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Abstract

Although organic electronics are a multi-billion dollar market, from the viewpoint of basic research
there are still numerous unsolved fundamental questions associated to, e.g., operation and fabrication.
The unsolved questions we will raise and shine light on in this thesis are related to charge transport in
organic electronic devices. Considering a device, it is useful to distinguish two distinctly different forms
of charge transport. On the one hand, charge transport appears in the bulk of the organic semiconductor.
On the other hand, charge transport through a metal-organic semiconductor interface is required to get
charge carriers into and out of the device.

Well suited devices to investigate both aspects, i.e., charge transport in organic semiconductors and
through metal-organic semiconductor interfaces, are organic thin-film transistors. In organic thin-film
transistors suitable for this purpose, charge transport is limited to one type of charge carriers (holes or
electrons) within only one organic semiconducting material. The theoretical description of those organic
thin-film transistors relies on a correct description of the charge transport mechanisms, because other
mechanisms like recombination processes or exciton creation and dissociation, that are predominant
in organic light-emitting diodes or organic solar cells, are of negligible importance. Furthermore, two
of the most important quantities influencing charge transport through a certain material, the charge-
carrier density and the electric field, can be nearly independently tuned in organic thin-film transistors.
By means of measured data of organic thin-film transistors from two different teams, we developed
a method to test the validity of state-of-the-art transistor models. These tests attested the failure of
the investigated transistor models. This failure originates either from a wrong description of charge
transport within the organic thin-film transistor or from an inappropriate consideration of the influence
of charge accumulations within the device on the charge transport through the interface between organic
semiconductor and contacts. Those origins of the failure of the transistor models serve as a motivation
for the remaining topics covered in this thesis.

The central part of this thesis is the development of a new simulation technique for hopping transport,
which is an important theoretical concept to describe charge transport in disordered materials like organic
semiconductors. Our new technique is combining the benefits of the two currently established simulation
techniques, which are kinetic Monte Carlo and the Master equation approach. The basic idea is to map
the hopping rates onto energies in a Master equation-like approach. We name them correction energies,
because they correct the local charge-carrier density. This correction is required to consider field-induced
charge rearrangements. Within this framework, which we call correction energy concept, correlations
and interactions can be included more straight forwardly compared to the Master equation approach. At
the same time, the computational effort of a simulation is significantly decreased compared to kinetic
Monte Carlo simulations.

This correction energy concept is not just a useful numerical simulation technique. As a further
benefit, the correction energies themselves provide valuable insight into the theoretical background gov-
erning charge transport. We demonstrate the applicability of the correction energy concept to improve
the theoretical understanding of charge transport in the context of the field and charge-carrier-density
dependence of the bulk mobility in an organic semiconductor. We explain the reason for the evolution of
the charge-carrier mobility with respect to the electric field and the charge-carrier density. An estimate
for a transition field, separating different charge transport regimes, provides a first step towards improved
analytical charge transport models.



In the last part of this thesis, we look into charge transport through a metal-organic semiconductor
interface. The conceptual ideas, that were developed during the derivation of the correction energy
concept, are used to improve the description of the injection and extraction rates for charge carriers
hopping from the metal contact to the organic semiconductor and vice versa. Commonly, the injection
and extraction rates are determined by an energy level of the metal contact from where injection and
to where extraction happens. Our improved description of the rates additionally enables to consider a
certain value for the Fermi level of the metal contact, which sets the occupation probability of the energy
level of the metal contact. Those novel injection and extraction rates are fed into a kinetic Monte Carlo
simulation of a metal-organic semiconductor interface to investigate the transition from a bulk-limited
regime to a contact-limited regime. From the simulations, we propose a rough estimate for the transition
work function at which the bulk-limited regime turns into the contact-limited regime. We show that this
simple estimate is in line with experimental data.



Kurzfassung

Die organische Halbleiterindustrie ist mittlerweile ein Multimilliarden-Dollar-Markt. Dennoch sind
zahlreiche grundlegende Fragestellungen, bespielsweise bezüglich Arbeitsweise und Herstellung, un-
gelöst. Daher befassen wir uns in der vorliegenden Doktorarbeit mit ungelösten Fragestellungen aus
dem Bereich des Ladungstransports in organischen Halbleiterbauelementen. In einem Bauelement un-
terscheidet man zwei Arten von Ladungstransport. Einerseits tritt Ladungstransport innerhalb des or-
ganischen Halbleiters auf und andererseits ist Ladungstransport durch eine Grenzfläche zwischen einem
Metall und dem organischem Halbleiter nötig, um Ladungen in das Bauelement hinein und wieder heraus
zu bekommen.

Um Ladungstransport in organischen Halbleitermaterialien und durch die Grenzfläche zwischen
einem Metall und einem organischem Halbleiter zu untersuchen, bieten sich organische Dünnschicht-
transistoren an. Geeignete Transistoren beschränken sich auf eine Art von Ladungsträgern (Elektronen
oder Löcher) und beinhalten nur ein organisches Halbleitermaterial. Um einen organischen Dünnschicht-
transistor theoretisch zu beschreiben, ist damit lediglich das passende Verständnis für die Vorgänge nötig,
die den Ladungstransport bestimmen. Weitere Vorgänge, die in organischen Leuchtdioden oder Solar-
zellen beobachtet werden, wie Rekombinationsprozesse oder Exzitonenerzeugung und -aufspaltung,
spielen im Transistor eine sehr untergeordnete Rolle. Außerdem lassen sich in einem Dünnschichttran-
sistor die Ladungsträgerdichte und die elektrische Feldstärke, zwei der wichtigsten Einflussgrößen auf
die Mobilität eines gegebenen Materials, nahezu unabhängig voneinander variieren. Anhand gemessener
Dünnschichttransistordaten von zwei verschiedenen Arbeitsgruppen haben wir ein Hilfsmittel entwick-
elt, um etablierte Modelle zur Beschreibung der Arbeitsweise organischer Transistoren zu testen. Diese
Tests zeigten ein klares Scheitern aller getesteten Transistormodelle. Grund dafür ist entweder eine
falsche Beschreibung des Ladungstransports im Bauelement oder eine fehlende Berücksichtigung des
Einflusses von Ladungsanhäufungen im Bauelement auf den Ladungstransport durch den Kontakt. Die
Gründe für das Scheitern der theoretischen Beschreibung des organischen Dünnschichttransistors dienen
als Motivation für die weiteren Themen dieser Doktorarbeit.

Die wesentlichste Neuerung dieser Doktorarbeit befasst sich mit der Entwicklung einer neuen Sim-
ulationsmethode für das sogenannte Konzept des Hopping Transport, welcher Ladungstransport in un-
geordneten Materialien wie organischen Halbleitern theoretisch beschreibt. Dabei kombiniert unsere
neue Simulationsmethode die Vorteile der beiden etablierten Methoden: kinetische Monte Carlo Simu-
lationen und die Lösung der Mastergleichung. Grundgedanke der Methode ist, dass wir die Hüpfraten
mittels eines Ansatzes ähnlich der Mastergleichung in Energien umwandeln. Diese Energien nennen wir
Korrekturenergien, da sie lokal die Ladungsträgerdichte korregieren. Diese Korrektur ist notwendig um
die Ladungsumverteilung aufgrund eines elektrischen Feldes richtig zu erfassen. Diese neue Methode
ermöglicht es, zum einen, Korrelationen und Wechselwirkungen einfacher zu berücksichtigen als mittels
Mastergleichungsverfahren und, zum anderen, Simulationen mit wesentlich geringerem numerischen
Aufwand als bei kinetischen Monte Carlo Simulationen durchzuführen.

Das Konzept der Korrekturenergien liefert, zusätzlich zur Simulationsmethode, auch einen wichtigen
Einblick in die theoretischen Hintergründe, welche dem Ladungstransport in organischen Halbleitern
zugrunde liegen. Wir zeigen die Nützlichkeit der Korrekturenergien, indem wir das Zustandekommen
der Abhängigkeit der Mobilität im Inneren des organischen Halbleiters von der Ladungsträgerdichte
und vom elektrischen Feld beleuchten. Die Hintergründe für diese Abhängigkeit werden geklärt und wir



erhalten zusätzlich eine Abschätzung für eine Übergangsfeldstärke, die unterschiedliche Transportregime
separiert. Diese Übergangsfeldstärke ist ein erster Schritt in Richtung eines verbesserten Modells für
Ladungstransport.

Zuletzt befassen wir uns mit dem Ladungstransport durch eine Grenzfläche zwischen einem Metall-
kontakt und einem organischen Halbleiter. Die Ableitungen im Zusammenhang mit den Korrektur-
energien stellen sich auch hier als nützlich heraus, da durch ähnliche Ableitungen eine verbesserte
Beschreibung der Raten für den Hüpfprozess von Ladungsträgern aus dem Metall in den organischen
Halbleiter - und umgekehrt - erhalten wird. Üblicher Weise wird ein Metallkontakt durch ein diskretes
Energieniveau beschrieben, von welchem Ladungsträger in den Halbleiter hüpfen und zu welchem sie
zurück in den Metallkontakt hüpfen. Wir erweitern diese Beschreibung indem wir die Wahl eines
konkreten Wertes für das Fermi-Niveau des Metallkontaktes ermöglichen. Damit wird die Besetzungs-
wahrscheinlichkeit des diskreten Energieniveaus des Metallkontakts festgelegt. Mit der neuen Kon-
taktbeschreibung führen wir kinetische Monte Carlo Simulationen der Region nahe der Grenzfläche
zwischen einem Metallkontakt und einem organischen Halbleiter durch, um den Übergang von raum-
ladungslimitiertem zu injektionslimitiertem Strom zu verstehen. Dank der Simulationen gelingt uns eine
grobe analytische Abschätzung der Austrittsarbeit, bei der der Übergang zwischen den Regimen statt-
findet. Diese Abschätzung können wir mit experimentellen Ergebnissen in Einklang bringen.



Preface: Structure of this Work

This thesis starts with a short introduction to the topic of charge transport in organic semiconductor
devices in Chapter 1 and ends with a summary of all discussed topics and an outlook of the challenges
arising from the thesis in Chapter 6. The main text of this thesis is split in three parts: (i), the develop-
ment of an approach to test theoretical models for organic thin-film transistors via measurements, (ii),
the introduction of a novel theoretical concept to simulate and understand charge transport in organic
semiconductors, and, (iii), an explanation for the transition from the contact-limited to the bulk-limited
regime observed for charge transport through a metal-organic semiconductor interface.

The first part, covered in Chapter 2, is dealing with the development of a model testing algorithm to
examine the validity of a suggested transistor model for organic thin-film transistors. After an introduc-
tion to organic thin-film transistors, state-of-the-art transistor models are introduced and their rationale
is discussed in Chapter 2.1. In Chapter 2.2, our approach to fit the measured data and extract the param-
eters of the tested transistor model is described. With the ability to reliably extract parameters for tested
transistor models from measured data, we introduce our model testing approach in Chapter 2.3. From the
model testing approach, we obtain insight into the necessary improvement of transistor models, which
will be discussed in Chapter 2.4. This evaluation of the tested transistor models in Chapter 2.4 serves as
a motivation of the remaining two parts of this thesis.

The second part spans two chapters, namely Chapter 3 and Chapter 4. In Chapter 3, we introduce
a new simulation technique for hopping transport providing a competitive alternative to kinetic Monte
Carlo and Master equation approaches. We demonstrate this new simulation technique, which we call
correction energy concept, for the example of charge transport in the bulk of an organic semiconductor.
In Chapter 3.1, we explain, how to translate the hopping rates for charge carriers, that hop through the
bulk of an organic semiconductor, to the so-called correction energies, which enter the site-occupation
probabilities of the charge carriers. To quantify the modification of the site occupation probabilities by
the correction energies, the next step is to consider the correct occupation statistics for this system, which
is discussed in Chapter 3.2. The numerical implementation of this correction energy concept is described
in detail in Chapter 3.3 and in Chapter 3.4, the simulation results of the correction energy concept are
compared to very accurate results from kinetic Monte Carlo simulations. The second half of this part,
discussed in Chapter 4, makes use of the insight gained from the correction energies to improve the
understanding of charge transport in the bulk of an organic semiconductor. It starts by elucidating the
nature of the correction energies in Chapter 4.1, that opens a novel view on charge transport in the bulk,
at least to our knowledge. This view suggests to think of charge transport in terms of basins and barriers
through which charge carriers are flowing and is discussed in Chapter 4.2. With this view, the evolution
of the bulk mobility with respect to the applied electric field and the charge-carrier density is discussed
in Chapter 4.3.

The third part of this thesis, found in Chapter 5, investigates charge transport through a metal-organic
semiconductor interface by means of kinetic Monte Carlo simulations. In Chapter 5.1, the model system
we use to describe charge transport through the interface is introduced, followed by a discussion of
the simulation results in Chapter 5.2, suggesting a bulk-limited and a contact-limited regime. With
those regimes, we derive a rough estimate of the current density through the interface and the transition
barrier between the bulk-limited and contact-limited regimes in chapter 5.3. Chapter 5.4 contains a
critical discussion about the applicability of our model system of the interface and Chapter 5.5 provides



a plausibility test of our model system by means of experimental data.

Parts of Chapter 2 already have been published. In

A. Petritz, M. Krammer, E. Sauter, M. Gärtner, G. Nascimbeni, B. Schrode, A. Fian, H. Gold, A. Co-
jocaru, E. KarnerPetritz, R. Resel, A. Terfort, E. Zojer, M. Zharnikov, K. Zojer, and B. Stadlober, “Em-
bedded Dipole Self-Assembled Monolayers for Contact Resistance Tuning in p-Type and n-Type Or-
ganic Thin Film Transistors and Flexible Electronic Circuits,” Advanced Functional Materials, vol. 28,
p. 1804462, Nov. 2018,

I performed the fitting to extract the ohmic and non-ohmic contact resistances as well as the equiva-
lence mobility, which is partly covered in Chapter 2.2. I was supervised by Karin Zojer. The transistors
were fabricated, measured and characterised by Andreas Petritz, Alexander Fian, Herbert Gold, Andreea
Cojocaru, Esther KarnerPetritz, and Barbara Stadlober. The self-assembled monolayers were charac-
terised by Eric Sauter, Alexander Fian, and Michael Zharnikov and simulated by Giulia Nascimbeni, and
Egbert Zojer. The molecules for the self-assembled monolayers were synthesised by Michael Gärtner,
and Andreas Terfort. The structure of the organic semiconductor was characterised by Benedikt Schrode,
and Roland Resel.

The bottom line of Chapter 2 was published in

M. Krammer, J. W. Borchert, A. Petritz, E. Karner-Petritz, G. Schider, B. Stadlober, H. Klauk, and
K. Zojer, “Critical Evaluation of Organic Thin-Film Transistor Models,” Crystals, vol. 9, p. 85, Feb.
2019,

in which I developed the method, did all the data analysis and wrote the manuscript. Karin Zojer
supervised me. James W. Borchert, and Hagen Klauk provided the measurements for the DNTT tran-
sistors and Andreas Petritz, Esther Karner-Petritz, Gerburg Schider, and Barbara Stadlober provided the
measurements for the remaining transistors.

Further publications related to this thesis are

M. Krammer and K. Zojer, “Modelling Organic Devices - Foundation, Implementation, and Merit of the
Kinetic Monte Carlo Method,” in World Scientific Reference of Hybrid Materials, World Scientific Series
in Nanoscience and Nanotechnology, pp. 135–185, World Scientific, Mar. 2019. ISBN: 9789813270534,

in which my supervisor, Karin Zojer, and me described the kinetic Monte Carlo simulation approach
that we are using, and

M. L. Tietze, J. Benduhn, P. Pahner, B. Nell, M. Schwarze, H. Kleemann, M. Krammer, K. Zojer, K. Van-
dewal, and K. Leo, “Elementary steps in electrical doping of organic semiconductors,” Nature Commu-
nications, vol. 9, p. 1182, Mar. 2018,

in which Karin Zojer and I assisted Bernhard Nell to do the kinetic Monte Carlo simulations and
the discussion related to the simulations. Most of this work was accomplished by Max L. Tietze, who
performed the UPS measurements, developed the doping model and wrote the manuscript. The ab-
sorption/transmission measurements were done by Max L. Tietze, and Johannes Benduhn. Impedance
spectroscopy and Mott-Schottky analysis were done by Max L. Tietze, Paul Pahner, and Hans Kleemann.
Some temperature-dependent UPS measurements were performed by Martin Schwarze. Koen Vandewal,
and Karl Leo functioned as supervisors and contributed with fruitful discussions.
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Markus Krammer Doctoral Thesis

1 Introduction

Organic semiconductors (OSCs) have evolved into an important class of materials for industry.
The organic electronics industry is nowadays a multi-billion dollar market with the potential to fur-
ther grow. [5] This growth is particularly promoted by the splendid match of key properties of OSCs
and our modern lifestyle. The lightweight and flexible nature of OSCs enables a broad range of future
applications, especially in the financially strong branch of consumer electronics. The biocompatibility
of many OSCs might also trigger medical applications, the easy tunability of properties by changing
the chemical composition makes OSCs ideal candidates for sensing applications and the rather simple
and cheap production, compared to inorganic semiconductors, could open up new perspectives in energy
harvesting.

This big potential of OSCs comes along with big challenges. The research on OSCs lags some
decades behind their inorganic counterpart, resulting in problems that have already been solved for in-
organic semiconductors. Especially in terms of mobility and switching speed, OSCs will, most likely,
never be able to compete with inorganic semiconductors. However, being competitive with respect to
mobility and switching speed is commonly not required because the fields of application of organic and
inorganic semiconductors is mostly complementary. Nevertheless, many future applications require at
least an improvement of the properties of OSCs and their implementation in OSC devices.

Improving properties of OSCs and their implementation in devices is a very demanding task due to
the numerous possibilities provided by the world of organic molecules. In fact, one of the most important
strengths, namely that the properties of the OSCs can be deliberately tuned by designing molecules or
substituting parts of molecules, poses, at the same time, one of the biggest challenges. This challenge,
to find the most suitable material for a certain purpose out of millions and billions of possibilities, can
be facilitated by a solid understanding of the ongoing processes in the OSC device. If we know, how
particular properties of the OSC change the device performance, a specific design of materials becomes
possible.

The topic for which we want to improve the understanding in this thesis is charge transport in OSC
devices. From an experimental point of view, the organic thin-film transistor (OTFT) is a well suited de-
vice to develop a basic understanding of charge transport. The OTFT my still be viewed as a rather aca-
demic device, especially compared to the organic light-emitting diode (OLED), which holds the largest
share of industrial applications. Future applications of OTFTs as display drivers, in sensors or in inte-
grated circuits that exclusively consist of OSC devices might raise the importance of OTFTs for industry.

Our interest in OTFTs within this thesis is purely academic. In Chapter 2, we developed a method to
test theoretical transistor models, including state-of-the-art charge-transport models, via measured data.
This means we can verify or falsify theoretical assumptions of charge transport with the help of experi-
mentally measured transistor data and, hence, utilise the OTFT to look into charge transport. Measured
data sets from different types of OTFTs performed by the group of Hagen Klauk in Stuttgart1 and Bar-
bara Stadlober in Weiz2 reveal that there is an inconsistency in our current view on charge transport in
OTFTs. The method further provides insight into possible problems associated to our current view on
charge transport. The two problems obtained by our method are associated to, (i), the particular depen-
dence of the charge-carrier mobility in the OTFT on the charge-carrier density and the electric field or,

1Max Planck Institute for Solid State Research, Heisenbergstraße 1, 70569 Stuttgart, Germany; H.Klauk@fkf.mpg.de
2Joanneum Research Materials, Institute for Surface Technologies and Photonics, Franz-Pichler-Straße 30, 8160 Weiz,

Austria; barbara.stadlober@joanneum.at
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(ii), the influence of charge accumulations within the device on the region close to the interface between
metal contact and organic semiconductor. This insight, and the two problems associated to it, serve as
motivation for the remaining thesis.

The first problem is associated to a lack of understanding of charge transport within the OSC. To
improve this understanding, we develop a novel simulation technique for hopping transport in Chapter 3,
which is a formal link between the two established simulation techniques, kinetic Monte Carlo (KMC)
and master equation (ME). This novel simulation technique, which we call correction energy concept
(CEC), combines the benefits of the two methods with reduced computational cost compared to KMC and
reduced methodological error compared to ME. The correction energy concept is not only a simulation
technique, it further provides physical insight into charge transport mechanisms by casting the effect
of an externally applied electric field to so-called correction energies that modify the energy landscape
through which the charge carriers are travelling in a characteristic way. In Chapter 4, we demonstrate the
usage of the such gained physical insight to understand the evolution of the bulk mobility with respect to
the applied electric field strength and the charge-carrier density.

The second problem, detected during our investigation of measurements of OTFTs, comes from the
long-ranging nature of the Coulomb potential causing a non-negligible effect of charge accumulations in
the device on the contact region. In Chapter 5, the contact region of a metal-OSC interface is simulated
with kinetic Monte Carlo. We develop a new description of the hopping rates associated with the contact
to properly account for its occupation. The simulations are performed to identify the reason behind the
transition from a contact-limited regime to a bulk-limited regime related to the current from the metal
contact to the OSC. From the simulation results, a strongly simplifying model is suggested to receive
the current density through the interface. This model describes the qualitative behaviour of the interface
quite well and, furthermore, agrees semi-quantitatively with experimental data measured by the group of
Dieter Neher in Potsdam3.

A major outcome of this thesis are newly developed methods. We developed, (i), a method to test
theoretical transistor models with the help of experimentally measured data from OTFTs, (ii), a novel
technique to simulate hopping transport, derived on the example of charge transport in the bulk of OSCs,
and, (iii), a refinement of the description of a metal contact exchanging charge carriers with an OSC.
All three new methods are described in detail to enable the interested reader to implement, advance and
further refine the methods.

We hope that this thesis is appealing for a broad audience, be them methodologically inclined
(method reader) or, rather, interested in the insights generated by the methods (outcome reader). For
each type of reader, some parts are more relevant than others and some parts might be skipped en-
tirely. Below, we provide a recommendation regarding the conduciveness of certain chapters for both,
the method reader and the outcome reader, .

In Chapter 2 ’Organic Thin-Film Transistor’, the method reader is well advised to have a close look
at Chapter 2.1.2 ’Derivation of the Transistor Models’, Chapter 2.1.3 ’Numerical Implementation’ and
Chapter 2.2 ’Fitting Procedure’. The method reader might also go through the remaining chapters to be
able to analyse and interpret the outcomes of their own investigation of OTFT data with our method, in
particular Chapter 2.1.4 ’Influence of Parameters on Output Characteristics’ in combination with Chap-
ter 2.4 ’Model Evaluation’. In contrast, the outcome reader can mainly focus on Chapter 2.3 ’Model

3University of Potsdam, Soft Matter Physics, Karl-Liebknecht-Straße 24-25, 14476 Potsdam-Golm, Germany; neher@uni-
potsdam.de
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Testing’ and Chapter 2.4 ’Model Evaluation’. Additionally, the outcome reader is recommended to take
a look at Chapter 2.1.4 ’Influence of Parameters on Output Characteristics’ to fully appreciate the inter-
pretations in Chapter 2.4 ’Model Evaluation’.

The whole Chapter 3 ’Correction Energy Concept’ is rather dedicated to the method reader, whereas
Chapter 4 ’Charge Transport in Bulk’ is mainly of interest for the outcome reader. To develop a better
understanding for the correction energy concept, a look at Chapter 4 ’Charge Transport in Bulk’ might
also be beneficial for the method reader.

In Chapter 5 ’Metal-Organic Semiconductor Interface’, the method reader can mainly focus on Chap-
ter 5.1 ’Model System for the Interface’. Chapter 5.2 ’Bulk- and Contact-Limited Regime’, Chapter 5.3
’Estimation of the Current Density’ and Chapter 5.4 ’Interpretability of the Model System’ might be
of interest for both, the method and the outcome reader. Chapter 5.5 ’Comparison with Experiment’ is
devoted to the outcome reader.
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2 Organic Thin-Film Transistor

In comparison to organic light-emitting diodes (OLEDs) and organic solar cells, which are devices
that already arrived at the industry with a broad range of commercial applications, the focus of the organic
thin-film transistor (OTFT) still lies in academic research. This might change in the next couple of years
due to advances enabling commercial applications. [6]

One of the most important academic applications of OTFTs is for testing material parameters with
respect to charge transport. [7] Due to the ability to nearly independently tune the charge-carrier density
and the electric field within the semiconducting layers of the OTFT, the dependence of the mobility on
those two quantities can be investigated for the material of interest. Especially in organic semiconductors
(OSCs), the mobility shows a pronounced dependence on the charge-carrier density and the electric field.
The existence of this dependence is commonly known, from an experimental as well as from a theoretical
point of view. Nevertheless, the precise appearance of this dependence is still debated. [8–17]

A crucial factor to be able to investigate charge transport properties of materials properly is, that the
working principle of the OTFT is well understood. This includes, (i), that non-idealities at the interfaces
of the OSC and the dielectric, as well as at the interface of the OSC and the contacts, have to be kept to
a minimum experimentally and, (ii), that the theoretical description of the device has to be as accurate as
possible. Bad devices and/or wrong transistor models lead to untrustworthy results. [18–20]

The significant improvement of the manufacturing process of OTFTs providing a nicely defined di-
electric and nearly ideal contacts, [1,20–24] enables a decent test of theoretical charge transport models.
A possible procedure to perform such charge transport model tests is given in this chapter. We start with
introducing commonly used transistor models in Chapter 2.1. In Chapter 2.2, we describe how to prop-
erly fit those transistor models to measured transistor data. This fitting procedure is the first step of our
model testing approach. The second step of this model testing approach and its application to measured
transistor data is found in Chapter 2.3. Our model testing approach can provide hints to find out what is
wrong with a transistor model, which is discussed in Chapter 2.4.

2.1 Transistor Models

An adequate transistor model is the key to, (i), properly extract material parameters, like the mobility,
from measured data, (ii), understand the behaviour of an OTFT correctly and, moreover, (iii), gain insight
into charge transport mechanisms in OSCs. If the transistor model is wrong, we might learn nothing or
imply even wrong conclusions from the measured data used to extract the material parameters. With our
new approach to test transistor models, we can easily distinguish correct from false transistor models.
To be able to explain the failure of a transistor model, we have to know the behaviour of this transistor
model very well. Hence, we will introduce the basics of thin-film transistors in Chapter 2.1.1 before
deriving the utilised transistor models in Chapter 2.1.2 and describe their numerical implementation in
Chapter 2.1.3 followed by a visualisation of the impact of parameters on the behaviour of the transistor
in Chapter 2.1.4.

2.1.1 Basics of Thin-Film Transistors

Our explanation of the working principle of a thin-film transistor (also called field-effect transistor) is
inspired by the subtle explanation in a review by Zaumseil and Sirringhaus. [25] A transistor is a device
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Figure 2.1: The upper part shows a schematic drawing of an organic thin-film transistor with the three
contacts gate, drain and source. Between drain and source, the organic semiconductor (OSC) is found.
The gate is separated from the remaining device by an insulating dielectric. The lower part illustrates
the working principle of an electron conducting (n-type) organic thin-film transistor with exemplary
electron distributions for different regimes indicated in dark grey at the left side and a typical output
characteristics (drain current ID as a function of the applied drain-source voltage VDS for different values
of the gate-source voltage VGS) of an ideal OTFT with constant mobility at the right side. When no
drain-source voltage is applied VDS = 0 V, the device acts as a plate capacitor. If we apply a gate-
source voltage VGS > 0 V, electrons are accumulated in the OSC at the interface to the dielectric. This
electron accumulation region is called the channel. Applying a low drain-source voltage VDS ≪ VGS,
the accumulated electrons in the channel start to move and the drain current ID increases linear with
VDS. In this so-called linear regime, the electron density decreases from source to drain. If the drain-
source voltage is large than the gate-source voltage VDS > VGS, the gate voltage is not strong enough
to accumulate electrons close to the drain contact. As a consequence, a depletion region forms from
the drain contact to a certain position in the channel which is called pinch off. Due to the formation
of this depletion region, the drain current saturates to a constant value entering the saturation regime.
The dashed grey line marks the equality of drain-source voltage and gate-source voltage VDS = VGS,
separating linear and saturation regime.

with three contacts: a gate, a drain and a source, shown in the upper part of Figure 2.1. Between the drain
and source contact, the OSC is placed and the gate contact is separated from the OSC by an insulating
dielectric.

The lower part of Figure 2.1 demonstrates the working principle of an OTFT on the example of
an n-type OTFT. The term n-type specifies that the majority charge carriers in the device are electrons,
whereas p-type would refer to holes. When applying a voltage between gate an source, VGS, the device
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acts like a plate capacitor and electrons accumulate in the OSC at the interface to the dielectric. This
region where the electrons are accumulated is called the channel. When applying an additional voltage
between drain and source, VDS, the accumulated electrons feel a force and start to move, creating a
current between drain and source. This so-called drain current ID depends on the electron density in
the channel, mostly determined by the gate-source voltage VGS, and the electric field between drain and
source, mostly determined by the drain-source voltage VDS.

In the lower part of Figure 2.1, a typical output characteristics of an ideal thin-film transistor with
constant mobility is shown on the right side and the electron distribution in the channel for different
operation regimes is indicated in dark grey on the left side. The term output characteristics refers to the
plot of the drain current ID as a function of the applied drain-source voltage VDS for different values of
the gate-source voltage VGS.

In the so-called linear regime, the drain-source voltage is lower than the gate-source voltage VDS <

VGS. If VDS ≪ VGS, the drain current ID increases linear with the applied drain-source voltage VDS. In
this linear regime, the electron density is decreasing when going from source to drain. As soon as we
reach a drain-source voltage that exceeds the gate-source voltage VDS >VGS, the gate voltage is no longer
sufficient to accumulate electrons at the drain contact (only electrons can be accumulated in an n-type
OTFT, discussed in Chapter 2.1.2). Hence, a depletion region forms at the drain contact that reaches
into the channel up to a certain position called pinch off. This depletion causes the drain current ID to
saturate, entering the saturation regime. The separation of the linear regime and the saturation regime at
VDS = VGS is indicated as a grey dashed line in the output characteristics shown in Figure 2.1.

2.1.2 Derivation of the Transistor Models

The lumped element model for the most complex transistor model that we tested is shown in Fig-
ure 2.2. All transistor models, that we tested, are based on this lumped element model, sometimes omit-
ting certain aspects. We derive this established transistor model in the following to realise the associated
assumptions and approximations.

The experimentally accessible contacts are labelled G for gate, D for drain and S for source in Fig-
ure 2.2. The experimentally applied voltages are the gate-source voltage VGS between gate and source
and the drain-source voltage VDS between drain and source. The reaction of the transistor to those ap-
plied voltages is the drain current ID flowing from drain to source. In this transistor model, we assume
a perfectly insulating gate dielectric, resulting in a vanishing gate current IG = 0 A. The core of the
transistor model is the ideal thin-film transistor in the gradual channel approximation [26, 27], with a
charge-carrier-density- and field-dependent mobility, situated between the ideal gate G′, drain D′ and
source S′ contacts. Ideal means that all contact effects, i.e., at the interface between dielectric and OSC
as well as contacts and OSC, are not included. Those contact effects are considered in the lumped ele-
ment model by introducing external elements in Figure 2.2. The threshold voltage VT between G and G′

accounts for non-idealities at the dielectric-OSC interface like a dipole layer, doping or traps causing a
shift of the gate potential. [28–31] A mismatch of the Fermi level of the contacts and the charge transport
level in the OSC might shift the gate potential as well. The contact resistances RD at the drain side and RS

at the source side account for ohmic losses at the contacts, but can also include non-ohmic contributions.
The source is defined as the contact at which the charge carriers are injected. During injection, a mis-
match of the energy levels in the contact and the OSC can cause an additional non-ohmic contribution
to the contact losses, which is not present at the drain side. This asymmetry regarding the contacts is
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Figure 2.2: Lumped element model of the most complex transistor model that we tested. The experi-
mentally accessible contacts are labelled G for gate, D for drain and S for source with the corresponding
experimentally adjusted voltages VGS for the gate-source voltage and VDS for the drain-source voltage.
The measurable outcome of applying VGS and VDS is the drain current ID. Between the contacts G′, D′

and S′, we place an ideal thin-film transistor in the gradual channel approximation [26,27] with a charge-
carrier-density- and field-dependent mobility. Between ideal and accessible gate contact G′ and G, the
threshold voltage VT accounts for dipoles or traps at the dielectric-OSC interface and other non-idealities
shifting the gate potential. The contact resistances RD at the drain side and RS at the source side can
contain non-ohmic contributions and the Schottky-diode at the source side, causing a voltage drop VSh,
accounts for injection barriers at the source side as the contact at which charge injection occurs.

captured by a Schottky-diode at the source side creating a voltage loss VSh.
OTFTs can be divided in p-type and n-type transistors. Unlike inorganic transistors, this division is

not related with doping. Due to the typically large band gap in OSCs, the position of the Fermi level of
the contacts with respect to the highest occupied molecular orbital (HOMO) and the lowest unoccupied
molecular orbital (LUMO) of the OSC decides, whether holes or electrons are injected more efficiently
and act, hence, as the majority charge carriers, resulting in p-type or n-type devices, respectively. If the
Fermi level is close to the HOMO, hole transport is predominant creating a p-type transistor and if the
Fermi level is close to the LUMO, electron transport is predominant creating an n-type transistor. A
decent match of the energy levels for one type of charge carriers implies a substantial mismatch for the
other type of charge carriers caused by the typically large band gap of OSCs. This match and mismatch
results in the fact, that usually only one type of charge carriers can be accumulated in the channel,
because injection can hardly be achieved for the minority charge carriers associated to the mismatch of
the energy levels. For both types of transistors with respect to the majority charge carriers, the source
is always defined as the injecting contact, injecting holes for p-type transistors and electrons for n-type
transistors. As a consequence, the sign of the applied voltages VGS and VDS as well as the measured
drain current ID is negative for p-type transistors and positive for n-type transistors. The transistor model
is valid for both transistor types with only the sign being changed. To describe both transistor types at
once, we define a variable q that holds the charge sign with q = 1 V−1 for hole transport (p-type) and
q =−1 V−1 for electron transport (n-type). The unit of q is required to be able to define reduced voltages
υ = qV . Those reduced voltages υ possess no unit, which will be important when inserting reduced
voltages consistently in exponential functions. With those definitions, the reduced voltages υGS = qVGS,
υDS = qVDS and the reduced drain current qID are negative under normal operation conditions (negative
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voltages and current for p-type transistor and negative q for n-type transistor).
The mobility µ in the OSC at a position x in the channel is assumed to be charge-carrier-density and

field dependent in the form

µ(x) = µ0 exp

(
κ
√

L0

L
υS′D′

)
Θ(υS′D′)(υCh(x)−υG′)γ Θ(υCh(x)−υG′) (2.1)

with the mobility prefactor µ0, the exponent of the field sensitivity κ , the constant length scale L0 = 1 µm
enabling a reduced length in the exponent, the channel length L, the reduced channel potential υCh(x) at
the requested position x in the channel, the exponent of the sensitivity with respect to the charge-carrier
density γ and the Heaviside-step-function Θ(υ) = 1 for υ ≥ 0 and Θ(υ) = 0 for υ < 0. When the
mobility is not depending on the charge-carrier density and the electric field, the two exponents are zero
(κ = 0 and γ = 0) and the mobility prefactor µ0 gives the mobility value µ = µ0.

The second term in Equation (2.1) is a strongly simplified form of a Poole-Frenkel field dependence
of the mobility. [32, 33] The reduced electric field f ≈ υS′D′

L L0 is approximated via dividing the reduced
source-drain voltage υS′D′ = qVS′D′ by the channel length L and multiplying it with a constant length scale
L0 = 1 µm to receive a dimensionless reduced field f . With this reduced field, the exponential square
root behaviour of the Poole-Frenkel field dependence exp(κ

√
f ) is approximated. The Heaviside-step-

function Θ(υS′D′) corresponds to the definition of source as the injecting contact, requiring a positive
reduced voltage υS′D′ . Furthermore, it prevents the appearance of complex numbers.

The third term in Equation (2.1) represents an approximation for the charge-carrier-density depen-
dence of the mobility. The reduced voltage υCh(x)−υG′ between the ideal gate contact and the channel at
a position x is approximately proportional to the accumulated charge in the channel via the gate capacity
of the dielectric CG (gate capacitance per unit area) due to its plate-capacitor behaviour. An exponential
behaviour of the mobility with respect to the charge-carrier density is suggested by, (i), variable-range
hopping in combination with percolation theory [34] and, (ii), multiple trapping and release [35]. The
Heaviside-step-function takes into account, that only one type of charge carriers can be accumulated in
the channel and prevents the appearance of complex numbers.

With this mobility model, Equation (2.1), we can derive an implicit system of equations to determine
the drain current ID for given values of the drain-source voltage VDS and the gate-source voltage VGS.
This derivation makes use of the gradual channel approximation [26, 27]. This approximation relies on
the assumption that the electric field along the channel (from drain to source) varies much less than the
field across the channel (from gate to the OSC). Typically, this assumption is valid if the channel length
L is much larger than the thickness of the gate dielectric. Within the gradual channel approximation,
the charge per unit area eρCh(x) at a position x in the channel is determined by the gate capacitance per
unit area CG and the reduced voltage υCh(x)−υG′ on both sides of the dielectric via the charge-voltage
relation of a plate capacitor.

eρCh(x) =
CG

|q|
(υCh(x)−υG′)Θ(υCh(x)−υG′) (2.2)

The Heaviside-step-function accounts for the fact that only one type of charge carriers can be accumu-
lated in the channel and e stands for the elemental charge. The charge per unit area eρCh(x) and the
charge carriers per unit area ρCh(x) are positive for holes and electrons. The factor 1

|q| ensures the correct
unit of the charge per unit area.
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The current density jCh in the channel is given by the electric field F =− ∂VCh(x)
∂x , the mobility µ and

the charge per unit area eρCh(x)

jCh = e
ρCh(x)

h
µF =−e

ρCh(x)
h

µ
∂VCh(x)

∂x
(2.3)

with the channel height h perpendicular to the interface between the dielectric and the OSC and the
charge carriers per unit volume ρCh(x)

h . Assuming a homogeneous current density along the cross section
of the channel with its height h and its width W, the reduced drain current is given by

qID = qjChhW =−eρCh(x)Wµ
∂υCh(x)

∂x
. (2.4)

In steady state, the charge per unit area eρCh(x) does not change over time, resulting in a constant
drain current ID all along the channel due to the continuity equation. Both sides of Equation (2.4) are
integrated over the channel, considering the mobility µ of Equation (2.1) and the charge per unit area of
Equation (2.2).

qIDL =
∫ L

0
−eρCh(x)Wµ

∂υCh(x)
∂x

dx =

=−Wµ0CG

|q|

∫ υS′

υD′
exp

(
κ
√

L0

L
υS′D′

)
Θ(υS′D′)(υCh −υG′)γ+1 Θ(υCh −υG′)dυCh (2.5)

The integration is performed from drain to source, i.e., a possible reduction of the channel length L due
to pinch off in the saturation regime is neglected. This integration of Equation (2.4) results in a factor L
on the left-hand side of Equation (2.5) due to the constant drain current ID. On the right-hand side, we
can transform the integral to integrate over the reduced channel υCh. Evaluating this integral provides
the relation

qID =− Wµ0CG

|q|L(γ +2)
exp

(
κ
√

L0

L
υS′D′

)
Θ(υS′D′)

(
υγ+2

S′G′ Θ(υS′G′)−υγ+2
D′G′Θ(υD′G′)

)
(2.6)

This Equation (2.6) represents the ideal OTFT. To introduce non-idealities from the contacts in Equa-
tion (2.6), we have to switch over from the ideal contacts gate G′, drain D′ and source S′ to the ex-
ternal contacts gate G, drain D and source S as suggested by our lumped element model, shown in
Figure 2.2. At the gate, the threshold voltage VT is considered υG = υG′ +qVT . The drain resistance RD

leads to υD = υD′ + qIDRD and the source resistance RS and Schottky-diode voltage loss VSh provides
υS = υS′ −qIDRS −qVSh.

For the drain and source resistance RD and RS, we assume

RD =
rD,o

W
+

αD

Wυγ+1
D′G′

Θ(υD′G′) and RS =
rS,o

W
+

αS

Wυγ+1
S′G′

Θ(υS′G′) (2.7)

with ohmic channel-width-reduced drain and source resistances rD,o and rS,o and a non-ohmic contribu-
tion weighted by αD and αS. The non-ohmic contribution approximates a space-charge-limited current
close to the contacts. [36]

The voltage loss VSh across the Schottky-diode for a given drain current ID is received by assuming
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gate-voltage-dependent thermionic emission. [1, 37, 38]

VSh =−|q|kBTSh

qe
ln
[

1+
ID

Wj0
exp
(

η
qeVGS

|q|kBTSh

)]
(2.8)

The parameters determining the Schottky-diode behaviour are the Schottky temperature TSh, the channel-
width-reduced Schottky current j0 and gate-source voltage sensitivity η . Additionally, the Boltzmann
constant kB and the elemental charge e are required. At TSh = 0 K, we define

VSh =

V0 if qID < 0 A
V

0 if qID = 0 A
V

(2.9)

which means that if a current is flowing, the voltage V0 drops at the Schottky diode, while no voltage
loss is present when no current is flowing. Positive reduced drain currents qID > 0 A

V are not consistent
with our definition of source as injecting contact and, hence, are not required to be considered.

In total, the implicit system of equations

qVSh =


− |q|kBTSh

e ln
[
1+ ID

Wj0
exp
(

η qeVGS
|q|kBTSh

)]
if TSh > 0 KqV0 if qID < 0 A

V

0 if qID = 0 A
V

if TSh = 0 K

υD′G′ = q

(
VT −VGS +VDS − ID

rD,o

W
− ID

αD

Wυγ+1
D′G′

Θ(υD′G′)

)

υS′G′ = q

(
VT −VGS +VSh + ID

rS,o

W
+ ID

αS

Wυγ+1
S′G′

Θ(υS′G′)

)
υS′D′ = υS′G′ −υD′G′

qID =− Wµ0CG

|q|L(γ +2)
exp

(
κ
√

L0

L
υS′D′

)
Θ(υS′D′)

(
υγ+2

S′G′ Θ(υS′G′)−υγ+2
D′G′Θ(υD′G′)

)
(2.10)

determines the drain current ID for a given applied drain-source voltages VDS and a given applied gate-
source voltage VGS. In Chapter 2.1.3, we explore how to numerically solve this implicit system of
equations efficiently to be able to calculate transistor characteristics.

2.1.3 Numerical Implementation

When fitting a large data set of measured output and transfer characteristics of an OTFT, the drain
current ID has to be calculated many times. Hence, an efficient algorithm to calculate the drain current ID

from the implicit system of linear equations, Equation (2.10), is crucial for a proper data evaluation. In
the following, we distinguish between three different options to numerically solve the implicit system of
equations, Equation (2.10), with respect to the choice of the non-ohmic components αD and αS. The first
option assumes no contribution from the non-ohmic components αD = αS = 0 kΩcm. As a consequence,
the second and the third line in Equation (2.10) explicitly determine υD′G′ and υS′G′ . So we only need
to iteratively calculate the implicitly given drain current ID. In contrast, for the second and third option
when non-ohmic components αD > 0 kΩcm and/or αS > 0 kΩcm are present, the reduced voltages υD′G′

and/or υS′G′ are implicitly determined by the second and third line in Equation (2.10). Hence, inside each
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iterative loop related to the evaluation of the implicitly determined drain current ID, the reduced voltages
υD′G′ and/or υS′G′ have to be calculated iteratively. The second option assumes a non-ohmic component
only at the drain side αD > 0 kΩcm and αS = 0 kΩcm, whereas the third option focuses on the solution
when αS > 0 kΩcm with an arbitrary choice of αD ≥ 0 kΩcm.

Below, we will discuss the algorithms to iteratively solve each of the implicit equations. We will
start with the first option involving explicitly accessible υD′G′ and υS′G′ before discussing the second
and third option with non-ohmic components αD > 0 kΩcm and/or αS > 0 kΩcm. The approach to
receive a solution is, in principle, the same for all implicit equations. Each implicit equation has the
form u = f (u), which can be seen as searching for the intercept of the straight line u and a function
f (u). From considerations regarding the monotonicity of the function f (u), an initial interval [umin,umax]

containing only one solution is determined. With this interval [umin,umax], one step of the iteration starts
with calculating the midpoint u1 = umin+umax

2 and the corresponding function value u2 = f (u1). Those
values u1 and u2 deliver a refined search interval, which is at least reduced to half the size of the old
interval. By continuing this iteration, the solution is found swift and efficient.

Solving Equation (2.10) for explicitly accessible υD′G′ and υS′G′ (αD = αS = 0 kΩcm)
Without non-ohmic components αD = αS = 0 kΩcm, only the last line in Equation (2.10) has an

implicit form qID = f (qID). To find the initial interval [qID,min,qID,max] the monotonicity of f (qID) is
determined from its derivative with respect to qID from Equation (2.10):

∂ f (qID)

∂qID
=−Wµ0CG

|q|L
exp

(
κ
√

L0

L
υS′D′

)
Θ(υS′D′)


rS,o

W
− |q|kBTSh

qe
[
ID +Wj0 exp

(
−η qeVGS

|q|kBTSh

)]


×

[
υγ+1

S′G′ Θ(υS′G′)+κ
√

L0

L
υγ+2

S′G′ Θ(υS′G′)−υγ+2
D′G′Θ(υD′G′)

2(γ +2)
√

υS′D′

]

+
rD,o

W

[
υγ+1

D′G′Θ(υD′G′)+κ
√

L0

L
υγ+2

S′G′ Θ(υS′G′)−υγ+2
D′G′Θ(υD′G′)

2(γ +2)
√

υS′D′

] (2.11)

The constants L0, kB, e, geometry factors L, W, CG
4, parameters µ0, κ , γ + 1, rS,o, rD,o, TSh and the

reduced voltages υS′D′Θ(υS′D′), υS′G′Θ(υS′G′) ≥ υD′G′Θ(υD′G′) are positive while the reduced currents
qID, qWj0 are negative. As a consequence, every single term in equation (2.11) results in a positive
value. Due to the leading minus sign, we get in total ∂ f (qID)

∂qID
≤ 0.

This negative slope of f (qID) guarantees, that the straight line qID has exactly one intercept with
f (qID). Furthermore, the intercept is between any pair of values qID,1 and qID,2 = f (qID,1), because
between the points (qID,1, f (qID,1)) on the curve f (qID) and (qID,2,qID,2) on the straight line with the
same second coordinate qID,2 = f (qID,1), the curves must intercept. As discussed in Chapter 2.1.2, the
reduced drain current must be negative qID ≤ 0 A

V . Hence, the interval [qID,min,0), with an initial guess
for a minimum reduced drain current qID,min = f (qID = 0−), contains a unique solution for qID.

Knowing that df (qID)
dqID

≤ 0 and that the unique solution is located in the interval [qID,min,qID,max],
we can find the solution for the equation qID = f (qID) by combining a bisection method with a fixed

4The gate capacitance per unit area is considered as a geometry factor because it is usually estimated from the thickness and
permittivity of the dielectric.
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point iteration of a recursive sequence. Starting from the search interval [qID,min,qID,max], the midpoint
qID,1 =

qID,min+qID,max
2 and the corresponding function value qID,2 = f (qID,1) are calculated. With those

values for qID,1 and qID,2, three cases can be distinguished:

• If qID,2 = qID,1, the solution is found and the search algorithm is finished.

• If qID,2 > qID,1, the solution has to be greater than qID,1, which makes qID,1 the new lower bound of
the search interval and qID,2 a potential new upper bound. The old search interval [qID,min,qID,max]

turns into the new search interval [qID,1,min(qID,max,qID,2)].

• If qID,2 < qID,1, the solution has to be lower than qID,1, which makes qID,1 the new upper bound of
the search interval and qID,2 a potential new lower bound. The old search interval [qID,min,qID,max]

turns into the new search interval [max(qID,min,qID,2),qID,1].

With the new search interval, the new midpoint is calculated in the next step of the iteration and so on.
Due to using min(qID,max,qID,2) as new upper bound or max(qID,min,qID,2) as new lower bound, the
search interval is at least cut in half. However, the convergence can be much faster, if the fixed point
iteration provides much better new upper or lower bounds.

Solving Equation (2.10) for implicitly determined υD′G′ and explicitly accessible υS′G′ (αD > 0 kΩcm,
αS = 0 kΩcm)

Considering a non-ohmic component αD > 0 kΩcm in the implicit system of equations, Equa-
tion (2.10), the second line in Equation (2.10) for υD′G′ becomes implicit. So we need to perform an
iteration to determine υD′G′ for a given value of qID in each step of the iteration for qID.

Iteration for υD′G′: The equation for υD′G′ in the second line in Equation (2.10) has the form

u = A+
B
uC (2.12)

with constants A ∈ R and B,C ∈ R+. Comparing the second line in Equations (2.10) and (2.12), the
constants are given by A = q

(
VT −VGS +VDS − ID

rD,o
W

)
, B =−qIDαD

W > 0 and C = γ +1 > 0. The right-
hand side of this equation f (u) = A+ B

uC represents a continuous function in υD′G′ = u > 0 with ∂ f (u)
∂u =

− BC
uC+1 < 0, limu→∞ f (u) = A and limu→0+ f (u) = ∞. Hence, exactly one solution for u = υD′G′ is found

for υD′G′ > 0.
To find this solution of Equation (2.12) for u = υD′G′ > 0, a proper guess for the initial interval is

beneficial. To receive this guess, we distinguish between three cases depending on the value of A: If
(i) A = 0, then u = υD′G′ can be calculated explicitly u = B

1
C+1 . If (ii) A < 0, then the solution is close

to zero and we can assume umin = 0. An upper bound is given by either setting the left-hand side of
Equation (2.12) to zero or setting A to zero, resulting in umax = min((−B

A)
1
C ,B

1
C+1 ). If (iii) A > 0, then

the minimum can be set to umin = A and the maximum to umax = A+ B
AC , which represents the first step

of the iteration to find u = υD′G′ . With the minimum umin and maximum umax and the knowledge that the
f (u) = A+ B

uC is monotonically decreasing ∂ f (u)
∂u < 0, the iterative approach described above for qID is

utilised.
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Iteration for qID: The iteration scheme determining qID is exactly the same as described above for
αD = 0 kΩcm. The only prerequisite, which has to be checked to ensure the success of the same iteration
scheme, is that the derivative ∂ f (qID)

∂qID
≤ 0 is still negative. The derivative

∂υD′G′

∂qID
=

− rD,o
W − αD

Wυγ+1
D′G′

Θ(υD′G′)

1− qIDαD(γ+1)
Wυγ+2

D′G′
Θ(υD′G′)

(2.13)

is negative for αD > 0 kΩcm and for αD = 0 kΩcm. Hence, including αD > 0 kΩcm does not change
the sign of the derivative ∂ f (qID)

∂qID
, which means it is still negative.

Solving Equation (2.10) for implicitly determined υS′G′ (αS > 0 kΩcm, αD ≥ 0 kΩcm)
Due to the non-ohmic component αS > 0 kΩcm, υS′G′ has to be calculated iteratively for a given

reduced drain current qID in each step of the iteration for qID to solve the implicit system of equations,
Equation (2.10). The reduced voltage υD′G′ is calculated explicitly when αD = 0 kΩcm or implicitly as
described above when αD > 0 kΩcm. Whether υD′G′ is determined explicitly or implicitly does not affect
the iteration scheme to evaluate υS′G′ and qID for αS > 0 kΩcm.

Iteration for υS′G′: For the evaluation of υS′G′ via the third line in Equation (2.10), we have to
solve an implicit equation of the form

u = A− B
uC (2.14)

with constants A ∈ R and B,C ∈ R+. Comparing the third line in Equations (2.10) and (2.14), the
constants are given by A = q

(
VT −VG′ +VSh + ID

rS,o
W

)
, B = −qIDαS

W > 0 and C = γ + 1 > 0. For small
positive or negative values of A, no positive value for u can satisfy this equation. If A is positive and B is
large, no solution can be found as well. Continuously reducing B leads to the point at which the function
A− B

uC touches the straight line u and exactly one solution is received. Further reducing B leads to two
solutions.

To numerically calculate υS′G′ , the number of positive solutions for u = υS′G′ has to be evaluated first.
If it has exactly one solution, the two curves (left- and right-hand side of Equation (2.14)) have to touch
each other. Touching implies that the slopes have to be equal at the touching point, which means that the
right-hand side of Equation (2.14) has to have a slope of 1. This slope of 1 is obtained at usl1 = (BC)

1
C+1 .

The value f (usl1) = A−B/(usl1)
C decides how many solutions are present. If, (i), usl1 = f (usl1), the

curves are touching each other and usl1 is the only positive solution. If, (ii), usl1 > f (usl1), the right-
hand side of Equation (2.14) will always be lower than the left-hand side, which means that no positive
solution exists. If, (iii), usl1 < f (usl1), two positive solutions u1 > usl1 and u2 < usl1 can be found.

To find the first solution u1, the limits umin = usl1 and umax = A are appropriate. The slope of the
right-hand side of the equation is between zero and one, motivating the following iteration scheme:
Calculate the midpoint u1,1 =

umin+umax
2 and the right-hand side function value u1,2 = A−B/(u1,1)

C. If
u1,1 = u1,2, then the solution u1 is found. If u1,1 > u1,2, then the solution u1 is below u1,1 and u1,2

resulting in [umin,umax]→ [umin,u1,2]. If u1,1 < u1,2, then the solution u1 is above u1,1 and u1,2 resulting
in [umin,umax]→ [u1,2,umax]. Iteratively reducing this interval [umin,umax] delivers u1.

To find the second solution u2, the limits umin = 0 and umax = usl1 are used. As the slope of the
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right-hand side of Equation (2.14) is larger than one, the function value of the right-hand side is not
pointing towards the solution like for u1, but pointing away from the solution leading to the following
iteration scheme: Calculate the midpoint u2,1 =

umin+umax
2 and the right-hand side function value u2,2 =

A−B/(u2,1)
C. If u2,1 = u2,2, then the solution u2 is found. If u2,1 > u2,2, then the solution u2 is above

u2,1 and u2,2 resulting in [umin,umax]→ [u2,1,umax]. If u2,1 < u2,2, the solution u2 is below u2,1 and u2,2

resulting in [umin,umax]→ [umin,u2,1]. Iteratively reducing this interval [umin,umax] delivers u2.

Iteration for qID: With the iteration scheme to receive a solution for υD′G′ and two solutions for
υ1

S′G′ and υ2
S′G′ , we can move on to develop an iteration scheme to calculate qID from the implicit system

of equations, Equation (2.10). According to the two solutions for υ1
S′G′ and υ2

S′G′ , the right-hand side
f (qID) of the last line in the implicit system of equations, Equation (2.10), provides two corresponding
values, as illustrated in the upper panel in Figure 2.3. When the drain current is approaching zero
qID → 0− (B → 0+), one of the two solutions for υS′G′ results in υ1

S′G′ = q(VT −VGS +VSh(qID → 0−)),
which is the solution belonging to αS = 0 kΩcm, and the second solution is υ2

S′G′ → 0+. If υ1
S′G′ ≤ 0, the

reduced drain current is zero qID = 0 A
V . Else, the function f (qID) has a negative value corresponding to

υ1
S′G′ and a vanishing value f (qID → 0−) = 0− corresponding to υ2

S′G′ . For negative values of the reduced
drain current qID, the function value f (qID) for υ1

S′G′ becomes less negative and for υ2
S′G′ more negative

until they meet in a single point corresponding to only one solution for υS′G′ . Reduced drain currents
below this value with only one solution for υS′G′ cannot provide a function value f (qID), resulting in a
minimum reduced drain current qID,min.

The upper half-bow of −f (qID) for υ1
S′G′ and the lower half-bow of −f (qID) for υ2

S′G′ are nicely
visualised in the upper panel in Figure 2.3, in which the function value −f (qID) is shown as a function of
the absolute reduced drain current −qID for different applied drain-source voltages VDS and a gate-source
voltage of VGS =−5 V. The simulated device is a p-type OTFT with constant mobility µ0 = 1 Vs

cm2 , ohmic
drain resistance rD,o = 0.1 kΩcm, ohmic source resistance rS,o = 0.1 kΩcm, non-ohmic contributions
αD = 0.1 kΩcm and αS = 10 kΩcm. The black line in the upper panel in Figure 2.3 corresponds to the
straight line −qID and the intercept with a bow of −f (qID) determines the solution for qID for the chosen
drain-source voltage VDS.

The iterative approach to find this intercept and the associated solution qID = f (qID) for the implicit
system of equations, Equation (2.10), starts on the upper half-bow of −f (qID) for υ1

S′G′ . The upper
half-bow is chosen, because in most of the relevant cases, the solution for qID is found on this upper
half-bow.

Finding a solution on the upper half-bow is achieved in the same way as for the case of explicit υD′G′

and υS′G′ . Starting with qID,max = 0 A
V , υD′G′ and υ1

S′G′ are calculated to receive f (qID,max) = qID,min. This
precalculation provides proper values as long as our prerequisites qVGS ≤ 0 and qVDS ≤ 0 are fulfilled. If
those prerequisites are not fulfilled, the drain current is zero anyway. With the interval [qID,min,qID,max],
each step of the iteration starts by calculating the midpoint qID,1 =

qID,min+qID,max
2 and the function value

qID,2 = f (qID,1) on the upper half-bow representing υ1
S′G′ . If f (qID,1) has no solution, qID,1 is too low and

the search interval is changed from [qID,min,qID,max] to [qID,1,qID,max]. If qID,1 = qID,2, the solution is
found. If qID,2 > qID,1, the search interval is changed from [qID,min,qID,max] to [qID,1,min(qID,max,qID,2)].
If qID,2 < qID,1, the search interval is changed from [qID,min,qID,max] to [max(qID,min,qID,2),qID,1].

The result from the iteration for the upper half-bow is an interval [qID,min,qID,max]. If f (qID,min)

provides a solution, the value from the iteration for the upper half-bow is the correct solution for qID.
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Figure 2.3: The upper panel shows the right-hand side −f (qID) of the last equation of the implicit system
of equations given in Equation (2.10) as a function of the assumed drain current −qID for different ap-
plied drain-source voltages VDS (colour coded) and a gate-source voltage of VGS =−5 V. The simulated
p-type OTFT has a constant mobility µ0 = 1 Vs

cm2 , ohmic drain resistance rD,o = 0.1 kΩcm, ohmic source
resistance rS,o = 0.1 kΩcm, non-ohmic contributions αD = 0.1 kΩcm and αS = 10 kΩcm. All remaining
parameters of the transistor model are zero. The solution for −qID is determined by the intercept of
−f (qID) and the straight line −qID indicated as a black line. The lower panel shows the output charac-
teristics of this device. The initial increase of the absolute drain current −ID with respect to the absolute
drain-source voltage −VDS reaches a maximum. When the solution for qID = f (qID) swaps from the
upper half-bow of −f (qID) to the lower half-bow of −f (qID), the absolute drain current −ID starts to
decrease. This behaviour is clearly non-physical indicating a violation of the model assumptions in this
operation region of the transistor. As we are only interested in model assumptions describing the tran-
sistor as a whole, the non-ohmic contributions to the contact resistances αD = αS = 0 kΩcm are omitted
from now on.

If not, we only found the minimum drain current qID, below which no solution exists, i.e., we have
to search for the solution on the lower half-bow corresponding to the solution υ2

S′G′ . For this search,
the initial search interval can be set to [qID,min,0) with the minimum qID,min of the iteration for the
upper half-bow. One step of the iteration with an initial interval [qID,min,qID,max], again, starts with the
midpoint qID,1 =

qID,min+qID,max
2 and the function value qID,2 = f (qID,1) on the lower half-bow representing
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υ2
S′D′ . Equivalent to the upper half-bow, when no solution for f (qID,1) exists, qID,1 is a lower bound

changing the search interval from [qID,min,qID,max] to [qID,1,qID,max]. If qID,1 = qID,2, the solution is
found. In contrast to the upper half-bow, the search interval in case of qID,2 > qID,1 changes from
[qID,min,qID,max] to [qID,min,qID,1] and in case of qID,2 < qID,1 from [qID,min,qID,max] to [qID,1,qID,max].
With this search on the lower half-bow, the solution qID is found. In the unlikely event that qID is
precisely at the meeting point of the upper and the lower half-bow and has only one solution, the search
interval after the iteration for the lower half-bow will result in a lower bound qID,min for which, again, no
solution f (qID,min) exists. Nevertheless, even in this case the found solution qID is the correct solution,
within its numerical uncertainty.

Output characteristics for large αS: The lower panel in Figure 2.3 shows the output character-
istics of the p-type OTFT described above. The observed decrease of the absolute drain current −ID

with increasing absolute drain-source voltage −VDS (e.g. seen at VGS = −5 V and VDS ≈ −4 V in the
lower panel in Figure 2.3) is non-physical and inherent to the transistor model. In the following, we will
discuss the numerical reason for this behaviour before drawing our conclusions from this behaviour.

The peculiar form of the characteristics is a consequence of the two solutions for υS′G′ associated
to the upper and lower half-bow of −f (qID) plotted in the upper panel in Figure 2.3. To understand the
peculiar shape of the output characteristics in the lower panel in Figure 2.3, we will pursue the origin of
the formation of the curve for VGS = −5 V with the help of the upper panel in Figure 2.3. The bow of
−f (qID) is best spotted from the blue lines for −VDS ≳ 5.5 V in the upper panel in Figure 2.3. Decreasing
the absolute drain-source voltage −VDS results mainly in a rigid shift of this bow towards lower values
for −f (qID). For low absolute drain-source voltage −VDS ≲ 2 V (red to yellow curves in the upper
panel in Figure 2.3), the intercept of the black line for −qID and the bow of −f (qID) lies on the upper
half-bow. With increasing absolute drain-source voltage −VDS, the absolute drain current −ID increases
as the bow of −f (qID) shifts upwards. Around −VDS = 3 V, the absolute drain current −ID saturates
and reaches a maximum (see lower panel in Figure 2.3). This maximum corresponds precisely to the
condition when the black line −qID in the upper panel in Figure 2.3 intercepts with the bow of −f (qID)

at its meeting point of the upper and lower half-bow. Increasing the absolute drain-source voltage −VDS

beyond this maximum shifts the bow of −f (qID) further up. The solution for −qID is now found on the
lower half-bow of −f (qID) resulting in a decrease in the absolute drain current −ID. Beyond an absolute
drain-source voltage −VDS ≳ 5.5 V, the bow of −f (qID) does not change anymore and the drain current
saturates.

The decrease of the absolute drain current −ID with increasing absolute drain-source voltage −VDS,
observed in the output characteristics in the lower panel in Figure 2.3, is clearly non-physical. The
reason for this non-physical behaviour is the assumed dependence of the non-ohmic contact resistance
on the charge-carrier density involving the exponent of the sensitivity with respect to the charge-carrier
density of the mobility γ . The consequence of this non-physical behaviour is, that the transistor model is
not able to describe the transistor for all operation conditions (VDS and VGS) in a physically reasonable
way. Although the transistor model leads to physical behaviour for many instances of the choice of the
parameters αD and αS, we are exclusively interested in a transistor model describing transistors as a
whole with all possible operation conditions and parameters. Thus, all non-ohmic contributions to the
contact resistance, that are associated with the parameters αD and αS, will be omitted from now on by
setting αD = αS = 0 kΩcm.
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Omitting the non-ohmic components αD = αS = 0 kΩcm, the implicit system of linear equations
considered from now on is given by:

qVSh =


− |q|kBTSh

e ln
[
1+ ID

Wj0
exp
(

η qeVGS
|q|kBTSh

)]
if TSh > 0 KqV0 if qID < 0 A

V

0 if qID = 0 A
V

if TSh = 0 K

υD′G′ = q
(

VT −VGS +VDS − ID
rD,o

W

)
υS′G′ = q

(
VT −VGS +VSh + ID

rS,o

W

)
υS′D′ = υS′G′ −υD′G′

qID =− Wµ0CG

|q|L(γ +2)
exp

(
κ
√

L0

L
υS′D′

)
Θ(υS′D′)

(
υγ+2

S′G′ Θ(υS′G′)−υγ+2
D′G′Θ(υD′G′)

)
(2.15)

with four constants, kB, e, q, L0, three geometry factors, L, W, CG, ten parameters, VT , µ0, rS,o, rD,o, γ ,
κ , j0, TSh, η , V0, two input quantities, VDS, VGS, and one output quantity ID.

2.1.4 Influence of Parameters on Output Characteristics

To be able to interpret deviations of measured and calculated characteristics, it is essential to know
the influence of a change in the parameters of the applied transistor model, Equation (2.15), on the
characteristics. This knowledge enables an interpretation of the reasons for the deviations between mea-
surement and calculations, which is the prerequisite for a precise statement about how to improve the
transistor model. Due to the large amount of up to 9 simultaneously active parameters, the knowledge of
their influence on the characteristics is of particular importance.

Figure 2.4 and Figure 2.5 visualise the deformation of the output characteristics of a p-type OTFT
(channel length L = 10 µm, channel width W = 1 mm and gate capacitance per unit area CG = 500 nF

cm2 )
when changing one parameter after the other. Note that these Figures do not address the threshold voltage
VT and the Schottky-diode voltage loss V0 at Schottky temperature TSh = 0 K. Those two parameters only
change the gate voltage VG → VG −VT and the drain-source voltage VDS → VDS −V0 resulting in a rigid
shift of the characteristics, but no change in their shape.

The upper left panel in Figure 2.4 shows the output characteristics for the most basic transistor model
with a constant mobility, no contact resistances and no Schottky diode. All parameters are set to zero,
only the mobility prefactor receives a certain value µ0 = 1 Vs

cm2 . For a certain gate-source voltage VGS,
the absolute drain current −ID increases parabolic with the absolute drain-source voltage −VDS up to the
apex of the parabola at VDS = VGS. At this voltage, the saturation regime is entered and the absolute drain
current −ID stays constant. The increase of the absolute drain current −ID in the saturation regime with
respect to the absolute gate-source voltage −VGS is quadratic for the ideal OTFT. Hence, the spacing
between the saturation curves increases with increasing absolute gate-source voltage.

In the upper panels in Figure 2.4, from the left to the right, the channel-width-reduced ohmic source
resistance rS,o = 0.1 kΩcm is changed. The output characteristics prior to the change is indicated with
grey dashed lines in the upper right panel in Figure 2.4 and the black lines show the output characteristics
after the change. The source resistance has an impact on the linear and the saturation regime and scales
down the drain current ID in approximately equal fashion for all drain-source voltages VDS. This scaling
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Figure 2.4: Influence of the parameters on the shape of the output characteristics for a p-type OTFT. In
the upper left panel, all parameters of the transistor model are set to zero, except the mobility prefactor
µ0 = 1 Vs

cm2 . For the remaining panels, one after the other parameter is set to the specified values. The
dashed grey lines indicate the output characteristics prior to the inclusion of the new parameter. From
upper left to upper right, the ohmic source resistance rS,o = 0.1 kΩcm is included; upper right to middle
left: ohmic drain resistance rD,o = 0.1 kΩcm; middle left to middle right: exponent of the sensitivity
with respect to the charge-carrier density γ = 0.2; middle right to lower left: the exponent of the field
sensitivity κ ; lower left to lower right: Schottky temperature TSh = 300 K and Schottky current j0 =
−10 µA

m . The influence of the Schottky-diode parameters TSh, j0 and η on the output characteristics are
illustrated in Figure 2.5.

is more pronounced for larger absolute gate-source voltages −VGS resulting in a more equal spacing
between the saturation curves and, hence, a more linear rather than quadratic increase of the absolute
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Figure 2.5: Influence of the parameters of the Schottky diode on the shape of the output characteristics
of a p-type OTFT. The upper left panel shows a magnification of the lower right panel in Figure 2.4. For
all remaining panels, one parameter is changed from panel to panel and the grey dashed line indicates
the output characteristics prior to changing the parameter. From the upper left to the upper right panel,
the Schottky current is changed from j0 =−10 µA

m to j0 =−0.1 µA
m ; upper right to lower left: Schottky

temperature from TSh = 300 K to TSh = 600 K; lower left to lower right: gate-source voltage sensitivity
to η = 0.1.

drain current −ID with the absolute gate-source voltage −VGS. In contrast, including the channel-width-
reduced ohmic drain resistance rD,o = 0.1 kΩcm (middle left panel in Figure 2.4) purely effects the linear
regime. Considering a charge-carrier-density-dependent mobility via the exponent of the sensitivity with
respect to the charge-carrier density γ = 0.2 (middle right panel in Figure 2.4) increases the absolute
drain current −ID. The increase is more pronounced for larger absolute gate-source voltages −VGS

leading to a similar output characteristics as the initial one in the upper left panel in Figure 2.4. The
most important difference between the output characteristics in the upper left panel and the middle right
panel in Figure 2.4 is, that the slope at VDS = 0 V and ID = 0 A is steeper in the upper left panel. This
results in a more curved characteristic in the upper left panel in comparison to a more linear increase of
the absolute drain current −ID with absolute drain-source voltage −VDS in the middle right panel.

Including the exponent of the field sensitivity κ = 0.1 (lower left panel in Figure 2.4) lifts the sat-
uration, i.e., it provokes a linear increase of the absolute drain current −ID with respect to the absolute
drain-source voltage −VDS in the saturation regime. In the lower right panel in Figure 2.4, the Schot-
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tky diode is included by setting the Schottky temperature to TSh = 300 K and the Schottky current to
j0 = −10 µA

m . The characteristic feature of the Schottky diode manifests at VDS = 0 V and ID = 0 A.
There, the onset of the output characteristics is shifted towards higher absolute drain-source voltages
−VDS. To explore this region of the characteristic feature of the Schottky diode in more detail, the upper
left panel in Figure 2.5 shows a magnification of the region at low absolute drain-source voltages.

The upper left panel in Figure 2.5 and the lower right panel in Figure 2.4 show exactly the same data
with only the scale being changed. The shift of the onset of the output characteristics towards higher
absolute drain-source voltages −VDS becomes more evident from the magnification in the upper left
panel in Figure 2.5. In the upper panels in Figure 2.5, from the left to the right, the absolute Schottky
current is reduced from −j0 = 10 µA

m to −j0 = 0.1 µA
m leading to a further shift of the onset towards even

higher absolute drain-source voltages. Besides a further shift, changing the Schottky temperature from
TSh = 300 K to TSh = 600 K (lower left panel in Figure 2.5) creates a more smooth onset with a tail at
absolute drain-source voltages below the onset at −VDS ≈ 0.6 V is decreasing more slowly. Including
a gate-source voltage sensitivity of η = 0.1 in the lower right panel in Figure 2.5 creates an individual
onset of the output characteristics for the different gate-source voltages VGS.

2.2 Fitting Procedure

Besides different transistor models, there is a huge variety of suggested procedures to extract material
parameters from measured characteristics found in literature. A selection of the most common extraction
procedures can be found in a review by Natali and Caironi [30], but there are many more suggested
extraction procedures [39–43]. We have chosen a different approach because most extraction procedures
focus only on a small share of the measured data. Such extraction procedures are not particularly suited
to test transistor models because the transistor model is supposed to describe the transistor as a whole.
Hence, the extracted parameters have to be chosen to get the best possible agreement of measurements
and transistor model. This might not be guaranteed by an extraction method that extracts the parameters
of the transistor model from a part of the measurements. As already stated by Fischer et al. [44], it is
important to look at all the measured data.

We extract the parameters by fitting all measured data points of the transistor to the chosen tran-
sistor model via a Gauss-Newton algorithm with a variation suggested by Marquardt [45]. The al-
gorithm is modified to be able to handle minimum and maximum values of parameters. A vector
a⃗ = (a1,a2, . . . ,an)

⊤ collects the n parameters a1 to an, that are to be determined by fitting. In its stan-
dard form, the algorithm calculates the difference ∆⃗a = a⃗− a⃗0 between the current parameters a⃗0 and the
suggested new parameters a⃗ by solving the system of linear equations

(A+λD)∆⃗a = b⃗ (2.16)

with matrices A and D, the convergence factor λ introduced by Marquardt and a vector b⃗. The matrix A
is given by

(A)ij =
N

∑
k=1

1
σ 2

k

∂ f (⃗xk; a⃗0)

∂ai

∂ f (⃗xk; a⃗0)

∂aj
(2.17)

containing the sum over all N measured values yk, their standard deviation σk and the partial derivatives
∂ f (⃗xk ;⃗a0)

∂ai/j
of the model function f at the data value x⃗k and the current parameters a⃗0 with respect to the
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parameter ai and aj, respectively. The matrix D is a diagonal matrix built up by the diagonal elements of
A

(D)ij = δij(A)ij (2.18)

with δij being the Kronecker delta returning 1 if i = j and 0 if i ̸= j. The vector b⃗ is given by

bi =
N

∑
k=1

yk − f (⃗xk; a⃗0)

σ 2
k

∂ f (⃗xk; a⃗0)

∂ai
(2.19)

involving the measured value yk corresponding to the data value x⃗k.
To consider minimum and maximum values of parameters, the matrices A and D, the vector b⃗ and

the convergence factor λ are evaluated as usual and the system of linear equations, Equation (2.16),
is solved to receive ∆⃗a. Before going on with this calculated value for ∆⃗a, it is checked if any of the
suggested parameters a⃗ = a⃗0 + ∆⃗a is out of bounds. If this is the case, the corresponding value for ∆aj

of the entry j that is possible to stay within the boundaries is calculated. If, e.g., the upper boundary
is exceeded, we calculate ∆aj = amax

j − a0
j . This value for ∆aj is plugged into the system of linear

equations, Equation (2.16), by discarding equation j and transferring (A)ij∆aj to the right-hand side bi →
bi − (A)ij∆aj. The new system of linear equations is solved again and the check, whether all parameters
are in bounds, is performed again. Only if all parameters are within bounds, ∆⃗a is accepted and the
Gauss-Newton algorithm is continued.

In our case, the measured quantity is the drain current y = ID and the data values are the drain-source
and gate-source voltage x⃗ = (VDS,VGS). The parameters are a⃗ = (VT ,µ0,rS,o,rD,o,γ,κ,V0,TSh, j0,η)

but not all of them necessarily need to be optimised. As discussed in Chapter 2.1.3, the parameters
αD = 0 kΩcm and αS = 0 kΩcm are omitted due to their non-physical influence on certain operation
regions of the OTFT (cf. Figure 2.3). The resulting implicit system of equations, Equation (2.15),
determining the transistor model is rewritten for clarity:

VSh =


− |q|kBTSh

qe ln
[
1+ ID

Wj0
exp
(

η qeVGS
|q|kBTSh

)]
if TSh > 0 KV0 if qID < 0 A

V

0 if qID = 0 A
V

if TSh = 0 K
(2.20)

υS′G′ = q
(

VT −VGS +VSh + ID
rS,o

W

)
(2.21)

υD′G′ = q
(

VT −VGS +VDS − ID
rD,o

W

)
(2.22)

υS′D′ = υS′G′ −υD′G′ (2.23)

ID =− Wµ0CG

q|q|L(γ +2)
exp

(
κ
√

L0

L
υS′D′

)
Θ(υS′D′)

(
υγ+2

S′G′ Θ(υS′G′)−υγ+2
D′G′Θ(υD′G′)

)
. (2.24)

For the Gauss-Newton-Marquardt fitting algorithm, derivatives of the model function, Equations (2.20)
to (2.24), with respect to the parameters are required. Due to the implicit nature of the system of equa-
tions, all explicit and implicit derivatives of the drain current with respect to the parameters have to be
collected. Delta peaks from the derivative of the Heaviside-step-functions Θ(x) are neglected. The pro-
cedure to get the derivative of the drain current ID with respect to a parameter is always the same. This
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procedure is demonstrated by deriving ID with respect to ai.

∂ ID

∂ai
=

ðf (ID)

ðai
− W µ̃0CG

q|q|L

[
∂υS′G′

∂ai
TSG − ∂υD′G′

∂ai
TDG

]
Θ(υS′D′) (2.25)

The partial derivative ∂ here denotes the derivative when the parameters a⃗ and the drain-source and gate-
source voltage x⃗ = (VDS,VGS) are independent variables. In contrast, the partial derivative ð denotes the
derivative when the drain current ID and the reduced voltages υS′G′ and υD′G′ are additionally considered
as independent variables. This means that ðf (ID)

ðai
considers only derivatives with respect to the parameter

ai of explicit appearance of ai in the right-hand side of Equation (2.24). The mobility prefactor µ0 and
the Poole-Frenkel field dependence of the mobility are combined to a mobility prefactor µ̃0

µ̃0 = µ0 exp

(
κ
√

L0

L
υS′D′

)
(2.26)

and the terms TSG and TDG are given by

TSG = υγ+1
S′G′ Θ(υS′G′)+T0 (2.27)

and

TDG = υγ+1
D′G′Θ(υD′G′)+T0 (2.28)

with a term T0 stemming from the Poole-Frenkel field dependence

T0 = κ
√

L0

L
υγ+2

S′G′ Θ(υS′G′)−υγ+2
D′G′Θ(υD′G′)

2(γ +2)
√

υS′G′ −υD′G′
. (2.29)

Derivatives of υS′G′ and υD′G′ are given by

∂υS′G′

∂ai
=

ðf (υS′G′)

ðai
+

(
q

rS,o

W
− |q|kBTSh

e(ID + I0)

)
∂ ID

∂ai
(2.30)

∂υD′G′

∂ai
=

ðf (υD′G′)

ðai
−q

rD,o

W
∂ ID

∂ai
(2.31)

introducing the reference Schottky current I0, given by

I0 = Wj0 exp
(
−η

qeVGS

|q|kBTSh

)
. (2.32)

The derivative ðf (υS′G′ )
ðai

denotes the derivative of the right-hand side of Equation (2.21), in combination
with Equation (2.20), with respect to an explicitly appearing parameter ai. Accordingly, the derivative
ðf (υD′G′ )

ðai
denotes the derivative of the right-hand side of Equation (2.22) that accounts only for explicit

appearances of the parameter ai.
Inserting Equations (2.30) and (2.31) into Equation (2.25) and collecting all terms containing ∂ ID

∂ai

suggests the definition of

DID = 1+
W µ̃0CG

|q|L

[
TSG

(
rS,o

W
− |q|kBTSh

qe(ID + I0)

)
+TDG

rD,o

W

]
Θ(υS′D′). (2.33)
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With this definition, the desired solution for ∂ ID
∂ai

is received.

∂ ID

∂ai
=

1
DID

ðf (ID)

ðai
− W µ̃0CG

q|q|LDID

(
TSG

ðf (υS′G′)

ðai
−TDG

ðf (υD′G′)

ðai

)
Θ(υS′D′) (2.34)

All derivatives of the model function, Equations (2.20) to (2.24), with respect to the parameters are
derived via Equation (2.34). The results of those derivations are given in Equations (2.35) to (2.44).

∂ ID

∂VT
=−W µ̃0CG

|q|LDID

(TSG −TDG)Θ(υS′D′) (2.35)

∂ ID

∂ µ0
=

ID

µ0DID

(2.36)

∂ ID

∂ rS,o
=− µ̃0CG

|q|LDID

TSGIDΘ(υS′D′) (2.37)

∂ ID

∂ rD,o
=− µ̃0CG

|q|LDID

TDGIDΘ(υS′D′) (2.38)

∂ ID

∂γ
=−

ID + W µ̃0CG
q|q|L

(
ln(υS′G′)υγ+2

S′G′ Θ(υS′G′)− ln(υD′G′)υγ+2
D′G′Θ(υD′G′)

)
Θ(υS′D′)

DID(γ +2)
(2.39)

∂ ID

∂κ
=

ID

DID

√
L0

L
υS′D′ (2.40)

∂ ID

∂V0
=

−W µ̃0CG
|q|LDID

TSGΘ(υS′D′) if TSh = 0 K

0 if TSh > 0 K
(2.41)

∂ ID

∂TSh
=

0 if TSh = 0 K
W µ̃0CG
|q|LDID

TSG

[
|q|kB

qe ln
(

1+ ID
I0

)
− ηVGSID

(ID+I0)TSh

]
Θ(υS′D′) if TSh > 0 K

(2.42)

∂ ID

∂ j0
=

0 if TSh = 0 K

−W µ̃0CG
LDID

TSG
kBTShID

qej0(ID+I0)
Θ(υS′D′) if TSh > 0 K

(2.43)

∂ ID

∂η
=

0 if TSh = 0 K
W µ̃0CG
q|q|LDID

TSG
IDVGS
ID+I0

Θ(υS′D′) if TSh > 0 K
(2.44)

Our variation of the Gauss-Newton-Marquardt fitting algorithm is able to consider minimum and
maximum values of parameters, which is crucial to avoid non-physical parameters like negative resis-
tances. The parameters µ0, κ , rS,o, rD,o and TSh have to be zero or positive. The exponent of the field
sensitivity κ is additionally recommended to be not to high κ ≲ 20. The exponent of the sensitivity
with respect to the charge-carrier density γ has to be greater than γ > −1 and not too high γ ≲ 20. The
channel-width-reduced Schottky current j0 has to be chosen in a way that qj0 ≤ 0 µA

m . For the remaining
parameters VT , V0 and η , no restrictions are necessary.

Due to the large amount of up to nine parameters that are required to determine the transistor model,
fitting all of them at once to reproduce the measured characteristics will not lead to a proper result.
To enable a convergence of the Gauss-Newton-Marquardt algorithm towards the optimum parameters,
carefully chosen starting parameters are essential. Our approach to receive proper starting parameters is
to, step by step, evolve the parameters by fitting only a part of the parameters and continuously improve
the agreement with the measured data. In a final fit of all parameters, the Gauss-Newton-Marquardt
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algorithm then converges and provides the desired parameters representing the measured data.
In the following, we demonstrate the fitting procedure on the example of a pentacene bottom-

gate bottom-contact OTFT with the contacts being covered by a self-assembled monolayer (SAM) of
biphenyl-4-thiol (for details see [1]). The work function of the contacts do not match well with the
HOMO energy of pentacene, requiring the inclusion of the Schottky diode in the transistor model to
capture the marked S-shape at the onset of the output characteristics for low absolute drain-source volt-
ages (see Figure 2.6 and Figure 2.7). Each step of the fitting procedure is visualised in Figure 2.6 and
Figure 2.7. The evolution of the parameters during the fitting procedure is given in Table 2.1. In total, 8
steps are required for this particular example.

The first step of each fitting procedure starts with the ideal transistor model, which contains only the
mobility prefactor µ0 and the threshold voltage VT . All remaining parameters are zero. In this case, the
drain current in the saturation regime (υD′G′ < 0 V) is given by

ID,sat =−qWµ0CG

2|q|L
(VGS −VT)

2 Θ(qVT −qVGS) . (2.45)

The saturation drain current ID,sat for different gate-source voltages VGS can be found in the output
characteristics where the curves are flat. With those few data points for ID,sat and VGS, a linear fit of√

−qID,sat as a function of VGS provides VT and µ0. The outcome of this first step is shown in the
upper left panel in Figure 2.6 with the measured data plotted as grey crosses and the calculated output
characteristics as black lines. Although the agreement between measured data and calculations is very
poor, it provides a value for the mobility prefactor µ0 that is in the right order of magnitude. Those values
for VT and µ0 enable the first fit which, in our example, is optimising VT , µ0 and V0. The calculated output
characteristics of this fit, shown in the upper right panel in Figure 2.6, is still far from a good agreement
with the experimental curves, but much better compared to the starting guess in the upper left panel in
Figure 2.6. Another fit, additionally optimising rS,o and rD,o, shown in the lower left panel of Figure 2.6,
slightly improves the agreement between measurement and calculation.

The next step of the fitting procedure is to convert the oversimplified form of the Schottky-diode
related to the Schottky voltage V0 to the actual Schottky diode. This is done by setting the Schottky tem-
perature to TSh = 300 K, and calculating an estimate of the Schottky current j0 for η = 0. This estimate
of j0 is calculated by assuming, that at an intermediate drain current of ID,Sh = −2 µA (approximately
where the curvature of the output characteristics with the highest absolute drain current is zero), the
voltage V0 drops at the Schottky diode. With Equation (2.20), we get the estimate for j0:

j0 =
ID,Sh
W

exp
(
− qeV0

|q|kBTSh

)
−1

. (2.46)

This conversion from V0 to TSh and j0 is shown in the lower right panel of Figure 2.6. The most important
change appears at the onset of the output characteristics at about VDS ≈−0.5 V. At this point, the sharp
kink in the lower left panel in Figure 2.6 is getting rounded in the lower right panel of Figure 2.6. With
this conversion being finished, the fitting procedure is continued in Figure 2.7.

With the estimated initial Schottky-diode parameters, the next step is to optimise those parameters
TSh and j0. In this example, the optimisation requires to include also the parameters VT , µ0 and rD,o. The
according agreement between measurement and calculation in the upper left panel in Figure 2.7 slightly
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Figure 2.6: Fitting procedure to extract the optimum parameters for the transistor model that represent
the measured data best. The measured output characteristics (drain current ID as a function of drain-
source voltage VDS for different gate-source voltages VGS) are marked with grey crosses and the output
characteristics calculated with the corresponding parameters are shown as black lines. The upper left
panel shows the first step assuming an ideal OTFT with only µ0 and VT being non-zero. Those two
parameters are extracted by a linear fit of the saturation drain current

√
−qID,sat as a function of the

gate-source voltage VGS. The first fit in the upper right panel includes µ0, VT and V0 resulting in a much
better agreement between measurement and calculation. Additionally including rS,o and rD,o in the next
fit (lower left panel) slightly improves the agreement. The conversion from the Schottky voltage V0 to a
full Schottky-diode, visualised in the lower right panel, leads to a rounding of the curves at the onset of
the output characteristics around VDS ≈−0.5 V. The fitting procedure is continued in Figure 2.7.

improves in comparison to the lower right panel in Figure 2.6. The next fit optimising VT , µ0 and γ
again slightly improves the agreement (upper right panel in Figure 2.7). The penultimate fit optimises 6
parameters: VT , µ0, rD,o, γ , j0 and TSh. The agreement of measurement and calculation from this fit is
already quite good (lower left panel in Figure 2.7). Even more important, this fit provides proper starting
values for the last fit over all parameters of the utilised transistor model. This last fit, including the nine
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Figure 2.7: Continuation of the fitting procedure aiming to find the optimum parameters started in Fig-
ure 2.6. The measured output characteristics (drain current ID as a function of drain-source voltage VDS

for different gate-source voltages VGS) are marked with grey crosses and the output characteristics cal-
culated with the corresponding parameters are shown as black lines. The fit in the upper left panel tries
to optimise the Schottky-diode parameters TSh and j0, additionally including VT , µ0 and rD,o as parame-
ters. Compared to the lower right panel in Figure 2.6, the agreement between the measurement and the
calculation slightly improves. Including the exponent of the sensitivity with respect to the charge-carrier
density γ in the subsequent fit again improves the agreement (upper right panel). The optimisation of
VT , µ0, rD,o, γ , j0 and TSh leads to a significant improvement of the agreement (lower left panel) and
delivers the final starting parameters for the last fit. In the last fit, all parameters are optimised resulting
in a decent agreement between measurement and calculation (lower right panel).

parameters VT , µ0, rS,o, rD,o, γ , κ , j0, TSh and η , produces output characteristics that nicely agree with
the measured data (lower right panel in Figure 2.7).

In Table 2.1 the evolution of the parameters during the fitting procedure can be found. A dash in the
table indicates, that the parameter is not considered in the corresponding step of the fitting procedure. Not
considering the parameter implies that, (i), the value of the parameter is set to zero, (ii), the parameter is
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Table 2.1: Evolution of the parameters of the transistor model during the fitting procedure. A dash
indicates, that the parameter is not considered in the transistor model (set to zero) in the corresponding
step of the fitting procedure. From step to step, more parameters are considered until we end up with the
optimum parameters after 8 steps.

VT / V µ0 / Vs
cm2 rS,o / kΩcm rD,o / kΩcm γ κ V0 / V j0 / µA

m TSh / K η
0.478 0.01381 - - - - - - - -
-0.101 0.06397 - - - - -0.473 - - -
-0.148 0.07281 0.0 7.003 - - -0.473 - - -
-0.148 0.07281 0.0 7.003 - - - -2.3·10−5 300 -
-0.414 0.23765 0.0 11.468 - - - -44.796 2012 -
1.021 0.00118 0.0 11.468 5.81 - - -44.796 2012 -
2.952 1.1·10−8 0.0 27.527 9.93 - - -0.688 375 -
0.665 0.01401 0.464 7.201 2.25 1.75 - -7.063 3497 0.56

not optimised and, (iii), the parameter is not included in the transistor model. The purpose of the starting
parameters in the first line of Table 2.1 is only to get an approximate value for the mobility which is
close to the actual value, within some orders of magnitude. The first fit in the second line of Table 2.1
with only three optimised parameters converges reliably with minor dependence on the exact values of
the starting guess. Including more and more parameters requires better starting parameters and the final
fit over all considered parameters only converges due to the fact that the measured and the calculated
output characteristics already match quite well for the starting parameters of this final fit (cf. lower
left and lower right panel in Figure 2.7). From the third to the fourth line in Table 2.1, the conversion
from the oversimplified Schottky-diode behaviour, determined by the Schottky-diode voltage loss V0, to
the actual Schottky-diode behaviour, described by the Schottky temperature TSh and the channel-width-
reduced Schottky current j0, is performed with the help of Equation (2.46).

This example for a successful sequence of the fitting procedure cannot be applied to all transistors.
One has to decide, step by step, which parameters are important to be included next and check after each
fitting step, if the agreement between measurement and calculation has improved as expected. To decide
which parameters are most relevant for the next fitting step, the knowledge of the influence of parameters
on the output characteristics is of particular importance (cf. Chapter 2.1.4). Usually, when fitting a huge
amount of similar transistors (e.g. using the same materials and only changing the channel length) the
sequence of the fitting procedure is always the same and can be automated.

Another important aspect is the stability of the optimised parameters. To roughly check if the op-
timised parameters are stable, meaning that they represent the best possible parameters, we suggest to
slightly change the sequence, in which steps which parameter is optimised. This can lead to a distinctly
different evolution of the parameters for intermediate steps of the fitting procedure. Nevertheless, the
final set of optimised parameters must be the same, within numerical accuracy. Only if the optimised pa-
rameters always converge to the same final solution, given that they do converge to a reasonable solution,
they can be assumed to be the best possible parameters.

Throughout the whole Chapter 2, we exclusively inspect output characteristics. In those output
characteristics, the influence of parameters on the shape of the curves is often more pronounced and
can be discriminated from the influence of other parameters more clearly than in transfer characteristics.
Transfer characteristics, which are not shown in this chapter, demonstrate the dependence of the drain
current ID on the gate-source voltage VGS for different values of the drain-source voltage VDS. Note that
for all fabricated transistors, output and transfer characteristics were measured and all measured values
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of both characteristics were included in the fitting procedure. Transfer characteristics are not shown here
because no additional information can be gained from them in our case. This does not necessarily apply
for other transistors and other transistor models, for which an inspection of the transfer characteristics
might be even more relevant than an inspection of the output characteristics.

2.3 Model Testing

In the following, we suggest an approach to test transistor models. The approach is inspired by the
widely used transmission line model (TLM) [46, 47], which investigates a set of nominally equivalent
OTFTs with only the channel length being changed. Our approach is based on the assumption, that all
parameters of the OTFT like contact resistances and the mobility are not affected by a change in channel
length. This means, if we possess the right transistor model that contains the correct channel-length
dependence, parameters extracted from measurements of OTFTs with different channel lengths have to
be the same.

The requirement, that the extracted parameters have to be the same for OTFTs with different channel
lengths, constitutes our two-step-fitting approach (TSFA). In the first step of this TSFA, we suggest to
extracts the parameters of the tested transistor model for each transistor individually from the measured
output and transfer characteristics. The second step of the TSFA inspects the channel-length dependence
of the extracted parameters. If the parameters exhibit a pronounced dependence on the channel length
beyond unavoidable variations from device to device, the transistor model does not pass the test and has
to be improved.

For the first step, in principle any reliable single transistor parameter extraction method can be
utilised. A desired property of this extraction method is, that it considers all measured data of output
and transfer characteristics to be able to test the transistor model over the full range of its operation
modes. The fitting procedure, established in Chapter 2.2, is such a single transistor parameter extraction
method.

Our suggested two-step-fitting approach (TSFA) initially fits the tested transistor model to the mea-
sured data of all output and transfer characteristics for each transistor individually. This results in, (i),
calculated characteristics corresponding to the measured characteristics and, (ii), parameters of the tran-
sistor model for each transistor representing different channel lengths. With the calculated character-
istics, we can perform a first test of the transistor model by inspecting the agreement of the measured
characteristics and the calculated curves. If the calculated characteristics significantly deviate from the
measured characteristics, the transistor model is not able to describe the full range of operation modes of
the OTFT and has to be improved. A clear drawback of fitting algorithms is, that fitting can produce good
results with wrong underlying model functions as long as the number of parameters is high enough. [48]
So this first validity check is not sufficient to thoroughly test the transistor model. This drawback of fitting
algorithms is obliterated by the second step of our TSFA, in which we inspect the extracted parameters
of all transistors with different channel length. If the parameters show a pronounced dependence on the
channel length, the transistor model does not pass this second test and has to be improved.

2.3.1 Constant Mobility Model

Our two-step-fitting approach (TSFA) is demonstrated by testing a transistor model with constant
mobility. This transistor model contains only the mobility prefactor µ0, the threshold voltage VT ,the
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Figure 2.8: The grey crosses show measured output characteristics of bottom-gate bottom-contact OTFTs
using dinaphtho[2,3-b:2’,3’-f]thieno[3,2-b]thiophene (DNTT) as the organic semiconductor and gold
(Au) contacts functionalised with pentafluorobenzenethiol (PFBT) for different channel lengths L and
channel widths W. [24,49,50] The black lines correspond to the output characteristics calculated via the
constant mobility model with the parameters extracted by the fitting procedure described in Chapter 2.2.
The agreement between measured and calculated output characteristics is quite good, which makes the
transistor model pass the first step of the two-step-fitting approach (TSFA). The minor deviations of
measured and calculated output characteristics are most evident for the shortest channel length of L =
2 µm (upper left panel). Those deviations appear for the highest absolute gate-source voltage −VGS =
3.00 V at the transition from linear to saturation regime −VDS ≈ 2.2 V and for lower absolute gate-source
voltages −VGS < 3.00 V in the saturation regime −VDS ≈ 3.0 V.

channel-width-reduced ohmic drain resistance rD,o and the channel-width-reduced ohmic source resis-
tance rS,o. To perform the test, James Borchert5 provided us with measured characteristics of a set
of bottom-gate bottom-contact OTFTs using dinaphtho[2,3-b:2’,3’-f]thieno[3,2-b]thiophene (DNTT) as
the OSC and gold (Au) contacts functionalised with pentafluorobenzenethiol (PFBT). Details about those
transistors can be found in [24, 49, 50]. From the measured output characteristics, indicated with grey
crosses in Figure 2.8, those OTFTs appear to be very close to the ideal thin-film transistor with very low
contact resistances and a linear increase of the absolute drain current −ID for low absolute drain-source
voltages −VDS ≈ 0 V, even for short channel lengths of L = 2 µm (upper left panel in Figure 2.8).

5Max Planck Institute for Solid State Research, Heisenbergstraße 1, 70569 Stuttgart, Germany; J.Borchert@fkf.mpg.de
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Figure 2.9: Parameters of the constant mobility model as a function of the channel length L of the
transistors, for which the parameters were individually extracted via the fitting procedure described in
Chapter 2.2. The threshold voltage VT exhibits a minor channel-length dependence for low channel
lengths L ≲ 20 µm (upper left panel). This dependence can be associated to the threshold-voltage roll-
off, [51, 52] which is not considered in the tested transistor model. A more pronounced channel-length
dependence is appearing for the mobility prefactor µ0 in the upper right panel, which increases from
about µ0 ≈ 2 Vs

cm2 for L = 2 µm to about µ0 ≈ 4 Vs
cm2 for L = 80 µm. This dependence cannot be explained

by the black line representing the inclusion of a transfer length LT in the transistor model (details see
text). The total width reduced ohmic contact resistance rC,o = rD,o + rS,o shows a very pronounced
dependence on the channel length in the lower panel. This dependence cannot be justified within the
assumed transistor model. Both, the mobility and contact resistance dependence on the channel length
provoke a failure of the transistor model.

The calculated output characteristics, shown as black lines in Figure 2.8, represent the constant mo-
bility model with the parameters extracted for each transistor individually via the fitting procedure de-
scribed in Chapter 2.2. The measured and calculated output characteristics match well enough to let
the constant mobility model pass the first step of the TSFA. For the second step of the TSFA, we plot
the parameters of the constant mobility model extracted for each transistor as a function of the channel
length L of the corresponding transistor in Figure 2.9.

To pass the second step of the TSFA, the parameters of the transistor model, extracted in the first
step for each transistor with a distinct channel length L, have to be independent of the channel length.
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So, within unavoidable variations of the parameters, stemming from device-to-device-fluctuations, the
parameters have to be the same for all transistors. Figure 2.9 shows the threshold voltage VT (upper left
panel in Figure 2.9), the mobility prefactor µ0 (upper right panel in Figure 2.9) and the total channel-
width-reduced ohmic contact resistance rC,o = rD,o + rS,o (lower panel in Figure 2.9). Note that the
mobility prefactor µ0 is equal to the total mobility µ given in Equation (2.1) in this case because we
assume no charge-carrier-density dependence γ = 0 and no field dependence κ = 0.

The threshold voltage VT shows only minor variations in the order of 0.1 V with respect to the
channel length L (see upper left panel in Figure 2.9). The slight increase of the threshold voltage for low
channel lengths L ≲ 20 µm is commonly associated to the so-called threshold-voltage roll-off. [51, 52]

A much more pronounced dependence on the channel length L can be seen in the upper right panel
in Figure 2.9 for the mobility prefactor µ0 with an increase from a value of µ0 ≈ 2 Vs

cm2 for the shortest
channel length L = 2 µm to µ0 ≈ 4 Vs

cm2 for L = 80 µm. We could try to explain this evident channel-
length dependence of the mobility prefactor by introducing the so-called transfer length LT . [47, 53–55]
This transfer length accounts for an elongation of the channel L→ L+LT . The reasons for this elongation
can be multifaceted, e.g. due to etching processes or an additional distance that charge carriers have to
travel in the OSC to reach the channel (in particular for bottom-gate top-contact OTFTs). Considering
the transfer length LT would result in a channel-length dependence of the mobility prefactor in the form
of µ0 = µ0,T

L
L+LT

with a new mobility prefactor µ0,T . Performing a fit of the channel-length dependence
of µ0 involving the extracted parameters shown in the upper right panel in Figure 2.9 delivers a new
mobility prefactor of µ0,T = 3.87 Vs

cm2 and a transfer length of LT = 2.8 µm. The associated curve is
drawn as a black line in the upper right panel in Figure 2.9. This calculated curve does not represent the
extracted parameters well, because it systematically underestimates the extracted values for high channel
lengths L > 50 µm and overestimates them for intermediate channel lengths L > 10 µm and L < 50 µm.

Although the transistor model already failed due to the pronounced and inexplicable channel-length
dependence of the mobility prefactor µ0, an even more obvious failure of the transistor model can be seen
in the lower panel in Figure 2.9, showing the total channel-width-reduced ohmic contact resistance rC,o

as a function of the channel length L. This total contact resistance rC,o is the sum of the channel-width-
reduced ohmic drain and source resistance rC,o = rD,o+rS,o. The total contact resistance exhibits a nearly
linear increase with respect to the channel length and increases from rC,o ≈ 0.09 kΩcm at L = 2 µm to
rC,o ≈ 0.66 kΩcm at L = 80 µm.

Our two-step-fitting approach enables the analysis of the reason for the failure of the transistor model
in the second step of the TSFA by looking at the deviations of the calculated output characteristics
from the measured output characteristics shown in Figure 2.8. Those deviations deliver indications for
necessary improvements of the transistor model. To interpret those indications, the knowledge of the
influence of parameters on the shape of the output characteristics is required, which we developed in
Chapter 2.1.4. Deviations between measured and calculated output characteristics can be found in two
regions in Figure 2.8. The first region is in the saturation regime for high absolute drain-source voltages
−VDS ≈ 3.0 V. In this region, the measured characteristics show a non-vanishing slope, whereas the
calculated characteristics are flat. This deviation can be extenuated by including the exponent of the field
sensitivity of the mobility κ (cf. lower left panel in Figure 2.4). The second region is at the transition
between the linear and the saturation regime, particularly pronounced for the highest absolute gate-source
voltage −VGS = 3.00 V at about −VDS ≈ 2.2 V for L = 2 µm to −VDS ≈ 1.7 V for L = 80 µm. The shape
of the output characteristics in this region is significantly influenced by the exponent of the sensitivity
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with respect to the charge-carrier density of the mobility γ . So, the deviations in the two regions suggest,
that we can try to improve the transistor model by including a field and charge-carrier-density dependence
of the mobility.

2.3.2 Field and Charge-Carrier-Density Dependent Mobility Model

The results of the first step of the TSFA for the transistor model including the exponents of the sensi-
tivity with respect to the field and charge-carrier density of the mobility κ and γ , respectively, are shown
in Figure 2.10. As desired, the deviations in the saturation regime and at the transition between linear
regime and saturation regime have significantly reduced, compared to the fits for the constant mobility
model shown in Figure 2.8. The agreement between measured and calculated output characteristics is
excellent and the first step of our TSFA is passed.

In the second step of the TSFA, the transistor model with field and charge-carrier-density dependent
mobility fails even more evidently than the constant mobility model above. In the left panel in Fig-
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Figure 2.10: Measured (grey crosses) and calculated (black lines) output characteristics of the OTFTs
underlying the data shown in Figure 2.8. In contrast to Figure 2.8, the calculated curves here represent fits
of a transistor model incorporating a field and charge-carrier-density dependent mobility. The agreement
between measured and calculated output characteristics significantly improves compared to the fits of
the constant mobility model shown in Figure 2.8. As a consequence, the first step of our TSFA is well
passed.
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Figure 2.11: Selected parameters of the transistor model with field- and charge-carrier-density-dependent
mobility extracted in the first step of the two-step-fitting approach as a function of the channel length L.
The left panel shows an apparent channel-length dependence of the mobility prefactor µ0, which, by its
own, would already cause a failure of the transistor model. The right panel, showing the approximately
linear channel-length dependence of the total channel-width-reduced ohmic contact resistance rC,o =
rD,o + rS,o, makes the failure of the transistor model even more evident with values increasing by more
than one order of magnitude.

ure 2.11, the mobility prefactor µ0 exhibits an apparent channel length L dependence with values in the
range of µ0 ≈ 2.3 Vs

cm2 for L = 2 µm to µ0 ≈ 4.3 Vs
cm2 for L = 80 µm. This apparent channel-length de-

pendence of the mobility prefactor µ0 is surpassed by the obvious channel-length dependence of the total
channel-width-reduced ohmic contact resistance rC,o = rD,o + rS,o, illustrated in the right panel in Fig-
ure 2.11. The nearly perfect linear increase by more than one order of magnitude from rC,o ≈ 0.15 kΩcm
for L = 2 µm to rC,o ≈ 2.00 kΩcm for L = 80 µm causes an obvious failure of the transistor model.

This failure of the transistor model is not just a peculiarity of the bottom-gate bottom-contact DNTT
OTFTs investigated above. We tested several sets of OTFTs with different geometries, different OSCs,
and different contact treatment fabricated and measured by two different groups. Measured and calcu-
lated output characteristics of a representative OTFT out of each set are shown in Figure 2.12 and the
extracted total channel-width-reduced ohmic contact resistance rC,o as a function of the channel length
L for each set of OTFTs is plotted in Figure 2.13. In short, all sets of OTFTs provoke a failure of the
transistor model. In detail, the four additionally tested sets of OTFTs are discussed in the following.

The set of OTFTs represented by the output characteristics, shown in the upper left panel in Fig-
ure 2.12, uses the same OSC, DNTT, as the set of OTFTs investigated above with a different geome-
try. [56] Instead of bottom-contact architecture, the Au contacts are deposited as top-contacts. Regard-
less of the change in geometry, the calculated output characteristics for the set of bottom-gate top-contact
DNTT OTFTs, determined by the parameters of the transistor model with field and charge-carrier den-
sity dependent mobility extracted in the first step of our TSFA, match well with the measured output
characteristics (see upper left panel in Figure 2.12).

The remaining sets of OTFTs shown in Figure 2.12 are all bottom-gate bottom-contact OTFTs us-
ing pentacene (upper right panel in Figure 2.12) and C60 (lower panels in Figure 2.12) as OSC. For
the OTFTs belonging to the upper right and the lower left panel in Figure 2.12, the Au contacts were
coated with a self-assembled monolayer (SAM) of 2-phenylpyrimidine-5-thiol (BP0-down) and 4-(2-
mercaptophenyl)pyrimidine (BP0-up), respectively, to avoid injection barriers. The contacts of the set of
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Figure 2.12: Representative measured output characteristics (grey crosses) of the tested additional sets
of OTFTs and calculated output characteristics (black lines) for the fit of the corresponding transistor
model performed within the first step of the two-step-fitting approach. In the upper left panel, the out-
put characteristics for a bottom-gate top-contact (TC) OTFT using dinaphtho[2,3-b:2’,3’-f]thieno[3,2-
b]thiophene (DNTT) as OSC and gold (Au) contacts is shown. [56] The upper right panel is associ-
ated to a bottom-gate bottom-contact OTFT using pentacene as OSC and Au contacts coated with a
self-assembled monolayer (SAM) of 2-phenylpyrimidine-5-thiol (BP0-down). The lower left and lower
right panel shows output characteristics of bottom-gate bottom-contact OTFT using C60 as OSC and Au
contacts coated with SAMs of 4-(2-mercaptophenyl)pyrimidine (BP0-up) and biphenyl-4-thiol (BP0),
respectively. [1, 57] For the set of OTFTs represented by the lower right panel (C60 - BP0), a Schottky
diode was considered to capture the non-linear behaviour in the linear regime (S-shape of the output
characteristics for low absolute drain-source voltages VDS ≈ 0). The agreement between measured and
calculated output characteristics is acceptable in all cases.

C60 OTFTs, referring to the lower right panel of Figure 2.12, are covered with a SAM of biphenyl-4-thiol
(BP0). [1, 57] This contact treatment introduces a significant injection barrier and leads to an S-shape in
the linear regime of the output characteristics below VDS ≲ 0.5 V (non-linear increase of the absolute
drain current ID with respect to the absolute drain-source voltage VDS in the lower right panel in Fig-
ure 2.12). The agreement between measured and calculated output characteristics shown in Figure 2.12
is acceptable for all sets of OTFTs. So the first step of our TSFA is passed.

For the second step of the TSFA, the total channel-width-reduced ohmic contact resistance rC,o =
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Figure 2.13: Total channel-width-reduced ohmic contact resistance rC,o = rD,o + rS,o as a function of
the channel length L for different sets of OTFTs. Upper left panel: A set of bottom-gate top-contact
OTFTs using dinaphtho[2,3-b:2’,3’-f]thieno[3,2-b]thiophene (DNTT) as organic semiconductor (OSC)
and gold (Au) contacts. Upper right panel: A set of bottom-gate bottom-contact OTFTs using pentacene
as OSC and a self-assembled monolayer of 2-phenylpyrimidine-5-thiol (BP0-down) to cover the Au
contacts. Lower left and lower right panel: A set of bottom-gate bottom-contact OTFTs using C60
as OSC and a self-assembled monolayer of 4-(2-mercaptophenyl)pyrimidine (BP0-up) and biphenyl-4-
thiol (BP0), respectively, to cover the Au contacts. For all sets of OTFTs, the total channel-width-reduced
ohmic contact resistance rC,o shows a pronounced dependence on the channel length. As a consequence,
the transistor model is wrong, according to our two-step-fitting approach, for a representative variety
of different geometries, OSC and contact treatments. The variation of rC,o for low channel lengths
L ≲ 20 µm in the upper right panel and the lower panels represents device-to-device fluctuations.

rD,o + rS,o is depicted as a function of the channel length L in Figure 2.13 for the four different sets of
OTFTs introduced in Figure 2.12. For all sets of OTFTs, a pronounced channel-length dependence of the
total channel-width-reduced ohmic contact resistance rC,o is observed. This channel-length dependence
provokes a failure of the tested transistor model in the second step of our TSFA. The representative
sample of different sets of OTFTs including different geometries, different OSCs, and different contact
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treatments implies that the state-of-the-art transistor model widely used in literature, which we tested,
has to be reconsidered.

2.4 Model Evaluation

As already mentioned in Chapter 2.3, when evolving from the constant mobility model to the field-
and charge-carrier-density-dependent mobility model, our two-step-fitting approach is not only a proper
method to test transistor models, it also provides insight, why a transistor model fails. This insight can
be gained from two different sources. On the one hand, by looking at the deviations between measured
and calculated characteristics and, on the other hand, by looking at the channel-length dependence of the
extracted parameters.

Starting with the first source to gain insight, we inspect the deviations of the calculated output char-
acteristics from the measured output characteristics shown in Figure 2.10 and Figure 2.12. A close look
reveals, that the calculated curve for the highest absolute gate-source voltage |VGS| systematically over-
estimates the measured curve in the saturation regime and the calculated curve for the second highest
absolute gate-source voltage |VGS| systematically underestimates the measured curve in the saturation
regime. This behaviour is present for all output characteristics of all sets of OTFTs shown in Figure 2.10
and Figure 2.12.

The spacing in the saturation regime of output-characteristics curves for different gate-source volt-
ages VGS is predominantly determined by the interplay of the contact resistance and the mobility. We
already noticed in Chapter 2.1.4, that the shape of the output characteristics of an ideal OTFT (upper
left panel in Figure 2.4) is comparable to the shape of the output characteristics of a device with ohmic
contact resistances and a charge-carrier-density dependent mobility (middle right panel in Figure 2.4).
To further illustrate the interplay of contact resistance and mobility, Figure 2.14 shows calculated output
characteristics of two devices only differing in the channel-width-reduced ohmic source resistance rS,o

and the mobility prefactor µ0.
The black curves in Figure 2.14 show the calculated output characteristics for an OTFT with channel

length L= 43.4 µm, channel width W = 200 µm, gate capacitance CG = 700 nF
cm2 , channel-width-reduced

ohmic drain and source resistance rD,o = rS,o = 0.07 kΩcm, threshold voltage VT = −1.25 V and mo-
bility prefactor µ0 = 3.2 cm2

Vs . Due to the rather low contact resistances, the spacing of the curves in
the saturation regime for high absolute drain-source voltages −VDS ≳ 2.0 V is increasing nearly linear
(nearly quadratic increase of the absolute saturation drain current with increasing absolute gate-source
voltage). In comparison, the grey dashed curves in Figure 2.14 show the output characteristics of an
OTFT with a 10 times larger channel-width-reduced ohmic source resistance rS,o = 0.7 kΩcm and a mo-
bility prefactor raised to µ0 = 6.1 cm2

Vs . Although the curves for the highest absolute gate-source voltage
−VGS = 3.0 V are approximately equal, the curves for lower absolute gate-source voltage −VGS < 3.0 V
differ considerably. The spacing between the dashed grey curves in Figure 2.14 in the saturation regime
for high absolute drain-source voltages −VDS ≳ 2.0 V are nearly equidistant (nearly linear increase of
the absolute saturation drain current with increasing absolute gate-source voltage).

The comparison shown in Figure 2.14 demonstrates, that the spacing of the curves in the saturation
regime of the output characteristics is significantly influenced by the interplay of the mobility and the
contact resistance. If the field and/or charge-carrier-density dependence of the mobility is captured wrong
in our transistor model, it can be compensated by a wrong contact resistance. As the contact resistance
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Figure 2.14: Calculated output characteristics of two OTFTs with channel length L = 43.4 µm, channel
width W = 200 µm, gate capacitance CG = 700 nF

cm2 , channel-width-reduced ohmic drain resistance
rD,o = 0.07 kΩcm and threshold voltage VT =−1.25 V. The black lines represent an OTFT with mobility
prefactor µ0 = 3.2 cm2

Vs and channel-width-reduced ohmic source resistance rS,o = 0.07 kΩcm and the
grey dashed lines show the output characteristics of an OTFT with µ0 = 6.1 cm2

Vs and rS,o = 0.7 kΩcm.
The solid black and dashed grey curves for the highest absolute gate-source voltage −VGS = 3.0 V are
approximately equal. For lower absolute gate-source voltage −VGS ≤ 2.67 V, the solid black and dashed
grey curves are distinctly different, in particular in the saturation regime.

is a property of the contact and the mobility is a property of the channel, the wrong contact resistance
has to increase with increasing channel length to compensate the wrong description of the channel. So, a
wrong field and/or charge-carrier-density dependence of the mobility is able to explain the outcomes of
our two-step-fitting approach performed in Chapter 2.3.

The second source to gain insight in the course of our two-step-fitting approach is to look at the
channel-length dependence of the extracted parameters. The total channel-width-reduced ohmic contact
resistance rC,o = rD,o+ rS,o shows a nearly perfect linear increase with respect to the channel length. The
channel length could indeed have a significant influence on the contact region due to the long-ranging na-
ture of Coulomb interactions. Charge accumulations distributed over a large region in combination with a
metal contact and the image charges associated with the metal contact can create dipoles. Those dipoles
are able to seriously influence the contact region and especially the injection behaviour at the source
contact. The longer the channel, the more pronounced the influence on the contact region, delivering a
plausible explanation for the increase of the contact resistance with increasing channel length.

In summary, we identified two possible problems causing the failure of the transistor model within
our two-step-fitting approach. First, the field and/or charge-carrier-density dependence of the mobil-
ity within the OSC might be wrong. This problem serves as a motivation to develop a new simulation
technique for hopping transport in Chapter 3, which additionally provides insight into charge transport
mechanisms investigated in Chapter 4. Second, the description of contacts might require the considera-
tion of long-ranging Coulomb interactions from charge distributed over the entire device. This problem
serves as a motivation for Chapter 5, which investigates the influence of the charge-carrier density within
a device on the region close to the contact.
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3 Correction Energy Concept

From a theoretical point of view, organic semiconductor (OSC) devices represent a challenging topic
due to the huge range in length-scales that have to be covered. Starting from small molecules or segments
of a polymer chain with diameters in the order of one nanometre, effects on all length scales up to the
device size have to be considered for a proper theoretical description of the device. The size of such
devices can range up to some decimetres for large area lighting [58, 59] or solar cells [60, 61]. Even
organic transistors reach sizes of some millimetres. [1] Not all dimensions of an OSC device are large.
As an example, Park et al. fabricated organic light-emitting diodes (OLEDs) with a thickness of the
active layer of 113 nm and lateral sizes of 15 cm by 15 cm. [62] Although this is an extreme example, the
lateral size in OSC devices is typically 4 to 5 orders of magnitude larger than the thickness. This huge
range of appearing sizes requires multiscale approaches [63–66] to link insights gained on a molecular
level to their influence on the device performance. On the microscopic level of molecules and segments
of polymer chains, density functional theory (DFT) based approaches, e.g. [68], are widely used, often
in combination with molecular dynamics, e.g. [67]. On the macroscopic device level, drift-diffusion
simulations, e.g. [31], or analytical approximations, e.g. [26, 27], describing the device performance are
common. [69] Those macroscopic considerations rely on a proper parametrisation of the material that
incorporates the effects arising from the microscopic level. To link the microscopic and the macroscopic
level, a so-called mesoscopic level can be introduced. [69] This mesoscopic level, which acts on the
order of up to some hundred nanometres, is captured by a theoretical concept called hopping transport.
[8, 70] Besides hopping transport, band transport and dynamic disorder models are the most important
alternative approaches to describe charge transport in OSCs on a mesoscopic scale. [71–77] In this thesis,
we will only focus on hopping transport.

In hopping transport, charge carriers are occupying spatially localised sites with certain energy levels.
The charge carriers are allowed to hop between the spatially localised sites. This motion is regulated by
hopping rates, which are determined by the energy levels of the localised sites, the distance between
them, the temperature, and other input parameters. Those input parameters can be obtained from or at
least justified by considerations on a microscopic level. As an outcome, hopping transport can provide a
parametrisation for drift-diffusion simulations [31] or analytical device models (cf. Chapter 2). Hopping
transport was even used to successfully simulate entire small devices [63, 78].

To extract observables such as mobilities from the theoretical concept of hopping transport, certain
techniques are required. We can differentiate between two categories of those techniques: (i), analytical
derivations and, (ii), simulations.

Analytical derivations, e.g., variable-range hopping (VRH) in combination with percolation theory
[34] or multiple trapping and release (MTR) [35], provide an analytic expression for observables, e.g.,
the mobility depending on input parameters such as the density of states (DOS) of the energy levels of
the localised sites, the temperature, the applied electric field, the charge-carrier density or the distance
between the sites. Those analytical derivations are able to describe the system well in a certain parameter
region. Due to the assumptions and approximations within their derivations, they unfortunately cannot
provide a description of the system as a whole. In Chapter 2.4, we already found that the mobility model
suggested by VRH or MTR does not provide a sufficient estimate for the range of electric fields and
charge-carrier densities observed in an OTFT.

Simulations provide numbers for observables referring to a certain set of numbers for the input pa-
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rameters with numerical or stochastical precision. The two most important simulation techniques for
hopping transport are currently, (i), kinetic Monte Carlo (KMC) [3, 8, 79–85] and, (ii), the master equa-
tion (ME) approach [11, 86–91]. In KMC simulations, a stochastic process is applied to calculate the
requested observables. In principle, all input parameters, effects, and interactions can be directly con-
sidered, provided that one can afford it computationally. In contrast, the ME approach can only account
for interactions in a mean-field formalism. Going beyond mean-field in a ME approach is difficult and
computationally expensive. [92]

Probably the most important reason to run simulations is to gain insight into the interplay of influ-
ences of different input parameters on the requested observables. For example, one could ask for the
influence of the electric field on the bulk mobility in an OSC over a wide range of electric fields (cf.
Chapter 4). With a such gained insight from simulations, an analytical expression for the desired ob-
servable can be proposed that covers a wide range of input parameters properly. This was, e.g., done by
Pasveer et al. [11]. As the best conceivable case, it is desirable that this proposed analytical expression
can be justified by an analytical derivation that utilises the gained insight to perform the right approxi-
mations for the right parameter ranges. Altogether, a clever combination of simulations and analytical
considerations is likely preferable to advance the theoretical understanding.

In the following, we present a new simulation technique that is situated between KMC and ME. This
new simulation technique, that we call correction energy concept (CEC), also enables new analytical
derivations, especially regarding the electric field dependence of observables. Hence, the CEC can act
on both sides, simulations (discussed in this chapter) and analytical considerations (discussed in Chap-
ter 4). Regarding simulations, the benefits and drawbacks of KMC and ME are mostly contrary. KMC
simulations can provide very precise results, but often with the drawback of high computational cost.
In contrast, ME simulations are usually computationally much less expensive, but interactions and cor-
relations are barely included sometimes resulting in untrustworthy outcomes. Our CEC combines the
benefits of both simulation techniques by providing computationally cheap and trustworthy outcomes.

The CEC consists of two major parts. In the first part, the hopping rates are translated to so-called
correction energies, which correctly account for the applied electric field. This translation is described
by the example of charge transport in the bulk of an OSC in detail in Chapter 3.1. The nature and con-
sequences of those correction energies are discussed in Chapter 4.1. The second part of the CEC regards
the correct occupation statistics that is required to include the correction energies. Only if the correction
energies are properly incorporated in the occupation statistics, an accurate extraction of observables is
possible. This second part is found in Chapter 3.2. With the theoretical basics of the CEC being dis-
cussed in Chapter 3.1 and Chapter 3.2, the subsequent Chapter 3.3 describes the way we implemented
the CEC with some intricacies that should be considered to enable a proper numerical evaluation. Fi-
nally, in Chapter 3.4 the results of our CEC are benchmarked against very accurate and computationally
expensive KMC simulation results.

3.1 From Rates To Energies

For the derivation of the CEC, we focus on the example of charge transport in the bulk of an OSC
with only one type of charge carrier present. In principle, the CEC can be applied to any system that can
be simulated with hopping transport including contacts, electron-hole creation/annihilation, et cetera. To
show the basic idea and to perform a first benchmark of the method, however, the most simple system in
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hopping transport is suited best. This most simple system is the chosen example, considering only one
type of charge carrier that hops around in the bulk of an OSC.

3.1.1 The Bulk System

A detailed description of such a bulk system, including a recipe to perform KMC simulations on
it, can be found in [3, 93]. The key ingredients that we have to consider here are summarised briefly.
Spatially localised sites i can be occupied by, at maximum, one charge carrier. The position of a site i is
given by a vector r⃗i. The boundary conditions are chosen such that when a charge carrier hops out towards
a certain direction, it jumps back in on the opposite side of the simulation volume. This is reminiscent
of periodic boundary conditions, but with the restriction, that this boundary condition does not conserve
energy in the direction of the applied electric field, as will be discussed in detail in Chapter 3.1.2. We
assign an energy level εi to each site i at the beginning of the simulation. This assignment can be made,
e.g., by drawing random numbers from a Gaussian distribution determined by a probability density p(ε)

p(ε) =
1√

2πσ
exp
(
− ε2

2σ 2

)
(3.1)

with a certain width called energetic disorder σ .
To make the charge carriers move, hopping rates Rij(ξ ) have to be introduced for a hop of a charge

carrier from site i to site j depending on the initial configuration ξ . A configuration ξ = {i1, i2, . . . , iNcc}
is one possibility to place the fixed number of charge carriers Ncc on the Ns sites in the system volume
with in being the site that charge carrier n occupies. All charge carriers are indistinguishable, so the order
in ξ is irrelevant. The number of possible configurations Ncnfg is given by

Ncnfg =

(
Ns

Ncc

)
=

Ns!
Ncc!(Ns −Ncc)!

(3.2)

with the binomial coefficient being expressed by factorials. Only one charge carrier can hop at once.
The hopping rate Rij(ξ ) depends on the initial configuration ξ due to the interactions with the charge
carriers that do not move during the hop from site i to site j. Additionally, site exclusion requires that at
maximum one charge carrier can occupy a site, which implies that site i has to be occupied in state ξ and
site j has to be unoccupied.

The two most common rate equations are the Miller-Abrahams rate equation [94]

RMA
ij (ξ ) = ν0 exp(−2α∆rij)

exp
(
−Ej(ξ ′)−Ei(ξ )

kBT

)
for Ej(ξ ′)> Ei(ξ )

1 else
(3.3)

and the Marcus rate equation [95]

RM
ij (ξ ) = ν0 exp(−2α∆rij)exp

(
−
(Ej(ξ ′)−Ei(ξ )+Er)

2

4ErkBT

)
(3.4)

with a hopping prefactor ν0, the charge delocalisation constant α , the distance ∆rij = |∆⃗rij| that is covered
during the hop respecting the boundary conditions, the Boltzmann constant kB, the temperature T , the
reorganisation energy Er, the energy Ei(ξ ) of a charge carrier at site i in the initial configuration ξ and
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the energy Ej(ξ ′) of a charge carrier at site j in the final configuration ξ ′:

Ei(ξ ) = εi + e⃗riF⃗+
k ̸=i

∑
k∈ξ

Eint
ik and Ej(ξ ′) = εj + e⃗rjF⃗+

k ̸=j

∑
k∈ξ ′

Eint
jk . (3.5)

The energy Eξ
i of site i in configuration ξ contains the site energy εi, a contribution e⃗riF⃗ from the electric

field F⃗ including the elemental charge e and the position r⃗i of site i, and a sum over the interactions
Eint

ik with all other charge carriers in configuration ξ occupying sites k. Initial and final configuration ξ
and ξ ′ have to be the same except that in ξ site i is occupied and site j is unoccupied and in ξ ′ site i is
unoccupied and site j is occupied.

With respecting the boundary conditions for the evaluation of ∆rij, we mean that hopping to a site j
in the vicinity of the initial site i across a boundary covers only a short distance and not the total system
size in the direction of the boundary as suggested by |⃗rj − r⃗i|, cf. Figure 3.1. Mathematically, this can be
captured by introducing a distance

L⃗bd = (l1bdL1
sys, l

2
bdL2

sys, l
3
bdL3

sys)
⊤ (3.6)

with the size of the actually simulated system Li
sys in spatial direction i and integer values libd indicating

where the boundary was crossed. The symbol ⊤ means that the vector is transposed. Without crossing
any boundary, all libd = 0 are zero. If the charge carrier crosses the boundary, e.g., in positive direction
of the second dimension, we would get l1bd = 0, l2bd = 1, and l3bd = 0. Crossing the boundary in negative
direction of the third dimension would give l1bd = 0, l2bd = 0, and l3bd =−1 and so on. With this variable
L⃗bd, we can formulate the actually covered distance by a hop from site i to site j respecting the boundary
conditions:

∆⃗rij = r⃗j + L⃗bd − r⃗i (3.7)

3.1.2 Violation of Energy Conservation

For our CEC, the boundary conditions are an essential ingredient being, in fact, the reason for the
need to introduce correction energies. In the following, we will have a close look at the boundary
conditions and the associated violation of energy conservation. Due to the boundary conditions, the
simulation volume is periodically repeated in all three spatial dimensions. This repetition is not only
happening for the sites and their energies, but also in terms of the charge carriers. So each charge carrier
has an infinite number of periodic replicas. In Figure 3.1, the actually simulated system of an exemplary
one-dimensional cartoon system is indicated as a black box with system size Lsys. The horizontal lines
indicate the energy levels of the sites uniformly distributed in space. Due to an externally applied electric
field, the energy levels of the sites linearly decrease with position. Black horizontal lines are in the actual
system, while grey horizontal lines indicate sites within the periodic replicas. The black ball is the actual
charge carrier that is considered in our simulation and the grey ball is a periodic replica of the black ball.

Looking at Figure 3.1, due to the externally applied electric field, the energy levels are always going
down when the charge carrier hops right, even if it crosses the boundaries. In the left panel in Figure 3.1,
the actual charge carrier at the right side of the simulation volume attempts to hop downwards in energy
due to the electric field. After crossing the boundary, it converts from an actual charge carrier, indicated
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Figure 3.1: Charge carrier hopping over the boundary towards decreasing energy levels due to an exter-
nally applied electric field. The box shows the limits of the actual simulation volume. The black ball
symbolises the actual charge carrier and the grey ball is a periodic replica of the actual charge carrier.
The horizontal lines indicate the energy level of the site at the according position. The grey energy lev-
els and the grey charge carrier shows a part of the periodic replicas of the system. The system size in
field direction is labelled Lsys. When the actual charge carrier hops towards lower energies to the right
(left panel), the energy of the considered system artificially increases due to the conversion of the actual
charge carrier to a periodic replica and vice versa (right panel). The distance ∆rij = rj+1 ·Lsys−ri related
to the hop, respecting the boundary conditions, is determined by the initial position ri, the final position
rj, the system size Lsys and the variable lbd = 1 indicating that the boundary was crossed in positive
direction, cf. Equations (3.6) and (3.7).

as a black ball, to a periodic replica, indicated as a grey ball (see right panel in Figure 3.1). Exactly at this
conversion, energy conservation is violated. During the hop, the charge carrier at the right boundary of
the system decreases its energy. We account for this decrease in energy in the hopping rate. This means,
the hopping rate suggests that the energy of the charge carrier, and, hence, the total system, decreases.
But due to the conversion, the energy of our actual system increases because it seems as if the charge
carrier would have hopped upwards in energy.

Nevertheless, this choice of the boundary conditions describes charge transport in the bulk of an
OSC appropriately, because if we cut a cube out of an OSC, charge carriers would also, on average, enter
the cube on one side and leave it on the opposite side due to the electric field. Within the cube, energy
from the electric field is converted into heat. The energy that is put into the system by the electric field
corresponds to the energy gained during the conversion from an actual charge carrier to a periodic replica
and vice versa. The dissipated heat is considered in the hopping rates, which prefer hops downwards in
energy.

While we simulate the correct behaviour, the hopping rates and the total energy of the system do not
observe the same change in energy when a charge carrier is crossing the boundaries of the actual system
marked by the black box in Figure 3.1. This discrepancy between the energy change accounted for by
the hopping rate and energy change in the total energy of the actual system is the reason why we will
introduce correction energies in Chapter 3.1.4. Prior to that, a short introduction to the global balance
equation and the steady-state-probability distribution is given in Chapter 3.1.3.
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3.1.3 Global Balance Equation

A detailed introduction to continuous-time Markov chains, which is the mathematical foundation for
hopping transport, can be found in [96]. An excerpt of the essential remarks that might be of avail in the
following is given in [93]. Here, we will briefly discuss the mathematical basics required to understand
the derivation leading to the correction energies.

To understand the global balance equation, we need to introduce two quantities: (i), the Q-matrix
and, (ii), the steady-state-probability distribution π⃗ . The Q-matrix Q = (qξ ξ ′) contains the hopping rates
Rij(ξ ) linking the initial configuration ξ and the final configuration ξ ′.

qξ ξ ′ =


Rij(ξ ) if ∀ij ∃Rij(ξ ) ̸= 0 linking ξ and ξ ′

−∑ξ ′′∈Ξ\{ξ} qξ ξ ′′ if ξ = ξ ′

0 else

(3.8)

This means that the off-diagonal elements of the Q-matrix are the rates Rij(ξ ) for a hop from site i to site
j and corresponding initial configuration ξ and final configuration ξ ′ only differing in the occupation of
site i and site j. The diagonal elements of the Q-matrix are the negative sum over all configurations ξ ′′ in
the configuration space Ξ except configuration ξ . This means we sum up all rates associated to hops with
the initial configuration ξ . Due to the constraint that only one charge carrier can hop at once, most of the
off-diagonal elements of the Q-matrix are zero because most pairs of configurations ξ and ξ ′ cannot be
converted into one another by moving only one charge carrier. The configuration space Ξ is the set of all
Ncnfg configurations and Ξ\{ξ} denotes the set of all configurations except configuration ξ .

The steady-state-probability distribution π⃗ = (πξ ) contains the probability πξ that a configuration
ξ is visited in steady state. As soon as the steady-state-probability distribution π⃗ is known, we can, in
principle, calculate each steady-state observable.

The equation determining the steady-state-probability distribution π⃗ is the so-called global balance
equation:

∑
ξ ′∈Ξ\{ξ}

πξ qξ ξ ′ = ∑
ξ ′∈Ξ\{ξ}

πξ ′qξ ′ξ . (3.9)

The term πξ qξ ξ ′ is the probability flux from configuration ξ to configuration ξ ′, because the rate qξ ξ ′

holds the outflow of probability from configuration ξ to configuration ξ ′ and this outflow weighted
by the probability πξ for configuration ξ results in a probability flux. This means, the global balance
equation, Equation (3.9), balances the probability flux out of configuration ξ to all other configurations
ξ ′ in the configuration space Ξ (left-hand side) and the probability flux into configuration ξ from all
other configurations ξ ′ in the configuration space Ξ (right-hand side). As the sum on the left-hand side
of Equation (3.9) can be written as −πξ qξ ξ due to Equation (3.8), a compact representation of the global
balance equation can be given in matrix notation (π⃗)⊤Q = (⃗0)⊤, with (⃗0)⊤ being a vector containing
Ncnfg zeros.

When no external electric field is applied, an analytic solution for the steady-state-probability distri-
bution π⃗ can be found, which we will sketch in the following. The two rate equations we have introduced
above both locally conserve energy. With energy conservation, we denote that for Miller-Abrahams rates,
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RMA
ij (ξ ), Equation (3.3), as well as for Marcus rates, RM

ij (ξ ), Equation (3.4), the relation

exp
(
−Ei(ξ )

kBT

)
Rij(ξ ) = exp

(
−

Ej(ξ ′)

kBT

)
Rji(ξ ′) (3.10)

is valid. For a proof of this claim, see [3, 93]. This Equation (3.10) already suggests the solution for the
steady-state-probability distribution π⃗:

πξ =
1
Z

exp
(
−EnoF(ξ )

kBT

)
with Z = ∑

ξ∈Ξ
exp
(
−EnoF(ξ )

kBT

)
(3.11)

with the partition function Z. The total energy EnoF(ξ ) of configuration ξ without applied electric field
is given by

EnoF(ξ ) = ∑
i∈ξ

(
εi +

1
2

j ̸=i

∑
j∈ξ

Eint
ij

)
. (3.12)

In contrast to Equation (3.5), which denotes the energy required to remove the charge carrier occupying
site i, a factor 1

2 appears in front of the interaction term to avoid double counting. With Equations (3.8),
(3.10), (3.11) and (3.12), we receive the relation

πξ qξ ξ ′ = πξ ′qξ ′ξ , (3.13)

which is the so-called local balance equation. Summing this relation over all configurations ξ ′, we end up
with the global balance equation, Equation (3.9). This shows that the steady-state-probability distribution
π⃗ , when no electric field is applied, is given by Equations (3.11) and (3.12).

When we apply an external electric field F⃗, the solution is no longer valid. The problem arises during
the conversion from an actual charge carrier to a periodic replica upon a hop of a charge carrier across
a boundary. At this moment, the change in field energy between the configurations ξ and ξ ′ and the
change in field energy proposed by the rates does not match so that Equation (3.10) is violated. This is
where correction energies come into play.

3.1.4 Correction Energies

Below, we will convert the global balance equation, Equation (3.9), into a system of equations that
enables us to approximately calculate the steady-state-probability distribution π⃗ for arbitrary electric field
strengths F⃗. In principle, this derivation can be adopted to any system simulated with hopping transport.
As the only crucial prerequisite, rates that conserve energy are required. This means, Equation (3.10)
has to be fulfilled for the chosen rate equation for all hops that are not influenced by boundaries.

The finite-dimensional and irreducible configuration space Ξ guarantees the existence of a unique
steady-state-probability distribution π⃗ that can be found by the global balance equation (π⃗)⊤Q = (⃗0)⊤,
Equation (3.9) (see [93, 96] for details). In order to find the solution, we enlarge our configuration
space to an infinite-dimensional space and, thereby, prevent the violation of energy conservation. This
prevention is achieved via advancing the configuration space by the variable l⃗bd = (libd) introduced in
Equation (3.6). Here, libd is not just used for one hop, but it counts how many times the boundary in
spatial dimension i was crossed in positive libd → libd +1 or negative libd → libd −1 direction for all hops
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and all spatial dimensions i. With this variable, the configuration space is enlarged to ξ → (ξ ,⃗ lbd). In the
illustrative one-dimensional example shown in Figure 3.1, the charge carrier performs a transition from
ξ to ξ ′ in the old configuration space. In the enlarged configuration space, it performs a transition from
(ξ , lbd) to (ξ ′, lbd +1). Coming back to the three-dimensional system, the total energy of a configuration
in the old configuration space is given by

Etot(ξ ) = ∑
i∈ξ

(
εi + e⃗riF⃗+

1
2

j ̸=i

∑
j∈ξ

Eint
ij

)
, (3.14)

whereas in the new configuration space, the total energy of the system is

Etot(ξ ,⃗ lbd) = eL⃗bdF⃗+∑
i∈ξ

(
εi + e⃗riF⃗+

1
2

j̸=i

∑
j∈ξ

Eint
ij

)
= Etot(ξ )+ eL⃗bdF⃗ (3.15)

with total distance travelled across boundaries L⃗bd = (libdLi
sys), cf. Equation (3.6). The configuration ξ is

still only accounting for the charge carriers in the actual system. Nevertheless, due to this new variable
l⃗bd, energy conservation is re-established when crossing the boundaries. Due to energy conservation, the
local balance equation, Equation (3.13), is valid in this new configuration space in the form

exp
(
−βEtot(ξ ,⃗ lbd)

)
q(ξ ,⃗lbd)(ξ ′ ,⃗l′bd)

= exp
(
−βEtot(ξ ′ ,⃗ l′bd)

)
q(ξ ′ ,⃗l′bd)(ξ ,⃗lbd)

(3.16)

with the inverse temperature β = 1
kBT . This form of the local balance equation, Equation (3.16), is correct

even for hops across the boundaries and we assume a steady-state-probability distribution of the form

π(ξ ,⃗lbd)
=

1
Z

exp
(
−βEtot(ξ ,⃗ lbd)

)
π0
(ξ ,⃗lbd)

with Z = ∑
(ξ ,⃗lbd)

exp
(
−βEtot(ξ ,⃗ lbd)

)
π0
(ξ ,⃗lbd)

(3.17)

with a remaining steady-state-probability distribution π0
(ξ ,⃗lbd)

required to satisfy the boundary conditions.
The infinite number of periodic replicas of the charge carriers enforces, that the steady-state-probability
distribution π(ξ ,⃗lbd)

does not depend on the number of boundary crossings l⃗bd.

π(ξ ,⃗lbd)
= π(ξ ,⃗l′bd)

= πξ ∀⃗lbd ,⃗ l′bd ∈ Z3 (3.18)

with the steady-state-probability distribution πξ that we are looking for. This boundary condition, Equa-
tion (3.18), for the infinite-dimensional configuration space introduces a restriction for the remaining
steady-state-probability distribution π0

(ξ ,⃗lbd)
:

π(ξ ,⃗lbd)
=

1
Z

exp
(
−β
(

Etot(ξ )+ eL⃗bdF⃗
))

π0
(ξ ,⃗lbd)

=
1
Z

exp
(
−β
(

Etot(ξ )+ eL⃗′
bdF⃗
))

π0
(ξ ,⃗l′bd)

= π(ξ ,⃗l′bd)

⇒ π0
(ξ ,⃗lbd)

= π0
(ξ ,⃗l′bd)

exp
(

βe(⃗Lbd − L⃗′
bd)F⃗

)
= π0

ξ exp
(

βeL⃗bdF⃗
)

. (3.19)

A further assumption containing the remaining steady-state-probability distribution π0
ξ of

π0
ξ = exp

(
β ∑

i∈ξ
e⃗riF⃗

)
πc

ξ with πc
ξ = exp

(
βEc

ξ

)
(3.20)
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finally introduces the configuration-dependent correction energy Ec
ξ and its corresponding term πc

ξ con-
tributing to the probability πξ . With all those assumptions, we come back to the global balance equation,
Equation (3.9), and plug in Equation (3.17).

∑
(ξ ′ ,⃗l′bd )̸=(ξ ,⃗lbd)

1
Z

π0
(ξ ,⃗lbd)

exp
(
−βEtot(ξ ,⃗ lbd)

)
q(ξ ,⃗lbd)(ξ ′ ,⃗l′bd)

=

= ∑
(ξ ′ ,⃗l′bd )̸=(ξ ,⃗lbd)

1
Z

π0
(ξ ′ ,⃗l′bd)

exp
(
−βEtot(ξ ′ ,⃗ l′bd)

)
q(ξ ′ ,⃗l′bd)(ξ ,⃗lbd)

(3.21)

Now we make use of the local balance equation in the infinite configuration space, Equation (3.16), and
the relation π0

(ξ ,⃗lbd)
= π0

ξ exp
(

βeL⃗bdF⃗
)

from Equation (3.19).

∑
(ξ ′ ,⃗l′bd )̸=(ξ ,⃗lbd)

1
Z

π0
ξ exp

(
βeL⃗bdF⃗

)
exp
(
−βEtot(ξ ,⃗ lbd)

)
q(ξ ,⃗lbd)(ξ ′ ,⃗l′bd)

=

= ∑
(ξ ′ ,⃗l′bd )̸=(ξ ,⃗lbd)

1
Z

π0
ξ ′ exp

(
βeL⃗′

bdF⃗
)

exp
(
−βEtot(ξ ,⃗ lbd)

)
q(ξ ,⃗lbd)(ξ ′ ,⃗l′bd)

(3.22)

With some rearrangements within this equation, relation q(ξ ,⃗lbd)(ξ ,⃗lbd)
=−∑(ξ ′ ,⃗l′bd )̸=(ξ ,⃗lbd)

q(ξ ,⃗lbd)(ξ ′ ,⃗l′bd)
from

Equation (3.8), and inserting the assumption for π0
ξ from Equation (3.20), we receive

−πc
ξ exp

(
β ∑

k∈ξ
e⃗rkF⃗

)
q(ξ ,⃗lbd)(ξ ,⃗lbd)

=

= ∑
(ξ ′ ,⃗l′bd )̸=(ξ ,⃗lbd)

πc
ξ ′ exp

(
β ∑

k′∈ξ ′
e⃗rk′F⃗

)
exp
(

βe(⃗L′
bd − L⃗bd)F⃗

)
q(ξ ,⃗lbd)(ξ ′ ,⃗l′bd)

. (3.23)

Collecting all field dependent terms and some further rearrangements give

0 = ∑
(ξ ′ ,⃗l′bd )̸=(ξ ,⃗lbd)

πc
ξ ′ exp

(
βe

(
∑

k′∈ξ ′
r⃗k′ + L⃗′

bd − ∑
k∈ξ

r⃗k − L⃗bd

)
F⃗

)
q(ξ ,⃗lbd)(ξ ′ ,⃗l′bd)

+πc
ξ q(ξ ,⃗lbd)(ξ ,⃗lbd)

. (3.24)

The term in the inner brackets is exactly the distance

∆⃗rij = ∑
k′∈ξ ′

r⃗k′ + L⃗′
bd − ∑

k∈ξ
r⃗k − L⃗bd = r⃗j − r⃗i + L⃗′

bd − L⃗bd (3.25)

associated with the hop from site i to site j, respecting the boundary conditions, which is performed
during the transition from configuration ξ to configuration ξ ′, cf. Equation (3.7). All terms k ̸= i and
k′ ̸= j of charge carriers that do not move during the hop cancel out and the difference L⃗′

bd − L⃗bd provides
the required correction of the distance when a boundary is crossed during the hop.

Entries in the Q-matrix for different values of l⃗bd and l⃗′bd are all the same q(ξ ,⃗lbd)(ξ ′ ,⃗l′bd)
= qξ ξ ′ and

the infinite-dimensional system of equations, Equation (3.24), provides always the same equations for
different values of l⃗bd. So we can reduce the configuration space back to our initial finite size

0 = ∑
ξ ′ ̸=ξ

πc
ξ ′ exp

(
βe∆⃗rijF⃗

)
qξ ξ ′ +πc

ξ qξ ξ (3.26)
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and introduce a modified Q-matrix Q̃ = (q̃ξ ξ ′) given by

q̃ξ ξ ′ =


exp
(

βe∆⃗rijF⃗
)

Rij(ξ ) if ∀ij ∃Rij(ξ ) ̸= 0 linking ξ and ξ ′

qξ ξ if ξ = ξ ′

0 else

(3.27)

with the off-diagonal elements containing an additional factor exp
(

βe∆⃗rijF⃗
)

due to the electric field F⃗
and the main diagonal not being modified q̃ξ ξ = qξ ξ . Finally, this results in an alternative form of the
global balance equation

Q̃π⃗c = 0 with π⃗c = (πc
ξ ) and πc

ξ = exp
(

βEc
ξ

)
(3.28)

which has to be solved to receive the correction energies Ec
ξ

3.1.5 Example for the Modification of the Rates

As an illustrative example for the modification of the Q-matrix by the electric field, the modified
Q-matrix for a single charge carrier simulation of the one-dimensional system shown in Figure 3.1 is
derived. This system has five different configurations, illustrated in Figure 3.2. As we have only one
charge carrier in the simulation, the specification of the configuration ξ is given by the site number i that
is occupied ξ = i ∈ {1,2,3,4,5}.

configuration 1 configuration 2 configuration 3 configuration 4 configuration 5

Figure 3.2: Possible configurations for the system introduced in Figure 3.1 with only a single charge
carrier Ncc = 1 in the system.

If we allow only nearest neighbour hopping, the initial Q-matrix contains only rates Rij of neighbour-
ing sites, respecting the boundaries.

Q =


−R12 −R15 R12 0 0 R15

R21 −R21 −R23 R23 0 0
0 R32 −R32 −R34 R34 0
0 0 R43 −R43 −R45 R45

R51 0 0 R54 −R54 −R51

 (3.29)

To get the modified Q-matrix, defined in Equation (3.27), off-diagonal terms of the initial Q-matrix have
to be multiplied by the term exp

(
βe∆⃗rijF⃗

)
. This term is exp(−βeaF) for hops to the right towards

lower energies and exp(βeaF) for hops to the left towards higher energies with the distance between
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two neighbouring sites a and the absolute value of the electric field strength F.

Q̃ =


−R12 −R15 exp(−βeaF)R12 0 0 exp(βeaF)R15

exp(βeaF)R21 −R21 −R23 exp(−βeaF)R23 0 0
0 exp(βeaF)R32 −R32 −R34 exp(−βeaF)R34 0
0 0 exp(βeaF)R43 −R43 −R45 exp(−βeaF)R45

exp(−βeaF)R51 0 0 exp(βeaF)R54 −R54 −R51


(3.30)

3.1.6 Site- and Correlation-Correction Energies

With Equations (3.8), (3.27) and (3.28), we are theoretically able to calculate configuration-correction
energies Ec

ξ for each configuration ξ and get the corresponding steady-state-probability distribution πξ .
Combining Equations (3.15), (3.17), (3.18), (3.19) and (3.20), the steady-state-probability distribution
πξ is given by

πξ =
1
Z

exp

[
−β

(
∑
i∈ξ

εi +
1
2 ∑

i∈ξ

j ̸=i

∑
j∈ξ

Eint
ij −Ec

ξ

)]
with Z = ∑

ξ∈Ξ
πξ . (3.31)

The number of configurations rapidly explodes already for very low numbers of charge carriers Ncc. For
a very small system of 10× 10× 10 sites and Ncc = 3 charge carriers, the number of configurations
is Ncnfg ≈ 1.7 · 108 and for Ncc = 4 charge carriers Ncnfg ≈ 4.1 · 1010. The exponential increase in the
number of configurations and the corresponding order of the system of linear equations that has to be
solve impedes the applicability of directly calculating Ec

ξ already for very low numbers of charge carriers.
To make use of correction energies Ec

ξ , we need to introduce approximations. As an approximation
for low numbers of charge carriers, we write the configuration-correction energies Ec

ξ as a series

Ec
ξ ≈ ∑

i∈ξ
Ec

i +
1
2 ∑

i∈ξ

j ̸=i

∑
j∈ξ

Ec
ij + . . . (3.32)

with the site-correction energies Ec
i of site i and the correlation-correction energies Ec

ij considering cor-
relations of the correction energies between site i and site j.

The site-correction energies Ec
i are calculated by placing only one charge carrier in the simulated

system Ncc = 1. In this case, the configuration ξ is given by the site index ξ = i and the Q-matrix has
the dimension of the number of sites Ns. The associated global balance equation is small enough to
be numerically solvable. In many cases, calculating Ec

i is already an appropriate approximation for the
configuration-correction energies Ec

ξ , especially for low charge-carrier densities and/or low electric fields
(cf. Chapter 3.4).

If approximating the configuration-correction energies Ec
ξ by a sum over the corresponding site-

correction energies Ec
i is not accurate enough, correlation-correction energies Ec

ij can be calculated for
rather small systems. In this case, the number of configurations and, hence, the order of the linear
system of equation that has to be solved is 1

2 Ns(Ns − 1). Going beyond correlation-correction energies
is, commonly, neither necessary regarding accuracy of the results, nor computationally reasonable.
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3.2 Occupation Statistics and Mobility

In Chapter 3.1, we derived an equation to calculate site-correction energies Ec
i and correlation-

correction energies Ec
ij via a modification of the so-called global balance equation, Equation (3.28), to

approximate the configuration-correction energy Ec
ξ via Equation (3.32). With this correction energy and

Equation (3.31), the steady-state-probability distribution πξ can be approximated by

πξ =
1
Z

exp

[
−β ∑

i∈ξ

(
εi −Ec

i +
1
2

j̸=i

∑
j∈ξ

(
Eint

ij −Ec
ij
))]

=
1
Z

exp

[
−β ∑

i∈ξ

(
Etot

i +
1
2

j ̸=i

∑
j∈ξ

Etot
ij

)]
with Z = ∑

ξ∈Ξ
πξ (3.33)

introducing the total site energy Etot
i = εi −Ec

i and the total interaction energy Etot
ij = Eint

ij −Ec
ij.

In the following, we will derive an expression for the mobility considering different occupation
statistics. In Chapter 3.2.1, Boltzmann statistics is used to calculate the mobility for a system with only
one charge carrier. When two charge carriers are present in the simulation, the configuration space is
low-dimensional enough to enable an evaluation of all configurations to calculate the mobility, which is
demonstrated in Chapter 3.2.2. For high charge-carrier densities, Fermi-Dirac statistics is an adequate
approximation for receiving the mobility in Chapter 3.2.3. To enable the inclusion of correlations and
interactions in future, a new occupation statistics was derived and investigated in Chapter 3.2.4.

3.2.1 Boltzmann Statistics

With only one charge carrier in the simulation, the steady-state-probability distribution πξ holds the
probability πi that site i = ξ is occupied, which is also the charge-carrier density ⟨ni⟩ = πi of site i in
charge carriers per site (ccps). So the charge-carrier density ⟨ni⟩ of site i is given by the Boltzmann
statistics

⟨ni⟩= ∑
ξ∈Ξ

πξ nξ
i =

1
Z

exp
(
−βEtot

i
)

with Z =
Ns

∑
i=1

exp
(
−βEtot

i
)

(3.34)

with the occupation nξ
i ∈ {0,1} of site i in configuration ξ being occupied nξ

i = 1 ccps or unoccupied
nξ

i = 0 ccps. In general, the mobility can be calculated from the steady-state-probability πξ

µ = ∑
ξ∈Ξ

πξ

Ns

∑
i=1

Ns

∑
j=1
j ̸=i

Rij(ξ )
q∆⃗rijF⃗

F2 (3.35)

with q ∈ {−1,1} specifying the sign of the charge carrier (electron or hole). The rate Rij(ξ ) can only be
non-zero if site i is occupied nξ

i = 1 ccps in state ξ and site j is unoccupied 1−nξ
j = 1 ccps, so that:

µ =
Ns

∑
i=1

Ns

∑
j=1
j ̸=i

q∆⃗rijF⃗
F2 ∑

ξ∈Ξ
πξ nξ

i

(
1−nξ

j

)
Rij(ξ ). (3.36)

If only one charge carrier is in the system or the total interaction energy Etot
ij = 0 eV is vanishing, the rate

Rij(ξ ) does not depend on the initial state ξ . As a consequence, Rij can be moved in front of the sum
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over ξ in Equation (3.36) and with the relations

⟨ni⟩= ∑
ξ∈Ξ

πξ nξ
i and ⟨ninj⟩= ∑

ξ∈Ξ
πξ nξ

i nξ
j , (3.37)

the mobility can be calculated by

µ =
Ns

∑
i=1

Ns

∑
j=1
j ̸=i

q∆⃗rijF⃗
F2 Rij (⟨ni⟩−⟨ninj⟩) . (3.38)

For only one charge carrier in the simulation, the two-site occupation ⟨ninj⟩ = 0 ccps is zero, because
one charge carrier cannot occupy two sites i and j at the same time. Overall, the mobility for a single-
charge-carrier simulation is calculated by

µ =
Ns

∑
i=1

Ns

∑
j=1
j ̸=i

q∆⃗rijF⃗
F2 Rij ⟨ni⟩ with ⟨ni⟩=

1
Z

exp
(
−βEtot

i
)

and Z =
Ns

∑
i=1

exp
(
−βEtot

i
)

. (3.39)

When the total site energy Etot
i = εi −Ec

i contains the accurate site-correction energies Ec
i , the mobility

given by Equation (3.39) is exactly the correct solution.

3.2.2 Considering Configurations for Two Charge Carriers

The configuration space of a system with two charge carriers is still manageable from a computational
point of view. It is a perfect system to test the effect of, (i), interactions Eint

ij ̸= 0 eV and, (ii), correlation-
correction energies Ec

ij because it is possible to calculate the numerically correct solution of the mobility
for this system.

A configuration in this system is given by ξ = (i1, i2) with i1 and i2 being the occupied sites. The
steady-state-probability density πξ is given by

πξ = π(i1,i2) =
1
Z

exp
[
−β
(
Etot

i1 +Etot
i2 +Etot

i1i2

)]
with Z =

Ns−1

∑
i1=1

Ns

∑
i2=i1+1

exp
[
−β
(
Etot

i1 +Etot
i2 +Etot

i1i2

)]
(3.40)

The mobility can be calculated from Equation (3.36) when considering n(i1,i2)i = δii1 + δii2 with the
Kronecker delta δij = 1 if i = j and δij = 0 else.

µ =
Ns

∑
i=1

Ns

∑
j=1
j̸=i

Ns−1

∑
i1=1

Ns

∑
i2=i1+1

q∆⃗rijF⃗
F2 π(i1,i2) (δii1 +δii2)(1−δji1 −δji2)Rij(i1, i2)

=
Ns−1

∑
i1=1

Ns

∑
i2=i1+1

Ns

∑
j=1
j ̸=i1
j ̸=i2

q∆⃗ri1jF⃗
F2 π(i1,i2)Ri1j(i1, i2)+

q∆⃗ri2jF⃗
F2 π(i1,i2)Ri2j(i1, i2)

=
q

F2

Ns−1

∑
i1=1

Ns

∑
i2=i1+1

π(i1,i2)

Ns

∑
j=1
j̸=i1
j̸=i2

[(
∆⃗ri1jF⃗

)
Ri1j(i1, i2)+

(
∆⃗ri2jF⃗

)
Ri2j(i1, i2)

]
(3.41)
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3.2.3 Fermi-Dirac Statistics

When more than two charge carriers are in the simulated system, considering all configurations
immediately becomes computationally far too expensive. An affordable alternative is to utilise Fermi-
Dirac statistics. We will derive Fermi-Dirac statistics in the following as a reminder for the interested
reader and to introduce the nomenclature that will be extensively used in Chapter 3.2.4.

The partition function for a system with Ns sites collected in the set Ns = {1,2, . . . ,Ns} and Ncc

charge carriers is denominated as

ZNcc
Ns

= ∑
ξ∈ΞNcc

Ns

exp

(
−β ∑

k∈Ns

nξ
k Etot

k

)
(3.42)

with the configuration space ΞNcc
Ns

for a system with a set of Ns = {1,2, . . . ,Ns} sites and Ncc charge
carriers.

In Fermi-Dirac statistics, the total interaction energies Etot
ij have to be omitted. Considering the novel

occupation statistics derived in Chapter 3.2.4, an approximate but direct inclusion of interactions is, in
principle, possible. Nevertheless, within this thesis, we neglect the total interaction energies Etot

ij also for
the novel occupation statistics. Interactions in both cases can be approximately included via a mean-field
(MF) approach (cf. Chapter 3.3.1).

Looking at the sum over all configurations ξ in Equation (3.42), we can select one arbitrary site i and
explicitly sum over the possible configurations of this site, which are ni = 0 ccps if it is unoccupied and
ni = 1 ccps if it is occupied. The remaining configuration space does not contain site i any longer and
has one charge carrier less, if site i is occupied.

ZNcc
Ns

=
1

∑
ni=0

exp
(
−βniEtot

i
)

∑
ξ∈ΞNcc−ni

Ns\{i}

exp

(
−β ∑

k∈Ns\{i}
nξ

k Etot
k

)
︸ ︷︷ ︸

=ZNcc−ni
Ns\{i}

(3.43)

The inner sum corresponds to the partition function ZNcc−ni
Ns\{i} of the reduced system that does not contain

site i and has ni charge carriers less than the full system. Performing the outer sum over ni results in

ZNcc
Ns

= ZNcc
Ns\{i}+ exp

(
−βEtot

i
)

ZNcc−1
Ns\{i}. (3.44)

To get the site occupation ⟨ni⟩Ncc
Ns

of the system with a set of Ns sites and Ncc charge carriers, the
steady-state-probability distribution πξ , cf. Equation (3.33), is required.

⟨ni⟩Ncc
Ns

=
1

ZNcc
Ns

∑
ξ∈ΞNcc

Ns

nξ
i exp

(
−β ∑

k∈Ns

nξ
k Etot

k

)
(3.45)

The same splitting of the sum as in Equations (3.43) and (3.44) provides

⟨ni⟩Ncc
Ns

=
1

ZNcc
Ns

exp
(
−βEtot

i
)

ZNcc−1
Ns\{i} (3.46)
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and replacing ZNcc
Ns

by Equation (3.44) leads to

⟨ni⟩Ncc
Ns

=
1

1+
ZNcc
Ns\{i}

ZNcc−1
Ns\{i}

exp(βEtot
i )

(3.47)

At this point, the approximation made within Fermi-Dirac statistics comes into play. The ratio

ZNcc
Ns\{i}

ZNcc−1
Ns\{i}

≈ exp
(
−βENcc

F,0

)
≈

ZNcc
Ns

ZNcc−1
Ns

(3.48)

is approximated by a so-called Fermi level ENcc
F,0 for a system of Ncc charge carriers including all sites

Ns. We indicate the omittance of the dependence on the site i of the Fermi level ENcc
F,0 by the zero in the

subscript. The key of the approximation is, that the ratio does not depend on the site i that is taken out
of the system. This approximation is feasible for large systems with many charge carriers and densely
lying energies at the Fermi level. Applying the approximation, we end up with the familiar form of the
Fermi-Dirac statistics:

⟨ni⟩Ncc
Ns

=
1

1+ exp
[
β
(

Etot
i −ENcc

F,0

)] . (3.49)

Within this approximation, the Fermi level ENcc
F,0 can be determined by the implicit equation

Ncc = ∑
i∈Ns

⟨ni⟩Ncc
Ns

(3.50)

guaranteeing the correct number of charge carriers Ncc in the system.
To get the mobility µ , Equation (3.38) can be applied, because the rates Rij do not change when no

interactions are present. The remaining unknown in this Equation (3.38) for the mobility µ is the two-site
occupation ⟨ninj⟩Ncc

Ns
:

⟨ninj⟩Ncc
Ns

=
1

ZNcc
Ns

∑
ξ∈ΞNcc

Ns

nξ
i nξ

j exp

(
−β ∑

k∈Ns

nξ
k Etot

k

)
=

exp
[
−β
(

Etot
i +Etot

j

)]
ZNcc−2
Ns\{i,j}

ZNcc
Ns

. (3.51)

The second equality in the above relation is achieved by splitting the sum over the configurations for ni,
nj and the remaining configuration space ΞNcc−ni−nj

Ns\{i,j} exactly in the same way as above for ZNcc
Ns

in Equa-
tion (3.43). The partition function ZNcc−2

Ns\{i,j} can be rewritten with the help of a variation of Equation (3.44)

ZNcc−1
Ns\{i} = ZNcc−1

Ns\{i,j}+ZNcc−2
Ns\{i,j} exp

(
−βEtot

j
)

ZNcc−1
Ns\{j} = ZNcc−1

Ns\{i,j}+ZNcc−2
Ns\{i,j} exp

(
−βEtot

i
)

ZNcc−1
Ns\{i}−ZNcc−1

Ns\{j} = ZNcc−2
Ns\{i,j}

(
exp(−βEtot

j )− exp(−βEtot
i )
) (3.52)
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yielding

ZNcc−2
Ns\{i,j} =

ZNcc−1
Ns\{i}−ZNcc−1

Ns\{j}

exp(−βEtot
j )− exp(−βEtot

i )
. (3.53)

Combining Equations (3.51) and (3.53) leads to

⟨ninj⟩Ncc
Ns

=

ZNcc−1
Ns\{i}

ZNcc
Ns

−
ZNcc−1
Ns\{j}

ZNcc
Ns

exp(βEtot
i )− exp(βEtot

j )
. (3.54)

The ratios of the partition functions can be identified as site occupations in the spirit of Equation (3.46)
and we finally receive

⟨ninj⟩Ncc
Ns

=
⟨ni⟩Ncc

Ns
exp(βEtot

i )−⟨nj⟩Ncc
Ns

exp(βEtot
j )

exp(βEtot
i )− exp(βEtot

j )
. (3.55)

This derivation for ⟨ninj⟩Ncc
Ns

does not contain any approximations, it provides exactly the correct two-site
occupation ⟨ninj⟩Ncc

Ns
for a non-interacting system Etot

ij = 0 eV if the correct site occupations ⟨ni⟩Ncc
Ns

are
known. As a side note, for the site occupation ⟨ni⟩1

Ns
determined by the Boltzmann statistics, Equa-

tion (3.34), we get ⟨ninj⟩1
Ns

= 0 ccps from Equation (3.55), i.e., the correct result.
Inserting the site occupation ⟨ni⟩Ncc

Ns
received from the approximation made within the framework of

Fermi-Dirac statistics, given by Equation (3.49), into Equation (3.55) provides

⟨ninj⟩Ncc
Ns

=

exp(βEtot
i )

1+exp[β(Etot
i −ENcc

F,0 )]
− exp(βEtot

j )

1+exp[β(Etot
j −ENcc

F,0 )]

exp(βEtot
i )− exp(βEtot

j )
=

=
exp(βEtot

i )+ exp
[
β
(

Etot
i +Etot

j −ENcc
F,0

)]
− exp(βEtot

j )− exp
[
β
(

Etot
i +Etot

j −ENcc
F,0

)]
(

1+ exp
[
β
(

Etot
i −ENcc

F,0

)])(
1+ exp

[
β
(

Etot
j −ENcc

F,0

)])(
exp(βEtot

i )− exp(βEtot
j )
) =

=
1(

1+ exp
[
β
(

Etot
i −ENcc

F,0

)])(
1+ exp

[
β
(

Etot
j −ENcc

F,0

)]) = ⟨ni⟩Ncc
Ns

⟨nj⟩Ncc
Ns

. (3.56)

This relation ⟨ninj⟩ = ⟨ni⟩⟨nj⟩, which is only valid for Fermi-Dirac statistics, demonstrates the fact that
Fermi-Dirac statistics assumes an entirely uncorrelated system. So, the approximations within Fermi-
Dirac statistics neglect all correlations. Although we do not include interactions Etot

ij , site exclusion
(allowing for at maximum one charge carrier per site) introduces correlations that cannot be accounted
for within the framework of Fermi-Dirac statistics.

3.2.4 Going Beyond Fermi-Dirac Statistics

Fermi-Dirac statistics, by construction, does not include any correlations. Hence, refining Fermi-
Dirac statistics is not advisable to include interactions. To be able to include interactions and associated
correlations in future, we have derived a relation for the exact occupation statistics of a non-interacting
system. This relation enables to numerically calculate the correct site occupation ⟨ni⟩Ncc

Ns
, given that

Etot
ij = 0 eV. With ⟨ni⟩Ncc

Ns
, also ⟨ninj⟩Ncc

Ns
can be correctly calculated via Equation (3.55) and with this, the

numerically correct value for the mobility µ can be received from Equation (3.38).
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Starting point is Equation (3.47). But instead of applying the approximation leading to Equa-
tion (3.48), we introduce a site dependent Fermi level ENcc

F,i defined by

exp
(
−βENcc

F,i

)
=

ZNcc
Ns\{i}

ZNcc−1
Ns\{i}

. (3.57)

With this definition, we get the correct site occupation

⟨ni⟩Ncc
Ns

=
1

1+ exp
[
β
(

Etot
i −ENcc

F,i

)] (3.58)

as long as we determine the correct local Fermi level ENcc
F,i . Besides the local Fermi level, we define a

global Fermi level ENcc
F,0 closely related to the Fermi level introduced by the Fermi-Dirac formalism:

exp
(
−βENcc

F,0

)
=

ZNcc
Ns

ZNcc−1
Ns

. (3.59)

Another definition

∆ENcc
F,i = ENcc

F,i −ENcc
F,0 (3.60)

introduces the local change in Fermi level or Fermi-level shift ∆ENcc
F,i of site i with respect to the global

Fermi level ENcc
F,0.

This new occupation statistics is designed to cover the full range of possible numbers of charge
carriers from Ncc = 1 up to very high numbers of charge carriers. So it has to include Boltzmann statistics
exactly for Ncc = 1 and approach Fermi-Dirac statistics for increasing Ncc. With the definition

Z0
Ns

= Z0
Ns\{i} = 1 (3.61)

and Equation (3.59), we can calculate E1
F,0:

exp
(
−βE1

F,0
)
= Z1

Ns
= ∑

i∈Ns

exp
(
−βEtot

i
)

⇒ E1
F,0 =−kBT ln

(
∑

i∈Ns

exp
(
−βEtot

i
))

. (3.62)

The local Fermi level E1
F,i is received from combining Equations (3.34) and (3.58).

⟨ni⟩1
Ns

=
1

1+ exp
[
β
(

Etot
i −E1

F,i

)] = exp(−βEtot
i )

∑i∈Ns exp(−βEtot
i )

⇒ E1
F,i = −kBT ln

(
∑

i∈Ns\{i}
exp
(
−βEtot

i
))

(3.63)
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To get the Fermi-level shift ∆E1
F,i, Equations (3.60), (3.62) and (3.63) are required.

∆E1
F,i =−kBT ln

(
1− exp(−βEtot

i )

Z1
Ns

)
=−kBT ln

{
1− exp

[
−β
(
Etot

i −E1
F,0
)]}

=

= −kBT ln
(

1−⟨ni⟩1
Ns

)
(3.64)

From this known solution for Ncc = 1, we can derive an equation to iteratively calculate the solution
for Ncc > 1. The Fermi-level shift can be written in terms of partition functions with Equations (3.57)
and (3.59)

exp
(
−β∆ENcc

F,i

)
=

ZNcc
Ns\{i}

ZNcc
Ns

ZNcc−1
Ns

ZNcc−1
Ns\{i}

(3.65)

The ratios in Equation (3.65) can be recast with the help of Equations (3.44), (3.46), (3.58) and (3.60) to
arrive at

exp
(
−β∆ENcc

F,i

)
=

1−⟨ni⟩Ncc
Ns

1−⟨ni⟩Ncc−1
Ns

=
1+ exp

[
−β
(

Etot
i −∆ENcc−1

F,i −ENcc−1
F,0

)]
1+ exp

[
−β
(

Etot
i −∆ENcc

F,i −ENcc
F,0

)] . (3.66)

Rearranging Equation (3.66) to get an explicit equation for ∆ENcc
F,i leads to

∆ENcc
F,i =−kBT ln

(
1+ exp

[
−β
(

Etot
i −∆ENcc−1

F,i −ENcc−1
F,0

)]
− exp

[
−β
(

Etot
i −ENcc

F,0

)])
. (3.67)

In combination with the implicit definition of ENcc
F,0 via Equation (3.50), we are able to simultaneously

extract ∆ENcc
F,i and ENcc

F,0 from the known values of ∆ENcc−1
F,i and ENcc−1

F,0 . A more detailed description of this
procedure can be found in Chapter 3.3.3.

This iterative evaluation of ∆ENcc
F,i and ENcc

F,0 is a very efficient method for very low amounts of
charge carriers. Nevertheless, a significant drawbacks hinders the evaluation of ∆ENcc

F,i and ENcc
F,0 by Equa-

tions (3.50) and (3.67) for large amounts of charge carriers. The iteration becomes numerically instable
already for very low numbers of charge carriers Ncc ≲ 10. The relations for a stable alternative for large
amounts of charge carriers are described below.

In this alternative, we start from Fermi-Dirac statistics as a first approximation for the requested
system with Ncc charge carriers. This means we initially set ∆ENcc

F,i = 0 eV and calculate ENcc
F,0 via Equa-

tion (3.50). The first iteration step begins with Fermi-Dirac statistics as well and approximates the system
with Ncc − 1 charge carriers by setting ∆ENcc−1

F,i = 0 eV and calculate ENcc−1
F,0 via Equation (3.50). With

those two approximations for the system with Ncc −1 and Ncc charge carriers, Equation (3.66) provides
an improved estimate for the aspired system with Ncc charge carriers. In principle, we could now con-
tinue this upwards iteration including progressively smaller amounts of charge carriers. With upwards
iteration, we indicate that ∆ENcc

F,i and ENcc
F,0 is calculated from approximations for systems with Ncc−1 and

Ncc charge carriers. However, it turned out that the iteration becomes much more stable and converges
much faster if we combine it with a downwards iteration. Downwards iteration means, that we calculate
∆ENcc

F,i and ENcc
F,0 from approximations for systems with Ncc + 1 and Ncc charge carriers. To provide a

relation that calculates ∆ENcc
F,i from approximations for systems with Ncc +1 and Ncc charge carriers, we
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have to revisit Equation (3.65) and incorporate Equation (3.59).

exp
(
−β∆ENcc

F,i

)
=

ZNcc
Ns\{i}

exp
(

βENcc+1
F,0

)
ZNcc+1
Ns

exp
(

βENcc
F,0

)
ZNcc
Ns

ZNcc−1
Ns\{i}

(3.68)

Expanding the fraction with exp(−βEtot
i ) in combination with Equations (3.46), (3.58) and (3.60) leads

to

exp
(
−β∆ENcc

F,i

)
= exp

[
β
(

ENcc
F,0 −ENcc+1

F,0

)] ⟨ni⟩Ncc+1
Ns

⟨ni⟩Ncc
Ns

=

= exp
[
β
(

ENcc
F,0 −ENcc+1

F,0

)] 1+ exp
[
β
(

Etot
i −∆ENcc

F,i −ENcc
F,0

)]
1+ exp

[
β
(

Etot
i −∆ENcc+1

F,i −ENcc+1
F,0

)] . (3.69)

The iteration process itself is discussed in detail in Chapter 3.3.3. The consequences of this new
occupation statistics are discussed in the following for the example of a system with NS = 1000 sites.
The total site energies Etot

i were randomly drawn from a Gaussian distribution, Equation (3.1), with
energetic disorder σ = 100 meV.

Figure 3.3 shows the Fermi-level shift ∆ENcc
F,i of site i as a function of the total site energy Etot

i of
this site. The different curves with different colours show different amounts of charge carriers Ncc in the
simulation. Each site is represented by a filled circle and the straight lines between the filled circles serve
as a guide for the eye. For low energies, there are only a few energy levels, each represented by a filled
circle. Towards the peak of the Gaussian distribution at Etot = 0 eV, the energy levels are lying more and
more densely resulting in an apparently thick line consisting of filled circles. The global Fermi levels
ENcc

F,0 for different amounts of charge carriers Ncc are indicated as dotted vertical lines colour coded in the
same way as the Fermi-level shift.

Looking at the magenta line for Ncc = 1 in Figure 3.3, the logarithmic plot indicates an exponential
decrease of the Fermi-level shift ∆ENcc

F,i . To clarify this exponential decrease, Equation (3.64) has to be

consulted. For Etot
i ≫ E1

F,0, the term exp
[
−β
(

Etot
i −E1

F,0

)]
≪ 1 becomes very small. Considering the

relation ln(1+u)≈ u for low values of u ≪ 1, the Fermi-level shift can be approximated by

∆E1
F,i ≈ kBT exp

[
−β
(
Etot

i −E1
F,0
)]

for Etot
i ≫ E1

F,0. (3.70)

So, the exponential decrease of ∆ENcc
F,i for Etot

i ≫ ENcc
F,0 appearing in all curves in Figure 3.3, associated

with the number of charge carriers Ncc, is a clear indication for a Boltzmann-like behaviour of the occu-
pation statistics in this region Etot

i ≫ ENcc
F,0.

In contrast, Fermi-Dirac statistics assumes the same Fermi level across the entire system resulting in
a constant value for the Fermi-level shift ∆ENcc

F,i . When looking at the curves for high values of Ncc ≥ 32
in Figure 3.3, regions of constant Fermi-level shift ∆ENcc

F,i appear for low total site energies Etot
i ≪ ENcc

F,0.
This means that the correct occupation statistics behaves Fermi-Dirac-like for low total site energies
Etot

i ≪ ENcc
F,0 and Boltzmann-like for high total site energies Etot

i ≫ ENcc
F,0.

To understand the consequences of the approximation within the Fermi-Dirac statistics, we take
a closer look at the two-site occupation ⟨ninj⟩. As already mentioned in Chapter 3.2.3, Fermi-Dirac
statistics neglects all correlations, because the two-site occupation factorises ⟨ninj⟩ = ⟨ni⟩⟨nj⟩. This
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Figure 3.3: Fermi-level shift ∆ENcc
F,i of site i as a function of the total site energy Etot

i of this site for
different amounts of charge carriers Ncc. The total site energies Etot

i of the system with 1000 sites are
drawn from a Gaussian distribution with width σ = 100 meV centred at 0 eV. Each site is represented by
a filled circle. As a guide for the eye, the filled circles are connected by straight lines. The dotted vertical
lines mark the global Fermi level ENcc

F,0 of the corresponding number of charge carriers Ncc. Especially for
large numbers of charge carriers Ncc ≥ 32, the transition from a Fermi-Dirac-like behaviour (flat ∆ENcc

F,i )
for total site energies below ENcc

F,0 to a Boltzmann-like behaviour (exponentially decreasing ∆ENcc
F,i ) for

total site energies above ENcc
F,0 can be observed.

means that the occupation ⟨ni⟩ of a site i does not depend on the occupation ⟨nj⟩ of any other site j.
When comparing this to the Fermi-Dirac-like regime of low total site energies Etot

i ≪ ENcc
F,0 of the correct

occupation statistics (cf. Figure 3.3), the relation ⟨ninj⟩ = ⟨ni⟩⟨nj⟩ is still valid. So the nearly totally
occupied sites are still not correlated. But the two-site occupation changes quite significantly when
looking at the Boltzmann-like regime of high total site energies Etot

i ≫ ENcc
F,0. In Chapter 3.2.3, we found

out that a Boltzmann-like regime results in ⟨ninj⟩= 0 ccps. This means that the occupation of sites with
high total site energies Etot

i ≫ ENcc
F,0 is strongly correlated, because if we occupy one of those sites i, no

other high total site energy Etot
j site j can be occupied. This correlation purely arises from the premise

that we allow at maximum one charge carrier per site and has nothing to do with explicit interactions
Etot

ij . A consequence of this correlation is, that the correct occupation statistics populates sites with low
total site energies Etot

i ≪ ENcc
F,0 more and sites with high total site energies Etot

i ≫ ENcc
F,0 less, compared to

Fermi-Dirac statistics.
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3.3 Implementation

After establishing the mathematical foundation of our new correction energy concept in Chapter 3.1
and Chapter 3.2, this chapter is focusing on the intricacies associated with the numerical implementation
of the CEC. The consideration of interactions via a mean-field approach is discussed in Chapter 3.3.1. In
Chapter 3.3.2, the evaluation of the correction energies is described. Extracting site occupations ⟨ni⟩Ncc

Ns

with our improved occupation statistics is demonstrated in Chapter 3.3.3. Finally, Chapter 3.3.4 debates
the calculation of the mobility and the associated convergence check for interacting simulations.

3.3.1 Mean-Field Approach

In the current state of the development of the CEC, interactions can be only considered by a mean
field approach, except for simulations with two charge carriers. In future, it is conceivable that a direct
consideration of the most important interactions and associated correlations is possible within the for-
malism of the CEC. Nevertheless, even if some interactions are considered explicitly, the majority of
interactions would still be included via a mean-field approach.

The mean-field approach we use is an iterative process. In each iteration, correction energies are
calculated and the occupation statistics is evaluated to provide site occupations ⟨ni⟩Ncc

Ns
for a system with

a set of Ns sites and Ncc charge carriers. Providing site occupations ⟨ni⟩Ncc
Ns

enables us to calculate average
interaction energies Eint

i of a site i

Eint
i = ∑

j∈Ns\{i}
Eint

ij ⟨nj⟩Ncc−1
Ns\{i} (3.71)

by summing over the interaction energies Eint
ij with all remaining sites j weighted by the site occupation

⟨nj⟩Ncc−1
Ns\{i}. This particular site occupation ⟨nj⟩Ncc−1

Ns\{i} has to be chosen, because we want to know the
average interaction energy that acts on a charge carrier sitting on site i from a site j. So site i has to be
occupied, which results in the reduced system with Ns \{i} sites and Ncc −1 charge carriers.

The site occupation ⟨nj⟩Ncc−1
Ns\{i} can be expressed with the help of Equations (3.46) and (3.51)

⟨nj⟩Ncc−1
Ns\{i} =

ZNcc−2
Ns\{i,j} exp

(
−βEtot

j

)
ZNcc−1
Ns\{i}

ZNcc
Ns

exp(−βEtot
i )

ZNcc
Ns

exp(−βEtot
i )

=
⟨ninj⟩Ncc

Ns

⟨ni⟩Ncc
Ns

(3.72)

by occupations ⟨ni⟩Ncc
Ns

and ⟨ninj⟩Ncc
Ns

. For Fermi-Dirac statistics, this further simplifies to ⟨nj⟩Ncc−1
Ns\{i} =

⟨nj⟩Ncc
Ns

. For the correct occupation statistics, the occupation ⟨ninj⟩Ncc
Ns

is determined by Equation (3.55).
At the end of every interaction iteration, the new average interaction energies Eint,new

i are calculated
for each site i. To improve the stability and speed of the convergence, the new average interaction energy
is mixed with the old one Eint

i = cEint,new
i +(1− c)Eint,old

i with a mixing parameter c ≈ 0.6. This mixed
average interaction energy modifies the site energies εi → ε tot

i = εi+Eint
i and the next iteration is started.

Note that it is of particular importance that the site energies ε tot
i for calculating the correction energies

and the occupation statistics are the same. Otherwise, the calculated values for the mobility become
totally random producing sometimes even negative numbers.
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3.3.2 Correction Energies

Enabling the calculation of correction energies for large systems with millions of sites is a numeri-
cally challenging task involving the solution of a large system of linear equations. In the following, we
will discuss which numerical algorithms we utilised to receive the correction energies. Most of those
algorithms are taken from the book ’Iterative Methods for Sparse Linear Systems’ by Yousef Saad. [97]
Algorithms from other sources are explicitly cited. We will discuss the procedure to calculate the site-
correction energies Ec

i in detail and, afterwards, outline the changes required to calculate the correlation-
correction energies Ec

ij with the same procedure.

Site-Correction Energies Ec
i

The first step to calculate site-correction energies Ec
i is to construct the modified Q-matrix (cf. Chap-

ter 3.1.4) for a single charge carrier in the system. The Q-matrix contains the hopping rates Rij(∆Eij)

depending on the energy

∆Eij = ε tot
j − ε tot

i + e∆⃗rijF⃗, (3.73)

that is required to remove a charge carrier from site i and place it at a site j. The site energy might
contain mean-field interactions ε tot

i = εi +Eint
i if desired or might omit them ε tot

i = εi. The hopping
distance ∆⃗rij is the distance covered during the hop from site i to site j respecting the boundary conditions
(cf. Chapter 3.1.1). With this energy difference ∆Eij, the rate Rij(∆Eij) is calculated via the chosen rate
equation (Equation (3.3) for the Miller-Abrahams rate or Equation (3.4) for the Marcus rate) and the
modified Q-matrix is given by

q̃ij =

exp
(

βe∆⃗rijF⃗
)

Rij(∆Eij) if i ̸= j

∑k∈Ns\{j} Rik(∆Eik) if i = j.
(3.74)

The consideration of a maximum allowed hopping distance rhop results in a sparse matrix Q̃ = (q̃ij) as
rates Rij = 0 Hz for hops ∆rij > rhop. With this modified Q-matrix, Q̃, the homogeneous system of
linear equations Q̃π⃗c = 0⃗ has to be solved. The existence of a non-zero solution of this equation is
guaranteed due to the properties of our simulated system (cf. Chapter 3.1.4 and [93, 96]). The solution
of a homogeneous system contains ambiguity such that a non-zero solution π⃗c ̸= 0⃗ of the system can
be multiplied by any value to provide a different solution. This multiplicative ambiguity translates to
an additive ambiguity regarding the correction energies πc

i = exp(βEc
i ), which means that an energy

shift Ec
i → Ec

i +E0 by any energy E0 provides a proper solution. This ambiguity is not surprising as
a constant shift E0 of all energies does not change any observable in a closed system. Note that π⃗c is
not a probability density, so it must not be normalised. The norm of the final steady-state-probability
distribution π⃗ is ensured by the partition function Z.

In a first instance, the energy shift E0 can be chosen arbitrarily. We fix one particular solution with a
certain E0 by setting one entry in πc

k = 1 entailing Ec
k = 0 eV. Equation k is discarded from the system of

equations and the entries containing k in the remaining system of equations is moved to the right-hand
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side. This leads to a system of equations

Q̃kπ⃗c,k = q⃗c,k with (Q̃k)ij = q̃k
ij =

q̃ij if i < k

q̃(i+1)j if i ≥ k

 ,

πc,k
i =

πc
i if i < k

πc
i+1 if i ≥ k

 and qc,k
i =

−q̃ik if i < k

−q̃(i+1)k if i ≥ k

 . (3.75)

The choice of the discarded equation k has an influence on the condition number of the remaining system
of equations. The condition number is a rough measure for the expected numerical uncertainty of the
solution. We decided to take a very simple approach to improve the condition number by discarding
the equation k with the lowest squared sum of its coefficients mink∈Ns

(
∑j∈Ns(q̃kj)

2
)
. The choice of the

discarded equation k is one of the finesses holding significant optimisation potential.
The system of linear equations, Equation (3.75), has a unique solution. To find this solution effi-

ciently and swiftly even for large systems, we apply several algorithms:

• Divide each equation i by the norm of its coefficients ∑Ns−1
j=1 (q̃k

ij)
2.

• Perform a reverse Cuthill-McKee reordering algorithm to optimise the ordering of the system of
equations. As a starting node for the algorithm, we took a site i which is a hopping neighbour of
the site k whose equation was discarded from the system of equations.

• Calculate a preconditioner. The preconditioner of choice for us was suggested by Wu and Ma. [98]
We tested other ILUT (Incomplete factorisation to a unit Lower triangular and Upper triangular
matrix with Threshold) preconditioners showing comparable but slightly worse performance. As
a threshold below which elements are dropped, we use τ = 10−4, the maximum average added
elements per row is p = 25 and we calculated b = 5 rows exact before dropping elements.

• Perform a left preconditioned GMRES (Generalised Minimal RESidual) method. Convergence is
checked after 5 iterations. After 200 iterations, the GMRES method is restarted. The accuracy of
the solution vector was set to 10−8 and the residual accuracy to 10−4.

• Reorder the solution vector with respect to the reverse Cuthill-McKee reordering algorithm.

An important variation of the GMRES algorithm customised for our system of equations is, that the
solution vector cannot be zero or negative. This would imply diverging or complex correction energies.
Hence, the convergence check of our GMRES algorithm includes, besides the desired accuracy of the
residual and the solution vector, a check if all entries of the solution vector are strictly positive.

As a result of the application of those numerical algorithms, the solution vector π⃗c,k is received. From
this solution vector, the shifted correction energies Ec,s

i are calculated:

Ec,s
i = kBT


ln
(

πc,k
i

)
if i < k

0 if i = k

ln
(

πc,k
i−1

)
if i > k

. (3.76)

To eliminate the ambiguity of the choice of the discarded equation k and get comparable correction
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energies for similar systems, the correction energies are shifted such that the average value of all site-
correction energies is zero:

Ec
i = Ec,s

i −
⟨
Ec,1⟩ with

⟨
Ec,1⟩= 1

Ns
∑

j∈Ns

Ec,s
j . (3.77)

Correlation-Correction Energies Ec
ij

The procedure to calculate correlation-correction energies Ec
ij is, in principle, the same as for site-

correction energies Ec
i except that we have to include two charge carriers in the system instead of one.

As a consequence, configurations with two occupied sites (i1i2) instead of only one site i are taken into
account. The energy difference ∆Ei1j(i2) for a hop from site i1 to site j while the second charge carrier
resides on site i2 is given by

∆Ei1j(i2) = ε tot
j − ε tot

i1 + e∆⃗ri1jF⃗+Eint
ji2 −Eint

i1i2 . (3.78)

Interactions can be considered explicitly and/or in terms of a mean-field approximation. Within this
thesis, no mean-field considerations were performed for calculating correlation-correction energies. The
energy difference ∆Ei1j(i2) is used to calculate the corresponding rate Ri1j[∆Ei1j(i2)] and the modified
Q-matrix is given by

q̃(i1i2)(ji2) =


exp
(

βe∆⃗ri1jF⃗
)

Ri1j[∆Ei1j(i2)] if i1 ̸= j and i2 ̸= j

0 if i2 = j

∑k∈Ns\{i1,i2} Ri1k[∆Ei1k(i2)] if i1 = j.

(3.79)

The same procedure as described for site-correction energies Ec
i provides the shifted correlation-

correction energies Ec,s
ij . Again, the correlation-correction energies Ec

ij are fixed by the requirement that
the average is zero. Furthermore, the contribution from the site-correction energy is removed from the
shifted correlation-correction energy.

Ec
ij = Ec,s

ij −Ec
i −Ec

j −
⟨
Ec,2⟩ with

⟨
Ec,2⟩= 2

Ns(Ns −1)

Ns−1

∑
k1=1

Ns

∑
k2=k1+1

Ec,s
k1k2

(3.80)

The site-correction energies Ec
i and Ec

j must not be considered in the sum to evaluate
⟨
Ec,2
⟩
, because

their sum is zero.

3.3.3 Occupation Statistics

For Boltzmann statistics and the two-charge-carrier-configuration considerations, performing simple
sums given in Chapter 3.2.1 and Chapter 3.2.2 provides the occupations ⟨ni⟩1

Ns
, ⟨ninj⟩1

Ns
, ⟨ni⟩2

Ns
and

⟨ninj⟩2
Ns

. As this evaluation is very simple, we will only discuss the evaluation of ⟨ni⟩Ncc
Ns

and ⟨ninj⟩Ncc
Ns

for
systems with Ncc > 2 with Fermi-Dirac statistics compared to our new occupation statistics.

For both, no direct consideration of interactions is implemented yet. So, the total site energies Etot
i =

ε tot
i −Ec

i are the only energies entering the occupation statistics. The site energies ε tot
i can include mean-
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field interactions if desired. For Fermi-Dirac statistics, the occupations are given by

⟨ni⟩Ncc
Ns

=
1

1+ exp
[
β
(

Etot
i −ENcc

F,0

)] , ⟨ninj⟩Ncc
Ns

= ⟨ni⟩Ncc
Ns

⟨nj⟩Ncc
Ns

and Ncc = ∑
i∈Ns

⟨ni⟩Ncc
Ns

. (3.81)

This implicit system of equations for ENcc
F,0 is solved by a simple bisection method.

For the new occupation statistics, two different approaches are used. The first approach, for very
low numbers of charge carriers Ncc ≤ 5, is to start with Boltzmann statistics and use Equation (3.67)
to iteratively increase Ncc. The second approach is a two-sided iteration from higher and lower Ncc

incorporating Fermi-Dirac statistics including Equations (3.66) and (3.69).

Boltzmann Iteration
Starting from the known solution for the local Fermi level E1

F,i = ∆E1
F,i +E1

F,0 with the local Fermi-
level shift ∆E1

F,i and the global Fermi level E1
F,0

∆E1
F,i =−kBT ln

{
1− exp

[
−β
(
Etot

i −E1
F,0
)]}

and E1
F,0 = −kBT ln

(
∑

i∈Ns

exp
(
−βEtot

i
))

, (3.82)

the step from Ncc−1 charge carriers to Ncc charge carriers is performed with the help of Equation (3.67).

∆ENcc
F,i =−kBT ln

(
1+ exp

[
−β
(

Etot
i −∆ENcc−1

F,i −ENcc−1
F,0

)]
− exp

[
−β
(

Etot
i −ENcc

F,0

)])
and Ncc = ∑

i∈Ns

1

1+ exp
[
β
(

Etot
i −∆ENcc

F,i −ENcc
F,0

)] (3.83)

With the known values for ∆ENcc−1
F,i and ENcc−1

F,0 and a guess value for ENcc
F,0, we can calculate guess values

for ∆ENcc
F,i and evaluate the sum. So, we can solve the implicit system of equations, Equation (3.83), again

with a simple bisection method with respect to ENcc
F,0.

Two-Sided Iteration
Compared to the Boltzmann-iteration scheme, this two-sided-iteration scheme is much more effort

to be implemented. This effort is necessary as soon as more than Ncc ≳ 5 charge carriers are considered.
This approach is very stable and, especially for high numbers of charge carriers, it converges within a
few iterations. The principle of the iteration scheme is visualised in Figure 3.4.

The iteration calculates local Fermi-level shifts ∆ENcc,(k)
F,i and global Fermi levels ENcc,(k)

F,0 with a vari-
able k specifying the level of approximation. For k = 0, Fermi-Dirac statistics is utilised as a first ap-
proximation of the occupation statistics and with increasing values of k, the approximation is improved.
The variable k can take half-integer values, referring to the two half-cycles of each iteration consisting of
an upwards and downwards iteration. But before going in detail, we start with the zero-order iteration.
Fermi-Dirac statistics (k = 0) means that for the requested value of Ncc, we set ∆ENcc,(0)

F,i = 0 eV and
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iteration 0iteration 1 iteration 1iteration 2 iteration 2

iteration 3

iteration 3
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Equation (3.84)

Equation (3.85)

Equation (3.86)

Figure 3.4: Illustrative example of the iteration scheme for the two-sided iteration required to calculate
the local Fermi-level shift ∆ENcc

F,i of a site i and the global Fermi level ENcc
F,0 for large numbers of charge

carriers Ncc ≳ 5. Three iterations are demonstrated and the number of charge carriers that is evaluated is
Ncc = 3. Grey lines separate the required variables for the corresponding iteration.

calculate ENcc,(0)
F,0 from the implicit equation for k = 0

Ncc = ∑
i∈Ns

1

1+ exp
[
β
(

Etot
i −∆ENcc,(k)

F,i −ENcc,(k)
F,0

)] (3.84)

solved by a simple bisection method. With this, the initial iteration 0 is finished.
To initiate iteration 1, we set ∆ENcc−1,(0)

F,i = 0 eV and ∆ENcc+1,(0)
F,i = 0 eV and calculate ENcc−1,(0)

F,0

and ENcc+1,(0)
F,0 via Equation (3.84). The first half-cycle of iteration 1 performs an upwards iteration to
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calculate ∆ENcc,(0.5)
F,i and ∆ENcc+1,(0.5)

F,i via

∆ENcc,(k+0.5)
F,i = kBT ln

 1+ exp
[
−β
(

Etot
i −∆ENcc,(k)

F,i −ENcc,(k)
F,0

)]
1+ exp

[
−β
(

Etot
i −∆ENcc−1,(k)

F,i −ENcc−1,(k)
F,0

)]
 (3.85)

for k = 0. With upwards iteration we mean that the new values of ∆ENcc,(k+0.5)
F,i are calculated from

systems with Ncc − 1 and Ncc charge carriers for the level of approximation k being 0.5 lower. With
Equation (3.84), we get ENcc,(0.5)

F,0 and ENcc+1,(0.5)
F,0 , ending the first half-cycle of iteration 1.

The second half-cycle of iteration 1 is a downwards iteration.

∆ENcc,(k+0.5)
F,i = ENcc+1,(k)

F,0 −ENcc,(k)
F,0 +kBT ln

1+ exp
[
β
(

Etot
i −∆ENcc+1,(k)

F,i −ENcc+1,(k)
F,0

)]
1+ exp

[
β
(

Etot
i −∆ENcc,(k)

F,i −ENcc,(k)
F,0

)]
 (3.86)

This means we calculate ∆ENcc,(k+0.5)
F,i from systems with Ncc and Ncc + 1 charge carriers for the level

of approximation k being 0.5 lower. By setting k = 0.5, Equation (3.86) delivers ∆ENcc,(1)
F,i and Equa-

tion (3.84) determines ENcc,(1)
F,0 ending iteration 1.

This is continued by including two more systems in each iteration. The first additional system has one
less charge carrier than the system with the previously lowest number of charge carriers and the second
additional system has one charge carrier more than the system with the previously highest number of
charge carriers. The principle of the iteration scheme is shown in Figure 3.4.

If we reach the lowest number for the possible amount of charge carriers Ncc − i = 1 in iteration
i, we always use the exact solution, Equation (3.83), for upwards iterations including the system with
only one charge carrier. For this system of one charge carrier, no downwards iteration is required as the
Boltzmann statistics already provides the correct solution.

Convergence is reached, when the change in each local Fermi-level shift ∆ENcc,(k)
F,i of the requested

number of charge carriers Ncc after a full iteration i with i ∈ N is below a certain tolerance with respect
to both, the approximation related to k−0.5 and k−1. We usually use a relative tolerance of 10−6 and
an absolute tolerance of kBT ·10−10 with at least one of them being fulfilled for convergence.

3.3.4 Mobility and Convergence

The requested observable calculated for a bulk simulation is the mobility µ . Without a direct con-
sideration of interactions, the rates are the same for all configurations, enabling the application of Equa-
tion (3.38).

µ =
Ns

∑
i=1

Ns

∑
j=1
j ̸=i

q∆⃗rijF⃗
F2 Rij

(
⟨ni⟩Ncc

Ns
−⟨ninj⟩Ncc

Ns

)
(3.87)

With ⟨ni⟩Ncc
Ns

and ⟨ninj⟩Ncc
Ns

determined in Chapter 3.3.3. For one and two charge carriers in the simulation,
the mobility is given by Equations (3.39) and (3.41), respectively.

Without applying a mean-field approach to include interactions, the calculation of the mobility is the
last step after calculating the correction energies and the occupation. When including interactions via
a mean-field approach, an iterative approach to determine the correct average interaction energies Eint

i
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is required. In this case, the mobility is used as a measure for convergence. If the relative change in
mobility compared to the last iteration is less than a certain tolerance, it is assumed to be converged and
the iteration is stopped. Else, new average interaction energies Eint

i are calculated as described in Chap-
ter 3.3.1, new correction energies Ec

i are calculated as described in Chapter 3.3.2 and new occupations
⟨ni⟩Ncc

Ns
and ⟨ninj⟩Ncc

Ns
are calculated as described in Chapter 3.3.3. This delivers a new mobility µ via

Equation (3.87) which is checked for convergence. This process is repeated until convergence for the
mobility µ is reached. Commonly, we chose a relative tolerance of 10−6.

3.4 Verification

To test the validity of our new simulation technique, we extracted the mobility µ with this new
simulation technique and the mobility µKMC with kinetic Monte Carlo simulations, as a reference, for
exactly the same system. With those two mobilities, the relative error ∆µrel of our new simulation
technique is estimated by

∆µrel =

∣∣∣∣ µKMC −µ
min(µKMC,µ)

∣∣∣∣ . (3.88)

The minimum of µKMC and µ is taken in the denominator to receive an interpretable quantity for large
errors. If the error is 1, the two values are off by a factor of 2 and if it is 10, they are off by approximately
one order of magnitude.

The system to test the correction energy concept is described in Chapter 3.4.1. In Chapter 3.4.2, the
validity of the site-correction energies is tested by simulations with only one charge carrier. Chapter 3.4.3
provides a test of the validity of the correlation-correction energies via a system with two charge carriers
in the simulation. Finally, Chapter 3.4.4 performs tests for systems containing increasing amounts of
charge carriers. This test examines the approximations within the CEC considering only site-correction
energies. Furthermore, Chapter 3.4.4 compares the performance of our new occupation statistics in
comparison to Fermi-Dirac statistics.

3.4.1 The Test System

The system used to test our new simulation technique is a rather small system with 10× 10× 10
sites arranged on a simple cubic lattice with lattice constant of a = 1 nm. This small system is chosen to
enable a low uncertainty well below 1% of the KMC results with an acceptable amount of computational
effort. The maximum hopping distance is set to rhop = 2 nm and the charge delocalisation constant
to α = 5 nm−1. The site energies εi are randomly drawn from a Gaussian distribution with energetic
disorder σ = 100 meV. The energy landscape, consisting of all site energies εi, is always the same for all
simulations. The temperature is set to T = 300 K and the hopping prefactor is chosen to get a mobility
of µ = 10−4 Vs

cm2 for the isoenergetic case, which results in ν0 = 22.497 THz.
When interactions are considered, Coulomb interactions with all charge carriers and all periodic

replicas of all charge carriers of the periodic system are taken into account with a relative permittivity of
εr = 4.0. For details about the consideration of the Coulomb interactions, see [3, 93].

For the kinetic Monte Carlo simulations, 106 to 2 · 109 hops are required to achieve an error well
below 1%. The error of the KMC simulations is determined by Jackknife. [3, 93, 99].
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3.4.2 Single Charge Carrier Simulations

A first test of the applicability of the correction energy concept itself is to simulate a system with
only one charge carrier. In this simplest case, no interactions are present and the occupation statistics
is exactly given by the Boltzmann statistics. Furthermore, the site-correction energies Ec

i describe the
system exactly correct, so we purely test the validity of our site-correction energies.
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Figure 3.5: Error of the mobility evaluated with the correction energy concept with respect to precise
results from kinetic Monte Carlo simulations as a function of the externally applied electric field strength
F. The different curves refer to different hopping rates with the Miller-Abrahams rate, Equation (3.3),
and Marcus rate for different reorganisation energies Er = 0.05 eV, Er = 0.1 eV and Er = 0.2 eV, Equa-
tion (3.4), being considered. The dashed line marks an error of 10−2 = 1% and the dotted line an error of
1. With only one charge carrier in the simulation, Boltzmann statistics can be applied and we solely test
the validity of the site-correction energies Ec

i . This test is successfull, as the difference between the two
methods is below the uncertainty of the kinetic Monte Carlo results, indicated by the errorbars, which is
in the order of 1%.

Figure 3.5 shows the error of the CEC with respect to KMC simulation results for different electric
field strengths F and different hopping rates with the Miller-Abrahams rate, Equation (3.3), and Marcus
rate for different reorganisation energies Er = 0.05 eV, Er = 0.1 eV and Er = 0.2 eV, Equation (3.4). With
only one charge carrier in the simulation, the CEC and KMC have to result in exactly the same mobility.
This equivalence of the results from the CEC and KMC can be nicely seen in Figure 3.5, because all
errors of the mobility for all electric fields and all rates lie well below the dashed line, which indicates
an error of 10−2 = 1%. So, the difference between CEC and KMC results is within the uncertainty of
KMC.

3.4.3 Simulations With Two Charge Carriers

For two charge carriers, we are able to consider the correct occupation statistics, as described in
Chapter 3.2.2. So we can test the effect of including correlation-correction energies Ec

ij for simulations
without interactions and simulations including interactions. Considering the correct occupation statis-
tics implies that CEC simulations including the correlation-correction energies Ec

ij provide the correct
results. When only site-correction energies Ec

i are considered, the observed error arises from omitting
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correlation-correction energies Ec
ij and, if interactions are present, additionally from the approximate

consideration of those interactions via a mean-field approach.
In Figure 3.6, the error of the mobility is shown as a function of the electric field strength F for Miller-

Abrahams rate equation, Equation (3.3), and Marcus rate equation with different reorganisation energies
Er, Equation (3.4). The two upper panels in Figure 3.6 are non-interacting simulations and the two lower
panels are interacting ones. The two left panels in Figure 3.6 consider only site-correction energies Ec

i ,
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Figure 3.6: Error of the mobility evaluated with the correction energy concept with respect to the results
from kinetic Monte Carlo simulations as a function of the applied external electric field strength F. Dif-
ferent curves refer to different hopping rates with the Miller-Abrahams rate equation, Equation (3.3), and
Marcus rate equation for different reorganisations energies Er, Equation (3.4). All simulations contain
two charge carriers. The two upper panels omit interactions and the two lower panels include interac-
tions. The correlation-correction energies Ec

ij are included in the two right panels, while in the two left
panels, only site-correction energies Ec

i are considered. As the correct occupation statistics is evaluated
for those simulations with only two charge carriers, the simulations containing the correlation-correction
energies in the two right panels provide exactly the correct mobility with an error well below the dashed
1%-error line indicating the uncertainty of the KMC results. The individual uncertainties of the KMC
results are indicated by errorbars. In the upper left panel, only a slightly increased error at F = 2 ·108 V

m
can be seen. For interacting simulations, the error of the mobility rises well above the 1% line, as seen
in the lower left panel. But it still is below the dotted line at an error of 1, which means that the two
determined mobilities for the CEC and KMC are within the same order of magnitude. Looking at the
results for different hopping rates, the error is not affected significantly.
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while the two right panels include also correlation-correction energies Ec
ij. As expected, the consideration

of correlation-correction energies provides exactly the correct mobilities, for non-interacting simulations
(upper right panel in Figure 3.6) as well as for interacting simulations (lower right panel in Figure 3.6),
because all errors are well below the dashed line at 10−2 = 1% indicating the KMC related uncertainty.

The non-interacting simulations, that neglect correlation-correction energies Ec
ij, in the upper left

panel in Figure 3.6 show a slightly increased error for an electric field strength of F = 2 ·108 V
m . Overall,

this approximation still provides proper results. For interacting simulations, the error shown in the lower
left panel in Figure 3.6 exhibits values well above the KMC uncertainties. Nevertheless, the error is still
below the dotted line indicating an error of 1. So the results are still in the right order of magnitude,
which might be precise enough for many applications.

None of the results, neither in Figure 3.5, nor in Figure 3.6, show a substantial dependence on the
used rate equation (Miller-Abrahams or Marcus) or the chosen reorganisation energy Er for Marcus rate.
Hence, we will only focus on Miller-Abrahams rate equation in the following.

3.4.4 Multi-Charge Carrier Simulations

The last test of our new simulation technique examines the novel occupation statistics, considering
Fermi-level shifts ∆ENcc

F,i , by including multiple charge carriers Ncc > 2. The results, considering only site-
correction energies Ec

i , are compared to Fermi-Dirac statistics. Figure 3.7 shows the error of the mobility
of our CEC with respect to KMC results as a function of the electric field strength F for different amounts
of charge carriers in the simulation going from Ncc = 5 corresponding to an average charge-carrier density
of ⟨n⟩= 5 ·10−3 ccps (charge carriers per site) up to Ncc = 100 equivalent to a very high charge-carrier
density of ⟨n⟩ = 10−1 ccps. All simulations were performed with the Miller-Abrahams rate equation,
Equation (3.3).

Comparing the results for Fermi-Dirac statistics (two left panels in Figure 3.7) and the new occu-
pation statistics (two right panels in Figure 3.7), we see that the error of the new occupation statistics
always lies below the error of Fermi-Dirac statistics. For the non-interacting simulations (two upper
panels in Figure 3.7), the new occupation statistics is much better for rather low charge-carrier densities
⟨n⟩ = 5 · 10−3. For higher charge-carrier densities ⟨n⟩ > 2 · 10−2, the two different occupation statis-
tics become increasingly comparable. This behaviour is reasonable, because the approximation within
Fermi-Dirac statistics is improving for increasing charge-carrier density. This also lines out that the oc-
cupation correlations discussed at the end of Chapter 3.2.4 are most important for low numbers of charge
carriers in the simulation.

In contrast to the non-interacting simulations, for which the error is still acceptably low, the error of
the interacting simulations is much higher (see lower panels in Figure 3.7). It goes beyond one order of
magnitude difference between the mobility values suggested by KMC and our new occupation statistics
(lower right panel in Figure 3.7) for the highest charge-carrier densities ⟨n⟩ ≥ 5 ·10−2. For Fermi-Dirac
statistics (lower left panel in Figure 3.7), it exceeds even two orders of magnitude. The only values which
might be acceptable for rough estimations of the mobility for interacting simulations are the simulations
with the new occupation statistics for charge-carrier densities below ⟨n⟩ ≤ 2 ·10−2, for which the CEC-
mobility is at least in the right order of magnitude.

In summary, our new correction energy concept provides reliable mobility values for non-interacting
simulations up to high charge-carrier densities beyond ⟨n⟩ > 10−1 ccps and acceptable mobility values
for interacting simulations with not too high charge-carrier densities below ⟨n⟩≲ 10−2 ccps. The results
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Figure 3.7: Error of the mobility of the correction energy concept with respect to accurate kinetic Monte
Carlo simulation results as a function of the applied electric field strength F for different charge-carrier
densities ⟨n⟩. The lowest charge-carrier density of ⟨n⟩ = 5 · 10−3 ccps (charge carriers per site) corre-
sponds to Ncc = 5 charge carriers in the simulation and ⟨n⟩= 10−1 ccps to Ncc = 100. The two upper pan-
els represent non-interacting simulations and the two lower panels interacting ones. For all simulations,
only site-correction energies Ec

i are considered with the Miller-Abrahams rate equation, Equation (3.3),
being applied. If interactions are considered, they are included by a mean-field approach. The two left
panels show results received by assuming Fermi-Dirac occupation statistics and the two right panels by
considering our new occupation statistics. For all simulations, the new occupation statistics shows a
perceptible lower error compared to Fermi-Dirac statistics. Nearly all errors are above the uncertainty
of the KMC results at about 1% (dashed line). Nevertheless, for the non-interacting simulations (upper
two panels), the order of magnitude is still the right one with an error well below 1. For interacting
simulations, the error is exceeding the dotted line at an error of 1 resulting in mobilities being wrong
by approximately one order of magnitude for the highest charge-carrier densities for the new occupation
statistics and two orders of magnitude for Fermi-Dirac statistics.

received with our correction energy concept require, from a computational point of view, much less effort
compared to kinetic Monte Carlo simulations. Especially for low electric field strengths F ≲ 107 V

m , KMC
has to perform an enormous amount of hops to converge whereas the CEC delivers results increasingly
efficient with decreasing electric field. With further development, the correction energy concept is ought
to be able to provide reliable mobility values even for interacting simulations with high charge-carrier
densities beyond ⟨n⟩ > 10−2 ccps. The key to those reliable mobility values is the proper inclusion of
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interactions and correlations. As the correction energy concept provides a method within which we can
take a precise look at the effect of certain interactions and correlations on the mobility, it is possible
to identify the most important interactions and correlations efficiently. The important interactions and
correlations can then be directly included and the remaining interactions and correlations are treated
with a mean-field-like approach. So it should be possible, within the framework of the correction energy
concept, to, (i), identify and, (ii), include the most relevant interactions and correlations to get reliable
mobility values even for high charge-carrier densities by only slightly increasing the computational effort.
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4 Charge Transport in Bulk

Probably the most basic question regarding charge transport in organic semiconductor (OSC) devices
is the question of charge transport in the bulk of the OSC. Regardless of the device, being it an organic
light-emitting diode (OLED), an organic solar cells, or an organic thin-film transistor (OTFT), charge
transport in the bulk of the material always plays an important role and often is one of the bottlenecks of
the device performances.

There has already been a lot of research associated with charge transport in the bulk of amorphous
materials like OSCs, on the experimental side as well as on the theoretical side. [8–17] By now, it is
known that the bulk mobility shows a pronounced dependence on the applied electric field F as well
as on the charge-carrier density ⟨n⟩. The field dependence is often described with a Poole-Frenkel like
behaviour [32,33] and the charge-carrier density was suggested to show an exponential dependence ⟨n⟩γ

with an exponent γ as discussed in Chapter 2. This exponential behaviour was suggested by variable-
range hopping (VRH) in combination with percolation theory [34] as well as by multiple trapping and
release (MTR) [35]. In Chapter 2, we discussed that this simplification of the charge-carrier-density
dependence of the mobility does not apply to the full range of charge-carrier densities observed in an
OTFT. Other charge transport models provide more reasonable estimates for the electric field and charge-
carrier-density dependence of the mobility. [11]

From the perspective of the correction energy concept, introduced in Chapter 3, we are able to in-
terpret the electric field and charge-carrier-density dependence of the mobility in a completely new way.
The development of this new perspective will start by exploring the nature of the correction energies in
Chapter 4.1. The knowledge gained from this exploration is utilised to develop a way of thinking about
charge transport reminiscent to water running through basins in Chapter 4.2. This new way of thinking
is not in contradiction with the common way of thinking in deepest traps and most significant barriers.
Both pictures can benefit from one another. We demonstrate an example for the usefulness of the basin
picture by identifying charge transport regimes seen in the charge mobility in Chapter 4.3.

4.1 The Nature of Correction Energies

In Chapter 3, we already noticed that the correction energies Ec
i are closely related to the applied

electric field F. To get an idea of the relation between correction energies and electric field, we will
discuss a one-dimensional toy system with only one charge carrier and an intermediate applied electric
field of F = 107 V

m . In Figure 4.1, all energies appearing in a system are visualised.
The illustrative toy system shown in Figure 4.1 is one-dimensional and periodic with 51 sites and

a= 1 nm spacing between the sites. The site energies εi are randomly drawn from a Gaussian distribution
with disorder σ = 100 meV. The black horizontal lines with grey shading underneath shown in Figure 4.1
represent the sum of the site energy and the electric field energy εi − eFxi. The underlying trend of
the electric field energy is indicated as a red line in Figure 4.1. The blue line with dots shows the
site-correction energy and the electric field energy Ec

i − eFxi and the difference between the blue line
and the red line is the site-correction energy Ec

i . To get the site-correction energies Ec
i , we restricted

the maximum hopping distance to nearest neighbours only and applied Miller-Abrahams rate equation,
Equation (3.3), with a charge delocalisation constant α = 5 nm−1, a hopping prefactor ν0 = 22.497 THz,
and a temperature T = 300 K.

The correction energies Ec
i are predominantly determined by the electric field strength F. When no
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Figure 4.1: Field-induced charge rearrangement captured by correction energies for a one-dimensional,
periodic system with 51 sites at positions x = 1 nm to x = 51 nm. Black horizontal lines with grey
shading underneath indicate the sum of the randomly chosen site energy and the field energy εi − eFxi

of site i at position xi. The site plus field energies follow the trend of the electric field energy −eFx
shown as a red line. In blue, the sum of the site-correction energy and the field energy Ec

i −eFx is drawn.
The difference between the red and the blue line represents the site-correction energy Ec

i . A positive
site-correction energy Ec

i indicates charge accumulation compared to the case without an electric field
F = 0 V

m → Ec
i = 0 eV and a negative Ec

i indicates charge depletion. In front of the barrier at position
x= 25 nm, charge carriers get stuck and we observe a charge accumulation (green shaded area) suggested
by the site-correction energies. Right behind the barrier, we see charge depletion (brown shaded area).
In front of and behind the barrier refers to the transport direction, which is following decreasing energies
from left to right.

electric field is applied, the correction energies are zero Ec
i = 0 eV. As soon as we apply an electric field,

the correction energies become non-zero and change the occupation of the sites, because the correction
energies Ec

i enter the exponent in the occupation statistics β (εi −Ec
i ), cf. Chapter 3.2. A negative

correction energy Ec
i < 0 eV indicates that the site is less occupied than without an electric field. A

positive correction energy Ec
i > 0 eV implies an increase of the charge-carrier density of the site i due

to the electric field. Looking at Figure 4.1, this means that when the blue line is above the red line
(positive Ec

i > 0 eV), the electric field creates a charge accumulation at the affected site i. When the
blue line is below the red line (negative Ec

i < 0 eV), the field induces a charge depletion. An example
for charge accumulation and depletion is shaded green and brown, respectively. Marked accumulation
and depletion occur, for example, around barriers like site 25 at x = 25 nm, which is the highest energy
that has to be overcome in this region. As the transport direction is from left to right in Figure 4.1, the
charge carriers get stuck on the left side of the barrier before overcoming it, creating a region of charge
accumulation on the left side of the barrier. After overcoming the barrier, charge carriers can move away
from it more easy due to the electric field and get stuck in front of the next barrier resulting in this pattern
of depletion and accumulation regions around barriers.

When looking even closer at the blue line in Figure 4.1, we see that this blue line is nearly flat in
extended regions and those flat regions are separated by steep steps. This behaviour is reminiscent of a
water level with water running through basins and waterfalls between the basins. The steps of the blue
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line exclusively appear at local barriers of the energy landscape. So we can think of our energy landscape
as basins that are separated by barriers.

This picture of basins and barriers reveals the nature of the correction energies. When no electric
field is applied F = 0 V

m , all sites are in balance, locally and globally (cf. Chapter 3.1). Balance relies on
steady-state conditions, which means that a charge carrier must have a lot of time to explore the energy
landscape to reach balance. A consequence of this local and global balance is, that all correction energies
are zero Ec

i = 0 eV for a vanishing field. Hence, the flat correction energies indicate balance.
Applying an electric field adds a tilt to the energy landscape which makes the charge carriers, on

average, move in a preferential direction. Balance in this case means that the correction energies in
combination with this tilt in energy due to the electric field would be flat. The field- and correction
energy cannot be flat everywhere due to the violation of energy conservation at the boundaries, which
would create artificial steps in the field- and correction energy at the boundary. Nevertheless, the field-
and correction energy is flat within the basins, which means that a charge carrier spends a lot of time in
the basin establishing nearly steady state. Crossing the barrier between basins is done within one hop.
This quick transition is the position at which balance is broken, which creates the steps at the barriers
between the flat region of the blue line in Figure 4.1. In summary, the nature of correction energies lies
in establishing balance within basins in the energy landscape and breaking the balance at the barriers
separating those basins. This basically refers to the structure of ramps and cliffs observed by Cottaar
et al. in [100].

4.2 Barriers, Basins and Clusters

The one-dimensional toy system in Figure 4.1 taught us to think in terms of basins, in which charge
carrier reside for a certain time, and barriers separating those basins, at which charge carriers have to
work hard to overcome them. When overcoming a barrier, the next basin is entered and a charge carrier
hops around for some time in this next basin. This strongly simplified picture of the energy landscape
with basins and barriers is shown as a cartoon in Figure 4.2.

In the left panel in Figure 4.2, the basin and barrier structure is visualised without an electric field.
The black line illustrates a cartoon of the energy landscape with lower site energies in the basin and a
barrier energy EB separating the basins. The barrier energy EB is indicated by the grey dotted line. The
red line marks the most likely energy of the charge carriers EML within the system. This energy EML is
the energy at which the occupied density of states (ODOS) reaches its maximum. The ODOS can be
approximated by multiplying the density of states (DOS) with the Fermi-Dirac statistics:

ODOS(E) =
DOS(E)

1+ exp
(

E−ENcc
F,0

kBT

) , ODOS(EML) = max
E

ODOS(E). (4.1)

The Fermi-Dirac statistics contains the temperature T and the Boltzmann constant kB. The Fermi level
ENcc

F,0 is determined by the number of charge carriers Ncc in the simulation and the DOS. In our case, the
DOS is given by a Gaussian distribution. In total, the most likely energy of the charge carriers EML is
fixed by the DOS, the number of charge carriers Ncc, and the temperature T . Increasing the number of
charge carriers Ncc, equivalent to increasing the charge-carrier density ⟨n⟩ = Ncc

Ns
(NS is the number of

sites), raises the most likely energy of the charge carriers EML.
The right panel in Figure 4.2 shows the same energy landscape as the left panel when an electric field

75



Doctoral Thesis 4 CHARGE TRANSPORT IN BULK Markus Krammer

without electric field F

position x

en
er

gy

ba
rr

ie
r

ba
rr

ie
r

basin

EB

EML ⟨n⟩ F

with electric field F

position x
en

er
gy

EML − eFx+Ec

LR/2

EB −EML

F∗ = EB−EML
eLR/2

Figure 4.2: Cartoon of a one-dimensional energy landscape in the form of basins and barriers (black line).
The energy level of the barriers EB is indicated as a grey dotted line and the most likely energy of the
charge carriers EML as red line. The blue line represents the field- and correction energy Ec−eFx relative
to the most likely energy of the charge carriers EML. In the left panel, no electric field is applied and in the
right panel, the tilt in the energy landscape reflects the applied electric field F. The most likely energy of
the charge carriers EML is shifted up or down if the charge-carrier density ⟨n⟩ is increased or decreased,
respectively. Due to balance, the blue line in the right panel represents a local version of the most likely
energy of the charge carriers. If the blue line reaches the barrier, charge carriers can easily overcome the
barrier and charge transport gets more efficient at that condition. This means that a transition field F∗

can be estimated, around which a transition between charge transport regimes happens. This transition
field F∗ is determined by the barrier energy EB, the most likely energy of the charge carriers EML and the
size of the basin as the transport-relevant region LR.

F is applied. This tilts the whole energy landscape and requires the consideration of correction energies
Ec. The blue line in the right panel in Figure 4.2 indicates the field- and correction energy Ec − eFx
relative to the red line. This red line indicates the most likely energy of the charge carriers EML from
the left panel tilted by the field energy. As discussed in Chapter 4.1, the field- and correction energy
represents a local variation of the occupation comparable to a local Fermi level. This means that the
blue line in the right panel in Figure 4.2 indicates a local version of the most likely energy of the charge
carriers. When the blue line reaches the energy of the barrier, it becomes very likely, that the barrier site
is occupied. As a consequence, overcoming the barrier becomes also very likely and charge transport
will get very efficient. In our analogy of water running through basins, this would mean that the water
flows efficiently as soon as the water level is high enough so that all basins are filled. From the cartoon
in Figure 4.2, we can make an estimate for a transition field F∗ between charge transport regimes from
the barrier energy EB, the most likely energy of the charge carriers EML and half the size of the basin as
the transport-relevant region LR

2

F∗ = 2
EB −EML

eLR
(4.2)

with the elemental charge e. At this transition field F∗, we expect a significant increase of the mobility
µ .
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As we are interested in three-dimensional systems with randomly chosen site energies, we have to
transfer the estimate for the transition field F∗, Equation (4.2), to such a system. The most relevant
barrier EB of such a system is the highest barrier energy of the lowest energy pathway in field direction.
This is the highest barrier energy that has to be overcome by a charge carrier when travelling through the
entire system in field direction along the easiest possible pathway. This easiest or lowest energy pathway
possesses a maximum energy (the highest barrier energy), which is the lowest maximum energy of all
pathways. This highest energy of the lowest energy pathway is associated with the barrier energy EB in
Equation (4.2). Implementing a search algorithm for the highest energy of the lowest energy pathway
can be done by sorting all site energies εi. The lowest of all site energies creates the first path. When
including the site with the lowest energy of the remaining sites one after the other, we can distinguish
three possibilities. First, if no nearest neighbour belongs to a path, the site creates a new path. Second, if
one or more nearest neighbours belong to the same path, the site is assigned to this path. Third, if nearest
neighbours belong to different paths, the paths are linked and merged to one bigger path. At a certain
energy, a closed path across the boundary of the system in field direction is established. The energy
where this happens is exactly the highest barrier energy of the lowest energy pathway EB.

The next ingredient for the estimate for a transition field F∗ is the most likely energy of the charge
carriers EML. This energy EML is estimated via Equation (4.1), e.g., by calculating the derivative of the
ODOS and using a simple bisection method to find the energy at which the derivative is zero.

To get the estimate for a transition field F∗, the size of the transport-relevant regions LR is the last
remaining ingredient. The evaluation of this size LR for a three-dimensional system requires some more
effort. We start our search for the size of the transport-relevant regions LR by defining a basin as a region
with only one local energy minimum in the randomly chosen site energies εi. The basins are separated
from each other by barrier sites, which are defined as sites that can be related to at least two local energy
minima. This means when continuously going down in energy from a barrier site in different directions,
one can end up in at least two different local energy minima. An implementation to get this basin structure
could start by sorting all site energies εi. The lowest of all energies creates the first basin. Afterwards, all
sites are included in the basin structure one after the other. This inclusion is done stepwise by selecting
the lowest energy of the remaining sites and looking at the nearest neighbours of this site. If, (i), none of
the nearest neighbours is included in the basin structure, neither as a site belonging to a basin, nor as a
barrier site, the new site is a local minimum and creates a new basin. If, (ii), at least one of the nearest
neighbours is a barrier site, the new site is associated to at least two basins and is a barrier site as well. If,
(iii), the nearest neighbour sites that are already included in the basin structure contain only one basin,
the new site is added to this basin. If, (iv), the nearest neighbour sites contain sites associated to more
than one basin, the new site is a barrier site.

This definition of basins creates a basin structure, in which more than half of the basins contain
only one site for an uncorrelated Gaussian disorder in three dimensions. As a consequence, the basin
size in field direction of most basins is only one site a = 1 nm (see black dashed line in the right panel
in Figure 4.3). Basins with a size of one site are not really affected by the field-induced charge rear-
rangements described by correction energies. So they are definitely not the transport-relevant regions
that we are searching for to get LR. The one-dimensional system in Figure 4.1 also suggests, that we
have to consider larger regions containing more than one local energy minimum. To find the size of the
transport-relevant regions LR, we form clusters out of the basins. When creating the basin structure, we
registered the barrier energies between basins and stored the lowest barrier energies between basins in
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Figure 4.3: The left panel shows the evolution of the number of clusters which are created by merging
basins linked by barriers up to a certain barrier energy as a function of this barrier energy. At a certain
energy, the first cluster is created by the barrier between basins with the lowest energy followed by a
rapid increase of the number of clusters. For a high barrier energy, clusters are merged resulting in a
decrease in the number of clusters until only one big cluster is left. The right panel shows the probability
distribution of the size of clusters in field direction at the maximum number of clusters (solid black line)
and the probability distribution of the size of basins in field direction (black dashed line). The average
cluster size LR = 3.22 nm refers to the size of the transport-relevant regions and is marked with a vertical
grey dotted line. The investigated system includes an uncorrelated Gaussian DOS and 51×51×51 sites
on a simple cubic lattice.

a list. To build clusters, we take the lowest barrier energy in this list and merge the basins linked by it
into a cluster. Continuing to create clusters by including barrier energies with increasing energy, merging
more and more basins, raises the number of clusters for low barrier energies, illustrated in the left panel
in Figure 4.3. At a certain barrier energy, the increase of the number of clusters saturates and reaches a
maximum before it goes down because clusters are merged to larger clusters by barriers until only one
huge clusters is left.

Looking at this evolution of the number of clusters as a function of the barrier energy up to which
basins and clusters are merged together (left panel in Figure 4.3), the question is: Which cluster size
is correct for our transport-relevant regions? On the one hand, the transport-relevant regions should
be extended regions to be able to profit from the field-induced charge rearrangement suggested by the
correction energies. On the other hand, the extended regions should not have the size of the total system,
so the regions should still be separated by intermediate barriers. Our suggested compromise to get the
transport-relevant cluster size is to take the cluster distribution corresponding to the barrier energy at
which the evolution of the number of clusters reaches its maximum (cf. left panel in Figure 4.3). The
probability distribution of the clusters size in field direction for this choice of the transport-relevant
cluster size can be seen as a black solid line in the right panel in Figure 4.3. In comparison to the
probability distribution of the basin size in field direction (black dashed line), the probability distribution
of the transport-relevant cluster size in field direction shows significant values above one site a = 1 nm.
The average cluster size in field direction LR = 3.22 nm is indicated by a vertical grey dotted line in the
right panel in Figure 4.3.

With those recipes to determine the barrier energy, EB, the most likely energy of the charge carriers,
EML, and the size of the transport-relevant regions, LR, we collected all ingredients to calculate the tran-
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sition field, F∗, Equation (4.2), around which we expect the mobility to change significantly. All those
ingredients are very simple to extract from the energy landscape. The computationally most expensive
step is sorting the site energies εi of all sites i and of all barrier energies, which is an O(Ns logNs) pro-
cess. All remaining steps are only O(Ns). So the calculation of the transition field F∗ is computationally
very cheap.

4.3 Bulk Mobility and Transport Regimes

The transition field F∗ estimated in Chapter 4.2, Equation (4.2), is supposed to indicate the electric
field strength around which a transition between transport regimes happens. This transition is supposed
to result in a significant increase of the bulk mobility. To investigate the bulk mobility in this chapter,
simulations are performed. The corresponding parameters are specified In Chapter 4.3.1. A first exam-
ple for the evolution of the bulk mobility with respect to the applied electric field and the charge-carrier
density for an exemplary energy landscape is discussed in detail in Chapter 4.3.2. In Chapter 4.3.3, the
influence of the energetic disorder on the mobility is investigated. The mobility shows a pronounced
dependence on the randomly chosen energy landscape, which is illustrated in Chapter 4.3.4. This pro-
nounced dependence on the energy landscape is analysed in Chapter 4.3.5, in which different charge
transport regimes are discussed. Finally, the evolution of the mobility is explored for different hopping
radii and different rate equations in Chapter 4.3.6.

4.3.1 The Model System

The system to check the appearance of the transition between mobility regimes in Chapter 4.3 is, in
principle, always the same. If not specified explicitly in the corresponding chapter, the parameters of
the system are stated in the following. We simulate a 51×51×51 sites simple cubic lattice with lattice
constant of a = 1 nm and hopping restricted to nearest neighbours only. The rates are calculated by the
Miller-Abrahams rate equation, Equation (3.3), with a hopping prefactor of ν0 = 22.497 THz, a charge
delocalisation constant of α = 5 nm−1 and a temperature of T = 300 K. The site energies are randomly
drawn from a Gaussian distribution with width σ = 100 meV. No interactions are considered. The bulk
mobility µ was evaluated with our new correction energy concept (CEC) for a wide range of applied
electric fields F and charge-carrier densities ⟨n⟩= Ncc

Ns
. In the CEC, site-correction energies and our new

occupation statistics was utilised.

4.3.2 Exemplary Energy Landscape

To perform a first test of the transition field F∗ and discuss the evolution of the bulk mobility with
respect to the electric field and the charge-carrier density, we selected one particular energy landscape
out of 25 different energy landscapes that we simulated. This particular energy landscape reflects the
average behaviour of the 25 simulated ones. With average behaviour, we mean that the evolution of the
mobility of this particular energy landscape is close to the mobility evolution observed when we average
over all 25 energy landscapes. Investigating this exemplary energy landscape has the advantages that,
(i), less simulations are required when changing parameters and, (ii), the validity of the CEC results can
be directly tested by accurate kinetic Monte Carlo (KMC) simulations of exactly the same system. The
lines in Figure 4.4 represent the mobility µ as a function of the electric field F for different amounts of
charge carriers Ncc evaluated with the CEC and the crosses indicate the validation via computationally
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Figure 4.4: Bulk mobility µ as a function of the applied external electric field F for different amounts
of charge carriers Ncc = 1 to Ncc = 10000 in the system with 51× 51× 51 sites, a Gaussian DOS with
disorder σ = 100 meV, nearest neighbour hopping only and Miller-Abrahams rate equation. The energy
landscape is one representative example out of 25 tested energy landscapes. The lines are calculated
with our CEC and the crosses are KMC results for validation. The dashed line indicates the isoenergetic
mobility and the plus signs mark the transition field F∗. Around the transition field F∗, the predicted
increase of the mobility appears.

expensive KMC simulations. The CEC and KMC results match very well, only the black line of the CEC
for the highest charge-carrier density lies slightly above the black crosses of the KMC simulation results.

The values for the electric field are in a range of F = 104 V
m to F = 109 V

m . The amounts of charge
carriers Ncc in the range of Ncc = 1 to Ncc = 10000 refer to a charge-carrier density of ⟨n⟩ ≈ 7.54 ·
10−6 charge carriers per site (ccps) to ⟨n⟩ ≈ 7.54 ·10−2 ccps, respectively. One site has a volume of a3 =

1 nm3 in our system, so the charge-carrier density with respect to the volume is ⟨n⟩
a3 ≈ 7.54 ·10−6 nm−3

to ⟨n⟩
a3 ≈ 7.54 ·10−2 nm−3, respectively.
All curves illustrating the bulk mobilities µ for different amounts of charge carriers in the simu-

lation shown in Figure 4.4, in principle, exhibit a similar dependence on the electric field F. For low
electric fields F ≲ 107 V

m , the mobility µ is constant. For high electric fields F ≳ 5 · 108 V
m , the energy

contribution due to the electric field dominates the energy landscape and the mobility converges to the
isoenergetic mobility (dashed line in Figure 4.4). This isoenergetic mobility is the mobility of a system
without energetic disorder (εi = 0 eV for all sites i) and it decreases due to the chosen rate equation.
Hops downwards always happen with the same frequency for Miller-Abrahams rate equation, cf. Equa-
tion (3.3). This means that increasing the electric field does not make the charge carriers move faster,
resulting in a saturation of the drift velocity for high electric fields. Hence, the isoenergetic mobility
for Miller-Abrahams rate equation is proportional to µ ∼ F−1 for high electric fields. For intermediate
electric fields F ≳ 107 V

m and F ≲ 5 ·108 V
m , the mobility significantly increases. The electric field around

which this increase appears matches nicely with the estimate for the transition field F∗, which is indicated
by a plus sign for each charge-carrier density in Figure 4.4.

With increasing charge-carrier density, the mobility at low electric fields F ≲ 107 V
m increases. This

is in line with our picture of barriers and basins, because the most likely energy of the charge carriers EML

increases with increasing charge-carrier density ⟨n⟩ and, hence, the remaining barrier energy EB −EML
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that has to be overcome by the charge carriers decreases, on average. In the isoenergetic limit, the
charge-carrier density ⟨n⟩ plays a minor role and all curves of the mobility for different charge-carrier
densities approximately converge to the same isoenergetic mobility for high fields F ≳ 5 · 108 V

m . As a
consequence, the raise in mobility at the transition field F∗ varies from nearly two orders of magnitude
for Ncc = 1 to approximately a factor of 5 for Ncc = 10000.

4.3.3 Influence of the Energetic Disorder

To explore the influence of the energetic disorder σ , Figure 4.5 shows mobilities for different values
of σ as a function of the applied electric field F and the number of charge carriers Ncc = 1 to Ncc = 10000.
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Figure 4.5: Bulk mobility µ as a function of the applied external electric field F for different amounts of
charge carriers Ncc. The system is the same as simulated in Chapter 4.3.2 with the energy landscape being
scaled to receive different energetic disorders σ . The energetic disorder is σ = 50 meV and σ = 75 meV
for the upper left and upper right panel and σ = 125 meV and σ = 150 meV for the lower left and lower
right panel, respectively. Note that the limits of the axis of the mobility change considerable for different
energetic disorders σ . The general field dependence of the mobility is the same as in Figure 4.4. The
estimate of the transition field F∗ (marked with plus sign) matches the field around which the mobility
increases. The higher the disorder σ and the less charge carriers Ncc in the system, the larger the ratio
of maximum and low field minimum of the mobility, going from a factor of 1.2 for σ = 50 meV and
Ncc = 10000 to a factor of 104 for σ = 150 meV and Ncc = 1. The isoenergetic mobility is indicated as
dashed line in each panel.
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The energy landscape is the same as the exemplary energy landscape selected in Chapter 4.3.2, but with
a different disorder σ of the Gaussian DOS. This means the site energies εi are multiplied by σnew

σold
with

the old disorder σold = 100 meV and the new disorder σnew = σ . The upper left panel in Figure 4.5
shows the mobility for a system with disorder σ = 50 meV, the upper right for σ = 75 meV, the lower
left for σ = 125 meV, and the lower right for σ = 150 meV. The dashed line in Figure 4.5, indicating
the isoenergetic limit of the mobility, is always the same in all panels, but appears different due to the
different limits of the axis.

The general shape of all mobility curves with respect to the electric field dependence shown in Fig-
ure 4.5 is the same as discussed in Chapter 4.3.2. The estimate for the transition field F∗, discussed in
Chapter 4.2, Equation (4.2), matches nicely with the electric field, around which the increase in mobility
happens, for all energetic disorders σ and all numbers of charge carriers Ncc in the system. Note that this
transition field F∗ is significantly changing from F∗ ≈ 3.0 · 107 V

m for σ = 50 meV and Ncc = 10000 to
F∗ ≈ 3.5 ·108 V

m for σ = 150 meV and Ncc = 1.
Comparing the mobilities for the different energetic disorders σ shown in the four panels of Fig-

ure 4.5, the most significant difference between them is the ratio of maximum to minimum mobility.
In this context, the minimum mobility is the mobility for a low electric field and the lowest number of
charge carriers Ncc = 1 and the maximum mobility appears in the curve for the largest amount of charge
carriers Ncc = 10000. With a total range of the mobility between µ ≈ 4 ·10−5 Vs

cm2 and µ ≈ 7 ·10−5 Vs
cm2 ,

the mobility for the lowest energetic disorder σ = 50 meV shows a very weak dependence on the elec-
tric field F and the charge-carrier density ⟨n⟩ (upper left panel in Figure 4.5). This dependence of the
mobility on the electric field and the charge-carrier density increases with increasing disorder σ . For the
highest energetic disorder σ = 150 meV, the mobility exhibits a very pronounced dependence, with a
mobility in the range of µ ≈ 4 ·10−10 Vs

cm2 and µ ≈ 2 ·10−5 Vs
cm2 (lower right panel in Figure 4.5).

Our perspective of basins and barriers enables an interpretation of the significant increase of the field
and charge-carrier-density dependence of the mobility with increasing energetic disorder σ . For low
energetic disorders σ , the barrier energy EB −EML, that has to be overcome by charge carriers for low
electric fields, is much lower due to a much smaller spread of the site energies εi. Hence, the charge
transport for low σ is already rather efficient and an increase of the electric field does not improve it
significantly. Regarding the charge-carrier-density dependence of the mobility, the most likely energy of
the charge carriers EML plays an important role. With increasing disorder σ , the sensitivity of EML with
respect to the charge-carrier density significantly increases. This results in a larger range for the barrier
energy EB −EML with respect to the charge-carrier density for larger disorder σ and a subsequent larger
range for the mobility.

4.3.4 Outliers and Average

The mobility is not only depending on the disorder σ , it also depends notably on the random choice
of the energy landscape. Different energy landscapes with the same disorder σ can result in distinctly
different values for the mobility. In the upper panels of Figure 4.6, two further examples of the 25
different energy landscapes with a disorder of σ = 100 meV are shown. For those examples, additional
features appear for the lowest charge-carrier density (brown lines) between F = 107 V

m and F = 108 V
m .

The example energy landscapes represent the maximum outliers out of the 25 simulated ones with a
significantly increasing mobility at F = 107 V

m in the upper left panel in Figure 4.6 and a significantly
decreasing mobility at the same field in the upper right panel in Figure 4.6. For higher charge-carrier
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Figure 4.6: The upper panels show the bulk mobility µ as a function of the electric field F and the amount
of charge carriers Ncc for two example energy landscapes selected from the 25 simulated ones. The lower
left panel shows the mobility ⟨µ⟩ averaged over the 25 different energy landscapes and the lower right
panel shows the relative variation of the mobility ∆µ

µ of those 25 different energy landscapes. The system
is the same as in Chapter 4.3.2 with an energetic disorder of σ = 100 meV. Additional features appear
in the example energy landscapes (upper panels) between an electric field of F = 107 V

m and F = 108 V
m

for the lowest amount of charge carriers Ncc = 1 (brown curves). In the mobility ⟨µ⟩ averaged over all
energy landscapes (lower left panel), those features disappear. The variation of the mobility (lower right
panel) is highest for the lowest charge-carrier density with a slight increase in the region of the significant
mobility raise for not too high charge-carrier densities Ncc < 10000.

densities, those features are smoothed and disappear. The lowest charge-carrier density with only one
charge carrier in the system is most affected by the deepest trap, which varies from energy landscape
to energy landscape. So it is quite likely that this deepest trap is responsible for the occurring features
(further discussed in Chapter 4.3.5).

When averaging the mobility ⟨µ⟩ over different energy landscapes, the features at electric fields
F = 107 V

m to F = 108 V
m disappear (lower left panel in Figure 4.6). So the energy landscapes with

increasing mobility and decreasing mobility around F = 107 V
m seem to be equiprobable. In the lower
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right panel in Figure 4.6, the relative variation of the mobility

∆µ
µ

=

√
⟨µ2⟩
⟨µ⟩2 −1 (4.3)

is plotted as a function of the applied electric field F and the amount of charge carriers Ncc. The variation
of the mobility significantly decreases with increasing charge-carrier density due to the reduction of
the influence of the deepest trap with increasing Ncc. At the electric field around which the significant
increase of the mobility appears, F ≈ 108 V

m , the variation of the mobility is higher for amounts of charge
carriers below Ncc < 10000. This peaks are caused by the fact, that the highest barrier energy of the
lowest energy pathway slightly changes from energy landscape to energy landscape. This small change
slightly shifts the transition field. Due to the steep slope of the mobility in this region, the variation of
the mobility is notably increased around the transition field.

4.3.5 Transport Regimes

In the following, we will discuss a possible explanation for the features of the mobility at electric
fields between F = 107 V

m and F = 108 V
m in the upper panels of Figure 4.6 incorporating the data

presented in Figure 4.7. In conjunction with Figure 4.7, we revisit the one-dimensional system introduced
in Chapter 4.1. The upper panel in Figure 4.7 illustrates the energy landscape with the highest barrier at
position x = 3 nm and the deepest trap at position x = 12 nm. The magenta and the red line demonstrate
the tilt of the energy landscape at an electric field of F = 2 ·106 V

m and F = 107 V
m . The lines are aligned

to the highest barrier energy at x = 3 nm to get an idea which barriers are important at which electric
field. The lower panel in Figure 4.7 shows the normalised field- and correction energy Ec−eFx

eFLsys
, with the

characteristic flat regions separated by steps, already discussed in Chapter 4.1. To see all curves on the
same scale, the energies are normalised by dividing them by the total field energy eFLsys that a charge
carrier gains when moving through the entire system once. The dashed dark green line in the lower
panel in Figure 4.7 marks the normalised field energy − eFx

eFLsys
and the difference between this line and

the normalised field- and correction energies indicate the normalised correction energies Ec

eFLsys
.

When looking at the evolution of the correction energies with respect to the applied electric field F,
seen in the lower panel in Figure 4.7, the three lines for the lowest electric field F ≤ 2 · 106 V

m (brown,
blue and magenta) have the by far highest step at the highest barrier at x = 3 nm. The much smaller steps
at the intermediate barriers at x = 13 nm, x = 25 nm, x = 41 nm and x = 49 nm are nearly negligible.
This means for a low electric field F ≤ 2 ·106 V

m , the charge carrier gets almost exclusively stuck in front
of the highest barrier. For intermediate electric fields around F ≈ 107 V

m (red line in the lower panel
in Figure 4.7), the intermediate barriers become more and more relevant and the size of the transport-
relevant clusters is reduced from the total system size to the size determined by the intermediate barriers.
When increasing the electric field F even more, the transport-relevant cluster size decreases more and
more until the field energy dominates the energy landscape and no barriers are left. The field- and
correction energies underline this trend by showing more and more steps (yellow, black and purple lines
in the lower panel in Figure 4.7) until the field energy dominates the correction energy at very high
electric fields (grey line in the lower panel in Figure 4.7).

The mobility for a single charge carrier Ncc = 1 in the system corresponding to this evolution of
the field- and correction energies with respect to the applied electric field F, depicted in Figure 4.7, is
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Figure 4.7: The upper panel shows the energy landscape of the one-dimensional system introduced in
Chapter 4.1. The two lines represent the steepness of the tilt of the energy landscape by the labelled
electric field. In the lower panel, the normalised field- and correction energy Ec−eFx

eFLsys
as a function of the

position x is plotted for a wide range of electric fields F demonstrating the different transport regimes
(details see text). The dashed dark green line indicates the field energy without correction energies.

shown in the upper panel in Figure 4.8. The lower panel in Figure 4.8 presents the occupation ⟨n12⟩
of the deepest trap at position x = 12 nm as a function of the applied electric field F. The blue lines
in Figure 4.8 show the mobility and occupation in forward direction, meaning that the charge carrier
moves from left to right. This corresponds to the direction assumed for the calculation of the field- and
correction energies given in the lower panel in Figure 4.7. The red lines in Figure 4.8 correspond to the
reverse direction, meaning that the charge carrier moves from right to left due to a reversed electric field.
The filled circles on the blue line in Figure 4.8 mark the fields at which the field- and correction energies
are drawn in Figure 4.7, with the same colour code applied.

With Figure 4.7 and Figure 4.8, we are able to deliver the promised possible explanation for the
additional features appearing in the upper panels in Figure 4.6 for Ncc = 1 in the electric field range
of F = 107 V

m and F = 108 V
m . In the evolution of the field- and correction energies (lower panel in

Figure 4.7), we can identify at least three different transport regimes. For very low electric fields F ≤
2 · 106 V

m , the only significant step in the field- and correction energy, e.g. in the blue line in the lower
panel in Figure 4.7, appears at the site with the highest barrier energy at x = 3 nm. This means, that the
transport-relevant cluster size corresponds to the entire system size and the only barrier that is relevant
is the one with the highest energy at x = 3 nm. For intermediate electric fields around F ≈ 107 V

m (red
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Figure 4.8: Mobility (upper panel) and occupation ⟨n12⟩ of the deepest trap at x = 12 nm (lower panel)
of the one-dimensional system shown in Figure 4.7 as a function of the applied electric field F for one
charge carrier Ncc = 1 in the system. The blue lines represents the mobility and occupation when the
charge carrier moves from left to right (forward), corresponding to the field- and correction energies
given in the lower panel in Figure 4.7. The red line is the mobility and occupation for the charge carrier
moving from right to left (reverse) due to a reversed electric field. The filled circles mark the fields at
which the field- and correction energies are visualised in Figure 4.7 with the same colour code being
used. The dotted lines approximately separate the three transport regimes discussed in the text.

line in the lower panel in Figure 4.7), more steps in the field- and correction energy in the lower panel in
Figure 4.7 emerge at the intermediate barriers at x= 13 nm, x= 25 nm, x= 41 nm and x= 49 nm. Hence,
the size of the transport-relevant clusters is significantly reduced. Increasing the electric field even more
continuously breaks up the cluster structure until we reach the isoenergetic transport regime when the
field energy is so high that no barriers are left. So we can distinguish three transport regimes with respect
to the applied electric field. In the first transport regime for low electric fields, the entire system is one
transport-relevant cluster. In the second transport regime for intermediate electric fields, the size of the
transport-relevant clusters is reduced but we still see flat regions and steps in the field and correction
energies. Finally, in the third transport regime the transport-relevant cluster size is further reduced until
every site is its own cluster and no barriers between the clusters exist due to the high electric field.

Those three transport regimes, separated by dotted lines in Figure 4.8, can be seen in the mobility as
well, plotted in the upper panel in Figure 4.8. For low fields F ≤ 106 V

m , the mobility does not change
much and is not depending on the transport direction. Up to an electric field of F = 3 ·106 V

m the mobility
in forward direction increased and in reverse direction decreased. This is a consequence of the relative
position of the deepest trap and the highest barrier. In forward direction, the deepest trap is in the region
which is depleted by the highest barrier resulting in a decrease of the occupation of the deepest trap
(lower panel in Figure 4.8). A reduced occupation of the deepest trap implies an increase of the mobility.
In reverse direction, it is exactly the other way round. The deepest trap is in the accumulation zone of the
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highest barrier resulting in a decrease of the mobility. Approximately at an electric field of F ≈ 3 ·106 V
m ,

the transition to the second mobility regime happens and the intermediate barriers take over. Now the
deepest trap is next to the intermediate barrier at x = 12 nm. In forward direction, the deepest trap is in
the accumulation zone of this barrier and in reverse direction, it is in the depletion zone. This results in
a respective increase and decrease in occupation (see lower panel in Figure 4.8). As a consequence, the
increase in mobility in forward direction above an electric field of F ≈ 3 · 106 V

m is not as steep as the
increase below this field, while the mobility in reverse direction notably increases above F = 3 · 106 V

m

(see upper panel in Figure 4.8). The transition to the third transport regime starts approximately at an
electric field of F ≈ 3 · 107 V

m , at which the transport-relevant clusters continuously reduce their size
resulting in a significant increase of the mobility in forward and reverse direction until the isoenergetic
limit is reached.

In summary, the properties of the first transport regime for low electric fields and very low charge-
carrier densities are predominantly determined by the highest energy barrier and the deepest trap of the
system. For the second transport regime, incorporating intermediate electric fields and/or intermediate
charge-carrier densities, not just the highest barrier energy that has to be overcome is important but also
intermediate barriers. When going to very high electric fields, the isoenergetic transport regime takes
over and the initial energy landscape plays only a minor role.

4.3.6 Influence of Hopping Radius and Rates

Within the assumptions leading to the transition field F∗, hopping is restricted to nearest neighbours
only with a hopping radius of rhop = 1 nm. Revoking this constraint and allowing for hops up to rhop =

2 nm is supposed to have an impact on the transition field F∗ and the mobility. In Figure 4.9, simulation
results for the system introduced in Chapter 4.3.2 with exactly the same energy landscape an energetic
disorder σ = 100 meV are presented. The only difference is that the maximum allowed hopping distance
rhop is raised from 1 nm to 2 nm. The four panels in Figure 4.9 represent four different hopping rates
with the Miller-Abrahams rate equation (upper left panel in Figure 4.9), Equation (3.3), and Marcus rate
equation, Equation (3.4), for three different reorganisation energies Er = 0.05 eV (upper right panel in
Figure 4.9), Er = 0.1 eV (lower left panel in Figure 4.9) and Er = 0.2 eV (lower right panel in Figure 4.9).
The CEC simulations were verified by KMC simulations visualised as crosses in Figure 4.9.

The mobility as a function of electric field F and number of charge carriers Ncc shown in Figure 4.4
and in the upper left panel in Figure 4.9 both consider Miller-Abrahams rate equation. The only dif-
ference is the hopping radius rhop = 1 nm and rhop = 2 nm, respectively. When looking at the mobility
values in Figure 4.4 and the upper left panel in Figure 4.9, the increase of rhop for charge delocalisation
constant α = 5 nm−1 results in a consistent increase of the mobility by a factor of up to 1.6 for Ncc = 1.
The rapid increase in mobility for rhop = 1 nm appears around an electric field of F ≈ 108 V

m , whereas
for rhop = 2 nm, the increase happens at a lower electric field of F ≈ 5 ·107 V

m . As expected, the mobility
slightly increases and the transition field slightly decreases for an increase of rhop from 1 nm to 2 nm.

The mobilities for different rate equations in Figure 4.9 differ quite significantly in values and also
in their actual shape. However, the transition field F∗, around which the rapid increase of the mobility
occurs, is very similar for all rate equations. We can see the onset of the increase in all panels in Figure 4.9
at an electric field of approximately F ≈ 5 · 107 V

m . This result nicely agrees with our derivation of the
transition field F∗, because the derivation suggest that the choice of the rate equation has only a minor
influence on the transition field F∗.
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Figure 4.9: Bulk mobility µ as a function of the applied electric field F for different amounts of charge
carriers Ncc = 1 to Ncc = 10000 in the system. The simulated system is exactly the same as the one in
Chapter 4.3.2 with exactly the same energy landscape and energetic disorder σ = 100 meV. The only
difference is that the maximum allowed hopping radius is increased to rhop = 2 nm. The upper left
panel used Miller-Abrahams rate equation and the remaining panels used Marcus rate equation with
different reorganisation energies Er. The crosses represent a verification by kinetic Monte Carlo (KMC)
simulations of the lines, for which the mobility was extracted with our new correction energy concept
(CEC). The agreement between CEC and KMC results is appropriate. The significant increase of the
mobility at F ≈ 5 · 107 V

m appears for lower fields compared to the rhop = 1 nm results (cf. Figure 4.4)
and always at the same transition field for all rate equations, as expected.

In this chapter we demonstrated the strength of the correction energy concept to provide insight into
charge transport mechanisms. With this insight, we derived an easily accessible transition field F∗ around
which a significant increase of the mobility as a function of the electric field appears. As an outlook, our
simple estimate of the transition field might be the foundation for a new mobility model or could be used
to improve existing mobility models like the model suggested by Pasveer et al. [11].
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5 Metal-Organic Semiconductor Interface

Interfaces are essential parts of every device. In organic electronic devices, like organic thin-film
transistors (OTFTs) and organic light-emitting diodes (OLEDs), the interface between the organic semi-
conductor (OSC) and the metal contact is of particular importance to efficiently provide mobile charge
carriers for a proper device operation. For OTFTs, the preparation of the contacts is gaining more and
more attention as it is a crucial bottleneck of modern high mobility OSC materials based transistors. [6]

The direct vicinity of the metal-OSC interface has been extensively studied with DFT-based ap-
proaches resulting in a well-founded knowledge of the basic processes governing the interface energetics
and corresponding level alignments. [101, 102] This fundamental improvement in understanding the in-
terface enables a precise tuning of interface properties like the work function. [1, 103] Small changes
of interface properties can cause severe changes in the injection behaviour and, subsequently, the de-
vice performance. The influence of interface properties on the injection current density has already
been investigated for two decades. Several analytical expressions to describe the injection current den-
sity emerged from these investigations. [104–106] Furthermore, investigations on the current density
through a metal-OSC-metal single layer unipolar diode revealed two distinct operation scenarios, i.e.,
space-charge-limited current (SCLC) and injection-limited current (ILC). [107–109]

To understand the influence of interface properties on device performance, it is insufficient to con-
sider the vicinity of the interface. Rather, the interface needs to be considered as a region that is imbedded
into a device. The injection can be influenced by charge accumulations within the device, even if these
accumulations occur far away from the interface. Such a mutual influence across distant device locations
is due to the long-ranging Coulomb interactions. The importance of looking at the entire device was
already emphasised by Varo et al. [108]. These authors suggested a unified model for organic single
layer unipolar diodes discriminating between SCLC and ILC.

In this chapter, we will revisit the model system, for which previously suggested analytical expres-
sions for the current density through a metal-OSC interface were conceived, to identify the conditions
that provoke a transition from SCLC to ILC. After advancing the model system by refining the de-
scription of the metal contact by distinguishing between the injection barrier and the Fermi level of the
contact in Chapter 5.1, we perform kinetic Monte Carlo (KMC) simulations to explore the behaviour
of this model system in the full range of SCLC to ILC in Chapter 5.2. From the insight gained by the
simulation results, we derive an estimate for the injection barrier separating the SCLC regime and the
ILC regime in Chapter 5.3. The interpretability of the suggested model system and its advantages and
disadvantages are discussed in Chapter 5.4 before we compare our results to experimental data from
Raoufi and co-workers [110] in Chapter 5.5.

5.1 Model System for the Interface

To calculate the current density through a metal-OSC interface, we performed kinetic Monte Carlo
simulations of an interface model based on the idea of Wolf et al. [79] with modifications to include
Coulomb interactions as described in the following. The idea of Wolf et al. [79] was to simulate only
the region nearby the interface instead of simulating the whole device. This notion is appealing as it
saves computational resources and allows to extract interface properties, that are independent of the full
device. Yet, the disregard of the full device limits the extent to which the results can be interpreted (cf.
Chapter 5.4).
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5.1.1 Geometry

In our interface model, charge carriers can occupy spatially localised sites. In contrast to bulk simula-
tions, we have to distinguish between active and passive sites. Active sites are sites that can be occupied
or unoccupied, i.e., charge carriers hop on and off that sites. Bulk simulations exclusively consist of
active sites. Passive sites are sites that are not contained in the actual simulation volume. Those passive
sites can provide charge carriers for an active site and remove charge carriers from an active site, but they
cannot host charge carriers. The ability to provide and remove charge carriers is related to an occupation
probability (cf. Chapter 5.1.3). In interface simulations, e.g. the metal sites in the contact are described
as passive sites.

In our simulation, sites are arranged on a simple cubic lattice with a = 1 nm lattice constant. The
layers parallel to the metal contact contain Nl ×Nl = 25×25 sites with periodic boundary conditions in
both directions. The active OSC region contains Nx = 50 layers parallel to the metal contact. The hopping
range is restricted to distances of at maximum rhop = 2 nm. Reminiscent of Wolf et al., [79] we added
two layers of passive OSC to one facet of the active volume, which act as so-called extraction layers.
Charge carriers can hop to sites in those extraction layers in the same manner as for all other empty sites.
However, in the moment a charge carrier hops to a site in the extraction layers, it is taken out of the
simulation. Hence, those passive extraction sites are assumed to be unoccupied. On the opposite side of
the extraction layers, we add one layer of contact sites. The properties of the contact sites are discussed
in detail in Chapter 5.1.3.

5.1.2 Energy Levels in the Organic Semiconductor

To make the charge carriers move, rates for hops of charge carriers from one site to another are re-
quired. Those rates depend on the difference in energy that the charge carrier possesses when occupying
the initial site before the hop and the final site after the hop. This energy Ei of a charge carrier occupying
site i consist of terms related to, (i), the randomly chosen site energy εi drawn from a Gaussian distribu-
tion with energetic disorder σ , (ii), the energy from the externally applied electric field −eFxi with the
elemental charge e, the electric field F and the distance of the site to the metal contact xi, (iii), the own
image charge potential −e2(16πε0εrxi)

−1 with the vacuum permittivity ε0 and the relative permittivity
εr of the OSC, (iv), Coulomb interactions with other charge carriers eΦ (⃗ri) with the potential Φ created
by all other charge carriers and the spatial position of the site occupied by the charge carrier r⃗i and, (v),
Coulomb interactions with other image charge carriers −eΦimg (⃗ri) with the potential Φimg of the other
image charge carriers.

Ei = εi − eFxi −
e2

16πε0εrxi
+ eΦ (⃗ri)− eΦimg (⃗ri) (5.1)

Due to the periodic boundary conditions, Coulomb interactions with all charge carriers and all pe-
riodic replica of all charge carriers have to be considered. The contributions of Φ and Φimg can be
conveniently obtained from the potential of a single charge carrier φ (∆⃗r). To get the potential φ (∆⃗r)
created by one charge carrier under consideration of all its periodic replica, we developed a 2D Ewald
summation method [93, 111–114]. The argument ∆⃗r is the distance between the charge carrier and the
position at which the potential is requested. To get this potential, we proceeded in a similar way as for
the 3D Ewald summation described in [3, 93] combined with the 2D summation method illustrated by
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Lee and Cai. [113] In essence, Ewald summation splits the infinite sum over all periodic replicas into a
fast converging real-space sum and a fast converging reciprocal-space sum. This split is characterised by
a splitting parameter ζ . The problem, that the sum of a charged system is actually diverging, is overcome
by cleverly introducing a counter charge that does not affect the shape of the potential, but only delivers
a constant contribution. A detailed description can be found in [93]. The result of this derivation is

φ(∆⃗r) =
e

4πε0εr

{
erfc(ζ |∆⃗r|)
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 (5.2)

with the error function erf(u) and the complementary error function erfc(u) = 1− erf(u), the area of the
periodically repeated unit A = (Nl · a)2, the distance ∆x between the charge carrier and the position at
which the potential is requested perpendicular to the metal contact plane, a sum over the 2D real space
translation vector T⃗ and the 2D reciprocal space vector G⃗. The splitting parameter ζ determines the
speed of convergence of the two sums. For a low value of ζ , the sum over G⃗ converges fast and the sum
over T⃗ converges slow, and for a high value of ζ , it is the other way round. For our chosen intermediate
value of ζ =

√
π

Nl·a , both sums converge fast.
This potential for a single charge carrier bears the essential benefit that we can calculate it prior to the

simulation and store it. During the simulation, we simply need to figure out the index distance between
the charge carrier and the site for which the potential is calculated and look up the corresponding potential
in the stored array. So we only need to calculate the potential once for a given geometry resulting in no
additional computational effort during the actual simulation.

From the potential of a single charge carrier φ (∆⃗r), the interaction potential Φ(r⃗i) and the image
charge interaction potential Φimg (r⃗i) can be calculated by summing over all charge carriers except the
charge carrier for which the interaction potentials are calculated.

Φ (⃗ri) =
Ncc

∑
j=1
kj ̸=i

φ
(⃗
ri − r⃗kj

)
and Φimg (⃗ri) =

Ncc

∑
j=1
kj ̸=i

φ
(⃗

ri − r⃗ img
kj

)
(5.3)

with the index of the site i that is occupied by the charge carrier for which the interaction potential is
calculated, the number of the charge carrier j over which we sum, the index oft the site kj of charge
carrier j, the total number of charge carriers Ncc, the spatial position r⃗i of site i, the spatial position r⃗kj of
site kj occupied by charge carrier j and the spatial position of the image charge carrier r⃗ img

kj
mirrored at

the metal contact corresponding to the charge carrier j occupying site kj. The restriction kj ̸= i takes into
account that the charge carrier for which the potential is calculated is excluded from the sum.

The energy levels Ei are used to calculate rates for hops of charge carrier from their current position
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i to a position j within a maximum hopping range of rhop = 2 nm. We took the Miller-Abrahams rate
equation [94] to calculate the rate Rij for a hop from site i to site j

Rij = ν0 exp(−2α |rj − ri|)

exp
(
−Ej−Ei

kBT

)
for Ej −Ei > 0

1 for Ej −Ei ≤ 0
(5.4)

with the hopping prefactor ν0, the charge delocalisation constant α , the Boltzmann constant kB and the
temperature T .

5.1.3 Contact Treatment

The description of the metal contact by Wolf et al. [79] is proposed for a system with only a single
charge carrier. This contact treatment is not directly applicable for our system with interacting charge
carriers but lends the essential idea. At the facet of the active OSC, which is opposite to the extraction
layers, we put one layer of metal sites with the same spacing as in the OSC. The connection of the metal
contact with the OSC and vice versa is achieved by injection and extraction rates. In this context, we
use injection to indicate a hop of a charge carrier from a metal site to a site in the OSC (create a new
charge carrier in the simulation) and extraction to indicate a hop of a charge carrier from a site in the
OSC to a metal site in the contact (remove one charge carrier from the simulation). Hence, an injection
rate is a rate with which charge carriers are injected from a metal site in the contact to the OSC and
an extraction rates is the rate with which charge carriers can hop from the OSC to a metal site in the
contact. The rates are determined by certain properties of the metal contact. Wolf et al. [79] proposed,
that we solely need to consider the energy levels Em

i of the metal sites in the contact. This energy can
be set to Em

i = −∆ with the nominal injection barrier ∆. The energy of a metal site is not influenced by
Coulomb interactions from charge carriers within the OSC, because it is assumed that the surface charge
of the metal at the interface shields those interactions. Note that the derivation below is not restricted to
Em

i =−∆. In principle, Em
i can take different values for different sites i.

To receive appropriate rate expressions for injection and extraction in our system with interacting
charge carriers, we have to go beyond the single charge carrier considerations by Wolf et al. [79]. Besides
the energy level of the metal sites Em

i , we have to additionally choose a distinct Fermi-level of the metal
Em

F . The site energies Em
i refer to a strongly simplified density of states with a sharp peak at −∆ and the

Fermi-level Em
F accounts for the occupation probability ⟨nm

i ⟩ of sites i in the metal contact via Fermi-
Dirac statistics.

⟨nm
i ⟩=

1

1+ exp
(

Em
i −Em

F
kBT

) (5.5)

The metal sites are passive sites, which means that they are not occupied or unoccupied like active sites
in the OSC, but are described by an occupation probability.

In the following, we will derive the injection and extraction rates that arise from this description of
the metal sites via an energy level Em

i and the Fermi-level Em
F . For this purpose, we have to consider

the perspective of configurations ξ as done in Chapter 3. A configuration ξ is one possibility to place
charge carriers at the active sites. In contrast to bulk simulations with a fixed number of charge carriers
in the system throughout the entire simulation, interface simulations are an open system with changing
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numbers of charge carriers. As a consequence, the number of possible configurations for a system with a
number of Ns active sites is with 2Ns much higher for interface simulations than for bulk simulations with(Ns

Ncc

)
possible configurations considering Ncc charge carriers. The nomenclature for configurations ξ is

different to that in Chapter 3. In Chapter 3, we wrote ξ = {i1, i2, . . . , iNcc} for a configuration ξ with a
number of charge carriers Ncc and sites ij occupied by the charge carrier j. Here, we write whether a site
i is occupied, ni = 1 charge carriers per site (ccps), or not, ni = 0 ccps, in the form ξ = {n1,n2, . . . ,nNs}
for the Ns active sites in the simulation. As the number of charge carriers Ncc changes during simulation,
this is the more adequate notation in this case, although it holds the same content of information due to
the indistinguishability of the charge carriers.

To receive the desired rates, we will artificially enlarging the system to enable a well defined inclu-
sion of the Fermi level Em

F with clearly defined assumptions. Enlarging means that the metal sites are
transformed from passive sites to active sites. After including the Fermi level Em

F , the system is reduced
to the initial size with active sites only within the OSC. This reduction delivers the desired injection
and extraction rates. The assumptions we propose to describe the metal contact and the injection and
extraction process are, (i), each metal site is not correlated to the remaining system, (ii), the occupation
probability of a metal site ⟨nm

i ⟩ is given by Equation (5.5).
To include the contact sites in the active region that can be occupied by charge carriers, the con-

figuration space has to be enlarged. A configuration ξ of the total system is now a combination of the
configuration ξo = {no

1,n
o
2, . . . ,n

o
Ns
} of the charge carriers in the OSC, with no

i ∈ {0,1} being the number
of charge carriers at site i in the OSC and Ns the number of active sites in the OSC, and the configuration
ξm = {nm

1 ,n
m
2 , . . . ,n

m
Nm
} of the charge carriers in the metal contact, with nm

i ∈ {0,1} being the number of
charge carriers at site i in the metal contact and Nm the number of metal sites. Furthermore, we define a
configuration ξi that partially includes the metal sites

ξi = {nm
Nm−i+1,n

m
Nm−i+2, . . . ,n

m
Nm
,no

1,n
o
2, . . . ,n

o
Ns
}= {nm

Nm−i+1,n
m
Nm−i+2, . . . ,n

m
Nm
,ξo} (5.6)

and define ξ0 = ξo for i = 0. Note that those definitions for ξi imply ξNm = ξ = {ξm,ξo}.
To obey the two assumptions of uncorrelated metal sites and occupation probabilities given by Equa-

tion (5.5), the contact sites are coupled to a charge reservoir. Each contact site i assigns an individual
rate Rr,m i for a hop from the reservoir to the metal site i and Rm i,r for a hop from the metal site i to the
reservoir. It is not necessary to know the exact values of the rates Rr,m i and Rm i,r. Rather, the range of
their values should justify the two required assumptions. The first assumption of uncorrelated metal sites
is justified if the rates Rr,m i and Rm i,r are much higher than the rates involving OSC sites. The second
assumption of the occupation probability ⟨nm

i ⟩ given by Equation (5.5) is justified if the ratio between
Rr,m i and Rm i,r is appropriate. The first assumption is approximately justified for metal contacts, because
processes in metals happen on a much faster timescale than in OSC. The second assumption relies on
the concept of a Fermi level Em

F in the metal contact. Both assumptions rely, in principle, on an efficient
shielding of the surface charge at the metal surface in such a way that neither the site energy Em

i , nor the
Fermi level Em

F is influenced by the charge carriers in the OSC.
With all the initial assumptions being made and justified, the next step is to reduce the system again

and convert the active metal sites to passive sites. This conversion is performed via the global balance
equation which links the probability πξ that a configuration ξ is visited in steady state and the rates Rξ ξ ′
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for transitions from configuration ξ to configuration ξ ′

∑
ξ ′ ̸=ξ

πξ Rξ ξ ′ = ∑
ξ ′ ̸=ξ

πξ ′Rξ ′ξ . (5.7)

The global balance equation balances the probability flux out of configuration ξ to all other configura-
tions ξ ′ determined by the rates Rξ ξ ′ (left-hand side) with the probability flux into configuration ξ from
all other configurations ξ ′ determined by the rates Rξ ′ξ (right-hand side).

A configuration of the enlarged system ξ can be split into two subsystems ξ = {nm
1 ,ξNm−1} com-

prising a metal site nm
1 and all other sites. Considering those two subsystems in the global balance

Equation (5.7) leads to three terms in the sum over ξ ′:

∑
ξ ′ ̸=ξ

πξ Rξ ξ ′ = ∑
ξ ′

Nm−1 ̸=ξNm−1

πm
1 (nm

1 )πξNm−1R{nm
1 ,ξNm−1}{nm

1 ,ξ
′
Nm−1}

+πm
1 (nm

1 )πξNm−1R{nm
1 ,ξNm−1}{1−nm

1 ,ξNm−1}

+ ∑
ξ ′

Nm−1 ̸=ξNm−1

πm
1 (nm

1 )πξNm−1R{nm
1 ,ξNm−1}{1−nm

1 ,ξ
′
Nm−1} (5.8)

and

∑
ξ ′ ̸=ξ

πξ ′Rξ ′ξ = ∑
ξ ′

Nm−1 ̸=ξNm−1

πm
1 (nm

1 )πξ ′
Nm−1

R{nm
1 ,ξ

′
Nm−1}{nm

1 ,ξNm−1}

+πm
1 (1−nm

1 )πξNm−1R{1−nm
1 ,ξNm−1}{nm

1 ,ξNm−1}

+ ∑
ξ ′

Nm−1 ̸=ξNm−1

πm
1 (1−nm

1 )πξ ′
Nm−1

R{1−nm
1 ,ξ

′
Nm−1}{nm

1 ,ξNm−1} (5.9)

using the assumption of uncorrelated metal sites π{nm
1 ,ξNm−1} = πm

1 (nm
1 )πξNm−1 with the probability πm

i (n
m
i )

that metal site i is in state nm
i ∈ {0,1} being unoccupied or occupied, respectively. The term in the first

line of Equations (5.8) and (5.9) represents the hops restricted to the reduced subsystem with configu-
rations ξNm−1 as the occupation of metal site 1 does not change. The rate in this term is not influenced
by the occupation nm

1 of metal site 1, so the rate can be rewritten to R{nm
1 ,ξNm−1}{nm

1 ,ξ
′
Nm−1} = RξNm−1ξ ′

Nm−1
.

The term in the second line of Equations (5.8) and (5.9) is the coupling of the metal site 1 with the
charge reservoir, indicated by a change in nm

1 without changing ξNm−1. So the rate can be identified
as R{nm

1 ,ξNm−1}{1−nm
1 ,ξNm−1} = Rr,m 1 for nm

1 = 0 ccps and R{nm
1 ,ξNm−1}{1−nm

1 ,ξNm−1} = Rm 1,r for nm
1 = 1 ccps.

Finally, the term in the third line of Equations (5.8) and (5.9) links the metal site 1 to the remaining sub-
system changing both, nm

1 and ξNm−1, resulting in an injection or extraction process. As a consequence,
the rate can be rewritten to

R{nm
1 ,ξNm−1}{1−nm

1 ,ξ
′
Nm−1} = Rex,1

ξNm−1ξ ′
Nm−1

for nm
1 = 0 ccps (5.10)

with the rate Rex,1
ξNm−1ξ ′

Nm−1
for charge extraction from the OSC to the metal site 1 and

R{nm
1 ,ξNm−1}{1−nm

1 ,ξ
′
Nm−1} = Rin,1

ξNm−1ξ ′
Nm−1

for nm
1 = 1 ccps (5.11)

with the rate Rin,1
ξNm−1ξ ′

Nm−1
for charge injection from the metal site 1 to the OSC. With the two possible

states nm
1 ∈ {0,1} for being unoccupied or occupied, we get two equations out of the global balance
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Equation (5.7):

∑
ξ ′

Nm−1 ̸=ξNm−1

πm
1 (0)πξNm−1RξNm−1ξ ′

Nm−1
+πm

1 (0)πξNm−1Rr,m 1 + ∑
ξ ′

Nm−1 ̸=ξNm−1

πm
1 (0)πξNm−1Rex,1

ξNm−1ξ ′
Nm−1

=

= ∑
ξ ′

Nm−1 ̸=ξNm−1

πm
1 (0)πξ ′

Nm−1
Rξ ′

Nm−1ξNm−1 +πm
1 (1)πξNm−1Rm 1,r+ ∑

ξ ′
Nm−1 ̸=ξNm−1

πm
1 (1)πξ ′

Nm−1
Rin,1

ξ ′
Nm−1ξNm−1

(5.12)

for nm
1 = 0 ccps and

∑
ξ ′

Nm−1 ̸=ξNm−1

πm
1 (1)πξNm−1RξNm−1ξ ′

Nm−1
+πm

1 (1)πξNm−1Rm 1,r + ∑
ξ ′

Nm−1 ̸=ξNm−1

πm
1 (1)πξNm−1Rin,1

ξNm−1ξ ′
Nm−1

=

= ∑
ξ ′

Nm−1 ̸=ξNm−1

πm
1 (1)πξ ′

Nm−1
Rξ ′

Nm−1ξNm−1 +πm
1 (0)πξNm−1Rr,m 1+ ∑

ξ ′
Nm−1 ̸=ξNm−1

πm
1 (0)πξ ′

Nm−1
Rex,1

ξ ′
Nm−1ξNm−1

(5.13)

for nm
1 = 1 ccps.

Upon adding Equations (5.12) and (5.13), the terms in the middle, containing the coupling to the
reservoir, πm

1 (1)πξNm−1Rm 1,r and πm
1 (0)πξNm−1Rr,m 1 cancel out. Due to πm

1 (0)+πm
1 (1) = 1, which means

that the metal site 1 has to be either unoccupied or occupied, we get the relation

∑
ξ ′

Nm−1 ̸=ξNm−1

πξNm−1

(
RξNm−1ξ ′

Nm−1
+πm

1 (0)R
ex,1
ξNm−1ξ ′

Nm−1
+πm

1 (1)R
in,1
ξNm−1ξ ′

Nm−1

)
=

= ∑
ξ ′

Nm−1 ̸=ξNm−1

πξ ′
Nm−1

(
Rξ ′

Nm−1ξNm−1 +πm
1 (0)R

ex,1
ξ ′

Nm−1ξNm−1
+πm

1 (1)R
in,1
ξ ′

Nm−1ξNm−1

)
(5.14)

that contains only the reduced subsystem of configurations ξNm−1 with the coupling to metal site 1 for
injection and extraction rates containing an extra factor of πm

1 (n
m
i ).

With this first metal site being removed from the active region, we can propose that removing Nr

metal sites results in

∑
ξ ′

Nm−Nr ̸=ξNm−Nr

πξNm−Nr

(
RξNm−Nr ξ ′

Nm−Nr
+

Nr

∑
i=1

πm
i (0)R

ex,i
ξNm−Nr ξ ′

Nm−Nr
+

Nr

∑
i=1

πm
i (1)R

in,i
ξNm−Nr ξ ′

Nm−Nr

)
=

= ∑
ξ ′

Nm−Nr ̸=ξNm−Nr

πξ ′
Nm−Nr

(
Rξ ′

Nm−Nr ξNm−Nr
+

Nr

∑
i=1

πm
i (0)R

ex,i
ξ ′

Nm−Nr ξNm−Nr
+

Nr

∑
i=1

πm
i (1)R

in,i
ξ ′

Nm−Nr ξNm−Nr

)
(5.15)

and prove this claim by induction with the basis already given by Equation (5.14) and the step from Nr

to Nr +1 sketched below.
The approach is the same as for the removal of the first metal site 1. We divide the system with

configurations ξNm−Nr into two subsystems ξNm−Nr = {nm
Nr+1,ξNm−Nr−1}, rewrite the sum over ξ ′

Nm−Nr
to

get three terms as demonstrated in Equations (5.8) and (5.9), receive two equations for nm
Nr+1 = 0 ccps

and nm
Nr+1 = 1 ccps and add them. For the rates Rex,i and Rin,i, the second and third term from rewriting

the sum are both zero. There is no possible transition to change the occupation of metal site Nr +1 due to
extraction from the OSC to the metal site i or injection from the metal site i to the OSC. Those forbidden
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transition leads to a vanishing rate for the second and third term. The fact that the metal site Nr +1 has
to be either unoccupied or occupied πm

Nr+1(0)+πm
Nr+1(1) = 1 results in a change of πξNm−Nr

Rex/in,i
ξNm−Nr ξ ′

Nm−Nr

to πξNm−Nr−1Rex/in,i
ξNm−Nr−1ξ ′

Nm−Nr−1
due to adding the two equations for nm

Nr+1 = 0 ccps and nm
Nr+1 = 1 ccps. The

remaining part of Equation (5.15) changes in exactly the same way as for going from Nr = 0 to Nr = 1
creating the extra term in the sum over i in Equation (5.15) running from 1 to Nr +1 after adding up the
equations for nm

Nr+1 = 0 ccps and nm
Nr+1 = 1 ccps. This finishes the sketch of the proof for the step from

Nr to Nr +1 of the induction.
When removing all the metal sites Nr = Nm, we end up with the relation

∑
ξ ′

o ̸=ξo

πξo

(
Rξoξ ′

o
+

Nm

∑
i=1

πm
i (0)R

ex,i
ξoξ ′

o
+

Nm

∑
i=1

πm
i (1)R

in,i
ξoξ ′

o

)
=

= ∑
ξ ′

o ̸=ξo

πξ ′
o

(
Rξ ′

oξo +
Nm

∑
i=1

πm
i (0)R

ex,i
ξ ′

oξo
+

Nm

∑
i=1

πm
i (1)R

in,i
ξ ′

oξo

)
. (5.16)

By close inspection, we can identify Equation (5.16) as a global balance equation. With this equation, the
steady-state probabilities πξo are determined by the rates in the brackets consisting of, (i), rates for hops
in the OSC Rξoξ ′

o
, (ii), extraction rates πm

i (0)R
ex,i
ξoξ ′

o
and, (iii), injection rates πm

i (1)R
in,i
ξoξ ′

o
. The probability

flux out of (left-hand side) and into (right-hand side) configuration ξo is, hence, not only determined by
the rates of charge carriers hopping in the OSC Rξoξ ′

o
, but also by injection and extraction rates for charge

carriers injected from and extracted to the metal contact. When implementing those rates in kinetic
Monte Carlo simulations, the steady-state probabilities πξo can be determined.

The global balance equation in Equation (5.16) provides a simple and intuitive recipe to include the
Fermi level Em

F in the injection and extraction rates. As expected, the Fermi level of the metal contact
does not influence the rates Rξoξ ′

o
within the OSC. The injection rates for a hop of a charge carrier from

a metal site i to an OSC site j contains, (i), the rate Rij for this hop accounting for the dependence on the
energy levels Em

i and Ej and, (ii), the occupation probability of the injecting metal site πm
i = ⟨nm

i ⟩. The
rate Rij is, e.g., received by the Miller-Abrahams Equation (5.4) and the occupation probability ⟨nm

i ⟩ is
given by Equation (5.5) containing the Fermi level. In the same way, the extraction rate for a hop of a
charge carrier from an OSC site j to a metal site i is given by, (i), the rate Rji of this hop times, (ii), the
probability that the metal site is unoccupied πm

i (0) = 1−⟨nm
i ⟩.

In summary, we start from initial injection and extraction rates, that describe the hop of a charge
carrier from an occupied metal site to an unoccupied OSC site and from an occupied OSC site to an un-
occupied metal site, respectively. The actual injection and extraction rates are determined by multiplying
those initial rates with the occupation probability of the metal site, unoccupied for extraction and occu-
pied for injection. The only prerequisite is the assumption of uncorrelated metal sites that are shielded
from the charge distribution in the OSC by a perfect surface charge at the metal-OSC interface.

5.1.4 Simulation Details

The parameters for calculating the energies and hopping rate were chosen in a range that is com-
monly used in literature. The relative permittivity was chosen to be εr = 4, the temperature T = 300 K,
the charge delocalisation constant α = 5 nm−1 and the hopping prefactor ν0 = 2.2497 · 1013 Hz. The
hopping prefactor ν0 was chosen to get a mobility of µ = 10−4 cm2

Vs for an isoenergetic energy landscape

96



Markus Krammer 5.2 Bulk- and Contact-Limited Regime Doctoral Thesis

(σ = 0 eV) and an electric field of F = 108 V
m with nearest neighbour hopping only. The rather high de-

localisation constant α results in a sufficient convergence of the measured quantities already for a rather
low maximum hopping distance of rhop = 2 nm. This maximum hopping distance of rhop = 2 nm is taken
for both, OSC sites and metal sites in the contact. I.e., a charge carrier is allowed to hop to an OSC site
within a distance of rhop = 2 nm and to a metal site within a distance of rhop = 2 nm. A metal site can
inject a charge carrier to sites in the OSC within a distance of rhop = 2 nm.

To reduce the computational effort, we do not recalculate all rates after every single hop, injection, or
extraction of a charge carrier, but only hopping rates for charge carriers and injection rates for the metal
sites in the vicinity of the previously happened process. [3, 84, 93] All hopping rates for charge carriers
within a distance of 8 nm to the previously hopped, injected or extracted charge carrier are recalculated
and all injection rates for metal sites within a distance of 20 nm are updated. When the previous process
was an extraction, the distance is measured from the position of the charge carrier prior to extraction. The
distances are chosen to guarantee a negligible methodological error. The distance for metal-site updates
has to be significantly higher compared to the update radius for charge carriers, because we are creating
a virtual charge layer parallel to the metal contact at the update distance for simulations with very high
injection barriers (in detail discussed in [93]). This virtual charge layer artificially increases the injection
barrier for simulations with very high injection barriers and, hence, provokes wrong results. A larger
update radius, (i), decreases the charge-carrier density in the virtual charge layer and, (ii), increases the
distance of the virtual charge layer to the metal contact. This motivates the choice of the large update
radius for metal sites.

For each simulation, we choose values for the nominal injection barrier ∆, the energetic disorder
σ and the electric field F. The Fermi level in the metal contact is set to Em

F = −∆, implying a half
filled discrete energy level of the metal sites at Em = −∆. Prior to the actual simulation, we thermalise
the system to avoid any influence of the starting configuration on the measurements by performing an
additional amount of 10% of the simulation steps of the main simulation. After thermalisation, we
perform NKMC steps and measure occupation probabilities and the current density within the OSC. One
simulation step can be either a hop, an injection or an extraction. The number of steps are chosen in
such a way that the current density in the OSC converges. A proper convergence required 106 steps
for low energetic disorders σ = 50 meV and 107 steps for higher energetic disorers σ = 100 meV and
σ = 150 meV. All measurements were averaged over 10 different randomly chosen energy landscapes.

5.2 Bulk- and Contact-Limited Regime

To answer the question why the current density through a metal-OSC interface is bulk-limited or
contact-limited, we performed simulations that reproduce the transition between the bulk- and contact-
limited regime by changing the nominal injection barrier ∆ for our interface model with an energetic
disorder of σ = 100 meV and an applied electric field of F = 108 V

m . The results of those simulations can
be seen in Figure 5.1. For very high nominal injection barriers ∆> 0.6 eV, we can see an exponential drop
of the current density jif with increasing nominal injection barrier ∆. The slope of this drop matches the
temperature-activated behaviour of a thermal injection, that shows an exponential functional dependence
with the exponent − ∆

kBT with respect to the nominal injection barrier ∆. The temperature associated to
this drop matches the temperature T = 300 K selected in the simulations. For very low nominal injection
barriers, ∆ < 0.4 eV in Figure 5.1, the current density jif is not influenced by the nominal injection
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Figure 5.1: Current density jif through a metal-OSC interface as a function of the nominal injection
barrier ∆ for an applied electric field of F = 108 V

m and an energetic disorder of σ = 100 meV. For high
injection barriers, the current density decreases exponentially representing the contact-limited regime.
For low injection barriers, the current density saturates to a constant value indicating the bulk-limited
regime.

barrier ∆. Upon approaching lower barriers from the contact-limited regime, the current density saturates
towards a constant bulk-limited current density.

The current density jB in the bulk of the OSC can be calculated by

jB = e⟨n⟩µF (5.17)

multiplying the elemental charge e with the charge-carrier density at the requested position in the OSC
⟨n⟩, the mobility µ and the electric field F. The mobility µ in the OSC depends on the charge-carrier
density ⟨n⟩ and the electric field F (cf. Chapter 4). The electric field itself is given by the externally
applied electric field and the interactions from the charge carriers that depend on the charge-carrier
density ⟨n⟩. Hence, the charge-carrier density plays an important role. We search for the reason behind
the transition from the contact-limited to the bulk-limited regime in the charge-carrier density shown in
Figure 5.2. This figure plots the average charge-carrier density in a layer parallel to the interface plane as
a function of the distance to the interface plane for different nominal injection barriers ∆ corresponding
to the data shown in Figure 5.1 with an energetic disorder of σ = 100 meV and an applied electric field
of F = 108 V

m .
Due to the energetic disorder of σ = 100 meV, a small system size of 25×25 sites in a plane parallel

to the interface and the averaging over a rather small data set of 10 different energy landscapes, the data
in Figure 5.2 is a bit noisy. Nevertheless, we can clearly distinguish the graphs for different nominal
injection barriers ∆ and, in combination with Figure 5.1, find a signature behaviour for the bulk-limited
regime and the contact-limited regime.

For high nominal injection barriers ∆≥ 0.7 eV (red, yellow, black and purple data in the lower part of
Figure 5.2), the layer-averaged charge-carrier density is approximately the same for all layers regardless
of the distance to the interface. This is the signature behaviour of the contact-limited regime for which the
limiting step is to overcome the large injection barrier. When this limiting step is successfully achieved,
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Figure 5.2: Layer-averaged charge-carrier density in layers parallel to the interface as a function of the
distance of the layer to the interface plane with energetic disorder σ = 100 meV and applied electric
field F = 108 V

m . Each line for different nominal injection barriers ∆ corresponds to one data point for
the current density shown in Figure 5.1. In the contact-limited regime at high nominal injection barriers
∆ ≥ 0.7 eV, the charge-carrier density is approximately constant all over the organic semiconductor
(OSC) with exponentially decreasing charge-carrier density for increasing nominal injection barrier ∆.
This decrease in charge-carrier density results in the decrease of current density shown in Figure 5.1 due
to the relation between charge-carrier density and current density in the OSC given by Equation (5.17).
The bulk-limited regime at low nominal injection barriers ∆ ≤ 0.5 eV shows the behaviour of a space-
charge-limited regime with slightly decreasing charge-carrier density with increasing distance from the
interface. The charge-carrier density beyond a distance of 10 nm is approximately the same for low
nominal injection barriers ∆ ≤ 0.5 eV, causing the current density to saturate (cf. bulk-limited regime in
Figure 5.1). The influence of the nominal injection barrier ∆ in the bulk-limited regime is restricted to the
region close to the interface, at which the lowering of ∆ results in more and more charge carriers being
pushed from the contact towards the OSC. Nevertheless, the excess of charge carriers at the interface
cannot be transported away, thus, causing no effect on the charge-carrier density farther away from the
interface. The dashed line is the limiting charge-carrier density ⟨n0⟩ estimated in Chapter 5.3.

charge carriers can easily move through the OSC towards the extracting layers at the opposite side of the
OSC. Due to the use of the Miller-Abrahams rate Equation (5.4) for injection, the injection is increasingly
less likely with increasing injection barrier. This leads to an exponential decrease of the charge-carrier
density in the OSC (cf. Figure 5.2) and, hence, to an exponential decrease of the current density (cf.
Figure 5.1).

When looking at low nominal injection barriers ∆ ≤ 0.5 eV (magenta, blue and brown data in the
upper part of Figure 5.2), the layer-averaged charge-carrier density shows a significantly different be-
haviour compared to the contact-limited regime for high nominal injection barriers ∆ ≥ 0.7 eV. In the
region between 10 nm and 50 nm distance from the interface, all three curves approximately coincide.
In this region, a space-charge-limited behaviour is encountered, i.e., the charge-carrier density is slightly
increasing with decreasing distance to the contact. In contrast, the charge-carrier density within a dis-
tance to the interface below 10 nm is increasing with decreasing ∆. Although the interface pushes more
charge carriers into the OSC for decreasing ∆, the OSC cannot transport them away from the contact.
When the charge-carrier density and the electric field in the OSC are unchanged, the current density in
the OSC, determined by Equation (5.17), will not change as well, resulting in a saturation of the current
density.
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Figure 5.3: Average charge-carrier density ⟨n⟩ as a function of the nominal injection barrier ∆ for ener-
getic disorders of σ = 50 meV (blue), σ = 100 meV (red), and σ = 150 meV (black). In the left panel,
the charge-carrier density is averaged over the first layer in the OSC directly adjacent to the metal contact.
In the right panel, the charge-carrier density is averaged over all layers in a distance from the contact be-
tween 10 nm and 40 nm. The charge-carrier density at the interface (left panel) increases with decreasing
nominal injection barrier ∆ even for very low ∆. In contrast, the charge-carrier density in the bulk (right
panel) saturates for low ∆ to a certain value which we call limiting charge-carrier density. This limiting
charge-carrier density is indicated by a dashed line and its value is calculated in Chapter 5.3. All curves
for different energetic disorders saturate to the same limiting charge-carrier density. As already observed
in Figure 5.2, lowering the nominal injection barrier ∆ results in an increase in the charge-carrier density
⟨n⟩ allover the OSC in the contact-limited regime. When decreasing ∆ more and entering the bulk-limited
regime, the contact tries to push more charges into the OSC and increases the charge-carrier density at
the interface. But the bulk cannot take more charge carriers so that the charge-carrier density in the bulk
saturates with decreasing ∆.

Figure 5.3 compares the charge-carrier density ⟨n⟩ at the interface (left panel) and within the bulk
layers (right panel) as a function of the nominal injection barrier ∆ for different energetic disorders
σ . Independent of the value of σ , the same quantitative behaviour at the interface and in the bulk is
found. It is probably best seen for the bulk charge-carrier density (right panel) that the bulk-limited
regime (constant charge-carrier density) gradually evolves into the contact-limited regime (exponential
decrease) for increasing ∆. However, larger values for the energetic disorder σ sustain bulk-limited
charge densities to markedly higher barriers.

The charge-carrier density in the bulk (left panel in Figure 5.3) saturates already at much higher nom-
inal injection barriers ∆ compared to the charge-carrier density at the interface (right panel in Figure 5.3).
As discussed, decreasing the barrier in the bulk-limited regime increases the charge-carrier density at the
interface but has no influence on the charge carrier density in the bulk. However, it is remarkable that,
independent of the energetic disorder σ , the charge-carrier density in the bulk saturates to a certain value
in the bulk-limited regime, indicated by dashed lines in Figures 5.2 and 5.3. In the next Chapter 5.3,
we will derive an estimate for this charge-carrier density at which the transition between bulk-limited
and contact-limited regime happens. This estimate will be used to get a rough estimate for the limiting
behaviour of the current density for the bulk- and contact-limited regime.
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5.3 Estimation of the Current Density

To get a rough, direct estimate for the current density suggested by our interface model, we take a
look at the energy landscape close to the interface in the contact-limited regime. A schematic drawing
of the different influences on the energy levels in the layers of the OSC close to the interface is shown in
Figure 5.4.

energy

distance
from interface

∆

∆∗

Em
F

metal organic semiconductor

DOS

electric field

image charge

dipole

total

Figure 5.4: Influences on the energy levels of sites in layers parallel to the interface as a function of the
distance to the interface. The metal contact is described by a nominal injection barrier ∆ and a Fermi
level Em

F =−∆ resulting in one discrete half filled energy level for charge injection and extraction. In the
OSC, the energy level of a site is determined by the DOS (black Gaussian curves), a contribution from
the image charge due to the metal contact (red), the applied electric field (blue) and the dipole potential
(green) created by the charge-carrier density in the OSC and the corresponding image charge in the metal
contact. Summing up all terms (cf. Equation (5.18)), we receive the total energy level shown in black.
The actual injection barrier that has to be overcome by charge carriers reduces from the nominal injection
barrier ∆ to the actual injection barrier ∆∗ due to the modification of the energy landscape in the vicinity
of the interface.

The energy of a site i in the OSC in a distance xi from the interface is given by

Ei = εi −
e2

16πε0εrxi
− eFxi +

e2 ⟨n⟩
ε0εr

xi

(
L− xi

2

)
(5.18)

with the four terms (from right to left) arising from: the energetic disorder, the own image charge,
the applied electric field, and the dipole created by the charge-carrier density ⟨n⟩ in the OSC and the
corresponding image charge in the metal contact. The first three terms were already introduced in Chap-
ter 5.1.2, Equation (5.1). The fourth term in Equation (5.18) represents the approximate consideration
of the potential created by the charge-carrier density in the OSC. This approximation is referring to
the contact-limited regime, in which we can assume a constant charge-carrier density ⟨n⟩ throughout
the OSC. This spatially extended charge-carrier density ⟨n⟩ creates a potential having a quadratic de-
pendence on the distance to the interface, x2

i . The length L is the size of the active region of the OSC
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perpendicular to the interface plane, which is L = 50 nm for our model system.
Coming from the contact-limited regime with a very high nominal injection barrier ∆, the potential

created by the very low constant charge-carrier density ⟨n⟩ in the OSC has practically no influence on the
energy levels at the interface. However, when the charge-carrier density ⟨n⟩ increases, the force created
by the charge-carrier density ⟨n⟩ directly at the interface increases, until it reaches the value correspond-
ing to the applied electric field. At this condition, when the force created by the charge-carrier density
⟨n⟩ at the interface is equal to the force of the applied electric field, the transition to the bulk-limited
regime happens. When this condition is met, the charge carriers can no longer be transported away from
the interface, because they do not feel any force to move away (diffusion neglected). Evaluating this
condition provides the limiting charge-carrier density ⟨n0⟩.

F =
1
e

∂
∂xi

e2 ⟨n0⟩
ε0εr

xi

(
L− xi

2

)∣∣∣∣
xi=0

=
e ⟨n0⟩L

ε0εr
⇒ ⟨n0⟩=

ε0εr

eL
F (5.19)

This limiting charge-carrier density ⟨n0⟩ is plotted in Figures 5.2 and 5.3 as a dashed line providing a
rough estimate for the charge-carrier density in the bulk-limited regime. Especially for the distances
beyond 10 nm, which are more important for the influence on the region close to the interface, the space-
charge limited charge-carrier density approaches the limiting charge-carrier density ⟨n0⟩ well.

From the limiting charge-carrier density ⟨n0⟩, we can calculate a corresponding Fermi level Eo
F (⟨n0⟩)

of the Gaussian DOS with energetic disorder σ in the OSC with respect to the maximum of the DOS
numerically by solving the implicit integral equation

⟨n0⟩
a3 =

∫ ∞

−∞

dE
1

1+ exp
(

E−Eo
F(⟨n0⟩)

kBT

) 1√
2πσ

exp
(
− E2

2σ2

)
. (5.20)

We propose that the transition between bulk- and contact-limited regime occurs when the Fermi level
of the metal contact is equal to the Fermi level in the OSC at the maximum of the average total energy
(maximum of the black curve in Figure 5.4). This proposition corresponds to the assumption that the
actual injection barrier is zero ∆∗ = 0 eV (cf. Figure 5.4). To translate this proposition into formulas,
we need the maximum of the average total energy Emax. To get Emax, we simplify the derivation of the
transition injection barrier ∆T even more by, (i), neglecting the energy contribution from the charge-
carrier density in the OSC (dipole potential) and, (ii), neglecting the discrete nature of the system. The
maximum energy of E(x) = −e2(16πε0εrx)−1 − eFx is given by Emax = −e

√
eF(4πε0εr)−1. With this

we get the transition injection barrier ∆T from the proposed condition

Em
F = Emax +Eo

F (⟨n0⟩) , Em
F =−∆T ⇒ ∆T = e

√
eF

4πε0εr
−Eo

F (⟨n0⟩) (5.21)

The Fermi level Eo
F (⟨n0⟩) with respect to the maximum of the DOS is determined by Equation (5.20).

This transition injection barrier ∆T approximately distinguishes nominal injection barriers ∆ with respect
to the bulk-limited regime, ∆ < ∆T , and the contact-limited regime, ∆ > ∆T .

With this very rough estimate of the transition injection barrier ∆T , we can move on to derive a rough
estimate of the current density jif . In Chapter 5.2, we already found out that in the bulk-limited regime,
the current density jB is constant with respect to the nominal injection barrier ∆. In contrast, the current
density jC in the contact-limited regime exponentially decreases with increasing nominal injection barrier
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∆ with a temperature-activated decrease. The assumption that the two currents are equal at the transition
injection barrier ∆T results in a contact-limited current of the form

jC = jB exp
(

∆T −∆
kBT

)
. (5.22)

In total, the current density has to flow through both regions, the contact region and the bulk region
further away from the interface. So we have to add up the two resistivities ρB/C = F · j−1

B/C to get the total
current density jif :

jif =
F

ρB +ρC
=

F
F
jB
+ F

jC

=
jB

1+ exp
(

∆−∆T
kBT

) (5.23)

The current density in the bulk-limited regime jB can be estimated with the help of Equation (5.17),
assuming that the charge-carrier density is approximately given by the limiting charge-carrier density
⟨n0⟩ and the electric field corresponds approximately to the applied electric field F neglecting influences
from the charge-carrier density. The only unknown quantity remaining is the bulk mobility µB (⟨n⟩ ,F)
which shows a pronounced dependence on the charge-carrier density ⟨n⟩ and the electric field F (cf.
Chapter 4). The bulk mobility µB was extracted from KMC simulations of bulk systems (no contacts,
periodic boundary conditions in all three dimensions) with the corresponding limiting charge-carrier
densities ⟨n0⟩ and applied electric fields F. These values result in an estimate for the current density
given by

jif =
e⟨n0⟩µB (⟨n0⟩ ,F)F

1+ exp
(

∆−∆T
kBT

) . (5.24)

For the KMC simulations, that evaluate the bulk mobility µB (⟨n0⟩ ,F), the charge-carrier density was
increased to match the next higher possible integer number of charge carriers in a finite system of 35×
35×50 sites. An averaging over 10 different energy landscapes was performed.

A comparison of the simulated and estimated current density jif as a function of the nominal injec-
tion barrier ∆ for different applied electric fields F and energetic disorders σ can be found in Figure 5.5.
The red data points in both plots corresponds to the data shown in Figure 5.1. The data points con-
nected by lines show the simulated current density, the continuous lines are the estimate predicted by
Equation (5.24) and the crosses mark the transition injection barrier ∆T .

Looking at the left panel in Figure 5.5, the current density jif as a function of the nominal injection
barrier ∆ for three different energetic disorders σ = 50 meV, σ = 100 meV, and σ = 150 meV are plotted
in blue, red, and black, respectively, for an applied electric field of F = 108 V

m . When focusing only on
the simulated data, an interesting effect can be seen. In the bulk-limited regime (low nominal injection
barriers ∆ ≤ 0.4 eV), the current density is much higher for lower energetic disorders σ . This is due
to the higher mobility µ for lower energetic disorder, because the charge carriers can move much more
efficient when the energetic disorder is low. In contrast, the current density in the contact-limited regime
(high nominal injection barrier ∆ ≥ 0.8 eV) increases with increasing energetic disorder due to the fact
that charge carriers can find lower energy pathways through the barrier for high energetic disorder. This
reduction of the actual barrier is also reflected by a lower Fermi level in the bulk. Correspondingly
also the transition injection barrier ∆T increases, as indicated by the crosses in Figure 5.5. For all three
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Figure 5.5: Current density jif through a metal-OSC interface as a function of the nominal injection
barrier ∆ for different energetic disorders σ of the OSC and applied electric fields F. The dots linked by
lines represent the data simulated by KMC, the continuous line shows the estimate of the current density
predicted by our strongly simplifying derivation and the plus signs indicate the position of the estimated
transition injection barrier ∆T .

energetic disorders, the estimate of the transition injection barrier matches well the one suggested by the
simulated data, which is in accord with well matching kinks that illustrate the transition between bulk-
and contact- limited regime. The estimated current densities in the bulk-limited regime systematically
overestimate the simulated current density due to the approximation of a constant charge-carrier density.
The consideration of a non-constant distribution of the charge-carrier density including the variation of
the bulk mobility with the charge-carrier density might reduce this discrepancy.

The right panel in Figure 5.5 shows the current density jif as a function of the nominal injection
barrier ∆ for different applied electric fields F = 5 ·107 V

m , F = 108 V
m , and F = 2 ·108 V

m plotted in blue,
red, and black, respectively, for an energetic disorder of σ = 100 meV. The comparison between esti-
mated and simulated current density reveals a reasonable semi-quantitative agreement, despite a marked
deviation of the current density values in the bulk-limited regime. Also, those deviations arise from the
assumption of a constant charge-carrier density in the OSC. The dependence of the transition injection
barrier ∆T on the applied electric field F is captured remarkably well. This is actually surprising due to
the fact that neglecting the effect of the limiting charge-carrier density ⟨n0⟩ on the transition injection
barrier ∆T could be supposed to make the estimate much worse.

In both panels in Figure 5.5, the main deviations between estimated and simulated current density
are found in the bulk-limited regime and, in particular, at the transition between the regimes. The former
could be improved as discussed above. The latter deviation was expected, because the estimate was
derived to only cover the limiting regions for very high and very low nominal injection barrier. In all
instances, the estimate for the transition injection barrier ∆T shows a remarkably good agreement with
the transition between the regimes suggested by the simulated data.
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5.4 Interpretability of the Model System

The choice of the model system for the interface simulations was clearly inspired by the work of
Wolf et al. [79], especially the extracting layers on the facet of the OSC, which is opposite to the metal
contact. The restrictions introduced by those extracting layers and the remaining geometric conditions,
as well as their influence on the interpretability of the simulation results will be discussed in this chapter.
We will transfer the knowledge from the model system for the interface simulations to an actual device.

The basic idea of our model system was to equalise the Fermi level of the contact and the Fermi
level at a certain position in the device to detect a transition between charge transport regimes. This
idea might also be transferred to other device structures like organic thin-film transistors or organic light-
emitting diodes. Nevertheless, the only device that we can describe with our model system is a single
layer unipolar diode with a layer thickness of the OSC which is twice the thickness of the simulated
model system.

Even the single layer unipolar diode is just approximately represented due to the extracting layers. In
those layers, a charge carrier practically does not feel a force from the other charge carriers. This is due
to the fact, that a homogeneous charge-carrier density infinitely extended in two dimensions in combina-
tion with its image charge due to the metal contact results in a vanishing electric field outside the charged
region (easily shown by applying Gauss’s law). Transferring this required condition of a vanishing force
to a device implies that the charge-carrier density has to be symmetric with respect to the extracting
layers, because a symmetric charge-carrier density results in no force in the plane of symmetry. This im-
plies that, (i), the single layer unipolar diode has twice the thickness of the simulated system and, (ii), the
charge-carrier density has to be approximately constant allover the device. If the charge-carrier density is
not constant, the model system is applicable only if the charge-carrier density is symmetric, which is very
unlikely. In the contact-limited regime, the charge-carrier density is approximately constant, enabling the
applicability of our model system. In the bulk-limited regime the charge-carrier density decreases from
the contact towards the extracting layers (cf. Figure 5.2). Considering the single layer unipolar diode,
it is not reasonable to assume that the charge-carrier density in the second half of the device increases
towards the contact at which the charge carriers leave the diode. Hence, the applicability of our model
system becomes less trustworthy in the bulk-limited regime. As the assumptions and the argumentation
put forward in Chapter 5.3 are based on the contact-limited regime, our findings should be applicable to
interpret experimental results, as we will attempt in the following Chapter 5.5.

5.5 Comparison with Experiment

The measurements performed by Raoufi et al. [110] provide a perfect data set to test the plausibility
of our model system for the interface and the estimate of the current density. They built single layer
unipolar diodes with Poly(3-hexylthiophen-2,5-diyl) (P3HT) as OSC and Zinc oxide (ZnO) as injecting
contact material coated with a variety of different self-assembled monolayers (SAMs) to tune the work
function of the ZnO. Additionally to tuning the work function with SAMs, they exposed the devices
to UV radiation which changes the work function of ZnO. In total, they were able to provide current
density-voltage (j-V) characteristics for 14 different work functions from 7 different contact treatments
with and without UV soaking. The achieved range of work functions spans nearly 2 eV between 3.8 eV
and 5.8 eV.
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5.5.1 Extraction of the Transition Work Function

The basic assumptions within our model system of a perfect metal contact are not strictly fulfilled for
the injecting ZnO contact, but are met reasonably well. Hörmann et al. successfully applied an image
charge based model to describe the polarisability of a molecule in the vicinity of a ZnO surface. [115]
So our model system is applicable to interpret the measurements performed on the devices fabricated by
Raoufi and co-workers. [110] The hole-conductor P3HT, used as the OSC in the devices, has an onset
of the highest occupied molecular orbital (HOMO) of approximately EHOMO ≈ 4.9 eV [116] and its
deposited layer thickness is 2L = 200 nm. To translate the transition injection barrier ∆T for electron
transport to a transition work function WF

T for hole transport, we identify the onset of the HOMO EHOMO

as the onset of the Gaussian DOS, which is assumed to be 2σ below the maximum of the Gaussian DOS.
With Equation (5.21), the transition work function WF

T is given by

WF
T = EHOMO +2σ −∆T = EHOMO +2σ − e

√
eF

4πε0εr
+Eo

F (⟨n0⟩) . (5.25)
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Figure 5.6: Measured current density jif (symbols) as a function of the measured work function of the
single layer unipolar diodes measured by Raoufi et al. [110] for different applied voltages V . The lines
represent a fit with respect to the estimate of the current density derived in Chapter 5.3. The open symbols
correspond to data points that are not considered for the extraction of the fit parameters (details see text).
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The applied electric field F = − V
2L is determined by the applied voltage V and the thickness 2L of the

OSC.
To extract the transition work function WF

T from the measured current density-voltage (j-V) char-
acteristics of the set of devices, we performed a fit of the estimate of the current density in analogy to
Equation (5.23) for the transition injection barrier ∆T :

jif =
jB

1+ exp
(

WF
T −WF

kBT

) . (5.26)

For each applied voltage V , the measured current densities jif of the devices with different measured
work functions WF are fit to this Equation (5.26), yielding the transition work function WF

T and the
current density jB as a function of the applied voltage. The temperature is set to T = 300 K for all fits.
Exemplary fits for voltages of V =−2 V, −4 V, −6 V, and −8 V are shown in Figure 5.6.

For the fits of the current density jif as a function of the work function WF shown in Figure 5.6, not
all devices were used. The device with the lowest work function of about WF ≈ 3.8 eV was excluded,
because the data is quite noisy and not overly trustworthy. Two further data points close to the transition
barrier were excluded as well, because our simple estimate is supposed to only cover the limiting cases
of very low and very high work functions well (cf. discussion at the end of Chapter 5.3). The devices
excluded from the fit are marked with open symbols and the devices entering the fit are marked with
filled symbols. For all voltages shown in Figure 5.6, the filled symbols are represented well by the fitted
curve, in the contact-limited regime (work function between 4.0 eV< WF < 4.4 eV) as well as in the
bulk-limited regime (work function between 4.8 eV< WF < 5.8 eV).

5.5.2 Interpretation of the Transition Work Function

Figure 5.7 shows the transition work function WF
T as a function of the applied voltage V . The symbols

in all four panels refer to the transition work function WF
T extracted in Chapter 5.5.1. This transition

work function WF
T clearly decreases for increasing absolute values of the voltage above |V| > 2 V. This

corresponds to a reduction of the injection barrier with increasing electric field strength, in line with
the expectation that the electric field promotes injection. For low absolute values of the voltage below
|V| < 2 V, the extracted data becomes rather noisy and less trustworthy. In this region |V| < 2 V, the
transition work function WF

T appears to decrease for decreasing absolute values of the voltage. This
might be an artefact of the spread of the measurements for such low |V| in combination with the extraction
procedure. Hence, the behaviour in this low voltage region has to be interpreted with particular care.

To enable an interpretation of the transition work function WF
T , we now attempt to reproduce the

evolution of WF
T with respect to the applied voltage V with different assumptions. In a first step, the

extracted transition work functions are fit to Equation (5.25) under the assumption that the Fermi level
Eo

F in the OSC is held constant for varying electric field F. The curve calculated from this fit is shown
as a line in the upper left panel in Figure 5.7. The calculated curve agrees well with the extracted
transition work functions WF

T in the region of high absolute values of the applied voltage |V| > 2 V.
For low absolute values of the voltage |V| < 2 V, the curve is not according with the data. This might
be either due to a failure of the calculation or due to the inferior quality of the extracted data in this
region. The fit reveals the relative permittivity εr = 6.54 and the zero-field transition work function
WF

F0 = 4.52 eV. This zero-field transition work function WF
F0 is the transition work function at V = 0 V,
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Figure 5.7: Transition work function WF
T of the transition between bulk-limited and contact-limited

regime as a function of the applied voltage V . The symbols show the values extracted in Chapter 5.5.1
from the measurements by Raoufi et al. [110]. The lines indicate calculations referring to Equation (5.25)
for different assumptions of the parameters. In the upper left panel, we neglect the field dependence
of the Fermi level Eo

F in the OSC and only fit the square root behaviour of the electric field-induced
barrier lowering resulting in εr = 6.54. The remaining panels are considering the field dependence of the
Fermi level Eo

F (⟨n0⟩) in the OSC with different values for the zero-field charge-carrier density ⟨nF0⟩ (cf.
Equation (5.27)), the onset of the HOMO EHOMO, the energetic disorder σ and the relative permittivity εr.
All curves show good agreement with the data extracted from the measurements for high absolute values
of the applied voltage V < −4 V with significant deviations only in the noisy region of low absolute
values of the applied voltage V >−2 V. The parameters are in a reasonable range for σ between 100 meV
and 200 meV and for εr between 2.2 and 6.54. For a low zero-field charge-carrier density ⟨nF0⟩ (upper
right panel), a decrease of the transition work function WF

T with decreasing absolute values of the applied
voltage appears for the calculations. The decrease in electric field results in a decrease of the charge-
carrier density and a subsequent decrease of the Fermi level provoking the decrease of WF

T (details see
text).

which is composed of WF
F0 = EHOMO +2σ +Eo

F, cf. Equation (5.25). Assuming an onset of the HOMO
at EHOMO ≈ 4.9 eV, we can calculate Fermi levels Eo

F = WF
F0 −EHOMO −2σ in the OSC that correspond

to different energetic disorders σ . With the help of Equation (5.20), we can calculate the charge-carrier
densities ⟨n0⟩ corresponding to each of the disorder-determined Fermi levels. For energetic disorders of
σ = 100 meV, σ = 150 meV, and σ = 200 meV, the corresponding charge-carrier densities are ⟨n0⟩ =
2.97 ·10−7 nm−3, ⟨n0⟩= 8.79 ·10−6 nm−3, and ⟨n0⟩= 7.38 ·10−5 nm−3, respectively.

In a next step, we attempt to more accurately estimate the transition work function WF
T by including
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the charge-carrier-density ⟨n0⟩ dependence of the Fermi level Eo
F(⟨n0⟩) in the OSC. Each refinement is

shown in a dedicated panel in Figure 5.7 along with an indication of the used parameters ⟨nF0⟩, EHOMO,
σ , and εr. Considering those parameters, the charge-carrier density ⟨n0⟩ splits into two contributions.
For a certain value of the applied electric field F = V

2L , the total charge-carrier density ⟨n0⟩ is given by

⟨n0⟩= ⟨nF0⟩+
ε0εrF

eL
. (5.27)

The zero-field charge-carrier density ⟨nF0⟩ is the charge-carrier density in the OSC when no electric field
is applied and can be, e.g., associated to an unintentional doping-induced charge-carrier density. For each
of the above-specified disorders σ , we choose values for the zero-field charge-carrier density ⟨nF0⟩ that
are slightly lower than the charge-carrier density values from the fits with constant Fermi level. To get the
total charge carrier density ⟨n0⟩ from Equation (5.27), we also need to specify the relative permittivity
εr. The last parameter that is required to get the transition work function WF

T from Equation (5.25) is
the onset of the HOMO EHOMO. For each of the disorder values σ , we choose a value for ⟨nF0⟩, εr

and EHOMO such that the transition work functions extracted from the experimental data (symbols in
Figure 5.7) are recovered well.

In the upper right panel in Figure 5.7, the calculated curve for the lowest of the chosen energetic
disorders, σ = 100 meV, and the lowest zero-field charge-carrier density, ⟨nF0⟩ = 2.8 · 10−7 nm−3, is
shown. The change in the evolution of WF

T (V) from the upper left to the upper right panel in Figure 5.7 is
a combination of, (i), the voltage-dependence of the Fermi level Eo

F and, (ii), the lowering of the injection
barrier due to the electric field F, cf. Equation (5.25). The voltage-dependence of Eo

F occurs due to the
dependence of the charge-carrier density ⟨n0⟩ on the applied electric field F, cf. Equation (5.27). An
important indicator to assess the evolution of Eo

F with respect to ⟨n0⟩ is the voltage VnF at which the
charge-carrier density induced by the electric field ε0εrF/(eL) is equal to the zero-field charge-carrier
density ⟨nF0⟩:

VnF =
2eL2 ⟨nF0⟩

ε0εr
. (5.28)

We can distinguish two voltage regimes. For absolute values of the applied voltage below this voltage,
|V| < VnF, we get a nearly constant Fermi level Eo

F. For such voltages, the charge-carrier density ⟨n0⟩
approaches ⟨nF0⟩. For voltages |V| far below VnF, a reduction of the voltage by a factor of two would have
virtually no impact on the charge-carrier density ⟨n0(V)⟩ ≈ ⟨n0(V/2)⟩ ≈ ⟨nF0⟩. For absolute values of the
voltage above this voltage |V|> VnF, the charge-carrier density ⟨n0⟩ significantly increases, ⟨n0(2 ·V)⟩ ≈
2 · ⟨n0(V)⟩, leading to an increase in the Fermi level Eo

F. Upon increasing the applied voltage |V| above
VnF, the transition work function WF

T is increased by the Fermi level Eo
F, but simultaneously reduced by

the term ∼
√

F responsible for the field-induced lowering of the injection barrier.
This observation is important for the choice of the parameter values, with which we intend to match

the experimentally extracted WF
T (V) evolution. To reproduce the experimental data at least as well as in

the case of assuming a constant Fermi level (upper left panel in Figure 5.7), we need to lower the relative
permittivity εr in order to compensate the rise in Fermi level. The decrease of the relative permittivity
εr is observed for all disorder values σ considered in Figure 5.7 (upper right, lower left and lower right
panel). Based on the voltage VnF, we can now rationalise the evolution of the transition work function
WF

T with the applied voltage V for different extents of disorder σ . In the upper right panel in Figure 5.7,
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the voltage is VnF = 0.044 V, which is not distinguishable from 0 V on the plotted scale. For low
absolute values of the voltage below |V|< 0.5 V, the transition work function in the upper right panel in
Figure 5.7 increases with increasing absolute values for the voltage, because the Fermi level Eo

F increases
the transition work function faster than the field-induced-barrier lowering decreases it. The voltages VnF

for the higher values of disorder, i.e., for σ = 150 meV in the lower left panel in Figure 5.7 and for
σ = 200 meV in the lower right panel in Figure 5.7, are VnF = 1.3 V and VnF = 11.5 V, respectively. As
the Fermi level Eo

F does not change much below |V| < VnF, no increase of the transition work function
WF

T with increasing absolute voltage |V| is observed for the lower panels in Figure 5.7.
All calculated curves in Figure 5.7 match the data extracted from the measurements well in the region

where the data is trustworthy V < −4 V. This implies that the data is consistent with a wide range of
parameter values that, in turn, cannot be quantified precisely. On the other hand, our simple estimations
are able to explain the behaviour of the single layer unipolar diodes for different work functions of the
injecting contact. The range of parameter values used to calculate the curves in Figure 5.7 is reasonable
and plausible for the materials used in the single layer unipolar diodes. Nevertheless, our estimate of the
current density and the subsequently extracted transition work function is not accurate enough to deliver
quantitative results.
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6 Summary and Outlook

In this thesis, we were investigating charge transport in organic semiconductor (OSC) devices with
the goal to improve the basic understanding of charge transport in the bulk of the OSC as well as charge
transport through the interface between a metal and an OSC. The necessity of this improved understand-
ing was motivated in Chapter 2, in which we developed a new method to verify or falsify theoretical
transistor models describing the operation of organic thin-film transistors (OTFTs). The idea behind the
new method is, that a correct transistor model has to contain the correct channel-length dependence.
Based on this idea, experimentally measured output and transfer characteristics of a set of formally
equivalent OTFTs with varying channel length are required. With those sets of measured OTFT data
corresponding to a certain channel length, we suggested a two-step-fitting approach (TSFA) to test the
transistor model. In the first step, the parameters of the tested transistor model are extracted by fitting
all measured output and transfer characteristics of a single OTFT to the transistor model. This fitting
approach ensures, that we extract the best possible parameters representing the assumptions of the tested
transistor model from the measurements of each OTFT separately. The second step collects all extracted
parameters of all formally equivalent OTFTs and inspects the channel-length dependence of the param-
eters. A pronounced channel-length dependence of a parameter implies that the transistor model does
not distinguish correctly between contact and channel, i.e., it indicates the failure of the transistor model.
With our TSFA, we tested a state-of-the-art OTFT model incorporating a field and charge-carrier-density
dependence of the mobility. The test included several sets of OTFTs with different OSCs, different ge-
ometries, and different contact treatments, providing a representative sample of OTFT-technologies. All
sets of OTFTs provoked a clear failure of the transistor model, indicated by a pronounced dependence
of the ohmic contact resistance on the channel length. The reason for this failure can be analysed within
our TSFA as well. This analysis identified two potential problems in the tested transistor model. First,
our TSFA suggested that the assumed field and charge-carrier-density dependence of the charge-carrier
mobility is wrong. Second, we supposed that the disregard of the influence of charge accumulations
in the channel of the OTFT on the contact region close to the metal-OSC interface due to long-ranging
Coulomb interactions might be unjustified. The first problem motivated Chapters 3 and 4, whereas the
second problem motivated Chapter 5.

The necessity to improve the understanding of charge transport within the OSCs, discussed in Chap-
ter 2, triggered the development of a novel simulation technique for hopping transport. We demonstrated
the applicability of this novel simulation technique for the example of charge transport in the bulk of
OSCs in Chapter 3. The novel simulation technique, which we named correction energy concept (CEC),
is a formal link between the two established simulation techniques for hopping transport, which are ki-
netic Monte Carlo (KMC) and master equation (ME). In its most basic version, the CEC is comparable
to ME, in which interactions can be included via a mean field approach. In ME, it is difficult to con-
sider interactions beyond a mean field approach. In contrast, the CEC enables the direct inclusion of
correlations and interactions. While correlations and interactions increase the computational cost, they
reduce the methodological error, so that results evolve towards the accurate results received by compu-
tationally expensive KMC simulations. In Chapter 3, we discussed the mathematical foundation and the
implementation of our new CEC in detail and performed simulations to verify our CEC by comparing
the results to the outcome of accurate KMC simulations.

Our CEC does not only provide an efficient simulation technique, it also delivers a novel insight
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into charge transport in OSCs. In Chapter 4, we were able to utilise the insight gained by the CEC to
explain the field and charge-carrier-density dependence of the bulk mobility. The gained insight provided
a rough estimate for a transition field, at which a significant increase of the mobility with respect to the
applied electric field was proposed. Indeed, CEC simulations (validated by KMC simulations) showed
this proposed increase of the mobility around the estimated transition field for a wide range of different
charge-carrier densities and energetic disorders. With this explanation of the field and charge-carrier-
density dependence of the mobility, an important step towards a revised mobility model was achieved.

The second problem revealed in Chapter 2 was investigated in Chapter 5. This problem is related to
the interplay between charge accumulations within the OSC and the behaviour of charge carriers in the
region close to the metal-OSC interface via long-ranging Coulomb interactions. With the help of KMC
simulations, the contact region of a metal-OSC interface was investigated. For those simulations, we de-
rived a refined description of the metal contact to enable the consideration of the occupation probability
within the metal in addition to the energy level of the metal contact. The outcome of such a simulation
is the current density through the interface, which can be either contact limited or bulk limited. Contact-
limited transport means that the injection from the metal contact to the OSC is the bottleneck for charge
transport. Bulk-limited transport refers to the situation in which the contact wants to push more and
more charge carriers into the OSC while the bulk is not able to transport the charge carriers away from
the contact region. We saw, that the transition from the contact-limited regime to the bulk-limited regime
is determined by the dipole built up by, (i), the charge accumulation in the bulk of the OSC far away
from the interface and, (ii), the image charge of this charge accumulation due to the metal contact. When
a certain charge-carrier density is reached in the bulk of the OSC, the associated dipole compensates
the externally applied electric field in the contact region, so that charge carriers cannot be transported
away. A strongly simplifying model for the current density through the interface captured this behaviour
semi-quantitatively well and was further used to describe experimentally measured current-voltage char-
acteristics of a set of single layer unipolar diodes with injection barriers varying over more than 1.5 eV.

It is quite natural that, by answering questions, new questions arise. This is particularly true for
the present thesis. The new methods and their outcomes discussed above provide numerous possibili-
ties for further developments and applications. From Chapter 5, we learned that charge accumulations
throughout the whole device can have a perceptible influence on the contact region due to long-ranging
Coulomb interactions. This know-how can be applied to organic semiconducting devices, in particular
to OTFTs enabling an improvement of the transistor model. With the insight gained in Chapter 4, it is
possible to derive an improved description of the field and charge-carrier-density dependence of the mo-
bility. Concerning the predominantly two-dimensional charge transport in OTFTs, the new insight into
charge transport can even help to develop a mobility model particularly suited for OTFTs. With those
two improvements of the transistor model with respect to the contact description and the mobility model,
our TSFA can be utilised to test the improved transistor model. Also other transistor models, possibly
including sophisticated mobility models, can be tested by our TSFA to continuously gain more and more
experimental insight into charge transport mechanisms in OSCs.

To gain theoretical insight into charge transport mechanisms in OSCs, our correction energy concept
(CEC) is suited very well. From the fundamental nature of the correction energies, we learned how to
interpret the field and charge-carrier-density dependence of the bulk mobility in Chapter 4. Beyond its
fundamental nature, the CEC can be viewed as a method to systematically include certain correlations
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and/or interactions. By including particular correlations or particular interactions, it is possible to reveal,
which correlations and interactions are relevant for the mobility and which correlations and interactions
can be neglected. This insight might be used to, (i), speed up CEC simulations and simultaneously reduce
the methodological error and, (ii), improve analytical models by including the impact of the relevant
correlations and interactions. So the CEC holds the potential to decipher the effect of correlations and
interactions in hopping transport. Before this potential is released, a further development of the CEC is
required to efficiently include interactions and correlations in the occupation statistics.

We derived the CEC in Chapter 3 for charge transport in bulk. This derivation was just an example
and can be generalised for any steady-state hopping transport simulation, e.g., including contacts, am-
bipolar charge transport, excitons, electron-hole recombination and many more. The only prerequisite is,
that the rates for charge transport are energy conserving with respect to a closed system. This prerequisite
is assured for the Miller-Abrahams as well as for the Marcus rate equation.

In summary, the CEC is a powerful method to investigate charge transport in OSC devices and opens
up new possibilities for numerical as well as for analytical advances in describing charge transport. With
the TSFA, theoretical insight gained via the CEC can be verified experimentally.
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7 Abbreviations and Formula Symbols

Abbreviations

ccps charge carrier per site
CEC correction energy concept
DFT density functional theory
DOS density of states
HOMO highest occupied molecular orbital
ILC injection-limited current
KMC kinetic Monte Carlo
LUMO lowest unoccupied molecular orbital
ME master equation
MF mean field
MTR multiple trapping and release
ODOS occupied density of states
OLED organic light-emitting diode
OSC organic semiconductor
OTFT organic thin-film transistor
SAM self-assembled monolayer
SCLC space-charge-limited current
TLM transmission line model
TSFA two-step-fitting approach
VRH variable-range hopping

Formula Symbols

a lattice constant, distance between nearest neighbours
α charge delocalisation constant
αD weighting factor of the non-ohmic contribution to the drain resistance
αS weighting factor of the non-ohmic contribution to the source resistance
β inverse temperature β = 1

kBT

CG gate capacitance per unit area
DOS(E) density of states for a given energy E
δij Kronecker delta δij = 1 for i = j and δij = 0 else
∆ nominal injection barrier
∆∗ actual injection barrier
∆T transition injection barrier determining the transition from the contact-limited

to the bulk-limited regime
∆ENcc

F,i local change in Fermi level of site i of a system with Ncc charge carriers
∆µ variance of the mobility with respect to different energy landscapes ∆µ =√

⟨µ2⟩−⟨µ⟩2

∆µrel relative error of the mobility evaluated with the CEC with respect to KMC
results
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Formula Symbols (continued)

∆⃗rij spatial distance between site i and site j
∆rij absolute spatial distance between site i and site j
e elemental charge
Ei(ξ ) energy of a charge carrier at site i in configuration ξ
EB barrier energy
Ec

i site-correction energy of site i
Ec

ij correlation-correction energy between site i and site j
Em

F Fermi level of the metal contact
ENcc

F,0 global Fermi level of a system with Ncc charge carriers
ENcc

F,i local Fermi level of site i of a system with Ncc charge carriers
EHOMO energy of the onset of the highest occupied molecular orbital
Eint

i average interaction energy at site i
Eint

ij interaction energy between charge carriers occupying site i and site j
Em

i energy of a contact site i in the metal contact
EML most likely energy of the charge carriers
Er reorganisation energy
erf(u) error function
erfc(u) complementary error function erfc(u) = 1− erf(u)
Etot(ξ ) total energy of the system in configuration ξ
Etot

i total energy of a site i containing the site energy and the site-correction energy
Etot

i = εi −Ec
i

Etot
ij total interaction energy between site i and site j containing the interaction en-

ergy and the correlation-correction energy Etot
ij = Eint

ij −Ec
ij

εi randomly chosen site energy of site i
ε0 vacuum permittivity
εr relative permittivity of the material
η gate-source voltage sensitivity of the Schottky diode
F absolute value of the electric field strength
F⃗ electric field
F∗ transition field determining the transition between charge transport regimes
γ exponent of the sensitivity with respect to the charge-carrier density of the

mobility
h channel height of the OTFT
ID drain current of an OTFT
ID,sat saturation drain current
j0 channel-width-reduced Schottky current
jB current density in the bulk-limited regime
jC current density in the contact-limited regime
jCh current density in the channel of the OTFT
jif current density flowing through the metal-organic semiconductor interface
kB Boltzmann constant
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Formula Symbols (continued)

κ exponent of the field sensitivity of the mobility
L channel length of the OTFT
L0 constant length scale L0 = 1 µm
LR average size in field direction of the transport-relevant region
Li

sys system size in spatial direction i
LT transfer length
µ mobility
µ0 mobility prefactor
⟨µ⟩ mobility averaged over multiple energy landscapes⟨
µ2
⟩

square of the mobility averaged over multiple energy landscapes

nξ
i occupation of site i in configuration ξ

nm
i occupation of site i in the metal contact

no
i occupation of site i in the organic semiconductor
⟨n⟩ total average charge-carrier density in the system
⟨ni⟩ average charge-carrier density of site i
⟨ni⟩Ncc

Ns
average charge-carrier density of site i for a system with a set of sites Ns and
Ncc charge carriers

⟨nm
i ⟩ average charge-carrier density of contact site i in the metal contact

⟨ninj⟩ average two-site occupation of site i and site j
⟨ninj⟩Ncc

Ns
average two-site occupation of site i and site j for a system with a set of sites
Ns and Ncc charge carriers

⟨n0⟩ limiting charge-carrier density for the metal-organic semiconductor interface
⟨nF0⟩ zero-field charge-carrier density for the measured single layer unipolar diode
Ncc number of charge carriers in the simulated system
Ncnfg number of possible configuration of the simulated system
Nl number of sites in one direction in a layer parallel to the contact
Nr number of metal sites in the contact removed from the simulated system
Ns number of sites in the simulated system
Ns set of sites
Nx number of organic semiconductor layers parallel to the contact without contact

and extraction layers
ν0 hopping prefactor
ODOS(E) occupied density of states for a given energy E
O(n) big O / Bachmann-Landau / asymptotic notation indicating that the algorithm

has order n time complexity
φ(∆⃗r) interaction potential of a charge carrier at a distance ∆⃗r including all its peri-

odic replica
Φ(⃗r) interaction potential at position r⃗ created by all charge carriers and their peri-

odic replica, except the charge carrier at position r⃗
Φimg(⃗r) interaction potential at position r⃗ created by all image charge carriers and their

periodic replica, except the image charge carrier associated to position r⃗
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Formula Symbols (continued)

π⃗ steady-state-probability distribution
πξ probability that configuration ξ is visited in steady state
πm

i (n) probability that metal site i is occupied n = 1 or unoccupied n = 0
q charge sign
qξ ξ ′ Q-matrix entry for a transition from configuration ξ to configuration ξ ′

Rij rate for a hop from site i to site j
Rij(ξ ) rate for a hop from site i to site j with initial configuration ξ
r⃗i spatial position of site i
rC,o total channel-width-reduced ohmic contact resistance rC,o = rD,o + rS,o

rD,o channel-width-reduced ohmic drain resistance
RD drain resistance
Rex extraction rate for the extraction of charge carriers from the organic semicon-

ductor
rhop maximum considered hopping distance
Rin injection rate for the injection of charge carriers to the organic semiconductor
RMA Miller-Abrahams rate
RM Marcus rate
rS,o channel-width-reduced ohmic source resistance
RS source resistance
ρB resistivity associated to the bulk-limited current density
ρC resistivity associated to the contact-limited current density
ρCh(x) charge carriers per unit area at position x in the channel of an OTFT
σ energetic disorder determining the width of the Gaussian distribution
T temperature
TSh temperature associated with the Schottky diode
Θ(υ) Heaviside-step-function, Θ(υ) = 1 for υ ≥ 0 and Θ(υ) = 0 for υ < 0
υ = qV reduced voltage
V0 simplified voltage loss at the Schottky diode
VCh(x) channel potential at position x in the channel of an OTFT
VDS drain-source voltage of an OTFT
VD′S′ drain-source voltage of the ideal OTFT
VGS gate-source voltage of an OTFT
VG′S′ gate-source voltage of the ideal OTFT
VnF voltage applied to the single layer unipolar diode at which the charge-carrier

density induced by the electric field is equal to the zero-field charge-carrier
density

VSh voltage loss at the Schottky diode
VT threshold voltage
W channel width of the OTFT
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Formula Symbols (continued)

WF measured work function of the injecting contact of the single layer unipolar
diode

WF
F0 zero-field transition work function of the measured single layer unipolar diode

WF
T transition work function determining the transition from the contact-limited to

the bulk-limited regime
x spatial position
ξ configuration determining the occupied sites
ξm configuration in the metal contact
ξo configuration in the organic semiconductor
Ξ configuration space containing all Ncnfg configurations ξ
ΞNcc
Ns

configuration space for a system with a set of sites Ns and Ncc charge carriers
Z partition function
ZNcc
Ns

partition function for a system with a set of sites Ns and Ncc charge carriers
ζ splitting parameter of the Ewald summation
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[57] M. Gärtner, E. Sauter, G. Nascimbeni, A. Petritz, A. Wiesner, M. Kind, T. Abu-Husein, M. Bolte,
B. Stadlober, E. Zojer, A. Terfort, and M. Zharnikov, “Understanding the Properties of Tailor-
Made Self-Assembled Monolayers with Embedded Dipole Moments for Interface Engineering,”
The Journal of Physical Chemistry C, vol. 122, pp. 28757–28774, Dec. 2018.

[58] J. W. Park, D. C. Shin, and S. H. Park, “Large-area OLED lightings and their applications,” Semi-
conductor Science and Technology, vol. 26, p. 034002, Feb. 2011.

[59] D. Ma, “White OLED Devices,” in Handbook of Advanced Lighting Technology (R. Karlicek, C.-
C. Sun, G. Zissis, and R. Ma, eds.), pp. 321–361, Cham: Springer International Publishing, 2017.
ISBN: 9783319001760.

[60] J. Zhang, Y. Zhao, J. Fang, L. Yuan, B. Xia, G. Wang, Z. Wang, Y. Zhang, W. Ma, W. Yan, W. Su,
and Z. Wei, “Enhancing Performance of Large-Area Organic Solar Cells with Thick Film via
Ternary Strategy,” Small, vol. 13, no. 21, p. 1700388, 2017.

[61] S. Dong, K. Zhang, B. Xie, J. Xiao, H.-L. Yip, H. Yan, F. Huang, and Y. Cao, “High-Performance
Large-Area Organic Solar Cells Enabled by Sequential Bilayer Processing via Nonhalogenated
Solvents,” Advanced Energy Materials, vol. 9, no. 1, p. 1802832, 2019.

[62] J. Park, J. Lee, D. Shin, and S. Park, “Luminance Uniformity of Large-Area OLEDs With an
Auxiliary Metal Electrode,” Journal of Display Technology, vol. 5, pp. 306–311, Aug. 2009.

[63] M. Mesta, M. Carvelli, R. J. de Vries, H. van Eersel, J. J. M. van der Holst, M. Schober, M. Furno,
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[110] M. Raoufi, U. Hörmann, G. Ligorio, E. List-Kratochvil, S. Hecht, and D. Neher, “Simultaneous
effect of UV-radiation and surface modification on energy level alignment and charge injection
across hybrid metal oxide/organic interfaces..” in preparation.

[111] P. P. Ewald, “Die Berechnung optischer und elektrostatischer Gitterpotentiale,” Annalen der
Physik, vol. 369, no. 3, pp. 253–287, 1921.

[112] S. W. de Leeuw, J. W. Perram, and E. R. Smith, “Simulation of Electrostatic Systems in Periodic
Boundary Conditions. I. Lattice Sums and Dielectric Constants,” Proceedings of the Royal Society
A: Mathematical, Physical and Engineering Sciences, vol. 373, pp. 27–56, Oct. 1980.

[113] H. B. Lee and W. G. Cai, “Ewald Summation for Coulomb Interactions in a Periodic Super-
cell.” http://micro.stanford.edu/mediawiki/images/4/46/Ewald notes.pdf, 2009. Ac-
cessed: 2019-06-28.

[114] M. Casalegno, G. Raos, and R. Po, “Methodological assessment of kinetic Monte Carlo simula-
tions of organic photovoltaic devices: The treatment of electrostatic interactions,” The Journal of
Chemical Physics, vol. 132, p. 094705, Mar. 2010.
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