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Abstract 
Demographic changes, increased life expectancy and the associated rise in chronic 

diseases pose challenges to public health care systems. Optimized treatment methods 

and integrated concepts of care are potential solutions to overcome increasing financial 

burdens and improve overall quality of care. In this context modeling is a powerful tool 

to evaluate potential benefits of new treatment procedures on health economic 

outcomes. In this doctoral thesis a novel modeling approach for simulating different 

treatment procedures of heart failure patients is presented. Agent based and discrete 

event methodologies were used to build the hybrid heart failure treatment model which 

facilitates the incorporation of different therapeutic procedures for outpatient and 

inpatient care on patient individual level. The state of health is modeled with the 

functional classification of the New York Heart Association (NYHA), strongly affecting 

state transition probabilities alongside age and gender. Cooperation with Austrian health 

care and health insurance providers allowed the realization of a detailed model structure 

based on clinical data of more than 25,000 patients. Simulation results of conventional 

care and an exemplary telemonitoring program underline the unfavorable prognosis for 

heart failure and reveal the correlation of NYHA classes with health and economic 

outcomes. Average expenses for the treatment of NYHA class IV patients of €10,077 ± 

€165 were more than doubled compared to other classes. The selected use case of a 

telemonitoring program demonstrated cost savings within two years of application. 

NYHA classes II and III revealed most potential for additional treatment measures. The 

developed model allows performing extensive simulations of established treatment 

procedures for heart failure patients and evaluating new holistic methods of care and 

innovative study designs. This approach offers health care providers a unique, adaptable 

and comprehensive tool for decision making in the complex and socioeconomically 

challenging field of cardiovascular diseases. 

 

Keywords: Agent Based, Discrete Event, Heart Failure Treatment Model, Health 

Economic Modeling, Integrated Care. 
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Kurzfassung 
Demographische Entwicklungen, erhöhte Lebenserwartung sowie die damit 

verbundene Zunahme an chronischen Erkrankungen stellt Gesundheitssysteme vor 

große Herausforderungen. Optimierte Behandlungsmethoden und integrierte 

Versorgungssysteme sind mögliche Lösungsansätze um finanzielle Belastungen 

auszugleichen und auch die Behandlungsqualität zu verbessern. In diesem Kontext ist 

die Modellbildung ein mächtiges Werkzeug um gesundheitsökonomische 

Auswirkungen neuer Behandlungsmethoden zu evaluieren. In dieser Doktorarbeit wird 

eine neuartige Modellierungsmethodik zur Simulation der Versorgung von 

Herzinsuffizienzpatienten (HI) vorgestellt. Agenten- sowie ereignisorientierte Ansätze 

beschreiben ein hybrides Herzinsuffizienzmodell, welches die Einbindung von 

verschiedenen Behandlungskonzepten im extra- und intramuralen Bereich auf 

Patientenebene ermöglicht. Der Gesundheitszustand einzelner Patienten ist auf Basis der 

funktionellen Klassifikation der New York Heart Association (NYHA) modelliert, 

welche – neben dem Alter und dem Geschlecht – einen wesentlichen Einfluss auf 

modellbasierte Zustandsänderungen hat. Die Zusammenarbeit mit österreichischen 

Gesundheitseinrichtungen ermöglichte die Umsetzung einer detaillierten Modellstruktur 

auf Basis klinischer Daten von über 25.000 Patienten. Simulationsergebnisse der 

konventionellen Versorgung sowie eines telemedizinischen Systems unterstreichen die 

ungünstige Prognose für HI-Erkrankte und veranschaulichen die Korrelation von 

NYHA-Klassen mit gesundheitsökonomischen Auswirkungen. Durchschnittliche 

Behandlungsausgaben für NYHA-Klasse IV Patienten von €10,077 ± €165 waren 

doppelt so hoch wie für andere Klassen. Der gewählte Anwendungsfall eines 

Telemonitoring-Systems demonstrierte mögliche Kosteneinsparungen innerhalb von 

zwei Jahren. Dabei zeigten zusätzliche Behandlungsmethoden das größte Potenzial für 

NYHA-Klassen II und III auf. Das entwickelte Modell ermöglicht die Durchführung 

umfassender Simulationen von etablierten Behandlungsformen für HI-Patienten sowie 

die Evaluierung ganzheitlicher Versorgungsformen und innovativer Studiendesigns. 

Dieser Ansatz bietet Gesundheitsdienstleistern ein einzigartiges, adaptierbares und 

umfassendes Werkzeug zur Entscheidungsfindung im komplexen und sozioökonomisch 

bedeutsamen Feld kardiovaskulärer Erkrankungen. 

Schlüsselwörter: Agentenbasiert, Ereignisorientiert, Modell der Therapie von 

Herzinsuffizienz, Gesundheitsökonomische Modellierung, Integrierte Versorgung. 
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Chapter 1 - Introduction 

  1 

1 INTRODUCTION 

Demographic changes, emphasizing the population gap between young and old, 

increased life expectancy and the associated rise in chronic diseases challenge public 

health care systems. [1] Particularly, the proportion of people above the age of 65 years 

increased considerably over the last decades, with no decrease foreseen in the near 

future. Between 2001 and 2014, the number of elderly people (65 years and above) in 

the EU-28 rose by 21.8 %, while the overall population increased by only 3.8 %. [2] 

Similarly, the number of people turning 65 each year is expected to more than double 

between 2000 and 2025 in the United States as a result of the baby boom generation. [3] 

Prediction models of Statistics Austria reveal that due to decreasing fertility rates and 

the mentioned increase in life expectancy, in the year 2060 over a quarter of the 

Austrian population will be over 65 years. [4] The necessity for changes in health 

policies is evident since the increase of the ageing society correlates with a 

consequential rise in chronic illnesses, representing a not to be underestimated 

socioeconomic burden. [1,5]  

Heart failure (HF), as a representative of cardiovascular diseases such as e.g. 

stroke, coronary artery disease and myocardial infarction is the leading cause for 

hospitalizations among elderly patients [6–8]. The incidence of HF approaches 21 per 

1,000 people over 65, predictions show that from 2012 to 2030 prevalence will increase 

by roughly 46 % in the United States. [9,10] At the age of 45 to 55 years about 1 % of 

the European population suffers from heart failure, between 65 and 75 years this value 

varies from 2 to 5 % and rises to roughly 10 % at the age of 80 and above. [8,11,12] 

Overall the calculated lifetime risk of developing heart failure is about 20 %, with even 

higher risks for those with hypertension. [13] Treatment expenditures for HF account 

for 1-2 % of the total health care budget of western countries and are expected to 
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consequentially rise in the future. [14,15] For high-income countries the total costs for 

HF are even higher encompassing 2-3 % of the total expenditure of healthcare systems 

and are projected to increase by more than 200 % in the next 20 years. [9] Up to three 

quarters of the total treatment costs are associated with hospital admissions, in-hospital 

treatment and patient care in nursing homes. [16] In addition to the financial impact, 

heart failure is associated with an unfavorable prognosis. High mortality of up to 50 % 

within five years after the initial diagnosis underlines the severity of the disease. [17–

20] One year case fatality rate after hospitalized heart failure is up to 30 %. [21–23] 

Additionally, a disease-related readmission rate of up to 50 % within the first year and 

likewise 30-day readmission rates of over 23 % in contrast to 12.6 % for all cause-

readmissions after hospital discharge, indicate room for improvement in post-inpatient 

management. [24–27] Patients’ poor adherence to medication and recognition of early 

signs of cardiac decompensation, as well as insufficient collaboration among health care 

providers, are exemplary limitations in therapy. [28] Estimations indicate that up to two 

thirds of HF readmissions are triggered by potentially preventable factors, including 

suboptimal discharge planning, non-adherence to HF medication, inadequate follow-up, 

insufficient social support as well as delays in seeking medical attention. [29–31] New 

solutions based on optimized and individualized treatment and integrated concepts of 

care are potential ways to manage future financial burdens. Commonly, they focus on 

the detection of symptoms at an earlier stage and thus on stabilizing the patient’s health 

status and minimizing unnecessary admissions. [32] However, several studies analyzing 

the potential benefits of these novel approaches present controversial results and are 

often based on small study cohorts and short follow-up times. [33–35] 

In this context, modeling is a powerful tool to evaluate potential benefits of 

different treatment procedures on health outcomes as well as health care budgets. This 

work presents a unique hybrid modeling approach for simulating different treatment 

procedures of HF patients based on extensive data sets from outpatient and inpatient 

care. A precise simulation of conventional care and the adaptability of the model allow 

the evaluation of integrated methods of care and associated study designs to support 

decision making in healthcare. [36] 
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1.1 Heart Failure 
Heart failure (HF), also known as chronic heart failure (CHF) describes an 

insufficiency of the heart muscle, being unable to pump enough blood to meet the 

body’s need for oxygen. As a clinical syndrome characterized by typical symptoms (e.g. 

breathlessness, fatigue, ankle swelling as well as anorexia, depression and confusion) it 

may be accompanied by signs (e.g. elevated jugular venous pressure, peripheral 

oedema, displaced apex beat or cardiac holosystolic murmur) that are caused by a 

structural and/or functional cardiac abnormality, resulting in elevated intracardiac 

pressures and/or reduced cardiac output at rest or during stress. Prior to clinical 

symptoms becoming apparent, patients can suffer from these asymptomatic structural or 

functional cardiac abnormalities (systolic or diastolic left ventricular (LV) dysfunction), 

which are known precursors of HF. The main terminology used to describe HF is based 

on the measurement of the left-ventricular ejection fraction (LVEF), ranging from 

normal LVEF (typically considered as ≥ 50 %; HF with preserved EF (HFpEF)) to those 

with reduced LVEF (typically considered as < 40 %; HF with reduced EF (HFrEF)). HF 

patients without detectable LV myocardial disease may have other cardiovascular 

causes resulting in HF, such as pulmonary hypertension and valvular heart disease. 

[37,38]  

To counteract physiological impairments due to HF, the heart can react in three 

ways: By enlarging, the heart stretches to contract stronger and keep up with the 

demand to pump more blood which, over time, causes the heart to enlarge; By 

developing more muscle mass, the heart can pump stronger, at least initially. The 

increase in muscle mass is mostly driven by contracting cells of the heart getting bigger; 

By pumping faster, the heart’s output increases. Not only the heart but also the body 

tries to compensate symptoms. Blood vessels tend to narrow to keep the blood pressure 

up, to make up for the power deficiency of the heart. Also the body diverts blood away 

from less important tissues and organs (e.g. kidneys) as well as the heart and brain. All 

these temporary measures may succeed in masking the problem of heart failure, but are 

not solving it. The hearts impairment increases until compensating mechanisms work no 

longer. [39] 
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In general there are several ways to distinguish the affected region of the heart due 

to HF, superficially it can be divided into left-sided, right-sided and biventricular 

failure. To classify the severity of HF, most commonly the classification system of the 

New York Heart Association (NYHA) is used, describing four states of impairment 

(Table 1). [40] The NYHA classification system was introduced in 1928 and further 

developed and changed over time, to assess functional capabilities of the patients and 

assess response to treatment. [41] 

Table 1: The New York Heart Association Classification System. Adapted from 

[40]. 

Class New York Heart Association functional classification 

I 
Patients have cardiac disease but without the resulting limitations of physical activity. 
Ordinary physical activity does not cause undue fatigue, palpitation, dyspnoea or 
anginal pain 

II 
Patients have cardiac disease resulting in slight limitation of physical activity. They are 
comfortable at rest. Ordinary physical activity results in fatigue, palpitation, dyspnoea or 
anginal pain 

III 
Patients have cardiac disease resulting in marked limitation of physical activity. They 
are comfortable at rest. Less than ordinary physical activity causes fatigue, palpitation, 
dyspnoea or anginal pain 

IV 
Patients have cardiac disease resulting in inability to carry on any physical activity 
without discomfort. Symptoms of cardiac insufficiency or of the angina syndrome may 
be present even at rest. If any physical activity is undertaken, discomfort is increased 

 

Another classification scheme was introduced by the American College of 

Cardiology (ACC) in collaboration with the American Heart Association (AHA) in 

2001. The ACC/AHA guidelines are an extension of the NYHA classification, 

describing four stages of HF (A, B, C and D). Next to functional criteria also cardiac 

reports are assessed (Table 2). Stage A describes “pre-heart failure”, a stage where 

intervention with treatment can presumably prevent progression to overt symptoms, and 

thus does not have a corresponding NYHA class. ACC Stage B corresponds to NYHA 

Class I, ACC Stage C to NYHA Class II and III, while ACC Stage D overlaps with 

NYHA Class IV. [9,42] 
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Table 2: ACC/AHA classification scheme. Adapted from [42]. 

Stage ACC/AHA classification 

A No objective evidence of cardiovascular disease. No symptoms and no limitation in 
ordinary physical activity. 

B Objective evidence of minimal cardiovascular disease. Mild symptoms and slight 
limitation during ordinary activity. Comfortable at rest. 

C 
Objective evidence of moderately severe cardiovascular disease. Marked limitation in 
activity due to symptoms, even during less-than-ordinary activity. Comfortable only at 
rest. 

D Objective evidence of severe cardiovascular disease. Severe limitations. Experiences 
symptoms even while at rest. 

 

There are further, more recent classification schemes such as the HLM (Heart – 

Lung – Malfunction of other organs) [43] or classification systems that are considering 

specific comorbidities, e.g. the cardiorenal syndrome classification system (CRS) [44], 

which won’t be further addressed in this work due to lack of evidence and/or 

comparability with the NYHA classification system. 

Since heart failure is a cardiovascular disease frequently associated with 

comorbidities, therapy is specific to the patient and encompasses life style modalities as 

well as clinical interventions with the aim to improve symptoms and prevent further 

progression of the disease. Behavioral modifications are mostly focusing on dietary 

guidelines regarding fluid and salt intake as well as an improvement in physical 

conditioning. [45,46]  

The first-line therapy for HF patients is mostly based on medication therapy, 

which is then combined with other treatment approaches. There is a variety of potential 

drugs being used to treat heart failure; most commonly the following are used: [47–50] 

• Angiotensin-converting enzyme (ACE) inhibitors 

• Angiotensin receptor blockers (ARBs) 

• Beta-adrenergic blocking agents (beta blockers) 

• Diuretics 

ACE inhibitors are primarily used for the treatment of hypertension and 

congestive heart failure and cause the relaxation of blood vessels as well as a decrease 

in blood volume and thus lower blood pressure and decreased oxygen demand from the 

heart by inhibiting the angiotensin-converting enzyme. [51] ARBs are, same as ACE 

inhibitors, indicated as first-line antihypertensives in patients developing hypertension 
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along the left-sided heart failure. Their main purpose is to modulate the renin-

angiotensin system and selectively block the activation of AT1 receptors (Angiotensin II 

receptor type 1), preventing the binding of angiotensin II and thus controlling blood 

pressure and volume in the cardiovascular system. [52,53] Beta blockers are 

predominantly used to manage abnormal heart rhythms and to prevent secondary heart 

attacks. Additionally they are widely utilized to reduce blood pressure. Their basic 

function as competitive antagonists is to block receptor sites for the endogenous 

catecholamines epinephrine (adrenaline) and norepinephrine (noradrenaline) on 

adrenergic beta receptors of the sympathetic nervous system, which mediates fight-or-

flight response. [54–56] A diuretic is any substance that promotes diuresis, the 

increased production of urine. There are several subgroups of diuretics, in their basic 

principle they all increase the excretion of water from bodies, although in distinct ways. 

Subgroups are e.g. loop diuretics, thiazides, potassium-sparing diuretics, etc. 

Antidiuretics as alternative agents reduce the excretion of water in urine. Some 

diuretics, such as thiazides and loop diuretics specifically have antihypertensive actions 

and are commonly used to treat heart failure by preventing fluid retention and the 

resulting shortness of breath. [57,58] 

Further medication therapies such as Angiotensin-Receptor Neprilysin Inhibitors 

(ARNIs), If channel blockers or inhibitors, hydralazine and isosorbide dinitrate, 

anticoagulants, cholesterol-lowering drugs (statins) [59], etc. are additionally used up-

and-coming methods. Surgical therapies and implanted devices are further possible 

treatment methods, automatic implantable cardioverter defibrillators (AICDs), cardiac 

resynchronization therapy (CRT) and cardiac contractility modulation (CCM) are 

keywords in this field. [60–62] In selected cases also heart transplantation can be 

considered, although presenting substantial downsides, including the 

immunosuppressive regimen to prevent rejection. [63] 

Due to the importance of changes in lifestyle modalities and preventive measures 

in the treatment of HF, newer therapeutic concepts start to include integrated 

approaches between outpatient and inpatient care, with home-based care on regular 

basis. These holistic measures and their relevance are further discussed in the 

subsequent chapters. 
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1.2 Disease Management 
In general the goal of a disease management program (DMP) is to provide 

evidence-based diagnosis and therapy for patients as well as to educate patients and 

caregivers, resulting in improvement of symptoms and quality of life alongside a 

reduction of hospitalizations and mortality. The implementation of a successful DMP 

may include: [64] 

• Integration of all sectors of care (integrated care) 

• HF outpatient clinics 

• Multidisciplinary involvement of specialized HF cardiologists and HF nurses 

• Adherence to guidelines 

Core parts of DMPs for HF comprise an established network between hospital and 

outpatient care structures, a seamlessly working system of care in the outpatient setting, 

patient education and improvements in adherence. An optimized HF therapy 

modification is another task tackled by a DMP, often supported by home nurses. The 

lack of information between hospitals and office-based physicians and nurses can be 

improved with effective information management. [64,65] Their effectiveness is 

emphasized by the European Society of Cardiology (ESC), which strongly recommends 

the provision of multidisciplinary programs for HF (recommendation class I, level of 

evidence A). [37] 

There are many literature sources describing effects of DMPs in various scenarios 

for HF patients such as home visits combined with structured telephone support (STS), 

self-management approaches and also combinations with telemonitoring programs. 

Many show successful and significant reductions in rehospitalisation rates of up to 45 % 

within three to six months and also reduced overall admissions up to 37,5 % in the same 

time frame [33,35,66–70]. Reported decreases in overall mortality of up to 39 %, after 

follow-up of 6 months, are mostly not significant [35,66]. The incremental cost 

effective ratio (ICER) is generally positive for disease management programs over 

conventional care. [68,71,72] Due to the increasing availability of technological support 

and progress in data science, effects of methods of care including telemedical support 

are frequently discussed in literature. 
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1.3 Telemedicine 
Telemedicine originates from the 1970s, literally meaning “healing at a distance” 

and signifies the use of information and communication technologies (ICTs) to improve 

patient outcomes by increasing access to care and medical information. [73] There is no 

definite definition of “telemedicine”, a study from 2007 found 104 peer-reviewed 

definitions of the word. [74] The world health organization (WHO) has adopted the 

following general description: 

“The delivery of health care services, where distance is a critical factor, by all 

health care professionals using information and communication technologies for the 

exchange of valid information for diagnosis, treatment and prevention of disease and 

injuries, research and evaluation, and for the continuing education of health care 

providers, all in the interests of advancing the health of individuals and their 

communities” [75] 

The many definitions highlight that telemedicine is an open and constantly 

evolving science, incorporating new advancements and progressions in technology and 

responds and adapts to the changing health needs and contexts of society. Some 

distinguish telemedicine from telehealth, but they both are synonymous and used 

interchangeably. Four elements are pertinent to telemedicine: [76] 

• Its purpose is to provide clinical support 

• It is intended to overcome geographical barriers, connecting users who are not in 

the same physical location 

• It involves the use of various types of ICT 

• Its goal is to improve health outcomes 

Telemedicine has great potential for reducing the variability of diagnoses as well 

as improving clinical management and delivery of health care services by enhancing 

access, quality, efficiency and cost-effectiveness. [77–79] However, despite its promise, 

telemedicine applications have achieved varying levels of success in both industrialized 

and developing countries. One challenge of many in the employment of telehealth 

applications is the resistance of health care providers, health care workers and patients 

to adopt new service models. [78–80] In industrialized countries telemedicine systems 

are not used to cover long distances, but to consistently monitor the patients’ state of 
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health. A typical telemonitoring system, as it may be used in heart failure therapy, is 

depicted in Figure 1. 

 

Figure 1: Typical concept for the use of telemedicine in integrated care. 

Usually the patient receives a scale to measure body weight, a device to perform 

blood pressure measurement and a cellphone. The state of health is then monitored on a 

daily basis through data transfer to the data center. In case of conspicuous health 

parameter changes the general practitioner is alerted and timely approaches the patient 

to e.g. adapt the medication. A home nurse, as part of a DMP, can additionally support 

the patient by informing about heart failure, self-care, prevention and/or how to use the 

telemonitoring system, thus promoting health literacy. In case outpatient care is not 

sufficient to treat symptoms, the seamless transition to inpatient care covers further 

needs in therapy.  

Many studies are published, investigating potential benefits of telemedicine 

programs for HF patients. However, results are inconsistent and often based on small 

study cohorts and short follow-up times. [33–35] Inglis et al. performed a systematic 

review and meta-analysis of the outcomes of structured telephone support and 

telemonitoring as a primary component of CHF management for over 8000 patients. 

Slight, non-significant reductions in mortality (up to 12 %) could be achieved as well as 

decreased admission numbers for HF of up to 23 %. [81] Some of the studies did not 

identify any change in clinical results. Cost efficiency is sparsely addressed in literature, 

Voigt et al. performed a meta-analysis, reporting costs savings of up to USD 17.400 per 
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patient for admissions within a year, although not significant. [82] Klersy et al. in 2011 

investigated the economic impact of remote patient monitoring. A cost simulation 

model was constructed to compare telemedicine with usual care. Results show that 

direct costs for hospitalization are lower for telemonitoring systems with a range from 

300 to 1,000 Euro per patient. It was concluded that the overall acceptance of remote 

patient monitoring was encouraged, but there is still a lack of prospectively and 

uniformly collected economic data. [83] Seto et al. in 2008 performed a systematic 

review regarding cost comparison between telemonitoring and usual care of heart 

failure. It was concluded that costs can be reduced between 1.6 to 68.3 % by using a 

telemonitoring system including a component of home physiological measurements. 

Although telemonitoring systems require an initial investment, they have the potential 

to substantially reduce costs in the long term. [84] In 2009 Scherr et al. performed a 

study in cooperation with the Medical University of Graz, where 54 patients were 

enrolled in a conventional care and a telemonitoring setting each for half a year, 

reporting considerable improvements in health with the usage of the telemonitoring 

system. [85] In a recent meta-analysis Lin et al. analyzed the effectiveness of 

telemedicine interventions. They reported that overall telemedicine was beneficial; 

especially home-based teletransmission was successful in reducing all-cause mortality 

and HF-related hospital admission, length of stay and mortality. [77] Another overview 

of systematic reviews on remote monitoring of HF patients was published by Bashni et 

al. in 2017, stating that telemonitoring and home telehealth appear to be generally 

effective in reducing heart failure rehospitalization and mortality. However, further 

investigations are required. [86] 

There is still room in literature to further investigate the application of DMPs in 

combination with telemonitoring for specific patient collectives, addressing overall 

effects on quality of life, health and economic outcomes as well as patient adherence. 

There is no general consensus to which program would be the most beneficial for a 

specific patient collective, therefore one goal of this work is to present a framework that 

supports decision-making in this complex and socioeconomically challenging field of 

HF, to lastly provide valid predictions and analyses as a basis for the adaption of new 

approaches in health care.  



Chapter 1 - Introduction 

  11 

1.4 Simulation Modeling 
Modeling is one of the ways to solve real world problems, for which, in many 

cases, the finding of a proper solution would not be otherwise affordable. Experiments 

with real objects would be too time consuming, dangerous, costly or even impossible. 

Therefore models come into play as representations of a real system, a process, which 

assumes a certain abstraction. Redundant (presumably) details are neglected and the 

focus is set on what we consider as important. The resulting model will always be less 

complex than the original system. Figure 2 visualizes the difference between the real 

world and the world of modeling. Starting with a complex problem, crucial processes 

are analyzed and formulated as a model. With several iterations and trains of thought 

the program is optimized up to a level, which allows for realistic estimations. With the 

created model predictions of future events or influences of changes of sensitive 

parameters can be calculated, saving time and money, to draw out potential best 

solutions. [87] 

 

Figure 2: The world of modeling. Adapted from [87] 

There is a magnitude of models that can be considered, such as mental models, 

pen and paper approaches, physical models and models in the virtual world. Basically 

they can be split into two large groups, analytical and simulation models. [87] 

Analytic models are based on formulas and scripts. They can be found nearly 

everywhere in life, mainly because their implementation is rather simple. The 

formulation of equations in e.g. a Microsoft (MS) Excel™ spreadsheet would be an 

example. Input and output values are linked via chains of formulas and scripts, ranging 

from little requirements to complex parameter variations, Monte Carlo simulations or 
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optimization experiments. However, there are limitations to analytic (formula-based) 

models in finding solutions for dynamic systems, such as: [87] 

• Non-linear behavior 

• “Memory” 

• Non-intuitive influences between variables 

• Time and causal dependencies 

• All above combined with uncertainty and large numbers of parameters 

Simulation models though can describe static relationships and dynamic behavior. 

They are always executable models with distinct simulation runs that can be changed 

and adapted dynamically through input parameters. They typically require some training 

and learning and are able to depict complex relations with different degrees of 

abstraction, from small and precise control systems to supply chains and whole 

ecosystems. Figure 3 gives an overview of applications areas for simulation models 

with exemplary degrees of abstraction. [87] 

 

Figure 3: Applications of simulation and respective degrees of abstraction. Taken 

from [87]. 
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A method in simulation modeling is a general framework for mapping a real 

world system to its model, suggesting a type of language or “terms and conditions” for 

model building. To date, three main methods exist: [87] 

• System Dynamics (SD) 

• Discrete Event Modeling (DE) 

• Agent Based Modeling (AB) 

These three methods serve a particular range of abstraction levels, which is 

depicted in Figure 4. 

 

Figure 4: Methods in simulation modeling and their respective degree of 

abstraction. Taken from [87] 

System dynamics modeling operates mostly at high abstraction level and is 

commonly used for strategic modeling, population growths and dynamic processes in 

nature. Discrete event modeling has a process-centric approach, which supports medium 

and medium-low levels of abstraction. Examples would be supply chains, health care 

processes and state machines. Agent based models have a huge variety in their 

application and can therefore vary from very detailed agent models of physical objects 

up to highly abstract applications where agents are competing companies or 

governments. [87–89] These three methods will be further described in the following 

chapters. 
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1.4.1 System Dynamics 
System Dynamics (SD) was created in the mid-1950s by the Massachusetts 

Institute of Technology (MIT) by Professor Jay Forrester. [87] John Sterman described 

this method as follows: 

“System dynamics is a perspective and set of conceptual tools that enable us to 

understand the structure and dynamics of complex systems. System dynamics is also a 

rigorous modeling method that enables us to build formal computer simulations of 

complex systems and use them to design more effective policies and organizations. 

Together, these tools allow us to create management flight simulators-microworlds 

where space and time can be compressed and slowed so we can experience the long-

term side effects of decisions, speed learning, develop our understanding of complex 

systems, and design structures and strategies for greater success.” [90] 

As the name indicates, system dynamics is a method of studying dynamic 

systems. It is mostly used for long-term, strategic models with a high degree of 

abstraction of simulated objects. People, products, events, organisms, etc. are 

represented in a quantity that makes individual behavior and dynamics negligible. SD 

models are often based on so-called causal loop diagrams (CLD), which describe 

variable interdependencies and feedbacks for an investigated system. Hereby stocks and 

flows are identified among other variables and internal feedback loops to describe the 

system. Differential equations then mathematically describe their interdependencies. 

[90] 

1.4.2 Discrete Event Modeling 
Discrete event modeling was introduced in October 1961 by IBM (International 

Business Machines Corporation) engineer Geoffrey Gordon, who presented the first 

version of a so-called GPSS (General Purpose Simulation System, originally Gordon’s 

Programmable Simulation System). In DE modeling the system being modeled is seen 

as a process, i.e. a sequence of specific operations being performed across entities. 

Entities were originally called transactions in GPSS and may represent patients, clients, 

phone calls, vehicles, tasks, projects, etc. Those entities can then use resources that may 

represent e.g. doctors, various staff, operators, machines, servers, equipment or 

transport. Flow and process charts can be directly translated into computer language; 

typical objects used for their description would be delays, queues, decision elements, 

sources and sinks. They usually are, similar to a Markov model, described with discrete 
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steps alongside the model flow. Transitions are stochastic and mostly based on 

probability density functions. Therefore, models have to run for a certain simulation 

time or repeatedly, to have significant outputs. As illustrated in Figure 4, DE modeling 

can very precisely simulate specific tasks, activities or processes that are well defined. 

Their usage in process engineering, health care management and optimization problems 

is widely spread. [87,89] 

1.4.3 Agent Based Modeling 
Agent based modeling is the most recent method of aforementioned three. It was 

first introduced in the year 2002, until the early 2000s it was mostly an academic topic. 

Triggers for the development of this approach were the desire to get a deeper 

understanding of systems not being captured appropriately by existing modeling 

approaches as well as advances in modeling technology and CPU power and memory. 

For ABM you may not know how the system as a whole behaves and what are the key 

variables and dependencies, but you may have some insight into how objects (agents) in 

the modeled system behave individually. Therefore, ABM is mostly a bottom-up 

approach, where behavior is defined for chosen agents. Agents can also interact with the 

environment that may be modeled with discrete event modeling or system dynamics. An 

example would be the clinical pathway (patient flow) of patients (agents). The term 

agent is still discussed in literature, since it is not well defined which characteristics an 

object has to have to be called an agent. Intellect, the ability to learn, social interaction 

and reactiveness would be examples of terms being discussed in this context. Agents 

may be smart, stupid and communicative within the model or rather passive elements 

that can learn or stay in chosen patterns. A few facts addressing this topic could be 

summarized the following: [87–89] 

• Agents are not identical with cellular automata and they do not have to live in 

discrete space. Space may even be redundant in ABMs. 

• ABM does not necessarily assume clock “steps” in which conditions are tested 

and decisions are made. Most well defined ABMs are asynchronous. 

• Agents can be passive and do not necessarily have to be people.  

• The number of agents is specific to the modeled context and does not have to be 

within a certain range.  

• Agents do not have to interact. 
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Most of published ABMs work in discrete time, where decision-making, 

interactions and state changes are instant. The basic simulation engine often doesn’t 

differ much from the one used for DE modeling. For higher level approaches the engine 

should support large numbers of concurrent activities, including dynamic creation and 

destruction, the correct handling of multiple instantaneous events (with deterministic 

and random execution) as well as space-related functionality, whether 2D, 3D or 

geographical space. [87] 
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2 METHODS 

This section describes the fundamentals of the presented simulation model as well 

as the approach to this work in general. Starting with a take on the literature review that 

was conducted, expanded and updated manifold throughout the process of creation, 

ending with the detailed model description in chapter 2.5. Essential to this work was the 

contact to and cooperation with health care and health insurance providers in Austria. 

All the welcome coincidences that lead to new projects and cooperation are described. 

Measures taken to deal with big data, from data cleansing to automated extraction of 

information and statistical evaluation are further delineated in the chapters 2.3 and 2.4. 

The primary findings in data sets are represented and then the chapter 2.5 Simulation 

Model will guide through the modeling environment, the development of the up to date 

version of presented model, verification and validation as well as the starting point for 

the simulation results.  

2.1 Literature Review 
The basis for most scientific works is a comprehensive literature review, covering 

state of the art and visions in the selected field. The content of presented work was 

formulated over many years, ranging from lateral literature reviews to very precise 

isolations of scientific topics. Approaches and methods taken to gather information are 

described subsequently. 
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The literature reviews were all based on scientific search engines and data bases, 

most commonly used were: 

• PubMed (https://www.ncbi.nlm.nih.gov/pubmed/) 

• Cochrane Library (https://www.cochranelibrary.com/) 

• Google Scholar (https://scholar.google.at/) 

Of those three data bases mostly PubMed was used with specific filter settings. 

Search results were displayed in relevance-ranked order, meaning that when a user’s 

search exactly matches a MeSH (Medical Subject Headings) term, that term is displayed 

first. MeSH Databases are a vocabulary thesaurus used for indexing PubMed citations 

and include Subheadings, Publications Types, Supplementary Concepts and 

Pharmacological Actions, which are then translated into the PubMed search. The 

algorithm used for finding best matching citations was the standard best match order, 

where PubMed displays documents in order of decreasing relevance score. This score is 

calculated by comparing an input query to the document fields such as text, author, 

journal, etc. These document fields are indexed, for each literature source the terms and 

their frequencies are calculated. During retrieval of search results, the term frequencies 

is used in a weighted fashion to return a ranked list of PubMed citations matching the 

terms in the user query. There is a specific explanation of this algorithm in the “Help”-

Library of PubMed. [91] For Cochrane Library and Google Scholar standard filter 

settings have been used. 

For each query a minimum of the first 100 titles and abstracts have been read and 

assessed in terms of quality and relevance to this work. Each literature research was 

based on specific keywords and time frames to narrow down the number of resulting 

hits. Table 3 and Table 4 present keywords for different searches. 

 Table 3: Keywords for the review of heart failure models in literature 

keywords – heart failure modeling  

heart failure model 

agent based discrete event 

simulation costs 

prediction NYHA 

Monte Carlo Markov 

https://www.ncbi.nlm.nih.gov/pubmed/
https://www.cochranelibrary.com/
https://scholar.google.at/


Chapter 2 - Methods 

  19 

Table 4: Keywords for the review of heart failure therapy 

keywords – heart failure therapy  

heart failure comorbidity 

classification ICD 

therapy medication 

telemedicine disease management 

telemonitoring STS 

inpatient outpatient 

integrated care nursing 

readmission costs 

mortality ATC 

 

To gather comprehensive information, meta-analyses and review papers were 

specifically addressed with additional keywords. An extensive search of secondary 

literature was a key aspect in gathering thorough knowledge of heart failure therapy and 

modeling. To classify each literature source, an individual rating system for papers was 

developed, consisting of quality criteria for study design, number of patients, overall 

quality and relevance to this work. Each publication was also commented in Citavi 6 to 

have an overview of the literature sources. For this work the most essential sources 

haven been included and meta-analyses are more often cited than singular research 

projects. The literature research was closed on the 11th of February 2019. 

2.2 The Austrian DRG System 
Until the year 1996, reimbursements for health care services in Austria were 

based on a per diem payment model in which every inpatient stay was reimbursed on 

the basis of the number of days of care, thus days spent in the hospital. For every day a 

fixed sum was charged to the payee, which in Austria usually is the relevant social 

insurance institution. The payment was made regardless of the procedures the patient 

underwent and also of the disease the patient was suffering from. Remaining hospital 

costs were borne by various payees and summarized with the term “operational losses”. 

Since 1997 though, Austrian hospitals have largely been financed under the Austrian 

Procedure and Diagnosis-related Groups System (PDRG), a DRG system adapted to 
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meet the Austrian framework conditions (in German: System der leistungsorientierten 

Krankenanstaltenfinanzierung – LKF). In this system, in addition to diagnoses, 

procedures provided are a primary criterion for the allocation of case groups. With the 

Austrian DRG system the introduction of a nationally standardized diagnosis 

documentation based on the WHO’s International Classification of Diseases (ICD) and 

the development of a nationally standardized catalogue of procedures in the inpatient 

sector with detailed cost analysis of case flat rates has been build, financed from public 

resources. To determine specific costs, a total of 20 hospitals from all over Austria were 

recruited to calculate the costs of procedures on the basis of this new catalogue. These, 

so-called, reference hospitals were used to calculate the costs on the basis of roughly 

500,000 inpatient stays to build the economic basis for the model. In this test period it 

became clear that the pathology (primary diagnosis) of the patient was the primary 

criterion for the allocation to a case flat rate in roughly under three fifths of all flat rates, 

with medical procedures being the primary criterion for the other two fifths. 

Terminologically this was reflected with the distinction between primary diagnosis 

group (PDG) (in German: “Hauptdiagnosegruppe” - HDG) and individual medical 

procedures groups (IMP) (in German: “Medizinische Einzelleistungsgruppen” - MEL). 

Since the introduction of this system in 1997, the model has been subjected to annual 

maintenance work, including further adaptions over the years. Importantly, in 1999 an 

overhauled system for the documentation and scoring for intensive care medicine and 

oncology was introduced. In 2001 a switch from the ICD-9 to the ICD-10 system 

followed, in 2002, due to the introduction of the Euro in Austria, further major changes 

were implemented. From 2002 onward the Austrian DRG system was also used for the 

distribution of social insurance resources in the hospitals of the private hospitals 

financing fund (PRIKRAF). Over the years further changes were implemented, keeping 

reimbursements up to date and handling difficulties in the use of the system as well as 

special cases. [92] 

The basis for this work is the Austrian DRG model 2018, which includes 979 

primary diagnosis groups. The DRG model 2018 uses the cost basis from the 

calculations in 2014. Each admission is allotted with a point score per procedure- and 

diagnosis-oriented case group (PDCG) (in German: “Leistungsorientierte 

Diagnosefallgruppe” – LDF). This score is defined as the mean value of calculated costs 

for inpatient days per LDF. Each LDF has a specific length of stay (LOS) (defined by a 

concrete minimum and maximum) allocated to it, during which a specific point score is 
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reimbursed to the hospital. Further, for each LDF a procedure component (in German: 

“Leistungskomponente” – LK) as well as a daily component (in German: 

“Tageskomponente” – TK) is defined. The daily component is used to reimburse 

expenses that are incurred daily within the framework of care for the patient. These can 

include e.g. medical and nursing care and any drug therapy. The procedure component 

is based on points, equivalent for selected medical procedures and is thus independent 

of the average length of stay of the patient in inpatient care. [92–94]. 

2.2.1 Admissions 
The length of stay per LDF is crucial for cost calculations within the Austrian 

DRG system, since transgression above or below the minimum and maximum LOS is 

differently reimbursed. In case the LOS extends beyond the maximum length of stay set 

for the specific case group, supplementary points are added to the case flat rate for each 

additional day. This daily supplement is not constant and decreases with the number of 

days above the maximum LOS, ergo more points are awarded for the first day in excess 

than the second, more for the second than the thirds, etc. In case of extreme periods of 

hospitalization beyond the set LOS, the daily supplement is frozen once a set threshold 

value has been reached and this value is then added per day. For short stays reduced 

case flat rates are charged. In this case the procedure component is charged to the full 

amount, but the daily component is reduced linearly, thus the same number of points is 

subtracted for each day less than the minimum LOS. Equations (1) and (2) are used for 

the calculations of transgressions above the maximum and minimum length of stay 

respectively. [93] 

𝑠𝑠𝑠𝑠ℎ𝑎𝑠𝑎𝑎(𝑥) = 𝑚𝑎𝑥 �

𝑑𝑎𝑑𝑑𝑑𝑑𝑑𝑚𝑑𝑑𝑑𝑎𝑑𝑑
𝑎𝑎𝑎𝑠𝑎𝑎𝑎𝑎𝑎𝑎 ∗ 𝑚𝑎𝑥𝑎𝑎𝑎

𝑥
 𝑎𝑂

𝑑𝑎𝑑𝑑𝑑𝑑𝑑𝑚𝑑𝑑𝑑𝑎𝑑𝑑
𝑎𝑎𝑎𝑠𝑎𝑎𝑎𝑎𝑎𝑎

𝑥
� 

(1) 

𝑑𝑑𝑑𝑑𝑑𝑠/𝑠𝑎𝑠𝑎 = 𝑑𝑠𝑑𝑠𝑎𝑑𝑠𝑠𝑎𝑑𝑑𝑚𝑑𝑑𝑑𝑎𝑑𝑑 +
𝑑𝑎𝑑𝑑𝑑𝑑𝑑𝑚𝑑𝑑𝑑𝑎𝑑𝑑 ∗ 𝑥

𝑚𝑑𝑑𝑎𝑎𝑎
 (2) 

x…number of days in hospital 
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Since this work presents a model of the treatment of heart failure patients, specific 

primary diagnoses for HF haven been used for cost calculations within the Austrian 

DRG system. Based on the catalogue of the LKF model, four ICD-10 categories 

represent HF, which are listed in Table 5. These four categories are further structured in 

patient- and diagnosis-related characteristics (e.g. age or type of diagnosis), which are 

associated with individual case flat rates (in German: “Fallpauschale” – FP). Thus each 

primary diagnosis is associated with a case flat rate, containing information on the 

reimbursement of hospital stays. The average, minimum and maximum LOS is defined 

for every case flat rate, which is listed in Table 6.  

Table 5: Primary diagnosis groups (HDG) for cost calculations of inpatient care. 

Taken from [93] 

ICD-10 diagnosis HDG 
case flat rate 

FP A FP B 

I11.0 

hypertensive 

heart disease 

with (congestive) 

HF 

HDG06.04 FP A FP B 

I50.0 congestive HF HDG06.04 FP A FP B 

I50.1 
left ventricular 

HF 
HDG06.03 FP C 

I50.9 HF, unspecified HDG06.04 FP A FP B 

 

Table 6: Reimbursement parameters for HDG of HF. Node A is taken, if the age 

of the patient exceeds 64 years, otherwise node B is used for calculations. Taken from 

[93] 

HDG node 
LDF-

score 

daily 

component 

procedure 

component 
minLOS maxLOS meanLOS 

06.03 C 2,873 2,807 66 3 10 6.9 

06.04 A 3,134 3,062 72 4 11 7.5 

06.04 B 2,688 2,516 172 3 10 6.5 
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2.2.2 Intensive and Intermediate Care 
For intensive and intermediate care the standard case flat rates for admissions are 

not enough to reimburse necessary procedures at high quality facilities. Therefore, 

special rules for the assessment of costs have been developed within the Austrian DRG 

System. First and foremost there is the differentiation of intensive care (ICU) and 

intermediate care units (IMC), whereby intensive care units are further split in three 

tiers. The classification of intensive care units is based on mean values of the 

Therapeutic Intervention Scoring System 28 (TISS) (see Table 7 and Table 8). The 

TISS system is a scoring system for the maintenance of care of seriously ill patients. 

TISS-28 includes a list of 28 procedures of care, which may be performed on a patient. 

The sum of performed procedures on a patient within 24 hours results in the TISS score. 

Thus, the higher the score, the higher the maintenance of care is. [93,95] 

Table 7: Criteria for the classification of intensive and intermediate care units. 

Taken from [93] 

Classification IMC 
ICU 

Tier I Tier II Tier III 

mean of TISS-28 

points 
none ≥22 ≥27 ≥32 

specialized nursing 

staff per systemized 

bed 

≥1.50:1 ≥2.00:1 ≥2.50:1 ≥3.00:1 

minimal number of 

systemized beds 
4 6 6 6 
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Table 8: Criteria for the scoring of intensive and intermediate care units. Taken 

from [93] 

scoring IMC 
ICU 

Tier I Tier II Tier III 

specialized nursing 

staff/systemized 

bed 

≥1.50:1 + 0.01 

per 0.1 TISS-28 

≥2.00:1 + 0.01 

per 0.1 TISS-28 

above 22 

≥2.50:1 + 0.01 

per 0.1 TISS-28 

above 27 

≥3.00:1 + 0.01 

per 0.1 TISS-28 

above 32 

additional points 

per day 

480 + 3.0 per 0.1 

TISS-28 over 16 

 

max. 657 

748 + 3.4 per 0.1 

TISS-28 over 22 

 

max. 915 

1,134 + 4.2 per 

0.1 TISS-28 over 

27 

max. 1,340 

1,664 + 5.2 per 

0.1 TISS-28 over 

32 

max. 2,080 

 

2.2.3 Individual Medical Procedures 
In principle similar rules apply for individual medical procedures as for standard 

admissions. In total there are over 1,500 IMPs that each lead to one of over 200 IMP 

(MEL) groups. MEL groups also have associated case flat rates, minimum, maximum 

and average length of stay. One important differentiation is that in the case of multiple 

IMPs being simultaneously performed, only the one yielding the highest point score is 

reimbursed and consequently the procedure component of the most expensive 

procedure. Individual medical procedures can range from cataract operations and 

chemotherapies up to physiotherapeutic treatments and thus strongly vary in their 

respective costs. [93] In subchapter 2.4.4 the methodology of cost calculations of IMPs 

for the model is covered. 

2.3 Data Acquisition and Data Sets 
The backbone of stochastic approaches and statistical simulation methodologies is 

a comprehensive data basis. As described in the introduction section, for the discrete 

event method several or timewise longer simulation runs have to be performed to get 

reliant and statistically significant results. The bottleneck of most studies for alternative 

treatment methods for HF patients and published modeling approaches is the underlying 

data structure. Results from studies with follow-up times of mostly half a year and low 

recruitment numbers are strongly divergent and hamper the formulation of significant 

conclusions. One highlight of this work is the inclusion of huge data sets of health 
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insurance and health care providers as the basis for the model formulation. Through a 

collaboration with the Austrian regional health care provider Steiermärkische 

Krankenanstaltengesellschaft m.b.H (KAGes) in 2012, the conventional treatment of 

heart failure patients could be assessed and served as a basis for the conceptualization of 

the simulation model, resulting in the publication by Schroettner et al 2013 [94]. This 

teamwork got revitalized in 2018 and was vital to model the conventional care of HF 

patients in the publication by Lassnig et al in 2019 [36]. Through cooperation with one 

of the largest Styrian (region of Austria) health insurance provider, data on outpatient 

care for HF patients could be assessed in 2016. This would not have been possible 

without the partial employment at the health insurance provider’s premises. 

In October 2012 the, so far, largest clinical trial in Austria regarding 

telemonitoring of HF patients in combination with nurse support “Integrated 

Telemonitoring and Nurse Support Evaluation in Heart Failure” (INTENSE-HF) was 

started by the Medical University of Graz, the Ludwig Boltzmann Institute for 

translational heart failure research, the Austrian Institute of Technology and Graz 

University of Technology, aiming for an enrollment of roughly 350 participants in Graz. 

The task for Graz University of Technology was to perform statistical analyses and, if 

possible, to create a simulation model. However, this study didn’t meet its recruitment 

goals and was prematurely closed. [96] Therefore the simulation of DMPs and 

telemonitoring applications could not be realized with the anticipated input data and had 

to be based on literature. With the health insurance provider and KAGes a sophisticated 

conventional model framework was developed. Each data set is detailed in subsequent 

chapters.  

2.3.1 Data Set KAGes 
The regional health care provider KAGes provided the Institute of Health Care 

Engineering with the European Testing Center of Medical Devices (IHCE) with a huge, 

anonymized and monocentric data set of conventional care of heart failure patients in 

Styria. This data set is intended for scientific purposes only and was derived from their 

Health Information System (HIS). Altogether 7.412 HF patients (50.39 % male, 

49.61 % female) between 2006 and 2016 with 10,449 admissions in total were 

represented in the data. The criteria for patients to be included in the data set were 

hospital discharges based on the 10th Revision of the International Statistical 



 

26   

Classification of Diseases and Related Health Problems (ICD-10) for HF (I50.0x, 

I50.1x, I50.9 or I11.0x). Figure 5 presents the age distribution for both genders. 

 

Figure 5: Histograms of heart failure patients in the data set for inpatient care 

The data included medical reports for each hospital stay. NYHA classes based on 

medication, ICD-10 codes and medical procedures were derived for each patient. Based 

on guidelines on the treatment of HF patients [97,98], 62 % of the patients could be 

assigned to NYHA classes. KAGes also provided a data set with information on 

treatment in outpatient clinics for 14,234 patients (59.95 % male, 40.05 % female) with 

an overall of 25,939 visits. Median age for both genders was 69 years. 53.3 % of the 

patients could be classified in accordance to the NYHA classification system. [36] 

2.3.2 Data Set Health Insurance Provider 
Through cooperation with a Styrian health insurance provider, general anonymized 

data on outpatient care for heart failure patients could be assessed. This data set 

included records for 10,775 patients, collected between 2008 and 2013, covering 

information on admissions, treatment expenses for physicians/specialists and details on 

medication. Age distributions for both genders are visualized in Figure 6. Several 

million rows of data formed the basis to analyze and summarize medication. No 

information on outpatient death and overall mortality based on ICD-10 was included. 
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Derived costs for medication and the respective probability density functions are 

collected in Table 54 (see Appendix). [36] 

 

Figure 6: Histograms of heart failure patients for outpatient care based on the data 

set of the health insurance provider  

2.4 Data processing and Analyses 
To derive information out of the mentioned data sets it was necessary to analyze 

the data accordingly. In general the data quality was rather high for both data sets; only 

sparsely including missing values or multiple entries with the same information. To 

proper handle the data sets mostly IBM SPSS Statistics (Version 25) was used. 

Additional analyses were performed with R (Version 3.5.1). The basic process to assess 

best fitting probability density functions was to use the simulation function of SPSS 

after reducing outliers with the 95 % confidence interval and then analyze the goodness 

of fit based on Anderson-Darling and Kolmogorow-Smirnow. Due to the nature of HF 

and the source data, Weibull-, Gamma- and Lognormal functions were proper 

descriptions, which are commonly used to analyze health care data [99,100]. This was 

done for all density functions in chapter 2.5. In case the data disallowed significant 

predictions, median values were taken as the basis for simulation. Very specific 

algorithms had to be implemented to derive information for e.g. the classification of 

patients or the calculation of medication and hence will be covered in subsequent 
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chapters. Note that results of the data analysis won’t be covered in this section, but will 

be further explained in the specific parts of the simulation model in chapter 2.5. 

2.4.1 Age Groups 
In general, for data analyses every patient in the data sets was considered except 

patients with LOS of less than one day. To deduce information and trends, the role of 

age and gender on treatment outcomes was of interest and thus explicitly investigated. 

By using statistical approaches to find the optimal class sizes, depending on the 

question in mind, different configurations would have been optimal. The decision was 

made to categorize patients into age groups based on literature to increase comparability 

of the model to other approaches, studies and models and lastly for model validation 

and generalizability of results. The age groups ≤ 55, 56 – 65, 66 – 75, 75 – 85 and ≥ 86 

years were chosen as the best fit in terms of prevalence of HF and comparable approach 

to most research articles covered in meta analyses, such as [101]. As detailed in the 

introduction section, HF as a disease is mostly affecting people above the age of 65 

years with a distinct difference between men and women in prevalence. This was 

supported by the data sets, were most patients were in higher age groups and 

specifically men suffered from heart failure at an earlier stage compared to women (see 

Figure 5 and Figure 6). 

2.4.2 NYHA Classification 
The KAGes data set had no direct information on the state of health of HF, thus 

the state of health had to be derived based on medication, individual medical procedures 

and anonymized clinical reports. An algorithm was deduced and implemented to 

classify patients to either one of the four NYHA classes. The algorithm consists of 

keywords for the categories NYHA class, implants, medication and text (see Table 9) 

that are being searched in the free texts of clinical reports and then evaluated with a 

ranking system that is based on clinical guidelines for heart failure therapy. [97,98,102–

105]  
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Table 9: Keywords for the assessment of NYHA classes  

NYHA class implants medication text 

I   NYHA I 

I-II   NYHA I-II 

II   NYHA II 

II-III ICD ACE inhibitors 

beta blockers 

NYHA II-III 

III   NYHA III 

III-IV CRT 

ICD / CRT 

diuretics  

ARBs 

NYHA III-IV 

IV CRT  NYHA IV 

dyspnea at rest, lung edema, cardiac 

shock, cardiac decompensation, heart 

transplantation (HTX) 

 

The keywords for the medication (Table 9) are generic terms for medication 

groups; the algorithm included names of specific drugs to assess the NYHA classes (see 

Table 10). 

Table 10: Derivatives and representatives of drugs for heart failure therapy 

[37,59] 

ACE inhibitors beta blockers diuretics /thiazides loop diuretics ARBs 

Benazepril Metoprololsuccinat Hydrochlorothiazid Furosemid Candesartan 

Captopril Bisprolol Chlortalidon orasemid Aprosartan 

Lisinopril Carvedilol Indapamid Piretanid Irbesartan 

Preindopril Nebivolol Xipamid Traimteren Iosartan 

Quinapril   Amilorid Olmesartan 

Rampril    Telmisartan 

Trandolapril    Valsartan 
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Each admission or visit to the outpatient clinic in the data set was then categorized 

as “implants”, “medication” and “text”. E.g. a patient could have the classification “II-

III” for implants, “III-IV” for medication and the “text” “NYHA IV”. This information 

was then ranked according to the sequence in Figure 7. 

 

Figure 7: Ranking of clinical reports to assess NYHA classes 

The direct classification by the physician had the highest priority, followed by 

implantable devices and then medication. Due to the likelihood of comorbidities of HF 

patients, there was no clear indication whether or not drugs were prescribed based on 

the principal diagnosis. To reduce classification errors due to misspellings, missing 

words, case sensitivity, etc., clinical records were first transformed into lower case, 

which was done with the LOWER-function of SPSS. The INDEX-function was then 

used to compare keywords within the clinical reports. Multiple combinations of 

keywords were used to reduce spelling mistakes, including abbreviations. An example 

for one (for the example shortened) search line would be: 

 

𝑫𝑫 𝑰𝑰 (𝐼𝐼𝐼𝐼𝐼(𝑎𝑎𝐿𝐼𝑂(𝑎𝐿𝐼𝐿𝐿𝐼𝐼𝐿𝐿𝐼𝑎𝐼1), nyha i-ii) > 0) 𝑫𝑶 

(𝐼𝐼𝐼𝐼𝐼(𝑎𝑎𝐿𝐼𝑂(𝑎𝐿𝐼𝐿𝐿𝐼𝐼𝐿𝐿𝐼𝑎𝐼1), nyha i - ii) > 0) 𝑫𝑶 

(𝐼𝐼𝐼𝐼𝐼(𝑎𝑎𝐿𝐼𝑂(𝑎𝐿𝐼𝐿𝐿𝐼𝐼𝐿𝐿𝐼𝑎𝐼1), nyha i bis ii) > 0) 

 

In general there is rarely the necessity of inpatient care for HF patients below 

NYHA class III, which is supported by the data. With the help of cardiologists from 

KAGes the additional keywords for symptoms in Table 9 for NYHA class IV patients 

were added to improve classification outcomes. Overall results of the classification for 

inpatient care can be seen in Figure 8.  
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Figure 8: NYHA classification for admissions to inpatient care 

Per admission there was a field in the data base of KAGes for the anonymized 

admission diagnosis as well as a discharge diagnosis. The free text at hospital discharge 

had a higher priority, since it usually is more specific. If there was no discharge 

classification at hand, the admission diagnosis was used for the classification. The 

classes I-II, II-III and III-IV represent patients who could not be clearly categorized into 

one NYHA class. For further calculations they were split half and half to the lower and 

higher NYHA class to analyze their course of treatment.  

There is an obvious difference between the distribution of NYHA classes in 

outpatient and inpatient care, as can be seen by comparing Figure 8 and Figure 9. For 

the outpatient clinic the crux for the classification was that there were often multiple 

entries per visit to the clinic with the same identification number, since results from e.g. 

laboratory tests were also given a date and number. The work around was to use the 

most recent classification to the actual physical visit at the outpatient clinic as the 

reference.  
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Figure 9: NYHA classification for visits to the outpatient clinic 

Based on the classification scheme the NYHA classes II and III are predominant 

for patients visiting the outpatient clinic. Most of them could not be clearly identified as 

being either NYHA class II or III. NYHA classes I and IV are scarcely reported in 

outpatient care.  

2.4.3 Medication 
The data set of KAGes included medication in clinical reports, which greatly 

promoted the assignment of NYHA classes to patients or cases. The data set of the 

health insurance provider though offered information on expenses per patient, which 

was necessary for health economic analyses. In general costs for medication was given 

based on clearing items of the health insurance provider, more precisely the part they 

take over in covering costs for individual prescriptions. Several million data rows were 

available, forming large matrices that were further split and analyzed with SPSS.  

Most importantly, medication was classified based on the Anatomical Therapeutic 

Chemical (ATC) Classification System, which classifies drugs according to the organ or 

system on which they act and their therapeutic, pharmacological and chemical 

properties. This system is controlled by the World Health Organization Collaborating 

Centre for Drug Statistics Methodology (WHOCC) and was first published in 1976. 

Active substances are classified in a hierarchy with five different levels; the system has 

fourteen main anatomical/pharmacological groups (1st levels). Each ATC main group is 
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then further divided into 2nd levels which can be either pharmacological or therapeutic 

groups. The 3rd and 4th levels are pharmacological, chemical or therapeutic subgroups 

and the 5th level is the chemical substance. Table 11 gives an overview of the five 

levels. [106,107]  

Table 11: ATC classification system, 5-level scheme 

 

 

 

 

 

 

In case of heart failure, the main ATC groups are C03 (diuretics), C07 (beta 

blocking-agents) and C09 (agents acting on the renin-angiotensin balance) and their 

subgroups. The data set of the health insurance provider does not distinguish between 

medications for HF or other diseases, therefore the three mentioned codes were used to 

finally assess costs for the medication of HF patients. The next step was then to cluster 

medication, visits to physicians, etc. for each patient and evaluate them in terms of age, 

gender and time distribution. Results were cost distributions of medication per age and 

gender for HF patients. This was done for the main groups of ATC-Codes and 

subgroups of medication. An overview with drugs classified with ATC codes can be 

taken from Figure 10, the number of prescriptions per patient is listed in Table 12 and 

the resulting costs are presented in Table 13. 

 

Level Description 

First level Anatomical main group 

Second level Therapeutic subgroup 

Third level Pharmacological subgroup 

Fourth level Chemical subgroup 

Fifth level Chemical substance 
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Figure 10: Frequency of prescribed medication based on ATC codes in the data 

set for the main groups ATC 03, 07 and 09. 

 

Table 12: Overview of prescriptions per ATC main group, patient and year 

ATC main group 

Prescriptions 

per patient 
sum 

mean median minimum maximum 

C03 18 11 1 347 145,214 

C07 26 20 1 168 203,972 

C09 41 34 1 247 359,598 

 

Table 13: Overview of costs per ATC main group, patient and year 

ATC main group 

Costs 

per patient 

sum [€] mean 

[€] 

median 

[€] 

minimum 

[€] 

maximum 

[€] 

C03 166.59 75.60 1.25 5410.60 335,255.90 

C07 238.54 149.17 1.20 2611.50 1,871,607.45 

C09 569.77 377.95 2.35 4714.45 5,051,563.40 
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Ultimately the goal was to derive probability density functions for each ATC main 

group considering age and gender. This was done with the simulation function of SPSS, 

best fits were mostly Weibull- and Gamma- functions. Detailed parameters can be taken 

from Table 54 in the Appendix. 

2.4.4 Individual Medical Procedures 
As the second most important aspect of reimbursement in inpatient care, 

individual medical procedures (IMPs) are also covered in the data set by KAGes. The 

number and type of IMPs per patient is highly divergent in the data set, therefore 

instead of the aforementioned cost calculation system for IMPs, a different approach has 

been taken. The method chosen for the further modeling of inpatient care was to 

calculate mean costs of all consumed IMPs per patient and NYHA class and multiplying 

them with the average number of use. In the data set IMPs were saved in one string, 

therefore firstly this string was divided and written into individual cells as new variables 

with the SPSS command char.substring(string,pos,length). The maximum number of 

IMPs per stay was 8; therefore 8 variables have been created for each patient. For some 

patients the individual medical procedure was defined with “NA” for not available and 

thus not further considered. Altogether 332 different IMPs were classified for the HF 

patients. For the first analyses so-called “multiple response sets” in SPSS were used to 

define categorical variables. After the first assessment, Pareto-analyses were performed 

to identify most common IMPs for each patient class. IMPs that were less frequent than 

1% were excluded from the analysis as an assumption to simplify further calculations. 

This one percent of IMPs was, on average, more expensive than the others, but not 

applicable for most patients. Costs for IMPs are based on the catalogues of the Austrian 

DRG system. A cost calculation table published by the Austrian Federal Ministry of 

Labor, Social Affairs, Health and Consumer Protection [108] was used to derive costs 

for each IMP. This table relates costs for each IMP to the costs of IMP HH040 

(appendectomy open). Based on these relations and the information that an 

appendectomy on average is reimbursed with 3,959.33 LDF points, LDF point scores 

could be assessed per IMP and patient. Calculated values were multiplied by the 

performed procedures in the data set and divided by the total number of all consumed 

IMPs to get average costs per day and IMP. To better understand this process the 

following calculation example may be helpful: 
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total number of all IMPs in the investigated class of patients: 781 

LDF-point score for HH040: 3,959.33 

Exemplary consideration of IMP ZA010 (Computer Tomography – Head and Neck): 

- Number of performed operations: 89 

- Cost relation to HH040: 0.12711 (based on calculation table) 

i. 𝑠𝑎𝑑𝑎𝑑𝑑𝑎𝑎 𝑓𝑠𝑎𝑓𝑠𝑎𝑑𝑠𝑑(𝑍𝐿010) = 89
781

= 11.39% 

ii. 𝑚𝑎𝑎𝑑 𝑑𝑓 𝑎𝐼𝐿 − 𝑑𝑑𝑑𝑑𝑑𝑠 (𝑍𝐿010) = 3,959.33 ∗ 0.12711 = 503.27 

→ 𝑠𝑎𝑑𝑎𝑑𝑑𝑎𝑎 𝑑𝑑𝑑𝑑𝑑𝑠 𝑑𝑑 𝑠𝑑𝑎𝑠𝑠 = (𝑑) ∗ (𝑑𝑑) = 57.32 

 

These steps then have been done for all IMPs in each patient group; relative points 

were summed up and divided by the different kinds of IMPs to get the mean value of 

one singular IMP. Similar to LDF-groups of admissions, there are several nodes for 

IMPs with distinct scores for procedure and daily component that depend on age, type 

of disease, etc. and thus influence the final score. For the calculations in the model the 

mean value of IMP HH040 of LDF-scores was used to reduce complexity.  

2.5 Simulation Model 
The chapter Simulation Model explicitly describes the construction and use of the 

model with the input parameters derived from data analyses. Since the model was built 

over many years in various versions based on different data bases and to answer 

different scientific questions, a short history will be given to the modeling environment 

and the overhauled model features. Aspects of verification, validation and the 

presentation of results will be further explained, serving as the background to the results 

section. In general this chapter is based on the publication by Lassnig et al in 2019 in 

the BMC Journal Medical Informatics and Decision Making, which won’t be 

continuously cited in this section [36]. To describe the model in more detail, also on 

how it mathematically works, for each subsequent section the specific AnyLogic® 

elements will be described with their inherent functionalities.  
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2.5.1 A Short History 
The first simulation model built on the Institute of Health Care Engineering with 

AnyLogic® goes back to over 10 years ago. The system dynamic modeling of the 

Austrian population growth and a SD model on diabetes mellitus type 2 were the first 

topics covered. Besides logistic simulations of processes in emergency departments, the 

first heart failure model was created in the following years. This model was built with 

the discrete event methodology with the aim to precisely reflect a study design which 

investigated the effects of home-based telemonitoring using mobile phone technology 

on the outcome of heart failure patients (MOBITEL) [85]. This model was based on 54 

patients for conventional and telemedical care and allowed further investigations and 

optimizations of methods of care, including specialists and physicians as well as 

inpatient care, expressing time transitions with triangular functions. This HF model was 

further developed and expanded between 2012 and 2013, key features were e.g. the 

vastly improved process flowchart of the discrete event model and its translation into 

programming language as well as the collaboration with KAGes, which delivered a 

vastly improved and more comprehensive data base. All this was summed up in the 

publication in 2013 [94]. Age and gender were though not regarded and parameters of 

individual agents could not be tracked. Effects of the telemonitoring system were still 

based on the MOBITEL study, which had a follow-up period of half a year. The 

investigation of effects of disease management programs was another topic covered in 

those years and was frequently discussed at international conferences. A few conference 

publications later and through the first collaboration with an Austrian health insurance 

provider and additional contributions of KAGes, new ideas came up and allowed for 

thinking outside the box. In this context the old, static model was not sufficient enough 

to describe the treatment of heart failure patients on a statistically significant level. 

Therefore further model progress had to be based on improved data sets and statistical 

analyses which led to the conclusion to leave the purely discrete event model behind 

and build a hybrid model, including agent based and discrete event modeling. This new 

approach led to further conference contributions as well as another paper in 2019 [36], 

on which basis this work was written. The subsequent chapters go into detail to 

precisely describe the presented model. The modeling of heart failure was not the only 

topic though which was investigated over the years, many models were created to find 

and overcome bottlenecks in the health care sector, e.g. time in stroke treatment, hip and 
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knee joint replacement (resulting in a publication in 2016 [109]), population forecasts 

with probabilistic approaches and the treatment of diabetes mellitus type 2. 

2.5.2 Modeling Methodology and Overview 
The presented model builds upon on a previously published HF treatment model 

[94], further advancing modeling methodology and complexity. The original discrete 

event model was complemented by an agent based approach to form a comprehensive 

hybrid model which combines advantages of both methodologies. Discrete event 

models offer middle to low degrees of abstraction. Discrete steps, implemented with 

their respective transition probabilities, directly match the flow chart nature of the 

clinical pathway. 

The agent based modeling approach allows including patients with distinct 

features. Each entity in the model is represented as an agent of the class “Patient”. 

Parameters such as age, gender, state of health and the patient’s history through the 

course of treatment classify each individual and influence transition probabilities along 

the decision tree of the discrete model. Both methods align naturally thanks to the 

structure of the virtual flow chart (see Figure 11) with agents passing through it. The 

introduction of a patient collective (patient pool) to inpatient and outpatient care for 

heart failure patients, allows for more in-depth analyses of individual behavior through 

the agent based approach. 
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Figure 11: Flow chart of the clinical pathway implemented in the model. 

Every simulation run begins with the starting point at the patient pool, where the 

cohort to be simulated is generated. The next step is to face transition probabilities for 

admissions, the outpatient clinic, the physician or potential death. In case of an 

admission to the hospital there may be the necessity for a stay at an intensive care unit 

(ICU) or intermediate care unit (IMC). Again, patients can then potentially improve 

their state of health, stay in their respective NYHA class or further deteriorate in health, 

which leads to either admissions to standard care or death. After the admission based on 

an HDG for HF, the treatment with individual medical procedures may be necessary 

(this is summarized within the block admission). After inpatient care the state of health 

of patients can further improve, maintain or deteriorate. If there is no death event, they 
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return to the patient pool. For outpatient clinics, physicians and specialists the same 

routines apply, after the treatment they may get medication and may change their state 

of health. 

To evaluate the state of health, New York Heart Association (NYHA) classes are 

used to differentiate four groups by severity of HF, correlating with different 

frequencies, lengths and costs of the treatment procedures. The open model framework 

allows simulating different specific patient collectives and study cohorts by introducing 

adaptable parameters such as age and gender distribution and certain risk factors (e.g. 

comorbidities, obesity, smoking, etc.). Transitions between NYHA classes are 

implemented as a way to evaluate improvement or deterioration of the state of health. 

To give insight to exemplary model dependencies, Figure 12 visualizes the interactions 

between outpatient care, inpatient care and the patient pool. The agent symbol refers to 

information saved in the individual agent record. Several additional features can be 

implemented and adapted for each treatment area to simulate specific study designs. 

 

Figure 12: Simplified overview of interactions between patient pool, outpatient 

and inpatient care. Parameters describing the treatment procedures are illustrated in 

white font, interactions within the agent profile in black respectively. 

For simulation, the Java based software AnyLogic® (Version 8.3) was used. 

Statistical analyses were performed with R (Version 3.5.1) and IBM SPSS Statistics 

(Version 25). The subsequent subchapters further detail the model structure of the 

hybrid model. 
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2.5.2.1 Discrete model 

The discrete model is described as a Markov model with a set of distinct states qi 

(i = 1,…,M) and transition probabilities pij, describing the probability for a transition 

from state qi to state qj (see Figure 13). 

The transition probabilities are derived from rate constants per day (sampling size 

𝛥𝑑 = 1) taken from clinical data. Discrete states are the inactive state in the patient pool, 

the physician, the specialist, the outpatient clinic and the hospital, which is further 

divided into intensive and intermediate care. For the discrete system the probability Pi 

of being in state qi at time k+1 can be derived from the probability Pi at time step k and 

the outgoing and incoming probabilities of state qi in the following way [110]: 

 

𝑃𝑖,𝑘+1 = ��𝑃𝑗,𝑘𝑑𝑗𝑖

𝑁

𝑗=1

−�𝑃𝑖,𝑘𝑑𝑖𝑗

𝑁

𝑗=1

� ∙ 𝛥𝑑 + 𝑃𝑖,𝑘 (3) 

 

where N is the total number of discrete states, pij describes the conditional 

probability of finding the system in a new state qj, if it has recently been in state qi. (pij 

corresponds to transitions out of state qi and pji to transitions entering state qi).  

2.5.2.2 Extended hybrid model 

In the presented hybrid model the discrete model is combined with an agent based 

approach. For the simulated scenarios in chapter 3 the probabilities for state transitions 

pij depended on the following inner states �⃑�v of the agent v: 

 

𝑥𝑣����⃑ = �
age
sex

NYHA
�, v=1,…,n  (4) 

…whereas n is the total number of patients  
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Figure 13: State transitions in the hybrid model, starting with the ground state q0 of patients in the patient pool. xv are the inner 

states of the patient and pij the transition probabilities from state qi to state qj 
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Based on comprehensive data these three inner states can be further expanded to 

e.g. also investigate effects of comorbidities or risk factors. Additionally each agent also 

contains a set of auxiliary variables �⃑�v logging necessary information per agent on the 

course of treatment. These variables comprise costs, frequencies of visits, lengths of 

stay and are further explained in sections 2.5.4 to 2.5.7. (ATC…Anatomical 

Therapeutic Chemical Classification System Codes, IMP…Individual Medical 

Procedures, DMP…Disease Management Program, LOS…Length Of Stay, 

IC…Intensive Care, IMC…Intermediate Care) 
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The initial inner states of the patients follow set values or probability distributions 

that can be defined at the beginning of the stimulation. In the presented use cases these 

probability distributions were defined mainly based on data sets of Austrian health 

insurance and health care providers (see chapters 2.3.1 and 2.3.2). After leaving a 

specific state qi there are potential changes of the inner state xv of the patient which in 

turn may alter the state transition probabilities. Investigating selective problems and 

scientific questions can be carried out by changing state transition probabilities. In case 
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of death, patients exit the simulation run and do not interact with the virtual 

environment anymore. Each individual simulation run is based on a random number 

generator initialized with random seeds.  

The inner state changes of the agents are not fully independent. For example, the 

prescription of medication depends on age and gender as well as state of health (NYHA 

class) of the patient. Thus investigating selective problems and scientific questions can 

be carried out by changing state transition probabilities. In case of death, patients exit 

the simulation run and do not interact with the virtual environment anymore. Each 

individual simulation run is based on a random number generator initialized with 

random seeds as the starting condition. 

2.5.3 Model Description in AnyLogic® 
Chapter 2.5.2 gave an overview of the processes and elements of the model 

structure from a more generic perspective. This subchapter is focusing on the simulation 

model in the environment of AnyLogic®. AnyLogic® as a platform or framework 

strongly supports the building process of a model, since many important features are 

already pre-defined and usable per drag and drop system. These elements, such as 

functions or events, even 3D-objects and data sets are pre-programmed classes that can 

be adapted to serve the desired functionality. They are optimized to intuitively work 

together and allow very clean and comprehensible modeling methods. Code that is 

entered is Java-based, thus every function of generic Java libraries can be used, for 

specific applications additional libraries can easily be added. The different elements of 

AnyLogic® and thus Java source code used in this model will be explained at the stage 

they are firstly used to have a common thread across the description of the model. 

From a top down perspective, the .alp-executable of the built model is called 

HeartFailure and consists of the classes Main() and Patient() as well as several 

Experiments. Experiments store a set of configuration parameters of a model and are 

often used as simulation experiments, so-called Simulations. There are different types of 

Experiments, for this model several Simulations and a Parameter Variation have been 

used. A Parameter Variation is a type of Experiment that allows to run a model with 

different model parameters and to analyze how some parameters affect model behavior. 

Thus complex model simulations can be configured that comprise several single model 

runs, varying one or more root object parameters. The importance hereby is that 
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Parameter Variations can be used with fixed parameters to assess the effects of random 

factors in stochastic models.  

The HF model is a combination of discrete event and agent based modeling and 

thus based on random seeds. Random seeds are random values used as the starting 

condition for a pseudorandom number generator. Every result in this work is created 

through the iteration of millions of probability density functions and other stochastic 

elements in the decision tree. The standard random number generator of AnyLogic® 

was used for the general simulations, the option to have runs with fixed seeds (thus 

reproducible experiments) was only used for testing procedures. In every simulation 

simultaneous events are handled with the First-In First-Out (FIFO) principle in the 

order of scheduling. The initialization of the experiment Parameter Variation will be 

covered in section 2.5.8 of this work. 

Next to the classes and the experiment setups also so called Option Lists are 

implemented for the different NYHA classes and the sex of patients being simulated. 

Option Lists are generally used as elements for defining agent attributes that have 

limited choice of alternative options. They can be used, similarly to global variables, in 

every class. The newer versions of AnyLogic® also automatically include a Run 

Configuration to export model results to a cloud as well as a Database which stores 

defined parameter values that were produced throughout a simulation run. 

The presented model flow in Figure 11 is only the translation of the flow chart 

that has been implemented in AnyLogic®. Figure 14 shows the general structure of the 

main model flow in AnyLogic®.  
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Figure 14: Model flow in AnyLogic®. Outpatient care is colored in blue and 

inpatient care in yellow 

The source enterPatient can be seen at the start of each simulation run, which is 

connected to a patient pool. The selectOutpatientCare element is a multiple 

selectOutput function which, depending on in this case five different probability trees 

(which are further dependent on the NYHA class of the patient) selects one of them 

based on the random number generator and has the following structure: 

 

- Probability 1: toHospital(agent.NYHA)/timeFactor 

- Probability 2: toOutpatientClinic(agent.NYHA)/timeFactor 

- Probability 3: toPhysician(agent.NYHA)/timeFactor 

- Probability 4: toSpecialist(agent.NYHA)/timeFactor 

- Probability 5: 1-(Probability 1+Probability 2+Probability 3 + Probability 4) 

Thus this element triggers either admissions, visits to outpatient care or serves as a 

delay without any event. With the variable timeFactor the dependency of implemented 

probabilities on different time frames can be adjusted, in the standard case it is set for 

365 days. In the unlikely case (wrong inputs) that the sum of probabilities 1 to 4 is 

higher than 1, probability 5 will not be executed and the simulation displays an error 

message due to invalid entry values for the individual probabilities.  
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Overall the model consists of hundreds of variables, parameters and functions that 

can be adjusted to meet specific simulation requirements or to adapt the model to study 

protocols. Each element that can be seen in Figure 14 has a defined set of functions that 

define their behavior or rather their effect on the patient if entered. Subsequent chapters 

detail the actual programming part alongside input values derived from the data sets for 

the patient collective, inpatient as well as outpatient care. 

2.5.4 Patients 
As mentioned before, patients are implemented as individual agents with distinct 

features such as age, the state of health (NYHA class) or the enrolment in a disease or 

telemonitoring program that are assigned at the start of the simulation. Additional 

attributes, such as comorbidities, quality of life and life style (e.g. smoking, drug abuse, 

alcohol), can be included in the model but were not considered for standard simulation 

runs. To verify model calculations and give insight into treatment effects on an 

individual level, a patient specific history file tracks all relevant parameters. The history 

file consists of timestamps of all events passed throughout the simulation run and may, 

for example, include: PH5 OC28 IC52 AD54 CC64. The example describes a visit to 

the physician on day 5 (PH5) and the outpatient clinic on day 28 (OC28), a stay for 2 

days at an intensive care unit starting day 52 (IC52), followed by an admission for 10 

days on day 54 (AD54) and, finally, a NYHA class change on day 64 (CC64) at hospital 

discharge. 

In the simulation model itself the class Patient handles features of the constructed 

agents. They contain a defined set of variables and parameters as well as functions and 

events. Table 14, Table 15 and Table 16 give a short description of each element in the 

class Patient. Every agent thus inherits predefined parameters and then follows his own 

and individual path through the model.  
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Table 14: Parameters in the class Patient with type and description 

parameters type description 

sex Sex (option list) gender, either m or f 

age int age of patient 

NYHA NYHA  
(option list) NYHA1 to NYHA4 

LOS int length of stay for standard admissions 

LOSInt int length of stays for intensive care 

LOSIntmC int length of stays for intermediate care 

LOSSum double sum of LOS 

LOSIntSum double sum of LOS intensive care 

LOSIntmCSum double sum of LOS intermediate care 

totalCosts double total costs per agent of class Patient 

visitsPhysician int visits to the physician 

visitsSpecialist int visits to the specialist 

visitsOutpatientClinic int visits to the outpatient clinic 

visitsInpatientCare int number of standard admissions 

visitsIntensiveCare int number of admissions to intensive care 

visitsIntermediateCare int number of admissions to intermediate care 

visitsIMP int number of stays at hospital with individual medical procedures 

 

Table 15: Variables in the class Patient with type and description 

variables type description 

outpatientCosts double costs outpatient care 

outpatientClinicCosts double costs for visits to outpatient clincs 

physicianCosts double costs for visits to physicians 

specialistCosts double costs for visits to specialists 

medicationCosts double costs due to medication 

inpatientCosts double costs inpatient care 

admissionCosts double costs for standard admissions 
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intensiveCareCosts double costs for intensive care 

intermediateCareCosts double costs for intermediate care 

IMPCosts double costs for IMPs 

DMPCosts double costs for the DMP or telemonitoring 

sumFixedRateDMP double costs of a fixed rate for the DMP 

monthlyFixedRateDMP double costs of a monthly fixed rate for the DMP 

acquisitionDMP double acquisitions costs for the equipment (DMP) 

ATC03 double costs ATC03 

ATC07 double costs ATC07 

ATC09 double costs ATC09 

ATCxx double costs for the rest of the medication 

history String initial value: ”” 

death boolean true or false 

 

Table 16: Functions and events in the class Patient with type and description 

functions/events returns description 

costCalc() void 

calculates overall costs through call from Main() 

function body: 

medicationCosts = ATC03 + ATC07 + ATC09 + ATCxx; 

outpatientCosts = outpatientClinicCosts + physicianCosts + 
specialistCosts + medicationCosts; 

inpatientCosts = admissionCosts + intensiveCareCosts + IMPCosts + 
intermediateCareCosts; 

DMPCosts = acquisitionDMP + sumFixedRateDMP; 

totalCosts = outpatientCosts + inpatientCosts + DMPCosts; 

calcDMP() void 

adds the monthly fixed rate of the DMP/TM to the sum of the fixed rate 
if the patient is still alive, otherwise does nothing 

if (death==false) 

{ 

sumFixedRateDMP += monthlyFixedRateDMP; 

} 

else {} 

calcDMPEvent function 
call 

event with trigger type ‘timeout’ in cyclic mode. Calls the function 
calcDMP() with a recurrence time of 30.42 days and first occurs at time 
(absolute) 0. 
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The history file is a variable containing strings that are attached whilst patients 

pass elements in the class Main and grows throughout the simulation period until a 

patient dies. The function costCalc() is called in several elements of the class Main as 

well, to update and sum up all the arising costs and ultimately save them in specific data 

sets. This functionality is important to log and see values when the simulation is 

interrupted or closed abruptly. An event such as calcDMPEvent, is a possible way to 

schedule actions in the model. They are laid out to model delays and timeouts and thus 

work similar to timed transitions in statecharts, but may be more efficient. In general 

they can be timeout, condition or rate triggered. There are also dynamic variations of 

this element that are used to schedule any number of concurrent and independent events.  

The class Patient is linked to the class Main. To construct a defined patient 

collective in the class Main, an agent block is integrated into the Main as a population 

of agents. In this case it is called patient[..] and includes the parameters previously 

defined in the class Patient. This population of agents is initially empty and then filled 

with agents at the start of the simulation run with attributes defined in the simulation 

screen. To load these agent parameters defined in the experiment into the class Main, 

the event startModel occurs once at the start of the simulation and has the following 

form: 

event description 

startModel 

injects new patients into the population defined in patient[..] at the start of the simulation. It is 
triggered only once at the start of the simulation run and has the following actions: 

calculateCostsOverLOS(minLOS, maxLOS); 

newPatientNYHA=NYHA1; 

enterPatient.inject(initialPopulationNYHA1); 

newPatientNYHA=NYHA2; 

enterPatient.inject(initialPopulationNYHA2); 

newPatientNYHA=NYHA3; 

enterPatient.inject(initialPopulationNYHA3); 

newPatientNYHA=NYHA4; 

enterPatient.inject(initialPopulationNYHA4); 

The element enterPatient is the source defined in Figure 14, in which patient[..] is 

loaded as a population. The “manual” inject functions allow to have a numerically 

precise number of patients, with their respective starting NYHA class entering the 

simulation. The variables initialPopulationNYHA# (# is an abbreviation for the NYHA 

classes I to IV) can be defined at the start of the simulation run. The function 

calculateCostsOverLOS() has a specific use in calculating charges for the length of stay 
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per day based on the chosen input parameters. This is important to reduce computing 

efforts when a patient has an admission, because costs for specific LOS are calculated 

just once at the start of the simulation run and then saved into the array of the type 

double costsLOS[] (see Table 17 for further details). 

Table 17: Calculation of costs per LOS for inpatient care at the start of the 

simulation run 

element returns description 

calculateCostsOverLOS(
minLOS, maxLOS) void 

function that calculates the costs for LOS based on input 
parameters for inpatient care. The arguments minLOS and maxLOS 
are of the type double and describe the minimum and maximum 
length of stay for the modeled primary diagnosis. 

function body: 

double[] charge = new double[1825]; 

double RateLDF; 

for (int LOS = 0; LOS<1825; LOS++) 

{ 

 // LOS is shorter than min LOS 

 if(LOS < minLOS){ 

 RateLDF= procedureComponent + (dailyComponent*LOS) 
/ minLOS; 

 charge[LOS] = Math.round(RateLDF)*euroLKF; 

 } 

 //LOS is between min and max LOS 

 if(minLOS <= LOS && maxLOS >= LOS){ 

 charge[LOS] = fixedRateLDF * euroLKF; 

 } 

 //LOS is longer than max LOS 

 if(LOS > maxLOS){ 

  double surcharge = 
(dailyComponent/meanLOS)*(maxLOS/LOS); 

 if (surcharge < (dailyComponent/meanLOS)/2){ 

 surcharge = (dailyComponent/meanLOS)/2; 

 } 

 RateLDF = charge[LOS-1] + surcharge; 

 charge[LOS] = Math.round(RateLDF)*euroLKF; 

 } 

//traceln(charge[LOS]); 

} 

costsLOS = charge; 

costsLOS double[] array displaying the costs per day of a hospital stay 
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Sections of code that are in blue with the double slashes “//” are comments. The 

traceln(charge[LOS]) function is an inherent Java code that writes the index of the 

charge array in the console of AnyLogic® and therefore allows the verification of the 

calculations of costs per LOS. The function in Table 17 basically is the programmed 

solution of the formulae for transgressions of the maximum and minimum LOS defined 

in chapter 2.2.1.  

The population of patients is further used for gathering statistics, which is directly 

implemented in the element patient[..] and saves results in so called data sets. A data 

set is capable of storing 2D (X, Y) data of type double and maintains the up-to-date 

minimum and maximum of the stored data for each dimension. A limited number of the 

latest data items is stored, in the case of this model every data point (thus every action 

per day) is logged and further computed, summing up e.g. 1825 data points for a 

simulation time span of 5 years. Data sets used in the class Main to access patient 

statistics are listed in Table 18. 

Table 18: Data sets in the class Main assessing the statistics of the patient 

population. #...is a space holder for integers between 1 and 4 

data set 
accessing statistics of the patient population with the 
command: 

totalCostsDS patient.totalCostsPatients() 

totalCostsNYHA#DS patient.totalCostsNYHA#() 

totalCostsOutpatientDS patient.outpatientCostsTotal() 

totalCostsOutpatientNYHA1DS patient.outpatientCostsNYHA#() 

totalCostsInpatientDS patient.totalCostsInpatientCare() 

totalCostsInpatientNYHA#DS patient.costsInpatientCareNYHA#() 

visitsPhysicianNYHA#DS patient.countPhysicianNYHA#() 

visitsOutpatientClinicNYHA1DS patient.countOutpatientClinicNYHA1() 

patientCountNYHADS 
patient.countNYHA1()+patient.countNYHA2()+patient.countNYHA
3()+patient.countNYHA4()-deathsNYHA1-deathsNYHA2-
deathsNYHA3-deathsNYHA4 

patientCountNYHA#DS patient.countNYHA#()-deathsNYHA# 

visitsIPNYHA#DS patient.countInpatientCareNYHA#() 

LOSNYHA#DS patient.LOSNYHA#() 

visitsICNYHA#DS patient.countIntensiveCareNYHA#() 
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visitsIMCNYHA#DS patient.countIntermediateCareNYHA#() 

visitsIMPNYHA#DS patient.countIMPNYHA#() 

medicationCostsNYHA#DS patient.medicationCostsNYHA#() 

DMPCostsNYHA#DS patient.DMPCostsNYHA#() 

2.5.5 Outpatient Care 
The patient flow through outpatient care is represented in Figure 11 (page 39). Key 

elements are the physician, the outpatient clinic as well as the specialist and medication, 

which are implemented as delay elements in the model. Expenses for visits to health 

care providers are implemented with a median value per visit. Data for visits to 

physicians was derived from a Styrian health insurance provider; standard rates for such 

treatments account for €544 (mean) per year and patient. [111]  

Expenses for outpatient clinics are approximated from the Styrian benefits catalogue 

for standard procedures, with the first visit being reimbursed with €209 and later ones 

with €134. [112–115] As standard procedures 12-channel resting electrocardiography 

(ECG), exercise ECG, transthoracic ECG, 24-hour blood pressure measurement, 24-

hour ECG and x-ray scan of the thorax haven been considered. The 24-hour ECG and 

the 24-hour blood pressure measurement are not performed routinely; therefore there is 

a difference between the first year and later years. [116] 

As an important classification and treatment criteria, medication is based on the 

Anatomical Therapeutic Chemical Classification System Codes (ATC) with the main 

groups C03 (diuretics), C07 (beta-blocking agents) and C09 (agents acting on the renin-

angiotensin balance) and their subgroups. Accounting data were used to derive costs 

and frequency of prescriptions. Table 19 shows probability density functions of 

medication with costs per year and patient based on gender and ATC group. Expenses 

for the aforementioned ATC groups account for roughly 30 % of overall costs for the 

medication for HF patients. [111] Thus, the sum of the density functions in Table 19 

was multiplied by a factor of 3.33̇ in order to more realistically estimate medication 

costs. The state of health and the cause of outpatient death (in terms of ICD-10 codes) 

were not included as parameters in the data set from the health insurance provider and 

therefore disregarded.  
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Table 19: Probability density functions for medication in outpatient care, based on 

ATC-10 codes 

ATC / sex male female 

C03 
Weibull(59.83, 0.78)  

p≤0.01a, N=3180 

Weibull(43.27, 0.93)  

p≤0.01a, N=4668 

C07 
Gamma(51.30, 1.33) 

p≤0.001a, N=3218 

Gamma(56.67, 1.25)  

p≤0.001a, N=4451 

C09 
Weibull(153.11, 1.12) 

p≤0.01a, N=3593 

Weibull(165.84, 1.13)  

p≤0.01a, N=5087 

a… goodness-of-fit based on Anderson-Darling Test 

As already mentioned delays are implemented to describe procedures in outpatient 

care (the blue section in Figure 14, page 46). Each “delay” element has a delay time of 

one day, thus there cannot be more than one visit to outpatient care per day. If there is 

no action after the selectOutpatientCare element, the delay oneDay adds a delay time of 

one day before patients go through selectOutpatientCare again on the next day. Actions 

of the delays in outpatient care are described in Table 20 and Table 21. The functions 

for the calculation of costs for medication based on Table 19 are detailed in Table 22. 

Table 20: Description of the delay delayOutpatientClinic in AnyLogic® 

action description and code of delayOutpatientClinic 

On enter 

adds the information “OC” (outpatient clinic) to the history variable of 
the agent with the actual time the patient had the visit to the 
outpatient clinic 

agent.history = agent.history.concat("OC" + 
string.valueOf((int)time())+ " "); 

On at exit 

when leaving the delay the visits to the outpatient clinic are 
incremented and the costs of the outpatient clinic of the patient 
updated with the call of the function costCalc() 

agent.visitsOutpatientClinic = agent.visitsOutpatientClinic + 1; 

agent.outpatientClinicCosts = agent.outpatientClinicCosts + 
calcOCCosts(agent); 

agent.costCalc(); 
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Table 21: Description of the delay delayPhysician in AnyLogic® 

action description and code of delayPhysician 

On enter 

adds the information “PH” (physician) to the history variable of the 
agent with the actual time the patient had the visit to the physician 

agent.history = agent.history.concat("PH" + 
string.valueOf((int)time())+ " "); 

On at exit 

when leaving the delay the variables for visits to the physician are 
incremented in the class Patient and the costs of the physician and the 
medication updated with the call of the function costCalc(). The 
calculation of costs in ATCxx is done with the mentioned multiplier of 
3.3333 

agent.physicianCosts = agent.physicianCosts + physicianCosts; 

agent.ATC03 = agent.ATC03 + costsC03(agent.sex)/12; 

agent.ATC07 = agent.ATC07 + costsC07(agent.sex)/12; 

agent.ATC09 = agent.ATC09 + costsC09(agent.sex)/12; 

agent.ATCxx = 3.3333*(agent.ATC03 + agent.ATC07 + agent.ATC09); 

agent.costCalc(); 

agent.visitsPhysician = agent.visitsPhysician + 1; 

 

Table 22: Functions for the calculation of costs for medication 

function returns description 

costsC03(sex) 
value of 

type 
double 

returns the probability density function for the calculation of medication 
costs based on the sex of the patient 

function body: 

switch (sex) 

{ 

case m: 

 return weibull(59.83293592, 0.78187418); 

case f: 

 return weibull(43.26708011, 0.92750740); 

default:  

 return 1; 

} 

costsC07(sex) 
value of 

type 
double 

returns the probability density function for the calculation of medication 
costs of C07 based on the sex of the patient. The gamma-function in 
AnyLogic® has the form gamma(shape, scale), therefore the values are in 
different order 
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function body: 

switch (sex) 

{ 

case m: 

 return gamma(1.25236918,56.67309751); 

case f: 

 return gamma(1.33370323, 51.30145953); 

default:  

 return 1; 

} 

costsC09(sex) 
value of 

type 
double 

returns the probability density function for the calculation of medication 
costs of C09 based on the sex of the patient 

function body: 

switch (sex) 

{ 

case m: 

 return weibull(153.10949860, 1.11973953); 

case f: 

 return weibull(165.83859245, 1.12790871); 

default:  

 return 1; 

} 

 

The delaySpecialist has in principle the same code as delayPhysician with the 

difference of the expression “SP” instead of “PH” in the history variable. For the 

simulation runs the specialist was not considered separately and thus simulated together 

with the physician. It is important to note that the division of medication costs with the 

divisor 12 is due to the number of visits implemented for physicians. Basically, each 

patient visits the physician, on average, once a month. This is not realistic in terms of 

frequency, but it was more important to have a significant representation of costs for 

visits to the physician and the medication for the showcased scenarios. There was not 

enough data to support a narrower differentiation for this final model setup. Therefore 

also the probability to have visits to the physician in selectOutpatientCare is set to 12 

for each NYHA class, thus 12 visits a year (for more information go to chapter 4). The 

standard procedure for outpatient clinics is to have a mandatory visit once a year, thus 

the element toOutpatientClinic(agent.NYHA) is set to one. The functions 

toOutpatientClinic(), toSpecialist() and toPhysician() have the same structure, which 

can be taken from Table 23. 
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Table 23: Description of the probabilities for events (visits) in outpatient care 

function returns description 

toOutpatientClinic() 
value of 

type 
double 

returns the probability for a visit to the outpatient clinic: 
probToOutpatientClinic# is a variable containing the probability for a visit 
to the outpatient clinic that was defined in the simulation experiment 

function body: 

switch (NYHA) 

{ 

case NYHA1: 

 return probToOutpatientClinic1; 

case NYHA2: 

 return probToOutpatientClinic2; 

case NYHA3: 

 return probToOutpatientClinic3; 

case NYHA4: 

 return probToOutpatientClinic4; 

default:  

 return 0; 

} 

toPhysician() 
value of 

type 
double 

returns the probability for a visit to the physician: probToPhysician# is a 
variable containing the probability for a visit to the physician that was 
defined in the simulation experiment. The code in the function body is the 
same as for the toOutpatientClinic(), instead of probToOutpatientClinic# 
the variable probToPhysician# is linked 

toSpecialist() 
value of 

type 
double 

returns the probability for a visit to the specialist: probToSpecialist# is a 
variable containing the probability for a visit to the specialist that was 
defined in the simulation experiment. The code in the function body is the 
same as for the toOutpatientClinic(), instead of probToOutpatientClinic# 
the variable probToSpecialist# is linked 

 

The state of health is most commonly not documented in outpatient data. In this 

work, through cooperation with KAGes, the state of health could partially be classified 

for treatment in outpatient clinics. Medication, ICD-10 codes and procedures such as 

ICD (implantable cardioverter defibrillator) and CRT (cardiac resynchronization 

therapy) were used as classifiers for NYHA classes, as detailed in chapter 2.4.2. The 

course of treatment for individual patients was then analyzed, resulting in the following 

transition matrix (Table 24) for NYHA class changes in outpatient care. Some patients 

in the data set had outpatient visits with time delays of over 5 years in between. For the 

calculation of those transition probabilities only patients were included that had at least 

one visit to the outpatient clinic per year to reduce uncertainties and misinterpretations. 

In general, class changes in outpatient care are only triggered by visits to the outpatient 
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clinic, since no further information on patients’ health after visits to the physician or the 

specialist were contained in the data set of the health insurance provider. 

Table 24: NYHA class changes for outpatient care 

NYHA class 
follow-up 

I II III IV N* 

st
ar

t 

I 23.08 % 43.95 % 28.57 % 4.40 % 182 

II 4.26 % 52.41 % 38.29 % 5.04 % 2,301 

III 2.97 % 43.93 % 44.77 % 8.33 % 1,885 

IV 2.06 % 25.77 % 45.36 % 26.81 % 291 

N*…number of patients for data assessment 

In the model the realization of NYHA class changes is done with two steps for 

outpatient care. selectCCOut is a selectOutput element that decides whether or not class 

changes are considered for the simulation run. In case of activated class changes in 

outpatient care the multi-selectOutput element cCOut changes the NYHA class with the 

probabilities in Table 24. The implemented code for cCOut can be taken from Table 25. 

Table 25: Description of the code in the multi-select output element cCOut for 

NYHA class changes in outpatient care 

cCOut description 

Probability 1 
probability for class change towards branch 1, thus change of the NYHA class to class I 

probCCOut1(agent.NYHA)/(probCCOut1(agent.NYHA)+probCCOut2(agent.NYHA)+prob
CCOut3(agent.NYHA)+probCCOut4(agent.NYHA)) 

Probability 2 
probability for class change towards branch 2, thus change of the NYHA class to class II 

probCCOut2(agent.NYHA)/(probCCOut1(agent.NYHA)+probCCOut2(agent.NYHA)+prob
CCOut3(agent.NYHA)+probCCOut4(agent.NYHA)) 

Probability 3 
probability for class change towards branch 3, thus change of the NYHA class to class III 

probCCOut3(agent.NYHA)/(probCCOut1(agent.NYHA)+probCCOut2(agent.NYHA)+prob
CCOut3(agent.NYHA)+probCCOut4(agent.NYHA)) 

Probability 4 
probability for class change towards branch 4, thus change of the NYHA class to class IV 

probCCOut4(agent.NYHA)/(probCCOut1(agent.NYHA)+probCCOut2(agent.NYHA)+prob
CCOut3(agent.NYHA)+probCCOut4(agent.NYHA)) 

On exit # 

depending on the branch taken, different codes are implemented for the action taken 
when leaving cCOut. # again stands for the different NYHA classes and has values 
between 1 and 4 

agent.NYHA=NYHA#; 

agent.history = agent.history.concat(“CC#” + String.valueOf((int)time())+ “ “); 
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The probCCOut#(agent.NYHA) functions are four different functions that call the 

correct probability for the transition from the existing NYHA class to the new one. Each 

function returns a double value and consists of a switch/case loop iterating the different 

NYHA classes as cases and then returning the specific probability, which is always in 

the form probCCOutNYHAxy, whereby x equals the existing NYHA class and y the new 

NYHA class. 

As mentioned before no information on outpatient death based on NYHA class, 

age and gender could be derived from the data set. Still the implementation of potential 

outpatient mortality was done with the selectOutput element outMortality, which serves 

as a placeholder that can be easily adjusted. If a patient dies they leave the simulation 

via an Exit element exitOutpatient, this will be detailed in the inpatient care section, 

where the full functionality of this element is explained.  

2.5.6 Inpatient Care 
Admissions are based on the clinical data set from the Styrian health care provider 

KAGes representing data on over 10,000 admissions between 2006 and 2016. Cost 

calculations follow the Austrian Diagnosis-Related Groups system (DRG) 2018, where 

hospital stays are grouped into procedure-oriented, diagnosis-related case flat rates 

associated with a defined length of stay and an allotted point score reimbursed to the 

hospital. This score depends on the size, equipment and services of individual clinics. 

For the model calculations 1 point was equated to €1, which was an assumption for the 

simulations and is further discussed in chapter 4. In the case of chronic HF, two 

different case flat rates are applied depending on the age of the patient. Above the age 

of 64 years, minimum and maximum lengths of stay are defined with 4 and 11 days 

respectively, with a case flat rate of 3,134 points. Below 64 years the standard treatment 

window is between 3 and 10 days with a case flat rate of 2,688 points per stay. If the 

length of stay exceeds the set treatment window, supplementary points are added to the 

case flat rate for each additional day. In case of a shorter stay than the minimum length 

of stay, a reduced flat rate is reimbursed (see also chapter 2.2.1). [32] The nature of this 

calculation system underlines the importance to include transgressions of set treatment 

windows to realistically estimate overall costs. In the model, probabilities for standard 

admissions correlating to the NYHA class of patients are implemented (Table 26), 

length of stay for visits is described via probability density functions.  
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Table 26: Admission characteristics based on NYHA class 

NYHA class admission rate/yeara (p02) length of stay (days) 

I 0.0186 
3b 

median, N=15 

II 0.4287 
gamma(10.66, 0.63) 

p≤0.05a, N=296 

III 0.7643 
gamma(8.84, 1.27) 

p≤0.01a, N=449 

IV 1.6590 
gamma(7.56, 1.83) 

p≤0.01a, N=5745 

a… goodness-of-fit based on Anderson-Darling Test 

b… number of patients too small for significant prediction 

 

As can be seen in Figure 14 standard admissions are implemented as the delay 

inpatientCare. The admission rate of patients is based on the NYHA class and is 

realized as the function toHospital(agent.NYHA) in selectOutpatientCare (see Table 

27). The structure of the delay inpatientCare can be taken from Table 28. The functions 

used in the delay inpatientCare are described in Table 29. 

Table 27: Description of the function toHospital(agent.NYHA) which covers the 

probability of admissions 

function returns description 

toHospital 
(agent.NYHA) 

value of 
type 

double 

returns the probability of an admission. probToHospital# is a variable 
containing the probability for an admission that was defined in the 
simulation experiment 

function body: 

switch (NYHA){ 

case NYHA1: 

 return probToHospital1; 

case NYHA2: 

 return probToHospital2; 

case NYHA3: 

 return probToHospital3; 

case NYHA4: 

 return probToHospital4; 

default:  return 0; 

} 
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Table 28: Description of the delay inpatientCare in AnyLogic® 

action description and code of the delay inpatientCare 

Delay time 
the delay time is depending on the LOS of the individual patient, which 
is expressed with the function: 

inpatientCareLOSCalc(agent.NYHA, agent) 

On enter 

adds the information “IP” to the history variable of the agent with the 
actual time the patient had the admission 

agent.history = agent.history.concat("PH" + 
string.valueOf((int)time())+ " "); 

On at exit 

after the admission the function costCalcAdmission(agent) for the 
calculation of costs for the stay is called and the variable 
visitsInpatientCare is incremented by +1 

costCalcAdmission(agent); 

agent.visitsInpatientCare = agent.visitsInpatientCare + 1; 

On exit 
the last part is the call of the costCalc() function in the class Patient 

agent.costCalc(); 

 

Table 29: Description of the functions used in the delay inpatientCare 

function returns description 

inpatientCareLOSCalc 
(agent.NYHA, agent) 

value of 
type double 

calculates the length of stay for the patient based on the NYHA class. 
If the checkbox LOSPDF in the input mask is set to the value true, 
probability density functions are used to calculate the length of stay. 
Calculations with mean or median values are also possible, therefore 
an else-loop is implemented 

function body: 

if (LOSPDF == true){ 

switch (NYHA){ 

    case NYHA1: 

 pointerPatient.LOS+=LOSNYHA1; 

 return pointerPatient.LOS; 

    case NYHA2: 

 pointerPatient.LOS+=Math.round(gamma(0.62952, 10.66,1)); 

 if(pointerPatient.LOS <1){ 

 pointerPatient.LOS = 1; 

 } 

 return pointerPatient.LOS; 

 

 

 

    case NYHA3: 

 pointerPatient.LOS+=Math.round(gamma(1.2724, 8.8448)); 
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 if(pointerPatient.LOS <1){ 

 pointerPatient.LOS = 1; 

 } 

 return pointerPatient.LOS; 

    case NYHA4: 

 pointerPatient.LOS+=Math.round(gamma(1.8295, 7.5598)); 

 if(pointerPatient.LOS <1){ 

 pointerPatient.LOS = 1; 

 } 

 return pointerPatient.LOS; 

default:  

 return 0; 

    }  

} 

else{ 

switch (NYHA){ 

    case NYHA1: 

 pointerPatient.LOS+=LOSNYHA1; 

 return pointerPatient.LOS; 

    case NYHA2: 

 pointerPatient.LOS+=LOSNYHA2; 

 return pointerPatient.LOS; 

    case NYHA3: 

 pointerPatient.LOS+=LOSNYHA3; 

 return pointerPatient.LOS; 

    case NYHA4: 

 pointerPatient.LOS+=LOSNYHA4; 

 return pointerPatient.LOS; 

    default:  

 return 0; 

   } 

} 

costCalcAdmission 
(agent) void 

calculates the costs of the admission based on the length of stay 
and the costs for the duration saved in the costsLOS[] array  

pointerPatient.admissionCosts = pointerPatient.admissionCosts + 
costsLOS[pointerPatient.LOS]; 

 

It can be seen that probability density functions from Table 26 are part of the code of 

the delay for inpatient care. The decision whether or not probability density functions 

are used for the calculation of the length of stay is taken before the start of the 

simulation run in the simulation experiment.  
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Intensive care (ICU) and intermediate care (IMC) units are based on the Austrian 

Therapeutic Intervention Scoring System (TISS-28), associating per-day cost flat-rates 

(see chapter 2.2.2 for further explanation). There are several definitions for intermediate 

care, “high-dependency”, “step-up/down” or “progressive care” units are often 

synonymous. Intermediate care in this work is based on its use in KAGes and thus 

describes a concept to manage patients who need more care than a general ward can 

provide but do not really need the degree of monitoring, equipment and expertise that an 

ICU offers. [117] For simulation runs, a well-equipped ICU with a TISS score of 32 

points was chosen, resulting in 1,664 points (ICU) and 480 points (IMC) per day of 

stay. [118] Table 30 summarizes implemented probabilities per admission for both 

ICUs and IMCs, length of stay (LOS) was expressed via median values. 

Table 30: Likelihood for intensive and intermediate care admissions 

 ICU (p2_22) IMC (p2_23) 

age/ sex 
male 

(N*=569) 

female 

(N*=348) 
LOSa 

male 

(N*=735) 

female 

(N*=421) 
LOSa 

0-55 16.10 % 15.50 % 4 27.78 % 21.05 % 3 

56-65 16.10 % 14.40 % 4 21.83 % 15.35 % 3 

66-75 11.60 % 10.00 % 4 17.96 % 13.54 % 2 

76-85 8.60 % 7.10 % 3 12.22 % 9.30 % 2 

86+ 3.90 % 3.30 % 2 8.25 % 5.19 % 2 

a… median values for length of stay (LOS) 

N*…number of patients in the data pool 

The decision whether a stay at intensive or intermediate care is necessary is taken 

right after exiting the selectOutpatientCare element due to the function 

toHospital(agent.NYHA). Table 31 and  

Table 32 describe the elements of the decision tree in inpatient care and implemented 

functions. 
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Table 31: Description of select output elements for the implementation of 

intensive and intermediate care units 

select output description and code of select output elements for IMC/ICU 

selectIntCare 
this select output element decides whether or not a stay at the 
intensive care unit is necessary with the function: 

toIntensiveCare(agent.sex, agent) 

selectIMCInt 
this select output element decides whether or not a stay at the 
intermediate care unit is necessary with the function: 

toIntermediateCare(agent.sex, agent) 

 

Table 32: Function bodies for the switch/case elements of intensive and 

intermediate care 

function returns description 

toIntensiveCare 
(agent.sex, agent) 

value of 
type double 

function that describes the probability for treatment at an ICU based 
on age group and gender  

double pIC = 0; 

switch(sex){ 

    case m: 

 if(pointerPatient.age<=55){ 

 pIC = 0.161;  } 

 else if(pointerPatient.age>=56 && pointerPatient.age<=65){ 

 pIC = 0.161;  } 

 else if(pointerPatient.age>=66 && pointerPatient.age<=75){ 

 pIC = 0.116;  } 

 else if(pointerPatient.age>=76 && pointerPatient.age<=85){ 

 pIC = 0.086;  } 

 else if(pointerPatient.age>85){ 

 pIC = 0.039;  } 

 return pIC; 

    case f: 

 if(pointerPatient.age<=55){ 

 pIC = 0.155;  } 

 else if(pointerPatient.age>=56 && pointerPatient.age<=65){ 

 pIC = 0.144;  } 

 else if(pointerPatient.age>=66 && pointerPatient.age<=75){ 

 pIC = 0.100;  } 

 else if(pointerPatient.age>=76 && pointerPatient.age<=85){ 

 pIC = 0.071;  } 
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 else if(pointerPatient.age>85){ 

 pIC = 0.033;  } 

 return pIC; 

    default: 

 return 0; 

} 

toIntermediateCare 
(agent.sex, agent) 

value of 
type double 

function that describes the probability for treatment at an IMC unit 
based on age group and gender  

double pIMC = 0; 

switch(sex){ 

    case m: 

 if(pointerPatient.age<=55){ 

 pIMC = 0.2778;  } 

 else if(pointerPatient.age>=56 && pointerPatient.age<=65){ 

 pIMC = 0.2183;  } 

 else if(pointerPatient.age>=66 && pointerPatient.age<=75){ 

 pIMC = 0.1796;  } 

 else if(pointerPatient.age>=76 && pointerPatient.age<=85){ 

 pIMC = 0.1222;  } 

 else if(pointerPatient.age>85){ 

 pIMC = 0.0825;  } 

 return pIMC; 

    case f: 

 if(pointerPatient.age<=55){ 

 pIMC = 0.2105;  } 

 else if(pointerPatient.age>=56 && pointerPatient.age<=65){ 

 pIMC = 0.1535;  } 

 else if(pointerPatient.age>=66 && pointerPatient.age<=75){ 

 pIMC = 0.1354;  } 

 else if(pointerPatient.age>=76 && pointerPatient.age<=85){ 

 pIMC = 0.0930;  } 

 else if(pointerPatient.age>85){ 

 pIMC = 0.0519;  } 

 return pIMC; 

    default: 

 return 0; 

} 
 

For the intermediate and the intensive care each, the functions intCareLOSCalc() 

and intmCareLOSCalc() respectively are implemented to define the length of stay, 

which are then called in the delays intCare and intmedCare. These functions are 

structured in the same way as toIntensiveCare() and toIntermediateCare() with the 
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difference that instead of the probability of care the length of stay is defined with 

chosen values. Table 33 and  

Table 34 show the attributes of the delay elements and Table 35 gives insight into the 

function parameters. Table 36 lists the functions used for the calculation of costs for the 

stays at the ICU or the IMC. 

Table 33: Description of the delay intCare 

action description and code of the delay intCare 

Delay time 
the delay time is depending on the LOS of the individual patient, which 
is expressed with the function: 

intCareLOSCalc(agent.sex, agent) 

On enter 

adds the information “IC” to the history variable of the agent with the 
actual time the patient had at intensive care 

agent.history = agent.history.concat("IC" + string.valueOf((int)time())+ 
" "); 

On at exit 

after intensive care the function costCalcInt(agent, agent) for the 
calculation of costs for the stay is called and the variable 
visitsIntensiveCare is incremented by +1 

costCalcInt(agent, agent); 

agent.visitsIntensiveCare = agent.visitsIntensiveCare + 1; 

On exit 
the last part is the call of the costCalc() function in the class Patient 

agent.costCalc(); 

 

Table 34: Description of the delay intmedCare 

action description and code of the delay intmedCare 

Delay time 
the delay time is depending on the LOS of the individual patient, which 
is expressed with the function: 

intmCareLOSCalc(agent.sex, agent) 

On enter 

adds the information “IMC” to the history variable of the agent with the 
actual time the patient was in intermediate care  

agent.history = agent.history.concat("IMC" + 
string.valueOf((int)time())+ " "); 

On at exit 

after the intermediate care the function costCalcIntmed(agent, agent) 
for the calculation of costs for the stay is called and the variable 
visitsIntermediateCare is incremented by +1 

costCalcIntmed(agent, agent); 

agent.visitsIntermediateCare = agent.visitsIntermediateCare + 1; 

On exit 
the last part is the call of the costCalc() function in the class Patient 

agent.costCalc(); 
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Table 35: Description of the functions used in intensive care and intermediate care 

to describe the length of stay  

function returns description 

intCareLOSCalc 
(agent.sex, agent) 

value of 
type double 

function assigning the length of stay for intensive care based on 
sex and age of the patient  

double pIC = 0; 

switch(sex){ 

    case m: 

 if(pointerPatient.age<=55){ 

 pIC = 4;  } 

 else if(pointerPatient.age>=56 && pointerPatient.age<=65){ 

 pIC = 4;  } 

 else if(pointerPatient.age>=66 && pointerPatient.age<=75){ 

 pIC = 4;  } 

 else if(pointerPatient.age>=76 && pointerPatient.age<=85){ 

 pIC = 3;  } 

 else if(pointerPatient.age>85){ 

 pIC = 2;  } 

 pointerPatient.LOSInt+=pIC; 

 return pIC; 

    case f: 

 if(pointerPatient.age<=55){ 

 pIC = 4;  } 

 else if(pointerPatient.age>=56 && pointerPatient.age<=65){ 

 pIC = 4;  } 

 else if(pointerPatient.age>=66 && pointerPatient.age<=75){ 

 pIC = 4;  } 

 else if(pointerPatient.age>=76 && pointerPatient.age<=85){ 

 pIC = 3;  } 

 else if(pointerPatient.age>85){ 

 pIC = 2;  } 

 pointerPatient.LOSInt+=pIC; 

 return pIC; 

    default: 

 return 0; 

} 

intmCareLOSCalc 
(agent.sex, agent) 

value of 
type double 

function assigning the length of stay for intermediate care based on 
sex and age of the patient. The function code is identical to the one in 
intCareLOSCalc(), only names of variables are changed to IMC 
instead of Int 
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Table 36: Cost calculation functions for intensive and intermediate care 

function returns description 

costCalcInt 
(agent, agent) void 

function calculating the costs for the stay at intensive care based 
on the defined tier costs for the ICU 

pointerIntCosts.intensiveCareCosts = 
pointerIntCosts.intensiveCareCosts + 
pointerLOSInt.LOSInt*LDFIC*euroLKF; 

costCalcIntmed 
(agent, agent) void 

function calculating the costs for the stay at intermediate care 
based on the defined tier costs for IMC 

pointerIntmedCosts.intermediateCareCosts = 
pointerIntmedCosts.intermediateCareCosts + 
pointerLOSIntmed.LOSIntmC*LDFIMC*euroLKF; 

 

Individual medical procedures (IMP) were also obtained from the data set of KAGes. 

Over 332 different IMPs were classified in the data set. Using Pareto-Analyses the most 

common interventions could be identified for patients based on age and gender. The 

average point scores were calculated for the sum and frequencies of procedures in the 

data sets, information on the actual points was taken from [118]. Table 37 gives an 

overview of implemented probabilities for IMPs and respective point scores. 

 

Table 37: Likelihood and average point score of individual medical procedures 

 IMP (p21_211) average points per IMP 

age/ sex 
male 

(N*=2939) 

female 

(N*=2747) 

male 

(N*=1423) 

female 

(N*=1514) 

0-55 57.21 % 54.76 % 236.43 181.37 

56-65 54.50 % 55.93 % 242.60 155.00 

66-75 56.11 % 51.09 % 205.60 178.68 

76-85 47.61 % 43.34 % 179.55 136.16 

86+ 46.76 % 41.63 % 146.65 106.56 

 

After an admission the decision in the select output element toIMP is taken whether or 

not an individual medical procedure is performed (see Table 38) with the probability 

toIMPfunction(agent.sex, agent). As detailed in chapter 2.4.4 on individual medical 
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procedures, they are summed up and multiplied with the number of IMPs used. The 

delay IMP is described in Table 39 and its functions are detailed in Table 40. 

Table 38: Implementation of the function toIMPfunction() describing the 

probability for individual medical procedures based on sex and gender 

function returns description 

toIMPfunction 
(agent.sex, agent) 
agent) 

value of 
type double 

function defining the probability for an individual medical 
procedure during or after an admission  

double pMEL = 0; 

switch(sex){ 

    case m: 

 if(pointerPatient.age<=55){ 

 pMEL = 0.572;  } 

 else if(pointerPatient.age>=56 && pointerPatient.age<=65){ 

 pMEL = 0.545;  } 

 else if(pointerPatient.age>=66 && pointerPatient.age<=75){ 

 pMEL = 0.561;  } 

 else if(pointerPatient.age>=76 && pointerPatient.age<=85){ 

 pMEL = 0.476;  } 

 else if(pointerPatient.age>85){ 

 pMEL = 0.468;  } 

 return pMEL; 

 

 

 case f: 

 if(pointerPatient.age<=55){ 

 pMEL = 0.548;  } 

 else if(pointerPatient.age>=56 && pointerPatient.age<=65){ 

 pMEL = 0.559;  } 

 else if(pointerPatient.age>=66 && pointerPatient.age<=75){ 

 pMEL = 0.511;  } 

 else if(pointerPatient.age>=76 && pointerPatient.age<=85){ 

 pMEL = 0.433;  } 

 else if(pointerPatient.age>85){ 

 pMEL = 0.416;  } 

 return pMEL; 

    default: 

 return 0; 

} 
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Table 39: Description of the delay IMP 

action description and code of the delay IMP 

Delay time 

the delay time is depending on the LOS for IMPs defined in the 
experiment setup. For results shown in this work no delay was chosen 
to model individual medical procedures, they were assumed to be 
performed during the stay for the primary diagnosis 

LOSIMP 

On enter 

adds the information “IM” to the history variable of the agent with the 
actual time the patient had the IMP 

agent.history = agent.history.concat("IM" + 
string.valueOf((int)time())+ " "); 

On at exit 

the calculation of costs for the IMP is defined by the number of IMPs 
and the costs per IMP. After the IMP is performed the counter for IMPs 
is incremented by +1 

agent.IMPCosts = agent.IMPCosts + frequencyIMP(agent.sex, agent) * 
costsPerIMP(agent.sex); 

agent.visitsIMP = agent.visitsIMP + 1; 

On exit 
the last part is the call of the costCalc() function in the class Patient 

agent.costCalc(); 

 

Table 40: Description of functions for the assessment of the number of IMP 

performed and respective costs 

function returns description 

frequencyIMP 
(agent.sex, agent) 

value of 
type double 

function calculating the number of IMPs performed for each 
patient 

double fIMP = 0; 

switch(sex){ 

    case m: 

 if(pointerPatient.age<=55){ 

 fIMP = 3.45;  } 

 else if(pointerPatient.age>=56 && pointerPatient.age<=65){ 

 fIMP = 3.54;  } 

 else if(pointerPatient.age>=66 && pointerPatient.age<=75){ 

 fIMP = 3;  } 

 else if(pointerPatient.age>=76 && pointerPatient.age<=85){ 

 fIMP = 2.62;  } 

 else if(pointerPatient.age>85){ 

 fIMP = 2.14;  } 

 return fIMP; 
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    case f: 

 if(pointerPatient.age<=55){ 

 fIMP = 3.37;  } 

 else if(pointerPatient.age>=56 && pointerPatient.age<=65){ 

 fIMP = 2.88;  } 

 else if(pointerPatient.age>=66 && pointerPatient.age<=75){ 

 fIMP = 3.32;  } 

 else if(pointerPatient.age>=76 && pointerPatient.age<=85){ 

 fIMP = 2.53;  } 

 else if(pointerPatient.age>85){ 

 fIMP = 1.98;  } 

 return fIMP; 

    default: 

 return 0; 

} 

costsPerIMP 
(agent.sex) 

value of 
type double 

function defining the costs per IMP, as entered in the simulation 
experiment. costsPerIMPm and costsPerIMPf are the variables that 
are assigned with the respective values for men and women 

switch(sex){ 

    case m:    return costsPerIMPm; 

    case f:      return costsPerIMPf; 

    default:   return 0; 

} 

The point scores for individual medical procedures per day that are assigned by the 

function costsPerIMP(agent.sex) with the variables costsPerIMPm and costsPerIMPf 

are €68.53 for men and €53.82 for women, thus, on average, IMPs performed on men 

are more expensive in the data set.  

After potential intermediate and intensive care stays, the admission and individual 

medical procedures, the delay inMortality describes potential inpatient death. Mortality 

rates per admission were derived from the data set of KAGes and based on patient age 

and gender (Table 41). A description of the select output element with its features can 

be taken from Table 42. The exitInpatient element defines the exit of the simulation for 

deceased patients and is described in Table 43; coded functions important for the 

implementation of the inpatient mortality can be seen in  

Table 44. 
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Table 41: Mortality rates per admission (p21D) 

Age / Sex male N* female N* 

0-55 8.40 % 391 6.80 % 161 

56-65 8.80 % 787 10.60 % 263 

66-75 9.30 % 1,616 8.90 % 872 

76-85 13.30 % 1,892 12.30 % 1,975 

86+ 18.20 % 748 15.60 % 1,744 

N*…number of patients in the data pool 

 

Table 42: Code within the select output element inMortality 

attributes description and code of the select output element inMortality 

Probability 
this decision is based on the function call of toInpatientMortality() which again is based on sex 
and age of patients 

toInpatientMortality(agent.sex, agent) 

On enter 

when a patient dies some of the variables in the class Patient are still initialized and could 
falsely contribute to patient parameters. Therefore the total LOS for admission, intensive and 
intermediate care are summed up in the sum-functions and the singular auxiliary variables are 
then set to 0 

agent.LOSSum = agent.LOSSum + agent.LOS; 

agent.LOSIntSum = agent.LOSIntSum + agent.LOSInt; 

agent.LOSIntmCSum = agent.LOSIntmCSum + agent.LOSIntmC; 

agent.LOS = 0; 

agent.LOSInt = 0; 

agent.LOSIntmC = 0; 

Table 43: Description of the exit element exitInpatient 

attributes description and code of the exit element exitInpatient 

On exit 

adds the information “RIP” to the history variable of the agent with the actual time the patient 
died in inpatient care. mortalityPatientCalc(agent.NYHA) is a simple function increasing the 
death counters for each NYHA class. At the end the variable death as the state of the patient is 
set to true 

agent.history = agent.history.concat("RIP" + String.valueOf((int)time())+ " "); 

mortalityPatientCalc(agent.NYHA); 

agent.death = true; 
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Table 44: Functions used to describe inpatient mortality 

function returns description 

toInpatientMortality 
(agent.sex, agent) 

value of 
type double 

function calculating the probability for each patient based on sex 
and age to face death after or whilst inpatient care 

double pInMort = 0; 

switch(sex){ 

    case m: 

 if(pointerPatient.age<=55){ 

 pInMort = 0.084;  } 

 else if(pointerPatient.age>=56 && pointerPatient.age<=65){ 

 pInMort = 0.088;  } 

 else if(pointerPatient.age>=66 && pointerPatient.age<=75){ 

 pInMort = 0.093;  } 

 else if(pointerPatient.age>=76 && pointerPatient.age<=85){ 

 pInMort = 0.133;  } 

 else if(pointerPatient.age>85){ 

 pInMort = 0.182;  } 

 return pInMort; 

    case f: 

 if(pointerPatient.age<=55){ 

 pInMort = 0.068;  } 

 else if(pointerPatient.age>=56 && pointerPatient.age<=65){ 

 pInMort = 0.106;  } 

 else if(pointerPatient.age>=66 && pointerPatient.age<=75){ 

 pInMort = 0.089;  } 

 else if(pointerPatient.age>=76 && pointerPatient.age<=85){ 

 pInMort = 0.123;  } 

 else if(pointerPatient.age>85){ 

 pInMort = 0.156;  } 

 return pInMort; 

    default:    return 0; 

} 

mortalityPatientCalc 
(agent.NYHA) 

value of 
type double 

function counting patients and their NYHA class who died after or 
whilst inpatient care and saving those values in the variables 
deathNYHA# (# is between 1 and 4) 

switch(NYHA){ 

    case NYHA#: 

 return deathsNYHA#++; 

    default: 

 return 0;} 
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To assess the state of health of HF patients, the same method as for outpatient care 

was used, with selectCCIn and cCIn as select output elements. selectCCIn is active if 

the simulation includes NYHA class changes and cCIn is the actual implementation of 

NYHA class changes. In the case of inpatient care there was additional information on 

the state of health through medical reports per admission. Table 45 shows the transition 

matrix for NYHA class changes. Implemented probabilities for NYHA class changes in 

inpatient care can be seen in Table 46. 

Table 45: NYHA class changes inpatient care 

NYHA class 
follow-up 

I II III IV N* 

st
ar

t 

I 16.22 % 35.14 % 27.03 % 21.62 % 37 

II 2.96 % 39.65 % 35.30 % 22.09 % 575 

III 2.17 % 31.83 % 40.00 % 26.00 % 600 

IV 2.16 % 27.88 % 34.86 % 35.10 % 416 

N*…number of patients for data assessment 
 

Table 46: Description of the code in the multi-select output element cCIn for 

NYHA class changes in inpatient care 

cCIn description 

Probability 1 
probability for class change towards branch 1, thus change of the NYHA class to class I 

probCCIn1(agent.NYHA)/(probCCIn1(agent.NYHA)+probCCIn2(agent.NYHA)+probCCIn
3(agent.NYHA)+probCCIn4(agent.NYHA)) 

Probability 2 
probability for class change towards branch 2, thus change of the NYHA class to class II 

probCCIn2(agent.NYHA)/(probCCIn1(agent.NYHA)+probCCIn2(agent.NYHA)+probCCIn
3(agent.NYHA)+probCCIn4(agent.NYHA)) 

Probability 3 
probability for class change towards branch 3, thus change of the NYHA class to class III 

probCCIn3(agent.NYHA)/(probCCIn1(agent.NYHA)+probCCIn2(agent.NYHA)+probCCIn
3(agent.NYHA)+probCCIn4(agent.NYHA)) 

Probability 4 
probability for class change towards branch 4, thus change of the NYHA class to class IV 

probCCIn4(agent.NYHA)/(probCCIn1(agent.NYHA)+probCCIn2(agent.NYHA)+probCCIn
3(agent.NYHA)+probCCIn4(agent.NYHA)) 

On exit # 

depending on the branch taken, different codes are implemented for the actions taken 
when leaving cCIn. # again is a placeholder for the different NYHA classes and has values 
between 1 and 4 

agent.NYHA=NYHA#; 

agent.history = agent.history.concat(“CC#” + String.valueOf((int)time())+ “ “); 
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The code segments probCCIn#(agent.NYHA) are four different functions that call 

the correct probability for the transition from the existing NYHA class to the new one. 

Each function returns a double value and consists of a switch/case loop iterating the 

different NYHA classes as cases and then returning the corresponding probability, 

which is always in the form probCCInNYHAxy, whereby x equals the existing NYHA 

class and y the new NYHA class. 

2.5.7 Disease Management / Telemonitoring Programs 
To compare novel disease management and telemonitoring programs with 

conventional care, the model parameters can be adjusted accordingly to analyze 

potential outcomes. On the structural level this is mostly done by changing transition 

probabilities depending on the system of interest and implementing deviations of 

standard treatment routines by adapting the model flow. Additional expenses for 

simulated programs are implemented two-fold, as a one-time investment at the start of 

the simulation run and as reoccurring monthly fees. Extra expenses can be variably 

chosen based on the desired comparison between disease management, telemonitoring 

and conventional approaches. The foundation to simulate different treatment approaches 

was considered while programming the modular framework of the heart failure model, 

based on complexity and diverse characteristics of different intervention programs, no 

“standard” procedure was implemented. With the presented model already a broad 

range of different approaches can be simulated by just altering existing model 

parameters. 

2.5.8 Parameter Variation and Handling of Simulation Results 
As initially stated the simulation experiment Parameter Variation is used to 

perform multiple simulation runs. This is mostly important for having a significant 

predictive power. In the model itself after each simulation run data sets are filled with 

information on the patient population at each time step, which is one day in the default 

setting. Before each simulation run the information in the Parameter Variation is reset 

after being exported to a .xlsx-file via the data_ export function and the function call of 

writeData(). After iterations information in data sets is deleted. The code of the 

simulation experiment Parameter Variation in the AnyLogic® model can be seen in 

Table 47. 
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Table 47: Description of the simulation Parameter Variation in the heart failure 

model 

Parameter Variation description and code of the Parameter Variation experiment 

Maximum available 
memory custom: 54,000 Mb 

Parameters 

parameters: freeform (model is run for the fixed number of runs 
specified and parameter values are calculated according to the defined 
expressions) 

number of runs: 100 

Model time 
start: 0 

stop: 1825 

Randomness random seed (unique simulation runs) 

Initial experiment setup 

code executed on experiment setup 

totalCostsTimeDS.reset(); 

patientSum = 0; 

totalCostsNYHA#DS.reset(); 

totalCostsOutpatientDS.reset(); 

totalCostsOutpatientNYHA#DS.reset(); 

totalCostsInpatientDS.reset(); 

totalCostsInpatientNYHA#DS.reset(); 

patientCountNYHADS.reset(); 

patientCountNYHA#DS.reset(); 

visitsPhysicianNYHA#DS.reset(); 

visitsOutpatientClinicNYHA#DS.reset(); 

visitsIPNYHA#DS.reset(); 

LOSNYHA#DS.reset(); 

visitsIMCNYHA#DS.reset(); 

visitsIMPNYHA#DS.reset(); 

visitsICNYHA#DS.reset(); 

medicationCostsNYHA#DS.reset(); 

DMPCostsNYHA#.reset(); 

Before simulation run onStartupMain(); 

After simulation run 

after each simulation run, information of data sets in the class Main() is 
copied to the mirrored data sets in the Parameter Variation with the 
code dataSet.fillFrom(root.dataSet). The function fillFrom() makes the 
data set an exact copy of the given original data set and the command 
root references to the class Main(). This is done for each data set, a few 
examples are listed subsequently: 

totalCostsTimeDS.fillFrom(root.totalCostsDS); 

totalCostsNYHA#DS.fillFrom(root.totalCostsNYHA#DS); 

LOSNYHA#DS.fillFrom(root.LOSNYHA#DS); 
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[…] 

After iteration 

in this field the command after each iteration run is implemented. In 
this case the function writeData() in the Parameter Variation is called, 
which writes the information in data sets in the data_export function. 
this is a keyword in Java and works as a reference to the current 
object. 

this.writeData(); 

By opening the simulation experiment, graphical interfaces can be implemented 

showing simulation results in AnyLogic® graphs. This function is not used in the 

Parameter Variation to reduce the necessary random-access memory (RAM) for the 

simulation. Generally, since the simulation experiment for the class Main() is not used 

in the Parameter Variation, the information defined at the start of the simulation run has 

to be implemented in the Parameter Variation screen, thus each parameter and variable 

has to be initialized with the correct input parameters. A “copy” of the data sets used in 

Main() is listed there to have clean references between classes in the model. Table 48 

lists the objects in the Parameter Variation which are used to transport the simulation 

data to the .xlsx-file.  

Table 48: Description of objects and parameters in the experiment Parameter 

Variation  

objects and 
functions in 
the 
experiment 
Parameter 
Variation description 

writeData() 

function that writes the entries in the data sets into an .xlsx-file. Exemplarily two entries 
are shown below; they are repeated for each data set. The function setCellValue() 
directly writes the specific information of the data set (y-value with iteration of the 
index i) into the predefined excel-sheet “CAll” and then iterates to the next column. So 
each individual simulation run is saved to one column. 

for(int i=0; i< 1825; i++){ 

data_export.setCellValue(totalCostsTimeDS.getY(i), "TotalCosts", i+1, column); 

data_export.setCellValue(patientCountNYHADS.getY(i), "CAll", i+1, column); 

} 

column++; 

data_export 

accesses the predefined .xlsx-file “simData2018” in the specified directory. This can be 
adapted to the directory of interest. This function is loaded on model startup and saves 
the data on model termination. 

Y:/Anylogic_Telemedizinmodell/Modelle/HeartFailurePhD/HeartFailurePhD1.5/Data/s
imData2018.xlsx 

data sets as already mentioned every data set in the class Main() is copied due to hierarchical 
reasons into the Parameter Variation 
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2.5.9 Verification and Validation 
100 simulation runs were performed to attain statistical coherent and significant 

values for outcomes presented in Results. Formula (4) states the maximum number of 

iterations per decision element for a simulation with Parameter Variation. 

iterationsmax=𝑑𝑝𝑝𝑝𝑖𝑝𝑝𝑝𝑝∙𝑑𝑑𝑝𝑑𝑝∙𝑑𝑝𝑖𝑠_𝑟𝑟𝑝𝑝 (6) 

With 10.000 patients, 1,825 days within a simulation window of 5 years and 100 

parallel simulation runs, overall a theoretical maximum number of 18.25 ∗ 108 

iterations per decision element can be reached. The resulting deviation of results for the 

comparison of two simulations, each featuring 100 runs, in regard to overall costs and 

mortality rate is less than 0.5 % for each NYHA class. With the history file in every 

agent of the class Patient their respective course of treatment could be followed and 

recalculated to verify economic outcomes.  

To validate statistical analyses and prove generalizability of the data sets, a 10-

fold cross-validation was performed for the main input parameters. A 10-fold cross-

validation is a method mostly known from machine-learning approaches that is used for 

assessing how the result of a statistical analysis will generalize to an independent data 

set. It therefore is mainly used in settings where the goal is prediction and one wants to 

estimate how accurately a predictive model will perform in practice. A model is usually 

given a data set of known data on which training is run (training data set) and a data set 

of unknown data which the model is tested against. In the case of this work this 

approach was used on the main input parameters of the data set to figure out, whether or 

not there are inconsistencies in the input data sets. [119,120] In the presented case the 

data sets were split into 10 folds, whereas mean values and standard deviation of 

mortalities and length of stay based on age and gender were calculated. 9 folds were 

used as training sequences to test against the one test fold (see Table 49 and  

To evaluate the sensitivity of the model outcomes, a sensitivity analysis was 

carried out for the inner states of the model, namely age, gender and NYHA class (see 

Table 52 and Table 53 in the Results section). 
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Table 49: Comparison of test data and training data regarding age groups (mean 

values ± standard deviation) 

age groups  
(in years) 

length of stay (in days) mortality (in %) 

training test training test 

< 56 12.52±0.20 12.49±1.84 8.04±0.57 8.36±5.15 

56 – 65 13.39±0.12 13.38±1.11 9.31±0.33 9.28±3.05 

66- 75 12.75±0.06 12.75±0.53 8.98±0.17 8.94±1.51 

76-85  10.88±0.05 10.87±0.46 12.84±0.46 12.82±2.11 

> 85 8.91±0.28 9.02±0.38 16.37±0.22 16.37±1.96 

 

Table 50: Comparison of test data and training data regarding gender (mean 

values ± standard deviation) 

gender 
length of stay (in days) mortality (in %) 

training test training test 

male 10.98±0.03 11.08±0.40 11.79±0.16 11.78±1.53 

female 11.43±0.07 11.43±0.64 12.59±0.13 12.58±1.22 

 

It can be seen that there is no significant difference between the folds and the test 

sequences. Obviously, the more detailed the split criteria get for the folds, the higher 

deviations can get. Another reason for the choice of mentioned age groups and not 

simulating every patient year was to increase validity of results. For more detail see 

chapter 4.4.  
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3 RESULTS 

Several scenarios for the use cases of conventional care and a telemonitoring 

program were developed to represent exemplary potentials and capabilities of the 

developed model. If not stated otherwise, the basis for the simulations was the 

following: 10,000 patients were simulated over a time span of 5 years, with an even 

distribution between the four NYHA classes, consequently featuring 2,500 patients 

each. Probabilities describing the state transitions for the simulation runs are defined in 

Table 10 and match the pathways of the simulation model in Figure 3. 
 

Table 51: Probabilities of state transitions for standard simulation runs 

probability description value 
p00 outpatient mortality 0 
p01 outpatient clinic 1/365a 
p02 hospital Table 3 
p03 physician 12/365a 
p04 specialist 0 
p2_21 admission 1-(p2_22 + p2_23) 
p21_211 individual medical procedure Table 5 
p211C NYHA class change 1-(p211D), Table 7 
p211D inpatient death equals p21D, Table 6 
p21C NYHA class change 1-(p21D), Table 7 
p21D inpatient mortality Table 6 
p2_22 intensive care Table 4 
p22_21 admission 1-p22D 
p22D death intensive care 0 
p2_23 intermediate care Table 4 
p23_21 admission 1-p23D 
p23D death intermediate care 0 

a… assumed rates per day 
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Outpatient mortality was neglected for simulation runs due to missing information 

on the cause of death. Inpatient mortalities for standard admissions, intensive and 

intermediate care were combined into one parameter for treatment at wards. For 

outpatient care, NYHA class changes were only triggered by visits to the outpatient 

clinic with the average frequency of one visit per year. Physicians and specialists were 

simulated as one combined state with costs described in the Patients section. Since there 

was no clear indication on differences in outpatient costs for patients in different NYHA 

classes in the provided data sets, the same cost profile was implemented for each 

patient. 100 simulation runs were compared for each scenario in order to narrow 

statistical deviations and improve consistency of results, which were expressed with 

mean values plus standard deviations in the figures. All results are based on the data set 

described in the previous chapters and give insight on the treatment of heart failure 

patients for the use cases of conventional care and a telemonitoring program for an 

Austrian hospital, published by Lassnig et al [36]. 

 

3.1 Use Case 1 – Conventional Vare 

3.1.1 Scenario 1 
In the first scenario, average costs per patient, year and NYHA class were 

simulated, disregarding mortality rates and NYHA class changes (Figure 15). 

 

Figure 15: Average costs per patient and year, calculations without mortality and 

class changes. 
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Treatment efforts for NYHA class IV patients, with an average of 

€10,077 ± €165, more than doubled the corresponding values of other classes, mostly 

due to higher expenses for inpatient care and admission frequencies. As expected, costs 

increase consistently with higher classes. Figure 16 shows a breakdown of costs 

between outpatient (OP) and inpatient (IP) care per NYHA class.  

 

Figure 16: Costs distribution between outpatient (OP) and inpatient (IP) care for 

the four NYHA classes. 

The distribution of treatment efforts in outpatient and inpatient care correlates 

with the severity of the heart failure condition. In the data set, NYHA class I patients 

were rarely treated in inpatient care, while for NYHA class IV patients, admissions 

amounted to over 80 % of the related expenses. Overall costs for outpatient care were 

divided into expenses (median values) for the physician (27.6 %), the outpatient clinic 

(9.4 %) and the prescribed medication (63.0 %). 
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3.1.2 Scenario 2 
Scenario 2 represents calculations including inpatient mortality rates based on age 

and gender. Figure 17 depicts total costs for men, whereas costs for 50 year old patients 

are used as the baseline. 

 

Figure 17: Total costs over time for male patients at different age 

Total costs for men and women showed a general trend in which expenses 

declined with increasing age. This is mostly due to higher mortality rates for older 

patients, but was also affected by the significantly higher probabilities for intensive care 

admission and individual medical procedures experienced by younger patients (see 

Table 30). Overall, only minor cost deviations could be assessed between men and 

women in respect to their age when compared to the average 50 year old patient. For 

men, the difference in cost between 50 and 60 year old patients was minimal but started 

to increase significantly with higher age. As already mentioned, trends for women were 

similar with the exception of 60 and 70 year old patients, where trends in both age 

groups nearly coincided. 
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Figure 18 further underlines the progression of expenses as shown before, 

outlining survival rates for women based on age over the simulated time frame of 5 

years. 

 

Figure 18: Survival rate for women at different age over time. 

Naturally, mortality rates due to HF increased with age. However, distinct 

differences between men and women could be extracted; survival rates for women 

decreased evenly with increasing age (see Figure 18), whereas only minor differences in 

mortality for men between 50 and 70 years of age could be found, with distinctively 

increasing mortality rates afterwards. Generally, mortality rates were slightly higher for 

men compared to women, on average resulting in inpatient death rates across all age 

groups of roughly 29 % for men and 28 % for women within 5 years. 
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Figure 19 shows survival rates for 70 years old male patients based on their 

starting NYHA class, disregarding NYHA class changes. 

 

Figure 19: Comparison of survival rates for men at the age of 70 based on starting 

NYHA class. 

While nearly no NYHA class I patient died due to heart failure in the modeled 

time frame, over 50 % of NYHA class IV patients suffered death. 

3.1.3 Scenario 3 
Scenario three investigated simulation results for 70 years old men, including 

NYHA class changes for outpatient and inpatient care as well as inpatient mortality 

rates. Figure 20 shows how NYHA classes change over time based on the implemented 

data sets. Overall, deaths are represented as black lines (mean values) with whiskers 

(standard deviation). 
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Figure 20: Development of the state of health for 70 year old male patients, 

expressed through NYHA class changes. Each NYHA class starts at 100 % with a pool 

of 2,500 patients each. 

Out of the initial 2,500 patients in each NYHA class, most transitioned towards 

the NYHA classes II and III. The number of NYHA class I patients showed the most 

significant decline over time. On the other end, high mortality and hospital admission 

rates of NYHA class IV patients were the driving cause for the noticeable downward 

trend in Figure 20, which stabilized after the third year. Total deaths are increasing 

constantly over time, adding up to roughly 23 % of overall deaths after 5 years. 

 

3.1.4 Sensitivity Analysis 
To evaluate the range of model outcomes of presented simulation results, a 

sensitivity analysis (Table 52 and Table 53) was conducted to investigate the influence 

of age, gender and the NYHA class on economic outcomes and mortality. Results are 

presented as mean values of the 95 % confidence interval, standard deviations across all 

values are less than 1 % of the mean values and therefore neglected. 
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Table 52: Results of the sensitivity analysis for total costs/year in regard to age, 

gender and the NYHA class based on standard simulation settings, disregarding 

mortality and NYHA class changes (mean values of the 95 % confidence interval). 

 age NYHA I NYHA II NYHA III NYHA IV 

to
ta

l c
os

ts
/y

ea
r 

co
m

pa
re

d 
to

 m
70

 m50 -0,73 % -4,62 % -3,71 % -3,10 % 

m60 -0,70 % -3,61 % -2,69 % -2,08 % 

m70 - - - - 

m80 0,39 % 4,97 % 5,65 % 6,24 % 

m90 0,73 % 8,89 % 10,47 % 11,74 % 

to
ta

l c
os

ts
/y

ea
r 

co
m

pa
re

d 
 to

 f7
0 

f50 -0,91 % -4,81 % -3,76 % -3,31 % 

f60 -0,67 % -2,77 % -1,56 % -0,85 % 

f70 - - - - 

f80 0,32 % 4,70 % 5,58 % 5,84 % 

f90 0,59 % 8,23 % 9,43 % 10,71 % 

to
ta

l c
os

ts
/y

ea
r 

m
en

/w
om

en
 

50 3,35 % 3,56 % 3,40 % 3,03 % 

60 3,57 % 4,59 % 4,59 % 4,51 % 

70 3,53 % 3,74 % 3,45 % 3,25 % 

80 3,45 % 3,45 % 3,37 % 2,82 % 

90 3,38 % 3,00 % 2,25 % 2,05 % 
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Table 53: Results of the sensitivity analysis for the mortality after 5 years in 

regard to age, gender and the NYHA class based on standard simulation settings (mean 

values of the 95 % confidence interval) 

 age NYHA I NYHA II NYHA III NYHA IV 
m

or
ta

lit
y 

co
m

pa
re

d 
to

 m
70

 m50 -0,17 % -1,89 % -3,41 % -7,36 % 

m60 -0,08 % -1,01 % -1,59 % -4,05 % 

m70 - - - - 

m80 0,32 % 8,18 % 14,16 % 26,86 % 

m90 0,78 % 17,08 % 28,43 % 50,58 % 

m
or

ta
lit

y 

co
m

pa
re

d 
to

 f7
0 

f50 -0,22 % -4,46 % -8,24 % -18,01 % 

f60 0,15 % 3,74 % 6,20 % 12,69 % 

f70 - - - - 

f80 0,33 % 7,01 % 12,05 % 23,46 % 

f90 0,67 % 13,33 % 22,22 % 40,70 % 

m
or

ta
lit

y 

m
en

/w
om

en
 

50 0,14 % 3,38 % 5,90 % 11,89 % 

60 -0,14 % -3,95 % -6,68 % -15,41 % 

70 0,09 % 0,94 % 1,51 % 3,15 % 

80 0,08 % 2,18 % 3,87 % 7,44 % 

90 0,20 % 5,22 % 9,37 % 19,28 % 

 

The sensitivity analysis showed that there is a clear distinction of the influence of 

age and gender per NYHA class for simulation outcomes. Total costs were simulated 

disregarding mortality to compare outcomes with Figure 15 and are more dependent on 

age than gender, especially with increasing NYHA class. The influence of gender on 

costs is rather evenly distributed across the NYHA classes, with men being slightly 

more expensive. Considering mortality, age is an even stronger influence, reaching 

values of up to 50.58 % for male NYHA class IV patients. Here the increased admission 

rates affect overall mortality; older patients have a significantly higher likelihood to 

suffer death than younger ones. Again, gender has a lower impact on outcomes, 

nevertheless varying results up to 19.28 % for NYHA class IV patients. In general men 



 

90   

have slightly increased mortality rates compared to women. The higher mortality for 

women at the age of 60 is based on the data set and can be taken from Table 41.  

 

3.2 Use Case 2 – Telemonitoring Program 
 

3.2.1 Scenario 4 
Scenario four compares overall costs for two exemplary applications of a 

telemonitoring program. The simulated telemedical support is based on a recent 

program for HF patients at KAGes that was firstly introduced as additional HF 

treatment in Tyrol in Austria in 2014. Patients are equipped with a sphygmomanometer 

to assess blood rate and pulse, a scale to measure body weight and a cellphone to 

transmit data to a data center. An additional nurse complements the treatment as a 

communication interface between physician/specialist and patient and supports with 

individual training on HF and medication intake. [28] To simulate expenses based on 

the mentioned program, additional costs of the telemonitoring approach were calculated 

to €1,000 per patient for initial expenses for equipment purchase (acquisitionDMP) and 

an extra €45 per patient and month to cover additional efforts by the nurse/physician 

and for maintenance and service of the system (fixedRateDMP). The impact of 

additional efforts in outpatient care was extracted from [121] and amounted to 21 % 

decrease in overall admission rate, as well as a reduction of the average length of stay 

by 35 %. In Figure 21, expenses for conventional care are compared with the 

telemonitoring systems TM_1 (as described above) and TM_2 (no telemonitoring 

system for NYHA class I patients). 
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Figure 21: Overall costs for conventional care (Conv) and two different 

implementations of the same telemonitoring program. TM_1 was used on all patients, 

whereas TM_2 excluded NYHA class I patients. 

Initial investments for the chosen telemonitoring system increased costs within the 

first year by up to 10 %. Depending on the telemonitoring approach, cost efficiency 

could be reached within the first two years, after three years both systems were cost 

efficient compared to conventional care. 
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4 DISCUSSION 

This chapter discusses the build heart failure treatment model and its innovation 

and relevance to existing work in literature. A comprehensive and critical analysis of the 

simulation results and reasoning for the final model build are given. Advantages of the 

chosen modelling methodology as well as bottlenecks and rooms for improvements are 

further detailed to give a sense of the validity of the approach and open the discussion to 

possibilities of future extensions and considerations. 

4.1 Simulation Model 
Based on a published work by Schroettner and Lassnig in 2013 [94] a 

considerably advanced heart failure treatment model was built by Lassnig et al. in 2019 

[36]. Improvements include a new, hybrid modeling methodology and conceptual 

approach, as well as two comprehensive data sources for outpatient and inpatient care as 

the underlying basis for the simulation of realistic outcomes for the treatment of heart 

failure. The model focuses on the detailed description of conventional care to create an 

adaptable basis for further simulations of integrated concepts of care. With the 

implementation of the mentioned data sets a completely revised and significantly 

refined model could be attained. The development of the model over the years was also 

further pushed through cooperation with Austrian health insurance and health care 

providers. Projects such as the INTENSE-HF study [96], even though having been 

prematurely closed, gave valuable insight into arising problems and difficulties with the 

implementation of alternative or more holistic treatment approaches. The health care 

system in Austria develops at its own pace, newer approaches have to legitimize their 

existence and benefits through either significant improvements of the state of health, 

cost efficiency or both. Covering needs of the public at large in terms of accessibility 
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and affordability is bound to the acceptance and funding of health insurance providers. 

Holistic methods of care, such as some disease management programs, consider the 

human being as a complex ecological system and recognize the need for adaptions of 

social, mental, biological and physical parameters to enhance awareness of one’s life 

style and lastly, potentially, hone it. 

The developed HF treatment model is not the only existing model to simulate HF 

treatment. Several decision-analytic modeling approaches are reported in literature 

estimating effects of health technologies for chronic heart failure patients. Goehler et al. 

[122] identified 34 modeling studies investigating different HF intervention programs. 

Markov models were the most common approach next to mathematical equation sets 

and discrete event simulations, with most models focusing on the effectiveness of new 

pharmacological or device-oriented interventions. A comprehensive analysis of overall 

survival in heart failure treatment has been published by Levy et al. through the Seattle 

Heart Failure Model (SHFM) [123], which is frequently discussed in literature and used 

in scientific studies. For example Li et al. in 2019 discussed the validity of the model 

after heart failure hospitalization [124], Ng Fat Hing investigated its utility for palliative 

care referral in advanced ambulatory heart failure. [125] The origin of the underlying 

data base is always crucial to the simulated outcomes, therefore Shiraishi et al. 

recalibrated and validated the SHFM for its use for Japanese acute heart failure 

patients. [126] Bilchick et al. used the SHFM and proportional risk models to predict 

benefits of ICDs [127], Sartipy et al. discussed the model’s utility in patients with CRT 

and ICD referred for heart transplantation. [128] These studies are entries in an ongoing 

list of applications for predictive baseline models, such as the SHFM, which is not the 

only existing addressing chronic HF. Caro et al. developed discrete event simulations to 

compare the course of HF patients after the implantation of an ICD with additional 

amiodarone medication. [129,130] Klersy et al. investigated the economic impact of 

patient remote monitoring compared to usual care with a linear model based on an Excel 

platform, considering costs for hospitalizations. [83] Gasperoni et al. published two 

models in 2017, giving deeper insight into outcomes for overall admissions and death. 

Their models are based on risk factors and interventions, giving deeper insight into 

patterns of care for heart failure patients. [131]  
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In contrast to published modeling approaches, the detailed description of inpatient 

and outpatient care as delineated in the present work in regard to the NYHA 

classification system is unique and has high potential for future applications. The 

chosen modeling methodologies, discrete event and agent based, have so far not been 

used in combination to model heart failure treatment and offer several advantages in 

their interactions. First and foremost, the variable range of degree of abstraction allows 

the simulation on agent-individual and population level. Subgroups can be easily 

simulated and the effects of treatment outcomes on distinct parameters estimated. With 

the patient-specific history file, treatment processes can be individually followed and 

analyzed to assess trends and behaviour. The discrete model with distinct transition 

probabilities between states is highly adaptable to the clinical setting of interest and the 

inner states of patients can be adjusted to specific patient collectives. Therefore, study 

designs and clinical pathways in e.g. different regions or health care systems can be 

implemented with minor adaptions to the overall model. The multitude of potential 

applications is enormous and by far not limited to heart failure. The existing framework 

suits a multitude of treatment procedures for chronic diseases; new cooperation in 

different fields of health care research is a definite goal for further research. 

4.2 Data Sets 
To achieve reliable results with the chosen modeling methodologies, a significant 

depth of data is required. This was attained via the mentioned data sets for outpatient 

and inpatient care. One limiting factor concerning data quality was that the data sources 

were not structured based on a specific study design with defined health parameters; 

moreover inpatient data was derived from the extensive hospital information systems by 

KAGes, using ICD-10 codes for HF as the inclusion criteria for patients. Naturally, 

deviations in the quality of documentation regarding patient information occurred. For 

many patients, NYHA classes were not defined and information on left-ventricular 

ejection fraction (LVET) or N-terminal pro b-type Natriuretic Peptide (NT-proBNP) 

was not included in assessing the state of health, resulting in a certain bias of the final 

classification, since the state of health was not always assessed by a clinician. Out of the 

10449 admissions, 57.7 % could be classified directly through the indication of the 

NYHA class in medical reports, roughly 5 % more were assessed based on medication 

or individual medical procedures. For outpatient care these numbers were 22.5 % versus 

30.80 %, thus less patients were classified directly by physicians compared to inpatient 
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data, which may increase the likelihood of inadequate classifications. Criteria for 

assessing the NYHA class are regulated, but can be differently interpreted by 

physicians. The loss of information or misinformation through the classification 

algorithm had to be considered, as a basic approach the 95 % confidence interval was 

used to reduce outliers of derived parameters. Discussions with cardiologists led to 

conclusions that were supported by the used algorithm to classify the patients. Roughly 

90 % of inpatient stays are due to NYHA class IV, for outpatient care most patients are 

in the classes II and III which are rather volatile and can improve or deteriorate rather 

quickly compared to the other classes. Therefore therapies mostly focus on these two 

classes, where most improvements in the state of health are possible. Additionally, 

NYHA class I patients are rarely classified, since the HF or rather its symptoms are not 

clearly perceived by the patient. On the contrary NYHA class IV patients are mostly 

stationary and treatment measures in outpatient care are insufficient to improve the 

severe state of health. The best practice in classifying HF patients is still frequently 

discussed in literature; the choice of using NYHA classes for this work was made due to 

its significance and frequency of mentioning in the field as well as its use at KAGes. A 

disadvantage of the monocentric data base was that follow-up times could not be 

consistently monitored for individual patients due to potential hospitalizations in 

surrounding centers of care; however, admission rates of 107 patients with precisely 

documented follow-up could be tracked across hospitals in Styria, as shown in Table 26 

to derive frequencies of hospitalizations.  

For outpatient care, detailed information on treatment in outpatient clinics was 

available for modeling based on the data set of KAGes. Medication, as well as visits and 

reimbursements of physicians were based on the data set of the health insurance 

provider, which included no information on the state of health. Therefore, distinct 

treatment profiles could not be consistently drawn for each patient. This is the main 

reason why no further differentiation in outpatient costs profiles for each NYHA class 

was achievable. Patients who experienced treatment in the outpatient clinic and the 

specific hospital could be matched due to the same data source. The health insurance 

provider used an anonymized national insurance number to identify patients; data 

restriction policies and the anonymization of both data sets disallowed the alignment 

with identification numbers used in the hospital association KAGes. The decision to 

increase the degree of abstraction by calculating with monthly visits to the physician 

and an annual visit to the outpatient clinic was based on the lack of cross-referenced 
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patients. As described in chapter 2.5.5, the annual costs for visits to the physician and 

the specialist were derived from accounting data and divided by the assumed number of 

visits. In terms of expenses for the medication, outcomes for each patient were 

addressed in the data set of the health insurance provider. Since there was no evidence, 

whether or not these costs arose due to the HF or other illnesses, only the medication 

specifically addressing symptoms of HF were considered. Disregarding all other drugs 

administered would have severely underestimated general costs for medication. The 

publication of the German health insurance provider [111] gave deeper insight into 

overall expenses and therefore was used to calculate overall costs based on the specific 

HF prescriptions.  

The choice of using mentioned age groups for the statistical analyses was made 

due to their frequency of use in literature and to have a basis for comparisons with 

existing studies. Furthermore prevalence of heart failure starts to significantly increase 

after the age of 65 years and rarely occurs at younger ages, as published by [8–12]. 

Based on the used data sets, clear differences in outcomes for the chosen age groups 

could be drawn from the simulation results. Depending on demographics and setting of 

care different age considerations may be necessary to precisely represent HF treatment.  

4.3 Simulation Results 
The four presented scenarios give an overview of exemplary simulation results 

and model capabilities for the two use cases of conventional care and a telemonitoring 

program and can be further developed into a variety of potential scenarios and model 

applications. Assumptions for producing presented results are mentioned in chapter 3, 

calculations were disregarding outpatient mortality and visits to specialists. Every 

patient had the same cost profile for outpatient care, since the outpatient data set didn’t 

include information on the state of health. Due to the disregard of differences between 

NYHA classes in outpatient care, outcomes and costs partially are under- and 

overestimated (see section 4.4). The missing information on outpatient mortality is 

obviously influencing overall outcomes. The clear assessment of this parameter outside 

a specific study design is challenging, since the cause of death is sometimes unknown 

and not based on a specific ICD-10 code. There was no indication whether or not death 

in the data set of the health insurance provider was due to HF or other diseases. 

Comorbidities were only addressed for the outpatient clinic. Therefore the decision was 
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made to neglect outpatient mortality and to compare results for age, gender and NYHA 

class considering inpatient mortality only.  

An important aspect for assessing overall costs for the treatment of HF patient is 

how the allotted point score in inpatient care is equated to Euros. For the simulation 

runs one point was equated to €1. This may change based on each individual hospital 

and could be even €1.40 or less than one €, which would strongly affect presented 

outcomes and thus stresses the importance of treatment-specific input values. The 

detailed description of inpatient care is essential to calculate costs of admissions. 

Especially modeling the length of stay with probability density functions instead of 

median or mean values is necessary to realistically predict expenses due to the nature of 

DRG systems with additional costs for transgressions of set treatment windows. No 

study in literature considering these transgressions could be found and the assumption 

can be made that concurring costs are severely underestimated in many reported cases.  

In the first scenario costs for patients based on their NYHA class (Figure 15) were 

compared and divided into expenses for outpatient and inpatient care (Figure 16). The 

clear shift of costs from outpatient to inpatient care with worsening heart failure 

condition corresponds to clinical guidelines and findings in literature. However, costs in 

regard to NYHA classes are scarcely reported directly [101]. Berry et al. [14] compared 

costs per year and heart failure patient based on their respective NYHA class. Averages 

of €6,754 in France, €10,437 in the Netherlands and €24,790 in Belgium for NYHA 

class IV patients per year were approximated values, underlining huge divergence in 

inpatient expenses. In a systematic review of the economic burden caused by heart 

failure, Shafie et al. reported huge gaps of costs in literature, where annual expenses for 

the treatment of NYHA class IV patients ranged from Int$4,147 to Int$36,297 and from 

Int$3,604 to Int$20,871 for NYHA class III. Median annual inpatient costs per person 

summed up to Int$10,141. [101] The simulated outcome of €10,077 ± €165 per NYHA 

class IV patient and year correlates with these findings. The definition of outpatient 

costs vary across literature; reported annual costs in literature range from Int$64 to 

Int$32,332 per patient, with a median of Int$939 per year and patient [101]. Outpatients 

costs amounted to €1,912 ± €14 in scenario one. 
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Scenario two discussed overall costs and mortality of heart failure patients, based 

on age and gender as well as differences between the four NYHA classes. The high 

costs for 50 year old patients were not only explainable by the increase in admissions to 

intensive care and intermediate care units, but also by the nature of the DRG 

reimbursement system. Transgressions of the set windows for length of stay per NYHA 

class, as discussed in the methods section, are driving cost factors. Probability density 

functions for the length of stay are right-skewed and only slightly differ in their median 

values based on age. Differences in overall costs between the mentioned age groups 

were mostly influenced by the higher likelihood of intensive care and intermediate care 

admissions. 

Survivability of patients is described in Table 41 and illustrated in Figure 18, 

showing an expected increase in mortality with age and an overall higher disease-related 

mortality for men compared to women. Both findings are supported by reports in 

literature, for example Goyal et al. investigated sex- and race-related differences in 

characteristics and outcomes of hospitalizations for heart failure patients with preserved 

ejection fraction [132], confirming significant differences in mortality based on age and 

gender. Outcomes for disease related survivability per NYHA class are depicted in 

Figure 19. Probabilities for admissions and inpatient deaths strongly correlate with the 

NYHA class as specified in Table 26. 

The inclusion of NYHA class changes for outpatient and inpatient care in scenario 

three (Table 24 and Table 45) led to the results in Figure 20. The increase with time of 

the number of patients classified as NYHA class II and III is mostly based on transition 

probabilities in outpatient clinics (Table 24), where a significant trend towards both 

classes could be observed. Inpatient care probabilities for class changes favor transitions 

to higher NYHA classes, as described in Table 45. The simulated, even distribution 

between the four NYHA classes, doesn’t reflect the actual distribution of heart failure 

patients in society and was chosen for the comparison of treatment effects. The trend 

towards NYHA classes II and III is supported by a publication by Poelzl et al., 

describing the Austrian heart insufficiency register, where most observed patients are 

either in NYHA classes II or III [12].  

The influence of age, gender and NYHA class on economic and health outcomes 

was tested with a basic sensitivity analysis. As depicted in Table 52 and Table 53, all 

three parameters influence simulation outcomes, with age being a stronger parameter 

than gender, having distinct differences in outcomes based on inpatient characteristics. 
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The NYHA class strongly influences simulation outcomes, due to the limitations in 

addressing consistent NYHA classes for patients with longer follow-up times in the data 

sets; admission rates are not dependent on age or gender. The stronger deviations for 

NYHA class IV patients were expected due to overall higher probabilities for 

admissions. 

Several publications address effects of outpatient and inpatient intervention 

programs for heart failure patients, with inconsistent positive effects [33–35,66]. The 

simulated telemonitoring setting for scenario four, based on findings by Dendale et al. 

[121], scores in the upper spectrum in terms of potential benefits, with a decrease in 

admission rates as well as length of stay. Primary investments for the implementation of 

the system increase costs at first, but can turn out to be costs efficient within 2 years due 

to the potential of an overall better outcome, as depicted in Figure 21. However, these 

effects are highly sensitive to the chosen patient collective in terms of age and overall 

state of health. Results indicate that highest potentials for the application of a 

telemonitoring system can be achieved for patients in the NYHA classes II and III, 

which are most susceptible to potential changes of the state of health. With the herein 

reported model, a variety of approaches can be modeled to estimate outcomes for highly 

specific patient collectives and to directly assess solution potential. 

4.4 Validation 
The model is based on a consistent and comprehensive data base. Data 

homogeneity was tested with a 10-fold cross validation for the main input parameters, 

which showed only minor deviations between test and training data sets. As already 

mentioned, study results vary distinctively in their outcomes for different intervention 

programs [33–35,66], therefore published models and studies in this field are subject to 

limitations in their generalizability. The specific patient collective, study design and 

region has a distinct influence on cost and health outcomes. Nevertheless, with the 

simulated scenarios, a first approach to results based on the parametrization with 

Austrian health insurance and clinical data could be achieved. Several findings in 

literature confirm the presented simulation results. Costs of inpatient care for NYHA 

class IV patients of roughly €10,100 per patient per year are within ~1 % of the median 

of the published review by Shafie et al. [101], who considered 35 publications 

addressing inpatient costs. Overall costs for inpatient care are mostly based on the 

length of stay, which is precisely modeled based on the Austrian DRG system. 
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Calculations with mean or median values of the length of stay do not representatively 

estimate cost outcomes, the inclusion of probability density functions allows realistic 

calculations. Reported costs in outpatient care strongly vary in literature and are heavily 

dependent on health care systems and treatment settings, requiring careful interpretation 

of estimations. Nevertheless, the expenses for heart failure medication based on ATC-

codes derived from the data set of the health insurance provider matched findings 

published by a German health insurance provider [111], which is a comparable source 

to the Austrian health care system. Costs for physicians and specialists are based on 

actual accounting data of the Austrian health insurance provider. Overall, heart failure 

related mortality is naturally underestimated compared to [131] due to the exclusion of 

outpatient mortality and strongly correlates with age, NYHA class and comorbidities. 

[133] The presented mortality rates for inpatient care in the data set are higher compared 

to findings by Goyal et al. [132], who reported median in-hospital mortality rates per 

stay of 4.6 % across age and gender. The difference presumably is based on the rather ill 

and old patient collective in the data set, with nearly 90 % of hospitalized patients being 

classified to NYHA class IV. Based on the high number of patients in the included data 

sets, the derived mortality rates per admission were significant; their generalizability has 

yet to be proven. The heterogeneity of health care systems, study designs and regional 

outcomes of heart failure treatment and integrated methods of care hampers a cross-

sectional validation. Huge divergence in cost predictions with highest costs reported in 

literature being approximately 45-fold higher as compared with lowest outcomes 

underline the difficulty to outline a standard costing methodology as reported by Shafie 

et al [101]. This supports the presented modeling approach by offering a framework that 

is highly adaptable to the context of interest. The matching of simulated results with 

literature reports and accounting data however underlines the validity of the presented 

model, exemplarily demonstrated for the use case of an Austrian hospital. 

4.5 Model Limitations 
Since no outpatient mortality could be extracted based on the ICD-10 codes for 

heart failure, it has been neglected for the simulations. Therefore and also based on the 

exclusion of outpatient deaths, mortality rates of up to 50 % within the first 5 years are 

not apparent in the mentioned scenarios except for NYHA class IV patients. In general, 

ethnicities as well as social status have been neglected in data analysis. Probabilities for 

admission per NYHA class were based on 107 patients with well documented follow-
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up; no age correlation has been used for this parameter due to statistical insignificance. 

Several assumptions have been made to conclude results. The specialist and the 

physician could not be distinguished in the data set of the health insurance provider 

therefore they were simulated as one entity with on average 12 visits per year and costs 

per visit had to be generalized based on standard rates for Austria. This is not 

representing real frequencies of visits; however, the realistic estimation of costs had a 

higher priority. NYHA class changes in outpatient care were only possible after visits to 

the outpatient clinic, which could be drawn from the data set. Inpatient mortalities were 

implemented after admissions and disregarded for stays at intensive and intermediate 

care. Represented mortalities in Table 41 already include death rates for intensive and 

intermediate care. This was mostly done to have higher sample sizes to derive mortality 

rates per age and gender. NYHA class changes were triggered in inpatient care and after 

visits to outpatient clinics, but not after visits to physicians or specialists. It would be 

desirable to precisely model the prescription of medication and its influence on health 

outcomes, detailed studies on this subject would be necessary to derive more realistic 

estimations. Presented simulation results are based on Austrian data sets, their validity 

for other health care systems, especially outside of Central Europe, has to be 

investigated based on specific data sets for the selected use case of interest. The model 

offers the possibility to include individual treatment preferences and medication profiles 

for patients. For the simulated scenarios more generalized treatment profiles based on 

NYHA classes have been used. Data restrictions disallowed the conjunction of data 

from the health insurance provider and KAGes. Access to consistent and 

comprehensible patient profiles across all areas of care could improve model 

performance. The wide range of potential model applications and parameter adjustments 

is by far not fully explored yet; ongoing projects with health care providers may serve 

as a basis for the analysis of new treatment concepts for heart failure patients. 

4.6 Outlook 
The capabilities of the presented modeling approach are by far not exhausted. 

With the presented scenarios just a first view into this field is given and there are 

numerous possibilities of use for this unique and adaptable modeling approach. 

Especially in the context of the evaluation of new methods of care and their 

implementation into standard health care procedures, this tool could be of great use. 

Diametrical results in literature on the feasibility of intervention programs for HF 
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patients are partially based on the heterogeneity of patient collectives. With an a priori 

evaluation of the individual setting of care, including the health care system, the specific 

patient collective and treatment modalities, decision-making could be significantly 

improved to enhance the success of modernized treatment solutions. As for most 

decision-analytic simulation models, the data base is always significant for the 

predictive power. With the open model framework most studies could be simulated and 

outcomes predicted to tune the model even further and answer specific questions of 

interest. End of 2018 a positive vote of the Styrian ethics committee has been granted 

(30-525 ex 17/18) to initiate the cooperation with a renown German heart clinic to 

assess and analyze HF treatment with another huge clinical data set. The model will be 

extended with machine learning approaches and comorbidities will be integrated into 

the model structure. Together with the ongoing cooperation with KAGes the model can 

then be rigorously validated with an independent data base and further refined with the 

gathered information. The model based evaluation of ongoing studies in the field of 

integrated care for heart failure treatment is another set target; continued cooperation 

with Austrian health care providers has been established to sustainably improve care of 

heart failure patients. 
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5 CONCLUSIONS 

In this work a unique, comprehensive and adaptable simulation model for the 

treatment of heart failure patients is presented, combining agent based and discrete 

event modeling based on extensive data sets for inpatient and outpatient care. 

Acquisition and statistical analyses of the input data are described including the 

algorithms used to deduce key aspects for the formulation of the model structure in 

AnyLogic®. Four presented simulation scenarios for two use cases, the conventional 

care and a telemonitoring program, demonstrate potential model applications and give 

insight into health and economic outcomes for heart failure patients based on age, 

gender and NYHA class. Results underline the unfavorable prognosis for heart failure 

and demonstrate costs savings within two years of using a more holistic treatment 

approach. Especially NYHA classes II and III reveal most potential for additional 

treatment measures. However, results strongly depend on the chosen patient profile and 

treatment setting. The validity of the modeling methodology and simulation results 

could partially be proven based on comparisons with literature and statistical 

procedures. The build model is unique in its field and showcases a novel approach and 

explicit depiction of care for heart failure patients. It is well known that sustaining 

present health care systems in the future is a rapidly growing challenge with increasing 

complexity in treatment procedures alongside economic feasibility. Comprehensive 

simulations of established treatment procedures provide the basis for the evaluation of 

new holistic methods of care and innovative study designs to improve health and 

economic outcomes. This work offers health care providers a novel tool for decision 

making in the complex and socioeconomically challenging field of cardiovascular 

diseases and may be a further piece in the sophisticated puzzle of refining health care 

systems.  
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7 APPENDIX 

7.1 List of Scientific Papers 
• A novel hybrid modelling approach for the evaluation of integrated care and economic 

outcome in heart failure treatment [36](lead author) 

• Simulation model for cost estimation of integrated care concepts of heart failure 

patients [94] (lead author; Schröttner and Lassnig contributed equally to this paper)  

• Hip replacement in Austria - modelling the economic burden due to obesity 

[109](secondary author) 

• A novel network-based approach for discovering dynamic metabolic biomarkers in 

cardiovascular disease [134](secondary author) 

7.2 List of Conference Contributions 
1) ESM‘ 2019: oral, Palma de Mallorca, Spain:  

Lassnig, A., Rienmueller, T., Baumgartner, C., Schroettner, J. 

Model based evaluation of integrated care in heart failure treatment 

 

2) World Congress on Medical Physics and Biomedical Engineering 2018 - oral, Prague, 
Czech Republic:  
Lassnig, A., Bergmoser, K.M., Langthaler, S.,Baumgartner, C., Schröttner, J. 

Model-based evaluation of integrated care solutions in heart failure treatment 

 

3) World Congress on Medical Physics and Biomedical Engineering 2018 - poster, 
Prague, Czech Republic:  
Baumgartner, C., Lassnig, A., Buchhold, N. 

A new optical, adaptable, high-resolution 3-axis sensor for medical device navigation 
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4) World Congress on Medical Physics and Biomedical Engineering 2018 - oral, Prague, 
Czech Republic:  
Bergmoser, K.M., Langthaler, S., Lassnig, A., Horn, M., Baumgartner, C. 

Estimating cardiac intensive care patients’ responsiveness to late conservative fluid 

management using systems analysis 

 

5) World Congress on Medical Physics and Biomedical Engineering 2018 - poster, 
Prague, Czech Republic:  
Langthaler, S., Bergmoser, K.M., Lassnig, A., Baumgartner, C. 

Temperature-induced modulation of voltage-gated ion channels in human lung cancer 

cell line A549 using automated patch clamp technology 

 

6) ESM‘ 2017: oral, Lisbon, Portugal:  
Lassnig, A., Baumgartner, C., Schroettner, J. 

A modeling approach to heart failure treatment 

 

7) BMT 2016: D-A-CH Dreilängertagung - poster, Basel, Switzerland:  
Hinteregger, L.K. ,Lassnig, A., Rienmüller, T.M., Baumgartner, C., Schroettner, J. 

Development of a simulation model to assess time in stroke treatment 

 

8) BMT 2016: D-A-CH Dreilängertagung - poster, Basel, Switzerland:  
Lassnig, A., Rienmüller, T.M., Baumgartner, C., Schroettner, J. 

Development of a hybrid model to evaluate integrated care in heart failure treatment 

 

9) BMT 2016: D-A-CH Dreilängertagung - oral, Basel, Switzerland:  
Langthaler, S., Lassnig, A., Rienmüller, T.M., Baumgartner, C., Schroettner, J. 

Usability evaluation of a locomotor therapy device considering different strategies 

 

10) IHCM 2015 - oral, Gümüshane, Turkey:  
Siegl, W., Lassnig, A., Schroettner, J. 

Hip replacement in Austria - Modelling the economic burden due to obesity 

 

11) ÖGBMT 2014 - oral, Hall, Austria:  
Lassnig, A., Siegl, W., Schroettner, J. 

Integrated care in heart failure treatment - a modelling setup combining established 

concepts 
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12) ÖGBMT 2014 - oral, Hall, Austria:  
Siegl, W., Lassnig, A., Schroettner, J. 

Hybrid modelling – a new prospect for healthcare systems simulations 

 

13) Global Conference on Healthcare Systems Engineering 2015 - oral, Istanbul, Turkey:  
Siegl, W., Lassnig, A., Herzog, A., Schroettner, J. 

A New National Model for Hip Replacement Costs Under Changing Demographics 

 

14) BMT 2013: D-A-CH Dreilängertagung - poster, Graz, Austria:  
Lassnig, A., Schroettner, J. 

Comparison of telemedical and conventional treatment of heart failure patients 

considering different approaches to in-hospital stay 

 

15) IWBBIO 2013: oral, Granada, Spain:  
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Influence of NYHA Classification of Heart Failure Patients for Assessing Telemedical 

Applications and Services by Using a Discrete Event Model 

 

16) Med-e-Tel 2012 - oral, Luxemburg, Luxemburg:  
Schroettner, J., Harter, P.V., Lassnig, A., Kastner, P.  

Heart Failure Model for Assessment of Different Intervention Programs 

 

17) eHealth 2011 - oral, Vienna, Austria:  
Schroettner, J., Lassnig, A., Liebmann, A.,  Kastner, P., Schreier, G. 

Heart Failure Model for Assessment of Different Intervention Programs 
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Table 54: Distribution functions of expenses for set ATC group, based on age and gender (M…men, W…women) 

Annual costs per patient (2008, 2009, 2010, 2011, 2012) 
Case Filter PDF PDF parameter Goodness of fit 

cases mean [€] SD [€] ATC 
group age group gender Weibull a … scale parameter, b … form parameter P … probability of error 

Gamma 1/scale … scale parameter, shape … form parameter Anderson-Darling (A) Kolmogorow-Smirnow (K) 
all all both Weibull a = 205.01336834   b = 1.11618805 A = 5.77   P = 0.01 K = 0.01   P = 0.01 38,701 196.75 180.31 
all all W Weibull a = 200.79847804   b = 1.13685894 A = 4.02   P=0.01 K = 0.01   P = 0.1 22,454 191.70 168.99 
all all M Gamma 1/scale = 170.50298380   shape = 1.1819640 A = 3.47   P = 0.001 K = 0.01   P = 0.09 15,375 201.54 193.08 
all 1 W Weibull a = 222.47608883   b = 0.95062065 A = 0.4   P = 0.25 K = 0.04   P = 0.1 248 227.75 244.38 
all 2 W Gamma 1/scale = 153.49194167   shape = 1.3526290 A = 0.64   P = 0.1 K = 0.03   P = 0.25 867 207.61 183.96 
all 3 W Weibull a = 248.06712376   b = 1.20962715 A = 0.64   P = 0.1 K = 0.01   P = 0.1 3,136 232.89 193.13 
all 4 W Weibull a = 209.88991908   b = 1.16768456 A = 2.93   P = 0.01 K = 0.01   P = 0.1 9,261 198.90 169.48 
all 5 W Weibull a = 174.01200468   b = 1.11179161 A = 2.23   P = 0.01 K = 0.01   P = 0.1 8,942 167.27 150.52 
all 1 M Weibull a = 232.35661506   b = 0.98946285 A = 1.49   P = 0.01 K = 0.04   P = 0.1 670 233.49 252.71 
all 2 M Gamma 1/scale = 183.51991191   shape = 1.2077000 A = 0.87   P = 0.03 K = 0.02   P = 0.25 1,657 221.64 209.52 
all 3 M Gamma 1/scale = 178.92288424   shape = 1.2785670 A = 0.88   P = 0.03 K = 0.01   P = 0.1 4,154 228.78 209.17 
all 4 M Gamma 1/scale = 160.66838046   shape = 1.1874860 A = 1.72   P = 0.001 K = 0.01   P = 0.12 6,197 190.80 180.56 
all 5 M Weibull a = 169.27592335   b = 1.08527565 A = 1.0   P = 0.01 K = 0.01   P = 0.1 2,697 163.97 155.33 

C03 all both Weibull a = 50.21469873   b = 0.83420658 A = 245.45   P = 0.01 K = 0.09   P = 0.01 20,775 56.66 101.15 
C03 all W Weibull a = 43.26708011   b = 0.92750740 A = 95.28   P = 0.01 K = 0.08   P = 0.01 12,255 45.05 61.03 
C03 all M Weibull a = 59.83293592   b = 0.78187418 A = 128.11   P = 0.01 K = 0.1   P = 0.01 8,010 71.86 138.13 
C03 1 W Weibull a = 73.69476168   b = 0.79144096 A = 1.6   P = 0.01 K = 0.08   P = 0.1 155 86.69 150.06 
C03 2 W Weibull a = 50.00191361   b = 0.85650063 A = 2.88   P = 0.01 K = 0.07   P = 0.05 394 54.77 77.84 
C03 3 W Weibull a = 51.66191692   b = 0.89740276 A = 11.34   P = 0.01 K = 0.07   P = 0.01 1,623 54.78 69.73 
C03 4 W Weibull a = 43.34473723   b = 0.93682098 A = 39.88   P = 0.01 K = 0.08   P = 0.01 5,078 44.88 61.33 
C03 5 W Weibull a = 39.34804114   b = 0.96679688 A = 36.73   P = 0.01 K = 0.07   P = 0.01 5,005 40.02 49.43 
C03 1 M Weibull a = 94.30039156   b = 0.70470476 A = 6.87   P = 0.01 K = 0.1   P = 0.01 304 126.08 234.60 
C03 2 M Weibull a = 79.08749737   b = 0.77673769 A = 16.92   P = 0.01 K = 0.09   P = 0.01 855 95.37 171.61 
C03 3 M Weibull a = 68.44689421   b = 0.77015257 A = 34.41   P = 0.01 K = 0.09   P = 0.01 2,121 83.19 153.33 
C03 4 M Weibull a = 55.37902286   b = 0.80993366 A = 46.56   P = 0.01 K = 0.1   P = 0.01 3,308 64.28 121.69 
C03 5 M Weibull a = 42.64128288   b = 0.86166954 A = 16.2   P = 0.01 K = 0.01   P = 0.01 1,422 46.85 81.55 
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Annual costs per patient (2008, 2009, 2010, 2011, 2012) 
PDF parameter Goodness of fit cases mean [€] 

cases mean [€] SD [€] ATC 
group age group gender Weibull a … scale parameter, b … form parameter P … probability of error 

Gamma    
C07 all both Gamma 1/scale = 54.13908254   shape = 1.29134924 A = 116.87   P = 0.001 K = 0.07   P = 0.001 24,737 69.91 71.18 
C07 all W Gamma 1/scale = 51.30145953   shape = 1.33370323 A = 72.37   P = 0.001 K = 0.07   P = 0.001 14,150 68.42 69.24 
C07 all M Gamma 1/scale = 56.67309751   shape = 1.25236918 A = 41.52   P = 0.001 K = 0.06   P = 0.001 9,990 70.98 72.32 
C07 1 W Weibull a = 91.65528265   b = 1.02487087 A = 2.55   P = 0.01 K = 0.13   P = 0.01 169 90.63 99.34 
C07 2 W Gamma 1/scale = 57.07927926   shape = 1.38276076 A = 2.44   P = 0.001 K = 0.06   P = 0.001 654 78.93 75.89 
C07 3 W Gamma 1/scale = 53.60158252   shape = 1.42537981 A = 18.58   P = 0.001 K = 0.08   P = 0.001 2,334 76.40 75.08 
C07 4 W Gamma 1/scale = 49.60061927   shape = 1.35215852 A = 25.14   P = 0.001 K = 0.06   P = 0.001 6,028 67.07 67.47 
C07 5 W Gamma 1/scale = 49.44732735   shape = 1.29778163 A = 28.95   P = 0.001 K = 0.07   P = 0.001 4,965 64.17 65.70 
C07 1 M Gamma 1/scale = 57.04748929   shape = 1.31467459 A = 1.99   P = 0.001 K = 0.06   P = 0.001 538 75.00 71.05 
C07 2 M Gamma 1/scale = 61.53882817   shape = 1.30206449 A = 5.82   P = 0.001 K = 0.07   P = 0.001 1,199 80.13 78.54 
C07 3 M Gamma 1/scale = 63.14726380   shape = 1.24979402 A = 13.80  P = 0.001 K = 0.07   P = 0.01 2,928 78.92 79.96 
C07 4 M Gamma 1/scale = 51.93415226   shape = 1.27480811 A = 15.87   P = 0.001 K = 0.06   P = 0.001 3,858 6.21 67.21 
C07 5 M Gamma 1/scale = 47.18124578   shape = 1.24424677 A = 4.77   P = 0.001 K = 0.04   P = 0.001 1,467 58.71 60.71 
C09 all both Weibull a = 160.67489036   b = 1.12208366 A = 13.82   P = 0.01 K = 0.02   P = 0.01 30,577 153.96 138.26 
C09 all W Weibull a = 165.83859245   b = 1.12790871 A = 8.52   P = 0.01 K = 0.02   P = 0.01 17,546 158.68 141.17 
C09 all M Weibull a = 153.10949860   b = 1.11973953 A = 5.64   P = 0.01 K = 0.01   P = 0.03 12,359 146.78 133.06 
C09 1 W Weibull a = 154.00185372   b = 1.03852558 A = 1.39   P = 0.01 K = 0.08   P = 0.10 183 151.53 151.88 
C09 2 W Gamma 1/scale = 117.67474700   shape = 1.2587410 A = 0.93   P = 0.02 K = 0.04   P = 0.01 721 148.13 141.76 
C09 3 W Gamma 1/scale = 142.34875445   shape = 1.2541910 A = 1.89   P = 0.001 K = 0.03   P = 0.001 2,594 178.53 156.90 
C09 4 W Weibull a = 173.74662523   b = 1.13721657 A = 5.0   P = 0.01 K = 0.02   P = 0.01 7,292 165.91 144.97 
C09 5 W Weibull a = 151.09309475   b = 1.12754726 A = 3.94   P = 0.01 K = 0.02   P = 0.03 6,756 144.58 128.23 
C09 1 M Weibull a = 146.50023874   b = 0.99679852 A = 1.52   P = 0.01 K = 0.05   P = 0.1 530 146.71 154.88 
C09 2 M Gamma 1/scale = 102.50102501   shape = 1.3554220 A = 0.45   P = 0.25 K = 0.01   P = 0.25 1,365 138.94 119.99 
C09 3 M Weibull a = 163.80526153   b = 1.14669991 A = 1.39   P = 0.01 K = 0.01   P = 0.1 3,482 155.89 138.01 
C09 4 M Weibull a = 150.80510800   b = 1.10500431 A = 2.93   P = 0.01 K = 0.02   P = 0.1 4,919 145.21 132.38 
C09 5 M Weibull a = 146.05277617   b = 1.11284161 A = 1.35   P = 0.01 K = 0.02   P = 0.1 2,063 140.33 127.46 
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