

In this work, we conducted an in-depth analysis of users of unorthodox music

taste, often referred to as non-mainstream users. Based on acoustic properties of

tracks, four distinct music styles have been identified within music listened by the

aforementioned kind of users. To model users of di↵erent taste, we further split

non-mainstream users into four user groups, where each group is associated with

its favorite music style. We provide strong evidence that user groups show

di↵erences in terms of listening behavior and demographics. In particular, user

groups exhibit di↵erent levels of omnivorousness in regard to music styles.

Furthermore, observations hint a relationship between music taste of

non-mainstream users and culture. We verified the results of previous research, in

the sense that state-of-the-art recommendation algorithms significantly advantage

mainstream users over users of unorthodox taste. Additionally, it has been shown

that recommendation quality varies with respect to non-popular music styles.

Hence, we demonstrated that the problem of providing adequate recommendations

for non-mainstream users can only be solved by considering both, the notion of

mainstreaminess and music styles in the long tail.

5.1 Research Questions

In this chapter, we recap the research questions guiding the analyses conducted

within the course of this work and additionally outline our proposed anwers to the

research questions precisely depicted in the beginning of this thesis in section 1.1.
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How can non-mainstream music styles be identified and concisely described?

By conducting multiple experiments we empirically found that dimensionality

reduction via Uniform Manifold Approximation and Projection (UMAP) serves as

well-suited preprocessing step for a subsequent identification of similar tracks.

Collections of similar tracks were obtained by utilizing Hierarchical Density-Based

Spatial Clustering of Applications with Noise (HDBSCAN) as clustering method

applied on a selection of tracks’ acoustic features. The four identified track clusters

show obvious deviations in their low-level descriptions (i.e., acoustic features),

where each cluster represents a certain style of music. More interestingly,

investigating the genres annotated to each cluster’s tracks, we obtained a concise

and distinct description of music styles.

RQ2: Which user groups of non-mainstream music exist? We measured the

contribution of music styles towards users by exploiting the number of a user’s

listening events linked to tracks within each track cluster. By mitigating the

blurring induced by excessively large track clusters, we could assign each user to

exactly one music style. This music style serves as description or exemplar for the

preferred music taste of assigned users. Hence, we identified four user groups,

which we described as Complex, Festival, Relax and Metal Listeners.

RQ3: How does the music consumption of non-mainstream users deviate from

each other? Analyzing the distribution of listening events over music styles for

each user group sheds light on their taste profiles. Here, we identified user groups

that solely listen to music of their preferred style. Others exhibit a broader taste,

as they listen to multiple music styles. Furthermore, we analyzed user groups

regarding their heterogeneity in terms of listened genres and observed user groups

that have indeed much more diverse taste than others.

RQ4: How do user groups listening to non-mainstream music di↵er in terms of

culture and demography? Several interesting correlations could be found between

demography and music taste. For instance, Complex and Relax Listeners are in

general of higher age than Festival and Metal Listeners. Also, male-dominated user

groups were identified. Hofstede’s dimensions and attributes in the World Happiness

Report indicate that, e.g., Relax Listeners are future oriented and have the ability to
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make life choices by themselves. Interestingly, we provided evidence that Complex

Listeners despise unorthodox beliefs and ideas.

5.2 Self-Assessment

We identify several limitations of our work. First of all, this thesis solely relies

on the LFM-1b dataset. Furthermore, LFM-1b comprises only a sampled subset of

users. As we noted in chapter 3, the distribution of users is not equivalent to the real

world. In particular, this dataset is biased towards males, a few dominant countries

and users in their twenties. Secondly, only selecting users who’s number of listening

events is within some range, clearly excludes users that may exhibit unorthodox

taste, but deviate from others in terms of the amount of listening events. Thirdly,

many qualitative analyses lack to be backed by quantitative results and quantitative

findings are mostly based on very simple metrics. Hence, more precise statistical

analyses are needed. Finally, we draw a sample from NormMs in order to make

the computation of recommendations feasible. Even though the mainstreaminess

distribution of the sample is equivalent to the distribution of NormMs, personalized

recommendations may lack in validity.

5.3 Future Work

Our future research will be driven by the goal of developing more sophisticated

methods to identify di↵erent types of users. Since observations are partially based

on qualitative analyses and quantitative analyses often lack in significance, we

strive to consolidate findings. We furthermore aim to take a closer look at more

sophisticated algorithms such as Matrix Factorization, which is already widely

used for incorporating additional contextual information into the model Here, our

findings about user groups or knowledge about the track clusters could be

included, for the matter of providing fair recommendations. Furthermore,

considering the large body of research from the field of Music Psychology seems to

be a promising future direction.
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Reproducibility. This work is based on the LFM-1b1 and Cultural LFM-1b

dataset. To foster reproducibility and future research in the area of Fair Music

Recommendations, implementations are freely available in our GitHub repository2.
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based recommendation in social tagging systems. In Proceedings of the fourth

ACM conference on Recommender systems, pages 237–240. ACM.



BIBLIOGRAPHY 96

[Casey et al., 2008] Casey, M. A., Veltkamp, R., Goto, M., Leman, M., Rhodes,

C., and Slaney, M. (2008). Content-based music information retrieval: Current

directions and future challenges. Proceedings of the IEEE, 96(4):668–696.
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gain-based evaluation of ir techniques. ACM Transactions on Information Systems

(TOIS), 20(4):422–446.

[Jin et al., 2018] Jin, Y., Tintarev, N., and Verbert, K. (2018). E↵ects of

personal characteristics on music recommender systems with di↵erent levels of

controllability. In Proceedings of the 12th ACM Conference on Recommender

Systems, pages 13–21. ACM.

http://surpriselib.com


BIBLIOGRAPHY 98

[Jones, 1972] Jones, K. S. (1972). A statistical interpretation of term specificity and

its application in retrieval. Journal of Documentation, 28:11–21.

[Jones, 2007] Jones, M. L. (2007). Hofstede-culturally questionable?

[Karatzoglou et al., 2010] Karatzoglou, A., Amatriain, X., Baltrunas, L., and

Oliver, N. (2010). Multiverse recommendation: n-dimensional tensor factorization

for context-aware collaborative filtering. In Proceedings of the fourth ACM

conference on Recommender systems, pages 79–86. ACM.

[Kendall, 1948] Kendall, M. G. (1948). Rank correlation methods.

[Kim et al., 2016] Kim, D., Park, C., Oh, J., Lee, S., and Yu, H. (2016).

Convolutional matrix factorization for document context-aware recommendation.

In Proceedings of the 10th ACM Conference on Recommender Systems, pages

233–240. ACM.

[Koren et al., 2009] Koren, Y., Bell, R., and Volinsky, C. (2009). Matrix

factorization techniques for recommender systems. Computer, (8):30–37.

[Koren and Sill, 2013] Koren, Y. and Sill, J. (2013). Collaborative filtering on

ordinal user feedback. In Twenty-Third International Joint Conference on

Artificial Intelligence.

[Kowald et al., 2019] Kowald, D., Lex, E., and Schedl, M. (2019). Modeling artist

preferences of users with di↵erent music consumption patterns for fair music

recommendations. arXiv preprint arXiv:1907.09781.

[Kruskal, 1964] Kruskal, J. B. (1964). Nonmetric multidimensional scaling: a

numerical method. Psychometrika, 29(2):115–129.

[Lee et al., 2010] Lee, D., Park, S. E., Kahng, M., Lee, S., and Lee, S.-g.

(2010). Exploiting contextual information from event logs for personalized

recommendation. In Computer and Information Science 2010, pages 121–139.

Springer.

[Lee et al., 2018] Lee, J., Lee, K., Park, J., Park, J., and Nam, J. (2018).

Deep content-user embedding model for music recommendation. arXiv preprint

arXiv:1807.06786.



BIBLIOGRAPHY 99

[Levy and Sandler, 2008] Levy, M. and Sandler, M. (2008). Learning latent

semantic models for music from social tags. Journal of New Music Research,

37(2):137–150.

[Lops et al., 2011] Lops, P., De Gemmis, M., and Semeraro, G. (2011). Content-

based recommender systems: State of the art and trends. In Recommender

systems handbook, pages 73–105. Springer.

[Maaten and Hinton, 2008] Maaten, L. v. d. and Hinton, G. (2008). Visualizing

data using t-sne. Journal of machine learning research, 9(Nov):2579–2605.

[McInnes et al., 2017] McInnes, L., Healy, J., and Astels, S. (2017). hdbscan:

Hierarchical density based clustering. The Journal of Open Source Software, 2(11).

[McInnes et al., 2018] McInnes, L., Healy, J., and Melville, J. (2018). Umap:

Uniform manifold approximation and projection for dimension reduction. arXiv

preprint arXiv:1802.03426.

[Meehan et al., 2013] Meehan, K., Lunney, T., Curran, K., and McCaughey, A.

(2013). Context-aware intelligent recommendation system for tourism. In

2013 IEEE international conference on pervasive computing and communications

workshops (PERCOM workshops), pages 328–331. IEEE.

[Moore et al., 2012] Moore, J. L., Chen, S., Joachims, T., and Turnbull, D. (2012).

Learning to embed songs and tags for playlist prediction. In ISMIR, volume 12,

pages 349–354.

[Mulder et al., 2007] Mulder, J., Ter Bogt, T., Raaijmakers, Q., and Vollebergh,

W. (2007). Music taste groups and problem behavior. Journal of youth and

adolescence, 36(3):313–324.

[Murtagh and Legendre, 2014] Murtagh, F. and Legendre, P. (2014). Ward’s

hierarchical agglomerative clustering method: which algorithms implement ward’s

criterion? Journal of classification, 31(3):274–295.

[Ng et al., 2002] Ng, A. Y., Jordan, M. I., and Weiss, Y. (2002). On spectral

clustering: Analysis and an algorithm. In Advances in neural information

processing systems, pages 849–856.



BIBLIOGRAPHY 100

[Park et al., 2006] Park, H.-S., Yoo, J.-O., and Cho, S.-B. (2006). A context-aware

music recommendation system using fuzzy bayesian networks with utility theory.

In International conference on Fuzzy systems and knowledge discovery, pages 970–

979. Springer.

[Pichl et al., 2015] Pichl, M., Zangerle, E., and Specht, G. (2015). Towards a

context-aware music recommendation approach: What is hidden in the playlist

name? In 2015 IEEE International Conference on Data Mining Workshop

(ICDMW), pages 1360–1365. IEEE.

[Pohle et al., 2006] Pohle, T., Knees, P., Schedl, M., and Widmer, G. (2006).

Automatically adapting the structure of audio similarity spaces. In Proc. 1st

Workshop on Learning the Semantics of Audio Signals (LSAS), pages 66–75.
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