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Abstract

Probabilistic graphical models are a powerful concept for modeling high-dimensional distribu-
tions. Besides modeling distributions, probabilistic graphical models also provide an elegant
framework for performing statistical inference; because of the high-dimensional nature, how-
ever, one must often use approximate methods for this purpose.

Belief propagation performs approximate inference, is efficient, and looks back on a long
success-story. Yet, in most cases belief propagation lacks any performance and convergence
guarantees. Many realistic problems are presented by graphical models with loops, however, in
which case belief propagation is neither guaranteed to provide accurate estimates nor that it
converges at all.

This thesis investigates how the model parameters influence the performance of belief prop-
agation. We are particularly interested in their influence on (i) the number of fixed points,
(ii) the convergence properties, and (iii) the approximation quality. For this purpose, we take
a different perspective on belief propagation and realize that the fixed points define a set of
polynomial equations – albeit a large one. Solving polynomial equations of this size is problem-
atic; nonetheless, we present the numerical polynomial homotopy continuation method that is
capable of solving the fixed point equations, the solutions of which are the fixed points of belief
propagation.

The solutions to the fixed point equations gives us knowledge of the whole solution space and
serves as a stepping stone for analyzing belief propagation’s properties. In particular, we observe
a large variety of marginal accuracy across all fixed points. This, to some degree, explains the
large discrepancy in the performance of belief propagation. Another important aspect of belief
propagation’s fixed points is their stability, that is if belief propagation can – at least in principle
– converge to a given fixed point. Existing stability analyses were limited to models without
local potentials for the lack of knowing the solution space. The capability to solve the fixed point
equations thus allows us to extend the stability analysis to a wide range of models. In doing so,
we obtain novel insights into how the model parameters and the model size affect the stability.
In particular, we find that strong pairwise potentials degrade the performance, whereas strong
local potentials enhance the performance.

Moreover, our theoretical findings inspire a simple, yet powerful, modification of belief prop-
agation. We present self-guided belief propagation that starts from a simple model (for which
belief propagation obtains the exact solutions) and iteratively adapts it to the desired model.
As the model is modified, self-guided belief propagation keeps track of the solution; this way, it
improves upon standard belief propagation and it obtains the best possible solution for attrac-
tive models with unidirectional local potentials. For more general models, we empirically show
that self-guided belief propagation maintains its favorable properties, converges more often, and
is superior in terms of marginal accuracy.

Finally, we question whether the global minimum of the Bethe free energy provides the most
accurate marginals. This is a common conjecture that inspired a range of methods that aim
to minimize the Bethe free energy. In the past, the studied models were either too simplistic
or too complex as to the true nature of this relationship. Therefore, we must first introduce
a novel class of models – termed patch potential models – which are simple enough so that
we can compute all fixed points. Yet, patch potential models are complex enough to possess a
rich and non-trivial solution space. A study of this solution space proves this conjecture wrong
and, additionally, explains the nature of the difference between accurate marginals and good
approximations of the free energy.
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Notational Conventions

General Notation

R∗+ positive real numbers, excluding zero

Z∗+ positive integer numbers, excluding zero

∇ gradient

∇2 Hessian

D(P̃X||PX) Kullback Leibler divergence between P̃X and PX

Re{·}, Im{·} real and imaginary part

i imaginary unit

| · | magnitude or absolute value

⊕ exclusive disjunction

sgn(·) sign function

n (mod m) n modulo m

1 indicator function

log(·) natural logarithm

|| · ||p lp-norm

N (µ, σ2) Gaussian distribution with mean µ and variance σ2

U(a, b) uniform distribution on (a, b)

Probability

X,Y, . . . random variables

X ,Y, . . . range of a discrete random variable

x, y, . . . value of random variable

X set of random variables

x values for a set of random variables (configuration)

XN product space, range of X

PX(x) probability distribution of X

P̃X(x) approximation of the probability distribution of X

P̃B pseudomarginals (set of all singleton and pairwise marginals)

Zi, Zij normalization terms for approximated marginals

PX|Y(x|y) conditional probability distribution of X given Y

PX(x) Joint probability distribution of X

E(x) expected value of X

mi mean of Xi

〈m〉 expected mean of X

χij correlation between Xi and Xj
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Graphs

G undirected graph

X1, X2, . . . nodes

X set of nodes

N number of nodes

(i, j) edge between Xi and Xj

m number of the edge (i, j) under some ordering

E set of edges

∂(i) neighbors of Xi

di degree of Xi

d̂G average degree of G
G′ subgraph of G induced by X′

A adjacency matrix

Graphical Models

U undirected graphical model

Ci clique

C(i,j,...) clique consisting of Xi, Xj , . . .

C set of cliques

ΦCi(xCi) clique-potential

Ψ set of potentials

ΦXi(xi), Φ(xi) local potential

ΦXi,Xj (xi, xj), Φ(xi, xj) pairwise potential

Z partition function

E(x) energy of the configuration x

Jij coupling

θi local field

σi spin

σ configuration of spins

β inverse temperature

H external magnetic field

JP product of couplings along path P

– 14 – November 8, 2019



Dynamical Systems and Equation-Systems

x state vector

x(n),xn state vector x at time index n

x◦ fixed point of x

U(x) ε-neighborhood of x

F(·) discrete-time map

B system matrix

F ′(x) Jacobian matrix

λi eigenvalue

λmax eigenvalue with the largest magnitude

Λ
(
A
)

set of all eigenvalues for the matrix A

ρ
(
A
)

spectral radius of the matrix A

fi(x) function or polynomial equation

ak polynomial coefficient

K[x1, . . . , xn] polynomial ring

F (x),F (x1, . . . , xn) system of polynomial equations

V(F ) variety (set of solutions) of F (x)

VR(F ),VR∗+(F ) variety of F (x) for the real and the positive real numbers

Si convex hull of the exponent vectors of fi

V (Si) volume of the polytope Si

M(Si, Sj) mixed volume of Si and Sj

ωi lifting for the polynomial fi

ωi(a) lifting function for the exponent-vector a

〈f1, . . . , fs〉 ideal of F

dt total degree

BKK Bernshtein-Kushnirenko-Khovanskii bound

H(x, t) homotopy

Q(x) start system

t goes from 0 to 1 to deform the homotopy

γ random complex number

November 8, 2019 – 15 –



Belief Propagation, Variational Approximations

µnij(xj) message from Xi to Xj

µn set of messages

n iteration index

αnij message normalization for µnij(xj)

µ◦ij(xj) fixed point message

µ◦ fixed point of belief propagation

E
(
P̃X

)
average energy

S
(
P̃X

)
entropy

FH,FG ,FB Helmholtz-, Gibbs-, and Bethe- free energy

EB(P̃B) average (Bethe) energy

SB(P̃B) Bethe entropy

M(G),M marginal polytope

L(G),L local polytope

ZB Bethe partition function

FB∗,FBm,FB◦ global minimum, local minimum, and stationary point of FB
P̃ ∗B, P̃

m
B , P̃

◦
B pseudomarginals at the global minimum, a local minimum, and a

stationary point of FB
S set of stable belief propagation fixed points

M set of fixed points corresponding to local minima of FB
T set of all fixed points

EZ(m) error of the partition function approximation

EP (m) error of the approximated marginals

BP
(
·
)

mapping induced by belief propagation

DP evaluation function for the pseudomarginals

DZ evaluation function for the Bethe partition function

rnij message-residual

rn set of residuals

ε damping factor of belief propagation with damping

F (µ,α) fixed point equations of belief propagation

νnij reparameterized messages

ν set of reparameterized messages

hij cavity field

P̃ TB weighted combination of all fixed points

P̃MB weighted combination of all fixed points belonging to local minima

P̃MAX
B fixed point maximizing the partition function

JA, JC , JC(G, θ) critical values of coupling strength at the onset of phase-transitions

κθ field-dependent scaling term for Jacobian matrix
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Error Correcting Codes

ε error-probability

Yi variable node

fa factor node

rnAi(yi) message from factor to variable

qniA(yi) message from variable to factor

αniA normalization term

Self-Guided Belief Propagation

ζk scaling term

K number of models considered by self-guided belief propagation
(length of {ζk})

UK undirected graphical model for ζk

Ψk set of potentials for ζk

Φk(xi, xj),Φk(xi) pairwise and local potentials for ζk

µ◦k fixed point of BP for the model Uk
c(ζ) solution path

NBP maximum number of belief propagation iterations

Patch Potential Models

Gi patch of the graph G
Pmµ fraction of runs converging to the mth fixed point

P̃ rB, P̃
q
B fixed points with all marginals biased to one state

P̃ pB state-preserving fixed point

P̃ uB, P̃
v
B, . . . all other fixed points

θ̃i effective field for Xi

Qi(k, l) mismatch between P̃ kB and P̃ lB
EP set of all boundary edges

EC set of edges between variables that favor different states

Nf number of flipped variables

Nc number of state-preserving variables

∆SB difference of the Bethe entropy between two fixed points
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1
Introduction

”Uncertainty is an uncomfortable position.
But certainty is an absurd one.”

– Voltaire

1.1 Motivation

Every realistic domain, in accordance with the opening quote, contains some degree of un-
certainty: not only is every human imperfect – with each of our decisions being subject to
uncertainty – but also has every artificial system only access to partial information. When rea-
soning under such uncertainties, one must take all available information into account and infer
the quantity of interest. This task of probabilistic reasoning is one of the central problems of
statistical inference1 and, additionally, lies at the center of every decision-making process.

Most inference-problems of practical relevance belong to the realm of multivariate statistics
and involve many interacting variables. As the number of variables increases, the corresponding
distributions become increasingly hard to grasp and thus require compact representations; par-
ticularly if one wishes to retain some interpretability. Fortunately, such a representation exists
in the form of probabilistic graphical models; these models (as suggested by their name) rely
on the proven capabilities of graphs2 and represent complex interactions in an intuitive and
expressive way.

We will study two of the most fundamental problems of inference. These are: computing
the marginal distribution and evaluating the partition function. Both problems suffer from
the increased complexity when working with many variables. Assistance comes in the form of
graphical models once again; not only do they represent the problems efficiently, but they also
warrant efficient inference algorithms that exploit the graph structure and thus facilitate the
task of inference. Note, however, that graphical models are not a panacea and while inference
becomes tractable for some models (e.g., trees) it remains NP-hard for graphs with loops.

Besides being of theoretical interest, such loopy graphs arise in a multitude of practical ap-
plications; ranging from statistical signal-, speech-, and image-processing, to statistical physics,
medical diagnosis systems, and error-correcting codes. For all these important problems, ex-
act inference methods, however, are destined to fail, which substantiates the need for efficient
approximation methods.

One particularly prominent approximation method focuses on local interactions and infers
the global model-behavior thereof. Consider, for example, a large group of friends that want to
celebrate a party and need to find a suitable date. If all friends come together and discuss their

1 One may argue that statistical inference provides the common ground for a myriad of scientific fields ranging
from mathematics over empirical sciences to philosophy [EH16]. We comply with this perspective and provide
a broad context to the rather specific topic of this thesis.

2 Graphs naturally emerge in a wide range of problems that include applications in social sciences, biology,
physics, and communications. Graph theory constitutes a concept with many persuasive properties that war-
rant their wide-spread usage. First, graphs lend themselves for visual representations that reveal the underlying
problem-structure, often hidden initially, to the human observer. Second, manipulations and computations on
graphs are well established and provide an extensive tool-box to tackle a problem once formulated as graph.
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preferences in one large negotiation, they would find an optimal date; but this seems overly com-
plicated and impracticable. Instead, one could hope to find an acceptable date that works for
most by negotiating in a distributed manner: assume that everybody discusses his preferences
only with his closest friends (and that these sub-groups sufficiently overlap), then a reasonable
agreement on the date will be found that will suit at least the majority of the group. Note
how this focus on local interactions comes relatively intuitive when dealing with large, complex
systems. The graphical model’s structure is exploited precisely in such a way by belief propaga-
tion that performs local interactions – in the form of exchanging messages between neighboring
nodes – to approximate the marginal distribution and the partition function.

Let us briefly summarize the main strength of belief propagation (BP); it is the ability to
efficiently perform approximate inference on models where (because of loops) exact inference
becomes infeasible. BP often works remarkably well in this context, although theoretical results
fail to explain BP’s empirical success. Yet, portraying BP as an outright success-story would
not correspond to the truth either – and indeed, while BP often performs approximate inference
in a very efficient manner it completely fails to do so other times. For this lack of reliability, BP
is sometimes confronted with skepticism. Instead of only hoping for a reasonable performance of
BP, we would, ideally, like to have some performance guidelines established. Stating whether a
given model is well-suited for the application of BP, such guidelines must focus on the following
two aspects.

First, one needs to understand the underlying reasons for the failure of BP. Although we
still lack a rigorous understanding of why BP fails, it is empirically well-established that BP
fails because: (i) multiple solutions exist with varying accuracy; (ii) one or all fixed points are
unstable so that BP does not converge.

Second, one needs to derive performance guarantees that take the model specifications into
account. If we want to better understand BP we will not only need to understand how the model
specifications influence (i) the convergence properties and (ii) the approximation quality but also
how both properties relate to each other. Note that both properties are directly related to each
other for simple models (e.g., graphs with a single loop or small grid graphs), i.e., the better the
approximation quality the faster BP converges [Wei00, Ihl07]. Such a relation, however, does
not generalize to more complex models [WJ14a].

To summarize, it will be important to understand how specific models affect the performance
of BP and if BP can be expected to perform well. This will also increase the reliability of BP.

To a large degree, we owe our current understanding of BP to concepts from statistical physics.
As it turns out, there is a fundamental connection between many concepts in computer science
and in physics (cf. [MM09,WT03,TJ02]). Most notably, the fixed points of BP are in a one-to-
one correspondence with the stationary points of the Bethe free energy.

But, although the Bethe free energy can provide many insights, it remains an intricate function
that is hard to analyze. Also, most theoretical results on the Bethe free energy only hold for
restricted model classes, where typically all variables sit on a regular grid and the model is
specified by relatively few parameters. How those insights carry over to more general models is
an open question.

Moreover, the Bethe free energy fails to reveal whether a given fixed point is stable and un-
der which conditions BP converges to it. The Bethe free energy also fails to explain why and
how certain modifications of BP (e.g., scheduling or damping) often help to achieve convergence.

The quest for a better understanding of BP is thus ongoing, with the hope that new insights
will recognize certain model classes for which it is safe to utilize BP, i.e., for which BP converges
fast while maintaining the desired accuracy.

The overarching aim of this thesis is to extend the current understanding of BP, the reason
for this being twofold: first, to theoretically understand for which problems and applications BP
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can be expected to perform well; and second, to utilize those theoretical insights and modify BP
to enhance its capabilities.

We specifically address the question of how knowledge of the solution space can advance our
current understanding of BP. As the complete set of solutions is generally not available, we must
first develop a way to obtain all fixed points for a given model. We then start with the analysis
of relatively small and simple models and, by successively building upon our obtained insights,
extend our analysis to increasingly more complex models. Finally, we take a comprehensive
view at the solution space and study the relation between the convergence properties, approx-
imation quality, and the number of fixed points. This approach will provide several insights
into the behavior of BP, extend the current theoretical understanding and open the door for
practical considerations that enhance the performance of BP. In particular, our findings suggest
a modification of BP that enforces convergence toward accurate fixed points, thus improving
the approximation quality.

1.2 Five Relevant PhD Theses

As discussed, BP touches a diverse set of scientific fields. It is the common ground between all
those fields that provides a solid foundation for the analysis of BP. The work presented in this
thesis therefore builds upon a vast body of literature. The following five PhD theses cover a
wide range of the recent developments and are highly relevant for the current thesis. Therefore,
this section contains a brief overview of how they shaped the current thesis in particular.

The connection between exponential representations of distributions, information geometry,
and approximate inference methods on probabilistic graphical models is revealed in the thesis of
Martin Wainwright, submitted at the Massachusetts Institute of Technology in 2002 [Wai02].
His thesis introduces the concept of reparameterization. This concept casts BP as one specific
instance in a more general class of message passing algorithms (termed tree-based reparameter-
ization (TRP)). Moreover, TRP suggests solving a particular sequence of simpler sub-problems
over spanning trees in the graph [WJW03a] in order to enhance the convergence properties.
Additionally, important insights with respect to the marginal accuracy are obtained in the form
of an exact expression for the marginal error, that – although being infeasible to evaluate in
general – suggests computable bounds on the marginal error. The proposed bounds rely on the
approximation of the log-partition function which advocates a close connection between both
quantities; this connection nicely connects to the present work where we inspect this relation-
ship in great detail in Chapter 7. Another powerful concept is the consideration of BP as an
optimization problem (over the local polytope). In the conclusion, the author proposes tracing
the evolution of the pseudomarginals while relaxing the marginal- to the local polytope with the
prospect of practical and theoretical consequences; a similar evolution of the pseudomarginals
lies at the core of Chapter 6.

The overarching aim of the thesis of Joris Marten Mooij, submitted at the Radboud Uni-
versiteit Nijmegen in 2008 [Moo08], is to understand and improve belief propagation, which
closely resembles the aim of the current thesis. In a nutshell, his thesis investigates the rela-
tionship between accuracy, uniqueness, and convergence properties of belief propagation’s fixed
points. One particular insightful contribution was the consideration of belief propagation as a
dynamical system. This led to conditions for stability and uniqueness of a fixed point, as well
as insights into the relation between those properties. The analysis, however, was restricted
to vanishing local potentials. We adhere to the spirit of considering belief propagation as a
dynamical system and extend the analysis to models with arbitrary parameters in Chapter 5,
providing novel theoretical insights.

The application of belief propagation to inference problems arising in the context of sensor
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networks is the main motivation in the thesis of Alexander Ihler [Ihl05], submitted at the
Massachusetts Institute of Technology in 2005. His thesis focused on studying the fundamental
limitations of belief propagation. Studying the vulnerability of the approximation quality with
respect to errors in the messages was one particularly important aspect with the prospect of
validating whether approximating the messages is a viable option. Notably, this leads to a
couple of interesting theoretical results on the accuracy of belief propagation in general, and the
introduction of error-bounds on the marginal accuracy specifically. While these bounds are only
valid for cycle-free graphs, they predict the performance of belief propagation reasonably well in
the presence of loops as well. This is one of the few results that analyze the error in the marginals,
while much of the literature focuses on the approximation error of the partition function. We
agree with the author on the importance of assessing the marginal accuracy and will particularly
focus on how the model parameters influence the marginal accuracy (cf. Chapter 5 and 7).

The thesis [Wel14] of Adrian Weller, submitted at the Columbia University in 2014, focuses
on the variational interpretation of belief propagation and the Bethe approximation in partic-
ular. His work provides interesting insights into the differences between log-partition function
estimates, singleton marginals, and pairwise marginals for both the (non-convex) Bethe approx-
imation and convex variational approaches. In particular, it becomes evident that different
approximation methods do not affect the marginals and the log-partition function in the same
way; the accuracy of the log-partition function may for example remain the same whereas the
accuracy of the marginals increases. This observations raises the question of how both quantities
are related, an important question that will be the main focus of Chapter 7. Besides the the-
oretical relevance of the obtained insights, his thesis further proposes an approximation of the
Bethe function, which extends preceding work [Shi12] by approximating the global minimum.
This approximation method converges in polynomial runtime for attractive models and serves
as an important comparison for our proposed method in Chapter 6.

A direct relationship between belief propagation and graph geometry is established in the
thesis of Yusuke Watanabe [Wat10], submitted at The Graduate University for Advanced
Studies, SOKENDAI in 2010; this relationship provides novel insights into the behavior of belief
propagation. In particular, the graph-zeta function relates the convergence properties of belief
propagation to the shape of the Bethe free energy.3 Moreover, the results impose some general
properties on the solution space. These properties are of relevance for belief propagation as well
and, for example, demonstrate that the overall number of fixed points is always odd. Computing
the number of fixed points is also of central interest throughout the current thesis, and Chapter 5
and 7 in particular.

1.3 Contribution and Outline

A large part of the contributions to this thesis has previously been published; a list of the
corresponding publications is presented below. Several parts, however, have been significantly
reworked and restructured in order to align nicely with the structure of the thesis.

• [KRTP15] Christian Knoll, Michael Rath, Sebastian Tschiatschek, and Franz Pernkopf.
Message scheduling methods for belief propagation. In Proceedings of ECML PKDD,
pages 295–310. Springer, 2015.

• [KPMC16] Christian Knoll, Franz Pernkopf, Dhagash Mehta, and Tianran Chen. Fixed
point solutions of belief propagation. In NIPS-Workshop: Advances in Approximate
Bayesian Inference, 2016.

3 In addition to demonstrating the wide range of fields that play an important role for our current understanding
of belief propagation, the graph-zeta function also serves as a foundation for recent developments in spectral
clustering [SKZ14].
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• [KP17] Christian Knoll and Franz Pernkopf. On loopy belief propagation – local stability
analysis for non-vanishing fields. In Proceedings of UAI, 2017.

• [KMCP18] Christian Knoll, Dhagash Mehta, Tianran Chen, and Franz Pernkopf. Fixed
points of belief propagation – an analysis via polynomial homotopy continuation. IEEE
Transactions on Pattern Analysis and Machine Intelligence, 2018.

• [KKP18] Christian Knoll, Florian Kulmer, and Franz Pernkopf. Self-guided belief propagation–
a homotopy continuation method. arXiv preprint arXiv:1812.01339, 2018.

• [KP19] Christian Knoll and Franz Pernkopf. Belief propagation: Accurate marginals or
accurate partition function – where is the difference? In Proceedings of UAI, 2019.

It is the very nature of most PhD theses to pinpoint and raise multiple questions before
providing some – hopefully insightful – answers to them. As is often the case, this thesis tackles
very specific problems in an already highly specialized field. One aspect, however, that widens
the scope and that made working on this thesis particularly interesting is that belief propagation
is applied in various scientific fields ranging from information theory and signal processing to
statistical physics and artificial intelligence. Our study of belief propagation brings insights from
all these fields together and benefits from a particularly large toolbox, fueled by such diverse
inputs. While it is interesting to delve into each particular field and emerge oneself in all the
associated details, it is nearly impossible to hide one’s past. Therefore, and for the purpose
of a consistent notation, we settle for the language used in the statistics and machine learning
community, point at relations to associated scientific fields if appropriate, and draw from them
if beneficial.

Writing a coherent thesis, even after completing the research tasks, remains an extensive task
that should ideally serve the interested reader. Therefore, this thesis – rather than being a con-
glomerate of the presented results – offers a thorough introduction and sticks to one coherent
story. In doing so, we identify an inherent structure that lends itself to a segmentation into two
major parts.

The first part (Chapter 2 - 4) provides all relevant background and serves as the preparation
for the subsequent chapters.

The whole thesis resides in the context of probabilistic graphical models, which are introduced
in Chapter 2. We briefly discuss the relevant background from probability- and graph-theory
and introduce pairwise graphical models that are the main focus of this work. Moreover, we
define the problem of inference with a particular focus on efficient exact methods.

Belief propagation (BP) is introduced as a method of approximate inference in Chapter 3.
After discussing some of the most serious issues of BP, we describe some of the underlying reasons
for failure of BP and introduce alternative characterizations of BP. In particular, we introduce
BP as a variational method and connect the properties of BP with the energy landscape of
the Bethe free energy. Additionally, we cast BP as a dynamical system. It turns out that
this characterizations provides a general framework, encompassing a wide range of approximate
inference methods. Moreover, the consideration as a dynamical system suggests various ways to
enhance the properties of BP.

Chapter 4 provides the reader with the most important background of dynamical system
theory and algebraic geometry. While this chapter does not contain novel insights, it provides
us with the relevant tools for analyzing BP in detail. In particular, the most prominent methods
for solving system of equations are introduced and discussed.

The second part (Chapter 5-7) builds upon the knowledge developed so far, presents the major
results and extends the current understanding of BP’s behavior.
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The consideration of BP as a dynamical system provides the foundation of the results devel-
oped in Chapter 5. We apply tools from dynamical systems theory, analyze the solution space
of BP, and gain new insights into the behavior of BP; the focus on the whole solution space
instead of just a single fixed point reveals how the number of fixed points, the approximation
quality of the individual fixed points, and the convergence properties are related to each other.
One major issue is that, despite being conceptually straightforward, it is problematic to find
the set of all fixed points. We present how the set of all BP fixed points can be computed
by using the numerical polynomial homotopy continuation (NPHC) method. This allows us to
assess and compare the accuracy of the individual BP fixed points and weighted combinations
thereof. Moreover, the knowledge of all fixed points allows us to extend the local stability anal-
ysis – previously restricted to models with vanishing local potentials – to more general models.
This generalization also explains the role of the local potentials and reveals how strong local
potentials enhance the convergence properties.

The focus of Chapter 6 is to exploit the theoretical finding that local and pairwise potentials
play an opposing role regarding the performance of BP. In this chapter we propose one way to
account for this observation and to enhance the performance of BP. By modifying BP according
to a homotopy continuation method we account for this observation and incorporate the pairwise
potentials only gradually. This procedure is deterministic, converges to a uniquely defined fixed
point, and thus resolves the dependence on a well-chosen initialization. Experiments on a wide
range of models reveal that the proposed method increases the performance without increasing
the computational burden; in particular we exemplify that the results are at least as accurate as
BP, if BP converges, and that accurate results are often obtained, even if BP fails to converge.
This empirical analysis is further supplemented with a theoretical analysis that proves optimality
– i.e., the proposed method converges to the global minimum of the Bethe free energy that
constitutes the fixed point with the most accurate marginals – for restricted models that have
all local potentials favoring the same state.

All models considered so far adhere to the common conjecture that accuracy with respect to
the marginals and with respect to the partition function are interchangeable. This conjecture
suggests that the most accurate marginals of BP are to be found at the global minimum of the
Bethe free energy. In Chapter 7 we aim to validate this assumption. We therefore introduce
patch potential models that simplify the analysis significantly. The parameter space of patch
potential models is split into multiple regions with fundamentally different properties. Elabo-
rating on one specific region we first exemplify why there is no strict relationship between the
accuracy of the marginals and the partition function and then provide sufficient and necessary
conditions for a fixed point to be optimal with respect to approximating both.

Finally, Chapter 8 concludes this thesis, summarizes the results obtained, and discusses the
extent to which our understanding of BP has changed. Furthermore, the most pressing questions
left unanswered are indicated, hence providing a pointer to potential future research directions.
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Understanding the Behavior of Belief Propagation

2
Background

”A mind is like a parachute.
It doesn’t work if it is not open.”

– Frank Zappa

This chapter introduces the necessary background and lays the foundation for the subsequent
chapters. The focus of this thesis lies at problems that arise in the context of probabilistic
graphical models. Accordingly, we begin with a brief introduction to probability theory, in
Section 2.1, and to graph theory, in Section 2.2, before we finally unite both concepts in proba-
bilistic graphical models, in Section 2.3. Section 2.4 discusses one specific class of probabilistic
graphical models, undirected binary pairwise models, that are studied extensively throughout
the thesis. We finally devote Section 2.5 to the tasks summarized under the notion of inference.

2.1 Probability Theory

We begin with a brief review of probability theory and introduce the most relevant notions.
Note that we will restrict our focus to discrete random variables throughout this thesis. Let us
therefore consider a discrete random variable X that maps from the sample space Ω to a discrete
finite set X , i.e., X : Ω→ X .

We denote the probability mass function that assigns a probability to the generic value x ∈ X
by the shorthand notation PX(x) = PX(X = x). Likewise, let X and Y be two discrete random
variables; then, with slight abuse of notation we define the joint distribution according to

PX,Y(x, y) = PX,Y ((X = x) ∩ (Y = y)) . (2.1)

Now let us consider a set of N discrete random variables X = {X1, X2, . . . , XN} with the joint
distribution PX(x) where the range of X is the product space XN = X1× · · · ×XN . We further
denote the configuration for a given set of random variables by x = {x1, x2, . . . , xN}. The
marginal probability distribution for a subset Y ⊂ X is obtained by summing out all variables
Xi that are not in Y according to

PY(y) =
∑

Xi∈{X\Y}

∑
xi∈Xi

PX(x). (2.2)

(Conditional) statistical independence between random variables is a particularly important
property when dealing with probabilistic graphical models. We say that X is conditionally inde-
pendent of Y given Z whenever PX,Y|Z(x,y|z) = PX|Z(x|z)PY|Z(y|z) holds for all configurations

x ∈ XN , y ∈ YN , and z ∈ ZN .

Distributions are often characterized by their expectations. For a discrete random variable X
we define its expectation under the distribution PX(x) according to

E(x) =
∑
x∈X

x · PX(x). (2.3)
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2.2 Graph Theory

One of the most persuasive properties of probabilistic graphical models is the representation of
joint probability distributions by using graphs. This section gives a self-contained introduction
to the basics of graph theory. We refer the interested reader to one of the many available books
on graph theory for a more in-depth treatment (e.g., [KV05,Die16]).

Let us consider a graph G = (X,E) with a set of nodes (or vertices) X = {X1, . . . , XN} and
a set of edges E. A graph is either directed or undirected and consists of directed or undirected
edges respectively. We denote an undirected edge by (i, j) ∈ E (or equivalently by (j, i)) if it
joins two nodes Xi ∈ X and Xj ∈ X. Note that, for the remainder of this thesis, we will only
consider undirected graphs and further restrict our focus to simple graphs – that come without
parallel edges (that would join the same pair of nodes twice) and without self-loops (i.e., i 6= j).

Let us consider an edge (i, j) ∈ E, then Xj is a neighbor of Xi and vice versa; the set of
neighbors for any variable Xi ∈ X is defined by

∂(i) = {Xj ∈ X : (i, j) ∈ E}. (2.4)

The degree of a node Xi is the number of incident edges and is consequently defined by the
cardinality of the neighbor-set, i.e., by

di = |∂(i)|. (2.5)

We further denote the average degree of G by d̂G = 2|E|
N . A path between two nodes Xi, Xk ∈ X

is a graph P = ({Xi, . . . Xk}, {(i, i+ 1), . . . , (k − 1, k)}), where Xi and Xk are the end-nodes of
P. A path goes from Xi to Xk if there is an edge-progression that connects those two nodes.

Definition 2.2.1 (Loop). A loop is a path from a node Xi back to the same node along a
sequence of edges, i.e., a path P = ({Xi, Xi+1, . . . , Xk}, {(i, i + 1), . . . , (k − 1, k)}) exists for
k = i.

Depending on the notational conventions, loops are sometimes also referred to as cycles or
circuits. Note that every loop has to contain at least three edges, since we do not allow for
self-loops.

A graph is said to be connected if, for every pair of nodes Xi and Xj , a path exists that
connects Xi to Xj . We only consider connected graphs in this thesis.

In the context of this thesis, there are certain graph types that are particularly relevant; most
notably these include the following:

Definition 2.2.2 (Tree). A connected graph that does not contain any loops is a tree.

Definition 2.2.3 (Complete Graph). A complete graph G = (X,E) has every pair of nodes Xi

and Xj connected by an edge (i, j); i.e., G is fully connected with E = {(i, j) : Xi, Xj ∈ X, i 6= j}.
It follows that every node has an equal degree di = N − 1. See Figure 2.1 for an illustration of
complete graphs of size one to four.

Definition 2.2.4 (Grid Graph). An m×n grid graph, or lattice graph, is a graph with N = mn
nodes that has all edges aligned along the square lattice. See Figure 2.2 for an illustration of a
two-dimensional grid graph.

It will often be necessary to consider only a part of the graph; we call this a subgraph.

Definition 2.2.5 (Subgraph). Let G = (X,E) be a graph and let X′ ⊆ X. Then, the subgraph
(or graph-component) G′ = (X′,E′) is induced by X′, where E′ = {(i, j) ∈ E : Xi, Xj ∈ X′}.
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Figure 2.1: Complete graphs of size N = 1 to N = 4.

Figure 2.2: Two-dimensional grid graph of size N = 3× 3

Complete subgraphs are of particular relevance and are often referred to as cliques.

Definition 2.2.6 (Clique). Let G′ = (X′,E′) be a subgraph. If G′ is complete we call it a clique
and refer to it as Ci. If any adjacent node Xj ∈ X\X′ : (i, j) ∈ E, Xi ∈ X′ exists that, by
adding, would render Ci not complete anymore, Ci is a maximal clique.

See Figure 2.1 that depicts the maximal cliques of size one to four. Note that any graph
G = (X,E) is complete if and only if G is a maximal clique.

Definition 2.2.7 (Regular Graph). Let G = (X,E) be a graph where all nodes Xi ∈ X have
equal degree di = d. Then, we refer to G as a d-regular graph.

It follows that the average degree for a regular graph equals the degree of all individual nodes,
i.e., d̂G = di.

Definition 2.2.8 (Bipartite Graph). A bipartite Graph G = (X,E) is a graph that decomposes
into two disjoint subgraphs Y and Z where X = Y ∪ Z and Y ∩ Z = Ø so that every edge
connects those two subgraphs; i.e., for all Yi ∈ Y we have ∂(Yi) ∈ Z and vice versa.

Definition 2.2.9 (Adjacency Matrix). The adjacency matrix A represents the connections of
a finite graph. A is a 0− 1 matrix with rows and columns indexed by the set of nodes so that
aij = 1 if and only if (i, j) ∈ E. Note that A is symmetric for undirected graphs.

2.3 Probabilistic Graphical Models

Probabilistic graphical models provide a compact representation of joint distributions and are
particularly well suited for representing distributions with many random variables. The straight-
forward specification of a distribution in N random variables requires one to define and store
the probabilities of all |X |N configurations; considering the fact that typical problems often have
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hundreds of random variables renders such an approach impracticable. The representation of
the joint distribution by the means of a graph on the other hand is intuitive and comes with
the advantage of being interpretable by humans. Moreover, and of even greater relevance, the
graph exploits the statistical dependencies of the distribution and makes them explicit. This is
required if confronted with (even moderately) high-dimensional joint distributions.

Probabilistic graphical models come in different forms that represent the statistical dependen-
cies in slightly different ways. These include the most prominent types such as factor graphs,
Bayesian networks, and Markov random fields. We will, however, restrict our focus to Markov
random fields (which are also termed undirected graphical models).

2.3.1 Undirected Graphical Models (Markov Random Fields)

A probabilistic graphical model U = (G,Ψ) consists of an undirected graph G = (X,E) and a set
of K potentials (sometimes called clique potentials, or compatibility functions) Ψ that defines
the joint distribution PX(x).

There is a certain elegance to graphical models; one that relates the structural properties
of the graph to the properties of the associated joint distribution. Specifically, a one-to-one
correspondence between the set of nodes X = {X1, . . . , XN} and the set of random variables4

holds. Additionally, each edge (i, j) represents the existence of a statistical dependency between
Xi and Xj .

The correspondence between edges and statistical dependencies manifests itself into the global
Markov property. Let U ⊂ X be a subset of nodes; we say that U separates two disjoint (sets
of) nodes V and W (i.e., V ∩W = Ø) if every path connecting the sets V and W contains
at least one variable Ui ∈ U. Removing the subgraph induced by U from G thus eliminates all
paths between V and W. Let us assume that U separates V and W as discussed for G; then a
joint distribution PX(x) satisfies the global Markov property with respect to G if

PV,W|U(v,w|u) = PV|U(v|u)PW|U(w|u). (2.6)

See Figure 2.3 for a visualization of a graph that satisfies (2.6).
The global Markov property entails strong restrictions on the factorization properties of the

joint distribution. Specifically, according to the Hammersley-Clifford-Theorem [HC71], the joint
distribution factorizes into a set of potentials Ψ = {ΦC1 , . . . ,ΦCK} specified over the set of
cliques C = {C1, . . . , CK} of the graph. That is

PX(x) =
1

Z
∏
Ci∈C

ΦCi(xCi), (2.7)

where the potentials ΦCi(xCi) only depend on the values of random variables belonging to the
given clique, i.e., xCi = {xi : Xi ∈ Ci}. Although the potentials need to be non-negative and
may remind us of conditional probabilities, it is important to stress that this is not the case
and that potentials do not necessarily have a specific probabilistic interpretation (cf. [KF09,
Example 4.2]). The flexibility one has in assigning values to the potential function comes at
a cost, however: the product over all potential functions may require a normalization function
(partition function) Z to ensure that the product in (2.7) constitutes a valid distribution.5

The product in (2.7) can, in principle, consist of potentials specified only over the max-
cliques of the graphs. This may, however, hide the factorization properties of the underlying
problem [KF09, p.108] and it is thus often preferable to consider only smaller (sub)-cliques as

4 We consider only random variables with a discrete alphabet X although the framework would generalize to
continuous random variables with X = R as well.

5 The partition function is evaluated by computing the unnormalized sum over all states and is usually denoted
by the letter Z to denote its origin in the German word Zustandssumme.
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U1

V1 W1

V2 V3 U2 W2

W3

U3 W4

Figure 2.3: Graphical representation of the conditional independencies implied by (2.6). The set of nodes U
separates V from W, i.e., the after removing the subgraph induced by U from G two separate
subgraphs remain.

e.g., of size two for pairwise models. Pairwise models are particularly well-suited for a theoretical
analysis because of their simplicity and will therefore be the main focus of this thesis. Because of
their central role, we devote the following section to the introduction of binary pairwise models.

2.4 Binary Pairwise Models

Throughout the main part of this thesis, we will focus on one particular type of undirected mod-
els: these are binary pairwise graphical models. Binary pairwise models admit a relatively simple
treatment while being rich enough to represent a wide class of problems. Indeed, most practical
problems permit a representation as a binary pairwise graphical models, which highlights that
the class is much less restrictive as it may seem at first.

We will first provide a formal introduction in Section 2.4.1 and then discuss both the lim-
itations and the relevance of binary pairwise graphical models in Section 2.4.2. Finally, we
introduce the exponential representation in Section 2.4.3 and clarify the relation to the Ising
model in Section 2.4.4.

2.4.1 Model Description

Binary models are graphical models where every random variable Xi ∈ X takes values from the
binary alphabet, e.g., according to xi ∈ X = {−1,+1}. Pairwise models have potential functions
that consist of two random variables at most; i.e., potentials are only associated with cliques
Ci ∈ C of size |XCi | ≤ 2. We resort to an even finer-grained representation that separately
specifies the potentials over the nodes and edges. Complying to this representation, we then
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define the joint distribution according to

PX(x) =
1

Z
∏

(i,j)∈E

ΦXi,Xj (xi, xj)
∏
Xi∈X

ΦXi(xi), (2.8)

where we introduced two different potential-types. These are: the pairwise potentials ΦXi,Xj (xi, xj)
that act on the edges (i, j) ∈ E and the local potentials ΦXi(xi) that act on the nodes Xi ∈ X.
Note that each pairwise potential is only considered once as (i, j) = (j, i). We will prefer to
denote the local and pairwise potentials by their shorthand notation Φ(xi) and Φ(xi, xj), unless
the actual values of the associated random variables are of immediate relevance.

Note that the factorization in (2.7) considers the set of all cliques (with varying sizes), whereas
the factorization in (2.8) considers cliques of size two at most. Therefore, note that every
connected pair of variables is also a clique (albeit possibly only a subset of a larger clique). This
means that both forms become identical – even in the presence of larger cliques – whenever all
higher-order potentials are trivial.6

The representation in (2.8) has yet another equivalent factorization

PX(x) =
1

Z
∏

C(i,j)∈C
ΦC(i,j)

(xi, xj)

that incorporates all local potentials into the pairwise ones. Such a compact representation
clearly reduces the overall number of potentials, but may obscure the underlying structure.
This often makes the model much less intuitive to interpret. We will now discuss and compare
the different ways of factorizing the joint distribution by means of the following example.

Example 1 (Factorization into Potentials of Varying Size).
Consider the undirected graphical model U = (G,Ψ) depicted in Figure 2.4.

X1

X2

X3

Figure 2.4: Complete graph with three random variables with its potentials specified over the set of edges
and the set of nodes according to (2.8).

We consider a joint distribution that is specified according to (2.8) in terms of local potentials
Φ(xi) and pairwise potentials Φ(xi, xj) so that

PX(x)=
1

ZΦ(x1, x2)Φ(x2, x3)Φ(x3, x1)Φ(x1)Φ(x2)Φ(x3). (2.9)

As discussed above, one possible factorization stems from incorporating the local potentials
into the pairwise ones. The specific model in Figure 2.4 provides one obvious way of doing

6 A trivial potential does not influence the values of the joint distribution. One way of making a potential trivial
is by assigning identical values, as for example ΦC(xC) = 1, for all possible configurations xC .
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so; therefore, let us define the clique potentials according to

ΦC(i,j)
(xi, xj) = Φ(xi, xj)Φ(xj) (2.10)

so that

PX(x) =
1

ZΦC(1,2)
(x1, x2)ΦC(2,3)

(x2, x3)ΦC(3,1)
(x3, x1). (2.11)

Note that (2.10) is just one possible way of constructing clique potentials from the local and
the pairwise ones. One only has to make sure that every potential is considered exactly
once, as the joint distribution in (2.11) would not conform with its original definition in (2.9)
otherwise.

Finally, it is always possible to factorize the joint distribution over the maximum cliques.
Note that, in this example, G is already a maximum clique, which makes it possible to
express the joint distribution by a single clique potential. This potential of the maximum
clique incorporates all pairwise- and singleton- potentials according to

ΦC(1,2,3)
(x1, x2, x3) = Φ(x1, x2)Φ(x2, x3)Φ(x3, x1)Φ(x1)Φ(x2)Φ(x3) (2.12)

so that

PX(x) =
1

ZΦC(1,2,3)
(x1, x2, x3). (2.13)

The above example highlights the influence of the particular factorization on the overall num-
ber of potentials. Higher-order cliques reduce the overall number of potentials but, simultane-
ously, tend to conceal the underlying structure of the joint distribution [KF09, Chapter 4.2]).
Similarly, pairwise graphical models enforce one specific factorization and may thus hide the
“true” factorization of the underlying distribution as well. Factor graphs, on the other hand,
provide a flexible representation that makes this underlying factorization explicit. We will, how-
ever, except for the application to error-correcting codes, restrict ourselves to pairwise graphical
models for the remainder of this thesis.

2.4.2 Generality of Binary Pairwise Models

The simplicity of binary pairwise models is compelling, although the exclusion of other models
– not representable by binary pairwise models – may seem rather restrictive. Despite this
impression, binary pairwise models provide a general framework. That is, most graphical models
can be directly converted into a binary pairwise model [YFW01,Wei00].

The conversion from general undirected models to binary pairwise models becomes immedi-
ately apparent for models with strictly positive potentials, in which case, a simple reduction
to the binary pairwise case exists [EG13]. Note, however, that such a conversion potentially
scales up the problem immensely and is therefore not always ideal from a practical point of
view [Mac01].

From a theoretical point of view, however, it is beneficial to study binary pairwise models;
these models are rich enough to exhibit complex behavior – thus demonstrating many interesting
aspects, though they still admit a simplified treatment – thus avoiding many technical subtleties.
Moreover, the study of binary pairwise models carries great relevance; not only because they
are still far from being fully understood but also because theoretical insights carry over to more
general models (by conversion of one model-class to the other).
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Besides their generality, binary pairwise models are important in their own right as they arise
in various applications.

2.4.3 Exponential Representation and Model Parametrization

So far we have not considered the actual specification of the potentials. We will now introduce
one specific parameterization of binary pairwise models, show why it belongs to an exponential
family, and define different model-classes with fundamentally different behavior. Besides, we
will fix our naming convention and briefly point to alternative ones. Note that, because of its
immediate connection, the terminology is often rooted in the physical interpretations of the
quantities.

Many relevant problems have a non-zero probability for all configurations x, such that the
joint distribution factorizes into strictly positive potentials. This allows us to assign some energy
E(x) to every configuration, so that the joint distribution from (2.8) can be expressed in its
exponential form according to

PX(x) =
1

Z · e
−E(x). (2.14)

For the remainder of this thesis we shall use a minimal representation of binary pairwise
models (cf. [WJ08, Section 3.3]) that defines the energy in terms of couplings Jij ∈ R, that act
on the edges (i, j) ∈ E and local fields θi ∈ R, that act on the nodes Xi ∈ X. Note that we drop
the subscripts and write Jij = J or θi = θ whenever the parameters are identical for all edges
or for all nodes respectively.7

Let the local and pairwise potentials of state xi ∈ {−1,+1} be Φ(xi) = exp(θixi) and
Φ(xi, xj) = exp(Jijxixj). Then, if we plug these potentials into (2.8) we end up with a joint
distribution that has its energy (cf. (2.14)) given by

E(x) = −
∑

(i,j)∈E

Jijxixj −
∑
Xi∈X

θixi. (2.15)

The energy (and consequently the joint distribution) depends not only on x but on Jij and
θi as well; we will, however, only make this dependence explicit by E(x, J, θ) if of immediate
relevance.

In the literature, one distinguishes two different types of interactions between variables: if a
coupling is positive (Jij > 0) then the associated edge (i, j) is attractive; if a coupling is negative
(Jij < 0) then the associated edge (i, j) is repulsive. In accordance with this naming-convention,
we call a model U attractive if it contains only attractive edges (these models are also known
as ferromagnetic models [MM09] or log-supermodular models [Ruo12]); we call it repulsive (or
antiferromagnetic) if it contains only repulsive edges; and we call a model general if it contains
both types of edges.

The particular representation of (2.15) is also known as Hopfield network (cf. [Hop82] and
[Mac03, Chapter 42]) or Boltzmann machine (cf. [HS86,WT03] and [Mac03, Chapter 43]) in the
machine learning community and as Ising model (cf. [Bru67] and [Mac03, Chapter 31]) in the
physics literature. The Ising model has been studied for a long time in statistical physics. For
its particular relevance, we will devote the subsequent section to the Ising model, discuss its
most important properties, and provide a brief historical outline of its development.

7 If all nodes have the same value θi = θ we will sometimes refer to θ as the external field.
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2.4.4 The Ising Model

The study of pairwise models in the form of (2.14) actually dates back for more than a century.8

In the field of statistical physics, one studies the macroscopic behavior of systems with a large
number of interacting components (e.g., atoms or molecules) in the thermodynamic limit of
infinitely many components.

One concept of central relevance are phase transitions; these are points in the parameter
space where the partition function becomes non-analytic. Phase transitions trigger fundamental
changes in the system behavior, as for example the change from a fluid to gas. In computer sci-
ence, we often encounter algorithms that have many “components” interacting with each other
(e.g., as in message passing algorithms); such algorithms often exhibit rapid performance-drops
for certain points in the parameter space, which clearly remind us of phase transitions.

One extensively studied model in statistical physics is the Ising model: it consists of N atoms
in a configuration σ = (σ1, . . . , σN ) with spins σi ∈ {−1,+1} that lie on a d-dimensional lattice
and that are magnetically coupled.9 As a model for magnetic bodies, the Ising model’s phase
transitions describe the change from the paramagnetic to the ferromagnetic region among others.
The Ising model is one of the simplest models that is sufficiently rich to exhibit phase transitions;
therein lies its appeal.

The interaction between two neighboring spins is specified by the coupling strength J that
is either ferromagnetic (i.e., positive) or anti-ferromagnetic (i.e, negative). Two neighbors then
energetically favor the same state in case of ferromagnetic interactions and the opposite state in
case of anti-ferromagnetic interactions. The energy of a configuration σ is

E(σ) = −βJ
∑

(i,j)∈E

σiσj +H
N∑
i=1

σi, (2.16)

where H is the external magnetic field and β = 1
kBT

is the inverse temperature with kB being
the Boltzmann constant.

The appreciation of the Ising model had its ups and downs. After being dumped as a too
simplified model with no physical usefulness, it took some years before the Ising model received
its well-deserved attention. We outline some of the cornerstones in this development below and
refer the interested reader to the surprisingly exciting read [Bru67] for a review of the major
events in the history of the Ising model.

Wilhelm Lenz proposed the Ising model, as a simplified model for the interactions inside
magnetic bodies, with the aim of developing a better understanding of the underlying properties.
One of his students, Ernst Ising, solved the one-dimensional case (by applying the transfer-
matrix method) in his thesis. The result, rather surprisingly, revealed the inexistence of phase-
transitions in the one-dimensional case. Being unable to solve it in higher dimensions, he
concluded that the Ising model is generally incapable of experiencing phase transitions. This
conjecture, however, was in stark contrast to the ferromagnetic theory developed by Pierre
Currie, which led to the disregard of the Ising model.

Finally, this contradiction was resolved by Lars Onsanger who solved the Ising model on the
two-dimensional grid in a mathematical “tour-de-force” (as the Onsanger solution is nowadays
often referred to) and revealed the existence of phase transitions in two dimensions. Note that
the exact solution of the Ising model is only known in these two cases and it remains an open

8 Distributions of this form were first introduced by Ludwig Boltzmann and by Josiah Willard Gibbs and
provide the foundation of statistical physics. In the physics literature, one often refers to distributions of the
form (2.14) as Boltzmann-distributions or Gibbs-measures.

9 Here we use the standard notation for the Ising model, although the correspondence to the notation in this
thesis becomes obvious by comparing (2.15) to (2.16).
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problem to compute the exact solution for higher-dimensional cases.

The classical Ising model, with its energy defined according to (2.16), provides a powerful
generalization: the spin glass model has the (local) fields θi and the couplings Jij take potentially
different values for all nodes and edges and has its energy defined according to

E(σ) = −β
∑

(i,j)∈E

Jijσiσj +
N∑
i=1

θiσi. (2.17)

What makes these spin glass models so interesting is that we have a much poorer understanding
of them as opposed to the classical Ising model. The lack of understanding is mainly because of
frustrations [Gé77]. These are configurations that have some pairs of random variables Xi, Xj

energetically favor states that contradict the coupling of the associated edge (i, j) (cf. Exam-
ple 4). To make this more precise we introduce the product of couplings along some cycle P,
i.e.,

JP =
∏
P
Jij . (2.18)

Then, a graph is frustrated whenever it contains a cycle for which JP equates to a negative
number. For the classical Ising model where all couplings take the same value, the existence
of frustrations depends only on the graph structure (i.e., if cycles of odd-length exist). For
spin glasses, however, the existence of frustrations depends on both the graph structure and the
parameters. This is one of the main reasons for studying spin glasses as frustrations can lead to
a complex solution space with potentially many different solutions.

So far, we have seen that binary pairwise models constitute a very general class of graphical
models and fit nicely into the framework of statistical physics. Although this emphasizes the
relevance of binary pairwise models, we barely mentioned the purpose of introducing graphical
models. We will now shift our focus to the problems we intend to solve and thus reveal the
elegance and the advantages of graphical models.

2.5 Inference

The task of inference plays an important role in many scientific fields and it is a prerequisite for
probabilistic reasoning. In a nutshell, inference deals with drawing statistical conclusions about
a certain subset of random variables, given some (possibly noisy) observations [PPT14].

Applications include, but are not limited to, computer vision and speech processing where
the observations are corrupted versions of the image or the speech-signal and one is interested
in finding the most probable explanation. Ideally, one would hope that the best explanation for
the given observations matches the original image or signal. Another important application is
found in the context of error-correcting codes, where the observation is the received codeword
and one is interested in obtaining the sent codeword.

To make the task of inference more precise we consider a joint distribution PX(x) over a
set of nodes X that consists of two disjoint subsets, i.e, X = Y ∪ O and Y ∩ O = Ø. The
observed variables are denoted by O and the unobserved ones are denoted by Y. Without loss
of generality, we will restrict ourselves to problems without observed variables O = Ø throughout
this thesis. Now we present the following three central problems of probabilistic inference.

• Maximum a posterior (MAP) inference estimates the mode of the distribution with the
aim of identifying the joint assignment y∗ that maximizes the probability according to
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y∗ = arg maxy∈Y|Y| PY|O(y|o). Note that, strictly speaking, this is the most probable
explanation (MPE) estimate, whereas the MAP estimate deals with the more general
problem of maximizing the probability for any subset of Y; it is quite common, however,
to neglect this distinction despite MPE inference being the easiest instance [KFD+07,
Chapter 2.3]. We abide to this convention and, provided O = Ø, aim to obtain

x∗ = arg max
x∈XN

PX(x). (2.19)

• Marginal inference is the task of computing the marginal distribution for a subset of
random variables Y ⊂ X, i.e., to compute PY(y) according to (2.2). Note that we will
sometimes use the following shorthand notation for this double-summation where

PY(y) =
∑
X\Y

PX(x) =
∑
O

PX(x) =
∑
Xi∈O

∑
xi∈X

PX(x). (2.20)

We will be particularly interested in the singleton marginals PXi(xi) for single random
variables and the pairwise marginals PXi,Xj (xi, xj) for pairs of random variables.

For binary models it is often more convenient to work with the expectations, which are the
mean mi (or magnetization) and the correlation χij , instead of considering the singleton
marginals PXi(xi) and the pairwise marginals PXi,Xj (xi, xj) explicitly, where

mi = E(Xi) = PXi(Xi = 1)− PXi(Xi = −1), (2.21)

χij = E(XiXj). (2.22)

• Another important problem is to evaluate the partition function

Z =
∑

x∈XN

∏
Ci∈C

ΦCi(xCi), (2.23)

which is the normalization coefficient of the joint distribution in (2.7).

We will primarily focus on the problems of computing marginal distributions and evaluating the
partition function in this thesis. Note that these two problems are in fact closely related as the
marginal distribution PXi(xi) equals the ratio between a partial partition function Z(Xi) and
the partition function:

PXi(xi) =
∑
X\Xi

PX(x) =
∑
X\Xi

1

Z
∏
Ci∈C

ΦCi(xCi),

=
1

Z
∑
X\Xi

∏
Ci∈C

ΦCi(xCi),

=

∑
X\Xi

∏
Ci∈C

ΦCi(xCi)∑
x∈XN

∏
Ci∈C

ΦCi(xCi)
=
Z(Xi)

Z . (2.24)

The computation of the marginals seems relatively straightforward according to (2.24). Yet,
there is one fundamental problem that prohibits the application of (2.24) to practical problems,
which essentially boils down to the overall number of variables involved. Even if the joint
distribution PX(x) is known – neglecting the fact that the memory complexity of storing PX(x)
is exponential in the number of variables – computing PXi(xi) is problematic. More specifically,
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consider a joint distribution PX(x) specified over N random variables with k = |X | states. Then,
the sum in the numerator of (2.24) is evaluated N − 1 times and goes over k terms each time;
i.e., in total computing a marginal distribution would require the summation over kN−1 terms
in total.

This drastically limits the problem size for which the marginals can be evaluated in practice.
On the positive side, however, we have already encountered the compact representation of prob-
abilistic graphical models. We will subsequently show how to utilize this representation and
how this opens the door for efficient inference methods. Before considering arbitrary models, we
focus on models with certain graph structures that lend themselves to particularly elegant ways
of performing inference. Ideally one should aim to exploit this representation beyond that and
extend it to the central problems of inference.

2.5.1 Exact Inference: Efficient Methods

Tree-Structured Graphs

Chains and trees posses Markov properties that, if exploited properly, give rise to efficient infer-
ence methods. The statistical dependencies imposed by tree-structured models admit inference
methods that, instead of manipulating the joint distribution directly, recursively perform local
computations; this reduces the computational complexity immensely. Various inference methods
were independently introduced in different fields (cf. Section 3.1 for a brief overview) that all
rely on the very same principle to perform efficient inference. The basic principle is to perform
a set of local computations, often interpreted as messages between random variables; this also
explains the term message passing algorithms that is often used to unite all those algorithms.
The following example demonstrates the underlying principles and highlights the efficiency of
message passing algorithms.

Example 2 (Exact Inference on a Tree).
Consider the undirected graphical model U = (G,Ψ) depicted in Figure 2.5. First, we express
the joint distribution as the product over all pairwise clique potentials according to (2.7) so
that

PX(x) =
1

Z
∏
Ci∈C

ΦCi(xCi)

=
1

ZΦC(1,4)
(x1, x4)ΦC(2,4)

(x2, x4)ΦC(3,4)
(x3, x4)ΦC(4,5)

(x4, x5)·
ΦC(5,6)

(x5, x6)ΦC(6,7)
(x6, x7). (2.25)

Note that the factorization in terms of pairwise cliques equals the factorization in terms of
maximum cliques for tree-structured models for the lack of loops.

Second, we compute the singleton marginals for one specific random variable, e.g., X5, by
summing over all other variables such that

PX5(x5) =
1

Z
∑
x1∈X

· · ·
∑
x4∈X

∑
x6∈X

∑
x7∈X

.
∏
Ci∈C

ΦCi(xCi) (2.26)

A closer look at the clique potentials reveals the benefits of reordering of the summations.
The total amount of summations becomes much more manageable if we make use of the
commutative and the distributive law and rewrite (2.26) according to
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PX5(x5) =

(∑
x4∈X

ΦC(4,5)
(x4, x5)·

(∑
x1∈X

ΦC(1,4)
(x1, x4)

)
︸ ︷︷ ︸

µ14(x4)

(∑
x2∈X

ΦC(2,4)
(x2, x4)

)
︸ ︷︷ ︸

µ24(x4)

(∑
x3∈X

ΦC(3,4)
(x3, x4)

)
︸ ︷︷ ︸

µ34(x4)

)

︸ ︷︷ ︸
µ45(x5)

·

(∑
x6∈X

ΦC(5,6)
(x5, x6)

(∑
x7∈X

ΦC(6,7)
(x6, x7)

)
︸ ︷︷ ︸

µ76(x6)

)

︸ ︷︷ ︸
µ65(x5)

. (2.27)

Note that we introduced the powerful notion of messages in (2.27); messages µij(xj) provide
a compact notational convention and express the consequence of summing over the respective
variable. We say that µij(xj) is passed along the edge from Xi to Xj (see Figure 2.5).

The desired marginal distribution PX5(x5) is then given by the normalized product of all
incoming messages. We consequently realize from (2.27) that

PX5(x5) =
1

Z µ45(x5)µ65(x5). (2.28)

X1 X6 X7

X2 X4 X5

X3

µ
14 (x

4 )
−→

µ24(x4)
−→

µ 3
4
(x

4
)

−→

µ45(x5)
−→

µ 6
5
(x

5
)
−→

µ76(x6)−→

Figure 2.5: Tree-structured model that illustrates the concept of message passing with the purpose of
computing the marginal distribution PX5(x5). All messages of (2.27) are illustrated next to
the associated edges.

Note how the messages µ45(x5) and µ65(x5) incorporate all messages of the sub-trees rooted
in X4 and X6. Consequently, knowledge of only the two messages µ45(x5) and µ65(x5) is
sufficient to compute the marginal PX5(x5) according to (2.28).

The reordering of the summations reduces the overall amount of required summations
notably. Comparison of (2.26) and (2.27) reveals that the computational complexity reduces
from O(|X |N ) to O(|X |2).

Remember how µ45(x5) accounted for all messages that come from the subgraph induced by
X′ = {X1, X2, X3, X4}. This suggests a recursive rule for computing the messages without the
need for explicitly rearranging the summations. In particular, we can compute the message
µij(xj) by taking the product of all incoming messages, except the one from Xj , times the
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pairwise potential ΦC(i,j)
(xi, xj) so that

µij(xj) =
∑
xi∈X

ΦC(i,j)
(xi, xj)

∏
Xk∈{∂(i)\Xj}

µki(xi). (2.29)

The message µij(xj) is a vector over all states xj ∈ X . One can interpret this message as the

belief of node Xi about the relative probabilities that Xj is in state xj given all the information10

that is available to Xi, except from Xj .
The notion of messages has a further advantage: if we wish to compute the marginals PXi(xi)

for multiple nodes in the graphical model we can, instead of performing the procedure multiple
times, reuse the already computed messages. It suffices to pass the messages back and forth
throughout the whole graph only once. For a chain this means propagating the messages along
both directions.11 If we wish to apply this procedure to a tree we must first fix some ordering,
i.e., pick one node as root, before then passing the messages upwards from the leaves and then
pass the messages down again.

The representation of the summations in (2.27) in terms of messages captures an important
property of tree-structured graphical models. For every Xi ∈ X it holds that any pair of its
neighbors {Xk, Xl} ∈ ∂(i) is conditionally independent given Xi, i.e.,

PXk,Xl|Xi(xk, xl|xi) = PXk|Xi(xk|xi)PXl|Xi(xl|xi). (2.30)

These statistical independence statements further impose one important property on the graph.
Namely, that removing the edge (i, k) creates two disconnected subgraphs G(i) =

(
X(i),E(i)

)
:

Xi ∈ X(i) and G(k) =
(
X(k),E(k)

)
: Xk ∈ X(k). Note that the existence of any alternative path

between G(i) and G(k), i.e., the existence of loops, would violate (2.30).

Graphs with Loops

So far we have witnessed the capabilities of message passing algorithms for chains and tree-
structured models; one might ask how this concept generalizes and if it is able to cope with
loops. This is a critical question for two reasons: efficient inference methods are essential when
confronted with large and loopy models; and many problems of practical relevance correspond
to loopy models. Every general-purpose inference method must, therefore, be able to cope with
loops.

Unfortunately, this is not the case for message passing algorithms. Loopy graphs violate the
independence statements in (2.30) and thus prevent a straightforward generalization of message
passing to loopy graphs.

As discussed, excluding models with loops is not a viable option either. Nonetheless, ex-
ploiting the Markov properties seemed promising. Fortunately, we can have both. That is,
an algorithm exists that is both capable of accounting for loops and capable of exploiting the
Markov properties. These seemingly conflicting intentions are satisfied by modifying the graph
and carefully constructing certain subgraphs until we finally end up with a tree again.

The failure of message passing is demonstrated on a loopy graph in Example 3. Subsequently,
we show how the graph needs to be modified to allow for efficient inference.

10 We are using the term information here only figuratively in the sense that all necessary summations for
evaluating PXi(xi) are subsumed in µji(xi). This does not adhere to the formal definition of entropy as an
information-theoretic measure.

11 In the particular case of a chain the messages actually equal the Chapman Kolmogorov equations.
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Example 3 (Exact Inference on Loopy Graphs).
We create a loopy graph by adding the edge (5, 7) to the model of Example 2 (cf. Fig-
ure 2.6 (a)). Let us focus on the subgraph induced by X′ = {X5, X6, X7}. We first observe
that the conditional independence statements of (2.30) are violated as

PX5,X7|X6
(x5, x7|x6) 6= PX5|X7

(x5|x7)PX6|X7
(x6|x7); (2.31)

and second that information flows from X7 towards X5 (and the remainder of the
graph) via two different paths: once via P1 = ({X5, X7}, {(7, 5)}) and once via P2 =
({X5, X6, X7}, {(7, 6), (6, 5)}). As a result, the message µ57(x7), if computed according
to (2.29), incorporates the belief stemming from X7 via one path and erroneously propa-
gates it back to X7 via the other path.

X1 X6 X7

X2 X4 X5

X3

(a)

X1

X2 X4 X5−6−7

X3

(b)

Figure 2.6: (a) Model from Example 2 with the additional edge (5, 7) that creates a loop. (b) Junction
tree for the same model; note that variable grouping renders the graph tree-structured again.

The graphical model needs to be tree-structured in order to satisfy the formal requirements
for message passing to work; this, however, is not the case as seen in Figure 2.6(a). We can,
however, form super-nodes, consisting of multiple variables, until no more loops are present in
the graph to leverage the power of message passing. For our current example one can simply
group the variables X5, X6, and X7 together into X5−6−7 and define the pairwise potential
between X4 and this super-node according to

ΦC(4,5−6−7)
(x4, x5, x6, x7) = ΦC(4,5)

(x4, x5)ΦC(5,6)
(x5, x6)ΦC(6,7)

(x6, x7)ΦC(5,7)
(x5, x7).

(2.32)

The resulting graph is depicted in Figure 2.6 (b). Now that we have created a tree-structured
model again (cf. Figure 2.6(b)), we can simply perform message passing on this modified graph
and compute the marginals accordingly. Note how the new node X5−6−7 has an increased
number of states according to |X ||C5−6−7| = |X |3 now. Despite the exponential growth of the
state space, grouping variables together has its merits. In particular, it suggests an optimal
way of rearranging the variables in the computation of the marginals that maintains the
Markov properties despite the existence of loops.

We have seen in Example 3 that performing inference on loopy graphs increases the computa-
tional complexity. This is an immediate consequence of considering higher-order cliques in the
construction of the junction tree (i.e., the modified graph). In general – and for models with
multiple intertwined loops in particular – however, there is not just one but many possibilities
of grouping variables together. Consequently, one should construct the junction tree such that
the largest clique is kept as small as possible. If one wants to keep the complexity in check, it
is thus of utmost importance to carefully construct the junction.

One might ask whether a modified graph (i.e., a clique- or junction-tree) without loops always
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exists – and how it is constructed. Indeed, for every graphical model such a junction tree exists
and the construction of an optimal junction tree – with as small cliques as possible – involves
three major steps. These steps define the junction tree algorithm [LS88] that we will review
below. We do not give an exhaustive introduction with all the details but rather aim to provide
an overview that highlights the overall idea of the required operations.

First, note that every graph G has an associated junction tree if and only if G is triangu-
lated [LS88]. A graph is triangulated (or chordal) if every cycle of length four or greater has
a chord (i.e., an edge that joins two nodes of the cycle). Usually, a graph possesses multiple
valid triangulated graphs, the choice of which has a major influence on the overall computa-
tional complexity [KF09, Section 10.4]. Finding an optimal, that is a minimal, triangulation is
NP-hard on its own but various heuristics exist that find reasonably good triangulation. Most
of these heuristics rely on a particular form of variable elimination, whereas it depends on the
given graph which method performs best [KF09, Section 9.4.3.2].

Second, the triangulated graph provides the basis for the construction of the junction tree.
The nodes in the junction tree correspond to maximal cliques in the triangulated graph; if a
variable is present in two cliques, the cliques are joined by an edge in the junction tree. A
triangulated graph usually admits multiple junction trees of varying sizes. The construction of
the junction tree thus has a major influence on the overall efficiency. Typically, one assigns a
weight to each edge that corresponds to the number of variables included in both cliques and
subsequently constructs a maximum spanning tree [KF09, Section 10.4.2].

Finally, once the junction tree is constructed an efficient inference method, for example mes-
sage passing, can be applied to the junction tree to yield the marginal distributions over all
cliques. The singleton marginals are then obtained by direct summation over a clique contain-
ing the desired variable.

The junction tree algorithm is straightforward in principle and provides a graph-based ap-
proach that exploits the factorization properties for loopy graphs. Although the junction tree
significantly reduces the complexity of exact inference, it is still of limited practical use. This
stems from working with the maximal cliques of the triangulated graph and the exponential
growth of the state space with the clique-size. The applicability of the junction tree algorithm
is consequently limited by the size of its largest clique [BKvdEvdG01].

Nonetheless, there are two reasons that justify the introduction of the junction tree: First,
despite its limitation to problems with relatively small tree-width, the junction tree is efficient in
some sense; in particular, no general exact inference method exists that is computationally more
efficient than the junction tree [Bis06, Section 8.4.6]. The junction tree thus serves as the method
of choice for estimating the ground truth when assessing approximate inference methods in the
subsequent chapters. Second, the junction tree algorithm reveals how the inherent properties
of loopy graphs increase the complexity of exact inference; this further emphasizes the need for
efficient approximation methods.

In the subsequent chapter, we will explicitly focus on loopy graphs and show how to tackle
the related complexity issues. We take different points of view on performing approximate
inference, extend the underlying concept of message passing to more general graphs, and discuss
how these methods cope with the existence of loops. Ultimately, this search for efficient methods
culminates in a wide range of available approximate inference methods.
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Understanding the Behavior of Belief Propagation

3
Approximate Inference: Belief Propagation

”The stars bend like slaves to laws not
decreed for them by human intelligence,

but gleaned from them.”
– Ludwig E. Boltzmann

Owing to belief propagation’s specific relevance for this thesis, we present belief propagation
(BP) in detail. This includes the classical definition as a message passing algorithm in Section 3.2,
as well as the variational interpretation in Section 3.3 that highlights the connection to methods
from statistical physics. Moreover, we cast BP as a dynamical system and elaborate on the
resulting implications in Section 3.5. The perspective of dynamical systems gives rise to a
whole group of message passing algorithms for approximate inference, where every particular
instance comes with its own pitfalls and limitations. We briefly discuss some popular variants
of BP and describe how each one enhances the performance over the standard implementation
in Section 3.5.2- 3.5.4.

Much of this chapter summarizes established textbook knowledge (cf. [KF09,MWJ99,MM09])
although we review some of the most recent developments as well. The representation of BP
as a dynamical system is rather obvious and has thus been considered multiple times (e.g.,
in [MK05, RKDW10, TR06]); here, we emphasize the added value of doing so and show how
casting BP as a dynamical system provides a unifying framework. The presentation of BP
variants in Section 3.5.3 contains results developed in collaboration with Michael Rath, Sebastian
Tschiatschek, and Franz Pernkopf [KRTP15].

3.1 Motivation

In Chapter 2 we have seen how exact inference methods suffer from the existence of loops. In
fact, exact inference is NP-hard [Coo90], unless the probabilistic graphical model is appropriately
restricted, which, however, would rule out many models of practical relevance. This highlights
the need for efficient approximate inference methods. Even approximate inference, however, is
NP-hard if a certain accuracy is required [Rot96, DL93]. Note, however, that this pessimistic
statement does not render approximate inference completely useless, but only indicates that
specific models do exist for which achieving the desired accuracy is intractable.

If one wants to perform approximate inference, one can choose from a wide range of different
methods. Before one can make a well-informed choice and select an appropriate variant it is
necessary to have a good understanding of a given method’s capabilities and limitations. Hence,
developing this understanding is of central importance. Knowledge of the limitations and failure
modes further has the advantage of suggesting ways to improve upon.

We will focus on one specific class of approximate inference methods. That is the class of
message passing algorithms. As discussed in Section 2.5.1 message passing algorithms efficiently
perform exact inference on tree-structured models; the existence of loops, however, has a severe
effect on message passing and impedes the straightforward generalization (cf. Example 3).
Nonetheless, the elegance and simplicity of performing only local operations remain indisputable
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and it is tempting, therefore, to ignore the existence of loops, apply the same principles, and
hope for a reasonable outcome.

Indeed, various approximate inference methods work according to this very principle. In fact,
because of their appealing simplicity, similar concepts were independently introduced multiple
times in different fields: Judea Pearl introduced message passing algorithms in the machine
learning- and statistics-community [Pea88] for tree-structured graphs, terming it belief propaga-
tion. He already advocated the extension to loopy graphs as an approximate method [Pea88, Sec-
tion 4.4] – nowadays often referred to as loopy belief propagation to emphasize the approximate
nature of the method.12 In the information theory community, message passing algorithms were
first introduced in the PhD Thesis of Robert Gallager [Gal68] for decoding low-density-parity-
check codes. The capabilities of message passing – known as the sum-product-algorithm – were,
however, largely overlooked until the success of Turbo codes [BGT93]. Relying on the very
same principles, this renewed interest finally put the original work into perspective and ulti-
mately led to its well-deserved recognition. Very similar concepts are also applied with success
in the signal-processing community as in the Kalman filter [Kal60] for state estimation, or in
the Viterbi algorithm [Vit67] for hidden Markov models. Probably the first explicit application
of local operations for approximating the global behavior has to be attributed to the physics
community: Hans Bethe and Rudolf Peierls introduced this concept to the field of statistical
physics with the aim of understanding the behavior of large, otherwise incomprehensible, inter-
acting systems [Bet35,Pei36]. This approximation is known as the Bethe-Peierls approximation
or the Cavity method.13

3.2 Preliminaries

Here in this section, we will finally define belief propagation. Let us consider a binary pairwise
graphical model U = (G,Ψ). First, we define messages that are passed along the edges, where
the message from Xi to Xj is denoted by µnij(xj) with n ∈ Z numbering the current iteration.14

The messages are updated according to the recursive rule:

µn+1
ij (xj) ∝

∑
xi∈X

Φ(xi, xj)Φ(xi)
∏

Xk∈{∂(i)\Xj}

µnki(xi). (3.1)

To compute the messages, BP collects all messages sent to Xi, except from Xj and multiplies this
product with the local potential Φ(xi) and the pairwise potential Φ(xi, xj). Finally, the sum over
all states xi ∈ X is sent. In practice, the messages require some form of normalization [IFW05];
we will normalize the messages by αnij ∈ R∗+ so that

∑
xj∈X µ

n
ij(xj) = 1, which gives the messages

a probabilistic interpretation. Note that all messages are consequently restricted to µij(xj) ∈
[0, 1] and the application of the update rule (3.1) does not change this.

Lemma 1. Normalized messages, sent from node Xi to Xj over (i, j) ∈ E, represent probabilities
and remain so under successive application of the BP update equation – provided all messages
are initialized to be positive.

Proof. Positive potentials in (3.1) guarantee that all messages remain positive at every iteration.

12 We will overload the terminology and, for the sake of brevity, always refer to it as belief propagation; irre-
spective whether the graph contains loops or not.

13 Nowadays, the connections between the coding- and the artificial intelligence community [KFL01] as well
as the connections to the physics community [YFW05] are well established and may seem rather obvious in
hindsight. Looking at the original literature, however, it becomes clear that, because of the different formalism,
these findings were indeed rather surprising at first.

14 Two neighboring nodes are joined by a single edge by definition. Note, that information has to flow into both
directions and that two distinct messages are passed along opposing directions over every edge.
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Consequently, a normalization term αnij exists so that
∑
xj∈X

µn+1
ij (xj) = 1.

The update equation in (3.1) closely resembles the recursive definition of the messages in
Section 2.5.1, except for one fundamental difference. For tree-structured graphs the recursive
definition of the messages results from simply reorganizing the summations. Consequently, the
messages converge once all messages were passed up and down the tree. For loopy graphs,
however, such a reorganization is not possible – since the recursive definition of a message, say
µij(xj), contains the message µji(xi) itself. For the very same reason, the notion of passing
the messages up and down the tree is simply not possible anymore. Instead, one can neglect
the existence of loops, update the message according to the recursive definition, accept the
approximate nature of this approach, and hope for the messages to converge to the fixed point
messages µ◦ij(xj).

After convergence of BP, one can approximate the marginals similar as for the tree-structured
models. Note that the marginals were defined over any possible subset of random variables
in (2.2), though we will only consider the singleton marginals PXi(xi) and the pairwise marginals
PXi,Xj (xi, xj) in this thesis. In general, the marginals over any subset of random variables are
computed by the product of incoming messages times the associated potentials. Accordingly,
we approximate the singleton and pairwise marginals by

P̃Xi(xi) =
1

Zi
Φ(xi)

∏
Xk∈∂(i)

µ◦ki(xi), (3.2)

P̃Xi,Xj (xi, xj) =
1

Zij
Φ(xi)Φ(xj)Φ(xi, xj)

∏
Xk∈{∂(i)\Xj}

µ◦ki(xi)
∏

Xl∈{∂(j)\Xi}

µ◦lj(xj), (3.3)

where Zi, Zij ∈ R∗+ guarantee that all probabilities sum to one. We denote the set of all
approximated singleton- and pairwise marginals by

P̃B = {P̃Xi(xi), P̃Xi,Xj (xi, xj) : Xi ∈ X, (i, j) ∈ E}, (3.4)

and refer to P̃B as the pseudomarginals.15 This naming-convention should highlight the fact that,
in general, BP only approximates the marginals. In fact, one may end up with pseudomarginals
that do not correspond to any valid distribution at all.

Example 4 (Unrealizable Pseudomarginals).
Let us consider the pairwise graphical model in Figure 3.1 where X is a set of three binary
random variables with xi ∈ X = {−1, 1}.

The model is frustrated and contains two attractive edges with Jij = 1 (depicted by solid
lines) and one repulsive edge with Jij = −1 (depicted by the dashed line).

Let us specify the pairwise potentials so that

ΦX1,X2(x1, x2) =

[
exp(J) exp(−J)

exp(−J) exp(J)

]
,

ΦX2,X3(x2, x3) =

[
exp(J) exp(−J)

exp(−J) exp(J)

]
,

ΦX3,X1(x3, x1) =

[
exp(−J) exp(J)

exp(J) exp(−J)

]
.

15 Note that the pseudomarginals are also often called beliefs, hence the name belief propagation.
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X1

X2

X3

Figure 3.1: Example of a frustrated model. The solid edges are attractive and the dashed edge is repulsive;
note that the product of couplings along all edges (cf. (2.18)) equates to a negative number,
which characterizes the existence of frustrations. While X2 tries to pull X1 and X3 towards
the same state, both variables are pushed apart by each other because of the repulsive edge.

We further set all local potentials to identical values and choose θ = 0 so that

ΦXi(xi) =

[
exp(θ)

exp(−θ)

]
=

[
1
1

]
. (3.5)

Belief propagation converges to a unique fixed point defined by µ◦ij(xj) = 0.5 for all xj ∈
X . It is well-established that this particular fixed point exists and does not depend on the
pairwise potentials if θ = 0 (cf. Section 5.7.1). The fact that these messages µ◦ij(xj) = 0.5
constitute a fixed point becomes immediately obvious if we plug in all potentials into the
update equation (3.1).

The pairwise marginals are subsequently approximated by P̃Xi,Xj (xi, xj); in particular we
have

P̃X1,X2(x1, x2) =

[
0.44 0.06
0.06 0.44

]
, (3.6)

P̃X2,X3(x2, x3) =

[
0.44 0.06
0.06 0.44

]
, (3.7)

P̃X3,X1(x3, x1) =

[
0.06 0.44
0.44 0.06

]
. (3.8)

Now we will proof by contradiction that the pairwise marginals from above are unrealizable;
i.e., one cannot specify a joint distribution over three random variables that has its pairwise
marginals correspond to (3.6) - (3.8). To make this more precise, note that by (3.6) and by
the sum-rule we have P̃X(−1,+1,−1) + P̃X(−1,+1,+1) = 0.06, so that the joint probability

for both configurations must satisfy P̃X(−1,+1,−1)
!
≤ 0.06 and P̃X(−1,+1,+1)

!
≤ 0.06.

Accordingly, (3.6) - (3.8) reveal the joint probabilities for all configurations x ∈ |X |N . In
this example all joint probabilities must satisfy

P̃X(x)
!
≤ 0.06. (3.9)

The total probability is thus bounded from above according to∑
x

P̃X(x) ≤ 2N · 0.06 = 0.48, (3.10)

which violates the fundamental rules of probability. Consequently, the pseudomarginals ob-
tained by BP cannot belong to a valid joint distribution.
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The above example demonstrated why the pseudomarginals may fail to represent a valid dis-
tribution. Still, unrealizable pseudomarginals need not pose a serious problem. In fact, we
usually resort to BP whenever evaluating the exact marginals is not possible, so that approx-
imating the marginals reasonably well is often sufficient (even if they are unrealizable). The
main motivation for considering BP was the hope for its efficient nature to carry over to loopy
graphs. This is unfortunately not always the case and, in the presence of loops, BP – besides
only approximating the marginals – may fail to converge altogether.

Nonetheless, despite all these shortcomings, BP often works surprisingly well, even for models
that contain many loops. So far we have depicted BP as a pure heuristic without any theoretical
motivation. This is unsatisfactory, and the situation was exactly like this for many years until a
close relation to variational methods was revealed. The variational perspective of BP is appealing
for several reasons: it relates to a similar problem, well studied in statistical physics; it provides
a more lucid justification of BP; and it explains the approximate nature of BP. It is for all those
reasons that the variational perspective spurred much of the research on BP in the last decade
and significantly improved the theoretical understanding of BP.

3.3 Variational Interpretation of BP – A Physics Perspective

Ultimately, the aim of approximate inference is to approximate some unknown complex distri-
bution in a way that simplifies answering probabilistic queries, as for example estimating the
marginals. One particularly powerful way of approximating distributions is available in the form
of variational methods. The variational free energy approach [JGJS99] was first formalized in the
context of statistical mechanics by Richard Feynman [Fey72, Section 3.4]. Although variational
methods originate from the physics literature, they are not limited to problems arising in this
context and have become a reliable tool in the machine learning community. For our purpose,
we focus on the Bethe free energy FB that bridges the gap from BP to variational methods.

We show how the Bethe free energy emerges quite naturally if we approximate PX(x) ac-
cording to the variational free energy principle and follow the excellent deductive presentation
of [YFW05] or [Mac03, Chapter 33]. An exhaustive treatment of variational representations
in the context of probabilistic graphical models that elucidates how a variety of approximate
inference methods can be understood in terms of their variational representations is presented
in the excellent review article [WJ08]. Despite its origin, we refrain, however, from discussing
the insights of specific relevance for problems in physics and refer the interested reader to some
of the many well-written books [Geo11,Hua63] for a more in-depth treatment of the Bethe ap-
proximation from the physics perspective.

When approximating a joint distribution PX(x), we first introduce a trial distribution P̃X(x).
The aim is to manipulate the trial distribution so that the mismatch between both distributions
is reduced. Therefore, we quantify the mismatch by the Kullback-Leibler divergence, defined
according to

D(P̃X||PX) =
∑

x∈XN
P̃X(x)log

P̃X(x)

PX(x)
, (3.11)

where, with slight abuse of notation, log(·) corresponds to the natural logarithm. Note that
the Kullback-Leibler is a non-symmetric function and not a proper distance measure. It does,
however, satisfy the Gibbs inequality, i.e., it satisfies D(P̃X||PX) ≥ 0 with equality if and only
if P̃X(x) = PX(x).16

16 Different proofs can be found in the literature for this property of the Kullback-Leibler divergence that, e.g.,
rely on the log-sum or the Jensen’s inequality [MM09, p.7].
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Let PX(x) belong to an exponential family, defined by (2.14), and let P̃X(x) be an arbitrary
trial distribution. Then we can rewrite the Kullback-Leibler divergence according to

D(P̃X||PX) =
∑

x∈XN
P̃X(x)logP̃X(x) +

∑
x∈XN

P̃X(x)E
(
x
)

+
∑

x∈XN
P̃X(x)logZ. (3.12)

Overloading our notation, we further define the average energy E
(
P̃X

)
= EX(E(x)) and the

entropy S
(
P̃X

)
= EX(−log(P̃X(x))) so that

E
(
P̃X

)
=
∑

x∈XN
P̃X(x)E(x) (3.13)

S
(
P̃X

)
= −

∑
x∈XN

P̃X(x)logP̃X(x). (3.14)

We can now plug the average energy and the entropy into the definition of the Kullback-Leibler
divergence and express (3.12) in a simplified way according to

D(P̃X||PX) = logZ + E
(
P̃X

)
− S

(
P̃X

)
. (3.15)

Let us define two important quantities, namely the Helmholtz free energy (or the negative log-
partition function)

FH = −logZ, (3.16)

and the Gibbs free energy, which is given by

FG(P̃X) = E
(
P̃X

)
− S

(
P̃X

)
. (3.17)

Then, we can finally rearrange terms, plug the Gibbs free energy into (3.15) and express it in a
sensible way that suggests how to estimate FH (and thus the partition function Z.

FG(P̃X) = FH +D(P̃X||PX). (3.18)

The properties of the Kullback-Leibler divergence imply that FG ≥ FH with equality if and
only if P̃X(x) = PX(x). This is a pleasant formalism that opens the door for variational
approaches; in particular minimizing FG(P̃X) provides FH and additionally, at its minimum,
where the Kullback-Leibler divergence vanishes, the trial distribution converges to the exact one
PX(x). More formally, for the set of all valid trial distribution P̃X(x) over XN we have

PX(x) = arg min
P̃X(x)

FG(P̃X). (3.19)

Note that this constitutes the central problems of inference, i.e., evaluating the partition func-
tion and computing marginal distributions (cf. Section 2.5). The formulation as an optimization
problem provides an elegant way of solving those inference problems but – in its current form
– is of limited relevance. Evaluation of the Gibbs free energy alone becomes infeasible with
increasing model size as both terms in the Gibbs free energy require a summation over exponen-
tially many terms (cf.(3.13) and (3.14)). The importance of (3.19), however, lies in the fact that
a whole family of tractable approximation methods results from restricting the possible choices
of trial distributions.

One popular approximation method that follows this idea is the mean field method. In its
simplest form, one assumes that the trial distribution is defined over independent random vari-
ables. Consequently, the joint distribution factorizes into the product of the singleton marginals
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according to

P̃X(x) =
∏
Xi∈X

P̃Xi(xi). (3.20)

Restricting ourselves to trial distributions of the form (3.20), the minimization of the Gibbs free
energy suddenly becomes tractable. The minimizer of (3.19) then approximates the marginals.
Some problems exist for which the mean field approximation even becomes asymptotically exact,
as for example for infinite size Ising grid graphs with d̂G =∞ [MM09, p.80]. The approximation
tends to require a high average degree to work well. In general, however, this is not the case and
the mean field method often provides poor approximations. This is mainly because of statistical
dependencies that are present in PX(x), which the mean field method fails to account for.

It is an obvious next step to enhance the approximation quality by accounting for the corre-
lations between pairs of random variables. One prevalent way comes in the form of the Bethe
approximation that is of particular relevance for this work. Not only does the Bethe free energy
FB restrict the class of trial distributions but it inherently approximates the Gibbs free energy
as well. The latter is a result of the average energy EB(P̃B) and the Bethe entropy SB(P̃B) that
are evaluated over the pseudomarginals P̃B instead of the joint distribution according to

EB(P̃B) =−
∑

Xm∈{Xi∈X}∪{Xi,Xj :(i,j)∈E}

P̃Xm(xm) · ln ΦXm(xm)

=−
∑
Xi∈X

∑
xi∈X

P̃Xi(xi) ln Φ(xi)−
∑

(i,j)∈E

∑
xi,xj∈X 2

P̃Xi,Xj (xi, xj) ln Φ(xi, xj) (3.21)

SB(P̃B) =−
∑

(i,j)∈E

∑
xi,xj∈X 2

P̃Xi,Xj (xi, xj) ln P̃Xi,Xj (xi, xj)

+
∑
Xi∈X

(
di − 1

) ∑
xi∈X 2

P̃Xi(xi) ln P̃Xi(xi). (3.22)

This subsequently defines the Bethe free energy in accordance with (3.17) so that

FB(P̃B) =EB(P̃B)− SB(P̃B) (3.23)

=
∑

(i,j)∈E

∑
xi,xj

P̃Xi,Xj (xi, xj) ln
P̃Xi,Xj (xi, xj)

Φ(xi, xj)
−
∑
Xi

∑
xi

P̃Xi(xi) ln Φ(xi)

−
∑
Xi

(
di − 1

)∑
xi

P̃Xi(xi) ln P̃Xi(xi). (3.24)

In comparison to the Gibbs free energy, the Bethe free energy reduces the computational
burden drastically; solely because FB is evaluated over the pseudomarginals, i.e., the singleton
and pairwise marginals, instead of the full joint distribution. Just as the minimum of FG
provides the partition function and the marginals, one would hope that – as FB approximate
FG – minimizing FB will provide approximations to the partition function and the marginals.

In order to minimize FG efficiently, we had to restrict the choice of trial distributions. A
similar restriction is required for minimizing FB; the most obvious class of trial distributions
are realizable pseudomarginals that adhere to the sum-rule of probability. This constraints the
pseudomarginals so that they correspond to some valid distribution PX(x); we refer to this set
as the marginal polytope.
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Definition 3.3.1 (Marginal Polytope). The marginal polytope is the set of all pseudomarginals
that are jointly realizable by a valid joint distribution PX(x); i.e.,

M(G) =

{
P̃Xi(xi), P̃Xi,Xj (xi, xj) : P̃Xi(xi) =

∑
X\Xi

PX(x) : Xi ∈ X,

P̃Xi,Xj (xi, xj) =
∑

X\{Xi,Xj}

PX(x) : (i, j) ∈ E

}
. (3.25)

Note that the number of constraints in the marginal polytope depends on the structure of the
graph as the singleton marginals and the pairwise marginals are only defined over the set of all
nodes and the set of all edges respectively. We will refrain from making the dependence on the
graph explicit, however, and only refer to the marginal polytope as M.

The constrained minimization of the Bethe free energy, i.e., minMFB(P̃B), seems like a stan-
dard optimization problem. It is, but the huge amount of constraints in M impedes the op-
timization in practice [Mur12, Section 22.3]. This issue is usually dealt with by relaxing the
set of constraints. Accordingly we may relax the requirement from globally realizable marginals
to locally consistent marginals. This makes the dependence on PX(x) superfluous and only re-
quires two properties to be satisfied: all singleton and pairwise marginals have to be properly
normalized, and the singleton marginals must be consistent with the pairwise marginals. These
constraints then define the local polytope L.

Definition 3.3.2 (Local Polytope). The local polytope is the set of all pseudomarginals that
are locally consistent, i.e.,

L(G) =

{
P̃Xi(xi), P̃Xi,Xj (xi, xj) :

∑
xi∈X

P̃Xi(xi) = 1,

P̃Xi(xi) =
∑
xj∈X

P̃Xi,Xj (xi, xj)

}
(3.26)

As for the marginal polytope, we will also refrain from making the dependence on the graph
structure explicit and only refer to the local polytope by L. Further note that L contains fewer
constraints than M and thus provides an outer bound on the marginal polytope (with equality
for tree-structured models (cf. [WJ08, Prop. 4.1]).

It is worth pointing out a few differences that set the Bethe approximation apart from other
variational methods. On the one hand, we would like to stress that the Bethe approximation
approximates the marginals well in many cases. On the other hand, there are some conceptional
shortcomings: First, the minimization must be performed over the local polytope; the obtained
marginals are consequently only locally consistent and, in general, do not belong to a valid joint
distribution. Second, except for certain sub-classes of graphical models, the Bethe free energy
does not upper bound (nor lower bound) the original objective. This seems to fundamentally
jeopardize the main assumption that the minimum of FB(P̃B) should be somewhat close to the
minimum of FG(P̃X).

To summarize, the Bethe approximation has the potential to work well and may thus serve as
an efficient approximation method but, at the same time, its properties indicate that performance
guarantees will often be hard to come by. This highlights the need for developing a good
understanding of the Bethe approximation and its shortcomings. The Bethe approximation is
well-studied in statistical physics. Note, however, that the models studied in physics differ from
the ones studied in computer science in one important aspect. Whereas physicists usually study
the behavior in the thermodynamic limit, i.e., for graphs of infinite size,17 in computer science,

17 This allows one to take limits and admits an analytical treatment in some cases.
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we are confronted with models of finite size. Although we expect a similar behavior to a certain
degree, we will see that finite-size effects will often have a notable effect on the properties of FB.

3.3.1 Energy Landscape of the Bethe Free Energy

Let us now focus on the practical aspects of minimizing the Bethe free energy directly. In
particular, we will take a closer look at how to approximate the marginals and the partition
function in this setting. Similar as the partition function corresponds to the Helmholtz free
energy (cf. (3.16)), we introduce the Bethe partition function ZB that corresponds to the Bethe
free energy according to

ZB = exp(−FB). (3.27)

Just as FB approximates FH, ZB approximates Z. Note that there is literally no difference
between both quantities and instead of minimizing FB one could equivalently maximize ZB. We
stick to the notion of minimizing the Bethe free energy, primarily for historical reasons.

Let us recap the two key-ingredients of the Bethe approximation again: we must replace the
Gibbs free energy by the Bethe free energy and replace the constraints of the marginal polytope
by the ones of the local polytope. This gives us the global minimum of the constrained Bethe
free energy according to

FB∗ = min
L
FB(P̃B), (3.28)

where the pseudomarginals are specified by the associated minimizer

P̃ ∗B = arg min
L

FB(P̃B). (3.29)

Although the relaxation to L reduces the complexity, it concurrently alters the energy landscape
with drastic consequences. As opposed to the convex Gibbs free energy, the Bethe free energy
is generally a non-convex function (cf. Example 5).

We will denote all stationary points of the constrained Bethe free energy by

FB◦ ∈
{
FB : ∇FB(P̃B) = 0

}
. (3.30)

Finally, local minima of the constrained Bethe free energy are particularly relevant. Let us
express the Hessian of the Bethe free energy by ∇2FB(P̃B). Then we denote local minima
explicitly by

FBm ∈
{
FB : ∇FB(P̃B) = 0,∇2FB(P̃B) is positive definite

}
. (3.31)

Note, that the different types of stationary points consequently satisfy FB∗ ⊆ {FBm} ⊆ {FB◦}.

3.3.2 The Bethe Approximation and Belief Propagation

One might ask where the added value of the variational approach lies exactly? The main reason
is the immediate connection between the stationary points of the Bethe free energy and the fixed
points of BP. The rich history of studying the Bethe free energy thus benefits our understanding
of BP directly, as the theoretical properties carry over through this relationship.
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Explicit Connection

There is a fundamental connection between the stationary points of the Bethe free energy and
the BP fixed points µ◦ (and the associated pseudomarginals P̃ ◦B). In a nutshell, the stationary
points are in a one-to-one correspondence with the fixed points. We take advantage of the fact
that FB is defined over the pseudomarginals (cf. (3.28)) and express the relation between the
stationary points FB◦ and the pseudomarginals according to

FB◦ = FB(P̃ ◦B). (3.32)

This correspondence becomes apparent when specifying the minimization of FB explicitly
and including the constraints of the local polytope as a Lagrangian. Taking the derivatives and
setting them to zero then yields the BP update equations [YFW01]. Consequently, at stationary
points of FB (where all partial derivatives are zero), all BP messages remain unaffected by the
update rule (which constitutes a BP fixed point). In fact, every fixed point of BP is an interior
stationary point of the constrained Bethe free energy [YFW05]. Note that the nature of this
correspondence further reveals a subtle, yet important, detail of BP: updating a message forces
one gradient at a time to zero while keeping all other variables fixed, which albeit often going
downwards is not a gradient descent step per se. The variational principle, however, suggests
that we should specifically consider minima of FB; luckily, the BP updates still tend to proceed
in a sensible way towards minima of FB [Hes03,AM00].

Implications

Stable fixed points of BP (see. Section. 4.4 for a thorough discussion on stability) are of particular

relevance in practice. Let us index all stable fixed points P̃
(s)
B by s = 1, . . . , S. Every stable

fixed point (s) then has an associated local minimum FB(s), an associated partition function

Z(s)
B , and associated pseudomarginals P̃

(s)
B ; we denote the set of all S stable fixed points by

S =
{(
Z(1)
B , P̃

(1)
B

)
, . . . ,

(
Z(S)
B , P̃

(S)
B

)}
. (3.33)

Likewise, we consider the set of all fixed points that constitute minima of the Bethe free energy

M =
{(
Z1
B, P̃

1
B

)
, . . . ,

(
ZMB , P̃MB

)}
, (3.34)

and the total set of fixed points

T =
{(
Z1
B, P̃

1
B

)
, . . . ,

(
ZTB , P̃ TB

)}
. (3.35)

Further note that all stable fixed points of BP must be minima of FB. In the presence of
frustrated cycles, however, minima may be unstable as well [Hes03, MWJ99]. The different
types of fixed points thus relate to each other according to S ⊆M ⊆ T.

One important question is to understand under which conditions a fixed point is unique, i.e.,
when |T| = 1. It seems appealing to utilize the connection between BP and FB for that purpose.
Besides for very simple models, however, conditions for convexity of FB are hard to come by, and
established conditions are often far from necessary [PA02,Hes04]. A good overview of different
conditions for convexity of FB is presented in [MK07].

Besides these results for uniqueness, not many results aim to characterize the expected number
of fixed points. One work that pursues this direction is [WF09]. Note that – at least as long
as some proper form of message normalization is used [MLF11] – the number of fixed points is
always finite (cf. Theorem 7 and Lemma 2 in [WF09]). Another important insight is that the
number of fixed points is always odd.
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We will later characterize the number of fixed points and asses their stability in Chapter 5
and in Chapter 7 for a range of models. As of now, we will show the correspondence between
stationary points of FB and fixed points of BP for one exemplary model.

Example 5 (Energy Landscape of FB for an Attractive Ising Model).
Let us take a closer look at the relationship between the Bethe free energy and BP by means
of an attractive Ising model, specified on an infinite-size two-dimensional grid graph. Let
all variables have identical local potentials, specified by θi = θ > 0, and all edges have
identical pairwise potentials, specified by Jij = J > 0. We illustrate a slice of the Bethe- and
the Gibbs- free energy along the marginals of one variable PXi(xi) for a model with weak
couplings (Figure 3.2) and for a model with strong couplings (Figure 3.3) Note that the Bethe
free energy upper bounds the Gibbs free energy for attractive models (cf. Section 3.4).

PX(x)

F
B
(P̃

B
)

FB (approx.) F (exact)

EZ

EP

− lnZ

− lnZB

PXi(xi)P̃Xi
(xi)

Figure 3.2: Schematic illustration of the energy landscape that shows a slice along PXi(xi) for an at-
tractive model with weak couplings. The exact and the approximate results are depicted for
both the partition function and the marginals.

If the couplings are sufficiently small, FB is convex and BP has a unique and stable fixed
point that has the whole message-space as a region of attraction (cf. Section 5.6). BP will
thus always converge independently of its initialization.

PX(x)

F
B
(P̃

B
)

FB (approx.) F (exact)

− lnZ

− lnZ1
B

− lnZ2
B

PXi
(xi)P̃ 1

Xi
(xi) P̃ 2

Xi
(xi)

Figure 3.3: Schematic illustration of the energy landscape for an attractive model with strong couplings.
The Bethe free energy is non-convex and BP may converge to one of the local minima. Note
how P̃ 2

Xi
(xi) is more accurate than P̃ 1

Xi
(xi).
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Let us now consider a model with strong couplings. Note how FB becomes non-convex
and exhibits multiple stationary points that correspond to BP fixed points. We will later
show in Chapter 5 that both local minima are stable fixed points and that the message
initialization will determine to which fixed point BP converges. This has a major influence
on the overall quality of the approximated quantities as the difference to the exact marginals
PXi(xi) (i.e., the values minimizing the Gibbs free energy) and thus the accuracy varies
considerably between different fixed points.

3.3.3 Other Variational Approaches

The one-to-one correspondence between stationary points of FB and fixed points of BP led to
an improved understanding of BP and paved the way for methods that minimize the Bethe free
energy directly [WT01, WT03, YR03]. The minimization of FB, however, remains non-trivial
and usually requires additional considerations to render it viable.

The consideration of the Bethe free energy opens the door for provable convergent algorithms.
Belief optimization [WT01] minimizes FB by following the negative gradient and is guaranteed to
converge. The minimization takes place along the edges of the local polytope, which guarantees
that the marginalization constraints in (3.26) are satisfied throughout. Alternatively, one can
decompose the non-convex FB into a convex and a concave problem (this decomposition is
in general not unique) and optimize both objectives in an alternating fashion. This procedure,
known as the constrained convex-concave procedure [YR03],, is guaranteed to obtain a stationary
point of FB. Although both methods converge to stationary points of FB, two major limitations
remain: first, the approximation quality may vary considerably between different stationary
points and only obtaining some (local) extremum may yield sub-optimal solutions; and second,
despite the appeal of convergence guarantees, run-time guarantees are often just as important
in practice.

To counteract some of these problems, one can also relax the Bethe free energy and come
up with well-behaved surrogates that can be minimized efficiently. Convex surrogates seem
to be specifically well-suited for this task and have thus received considerable attention. One
can, for example, upper bound the objective by a convex function as in tree-reweighted be-
lief propagation (TRW) [WJW03b, WJW05, Kol06] that enforces a concave entropy-term as a
combination of tree-entropies. Note, however, that there are multiple ways of coming up with
convex surrogates [MGW09, GJ07, HS08]. One comprehensive overview that unifies many dif-
ferent approaches in terms of the chosen counting number is presented in [MJGF09]. Overall
these convex versions are well-behaved and can be optimized efficiently. A trade-off between
convergence-properties and accuracy, however, persists and – if it can be minimized – the Bethe
approximation often outperforms its convex surrogates in terms of accuracy [MJGF09,WJ14a].

This observation led to a renewed focus on trying to minimize the Bethe free energy efficiently
(i.e., in polynomial run-time). The efficient minimization of FB becomes possible if we impose
certain properties on the graphical model (in terms of its structure or parameters) and consider
ε-approximating the stationary points. In particular, this includes sparse models [Shi12], where
a projection scheme in the minimization task allows for a fully polynomial-time approximation
on graphs with max(di) = O(logN). For attractive models (not necessarily sparse), this al-
gorithm is further improved in [WJ14a] so that it obtains the global minimum of the Bethe
free energy. If both properties are fulfilled, i.e., for locally tree-like attractive models the Bethe
approximation is exact and can be optimized efficiently [DM10].

From a completely different point of view, the approximation quality can also be enhanced by
better approximations of FG . The concept of the Bethe approximation, that only accounts for
the singleton- and pairwise marginals, generalizes to the Kikuchi method that accounts for the
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marginals of larger cliques as well. The same principle – i.e., considering larger cliques – gener-
alizes BP as well; this method is accordingly termed as generalized belief propagation [YFW01].
Both the accuracy and the convergence properties improve by adopting the computations to
larger cliques. Although larger cliques inevitably increase the computational complexity, the
principles of generalized belief propagation are flexible enough to allow moving freely along this
trade-off.

Gauge transformations [CC06,CCT08] are somewhat similar in that they work with the exact
partition function Z directly while simplifying its estimation. This is achieved by express-
ing the exact partition function via a loop-series expansion of ZB. Interestingly, all terms in
the loop-series correspond to fixed points of BP, which suggests one way of computing them.
The number of terms in the expansion, however, may be large for models with many loops so
that computing all terms is often not an option. Nonetheless, gauge transformations provide a
principled approach to improve upon BP by at least accounting for some terms in the loop-series.

To conclude this section, a variety of variational approaches are available that aim to find the
sweet spot between accuracy and complexity when performing approximate inference. Most of
the above methods build upon the fundamental principles of the Bethe approximation, that – al-
though providing a considerable simplification over the Gibbs free energy – remains problematic
to minimize in practice.

3.4 Approximation Quality

So far we have already discussed various approximate inference methods. Different methods
will perform differently and, depending on the given model, achieve varying accuracy. If we
want to evaluate and compare approximate inference methods, it is important to measure the
accuracy of the approximation. Having said that, approximate inference methods are usually
applied to problems that forbid the computation of the exact solution. This prohibits measuring
the accuracy by comparison to the exact solution and highlights the need for some qualitative
measures of the expected performance for a given problem. Essentially, one would like to provide
model-specific performance guarantees and bounds on the approximation error. Few bounds
on the approximation quality are, however, established and some bounds require considerable
computational resources on their own, not to mention that most bounds are often relatively
loose.

In this section, we outline how the error in the approximation of the partition function and
the marginals will be measured throughout the thesis. Moreover, we will discuss some of the
available error-bounds for both quantities.

Partition Function

The error of the partition function is usually evaluated in terms of the relative error between
the log-partition functions (i.e., the negative value of the Bethe free energy) according to

EZ(m) =
|logZmB − logZ|

logZ =
|FG −FBm|
−FG

, (3.36)

where ZmB = ZB(P̃mB ) is the Bethe partition function of the mth fixed point [GMK07]. Note
that (3.36) quantifies the error in the partition function and in the free energy.

Existing bounds on the partition function usually combine an upper bound [WJW05, JJ97]
with some lower bound as e.g., the naive mean field [WJ08]. Other bounds are based on the
loop-series expansions [WSW08] or the non-backtracking operator [SKZ14].
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One intriguing detail of the Bethe approximation is that it only approximates the partition
function but neither provides an upper nor a lower bound of it. For the important class of
attractive models, however, the Bethe partition function does indeed lower bound the partition
function, i.e., ZB < Z [Ruo12]. This has the important consequence that minimizing FB is
always optimal with respect to the approximation quality of the partition function for attractive
models, since arg minZmB (EZ(m)) = exp(−minLFB(P̃mB )).

An alternative, arguably more intuitive, proof that reveals how the Bethe partition function
lower bounds the true partition function relies on the concept of clamping [WJ14b]. The main
idea is to condition (i.e., to clamp) on a variable taking one specific value at a time and to evalu-
ate the partition function as a sum over all sub-partition functions. This brings the advantage of
working directly on the Bethe free energy and obviates the need for relying on additional concepts
such as graph covers [Von13,Ruo13] or loop-series expansions [WSW08]. Moreover, for attractive
models clamping always improves the approximation quality of the partition function over BP.
This is particularly true if selecting the clamped variables wisely, as for example according to
some heuristics [Wel16]. Clamping also improves the upper and lower bounds of Z as it can be
utilized to improve the partition function estimates of TRW and the mean field method [WD16].

Closely related to BP, but non-iterative, is the mini-bucket elimination scheme [DR03]. Mini-
bucket elimination also provides upper and lower bounds on the partition function and offers a
trade-off between the accuracy of the bound and computational efficiency based on the clique-
size considered. One can further generalize this concept based on Hölders inequality [LI11] and
efficiently compute bounds with good quality, where the improvement on the estimated bounds
is because of incorporating the concept of TRW. The method of gauge transformations further
generalized this concept and allows one to obtain tighter bounds on the partition function with
similar computational effort [ACSW18].

Marginals

We measure the error of the singleton marginals by the mean squared error (MSE), where the
error of the approximated marginals at the mth fixed point is given by

EP (m) =
1

N

∑
Xi∈X

||PXi(xi)− P̃mXi(xi)||22 (3.37)

=
2

N

∑
Xi∈X

(
PXi(xi = 1)− P̃mXi(xi = 1)

)2
. (3.38)

The simplification in (3.38) is because of symmetry properties for binary random variables. Note
that one can replace the squared l2-norm in (3.37) by any other norm if desired; in particular
the l∞-norm is considered by some authors to measure the worst-case error.

The expected mean describes the response of the system to the field θ [MM09] according to

〈m〉 = E(m) =
1

N

∑
Xi∈X

mi =
1

N

∑
Xi∈X

E(Xi), (3.39)

where we parameterize binary random variables by their mean (cf. (2.21)). Note that the
difference between the expected mean of the exact marginals 〈m〉 and of the approximated
marginals 〈m̃〉 is identical to the sum over all marginal errors

〈m〉 − 〈m̃〉 =
2

N

∑
Xi∈X

PXi(xi = 1)− P̃Xi(xi = 1). (3.40)
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Note that we consider binary random variables with X = {−1, 1}; if we would consider X ′ =
{0, 1} instead, the expected mean would change according to 〈m′〉 = 1

N

∑N
i=1 PXi(xi = 1) =

1
2(〈m〉+ 1).

Some methods quantify and bound the approximation error of the marginals instead of EZ(m)
by computing a confidence interval (i.e., an upper- and lower bound) on the exact marginals.18

Bound propagation [LK03] computes bounds for small clusters of nodes; similar to BP, these
bounds are then propagated throughout the graph and provide bounds on the singleton marginals
after convergence. The computational complexity is determined by the tree-width (similar as
for the Junction tree algorithm), thus limiting the applicability to models with few loops.

Similar in principle, but more efficient in terms of computational complexity, is the recursive
propagation of the bounds over sub-trees of the model [MK09]. The computational complexity
is determined by the support of the random variables. This renders the method applicable to
models with high connectivity as well.

From a completely different perspective, TRP provides bounds on the approximation error as
well [WJW03a]. TRP considers spanning trees to approximate the marginals, which suggests
computing bounds on the marginals over spanning trees as well. Regarding the computational
complexity, there is one particularly intricate ingredient involved in bounding the error over
the spanning trees, with the problem being the requirement for the log-partition function that
cannot be computed exactly for complex models.

Some of these issues are resolved by computing the bounds over self-avoiding walk trees
instead [Ihl07]. If we compare the quality of the bounds we observe that the proposed meth-
ods in [MK09] and [WJW03a] are of similar quality. The computation over self-avoiding walk
trees impacts the quality of the obtained bounds: for models with weak interactions (where
BP converges fast) the tightest bounds are provided by [Ihl07]; for models with strong interac-
tions (where BP performs worse) the confidence intervals become wider than the ones provided
by [WJW03a].

All those methods aim to estimate the expected performance of BP in terms of the marginal
error and while this often estimates the performance well, all presented methods have one partic-
ular problem in common. Increasing the coupling strength degrades the quality of the estimated
bounds.

3.5 BP as a Dynamical System

It is often convenient to consider BP as a dynamical system, i.e., as a discrete time map (see
Definition 4.1.1 for a formal definition). Let µn = {µnij(xj), µnji(xi) : (i, j) ∈ E} be the set of all
messages at iteration n, then we denote the mapping induced by the update equations of BP in
(3.1) according to

µn+1 = BP(µn). (3.41)

In accordance with the notion of fixed point messages µ◦ij(xj) that remain unaffected under the
application of BP, we refer to the set of all fixed point messages by µ◦. We will often refer to
µ◦ simply as fixed point and write

µ◦ = BP◦(µ), (3.42)

where BP◦ updates the messages until convergence.

18 Note that upper and lower bounds of the partition function can also be related to upper and lower bounds of
the marginals [WJ14a].
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Remember that BP is neither guaranteed to provide accurate marginals nor guaranteed to
converge. Failure of BP (to provide accurate results) can be attributed to the existence of
multiple (stable) fixed points or the existence of unstable fixed points (for which the messages
oscillate far away from any fixed point [Wei00, MK07, IFW05]). Thus, if we want to make
BP more robust, we should modify BP such that it converges towards an accurate stable fixed
point. Potential modifications include variants that minimize FB directly or minimize alternative
objectives as e.g., convex surrogates (cf. Section 3.3.3). From a completely different perspective,
one can modify the update procedure directly – ignoring the effect on the variational function –
so that the overall performance improves. In particular, the consideration of BP as a dynamical
system comes with a flexible formalism that suggests multiple ways of modifying and enhancing
BP.

3.5.1 Enhancing Belief Propagation’s Properties

BP, as presented in Section 3.1, is only one specific instance in a broad class of algorithms that
fit under the umbrella of more general message passing methods. We will see that, although
similar in nature, the choice of the respective message passing algorithm is not a mere formality
but influences the behavior significantly – and is therefore of great practical relevance. The
family of message passing algorithms is defined by a set of key-ingredients, where all message
passing algorithms proceed along with the following three steps:

• Initialization: Each message µij(xj) ∈ µ is assigned an initial value µ1ij(xj).

• Update: An update function is defined that acts on the set of messages F : µn → µn+1.
This update function usually consists of one function per message fij : µn → µn+1

ij (xj).

• Evaluation: An evaluation or decision function maps the set of messages to the values of
interest. In particular, we are interested in approximating the marginals (by the pseudo-
marginals) and in approximating the partition function (by the Bethe partition function);
thus we consider evaluation functions for the pseudomarginals DP : µ → P̃B and for the
Bethe partition function DZ : µ → ZB.

This rather general formulation of message passing algorithms grants a certain degree of freedom
in specifying an algorithm. Together, those aspects define the overall behavior of BP and every
aspect may be tuned individually to enhance its performance. Not a single best algorithm exists
though and, depending on the application, one or the other variant may perform better.

We will now discuss some established ways of enhancing BP’s performance. We particularly
focus on how all those variants result from tuning some of the key-step mentioned above. There
is an undeniable elegance in providing such a unifying view; even more important though is the
fact that this unifying view also suggests novel ways of enhancing the performance of BP. We
will also highlight how many contributions of the later chapters conform to this view as well.

3.5.2 Initialization

The choice of the initialization is no formality but, in case of multiple fixed points, determines
which fixed point a given algorithm will converge to and as such it plays an important role
in analyzing BPs behavior. Although only practical for problems of modest size, one can for
example explore the solution space exhaustively by using a sufficiently wide range of initial
values.

Note that BP often performs significantly better then worst-case analyses suggest. It seems,
that for some reason, a wide range of initial message values converges to a good fixed point. This
further raises the question of how one should initialize message passing algorithms. One common
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choice, that often works well, is to initialize all messages to the same value µ1ij(xj) = 1
|X | ; it

remains unclear, however, where the advantages of uniform initialization stem from. In general,
it would be desirable to identify initial message values that are optimal for certain problem-
classes. We will later pursue this idea and provide a heuristic that obviates the need for choosing
initial values and guides BP towards accurate fixed points (cf. self-guided belief propagation in
Chapter 6).

3.5.3 Update

The choice of the update function is one of the key-aspects of message passing algorithms and
has an enormous influence on the overall behavior of a particular algorithm. In particular, it
is altering the update function that often leads to algorithms with favorable properties. The
search for enhanced message passing algorithms thus spurred the development of alternative
update functions, which ultimately led to the proposal of various algorithms. We will discuss
some successful variants and group these modifications into two different categories.

First, instead of applying the update function F to all messages at once, one can update only
a single message at each iteration. Effectively, this procedure determines a schedule according
to which the messages are updated; we consequently term this concept scheduling. Note that
scheduling preserves all update functions and only changes the order in which they are applied.

On the other hand, one can, of course, try to improve the convergence properties by altering
the update functions themselves. Although one can think of numerous ways to alter the update
functions we intend to consider variants that perform at least as good as plain BP. In particular,
this includes two variants that will be considered in this thesis; these are: damping and self-
guided belief propagation.

Scheduling

It is widely accepted that scheduling the messages and updating them asynchronously enhances
BP. In particular, this helps to achieve convergence more often and in fewer iterations. Up until
now, we considered BP without scheduling where all messages are updated according to

µn+1 = BP(µn)

=
(
f1(µ

n), . . . , fm(µn), . . . , f2|E|(µ
n)
)
. (3.43)

Note that we imposed some ordering o : (i, j) → m on the messages and refer to the update
functions accordingly, i.e., fm computes the mth message. There are 2|E| messages in total as
they are passed along both directions of the edges.

For an asynchronous version of BP only a single message µij(xj) = µm(x) is updated per
iteration according to

µ(n+1) =
(
µn1 (x), . . . , fm(µn), . . . , µn2|E|(x)

)
. (3.44)

The update-order, i.e., which message to compute, has a major influence on the overall per-
formance. One common choice is a fixed order, either according to a round-robin scheme or a
random ordering. In both cases, the sorting of the messages follows a particular ordering and
the messages are selected for an update according to

m = n (mod 2|E|). (3.45)

Such a fixed update-order already improves the performance of BP significantly, yet it leaves
considerable room for improvement.
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One popular way of scheduling the messages relies on the fact that, for a tree, BP is guaranteed
to converge and to provide the exact marginals. Tree based reparameterization (TRP) [WJW02]
computes a set of spanning trees so that the union of all spanning trees includes all edges of
the original graph. Then, one applies BP to one tree at a time. One says that this calibrates
the marginal along the spanning tree, i.e., the marginals would be exact if the graph would
contain no more edges. Of course, performing BP on another spanning tree will alter some of
the marginals again, but at least TRP enforces consistency through parts of the graph. The
choice and the order of the spanning trees impact the overall performance of TRP and can be
tailored in a model-specific way. Intuitively, one can argue that the focus on spanning trees
enhances the overall convergence properties by enforcing a brisk exchange of information in the
graph.

All scheduling methods discussed so far rely on a fixed update-order that may or may not
depend on the graph. Instead of carefully selecting an update-order, it is, however, much more
flexible to resort to an adaptive update-order, where the current message values determine which
message to update next. This obviates the need for carefully tuning the update-order to the
current graph and further improves the convergence properties because of the inherent flexibility
in adaptive methods.

The most basic adaptive scheduling method, residual belief propagation (RBP) [EMK06],
already improves the convergence properties a lot. RBP updates the messages along the least
calibrated edge, i.e., for which the message varies the most. The underlying assumption is that
strongly varying messages contain more information and are thus of predominant importance
for the convergence of BP. To make this more precise we introduce the residual rij to measure
the message-distances between two successive iterations 19

rnij = ||µn+1
ij (xj)− µnij(xj)||∞

= max
xj
|µn+1
ij (xj)− µnij(xj)|. (3.46)

Let rn = {rnij : (i, j) ∈ E} be the set of all residuals at iteration n, then the index that maximizes
the residual

m = arg max
m

rn (3.47)

identifies the message that is selected for an update. Overall this significantly reduces the num-
ber of message updates until convergence and the overall convergence time. Computing all
residuals, however, poses some computational overhead. We can reduce this overhead and fur-
ther reduce the convergence time without degrading the accuracy much by computing an upper
bound on the residual [SM07].

Although adaptive scheduling increases the number of models for which BP converges, some
models remain problematic. Closer inspection reveals that only small parts of the graph fail to
converge, whereas large parts (almost) converge in a couple of iterations. RBP thus updates
the same subset of messages ad infinitum. This observation inspired the design of scheduling
methods that detect such problematic behavior, specifically counteract the oscillations, and
enforce convergence [KRTP15].

Noise injection belief propagation (NIBP) applies RBP and actively checks for oscillations: if
RBP converges no modifications are undertaken; if, however, oscillations occur, NIBP injects
Gaussian noise to the selected message. The underlying intuition is that the injected noise

19 Ultimately one is interested in the distance to the fixed point, if it exists, lim
n→∞

µnij(xj). However, since

lim
n→∞

µnij(xj) is not known, the time variation of the messages offers a valid surrogate (cf. [EMK06]).

– 58 – November 8, 2019



3.5 BP as a Dynamical System

will propagate from the most influential part of the graph (i.e., the message selected by RBP)
throughout the whole graph and, by introducing a relevant change to the overall model, lead to
convergence. Let µij(xj) be the message selected according to (3.47); if this message oscillates,

i.e., if µnij(xj) = µn−lij (xj) for any l ∈ R, Gaussian noise is added so that

µn+1
ij (xj) = fij(µ

n) +N (0, σ2). (3.48)

Alternatively, instead of actively detecting oscillations, one can question the underlying as-
sumption of RBP. Messages, despite varying significantly, often take identical values repeatedly;
arguably, these messages carry not much information. Weight decay belief propagation (WBP)
penalizes this behavior and dampens the residual of messages that were already updated. Con-
sequently, WBP increases the relevance of the remaining messages and thus further refines the
parameterization of the overall graph. More precisely, WBP divides the residual of a messages by
the number of times this message has already been scheduled and reformulates (3.47) according
to

m = arg max
m

rnij∑n
n′=1 1n

′
ij

, (3.49)

where the indicator function 1n
′
ij = 1 if and only if rn

′
ij = arg maxm r

n′ . Detailed pseudocode for
NIBP and WBP is presented in Appendix A.3.
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Figure 3.4: Percentage of converged runs % over the number of iterations n for: ABP (black), RBP (green),
NIBP (blue), and WBP (orange). The results are averaged over 233 grid graphs of size 13× 13
with random potentials specified by (Jij , θi) ∼ U(−6.5, 6.5) in accordance with [EMK06].

When comparing the convergence properties of the discussed scheduling methods on grid
graphs with random Ising potentials, a clear picture emerges. We present one exemplary exper-
iment in Figure 3.4 and refer to the paper [KRTP15] for more exhaustive experiments.

Although scheduling with a round-robin schedule, ABP (black), improves the convergence
properties over BP without scheduling, ABP does not perform as well as more sophisticated
methods. In particular, adaptive scheduling enhances the convergence properties notably, demon-
strating its conceptual advantage. Evaluating the overall convergence behavior, NIBP (orange)
converges for more models than any other method. WBP (blue) still converges more often than
RBP (green), although it requires more iterations to converge. Damping of the residual slows
the convergence as messages that require multiple updates to converge will now be selected less
frequently.

November 8, 2019 – 59 –



3 Approximate Inference: Belief Propagation

Although the positive influence of adaptive scheduling methods on the convergence properties
is indisputable, the influence on the marginal accuracy is less obvious. In practice, however, we
are not only interested in good convergence properties but require accurate marginals as well.
A comprehensive comparison of different scheduling methods in terms of marginal accuracy
is presented in [KRTP15]. We summarize the major insights here: considering only graphs
for which a simple round-robin schedule (i.e., ABP) achieves convergence, ABP approximates
the marginals well for all models, whereas RBP and NIBP fail to do so. It may seem that
advanced scheduling methods pay the price for improving the convergence properties and obtain
less accurate marginals. It is thus particularly remarkable that WBP maintains the marginal
accuracy of ABP although it converges for a wide range of models. Of all considered methods,
WBP is thus superior.

Alternative Update Functions

When the BP messages oscillate (often just between two values) applying a damping term has
proven to be a successful strategy to improve the convergence properties [MWJ99]. That is, one
replaces the messages with a weighted average of the last messages so that

BPD(µ) = (1− ε)BP(µ) + εµ, (3.50)

where ε ∈ [0, 1). Remember that we intend to change the update function without changing
the fixed points. Complying with our requirement, fixed points of BPD(µ) must, therefore, be
fixed points of BP without damping as well. This is the case as fixed points of BP must satisfy
µ◦ = BP(µ◦), which holds per definition so that

BPD(µ◦) = (1− ε)BP(µ◦) + εµ◦ = BP(µ◦). (3.51)

Note that, although damping does not affect the fixed points, the local stability of the individual
fixed points may change (cf. Section 5.4.2).

In Chapter 6 we will propose self-guided belief propagation that relies on an alternative
update function. While damping modifies the update function in a static manner, SBP modifies
it in a more flexible, time-dependent, way. The underlying idea is to consider the potentials as a
function of the iteration Ψ(n), which enhances the performance across all areas (i.e., convergence
properties and accuracy).

3.5.4 Evaluation

BP often performs better than suggested by worst-case analyses [MM09, Section 22.3]. This
observation comes not too surprising, especially when considering the existence of multiple fixed
points. We would indeed be rather surprised if all fixed points have similar accuracy. Rather
than a disadvantage, the difference in the accuracy can be seen as a chance; modified evaluation
functions may exploit this difference and select or combine fixed points to enhance the approxi-
mation quality. Certainly, modified evaluation functions are not a remedy to all problems. But
modified evaluation functions are an important, flexible, concept to account for the existence of
multiple fixed points and to mitigate some of the problems arising in loopy models.

Here we discuss two popular modifications that take advantage of the variability in accuracy
across multiple fixed points. Taking the set of all fixed points T (or a subset thereof) into
account, we modify the evaluation function DP : {µ◦} → P̃B in two ways. Either to select a
single fixed point or to compute a weighted combination of multiple fixed points. Note that we
will consider and evaluate both modifications in Chapter 5 and theoretically analyze them in
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Chapter 7. The modifications of DP become relevant in the presence of multiple fixed points.
BP may converge to any fixed point as it does, in general, not favor a particular one over the
other. Even if all fixed points are available, however, it remains unclear how one should select
the fixed point that approximates the marginals best.

Variational methods minimize their objective and aim to find the global minimum, although
– for non-convex FB – this cannot be done efficiently. Given a set of fixed points, we should thus
select the fixed point that minimizes FB (and maximizes ZB), which is the global minimum of
FB. We denote the associated pseudomarginals by

P̃MAX
B = arg max

P̃B∈T
ZB(P̃B) = arg min

L
FB(P̃B). (3.52)

Note that the complete set of fixed points T is generally not available and the maximization can
thus only be performed over the set of available fixed points.

Recently an interest emerged in methods that obtain and combine multiple fixed points [BY-
GRS12, BMZ05, SRF16]. The combination of all fixed points M lies at the heart of the replica
symmetry breaking (RSB) assumption. This assumption emerged in statistical physics from the
study of spin glass models and describes how the exact marginals decompose into a weighted sum
of different contributions, which turn out to correspond to minima of FB.20 If FB is non-convex,
the RSB theory describes the decomposition of the exact solution into a convex combination of
marginals that are weighted by their associated partition function so that

PXi(xi) =
1∑
mZmB

M∑
m=1

ZmB P̃mXi(xi). (3.53)

This representation can be attributed to [MPV87] and, rather than a theorem, it is a set of
postulates. One underlying assumption is that the system does exhibit multiple fixed points
(unique fixed points would falsely imply exact marginals otherwise); an accessible introduction
to the RSB theory and all underlying assumptions can be found in [MM09, Chapter 19]. Despite
its non-rigorous flavor, (3.53) has been verified for a wide range of problems (e.g., random
SAT problems and spin glasses). In particular, many state-of-the-art solvers for combinatorial
problems rely on the RSB theory [RG15]. Further note that, even if the local polytope is a
strict outer bound on the marginal polytope, a convex combination of P̃mXi(xi) (that correspond
to edge points of L [YFW05]) may consequently end up on an edge point of M (which it must
if it is exact).

The RSB theory states how to form the exact solution from pseudomarginals that were ob-
tained by efficient approximate inference methods. This seems to contradict all results on the
computational complexity of exact inference. Closer inspection resolves this apparent contradic-
tion: the number of fixed points may grow exponentially with the model-size so that obtaining
all fixed points is just as problematic as computing the marginals exactly. Indeed, this is one of
the reasons that limit the practical applicability of the RSB assumption.

For the special case of constrained satisfaction problems, survey propagation [BMZ05] is
one efficient way to evaluate (3.53). The extension to more general models, however, remains
somewhat elusive [SRF16,RG14].

Nonetheless, besides being relevant from a theoretical point of view, we will also identify
certain models for which only relatively few fixed points exist, which substantiates the practical
relevance of the RSB assumption as well.

20 In physics one deals with the decomposition of the Gibbs measure (i.e., the joint distribution) into a weighted
combination of Bethe measures (that correspond to BP fixed points).
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3.6 Conclusion

This chapter introduced BP as a message passing algorithm for approximate inference. We
further presented two alternative perspectives that hone our understanding of BP. Namely, we
discussed (i) the variational interpretation that relates all fixed points of BP to stationary points
of the Bethe free energy and (ii) the consideration as dynamical systems that suggest various
ways to enhance BP. Both concepts arguably provided insights into the solution space of BP,
explained the behavior of BP, and thus benefited our understanding of BP. Besides discussing
the properties of BP from different perspectives, one major purpose of the current chapter was
to provide an introduction for the second part of this thesis (i.e., Chapter 5 - 7). Our discussion
is far from being exhaustive and left many questions open. Below we list a couple of open ques-
tions worth pursuing that will be addressed in the remainder of the thesis and that will provide
interesting insights into the nature of BP.

One of the most pressing needs when considering the variational interpretation is a thorough
analysis of the energy landscape of the Bethe free energy (specifically for problems where FB is
non-convex). Since every local minimum serves as a potential fixed point it would be of great
relevance to characterize the solution space and to obtain all possible fixed points.

While the knowledge of all fixed points is valuable in its own, this does not reveal all prop-
erties of relevance for BP. In particular, the energy landscape does not explain the convergence
properties and it remains an open, albeit important, question under which conditions one can
expect BP to converge.

Furthermore, we defined the set of all stable fixed points S in Section 3.3.2. Whether this
set is available is questionable as the full set of fixed points is generally not available. It is
consequently an important subject to come up with message passing algorithms that tend to
converge towards the most accurate fixed point.

Following the discussion in Section 3.4, it is crucial to assign some qualitative measurements
to the fixed points after convergence of BP. This is particularly important as the exact solution
is not available in practice. It remains an ongoing research topic, however, to determine useful
accuracy-bounds that can be evaluated efficiently. Moreover, it is not obvious at all how different
measurements, e.g, bounds on the marginal accuracy or the partition function, relate to each
other.
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4
Discrete-Time Dynamical Systems:

Solution Space Analysis

”Inside a broken clock
Splashing the wine

With all the rain dogs
Taxi, we’d rather walk...”

– Tom Waits

This chapter provides a brief, high-level, introduction to (nonlinear) dynamical systems and
further introduces tools from computational mathematics, required in the subsequent chapters.
Already in Section 3.5, we have witnessed some of the benefits that result from considering BP as
a nonlinear dynamical system. Framing BP as discrete time map allows us to draw from the rich
history of dynamical systems (cf. [Tes12,Sch00]) and will be particularly beneficial in studying
BP’s convergence properties. Before we discuss how to analyze the convergence properties of a
discrete-time map, a proper definition of the terminology is required. Subsequently, we express
the essential steps in analyzing discrete-time maps, present multiple ways of doing so, and
compare the individual advantages.

We begin this chapter with the definition of discrete time maps in Section 4.1. We then
illustrate how the problem of computing the fixed points reduces to solving a polynomial system
in Section 4.2, before we discuss and compare different approaches for solving polynomial systems
in Section 4.3. Finally, we introduce the notion of stability and show how to assess the stability
of a fixed point in Section 4.4.

4.1 Discrete Time Map

Let us first introduce the notation of a discrete time map now:

Definition 4.1.1 (Discrete Time Map). A discrete time map is defined by an n-dimensional
state vector x ∈ Rn and a function F : Rn → Rn that acts on the state vector according to
x(n+1) = F

(
x(n)

)
, where n ∈ Z∗+ is the time index. Note that the function F is a composition

of n functions fi : Rn → R. We will denote the value of the state vector at time n by xn = x(n)
so that

xn+1 = F (xn) . (4.1)

A discrete-time map is further said to be nonlinear if some (or all) functions fi(x) are nonlinear.

One of the overarching goals in the field of dynamical systems is to understand how the system
responds and evolves for given initial conditions in order to gain knowledge about the global
behavior. In particular, this knowledge can be gained by first obtaining all fixed points of a
map, for which the state vector x remains unaffected by the application of (4.1). More formally,
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a fixed point of the map F is a state vector x◦ ∈ Rn that maps to itself so that

x◦ = F(x◦). (4.2)

The problem of obtaining all fixed points is formally introduced in Section 4.2 before we compare
different approaches in Section 4.3. The knowledge of all fixed points alone, however, does not
provide sufficient knowledge about the global behavior of a system and is only part of the whole
picture. According to the definition in (4.2), fixed points are not affected by (4.1), though it
is not revealed if and under which conditions x will converge to a specific fixed point. We are,
however, interested in determining which fixed points can be obtained through the repetitive
application of (4.1), i.e., whether a fixed point is stable (cf. Section 4.4).

4.2 Finding Fixed Points of a Discrete Time Map

Fixed points of a discrete-time map are state vectors that remain unaffected by the map; the
fixed points consequently correspond to the solutions of the fixed point equations x◦−F(x◦) = 0
per definition. Thus, computing the fixed points boils down to solving a system of polynomial
equations, i.e., of nonlinear algebraic equations. However, albeit straightforward in principle,
solving the fixed point equations is by no means straightforward to do in practice; in particular
if confronted with a nonlinear system.

Systems of polynomial equations arise quite naturally in many engineering applications and it
is a classical and important problem in computational mathematics to solve them. But, despite
their relevance and the long research-history, it is still an active field of research. Today, solving
systems of polynomial equations brings together many different branches of mathematics (such
as topology, numerical mathematics, geometry, and algebra) that are joined under the term
algebraic geometry. However, the body of the corresponding literature is vast and – as different
fields play together – requires deep knowledge in many subjects. Moreover, the topic is unfor-
tunately mainly studied from a theoretical point of view, which often prevents the application
to practical problems and poses a notable hurdle for non-experts.

Although many approaches for solving polynomial systems seem promising at first, it is a
daunting task to understand their properties and capabilities enough as to select an appropri-
ate method, well-suited for the task at hand. Indeed, the ability to deal with large systems
of polynomial equations was a major contribution and a prerequisite for many results that are
obtained in Chapter 5. Although it is possible to read those sections and to understand the ulti-
mate insights, this thesis should be as self-contained as possible. Therefore we give a brief (and
far from complete) summary of the most prominent ways for solving polynomial systems subse-
quently. In particular, we will discuss numerical methods (Section 4.3.1), symbolical methods
(Section 4.3.2), and numerical polynomial homotopy continuation methods (Section 4.3.3).

4.2.1 Systems of Polynomial Equations

Before we delve into the subtleties that come with the problem of solving systems of polynomial
equations and before we compare some fundamentally different approaches, we have to provide
some definitions first. Note that our notation is adapted from [CLO92], where a comprehensive
overview is provided and the underlying concepts for solving polynomial systems are described
in great detail.
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Definition 4.2.1 (Polynomial). A polynomial f in the variables x = {x1, . . . , xn}, and with
coefficients a1, . . . , aK in Cn, is a function of the form

f(x1, . . . , xn) =
K∑
k=0

akx
k1
1 · · ·xknn . (4.3)

We say that the monomial xk =
∏n
i=1 x

ki
i is of degree |k| =

∑n
i=1 ki and that f is of degree

max
0≤k≤K

|k|.

One fundamental concept in commutative algebra is the notion of a polynomial ring K[x1, . . . , xn].
It consists of all possible polynomials (constructed as in (4.3)) in the variables {x1, . . . , xn} with
coefficients ai ∈ K (see [CLO92, Appendix A] for a more formal definition).

We will only work with polynomials that have their variables defined over the complex num-
bers, i.e., x ∈ Cn in this thesis. Note that we are actually only interested in polynomials with
real variables, i.e., with x ∈ Rn. Some methods do, however, require the definition over com-
plex variables. Moreover, numerical inaccuracies may introduce a non-zero, albeit negligible,
imaginary part to an originally real solution. Considering only x ∈ Rn leads to the failure of
obtaining these solutions. Also, considering the complex domain does no harm as we can later
easily choose the real solutions.

Now let us consider a system of polynomial equations that we intend to solve:

Definition 4.2.2 (Polynomial System). A polynomial system, or set of polynomial equations,
F consists of s polynomials f1, . . . , fs in the variables {x1, . . . , xn} and is a function of the form

F (x1, . . . , xn) =


f1(x1, . . . , xn)

...

fs(x1, . . . , xn).

(4.4)

We are interested in obtaining the set of solutions for which all equations equate to zero. This
defines a variety, a classical object in algebraic geometry.

Definition 4.2.3 (Set of Solutions (Variety)). A variety, or the set of solutions, V(F ) ⊂ Cn, is
the set of variables x for which all equations equate to zero, i.e.,

V(F ) = {x ∈ Cn : fi(x) = 0 for all fi(x) ∈ F (x)}. (4.5)

Note that the variety is defined over the complex numbers as well; we further define the set
of solutions over the real and the strictly positive real numbers VR∗+(F ) ⊂ VR(F ) ⊂ V(F ).

4.3 Solving Polynomial Systems: A Comparison of Methods

We are now well prepared to finally present how systems of polynomial equations are actually
solved. A great variety of approaches have been developed over the years; we present some of
the most well-known approaches and introduce the underlying concepts to highlight some of
their advantages and disadvantages. It shall be noted that this is by no means an exhaustive
overview. Instead of discussing all methods in full detail, which would be beyond the scope of
this thesis, we rather aim to outline the underlying concepts for each method.

Every method comes with its specific properties, that have to be considered and should ide-
ally be aligned with the requirements of a given problem; in particular, one should answer
the following questions before selecting one particular method to solve the polynomial system
(cf. [SW05, p.68]):
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• Do we require the set of all solutions V(F ), or just a single possible solution?

• What are the specifications of the problem under consideration (sparsity, problem size,
etc.) and which methods are well-suited to exploit those properties?

• Is the method already available in some software-package?

• Are there any hyper-parameters that influence the efficiency of the method and how much
experience and effort is required in adapting the parameters to the problem under consid-
eration?

The subsequently presented methods belong to – and are the more prominent examples of –
three fundamentally different approaches: numerical solvers, symbolic methods, and numerical
polynomial homotopy continuation (NPHC) methods. We will evaluate and compare the differ-
ent approaches with respect to the above-mentioned properties. Note that although the most
relevant properties for the subsequent chapters will be pointed out, it would be presumptuous
to speak of an all-encompassing list of advantages and disadvantages.

4.3.1 Numerical Methods

One basic and well-established method for solving systems of nonlinear equations is the Newton-
Raphson method (often just called Newton’s method) which is an iterative solver that progres-
sively refines an initial guess to reach a solution (see [CLO05, pp.30] for a brief introduction, or
some classical books on numerical analysis, e.g. [BF11, Chapter 2.3]).

The underlying idea is to approximate the considered system by a first-order Taylor approx-
imation in an initial guess, and to successively refine this guess by proceeding along a series of
first-order Taylor approximations.

Newton’s method is a powerful tool that often converges quickly to the solution, particularly
if one has a good initial guess. Theoretical results on the convergence rate of such iterative
solver are relatively well established (cf. [BF11, Chapter 2.4]) and have two particularly relevant
implications for our work: First, an initial guess, sufficiently close to a solution, is required
or, otherwise, the iterative solver may diverge of even exhibit chaotic behavior. Second, many
different initializations are required to obtain multiple solutions, and it consequently remains
problematic to obtain the full set of solutions with these methods.

4.3.2 Symbolic Methods

From a completely different point of view, symbolic methods [CLO92, CLO05] (e.g. Gröbner
basis method, Border basis method, Wu’s method, and method of sparse resultant) rely on
symbolic manipulation of the polynomial system and successive elimination of variables to obtain
a simpler but equivalent form. In a sense, these methods generalize the Gaussian elimination
method from linear systems into the nonlinear settings.

Before we discuss the details of symbolic methods, we need to introduce some fundamental
notions from commutative algebra. One particularly relevant concept is the notion of an ideal.

Definition 4.3.1 (Ideal). Consider a polynomial system F (x1, . . . , xn) in a polynomial ring
K[x1, . . . , xn] and some other polynomial system H(x1, . . . , xn) in the same polynomial ring.
The ideal 〈f1, . . . , fs〉 is closed under addition and multiplication and defines the set of all
polynomial systems that satisfy

〈f1, . . . , fs〉 =

{ s∑
i=1

hifi : H ∈ K[x1, . . . , xn]

}
. (4.6)

We say that the ideal 〈f1, . . . , fs〉 is generated by the basis F (x).
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The above definition of the ideal implies that any element of the ideal equates to zero if
F (x1, . . . , xn) = 0 (cf. [CLO92, pp.30]). This is an immediate consequence of (4.6) and it has
important implications for obtaining the variety V(F ). Not that, in fact, the Hilbert’s basis
theorem states that every ideal 〈f1, . . . , fs〉 is generated by a finite set of equations. This implies
that the variety of the ideal

V(〈f1, . . . , fs〉) =
{
x ∈ K[x] : f(x) = 0 for all f(x) ∈ 〈f1, . . . , fs〉

}
must equal the variety of its generator, i.e., V(F ) = V(〈f1, . . . , fs〉) (cf. [CLO92, Proposition
9]). This has one particularly important consequence, namely that two polynomial systems
F (x) and G(x) that generate the same ideal, i.e., for which 〈f1, . . . , fs〉 = 〈g1, . . . , gs〉, will also
have the same variety, i.e., V(F ) = V(G).

Note that every ideal has not just one but many different generators; this is a crucial prerequi-
site for the concept of symbolic methods. Moreover, this allows us to draw an analogy to linear
algebra: in this analogy, the ideal corresponds to some subspace (that is closed under addition
and multiplication) that is spanned by some vectors (that correspond to the polynomials in the
generator).

Symbolic methods take a fundamentally different approach to solving systems of polynomial
equations F (x) than numerical methods. Whereas numerical methods aim to estimate the
solution directly, symbolic methods focus on computing an alternative generator G(x) with
“good” properties. The overarching aim is to construct G(x) so that both generators have the
same ideal 〈g1, . . . , gs〉 = 〈f1, . . . , fs〉 – and thus identical solutions, and to concurrently impose
certain properties on G(x) that facilitate computing the set of solutions. In particular, we hope
that G(x) consists of equations that have a low degree and are in an upper triangle form (to
take up the analogy with linear algebra, the aim is to find a more intuitive description of the
subspace, e.g., by orthonormal vectors).

Gröbner Basis

One particularly successful way to construct a good basis is to compute the (reduced) Gröbner
basis. Together with the Buchberger algorithm that computes such a basis, Gröbner bases were
introduced in the Thesis of Bruno Buchberger [Buc65,Buc06].

Gröbner bases tend to consist of equations of low degree that are – if possible - in upper
triangle form. A formal and more comprehensive treatment of the Gröbner basis method can
be found in many textbooks (e.g., in [CLO92]); here we shall be content with illustrating the
underlying concepts exemplary.

Example 6 (Gröbner Basis for Solving System of Equations).
Let us solve a simple polynomial system F (x) with three variables in three equations by
utilizing the Gröbner basis method. Therefore, consider

f1(x) = x21 + x22 − 1 (4.7)

f2(x) = (x1 − 1)2 + x22 − 1 (4.8)

f3(x) = x21 + x22 + x23 − 2. (4.9)

We then compute the Gröbner basis using Wolfram Mathematica and obtain an alternative
basis according to

g1(x) = x23 − 1 (4.10)

g2(x) = 4x22 − 3 (4.11)

g3(x) = 2x1 − 1. (4.12)
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Note that all equations gi(x) ∈ G(x) depend only on a single variable and have low degree,
thus satisfying all desired requirements. One can consequently obtain all four solutions from

G(x) in a straight-forward manner; these are (x1, x2, x3) = (12 ,±
√
3
2 ,±1).

The Gröbner basis method obviously obtains the full set of solutions (as compared to only
a single one by numerical methods). Furthermore, methods that obtain the Gröbner basis
are particularly attractive for solving systems of polynomial equations as many algorithms are
available and included in many software packages.

The application of the Gröbner basis method to large-scale problems with many variables
demands a problem-dependent adaption of the algorithm, however, that requires good knowledge
of algorithmic details. Even more problematic is the fact that Gröbner bases are unstable
under small changes in the coefficients, which limits its application to problems with rational
coefficients. We exemplify this numerical instability in Example 7.

Example 7 (Instability of Gröbner Basis).
The Gröbner Basis is numerically unstable with respect to small changes in the parameters.
Let us exemplify this by the following system of equation F (x) (inspired by [KR05, Example
6.4.1]): we consider two ellipses defined by the following two polynomials in two variables

f1(x) =
1

4
x21 + x22 − 1 (4.13)

f2(x) = x21 +
1

4
x22 − 1. (4.14)

Again, the Gröbner basis provides a well-behaved system of polynomial equations

g1(x) = 5x21 − 4 (4.15)

g2(x) = 5x22 − 4, (4.16)

that yields all four solutions (x1, x2) = (± 2√
5
,± 2√

5
) immediately.

Now, assume we rotate the ellipses slightly by changing the underlying system of equations
to F̃ (x) with

f̃1(x) =
1

4
x21 + x22 − 1 + 0.001x1x2 (4.17)

f̃2(x) = x21 +
1

4
x22 − 1 + 0.001x1x2. (4.18)

Note that this minor rotation shifts the four solutions change only slightly (cf. Figure 4.1);
in fact, the solutions to F̃ (x) reside within a radius of 5 · 10−4 of the solutions to F (x). On
the other hand, however, a dramatic change occurs in the corresponding Gröbner basis, both
in the coefficients and in the monomials:

g̃1(x) = 1250x32 − 1000x2 + x1 (4.19)

g̃2(x) = x42 − 1.6x22 + 0.64. (4.20)

Not only do the Gröbner bases G(x) and G̃(x) differ in their structure, but – even more
problematic – computation of V(G̃) now suffers from numerical issues. The large coefficients
in g̃1(x) introduce an extreme sensitivity with respect to numerical accuracy and thus render
the computation of the solutions by backward substitution highly problematic.
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(a) (b)

Figure 4.1: (a) Two ellipses defined by F (x) (illustrated in black), where the solutions are depicted by
solid black dots; (b) two rotated ellipses defined by F̃ (x) (illustrated in red), where the so-
lutions are depicted by solid red dots (with the solutions of F (x) depicted by black circles).
Note that the solutions of both equation systems are similar.

According to the implicit function theorem, the solutions of F̃ (x) will change only slightly if
the coefficients are modified by an infinitesimally small value; the Gröbner basis, however, may
experience a dramatic shift. In fact, the result will also differ depending on the representation
(decimal, or fraction of two integers) of the coefficients in F̃ (x). This poses a drastic problem
for any polynomial system with non-rational coefficients as the representation of the coefficients
will have a major influence on the final result.

Other Symbolic Methods

The limitation of the Gröbner basis approach to problems with rational coefficients and the
numerical instabilities pose a considerable problem for many applications. Consequently, to
extend the applicability of symbolic methods, much attention was focused on circumventing
these issues and extending the range of solvable polynomial systems.

All symbolic methods adhere to one common characteristic; that is the search for an alterna-
tive well-behaved generator. There are various ways of obtaining this generator. One promising
approach relates the computation of the generator (non-linear in the polynomial ring) to a sim-
ilar problem in the quotient ring. The consideration in the quotient ring renders the problem a
linear one that can be solved efficiently with well-established methods from linear algebra, e.g.,
by an eigendecomposition. This fruitful connection was first recognized in the work of Winfried
Auzinger and Hans J. Stetter.21 Their work already revealed many expedient properties that
come with working on the quotient ring [AS88,AS89]. This was only a first step, however, one
that avoided the actual construction of the quotient ring [Ste04]. Nonetheless, the underlying
ideas proofed to be worth further pursuing and inspired a range of results. The inherent con-
nection between the representation in the quotient ring and the problem of solving algebraic
equations was first made explicit in [Möl93]. This connection finally led to the first working
algorithm, the Möller-Stetter method [MS95]. An excellent overview of the underlying concepts
and the initial developments can be found in [Ste04].

After laying out the foundation, many promising advances were proposed, often encompassed
under the name of Border basis. This development is still ongoing and the advances are scattered
over many publications. We refer to some of the excellent comprehensive papers available that
provide a good overview of the recent advances and may serve as a good starting point for the

21 Stetter who was already about to retire found interest in the topic and prolonged his active research time by
another 10 years; the results of which are summarized in his book [Ste04].
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interested reader. The beneficial properties of Border basis are outlined and discussed in the
tutorial paper [Mou07]; likewise [KKR05] summarizes the major properties and provides some
accessible examples that show how to compute the Border basis. In a nutshell, the Border
basis method combines the advantages of the Gröbner basis method, while avoiding some of
the most relevant disadvantages (e.g., numerical instabilities). Unfortunately, however, much of
the results remain of academic nature and have not yet found their way into existing software
packages, thus severely limiting the potential application to practical problems.

We would like to stress that the toolbox of symbolic methods is of course not limited to
Gröbner- and Border basis but contains many more methods, all with their own set of advantages
and drawbacks. Nonetheless, we hope that this section provides a gentle introduction to some
of the more established methods; a more detailed treatment of symbolic methods is available in
a number of books (and the references therein) [CLO92,CLO05,KR00,KR05,DE05].

As a final statement, we conclude by stressing the overall drawback of symbolic methods: it is
often expensive to apply these methods to problems of high degree. This is particularly critical
as the sparsity in polynomial systems cannot be utilized in a straightforward manner so that
even small – but high dimensional – systems suffer from this drawback.

4.3.3 Numerical Polynomial Homotopy Continuation (NPHC) Method

Another important approach for solving a system of polynomial equations is the numerical
polynomial homotopy continuation (NPHC) method [Li03,SW05]. The NPHC method performs
multiple stages in order to compute the solutions of the target system F (x).

First, the target system is inspected and a root count is computed that provides an upper
bound on the number of solutions. Second, a closely related start system Q(x) is created that
is trivial to solve and has precisely as many solutions as suggested by the root count. Third,
the start system is continuously deformed into the target system. Finally, with appropriate con-
struction, the trivial solutions of the start system also vary continuously under this deformation
forming solution paths that connect to the desired solutions of the target system.

For instance, one basic form of a homotopy is given by

H(x, t) = (1− t)Q(x) + γtF (x) = 0, (4.21)

for t ∈ (0, 1] and with γ ∈ C. Clearly, at t = 0 the homotopy reduces to the start system Q(x)
and at t = 1 it reduces to the target system F (x). As t varies continuously from 0 to 1, the
homotopy represents a deformation from the start system to the target system and the NPHC
method tracks the solutions.

Example 8 (NPHC method for Solving an Equation).
Although the NPHC method is particularly suited for large systems of equations with many
variables, we consider one minimalistic example for illustrative purposes. Let us consider the
following target system consisting of a single equation f(x) in a single complex variable x

F (x) = x2 + ix− 2 = 0. (4.22)

The root count for (4.22) is straightforward to estimate and just looking at the system reveals
the existence of two solutions. This consequently requires a start systems with two solutions
as well; one of the simplest system of equations with two solutions is for example given by

Q(x) = (x− 1)(x+ 1) = 0. (4.23)

We can immediately recognize both initial solutions of the start system xs = (−1,+1).
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The homotopy H(x, t) is finally given by

H(x, t) = (1− t)(x− 1)(x+ 1) + γt(x2 + ix− 2) = 0, (4.24)

where γ = exp(iθ) with a random angle θ ∈ [0, 2π). A couple of solution paths, that emerge
for different values of θ, are illustrated in Figure 4.2. One can see that the angle θ influences
the shape of the solution path. Every chosen value θ has a well-behaved solution path that
connects the initial solutions of the start system (xs,0, xs,1) to the desired solutions of the
target system (xt,0, xt,1). Using a predictor-corrector method to proceed along the solution

path, the NPHC method then obtains both solutions of the target system xt = (
√
7−i
2 ,−

√
7−i
2 ).

−1 0 1
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Figure 4.2: Solution paths for θ ∈ {0, 1, π/2}. All solution paths lead from the solutions of the start
system xs,i to the solutions of the target system xt,i.

Although the NPHC method seemingly provides a simple method to obtain the desired solu-
tions we have spared some of the subtleties that may arise; there are two ingredients in particular
that require careful attention and were not mentioned in detail so far. These are the path-tracking
algorithm that keeps track of the solution as t increases, the computation of the root count, and
the creation of the start system.

Tracking the Solution

Because of its importance, the process of tracking the solution paths with increasing t is central
to the NPHC method. It is thus important to consider robust and proficient path-tracking
algorithms. We will present the key-steps of such path-tracking algorithms in the context of the
NPHC method, closely following [SW05, Section 2.3], and refer to [AG03] for a more exhaustive
description of path-tracking in general.

A generic approach must proceed along the solution paths, defined by the continuous homo-
topy H(x, t) with known initial values H(x, 0) = 0, using a predictor-correction method. Such
an iterative algorithm proceeds according to the following three steps. In the prediction step,
one fits a function to the current values and predicts the values of x at the next step. This can
be done either by extrapolating a linear (or higher-order) function based on the last couple of
points, or by linearizing in the last point and proceeding along the tangent direction. Note that
the latter approach is well known as Euler’s method.

In the correction step, one corrects the predicted value, using a numerical method as e.g.,
Newton’s method. Despite its shortcomings discussed before, Newton’s method is well suited
for the correction step as the prediction step will estimate a value close enough for Newton’s
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method to converge. In general, the accuracy of the prediction will increase with a reduced
step-size; if necessary, it is thus always possible to enforce convergence by adaptive reduction of
the step-size.

Before repeating the above procedure and predicting the next value again, the step-size should
ideally adapt according to the current correction step. If the preceding prediction was very ac-
curate it is often safe to assume that the step-size can be enlarged, whereas it is preferable to
reduce the step-size otherwise. Overall, the step-size significantly impacts the overall perfor-
mance; a step-size too small introduces unnecessary many iterations and a step-size too large
may lead to failure in the correction step.

These steps, prediction, correction, and step-size adaption are then repeated until the solu-
tions of the target system are obtained for t = 1.

An important prerequisite for path-tracking algorithms is the existence of a well-behaved path.
Fortunately, the introduction of some generic hyper-parameter, as for example the random
complex number γ in (4.21), produces such well-behaved paths with probability one [SW05,
Lemma 7.1.3].22

Start System

Another crucial detail in the NPHC method is the computation of the root-count and the
creation of the start system. There are various ways of computing this bound that differ in their
complexity.

Loose bounds are often straightforward to compute but may lead to – potentially many –
solutions in the start system that do not correspond to any solution in the target system.
Still, one has to track all emerging solution paths, before finally recognizing the superfluous
ones that diverge as the homotopy resembles the target system. Besides unnecessarily wasting
computational resources this may have even more serious implications; a root count too large
may render solving a problem infeasible because of the sheer amount of paths that need to be
tracked.

Various methods have been proposed to bound the number of solutions (cf. [SW05, Section
8.1]) with more sophisticated methods generally reducing the number of paths to be tracked.
Nonetheless, it is safe to assume that the computational effort required for estimating the bound
increases with aiming for a tighter bound. Moreover, closely related to the estimation of the
root count, the creation of the start system becomes more intricate as well.

For some problems, the consideration of more sophisticated methods scales nicely with the
problem and the reduction in the number of paths outweighs the additional burden of creating
an appropriate start-system. For other problems, however, estimating a more accurate root
count requires significantly more computational resources than the second task, of tracking all
paths to their solutions, altogether.

The optimal choice of method – that introduces as few paths as possible and spends as few
resources for the creation of the start system as needed – is thus vital for the overall performance
of the NPHC method. Unfortunately, general guidelines do not exist and choosing a reasonable
method for a given problem is usually based on experience.

22 The main argument of the proof is that for all possible values of γ ∈ C, except for a finite amount of
distinct values, the solution paths are well-behaved. Picking the value γ at random will therefore result in a
well-behaved path with probability one.
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Properties of the NPHC method

The NPHC method takes the structure and the sparsity of the target system F (x) into account.
If the number of solutions is small, a well-chosen start system will also have only a few solutions
thus implicitly exploiting the sparsity of the equation system.

The fundamental concept is that every solution of the target system has one corresponding
solution residing in the start system. Looking at (4.21) it becomes apparent that, as t goes
from 0 to 1, every solution path is completely independent of all others. This property admits
parallel implementations that track all solution paths independently after the creation of the
start system. The NPHC method is thus, in principle, suited for solving much larger systems
than symbolic methods that cannot utilize parallelism in such a way.

Moreover, the NPHC method is implemented and available in a couple of software packages
that often have interfaces with established software packages as, e.g., Maple, Matlab, or Python.
Existing software packages, only naming a few, include PHCpack [Ver99], bertini [BHSW], and
Hom4PS-3 [CLL14]. The existence of such established software packages makes the NPHC
method attractive from a practical perspective and lowers the entrance hurdle.

One fundamental disadvantage of the NPHC method is the need for working in the complex
domain, even though only the real solutions are of interest. Although the real solutions are
contained in the set of complex solutions, working in the complex domain may lead to some
problems: On the one hand, the NPHC method may fail if some of the solutions are not zero-
dimensional, i.e., the solutions are continua instead of points. Restricting ourselves to the real
line, these solutions could be zero-dimensional; yet the NPHC method will inevitably fail for its
need to work in the complex domain. On the other hand, from a more practical perspective, the
consideration of the complex field may increase the computational requirements significantly.
This is most obvious if considering a problem with only a few real solutions but a huge amount
of complex solutions that induce an equally huge amount of solution paths to be tracked. As it
is not possible to determine the complex solutions upfront, all solution paths have to be tracked
before neglecting most of them only after the termination of the NPHC method.

4.4 Stability Analysis of Fixed Points

As discussed at the beginning of this chapter, the knowledge of the fixed points alone is not
sufficient in getting an adequate understanding of the considered map. All fixed points remain
constant under repeated application of the considered map per definition, but may be different
in their nature. To account for that difference we classify the fixed points as stable or unstable,
corresponding to the long-term behavior of the map.

We start by getting some intuition behind the meaning of stable and unstable fixed points.
Therefore, consider a dynamical system description of how a ball moves through a surface with
valleys and peaks. By neglecting all kinds of forces that occur in real-world, except for gravity,
we get a particularly simple model: along the slope, the ball will always accelerate downwards
and decelerate upwards. Fixed points are consequently flat points on the surface with zero slope.
Assume that ball sits on the top of a peak; then, moving the ball slightly will throw it out of
equilibrium as it starts rolling towards another fixed point: we refer to the peak as an unstable
fixed point. If, on the other hand, the ball resides at the bottom of a valley, the ball will return
back to the fixed point after moving it slightly: we refer to the valley as a stable fixed point.

In analogy, the stability of a fixed point can be defined by the trajectory that the state vector
describes after setting the state vector to some value close to a fixed point and whether repeated
iteration of the map brings it back to the considered fixed point or not.

Let us make this notion of stability more precise now: A fixed point x◦ is (asymptotic) stable
if a neighborhood U(x◦) exists such that any x1 ∈ U(x◦) converges to x◦; i.e., for every (small)
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value of ε > 0 there is a maximum number of iterations N so that xn is ε-close to x◦ for n > N .
A fixed point x◦ is unstable if x diverges from the fixed point for some x1 ∈ U(x◦).23

4.4.1 Stability Analysis for a Nonlinear Discrete Time Map

We are now going to discuss a simple, yet powerful, method to assess the stability of a fixed
point x◦ under a specific discrete-time map F(·). Therefore, we only require some tools from
linear algebra. Note that we can express every linear map as a linear system of equations, and
write it in matrix form so that F(x) = Bx where the ith equation is given by

fi(x) =
n∑
k=0

ai,kxk. (4.25)

This representation already suggests how to assess the stability of a fixed point. First of all,
according to (4.2) a fixed point remains unaffected under multiplication by B. Consequently, a
fixed point x◦ is stable if repeated application of B brings the state vector x 6= x◦ to the fixed
point; accordingly, we call a fixed stable whenever

x◦ = Bnx (4.26)

for all values n > N with n,N ∈ Z.
Taking a closer look at (4.26) reveals how to assess the stability: the effect of repeated multi-

plication byB directly relates to the eigenvalues [Str16, Chapter 6]. It is a fundamental property
of linear algebra that a state vector converges to x◦ if all eigenvalues λi have a magnitude strictly
smaller than one. Accordingly, we conclude that the linear system F(x) exhibits a stable fixed
point if its associated system-matrix B has all eigenvalues |λi| < 1.

The above analysis crucially relies on the matrix representation of the discrete-time map. Since
non-linear maps do not permit this matrix representation it is not directly possible to generalize
the stability analysis. Despite this limitation, we may just approximate the nonlinear map F(·)
by a linear one in every fixed point and analyze the linearized system instead. Fortunately, the
Hartman-Grobman theorem [Har60,Gro59] (see [Tes12, pp.264] for a proof) allows us to do just
that. More precisely, the theorem permits the simplification of treating the nonlinear system as
a linear one in its fixed points (at least in most cases).

A one-dimensional system is linearized by taking the derivative; a multivariate system is
linearized by computing all first-order partial derivatives and collecting them in the Jacobian
according to

F ′(x) =


∂f1
∂x1

· · · ∂f1
∂xn

...
. . .

...
∂fs
∂x1

· · · ∂fs
∂xn

 (4.27)

Then, in accordance with linear system theory, we inspect the eigenvalues of the Jacobian.
Therefore, let us denote the spectrum of the Jacobian, i.e., the set of all eigenvalues by

Λ
(
F ′(x)

)
= {λ1, . . . , λn}, (4.28)

23 Note that we do not discuss marginally stable fixed points, i.e., fixed points around which the state vector
does neither converge nor diverge. Nonlinear systems require a more involved analysis as considered here if
marginally stable fixed points are of relevance.
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and the spectral radius, i.e., the maximum magnitude of all eigenvalue by

ρ
(
F ′(x)

)
= max

1≤i≤n
|λi|. (4.29)

This means that – whenever ρ
(
F ′(x)

)
6= 1 – it is possible for nonlinear systems to infer the

stability of a fixed point by looking at the spectral radius of the linearized system. A fixed point
x◦ is stable if all eigenvalues of the Jacobian have absolute value strictly smaller than one and
lie inside the unit circle, i.e., if

ρ
(
F ′(x◦)

)
< 1. (4.30)

The system F(·) consequently converges to x◦ if initialized sufficiently close enough. A fixed
point is unstable with respect to F(·) if at least one eigenvalue exists outside the unit circle so
that ρ

(
F ′(x◦)

)
> 1.

The concept of linearization now allows us to assess the stability of a given fixed point. Note
that this still excludes any discussion about the region of attraction; just because a fixed point
is stable under a given map does not imply that every possible initialization will converge to the
fixed point. Nonetheless, the notion of local stability has its merits and tells us whether a map
can, in principle, converge to a fixed point (if it is stable) or if it can never converge to a fixed
point (if it is unstable).
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5
Solution Space of Belief Propagation:

Number of Fixed Points and Their Stability

” Travel makes one modest.
You see what a tiny place
you occupy in the world.”

– Gustave Flaubert

In this chapter, we represent BP as a dynamical system and analyze its solution space in
order to gain a deeper understanding of BP’s properties. Choosing from the variety of methods
presented in Chapter 4 for solving the fixed point equations of BP, the NPHC method proves to
be capable of providing the full set of fixed points. This is the first time that this is achieved for
finite-size models with non-vanishing local potentials, which reveals a fundamental connection
between the Bethe free energy and the accuracy of the marginals. The notion of a local stability
analysis relies on the tools presented in Section 4.2 and was first applied to BP – although only
for models without local potentials – in [MK05]. The NPHC method makes the full set of fixed
points available and consequently admits an extension of the local stability analysis to more
general models. This extension has far-reaching implications. For example, it was a common
conjecture that strong local potentials positively influence the stability; we finally prove this
assumption true. The empirical results further inspire the derivation of theoretical results that
explain the influence of the potentials and the graph size on the convergence properties.

We begin this chapter with a brief summary of existing results on the number of fixed points
in Section 5.2. In Section 5.3 we show how to formulate the fixed point equations for BP and
how to use the NPHC method for solving them. We then reparameterize the messages and
discuss the subtleties of applying a stability analysis to BP in Section 5.4. Finally, we specify a
range of models in Section 5.5, before we compute all fixed points and evaluate their accuracy in
Section 5.6 as well as their stability in Section 5.7. We then follow our empirical observations and
analyze how the model-size and the potentials affect the stability in Section 5.8. In Section 5.9
we compute all fixed points and discuss the limitations of BP in the context of error-correcting
codes.

Large portions of this chapter have been previously published but were considerably modi-
fied to fit into one coherent chapter: The computation of the full set of fixed points and the
evaluation of the accuracy have been published in [KMCP18] and in [KPMC16]. Shifting the
focus away from symbolic methods was triggered by a fruitful discussion with Michael Kerber;
the application of polyhedral homotopy methods finally proved to be successful with the aid
of Dhagash Metha and Tianran Chan. In particular the interpretation of the results and the
assessment of the accuracy of the BP fixed points are due to the present author. The local
stability analysis is a result of joint work with Franz Pernkopf and is published in [KP17].

5.1 Motivation

The previous chapters introduced BP as an efficient method for approximate inference. For
arbitrary models with many loops, however, neither guarantees for convergence nor bounds on
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the approximation error are established. It is precisely the existence of many loops, however, that
renders exact inference intractable and requires the utilization of approximate inference methods
(as for example BP). A better understanding of BP’s capabilities and limitations would therefore
be of great relevance for loopy models. In this chapter, we aim to analyze BP on a range of
models in great detail; we further aim to establish theoretical properties on the performance
of BP and explain why BP often works surprisingly well on dense and loopy graphs, but other
times fails to converge or give accurate results.

If multiple fixed points exist, the expected behavior of BP depends on the number of fixed
points and the individual fixed point’s behavior. It is thus quite natural to strive for answers to
the following questions:

• Can we specify model classes – by restricting, either individually or jointly, the structure
and the parameters of probabilistic graphical models – for which a unique fixed point
exists?

• Which models admit at least one fixed point to which BP converges for any choice of initial
message values (or just if initialized close enough)? Does uniqueness of a fixed point imply
that BP converges?

These questions have obviously been addressed before: sufficient conditions for uniqueness of
fixed points were proposed by accounting for both the potentials as well as the graph struc-
ture [Hes04, MK07]. A direct relationship exists between accuracy and convergence rate for
graphs with a single loop [Wei00] and for small grid graphs [Ihl07]. In contrast, graphs do exist
that feature surprisingly accurate fixed points although BP fails to converge [WJ14a]. We shall
thus gain a better understanding of the behavior of BP by developing a precise relation among
the number of fixed points (and conditions for uniqueness), the approximation accuracy, and the
convergence properties.

The consideration of BP as a discrete-time map suggests one way to compute the solution
space of BP; the analysis of which reveals deep insights into the behavior of BP and (at least
partially) answers the questions raised above. Applying the tools prepared in Chapter 4, one
has to perform the following three steps for a given model: (i) obtain the set of all possible fixed
points; (ii) assess and compare the accuracy for all fixed points; and (iii) analyze the stability
of all fixed points.

First, we must obtain all fixed points: BP is unsuited for this task of obtaining all fixed points
as it provides only a single fixed point and, obviously, does not provide unstable fixed points.
If the unstable fixed points correspond to local minima of the Bethe free energy they can be
obtained by methods that minimize FB directly (cf. Section 3.3.3). Nonetheless, those methods
fail to obtain fixed points that correspond to local maxima and are not even guaranteed to obtain
all local minima. In order to find all fixed points we reformulate the fixed point equations as a
system of polynomial equations that we solve directly.

Second, after all fixed points are obtained we assess their accuracy in a straightforward manner;
this is possible since we keep the models small enough to admit the application of exact inference
methods for comparison.

Third, the concept of local stability is well established for discrete-time maps in general, as well
as for BP in particular (see [MK05] for the special case of binary pairwise models without local
potentials). The major obstacle that prohibits the stability analysis for more general models is
the need for all fixed points, which are not known in general. We have already obtained all fixed
points in the first step, so that we can analyze the stability of all fixed points by linearization
of BP now.

Finally, we consolidate the insights of all three steps and shed some light onto the relation
between the number of fixed points, the approximation accuracy, and the convergence properties.
In particular, we will provide novel insights and find answers to the following questions:
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• Convergence properties and accuracy relate to each other for small models. Does this
generalize to models of arbitrary size as well?

• Does BP favor a particular fixed point if multiple fixed points are present? Is the most
accurate fixed point always stable?

• What can be said about the accuracy if multiple fixed points exist? Do accurate fixed
points still exist or does the existence of multiple fixed points imply failure of BP to provide
accurate results? Can we enhance the approximation quality by a (suitable) combination
of multiple fixed points?

• Under which circumstances does damping help to enforce convergence of BP?

• What is the influence of the model parameters: How does the graph structure (number
of variables and connectivity) influence the number of fixed points and their stability for
finite-size graphs? How do the local potentials influence the accuracy and the stability
of fixed points? – It is a common conjecture (cf. [MK05]) that models with weak local
potentials perform worst; why does the presence of strong local potentials enhance the
performance of BP?

5.2 Fixed Points of Belief Propagation

Let us recall the iterative message update equations as discussed in Section 3.1:

µn+1
ij (xj) = αnij

∑
xi∈X

ΦXi,Xj (xi, xj)ΦXi(xi)
∏

Xk∈{∂(i)\Xj}

µnki(xi). (5.1)

The collection of all update equations µn+1 = BP(µn) defines a discrete-time map. We can
thus rely on the standard recipe for analyzing discrete-time maps and analyze the solution space
induced by (5.1) as discussed in Chapter 4. We begin with computing and counting the fixed
points µ◦ for some reasonable form of normalization.

One alternative way to compute and count the fixed points is to utilize the correspondence to
stationary points of the Bethe free energy and to study this energy landscape instead. Several
methods (cf. Section 3.3.3) are available that minimize FB and, in the presence of multiple BP
fixed points (i.e., for non-convex FB), either converge to a local or the global minimum. None of
these methods, however, is guaranteed to capture all fixed points. Moreover, every method that
relies on minimizing FB inevitably fails to account for (unstable) fixed points that correspond
to local maxima of FB.24

5.2.1 Number of Fixed Points on Regular Ising Graphs

Remember that the Ising model exhibits critical regions in the parameter space (so-called phase
transitions) where the behavior of the model changes abruptly, unless it is specified on a path
graph [Geo11, Chapter 12]. In the physics literature, one computes these phase transitions
for infinite-size, or at least very large, models. Smaller graphs render the computation of the

24 The trivial (paramagnetic) solution µ◦ij(xj) = 1
|X| = 1

2
for all µij(xj) ∈ µ is known in the special case of

models with θ = 0 and, depending on the coupling strength, it is either a local minimum or a local maximum
of FB [MK05]. The extension to models with θi 6= 0, however, is not straightforward and the complete set of
all stationary points is not known in general.
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phase transitions much more intricate.25 If, however, all nodes have equal degree (and unitary
potentials Jij = J and θi = θ), the phase transitions can be computed for small graphs as well.
Therefore, one replaces the finite-size graph by an infinite-size graph with identical properties, a
so-called Cayley tree.26 Then, the Cayley tree provides a way to compute the phase transitions
of the underlying graph in an analytical fashion [TM06].

Let us partition the parameter space (θ, J) into three distinct regions (F ), (P ), and (AF ).
This terminology complies with the naming convention in statistical physics where the regions
are referred to as ferromagnetic (F ), paramagnetic (P ), and antiferromagnetic (AF ). We can
then, in accordance with [Geo11, Section 12.2], define the phase transitions partitioning the
parameter space. Therefore, let us first introduce the shorthand notation w = tanh |J |; we
further introduce the following function

p(J, d) =


d atanh

√
d·w−1
d/w−1 − atanh

√
d−1/w
d−w if J > arcoth(d)

d atanh
√

d·w−1
d/w−1 + atanh

√
d−1/w
d−w if J < arcoth(d)

0 else.

(5.2)

Finally, the regions are specified according to

(J, θ) ∈ (F ) if J > 0, J > arcoth(d) and |θ| ≤ p(J, d), (5.3)

(J, θ) ∈ (AF ) if J < 0, J < − arcoth(d) and |θ| < p(J, d), (5.4)

(J, θ) ∈ (P ) if (J, θ) /∈ (F ) and (J, θ) /∈ (AF ). (5.5)

For attractive models with positive couplings (J > 0) BP converges to a unique fixed point
inside (P ). This fixed point becomes unstable and two additional fixed points emerge inside
(F ) [YFW05,MM09]. For repulsive models with negative couplings (J < 0) BP only converges
inside (P ) and not inside (AF ) [MK05].

The phase transitions of the complete graph will be computed according to (5.3)-(5.5). The
phase transitions of the grid graph can only be numerically estimated and are defined by sud-
den changes in the number of fixed points. We will later discuss the specific influence of the
graph-size on the phase transitions in Section 5.8.

5.3 Fixed Point Equations of Belief Propagation

Now, let us consider the update equations (5.1) as a nonlinear discrete-time map (cf. Section 3.5).
We will adhere to the notation of Chapter 4 and Definition 4.1.1 in particular and consequently
formulate the fixed point equations for the update rule of BP. Then, we aim to solve the fixed
point equations directly; this will yield the set of all BP fixed points.

We did not consider a particular form of message normalization so far, i.e., how to choose αij .
The normalization, however, affects the update rule and must therefore be defined explicitly
before attempting to solve the fixed point equations; we define the normalization terms αij so
that the messages along every edge sum up to one, i.e., αnij =

∑
xj∈X µ

n
ij(xj)− 1.

Let us recall the definition of fixed point messages from (4.2). Then, the update equations

25 Note that true phase transitions, for which the partial derivatives of FB vanish can only exist for infinite-size
graphs [Bin87]; with slight abuse of notation we refer to the finite-size manifestations of phase transitions as
phase transitions as well.

26 A Cayley tree is an infinite tree without loops that captures the interactions of a cyclic finite-size graph.
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define the following set of polynomial equations F (µ,α) = µ◦ − BP(µ◦) = 0 so that

F (µ,α) =


µnij(Xj = +1)− αnij

∑
xi∈X

ΦXi,Xj (xi,+1)ΦXi(xi)
∏

Xk∈{∂(i)\Xj}
µnki(xi)

µnij(Xj = −1)− αnij
∑
xi∈X

ΦXi,Xj (xi,−1)ΦXi(xi)
∏

Xk∈{∂(i)\Xj}
µnki(xi)

µnij(Xj = +1) + µnij(Xj = −1)− 1.

(5.6)

This system of polynomial equations consist of S equations (f1(µ,α), . . . , fs(µ,α)), where

S = 2|E| · (|X |+ 1). (5.7)

It is advantageous to consider this polynomial system defined over the complex numbers
instead of the real numbers. Else, we would restrict ourselves and rule out several methods for
solving systems of polynomial equations that rely on the definition over the complex numbers
(cf. Section 4.3.3). Let us now define the set of solutions over the complex numbers, without
accounting for multiplicity, according to

V(F ) = {(µ,α) ∈ C : fi(µ,α) = 0 for all fi ∈ F }. (5.8)

We are particularly interested in the set of solutions over strictly positive real numbers VR∗+(F ) ⊆
V(F ). Note that VR∗+ is of specific relevance as it directly relates to the fixed points of BP.

Theorem 1 (Fixed Points of BP). Let (µ,α) be some set of messages and normalization terms.
Then, (µ,α) is a fixed point of BP, if and only if (µ,α) ∈ VR∗+(F ).

Proof. First, we show that every (µ,α) ∈ VR∗+(F ) characterizes a fixed point of BP. All mes-
sages are positive by definition and are normalized according to (5.6) so that they represent
probabilities (cf. Lemma 1). Furthermore, it follows from (5.6) that µ − BP(µ) = 0, which
constitutes a fixed point.

Conversely, consider some fixed point messages with its corresponding normalization coeffi-
cients (µ◦,α◦), it then follows by definition that BP(µ◦) = µ◦ and consequently F (µ,α) =
0.

The set of solutions over the strictly positive real number thus directly corresponds to the set
of all fixed points according to T = {P̃B = DP (µ◦),ZB = DZ(µ◦) : (µ◦,α◦) ∈ VR∗+(F )}.

Corollary 1.1. Consider a graph with strictly positive potentials Φ(xi, xj) and Φ(xi) as e.g.,
with Ising potentials. Then, the solution set VR∗+(F ) is nonempty.

Proof. For non-negative potentials the average energy is bounded from below and FB has at least
one minimum [YFW05, Theorem 4]. Minima of the constrained FB correspond to BP fixed point
solutions, the existence of which implies non-emptiness of VR∗+(F ) by Theorem 1.

5.3.1 Solving the Fixed Point Equations

Solving systems of nonlinear polynomial equations is a classical problem in computational math-
ematics and a great variety of methods have been developed such as iterative solvers (cf. Sec-
tion 4.3.1), symbolic methods (cf. Section 4.3.2), and homotopy methods (cf. Section 4.3.3).
We now briefly review the applicability of these methods for the purpose of computing the set
of all solutions.

The main disadvantage of iterative solvers is the need for an already known initial guess in
the vicinity of a solution. Moreover, it is difficult, to obtain the full set of solutions with these
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methods; this is of particular relevance as we are specifically interested in the entire set of the
(positive) real solutions VR∗+(F ).

Symbolic methods, on the other hand, are capable of obtaining the entire solution set. In
particular, the Gröbner basis method is available in a number of software-packages and has seen
substantial development in the past several decades. As discussed in Section 4.3.2, the main
drawbacks are: the limitation to rational coefficients (cf. Example 7), a worst-case complexity
that is double exponential in the number of variables [MM82,MM84], and the limited scalability
in parallel computations. Altogether, this limits the application of symbolic methods to smaller
systems; in fact the Gröbner basis method did not converge for any of our considered models.

The NPHC method obtains the entire solution set by deforming a start system that is trivial
to solve to the target system that we intend to solve. Although maybe not as established as the
Gröbner basis method, multiple software packages are available for the NPHC method as well.
One crucial ingredient of the NPHC method is that a number of independent solution paths
is tracked under the deformation of the homotopy. This suggests to track all solution paths
independently, which makes the approach pleasantly parallelizeable; this is essential in dealing
with large polynomial systems. Even though only positive real solutions are of interest in this
work, the NPHC method requires us to extend the domain to the field of the complex numbers in
order to guarantee the emergence of smooth solution paths. Obviously a notable computational
overhead is introduced in doing so; especially if only few of the solutions fall onto the real line.
Various different forms of homotopies are available that differ in the complexity of bounding the
number of solutions. As discussed in Section 4.3.3 the optimal choice depends strongly on the
particular target system and is rarely known up-front.

At large, the NPHC method is the most promising approach for a couple of reasons: it obtains
all isolated nonzero complex solutions27 that must include all BP fixed points VR∗+(F ); it is
readily available in software packages; and it has a level of parallel scalability that can deal with
models of relevant size

5.3.2 Polyhedral Homotopy Method

Let us briefly recall one of the most basic forms of homotopies from Section 4.3.3:

H(x, t) = (1− t)Q(x) + γtF (x) = 0. (5.9)

Alternatively, one can construct more advanced ”nonlinear” homotopies where the parameter t
appears in nonlinear form, in order to reduce the computational costs. Among a great variety
of polynomial homotopy constructions, the polyhedral homotopy method, developed by B. Hu-
ber and B. Sturmfels [HS95], is particularly suited for the systems of polynomial equations
considered.

In applying the NPHC method to solve (5.6), the choice of Q(µ,α) (the trivial system of
equations that the target system is deformed into) plays an important role in the overall efficiency
of the approach since different choices of Q(µ,α) may induce a vastly different number of
solution paths one has to track. The crucial part is to come up with a good upper bound on the
number of solutions and to create an appropriate start system. Once this is solved, the desired
solutions are simply obtained by tracking all independent solution paths.

Note that in each equation of (5.6) only few of the monomials are present, i.e., the update
equations of BP imply a sparse system of equations [HS95]. In our experiments, we observed that
despite the rather high total degree28 dt [SW05, pp.118], each equation in (5.6) contains only

27 Here, “nonzero complex solutions” refer to complex solutions of a system of polynomial equations where each
variable is nonzero. A solution is considered to be isolated if it has no degree of freedom, i.e., there is an open
set containing it but no other solutions.

28 The total degree of a system of polynomial equations is the product of the degrees of each equation. It is a
basic fact in algebraic geometry that the total number of isolated complex solutions a polynomial system has
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relatively few of the monomials. Such sparse systems usually benefit from resorting to more
involved method homotopy methods that take the structure of the system into account and
consequently provide tighter bounds on the number of solutions. The number of solution paths
one has to track when using the polyhedral homotopy method for solving a system of polynomial
equations is given by the so-called Bernstein-Kushnirenko-Khovanskii (BKK) bound : fixing the
list of monomials that appear in the polynomial system, it is an important yet surprising fact in
algebraic geometry that for almost all choices of the coefficients (in the probabilistic sense), the
number of isolated nonzero complex solutions is a fixed number which only depends on the list
of monomials. This number is known as the BKK bound [Ber75, Kus76, Kho78]. Intermediate
steps in the determination of the BKK bound are reused to create an appropriate start system.
Using the fully parallel implementation Hom4PS-3 [CLL14] of the polyhedral homotopy method,
we compute the BKK bound, that is tight in all our experiments, and obtain all isolated positive
solutions.

The polyhedral homotopy method exploits the structure of (5.6), but also requires some subtle
steps. Rather than presenting all technical details we present an illustrative example to explain
the underlying principles. For more details we refer the reader to the excellent overview papers
[Li97,Li03,CL15] or to [SW05, Section 8.5.4] and the references therein.

Example 9 (Polyhedral Homotopy).
The essential steps in solving polynomial system with the polyhedral homotopy method are:
first, to compute a root count based on mixed volume computations [Li03, Section 3]; second,
to come up with an easy to solve start system [Li03, Section 4]; and finally, to solve the start
system and track the solution paths to the target system [Li03, Section 1].

(i) Root Count: Consider the example system (taken from [SW05, p.142]) with two un-
known variables x = {x1, x2} and with 4 solutions.

F(x) =

{
1 + ax1 + bx21x

2
2

1 + cx1 + dx2 + ex1x
2
2.

(5.10)

The total degree of this system of equations is dt = 4 ·3 = 12, which serves as an upper bound
on the actual number of solutions. If the system of equations is sparse, the BKK bound serves
as a much tighter bound.

Every equation fi ∈ F(x) has an associated polytope Si which is the convex hull of the
exponent vectors for all monomials of fi. For f1 the polytope is

S1 = {(0, 0)(1, 0)(2, 2)}, (5.11)

which has a graphical representation in Figure 5.1 (a). Similar for f2 the polytope, shown in
Figure 5.1 (b), is

S2 = {(0, 0)(1, 0)(0, 1)(1, 2)}. (5.12)

Some important operation on polytopes are the computation of the Minkowski sum S1 +
S2 = {s1 + s2 : s1 ∈ S1, s2 ∈ S2} and the computation of volumes, denoted by V (Si). Note
that computing the BKK bound is a viable thing to do in any dimension; therefore we refer
to V (Si) as volume although the polytopes of this example only lie in the two-dimensional
space. The computation of the mixed volume M(S1, S2) is a combinatorial problem that is
especially comprehensible in the case of two equations where

M(S1, S2) = V (S1 + S2)− V (S1)− V (S2). (5.13)

is bounded by its total degree (i.e., Bezout bound). Therefore the total degree serves as a crude measure of
the complexity of the polynomial system.
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For a generalization to higher dimensions see [SW05, p.140]. The polytope of S1 + S2 is
illustrated in Figure 5.1 (c); the mixed volume is accordingly obtained by subtracting V (S1)
and V (S2) from V (S1 + S2), which equals the sum of all gray areas (known as mixed cells).

It is straightforward to see that each parallelogram has volume equal to 2; the BKK bound
therefore equals M(S1, S2) = 4 and thus provides a tight bound on the number of solutions.

0

1

2

0 1 2

(a)

0

1

2

0 1 2

(b)

0

1

2

3

4

0 1 2 3

(c)

Figure 5.1: (a) polytope S1, (b) polytope S2, and (c) Minkowski sum S1 + S2.

(ii) Start System: The BKK bound does provide a tight bound on the number of solutions
but does not immediately reveal the initial solutions of an appropriate start system Q(x)
with qi(x) =

∑
a∈Si ci,ax

a, where xa = xa11 · xa22 and ci,a are random coefficients.
However, the mixed volume computation can also be accomplished by introducing a lifting

ωi = {ωi(a) : a ∈ Si}

for each fi. Thereby, we increase the dimension of the polytope Si to Ŝi by adding one
component to each exponent-vector a. This component is obtained by the lifting function
ωi(a). In our example we choose the lifting values ω1 = {0, 0, 0} and ω2 = {0, 1, 1, 3}; these
values are obtained by the inner products ω1(a) = (0, 0)◦ (a1, a2) and ω2(a) = (1, 1)◦ (a1, a2).
The polytopes are lifted accordingly so that

Ŝ1 = {(0, 0, 0)(0, 1, 0)(2, 2, 0)},
Ŝ2 = {(0, 0, 0)(1, 0, 1)(0, 1, 1)(1, 2, 3)},

Ŝ1 + Ŝ2 = {(0, 0, 0)(0, 1, 0)(2, 2, 0)(0, 2, 1)(0, 1, 1)(3, 2, 1)(3, 4, 3)}.

Then the faces in the lower hull of Ŝ1 + Ŝ2 correspond to cells shown in Figure 5.1, which is
known as a fine mixed subdivision.

These liftings, together with the random coefficients ci,a, now form the homotopy Q̂(x, t)
with q̂i =

∑
a∈Si ci,ax

atωi(a) such that

Q̂(x, t) =

{
1 + c1,1x1 + c1,22x

2
1x

2
2

1 + c2,1x1t+ c2,2x2t+ c2,3x1x
2
2t

3.
(5.14)

By closer inspection, however, it is still not possible to identify the starting points because
q̂2(x, t = 0) = 1. This problem can be resolved according to [HS95, Lemma 3.1]: i.e., initial
values are obtained by solving a binomial system for every cell that contributes to the mixed
volume computation (i.e., for every gray cell in Figure 5.1). One can then increase t and obtain
the solutions of the start system by tracking the solution paths to Q̂(x, t = 1) = Q(x).

(iii) Target System: Finally we have all 4 solutions to Q(x). Now what remains is to
construct a linear homotopy according to (4.21) and to increase t, starting at t = 0. At t = 1
the homotopy reduces to F(x) and provides the desired solutions of the target system.
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5.4 Stability of Fixed Points

We proceed according to the usual procedure in dynamical systems (cf. Chapter 4) and, after
computing the set of all fixed points, asses their (local) stability. A fixed point is locally stable
if a neighborhood exists such that messages inside this neighborhood (i.e., messages sufficiently
close to the fixed point), converge to the fixed point under the considered map [Tes12, pp.170].

Note that the Bethe free energy does not fully characterize the stability of a given fixed point
(cf. Section 3.3.2): although stable fixed points are local minima of FB, local minima must not
be stable [Hes03]. A general way of investigating the stability of fixed points is available by
the method of Lyapunov [Sch00, pp.93], though it is sufficient for all graphs considered in this
work to restrict our analysis to linearization (the indirect method of Lyapunov) as introduced
in Section 4.4.

This approach is well-established in the dynamical systems literature and it may consequently
seem rather surprising that such a stability analysis has not been considered so far for BP. The
main difficulty, however, is not the stability analysis as such, but the prerequisite of estimating
all fixed points. Indeed, a local stability analysis has been performed for Ising models with
vanishing local potentials [MK05], for which all fixed points are known. We can, however, rely
on the NPHC method, as discussed in the preceding section, to solve the fixed point equations
and to obtain the set of all fixed points. Subsequently, it is evident how to analyze the stability
by computing the Jacobian and thus linearizing BP in every fixed point.

5.4.1 Reformulation of Belief Propagation for Binary Variables

Before we investigate the stability of all BP fixed points, we introduce an alternative param-
eterization of the update equations for the particular case of binary variables. This parame-
terization reduces the number of variables and eases some calculations without changing the
properties of BP. Therefore, we express both messages along the same edge as a single message
(cf. [MK05,KP17]) defined by

νnij = atanh
(
µnij(Xj = 1)− µnij(Xj = −1)

)
. (5.15)

Then, the update rule in (3.1) can be rewritten according to

tanh(νn+1
ij ) = tanh(Jij) tanh(hnij), (5.16)

where the cavity field hnij acts on Xi, while neglecting the incoming message from Xj , according
to

hnij = θi +
∑

Xk∈{∂(i)\Xj}

νnki. (5.17)

Considering (5.16) and (5.17) (cf. [OW01]) it becomes evident that, for binary pairwise models,
BP corresponds to the so-called cavity method [MPV87]. Its name stems from the fact that we
essentially dig a cavity into the model by removing Xj . We then express the remaining field
that acts Xi by the cavity field hij .

The marginals, or the mean, can then – similar as for BP – be computed by all incoming
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messages according to

mi = tanh
(
hij + νji

)
= θi +

∑
Xk∈∂(i)

νki. (5.18)

In accordance with the consideration of BP as a dynamical system, we will denote the set of
all re-parameterized messages by ν and denote the mapping induced by BP as νn+1 = BP(νn).
Keeping the notation consistent, we say that BP converged to a fixed point

ν◦ = BP(ν◦), (5.19)

if successive messages remain unchanged under BP. If, however, BP fails to converge, one can
try to achieve convergence by one of the many modifications discussed in Section 3.5.1. One of
these modifications that lends itself handsomely for our stability analysis is BP with damping.

Let us briefly state the update equations of BP with damping in terms of the reformulated
messages again: BPD(νn) = (1 − ε)BP(νn) + ενn, where ε ∈ [0, 1) is the damping factor.
Remember that, although the fixed points of BP with damping are fixed points of BP without
damping as well (cf. (3.51)), the stability of the fixed points may change nonetheless.

5.4.2 Linearization

In order to assess the stability of the fixed points ν◦ we approximate BP (·) by a linear function
in its fixed point(s) and analyze the behavior of the linearized system. This is done by taking
the partial derivatives of all messages, i.e., by analyzing the Jacobian matrix F ′(ν◦) with its
elements defined as

F ′(ν◦)mn =
∂ν◦ij
∂ν◦kl

, (5.20)

where – given some ordering – (i, j) and (k, l) are the mth and the nth edge.
For binary pairwise models parameterized as in Section 5.4.1, the Jacobian is given as follows:

without loss of generality29 we consider only messages where (i, j) ∈ E and (k, l) ∈ E such that

F ′(ν◦)mn =


tanh(Jij)(1−tanh2(hij))
1−tanh2(Jij) tanh2(hij)

if i= l and k∈{∂(i)\Xj}
0 else.

(5.21)

Let us briefly recap the properties of the eigenvalues with respect to the stability of the BP
fixed points from Section 4.4. A fixed point ν◦ is locally stable if all eigenvalues have absolute
value strictly smaller than one, i.e., if ρ

(
F ′(ν◦)

)
< 1 and BP converges if initialized sufficiently

close enough. A fixed point is unstable with respect to BP if at least one eigenvalue exists
outside the unit circle such that ρ

(
F ′(ν◦)

)
> 1. For ρ

(
F ′(ν◦)

)
= 1 stability of the nonlinear

system cannot be inferred by just looking at the linear system.

In addition to damping, there are many other variants of BP available that have the same set
of solutions V ∗R+

[WJW03a]; in particular, this includes different scheduling methods. Analyzing
the stability of the fixed points under these variants, however, becomes problematic – mainly
because the update function changes with time. Moreover, the fact that many messages are not

29 If all combinations of m and n are considered we would effectively consider all n(n−1)
2

possible edges. All rows
and columns that correspond to a message νvw, where (v, w) /∈ E include only zero-values, however, and can
therefore be neglected without changing the eigenvalues.
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1 Re{λ}

Im{λ}

BP stable

BPD stable unstable

Figure 5.2: Eigenvalue spectrum of the Jacobian Λ
(
F ′(ν◦)

)
. BP is stable if all eigenvalues lie inside the

blue region; BP with damping is stable if all eigenvalues lie inside the gray region; BP with and
without damping is unstable if eigenvalues lie inside the green region.

updated, introduces eigenvalues with λi = 1, which renders the stability analysis by linearization
impossible.

Therefore, of all the modified versions of BP, we will restrict our attention to damping. The
application of damping modifies the eigenvalue spectrum according to

Λ
(
F ′D(ν◦)

)
= Λ

(
F ′(ν◦)

)
· (1− ε) + ε. (5.22)

Note that all eigenvalues are reduced by a factor (1 − ε) and experience a shift by ε along the
real axis, i.e., Re

{
Λ
(
F ′D(ν◦)

)}
= ε + Re

{
(1− ε)Λ

(
F ′(ν◦)

)}
. A fixed point ν◦ is thus locally

stable under BPD (·) if

Re
{

Λ
(
F ′(ν◦)

)}
< 1. (5.23)

The correspondence between stability and the eigenvalue spectrum is summarized and visu-
alized in Figure 5.2. A fixed point is stable under BP if all eigenvalues lie inside the unit circle
(depicted by the blue area), under BP with damping if all eigenvalues have a real part strictly
smaller than one (depicted by the gray area), and are unstable else (depicted by the green area).

Note that the properties of the Bethe Hessian (and thus the stability of the fixed points) further
relate to some concepts from graph-theory; in particular to the Ihara zeta function [WF09] and –
for models with vanishing local fields, i.e., where θ = 0 – to the non-backtracking matrix (known
as the Hashimoto-matrix) [SKZ14,SKZ17]. Note that the latter connection is insightful by any
means but is only valid in a well-behaved region where all eigenvalues of the non-backtracking
matrix are inside the unit circle (cf. [SKZ17, Theorem 2.1]).

5.5 Selected Models with Ising Potentials

Finally, we will now consider a range of probabilistic graphical models, apply the NPHC method
to the fixed point equations (5.6), obtain all fixed points by first finding all isolated non-zero
complex solutions, and analyze the stability of all fixed points.

We first evaluate and compare the accuracy of all fixed points obtained by NPHC; details
for our evaluation criteria are presented in Section 5.6.1. Note that we will already anticipate
some results from the later stability analysis and separately evaluate the accuracy of stable and
unstable fixed points. However, here we rather ask if a given fixed point is stable, instead of
why it is stable. Furthermore, we present the evolution of the fixed points over the parameter
space in Section 5.6.5 and present some implications on the accuracy to better understand for
which parameters BP can be expected to provide good results.

The capability of NPHC to obtain all fixed points, subsequently allows for a thorough stability
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(a) (b) (c)

Figure 5.3: Considered Ising graphs: (a) grid-graph; (b) complete graph; (c) grid-graph with periodic bound-
ary conditions.

analysis in Section 5.7. Our empirical observations further inspire some theoretical investiga-
tions on Ising models with unitary parameters in Section 5.8. There we show why convergence
properties degrade with growing graph size and why strong local potentials help to achieve
convergence. Finally, the performance of BP-decoding for error-correcting codes is analyzed in
terms of the solution space in Section 5.9.

Considered Graphs

We consider different realizations of the Ising model with attractive, repulsive, and mixed interac-
tions on a range of graphs. These graphs include complete graphs, grid-graphs, and grid-graphs
with periodic boundary conditions (see Figure 5.3).

For the complete graph each pair of nodes is connected by an edge; it follows by definition
that this is a regular graph, i.e., all variables Xi ∈ X have equal degree di = N − 1. Because of
this, we can construct a Cayley tree to determine the phase-transitions.

The grid-graph has all edges aligned along the two-dimensional square lattice and, for finite-
size graphs, contains variables of varying degrees. We additionally consider grid-graphs with
periodic boundary conditions, where nodes on the boundary are joined by edges so that all
variables have equal degree again.

5.6 Number of Fixed Points and Marginal Accuracy

This section provides an exhaustive solution space analysis of BP in terms of analyzing the
properties for all fixed points. In order to obtain the set of all fixed points we have to solve the
system of fixed point equations (5.6) first. The systems considered in this work are simply too
large to be solved with symbolic methods or even with the NPHC method based on a linear
homotopy. The BKK bound, however, takes into account the sparsity of the system F (µ,α),
induced by the graph structure, and reduces the number of solution paths to be tracked so that
the problem can be solved in practice. We present a detailed runtime analysis in Section 5.6.6.
Note that both the structure of (5.6) and the number of complex solutions in V (F) remain
the same if the graph structure is kept constant [CM17, CMN16]; depending on the potentials,
however, the number of solutions in V ∗R+

(F) may change.

5.6.1 Evalutation Criteria

We evaluate all fixed points in terms of their marginal accuracy and compare them with
marginals obtained by an implementation of BP without damping. Evaluation of the marginal
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accuracy requires the availability of the exact marginals; these are obtained by the junction tree
algorithm that we can still resort to because of the limited size of the considered models.

In particular, we evaluate the correctness of the approximated marginals in terms of their
accuracy (cf. (3.38)). The expected mean (cf. (3.39)) provides an alternative way of evaluating
the marginals and is particularly well suited for illustrative purposes. We will therefore not only
compare different fixed points in terms of the MSE but also visualize the averaged mean of the
exact solution 〈m〉 as well as of all BP fixed points 〈m̃〉. Remember that 〈m〉 − 〈m̃〉 equals
the average of all marginal errors (cf. (3.39)) and is thus well-suited for visually comparing the
marginal accuracy of different fixed points.

We will not only compare different fixed points but also evaluate the effect of altering the
evaluation function. A combination of properly weighted marginals may improve the marginal
accuracy considerable but is often problematic in practice for the lack of methods that obtain
more than a single fixed point. The NPHC method, however, computes the set of all solutions
VR∗+(F ) and – by Theorem 1 – yields the set of all fixed points T. This is the foundation for
evaluating the marginal accuracy of different combinations.

To combine the marginals, we first need to compute the pseudomarginals P̃B and the Bethe
partition function ZB for all fixed points. Then, we utilize the obtained values of the Bethe
partition function ZB together with the pseudomarginals P̃B and modify the evaluation function
DP in three different ways.

First, all fixed points are weighted by their partition function and are combined so that

P̃ TB =
1∑

ZB∈T
ZB

∑
(P̃B ,ZB)∈T

P̃B · ZB. (5.24)

Second, we combine all fixed points that correspond to local minima of the Bethe partition
function in the same way so that

P̃MB =
1∑

ZB∈M
ZB

∑
(P̃B ,ZB)∈M

P̃B · ZB. (5.25)

Note that these combinations are not just some heuristics. In particular the latter one reminds
us of how the exact solution is expected to decompose according to the RSB assumption.

Finally, we aim to select one specific fixed point and hope that accurate marginals are to be
found at the maximum of the Bethe partition function (i.e., the global minimum of the Bethe
free energy). The fixed point maximizing ZB is consequently selected and evaluated as well;
more formally it is given by

P̃MAX
B = arg max

P̃B∈T
ZB(P̃B). (5.26)

5.6.2 Grid Graphs with Random Factors (Spin Glasses)

Consider a grid graph of size N = 3 × 3 with randomly distributed parameters. All pairwise
and local potentials are sampled uniformly; i.e., (Jij , θi) ∼ U(−K,K). The larger the support of
the uniform distribution is, the more difficult the task of inference becomes; we choose K = 3,
which is large enough to make BP fail to converge sometimes (cf. [SM07]).

According to (5.7) the system of equations consists of M = 72 equations in 72 unknowns.
More specifically, (5.6) consists of 24 linear (i.e., normalization constraints), 40 quadratic, and 8
cubic equations; the total degree bounds the number of solutions by dt = 124 ·240 ·38 = 7.2 ·1015.
Tracking such an amount of solution paths is not feasible in practice, even with a parallel
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Figure 5.4: Number of fixed points on the grid graph of size N = 3×3: (a) number of positive real fixed points
(yellow: unique fixed point, red: three fixed points); (b) number of real fixed points. The increase
in the number of both real solutions and positive real solutions, indicates a phase transition.

implementation of the NPHC method.
The system of equations in (5.6), however, is sparse. We can exploit this sparsity that is

induced by the graph structure if we consider the BKK bound and reduce the computational
complexity. The number of complex solutions for this graph is bounded by BKK = 608. After
creating a suitable start system the problem is straightforward to solve with the NPHC method.
It actually turns out that the BKK bound is tight for all graphs considered.

In particular we evaluate 100 grid graphs with random factors: on 99 graphs BP converged
after at most 104 iterations. Although the grid graph has multiple loops and the constrained
FB is not necessarily convex [Hes04, Corr.2], we observe that for all 100 graphs NPHC obtains
a unique positive real solution that corresponds to a unique BP fixed point.

5.6.3 Grid Graphs with Uniform Factors

We further analyze BP on grid graphs of size N = 3 × 3 with constant potentials among all
nodes and edges; i.e., we specify the couplings for all edges by Jij = J and specify the fields
for all nodes by θi = θ. We apply BP and NPHC for 1681 graphs in the parameter region
(J, θ) ∈ {−2,−1.9, . . . , 1.9, 2} and illustrate the size of the solution set in Figure 5.4.

The number of solutions in V ∗R+
(F) is presented in Figure 5.4 (a). In the well-behaved region

(P ) of the parameter space a unique fixed point exists, whereas three fixed points exist in (F )
and (AF ) – this is in accordance with statistical mechanics [MM09, p.43].30 Interestingly, we
observe a close relation between the onset of phase transitions and the increase in the number
of real solutions in Figure 5.4 (b). Most of these solutions, however, correspond to negative
message values that violate Lemma 1 and are not feasible.

BP converges to some fixed point on all 1681 graphs within at most 104 iterations. This
raises a couple of questions: What is the approximation error of BP if it converges to the most
accurate fixed point? Or, speaking in terms of free energies, how large is the gap between
the global minimum of the constrained FB and the minimum of the Gibbs free energy? To
answer this question we evaluate the correctness of the approximated marginals by computing
the MSE between the exact and the approximated marginals according to (3.38). The results
are presented in Table 5.1. Averaged over all graphs we can see that BP does not necessarily
converge to the most accurate fixed point. For the NPHC method we present the MSE for the
fixed point with the lowest MSE; this highlights the existence of fixed points, which give more
accurate approximations than BP. Looking at all parameter regions separately we can see that
BP does converge to the global optimum in (P ), as well as in (F ). In the antiferromagnetic

30 Note that the graph under consideration is of finite size and thus di varies among the nodes. As a consequence
the partitioning according to (5.3) - (5.5), is only an approximation.
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Table 5.1: Mean Squared Error, i.e., EP (m) of Marginals and Combined Marginals Obtained
by BP and NPHC for the Grid Graph with Unitary Factors.

Parameters Fixed Points Combined

Couplings Local Field BP NPHC MAX ALL STABLE

J ∈ [−2, 2] θ ∈ [−2, 2] 0.197 0.016 0.037 0.005 0.004

J ∈ (F ) θ ∈ (F ) 0.010 0.010 0.076 9.2 · 10−4 1.0 · 10−9

J ∈ (AF ) θ ∈ (AF ) 0.836 0.050 0.126 0.003 1.5 · 10−6

J ∈ (P ) θ ∈ (P ) 0.006 0.006 0.006 0.006 0.006

region (AF ), BP converges to a fixed point that does not necessarily give the best possible
approximation.

If we consider regions with multiple fixed point solutions (i.e., (F ) and (AF )) it becomes
obvious that the fixed point maximizing the partition function (i.e., P̃MAX

B ) is not necessarily
the best one; this is especially surprising as BP obtains the best possible fixed point solution
inside (F ).

For θ = 0 it turns out that initializing all messages to the same value µ1ij(xj) = µ1 = 1
|X | will

result in a fixed point where P̃Xi(xi) = 0.5 (and mi = 0) for all Xi ∈ X. Although this fixed
point is identical to the exact one, it may be unstable (cf. Figure 5.6).

Inspired by these observations, one should not only consider the fixed point maximizing ZB
(i.e., P̃MAX

B ), but rather obtain multiple fixed points by NPHC and combine them. Indeed,
especially inside region (F ) a combination of all fixed point solutions according to (3.53), i.e.,
P̃ TB increases the accuracy of the approximation. If we combine the fixed points at local minima
only (which are all stable in this specific case), i.e., P̃MB , the accuracy increases even more and
gives the most accurate approximation over the entire parameter space.

5.6.4 Complete Graphs with Uniform Factors

We consider a complete graph with N = 4 binary random variables and illustrate the number of
solutions in Figure 5.5. The system of equations (5.6) consists of 36 equations in 36 unknowns
and has its number of solutions bounded by the total degree dt = 112 ·224 = 16.8 ·106. Similar as
for the grid graph, a much tighter bound of BKK = 120 is provided by the BKK bound. Among
all four nodes, we apply unitary factors, specified by Jij = J and θi = θ. This type of graph is
particularly interesting because one can derive exact conditions where phase transitions occur
(cf. Section 5.2.1).

For (J, θ) ∈ (P ), BP has a unique fixed point, which is a stable attractor in the whole message
space [MK05]. In (F ) three fixed points satisfy (5.6), one of which is unstable and a local
minimum of ZB. Both other fixed points are local maxima of ZB and BP converges to one of
them.

For repulsive models, BP only converges inside (P ) and not inside (AF ) as shown in Figure 5.5
(a). We can see two interesting effects: first, in Figure 5.5 (c) the number of real solutions
increases at the onset of phase transitions; second, even though the convergence of BP breaks
down at the phase transition, a unique fixed point exists inside (AF ) (Figure 5.5 (b)) that gives
an accurate approximation (cf. Table 5.2).

Similar as in Section 5.6.3, we asses the MSE of the marginals obtained by NPHC and BP;
the results – averaged over all graphs, and for each distinct region – are presented in Table 5.2.
Indeed, inside region (AF ) the marginals obtained by NPHC give a much better approximation
than BP does.
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Figure 5.5: Fully connected graph with N = 2 × 2: (a) convergence of BP: for the blue region BP did
convergence – for the red region it did not converge after 4 · 105 iterations; (b) number of fixed
points (yellow: unique fixed point, red: three fixed points; (c) number of real solutions – note the
sudden increase at the onset of phase transitions.

Table 5.2: Mean Squared Error, i.e., EP (m) of Marginals and Combined Marginals Obtained
by BP and NPHC for the Fully Connected Graph With Unitary Factors.

Parameters Fixed Points Combined

Couplings Local Field BP NPHC MAX ALL STABLE

J ∈ [−2, 2] θ ∈ [−2, 2] 0.069 0.007 0.011 0.003 0.0027

J ∈ (F ) θ ∈ (F ) 0.034 0.033 0.070 0.002 2.0 · 10−8

J ∈ (AF ) θ ∈ (AF ) 0.304 0.004 0.004 0.004 0.004

J ∈ (P ) θ ∈ (P ) 0.003 0.003 0.003 0.003 0.003

Furthermore, note that the fixed point maximizing ZB does not always give the best approx-
imation. For θ = 0, if all messages are initialized to the same value, BP obtains the exact
marginals (cf. Section 5.6.3). If multiple fixed points exist, a weighted combination of all
marginals according to (3.53) increases the accuracy – only considering stable solutions, i.e.,
P̃MB , gives the most accurate approximations.

5.6.5 Fixed Point Evolution

To better understand the influence of the parameters (J, θ) we specifically investigate how they
affect the accuracy of the fixed points. Therefore, we fix the values of θ ∈ {0, 0.1, 0.5}, vary
J ∈ [−2, 2], and compare the fixed point solutions obtained by NPHC to the exact solution.
For illustrative purposes we consider the mean, averaged over all variables, of the exact solution
〈m〉 and of the approximate solution 〈m̃〉 for all fixed points obtained by NPHC; the results are
illustrated for both the grid graph and the complete graph in Figure 5.6 and Figure 5.7.

The exact solution (red) is obtained by the junction tree algorithm [LS88]; solutions to (5.6)
are obtained by NPHC and are depicted by blue dots (stable) and by green or black dots
(unstable). We further emphasize the fixed point that maximizes ZB, i.e., P̃MAX

B , in orange.

We will already discuss some implications of the local stability analysis here, but focus mainly
on the accuracy of the fixed points and defer a thorough discussion of the stability analysis to
Section 5.7.

All fixed points for a grid graph with N = 3 × 3 binary random variables are shown in
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Figure 5.6: Results for the grid graph of size N = 3 × 3; average mean 〈m〉 and ˜〈m〉 for J ∈ [−2, 2] and
for: (a) θ = 0, (b) θ = 0.1, and (c) θ = 0.5. The exact solution is illustrated in red. All fixed
points obtained by NPHC are depicted by blue dots (stable) and by green dots (unstable). The
fixed point maximizing the partition function is illustrated in orange.
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Figure 5.7: Results for the complete graph of size N = 2×2; average mean 〈m〉 and ˜〈m〉 for J ∈ [−2, 2] and
for: (a) θ = 0, (b) θ = 0.1, and (c) θ = 0.5. The exact solution is illustrated in red. All fixed
points obtained by NPHC are depicted by blue dots (stable) and by green/black dots (unstable).
The fixed point maximizing the partition function is illustrated in orange.

Figure 5.6. The worst performance in terms of accuracy is observed for θ = 0. Despite the
existence of one fixed point that corresponds to the exact solution with 〈m〉 = 〈m̃〉 = 0, BP
fails to provide accurate marginals as this particular fixed point is only stable inside (P ). As
the coupling strength |J| increases to the onset of phase transitions, two additional fixed points
emerge. These additional solutions are symmetric, stable, and guarantee the convergence of BP
on this graph (see Figure 5.6 (a)).

For θ 6= 0 a unique stable fixed point exists inside (P ). If we gradually increase J until
(J, θ) ∈ (F ) two additional fixed points emerge, one of which is unstable (see Figure 5.6 (b)).
Note that the fixed point maximizing ZB (orange) remains stable for all values of J ∈ [−2, 2].
An increase in θ (see Figure 5.6 (c)) does enlarge the region where a unique fixed point ex-
ists and further increases the accuracy of the fixed point maximizing ZB. For (J, θ) ∈ (AF ) a
similar behavior is observed; i.e., for small values of θ the unstable fixed point has the high-
est accuracy, but as θ increases, the accuracy of the fixed point maximizing ZB increases as well.

All fixed points for the complete graph with N = 4 binary random variables are shown in
Figure 5.7. For θ = 0 and large values of J the fixed point with 〈m〉 = 〈m̃〉 = 0 is unstable and
is accompanied by two symmetric, stable fixed points (Figure 5.7 (a)). In contrast to the grid
graph a unique and accurate fixed point exists for (J, θ) ∈ (AF ); yet, this of no avail as the fixed
point is unstable (see Figure 5.5 (a)). This highlights that the existence of a unique, accurate,
fixed point does not necessarily imply convergence of BP.
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Table 5.3: Runtime Comparison between BP and NPHC (in Seconds).

Grid Graph: Grid Graph: Fully Conn. Graph:

Random (J, θ) Unitary (J, θ) Unitary (J, θ)

total parallel total parallel total parallel

Mixed Vol. 1364.5 11.2 1311.1 12.0 0.27 –
Path Track. 69.0 0.97 70.5 1.0 3.77 –
Post Proc. 29.9 1.40 43.6 4.1 2.3 –

NPHC 13.57 17.1 6.34

BP 3.6 · 10−3 0.7 · 10−3 0.03

For θ 6= 0 the non-convergent region (AF ) is slightly reduced, but the problem of a unique
unstable fixed point persists. In contrast to the grid graph, the complete graph contains odd-
length cycles, thus allowing for frustrations if all edges are repulsive. This points at a close
connection between the existence of frustrations and the existence of a unique unstable solution.
The complete graph behaves similar to the grid graph for (J, θ) ∈ (F ), i.e, the accuracy of the
fixed point maximizing ZB increases as θ increases (see Figure 5.7 (b) and Figure 5.7 (c)).

Our main findings are: First, increasing the field θ increases the accuracy of the fixed point
maximizing ZB. Second, for θ 6= 0 the fixed point maximizing ZB is unique and varies contin-
uously under a change of J . Finally, the two stable fixed points are close to being symmetric,

i.e., P̃
(1)
Xi

(xi) ∼= 1 − P̃ (2)
Xi

(xi). Consequently combining both stable fixed points will not lead to
good approximations unless a proper weighting by ZB is applied. Applying a proper weighting,
however, leads to accurate approximations (cf. Table 5.1- 5.2).

5.6.6 Runtime Analysis

The time required for solving (5.6) is presented in Table 5.3 for grid graphs with random factors
(Section 5.6.2), grid graphs with unitary factors (Section 5.6.3), and fully connected graph with
unitary factors (Section 5.6.4). Comparing the overall computation time of the NPHC method
to BP it becomes obvious that NPHC is no alternative in terms of computational efficiency. It
is, however, the only method that is guaranteed to obtain all fixed points – we were not able to
apply the Gröbner basis method beyond a single-cycle graph with N = 4. For our computations
we utilized a cluster-system with 160 CPUs.

If we compare the overall computation time to the actual computation time utilizing the
parallel implementation it becomes obvious that NPHC benefits tremendously from the high
degree of parallelization. The runtime of BP depends mainly on the number of iterations and
less on the size of the graph. Consequently, the stability of fixed points directly affects the
performance of BP (cf. non-convergent region in Figure 5.5 (a)). The NPHC method is much
less sensitive to the stability of fixed point solutions; the mixed volume computation, which has
the largest influence on the overall runtime, rather depends on the number of variables in (5.6).
Note the mixed volume computation does not depend on the parameters. If one is interested in
the fixed points for different parameter-sets on the same graph it would suffice to compute the
mixed volume and the start system only once; we did not do this to allow for a fair comparison.
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5.7 Empirical Stability Analysis of Belief Propagation on Ising
Models

So far we have been rather sloppy with the notion of stability and assumed knowledge about
the stability of the fixed points without discussing how to gain this knowledge. The fact that
we have obtained all fixed points, irrespective of their properties under a specific map, admits a
thorough stability-analysis for all of them.

In this section, we analyze the local stability of all fixed points for the models discussed so
far. Then, we compare the results to known results of both infinite and finite-size graphs with
vanishing local fields θ = 0. We restrict our analysis to attractive and repulsive models (cf.
Section 2.4.3), because this allows us to change the behavior of BP with just a single parameter.

We briefly present the results of [MK05] for vanishing fields in Section 5.7.1. Then we extend
the analysis to graphs with non-vanishing fields, discuss some empirical observations, and inter-
pret the implications. Note that the results of our stability analysis are also illustrated in terms
of the average mean 〈m̃〉 over the couplings-strength in Figure 5.6 (for the 3 × 3 grid graph)
and 5.7 (for the complete graph of size N = 4). All fixed points of BP are colored according to
the discussion of the eigenvalue spectrum (cf. Figure 5.2): fixed points are depicted in blue if
stable under BP (·), in black if stable under BPD (·), and in green if unstable. For reference we
also illustrate the exact solution in red. A more formal analysis is presented in Section 5.8.

5.7.1 Vanishing Local Field

It is generally assumed that the case of vanishing local fields is the worst-case scenario [MK05];
we will confirm this assumption empirically and analytically. For θ = 0 a trivial exact solution
exists – namely marginals that are uniform over all states, i.e., for all Xi ∈ X the singleton
marginals are P̃Xi(xi) = 0.5 and the mean is mi = 0.

For attractive models with J > 0 sufficiently small, BP converges to this trivial (paramagnetic)
fixed point, which is unique and stable. As the coupling-strength increases, the eigenvalue with
the largest magnitude λmax increases as well (see Theorem 4) and as λmax crosses the unit circle
the paramagnetic fixed point remains unchanged but becomes unstable. At the same time, two
additional fixed points appear – these fixed points are symmetric and stable (cf. Figure 5.6 (a)
and Figure 5.7 (a)).

For repulsive models with J < 0 all entries of the Jacobian swap in sign, i.e., F ′−(ν◦) =
−F ′+(ν◦), where − and + indicate the Jacobian for repulsive and attractive models, respectively.
It follows that Λ

(
F ′−(ν◦)

)
= −Λ

(
F ′+(ν◦)

)
. Consequently, the local stability of the fixed point is

invariant under a sign-change of J and instability occurs precisely for the same coupling strength
as before (cf. Figure 5.6 (a) and Figure 5.7 (a)). There is one important difference though – the
dominant eigenvalue is negative now, such that damping helps to achieve convergence.

5.7.2 Non-Vanishing Local Field

For reasons of simplicity we restrict our analysis to models with a single value θi = θ 6= 0 for all
variables. Because the Ising model is symmetric with respect to the local fields θi, it is sufficient
to consider only non-negative local fields. Moreover, the same qualitative results hold if we allow
for θi ≥ 0 in general.

Attractive Models

For small values of J > 0 a unique fixed point exists to which BP converges and for which
all eigenvalues lie inside the unit circle. If we gradually increase the coupling-strength to the
point where instability occurred for θ = 0, we observe that all eigenvalues are still inside the
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Figure 5.8: Eigenvalue spectra of the unstable fixed point of the complete graph with N = 4. If all eigenvalues
are inside the unit-circle BP converges without damping. If no eigenvalues lie on the right-hand
side of the vertical line BP converges with damping. (a) J = 1.5 and θ = 0: notice that
Re{λmax} > 1, i.e., damping does not help; (b) J = 1.5 and θ = 0.5: notice how the external
field reduces the magnitude of the eigenvalues (cf. Theorem 3); (c) J = −1.5 and θ = 0.5: the
fixed point is unstable but can be stabilized with damping because Re{λi} < 1.
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Figure 5.9: Eigenvalue spectra of the grid-graph with N = 9; all eigenvalues are symmetric because the
graph is bipartite (cf. Theorem 5). (a) J = 1.5, and θ = 0: the fixed point is unstable and
damping does not help; (b) J = 1.5 and θ = 0.5: only a unique stable fixed point exists (cf.
Figure 5.6 (c)); note the qualitative difference in the spectrum; (c) J = −1.5 and θ = 0.5:
because of the symmetric spectrum, damping does not help in for repulsive models.
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Figure 5.10: Eigenvalue spectra for J = 1.5 and θ = 0.5 of the (a) grid-graph with N = 9 and periodic
boundary conditions; (b) grid-graph with N = 16.
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unit circle, i.e., the spectral radius ρ
(
F ′(ν◦)

)
< 1; the fixed point is consequently stable (cf.

Theorem 3 for more details). If we further increase θ, the spectral radius decreases and a unique
stable fixed point persists for even larger values of J (compare Figure 5.6 (b) and Figure 5.7 (b)
with Figure 5.6 (c) and Figure 5.7 (c)).

Now, if we increase J – although the fixed point remains stable – two additional fixed points
emerge beyond some critical point JC(G, θ) (see Figure 5.6 (b) and 5.7 (b)). As opposed to
vanishing local fields, the unique fixed point is continuously deformed and remains stable though.
The second stable fixed point corresponds to some self-preserving state of magnetization31 and
is accompanied by another unstable fixed point (Figure 5.8 (b)).

The graph structure is supposed to influence the spectral radius as well. This becomes obvious
if we enlarge the size of a graph while keeping its local structure unchanged, e.g., by increasing
the grid-graph from N1 = 9 to N2 = 16. A comparison of Figure 5.9 with Figure 5.10 reveals
an increased spectral radius, i.e., ρ

(
F ′N1

(ν◦)
)
< ρ

(
F ′N2

(ν◦)
)

(cf. Theorem 4). It is interesting
that the largest eigenvalue – and its symmetric counterpart for bipartite graphs – are the only
eigenvalues that experience a relevant increase in their real part. The real part of all other
eigenvalues λi ∈ Λ

(
F ′(ν◦)

)
\
{
λmax : |Re{λmax} | = ρ

(
F ′(ν◦)

)}
is bounded by |Re{λi} | < 1.

In terms of accuracy, BP performs better for models with θ 6= 0; compared to models with
θ = 0, a stable fixed point exists that lies closer to the exact solution. Loosely speaking,
increasing the local fields effectively reduces the influence of the couplings. This does not only
lead to better convergence properties of BP (cf. Corollary 4.1), but reduces the approximation-
error as well.

Repulsive Models

For small values of J < 0 a unique fixed point exists for which all eigenvalues lie inside the
unit circle. If we further decrease J , a change of behavior can be observed beyond some critical
value JC(G,−θ). Interestingly, |JC(G,−θ)| ≤ |JC(G, θ)| with equality if and only if θ = 0. In
Figure 5.8 (b) and 5.8 (c) we can also see that ρ

(
F ′−(ν◦)

)
> ρ

(
F ′+(ν◦)

)
, i.e., the invariance of

local stability under sign-change of J does not hold in general.
Let J < JC(G,−θ), then it depends on the graph structure whether a unique fixed point exists

and if damping is useful. It turns out that these two properties are closely connected:
First, consider the complete graph with N = 4 or the grid-graph with periodic boundary

conditions; these models have a unique fixed point but frustrations exist because of cycles with
odd-length. Consequently Λ

(
F ′(ν◦)

)
is non-symmetric (cf. Theorem 5). Besides the sign-

change, the spectral radius increases as well so that ρ
(
F ′−(ν◦)

)
> ρ

(
F ′+(ν◦)

)
; the dominant

eigenvalue, however, has a negative sign and R
(
Λ
(
F ′(ν◦)

))
< 1 so that an appropriate damping

term exists that enforces BP to converge.
Second, consider both grid-graphs with N1 = 9 and N2 = 16; these graphs are bipartite and

have a symmetric spectrum Λ
(
F ′(ν◦)

)
(see Figure 5.9, Figure 5.10 (b), and Theorem 5). Because

of the symmetric spectrum BP behaves similarly as in the attractive case: i.e., no damping term
exists that would stabilize the unstable fixed point; two additional fixed points exist, however,
that are stable.

Multiple fixed points for repulsive models exist if and only if the underlying graph is bipartite.
Such graphs can be decomposed into two disjoint subsets X = Y∪Z such that the means follow
a ”checkerboard-distribution” where for all Xi ∈ Y the mean is mi > 0 and for all Xj ∈ Z the
mean is mj < 0, or exactly the other way round. This explains the existence of two stable fixed
points. Note that the according average mean 〈m̃〉 behaves as follows: (i) if N is even both
stable fixed points are symmetric and have the same average mean; (ii) if N is odd both stable
fixed points have different average means, because the subsets differ in size, i.e., |Y| 6= |Z|. The

31 Self-preserving states are stable fixed points where ˜〈m〉 points into the opposite direction as θ.
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difference in 〈m̃〉 reduces as the number of variables increases. In the limit of N = ∞, the
average means of all fixed points collapse onto the same value.

To conclude our observations: either a unique fixed point exists, which may be unstable
but can be stabilized by damping (black); or a fixed point exists which is unstable under any
form of damping (green) but is accompanied by two stable fixed points (blue) (cf. Figure 5.6
and Figure 5.7). Therefore, non-vanishing fields increase the accuracy of BP (Figure 5.6 and
Figure 5.7) and lead to better convergence properties (Theorem 3) in all experiments.

5.8 Theoretical Stability Analysis

Here we present some more formal arguments and explain the observations made in Section 5.7.
We start with the Perron-Frobenius Theorem and specify some implications for the particular
form of F ′(ν◦). Then we provide properties of the eigenvalue spectrum Λ

(
F ′(ν◦)

)
and explain

the influence of finite-size graphs in non-vanishing local fields. We consider only connected graphs
(cf. Section 2.2), where all Xi have minimum degree min di ≥ 2. Note that it is straightforward
to absorb any Xi with di = 1 into its neighbor.

Lemma 2. The Jacobian matrix F ′(ν◦) of a connected graph G is irreducible if min di ≥ 2.

Proof. The adjacency matrix of a connected undirected graph is irreducible. Let us construct
the Jacobian F ′(ν◦) as in (5.20); note that we can partition F ′(ν◦) into N ×N block matrices
[F ′(ν◦)]ik of size di×dk each. These blocks contain non-zero values if and only if (i, j), (k, l) ∈ E
for Xj , Xk ∈ X; i.e., if aik = 1. It follows that F ′(ν◦) is irreducible as well.

Theorem 2 (Perron Frobenius Theorem). A real non-negative square matrix B has its spectral
radius bounded as follows:

min
i

∑
j

bij ≤ ρ
(
B
)
≤ max

i

∑
j

bij . (5.27)

If B is irreducible the largest eigenvalue is a positive real number λmax = ρ
(
B
)
.

Corollary 2.1 (Implications for regular graphs). A regular graph has di = d for all Xi ∈ X. If
the couplings and fields are constant,

∑
n
F ′(ν◦)mn = c is constant for all rows. By the Perron

Frobenius Theorem and by Lemma 2 it follows that λmax = c.

Consider an infinite-size grid graph with unitary couplings J > 0. Under these assumptions
it is fairly straightforward to provide theoretical insights that explain why the existence of non-
vanishing fields enhances the convergence properties. We generalize the results subsequently, as
the same argument can be applied to finite-size graphs with different Jij .

Theorem 3. Let G∞ be an infinite-size graph with di = d and purely attractive interactions
J > 0. Then, the existence of a non-vanishing external field θ 6= 0 stabilizes BP.

Proof. First assume a vanishing external field, i.e., θ = θ0 = 0, in which case the trivial fixed
point has identical messages µ◦ij(xj) = 0.5 so that ν◦ij = 0. Consequently, (5.21) reduces to

F ′θ0(ν◦)mn=

{
tanh(J) if i = l and k ∈ {∂(i)\Xj}
0 else.

(5.28)

Because all variables Xi ∈ X(G∞) have equal degree
∑
n
F ′(ν◦)mn = c for all m. It follows

from (5.21) and the Perron-Frobenius Theorem that ρ
(
F ′θ0(ν◦)

)
= tanh(J) · (di − 1). Without
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loss of generality we exploit symmetry properties and assume an external field θδ > 0. By (3.1)
and (5.16) it becomes obvious that every fixed point message ν◦ij 6= 0 and hij 6= 0. Note that

qualitatively, it does not matter whether hij is positive or negative as we only consider tanh2(hij).

Because 0 ≤ tanh(J) < 1 it follows that tanh(J) > tanh2(J) and consequently, as

F ′θδ(ν
◦)mn =

tanh(J)(1−tanh2(hij))
1−tanh2(J) tanh2(hij)

if i = l and k∈{∂(i)\Xj}
0 else,

(5.29)

all non-zero entries of F ′θ0(ν◦)mn are element-wise larger than F ′θδ(ν
◦)mn. Let us define a field-

dependent scaling term κθ ∈ (0, 1) of the Jacobian matrix , then F ′θδ(ν
◦) = κθF ′θ0(ν◦).

Loosely speaking the existence of some non-vanishing field reduces all entries of the Jacobian
matrix and consequently reduces the spectral radius.

Now choose a critical value JC at the onset of instability32 so that ρ
(
F ′θ0(ν◦)

)
= lim

ε→0
(1 + ε).

If the external field dampens the spectral radius, so that ρ
(
F ′(ν◦)

)
< 1 the unstable fixed point

vanishes, and only a unique stable fixed point remains. Interestingly, this observation holds in
all experiments, i.e., for attractive models an unstable fixed point exists if and only if multiple
fixed points are present.

Suppose we either have purely attractive or purely repulsive interactions, then all entries of
the Jacobian matrix have the same sign as the couplings and are bounded.

Lemma 3. All entries of the Jacobian are bounded by F ′(ν◦)mn ∈ [0, 1) if Jij > 0 and by
F ′(ν◦)mn ∈ (−1, 0] if Jij < 0.

Proof. If all couplings have the same sign, the qualitative result of (5.29) holds as well. For
purely repulsive interactions we just have to swap signs.

Theorem 4. The finite-size manifestations of phase transitions occur beyond the theoretical
phase transitions. Let us define a parameter-set (JC , θC) for which λmax crosses the unit-circle.
Then, for a graph GN with N nodes, the values of the critical parameters (JC , θC) decrease as
N increases.

Consider two finite-size graphs with identical structure33 with different size N1 < N2, then
ρ
(
F ′N1

(ν◦)
)
≤ ρ

(
F ′N2

(ν◦)
)
≤ ρ

(
F ′∞(ν◦)

)
.

Proof. Assume J > 0 and w.l.g. θ = 0 (for the influence of non-vanishing external field see
Theorem 3). Then on G∞ – or for any other grid-graph with periodic boundary conditions – the
degree di = d is constant for all Xi ∈ X. It follows from Corollary 2.1 that the largest eigenvalue
is given by λmax = (di − 1) · tanh(J).34 Suppose we increase the couplings to Jnew > J and

denote the change of its parameters as κ = tanh(Jnew)
tanh(J) . It is obvious that λnewmax = κ · λmax.

Suppose we have some finite-size graph where di is not constant but depends on Xi. If the
couplings increase as before each row of F ′(ν◦) experiences a different amount of scaling. In all
generality this is described byc1 0

. . .

0 cK

 · F ′(ν◦) (5.30)

32 If λmax = 1 we cannot infer from the linearized to the nonlinear map [Tes12]. We introduce an ε-small term
to avoid this subtlety.

33 For example two-dimensional grid-graphs with N = 3× 3 or N = 4× 4 variables.
34 For vanishing fields, i.e., if θi = 0, the Jacobian matrix is fully defined by Jij .
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where ck depends on di and K =
N∑
i=1

di. Let us reformulate (5.30) in all detail to

W =

max(di)∑
m=2

CmF ′(ν◦), (5.31)

where Cm is a diagonal matrix with values Cm;kk = κm if the kth line of F ′(ν◦) corresponds to
a variable with dk ≥ m and 0 otherwise. Since the largest eigenvalue is a positive real number
it follows that the largest eigenvalue is the sum of the individual eigenvalues, so that

ρ
(
W
)

=

max(di)∑
m=2

ρ
(
CmF ′(ν◦)

)
. (5.32)

We still have to show that

ρ
(
F ′N1

(ν◦)
) (a)

≤ ρ
(
F ′N2

(ν◦)
) (b)

≤ ρ
(
F ′∞(ν◦)

)
, (5.33)

where (b) follows from the existence of an associated eigenvector x such that ρ
(
W
)
x ≤ (di −

1) · tanh(J) with equality if and only if all Cm have only non-zero values on the main diagonal,
i.e., all variables have equal degree. As GN2 has a larger portion of nodes with di = max di than
GN1 , the average degree is also higher; i.e., d̂GN1

< d̂GN2
. Then (a) follows from (5.32).

By combination of Theorem 3 and Theorem 4 we get:

Corollary 4.1. The existence of a non-vanishing external field stabilizes BP on finite-size
graphs.

Next, we extend the above observations to varying couplings and fields. We assume that all
couplings Jij have the same sign, and all fields θi have the same sign, not necessarily the same
as the couplings. Then the scaling coefficients ck in (5.30) depend not only on di, but on Jij
and θi as well. Still, F ′(ν◦) can only contain either positive entries or negative entries; it follows
that:

Corollary 4.2. For infinite-size grid-graphs with either purely attractive interactions Jij > 0 or
purely repulsive interactions Jij < 0, the existence of some non-vanishing fields θi 6= 0 stabilizes
BP.

Theorem 5. The eigenvalue-spectrum of the Jacobian F ′(ν◦) is symmetric if and only if the
underlying graph is bipartite.

Proof. The adjacency matrix of any bipartite graph can be rearranged and written in block form

A =

[
0 M

MT 0

]
, (5.34)

so that the eigenvalue-spectrum is symmetric [BH11]. By the same arguments as in Lemma 2
it follows that F ′(ν◦) has the same structure as A and thus a symmetric spectrum as well.

Corollary 5.1. Assume we only have repulsive interactions. Then a graph is bipartite if and
only if no frustrations occur.

Proof. A cycle is frustrated if and only if the product of all Jij along the corresponding edges
is negative [MM09, p.45]. Frustrations can therefore only occur in graphs with cycles of odd
length, which implies that the graph cannot be bipartite [KV05, Prop. 2.27].
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X1 =x1 Y1 =y1

X1 = x̄1 Y1 = ȳ1
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f4 Y4 fb

f5 Y5

f6 Y6 fc

f7 Y7

(b)

Figure 5.11: (a) Binary symmetric channel with error probability ε; (b) factor graph for the (7,4) Hamming
code that corresponds to (5.38) where Y1 is flipped.

5.9 Application: Error-Correcting Codes

One of the most prominent applications where BP is successfully applied to loopy graphs is iter-
ative decoding. We keep this section as self-contained as possible. For a thorough introduction
we refer the interested reader to the textbooks [Mac03, Wym07]; the connection between BP
and decoding is further explained in great detail in [KF98,AM00,KFL01].

We consider a binary symmetric channel (BSC) with a binary input Xi ∈ X = {0, 1} = {xi, x̄i}
and a binary output Yi ∈ Y = {0, 1} = {yi, ȳi}. The channel is specified by the error-probability
ε, where transmitted bits are flipped with probability ε. That is PXi|Yi(xi|yi) = PXi|Yi(x̄i|ȳi) =
1 − ε and PXi|Yi(xi|ȳi) = PXi|Yi(xi|yi) = ε (cf. Figure 5.11 (a)). Additional, redundant bits
help to detect and correct transmission errors. The aim of error-correcting codes is to reach the
desired error-correcting performance while introducing as little redundancy as necessary, i.e., to
operate as close as possible to the theoretical limit. Suppose we transmit a codeword with block
length N = 7 consisting of 4 source bits X1, . . . , X4 and three parity-check bits X5, X6, X7 that
satisfy

X1 ⊕X2 ⊕X3 ⊕X5 = 0,

X2 ⊕X3 ⊕X4 ⊕X6 = 0,

X1 ⊕X3 ⊕X4 ⊕X7 = 0,

where ⊕ is an XOR, i.e., the sum in modulo-2 arithmetic. This linear irregular code is the (7,4)
Hamming code [Mac03, Chapter 1].

In this example we assume that the sent message is x = (0, 0, 0, 0, 0, 0, 0)35 and that exactly
one bit suffers from a bit flip. For irregular codes the degree of the variables di varies; therefore,
we consider two scenarios: either y = (1, 0, 0, 0, 0, 0, 0) or y = (0, 0, 0, 0, 0, 1, 0)36.

It is often convenient to express a code in factorized form and represent it explicitly with a

35 Note that the properties of the BSC are independent of the transmitted codeword x.
36 Normally the performance of a code is studied over an ensemble of sent codewords where each bit flips with

probability ε.
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Figure 5.12: Results for the (7,4) Hamming code. We compare the exact solution PXi|Y(xi|y) (red) to the

approximate solution P̃Xi|Y(xi|y) of NPHC (blue) as ε increases for: (a) Y1 is flipped and (b)
Y6 is flipped.

factor graph. A factor graph consists of variable nodes Yi and factor nodes fA where each factor
fA acts as a function on all variables connected Yi = {Yi ∈ ∂(A)}.37 On a factor graph, BP
operates similar as introduced in Section 3.2. Now, two different types of messages are sent along
every edge: factor-to-variable messages rAi and variable-to-factor messages qiA. All messages
are iteratively updated according to

rn+1
Ai (yi) =

∑
yk:Yk∈{∂(A)\Yi}

fA(Yk = yk, Yi = yi)
∏

Yk∈{∂(A)\Yi}

qnkA(yk), (5.35)

qn+1
iA (yi) = αniA

∏
fB∈{∂(i)\fA}

rnBi(yi), (5.36)

where αiA is chosen such that qn+1
iA (yi) + qn+1

iA (ȳi) = 1. After all messages converged to a fixed
point, the marginals of the variable nodes are approximated by the product of all incoming
messages

P̃Yi(yi) =
1

Z

∏
fB∈∂(i)

rnBi(yi). (5.37)

Details of the factor graph representation can be found in [MM09, Chapter 9] and [Loe04].
Let us consider two types of factors: fi(Yi) = PXi|Yi(xi|yi) to model the BSC, and fA(Yi)

to verify if all parity-checks are satisfied. Then fA(Yi) = 1 if the sum of all arguments
∑

Yi
yi

is even and fA(Yi) = 0 if the sum is odd. The conditional probability for X = x to be the
codeword, given the received codeword Y = y then is

PX|Y(x|y) =
1

Z

7∏
i=1

fi(Yi) · fa(Y1, Y2, Y3, Y5) · fb(Y2, Y3, Y4, Y6) · fc(Y1, Y3, Y4, Y7). (5.38)

The corresponding factor graph representation is shown in Fig 5.11 (b).
Now we create a system of equations similar as in Section 5.3 and obtain all fixed points

with NPHC. A unique fixed point exists for all settings – and this fixed point is stable, which
justifies the application of BP on error-correcting codes. We further estimate the accuracy of

37 Similar to Section 2.2, we use ∂(·) to specify the neighbors of nodes and variables.
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the approximation; this relates to the following question. If we communicate over a BSC, how
vulnerable is BP decoding to an increased error probability? To answer this question we obtain
the fixed points for ε ∈ [0, 0.5] and compare the exact solution obtained by the junction tree
algorithm PXi|Y(xi|y) (red), to the approximate solution P̃Xi|Y(xi|y) obtained by NPHC (blue)
in Figure 5.12.38

An error can be corrected by BP decoding if P̃Yi|X(yi|x) > 0.5. With exact decoding a single
bit-flip can be corrected for ε < 0.21. The fixed points obtained by NPHC, however, reveal that
BP does not utilize the full potential of the code (Figure 5.12). If Y1 was corrupted the error can
be corrected for ε < 0.13 (Figure 5.12 (a)). BP fails to correct the error if Y6 was flipped for all
values of ε (Figure 5.12 (b)). The reason therefore is a systematic error: the check-bit only has
a single connection to the parity-check function fc. According to (5.36) qn+1

6,c (yi) = α7,7 ·r7,7(yi);
therefore Y6 does not incorporate any information from the remaining graph. To conclude, the
higher the connectivity of a node, the more information of other bits is taken into account and
the better the error-correction capability of BP and NPHC.

5.10 Conclusion

This chapter was an attempt to get a deeper understanding of BP’s behavior, with potential
implications for deriving convergence guarantees and finding stronger conditions for uniqueness
of BP fixed points.

The specific focus was to apply the tools from Chapter 4, namely the NPHC method and
the concept of linearization to answer some of the open questions associated with BP (cf. Sec-
tion 3.6). In particular we utilized the NPHC method to characterize the solution space and
to obtain all BP fixed point solutions before performing a local stability analysis to understand
the convergence properties.

Although this approach provided many interesting insights and answered some long-standing
questions, some additional questions emerged in the process.

The focus on relatively small, well-structured models provides an obvious starting point and
was essential in developing the results presented. Although many insights are expected to carry
over to more general models, the generalization to larger models with fewer constraints on their
potentials is primarily left open. Moreover, the general models considered here are seemingly
too small as to exhibit an actual disordered behavior (characterized by the existence of multiple
fixed points). The systems of polynomial equations considered so far, however, are already
larger than most solvable problems; the generalization to even larger systems therefore remains
problematic.

One key feature of the presented framework was the estimation of a favorable upper bound
on the number of solutions. In particular, the BKK bound utilized the sparsity of the polyno-
mial system induced by the graph structure and was tight in all our experiments. Computing
the BKK bound and creating the start system, however, took up the major part of the overall
runtime in our experiments. One will agree that the structure of the graph – together with
the update equations – literally specifies the structure of the polynomial system. Yet, we only
relied on generic, albeit well-established, methods to compute the BKK bound and to create the
start-system. This suggests that one should take the graph structure into account, potentially
yielding a much more efficient algorithm for computing the BKK bound.

Regarding the approximation quality of BP, we exemplified an accuracy-gap between fixed
points obtained by BP and the best possible fixed points (obtained by NPHC). In practice this
justifies the exploration of multiple fixed points: one can then either consider a combination

38 Note that for ε = 0.5 the transmission is random.

November 8, 2019 – 103 –



5 Solution Space of Belief Propagation: Number of Fixed Points and Their Stability

of weighted marginals, providing strikingly accurate results in the models considered; or one
can select the fixed point that maximizes ZB, often leading to the best approximation of the
marginals. We will further investigate this topic in Chapter 7 where we discuss the advantages
and pitfalls of both approaches. Moreover, we analyzed the fixed point maximizing the partition
function in detail: we revealed how it continuously deforms under varying parameters and how
the stability depends on the graph structure. The observation of a continuous deformation will
serve as the main inspiration for Chapter 6 where we build upon this observation to propose an
enhanced version of BP.

Regarding the convergence properties of BP, we answered several questions on the basis of
our empirical observations and our theoretical analysis. Graphs with vanishing local potentials
are indeed a worst-case scenario; strong local potentials reduce the magnitude of all eigenvalues,
thus helping to achieve convergence, and additionally increase the accuracy of the most accurate
fixed point.

The graph structure affects the convergence properties as the spectral radius increases with
the model size, which consequently degrades the performance of BP. Moreover, bipartite graphs
exhibit a symmetric spectrum so that damping cannot help to achieve convergence; note that
the ineffectiveness of damping for bipartite models was recently also observed for models with
more general potentials [PI17]. Based on our observations it seems reasonable to conjecture that
damping can only be used to stabilize a fixed point if it is unique. Whether this generalizes to
spin glasses is by no means obvious. It would, for the purpose of understanding the convergence
properties of spin glass models, be of interest to specify a distribution of the eigenvalues based
on the distribution of the potentials.39

39 One could hope to obtain similar results as in the study of spectral densities on random matrices, where it
is for example well-established that the eigenvalues of sparse symmetric matrices are distributed according to
the Wigner semicircle law [Wig58,Erd11].
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6
Enhancing Belief Propagation:
Self-Guided Belief Propagation

”The most significant dimension of freedom
is the freedom from one’s own ego - in other words,
from the feeling that I am the center of everything.”

– Voytek Kurtyka

This chapter builds upon the insights from the preceding chapter and presents one possible
way to make the performance of BP more robust. All models analyzed so far show that the
minimum of the Bethe free energy is continuously deformed as the coupling strength increases.
As a consequence of this observation, we progressively incorporate the pairwise potentials and
keep track of the evolving fixed point. Although the idea of this algorithm was written down by
the present author, such an approach may seem rather obvious; in fact Alexander Ihler revealed
that he also had a similar idea in his mind already for quite some time [Ihl].

We begin this chapter with the introduction of our proposed algorithm self-guided belief prop-
agation (SBP) in Section 6.2. In Section 6.3 we apply SBP to a wide range of models and discuss
our empirical observations before we provide a formal analysis for the special case of attractive
models with unidirectional local potentials in Section 6.4.

All theoretical results have been conducted by the present author. The implementation of the
algorithm and the empirical evaluation in Section 6.3 were performed by the author’s student
Florian Kulmer. Both the theoretical and empirical results have been prepared for publication
in [KKP18].

6.1 Motivation

The analysis of BP’s solution space in Chapter 5 revealed that accurate fixed points may exist
even though BP fails to obtain them. This is in accordance with the observation in [WJ14a] that
the Bethe approximation is often accurate despite the failure of BP to converge. The main aim
of this chapter lies in enhancing BP so that it converges to accurate fixed points while preserving
its simple nature (of just considering local interactions).

Besides empirical analyses and some restricted theoretical studies, it remains an open problem
to obtain a rigorous understanding of the limitations of BP for general graphs. Implementation
details, as for example the initialization, play an important role in the case of multiple fixed
points. In this case, it may depend on the initialization whether BP provides accurate marginals
or not. The dependence of BP on such implementation details obviously poses a serious issue
for providing performance guarantees.

One way to get convergence guarantees is to consider the equivalent optimization problem
and to minimize the Bethe free energy FB. This, however, comes at the cost of an increased
runtime complexity; polynomial-time algorithms only exist for restricted classes of problems
and even approximating the global minimum might be problematic for graphical models with
arbitrary potentials [CCG+11,Shi12,WJ14a]. Hence, the pursuit for methods that approximate
the marginals with both runtime- and convergence-guarantees is still ongoing. These limitations

November 8, 2019 – 105 –



6 Enhancing Belief Propagation: Self-Guided Belief Propagation

motivate the search for modifications of BP that overcome these issues in order to increase the
accuracy and enhance the convergence properties. In this chapter, we introduce self-guided
belief propagation (SBP) that aims to fill this gap.

The evolution of the fixed points revealed a close relationship between the coupling strength
and the performance of BP. Especially strong couplings reduce the accuracy and deteriorate the
convergence properties. This and the observation that tuning the coupling strength continuously
deforms the fixed point minimizing the Bethe free energy inspired us to construct a homotopy.

More precisely, we first consider only local potentials (where BP is exact and has a unique
fixed point) and subsequently modify the model by increasing the pairwise potentials to the
desired values. SBP thus solves a deterministic sequence of models that iteratively refines the
Bethe approximation towards an accurate solution that is uniquely defined by the initial model.

We evaluate SBP for grid-graphs, complete graphs, and random graphs with Ising potentials
and, compared to BP, we observe superior performance in terms of accuracy; in fact SBP
achieves more accurate results than Gibbs sampling in a fraction of runtime. We theoretically
demonstrate optimality of the selected fixed point for attractive models with unidirectional local
potentials. Additionally SBP enhances the convergence properties and excels for general models
where SBP provides accurate results despite the non-convergence of BP. We further expect that
the ease of use lowers the hurdle for practical applications.

6.2 Self-Guided Belief Propagation (SBP)

In this section we present an intuitive justification of the proposed method and subsequently
introduce SBP in detail. We further present practical considerations and pseudocode of SBP. A
formal treatment of SBP is deferred to Section 6.4.

The current understanding of BP is that strong (pairwise) potentials negatively influence
BP and that in incorporating the potentials slowly [BKMZ07] may reduce the overall number
of iterations. Inspired by our observations in Chapter 5 that strong local potentials increase
accuracy and lead to better convergence properties, we aim to reduce the influence of the pairwise
potentials that negatively influence BP.

SBP starts from a simple model with independent random variables and slowly incorporates
the potential’s strength, i.e., it solves the simple problem first and – by repetitive application
of BP, keeps track of the fixed point as the interaction strength is increased by a scaling term.
Again we resort to the homotopy continuation method for this purpose.

More formally, SBP considers an increasing length-K sequence {ζk} where k = 1, . . . ,K such
that ζk < ζk+1 and ζk ∈ [0, 1] with ζ1 = 0 and ζK = 1. This further indexes a sequence of
probabilistic graphical models {Uk} that converges to the model of interest UK = U. Every
probabilistic graphical model has a set of potentials Ψk = {Φk(xi, xj),Φk(xi)} associated, where
Φk(xi) = ΦXi(xi) and the pairwise potentials at index k are exponentially scaled by

Φk(xi, xj) = exp(Jijζkxixj)

= ΦXi,Xj (xi, xj)
ζk . (6.1)

We further denote the fixed points of BP for Uk by µ◦k. The initialization determines the
performance of BP if multiple fixed points exist; SBP always provides a favorable initialization
for the model Uk by the preceding fixed point µ◦k−1 and performs the composite function

µ◦K = BP◦K
(
BP◦K−1

(
· · · BP◦1

(
µ1
1

)))
. (6.2)

This may lead to problems if the fixed point becomes unstable for some value k < K in which
case we cannot rely on BP to keep track of the fixed point anymore. Instead, SBP provides the
last stable fixed point in that case, i.e., µ◦k−1 as the final estimate.
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Figure 6.1: Illustrative example: SBP proceeds along the smooth solution path and obtains accurate
marginals despite instability of the terminal fixed point. Note that the fixed point becomes un-
stable for ζ > 0.7; SBP stops and provides the last stable solution (that is already close to the
exact one) as an approximation.

In other words, SBP relaxes the problem of minimizing FB by making all variables independent
(and the Bethe approximation exact). Then, the problem is deformed into the original one by
increasing ζ from zero to one. Thereby, a stationary point FB◦ emerges as a well-behaved path
(cf. Proposition 1 in Section 6.4) and SBP keeps track of it with BP constantly correcting the
stationary point.

We illustrate how SBP approximates the marginals for a problem where BP fails to converge
in Figure 6.1. Initially, SBP obtains the pseudomarginals for ζ = 0 and then estimates the
marginals of the desired problem by successively increasing ζ and running BP to keep track
of the emerging solution path. Note that the approximated marginals are already close to the
exact ones in this example; experiments show that this is often the case (cf. Section 6.3).

6.2.1 Practical Considerations

The procedure of SBP is essentially a path-tracking problem. As already discussed for the NPHC
method in Section 4.3.3, such a problem consists of three key steps: prediction, correction, and
step-size adaption. While the implementation details of these steps may influence the perfor-
mance, we have found in our experiments that the efficiency of SBP remains largely unaffected.
We will now describe the specific details used for all three steps throughout our experiments.

In practice the runtime of SBP is influenced by the difference between two successive fixed
points µ◦k and µ◦k−1 – the difference is primarily determined by the number of steps K. Ideally,
to reduce the difference, K should be as large as possible. This, however, increases the runtime
as well (cf. Theorem 8); in practice we would choose K as small as possible but as large as
necessary. Moreover, one can adaptively increase the step size if two successive fixed points are
close, i.e., if µ◦k ' µ◦k−1 (cf. [SW05, pp.23], [AG03]). Our experiments show that it is sufficient
to use rather coarse steps (we used K ≤ 10 for all reported experiments).

Additionally, instead of initializing BPk with its preceding fixed point messages, i.e., µ1
k =

µ◦k−1 one can (e.g., by spline extrapolation) estimate µ1
k = f(µ◦k−1,µ

◦
k−2, . . . ,µ

◦
k−l) so that

µ1
k
∼= µ◦k to reduce the overall number of iterations. We empirically observed that the benefit

diminishes for l > 3.

6.2.2 Pseudocode

Pseudocode of SBP is presented in Algorithm 1. The maximum number of iterations for BP is
given by NBP = 103. We randomly initialize µ1

1 and either use fixed step size or adaptive step
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size (adaptive stepsize = 1). The sequences of messages is contained in {µ◦k} = {µ◦1, . . . ,µ◦k}.
Cubic spline extrapolation is applied in ExtrapolateMsg to estimate the initial messages of the

subsequent model.
We further present the pseudocode for the adaptive step size controller in Algorithm 2.

Algorithm 1: Self-Guided Belief Propagation (SBP)

input : Graph G = (X,E), Potentials Ψ
output: Fixed point messages µ◦

1 initialization µ1
1 ← µ1

2 k ← 1
3 stepinit ← 1

10
4 ζ1 ← 0
5 while ζ ≤ 1 do
6 Ψ(ζk) ← ScalePotentials(Ψ, ζk)
7 (µ, n) ← BP(µ1

k,Ψ(ζk), NBP)

8 if n < NBP then
9 µ◦k ← µ

10 else
11 break

12 if adaptive stepsize then
13 ζk+1 ← ζk+ AdaptiveStepSize({µ◦k}, stepinit, k)
14 else
15 ζk+1 ← ζk + stepinit

16 µ1
k+1 ← ExtrapolateMsg({µ◦k},{ζk})

17 k ← k + 1

18 µ◦ ← µ◦k−1

Algorithm 2: Adaptive Step Size Controller

input : Sequence of messages {µ◦k}, stepinit, k
output: step

1 step← stepinit

2 threshold ← 1 · 10−3

3 l← 1
4 while

(
MSE(µ◦k) − MSE(µ◦k−l)

)
< threshold do

5 l← l + 1
6 step← step+ stepinit · l

6.3 Experiments

We apply SBP to attractive (Section 6.3.2) and general (Section 6.3.3) models on n × n grid
graphs of different size, and to complete and random graphs (average degree of d̂G = 3) with
N = 10 random variables. Experiments were performed for these graphs in order to render the
computation of the exact marginals feasible and to make the results comparable to previous
work [WTJS14,SJ08,MJGF09,SRF16].
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6.3.1 Experimental Settings

SBP is evaluated and compared to BP, BPD (BP with damping), and Gibbs sampling. The
exact marginals are obtained by the junction tree algorithm and the accuracy of the marginals
is evaluated by the mean squared error EP (m) between the approximate marginals at the mth

fixed point P̃mXi(xi) and the exact marginals PXi(xi). Additionally, we approximate the global
minimum FB∗ by [WJ14a] and evaluate the mean squared error (MSEB) between the approx-
imate marginals and the marginals obtained at the global minimum of the Bethe free energy
P̃ ∗Xi(xi). We further compare the runtime of all methods by counting the overall number of BP
iterations and the number of iterations for Gibbs sampling.40

We consider L = 100 models with random potentials for every experiment. The initial mes-
sages are randomly initialized 100 times for each of these L models, before applying BP with
and without damping. We consider BP (and BPD) as converged if at least a single message
initialization (out of 100) exists for which BP converges. We report the convergence ratio, i.e.,
the number of experiments (or probabilistic graphical models) for which BP converged at least
once divided by the overall number of models L.

The reported mean-squared error EP (m) and the number of iterations are averaged over all
convergent runs of BP and BPD (i.e., BP◦ and BP◦D) while all runs that did not converge are
discarded. SBP, on the other hand, allows obtaining an approximation of the terminal fixed
point in case that this fixed point is unstable, which prevents BP and BPD from converging.
Therefore, we average the error and the number of iterations over all L models for SBP (SBPall),
Gibbs sampling (Gibbsall), and for minimization of the Bethe approximation (FB∗all).

For BP and SBP we set the maximum number of iterations to NBP = 103 and use random
message scheduling. For BPD we choose a large damping factor ε = 0.9 to account for strong
couplings. Such a large damping factor helps to prioritize convergence over runtime – this
admits comparison of marginal accuracy for a wide range of models. The maximum number
of iterations, however, has to be increased to NBP = 104 in order to account for the slower
convergence. Carefully selecting a damping factor that depends on a given model may reduce
the number of iterations until convergence but can not increase the accuracy; moreover, if chosen
too small BPD may fail to converge. The accuracy of SBP is only marginally affected by its
parameters and we use the following parameters for all experiments: K ≤ 10 , adaptive step
size, and cubic spline extrapolation. Gibbs sampling is run for 105 iterations.

40 Computing the acceptance-probability requires similar runtime as one BP message update.
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Figure 6.2: MSE, i.e., EP (m), and number of iterations for: SBPall (blue), BP◦ (magenta), and BP◦D
(green); the local potentials are specified by θi ∼ U(−0.5, 0.5) and the pairwise potentials are
specified by (a) Jij ∼ U(0, β) (attractive model); (b) Jij ∼ U(−β, β) (general model).

6.3.2 Attractive Models

We consider grid graphs with N = 100 random variables (10× 10), random graphs with N = 10
random variables, and complete graphs with N = 10 random variables. For each graph, we gen-
erate L = 100 models for every value of β ∈ {0, 0.5, . . . , 5} and sample the potentials according
to θi ∼ U(−0.5, 0.5) and Jij ∼ U(0, β); i.e., we consider 1100 different parametrizations. Note
that BP is randomly initialized 100 times for every considered parametrization. We compute
EP (m) for every value of β and visualize the mean and the standard deviation of the MSE41 as
well as the number of iterations in Figure 6.2 (a).

Note that BP (magenta) converges rapidly for all graphs considered; hence, there is no ad-
ditional benefit for BPD (green) that only increases the number of iterations. SBP (blue) only
slightly increases the number of iterations as compared to BP and converges in fewer iterations
than BPD. Note that SBP is guaranteed to capture the global optimum if all local potentials are
unidirectional (cf. Theorem 9-10). But even if we do allow for random local potentials, we em-

41 Note that the mean-squared error is not Gaussian distributed but we report the standard deviation for sim-
plicity.
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Table 6.1: Results for general models with Jij ∈ {−1, 1} on grid graphs (N = 25 and N = 100),
complete graphs (N = 10), and random graphs (N = 10). We report the MSE to the
exact marginals, i.e., EP (m), and the MSE to the Bethe approximation, i.e., MSEB,
convergence ratio, and the overall number of BP iterations. Only converged runs
are considered for BP◦ and BP◦D but all runs are considered for SBPall, Gibbsall,
and FB∗all.

Grid Graph (5× 5) Grid Graph (10× 10) Complete Graph Random Graph

θ 0 0.1 0.4 0 0.1 0.4 0 0.1 0.4 0 0.1 0.4

EP (m)

BP◦ 0.338 0.251 0.102 - - 0.184 0.463 0.466 0.356 0.252 0.202 0.101

BP◦D 0.226 0.198 0.066 0.186 0.240 0.154 0.463 0.473 0.422 0.128 0.116 0.083

SBPall 0.000 0.029 0.047 0.000 0.026 0.077 0.000 0.055 0.074 0.000 0.048 0.049

FB∗all 0.036 0.042 0.069 - - - - - - - - -

Gibbsall 0.001 0.016 0.064 0.001 0.037 0.120 0.096 0.096 0.077 0.001 0.011 0.048

Convergence
ratio

BP◦ 0.05 0.11 0.26 0.00 0.00 0.02 0.41 0.42 0.50 0.30 0.33 0.49

BP◦D 0.11 0.16 0.69 0.01 0.02 0.12 0.41 0.41 0.50 0.62 0.64 0.80

Number of
iterations

BP◦ 40 52 84 - - 102 17 17 18 42 53 50

BP◦D 1370 1449 1735 2711 2313 2599 211 207 234 1077 1057 873

SBPall 5 182 146 5 149 209 5 51 110 5 149 131

Gibbsall 105 105 105 105 105 105 105 105 105 105 105 105

MSEB SBPall 0.036 0.037 0.022 - - - - - - - - -

Global Min SBP 100 10 23 - - - - - - - - -

pirically observe that SBP consistently outperforms BP with respect to accuracy. This becomes
especially evident for models with strong couplings: these models exhibit multiple stable fixed
points [KMCP18] such that, depending on the initialization, BP often converges to inaccurate
fixed points.

6.3.3 General Models

General models admit frustrated cycles and traditionally pose problems for BP and other meth-
ods that aim to minimize the Bethe approximation.

First, in order to evaluate the performance of SBP we consider θi = θ ∈ {0, 0.1, 0.4} and
draw the couplings with equal probability from Jij ∈ {−1, 1}; the results are summarized in
Table 6.1. Although BP and BPD fail to converge for most models we observe that SBP stops
after only a few iterations and significantly outperforms BP in terms of accuracy. In fact, SBP
achieves accuracy competitive with Gibbs sampling but requires three orders of magnitude fewer
iterations.

Second, we further apply SBP to general graphs and evaluate whether SBP provides a good
approximation of the pseudomarginals that correspond to the global minimum of the Bethe
free energy according to P̃ ∗B = arg minLFB(P̃B) (cf. (3.29)). Therefore we consider grid graphs
(of size 5 × 5), which still allows us to approximate FB∗ – and the related pseudomarginals
– reasonable well by [WJ14a]. The results are summarized in Table 6.1 and show that SBP
approximates P̃ ∗B within the accuracy of our reference method (MSEB). We further report the
number of times where SBP obtains the terminal fixed point, i.e., for UK , in Table 6.1 (Global
Min). It becomes obvious that SBP approximates the terminal fixed point reasonably well,
despite frequently stopping for ζk < 1. Moreover, closer inspection of the accuracy reveals that
SBP does not only approximate the “correct” pseudomarginals well (MSEB), but concurrently
provides an accurate approximation of the exact marginals (MSE).

Third, we investigate how the approximation quality depends on the scaling parameter ζk.
Therefore, we depict the evolution of the MSE (to the exact solution) and MSEB (to the ap-
proximate solution) in Figure 6.3. We observe that MSEB (blue) decreases monotonically with
every iteration, which empirically verifies that SBP proceeds along a well-behaved solution path
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Figure 6.3: MSE, i.e., EP (m), (orange) and MSEB (blue) over the cumulative number of iterations. Results
are averaged over 100 grid graphs (5× 5) with θi = 0.4 and Jij ∈ {−1, 1}.

(cf. Proposition 1). Note that MSEB decreases rapidly in the first iterations and SBP spends a
major part of the overall runtime for slight improvements. The MSE to the exact solution, on
the other hand, decreases first until it increases again as SBP incorporates stronger couplings.
Stronger couplings tend to degrade the quality of the Bethe approximation in loopy graphs and
lead to marginals that are increasingly biased towards one state [Wei00,KMCP18]. This explains
why the MSE to the exact solution increases as SBP converges towards the terminal fixed point.
One could exploit this behavior and restrict the runtime by stopping SBP after consumption of
a fixed iteration budget; this may even increase the accuracy with respect to the exact solution.

Finally, we aim to investigate the influence of the coupling strength: therefore we consider
θi ∼ U(−0.5, 0.5) and Jij ∼ U(−β, β) . For every β ∈ [0, 5] we execute L = 100 experiments and
present the averaged results in Figure 6.2 (b). Note that we restrict the results to β ≤ 2 on the
grid graph because BP did only converge sporadically for models with stronger couplings. SBP
requires only slightly more iterations than BP and fewer than BPD, even though we compare
only to models where BP (or BPD) converged. The benefits of SBP become increasingly evident
as the coupling strength increases. Again SBP (blue) significantly outperforms BP◦ (magenta)
and BP◦D (green) on all graphs with respect to accuracy.

6.4 Theoretical Analysis of Self-Guided Belief Propagation

Here we present some more formal arguments and discuss the properties of SBP to understand
under which conditions the algorithm (presented in Section 6.2) can be expected to perform
well. We only present the most important Theorems and their implications below and defer the
longer proofs to Appendix A.1.

6.4.1 Definitions

First, we fix our notation: we denote the pseudomarginals, corresponding to local minima of
the Bethe free energy, of Uk by P̃mB (ζk), and, with slight abuse of notation, we refer to the
corresponding stationary point of the Bethe free energy by FBm(ζk) = FB(P̃mB (ζk)). Note that
the superscript m accounts for the fact that we are only looking at the local minima of FB (cf.
Section 3.3.2).

It is beneficial to study the behavior of SBP as K tends towards infinity. Therefore we consider
the unit interval ζ ∈ [0, 1] to be the compact support of the functions FB(ζ) and P̃B(ζ). SBP is
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Figure 6.4: Solution path (cf. Section 6.4.1) for a grid graph; start- and endpoint are depicted by blue
points. Note how Propositions 1.1 - 1.2 are fulfilled.

inspired by the idea to proceed along a so-called solution path as ζ increases from zero to one in
order to obtain the marginal distributions for the model of interest. Therefore, we shall consider
a continuous homotopy function H(µ, ζ) : R|µ|+1 → R|µ| that is defined by

H(µ, ζ) = µ − BP(µ) where Ψ = Ψ(ζ). (6.3)

Then, a solution path

c(ζ) : H(µ, ζ) = 0 (6.4)

exists that (i) has a start point c(ζ = 0) = µ : H(µ, ζ = 0) = 0, (ii) an endpoint c(ζ = 1) =
µ : H(µ, ζ = 1) = 0, and (iii) is continuous over ζ ∈ [0, 1], i.e., it connects the start- with the
endpoint. SBP then proceeds along some solution path from a given start- to its endpoint. Note
that the solution path c(ζ) is defined along the solutions to the fixed point equations and thus
it implicitly defines the pseudomarginals P̃mB (ζ) by (3.2) and (3.3). In particular, we refer to
the start- and endpoint by P̃mB (ζ = 0) and P̃mB (ζ = 1) respectively.

The following example in Figure 6.4 illustrates the fixed point evolution for a grid graph with
attractive couplings. This example exhibits a unique solution path according to our definition;
note, however, that a second curve exists, which lacks a start point and is therefore of no
relevance for any method that proceeds along a solution path defined by the homotopy in (6.3).

6.4.2 Properties of Self-Guided Belief Propagation

The following proposition summarizes the main properties of the solution path that is specified
and followed by SBP.

Proposition 1 (Properties for attractive and general models).

(1) BP has a unique fixed point µ◦1 for ζ1 = 0, so that SBP has a unique start point P̃mB (ζ = 0).
(cf. Theorem 6)

(2) A smooth (i.e., continuous) solution path originates from the start point P̃mB (ζ = 0).
(cf. Theorem 7)

(3) SBP efficiently proceeds along this (unique) solution path.
(cf. Theorem 8)
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Theorem 6 (Proposition 1.1). A unique solution exists for ζ = 0, i.e., a single start point
P̃mB (ζ = 0) exists, and BP is guaranteed to converge. Moreover, this start point is exact, i.e.,
P̃Xi(ζ = 0) = PXi(ζ = 0) for all Xi ∈ X.

Proof. First, let us obtain the singleton marginals by summing over the pairwise marginals such
that P̃Xi(xi) =

∑
xj∈X P̃Xi,Xj (xi, xj). For ζ1 = 0, that is for Φ1(xi, xj) = 1 it follows that

marginalizing over the pairwise marginals (cf. (3.3)) equates to

P̃Xi(xi) = Φ(xi)
∏

Xk∈{∂(i)\Xj}

µ◦ki(xi) ·
∑
xj∈X

Φ(xj)
∏

Xl∈{∂(j)\Xi}

µ◦lj(xj). (6.5)

Note that according to (3.1) µ◦ji(xi) is equivalent to the second part of (6.5) so that

P̃Xi(xi) = Φ(xi)
∏

Xk∈∂(i)

µ◦ki(xi), (6.6)

which equals (3.2). It follows that P̃Xi(+1) = eθi/(eθi + e−θi) = PXi(+1).

Note that Theorem 6 concurs with the sandwich-bound [WJ13, Th.4] that reduces to PXi(+1) =
θi/(e

θi + e−θi) = P̃Xi(+1) for Jij = 0. Theorem 6 thus reduces the problem of initializing SBP
to computing µ◦1, which can be done in linear time.

Theorem 7 (Proposition 1.2). Let P̃mB (ζ) be the pseudomarginals that are defined along the
unique solution path that originates from P̃mB (ζ = 0). Then, P̃mB (ζ) and the associated stationary
points FBm(ζ) are continuous on their compact support ζ ∈ [0, 1].

Proof. First, we show that the Bethe free energy FB(ζ) itself is an analytic function. Con-
sider (3.24) with the pairwise potentials defined by (6.1). Then, the derivative with respect to
ζ is given by

∂FB(ζ)

∂ζ
=− ∂

∂ζ

∑
(i,j)∈E

∑
xi,xj

P̃Xi,Xj (xi, xj) ln Φ(xi, xj)

=− ∂

∂ζ

∑
(i,j)∈E

∑
xi,xj

P̃Xi,Xj (xi, xj) · ζ · Jij · xixj

= −
∑

(i,j)∈E

Jij · χij . (6.7)

As an immediate consequence, we observe that FB(ζ) is continuously differentiable42 as (6.7) is
a finite sum over finite terms.43

We specifically consider the minimum FBm(ζ) that emerges from the global minimum FBm(ζ =
0) = FB∗(ζ = 0); this start point is unique by Theorem 6. It follows by (6.7) that FBm(ζ) varies
in a continuous fashion along the unique solution path for ζ ∈ [0, 1]. Further note that stationary
points are in a one-to-one correspondence with fixed points of BP which completes the proof.

Further note that the set of stationary points is finite (cf. Section 3.3.1)44 and that pitchfork
bifurcations may only occur if θi = 0 [PAM11], in which case SBP obtains the exact solution
(cf. Theorem 9).

Theorem 7 substantiates the claim that a smooth solution path emerges from the simple
problem.

42 Strictly speaking FB(ζ) is an analytic function.
43 This is in accordance with the fact that true phase transitions (singularities in the derivative of the free energy)

can occur only in the thermodynamic limit, where (6.7) is an infinite sum that equates to infinity.
44 This is also required for the one-step replica symmetry breaking assumption [MM09, Section19].
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Theorem 8 (Proposition 1.3). There exists some scaling factor ζk ≤ 1 for which SBP converges
to P̃mB (ζk) in O(KNBP ).

Proof of Theorem 8. SBP increases ζk as long as BP converges in fewer than NBP iterations,
and stops otherwise. Consequently, BP corrects the accuracy of the fixed point for each value
ζk within a bounded number of iterations. The runtime of SBP is further determined by the
choice of K, i.e., the step-size (cf. Section 6.2.1). Assume that SBP converges for ζk, then it
does so in O(K ·NBP ).

SBP is consequently capable of efficiently tracking the fixed point that emerges as ζ increases
and requires KNBP iterations at most. SBP may, however, only converge to a surrogate model
for ζk < 1 and is not guaranteed to obtain the pseudomarginals of the desired problem. One
can characterize this error by computing a bound on |FBm(ζk)−FBm(ζK)| given the difference
between Ψk and ΨK (cf. [IFW05, Theorem 16]).

Corollary 8.1. SBP obtains the pseudomarginals of the desired problem if and only if the
endpoint P̃mB (ζ = 1) is stable, i.e., if P̃mB (ζ = 1) ∈ S. This is an immediate consequence of the
fact that the convergence properties can only degrade along a given solution path (cf. Section 5.8).

Theorem 6-8 are of fundamental importance but do not relate to the accuracy of the obtained
stationary point. Assessing the quality of the Bethe approximation and the accuracy of BP for
general models is still an open research question that is beyond the scope of this thesis. However,
we further present Proposition 2 to discuss the accuracy of the obtained solution for attractive
models.

Proposition 2 (Properties for attractive models with unidirectional fields). The solution path
c(ζ) leads towards an accurate solution with P̃mB (ζk) = P̃ ∗B(ζk) and FB(P̃mB (ζk)) = FB(P̃ ∗B(ζK)).
(cf. Theorem 9 and Theorem 10)

We start by generalizing Griffiths’ inequality [Gri67] to the fixed points of BP (Lemma 4)
and subsequently provide Theorem 9-10 that discuss the accuracy of the fixed point obtained
by SBP.

Lemma 4. Consider two attractive probabilistic graphical models U0 and U1 with equal G and
with the potentials specified by θi > 0 and by J0

ij and J1
ij, where J0

ij < J1
ij for all (i, j) ∈ E. Let

us consider a fixed point of BP with positive means m0
i ∈ (0, 1]. Then, m0

i < m1
i and χ0

ij < χ1
ij.

The proof of Lemma 4 contains some tedious, although not too complicated, algebraic ma-
nipulations and is thus deferred to Appendix A.1.1

Theorem 9 (Prop. 2). Consider an attractive model with θi > 0.45 Then, mi(ζ) increases
monotonically along the solution path c(ζ); in particular SBP minimizes the Bethe approximation
error and is optimal with respect to marginal accuracy, i.e.,

P̃mB (ζ) = arg min
P̃kB∈M

EP (k)

= arg min
P̃kB∈M

EZ(k). (6.8)

We will only sketch the proof of Theorem 9 here and refer to Appendix A.1.2 for a more
elaborate treatment. Essentially, we have to bring the preceding Theorems together to show
that SBP obtains the most accurate marginals for attractive models with unidirectional fields.

Theorem 6 explains how the initial model can be solved exactly and that it has positive
mean and correlation for θi > 0. Consequently, Lemma 4 and Theorem 7 apply and guarantee a

45 Note that equal results can be obtained for θi < 0 because of symmetry properties.

November 8, 2019 – 115 –



6 Enhancing Belief Propagation: Self-Guided Belief Propagation

continuous solution path with monotonically increasing means mi(ζ). Optimality of the obtained
fixed point then is an immediate consequence of the definition of FB (cf. (3.24)), the RSB
assumption (which holds for these models, cf. Section 5.6.3), and the existence of at most two
local minima, i.e., M ≤ 2, for the considered models (cf. Lemma 5 and [WTJS14]).

Note that an attractive model with unidirectional fields is a special case of a (larger) attractive
model with vanishing fields (cf. [Fis67] and [SKZ17, Section 1.2]).

Theorem 10 (Proposition 2). Consider an attractive model with θi = 0. Then, SBP obtains
the exact solution, i.e., P̃mB (ζ = 1) = PB(ζ = 1).

Proof. Only considering attractive models makes it straightforward to calculate the exact so-
lution if all θi = 0. The exact solution always has zero mean for all random variables, i.e.,
mi(ζ) = 0 for all values of ζ. Moreover, the exact solution coincides with a stationary point
FBm(ζk) [MK07]. Depending on the coupling strength, this stationary point is a stable minimum
(for sufficiently small values of Jij < JC) and a local maximum (for Jij > JC) (cf. Section 5.7.1
or to [MM09, pp.385]).

SBP consistently obtains this fixed point irrespective of its stability. Therefore, note that by
Theorem 6 all mi(ζ = 0) = 0 and all messages are equal, i.e., µ◦1(ζ = 0) = 1/2 for all (i, j) ∈ E.
SBP remains exactly on this fixed point and obtains the exact marginals as these fixed point
messages can be represented exactly, without any quantization errors in binary arithmetic.

To conclude, for attractive models with θi ≤ 0 or θi ≥ 0, SBP either obtains the fixed point
that corresponds to the global minimum FB∗ (Theorem 9), or it obtains the fixed point that
corresponds to the exact solution, i.e., to minFG (Theorem 10).

For general models mi, need not increase monotonically along the solution path and it is not
obvious whether SBP obtains the most accurate fixed point. However, the experimental results
in Section 6.3.3 at least corroborate that SBP converges to accurate fixed points in many cases.

6.5 Conclusion

This chapter aimed at deriving a simple and robust method to efficiently perform approximate
inference for models where BP fails to converge. The observations from our solution space
analysis in Chapter 5 suggested that an accurate fixed point lies at the end of a solution path
that emerges from the origin (where Jij = 0). We managed to enforce convergence towards this
fixed point by changing the updated function accordingly. To do so, we resorted to the homotopy
method once again and utilized its proven capability of keeping track of solution paths, where
we relied on BP in the correction step.

Our theoretical analysis of SBP for attractive models with unidirectional local fields revealed
the existence of a unique, well-behaved solution path that leads to the best possible fixed point
of BP and that can be tracked successfully by SBP. We further applied SBP to general models,
where, despite the lack of theoretical guarantees, it exhibited a promising performance. Overall
SBP consistently obtained marginals of better quality than BP with and without damping and
approximated the marginals well on models for which BP did fail to converge at all.

One surprising effect of SBP was that it sometimes provided marginals that were even more
accurate than the ones at the global minimum of FB. This occurred frequently, specifically
whenever SBP terminated early because of BP failing to converge in the correction step before
the pairwise potentials were set to their desired value.

So far we can only provide some hand-waving arguments for this behavior: Therefore, note
that common wisdom of BP tells us that BP usually fails to converge because of strong pairwise
potentials; additionally, we have seen how the marginals become overconfident and tend to be
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strongly biased towards one state as the coupling-strength increases. The latter property explains
why the approximation quality of FB degrades as its minimum moves further away from the
minimum of FG . This implies that following the solution path to its very end only makes the
accuracy of the estimated marginals worse. It seems that the former property implicitly prevents
this from happening and that the stability breaks down somewhat close to the exact solution.

First empirical evaluations suggest that this is indeed quite often the case. This raises an
intriguing theoretical question: Is there really some fundamental connection between the exact
marginals and the approximated marginals that are obtained at the onset of instability?– and
if so, what is the nature of this connection?

In a more concrete manner, it also remains to generalize our theoretical analysis. So far
we have only discussed the case of attractive models with unidirectional local fields, which –
admittedly – is a rather restrictive setting. Although this restriction simplified our analysis
significantly and provided some interesting insights into the nature of SBP, it still leaves some
room for improvement.

Going back to our theoretical analysis once more, our statement of optimality relied on the fact
that the global minimum of FB is optimal with respect to the accuracy of both the marginals
and the free energy. Yet, it is not obvious if such a relationship generalizes to more general
models as well. We will thus devote the next chapter to studying the underlying principles that
relate the approximation quality of the marginals and of the free energy to each other.
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7
Understanding Belief Propagation:

Accurate Marginals or Partition Function

”To the wise, life is a problem;
to the fool, a solution.”

– Marcus Aurelius

This chapter introduces and investigates a novel class of models; these are attractive models
with varying local potentials that we term patch-potential models. The inspiration for this
chapter is twofold: First, our solution space analysis was restricted to relatively small models so
far, which limits the insights; this fueled the search for models that exhibit more than three fixed
points. Second, the proof for optimality of SBP relied on the fact that the global minimum of
the Bethe free energy provides the most accurate marginals. The reliance on this crucial detail
led to questioning the common assumption that such a correspondence extends to more general
models as well.

We begin with the introduction of patch potential models and the specification of the consid-
ered models in Section 7.2. The main contribution of Section 7.3 is the discussion of the solution
space properties by means of an example. In particular, this includes a detailed evaluation
of the error in the marginals and the partition function for a wide range of parameters. We
then provide theoretical arguments in Section 7.4 that explain the differences between accurate
marginals and an accurate partition function and show under which conditions a fixed point
exists that approximates both quantities well.

The content of this chapter constitutes the major part of the work in [KP19].

7.1 Motivation

We have restrained ourselves to relatively well-understood models so far: both the exhaustive
analysis of the solution space in Chapter 5 and the validation of the proposed algorithm in
Chapter 6 are limited to models with identical or random potentials. While models with iden-
tical potentials either have one or three fixed points – and are thus too restrictive as to fully
understand the behavior of BP – models with random potentials lend themselves to an analysis
in terms of expected behavior. The randomness of the potentials, however, introduces a solution
space so complex that it cannot be analyzed exhaustively anymore.

We would like to have a model class, simple enough so that it can be well understood; yet
complex enough so that it exhibits a rich solution space with more than just three fixed points.
For this particular purpose, we introduce patch potential models, a rich class of attractive models
with inherent structure. These models exhibit many interesting phenomena and provide deep
insights into the relationship between the approximation quality of the marginals and the par-
tition function.

So far we have observed that the approximation quality may be severely affected by the ex-
istence of multiple fixed points with varying accuracy. In the optimization literature, this issue
is often eluded by obtaining and combining all fixed points (cf. RSB theory in Section 3.5.4).
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Although a similar approach seems promising for the models studied so far (cf. Chapter 5),
computing all fixed points is problematic for more general models. It is often simply not pos-
sible to obtain the set of all fixed points in an efficient manner. Remember that one particular
aim of Chapter 5 was to specify model classes for which a unique fixed point exists; with the
focus on patch potential models, we adhere to this tradition but aim to specify model classes for
which a structured and well-behaved solution space is present. Instead of conditions for unique-
ness, we are interested in conditions that allow the set of all fixed points to be obtained efficiently.

On the other hand, if one is only interested in selecting a single fixed point, one should
obviously strive for selecting the best possible fixed point available. Unfortunately, however,
fixed points cannot be compared with respect to the marginal accuracy unless the exact solution
is available.

Considering the equivalent variational interpretation admits various provable convergent al-
gorithms (cf. Section 3.3.3). Note that the correspondence to the Bethe free energy allows one
to make some more quantitative statements regarding the approximation quality. At least for
attractive models, it is well established that the Bethe free energy upper bounds the Gibbs free
energy [Ruo12] so that the global minimum provides the most accurate approximation of the
partition function. Similar properties are not known for the marginal accuracy, however, and,
except for rather simple models (as analyzed in Chapter 5), it remains an open question whether
accurate marginals are to be obtained at the global minimum of the Bethe free energy. It is a
common conjecture that this is the case; if true, this would provide a simple way of comparing
the marginal accuracy of multiple solutions in terms of their corresponding partition function.
This chapter studies this relationship in detail and further provides sufficient conditions for the
global minimum of FB to yield the most accurate marginals.

7.2 Model Specifications

We focus on one specific model class that represents a special case of binary pairwise models.
We will consider only finite-size attractive models i.e., where all couplings Jij > 0 are positive;
specifically, we consider models with equal couplings Jij = J for all edges (i, j) ∈ E. We shall
further distinguish three different types of attractive models that show increasingly complex
behavior: (i) attractive models with vanishing local fields θi = 0; (ii) attractive models with
unidirectional fields, i.e., either θi < 0 or θi > 0; and (iii) finally, attractive models with arbitrary
local fields. Such models are particularly interesting in terms of their phase transitions and are
studied under the name of ferromagnetic random-field Ising models (RFIM) in physics where all
θi are drawn according to some distribution.

7.2.1 Definitions

Attractive models with vanishing fields either have a unique or two symmetric fixed points both
for infinite-size models [MM09] as well as for finite-size models (cf. Chapter 5). The marginals
of two fixed points m and k are considered as symmetric if

P̃mXi(+1) = 1− P̃ kXi(+1) (7.1)

for all Xi. An eminent consequence of how the Bethe free energy was defined as a function of
the pseudomarginals (cf. (3.24)) is that symmetric fixed points must also have the same value
of FB. Attractive models with unidirectional fields show a similar behavior and – although not
exactly symmetric – have two fixed points that are almost symmetric.

Another important concept are flipped random variables: a random variable is flipped if the

– 120 – November 8, 2019



7.2 Model Specifications

marginals are not aligned with the local potential, i.e., if( P̃Xi(+1)

P̃Xi(−1)
− 1
)
θi < 0. (7.2)

We further say that a fixed point is state-preserving if no random variable is flipped. If all
marginals are in favor of the same state xi, i.e., if P̃Xi(xi) > 0.5 for all Xi ∈ X we call the
corresponding fixed point biased towards xi.

Attractive models with arbitrary local fields exhibit many non-trivial properties, may have
a complex solution space, and are studied as one of the simplest forms of disordered sys-
tems [You98]. Disordered systems are systems that potentially have many fixed points, whereas
many random variables are flipped.

7.2.2 Patch Potential Models

The definition of patch potential models follows the definitions of the RFIM, with the main
difference that the local potentials are not i.i.d but obey a correlation between neighboring
random variables. Moreover, we will only consider models with identical values for all local
fields, albeit possibly with different sign, i.e., θi ∈ {−θ,+θ}.

Definition 7.2.1. Patch potential models are binary pairwise models in accordance with (2.14)
that have attractive couplings Jij = J > 0 and that consist of multiple non-overlapping patches
Gi with G =

⋃
i Gi. A patch Gi = (Xi,Ei) is a connected subgraph that is induced by a subset

of nodes Xi ⊂ X with identical local potentials θi = θ or θi = −θ, where Ei = {(i, j) ∈ E :
Xi, Xj ∈ Xi}.

Note that we will only consider models with sufficiently large patches, so that the exact
marginals are state-preserving. Let us first consider a minimal example that is rich enough
to exhibit some non-trivial (i.e., non-symmetric) fixed points while being structured enough to
admit only few fixed points. This example serves as a model that allows us to get some intuition
(cf. Section 7.3) before we discuss the properties of patch potential models in a more general
manner (cf. Section 7.4).

Example 10 (Patch Potential Model).
Let G = (X,E) be a regular two-dimensional grid graph of size n × n with two equal-sized
patches. All variables in G1 experience a positive local field θ1 = θ whereas all variables in G2
experience the same negative local field θ2 = −θ (cf. Figure 7.1).

Figure 7.1: Exact solution for Example 10. Nodes are depicted in orange if PXi(Xi = 1) > 0.5 and in
blue otherwise; the opacity illustrates the value of the marginals.

The patch potential model is especially appealing as the composition of relatively few patches
admits a simplified treatment and comes with a couple of beneficial properties. In particular, we
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can identify a region in the parameter space (θ, J) that features a structured and well-behaved
solution space (cf. Section 7.3.2).

7.3 Fixed Point Behavior

If BP converges, it often provides accurate results; if multiple fixed points exist, however, the
performance may vary considerably between different fixed points. We briefly discuss the RSB
(replica symmetry breaking) assumption that expresses the exact marginals as a combination
of all fixed points and illustrate why its success is limited to optimization problems so far
(Section 7.3.1).

Then, we discuss the solution space of Example 10 over a range of parameters and specify
different regions according to the structure of the solution space (Section 7.3.2).

Assessing the approximation quality of a specific fixed point is required to state performance
guarantees of BP. We recap existing results (Section 7.3.3) and discuss how the error of the
pseudomarginals and the Bethe partition function are related for patch potential models (Sec-
tion 7.3.4).

7.3.1 Combination Of Fixed Points

(Non-) convexity of the Bethe free energy depends on the structure of the graph and the po-
tentials. If the model has loops and sufficiently strong couplings multiple local fixed points will
exist (cf. Chapter 5). The common narrative considers the existence of multiple fixed points as
particularly problematic. While this arguably creates a scenario where the performance of BP
is more inconsistent, it also opens the door for methods that rely on the RSB assumption (cf.
Section 3.5.4). Remember that this allows us to form the exact solution according to

PXi(xi) =
1∑
mZmB

M∑
m=1

ZmB P̃mXi(xi),

if all local minima of FB are known and M =
{(
Z1
B, P̃

1
B

)
, . . . ,

(
ZMB , P̃MB

)}
is available. Note

that the RSB-assumption is well-established for infinite-size models [MPV87]; the validity of it
for finite-size models, however, remains controversial. Yet, the doubt about finite-size models
primarily stems from the lack of rigorous analysis and apart from that, the RSB assumption
is empirically well-confirmed for finite-size models as well (an exhaustive overview on recent
developments is presented in [LCMRTR13]). Additionally, we computed the exact solution for
all considered models using the junction tree algorithm and confirmed the RSB assumption for
the patch-potential models as well.

One efficient way to evaluate (3.53) for constrained satisfaction problems is known as survey
propagation [BMZ05]. The extension to more general models,however, still remains somewhat
elusive.

Approximate Survey Propagation

We have seen in Chapter 5 that a convex combination of the fixed points yields the exact solution
in the presence of multiple fixed points. Despite such promising results, the estimation of the
marginals according to this combination is hindered by the need for all M solutions. Obtaining
all fixed points that correspond to local minima of the Bethe free energy is a complex task only
possible for small-scale models (as in Chapter 5) and models with certain structure (e.g., random
graphs [COP19]), or potential-type (e.g., for optimization problems [ZK16]).
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Figure 7.2: Pmµ is the fraction of BP runs that converge to fixed point m with the corresponding Bethe
partition function ZmB . The mismatch increases with N and θ.

An approximate version of survey propagation was recently applied to similar models as in
this work [SRF16]. This was achieved by assuming that the fraction of randomly initialized
BP runs Pmµ that converges to the mth fixed point provides an approximation of the partition
function ZmB . This assumption is valid for attractive models with vanishing local fields; yet it is
unclear how this generalizes to models with non-vanishing local fields.

We aim to validate the assumption for regular grid graphs with n × n variables, θ 6= 0, and
with couplings large enough to admit two fixed points. Therefore, we compare both measures
for both fixed points by relating the ratio between the partition functions Z1

B/Z2
B to the ratio

P 1
µ/P

2
µ . The log-ratio46 between both measures is depicted in Figure 7.2. One would expect a

constant value close to zero if Pmµ provides a good estimate of ZmB ; this is obviously not the case
as Z1

B/Z2
B grows more rapidly. We conclude that the fraction of convergent BP runs serves as

a poor estimate of the partition function with the consequence that an approximate evaluation
of (3.53) leads to inaccurate marginals. This is particularly true as the local field and the model
size increase.

This raises two immediate questions: (i) Can we specify certain model-structures or parameter
configurations that grant efficient methods to obtain all fixed points in order to evaluate (3.53)?
(ii) If we obtain a subset of all fixed points M̃ ⊂M, can we compare the available fixed points
and select the best one?

7.3.2 Solution Space of Patch Potential Models

The solution space for a wide range of patch potential models is analyzed to answer whether
parameter configurations exist for which all fixed points can be obtained efficiently. A more
formal analysis that explains the subsequent observations is presented in Section 7.4.

Let G be a 10×10 grid graph with two equal-sized patches (Example 10). This model exhibits
three different regions, separated by critical values JA(θ) and JC(θ); see Figure 7.3 and Figure 7.4
for an illustration of the decomposition into multiple fixed points according to (3.53).

A unique fixed point exists for J < JA(θ), i.e., inside region (I), and BP converges; this fixed
point is state-preserving but slightly overestimates the marginals (cf. Section 7.3.4). Additional
fixed points emerge inside region (II) as the coupling strength increases to JA(θ) < J < JC(θ).
There are three fixed points (cf. Theorem 12) and all three fixed points are stable (cf. Theo-
rem 13). These fixed points consist of two symmetric fixed points where all marginals favor one

46 The log-ratio is independent of the coupling strength as long as J is large enough to admit two fixed points.
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J

JA JC

Figure 7.3: Illustration of the fixed points for all regions. The circle-width corresponds to the value of FB.

particular state and one state-preserving fixed point (cf. Section 7.3.4). As the coupling strength
increases even further to J > JC(θ), i.e., inside region (III), all three fixed points remain but
are suddenly accompanied by many more fixed points. It will therefore be increasingly hard
to obtain all fixed points numerically, so that one can only hope to obtain a subset of all fixed
points in practice.

The actual boundaries between the regions are numerically estimated and are depicted in
Figure 7.4. The fixed points are obtained by repeated application of BP (2000 times for each
(θ, J)) with different random initial conditions. Furthermore, we apply random scheduling to
enhance the convergence properties as any predetermined schedule would favor a specific fixed
point.

To answer question (i) from Section 7.3.1: one region exists in the parameter space (illustrated
in blue) for which all fixed points can be obtained efficiently. For region (III) (illustrated in
red), however, the number of fixed points suddenly increases and we cannot rely on BP to obtain
all fixed points.

7.3.3 Approximation Accuracy

Let J > Jc(θ) and assume that a subset M̃ ⊂ M of all fixed points that constitute minima of
FB is provided; then, how can we select the best one? Unfortunately, there is no way to tell us
how accurate a particular fixed point is (if we do not have access to the exact solution). It is
therefore an important problem in its own to measure the accuracy, or at least provide a bound
on the approximation error. We will first discuss established results regarding the accuracy of
both the Bethe partition function and the pseudomarginals. Subsequently, we will delve into
the particularities for patch potential models and show how the accuracy may differ between
both objectives.

We measure the error of the partition function ZmB = ZB(P̃mB ) of the mth fixed point by EZ(m)
in terms of the relative error between the log-partition functions according to (3.36). Note that
we only consider attractive models, for which the Bethe partition function also bounds the par-
tition function, i.e., ZB < Z [Ruo12]; obtaining the global minimum of FB is therefore optimal
with respect to the error of the partition function as arg minZmB (EZ(m)) = exp(−minLFB(P̃mB )).

The error of the singleton marginals EP (m) is measured by the mean squared error (MSE)
according to (3.38). We are not aware of an explicit relationship that connects both worlds
and relates the error of the marginals to the error of the partition function, except for homo-
geneous47 attractive models (cf. Lemma 5). It is therefore often assumed that minimizing FB
will be optimal in terms of marginal accuracy for more general models as well (cf. Chapter 6

47 These are models that have a single value J for all edges and a single value θ for all variables
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Figure 7.4: Illustration of all regions and boundaries for Example 10: the black dots depict the boundary
below which (7.3) holds; the approximated boundary according to (7.4) is depicted by the solid
black line.

and [WTJS14]). More formally this assumption states that

arg min
m∈M

EZ(m) = arg min
m∈M

EP (m). (7.3)

This assumption is, however, not valid in general as we will now show in Section 7.3.4.

7.3.4 Comparison Of Marginal Accuracy and Partition Function Accuracy

We aim to evaluate the relationship between the accuracy of the pseudomarginals and the
accuracy of the partition function and whether (7.3) holds in general. First, we state that (7.3)
does hold for homogeneous attractive models that have two fixed points at most [WTJS14].
This is a direct consequence of (3.53) or by casting the model as a larger one with vanishing
local fields (cf. discussion after Theorem 9).

Lemma 5. Attractive models with identical values θi = θ have two fixed points for J > JA(θ).
The fixed point m that minimizes EZ(m) further provides the global minimum minL(FB) and
minimizes EP (m) as well.

Second, we empirically validate whether minimizing FB will provide the most accurate marginals
for Example 10. Figure 7.5 illustrates the error in the marginals and the error in the partition
function for all fixed points. The fixed point that provides the global minimum to FB, and thus
minimizes EZ(m) is emphasized in blue, the fixed point minimizing EP (m) is emphasized in
red, whereas the fixed point minimizing both quantities jointly is emphasized in green.

Let us take a closer look at region (II) in particular: three fixed points exist that can be
combined to yield the exact solution (see Figure 7.1 for the exact solution). Two of these fixed
points, r and q, are each biased towards one state and, because of the symmetric model, have
identical values FBr = FBq. The state preserving fixed point p on the other hand provides the
most accurate marginals inside (II). However, while p also provides the global minimum of FB
for small values of J, Figure 7.5 shows that FBp turns into a local minimum for J ≥ 0.65 .
No principle relationship between the accuracy of the marginals and the partition function can
therefore be observed inside (II) and (7.3) does not necessarily hold (cf. Theorem 15).

For region (III) many more fixed points (u, v, . . .) emerge that all have similar values EZ(u)
and EP (u); we visualize some of them in Figure 7.5. These fixed points provide slightly more

November 8, 2019 – 125 –



7 Understanding Belief Propagation: Accurate Marginals or Partition Function

0.4 0.5 0.6 0.7 0.8 0.9 1 1.1 1.2 1.3 1.4 1.5

0

0.1

0.2

0.3

0.4

0.5

0.6

P̃ r
B

P̃ q
B

P̃ p
B

(I) (II) (III)

P̃ u
B

P̃ v
B

J

E
P

(m
)

(a)

0.4 0.5 0.6 0.7 0.8 0.9 1 1.1 1.2 1.3 1.4 1.50

0.02

0.04

0.06

0.08

0.1

0.12

(I) (II) (III)

J

E
Z

(m
)

(b)

Figure 7.5: Accuracy of the marginals (a) and of the partition function (b) for Example 10 with |θi| = 0.1: we
emphasize the fixed points minimizing EZ(m) (blue), minimizing EP (m) (red), and minimizing
both quantities (green).

accurate marginals than the state-preserving one, although it should be noted that all fixed
points do not approximate the marginals well inside (III). On the contrary, considering EZ(u),
these additional fixed points provide the worst approximation to the partition function and
have even higher values FBu > FBp > FBq. The biased fixed points p, q that approximate the
marginals worst, on the other hand, approximate the partition function relatively well.

Why fixed points exist that minimize the marginal error but are only local minima of FB can,
however, not be answered by the above observations. Closer inspection of FB for different types
of fixed points reveals a threshold (black dots in Figure 7.4) below which (7.3) holds. Some mild
assumptions on the solution space lead to a lower bound on this threshold (cf. Theorem 16)
according to

2J
√
N − θN = 0. (7.4)

This bound, illustrated by the solid black line in Figure 7.4, becomes asymptotically exact. Note
that the slope, defined by (7.4) increases with the model size N so that the global minimum of
FB provides the most accurate marginals for a wider range of parameters.

7.4 Theoretical Analysis

Here we properly define the boundaries JA(θ) and JC(θ) between different regions and provide
formal arguments that explain the observations from Section 7.3.2. While some properties are
directly attributable to (3.53), several results are based on the fact that the patch potential
model consists of multiple patches with a unidirectional local field. First, we need to prepare
an alternative update equation that makes the interactions between two patches more explicit.
For that purpose, we will introduce an effective field that acts on the boundary of each patch
and incorporates the influence form all other patches.

We only present the most insightful proofs below and defer some longer proofs to the Ap-
pendix A.2. Additionally, we prepare some corollaries that simplify the results for models with
two equal-sized patches as in Example 10.
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7.4.1 Effective Field

We introduce an effective field θ̃i for all variables that lie on the patch-boundary to incorporate
the interactions with the neighboring patches.

Theorem 11 (Effective Field). Let Xi be a variable on the boundary of patch Xi that receives
messages from inside, i.e., Xk ∈ Xi, and outside, i.e., Xj ∈ {X\Xi}, the patch. The effective
field θ̃i acts on the boundary according to

θ̃i = θi +
∑

Xj∈{∂(i)\Xi}

atanh(2µji(Xi = 1)− 1). (7.5)

Messages from outside the patch are now subsumed by θ̃ and the additive terms in (7.5) will
be positive if µji(Xi = 1) > µji(Xi = 0) and negative otherwise. This is particularly important
in the definition of the region boundaries and admits “independent” treatment of every patch.

7.4.2 Definition of Region (II)

The notion of an effective field (Theorem 11) allows us to define the boundaries between the
three distinct performance regions of patch potential models. We discuss the solution space in
detail and what can be said about the performance of BP. Let us denote the second region, i.e.,
the region where the global behavior can be inferred by treating the patches individually by
(II) = {θ, J}.
Definition 7.4.1 (Region). A parameter set (θ, J) ∈ (II) if and only if the following conditions
are satisfied:
(1.) Let JA(Gi, θ) denote the critical value for the couplings beyond which multiple fixed points
exist.48 Then every patch Gi ∈ G must have its respective threshold below the actual coupling
strength, i.e., JA(Gi, θ) < J
(2.) Consider all pairs of patches Gi and Gj ; if one patch, e.g., Gi has its variables flipped,
the imposed effective field on the boundary must stabilize the second patch Gj so that J <
JA(Gj , θ̃) = JC(Gj , θ).

These conditions implicitly define the “well-behaved” region (II). Definition 7.4.1.1 provides
the lower boundary of region (II) as only a unique fixed point would exist otherwise. It may
be less obvious how Definition 7.4.1.2 provides the upper boundary of region (II). Note that
J < JA(Gj , θ̃) is a necessary condition if Gi is flipped, as parts of Gj would flip otherwise and lead
to disordered behavior (cf. Figure 7.5). The restriction to (II) and the exclusion of disordered
solutions further validates the RSB assumption [MM09, Chapter 19].

7.4.3 Properties Of Region (II)

In this chapter, we are particularly interested in understanding the properties of BP inside region
(II) that complies with the subsequent properties. Note that the properties inside region (II)
are a direct consequence of Definition 7.4.1. Many arguments will rely on the fact that every
attractive model with vanishing or unidirectional local fields either has a unique stable or two
stable fixed points (cf. Section 7.2).

We will first bound the number of possible BP fixed points.

Theorem 12 (Existence). Let U be a patch potential model with (θ, J) ∈ (II). The amount of
fixed points M grows with the number of patches (rather than the number of variables). Specifi-
cally, we have M = O(2(|Gi|)), where |Gi| denotes the number of patches.
48 Note that an analytical solution only exists for graphs with vanishing fields of infinite size or periodic boundary

conditions, but the threshold can be estimated numerically.

November 8, 2019 – 127 –



7 Understanding Belief Propagation: Accurate Marginals or Partition Function

Proof. First, assume that a given patch Gi is flipped; then by the definition of the patch potential
model (Definition 7.2.1) and by Theorem 11 it follows that effective field θ̃ is aligned with the
local field of the variables at any neighbor patch Gj so that

sgn(θ̃j) = sgn(θj), (7.6)

|θ̃j | > |θj |. (7.7)

Further, let us recall the definition of (II) (Definition 7.4.1.2 in particular). It follows that
the effective field stabilizes its neighbor patch Gj , i.e., JA(Gj , θ̃) > JA(Gj , θ) so that, according
to the definition J < JA(Gj , θ̃), and Gj admits only a unique solution.

Second, assume that Gi is not flipped; then it follows by Theorem 11 that θ̃i < θi for Xi on
the boundary of the neighbor patch Gj . This decrease in the local field reduces the threshold
for the existence of two solutions to smaller values of J (cf. [KP17]) so that

JA(Gj , θ̃) < JA(G, θ) < J. (7.8)

By Definition 7.4.1.1 it follows that the neighbor patch Gj has two fixed points now, and it
depends on the initialization to which one BP will converge.

Finally, we aim to show that the number of possible fixed points is bounded. Therefore we
want to stress that the above arguments show how patches can either be aligned with the local
potential or be flipped; it is crucial that every patch acts as one instance and that all variables
belonging to one patch are aligned. Else the fixed point would be disordered which we rule out
precisely by Definition 7.4.1. This and the fact that we are considering binary random variables
limits the number of possible solutions to

M ≤ 2|Gi|, (7.9)

where |Gi| denotes the overall number of patches.

Corollary 12.1 (Example 10). Let U be a patch potential models with two equal-sized patches
(cf. Example 10). Then, for (θ, J) ∈ (II) three fixed points exist; these are one state preserving
fixed point and two fixed points that have all variables biased towards one of both states. Note
that both patches can not be flipped simultaneously inside (II) (cf. proof of Theorem 12) as one
patch would stabilize, i.e., prohibit from flipping, the second patch.

Theorem 12 is of great practical relevance for the RSB assumption (3.53), i.e., whether a
combination of BP fixed points can form the exact solution. The fact that there is a relatively
small number of fixed points makes the task of obtaining them practically feasible. Existence
alone, however, is not sufficient as we have to rely on some numerical method that obtains all
fixed points; if we aim to apply BP for that matter there is the additional requirement for all
fixed points to be stable. Fortunately, it turns out that all fixed points inside (II) are stable
indeed.

Theorem 13 (Stability). Let U be a patch potential model with (θ, J) ∈ (II). Then, every fixed
point P̃mB is a stable fixed point for BP.

Finally, as an immediate consequence of the limited amount of fixed points (Theorem 12), all
of which are stable (Theorem 13), it follows that the exact solution can be computed according
to (3.53) in practice. One can for example apply BP repeatedly, possibly in parallel, with random
initialization to obtain and combine all fixed points.
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Marginal Accuracy

Theorem 14 (Marginal Accuracy). The MSE of the singleton marginals EP (k) of the kth

solution P̃ kB relates to the ratio of the Bethe partition functions according to

EP (k) =
2

N(
∑
m
ZmB )2

∑
Xi∈X

∣∣∣∑
m\k

ZmB
(
P̃mXi − P̃ kXi

) ∣∣∣2.
Proof. According to (3.53) we can express the exact solution by the convex combination of all
fixed points. Consequently, using symmetry properties of the binary random variables, the error
is given by

EP (k) =
2

N

∑
Xi∈X

∣∣∣∣
∑
m
ZmB P̃mXi∑
m
ZmB

− P̃ kXi
∣∣∣∣2

=
2

N

∑
Xi∈X

∣∣∣∣
∑
m
ZmB P̃mXi −

∑
m
ZmB P̃ kXi∑

m
ZmB

∣∣∣∣2
=

2

N
(∑
m
ZmB
)2 ∑

Xi∈X

∣∣∣∑
m\k

ZmB P̃mXi − P̃ kXi
∣∣∣2, (7.10)

where we first, bring everything on the same denominator so that the kth contribution cancels
out subsequently.

Representing the MSE according to Theorem 14 is particularly appealing as it omits the need
for expressing the exact marginals. This further provides a way to express the ratio of the
marginal error between two fixed points.

Corollary 14.1. The MSE-ratio of two fixed points k and l is a ratio of weighted partition
functions according to

EP (k)

EP (l)
=

∑
Xi∈X

| ∑
m\k
ZmB (P̃mXi − P̃ kXi)|2∑

Xi∈X
|∑
m\l
ZmB (P̃mXi − P̃ lXi)|2

. (7.11)

Expressing the ratio of the marginal error according to (7.11) is advantageous in elaborating on
the difference between accuracy of the approximated marginals and the approximated partition
function. We define the mismatch between P̃mXi at two fixed points k and l by

Qi(k, l) = P̃ kXi(Xi = 1)− P̃ lXi(Xi = 1). (7.12)

Now, let us denote the error of the state preserving fixed point by EP (p) and of the fixed
point that has all marginals biases towards xi = 1 by EP (q). Then – maybe non-surprising as
the exact solution is state preserving as well – we show that the state-preserving fixed point has
the most accurate marginals. We first discuss the error-ratio in a general manner in Theorem 15
before considering the special case of a model with two patches, i.e., for Example 10.

Theorem 15 (Error Ratio). Let U be a patch potential model with (θ, J) ∈ (II). The state
preserving fixed point p provides more accurate marginals than the fixed point q that has all
marginals biased to one state, i.e.,

EP (p)

EP (q)
< 1. (7.13)
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Proof. To show that, irrespective of the value of ZB, EP (p)
EP (q)

< 1 we assume that the state

preserving fixed point does not minimize the Bethe free energy, i.e., ZqB > ZpB.

Without loss of generality, we make some prior assumptions on the model: First, we assume
that the overall number of variables with a positive local field equals the number of variables
with a negative local field, i.e.,

|{Xi ∈ X : θi = +θ}| = |{Xj ∈ X : θi = −θ}|. (7.14)

Second, we assume that all patches are of equal size. And finally, we group all possible fixed
points according to their marginals and denote them as follows: the state-preserving fixed point
is referred to as p; all fixed points that have more patches biased towards Xi = +1 are referred
to as s = 1, . . . , S, with q being the fixed point that has all variables biased towards Xi = +1;
all fixed points that have more patches biased towards Xi = −1 are referred to as t = 1, . . . , T ,
with r being the fixed point that has all variables biased towards Xi = −1.

This has some implications that will ease the subsequent analysis significantly. Specifically,
the number of fixed points favoring one state equals the number of fixed points favoring the
other state, i.e., S = T by (7.14) and by Theorem 12.

Another important consequence of incorporating the interactions between patches into an
effective field is that the number of variables that favor one state has an immediate influence
on the value of the singleton marginals. It can be shown that the effective field, if stronger
than the local field – note that the effective field is stronger than the local field whenever two
neighboring patches are biased towards the same state – increases the bias of the variables. This
intuitive statement is a consequence of the Griffiths-Hurst-Sherman inequality [Gri67] that can
be extended to specific fixed points by straightforward manipulations (cf. [KKP18]). In essence
this means that for all variables Xi ∈ X we have

P̃ qXi(Xi = 1) ≥ P̃ sXi(Xi = 1) ≥ P̃ pXi(Xi = 1) ≥ P̃ tXi(Xi = 1) ≥ P̃ rXi(Xi = 1). (7.15)

Moreover, as all patches have equal size and because Jij = J as well as θi ∈ {−θ, θ} every
fixed point s has a symmetric fixed point t that has the same value for the approximate partition
function (cf. Proof of Theorem 16). That is, except for the state-preserving fixed point p all
fixed points come in couples that satisfy

ZsB = ZtB. (7.16)

We will further utilize the properties of the mismatch Qi(k, l); in particular the symmetry
property

Qi(k, l) = −Qi(l, k), (7.17)

and the expansion property

Qi(k, l) = Qi(k,m) +Qi(m, l). (7.18)

Finally, we express the error ration between the state-preserving fixed point p and the biased
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fixed point q according to Corollary 14.1 so that

EP (p)

EP (q)
=

∑
Xi∈X

| ∑
m\p
ZmBQi(m, p)|2∑

Xi∈X
| ∑
m\q
ZmBQi(m, q)|2

(a)
=

∑
Xi∈X

|∑
s
ZsBQi(s, p) +

∑
t
ZtBQi(t, p)|2∑

Xi∈X
|∑
s\q
ZsBQi(s, q) +

∑
t
ZtBQi(t, q) + ZpBQi(p, q)|2

(b)
=

∑
Xi∈X

|∑
s\q
ZsB
(
Qi(s, p) +Qi(t, p)

)
+ ZqB

(
Qi(q, p) +Qi(r, p)

)
|2∑

Xi∈X
|∑
s\q
ZsB
(
Qi(s, q) +Qi(t, q)

)
+ ZqBQi(r, q) + ZpBQi(p, q)|2

, (7.19)

where (a) follows from splitting the sum into the fixed points s that are more biased towards
Xi = 1 and into the fixed points t that are more biased towards Xi = −1. Note that the state-
preserving fixed point p does not belong to either set and is consequently expressed explicitly
in the denominator. For (b) we make use of (7.16) and arrange the terms by making the
dependence on q and r explicit so that the sum goes over the same terms in the numerator and
in the denominator.

We can further express the error ratio and bound it using Jensen’s inequality according to

EP (p)

EP (q)

(a)
=

∑
Xi∈X

|∑
s\q
ZsB
(
Qi(s, p) +Qi(t, p)

)
+ ZqB

(
Qi(q, p) +Qi(r, p)

)
|2

∑
Xi∈X

(∑
s\q
ZsB
∣∣(Qi(s, q) +Qi(t, q)

)∣∣+ ZqB
∣∣Qi(r, q)∣∣+ ZpB

∣∣Qi(p, q)∣∣)2

≤

∑
Xi∈X

(∑
s\q
ZsB
∣∣(Qi(s, p) +Qi(t, p)

)∣∣+ ZqB
∣∣(Qi(q, p) +Qi(r, p)

)∣∣)2
∑

Xi∈X

(∑
s\q
ZsB
∣∣(Qi(s, q) +Qi(t, q)

)∣∣+ ZqB
∣∣Qi(r, q)∣∣+ ZpB

∣∣Qi(p, q)∣∣)2 , (7.20)

where separating the norm does not change the result in (a) because of (7.15), which implies
Qi(m, q) < 0 for all fixed points m 6= q.

For completing the proof we make use of the symmetry property (7.17) and the expansion
property (7.18) in order to rearrange the terms; in particular note that Qi(q, s) + Qi(q, t) =
Qi(q, s) +Qi(q, s) +Qi(s, p) +Qi(p, t), and that Qi(q, r) = Qi(q, p) +Qi(p, r) so that

EP (p)

EP (q)
≤
∑

Xi∈X

(∑
s\q
ZsB
∣∣(Qi(s, p)−Qi(p, t))∣∣+ ZqB

∣∣(Qi(q, p)−Qi(p, r))∣∣)2
∑

Xi∈X

(∑
s\q
ZsB
∣∣(Qi(s, p)+Qi(p, t)+Qi(q, s)+Qi(q, s)

)∣∣+ZqB∣∣Qi(q, p) +Qi(p, r)
∣∣+ZpB∣∣Qi(q, p)∣∣)2 .

Note that we have applied (7.17) so that every mismatch-term is strictly positive. It is thus
straightforward to see, by comparing all terms, that the numerator is strictly smaller than the
denominator for every variable Xi ∈ X so that

EP (p)

EP (q)
< 1. (7.21)
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In particular for models with two equal-sized patches, we can simplify the error ratio (7.11)
considerably.

Corollary 15.1 (Example 10). Let d = Qi(q, r) > 0, then

EP (p)

EP (q)
<

∑
Xi∈X |Z

q
Bd|2∑

Xi∈X |Z
q
Bd+ ZpBQi(p, q)|2

< 1. (7.22)

Note that Corollary 15.1 is an immediate consequence of Theorem 15. Additionally we present
an alternative proof that admits some intuitive arguments in Appendix A.2.2.

It follows that the state preserving fixed point p minimizes the marginal error inside (II)
irrespective of FBp. This has drastic implications and forbids any relationship between the fixed
point minimizing the marginal error and the one minimizing the partition function error.

Free Energy Minimizing Fixed Point

However, despite Theorem 15, the question remains where the difference between EZ(m) and
EP (m) stems from?

We will now answer this question and provide conditions for arg minEZ(m) = arg minEP (m)
to be valid. We further present an approximate condition for the state-preserving fixed point
p to simultaneously provide the most accurate marginals and minimize FB. Therefore, let us
define the following variables (cf. Section A.2.3 in the appendix for a formal introduction): EP is
the set of all boundary edges; EC is the set of edges between variables that favor different states;
Nf and Nc are the numbers of flipped and non-flipped variables; and ∆SB is the difference in
the entropy between two fixed points.

Theorem 16. Let us consider the state-preserving fixed point p with FBp and some other fixed
point with FBm. Then, FBp < FBm is the global minimum if

2J(|EP | − |EC |) < θ(N −Nc +Nf ) + ∆SB. (7.23)

For models with two equal-sized patches and couplings strong enough for the entropy-term to
vanish we can further simplify (7.23) significantly and state that:

Corollary 16.1 (Example 10). The state-preserving fixed point provides the most accurate
marginals and the global minimum FBp if (θ, J) ∈ (II) and if

2
√
NJ < Nθ. (7.24)

Proof. For the specific case of a grid graph with two equal-sized patches (Example 10) we can
further simplify the condition from Theorem 16. Therefore, note that for FBp < FBq to be
satisfied, we have Nc = Nf and |EP | =

√
N so that (A.28) reduces to

2J
√
N ≤ θN + ∆SB. (7.25)

The definition of (II) requires strong interactions J so that the entropy terms in the free energy
is small. We can consequently approximate (7.25) by neglecting the entropy terms.

2J
√
N ≤ θN. (7.26)

These sufficient conditions for (7.3) provide a guideline when it would be safe to select the fixed
point according to the partition function value. This correspondence tends to hold for models
with strong local potentials θ and with increased model-size N as shown in Corollary 16.1.
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7.5 Conclusion

In Section 6.4 we had relied on the assumption that finding the global minimum of FB gives us
the most accurate marginals and partition function. This is a strong assumption that – although
never formally verified – was generally believed to be true.

In this chapter we aimed to verify whether such a relationship holds in general. Therefore,
we studied the relationship between the accuracy of the marginals and the partition function
at stationary points of the Bethe free energy, with far-reaching implications for approximate
inference methods that operate on the Bethe free energy. To do so, we introduced a new class of
models first. These so-called patch potential models exhibit lots of structure that enabled us to
analyze the solution space thoroughly. Yet, patch potential models proved to be flexible enough
to produce some surprising insights.

First, we elaborated on the existence of a well-behaved region in parameter space for which
the number of fixed points depends only on the number of patches (instead of the variables).

Second, this well-behaved region allowed us to assess the correspondence between the accuracy
of the marginals and the partition function; we showed that this common assumption is not true
in general and explained why – instead of the global minimum – the most accurate marginals
may be found at a local minimum of FB.

Finally, we inspected under which conditions this mismatch arises and further introduced
guarantees for the global minimum of FB to remain optimal with respect to marginal accuracy.
Note that the mismatch is effectively attributable to finite-size effects which might explain why
this behavior is not known in the physics literature, where the focus lies on infinite-size – or at
least very large – models. Yet, models of relatively small size do play an important role in many
applications of BP.

The analysis of patch potential models may serve as a foundation that enables the extension of
survey propagation to problems beyond constrained satisfaction problems. So far this has been
limited by the potentially huge amount of fixed point. Our definition of the well-behaved region
and the study of patch potential models as a whole suggests that it may be very much possible
to obtain the set of all fixed points efficiently, as long as the model is sufficiently structured.

Moreover, our newly developed understanding of the relationship between the accuracy of the
marginals and the partition function has a notable impact on our theoretical analysis of SBP in
Section 6.4. There we have limited our attention to attractive homogeneous models where the
accuracy of both quantities can be used in an interchangeable way. Whether it is the minimum
(i.e., the Bethe free energy) or the minimizer (i.e., the pseudomarginals) that is responsible for
the optimality of SBP needs to be reassessed. It is not clear if it is really the global minimum
of FB that originates from the start point. On the contrary, our minimal patch potential model
of Example 10 shows that the state-preserving fixed point defines the solution path, so that
SBP may very well be in favor of obtaining the fixed point with the most accurate marginals.
This could be an explanation for the surprisingly accurate results of SBP for general models and
would immensely strengthen the practical relevance of SBP as no method is known so far that
deliberately aims to obtain fixed point with the most accurate marginals.
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8
Discussion and Open Questions

”There must be some way out of here,
Said the joker to the thief.”

– Bob Dylan

In this thesis, we performed a systematic analysis of BP’s solution space. Finding all fixed
points of BP is a relevant but hard problem, except for a few restricted models. We took
inspiration from a set of diverse scientific fields to tackle this problem: in particular, we framed
BP as dynamical systems and formulated the fixed point equations. Drawing from computational
mathematics, we established a way to solve the set of fixed point equations and computed all
fixed points for a range of problems.

The knowledge of the full solution space then served as a cornerstone for evaluating the accu-
racy and the convergence properties of BP. Moreover, we related those performance properties
to the parameterization of a given model (i.e., the model size and the specifications of the
potentials) and explained how the performance of BP changes if we tune the model.

A detailed summary of our main contributions is presented in each chapter’s conclusion. Here
we summarize our most interesting findings and discuss how we advanced the understanding
of BP. Our findings satisfy a twofold interest: they advance the theoretical understanding and
suggest various possibilities of enhancing BP’s performance.

• From a theoretical perspective, we made the influence of the model parameters on the
performance of BP explicit. We sum up our key-insights as follows:

The influence of the model size is hard to pinpoint down. On the one hand, larger models
tend to have a higher average degree, which affects the convergence properties slightly
negatively. On the other hand, we established a positive effect of the model size on the
marginal accuracy.

The influence of the potentials is much more apparent. Strong pairwise potentials influence
the performance of BP detrimentally, whereas strong local potentials increase the accuracy
and the convergence properties.

Additionally, we demonstrated a considerable accuracy gap between the best possible and
the worst possible fixed point of BP. This poses a fundamental problem when deriving
performance guarantees as is not obvious to which fixed point BP will converge.

• From a practical perspective, we justified the exploration of multiple fixed points, intending
to select one with good approximation quality. We discussed the underlying mechanisms
and limitations of established modifications, for example, damping or scheduling.

We further proposed one particular modification that aims to obtain the global minimum
of the Bethe free energy. This method, SBP, consistently obtains more accurate marginals
than BP and provides accurate marginals for models where BP fails to converge.

Even the minimization of the Bethe free energy, however, has its limitations if one is only
interested in the marginals; we exemplified and explained why the most accurate marginals
may not be found at the global minimum of the Bethe free energy.
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The analysis of BP’s solution space addressed some long-standing questions but we are still
far away from understanding every aspect of BP. Below we summarize some intriguing questions
that emerged while working on this thesis and that were left unanswered. We distinguish three
different directions that appear to be worth pursuing in particular:

1. Structure of the Solution Space:

Although this thesis obtained the full solution space for some models and, in doing so,
provided novel insights into the properties of BP, computing the solution space for more
complex models remains elusive. As we have seen in Chapter 7, however, it is precisely
the consideration of more complex models that can lead to fascinating insights.

The extension of the NPHC method to larger models was primarily hindered by the in-
volved computation of the root count. So far, we only relied on some meta-heuristics to
compute the root count. Most relevant models, be it grid graphs or models arising in the
context of error-correcting codes, however, exhibit a special graph structure that directly
determines the structure of the fixed point equations. A first step towards computing the
root count for complex models could be to exploit the graph structure and thus reduce the
overall complexity of this crucial step. Alternatively, it would be relevant (from a mathe-
matical perspective) to reformulate the problem to an equivalent system of equations with
fewer complex solutions and a lower BKK bound. Such problem-tailored approaches would
extend the applicability of the NPHC method and, when applied to large models, would
have the potential to provide even more insights into the behavior of BP.

Traditionally, one is often interested in specifying regions with a unique fixed point. We
have shown that this seems to be a rather limiting point of view as combinations of multiple
fixed points often provide strikingly accurate results. Although obtaining the set of all fixed
points is, in general, a hard problem, we have seen in Chapter 7 that certain regions in
the parameter space exist for which only a few fixed points are present. This suddenly
opens the door for numerical methods that efficiently obtain all fixed points and enhance
the accuracy by combining them.

When defining well-behaved regions of BP we would consequently like to initiate a shift
from conditions for uniqueness to conditions for structured, albeit possibly multiple, fixed
points. Fairly substantial work has been conducted in this matter for the special case of
optimization problems. Developing similar results for more general models is a necessary
step to assess the relevance of methods that rely on considering multiple fixed points and
to elaborate on their capabilities.

2. Global Convergence Properties: We have put a lot of emphasize on the local stability
analysis in Chapter 5. Let us stress the notion of local here again: we considered a fixed
point as stable if the messages will converge to the fixed point inside its neighborhood. In
general, one can, however, not count on bringing the messages close enough to the fixed
point and it is not only the local stability that is important for the convergence properties
of BP; even more so it is the region of attraction. The region of attraction describes
the range of message values for which BP will converge to a given fixed point. This is
particularly relevant in practice as BP sometimes fail to converge despite the existence of
stable fixed points (unless initialized very close to the fixed point).

Such a global perspective also highlights the influence of the initial message values on the
convergence properties of BP. Besides being convenient, uniform initialization tends to
favor good fixed points; it remains an open problem to answer what is so special about
uniform initialization and under which conditions uniform initialization is optimal. We
expect that extending the local stability analysis and accounting for the regions of attrac-
tion as well will provide many answers to those questions. Besides, this could potentially
lead to variants of BP that, even if initialized far away from any fixed point, explore the
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parameter space in a way such that the messages enter a region of attraction at some
point, ultimately driving the messages into convergence.

3. Enhancing BP with Respect to Marginal Accuracy: The main contribution of
Chapter 7 was to elaborate on the difference between the accuracy of the marginals and
the partition function. Our analysis revealed that the fixed point providing the most
accurate marginals may only be a local minimum. Note that most variants that aim to
enhance BP are either heuristics that only aim to enforce convergence or are theoretically
well-motivated and focus on the quality of the partition function approximation.

For many applications, we are, however, ultimately interested in enhancing the quality
of the marginals (cf. error-correcting codes in Section 5.9). It would thus be of great
relevance to manipulate the update equation in a way that enforces convergence towards
a fixed point with accurate marginals. Enforcing convergence towards one particular fixed
point would further enable one to come up with realistic performance guarantees, even in
the presence of multiple fixed points.

We have proposed SBP that is guaranteed to obtain the most accurate marginals for at-
tractive models with unidirectional potentials. Looking at the evolution of the fixed points
on patch-potential models, it seems as if SBP is capable of tracking the state-preserving
fixed point as well. Thus, SBP is already one possible candidate for obtaining accurate
marginals. It would be interesting to elaborate on this observation and substantiate this
claim in a more formal way. Essentially, the advantages of SBP boil down to providing a
favorable initialization for BP. This highlights the importance of the initial messages once
more and raises the question if there is a general way of initializing the messages that will
lead to accurate marginals.

Besides the role of the initialization, scheduling plays an important role in determining
the fixed point of BP. Again, one would hope that “good” scheduling methods enforce
convergence towards an accurate fixed point. Existing scheduling methods are either
adaptive or only take the structure of the model into account. The performance of BP,
however, not only depends on the structure of the model but on the potentials as well.
Therefore, if the aim is to obtain accurate marginals, the value of the potentials should
not be neglected and it seems promising to come up with a fixed schedule that takes the
values of the potentials into account as well, for example by scheduling the messages in a
way that prioritizes regions with strong local potentials.
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A
Appendix

A.1 Proofs from Chapter 6

This Section contains all the detailed proofs deferred from Section 6.4.

A.1.1 Proof of Lemma 4

Essentially, we first show that µij(Xj = 1)/µij(Xj = −1) increases monotonically with Jij and
then express the pseudomarginals in terms of (3.2) and (3.3).

Let us denote the messages on U0 and on U1 by µij(xj)0 and µij(xj)1 respectively. Further,
let all local potentials be positive, i.e., θi > 0, and let all pairwise potentials of U1 be ε-larger
than those of U0, i.e., 0 < J0

ij = J1
ij − ε. Note that by assumption mi ∈ (0, 1] so that

µij(Xj = +1) ≥ µij(Xj = −1). (A.1)

First, we show that for all (i, j) ∈ E

µ◦ij(Xj = +1)0

µ◦ij(Xj = −1)0
<
µ◦ij(Xj = +1)1

µ◦ij(Xj = −1)1
. (A.2)

Therefore, consider the update rule of (3.1) for both states

µn+1
ij (Xj = +1)1 ∝ eJij+θi+ε

∏
Xk∈{∂(i)\Xj}

µnki(Xi = +1)1 + e−Jij−θi−ε
∏

Xk∈{∂(i)\Xj}

µnki(Xi = −1)1, (A.3)

and

µn+1
ij (Xj = −1)1 ∝ e−Jij+θi−ε

∏
Xk∈{∂(i)\Xj}

µnki(Xi = +1)1 + eJij−θi+ε
∏

Xk∈{∂(i)\Xj}

µnki(Xi = −1)1. (A.4)

In (A.3) the larger product is multiplied by eε and the smaller product is divided by eε. For (A.4)
it is exactly the other way round so that the ratio between the messages increases which
proofs (A.2). We shall denote the imposed difference δ ∈ R∗+ on the messages by

µ◦ij(Xj = +1)1 = µ◦ij(Xj = +1)0 + δ, (A.5)

µ◦ij(Xj = −1)1 = µ◦ij(Xj = −1)0 − δ. (A.6)

Second, we show that m0
i < m1

i which is an immediate consequence of plugging (A.5) and (A.6)
into (3.2).

Finally, it remains to show that 0
(i)
< χ0

ij

(ii)
< χ1

ij . Without loss of generality we assume that all
variables have equal degree d+ 1 and constant coupling strength Jij = J. First we show that (i)
holds, i.e., χ = χ0

ij is positive. Let us express the marginals by (3.3) and denote the messages
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by µ = µij(Xj = 1)0. It follows that µij(Xj = −1)0 = (1− µ) and that

χ=eJ+2θµ2d+eJ−2θ(1−µ)2d− 2e−Jµd(1−µ)d. (A.7)

Let us further represent the messages by µ = 1/2 + x with x ∈ [0, 1/2]. It follows that

χ
(a)

≥
(

(1/2 + x)2d + (1/2− x)2d
)
− 2 (1/2 + x)d (1/2− x)d

=
(

(1/2− x)d − (1/2 + x)d
)2

(b)

≥0, (A.8)

where (a) follows from neglecting all exponential terms and thus upper bounding the positive
term and lower bounding the negative term (with equality if and only if J = 0 and θ = 0)
and (b) is a direct consequence of the square in (A.8). Now let us show that (ii) holds, i.e., χ
increases monotonically, by taking the derivative of (A.7), so that

∂

∂µ
χ =2d

(
eJ+2θµ2d−1 − eJ−2θ (1− µ)2d−1

)
+2de−J

(
µd(1− µ)d−1− µd−1(1− µ)d

)
(A.9)

(a)

≥2de−J
(
µd(1− µ)d−1 − µd−1(1− µ)d

)
(b)

≥0, (A.10)

where (a) follows from neglecting the, strictly positive, first term in (A.9), and (b) is a direct
consequence from (A.1).

A.1.2 Proof of Theorem 9

A unique start point P̃mB (ζ = 0) exists by Theorem 6 that equals the exact pseudomarginals
PB(ζ = 0) and, for θi > 0, has positive mean and correlation), i.e., mi(ζ = 0) > 0.

Consequently, Lemma 4 applies, which further implies that mi(ζ) and χij(ζ) are monotoni-
cally increasing; moreover, mi(ζ) and χij(ζ) are continuous by Theorem 7. This further implies
that the Bethe free energy FBm(ζ) decreases. Let FBm(ζ = 1) correspond to the endpoint of the
solution path c(ζ) that emerges from the origin; then, it immediately follows that the error with
respect to the endpoint FBm(ζ = 1) decreases along the solution path: i.e., consider two arbitrary
values m, k ∈ [0, 1] such that k > m, then |FBm(ζm)−FBm(ζ = 1)| ≥ |FBm(ζk)−FBm(ζ = 1)|.

It remains to show that SBP obtains the fixed point FBm(ζ = 1) that minimizes the error with
respect to the exact free energy, i.e., m = arg minm∈MEZ(m) . Therefore consider the fact, that
attractive models with θi > 0 have a unique fixed point that satisfies mi(ζ) ∈ (0, 1] [YFW05]. A
second minimum with negative means, however, may emerge for sufficiently large values of Jij .
We denote this alternative stationary point by FBn. This minimum FBn, if it exists, is close to
being symmetric, i.e., mm

i (ζ)− ε = −mn
i (ζ) and χmij (ζ) = χnij(ζ) + ε.

Now let us express the Bethe free energy in (3.24) of both fixed points P̃mB and P̃nB in terms
of their energy and entropy according to FB = EB − SB (cf. Section 3.3). Then, as a con-
sequence of symmetry of the entropy SB(P̃nB) ∼= SB(P̃mB ) and as a consequence of singleton
marginals that are not aligned to the local potentials in (3.21) EB(P̃nB) > EB(P̃mB ). It follows
that FB(P̃nB) ≥ FB(P̃mB ) (cf. [PAM11]). Consequently, with FB(P̃mB ) being more negative it
follows that the fixed point m constitutes the global minimum of the Bethe free energy.

That is, SBP proceeds along a solution path that leads towards the global minimum of the
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Bethe approximation. In particular, by considering the fact that the exact free energy is upper
bounded by the Bethe approximation for attractive models [Ruo13], this implies that the fixed
point obtained by SBP indeed minimizes the approximation error, i.e, m = arg minm∈MEZ(m)
holds.

This concurrently implies that P̃mB (ζ) is optimal with respect to marginal accuracy, i.e., no
stable fixed point – which corresponds to a local minimum of the Bethe free energy – exists
that provides more accurate marginals. Note that attractive models exhibit so-called replica
symmetric solutions where the Bethe free energy has two minima at most. In particular, this
allows one to express the exact marginals as a convex combination of all fixed points, i.e, PB =

1∑
ZB∈M

ZB
∑

(P̃B ,ZB)∈M
P̃B · ZB (cf. Section 3.5.4).

It follows by the existence of at most two solutions that the fixed point that minimizes the
Bethe free energy is also more accurate.
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A.2 Proofs from Chapter 7

This Section contains all the detailed proofs for Chapter 7

A.2.1 Proof of Theorem 11

Here we show how all incoming messages from outside the patch can be subsumed into an
effective local field.

Proof. First let us revisit the update equation from Xi to Xj : Xj ∈ Xi

µn+1
ij (xj) ∝

∑
xi∈X

Φ(xi, xj)Φ(xi)
∏

Xk∈{∂(i)\Xj}

µnki(xi).

Now we group the incoming messages into two groups, i.e., messages coming from outside the
patch and messages coming from inside the patch so that

µn+1
ij (xj) ∝

∑
xi∈X

Φ(xi, xj)Φ(xi)
∏

Xk∈∂(i)\{Xj∩Xi}

µnki(xi)
∏

Xk∈{Xi∩∂(i)\Xj}

µnki(xi).

Now we make use of the fact that we are only dealing with binary random variables for which
µij(Xj = −1) = (1− µij(Xj = 1)) and express the message explicitly by

µn+1
ij (xj) ∝ exp(Jxj) exp(θi)

∏
Xk∈∂(i)\{Xj∩Xi}

µnki(Xi = 1)
∏

Xk∈{Xi∩∂(i)\Xj}

µnki(Xi = 1)

+ exp(−Jxj) exp(−θi)
∏

Xk∈∂(i)\{Xj∩Xi}

(1− µnki(Xi = 1))
∏

Xk∈{Xi∩∂(i)\Xj}

(1− µnki(Xi = 1)).

(A.11)

We now want to get rid of the first product and absorb the influence of these messages into
the local field. In particular we aim to express it according to

exp
(
θ̃ixi) = Φ(xi)

∏
Xk∈∂(i)\{Xj∩Xi}

µnki(xi)

= exp
(
(θi + c)xi

)
· exp(g). (A.12)

In order to do so we take the logarithm of the product over all messages in (A.12) and put
them into the exponent with the local field so that for xi = +1

exp(θ̃i) = exp

(
θi +

∑
Xk∈∂(i)\{Xj∩Xi}

log
(
µki(Xi = 1)

))
= exp

(
θi +

∑
Xk∈∂(i)\{Xj∩Xi}

ci +
∑

Xk∈∂(i)\{Xj∩Xi}

gi
)
, (A.13)

and for xi = −1

exp(−θ̃i) = exp

(
− θi +

∑
Xk∈∂(i)\{Xj∩Xi}

log
(
1− (µki(Xi = 1)

))
= exp

(
− θi −

∑
Xk∈∂(i)\{Xj∩Xi}

ci +
∑

Xk∈∂(i)\{Xj∩Xi}

gi
)
. (A.14)
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Equating the coefficients for ci and gi in (A.13) and (A.14) gives us the final results:

ci =
1

2

(
logµki(Xi = 1)− log

(
1− µki(Xi = 1)

))
,

c =
∑

Xk∈∂(i)\{Xj∩Xi}

atanh
(
2µki(Xi = 1)− 1

)
, (A.15)

g =
1

2
log

∏
Xk∈∂(i)\{Xj∩Xi}

(
µki(Xi = 1)− µki(Xi = 1)2

)
. (A.16)

Note that we can further express the message for the second state µij(Xj = −1) in a similar
way, with the only difference that the values of the pairwise potentials change. Consequently we
get exactly the same result for g again; this allows us to neglect the influence of g altogether, as
it will be canceled out when normalizing the messages so that the sum up to one.

A.2.2 Proof of Corollary 15.1

We want to compare error of the state-preserving fixed point EP (p) to the error EP (q) of a fixed
point that has all marginals biased towards one state. We already discussed the error-ratio in a
general manner in the proof of Theorem 15 in Section 7.4.3; here we provide a more accessible
proof for the special case of a model with two patches, i.e., for Example 10.

Proof. For a symmetric model with two equal-sized patches we evaluate the error ratio between
the state-preserving fixed point p and one of the fixed points that have all marginals biased
towards one state, these are q and r and have symmetric marginals. Further assume that the
fixed points q and r minimize the Bethe free energy, i.e.,

FBq = FBr < FBp, (A.17)

ZqB = ZrB > ZpB. (A.18)

Then we want to show that (A.18) does not imply that EP (q) < EP (p), i.e., we want to show

that EP (p)
EP (q)

< 1 despite (A.18); therefore, we express the ratio of the marginal errors according
to

EP (p)

EP (q)
=

∑
Xi
|∑m\pZmBQi(m, p)|2∑

Xi
|∑m\q ZmBQi(m, q)|2

=

∑
Xi
|ZqBQi(q, p) + ZrBQi(r, p)|2∑

Xi
|ZqBQi(r, q) + ZpBQi(p, q)|2

. (A.19)

Note that because of (A.18) we have

EP (p)

EP (q)
=

∑
Xi
|ZqB

(
Qi(q, p) +Qi(r, p)

)
|2∑

Xi
|ZqBQi(r, q) + ZpBQi(p, q)|2

(a)
=

∑
Xi
|ZqB

(
Qi(q, p) +Qi(r, p)

)
|2∑

Xi

(
ZqBQi(q, r) + ZpBQi(q, p)

)2 . (A.20)

where (a) follows from the fact that Qi(r, q) < 0, Qi(p, q) < 0, and the symmetry property (7.17).
We further denote the constant difference between the biased fixed points by

0 < Qi(q, r) = d < 1. (A.21)
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We can use the expansion property (7.18) to bound the numerator as |Qi(q, p) + Qi(r, p)|2 <
Qi(q, r)

2 = d2 so that

EP (p)

EP (q)
<

∑
Xi
ZqBd2∑

Xi

(
ZqBd+ ZpBQi(q, p)

)2 . (A.22)

Which completes the proof as Qi(q, p) > 0

A.2.3 Proof of Theorem 16

Let us consider three different stationary points FBp (state-preserving), FBq (biased to one
state), and FBm that has some patches flipped. Note that we consider FBq as a limiting case
for FBm. We will denote the number of variables that are aligned with the local field Nc and
the number of flipped variables Nf .

The set of boundary edges that connects two patches is denoted by

EP = {(i, j) ∈ E : Xi ∈ Xi, Xj ∈ Xj 6= Xi}, (A.23)

and the set of edges that connects two patches that have their variables not aligned is denoted
by

EC = {(i, j) ∈ E : Xi ∈ Xi, Xj ∈ Xj 6= Xi, sgn
(
P̃Xi(Xi = 1)− 0.5

)
6= sgn

(
P̃Xj (Xj = 1)− 0.5

)
}.

(A.24)

Note that EP is constant for a specified model, whereas EC depends on the specific fixed point.
We consequently have EC ≤ EP with equality for the state preserving fixed point p.

Our analysis is restricted to (θ, J) ∈ (II) per definition: one crucial consequence is that
J > JA(θ) and that most marginals either have P̃Xi(xi) ≈ 1 or P̃Xi(xi) ≈ 0. We will exploit this
fact and express all marginals according to P̃Xi(xi) ∈ {0, 1} which allows us to simplify FB, as
defined in Section 3.3, according to

FBp = −Nθ −
(
|E| − 2|EP |

)
J − SpB (A.25)

FBm = −
(
Nc −Nf

)
θ −

(
|E| − 2|EC |

)
J − SmB . (A.26)

Let ∆SB = SpB −SmB be the difference in the entropy, then we can express the conditions for the
state-preserving fixed point to have a lower value FBp ≤ FBm according to

−Nθ −
(
|E| − 2|EP |

)
J ≤ −

(
Nc −Nf

)
θ −

(
|E| − 2|EC |

)
J + ∆SB

2J(−|EC |+ |EP |) ≤ θ(N −Nc +Nf ) + ∆SB (A.27)

Now let us express (A.27) for the fixed points that has all variables biased to one state, i.e.,
|EC | = 0. Then, the state-preserving fixed point has a lower value FBp < FBq if

2J |EP | ≤ θ(N −Nc +Nf ) + ∆SB (A.28)
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A.3 Pseudocode

We present the pseudocode for NIBP and WDBP. Removing the if then else clause in line 8 to
11 of NIBP and substituting it with µnm ← µn+1

m reduces Algorithm 3 to RBP. The maximum
number of iterations is denoted by NBP = 2.5 · 105 and ε = 10−3. NrOfMessages = 2|E| denotes
the overall number of messages in the graph.

Algorithm 3: Noise Injection Belief Propagation (NIBP)

input : Graph G = (X,E)
output: Converged messages µn

1 initialization

2 for m← 1 to NrOfMessages do
3 µn+1

m ← ComputeUpdate(µn)
4 rm ← |µnm − µn+1

m |
5 k ← 1
6 while n < NBP and max |µn − µn+1| > ε do
7 m← arg maxm r

n

8 if OscillationDetection(µnm,L) then
9 µnm ← µn+1

m +N (0, σ)
10 else
11 µnm ← µn+1

m

12 for j ← 1 to NrOfMessages do

13 µn+1
j ← ComputeUpdate(µn)

14 rj ← |µn+1
j − µnj |

15 n = n+ 1

Algorithm 4: Weight Decay Belief Propagation (WDBP)

input : Graph G = (X,E)
output: Converged messages µn

1 initialization

2 for m← 1 to NrOfMessages do
3 µn+1

m ← ComputeUpdate(µn)
4 rm ← |µnm − µn+1

m |
5 NrUpdates (m) ← 1

6 k ← 1
7 while n < NBP and max |µn − µn+1| > ε do
8 m← arg maxm r

n

9 µnm ← µn+1
m

10 NrUpdates (m) ← NrUpdates (m) + 1
11 for j ← 1 to NrOfMessages do

12 µn+1
j ← ComputeUpdate(µn)

13 rj ←
|µn+1
j −µnj |

NrUpdates(j)

14 n = n+ 1
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B
Guide to Quotes

The attentive reader has probably recognized that this thesis features an opening quote for every
chapter. It was important to me to connect with all the quotes on a personal level (be it by
one’s art or by a general appreciation of a person’s life) Yet, this was not enough: every quote
must also have a close connection to the respective chapter. This connection, however, may not
always be as obvious to the reader as it was to me. It is precisely for this reason that I will now
reveal the perceived meaning of each quote, and how I see it connect to the content of the chapter.

Chapter 1: We quote the commonly used English translation “Uncertainty is an uncomfort-
able position. But certainty is an absurd one.” of the original line “Le doute n’est pas une état
bien agréable, mais l’assurance est un état ridicule” [Vol17, p.703]. This statement from Voltaire
elegantly connects to the central concept of this thesis, probabilistic graphical model, as it can
be interpreted as a praise for probability.

Chapter 2: “A mind is like a parachute. It doesn’t work if it is not open.” This quote by
Frank Zappa seems to align nicely with a background-chapter that brings different scientific
fields together into one powerful concept. In particular, since it was Frank Zappa’s ability to
draw inspiration from an unimaginable wide range of musical genres that finally coalesced to-
gether and created some stunning albums.

Chapter 3: Ludwig Boltzmann played a formative role in the foundational years of statistical
physics and laid out the groundwork for many concepts discussed in this chapter. Beyond that,
there is undeniable truth in his statement “The stars bend like slaves to laws not decreed for them
by human intelligence, but gleaned from them.” quoted from [GRE91]. One could argue that this
whole thesis adheres to this statement as we put considerable effort into carefully studying the
behavior of belief propagation to develop a clearer picture of its underlying working-principles.

Chapter 4: “Inside a broken clock; Splashing the wine; With all the rain dogs; Taxi, we’d
rather walk...” [Wai85]. The song figuratively refers to the rain dogs as the straying dogs that
are seemingly lost after the rain has washed away all their scent. The underlying meaning is
elegantly encompassed by just another quote of Tom Waits that states: “We are buried beneath
the weight of information, which is being confused with knowledge; quantity is being confused
with abundance and wealth with happiness.”. Although arguable more general and touching a
couple of interesting points of today’s society, Tom Waits’ statement reflects the experiences
one makes when acquainting oneself with the subtleties of a new field. When embarking into
uncharted territory and trying to grasp all impressions one can only sympathize with the rain
dogs that must feel similar.

Chapter 5: “Travel makes one modest. You see what a tiny place you occupy in the world.”
[Fla96]. Flaubert urges the need for always taking a look at the surrounding to put things into
perspective. BP often behaves like a creature of habit, once it decides for one specific fixed point
it neglects all others. In this chapter we break up with this habit and take a global perspective
on the solution space, essentially traveling through the solution space.
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Chapter 6: “The most significant dimension of freedom is the freedom from one’s own ego -
in other words, from the feeling that I am the center of everything.” Voytek Kurtyka is an out-
standing mountaineer that played an important role in bringing the modern alpine-style climbing
into the greater ranges. More importantly, he was always honest about his inner struggle be-
tween the desire to nourish one’s ego and the awareness that there is no inbred reason to take
oneself to serious. One could argue that our proposed algorithm, self-guided BP, undergoes a
similar struggle. At the beginning, all variables take up a purely ego-centered standpoint and no
interactions between them take place. Only incrementally, as the couplings are incorporate, the
variables contribute to the joint assignment of the model and put their own constraints behind.

Chapter 7: “To the wise, life is a problem; to the fool, a solution.” Wise and fool are maybe
strong words; but one could have been satisfied with the preceding chapters and could have
neglected the unanswered questions lingering around instead of being curious and trying to gain
some further insights. On a side-node, Marcus Aurelius was a great proponent of the philoso-
phy of stoicism, a philosophy that is arguable beneficial when working on a thesis for many years.

Chapter 8: “There must be some way out of here; Said the joker to the thief“ [Dyl67]. This
song puts you in the midst of a discussion, with the joker struggling with his purpose. Even
though it was inevitably to experience some struggles in the process of writing everything up,
there is no easy way out and, ultimately, it is just a question of getting things done before one
can appreciate the completed task.
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