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Abstract

EEG signals that are typically utilized in a brain-computer interface (BCI), can be
subject to non-stationary changes over time which degrade the performance of the BCI.
This thesis focuses on oscillatory-based BCIs, and compares algorithms that can reduce the
effect of intra-session (within the same session) non-stationarities. The thesis specifically
considers online BCI operation where, for new data, no class label information is available.
Hence, the calibration data recorded at the beginning of a session is the only labeled data.

In an offline analysis, four algorithms were compared with regard to their performance
within the same session. One algorithm was a standard classification model, consist-
ing of shrinkage common spatial pattern (sCSP), and shrinkage linear discriminant anal-
ysis (sLDA). This was the reference model which did not address non-stationarities. The
other three algorithms, which address non-stationarities, were adaptive normalization LDA
(AdLDA), Importance-weighted LDA (IWLDA), and within-session divergence-based
CSP (divCSP-WS). Furthermore, their combinations, which were AdLDA+divCSP-
WS and IWLDA+divCSP-WS, were also considered.

The offline simulation with a 2-class oscillatory-based BCI dataset (right hand and feet
motor imagery) revealed that AdLDA showed a significant improvement in the accuracy
over the standard algorithm (mean accuracy AdLDA 77.51%, standard 76.07%). Based
on this finding, AdLDA was used in a 3-class oscillatory-based online BCI experiment
(right hand motor imagery, mental subtraction, and mental rotation). In the online ex-
periment, an additional factor was introduced to induce a change of the state of mind by
competing with a computer-generated rival player. The analysis indicated that AdLDA
still significantly outperformed the standard algorithm. (mean accuracy AdLDA 55.64%,
standard 53.20%).

In conclusion, AdLDA exhibited improvement over the standard algorithm by 1.44%

in 2-class BCI and 2.44% in the 3-class BCI which indicated that the rival factor marginally

influenced the accuracy.

Keywords: brain-computer interface (BCI), intra-session, non-stationarities, electroen-

cephalogram (EEG), common spatial pattern (CSP), linear discriminant analysis (LDA)
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Kurzfassung

EEG-Signale, die typischerweise in einer Gehirn-Computer Schnittstelle – im Englis-
chen Brain-Computer-Interface (BCI) – verwendet werden, können im Laufe der Zeit nicht-
stationären Änderungen unterliegen. Diese Nichtstationäritäten können die Leistung des
BCIs verschlechtern. Diese Arbeit konzentriert sich auf oszillatorische BCIs und vergleicht
Algorithmen, die den Effekt von intra-session (innerhalb der gleichen Sitzung) Nichtsta-
tionäritäten reduzieren können. Die Arbeit betrachtet insbesondere die Anwendung eines
BCIs, bei dem für neue Daten keine Klassenlabel verfügbar sind. Daher sind die zu Beginn
einer Sitzung aufgezeichneten Kalibrierungsdaten die einzigen Daten mit Labels.

In einer simulierten Experiment wurden vier Algorithmen hinsichtlich ihrer Leistungs-
fähigkeit innerhalb derselben Sitzung verglichen. Ein Algorithmus war ein Standard Klas-
sifikationsmodell, bestehend aus shrinkage common spatial patterns (sCSP) und shrink-
age Linear Discriminant Analysis (sLDA). Dieser Referenzalgorithmus ignorierte die Nicht-
stationäritäten. Die anderen drei Algorithmen, die Nichtstationäritäten berücksichtigten,
waren adaptive normalized LDA (AdLDA), importance weighted LDA (IWLDA) und
within-session divergence based CSP (divCSP-WS). Darüber hinaus wurden auch die
Kombinationen, AdLDA+divCSP-WS und IWLDA+divCSP-WS berücksichtigt. Die
Ergebnisse mit einem 2-Klassen Datensatz (Bewegungsvorstellung der rechten Hand oder
beider Füße) ergab, eine signifikante Verbesserung der Klassifikationsgenauigkeit von AdLDA
gegenüber dem Referenzalgorithmus (mittlere Genauigkeit AdLDA 77,51%, Standard
76,07%). Basierend auf diesem Ergebnis wurde AdLDA in einem 3-Klassen Online-Experiment
(Bewegungsvorstellung der rechten Hand, mentale Subtraktion und mentale Rotation) ver-
wendet. In dem Online-Experiment wurde ein zusätzlicher Faktor eingeführt, um eine
Veränderung des mentalen Zustands zu induzieren. Dieser Faktor stellte einen simulierten
Gegner dar. Die Ergebnisse zeigen, dass AdLDA den Referenzalgorithmus immer noch
signifikant übertraf. (mittlere Genauigkeit AdLDA 55,64%, Standard 53,20%).

Zusammenfassend zeigte AdLDA eine geringe, aber signifikante Verbesserung gegenüber
dem Standard Algorithmus um 1,44% im 2-Klassen-BCI und 2,44% im 3-Klassen-BCI, was
darauf hinweist, dass der simulierte Gegner die Klassifikationsgenauigkeit nur geringfügig
beeinflusst hat.

Schlüsselwörter: Gehirn-Computer Schnittstelle (BCI), intra-session, nichtstationären,

elektroenzephalogram (EEG), CSP, LDA
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Chapter 1

Introduction

1.1 Background

In this section, the background and scope of the thesis are established. Impor-
tant concepts such as the term Electroencephalogram (EEG) as well as the Brain-
Computer Interface (BCI) system are introduced and explained. Subsequently, non-
stationarities affecting the EEG are described.

1.1.1 Electroencephalogram (EEG)

Back in 1929, Hans Berger was the first who was able to measure the electrical
fluctuations from a human’s brain at the scalp [1]. He found the alpha rhythm,
which is an oscillation at around 12 Hz in the recorded EEG. Later on, the EEG was
divided into different frequency bands, namely, (the exact definition of the frequency
ranges varies in the literature)

• Delta band: 0.5 to 4 Hz

• Theta band: 4 to 8 Hz

• Alpha band: 8 to 13 Hz

• Beta band: 13 to 30 Hz
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CHAPTER 1. INTRODUCTION

• Gamma band: from 30 Hz and higher

EEG has become an essential tool in many fields such diagnosis of epilepsy in
medicine [2] or in behavioral studies in psychology [3], as well as in the BCI field.
This is because it is a non-invasive method of measuring the electrical voltage and it
is cheap compared to other methods. However, there are several other non-invasive
options to measure brain activity, such as magnetoencephalography (MEG), positron
emission tomography (PET), functional magnetic resonance imaging (fMRI), Near-
infrared spectroscopy (NIRS) [4], [5]. There are also invasive options [5], such as multi
unit activity which is a highly invasive method, and Electrocorticography (ECoG)
which is a minimally invasive method. Both methods require a medical surgery to
implant a sensing device underneath the skull of the user, which could be risky for
the user. Despite the different methods of recording brain activity, the recording of
these brain signals has to be handled carefully as the signal-to-noise ratio (SNR) is
low in these signals.

However, each method has its trade-off between temporal resolution and spatial
resolution [4], [5]. For example, fMRI might have an excellent spatial resolution
(in millimeters) but its temporal resolution is low (seconds), not to mention the
immobility of the measuring device compared to EEG. On the other hand, EEG has
a good temporal resolution (milliseconds) but poor spatial resolution (centimeters),
while the mobility of the user is good. Especially, when the technology allows a
wireless connection between a computer and the EEG recording device [6].

1.1.2 Brain-Computer Interface (BCI)

The concept of using the EEG to communicate with a machine emerged around
40 years after Berger’s discovery. The term BCI was introduced by Vidal [7] in
1973 in which he explained the possibility of using EEG for direct brain-computer
communication.

A BCI can be described as a system that allows users to communicate with the
external world without relying on the normal pathways of the brain through mus-
cles or the peripheral nervous system [8]. Figure 1.1 visualizes the components of a
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CHAPTER 1. INTRODUCTION

BCI. The BCI system works by first, signal acquisition, where the EEG signals are
measured from the user, and then, signal processing is applied to the EEG signals.
Feature extraction is done to the processed EEG signals and then used in the classifi-
cation to get control signals that can be used in an application. Typical applications
are word spelling [9], [10], gaming [11], or robotic arm control [12]. Finally, to close
this loop, the applications present the feedback to the user.

Figure 1.1: The overview of a closed-loop BCI. The signals recorded from the user
are processed and the output signals are used to control an application that gives
feedback to the user.

Several strategies can be used to control a BCI [5]. The two most common strate-
gies are stimulus-evoked activity and mental imagery. The former usually begins
with presenting stimuli to the user where one has to focus on stimuli that differ from
the other. An example would be the scenario where several pictures of non-target
stimuli are flashed in front of the user, but occasionally, there would be pictures of
target in between, which the user has to count the number of occurrences of the

4



CHAPTER 1. INTRODUCTION

target stimulus. The BCI then processes and classifies the signal to distinguish the
difference between the time when the target stimuli are presented and when the non-
target stimuli are presented. This type of experimental paradigm is called an oddball
paradigm [13].

Figure 1.2: The homunculus map of the primary sensorimotor areas (left) the sensory
mapping, (right) the motor mapping. Figure taken from [14].

A mental imagery BCI, however, relies on sensorimotor rhythms (SMRs) of the
brain. The SMRs are oscillations of the brain signals of specific frequency bands
that can be acquired over the sensorimotor areas of the brain [15]. The sketches in
Figure 1.2 illustrate how different parts of the body are mapped to the sensorimotor
areas. In the case when one performs a movement of a specific limb, the power of the
oscillations change in the associated cortical patch which is specifically called motor
imagery. Then, electrodes in the vicinity of the corresponding cortical patch can reg-
ister the changes of the power of the oscillations. This was discovered by Pfurtscheller
in 1977, where he called the SMR power changes as event-related de/synchronization
(ERDS) [16]–[19]. ERDS effects are not only measurable in an actual movement but
also in an imagined movement. Because of this, motor imagery became the main
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CHAPTER 1. INTRODUCTION

interest in BCI research as it can also be used in people without an ability to move
a limb. However, the key to successful motor imagery is to do a kinesthetic motor
imagery, meaning to imagine the feeling when doing that movement, rather than a
visual motor imagery, meaning to imagine observing the movement [20], [21].

There are also other mental tasks that can be differentiate by power changes of
different brain rhythms but the location of the changes is non-specific and can vary
between persons. The tasks that can be used in the experiment beside the hand and
feet motor imagery are [22]

• word association: thinking of words that begin with a specific letter

• mental subtraction: subtracting two numbers consecutively

• mental rotation: visualizing an object rotating

• auditory imagery: singing a song in the head

• spatial navigation: picturing a walk in a familiar place

Friedrich et al. [22] chose 4 classes that indicated the best accuracy for the indi-
vidual participant. It was shown that hand motor imagery was the most occurrence
among the participants following by one "brain-teaser" task (either word association
or mental subtraction), mental rotation task, and lastly, one of these imageries (au-
ditory imagery, spatial navigation, and feet motor imagery). The tasks chosen in
this thesis is based on the finding of this paper.

1.1.3 Non-stationarities in BCI

The stationarity of a time series can be described as when the probability distri-
bution of the time series does not change over time [23]. In contrast, a time series is
non-stationary when the probability distribution changes over time.

In the case of an EEG-based BCI, the EEG signal does not only have a low
SNR but is also highly non-stationary [23]–[25]. The factors influencing the non-
stationarities are unclear but it is typically divided into psychophysiological and
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CHAPTER 1. INTRODUCTION

technical factors. The psychophysiological factors are changes in the user’s attention,
mood, motivation, and others [23]. The technical factor is the interface between the
scalp and an electrode. For example, considering a scenario within the same session,
the conductive gel, that is used to keep the impedance between the scalp and the
electrodes low, can dry up causing the impedance to vary over time, and if one
considers a scenario between sessions, the position of electrodes might also change
which eventually cause the signals to vary between session. The combination of all
these makes the usage of BCIs in the real world challenging, as currently, we do not
fully understand the interaction between different factors.

1.2 Motivation and Aims

The non-stationarities can affect the BCI in general, but in this thesis, the use
case within the MIRAGE91 Graz BCI racing team is considered. The MIRAGE91
Graz BCI racing team [26] is a student team that was founded to participate in the
CYBATHLON event [27]. The CYBATHLON event is a competition between teams
from different countries where people with disabilities (pilots) use a system provided
by the team so they can perform daily tasks. There are in total six disciplinaries
within this competition, namely; BCI Race, Functional Electrical Stimulation (FES)
Bike Race, Powered Arm Prosthesis Race, Powered Leg Prosthesis Race, Powered
Exoskeleton Race, and Powered Wheelchair Race.

In the BCI race, the pilot has to use a BCI to control a game with his/her
brain signals only. The Graz BCI racing team participated in the CYBATHLON
competition in 2016, and observed that the performance of the team’s pilot worsened
during the competition with a run time of the race of 196 seconds, compared to run
times of 143 to 178 seconds during the training session. In an offline analysis [11],
the authors identified that the degradation of the system’s performance was due to
non-stationarities affecting the EEG signal.

The main interest of this thesis concerns a scenario the BCI racing competition
in the event. Figure 1.3 compares between the classical BCI scenario, where the
temporal gap between a calibration block and operation blocks is short, while in

7
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Figure 1.3: Comparison between the classical BCI usage to the usage. The difference
is the temporal gap between calibration and operation blocks.

the scenario, the team and the pilot have to wait some time until the competition
begins. The temporal gap and a mental state change in the pilot could cause non-
stationarities in the EEG and degrade the BCI performance.

The specific goal of this thesis is to first build a new system for the Graz BCI
racing team, since the team was offered new recording hardware that was not com-
patible with the predecessor system. The BCI uses a standard classification model,
that consists of shrinkage linear discriminant analysis (sLDA) and shrinkage common
spatial pattern (sCSP). The other goals are to investigate algorithms that reduce the
effect of within-session non-stationarities and to implement and evaluate an improved
BCI in an online experiment.

To do this, three algorithms were investigated, namely, Adaptive normalized LDA
(AdLDA), Importance-weighted LDA (IWLDA), and within-session divergence-
based CSP (divCSP-WS). The dataset from [28] was used to determine the best
algorithm in terms of classification accuracy. The best algorithm was then used to
test the new system in an online experiment, where we tried to replicate the scenario.

8



Chapter 2

Related Work

2.1 Graz BCI Racing team predecessor system

In this section, the description of the predecessor system that was used in the
VYBATHLON event in 2016, is given. It is essential to mention the predecessor
system since parts of the current system are based on them. The explanation of
the system was taken partly from the Master’s Thesis of a Graz BCI Racing team
member, Brandstetter [28].

The central part of the system is the software called tools for BCI (TOBI) Sig-
nalServer [29], which is a data acquisition software that provides biosignals in a
standardized protocol in real time. The BCI was implemented in a simulink model
with Matlab (Mathworks Inc., Natick, USA), where a TOBI client block was used
to get the signals in real time.

For the offline training, the recorded files were loaded, and two bandpass filters
were applied to the signals, one between 8 to 16 Hz and the other one between 16 to
30 Hz. The signals were cut according to each trial. The signals were normalized and
used to train all of the combinations of sCSP. Then, log band power (LBP) features
were calculated. Finally, the LBP features were used to train the sLDA model.

For the online operation, the same pipeline was applied to the signal in real
time as well without the cutting of the signal, since the EEG signals come in as

9
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Figure 2.1: Overview of the online processing pipeline. For the offline training, the
EEG signals needed to be cut by trial. Taken from the Simulink model [28].

a continuous stream. Figure 2.1 visualizes the processing pipeline of the online
operation as described before.

2.2 Basic classification model

In this section, the shrinkage covariance estimation is described, following by the
descriptions of two standard algorithms, CSP and LDA. Furthermore, the extension
of the two algorithms by utilizing the shrinkage covariance estimation is stated.

2.2.1 Shrinkage Covariance Estimation

With high dimensional data and few observations to estimate the parameters
correctly, it can lead to a problem known as curse of dimensionality, that cause a
poor performance of the BCI [30], this is because large eigenvalues are estimated too
large and small eigenvalues are estimated too small. This problem can be overcome
by a method called shrinkage coviariance estimation, which can prevent an error
from overestimating or underestimating variance [31].

The empirical way of calculating the covariance is

Σ̂ =
1

N − 1

N∑
i=1

(xi − µ̂)(xi − µ̂)T (2.1)

10
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µ̂ =
1

N

N∑
i=1

xi (2.2)

where N is a number of observations, xi is a vector of the i th observation , Σ̂ is the
covariance, µ̂ is the mean.

To remedy this problem, Σ̂ is replaced by the shrinkage covariance, Σ̃,

Σ̃(γ) = (1− γ)Σ̂ + γνI (2.3)

where ν is the average eigenvalue of Σ̂

ν =
trace(Σ̂)

d
(2.4)

where d is the dimension of the feature space, and γ is a regularizing parameter,
ranged between 0 and 1.

As the matrix Σ̂ is positive semidefinite, it can be factorized with eigendecom-
position as

Σ̂ = VDVT (2.5)

where V is an orthogonal matrix and D is a diagonal matrix. From equation 2.3
and 2.5, the equation becomes

Σ̃(γ) = V((1− γ)D + γνI)VT (2.6)

It can be interpreted that eigenvalues are altered toward the average eigenvalue.
While both Σ̂ and Σ̃ still share the same eigenvectors, only the eigenvalues are
pulled into average eigenvalue, ν. It was shown that finding the optimum value for
the shrinkage parameter, γ, can be done analytically [32].

2.2.2 (shrinkage) Common Spatial Pattern ((s)CSP)

The problem with EEG signals is that they suffer from the effect of the volume
conduction [33], [34]. This means that an electrode records a combination of the

11



CHAPTER 2. RELATED WORK

activity from several sources (or spatial components) in the brain. CSP is a spatial
filter which was first introduced by Ramosar et al. [34]. The idea of CSP is to
decompose the EEG signals into spatial components such that these components
will maximize the variance of the signal from one condition and, at the same time,
minimize the variance of the signal from the other condition [35]. This spatial filter
is great for an oscillatory-based BCI that utilizes the changes in the SMR power,
which is equivalent to the variance that the filter tries to optimize. These changes
are corresponding to the ERDS [17], [18]. Several works utilized CSP or its variations
in the classification of the BCI [34]–[37], not only for the features from ERDS but
also the event-related potential (ERP) as well [30].

Let us define the normalized spatial covariance as

Σ =
XXT

trace(XXT )
(2.7)

where the XT is the transpose of X.
In this case,X is the matrix containing EEG signals with the dimensionNCH×N ,

where NCH is the number of channels, and N is the number of observations.
The average covariance of both conditions, Σ̄1 and Σ̄2, can be computed by

averaging over trials of each condition separately. Summing the average covariance
of 2 classes, we have a composite spatial covariance

Σc = Σ̄1 + Σ̄2 (2.8)

which can be decomposed into

Σc = U cλcU
T
c (2.9)

where U c is a matrix of eigenvectors, and λc is a diagonal matrix of corresponding
eigenvalues. Note that the eigenvalues and their corresponding eigenvectors will be
assumed to be ordered in a descending manner.
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From this, the whitening transformation is defined as

P = λ
− 1

2
c UT

c (2.10)

where all eigenvalues of the whitened Σc, computed as PΣcP
T , will be one.

With the transformation, this produces

S1 = P Σ̄1P
T (2.11)

S2 = P Σ̄2P
T (2.12)

which can be further decomposed by eigendecomposition into

S1 = Uλ̄1U
T (2.13)

S2 = Uλ̄2U
T (2.14)

where U is a matrix of shared eigenvectors between two conditions, and λi is a
diagonal matrix of the eigenvalues of Si, with the property of λ1 +λ2 = I, where I
is an identity matrix.

This is optimal to discriminate between two classes since this property means
that if an eigenvalue of one class is large, a corresponding eigenvalue of the other
class is small.

Finally, the spatial filter is defined as

W = (UTP )T (2.15)

Applying W to X, we obtain a components matrix that is,

Z = WX (2.16)

The components Z are sorted such that the explained variance of one condition
is at the maximum in the first component and is descending. However, the explained
variance for the other condition is at the maximum in the last component. The
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components in the middle have little discriminative information and can be discarded,
leaving only some number of the first components and the last components to be used
[34], [35], [37], [38]. This can be seen as the tool for dimensionality reduction [38]. For
example, if only the first two and last two components are selected, the dimension is
reduced from N channels to just 4 components. The improvement in the separability
between two conditions was demonstrated in several works [33]–[35].

One restriction for CSP is that it is defined for binary problems. However, it
can be extended for multi-class problems by determining the projection matrix for
each of a combination between 2 classes, i.e. considering three classes, we have six
combinations. This leads to 6 projection matrices.

However, the curse of dimensionality arises if the dimension of the feature is
large, as well as when the number of training data is too small [31], this can cause
an overfitting problem [39]. One of the ways to overcome this is to apply a shrinkage
estimation of the covariance [40], [41], as mentioned in section 2.2.1.

2.2.3 (shrinkage) Linear Discriminant Analysis ((s)LDA)

LDA [42] can be used as a classification model by making use of a linear discrim-
inant function, meaning that the decision plane is a linear function defined as

y(x) = wTx + w0 (2.17)

where w is defined as a weight vector and w0 is defined as a bias term. In the
classification problem, if y(x) > 0, x would be classified as class 1 and if y(x) ≤ 0,
x would be classified as class 2 instead.

These parameters can be varied infinitely, but the goal of the classification prob-
lem is to be able to classify each data point correctly, which means that choosing the
optimum parameters is essential. The model parameters, w, w0, are usually fitted
to calibration data.
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Let us first define the mean vector of class i as

mi =
1

Ni

∑
nεCi

xn (2.18)

where Ni is the number of sample that belong to class i.
One simple way of maximizing the class separability is to maximize the difference

between the projected class mean as

(m̃2 − m̃1) = wT (m2 −m1) (2.19)

where m̃i = wTmi. Here, the bias term, w0 is merged into wT .
The within-class variance without the normalized term of the projected data from

class Ci is defined as
s2i =

∑
nεCi

(yn − m̃i)
2 (2.20)

where yn = wTxn.
The ratio of between-class variance to the within-class is defined as

J(w) =
(m̃2 − m̃1)

2

s21 + s22
(2.21)

or in the form of dependency of w

J(w) =
wTSBw

wTSWw
(2.22)

where SB is called between-class covariance matrix defined as

SB = (m2 −m1)(m2 −m1)T (2.23)

and SW is called within-class corvariance matrix defined as

SW =
∑
nεC1

(xn −m1)(xn −m1)
T +

∑
nεC2

(xn −m2)(xn −m2)
T (2.24)
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Taking the derivative of J(w) and setting it to zero, we have,

(wTSBw)SWw = (wTSWw)SBw (2.25)

Maximizing the term J(w) means that we try to maximize between-class covariance
while minimizing within-class covariance at the same time.

From equation 2.19, 2.23, it can be seen that SBw is in the same direction as
(m2−m1) and that the scaling of w is not important, hence, we can ignore the scalar
terms, (wTSBw) and (wTSWw), which results in

w ∝ S−1
W (m2 −m1) (2.26)

Furthermore, the same trick of shrinkage covariance estimation in section 2.2.1
can be applied with LDA in the calculation of the within-class variance, SW , [43], [44].
Moreover, Peck R. et al. [43] also reported that the shrinkage covariance estimation
indicated a better performance than the standard LDA, if the distribution of the
data from two conditions are Gaussian and share the same covariance matrix.

2.3 Candidate Algorithms

In this section, the candidate algorithms to address intra-session non-stationarities
are discussed in more detail. The candidate algorithms were chosen to be some vari-
ations of the basic classification model mentioned before (sCSP and sLDA), so as
not to change the overall structure of the system.

2.3.1 Adaptive normalization LDA (AdLDA)

Adaptive normalization LDA (AdLDA) is an extension of LDA. It was shown
that the means of the features could change over time [45] because of the non-
stationarities. Due to these changes of the means, Vidaurre et al. [24] introduced
the idea of adapting the means.
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The linear discriminant function can be written in a vector form as

y(x) =
[
w0 wT

] [1

x

]
(2.27)

w = S−1
W (m2 −m1) (2.28)

w0 = −wTm (2.29)

where m = 1
2
(m1 + m2) is the pooled mean of two classes

One can think of the bias term, w0, as a function of time instead of just a constant.
This leads to

w0(t) = −wTm(t) (2.30)

where m(t) can be updated with the data. With this approach, only the bias term,
w0, will be updated, but the weight vector w will not. In the hyperspace of the
features, this can be interpreted as moving the discriminant plane according to the
changes in the features’ means.

The approach taken in this work was slightly different from [24]. Instead of
moving the discriminant plane around, the features were adaptively normalized. Both
the mean m̃(t) and the standard deviation (SD) s̃(t) of the feature f(t) are estimated
with an exponential moving average (EMA) estimation.

m̃(t) = (1− η)m̃(t− 1) + ηf(t) (2.31)

s̃(t) = [(1− η)s̃(t− 1)2 + η(f(t)− m̃(t))2]
1
2 (2.32)

and

fnormalized(t) = (f(t)− m̃(t))× diag(s̃(t))−1 (2.33)

where f(t) is the features vector, m̃(t) is the mean of the features that was filtered
with EMA, and s̃(t) is the standard deviation of the features that was filtered with
EMA, and η is the smoothing parameter. The speed of adaptaion can be changed
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by varying the smoothing parameter, η. From equation 2.31, it can be expanded as
an infinite sum as

m̃(t) =η[f(t) + (1− η)f(t− 1) + ...+ (1− η)kf(t− k)]

+ (1− η)k+1m̃(t− (k + 1))
(2.34)

where kε{0, 1, 2, ...}. The weight of the term ft−i is η(1− η)i. The percentage of the
weight represented in the k terms, p, can be expressed as

(1− p) =
weight limited after k term

total weight
(2.35)

=
η[(1− η)k + (1− η)k+1 + ...]

η[1 + (1− η) + (1− η)2 + ...]
(2.36)

using Maclaurin Series

(1− p) =
η(1− η)k 1

1−(1−η)

η 1
1−(1−η)

(2.37)

= (1− η)k (2.38)

Finally, the smoothing term can be computed as

η = 1− (1− p)
1
k (2.39)

where k is the number of terms before truncation and p is the percentage of their
EMA weights.

The same EMA is also applied to the standard deviation s̃(t) in equation 2.32.
In this work, the parameter was set to p = 0.9 and k = Fs × 600. So that the

weights of the samples within the last 10 minutes have 90% of the weights.
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2.3.2 Importance-weighted LDA (IWLDA)

One of the assumptions of supervised learning algorithms, such as LDA, is that
the distribution of the training and testing data is the same. Practically, this is not
always true and under such conditions, the algorithms might fail [46]–[48].

We consider the case where the distribution of the data, P (x), between training
and testing data is not the same but the conditional distribution of output labels,
P (y|x), is unchanged. This situation is termed covariate shift [48].

Shimodaira et al. [48] also proposed that the effects caused by covariate shift
could be improved by weighting the log-likelihood term during the training with the
importance, d(x), defined as

d(x) =
pte(x)

ptr(x)
(2.40)

where pte(x) is the density function of testing data and ptr(x) is the density function
of training data.

However, in order to use this ratio in weighting, one can relate the learning of
LDA parameters in a least-squares manner. First, the target value, indicating the
class that each observation belongs to, has to be set to N

N1
and −N

N2
where N is the

total number of samples, and Ni is the number of samples that belong to class i.
The objective function is

min
W
||D

1
2 (Y −XW)||2 + λ||W||2 (2.41)

where D is a diagonal matrix containing importance of each data point and λ is a
regularization term. From this minimization problem, the solution can be derived as
[49]

ŴIWLDA = (XTDX + λI)−1XTDY (2.42)

Despite the derived solution, finding the importance of the data remains a difficult
task. The simplest way is to determine the densities of both testing and training
data individually, then directly compute the importance by finding the ratio from
both densities. However, estimating density from the data with high dimensional is
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not an easy task.
One way of estimating the importance without actually determine the data den-

sities was proposed by Sugiyama et al. [46]. This method is called Kullback–Leibler
importance estimation procedure (KLIEP), which utilizes the Kullback-Leibler di-
vergence [50], that tells how different one distribution to another.

The importance is, modeled as a summation of Gaussian kernels

ŵ(x) =
b∑
l=1

αlexp(−
||x− cl||2

2σ2
) (2.43)

where αl are the parameters needed to be learned, cl is picked randomly from the
training data, xte, the number of parameter, b, is chosen as min(100, Nte), where
Nte is the number of testing data [49] and the width of Gaussian kernel, σ, can be
selected by cross-validation [46]. Applying this model results in

p̂te(x) = ŵ(x)ptr(x) (2.44)

From this, αl must be learnt so that the Kullback-Leibler divergence between
pte(x) and p̂te(x) is minimized.

KL[pte(x)||p̂te(x)] =

∫
pte(x)log

pte(x)

ŵ(x)ptr(x)
dx (2.45)

=

∫
pte(x)log

pte(x)

ptr(x)
dx−

∫
pte(x)log(ŵ(x))dx (2.46)

The first term can be ignored since it does not depend on αl, the last term can
be approximated from the testing data as

∫
pte(x)log(ŵ(x))dx ≈ 1

Nte

Nte∑
j=1

log(ŵ(xtej )) (2.47)

=
1

Nte

Nte∑
j=1

log(
b∑
l=1

αlexp(−
||xtej − cl||2

2σ2
)) (2.48)
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Because p̂te(x) is a probability density function, it must be normalized to 1 which
means

1 =

∫
p̂te(x)dx (2.49)

=

∫
ŵ(x)ptr(x)dx (2.50)

≈ 1

Ntr

Ntr∑
i=1

ŵ(xtri ) (2.51)

=
1

Ntr

Ntr∑
i=1

b∑
l=1

αlexp(−
||xtri − cl||2

2σ2
) (2.52)

Again, the integral was approximated from the training data xtri .
Note that only testing data is used in Equation 2.48, however, the training data

is utilized in the constraint in Equation 2.52.
Finally, the optimization problem becomes

max
αl

[
Nte∑
j=1

log(
b∑
l=1

αlexp(−
||xtej − cl||2

2σ2
))

]
(2.53)

subject to
Ntr∑
i=1

b∑
l=1

αlexp(−
||xtri − cl||2

2σ2
) = Ntr and α1, α2, ..., αb ≥ 0 (2.54)

A Matlab implementation of the KLIEP algorithm by Sugiyama, which is publicly
available based on [46], [47], was used to find the importance of each class of the
training data separately, and then they were combined by normalizing them to sum
up one.

2.3.3 Within-session divergence-based CSP (divCSP-WS)

The idea of divCSP idea was first proposed by Samek et al. [51], where it was
described that the problem of finding the optimal projection matrix of CSP could as
well be represented in the maximization problem of the symmetric Kullback-Leibler
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divergence, D̃KL, [50]. The maximization problem can be written as

W∗ = argmin
W

D̃KL(WTΣ1W||WTΣ2W) (2.55)

where W is the CSP coefficient containing all of the components.
As pointed out by Samek et al. in their consecutive work [41], there are two

ways to incorporate regularization into CSP. One way is to regularize during the
estimation of the covariance matrix as in section 2.2.1 and 2.2.2. The other way
is to regularize the objective function of the optimization problem directly. They
further extended their work by not only generalizing the framework for CSP with the
divergence-based framework but also including the second approach of regularizing
the objective function directly at the same time. The proposed framework along
with the regularization is formalized into

L(W) = (1− λ)D̃KL(WTΣ1W||WTΣ2W)− λ∆ (2.56)

where L(.) is the loss function, the first term is the term from optimizing the
problem of divCSP, and the second term is the regularization term. The authors
proposed different regularization terms to tackle 4 cases, which were

1. Within-session stationarity (divCSP-WS)

2. Between-session Stationarity (divCSP-BS)

3. Across Subject stationarity (divCSP-AS)

4. Multisubject CSP (divCSP-MS)

Here within-session stationarity is relevant since the goal of this thesis is to im-
prove the performance of the BCI within the same session.

The equation described the regularization term for divCSP-WS is

∆ =
1

2N

2∑
c=1

Nc∑
i=1

DKL(WTΣi
cW||WTΣcW) (2.57)
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where Nc is the number of epochs of class c, Σi
c is the estimated covariance matrix

of epoch i of class c.
The idea of this regularization term is to separate the training data into several

epochs of the same class. Then, the average divergence between each epoch and the
overall data is estimated for each class separately, where the divergence represents the
shift of the signals due to the non-stationarities. Please be aware that the term DKL

is not the symmetrical Kullback–Leibler divergence but the regular version instead.
The reason for doing this is that the non-symmetric version of Kullback–Leibler
divergence will shrink the effect of the matrix WTΣi

cW in case if it is ill-conditioned.
The optimization problem was solved using a Matlab implementation of divCSP by
Samek based on [51], [52].
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Methods

This chapter consists of an explaination of the offline simulation and then the
online experiment. The candidates algorithm areAdLDA, IWLDA, divCSP-WS,
AdLDA+divCSP-WS, and IWLDA+divCSP-WS.

3.1 Offline Simulation

In this section, the details of the offline simulation is explained. It begins with a
description of the dataset and an experimental paradigm. Afterwards, the calibration
pipeline and the model operation are explained. The simulation scenario of each
algorithm is given and then the evaluation of the offline simulation.

3.1.1 Dataset Description

The dataset used in the offline simulation was provided by Julia Brandstetter [53].
In her study, EEG data was collected from 20 participants. They were divided into
two groups to compare between supervised adaptation and semi-supervised adapta-
tion in a 2-class BCI (hand motor imagery and feet motor imagery). However, only
the semi-supervised group was used in the simulation.
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3.1.1.1 Participants

The dataset came from the semi-supervised group consisted of 10 healthy par-
ticipants. There were five male and five female participants. The median age of
the participant was 24 years and ranged from 20 to 35 years. One participant was
excluded since more than half of the training data were rejected.

3.1.1.2 Paradigm

The experimental paradigm was the standard Graz-BCI paradigm [54] as depicted
in Figure 3.1.

Figure 3.1: The standard Graz-BCI paradigm of each trial. Each colored block
represents the timing of each element used in the experiment, which are cross, beep
sound, cue image, feedback, and motor imagery.

A trial began with the emergence of a white cross in the center of a black screen.
After 2 seconds, a beep was played. Then, the cue indicating the task that the
participant has to perform (either hand motor imagery or feet motor imagery), was
shown. The cue also indicated the participant to begin performing motor imagery.
Feedback was shown at 4.25 seconds, and continuously updated. After 8 seconds,
the screen turned black again, which indicated the end of the trial. After each trial,
there was a period of the break, which lasted between 2 to 3 seconds.

The EEG signals were recorded with g.tec Gamma box and g.tec USBamp (g.tec,
Graz, Austria) biosignal amplifiers with 13 channels measured with g.tec Ladybird
active electrodes with a sampling rate of 256 Hz. A bandpass filter between 0.1 and
100 Hz was applied. The electrodes were placed to cover the sensorimotor area of
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the brain, which are FC3, FCz, FC4, C5, C3, C1, Cz, C2, C4, C6, CP3, CPz, and
CP4.

The experiment started with a calibration period, which consisted of four runs,
each including ten trials per class. After the first run, the data was used to calibrate
the classifier, and this classifier was then used to give feedback in the second run of
the calibration period. The calibration period was followed by a break that lasted 20
minutes. Then, five runs were recorded. These processes were repeated three times
after the initial calibration.

Figure 3.2 shows the overview of the whole simulation based on this dataset.
The difference was that all of the data from the first block was used in a calibration
instead of just the first run.

Figure 3.2: The simulation paradigm. The data from the calibration block was used
to train the model that was used in the three operation blocks.

3.1.2 Calibration pipeline

In order to calibrate a BCI, the classification models were fitted to the calibration
data. The processing pipeline was based on the predecessor system with some revision
taken from the semester project of John Bosco Uroko. Figure 3.3 visualizes the
calibration pipeline.

The files containing signals collected from the calibration runs were loaded into
EEGLAB format, which is a Matlab toolbox for EEG data analysis [55]. The signals
were filtered with an eighth-order butterworth low-pass filter with a cut-off frequency
of 80 Hz. Afterward, they were downsampled from 500 Hz to 250 Hz. To get rid of
a low-frequency drift, they were filtered with a second-order butterworth high-pass
filter with a cut-off frequency of 1 Hz. Finally, a forth-order butterworth notch filter
was applied to remove the power line noise at 50 Hz. The signals were checked for
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Figure 3.3: The overview of processing pipeline. Each block represents a function
where the arrows indicates an input-output relationship between blocks.
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any bad channels which should be removed. After the rejection of bad channels, a
Common Average Reference (CAR) filter [56] was applied to the signal.

Subsequently, the pipeline was separated into two branches. The first one was
used to find bad epochs to be removed. Here, the signals from the last step were cut
for the whole period of trial, which was between 2 seconds before and 5 seconds after
the cue for each trial. Statistical properties of the signals were used to determine
which trial should be rejected, according to [53]. The clean trials were used to
compute the ERDS maps [18], [19]. Furthermore, the remaining trials were used to
train an artifact detector, according to [57]. This artifact detector was used to give
feedback to the participant of how likely the current trial was contaminated.

In the second branch, the preprocessed signals were divided into four narrower
band signals through bandpass filtering with third-order butterworth filters. These
four bands consisted of 6-10 Hz, 8-12 Hz, 15-25 Hz, 25-35 Hz, which covered compo-
nents of the alpha and beta frequency range. The 3-second epochs starting from 1
second to 4 seconds after the cue for each trial were extracted. The list of bad trials
was used to reject outlier trials. After the trial rejection, narrow band signals were
used to train sCSP filters to reduce the dimension of the features and to optimize
separability between 2 classes. Afterwards, LBP features were computed with a 1-
second sliding window and the time point at 2, 3, and 4 seconds were picked from
the CSP-filtered signals, separately for each frequency band [36]. These LBPs were
normalized to compute a topographic plot of features and finally, sLDA was trained
with LBP features.

The classification model was used for evaluation by cross-validation. A receiver
operating characteristic (ROC) curve were calculated. Parameters for sCSP and
sLDA were saved for the online classification.

3.1.3 Model operation

For model operation in the simulation, the model parameters from the training
period were used for classification as visualized in Figure 3.4.

First, a chunk of EEG signals was obtained in real time. The signals were filtered
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Figure 3.4: Overview of model application. The yellow block indicates the application
of the model in the online case. Each of the grey block represents a function and the
arrows visualizes the flow of the signals.

in the same way as in the calibration pipeline. All of the filters applied were causal
filters. Then, the bad channels indicated from the calibration were rejected. In one
branch, the artifact detector was used to determine the probability of the signals be-
ing an artifact. In the other branch, feature extraction was carried out, as mentioned
in the calibration period. sCSP filters were applied followed LBP features extraction.
Afterwards, the sLDA classifier was used to compute the probability for each class.
Finally, the probabilities output from both artifact classifier and the sLDA model
were concatenated and sent back. The information was received by the visualizer,
that displayed the feedback at the end of a trial.

3.1.4 Simulation scenario

As pointed out in the introduction, the candidate algorithms have to comply with
the CYBATHLON scenario [27] so that

• the training dataset is only from the calibration period

• the labels of the testing dataset are not available

The simulation was carried out with these restrictions. The offline simulation
was done with four algorithms and two combinations.
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3.1.4.1 Standard algorithm

The standard algorithm is described in section 2.2. It utilized sCSP and sLDA.
The BCI calibration follows the same processing line mentioned in section 3.1.2. In
the operation blocks, the model was used as it was calibrated, without an adaptation.
Figure 3.5 visualizes the simulation scenario of the standard algorithm.

Figure 3.5: The simulation scenario of the standard algorithm. sCSP and sLDA
were calibrated after the calibration block and were used in the operation blocks.

3.1.4.2 AdLDA

For the AdLDA, which was explained in section 2.3.1, the calibration was done
with sCSP and sLDA similar to the standard algorithm, but the normalization was
applied to the LBP features. Afterwards, the normalization parameters of the fea-
tures were updated as the new samples were available, throughout the whole simu-
lation. Figure 3.6 visualizes the simulation scenario of AdLDA.

Figure 3.6: The simulation scenario of the AdLDA algorithm. sCSP and sLDA were
calibrated with normalized features after the calibration block and were used in the
operation blocks with the adapatation of normalization parameters.
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3.1.4.3 IWLDA

The initial calibration of IWLDA was done in the same way as the standard
algorithm. The difference was that after the end of each run, the data from that
run was added into the testing dataset, which was then employed into the KLIEP
algorithm to (re)determine the importance of the training data. This updated im-
portance was used to retrain the IWLDA model. Note that the testing data will
grow larger, but the training data will be the same. The testing data was used only
to determine the importance, as it was not included in the training data. Figure 3.7
visualizes the simulation scenario of IWLDA.

Figure 3.7: The simulation scenario of IWLDA. The calibration was done exactly
as in the standard algorithm. At the end of each run, the new data were included
to compute the importance term of the training data.

3.1.4.4 divCSP-WS

The details of this algorithm can be found at 2.3.3. The simulation was done
similarly to the standard algorithm with the change that divCSP-WS was learnt
instead of normal sCSP. After that, the model was used without any adaptation or
retraining. Figure 3.8 visualizes the simulation scenario of divCSP-WS.

Figure 3.8: The simulation scenario of divCSP-WS. The calibration was done with
divCSP-WS and sLDA. The model was used without adaptation in the operations
blocks.
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The following parameters were used in the simulation

• max_iter = 1000 the maximum iteration is 1,000 iterations

• nreps = 1 no repetition in the calculation of CSP

• lam = 0.5 the regularization parameter

• beta = 0 apply Kullback-Leibler divergence

• mode = 0 for choosing divCSP-WS

• deflation = 0 applying subspace algorithm

• pca = 1 PCA will be applied to the filter

• csp_init = 1 initialize the repetition with CSP solution

• sym = 0 apply the non-symmetric Kullback-Leibler divergence

The model was trained once with the training data, no information from the
testing data used.

3.1.4.5 AdLDA + divCSP-WS

In this scenario, the data were simulated with both AdLDA and divCSP-WS.
The initial calibration was done with divCSP-WS and sLDA with normalization.
Figure 3.9 visualizes the simulation scenario of AdLDA + divCSP-WS.

Figure 3.9: The simulation scenario of AdLDA + divCSP-WS. The calibration
was done with divCSP-WS, sLDA, and features normalization. In the operation
blocks, the normalization parameters were adapted.
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3.1.4.6 IWLDA + divCSP-WS

In the initial calibration, divCSP-WS and IWLDA were trained, and at the end
of each run, the new data points were included in the testing data pool, which were
used in the (re)calculation of the importance and IWLDA was relearnt after that.
The training data was the same for the whole simulation only that the importance
was updated. Figure 3.10 visualizes the simulation scenario of IWLDA + divCSP-
WS.

Figure 3.10: The simulation scenario of IWLDA + divCSP-WS. The calibration
was done with divCSP-WS and sLDA. The importance terms of the training were
recomputed.

3.1.5 Evaluation

For the evaluation of the different algorithms, we computed classification accuracy
curve for each participant and section of the three operation blocks. The chance level
was also calculated according to [58] with 150 trials per class for a 2-class problem.
The median of the accuracy values between 1.5 to 4.5 seconds after the cue marker
was extracted for each participant and for each operation block. These were used to
test with two-way repeated measures analysis of variance (ANOVA) if the effects of
2 factors, namely; algorithm factor and section factor, were significant.

3.2 Online Experiment

Only one algorithm was chosen to be implemented in the experiment. The offline
analysis revealed that AdLDA achieved the best performance
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3.2.1 Participant characteristics

In total, 10 (1 female and 9 males) volunteers participated in the experiment.
The age ranged from 20 to 30 years with a mean age of 24.8± SD 3.15 years. All
of them were right-handed. After the participants were briefed about the procedure
and goals of the experiment, a written consent form was obtained.

3.2.2 Hardware and electrode montage

The system used in the measurement was the BrainVision LiveAmp 32 (Brain
Products GmbH, Gilching, Germany) biosignal amplifier. It is a 32-channel wire-
less amplifier. The system uses gel-based active electrodes (actiCAP slim). The
impedance of the electrodes was kept below 10kΩ by applying electrolyte gel be-
tween electrode and the scalp during the setup.

Figure 3.11: The topography plot of the electrode montage according to the extended
10-20 system. The blue ring and the green ring represent the reference and ground
electrode, respectively. Red rings indicate normal electrodes.

As illustrated in Figure 3.11, the colored ring depicted the placement of electrodes
where green indicates the ground electrode, red the measuring electrodes, and blue
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the reference electrode. In this montage, the reference electrode was placed at the
left mastoid, the ground electrode was placed at FPz and the other electrodes were
placed to cover the central part of the scalp.

3.2.3 Graz BCI Racing Team system

As already mentioned, the new recording hardware was not compatible with the
predecessor system. In this section the new BCI of the Graz BCI racing team is
presented. In order to understand how the system works, we present the key changes
with a focus on the new structure, processing pipeline, and classification process.
This BCI was used in the online experiment.

3.2.3.1 Structure

Parts of the system design are based on the predecessor system. The parts of the
system involved in the experimental paradigm are described below. The interface
with the CYBATHLON game is not within the scope of this thesis. Therefore, it is
omitted.

The structure of the system is illustrated in Figure 3.12. The backbone of the
system is the Lab Streaming Layer (LSL) system, which manages the communication
across platforms or different computers. Different clients can send and receive signals
in real time with the LSL protocol. Two scenarios were considered in Figure 3.12,
offline experiment, and online experiment.

In the first scenario, a custom Matlab client (a visualizer) was responsible for
displaying an experimental paradigm as well as submitting markers, indicating what
was presented at which time, to LSL. The LSL packages comes with several clients
which is used in the system, namely, BrainVision Remote Data Access (RDA) client
was used to acquire EEG signals, and Lab Recorder was used to collect every stream
and save it into an XDF file format. The second scenario shared a similar design
with the first one. However, one more Matlab instance, a classifier, was used for
classification and provided the probabilities needed for feedback visualization to the
first Matlab client, the visualizer.
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Figure 3.12: The overall structure of the system. Each block represents a software in-
stance and the arrow indicates the dependencies of each block. Dashed-line visualizes
components in the online scenario.

3.2.3.2 Calibration processing pipeline

The processing pipeline of the calibration is exactly as in 3.1.2.

3.2.3.3 Online classification

The classification processes in the online experiment was done as in 3.1.3.

3.2.4 Experimental paradigm

The experiment consisted of 4 blocks in total, 1 calibration block, and 3 operation
blocks. The operation blocks were interleaved with 30-minute breaks. However, the
first operation block started immediately after calibration block. During the breaks,
the participants watched a nature documentary video. The whole experiment took
around 3.5 to 4.25 hours depending on the setup and montaging time. Figure 3.13
illustrates the experimental paradigm.

Each block consisted of 4 runs represented in yellow boxes in Figure 3.13. There
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Figure 3.13: The overview of experimental paradigm. The blue and green box repre-
sent the calibration and operation blocks. Each block consists of 4 runs, indicating
by small yellow blocks. The experimental paradigm was adapted from the Graz-
BCI paradigm [54]. The figure below indicates the timing of each component in the
experiment, namely, cross, beep sound, cue image, and feedback.

were 30 trials per run (10 trials per class). Based on the finding of [22], 3 classes
were chosen for the BCI. They were

• Hand motor imagery: imagine the feeling of squeezing a ball with the right
hand in the speed of around 2 Hz

• Mental rotation: visualize a solid cube rotating in a space e.g. rubics cube

• Mental subtraction: subtract number shown on the screen with 7, consecu-
tively e.g. 315 - 7 = 308, 308 - 7 = 301, and so on

The experimental paradigm was adapted from the standard Graz-BCI paradigm
[54]. Each trial began with an appearance of a white cross and the beep sound to
remind the participant. After 3 seconds, a cue indicated the corresponding task for
that trial. It disappeared after 4 seconds, then the feedback was presented to the
participant.

Pictures that were used as cues can be found in Figure 3.14. An image of a hand
indicated the hand motor imagery, while a dice indicated the mental rotation, and a
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number that was randomly generated indicated the mental subtraction.

Figure 3.14: The cues indicating , hand motor imagery (left), mental rotation (mid-
dle), and mental subtraction (right).

3.2.5 Feedback

Feedback was given to the participant at the end of each trial in both calibration
and operation blocks. The feedback bars consisted of a white bar and a red bar. The
white bar represented the class probabilities output from the classification model,
while the red bar denoted the probabilities of being contaminated with artifacts,
that were output from the artifact detector, according to [57]. Figure 3.15 visualizes
the feedback presented at the end of trial.

Figure 3.15: The feedback that the participant received in the feedback period, (left)
in the calibration block and (right) in the operation blocks. The white bar indicates
the probability of being the correct class, while the red bar indicates the probability
that the signal contained artifacts. The numbers below the red bars are the score of
the participant and a rival player.

Since the BCI was not yet calibrated, the feedback in the calibration block was
pseudo-randomly generated. The participants were told that the feedback bars re-
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sulted from a general classifier. It was done to keep the same experimental paradigm
in both the calibration block and the operation blocks. In contrast to the feedback
given in the calibration block, the one given in the operation blocks consisted of 2
sets of the feedback bars. The left set belonged to the participant, and the right
set belonged to a "rival", which was pseudo-randomly generated. The probability of
being correct, as well as the length of the bars of the rival can be adjusted freely. The
inclusion of the rival was done to induce the competitive mind during the competi-
tion as in a CYBATHLON scenario. The participants were instead informed that
the rival was a collection of other players, to give an idea that the participants were
competing with real people. The classification bar ranged from 33%, since this is a
3-class classification, to 100%, while the artifact bar ranged from 0% to 100%. The
BCI decided the output from the class with the highest probability.

The probability of the rival for being correct, prival, was determined from the
average AUC score of each class for individual participant from the training period.
In order to induce the participants into the competitive mind, the probability was
set to 10% more than the average AUC score. However, the maximum probability
was set to 90 % to give the idea that the rival did not always perform perfectly. This
can be summarized into

prival = max(
AUCHand + AUCRot + AUCSub

3
, 90) (3.1)

This equation determine rival’s accuracy in the first operation block, for the
second and the third, prival was chosen to be increased by 2.5% and 5% to account
for a potential learning effect.

Numbers under the artifact bar stated the score for the participants and the rival.
The player received a point only if the correct class was detected, which was indicated
by a non-empty white bar, and the artifact bar was below 50%. These scores served
as another element to persuade the participants into the competitive mind.

3.2.6 Evaluation

Similar to the evaluation in the offline simulation, the chance level was calculated
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to check whether AdLDA showed the result above the chance level, with 120 trials per
class for a 3-class problem. Subsequently, the simulation was done with the standard
algorithm. The accuracy between 1.5 to 4.5 seconds was extracted from both the
online experiment and the simulation to find the median for each participant. The
median was then used in the two-way repeated measures ANOVA to check whether
the results were significant.
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Result

In this chapter, the results of the offline simulation are provided, followed by the
results of the online experiment.

4.1 Offline Simulation

4.1.1 Accuracy curve over trial from the simulation

Figure 4.1 and 4.2 illustrate the grand average of accuracy curve over participants.
The first one compares the accuracy curve between algorithms of each section of
operation block while the second one compares the accuracy curve between sections
of each algorithm. The chance level was determined to be 55.62%, which is plotted
as a dash-line in the figures. The calculation was based on the 95% confidence level
with 150 trials per class. The shaded area indicates the standard error (SE) over
participants. From the accuracy curve of each participant, the median of the accuracy
between 1.5 to 4.5 seconds was extracted. The median accuracies are summarized in
Table 4.1 for different algorithms and different sections.

In every section, the grand average accuracy of AdLDA was higher than the
accuracy of the other algorithms. Considered the average over sections in Table 4.1,
the average accuracy of AdLDA was 77.51 % and SD 0.69, which were higher than
the standard algorithm at 76.07 % and SD 0.78. For IWLDA, divCSP-WS and
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Figure 4.1: The grand average accuracy plot over participants of different algo-
rithms for each section of operation blocks. The shaded area indicate the stan-
dard error. Each color represents each algorithm. Dark blue for the standard
algorithm, red for AdLDA, yellow for IWLDA, purple for divCSP-WS, green
for AdLDA+divCSP-WS, and light blue for IWLDA+divCSP-WS. The black
dashed-line represents chance level of 55.62%.
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Figure 4.2: The grand average accuracy plot over participant of each section for
different algorithms. Each color represents each algorithm. Dark blue for the stan-
dard algorithm, red for AdLDA, yellow for IWLDA, purple for divCSP-WS,
green for AdLDA+divCSP-WS, and light blue for IWLDA+divCSP-WS. The
black dashed-line represents chance level of 55.62%.
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Table 4.1: The grand averaged accuracy of the median accuracy of each section and
each algorithm.

Algorithms Section 1 Section 2 Section 3 Average ± SD
Standard 76.98 76.16 75.07 76.07 ± 0.78
AdLDA 77.83 78.15 76.55 77.51 ± 0.69
IWLDA 68.70 67.64 68.92 68.42 ± 0.56

divCSP-WS 69.06 68.20 66.54 67.93 ± 1.04
AdLDA + divCSP-WS 71.36 70.89 69.54 70.59 ± 0.77
IWLDA + divCSP-WS 66.93 67.17 64.93 66.34 ± 1.01

their combinations, they showed lower accuracy than the standard algorithm. The
average accuracy of IWLDA was 67.42 % and SD 0.56, divCSP-WS was 67.93 %
and SD 1.04, AdLDA + divCSP-WS was 70.59 % and SD 0.77, and IWLDA +
divCSP-WS was 66.34 % and SD 1.01). This effect can be seen in both Table 4.1
and Figure 4.1.

Figure 4.3: The boxplot of the extracted median of every participant over both
algorithm and section factor. The red dots are the median extracted from each
participant.

Compared the accuracy curve between sections as shown in Figure 4.2 and Table
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4.1, the differences were small. In case of the standard algorithm, there were a
decreasing trend (76.98%, 76.16%, and 75.07%). The same decreasing trend was
observable in divCSP-WS and AdLDA+divCSP-WS, however, the differences
were also small.

The boxplots in Figure 4.3 show that distribution of algorithm performance across
participants for three sections, with the red dot as the median accuracy of each par-
ticipant. The same observation can be made that, AdLDA showed higher perfor-
mace than the others, IWLDA and divCSP-WS and its variations showed lower
performance than the standard algorithm.

4.1.2 Statistical tests

A two-way repeated-measures ANOVA (ANalysis Of VAriance) was performed
to test whether the differences between algorithms and between sections and the
interaction between algorithm factor and section factor were significant. Before that,
Mauchly’s test was done to check if the sphericity assumption was violated. The
results from the Mauchly’s test were that

• Algorithm factor: W = 6× 10−5, p = 9.31× 10−5

• Section factor: W = 0.61, p = 0.17

which suggested that only the algorithms factor violated the sphericity assumption
at the significant level of α = 0.05.

To compensate for the violation, the p-value and the degree of freedom from
the ANOVA of the algorithm factor were corrected according to Greenhouse-Geisser
correction with ε = 0.37.

The results from ANOVA were

• Algorithm factor: F (1.85, 14.8) = 8.26, p = 4.4× 10−3

• Section factor: F (2, 16) = 0.94, p = 0.39

• Interaction: F (10, 80) = 0.78, p = 0.62
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It indicated that only the differences for the algorithm factor were statistically sig-
nificant at α = 0.05. The section factor and the interaction, did not show significant
results.

Subsequently, post-hoc tests were done to identify the significant difference for the
algorithm factor. Pairwise Wilcoxon signed-rank tests were performed with multiple
comparison correction by controlling the false discovery rate (FDR).

Table 4.2 presents the p-values of the tests. The results indicated that the paired
differences between IWLDA and divCSP-WS, AdLDA + divCSP-WS, and
IWLDA + divCSP-WS were not significant while the other differences were all
significant.

Table 4.2: P-value from post-hoc test to identify the significant paired results at
α = 0.05. These p-values were corrected for multiple comparison by controlling the
FDR.

Standard AdLDA IWLDA divCSP-WS Ad + div
AdLDA 6.3× 10−3∗ - - - -
IWLDA 3.1× 10−7∗ 1.8× 10−6∗ - - -

divCSP-WS 3.7× 10−7∗ 7.5× 10−8∗ 0.93 - -
Ad + div 1.6× 10−5∗ 1.1× 10−7∗ 0.48 1.6× 10−4∗ -
IW + div 7.5× 10−8∗ 7.5× 10−8∗ 0.37 0.03∗ 1.0× 10−5∗

In summary, the accuracy curve in Figure 4.1 indicated that AdLDA exhib-
ited better performance than the other algorithms. The two-way repeated-measures
ANOVA further revealed that the effect of the algorithms was significant. Then, the
post-hoc tests demonstrated that the differences betweenAdLDA and the standard
algorithm was significance at α = 0.05. This led to the conclusion that AdLDA was
chosen as the algorithm to be utilized in the online experiment.
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4.2 Online Experiment

4.2.1 Accuracy curve over trial from the online experiment

The accuracy curves of the online experiment for each participant are visualized
in Figure 4.4 and 4.5. From the plots, participants can be roughly divided into three
groups; the low performance group, the moderate performance group, and the high
performance group. The high performance group consisted of participants B3, B5,
B6, B7, B8, B9. The moderate performance group consisted of B1, B2, B4 and the
low performance group consisted of B10.

The low performance group showed accuracy curves that were at around the
chance level at 38.18% for 3-class classification at 150 trials per class, without a rise
after the cue at time 0. The moderate performance group showed accuracy curves
that developed an increase about 10% higher than the chance level after the cue at
time 0. The high performance group showed accuracy curves that had a bump more
than 10 % higher than the chance level.

Table 4.3: The median value extracted from the accuracy plot between 1.5 to 4.5
seconds along with the initial rival accuracy used in the first operation block for each
participant.

Participant Sect. 1 Sect. 2 Sect.3 Rival accuracy Group
B1 53.98 47.65 49.67 73.33 Moderate
B2 52.12 49.62 47.25 79.33 Moderate
B3 75.24 72.27 71.99 90 High
B4 47.28 45.92 52.21 71 Moderate
B5 60.04 59.14 57.46 81.3 High
B6 57.97 53.09 48.98 83.6 High
B7 69.68 64.35 75.23 90 High
B8 61.34 60.97 56.61 88.3 High
B9 51.61 48.25 60.94 90 High
B10 39.68 39.99 38.78 66 Low

The accuracies between time 1.5 to 4.5 seconds are summarized in Table 4.3 for
each participant, as well as the initial rival accuracy in the first section of operation
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(a) Subject B1 (b) Subject B2

(c) Subject B3 (d) Subject B4

(e) Subject B5 (f) Subject B6

Figure 4.4: Accuracy plot from online experiment of each section for participant B1-
B6. The blue, red, and yellow lines represent section 1, 2, and 3, respectively. The
dashed line means chance level which calculated to be 38.18%.
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(a) Subject B7 (b) Subject B8

(c) Subject B9 (d) Subject B10

Figure 4.5: Accuracy plot from online experiment of each section for participant
B7-B10. The blue, red, and yellow lines represent section 1, 2, and 3, respectively.
The dashed line means chance level which calculated to be 38.18%.
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block. There were 3 participants B3, B7, and B9, from the high performance group
that competed with rival at 90% accuracy. The lowest rival accuracy was from B10
at 66 %. By comparing the median values in table 4.3 to the chance level, only one
participant showed accuracy curves lower than the chance level.

4.2.2 Comparison to the standard algorithm

An offline simulation was done to see how the standard algorithms would have
performed, compared to AdLDA in the online experiment.

Figure 4.6: The grand average accuracy plots comparing between the results from the
online experiment with AdLDA and the simulation with the standard algorithm
for each section. The blue line denotes the result from the online experiment, while
the orange line represents the result of the offline simulation with the standard
algorithm. The shaded area represents the standard error (SE) of each algorithm.
The dashed black line indicates the chance level at 38.18%.

The results are shown in Figure 4.6 and 4.7. Figure 4.6 visualizes the accuracy
curves of both algorithms. Figure 4.7 visualizes the accuracy curves that compare the
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Figure 4.7: The grand average accuracy plots comparing between sections for both
the online experiment and the standard algorithm. Each color denotes each section.
The shaded area represents the standard error (SE) of each algorithm. The dashed
black line indicates the chance level at 38.18%.

Table 4.4: The average over participant of the median extracted from both online
experiment and offline simulation.

Algorithms Section 1 Section 2 Section 3 Mean ± SD
Online 56.89 54.13 55.91 55.64 ± 1.14

Standard 54.26 52.26 53.09 53.20 ± 0.82

accuracy curve for each section. The results from figure 4.6 and 4.7 were summarized
in table 4.4. It was done by computing the median of the accuracy between 1.5
to 4.5 seconds. From the table, the average of median accuracy over sections of
AdLDA was 55.64% with SD 1.14, which was 2.44 % higher than the accuracy of
the standard algorithm, which was 53.20 with SD 0.82.

Both algorithms exhibited similar behavior with AdLDA above the standard
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algorithm. The accuracy curve was flater in section 1 than section 2, and 3. For
section 2, There were small bumps occurred at time point 2, 3, and 4 seconds for
AdLDA, which were the three time points that were chosen in the training of the
classification model. In section 2, the bump characteristic was more pronounced than
section 2 and 3, in both algorithms.

4.2.3 Statistical tests

Similar to the offline simulation, the two-way repeated-measures ANOVA was
performed with algorithm and section factors. Mauchly’s test was done beforehand
to examine if the sphericity assumption was violated. Since the algorithm factor
contained only two algorithms, there was no need to check for sphericity assumption.
The result from the Mauchly’s test was that the sphericity assumption was violated
in the section factor (W = 0.42, p = 0.03). Hence, the result from the ANOVA test
of the section factor must be corrected. The corrected result from ANOVA was

• Algorithm factor: F(1, 9) = 10.72, p = 9.6 ×10−8

• Section factor: F(0.6, 5.4) = 1.24, p = 0.30

• Interaction: F(2, 18) = 0.67, p = 0.52

where the correction was done according to the Greenhouse-Geisser correction
with ε = 0.30 as a compensation of the violation from the section factor. The
algorithm factor was the only factor with a significant result. Because there were
only two algorithms, the post-hoc test was not required in this case.

That is, the accuracy of AdLDA was significantly higher than the standard
algorithm. The differences between sections, however, was not significant.

4.2.4 Topography of the LBP features

The LBP features from every participants were used to compute topography plots
as visualized in figure 4.8.
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Figure 4.8: The grand average topological features plot over participants. Red rep-
resents ERD and blue represents ERS.

It shows a common pattern among participants of each class. The right hand
motor imagery showed ERD pattern narrowed at channel C3 for the LBP features
from 8 to 12 Hz which was the most distinctive features among the other classes.
For mental subtraction, slight ERS were visible around C3 from 8 - 12 Hz and in
the frontal part at 15 - 25 Hz. The common pattern for mental rotations were small
ERS at around C3, and C4. The topography plot of individual participant can be
found in A3
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Discussion

Offline simulation

The results from the offline simulation showed that the median accuracy of
AdLDA was higher than the standard algorithm by 1.44 %, while the other algo-
rithms did not improve over the standard algorithm. Two-way repeated measures
ANOVA confirmed that the differences between algorithms were significant. Then,
Pairwise Wilcoxon signed-rank tests showed that the differences between AdLDA
and the standard algorithm were significant. Finally, AdLDA was chosen for the
online experiment.

Besides the comparison between algorithms, the median accuracy from the of-
fline simulation with AdLDA, which is an unsupervised adaptation, was compared
with the original results of Brandstetter [28], which is a semi-supervised adaptation.
The mean of AdLDA was 77.51 %, SD 13.24 and the mean of the semi-supervised
adaptation was 77.81 %, SD 14.19. This indicated that AdLDA is comparable with
the semi-supervised adaptation.
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Why did IWLDA and divCSP-WS fail?

First, for IWLDA, it was demonstrated in appendix A1 that the importance
estimated with KLIEP could lead to a less effective data point, that was used in the
training period, and in the extreme case where the distribution of the training and
the testing data were too far apart, even fewer samples were effective in the training
process of the IWLDA model. This might cause a problem that the classifier from
IWLDA was biased, which resulted in the classifier that could not compensate to
the changes from the non-stationarities. This problem can be avoided if the training
data was to be updated with the new data so that the distributions were not too far
away, but this was not possible considering the restrictions in the simulation.

Second, the problem with divCSP-WS could be due to the restrictions in the
simulation scenario. For divCSP-WS to work the best, the training data has to
be updated so that the training data covered the new change from the new data.
In the simulation scenario, however, the training data only covered the data from
the calibration. This resulted to a model of divCSP-WS that cannot compensate
for large changes from the longer period. The update of the training data was not
possible because the label is needed in the recalculation of the CSP filters. Another
factor could be that the parameters in the training of the CSP filter were not optimal
for every participant, since the same set of parameters was used for every partici-
pant. The improvement could be made if an additional cross-validation was done
to determine the optimum parameters. However, the time required for finding the
optimum parameter might be tedious which was not practical with current usage of
the system.

Online experiment

The results from the statistical tests from the offline simulation revealed that
only the algorithm factor was significantly different, so other factors were added that
might induce more of the non-stationarity effects by introducing a rival player that
the participants competed with. Furthermore, the scoring system was also introduced
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as a way to force participants to compare their performance to those from the rival
player.

The results from the online experiment were that 9 out of 10 participants were
able to perform the task above the chance level. After that, the simulation with the
standard algorithm was done. The comparison was that AdLDA showed mean
accuracy higher than the standard algorithm by 2.44 %. Then, two-way repeated
measures ANOVA was used to test the significant results. It revealed that the differ-
ences between algorithms were significant but the differences between sections were
not. By comparing the differences between the standard algorithm to AdLDA,
in both the offline simulation (1.44%) and the online experiment (2.44%), the effect
from the rival can be negligible. This could be due to an error in the calculation of
the rival accuracy, which caused changes of the state of mind which was not enough
to induce noticeable effects of the psychophysiological factor of the non-stationarities.

Problems with the online experiment

One of the problem with the rival accuracy was that it was calculated too high,
in comparison to the accuracy of the participant as seen in Table 4.3. This is because
the rival accuracy was mistakenly calculated based on individual average AUC score,
which is not the same quantity as the accuracy.

The other problem with the experiment was that the accuracy curves of AdLDA
were noisier than the standard algorithm. To identify the cause of this noisy behav-
ior, the simulation was done withAdLDA. Figure A.2 showed a comparison between
the online experiment with AdLDA, the offline simulation with the standard algo-
rithm, and the offline simulation with AdLDA. The offline simulation with AdLDA
showed less noisy curve than the online experiment, which indicated that the noisy
curve was due to the differences between online and offline scenarios. This could be
because of the chunk size of the EEG signal was fixed in the offline simulation but
the chunk size was not constant during the online experiment.
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Topography plot of the LBP features

The grand average of LBP features was calculated to see a common pattern among
participants as mentioned in section 4.2.4. The most distinctive pattern was the ERS
at channel C3 of the frequency band 8 to 12 Hz. This agreed with ERDS changes
of the right hand motor imagery discovered by Pfurtscheller [17]. The pattern of
mental subtraction and mental rotation were not as strong as the right hand motor
imagery because the brain area associated with these two classes are not specific and
might vary between person.

Limitation and improvements

In the end, three algorithms were considered in this thesis with restriction as
in the CYBATHLON scenario. However, there could be a better algorithm beside
these three algorithms, that could improve the performance of the system even more.
Interesting algorithms are, for example, applying the importance weighting to CSP
[59], or replacing LDA with an adaptive support vector machine (SVM) [60]. The
change of the system was not limited to just the algorithm, but some parts of the
system were implemented in a way that changes can be made without much effort.
For example, the number of frequency band features as well as the cutoff frequency.
Furthermore, if the implementation needed an interface with an additional hardware,
this can be done easily due to the flexibility of the LSL system.
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Conclusion

The goal of the thesis was to find the best algorithm that addresses the within-
session non-stationarities to be implemented into the Graz BCI racing team system
while considering the CYBATHLON scenario. The new BCI was implemented based
on the Graz BCI racing team predecessor system with sCSP and sLDA as the stan-
dard algorithm.

The results from both the offline simulation and the online experiment indicated
that AdLDA improved the accuracy over the standard algorithm by 1.44 % and
2.44 %, respectively. Finally, AdLDA was implemented in the Graz BCI racing
team system.

The investigations of different algorithms are not only beneficial to the Graz BCI
racing team but also to the BCI research in general. This is because the within-session
non-stationarities are common in BCI application and are needed to be handled even-
tually if BCI were to be used outside the laboratory environment. The conclusion
that AdLDA was the final algorithm is also interesting since an unsupervised adap-
tation will be an interesting way of development, especially toward an active BCI
which the user can controll BCI at will, without the cues.
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Appendix A

Appendix

A1 Importance estimation

KLIEP algorithm was used with 100 points that were generated for the training
data and 1,000 points for the testing data. Figure A.1 illustrates the results from
this investigation. Here 2 cases were compared with the assumption that the data
were distributed normally. The first case was when the mean of training and the
testing data were chosen to be close together (4 for the training and 6 for the testing
data) and the standard deviation of 1 and 0.6 for training and the testing data,
respectively. The second case was when the mean of the training was changed to
1, which separated the training and the testing distribution apart while the other
parameters were the same.

As mentioned before, the importance was modeled as the ratio between the testing
data distribution to the training data distribution. Since the data was generated,
the actual importance can be directly calculated, and it was shown as the red lines
in figure A.1c for case 1 and figure A.1d for case 2. The green lines indicate the
estimated importance from the KLIEP algorithm, and the blue circles mean the
training data point but plotted with the estimated importance as the y-axis.

In the first case, as visualized in figure A.1c, the estimated importance of most
of the point was closed to zero, while only the minority that the importance was not
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close to zero. In the second case, more data points were close to zero.

(a) The density plot of case 1 (b) The density plot of case 2

(c) The plot of importance of case 1 (d) The plot of importance of case 2

Figure A.1: The probability density plots and the importance of 2 cases. For the
density plot, the blue and black lines indicate the probability density of the training
and testing data estimated from 100 points and 1000 points, respectively. For the
importance plot, the red line and green line mean the actual importance and the
estimated importance from KLIEP algorithm, while the blue circles indicate the
training data on the x-axis and the associating importance value on the y-axis. a)
the density plot of case 1 where the means are 4, 6 and the standard deviation are
1, 0.6 for training and testing data, b) the density plot of case 2 where the mean
are 1, 6 and the standard deviation are 1, 0.6 for training and testing data, c) the
importance of case 1 and d) the importance of case 2.
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A2 Inspection on the noisy accuracy curve of AdLDA

From the grand average accuracy curve in figure 4.6, the online experiment result
exhibited a noisier accuracy curve comparing to the accuracy curve from the offline
simulation with the standard algorithm. The offline simulation with AdLDA was
done to see if the noisier behavior was due to the difference between offline and online
or not. The results is displayed in figure A.2.

Figure A.2: The accuracy curve comparing between the results from online experi-
ment (Blue), AdLDA with offline simulation (red), standard algorithm (yellow).
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A3 ROC curve and Topography LBP features plot

The ROC curve and the topography generated from the training data of every
participant were presented. The blue, yellow, and red lines indicate Hand motor
imagery, Mental subtraction, and Mental rotation, respectively ,while the black line
represents the chance level. The best case would be when the area under the curve
(AUC) is one or that the curve looks similar to a stair step.

The topography plot represents the normalized LBP features of each class and
different frequency bands. The blue color indicates an increase of the normalized
LBP features associating with the ERS and the red color indicates a decrease of the
normalized LBP features associating toe the ERD. The color bar was be shown only
in the first participant but the scaling remained the same between 1 and -1.
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(a) ROC curve of participant B1.

(b) Topography plot of participant B1.

Figure A.3: The plots generated from the data from participant B1.
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(a) ROC curve of participant B2.

(b) Topography plot of participant B2.

Figure A.4: The plots generated from the data from participant B2.
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(a) ROC curve of participant B3.

(b) Topography plot of participant B3.

Figure A.5: The plots generated from the data from participant B3.
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(a) ROC curve of participant B4.

(b) Topography plot of participant B4.

Figure A.6: The plots generated from the data from participant B4.
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(a) ROC curve of participant B5.

(b) Topography plot of participant B5.

Figure A.7: The plots generated from the data from participant B5.
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(a) ROC curve of participant B6.

(b) Topography plot of participant B6.

Figure A.8: The plots generated from the data from participant B6.
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(a) ROC curve of participant B7.

(b) Topography plot of participant B7.

Figure A.9: The plots generated from the data from participant B7.
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(a) ROC curve of participant B8.

(b) Topography plot of participant B8.

Figure A.10: The plots generated from the data from participant B8.
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(a) ROC curve of participant B9.

(b) Topography plot of participant B9.

Figure A.11: The plots generated from the data from participant B9.
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(a) ROC curve of participant B10.

(b) Topography plot of participant B10.

Figure A.12: The plots generated from the data from participant B10.
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