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Abstract

Climate models provide important input for political decision-making con-
cerning the future challenges of climate change. The land component in those
models is a major driver in Earth’s climate system, therefore information about
land surfaces is crucial for the successful application of the models. Often,
biogeophysical parameters, which are used to describe the processes on land
surfaces, are set statically within the land component. Remote sensing is a
convenient tool to provide data of land surfaces, covering large areas repeat-
edly in a relatively short amount of time. The aim of this thesis is to provide
dynamic information on three biogeophysical parameters - Albedo, Fraction of
Vegetation Cover, Leaf Area Index - by the means of optical remote sensing
techniques based on ESA’s freely available Sentinel-2 imagery. The spatial
and temporal resolution of the Sentinel-2 sensors make their data a suitable
candidate to deliver input for deriving dynamics of biogeophysical parameters.
From literature, appropriate methods for deriving the three parameters are
chosen and applied to the Sentinel-2 data. With different datasets on ground
cover and reference data containing non-remote sensing based measurements of
the parameters, the results are analysed regarding their validity and plausibility.
The tests show that the obtained results are overall plausible and within the
expected range. However, limitations regarding the reference data have to be
considered when analysing the results. Ground truth measurements of the
investigated parameters in the study area, ideally synchronised with the overfly
time of the satellite, which provides the imagery, would be necessary to evaluate
the results more accurately.
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Kurzfassung

Klimamodelle leisten einen wichtigen Beitrag im politischen Entscheidungsprozess,
vor allem in Hinblick auf die zukünftigen Herausforderungen des Klimawandels.
Das Landmodul in Klimamodellen stellt einen der Hauptantriebskomponen-
ten des Klimasystems der Erde dar. Deswegen sind Informationen über die
Landoberfläche essentiell für eine erfolgreiche Anwendung dieser Modelle. Oft-
mals werden die biogeophysikalischen Parameter, welche die Prozesse auf der
Landoberfläche beschreiben, als statischer Input im Landmodul festgelegt. Fern-
erkundung ist ein geeignetes Werkzeug, um großflächige Daten einfach und in
kurzer Zeit zur Verfügung zu stellen. Ziel dieser Arbeit ist es, die Dynamik
von drei biogeophysikalischen Parametern - Albedo, Fraction of Vegetation
Cover, Leaf Area Index - mit Hilfe von optischen Fernerkundungsmethoden aus
Sentinel-2 Bilddaten abzuleiten. Durch die geometrische und zeitliche Auflösung
der Sentinel-2 Daten eignen sie sich besonders gut zur Ableitung der Dynamik
dieser drei Parameter. Aus der Literatur werden passende Methoden zur Bes-
timmung der Parameter ausgewählt und auf die Sentinel-2 Daten angewandt.
Mittels verschiedener Referenzdatensätze aus terrestrischen Parametermes-
sungen und Daten zur Bodenbedeckung werden die Ergebnisse hinsichtlich
ihrer Validität und Plausibilität analysiert. Aus den Ergebnissen lässt sich
auf eine allgemeine Gültigkeit innerhalb des erwarteten Bereiches schließen.
Einschränkungen bezüglich der Referenzdaten sind jedoch bei der Auswertung
der Ergebnisse zu beachten. Ground Truth Messungen zu den drei Parametern
innerhalb des Untersuchungsgebietes und idealerweise zeitnah zu den Aufnah-
mezeitpunkten der verwendeten Fernerkundungsdaten sind für eine genauere
Evaluierung der Ergebnisse unbedingt erforderlich.
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1 Introduction

1.1 Remote Sensing of Surface Variables

Remote sensing is a useful tool to provide data on the physical characteristics
of land surfaces. As opposed to ground measurements or field campaigns, it
can produce data at a much higher temporal resolution and spatial coverage
(Dorigo et al., 2007) and can therefore deliver vital input for different climate
and weather models on various scales (e.g. Jiménez-Muñoz, J. A. Sobrino, Plaza,
et al., 2009).
Modern day coupled climate models consist of different components to project
the effects of Earth’s climate drivers in the best possible way: atmosphere,
ocean, land, and sea ice (Gent, 2013). The land component of these models
provides important information on transfers of water and energy fluxes to the
atmosphere (Zeng et al., 2000). Biogeophysical variables, such as albedo or the
Leaf Area Index, are measurable quantities, which

”
validate, calibrate and drive

these [...] global and regional models at various scales“ (S. Liang, 2007).
The main approaches for the remote sensing of biogeophysical variables are usu-
ally classified into two groups: statistical and physical techniques (e.g. Dorigo
et al., 2007; S. Liang, 2007). The former is mostly expressed by regression
functions, derived from an empirical relationship between biogeophysical vari-
ables and remote sensing observations, such as a vegetation index (S. Liang,
2007). The latter uses cause-effect relationships based on physical laws, mainly
through the means of radiative transfer models (Verrelst et al., 2015). Both of
these approaches will be discussed in the state of the art chapter.
Retrieving biogeophysical variables from remote sensing data can improve cli-
mate models, as they can better describe the temporal dynamics of vegetation
(Brovkin et al., 2013; Wegehenkel, 2009). Many studies have reported enhance-
ments of results when directly comparing the use of dynamic vegetation over
static vegetation models (e.g. Wegehenkel, 2009; Stauffer et al., 2007; Strengers
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1 Introduction

et al., 2010), and using dynamic vegetation models in climate modelling has
become state of the art (Brovkin et al., 2013). This thesis originally emerged
from a cooperation between Joanneum Research and Wegener Center for Cli-
mate and Global Change, with the aim of providing dynamic biogeophysical
parameter input for Wegener Center’s used CALMET model, which will be
described shortly in the subsequent chapter.

1.2 The CALMET Model input parameters

The California Meteorological Model (CALMET) is a diagnostic model with a
wind field generator, which is used to contribute to dispersion models (mod-
els, which mathematically describe the distribution of air pollutants in the
atmosphere), like CALPUFF (California Puff Model) (Scire et al., 2000; W.
Wang et al., 2008). To simulate wind fields, CALMET requires different input
datasets such as surface meteorological data and geophysical data. Next to the
obligatory geophysical data of gridded fields of terrain elevation and land use
categories, six biogeophysical parameters are listed as optional input:

– Albedo
– Anthropogenic Heat Flux
– Bowen Ratio
– Leaf Area Index
– Soil Heat Flux
– Surface Roughness Length

Additionally, in agreement with Wegener Center, another biogeophysical vari-
able, the Fraction of Vegetation Cover, is chosen to be added to the list of
parameters, to provide further input for their models.
In the default settings of CALMET, its biogeophysical parameters are set
statically depending on the land use category. A static value is assigned to
each class in the deployed land use classification without spatial or temporal
variations. However, the model also allows for gridded field input at this place
(Scire et al., 2000). The aim of this thesis is, to provide dynamic information
of the listed variables, through the means of remote sensing technology. After
initial research, only two out of the six CALMET parameters defined in the
default settings proved to be suitable candidates for a solely optical remote
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1 Introduction

sensing based approach. The remaining four cannot be derived exclusively from
optical remote sensing data, but require additional input data. Anthropogenic
Heat Flux, the

”
heat generated from human energy use [...] “ (Flanner, 2009),

has been reported to be derived based on country-specific data of energy con-
sumption (Flanner, 2009). The Bowen Ratio, expressing the heat transfer for a
surface through the ratio of sensible heating to latent heating (Perez, Castellvi,
and Mart́ınez-Cob, 2008), and the Soil Heat Flux, which describes

”
the amount

of thermal energy that moves through an area of soil in a unit of time [...] “
(Sauer and Horton, 2005), both depend upon surface temperature data. Surface
Roughness Length,

”
[...] defined as the height above the surface at which the

horizontal component of the wind speed approaches zero [...] “ (Nicholas and
Lewis, 1980), requires, for example, LiDAR data, to be derived through remote
sensing techniques (Tian et al., 2011). Therefore, the following three parameters
will be investigated in this thesis:

– Albedo
– Fraction of Vegetation Cover
– Leaf Area Index

The definition of these biogeophysical variables and their state of the art remote
sensing based retrieval techniques, as well as their application to this work will
be presented and discussed in depth in the following chapters.

1.3 Study Objectives

As stated in the previous chapters, this thesis aims to provide dynamic infor-
mation on three biogeophysical parameters through the course of a year by the
means of optical remote sensing techniques. Hence, two main objectives arise
from this task:

1. Finding techniques based on optical remote sensing for the retrieval of
each of the three parameters, which are applicable to the used Sentinel-2
data

2. Verifying the plausibility of the obtained results and thus, analysing the
applicability of techniques to this thesis’ study area and sensor data

3



1 Introduction

The used remote sensing data basis comprises freely available Sentinel-2A
multi-temporal satellite imagery from 2016. To best capture the dynamic of the
parameters through the course of a year, one scene per month is acquired for
processing. In order to find applicable techniques for retrieving the investigated
variables, an extensive literature review on the state of the art methods of each
parameter is conducted. Once, the suitable approaches are selected, they are
applied to the data. The results will be analysed regarding their plausibility
through a comparison of in situ measurements for different cover types, gained
through non-remote sensing methods found in literature.

4



2 State of the Art in Remote
Sensing derived Surface
Variables

This literature review will discuss state of the art remote sensing techniques
of the three investigated parameters: Albedo, Fraction of Vegetation Cover,
and Leaf Area Index. Each subchapter will give a definition of the parameter
and its role and significance in (climate) modelling, as well as looking into
methods currently used to retrieve the discussed parameters by means of remote
sensing technology. Depending on their applicability to the study area and
input data the methods to be applied to the data will be selected (see chapter 5).

2.1 Albedo

The albedo of a surface is defined as “the ratio between the up-welling and
down-welling incident irradiance upon a surface” (Mattar et al., 2014). In other
words, surface albedo is the fraction of incident sunlight, which is reflected by
the surface (Coakley, 2003). Theoretically, the albedo of a surface can reach
values between 0 (complete absorption) and 1 (complete reflection) (Deutsches
Zentrum für Luft- und Raumfahrt 2019).
In literature different or often interchangeable terms for albedo are in use,
e.g. surface albedo, broadband albedo, or white-sky albedo, to name only a
few. Often, explanations and clear definitions of the used terms are missing.
Schaepman-Strub et al., 2006 dedicated a publication to identify this terminol-
ogy misuse and ambiguous nomenclature of reflectance quantities in optical
remote sensing. Their paper uses the nomenclature for reflectance properties

5



2 State of the Art in Remote Sensing derived Surface Variables

introduced by Nicodemus et al., 1977 and aims to give “an extensive physical
and mathematical description of different reflectance quantities and separate
conceptual from measurable quantities” (Schaepman-Strub et al., 2006).
The concept of reflectance quantities is based on the Bidirectional Reflectance

Distribution Function (BRDF), which describes the “scattering of a paral-
lel beam of incident light from one direction in the hemisphere into another
direction in the hemisphere”. The quantity most often called albedo is the
Bihemispherical Reflectance (BHR). It is the “ratio of the radiant flux reflected
from a unit surface area into the whole hemisphere to the incident radiant flux
of hemispherical angular extent” (Schaepman-Strub et al., 2006). This is a more
precise definition of the one stated at the beginning of this chapter (by Mattar
et al., 2014). Following this definition, the authors recommend to always include
the illumination geometry when describing albedo from remotely sensed data.
Schaepman-Strub et al., 2006 criticise this lack of standardisation when using
terminology connected to the terms reflectance and albedo and the resulting
source of error in albedo products. They also give many further definitions and
examples on different terms of albedo, which will not be discussed in depth
here.
Surface albedo should not be confused with surface reflectance, which is de-
fined in the same way as surface albedo, but only from a single incident angle.
Consequently, the albedo of a surface is the integration of reflectance over all
sun-view geometrics (Mattar et al., 2014; Pinty and Verstraete, 1992). Despite
this fact, many studies assume that surfaces are Lambertian, meaning that the
radiance intensity is distributed circularly, for the sake of simplification. That
would mean in turn, that surface reflectance equals surface albedo (Mattar
et al., 2014). Land surfaces, however, are highly anisotropic and the spectral
and angular distribution of incident light determines surface reflectance and
consequently surface albedo (Coakley, 2003).
It is crucial to understand, that albedo is not an intrinsic property of a surface
(Coakley, 2003) but depending on different factors. The solar zenith angle,
the topography of the surface, and atmospheric conditions like precipitation,
dew, frost or snow cover, wind, or water-vapour content can have an influence
on albedo measurements. Structural properties of vegetation canopies, like
shadowing, or the contrast between soil and vegetation depending on their
humidity or dryness can change the albedo of a surface within a few hours.
Therefore, surface albedo shows strong spatial and temporal variability (S.
Wang and Davidson, 2007; Román et al., 2009; Cescatti et al., 2012; Ollinger
et al., 2008).
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2 State of the Art in Remote Sensing derived Surface Variables

Many publications account surface albedo as a key parameter in the Earth’s
climate and surface energy balance, as it is an essential variable in control-
ling the planetary radiative energy budget, estimating Earth’s net radiation,
determining energy fluxes in the atmosphere, as well as affecting the surface
temperature and boundary-layer structure of the atmosphere (Mattar et al.,
2014; Cescatti et al., 2012; Coakley, 2003; Silva et al., 2016; Lukeš et al., 2014;
Souza, Ceballos, and Silva, 2014; S. Wang and Davidson, 2007; Rautiainen,
Stenberg, et al., 2011). Albedo has an influence on surface temperature, cloud
formation and precipitation, evaporation and transpiration, photosynthesis and
many other processes in the planetary boundary layer (Sellers, Hall, et al.,
1997; S. Wang and Davidson, 2007; Mattar et al., 2014; Silva et al., 2016).
Accurate knowledge and monitoring of surface albedo and changes in surface
albedo are important, as they can be an indicator for the extent of snow cover,
phenology and the state and extent of vegetation, flooding, or drought (Mattar
et al., 2014; Román et al., 2009; Cescatti et al., 2012; Coakley, 2003; S. Wang
and Davidson, 2007). Hence, albedo is a fundamental input parameter of many
global as well as regional climate models and weather forecast models (S. Liang
et al., 2003; Mattar et al., 2014; S. Wang and Davidson, 2007).
The Global Climate Observing System (GCOS) lists albedo among the Essential
Climate Variables (ECV), a set of key components needed to monitor Earth’s
climate change (GCOS, 2019). Nevertheless, surface albedo remains one the
main uncertainties in current climate modelling (S. Liang, 2000; Lukeš et al.,
2014; Kuusinen et al., 2014; Mattar et al., 2014; Burakowski et al., 2015).

For the remote sensing of albedo, the technical literature provides different
approaches, which are mostly based on Radiative Transfer Models (RTMs).
A beam of radiation is affected by absorption, emission, and scattering. This
physical process is referred to as radiative transfer and Radiative Transfer
Models are used to calculate and predict these processes (NASA, 2019). As
most of the optical remote sensors measure reflectance only from one viewing
angle, and albedo is the integration of reflectance over all sun-view geometrics
(Mattar et al., 2014; Pinty and Verstraete, 1992) as stated previously, models
mostly based on the BRDF have to be applied, to account for this. BRDF,
however, cannot be measured directly (Nicodemus et al., 1977), therefore albedo
“products should only be considered as approximations [...], a fact often ne-
glected” (Schaepman-Strub et al., 2006).
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2 State of the Art in Remote Sensing derived Surface Variables

Many publications, which focus on the application of albedo in modelling (e.g.
Cescatti et al., 2012; Román et al., 2009; Lukeš et al., 2014) use the MODIS
albedo product. This global land surface product with a spatial resolution of
500 m is acquired by the satellites Terra and Aqua over a period of 16 days
making the product available every eight days due to the MODIS double repeat
cycle. It contains both the white-sky and black-sky albedo (for definitions, see
Schaepman-Strub et al., 2006) for MODIS bands 1 to 7 as well as for three
broad bands (MODIS, 2019). The RossThickLiSparseReciprocal BRDF model
is used to model albedo. This model provides three weighting parameters for
each spectral band of MODIS that best describe the anisotropy of each pixel
(MODIS, 2019).
A widely cited and used technique for the remote sensing of albedo was pro-
posed by S. Liang, 2000. He introduces formulas to convert top-of-atmosphere
(TOA) reflectance measurements of several narrow-band satellites (including
Landsat ETM+, ASTER, AVHRR, MODIS and others) to average land surface
broadband albedos. Based on MODTRAN (MODerate resolution atmospheric
TRANsmission, a Radiative Transfer Model) simulations under different atmo-
spheric and surface conditions, linear combinations of the different bands of
each satellite are given, to calculate shortwave, visible, NIR, direct, and diffuse
albedos. S. Liang, 2000 found the coefficients for ETM+ to be equally suitable
for its predecessor Landsat TM. A study by Gratton, Howarth, and Marceau,
1993 proposes different weighting functions for Landsat TM and ETM+ bands
based on different land cover types to calculate albedo. The use of other RTMs
to obtain albedo was also proposed by Tasumi, Allen, and Trezza, 2008 or
Rautiainen, Stenberg, et al., 2011.

2.2 Fraction of Vegetation Cover

The Fraction of Vegetation Cover [...] corresponds to the fraction of ground
covered by green vegetation. Practically, it quantifies the spatial extent of the
vegetation (Copernicus, 2018). In literature, Fraction of Vegetation Cover is
also referred to as Vegetation (Covered) Fraction or Fractional (Green) Vegeta-
tion Cover and abbreviated as VF or FVC (sometimes FCover) respectively
(Gitelson, Kaufman, et al., 2002; Jiménez-Muñoz, J. A. Sobrino, Plaza, et al.,
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2009). In this thesis the abbreviation FVC will be used.
As a fraction of an area, the FVC can assume values between 0 and 1 or 0% and
100% (Gitelson, Kaufman, et al., 2002). FVC quantifies the spatial distribution
of vegetation and is therefore an important indicator for the interaction between
land, atmosphere, and hydrosphere (Gitelson, Kaufman, et al., 2002; Y. Li,
H. Wang, and X.-B. Li, 2015; Salimi-Kouchi et al., 2013). Subsequently, it is an
essential input parameter to simulate surface processes in the land component
for numerical weather models as well as global and regional climate models
(Jiménez-Muñoz, J. A. Sobrino, Plaza, et al., 2009; Barlage and Zeng, 2004;
Gutman and Ignatov, 1998). The parameter is also used for the evaluation of
land degradation and desertification, and is a controlling factor in the mathe-
matical soil erosion models of the universal soil loss equation (USLE) and the
revised universal soil loss equation (RUSLE) (Sellers, Los, et al., 1996; G. Wang
et al., 2002; Y. Li, H. Wang, and X.-B. Li, 2015). FVC can further be applied
in thermal remote sensing for surface emissivity estimation. (J. Sobrino et al.,
2008; Jiménez-Muñoz, J. A. Sobrino, Plaza, et al., 2009)

In literature the two most commonly applied approaches for remote sensing
of Fraction of Vegetation Cover are Spectral Mixture Analysis (SMA) and,
as a special case of SMA, regression-based models with various Vegetation
Indices (VI) (e.g. Jiménez-Muñoz, J. A. Sobrino, Plaza, et al., 2009; Gitelson,
Kaufman, et al., 2002; Johnson, Tateishi, and Kobayashi, 2012; Y. Li, H. Wang,
and X.-B. Li, 2015). Other, more sophisticated, approaches include inversion of
RTMs (see for example Jiménez-Muñoz, J. A. Sobrino, Guanter, et al., 2005)
and Artificial Neural Networks (see for example Baret et al., 1995, as cited in
Jiménez-Muñoz, J. A. Sobrino, Plaza, et al., 2009). However, these approaches
will not be further discussed in this thesis.
As a result of the spatial resolution of many remote sensing platforms, pixels
in the acquired images are a composite of more than one individual substance,
so-called mixed pixels. Spectral unmixing tries to disperse the spectrum of
a pixel into a compilation of basic reflectance and its respective fractions in
the pixel, also called endmembers and abundances respectively (Keshava and
Mustard, 2002; Somers et al., 2011).
SMA can be conducted using a linear or a non-linear model, with the linear
approach being the most commonly applied in remote sensing applications
(Keshava and Mustard, 2002; Somers et al., 2011; Buyantuyev, J. Wu, and Gries,
2007; Jiménez-Muñoz, J. A. Sobrino, Plaza, et al., 2009; Johnson, Tateishi, and
Kobayashi, 2012). Linear unmixing models assume, that one pixel is composed
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of a linear combination of the endmembers, weighted by their fractional cover
at the subpixel level (Somers et al., 2011; Y. Li, H. Wang, and X.-B. Li, 2015;
Keshava and Mustard, 2002; Settle and Drake, 1993). Selecting the endmembers
is a key step in SMA (Keshava and Mustard, 2002).
When selecting endmembers for the SMA, two aspects need to be considered.
Firstly, the endmembers need to be distinguishable spectrally - mathematically
speaking, the endmembers should be linearly independent. Secondly, the num-
ber of endmembers should be kept as small as possible. Too many, spectrally
too similar endmembers lead to inaccurate fraction estimations (Adams and
Gillespie, 2006, as cited in Somers et al., 2011). Another issue to take into
account is the spatial and temporal variability of endmembers. The use of fixed
endmembers throughout a scene, though easy to implement, cannot account
for spatial variations in landscapes and temporal variations in time series due
to different illumination conditions or season changes (Somers et al., 2011;
Johnson, Tateishi, and Kobayashi, 2012; Keshava and Mustard, 2002; Jiménez-
Muñoz, J. A. Sobrino, Plaza, et al., 2009). Therefore, Johnson, Tateishi, and
Kobayashi, 2012 propose the application of spatially interpolated endmembers,
using Ordinary Kriging and Inverse Distance Weighting to further improve
FVC estimates as opposed to using fixed endmembers. Somers et al., 2011 list
five basic principles to address endmember variability and minimise errors in
SMA.
There are several techniques proposed in literature to extract endmembers,
ranging from field-based methods (with Land Use Maps or field knowledge)
(Jiménez-Muñoz, J. A. Sobrino, Plaza, et al., 2009; Somers et al., 2011) to
semi-automated methods (Pixel Purity Index (Boardman et al., 1995, as cited
in Somers et al., 2011; Jiménez-Muñoz, J. A. Sobrino, Plaza, et al., 2009)) and
fully automated algorithms (Adams and Gillispie, 1993 or Tompkins et. al,
1997, both as cited in Keshava and Mustard, 2002).
If the mixed pixel is composed of reflectances, which are multiply scattered,

like in mineral mixtures or sand grains, the spectral composition can no longer
be treated as a linear combination, and non-linear unmixing techniques have
to be applied (C. Wu and Murray, 2003; Keshava and Mustard, 2002). These
include adding additional endmembers, using a training dataset to automati-
cally calculate the mathematical relationship between the spectral data and
the classes of interest (Somers et al., 2011) or more sophisticated models like
Artificial Neural Networks or decision tree classifiers (see for example Somers
et al., 2011). However, the use of non-linear unmixing approaches in remote
sensing applications has not become a standard procedure yet (Somers et
al., 2011; Keshava and Mustard, 2002). Many authors relate this to a lack
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of in-depth understanding of this approach by most image analysts (Somers
et al., 2011; Keshava and Mustard, 2002), even though many studies show
the superior effects of non-linear models over linear models (Somers et al., 2011).

A special case of SMA are the mentioned regression-based approaches. Most of
these studies work on the principle, that a correlation exists between Vegetation
Indices and FVC and try to find a best-fit regression function between ground
measurements of FVC and one or more VIs derived from remote sensing data
(e.g. Jiménez-Muñoz, J. A. Sobrino, Plaza, et al., 2009; Jiang et al., 2006;
Buyantuyev, J. Wu, and Gries, 2007; Barati et al., 2011; Kaspersen, Fensholt,
and Drews, 2015; Z. Liang et al., 2008).
An equation widely used throughout most of the reviewed literature is the
scaled VI function:

FV C =
V I − V Is
V Iv − V Is

(2.1)

where V Iv represents the Vegetation Index at a fully vegetated pixel (FV C = 1)
and V Is of a bare soil pixel (FV C = 0) (Carlson and Ripley, 1997). In
connection to SMA, V Iv and V Is constitute the endmembers. While it is very
easy to implement, some things have to be considered when using this scaling
function.
First, a suitable Vegetation Index has to be chosen. A great number of authors
(Carlson and Ripley, 1997; Gutman and Ignatov, 1998; Gitelson, Kaufman,
et al., 2002; Jiang et al., 2006; Johnson, Tateishi, and Kobayashi, 2012; Jiménez-
Muñoz, J. A. Sobrino, Plaza, et al., 2009; Barati et al., 2011; Buyantuyev, J. Wu,
and Gries, 2007; Kaspersen, Fensholt, and Drews, 2015) uses the Normalized
Difference Vegetation Index, NDVI, for deriving FVC with the formula 2.1.
The NDVI is an easily computable and understandable, widely used index in
remote sensing, which comes with certain limitations. In connection with the
retrieval of FVC:

– NDVI of mixed pixels at medium to coarse spatial resolution cannot
account for heterogeneous landscapes or canopy structures (Jiang et al.,
2006; Buyantuyev, J. Wu, and Gries, 2007),

– NDVI has been shown to be insensitive to moderate to high chlorophyll
content (Buschmann and Nagel, 1993, Gitelson and Merzlyak, 1994, both
as cited in Carlson and Ripley, 1997), and
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– NDVI varies strongly with variations in soil brightness (Liu and Huete,
1995, as cited in Carlson and Ripley, 1997).

All these limitations might affect the FVC results and need to be kept in mind
whilst working with the NDVI. To avoid this, or improve FVC retrieval, a
number of other indices have been proposed and tested by various studies. These
include the Soil-Adjusted Vegetation Index (SAVI) and its derivatives, with
the advantage of being less sensitive to soil brightness (Johnson, Tateishi, and
Kobayashi, 2012; Kaspersen, Fensholt, and Drews, 2015; Buyantuyev, J. Wu,
and Gries, 2007), the Green Vegetation Index (GVI) and the related Variable
Atmospherically Resistant Index (VARI), to account for the saturation problem
of NDVI at high chlorophyll levels (Gitelson, Kaufman, et al., 2002; Jiménez-
Muñoz, J. A. Sobrino, Plaza, et al., 2009), or others like the Simple Ratio
(SR) or the Modified Triangulation Vegetation Index (MTVI) (Barati et al.,
2011). The choice of the index depends strongly on the area of applications.
While Jiménez-Muñoz, J. A. Sobrino, Plaza, et al., 2009 were indicating, that
the VARI, which uses the green band, delivered good results in their study
area of agricultural, irrigated fields in Spain, Barati et al., 2011 stated, that
indices using the green band are less suited for arid, sparsely vegetated areas,
and Kaspersen, Fensholt, and Drews, 2015 found the SAVI to deliver the best
results in urban areas.
Moreover, V Iv and V Is need to be identified correctly, attributing to their
regional and seasonal variability (Jiménez-Muñoz, J. A. Sobrino, Plaza, et al.,
2009). Some authors suggest using the maximum and minimum of the used VI
in the scene (e.g. Jiménez-Muñoz, J. A. Sobrino, Plaza, et al., 2009). When
using the NDVI however, NDVI values can be negative, for example at water
bodies, which might affect V Is. Another proposed practise by Jiménez-Muñoz,
J. A. Sobrino, Plaza, et al., 2009 is to use the NDVI histogram, which should
show two peaks, if enough fully-vegetated and bare soil pixels exist throughout
the scene. Also a combination of the histogram value for V Is and the maximum
value for V Iv were suggested in their study. Other propositions include the
manual selection of a fully vegetated and a bare soil pixel through the aid of
additional data or field knowledge (Johnson, Tateishi, and Kobayashi, 2012;
Jiménez-Muñoz, J. A. Sobrino, Plaza, et al., 2009), the use of the ASTER
spectral library (Jiménez-Muñoz, J. A. Sobrino, Plaza, et al., 2009), using
global values for coarse spatial resolution as suggested by Gutman and Ignatov,
1998, or Spectral Mixture Analysis with two endmembers, full vegetation cover
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and bare soil. The difference to SMA is the number of endmembers. While
SMA needs as few endmembers as possible (Adams and Gillespie, 2006, as
cited in Somers et al., 2011), regression-based approaches usually require a
much larger dataset of reference values. An extensive study on advantages
and disadvantages of using the above mentioned methods for determining V Iv
and V Is can be found at Jiménez-Muñoz, J. A. Sobrino, Plaza, et al., 2009,
or Jiménez-Muñoz, J. A. Sobrino, Guanter, et al., 2005. It should be noted,
that many studies, which use the method as described in equation 2.1, are not
mentioning explicitly, how V Iv and V Is were found.
Equation 2.1 describes a linear relationship, which could also be denoted as:

FV C = a · V I − b; a =
1

V Iv − V Is
, b =

V Is
V Iv − V Is

. (2.2)

Carlson and Ripley, 1997 propose, that a quadratic relationship (of 2.2) improve
results of FVC estimates, Wittich and Hansinng, 1995 (as cited in Wittich,
1997), however, show in their study, this is not the case. This further underlines
the regional and seasonal variability of Vegetation Indices and FVC. Next to
equation 2.1, other regression functions exist as well, as proposed for example
by Gitelson, Kaufman, et al., 2002, the broad majority of reviewed studies,
however, uses the scaled VI function.
Trying to find a regression function between remotely sensed VI and field
measurements is a standard procedure in remote sensing. The method most
commonly used for this is Ordinary Least Squares (OLS), which treats the VI
as independent variables X and field measurements as dependent variable Y
(Price and Bausch, 1995, Cohen et al., 2003, both as cited in Buyantuyev, J.
Wu, and Gries, 2007; Turner et al., 1999). However, research shows, that using
OLS in ecological and remote sensing applications (e.g. Fernandes and Leblanc,
2005, as cited in Buyantuyev, J. Wu, and Gries, 2007) might be questionable,
because OLS assumes X as error-free, which is rarely the case in remote sensing
studies due to measurement errors (Cohen et al., 2003, as cited in Buyantuyev,
J. Wu, and Gries, 2007). To manage this, other approaches like reduced major
axis (RMA) regression (Curran and Hay, 1986) or non-parametric estimators
(Fernandes and Leblanc, 2005, as cited in Buyantuyev, J. Wu, and Gries, 2007)
are proposed.
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2.3 Leaf Area Index

The Leaf Area Index (abbreviated as LAI) was first introduced by Watson,
1947 (as cited in Jonckheere et al., 2004) as “the total one-sided area of leaf
tissue per unit ground surface area”. Since unit leaf area per unit ground area
is measured, the LAI is a dimensionless variable. This definition applies well
to plants with flat leaves as both sides of the leaf have the same surface area.
For plants with rolled-up or wrinkled leaves, or with needles this definition,
however, is problematic (Jonckheere et al., 2004). A definition formulated by
Chen and Black, 1992 to account for plants with needles or non-flat leaves
describes LAI as “half the total leaf area per unit ground surface area”. Other
authors introduced the LAI as the projected area of the plant leaf on the ground
area (e.g. Gong and J. R. Miller, 1995; Turner et al., 1999; Q. Wang et al.,
2005). Within this definition, the orientation of leaves in the canopy as well
as the chosen projection angle influence the resulting LAI (Jonckheere et al.,
2004; Chen and Cihlar, 1996; Weiss et al., 2004). Yet another distinction can
be made between green LAI and brown LAI (Delegido, Verrelst, Rivera, et al.,
2015; Pasqualotto et al., 2019). The green LAI represents

”
the leaves which

are photosynthetically active“ (Pasqualotto et al., 2019), whereas brown LAI
comprises

”
brown or senescent vegetation“ (Delegido, Verrelst, Rivera, et al.,

2015). It should be noted that the chosen definition has a large influence on
the obtained LAI results.
Values of LAI for any given area can range from 0, for bare ground or generally
vegetation-free areas, up to the highest possible values depending on the cover
type (Herrmann et al., 2011). Following the definition of LAI, it is dependent
on the plant type, given the different leaf shapes of plants. The highest re-
ported LAI values vary in publications, but are generally recorded in (boreal)
coniferous forests (Jonckheere et al., 2004).
The Leaf Area Index is an important variable in many different biological,
physical, and environmental processes. As a characteristic of canopy structure
(Chason, Baldocchi, and Huston, 1991), it influences interception, absorption,
and attenuation of light through the canopy (Baldocchi and Meyers, 1998;
Reichenau et al., 2016; Tanaka et al., 2015; Viña et al., 2011), depending on an-
gular and spatial distribution of foliage in the canopy (Chen and Cihlar, 1996).
The leaves in a vegetation cover, and consequently LAI, control evapotranspi-
ration, rainfall and fog interception (Delegido, Verrelst, Alonso, et al., 2011;
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Herrmann et al., 2011; Schiffmann et al., 2008; Gong, Pu, et al., 2003; Viña
et al., 2011; Zheng and Moskal, 2009) and is generally an important component
of the hydrological cycle (Xavier and Vettorazzi, 2004). LAI is paramount for
the estimation of energy and mass exchange processes between the land surface
layer and the atmosphere layer, including CO2 fluxes, carbon and nutrient
cycles, carbon sequestration, or photosynthesis (Colombo et al., 2003; Clevers,
Kooistra, and Brande, 2017; Frampton et al., 2013; González-Sanpedro et al.,
2008; Richter, Hank, et al., 2012; Zheng and Moskal, 2009; Zhu et al., 2013).
The index is an important indicator for predicting productivity and biomass of
forests (Pope and Treitz, 2013; Zheng and Moskal, 2009), and for describing
the structure and functioning of vegetation cover to efficiently monitor changes
and adjust management practices (Delegido, Verrelst, Alonso, et al., 2011;
Clevers, Kooistra, and Brande, 2017; Schiffmann et al., 2008). LAI also plays a
major role in the agricultural sector connected to precision farming (Richter,
Hank, et al., 2012). It is used to monitor crop growth, predict yield, assess
crop stress, or adapt crop management through irrigation or the application
of fertilisers (Nguy-Robertson, Gitelson, et al., 2012; Haboudane et al., 2004;
González-Sanpedro et al., 2008; Gong and J. R. Miller, 1995).
Based on its notable influence in all the above mentioned processes, LAI be-
comes a key input parameter in modelling climate, ecosystem productivity,
global environmental change, or dynamic vegetation in land surface models
(Chen and Cihlar, 1996; Colombo et al., 2003; Pope and Treitz, 2013; Jonckheere
et al., 2004; Laurent et al., 2014; S. Liang et al., 2003). Therefore, timely and
accurate measurements of LAI are crucial for the successful application of these
models. Furthermore, remote sensing satellites can cover large areas in short
periods of time, thus making their products an important and useful tool for
the assessment of LAI.

Before discussing remote sensing methods of LAI, ground-based measurements
will be described very shortly at this point, as they are an integral part of
many publications concerning the remote determination of Leaf Area Index.
Ground-based measurements of LAI can be conducted via destructive har-
vesting methods, collecting and weighing total litter fall, allometry (especially
when measuring the LAI of trees), or indirect non-contact tools which use
hemispherical photography and/or gap fraction estimates (like the LAI-2000
plant canopy analyzer). These techniques will not be discussed here but should
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only be noted for the sake of completeness. Further information on them can
be found for example at Jonckheere et al., 2004, Weiss et al., 2004, or Zheng
and Moskal, 2009.
To measure Leaf Area Index by means of remote sensing, two main fields of
application can be found in literature. The first approach is based on finding
best-fit regression functions between spectral vegetation indices (SVIs) derived
from remote sensing data and LAI values usually measured in-situ with ground-
based methods. The second technique relies on the inversion of Radiative
Transfer Models, which often also requires ground-based LAI measurements.
Establishing empirical relationships between LAI and SVIs is the most com-
monly applied technique to investigate the spatial and temporal distribution, as
it is very simple, convenient and easy to implement, once the labour-intensive
task of gathering sufficient reference data is completed (Colombo et al., 2003;
Viña et al., 2011; Delegido, Verrelst, Alonso, et al., 2011; Frampton et al.,
2013; Tanaka et al., 2015). As mentioned before, this is usually done with
ground-based measurements of LAI. These are either obtained specifically for
the study, to also match the passing time of the used remote sensing satellite
over the chosen study area (e.g. Colombo et al., 2003, Viña et al., 2011, or
Tanaka et al., 2015), or are taken from extensive field campaigns like SPARC
or AgriSAR (e.g. Delegido, Verrelst, Alonso, et al., 2011, or Richter, Atzberger,
et al., 2011), two campaigns supported by ESA (European Space Agency), to
acquire data on various crops over a whole growing season (ESA, 2005; Hajnsek
et al., 2007).
Studies have been carried out using different remote sensing platforms, includ-
ing Landsat TM or ETM+ (Bach et al., 2003; Chen and Cihlar, 1996; Xavier
and Vettorazzi, 2004; Schiffmann et al., 2008; Turner et al., 1999), IKONOS
(Colombo et al., 2003), MODIS and SPOT (Turner et al., 1999), airborne
hyperspectral CASI (Compact Airborne Spectrographic Imager) (Delegido,
Verrelst, Alonso, et al., 2011; Haboudane et al., 2004; Gong and J. R. Miller,
1995), AISA (aircraft-mounted hyperspectral imaging spectroradiometer) (Viña
et al., 2011; Nguy-Robertson, Gitelson, et al., 2012), and field spectrometers
(Viña et al., 2011; Tanaka et al., 2015; Gong, Pu, et al., 2003; Nguy-Robertson,
Peng, et al., 2014). To establish empirical relationships, a wide range of SVIs
has been tested for deriving LAI from this remote sensing data. One of the most
applied indices is the NDVI. It is easy to calculate and can be used to estimate
the density of green vegetation on a surface (Weier and Herring, 2000). Many
studies, however, came to the conclusion, that NDVI suffers from a saturation
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effect at medium to high LAI values, meaning that with increasing LAI no
more increase in NDVI can be measured (Haboudane et al., 2004; Tanaka et al.,
2015; Reichenau et al., 2016; Q. Wang et al., 2005; González-Sanpedro et al.,
2008). This is due to the high absorption coefficient of chlorophyll which makes
the reflectance in the red region saturate and consequently also the NDVI
(Nguy-Robertson, Gitelson, et al., 2012; Carlson and Ripley, 1997). The point
at which this NDVI “insensitivity” comes into effect is dependent on the crop
or plant type, but lies often at LAI values between 2 and 3 (González-Sanpedro
et al., 2008; Carlson and Ripley, 1997). Also, NDVI has been shown to be very
susceptible to canopy architecture, soil background and atmospheric effects
(Nguy-Robertson, Gitelson, et al., 2012).
Other indices tested include the WDRVI (Wide Dynamic Range Vegetation
Index) (Nguy-Robertson, Gitelson, et al., 2012; Nguy-Robertson, Peng, et al.,
2014; Tanaka et al., 2015; Viña et al., 2011), which has been shown to be
both, less sensitive (Nguy-Robertson, Gitelson, et al., 2012; Viña et al., 2011)
and more sensitive to higher LAI values compared to NDVI (Tanaka et al.,
2015). Nguy-Robertson, Peng, et al., 2014 showed in their study, that WDRVI
derived from the green band is very reliable at predicting the LAI of maize,
potato, and wheat but not soybean, whereas WDRVI derived from the red edge
band has the highest potential for a unified formula for different crop types.
Nguy-Robertson, Gitelson, et al., 2012 proposed to combine different SVIs
according to their sensitivity along the entire range of LAI to achieve maximal
sensitivity for a certain crop type. This also goes along with the findings of
Q. Wang et al., 2005, who found a strong linear relationship between NDVI
and LAI for the phenological stages of leaf production and leaf senescence but
no clear relationship during the leaf-constant period. Other studies suggest to
include hyperspectral data to gain more information than from SVIs, which
are generally computed from two to three spectral bands (Richter, Hank, et al.,
2012; S. Liang et al., 2003; Tanaka et al., 2015). Chlorophyll indices (Gitelson,
Gritz, and Merzlyak, 2003, as cited in Viña et al., 2011) computed from the
green or red edge band show a strong linear relationship with LAI and appear
to be well suited also for higher LAI values, with the red edge Chlorophyll
Index showing less sensitivity to crop type (Viña et al., 2011; Tanaka et al.,
2015; Nguy-Robertson, Gitelson, et al., 2012; Nguy-Robertson, Peng, et al.,
2014).
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When reading the literature on empirical SVI-LAI relationships, it becomes
clear that no universal formula exists. On the one hand this is strongly con-
nected to the crop and plant type, or more generally speaking, the land cover
type dependency of LAI (Haboudane et al., 2004; González-Sanpedro et al.,
2008), although some indices have shown an insensitivity to crop type (e.g.
Richter, Hank, et al., 2012; Viña et al., 2011). On the other hand, these em-
pirical relationships were formed under certain atmospheric conditions, sensor
configurations, and sensor-sun-target geometries and were developed for certain
land cover types at a certain time in the year in a specific location. Applying
these very site-specific relationships to other locations under different conditions
cannot do justice to the spatial and temporal variability of LAI and might
impose uncertainties to the obtained results (Reichenau et al., 2016; Delegido,
Verrelst, Alonso, et al., 2011; Chason, Baldocchi, and Huston, 1991). It should
also be noted, that most of the empirical relationships are established for green
LAI only, and the methods fail for the leaf senescence stage of plants (Delegido,
Verrelst, Rivera, et al., 2015).

The second, though less often applied approach for the retrieval of LAI through
remote sensing data is the inversion of Radiative Transfer Models. The advan-
tages of this method are the possibility to use the full spectrum of multi- or
hyperspectral sensors, as well as the exploitation of directional signatures of
multi-angle sensors (Richter, Atzberger, et al., 2011). However, the models are
more complex to handle than simple empirical relationships and need consid-
erable parametrisation (González-Sanpedro et al., 2008; Richter, Atzberger,
et al., 2011). The inversion of the models presents an ill-posed and underde-
termined problem (Laurent et al., 2014). Generally a lot of additional input
data is needed, but different regularisation methods exist to overcome this
problem. One inversion technique connected to remote sensing is the use of
lookup tables (LUTs), which has been applied by Richter, Atzberger, et al.,
2011; Richter, Hank, et al., 2012 or González-Sanpedro et al., 2008. Results
by Richter, Atzberger, et al., 2011 also demonstrate the crop type dependency
of LAI by suggesting to use crop specific RTMs. Other inversion techniques
include Bayesian object-based estimations (Laurent et al., 2014), iterative
optimisation (Jacquemoud et al., 1995, as cited in Richter, Atzberger, et al.,
2011) or Artificial Neural Networks (Atzberger, 2004, as cited in Laurent et al.,
2014). As RTMs will not be used in this work, the reader is referred to Myneni
et al., 1997 or Jacquemoud et al., 1995 (as cited in Richter, Atzberger, et al.,
2011) for further information.
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Chapter 3 summarises all necessary remote sensing and ancillary data, for the
retrieval of the selected parameters as well as the in-situ and ancillary data
used for the subsequent plausibility analyses of the derived results. Optical
remote sensing data from the Sentinel-2A satellite are used as input to derive
the parameter (chapter 3.1). In chapter 3.2, in-situ measurements found in
literature are described, which will be used to compare the results derived from
the satellite images to. In order to achieve this, information on ground cover is
necessary, and chapter 3.3 contains the different sets of data on ground cover.

3.1 Input Data: Sentinel-2A

The Copernicus programme, formerly GMES, short for Global Monitoring for
Environment and Security, is a joint programme by the European Commission
and ESA with the aim to provide global, timely, and easily and free accessible
information on land, climate change, and other application domains. ESA’s
satellite mission Sentinel, as a part of the GMES initiative, will contribute a
set of observations, including C-band SAR, medium to high resolution thermal
and optical data, and atmospheric chemistry observations. An overview of
the Sentinel missions (realised and planned) is shown in table 3.1. Following
the EU GMES Regulations, all data acquired from the Sentinel missions can
be accessed by anybody for free. The first three Sentinel missions are based
on a constellation of two satellites (referred to as A and B; for Sentinel-3 a
third and fourth satellite are planned), circling the same sun-synchronous,
near-polar orbit with a phase delay of 180°. This set-up allows for a high revisit
time, thus leading to a higher temporal resolution (Fletcher, 2012; Aschbacher
and Milagro-Pérez, 2012; Drusch et al., 2012; Berger et al., 2012; Malenovský
et al., 2012; ESA, 2018a; ESA, 2018b). For this thesis Sentinel-2A data will be
deployed.
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Table 3.1: Overview of ESA’s Sentinel Missions

Sentinel Mission Main application domain

Sentinel-1 C-band SAR
Sentinel-2 high-resolution optical sensor
Sentinel-3 sea-surface topography
Sentinel-4 atmospheric monitoring
Sentinel-5P air quality monitoring
Sentinel-5 air quality monitoring

Sentinel-6
radar altimeter to measure global sea-
surface height

Source: Berger et al., 2012

The aim of the Sentinel-2 mission is to provide multi-spectral, high-spatial-
resolution optical observations for several products and services, such as geo-
physical parameters, or mapping land-cover and land-change. The mission
will complement SPOT- and Landsat-data and improve data availability for
users (Aschbacher and Milagro-Pérez, 2012; Drusch et al., 2012; Suhet, 2015;
Martimort et al., 2007). The most important characteristics of the Sentinel-2
mission are summarised in Table 3.2. Sentinel-2A was launched on 23rd June
2015 and Sentinel-2B followed on 7th March 2017.

Table 3.2: Mission features of the Sentinel-2 mission

Mission Features Data

Satellite life time 7.25 yrs (consumables for 12 yrs)
Number of satellites 2
Nominal orbit sun-synch. at 786 km (mean alt.)
Land coverage 56° S to 84° N
Global revisit time 5 days at equator
Spatial Resolution 10 m, 20 m, 60 m
Radiometric Resolution 12 bit (4096 grey values)
Swath width 290 km

Source: Drusch et al., 2012; Suhet, 2015
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The MSI (MultiSpectral Instrument) of the Sentinel-2 satellites comprises 13
spectral bands, covering VNIR up to SWIR. Spatial resolution spans from 10 m
(four bands in the visible and near infra-red spectrum), to 20 m (six bands in the
vegetation red-edge and short wave infra-red spectrum), and up to 60 m (three
bands for cloud screening and atmospheric corrections). The details on wave
length of the individual spectral bands are shown in figure 3.1 (Main-Knorn,
Pflug, Debaecker, et al., 2015; Martimort et al., 2007; Drusch et al., 2012; Suhet,
2015; Fletcher, 2012).

Figure 3.1: Wave length (x-axis) and spatial resolution (y-axis) of Sentinel-2’s MSI

Source: ESA, 2015

Products from the acquired Sentinel-2 data are delivered in a compilation of
granules, with a granule being “the minimum indivisible partition of a product
(containing all possible spectral bands)” (Suhet, 2015). There are several levels
in the processing steps of the products. Level-0 and Level-1A products comprise
raw compressed and uncompressed data and are not available to the user.
The Level-1B product comprises top of atmosphere (TOA) radiances in sensor
geometry and is made available to users. Up to this processing level the
granule size amounts to 25 km across track and 23 km along track. Level-1C
provides the first ortho-rectified product. A Digital Elevation Model is used to
project the image in UTM/WGS84 projection. This level also includes masks
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for clouds (including cirrus clouds), and land/water, with a granule size of
100 km × 100 km. Up to this processing level, the products are systematically
generated at the ground segment. Using the Sentinel-2 Toolbox Sen2Cor, users
can derive the Level-2A product, which provides bottom of atmosphere (BOA)
radiances, from the Level-1C. Additionally, an enhanced cloud mask and a
more detailed scene classification are generated by the toolbox. Projection and
granule size remain the same (Suhet, 2015; Fletcher, 2012; ESA, 2018a).
For this thesis, 13 scenes acquired between 7th January 2016 and 12th December
2016 by the Sentinel-2A satellite (see table 3.3), were downloaded as Level-1C
products and further processed to Level-2A. Sentinel-2B scenes were not used
in this thesis as they were not available yet for the investigated year of 2016.
Due to cloud coverage, no scene from June 2016 was available.

Table 3.3: Source and acquisition dates of the used Sentinel-2A scenes
scene name of both granules scene index date of scene

S2A USER PRD MSIL2A PDMC 20160107T200822
R122 V 20160107T101243 20160107T101243 T33TWM
S2A USER PRD MSIL2A PDMC 20160107T200822
R122 V 20160107T101243 20160107T101243 T33TWN

scene 1 07.01.2016

S2A USER PRD MSIL2A PDMC 20160206T202544
R122 V 20160206T100203 20160206T100203 T33TWM
S2A USER PRD MSIL2A PDMC 20160206T202544
R122 V 20160206T100203 20160206T100203 T33TWN

scene 2 06.02.2016

S2A USER PRD MSIL2A PDMC 20160315T064850
R079 V 20160314T095144 20160314T095144 T33TWM
S2A USER PRD MSIL2A PDMC 20160315T064850
R079 V 20160314T095144 20160314T095144 T33TWN

scene 3 14.03.2016

S2A USER PRD MSIL2A PDMC 20160414T030145
R079 V 20160413T095322 20160413T095322 T33TWM
S2A USER PRD MSIL2A PDMC 20160414T030145
R079 V 20160413T095322 20160413T095322 T33TWN

scene 4 13.04.2016

S2A USER PRD MSIL2A PDMC 20160523T144152
R079 V 20160523T095404 20160523T095404 T33TWM
S2A USER PRD MSIL2A PDMC 20160523T144152
R079 V 20160523T095404 20160523T095404 T33TWN

scene 5 23.05.2016

S2A USER PRD MSIL2A PDMC 20160712T145235
R079 V 20160712T095351 20160712T095351 T33TWM
S2A USER PRD MSIL2A PDMC 20160712T145235
R079 V 20160712T095351 20160712T095351 T33TWN

scene 6 07.12.2016

Continued on next page
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Table 3.3 – continued from previous page
scene name of both granules scene index date of scene

S2A USER PRD MSIL2A PDMC 20160806T083936
R122 V 20160804T100613 20160804T100613 T33TWM
S2A USER PRD MSIL2A PDMC 20160806T083936
R122 V 20160804T100613 20160804T100613 T33TWN

scene 7 04.08.2016

S2A USER PRD MSIL2A PDMC 20160901T191809
R079 V 20160831T095032 20160831T095217 T33TWM
S2A USER PRD MSIL2A PDMC 20160901T191809
R079 V 20160831T095032 20160831T095217 T33TWN

scene 8 31.08.2016

S2A USER PRD MSIL2A PDMC 20160925T050831
R122 V 20160923T100022 20160923T100625 T33TWM
S2A USER PRD MSIL2A PDMC 20160925T050831
R122 V 20160923T100022 20160923T100625 T33TWN

scene 9 23.09.2016

S2A USER PRD MSIL2A PDMC 20161014T032537
R122 V 20161013T100022 20161013T100022 T33TWM
S2A USER PRD MSIL2A PDMC 20161014T025554
R122 V 20161013T100022 20161013T100022 T33TWN

scene 10 13.10.2016

S2A USER PRD MSIL2A PDMC 20161023T235528
R122 V 20161023T100052 20161023T100052 T33TWM
S2A USER PRD MSIL2A PDMC 20161023T231042
R122 V 20161023T100052 20161023T100052 T33TWN

scene 11 23.10.2016

S2A USER PRD MSIL2A PDMC 20161129T183110
R079 V 20161129T095342 20161129T095342 T33TWM
S2A USER PRD MSIL2A PDMC 20161129T181730
R079 V 20161129T095342 20161129T095342 T33TWN

scene 12 29.11.2016

S2A MSIL2A 20161209T095402 N0204 R079
T33TWM 20161209T095503 T33TWM
S2A MSIL2A 20161209T095402 N0204 R079
T33TWN 20161209T095503 T33TWN

scene 13 09.12.2016
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3.2 Reference Data

To validate the plausibility of remotely sensed parameters, reference data, gained
through non remote sensing methods, is necessary. In their publication, Pielke
and Avissar, 1990 summarise typical albedo ranges for different ground cover
types, taken from various studies, which determined albedo with non-remote
sensing techniques. For the Leaf Area Index, databases exist, which collected
all publications on LAI field measurements for different plant or cover types.
Scurlock, Asner, and Gower, 2001 published over 1000 records of measurements
between 1932 and 2000, which include information on the location, time of
measurement, used method, biome and dominant species, and more next to
the LAI measurement. This database will be used for the plausibility analysis
of crop-specific LAI (chapter 5.4.2). Similar to this database and issued by
the same archive center (ORNL DAAC - the Oak Ridge National Library
Distributed Active Archive Center for biogeochemical dynamics), a database
specifically for woody plants was published by Iio and Ito, 2014, compiling over
1000 field-observed measurements between 1932 and 2011, which will be used
for the validation of forest-specific LAI.

3.3 Ground Cover Data

Different sets on ground cover data will be applied in this thesis to validate the
plausibility of results, depending on the investigated parameter. For albedo,
Copernicus’ Urban Atlas classification will be used. Leaf Area Index results
will be analysed using information on the ground covers crop type and forest
type. The investigated crop types are maize and wheat and forest type describes
either coniferous forest or deciduous forest. Both datasets are provided by
Joanneum Research. A soil sealing map, provided by the city of Graz, will form
the basis of Fraction of Vegetation Cover plausibility tests.
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3.3.1 Copernicus land monitoring services: Urban Atlas
classification

The European monitoring system Copernicus collects and provides data in the
areas land, marine, atmosphere, climate change, emergency management, and
security. In this thesis the freely available Urban Atlas product is downloaded
and processed further to use for the plausibility analyses of the parameter
results (Copernicus, 2019a).
The Urban Atlas product is available for the years 2006 and 2012 as vector
data derived from data at a spatial resolution of 20 m. Considering the date of
the satellite images (2016), the Urban Atlas data for 2012 is downloaded from
the Copernicus Website for the urban region of Graz (see figure 3.2). Of the
delivered 27 classes in the Urban Atlas layer only those classes are used for
the plausibility analyses, where literature provided information on parameter
value ranges gained through non-remote sensing methods (Copernicus, 2019b).
These are:

– 11100: Continuous Urban fabric (Sealing Level (S.L.)) >80%), 11210: Dis-
continuous Dense Urban Fabric (S.L.: 50% - 80%), 11220: Discontinuous
Medium Density Urban Fabric (S.L.: 30% - 50%, 11230: Discontinuous
Low Density Urban Fabric (S.L.: 10% - 30%) all combined to one class
urban

– 21000: Arable land (annual crops)
– 23000: Pastures
– 50000: Water

The class 31000: Forests is not used, as information on that ground cover is
taken from the LiDAR-based forest classification (see 3.3.3).
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Legend
11100: Continuous Urban fabric (S.L. > 80%)
11210: Discontinuous Dense Urban Fabric (S.L.: 50% - 80%)
11220: Discontinuous Medium Density Urban Fabric (S.L.: 30% - 50%)
11230: Discontinuous Low Density Urban Fabric (S.L.: 10% - 30%)
11240: Discontinuous very low density urban fabric (S.L. < 10%)
11300: Isolated Structures
12100: Industrial, commercial, public, military and private units
12210: Fast transit roads and associated land
12220: Other roads and associated land
12230: Railways and associated land
12300: Port areas
12400: Airports
13100: Mineral extraction and dump sites
13300: Construction sites

13400: Land without current use
14100: Green urban areas
14200: Sports and leisure facilities
21000: Arable land (annual crops)
22000: Permanent crops
23000: Pastures
24000: Complex and mixed cultivation patterns
25000: Orchads
31000: Forests
32000: Herbaceous vegetation associations
33000: Open spaces with little or no vegetations
40000: Wetlands
50000: Water

0 2010 km
¯

Text

Editor: Isabella Rojs
Urban Atlas classification (Copernicus)

Sentinel-2 image: 31.08.2016

Figure 3.2: Copernicus Urban Atlas Layer of Graz with Sentinel-2 scene in background

Source: Copernicus, 2019b
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3.3.2 Ground truth data for crop types

In-situ measurements from summer and autumn 2016 of several crop types
located in the used study area were made available by Joanneum Research as
a shapefile. The shapefile includes information on the crop type (e.g. maize or
wheat) and the observation date of a polygon, among other attributes. The
crop type information is necessary to validate the remote sensing data-based
LAI calculations by means of comparing the results to crop-type specific LAI
values gained through non-remote sensing based methods. From this rasterised
dataset, information on the crop type of a pixel will be used for the plausibility
analysis of the crop-specific LAI calculations (see chapter 5.5.3).

3.3.3 LiDAR-based forest variables

Next to ground truth data on crop types, forest classification data from 2015
has also been provided by Joanneum Research. For the project on Indicative
Hazard Maps for Styria, aerial images with a spatial resolution of 20 cm and a
Digital Terrain and Surface Model with a spatial resolution of 50 cm were used
to create a forest mask of Styria as a basic product. Subsequently, more than six
million homogeneous entities were formed using a segmentation algorithm. For
each segment several forest parameters were derived, such as age class (ranging
from culture to old forest), crown closure (in %), timber volume, or mean
and upper tree height. Satellite remote sensing data from IRS (Indian Remote
Sensing Programme) were used to determine the percentage of coniferous and
deciduous for each of the segments. The outcome of this processing step is an
Esri shapefile (Bauer et al., 2015).
For this thesis LAI calculations for coniferous and deciduous forest were tested
separately. Segments with a coniferous ratio greater or equal 75% were exported
into a shapefile representing coniferous forest, and segments with a coniferous
ratio less than 25% were exported into a shapefile representing deciduous forest.
Similar to crop types, LAI values for coniferous and deciduous forest from
literature are used to validate the calculations and the LiDAR forest map
provides the ground cover data basis for these plausibility tests.
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3.3.4 Sealing Map

The city of Graz provided a shapefile containing information on soil sealing,
which is needed to validate the results of Fraction of Vegetation Cover. Figure
3.3 shows all the sealed areas in the provided sealing data in grey. The extract in
the lower left corner of the figure shows a part of the city at a smaller scale and
illustrates, that buildings are not included in this data set. This fact needs to
be considered when preparing the dataset for the validation. For the validation
of FVC, information about the fraction of soil sealing per pixel is necessary, as
it is assumed, that FVC and soil sealing complement each other to 100% (FVC
[%] = 100 - fraction of sealed soil [%]) (Kaspersen, Fensholt, and Drews, 2015).
The further processing steps of deriving fraction of soil sealing per pixel from
this dataset are described in chapter 5.5.2.

Legend
soil sealing

0 600300 m

¯

Editor: Isabella Rojs
Soil Sealing map (Graz)

Sentinel-2 image: 31.08.2016

0 500250 m

Figure 3.3: Soil sealing map of the (inner) city of Graz

Source: own illustration, data by Graz, 2019

28



4 Study Area

The study area is located in the southern foreland of the Eastern Alps. It spans
from the Schöckl in the north west to Murska Sobota, Slovenia, in the south
east. Figure 4.1 illustrates it’s location in the foreland. The extent of the study
area is defined by a bounding box around two study regions of the Wegener
Center: the Raabtal Region (RTR) and South-East Styria (SES) (Kirchengast,
2018) (see figure 4.1). With a size of 4620 km2 it contains approximately 130
Styrian municipalities and also covers small parts of western Burgenland and
northern Slovenia. The biggest settlement in the study area is the city of Graz;
other larger settlements include Weiz, Hartberg, Fürstenfeld, Feldbach and
Leibnitz.

According to the Gebietsgliederung by Lieb, 1991 (adaptation depicted in figure
4.2), Styria can be divided into two superordinate entities, based on geological
and geomorphological features: the alpine and the non-alpine region. At an
altitude of 1445 m, the Schöckl and it’s immediate surroundings are included
in the alpine region while the greater part of the study area counts among the
non-alpine region. This part, the foreland, is characterised by the valley floors
of the rivers Mur and Raab, and elongated ridges, so-called Riedel, which are
eponymous for the East Styrian Riedelland. (Kabas, 2012; Lieb, 1991)
The Klimaatlas Steiermark defines the homonymous climate region foreland
(German: Vorland), which can be further divided into subcategories. Valley
floors in this region are affected by continental climate conditions, effecting
in warm summers and relatively cold winters. Additionally, in winter, fog and
atmospheric inversion are abundant in this region, thus preventing outflow of
cold ground air, which further intensifies the effect and leading to problems with
air pollution. Higher located ridges are less afflicted by these circumstances,
leading to milder winters with less frost risk, compared to the valley floors. The
foreland is prone to thunderstorms and hail in summer, which in return are
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more frequent and intense on the ridges than in the valleys. (Wakonigg and
Podesser, 2018; Wakonigg, 1978; Wakonigg, 1967)
Monthly mean temperatures in January vary from −4 ◦C to −1 ◦C and in
July from 17 ◦C to 19.5 ◦C. The annual mean varies between 7.5 ◦C and 8.7 ◦C,
depending on the specific location. The annual precipitation amounts to ap-
proximately 800 mm, with most of the precipitation accumulating in summer
due to convective rainfalls. (Wakonigg and Podesser, 2018; Wakonigg, 1978)
The IPCC Report of 2007 presented a global temperature rise of 0.76 ◦C
(±0.19 ◦C within a 95 % confidence interval) between 1850 and 2001 (Solomon
et al., 2007). For Europe the temperature rise amounts to 0.8 ◦C (±0.3 ◦C) with
a high regional variability (Luterbacher et al., 2004). Many studies prove, that
the Alpine region shows a very high sensitivity to changing climate conditions
(Climate Change (APCC), 2014). The study Austrian long-term climate (ALO-
CLIM) by Auer, Böhm, and Schöner, 2001 evaluated annual mean temperatures
between 1890 and 1999 of 56 sites in and close to Austria. The sites were split
into two groups, high-level and low-level regions, depending on their altitude.
The results show a linear trend of 1.28 ◦C for high-level regions and 1.22 ◦C for
low-level regions. Both values lie well above the 0.8 ◦C for Europe (Luterbacher
et al., 2004), demonstrating the importance of considering regional variability
when talking about temperature rise. For precipitation, ALOCLIM results
reflect the high variability of these events with a slight decreasing trend for
eastern and southern Austria (Auer, Böhm, and Schöner, 2001; Climate Change
(APCC), 2014).
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Legend
Study Area Extent
National Border
Federal State Border
Styrian Municipalities

0 2010 km

¯

Editor: Isabella Rojs
Study area extent provided by Wegener Center
Data on borders by BEV

Figure 4.1: Study area

Source: own illustration

 

 Figure 4.2: Gebietsgliederung of Styria, grey rectangle symbolises study area

Source: adapted after Wakonigg and Podesser, 2018
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This chapter provides an overview of the workflow, including the steps of data
acquisition and pre-processing (chapter 5.1), the applied methodology for the
parameter calculation (chapter 5.2, 5.3, and 5.4), and the chosen approaches
for the plausibility checks (chapter 5.5). Figure 5.1 gives an overview of the
workflow and, where necessary, more detailed workflow diagrams will be shown
in the according sub-chapters.
The data pre-processing step is divided into two branches, as two of the three
parameters (FVC and LAI) require bottom of atmosphere reflectance and one
(albedo) requires top of atmosphere reflectance. From the literature review
(chapter 2) a set of suitable methods for each of the three selected parameters
is chosen to be applied to the imagery data. To check the plausibility of each
calculated parameter, results from in-situ measurements found in literature as
well as available ancillary data is required.
For albedo, non remote sensing values could be obtained for some land cover
classes from literature, which will be used to validate the calculations based
on Urban Atlas classifications (chapter 3.3.1) and the LiDAR-based forest
classification (chapter 3.3.3). The plausibility of the FVC results will be val-
idated using an Imperviousness Density dataset (chapter 3.3.4) provided by
the city of Graz (Graz, 2019). Databases with Leaf Area Index data from field
measurements are freely available for different plant types like coniferous and
deciduous trees, and different crop types (chapter 3.2). This information will
be used to validate the calculations based on ground cover information gained
through in-situ crop type determinations (chapter 3.3.2) and the LiDAR-based
forest classification (chapter 3.3.3), similar to the plausibility analysis of albedo
results. Additionally, assumptions are made regarding the LAI of a forest in
connection to its age class, an attribute delivered within the LiDAR dataset.
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5.1 Data Acquisition and Pre-processing

Download Sentinel-2
granules: 33TWN and 33TWM

13 scenes from 2016

Resampling:
bands 11 and 12
from 20m to 10m

Stack bands: 2, 4, 8, 11, 12
Mosaic from 2 granules

clip to study extent
shift 

Sen2Cor
atmospheric correction

Resample b11 and b12
Stack all bands

Mosaic from 2 granules
clip to study extent

shift 

Index calculation (NDVI, SR,
RSR, MSAVI, GVI)

Albedo FVC LAI

Data preprocessing

Level-1C images

raw Level-1C

SRNDVI

RSR

GVI

Level-2A images

MSAVI NDI

Indices

Figure 5.2: Data preprocessing workflow

Source: own illustration
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Figure 5.2 gives a more detailed overview of the necessary preprocessing steps.
Sentinel-2 data at Level-1C are downloaded from the Copernicus Open Access
Hub (https://scihub.copernicus.eu/). To cover the study area completely
(see figure 4.1) two granules are necessary: T33TWN and T33TWM (for a
full list of downloaded scenes see table 3.3). As the method of S. Liang, 2000
requires top of atmosphere reflectance to calculate albedo, the Level-1C product
can be used directly.
This paragraph describes the preprocessing steps of the Level-1C product (left
branch in figure 5.2), which are necessary to derive albedo. First, the two
SWIR bands (band 11 and band 12) are resampled from 20 m to 10 m and are
stacked together with the other necessary bands for albedo calculation: bands 2
(blue), 4 (red), and 8 (NIR). Subsequently, mosaics from the two granule stacks
are created for each date and clipped to the extent of the study area. After
analysing the clipped scenes, a few shifts between some dates become apparent,
as depicted in figure 5.3 for the scenes of 23.05.2016 (left) and 31.08.2016 (right).
A master scene is determined (31.08.2016) and all scenes which do not match
the master, are shifted. Table 5.1 summarises all shifted scenes. After this step,
the scenes are ready to be used for the calculation of albedo after the method
proposed by S. Liang, 2000.

Table 5.1: Shift for Level-1C scenes

Scene Shift

14.03.2016 Y -10
13.04.2016 Y -10
23.05.2016 Y -10
29.11.2016 Y +10
09.12.2016 X +10

The right branch in figure 5.2 describes the preprocessing steps to require bot-
tom of atmosphere reflectance values through atmospheric correction. Sen2Cor
is ESA’s Level-2A processor, developed by Telespazio VEGA Deutschland
GmbH as a third-party plugin to the Sentinel-2 Toolbox, which corrects top
of atmosphere reflectance from Level-1C to bottom of atmosphere reflectance
(Main-Knorn, Pflug, Louis, et al., 2017). The processor also generates additional
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output, like a Scene Classification (SCL) and Quality Indicators for cloud and
snow probabilities, among other output (Main-Knorn, Pflug, Louis, et al., 2017;
Müller-Wilm, Devignot, and Pessiot, 2017), which are not used in this thesis.

For the atmospheric correction, radiative transfer functions need to be calcu-
lated, to account for different sensor and solar geometries, ground elevations
and the atmosphere (Müller-Wilm, Devignot, and Pessiot, 2017). The Sen2Cor
processor uses libRadtran, a library consisting of several C and Fortran func-
tions and programmes to calculate both solar and thermal radiation of the
Earth’s atmosphere (Müller-Wilm, Devignot, and Pessiot, 2017; Emde et al.,
2016). LibRadtran generates several Look-Up Tables (LUTs) including tables
to differentiate between (a) mid latitude summer and winter atmosphere, (b)
rural and maritime aerosols, and (c) different ozone contents, to meet the
conditions of the scene’s geographic location and climatology (Main-Knorn,
Pflug, Louis, et al., 2017). Configurations can be made in the L2A GIPP.xml
file. For the observed scenes of this thesis, the aerosol type is set to RURAL and
the atmosphere type is set to AUTO, as scenes from throughout the calendar
year are being processed together.

Finally, the 20 m bands are being resampled to 10 m and stacked to images
together with the other 10 m bands. Table 5.2 shows the order the stacked
bands. Analogous to the top of atmosphere stacks, mosaics from the two granule
stacks are created for each date and clipped to the extent of the study area.
Shifts were also necessary for the bottom of atmosphere scenes (see for example
figure 5.4). However, they were not congruent with the shifts needed for the top
of atmosphere scenes. No satisfactory explanation could be found for this fact
and was attributed to a step in the Sen2Cor process. The scene of 31.08.2016
was again chosen as the master and table 5.3 specifies the necessary shifts for
the scenes.
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Table 5.2: Order of bands in the bottom of atmosphere stacks

original number number in stack name

1 not used coastal aerosol
2 1 blue
3 2 green
4 3 red
5 5 vegetation red edge 1
6 6 vegetation red edge 2
7 7 vegetation red edge 3
8 4 NIR

8a 8 narrow NIR
9 not used water vapour

10 not used SWIR Cirrus
11 9 SWIR 1
12 10 SWIR 2

Table 5.3: Shift for Level-2A scenes

Scene Shift

14.03.2016 Y -20
13.04.2016 Y -20
23.05.2016 Y -20
12.07.2016 Y -10
29.11.2016 Y +10
09.12.2016 X +10
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Figure 5.3: Shift at Level-1C between the scenes of 23.05.2016 (left) and 31.08.2016 (right)

Source: own illustration

Figure 5.4: Shift at Level-2A between the scenes of 09.12.2016 (top) and 31.08.2016 (bottom)

Source: own illustration
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The final preprocessing step is the calculation of indices, which are required for
the regression-based determination of FVC and LAI. The following indices
(equations 5.1 - 5.6) are calculated (max and min in equation 5.5 are taken
from each scene).

NDV I =
ρnir − ρred
ρnir + ρred

(5.1)

(Johnson, Tateishi, and Kobayashi, 2012; Chen and Cihlar, 1996; Schiffmann et al.,

2008; Bach et al., 2003)

GV I =
ρgreen − ρred
ρgreen + ρred

(5.2)

(Jiménez-Muñoz, J. A. Sobrino, Plaza, et al., 2009)

MSAV I =
2 · ρnir + 1 −

√
(2 · ρnir + 1)2 − 8 · (ρnir − ρred)

2
(5.3)

(Johnson, Tateishi, and Kobayashi, 2012)

SR =
ρnir
ρred

(5.4)

(Schiffmann et al., 2008)

RSR =
ρnir

ρrededge1
· ρ

max
swir2 − ρswir2

ρmax
swir2 − ρmin

swir2

(5.5)

(Schiffmann et al., 2008)

NDIB5−B4 =
ρrededge1 − ρred
ρrededge1 + ρred

(5.6)

(Delegido, Verrelst, Alonso, et al., 2011)
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5.2 Remote sensing of Albedo

To obtain albedo values, the method proposed by S. Liang, 2000 is chosen, as
it is relatively easy to implement and applied to all preprocessed TOA-images.
As described in chapter 2.1, Liang’s method was developed for Landsat ETM+
data (as well as for other sensors). Therefore, promising results of applying the
approach developed for Landsat to Sentinel-2 data are expected due to the
comparable band widths of the two sensors, as can be seen in figure 5.5. The
chosen method comprises a function of weighted bands, which is given as a
weighted average function (by Smith, 2010) in equation 5.7.

α =
0.356 · ρblue + 0.13 · ρred + 0.373 · ρnir + 0.084 · ρswir1 + 0.072 · ρswir2 − 0.0018

0.356 + 0.13 + 0.373 + 0.084 + 0.072
(5.7)

For Sentinel-2 products, at top of atmosphere and bottom of atmosphere level,
the quantification value of 10000 needs to be kept in mind, resulting in applying
a factor of 1

10000
to the Digital Number (DN) values, to get actual reflectance

values (Main-Knorn, Pflug, Louis, et al., 2017). The weighting function in
equation 5.7 is applied to all 13 Level-1C images.

Figure 5.5: Comparison of Landsat 7 and 8 and Sentinel-2 bands

Source: Landsat, 2019
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5.3 Remote sensing of Fraction of Vegetation
Cover

The workflow for the calculation of FVC is shown in figure 5.6. In order
to obtain Fraction of Vegetation Cover from the Sentinel-2 images, a linear
regression-based approach is deployed. This scaled VI function (see equation
5.8) is relatively easy to implement with a range of different Vegetation Indices,
but some considerations have to be put into determining V Iv (Vegetation Index
of a fully vegetated pixel) and V Is (Vegetation Index of a bare soil pixel).

FV C =
V I − V Is
V Iv − V Is

(5.8)

Two regression based approaches for the remote sensing based retrieval of the
FVC were considered in this thesis:

– Jiménez-Muñoz, J. A. Sobrino, Plaza, et al., 2009, who tested the GVI
and NDVI (among other indices), and

– Johnson, Tateishi, and Kobayashi, 2012, who used the indices NDVI and
MSAVI (Modified Soil-Adjusted Vegetation Index).

Theoretically, any Vegetation Index could be used for equation 5.8. NDVI was
chosen, because it is the most commonly used index in linear regression methods
to obtain FVC (e.g. Johnson, Tateishi, and Kobayashi, 2012; Jiménez-Muñoz,
J. A. Sobrino, Plaza, et al., 2009; Barati et al., 2011; Buyantuyev, J. Wu, and
Gries, 2007; Kaspersen, Fensholt, and Drews, 2015; Barlage and Zeng, 2004).
The GVI was chosen, as this index performed only slightly inferior compared
to Spectral Mixture Analysis and automated approaches (Jiménez-Muñoz,
J. A. Sobrino, Plaza, et al., 2009), thus making it a promising candidate for
the linear regression model. MSAVI was chosen as a third index because of
its lower sensitivity to soil brightness compared to NDVI (Johnson, Tateishi,
and Kobayashi, 2012), therefore a comparison to NDVI results intended to
either confirm or refute this statement. Two aspects should be noted at this
point. First, Johnson, Tateishi, and Kobayashi, 2012 used ASTER data for
their study, which are comparable in band width at least in the visible and
near infra-red wavelengths to Sentinel-2 data. Second, Jiménez-Muñoz, J. A.
Sobrino, Plaza, et al., 2009 used CHRIS data, which is a hyperspectral dataset
with entirely different band widths in comparison to Sentinel-2. Given the
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formulation of the regression function, however, the applicability of indices
tested with hyperspectral remote sensing images is also given for Sentinel-2
data, as long as the calculation method of the given index is adapted to the
used sensor.

zonal statistics
plot histograms

determine VIv for
each index and each

date

Parameter calculation: FVC

FVC from MSAVI

crown closure > 90%

zonal statistics
determine VIs for

each index and each
date

calculate FVC

Plausibility
Analysis

FVC from GVI FVC from NDVI

bare soil

LiDAR forest
classification

MSAVI

FVC input

GVI NDVI

Figure 5.6: Workflow for the parameter FVC

Source: own illustration
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To determine V Iv, data from the forest classification (see chapter 3.3.3) is used.
To receive only polygons which are fully vegetated, the parameter crown closure
is considered. All polygons from the forest classification with a crown closure
greater than 90 % can be assumed to be fully vegetated and are exported into a
separate shapefile, which is used to perform zonal statistics on the index raster
files. The zonal statistics step calculates the mean of each of the approximately
292 000 forest polygons. Using R software, histograms are plotted with the
mean values and maximum peaks are detected (see figure 5.7), as proposed by
Jiménez-Muñoz, J. A. Sobrino, Plaza, et al., 2009. It is advised to use the peak
for V Iv instead of the maximum of the histogram, because it is more robust
than (possibly extreme) outliers.

Figure 5.7: NDVI value histogram for scene 8 (31.08.2016)

Source: own illustration

To select suitable V Is values, a similar procedure is applied. As no ground truth
data on bare soil was available beforehand, a dataset needs to be generated
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through visual interpretation of the Senitnel-2 data. Zonal statistics are per-
formed to acquire the mean of each polygon. Contrary to V Iv, no histograms
are plotted due to the lower number of available polygons. Instead, the mean of
all values greater than 0 is determined for NDV Is and MSAV Is as Johnson,
Tateishi, and Kobayashi, 2012 proposed to avoid negative values. For GV Is,
Jiménez-Muñoz, J. A. Sobrino, Plaza, et al., 2009 allowed negative values, so
no constraint is used when determining this mean. Table 5.4 lists all acquired
V Iv and V Is for each investigated date and each of the three tested indices.
With this information, equation 5.8 can be applied to the index raster files of
each investigated date to obtain Fraction of Vegetation Cover. Only scenes 6
(12.07.2016) to 9 (23.09.2016) are used for this parameter.

Table 5.4: V Iv and V Is per date of the three selected indices

V Iv/V Is GV Iv GV Is MSAV Iv MSAV Is NDV Iv NDV Is

12.07.2016 0.265 -0.03191994 0.805 0.10931116 0.885 0.09114224
04.08.2016 0.125 -0.03919532 0.825 0.17625464 0.795 0.12485151
31.08.2016 0.285 -0.06144166 0.795 0.06601393 0.885 0.07109730
23.09.2016 0.325 -0.04884777 0.815 0.06593196 0.905 0.06277275
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5.4 Remote sensing of Leaf Area Index

As described in chapter 2.3 there are two main remote sensing techniques to
retrieve Leaf Area Index:

1. empirical retrieval methods, establishing a (non-)linear regression between
a VI and the LAI measured on the ground, and

2. physically-based retrieval methods via inversion of RTMs (Pasqualotto
et al., 2019).

The aim of this thesis is to derive biogeophysical parameters from optical re-
mote sensing data, therefore an emphasis is put on finding applicable empirical
methods based on spectral VIs. Physically-based approaches require ancillary
information on e.g. the canopy structure of the investigated surface for the
parametrisation of the RTM (Pasqualotto et al., 2019), which is not available
for this thesis.
The LAI is plant type dependent (e.g. Haboudane et al., 2004; González-
Sanpedro et al., 2008), therefore it cannot be derived on pixel-level with one
formula for an entire scene, like for FVC and albedo. Different plant cover types
require different empirical relationships. As mentioned in previous chapters,
information on land cover in the region of interest is available for forest (see
chapter 3.3.3) and different crop types (see chapter 3.3.2), therefore LAI meth-
ods will be tested based on these two main classes.
The respective LAI formulas to be applied in the test region of the thesis were
chosen from the literature according to their applicability to the study area
and especially to the sensor-specific settings. Many studies use hyperspectral
sensors to derive empirical relationships between a vegetation index and Leaf
Area Index (Nguy-Robertson, Gitelson, et al., 2012; Nguy-Robertson, Peng,
et al., 2014; Tanaka et al., 2015; Viña et al., 2011; Gong and J. R. Miller,
1995). Due to the differences in band widths between hyperspectral sensors and
sensors like Sentinel-2, the derived vegetation indices from these sensors are
not comparable and therefore an empirical relationship between a narrowband
index (obtained from a hyperspectral image) and the LAI is not transferable
to Sentinel-2 data.
For the available ground truth data (forest and crops) three approaches were
chosen. Figure 5.8 depicts a structured overview of all these methods, which
will be explained in the following two chapters, 5.4.1 and 5.4.2.
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5 Methodology

5.4.1 LAI regression functions for forest

In order to retrieve Leaf Area Index for forest, three methods were chosen
from the literature, which present empirical relationships between ground based
LAI measurements and satellite data. The results will be validated using in-
formation on the ground covers coniferous and deciduous forest provided by
the LiDAR-based forest map (chapter 3.3.3). Table 5.5 gives a summarised
overview of the three methods, and their application to the present study area
and data will be discussed in this chapter. (The abbreviations in column 1
are used for the authors of the cited studies; the other abbreviations will be
described in following paragraphs).

Table 5.5: Structured summary of empirical LAI retrieval methods for forest

Approach Details
Number of equa-
tions

Chen and Cihlar,
1996 (CC)

2 VIs (NDVI, SR), 2 models (linear, expo-
nential), 2 dates (late spring, mid-summer)

8 (eq. 5.9 - 5.16)

Gregoire and
Raffy, 1997 (GR)

2 classes (coniferous forest, deciduous for-
est

2 (eq. 5.17 - 5.18)

Schiffmann et al.,
2008 (SM)

3 indices (NDVI, RSR, SR), 2 ground ob-
servation methods (LAI-2000, DHP)

6 (eq. 5.19 - 5.24)

Approach 1
Chen and Cihlar, 1996 (abbr. CC) used Landsat TM data from spring and
summer of 1994 at two boreal coniferous forest test sites in central Canada. To
acquire ground truth, they used the gap fraction estimator LAI 2000 Plant
Canopy Analyzer to measure LAI in the beginning, middle and end of growing
season in 1994. With two spectral indices, NDVI and SR (Simple Ratio), they
formulated equations to express the empirical relationship between their ground
truth measurements and the Landsat-derived indices. As no cloud-free Landsat
images from the end of the growing season were available, only relationships
for the beginning (late spring) and middle (mid-summer) of the growing season
could be established. For each growing period and index, a linear and exponen-
tial regression function were developed:
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LAI =
NDV I − 0.519

0.051
(NDVI , late spring , linear) (5.9)

LAI =
0.1844

√
NDV I

0.552
(NDVI , late spring , exponential) (5.10)

LAI =
SR− 2.781

0.842
(SR, late spring , linear) (5.11)

LAI =
0.3916

√
SR

3.437
(SR, late spring , exponential) (5.12)

LAI =
NDV I − 0.635

0.032
(NDVI ,mid − summer , linear) (5.13)

LAI =
0.1057

√
NDV I

0.654
(NDVI ,mid − summer , exponential) (5.14)

LAI =
SR− 3.637

1.014
(SR,mid − summer , linear) (5.15)

LAI =
0.3228

√
SR

4.711
(SR,mid − summer , exponential) (5.16)

For the present thesis, NDVI and SR were derived from the atmospherically
corrected Sentinel-2 images using equations 5.1 and 5.4, which in turn were
used to calculate the LAI according to equations 5.9 - 5.16.

Approach 2
Approach 2 is taken from Bach et al., 2003, who applied a regression function
established by Gregoire and Raffy, 1997 (abbr. GR). Unfortunately the original
work was not accessible, so no information is available about the circumstances
under which this empirical relationship was formed. Bach et al., 2003 apply
the exponential regression functions to Landsat TM data from October 1994
and May 1996 for different LCLU classes in the Toce basin in Northern Italy,
to use the produced LAI as an input parameter to improve their hydrological
model. Their combination of sensor and study area suggest applicability to the
used data and site of this thesis.
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The following two equations describe the empirical relationships between LAI
and the used Vegetation Index NDVI for coniferous forest (equation 5.17) and
deciduous forest (equation 5.18):

LAI = 1.86 ·NDV I6.06 (coniferous forest) (5.17)

LAI = 1.63 ·NDV I4.7 (deciduous forest) (5.18)

Approach 3
Schiffmann et al., 2008 (abbr. SM) measured LAI in Yosemite National Park,
USA from different coniferous tree types and established empirical relationships
between them and three indices derived from a Landsat TM image from July
2007. For the ground measurements of LAI the plant canopy analyser LAI-2000
and Digital Hemispherical Photography (DHP) were used. The indices used for
the regression analysis were NDVI, RSR (Reduced Simple Ratio), and SR. A
regression function was formulated for each index and each of the two ground
measuring methods separately:

LAI = 6.7537 ·NDV I − 0.8384 (LAI − 2000) (5.19)

LAI = 5.5465 ·NDV I − 0.7857 (DHP ) (5.20)

LAI = 0.8213 ·RSR + 0.176 (LAI − 2000) (5.21)

LAI = 0.6789 ·RSR− 0.001 (DHP ) (5.22)

LAI = 0.7879 · SR− 0.5889 (LAI − 2000) (5.23)

LAI = 0.6471 · SR− 0.6145 (DHP ) (5.24)

5.4.2 LAI regression functions for crop types

For the retrieval of Leaf Area Index for crops, three methods from the literature
are adapted. Although the crop-type dependency is highlighted in chapter 2,
in the case of this thesis only those approaches are applicable, where the crop
type was not considered. This is due to the sensors used, as many studies,
which examine specific crop types for an empirical VI-LAI relationship use
hyperspectral data (e.g. Viña et al., 2011; Tanaka et al., 2015; Nguy-Robertson,
Gitelson, et al., 2012; Nguy-Robertson, Peng, et al., 2014). For the validation,
information on crop type (chapter 3.3.2) will be used.
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Approach 1
The first approach is also taken from Bach et al., 2003, who used an empirical
relationship for the LCLU class agriculture to obtain LAI. The coefficients for
this exponential function were found by Ludwig et al., 1999 (as cited in Bach
et al., 2003) and, according to Bach et al., 2003, published for an EARSEL
Workshop. Unfortunately this publication could not be retraced. Similar to
Approach 2 in chapter 5.4.1, no information is available about the circumstances
of Ludwig’s study, but its application to Landsat TM data in Northern Italy
are comparable to this thesis, therefore it was decided to try out this approach.
The following equation 5.25 describes the relationship:

LAI = 1.6 ·NDV I3 (5.25)

Approach 2
Delegido, Verrelst, Alonso, et al., 2011 use Sentinel-2 red edge simulations
obtained from hyperspectral CHRIS data. Ground measurements for different
crop types were taken from three ESA campaigns (SPARC, AgriSAR, and
CERES2), which were acquired between 2003 and 2007. Formulating a Nor-
malised Difference Index (NDI, equation 5.26), two-band combinations with the
most linear relationship to the LAI ground measurements were examined. Their
results show, that the bands centred at 706 nm and 664 nm, which correspond
to bands 5 (red edge 1) and 4 (red) of the Sentinel-2 satellite, deliver the best
results. The following linear equation 5.27 is the best-fit function to calculate
LAI according to Delegido, Verrelst, Alonso, et al., 2011.

NDI =
ρb − ρa
ρb + ρa

(5.26)

LAI = 8.452 · ρ706 − ρ664
ρ706 + ρ664

(5.27)

Approach 3
Approach 3 is adapted from Reichenau et al., 2016, who correlated ground-
based LAI measurements of winter wheat, sugar beet and maize from the
growing seasons of 2008 to 2012, taken in Western Germany, to RapidEye
data. Although band widths of the RapidEye are slightly broader compared
to Sentinel-2 (eoPortal, 2019), it was decided to apply this approach to the
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test site. Reichenau et al., 2016 determined the FVC from the image data
analogous to the approach used in this thesis (see chapter 5.3) also using the
NDVI. NDV Is and NDV Iv were obtained using histogram analysis of the land
cover classes bare soil and broadleaf forest respectively. LAI is calculated from
FVC using the following function (after Norman, 1979, as cited in Reichenau
et al., 2016):

LAI =
−ln(1 − FV C)

k(µ)
(5.28)

The factor k(µ) describes the light extinction coefficient for a solar zenith angle
and is a measure of the attenuation of radiation in the canopy (Reichenau et al.,
2016). Following Aubin, Beaudet, and Messier, 2000, k(µ) can be assumed as
0.54. For the present thesis, the FVC results of chapter 5.3 obtained from NDVI
were taken, to calculate the LAI.

5.5 Plausibility Analyses

To check the plausibility of the obtained results, several approaches are con-
sidered. When available, parameter values for certain types of ground cover,
gained through non-remote sensing methods, are taken from the according
literature and compared to the results of the tested methods. Information
on ground cover, necessary for this approach, is taken from several available
sources, which are described in chapter 3. The following three sub-chapters
describe the used techniques to test the plausibility of each parameter separately.

5.5.1 Plausibility of Albedo results

In order to test the calculated albedo results for plausibility, typical albedo
ranges for different ground cover types are adapted from Pielke and Avissar,
1990 (see table 5.6, columns 2 and 3). To extract information on the ground
cover of the study area, the land cover and land use classification of the Urban
Atlas layer (see chapter 3.3.1) as well as the LiDAR-based forest map (chapter
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3.3.3) are used. Considering the occurrence within the study area and the
investigated cover types in the literature and the Urban Atlas classification,
the following classes (table 5.6) will be examined:

Table 5.6: Typical albedo ranges for different cover types, assigned to Urban Atlas classes
(classes marked with (*) are taken from the forest classification (see chapter 3.3.3))

LC/LU class from Urban Atlas
Cover type from
Pielke and Avissar,
1990

albedo range

11100: Continuous Urban fabric (S.L.
>80%), 11210: Discontinuous Dense Urban
Fabric (S.L.: 50% - 80%), 11220: Discontin-
uous Medium Density Urban Fabric (S.L.:
30% - 50%, 11230: Discontinuous Low Den-
sity Urban Fabric (S.L.: 10% - 30%)

urban area 0.15 - 0.27

21000: Arable land (annual crops) agricultural crops 0.10 - 0.30
23000: Pastures meadows 0.15 - 0.25
Coniferous forest(*) coniferous forests 0.10 - 0.15
Deciduous forest(*) deciduous forests 0.15 - 0.20

Source: Copernicus, 2019b; Pielke and Avissar, 1990

The available vector data of the Urban Atlas classes (the four classes on urban
fabric are all combined to one class, referred to as urban) are reprojected to
WGS84 (EPSG 32633) to match the projection of the satellite images and
rasterised to use as masking layers for the albedo calculations. Additionally, a
negative buffer of 10 m is applied to the Urban Atlas layers, which are delivered
on the basis of 20 m spatial resolution data, to avoid mixed pixels at the borders
of objects. For the classes coniferous forest and deciduous forest, the LiDAR-
based forest map is used, as the Urban Atlas classification makes no distinction
between those two cover types and only uses one class, forests (see figure 3.2).
These datasets are delivered at a higher spatial resolution, therefore no negative
buffer is necessary.
To validate the overall accuracy of the calculations, zonal statistics are computed,
calculating the mean albedo value of each polygon within a class. To avoid
distortion of the zonal statistics results from cloud cover, a cloud free area
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within the study area with the size of approximately 190 km2 is determined for
this step. In this process, the two scenes from October (13.10. and 23.10.) had
to be excluded because of their high cloud coverage. Following, all polygons are
counted, which have a calculated mean albedo within the expected range (taken
from table 5.6). This number is compared to the number of all polygons within
the same class and date, resulting in the ratio of polygons with a correctly
calculated mean albedo.
The mean value, however, cannot account for outliers and the distribution of
values, therefore boxplots are visualised for the albedo calculations. Using the
same ground truth as in the previous approach, all pixels within one class and
date are grouped and depicted within a boxplot. For each ground truth class
all dates are plotted in one graphics, also indicating the expected range taken
from table 5.6.

5.5.2 Plausibility of FVC results

The soil sealing map of Graz (Graz, 2019) provides the basis of the plausibility
analyses of FVC results. Imperviousness and Fraction of Vegetation Cover
both describe a covered fraction per ground unit so they both complement
each other to 100% per pixel (Kaspersen, Fensholt, and Drews, 2015). The
soil sealing map delivers information on 100% sealed surfaces. The dataset is
rasterised to a spatial resolution of 10 m to match the Sentinel-based FVC
calculations (see black raster in figure 5.9). Additionally, the rasterised sealing
map is shrunk by 1 pixel (see blue raster in figure 5.9). This step is necessary
to avoid errors at the edges of objects due to Sentinel’s geometric accuracy,
which is report to lie between 11 m or 1.1 pixel (Clerk, 2019) and as low as
6 m or 0.6 pixel (Pandzic et al., 2016). As the accuracy can be above 1 pixel,
a shrink and blow operation of 1 pixel is applied to the blue raster, to avoid
the edge effect at lengthy but narrow objects, like streets. The result of this
operation is the yellow raster in figure 5.9. This raster set is used to validate
the FVC calculations. As it presents ground truth of 100% sealed surfaces, the
FVC calculations are expected to have values close to 0, where they are covered
by the yellow raster. The raster serves as a mask for the FVC calculations and
the masked values are used to create density histograms to analyse the relative
value distribution.
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Legend
shrink and blow raster
shrunk soil sealing raster
rasterised soil sealing

¯

0 1.200600 m

Editor: Isabella Rojs
Soil Sealing map (Graz)

Sentinel-2 image: 31.08.2016

Figure 5.9: Rasterised soil sealing map of the (inner) city of Graz

Source: own illustration, data by Graz, 2019

5.5.3 Plausibility of LAI results

Leaf Area Index plausibility tests are performed using ground truth data from

– the LiDAR-based forest classification (see chapter 3.3.3), and
– the crop type ground truth dataset (see chapter 3.3.2).

From the large LiDAR dataset a subset is used to reduce computing time and
ensure cloud-free conditions for all dates. Chen and Cihlar, 1996 differentiate
between late spring and mid-summer in their regression formulas so scenes 5
(23.05.2016) and 6 (12.07.2016) are used to validate these results. Schiffmann
et al., 2008 specify using a Landsat TM scene from July, so the according
Sentinel-2 scene from July (scene 6) is used in this case. Bach et al., 2003 use
several dates, so their approach will be tested on scenes 3, 4, 5, 6, 8, and 9.
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Scene 7 had to be taken out of the validation due to cloud coverage in the
area of interest. Reference data from the LAI database, published by Iio and
Ito, 2014, will be used, to verify the results with boxplots, analogous to albedo
plausibility tests. Additionally, a relation between the LAI of a forest and its
age class is assumed. Statements from literature regarding the LAI of forests at
different growing stages are used to analyse the LAI of the calculations based
on the attribute age class, available from the LiDAR dataset.
To validate the chosen methods for crop-specific LAI, the two largest classes
(most available cloud free polygons) are chosen from the dataset: maize (90
polygons) and wheat (53 polygons). The ground truth dataset is rasterised to
use as a masking layer for the LAI calculation rasters. Expected ranges of LAI
per crop classes maize and wheat (taken from Scurlock, Asner, and Gower,
2001) are used to analyse the calculated value distribution within each class.
Depending on their growing cycle, scenes 3 to 8, and 9 are used. Also in this
case, scene 7 had to be taken out of the validation due to cloud coverage in the
area of interest.
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This chapter will present the results of the plausibility analyses for each of
the three parameters individually. Each presentation of results will be followed
instantly by a discussion, for a more coherent reading.

6.1 Results and discussion of Albedo plausibility
analysis

To validate the overall accuracy of the calculations, zonal statistics are com-
puted, calculating the mean albedo value of each polygon within a class (column
2 in table 5.6) of the Urban Atlas dataset. All polygons within a class (for
classes see table 5.6) with correctly calculated mean albedo, meaning the mean
albedo lies within the expected range of the class (for ranges see table 5.6),
are counted and compared to the overall number of polygons within that class.
The resulting percentage of correctly calculated polygons is shown in table 6.1.
The class water had to be excluded from this validation, because no adequate
number of polygons within the cloud free area could be detected to obtain a
meaningful result.
Looking at the overall mean, the classes crops and pastures scored the best
results with an overall mean of 89.22% and 80.63% respectively, and decid-
uous forest has the poorest overall mean with 42.84%. Observing the dates
individually, the January scene performs poorly for the classes urban, crops,
pastures, and deciduous forest but at 59% mediocre for coniferous forest. In
February, the classes pastures and crops deliver mediocre to good success rates
while the remaining classes still perform poorly. From March to December a
similar trend is visible in all classes: the rates of correctly calculated polygons
increase during spring and summer and then decrease again towards the end of
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the year. It can also be seen in table 6.1, that the highest success rate in nearly
all classes (except coniferous forest) is reached between the months of April to
September. Delimiting the overall mean to those months (April - September),
the results reach close to 100% for the classes urban, crops, and pastures. The
two forest classes coniferous forest and deciduous forest generally accomplish
mostly mediocre results with a slight increase for the scenes from July and
August.

Table 6.1: Ratio of polygons with a correctly calculated mean albedo per class and date

date urban crops pastures
conif.
forest

decid.
forest

07.01.2016 0.1976 0.2541 0.0464 0.59 0.3082
06.02.2016 0.1948 0.8628 0.6783 0.1634 0.0286
14.03.2016 0.6976 0.9212 0.7667 0.5192 0.1855
13.04.2016 0.9747 1 0.9870 0.8079 0.6097
23.05.2016 0.9869 1 0.9899 0.5395 0.6504
12.07.2016 0.9934 1 0.9928 0.5061 0.8344
04.08.2016 0.9672 1 0.9913 0.8808 0.8256
31.08.2016 0.9607 1 0.9812 0.8413 0.7717
23.09.2016 0.7219 0.9973 0.9507 0.4932 0.2855
29.11.2016 0.3933 0.8886 0.7580 0.3113 0.1003
09.12.2016 0.3717 0.8899 0.7275 0.3005 0.1129

mean p. class 0.6782 0.8922 0.8063 0.5412 0.4284

mean p. class
(Apr. - Sep.)

0.9341 0.9995 0.9821 0.6781 0.6629

The reason for the January scene falling out of alignment in all classes (except
coniferous forest) is the snow cover, that was present during the acquisition
time of this Sentinel-2 scene, as depicted in figure 6.1. It was described in
chapter 2.1, that snow cover, as well as many atmospheric conditions, have
an influence on the albedo of a surface (e.g. S. Wang and Davidson, 2007;
Rautiainen, Stenberg, et al., 2011). Liang’s method appears to be sensitive to
snow cover, but the low success rate in correctly calculated means indicates,
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that the ranges are not compatible with a present snow cover. Figure 6.1 shows,
that the tree tops are not covered in snow, which might be an explanation for
the better results in the class coniferous forest as opposed to the other classes
in January. During the remaining dates no snow cover was present in the study
area.

Figure 6.1: Snow cover in the Sentinel-2 scene from January, the blue rectangle indicates the
investigated area

Source: own illustration

In February, results improved recognisably for the aforementioned classes crops
and pastures, while they deteriorate for the other classes. One possible expla-
nation can be found in the ranges used (table 5.6). The class crops has the
widest range with a span of 0.2 and for pastures the span amounts to 0.1. With
the ranges being set relatively wide, many pixels fall in between the maximum
and minimum, thus leading to a generally higher success rate. To understand
this and the rest of the results in table 6.1 better, the distribution of values
per date within a class needs to be considered, as the used mean is not very
sensitive towards variance and outliers. The following example illustrates this
insensitivity of means.
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0 2 0001 000 m
UA class: crops

¯
Editor: Isabella Rojs

Urban Atlas classification (Copernicus)
Sentinel-2 image: 31.08.2016

Figure 6.2: Two polygons of the Urban Atlas class crops

Source: own illustration

Figure 6.3: Value distribution and mean (red dot) of the two crop polygons from figure 6.2

Source: own illustration
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Figure 6.2 shows two different polygons of the class crops. The left one is a
large polygon, visibly covering several different agricultural fields. The smaller
one (right one in the image), covers a single, spectrally homogeneous field. The
distribution of albedo values within those two polygons is shown in figure 6.3.
While the small, homogeneous polygon (left boxplot in figure 6.3) shows close
to no dispersion in albedo values, the large, heterogeneous polygon (right box-
plot) has prominently stronger dispersed albedo values. However, both means
(indicated in the plot with a red dot) are almost identical and well within the
given range from Pielke and Avissar, 1990. Therefore, in order to avoid the
minor expressiveness of the mean, boxplots for all pixels per class and dates
are created (figures 6.4 to 6.8) to interpret the distribution of values within
a class. For better visual interpretation, in a second graphics each boxplot is
limited on its y-axis.

The boxplots for the class urban (figure 6.4) show many upward outliers. The
boxes (a box includes the middle 50% of the data) for the dates between
April and August all lie within the expected range (see table 5.6), which is
also in agreement with the results connected to the mean albedo in table 6.1.
The albedo values from the January scene show the highest dispersion in this
class as well as in all the other classes, due to the aforementioned snow cover
(figure 6.1). Looking at the boxplot with the truncated y-axis (and disregarding
the January scene), a slight seasonal variation in albedo values with lower
ranges during winter time and increasing ranges through spring and summer
becomes apparent. The boxpots also explain why there is no increase in cor-
rectly calculated mean albedo from January to February (table 6.1), despite
the large span: while the snow covered polygons in January have values mostly
above the maximum stated by Pielke and Avissar, 1990, their snow free albedo
values in February are mostly below the minimum, according to the very low
sun angle. From table 6.1 it can be seen, that for the class urban both dates
have approximately 20% of correctly calculated polygons, but the distribution
of values is very contrary, a fact which cannot be deducted from the mean alone.
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Figure 6.4: Albedo value distribution for the class urban without (top) and with (bottom)
limited y-axis

Source: own illustration
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Figure 6.5: Albedo value distribution for the class crops without (top) and with (bottom)
limited y-axis

Source: own illustration
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Figure 6.6: Albedo value distribution for the class meadows without (top) and with (bottom)
limited y-axis

Source: own illustration
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Figure 6.7: Albedo value distribution for the class coniferous forest without (top) and with
(bottom) limited y-axis

Source: own illustration
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Figure 6.8: Albedo value distribution for the class deciduous forest without (top) and with
(bottom) limited y-axis

Source: own illustration
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The boxplots of the class crops (figure 6.5) lie almost entirely within the
expected ranges from April up to September, with the dispersion increasing
slightly for the September and November scenes. Also for the scenes from
February, March, and December the boxplots are within the limits, but with
a trend towards the lower end of the expected range and higher dispersion
in general, whilst the January scene produces values mostly above the used
maximum from Pielke and Avissar, 1990. For this ground truth class a seasonal
variation is recognizable as well, when looking at the y-axis-limited boxplot. A
very similar result with minimally stronger dispersions throughout the dates
is delivered by the class pastures (figure 6.6). Examining the boxplot with
the truncated y-axis (figure 6.6, bottom), a less pronounced seasonal variation
in albedo values can be detected. From January to March and November to
December a stronger dispersion of values is evident from larger boxes and a
higher number of outliers.
In comparison to the previous three classes, the classes coniferous forest and
deciduous forest (figures 6.7 and 6.8) both show a much stronger seasonal
variation in albedo values. Disregarding the January scene, an increase through
spring, reaching its highest values in summer above the given range from Pielke
and Avissar, 1990, and a decrease through autumn and winter can be seen
for both forest classes. This becomes even more apparent when looking at the
two bottom boxplots with the truncated y-axes. They both have the most
upward outliers in all the dates, especially in the March scene and decidu-
ous forest has noticeably more downward outliers compared to coniferous forest.

Next to snow cover, other factors, such as the solar zenith angle or atmospheric
conditions like water-vapour content and precipitation (Cescatti et al., 2012;
Román et al., 2009; Ollinger et al., 2008, see chapter 2.1), have an influence on
albedo measurements. All of these variables change throughout the course of
a year and with them, the measured surface albedo changes. These seasonal
variations are visible in all boxplots (figures 6.4 to 6.8). Typical ranges of albedo
for a ground cover type, however, cannot portray this seasonal variation, when
there is no information given on when which end of the range has to be used.
Therefore they appear not to be a suitable tool, to validate the results of a
time series covering all seasons, as it could not be retraced from Pielke and
Avissar, 1990, for which time of year these albedo ranges apply. Generalising, it
can be deducted, that the chosen method of calculating albedo is applicable for
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the timespan of April to September for the classes urban, crops, and meadows
and only for August for the classes coniferous forest and deciduous forest.
Comparing the results within one date, the albedo is expected to be lowest
for coniferous forest and increase with the classes deciduous forest, meadows
and crops (valid for summer; Coakley, 2003). Figure 6.9 shows the albedo value
distribution for these four classes for scene 6 (12.07.2016) and the mean increase
from class to class is clearly visible (similar plots for different dates can be seen
in the Appendix).

Figure 6.9: Comparison of albedo value distribution for different classes

Source: own illustration

Finally, the course of the variation needs to be examined. Consulting the
literature, some sources describe higher albedos in winter than in summer,
while other sources describe the opposite for the same cover type. Jong, 1973
states, that albedo changes with the altitude of the sun. At a lower sun al-
titude (such as in the morning and evening or generally in winter) the sun
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rays supposedly penetrate less into the surface and a larger fraction of the
incoming radiation is reflected, thus leading to a higher albedo, as opposed to
lower albedo at higher sun altitudes (Jong, 1973). Considering, that a beam of
solar radiation is subject to much higher scattering at lower sun angles and at
the same time covers a larger area than at higher sun angles (Gebhardt et al.,
2007), Jong’s remarks should be treated with reserve. Coakley, 2003 also lists
slightly higher albedo values for winter compared to summer albedo for the
classes evergreen forest (needle leaved) and deciduous forest but vice versa for
short grassland, meadow and shrubland. Other sources also attribute higher
albedo values to the winter season for the classes water (Cogley, 1979) and
evergreen needleleaf forests, open shrublands, and barren or sparsely vegetated
surfaces (Zhou et al., 2003), or for global albedo (Stephens et al., 2015). These
sources do not state clearly, if a present snow cover is responsible for higher
winter albedos. Different sources indicate higher summer albedos (as opposed to
snow-free winter albedos) for certain cover types, such as deciduous and mixed
forest, but propose conversed albedo values for cover types like crops/corn
field (Robinson and Kukla, 1984; Myhre, Kvalevag, and Schaaf, 2005), which
is contradictory to Coakley, 2003. Rechid, Raddatz, and Jacob, 2008 propose
generally higher albedo values for European land surfaces in summer contrary
to snow-free winter. It is evident, that snow cover increases the albedo of a
surface significantly (e.g. Kuusinen et al., 2014; Robinson and Kukla, 1984;
Hovi et al., 2019), but if the albedo of the same surface is higher in snow-free
conditions in winter is not unambiguously verifiable from the investigated
sources. However, in the case of no snow cover present, the albedo of a surface
is expected to be higher in summer than in winter, because of the changing in-
cidence angle during the course of a year, and all boxplots reflect this behaviour.

A few comments also need to be addressed towards the used validation dataset,
the Urban Atlas classification. Firstly, the time difference between the acquisi-
tion date of the satellite images the albedo values are calculated from and the
date the validation dataset was generated has to be considered. The albedo
was calculated from Sentinel-2 scenes of the year 2016 whereas the validation
dataset is comprised of the Urban Atlas classification from 2012 (Copernicus,
2019b) and the LiDAR-derived forest map from 2015 (Bauer et al., 2015). Any
changes, which might have occurred between the classifications and the time of
collection of the scene are not accounted for and could therefore possibly lead to
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a bias in the results. Additionally to the time difference, the spatial resolutions
between the datasets deviate. The Sentinel-2 scenes come at a spatial resolution
of 10 m, while the Urban Atlas classification is derived from 20 m resolution
data and the LiDAR-based forest map from 20 cm resolution data.
Figure 6.10 illustrates this potential bias owed to time of data creation with
two examples for the case of the Urban Atlas classes crops and urban. The
polygon in the left extract, attributed to the class crops, covers a small water
body. The example on the right shows a polygon of the class urban covering a
vegetated area. Both changes possibly occurred between the time of the Urban
Atlas classification (2012) and the Sentinel-2 data acquisition date (2016). An
example for a possible spatial resolution bias is shown in figure 6.11. The
highlighted polygons of the class crops overlap into some pixels of the ground
cover forest. As the extent of those forest pixels might fall below the minimal
mapping unit of the Urban Atlas classification, they are not gathered as a
separate class, but rather included in a neighbouring class, following a chosen
classification algorithm. These considerations need to be kept in mind when
analysing the results derived from the Urban Atlas classification.

Coming back to the results of this thesis, the snow cover in January is clearly
evident, and higher albedos due to the snow cover are easily accountable. It
can be deducted, that the chosen method to calculate albedo is sensitive to
snow cover and generally delivers higher albedos for snow covered surfaces. For
the rest of the dates, the trend is reversed: calculated albedos in summer tend
to be higher than in winter. This trend is expected, however, the findings in the
technical literature concerning the seasonal variation in albedo are ambiguous.
In conclusion, Liang’s approach of a band weighting function produces results
in agreement with cover type dependent albedo ranges found in literature when
constricting the input data to summer scenes. The weighting function reflects
the expected relationship of albedo between different classes correctly (see
figure 6.9). In order to make a statement about the suitability of the method for
winter or the seasonal variation of albedo, additional information, like ground
based measurements and reference albedo values linked to a season, would be
needed.
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Figure 6.10: Time of data creation induced error between Sentinel-2 data (scene from
31.08.2016) and Urban Atlas classification

Source: own illustration
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Figure 6.11: Spatial resolution difference induced error between Sentinel-2 data (scene from
31.08.2016) and Urban Atlas classification

Source: own illustration
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6.2 Results and discussion of FVC plausibility
analysis

With a mask representing 100% soil sealing, derived from the soil sealing map
of Graz (Graz, 2019) as described in chapter 5.5.2, values are extracted from
the FVC calculations. These values are plotted in density histograms with a bin
width of 0.01 to visualise the relative frequency of value distribution. As the
reference is a fully sealed surface, values in the calculations are expected to be 0,
or as low as possible. Figures 6.12 to 6.15 show these histograms for each of the
four investigated dates (12.07.2016, 04.08.2016, 31.08.2016, 23.09.2016) and the
three used indices (GVI, MSAVI, NDVI). Additionally, the mean is also plotted
into each histogram and all means are summarised in table 6.2. The mean is
also expected to be as close to 0 as possible. Table 6.2 also includes the relative
frequency of the first bin of the histogram. It describes the relative amount of
values, compared to all values, with a calculated FVC of 0. As the bin width is
set to 0.01, the value can be equated with the percentage of correctly calculated
values.

Table 6.2: Mean FVC per index and date

index date mean ratio in first bin

GVI

12.07.2016 0.0187 0.82
04.08.2016 0.0865 0.39
31.08.2016 0.0704 0.32
23.09.2016 0.0516 0.45

MSAVI

12.07.2016 0.0371 0.80
04.08.2016 0.0548 0.68
31.08.2016 0.0737 0.58
23.09.2016 0.0718 0.57

NDVI

12.07.2016 0.0285 0.85
04.08.2016 0.0489 0.65
31.08.2016 0.0491 0.70
23.09.2016 0.0511 0.66
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Figure 6.12: Density histogram for scene 6 (12.07.2016): FVC from GVI (top), MSAVI
(center), and NDVI (bottom)

Source: own illustration



Figure 6.13: Density histogram for scene 7 (04.08.2016): FVC from GVI (top), MSAVI
(center), and NDVI (bottom)

Source: own illustration



Figure 6.14: Density histogram for scene 8 (31.08.2016): FVC from GVI (top), MSAVI
(center), and NDVI (bottom)

Source: own illustration



Figure 6.15: Density histogram for scene 9 (23.09.2016): FVC from GVI (top), MSAVI
(center), and NDVI (bottom)

Source: own illustration
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The best result is achieved with the GVI-derived FVC on scene 6 (12.07.2016)
with 1.87% vegetation cover on average, while the poorest results are also
achieved with GVI-derived FVC for scene 7 (04.08.2016) with 8.85%. NDVI
has a higher percentage of correctly calculated values for scene 6 (85%) com-
pared to GVI for the same date (82%) but a lower mean (2.85%). All results
are well below a mean of 10% with scene 6 reaching the lowest mean per
index. Scene 6 also has the highest percentage of correctly calculated values in
all dates (above 80%). For all dates, apart from 12.07.2016 (scene 6), NDVI
scores the best results with means at approximately 5% per date. Results for
MSAVI and NDVI deteriorate (slightly) from scene to scene, while results for
GVI drop to the lowest score for scene 7 and then improve again. Comparing
the indices per date, MSAVI produces the lowest accuracy in all dates, ex-
cept for scene 7 (04.08.2016), where GVI scores the poorest results. Overall,
the achieved results look promising but their significance needs to be questioned.

The selection of the two scaling parameters in the regression method, V Iv and
V Is, is a crucial step in applying this approach, as described in chapter 2.2. The
procedure for deriving V Iv, detailed in chapter 5.3, relies on the LiDAR-based
forest mask. Based on the attribute crown closure, fully vegetated polygons
are identified and their mean delivers V Iv for each scene. The choice of forest
as a basis for V Iv determination can be problematic. Looking at the equation
(5.8) to calculate FVC, the higher the value for V Iv, the lower the resulting
FVC value. Grass, which can have a higher NDVI than forest, might produce
a different result, if used for the determination of V Iv. As there is not a lot
of forest present in the investigated extent of the scene (for extent see figure
5.9), this might distort the results. Also the fact, that there was no ground
truth available for the selection of V Is is a possible source of error. Ideally
V Iv and V Is would be selected from a field campaign during the same time of
the acquisition dates of the sensor data, or through the aid of high resolution
satellite or airborne images. When analysing time series, like in this thesis,
it needs to be ensured that the selected areas are fully vegetated (V Iv) or
completely free of vegetation (V Is) for all investigated dates.

The reference data only gives information on 100% soil sealing, so merely the
low end of value ranges of the calculations can be analysed. Following table 6.2,
the regression method of scaling a Vegetation Index appears to be a suitable
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tool to detect soil sealing. However, due to the lack of suitable reference data, no
analysis can be conducted regarding the high end of values and the fraction of
mixed pixels, which would be most interesting and crucial for a true verification
of the method. The successful application of this method in various studies has
been described in chapter 2.2, therefore adequate results for vegetated surfaces
are expected for this thesis’ Sentinel-2 data and study area, but further testing
with more appropriate reference data is still needed.

6.3 Results and discussion of LAI plausibility
analysis

Following the applied methods, this section will discuss the results for forest
(chapter 6.3.1) and crops (chapter 6.3.2) separately. Similar to albedo, LAI
values from databases are available for several land cover types. From Iio and
Ito, 2014, all entries for spruce and pine (for coniferous forest) and beech and
oak (for deciduous forest) from Austria and Germany are used, to determine
the range of possible LAI values. Scurlock, Asner, and Gower, 2001 provide the
data for the crop types maize and wheat. To perform plausibility tests, ground
truth data is used as described in chapter 5.5.3. It was ensured that no cloud
cover is present at any time of the used scenes in the area of interest.
In chapter 6.1 the limits of using a mean value for the plausibility analysis
(of albedo results) was discussed. Therefore it was decided to focus only on
value distribution in this chapter for LAI tests. As described in chapter 5.5.3,
additional information from the forest mask on age class allow for further
analysis of the LAI results.

6.3.1 Forest

In the first part of this chapter, the results for each of the three approaches are
presented, discussed and compared. In a second part, the results for forest LAI
are connected to the parameter age class.
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Part I

Approach 1
Chen and Cihlar, 1996 established different empirical relationships (linear and
exponential) between their LAI ground measurements of coniferous forest and
two indices (NDVI and SR) for late spring and mid-summer (see equations 5.9
to 5.16). Their methods are applied to scenes 5 (23.05.2016) and 6 (12.07.2016)
respectively. The results for these scenes can be seen in figure 6.16. In general,
LAI derived from SR shows more strongly dispersed values compared to NDVI-
derived results in both dates. The exponential relationships create higher LAI
values on average, than the linear relationships and the effect is prominently
visible in late spring (top figure). While the exponential relationship derived
from SR for late spring lies mostly outside the given range, all the other combi-
nations seem to match the database value ranges. For coniferous forest stands,
the LAI throughout the year is expected to stay relatively constant on one
level (Rautiainen, Heiskanen, and Korhonen, 2012), therefore value ranges from
databases can be a suitable tool to verify coniferous LAI calculations.

Apart from the addressed SR-outlier, the results suggest that this approach
by Chen and Cihlar, 1996 is applicable to the study area with the used sensor.
It should be mentioned, however, that the best result in terms of R2 by Chen
and Cihlar, 1996 was accomplished with the exponential regression from SR
for late spring, which performed the poorest in this setting.
Considering the seasonal variation of LAI and VIs, the strength of the method
probably lies within the consideration of phenology status of forests (separate
regression functions for spring and summer). However, further tests for multiple
years would be necessary to confirm this statement. With the Sentinel-2 mission
constellation of two satellites, cloud-free time series are more probable and
facilitate additional testing in the future.
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Figure 6.16: LAI value distribution for the class coniferous forest for late spring (left) and
mid-summer (right), after Chen and Cihlar, 1996

Source: own illustration
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Approach 2
Bach et al., 2003 used exponential regression functions (after Gregoire and
Raffy, 1997) based on the NDVI for several land cover classes, considering
coniferous forest (equation 5.17) and deciduous forest (equation 5.18). In their
study, they applied these equations to a scene from May and one from October,
so it was decided to test this method on scenes 3 (14.03.2016) (a scene before
the leafing phase, to show the strong influence of the leaf production phase in
deciduous forests) to 9 (23.09.2016) (with the October scenes being too clouded
in most parts to use). Figure 6.17 (top figure) depicts the LAI value distribution
as boxplots for the class coniferous forest calculated after Gregoire and Raffy,
1997 (as cited in Bach et al., 2003). The values show a strong dispersion be-
tween months and the regression formula highly overestimates for August and
September and slightly for May, in relation to the limits taken from Iio and Ito,
2014. For the months March, April and July the values are in agreement with
the proposed ranges found in literature related to terrestrial measurements. As
stated above, the LAI for coniferous forest stands is expected to be relatively
constant in the course of the seasons (Rautiainen, Heiskanen, and Korhonen,
2012), and method 2 does not reflect that. The method seems to be unsuitable
for late summer and early autumn (scenes 8 and 9). As stated in chapter 5.4.1,
Bach et al., 2003 merely applied the regression functions to improve their
hydrological model, and did not perform any ground measurements of LAI to
test their methods. The publication they refer to (Gregoire and Raffy, 1997)
could not be accessed, so no statement can be made about the circumstances
under which this empirical relationship was formed and the applicability to
this thesis’s settings. The results for May fall out of line with generally higher
values compared to the previous and following scene.

One explanation for the irregular results in May could be some unexpected
heterogeneous surfaces in the coniferous forest, discovered in the NIR band,
which is used to calculate this LAI. In figure 6.18, an extract of coniferous
forest is shown for scene 5 (23.05.2016) for the bands Red, NIR, Vegetation
Red Edge and SWIR ((a)-(d)). While the surface looks homogeneous in the
Red band (a), it is much more heterogeneous in the NIR (b) and Vegetation
Red Edge band (c). The effect is less pronounced in the SWIR band (d). This
could be attributed to cut or fallen trees, or other natural causes. Broadleaved
trees among the coniferous stand could also be a possible cause for this effect,
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which is visible throughout the entire scene over coniferous forest. It could also
be an explanation for the upward outlier of Chen and Cihlar’s method of the
exponential regression from SR for late spring (figure 6.16, top).

For deciduous forest (figure 6.17, bottom) an increase in LAI from March to
May is clearly visible. Between May and September the LAI is constant at
approximately 6, with values being generally slightly higher in May. Also, the
values in those four months lie mostly within the expected range. The increase of
LAI of deciduous forest in spring is connected to the leaf production phase and
is also noted by several publications (e.g. Rautiainen, Heiskanen, and Korhonen,
2012; Simpraga et al., 2011; Campioli et al., 2011). LAI values above 0 during
that time can be accounted to understory vegetation, that is visible through
the leaf-less trees. Rautiainen, Heiskanen, and Korhonen, 2012, Simpraga et al.,
2011, and Campioli et al., 2011 describe a bell-shaped development of LAI
values throughout the year, with a strong increase of LAI in the leaf production
phase, constant LAI in the leaf maturity phase and a sharp drop in the phase of
leaf senescence. This trajectory is also recognisable in figure 6.17 (bottom) up
to the leaf maturity phase (May - September). The start and end of the phases
differ between publications and are of course depending on tree species and
biogeographical regions. In the publication of Campioli et al., 2011, a beech tree
site in Hessen, Germany, is investigated and the start of the LAI increase as
well as the values reached during leaf maturity phase (around 6) coincide with
the obtained results in this thesis. The slightly higher values in May could be
attributed to the same noise as described in the previous paragraph. However,
the effect in deciduous forest is much less pronounced and does not distort
the visual result as much as with coniferous forest. Summarising, the method
appears to work well for deciduous forest, especially during leaf maturity phase.

81



6 Results and Discussion

Figure 6.17: LAI value distribution for the class coniferous forest (top) and deciduous forest
(bottom) after Gregoire and Raffy, 1997 (as cited in Bach et al., 2003)

Source: own illustration
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(a) (b) 

(c) (d) 

Figure 6.18: May scene: Band 3 - Red (a), Band 4 - NIR (b), Band 6 - Vegetation Red Edge
2 (c), Band 11 - SWIR 1 (d)

Source: own illustration

Figure 6.19: LAI value distribution for the class coniferous forest after Schiffmann et al.,
2008

Source: own illustration
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Approach 3
Schiffmann et al., 2008 compared three different indices with two different
measurement methods for LAI (see chapter 5.4.1, equations 5.19 to 5.24). In
their study, LAI derived from RSR compared to LAI measurements from DHP
scored the best results in the regression analysis (R2 = 0.83, RMSE = 0.64).
The different regression functions established by Schiffmann et al., 2008 were
applied to scene 6 (12.07.2016), as the publication used a Landsat TM scene
from July, and the results are shown in figure 6.19. The y-axis was truncated
for better visibility. As already observed for the method of Chen and Cihlar,
1996, the SR-derived LAI values are more strongly dispersed and delivers
generally higher values in comparison to NDVI and also RSR. Overall, the
regression functions based on the LAI-2000 plant canopy analyzer produce
higher LAI than from DHP. Looking at the ranges, provided by terrestrial LAI
measurements found in literature, LAI derived from RSR using DHP is the
only one dropping below the minimal value of terrestrial measurements (Iio
and Ito, 2014). This result is contrary to the findings of Schiffmann et al., 2008,
who obtained the best results with this approach. For the remaining regression
functions, no statement can be made about one being better suitable than the
other, as they all lie within the very widely set range and no real ground truth
measurements are available.

Figure 6.20 shows a comparison of all methods, applicable to calculate LAI
for coniferous forest for summer. It combines all results from figures 6.16 (bot-
tom), 6.17 (top), and 6.19. Again, the y-axis was limited for better visual
interpretation. Apart from the RSR-derived LAI by Schiffmann et al., 2008,
which falls below the minimum found in the database (Iio and Ito, 2014), all
methods produce LAI values (mostly) within the expected range. Outliers can
be attributed to the time difference between the ground truth data (2015 for
forest) and the remote sensing data (2016), cloud cover or shadow, or mixed
pixels at the border to other ground cover classes. Despite taking care to
avoid pixels that could be affected by the mentioned conditions, errors in the
automated selection process of ground truth data cannot be discarded. Again,
no statement can be made about one method being superior to the other. It
appears, however, that LAI values below 5, as produced through four of the
six methods by Schiffmann et al., 2008 (boxplots F, G, H, I in figure 6.20),
are to be expected in coniferous forest sites in boreal (e.g. Pope and Treitz,
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2013; Aubin, Beaudet, and Messier, 2000) or mountainous (e.g. Kantor, Sach,
and Cernohous, 2009; Sterba, Dirnberger, and Ritter, 2018) regions, and values
above 5 in regions similar to this study area (e.g. DeRose and Seymour, 2010;
Turner et al., 1999). Schiffmann et al., 2008 conducted their study in Yosemite
National Park, which is located in the Sierra Nevada Mountains (USA), a
highly mountainous site. Applying their methods to the study area of this
thesis emphasises the strong study-specific dependency of regression functions.

Figure 6.20: Comparison of all methods for coniferous forest for July scene

Source: own illustration
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Part II
In this part the relationship between LAI and different age-related attributes
of forest are investigated. The findings in the literature are connected to the
available information on age class from the LiDAR-based forest map. The aim
is to find out, if the tested methods reflect the expected behaviour of LAI in
connection to age class.

In literature, the relationship between LAI and stand age is well documented.
In the first period of growing the leaf area of a stand increases significantly until
it reaches its peak (Leuschner et al., 2006; Pokorny and Stojnic, 2012; Kantor,
Sach, and Cernohous, 2009; Ryan et al., 1997, as cited in Leuschner et al., 2006).
While

”
fast-growing“ trees (such as Norway spruce) reach their maximum LAI

at an age of 10 - 15 years (Pokorny and Stojnic, 2012),
”
slow-growing“ trees

(such as certain pine species) peak between 20 and 40 years of age (Long an
Smith, 1992, as cited in Vose et al., 1994; Schlerf, Atzberger, and Hill, 2005).
After a stand reached its peak, LAI either slowly declines or fluctuates around a
natural equilibrium value - this applies to coniferous as well as deciduous forest
stands (Pokorny and Stojnic, 2012; Battaglia et al., 1998; Sonohat, Balandier,
and Ruchaud, 2004; Köstner, Falge, and Tenhunen, 2002; Schlerf, Atzberger,
and Hill, 2005; Leuschner et al., 2006). Ryan et al., 1997 (as cited in Battaglia
et al., 1998) also state, that decline in LAI is the rule, whereas an equilibrium
is the exception.

Multiple reasons for decreasing LAI with stand age are reported. Thinning, as
a method in forest management to either improve site conditions in a younger
stand, or remove dead trees in an older stand, or thinning as natural process in
medium-aged to older ones leads to a variation or decline in LAI, depending
on management practices (Schlerf, Atzberger, and Hill, 2005; Köstner, Falge,
and Tenhunen, 2002). Logging in commercial forests leaves gaps, which also
reduces LAI (Schlerf, Atzberger, and Hill, 2005). As soon as tree crowns reach
a size, where they interact with each other, LAI starts to decrease because of
crown abrasion (Ryan et al., 1997, as cited in Leuschner et al., 2006, Schlerf,
Atzberger, and Hill, 2005). Other reported age-related causes for decreasing
LAI include defoliation in older forest stands (Pokorny and Stojnic, 2012),
decreasing nutrient availability (Leuschner et al., 2006), or higher mortality in
older stands (Ryan et al., 1997, as cited in Leuschner et al., 2006).

86



6 Results and Discussion

As described in chapter 3.3.3, additional forest parameters are available for the
LiDAR-based forest map. One of these parameters is the age class (in German
Wuchsklasse, abbreviated with WKL). It is derived by Bauer et al., 2015 from
crown closure and diameter at breast height (DBH) (see table 6.3).

Table 6.3: Age class of forest

age class WKL

Blöße (seedling) 1
Jungwuchs/Dickung (sapling) 2
Stangenholz (pole) 3
Baumholz schwach (mature tree, weak wood) 4
Baumholt mittel (mature tree, middle wood) 5
Starkholz (mature tree, strong wood) 6

Source: adapted from Bauer et al., 2015

The age class is a more appropriate tool to describe the stage of development
of a tree than the tree age alone. Many site conditions, like water and nutrient
availability, soil, or aspect, as well as management practices influence tree
growth (e.g. Ludlow, 1997), therefore trees of the same age can diverge strongly
in their development. For this reason, the age class cannot be directly linked to
stand age. However, on the basis of the age class, forest development stages like
“first growing period” and management practices like “first thinning” can be
derived. The first growing period is equivalent to age class 2 (WKL 2) and first
thinning usually takes place when a stand is fully stocked (Kerr and Haufe,
2011), a measure which depends on stands per hectare and DBH (e.g. Edwards
and Christie, 1981; Emmingham and Elwood, 1983), and can be compared to
age class 3 (WKL 3).

In figure 6.21, LAI value distribution for coniferous (top) and deciduous (bot-
tom) forest (after Gregoire and Raffy, 1997, as cited in Bach et al., 2003), is
shown per age class. Coniferous forest (top in figure 6.21) shows highest LAI for
WKL 2, after which it gradually declines up until WKL 4 and then increases
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again through WKL 5 and 6. The results appear to be in agreement with the
aforementioned relationship between LAI and tree development derived from
age class. Coniferous forest stands in Austria are mostly made up of spruce (a

”
fast-growing“ tree (Pokorny and Stojnic, 2012)) so a peak LAI is expected

in WKL 2. Also the steady decrease after that is well described in literature.
The renewed increase after WKL 4 could be attributed to forestry management
thinning (Schlerf, Atzberger, and Hill, 2005). LAI per age class after Chen and
Cihlar, 1996 and Schiffmann et al., 2008 show the same trend as seen in figure
6.21, their plots can be seen in the appendix.
The LAI differences in age class for deciduous forest (bottom in figure 6.21)
are less distinct than in coniferous forest but also in this case, LAI for WKL 2
is highest and gradually declines through the age classes 3 to 6. Contrary to
coniferous forest, no renewed increase after WKL 4 is visible, which could be
owed to a different forest management. The steady and slow decrease towards
a possible equilibrium stage is also well reported for deciduous trees (He et al.,
2012; Leuschner et al., 2006).
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Figure 6.21: LAI value distribution per WKL for the class coniferous forest (top) and
deciduous forest (bottom) after Gregoire and Raffy, 1997 (as cited in Bach et al.,
2003)

Source: own illustration
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6.3.2 Crops

Despite the very plant type specific nature of LAI (Haboudane et al., 2004;
González-Sanpedro et al., 2008), only non-crop-type-specific regression func-
tions were applicable for this study area and used satellite imagery, as described
in chapter 5.4.2. Equations 5.25, 5.27, and 5.28 are used to calculate LAI from
Sentinel-2 scenes. To exemplarily validate the results, ground truth about the
crop types maize and wheat (chapter 3.3.2) are used, to compare the results to
terrestrial LAI measurements (taken from Scurlock, Asner, and Gower, 2001).
Analogous to chapter 6.3.1, boxplots are created for each used date.

Figure 6.22: LAI value distribution for maize

Source: own illustration
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Figure 6.22 depicts the boxplots for the class maize from May to September for
all three applied methods. The dashed lines parallel to the x-axis symbolise the
minimum and maximum taken from the LAI database (Scurlock, Asner, and
Gower, 2001. The methods from Ludwig et al., 1999 (as cited in Bach et al.,
2003) and Delegido, Verrelst, Alonso, et al., 2011 show a comparable trend, but
differ slightly in degree of value dispersion and height of reached values. While
Ludwig’s method uses a polynomial function of degree three, applied in North-
ern Italy, Delegido’s method comprises a linear function established for field
data gathered in central Spain, Northern Germany, and Southwestern France.
Both methods produce values predominantly below the found minimum in the
database (Scurlock, Asner, and Gower, 2001) in May and a strong increase
up to July. Unfortunately no Sentinel-2 scenes were available for June 2016,
as described in chapter 3.1. After July, a decrease in LAI throughout August
and September for these two methods occurs. The values obtained through
Delegido’s method are higher on average than Ludwig’s values, with the highest
mean LAI value at approximately 3.8 or 3 respectively.
Reichenau’s method also delivers LAI values below the database minimum
for May by a majority, however, for the remaining months their approach
presents slightly different properties. The values disperse very strongly for July
and August and have many more upward outliers, compared to Ludwig’s and
Delegido’s methods. The produced LAI values for September are comparable
to the ones obtained from Delegido but with stronger dispersion.
Consulting the literature on ground-based LAI measurements for maize through
the course of a year, the start of increase in green LAI is reported for around
DOY (day of year) 150 - 160 with a peak around DOY 180 - 215, depending on
the publication (Bsaibes et al., 2009; Gitelson, Viña, et al., 2003; Kang et al.,
2016; Heggenstaller, Liebman, and Anex, 2009). After that, LAI decreases, first
gradually and then abruptly. Figure 6.23 shows the dynamics of maize LAI
through the course of year after Bsaibes et al., 2009 (top) and Gitelson, Viña,
et al., 2003 (bottom). In table 6.4, each date of the scene is matched with its
DOY for 2016.
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Following the trend of LAI values, Ludwig’s and Delegido’s methods appear to
match the expected behaviour found in the literature. The May scene (DOY
144) is set before the expected increase in LAI at DOY 150 - 160 so values
should be recognisably lower than in the following months. Highest LAI for
these two methods are obtained in the July scene (DOY 194) and the decrease
throughout August (DOY 244) and September (DOY 267) also fall in line with
the findings in the publications. Bsaibes et al., 2009 conducted their study in
Southern France, Kang et al., 2016 in Iowa, USA, and Gitelson, Viña, et al.,
2003 used data from the previously described SPARC campaign (Spain). They
report maximum LAI values for maize of approximately 3, 4, and 6 respectively,
confirming the maximum values obtained from Ludwig’s and Delegido’s meth-
ods. Reichenau’s approach also portrays this trend, but, as mentioned before,
their values disperse considerably more. Concluding, all three methods appear
to produce LAI values that are in agreement with the database (Scurlock, Asner,
and Gower, 2001) and other publications, and match the expected behaviour
through the course of a year, but the strong dispersion of values produced by
Reichenau’s method make their approach less reliable regarding correctness
of calculated values. Partly, this could be attributed to the use of an already
deficient product - the FVC calculated from NDVI (as discussed in chapter 6.2)
- which is necessary to apply Reichenau’s approach (see equation 5.28).

Table 6.4: DOY 2016

Date 2016 DOY 2016

14.03. 74
13.04. 104
23.05. 144
12.07. 194
31.08. 244
23.09. 267

Source: Day-Of-Year Calendar 2019
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Figure 6.23: Dynamics of maize LAI after Bsaibes et al., 2009 and Gitelson, Viña, et al.,
2003

Source: adapted after Bsaibes et al., 2009 (top), Gitelson, Viña, et al., 2003 (bottom)

The results for the class wheat from March to August for all three applied
methods are shown in figure 6.24. All three methods show a similar trend from
month to month and for each month the distribution of values is comparable to
the class maize: Ludwigs’s method delivers the lowest, and Reichenau’s method
again the highest and most strongly dispersed values.
According to literature and depending on the wheat variety (winter, spring, or
summer), phenological development starts at around DOY 60 - 80 for winter
wheat (Grünhage et al., 1999; Huang et al., 2016; Bsaibes et al., 2009) and
at around DOY 100 for spring wheat (Grünhage et al., 1999). Maximum LAI
values are reported around DOY 130 (Huang et al., 2016, study conducted in
Heibei Province, China), 140 (Bsaibes et al., 2009, study conducted in Southern
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France), and 165 (Grünhage et al., 1999, study conducted in Lower Saxony,
Germany). After the peak, LAI declines and Grünhage et al., 1999 report
harvest at approximately DOY 220.
Figure 6.24 illustrates the increase in LAI from March (DOY 74) to May (DOY
144) in all the tested methods, which is in agreement with the expected course
described in the literature. While Ludwig’s method produces values below the
database minimum for March, all the others lie mainly in between the limits.
Reichenau’s method again delivers the most upward outliers and for May also
a part of the third quartile is above the database maximum. From May to July
the LAI decreases significantly, which could be attributed partly to browning
leaves and partly to already harvested fields. From the ground truth data on
crops (chapter 3.3.2) some information is available on whether a polygon has
been already harvested or not at a certain field campaign date and all wheat
polygons have been used for this boxplot. The repeated increase from July to
August could be caused by crop rotation.
Maximum LAI values from the aforementioned studies reach 2.5 (Bsaibes et al.,
2009), 4.5 (Grünhage et al., 1999), and up to 7 (Huang et al., 2016). All three
tested methods seem to be in accordance with this, concerning maximum LAI
values. Again, without ground-based LAI measurements of the tested area,
no conclusive statement can be made about one method being more or less
suitable than the other to determine LAI of wheat.
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Figure 6.24: LAI value distribution for wheat

Source: own illustration

Although only those methods could be employed for crop LAI calculation,
which did not specifically consider the crop type, they appear to be capable
of reflecting the course of LAI throughout the vegetation period. Considering,
that mostly these methods are adapted for green LAI only and are derived from
NDVI or another VI, this result is not surprising and to be expected. With the
higher temporal resolution reached through the constellation of Sentinel-2A and
2B, further investigations are possible about the yearly trend of LAI of different
crop types. However, new ground truth data would need to be collected in field
campaigns for the investigated year. To give a statement about the reached LAI
values through calculation, ground-based LAI reference measurements would
be beneficiary. The deficiencies of using values from available databases have
already been discussed.
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This thesis applies different retrieving approaches for three biogeophysical
parameters (albedo, FVC, LAI) to Sentinel-2A satellite images and analyses
the plausibility of the remote sensing based obtained results through various
steps. The plausibility analysis is conducted in different ways, depending on
the availability of reference data. The applied approaches are chosen from
an extensive literature review, according to their anticipated transferability,
regarding used sensors and study site specific conditions of this thesis.

Albedo is calculated with a band weighting function after S. Liang, 2000 and the
results are validated using Copernicus’ Urban Atlas classification and albedo
ranges for different ground cover types gained through non remote sensing
methods (taken from Pielke and Avissar, 1990). At first sight, the results look
promising, but ample limitations regarding the reliability of these test results
have to be considered. The inadequacy of the Urban Atlas classification as a
validation dataset as well as the inaccuracy of derived statements from using
ranges as reference are two of the main drawbacks in performing plausibil-
ity analyses with the given data. Liang’s method proves to be sensitive to a
present snow cover and to seasonal variations of albedo in the study area, using
Sentinel-2 imagery. However, without ground-based measurements in the study
area, ideally synchronised with the overfly time of the satellite, the correctness
of the calculated values cannot be verified accurately.

Three different vegetation indices (GVI, MSAVI, NDVI) are used within a
scaling function (equation 5.8) to calculate Fraction of Vegetation Cover. The
results are validated using a soil sealing map provided by Graz, 2019 indicating,
that the method is well suited for the scaling of FVC from Vegetation Indices
for the tested Sentinel-2 data at different dates. NDVI scores the lowest error in
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three out of four dates and GVI delivers the best result with a mean of 0.0187.
GVI also delivers the poorest result (mean: 0.0865) for one date. The initially
anticipated better performance of MSAVI over NDVI and GVI could not be
confirmed. On the contrary, MASVI produces the poorest results for three out
of four dates.
Limitations were addressed regarding the selection process of the scaling param-
eters V Iv and V Is, as well as the validation data set. Better suitable reference
data and ground truth data would be required to validate the FVC results for
the used satellite data and study area.

Leaf Area Index is ground cover type dependent (González-Sanpedro et al.,
2008), therefore different empirical regression functions are applied to two differ-
ent cover types: forest and crops. To validate the results, databases containing
non remote sensing based LAI measurements (Scurlock, Asner, and Gower,
2001 and Iio and Ito, 2014) are used.
For coniferous forest, Chen and Cihlar’s method, which provides different re-
gression functions (linear and exponential) for two indices (NDVI and SR)
and different seasons (spring and summer), produces results mostly within the
expected range, apart from one upward outlier (exponentially SR-derived LAI
for spring). The strength of this approach lies most likely within the separate
functions for different seasons, with which also LAI changes (Jonckheere et al.,
2004). Gregoire’s regression formulas appear to work well for deciduous forest
but produce too much variation between dates for coniferous forest. Results
from the regression functions taken from Schiffmann et al., 2008 underline the
study-specific dependency of regression functions. Their study was conducted
in a mountainous area in the USA, and LAI produced through their method is
tendentially lower (and in some cases below the expected minimum) compared
to the other approaches. Concerning LAI and its relation to age class, all three
tested methods confirm the expectations of constant to slightly declining LAI
with increasing age class. Although all methods (with the aforementioned excep-
tions) meet the criterion of producing LAI values within an expected range, no
qualitative comparison of methods is possible without reference measurements.
To calculate LAI for crops, three generic crop functions, which do not differenti-
ate between crop types, are used. They are verified regarding their capability to
produce fitting results of phenological behaviour for two different crop plants:
maize and wheat. For both crop types, the results suggest partial to good
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agreement with the findings in literature, regarding (a) the maximum values
reached and (b) the course of LAI during the growing period. While Lud-
wig’s method generally produces the lowest LAI values on average per month,
Delegido’s method shows a comparable trend with tendentially slightly higher
values. Reichenau’s FVC-based approach delivers the highest and most strongly
dispersed values during the growing period. With the high dynamics of crop
LAI, more input data would be necessary, to better analyse the trajectory.
Especially the Sentinel-2 data gap in June could provide vital information.
Analogous to forest, also in this case reference measurements are indispensable
to qualitatively compare the tested methods.

Coming back to the main study objectives outlined at the beginning of this
thesis, the literature review revealed a large spectrum of available optical
remote sensing based approaches for the retrieval of the three investigated
biogeophysical parameters. Mainly those studies, which are using Landsat
data to derive empirical relationships for the variables, are chosen for this
research, due to comparable band widths with the Sentinel-2 satellite, but
also other studies, using RapidEye or Sentinel-2 simulations obtained from
hyperspectral data are applied. A great number of the tested approaches
show plausible results in general, whilst some approaches appear better suited
than others. Finally, all deduced statements about the plausibility of results
are derived on the basis of freely available reference data. With ground truth
measurements for each parameter, a more accurate analysis of the transferability
of techniques would be possible. In the future, more publications about empirical
relationships for biogeophysical variables based on Sentinel-2 are expected,
which will allow for further transferability analyses between different study
settings. The constellation of the Sentinel-2A and 2B satellite will increase the
availability of more cloud free data, thus enabling a more coherent stream of
data input, especially for crop analysis.
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Gegebenheiten. Abteilung für Botanik am Landesmuseum Joanneum (cit. on
p. 29).

Ludlow, A. (Apr. 1997). “Some factors influencing the increment of forests.”
In: Forestry 70, pp. 381–388. doi: 10.1093/forestry/70.4.381 (cit. on
p. 88).
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List of Acronyms

AISA Aircraft-mounted hyperspectral imaging spectroradiometer
ASTER Advanced Spaceborne Thermal Emission and Reflection Radiometer
AVHRR Advanced Very High Resolution Radiometer
BHR Bihemispherical Reflectance
BRDF Bidirectional Reflectance Distribution Function
CALMET California Meteorological Model
CHRIS Compact High Resolution Imaging Spectrometer
DHP Digital Hemispherical Photography
DN Digital Number
DOY Day of Year
ECV Essential Climate Variables
ESA European Space Agency
ETM+ Enhanced Thematic Mapper Plus
FVC Fraction of Vegetation Cover
GCOS Global Climate Observing System
GMES Global Monitoring for Environment and Security
GBVI Green Blue Vegetation Index
GVI Green Vegetation Index
IMD Imperviousness Density
IPCC International Panel on Climate Change
LAI Leaf Area Index
LCLU Land Cover / Land Use
LiDAR Light Detection and Ranging
LUT Look-Up Table
MODIS Moderate Resolution Imaging Spectroradiometer
MODTRAN MODerate resolution atmospheric TRANsmission
MSAVI Modified Soil-Adjusted Vegetation Index
MSI MultiSpectral Instrument
MTVI Modified Triangulation Vegetation Index
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NDI Normalised Difference Index
NDVI Normalised Difference Vegetation Index
NIR Near-Infrared
OLS Ordinary Least Squares
RMA Reduced Major Axis
RSR Reduced Simple Ratio
RTM Radiative Transfer Model
RTR Raabtal Region
RUSLE Revised Universal Soil Loss Equation
SAR Synthetic-aperture radar
SAVI Soil-Adjusted Vegetation Index
SES South-East Styria
SMA Spectral Mixture Analysis
SPOT Satellite Pour l’Observation de la Terre
SR Simple Ratio
SVI Spectral Vegetation Index
SWIR Short-Wave Infra-Red
TM Thematic Mapper
TOA Top Of Atmosphere
USLE Universal Soil Loss Equation
VARI Variable Atmospherically Resistant Index
VI Vegetation Index
VNIR Visible and Near Infra-Red
WDRVI Wide Dynamic Range Vegetation Index
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Boxplots

Figure B.1: LAI value distribution per WKL for linear NDVI-derived LAI in spring
(top) and exponential NDVI-derived LAI in spring (bottom) after Chen
and Cihlar, 1996

Source: own illustration
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Figure B.2: LAI value distribution per WKL for linear SR-derived LAI in spring (top) and
exponential SR-derived LAI in spring (bottom) after Chen and Cihlar, 1996

Source: own illustration
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Figure B.3: LAI value distribution per WKL for linear NDVI-derived LAI in summer (top)
and exponential NDVI-derived LAI in summer (bottom) after Chen and Cihlar,
1996

Source: own illustration
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Figure B.4: LAI value distribution per WKL for linear SR-derived LAI in summer (top) and
exponential SR-derived LAI in summer (bottom) after Chen and Cihlar, 1996

Source: own illustration
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Figure B.5: LAI value distribution per WKL for NDVI-derived LAI in correlation with
LAI-2000 (top) and DHP (bottom) after Schiffmann et al., 2008

Source: own illustration
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Figure B.6: LAI value distribution per WKL for RSR-derived LAI in correlation with LAI-
2000 (top) and DHP (bottom) after Schiffmann et al., 2008

Source: own illustration
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Figure B.7: LAI value distribution per WKL for SR-derived LAI in correlation with LAI-2000
(top) and DHP (bottom) after Schiffmann et al., 2008

Source: own illustration
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