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Understanding the Behavior of Belief Propagation

Abstract

Probabilistic graphical models are a powerful concept for modeling high-dimensional distribu-
tions. Besides modeling distributions, probabilistic graphical models also provide an elegant
framework for performing statistical inference; because of the high-dimensional nature, how-
ever, one must often use approximate methods for this purpose.

Belief propagation performs approximate inference, is efficient, and looks back on a long
success-story. Yet, in most cases belief propagation lacks any performance and convergence
guarantees. Many realistic problems are presented by graphical models with loops, however, in
which case belief propagation is neither guaranteed to provide accurate estimates nor that it
converges at all.

This thesis investigates how the model parameters influence the performance of belief prop-
agation. We are particularly interested in their influence on (i) the number of fixed points,
(ii) the convergence properties, and (iii) the approximation quality. For this purpose, we take
a different perspective on belief propagation and realize that the fixed points define a set of
polynomial equations — albeit a large one. Solving polynomial equations of this size is problem-
atic; nonetheless, we present the numerical polynomial homotopy continuation method that is
capable of solving the fixed point equations, the solutions of which are the fixed points of belief
propagation.

The solutions to the fixed point equations gives us knowledge of the whole solution space and
serves as a stepping stone for analyzing belief propagation’s properties. In particular, we observe
a large variety of marginal accuracy across all fixed points. This, to some degree, explains the
large discrepancy in the performance of belief propagation. Another important aspect of belief
propagation’s fixed points is their stability, that is if belief propagation can — at least in principle
— converge to a given fixed point. Existing stability analyses were limited to models without
local potentials for the lack of knowing the solution space. The capability to solve the fixed point
equations thus allows us to extend the stability analysis to a wide range of models. In doing so,
we obtain novel insights into how the model parameters and the model size affect the stability.
In particular, we find that strong pairwise potentials degrade the performance, whereas strong
local potentials enhance the performance.

Moreover, our theoretical findings inspire a simple, yet powerful, modification of belief prop-
agation. We present self-guided belief propagation that starts from a simple model (for which
belief propagation obtains the exact solutions) and iteratively adapts it to the desired model.
As the model is modified, self-guided belief propagation keeps track of the solution; this way, it
improves upon standard belief propagation and it obtains the best possible solution for attrac-
tive models with unidirectional local potentials. For more general models, we empirically show
that self-guided belief propagation maintains its favorable properties, converges more often, and
is superior in terms of marginal accuracy.

Finally, we question whether the global minimum of the Bethe free energy provides the most
accurate marginals. This is a common conjecture that inspired a range of methods that aim
to minimize the Bethe free energy. In the past, the studied models were either too simplistic
or too complex as to the true nature of this relationship. Therefore, we must first introduce
a novel class of models — termed patch potential models — which are simple enough so that
we can compute all fixed points. Yet, patch potential models are complex enough to possess a
rich and non-trivial solution space. A study of this solution space proves this conjecture wrong
and, additionally, explains the nature of the difference between accurate marginals and good
approximations of the free energy.
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General Notation

Notational Conventions

R}

Zy

\Y%

v2
D(Px||Px)
Re{-}, Im{-}

positive real numbers, excluding zero

positive integer numbers, excluding zero
gradient

Hessian

Kullback Leibler divergence between PX and Px
real and imaginary part

imaginary unit

magnitude or absolute value

@ exclusive disjunction

sgn(-) sign function

n (mod m) n modulo m

1 indicator function

log(+) natural logarithm

1-lp 1,-norm

N (i, %) Gaussian distribution with mean x and variance o2
U(a,b) uniform distribution on (a, b)

Probability

XY, ... random variables

X, ), ... range of a discrete random variable

T, Y, .- value of random variable

X set of random variables

X values for a set of random variables (configuration)
XN product space, range of X

Px(z) probability distribution of X

Px(z) approximation of the probability distribution of X
Py pseudomarginals (set of all singleton and pairwise marginals)
Zi, Zij normalization terms for approximated marginals
Pxy(z|y) conditional probability distribution of X given Y
Px(x) Joint probability distribution of X

E(x) expected value of X

™m; mean of X;

(m) expected mean of X

Xij correlation between X; and Xj
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Graphical Models

undirected graph
nodes

set of nodes
number of nodes

edge between X; and X;

number of the edge (7, j) under some ordering

set of edges

neighbors of X;

degree of X;

average degree of G
subgraph of G induced by X'

adjacency matrix

x, (i), ©(;)

q)Xi,Xj (xza xj): (I)(:Bza x])

undirected graphical model
clique

clique consisting of Xj;, Xj,...
set of cliques

clique-potential

set of potentials

local potential

pairwise potential

Z partition function

E(x) energy of the configuration x

Jij coupling

0; local field

0 spin

o configuration of spins

I5} inverse temperature

H external magnetic field

Jp product of couplings along path P
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Dynamical Systems and Equation-Systems

wi(a)

<f17 ceey f8>
dy

BKK
H(x,t)
Q(x)

t

~y

state vector

state vector & at time index n

fixed point of x

e-neighborhood of @

discrete-time map

system matrix

Jacobian matrix

eigenvalue

eigenvalue with the largest magnitude
set of all eigenvalues for the matrix A
spectral radius of the matrix A

function or polynomial equation
polynomial coefficient

polynomial ring

system of polynomial equations

variety (set of solutions) of F'(x)

variety of F'(x) for the real and the positive real numbers
convex hull of the exponent vectors of f;
volume of the polytope S;

mixed volume of S; and S

lifting for the polynomial f;

lifting function for the exponent-vector a
ideal of F

total degree
Bernshtein-Kushnirenko-Khovanskii bound
homotopy

start system

goes from 0 to 1 to deform the homotopy

random complex number
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175 ()
“n

n

n

M?j(l’j)

o

I

E(Px)

S(Px)

Fau, Fg, i
Ep(Pp)
Sp(Pp)
M(G),M
L(G),L

Zp

F*, F5™, F5°
P}, PR, PS

JA7 JC7 JC(gv 0)

Ko

message from X; to X

set of messages

iteration index

message normalization for ,uZ(x])

fixed point message

fixed point of belief propagation

average energy

entropy

Helmholtz-, Gibbs-, and Bethe- free energy
average (Bethe) energy

Bethe entropy

marginal polytope

local polytope

Bethe partition function

global minimum, local minimum, and stationary point of Fg

pseudomarginals at the global minimum, a local minimum, and a
stationary point of Fp

set of stable belief propagation fixed points

set of fixed points corresponding to local minima of Fp

set of all fixed points

error of the partition function approximation

error of the approximated marginals

mapping induced by belief propagation

evaluation function for the pseudomarginals

evaluation function for the Bethe partition function
message-residual

set of residuals

damping factor of belief propagation with damping

fixed point equations of belief propagation

reparameterized messages

set of reparameterized messages

cavity field

weighted combination of all fixed points

weighted combination of all fixed points belonging to local minima
fixed point maximizing the partition function

critical values of coupling strength at the onset of phase-transitions
field-dependent scaling term for Jacobian matrix
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Error Correcting Codes

€

error-probability

variable node

factor node

message from factor to variable
message from variable to factor

normalization term

Self-Guided Belief Propagation

Ck
K

Uk

Patch Potential Models

scaling term

number of models considered by self-guided belief propagation

(length of {¢¢})
undirected graphical model for ¢

set of potentials for (i

pairwise and local potentials for (i

fixed point of BP for the model U,

solution path

maximum number of belief propagation iterations

Gi

bt
PE,,PJJB
P

Pl Py ..
0;

Qi(k,1)
Ep

patch of the graph G

fraction of runs converging to the m™ fixed point

fixed points with all marginals biased to one state
state-preserving fixed point

all other fixed points

effective field for X;

mismatch between ]5]’; and 15}5

set of all boundary edges

set of edges between variables that favor different states
number of flipped variables

number of state-preserving variables

difference of the Bethe entropy between two fixed points
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Introduction

?Uncertainty is an uncomfortable position.

But certainty is an absurd one.”
- Voltaire

1.1 Motivation

Every realistic domain, in accordance with the opening quote, contains some degree of un-
certainty: not only is every human imperfect — with each of our decisions being subject to
uncertainty — but also has every artificial system only access to partial information. When rea-
soning under such uncertainties, one must take all available information into account and infer
the quantity of interest. This task of probabilistic reasoning is one of the central problems of
statistical inference! and, additionally, lies at the center of every decision-making process.

Most inference-problems of practical relevance belong to the realm of multivariate statistics
and involve many interacting variables. As the number of variables increases, the corresponding
distributions become increasingly hard to grasp and thus require compact representations; par-
ticularly if one wishes to retain some interpretability. Fortunately, such a representation exists
in the form of probabilistic graphical models; these models (as suggested by their name) rely
on the proven capabilities of graphs? and represent complex interactions in an intuitive and
expressive way.

We will study two of the most fundamental problems of inference. These are: computing
the marginal distribution and evaluating the partition function. Both problems suffer from
the increased complexity when working with many variables. Assistance comes in the form of
graphical models once again; not only do they represent the problems efficiently, but they also
warrant efficient inference algorithms that exploit the graph structure and thus facilitate the
task of inference. Note, however, that graphical models are not a panacea and while inference
becomes tractable for some models (e.g., trees) it remains NP-hard for graphs with loops.

Besides being of theoretical interest, such loopy graphs arise in a multitude of practical ap-
plications; ranging from statistical signal-, speech-, and image-processing, to statistical physics,
medical diagnosis systems, and error-correcting codes. For all these important problems, ex-
act inference methods, however, are destined to fail, which substantiates the need for efficient
approximation methods.

One particularly prominent approximation method focuses on local interactions and infers
the global model-behavior thereof. Consider, for example, a large group of friends that want to
celebrate a party and need to find a suitable date. If all friends come together and discuss their

! One may argue that statistical inference provides the common ground for a myriad of scientific fields ranging

from mathematics over empirical sciences to philosophy [EH16]. We comply with this perspective and provide
a broad context to the rather specific topic of this thesis.

Graphs naturally emerge in a wide range of problems that include applications in social sciences, biology,
physics, and communications. Graph theory constitutes a concept with many persuasive properties that war-
rant their wide-spread usage. First, graphs lend themselves for visual representations that reveal the underlying
problem-structure, often hidden initially, to the human observer. Second, manipulations and computations on
graphs are well established and provide an extensive tool-box to tackle a problem once formulated as graph.
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preferences in one large negotiation, they would find an optimal date; but this seems overly com-
plicated and impracticable. Instead, one could hope to find an acceptable date that works for
most by negotiating in a distributed manner: assume that everybody discusses his preferences
only with his closest friends (and that these sub-groups sufficiently overlap), then a reasonable
agreement on the date will be found that will suit at least the majority of the group. Note
how this focus on local interactions comes relatively intuitive when dealing with large, complex
systems. The graphical model’s structure is exploited precisely in such a way by belief propaga-
tion that performs local interactions — in the form of exchanging messages between neighboring
nodes — to approximate the marginal distribution and the partition function.

Let us briefly summarize the main strength of belief propagation (BP); it is the ability to
efficiently perform approximate inference on models where (because of loops) exact inference
becomes infeasible. BP often works remarkably well in this context, although theoretical results
fail to explain BP’s empirical success. Yet, portraying BP as an outright success-story would
not correspond to the truth either — and indeed, while BP often performs approximate inference
in a very efficient manner it completely fails to do so other times. For this lack of reliability, BP
is sometimes confronted with skepticism. Instead of only hoping for a reasonable performance of
BP, we would, ideally, like to have some performance guidelines established. Stating whether a
given model is well-suited for the application of BP, such guidelines must focus on the following
two aspects.

First, one needs to understand the underlying reasons for the failure of BP. Although we
still lack a rigorous understanding of why BP fails, it is empirically well-established that BP
fails because: (i) multiple solutions exist with varying accuracy; (ii) one or all fixed points are
unstable so that BP does not converge.

Second, one needs to derive performance guarantees that take the model specifications into
account. If we want to better understand BP we will not only need to understand how the model
specifications influence (i) the convergence properties and (ii) the approximation quality but also
how both properties relate to each other. Note that both properties are directly related to each
other for simple models (e.g., graphs with a single loop or small grid graphs), i.e., the better the
approximation quality the faster BP converges [Wei00, Ihl07]. Such a relation, however, does
not generalize to more complex models [WJ14a].

To summarize, it will be important to understand how specific models affect the performance
of BP and if BP can be expected to perform well. This will also increase the reliability of BP.

To a large degree, we owe our current understanding of BP to concepts from statistical physics.
As it turns out, there is a fundamental connection between many concepts in computer science
and in physics (cf. [MMO09, WT03,TJ02]). Most notably, the fixed points of BP are in a one-to-
one correspondence with the stationary points of the Bethe free energy.

But, although the Bethe free energy can provide many insights, it remains an intricate function
that is hard to analyze. Also, most theoretical results on the Bethe free energy only hold for
restricted model classes, where typically all variables sit on a regular grid and the model is
specified by relatively few parameters. How those insights carry over to more general models is
an open question.

Moreover, the Bethe free energy fails to reveal whether a given fixed point is stable and un-
der which conditions BP converges to it. The Bethe free energy also fails to explain why and
how certain modifications of BP (e.g., scheduling or damping) often help to achieve convergence.

The quest for a better understanding of BP is thus ongoing, with the hope that new insights
will recognize certain model classes for which it is safe to utilize BP, i.e., for which BP converges
fast while maintaining the desired accuracy.

The overarching aim of this thesis is to extend the current understanding of BP, the reason
for this being twofold: first, to theoretically understand for which problems and applications BP
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1.2 Five Relevant PhD Theses

can be expected to perform well; and second, to utilize those theoretical insights and modify BP
to enhance its capabilities.

We specifically address the question of how knowledge of the solution space can advance our
current understanding of BP. As the complete set of solutions is generally not available, we must
first develop a way to obtain all fixed points for a given model. We then start with the analysis
of relatively small and simple models and, by successively building upon our obtained insights,
extend our analysis to increasingly more complex models. Finally, we take a comprehensive
view at the solution space and study the relation between the convergence properties, approx-
imation quality, and the number of fixed points. This approach will provide several insights
into the behavior of BP, extend the current theoretical understanding and open the door for
practical considerations that enhance the performance of BP. In particular, our findings suggest
a modification of BP that enforces convergence toward accurate fixed points, thus improving
the approximation quality.

1.2 Five Relevant PhD Theses

As discussed, BP touches a diverse set of scientific fields. It is the common ground between all
those fields that provides a solid foundation for the analysis of BP. The work presented in this
thesis therefore builds upon a vast body of literature. The following five PhD theses cover a
wide range of the recent developments and are highly relevant for the current thesis. Therefore,
this section contains a brief overview of how they shaped the current thesis in particular.

The connection between exponential representations of distributions, information geometry,
and approximate inference methods on probabilistic graphical models is revealed in the thesis of
Martin Wainwright, submitted at the Massachusetts Institute of Technology in 2002 [Wai02].
His thesis introduces the concept of reparameterization. This concept casts BP as one specific
instance in a more general class of message passing algorithms (termed tree-based reparameter-
ization (TRP)). Moreover, TRP suggests solving a particular sequence of simpler sub-problems
over spanning trees in the graph [WJWO03a] in order to enhance the convergence properties.
Additionally, important insights with respect to the marginal accuracy are obtained in the form
of an exact expression for the marginal error, that — although being infeasible to evaluate in
general — suggests computable bounds on the marginal error. The proposed bounds rely on the
approximation of the log-partition function which advocates a close connection between both
quantities; this connection nicely connects to the present work where we inspect this relation-
ship in great detail in Chapter 7. Another powerful concept is the consideration of BP as an
optimization problem (over the local polytope). In the conclusion, the author proposes tracing
the evolution of the pseudomarginals while relaxing the marginal- to the local polytope with the
prospect of practical and theoretical consequences; a similar evolution of the pseudomarginals
lies at the core of Chapter 6.

The overarching aim of the thesis of Joris Marten Mooij, submitted at the Radboud Uni-
versiteit Nijmegen in 2008 [Moo08], is to understand and improve belief propagation, which
closely resembles the aim of the current thesis. In a nutshell, his thesis investigates the rela-
tionship between accuracy, uniqueness, and convergence properties of belief propagation’s fixed
points. One particular insightful contribution was the consideration of belief propagation as a
dynamical system. This led to conditions for stability and uniqueness of a fixed point, as well
as insights into the relation between those properties. The analysis, however, was restricted
to vanishing local potentials. We adhere to the spirit of considering belief propagation as a
dynamical system and extend the analysis to models with arbitrary parameters in Chapter 5,
providing novel theoretical insights.

The application of belief propagation to inference problems arising in the context of sensor
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networks is the main motivation in the thesis of Alexander Ihler [Ihl05], submitted at the
Massachusetts Institute of Technology in 2005. His thesis focused on studying the fundamental
limitations of belief propagation. Studying the vulnerability of the approximation quality with
respect to errors in the messages was one particularly important aspect with the prospect of
validating whether approximating the messages is a viable option. Notably, this leads to a
couple of interesting theoretical results on the accuracy of belief propagation in general, and the
introduction of error-bounds on the marginal accuracy specifically. While these bounds are only
valid for cycle-free graphs, they predict the performance of belief propagation reasonably well in
the presence of loops as well. This is one of the few results that analyze the error in the marginals,
while much of the literature focuses on the approximation error of the partition function. We
agree with the author on the importance of assessing the marginal accuracy and will particularly
focus on how the model parameters influence the marginal accuracy (cf. Chapter 5 and 7).

The thesis [Well4] of Adrian Weller, submitted at the Columbia University in 2014, focuses
on the variational interpretation of belief propagation and the Bethe approximation in partic-
ular. His work provides interesting insights into the differences between log-partition function
estimates, singleton marginals, and pairwise marginals for both the (non-convex) Bethe approx-
imation and convex variational approaches. In particular, it becomes evident that different
approximation methods do not affect the marginals and the log-partition function in the same
way; the accuracy of the log-partition function may for example remain the same whereas the
accuracy of the marginals increases. This observations raises the question of how both quantities
are related, an important question that will be the main focus of Chapter 7. Besides the the-
oretical relevance of the obtained insights, his thesis further proposes an approximation of the
Bethe function, which extends preceding work [Shil2] by approximating the global minimum.
This approximation method converges in polynomial runtime for attractive models and serves
as an important comparison for our proposed method in Chapter 6.

A direct relationship between belief propagation and graph geometry is established in the
thesis of Yusuke Watanabe [Wat10], submitted at The Graduate University for Advanced
Studies, SOKENDALI in 2010; this relationship provides novel insights into the behavior of belief
propagation. In particular, the graph-zeta function relates the convergence properties of belief
propagation to the shape of the Bethe free energy.® Moreover, the results impose some general
properties on the solution space. These properties are of relevance for belief propagation as well
and, for example, demonstrate that the overall number of fixed points is always odd. Computing
the number of fixed points is also of central interest throughout the current thesis, and Chapter 5
and 7 in particular.

1.3 Contribution and Qutline

A large part of the contributions to this thesis has previously been published; a list of the
corresponding publications is presented below. Several parts, however, have been significantly
reworked and restructured in order to align nicely with the structure of the thesis.

e [KRTP15] Christian Knoll, Michael Rath, Sebastian Tschiatschek, and Franz Pernkopf.
Message scheduling methods for belief propagation. In Proceedings of ECML PKDD,
pages 295-310. Springer, 2015.

e [KPMC16] Christian Knoll, Franz Pernkopf, Dhagash Mehta, and Tianran Chen. Fixed
point solutions of belief propagation. In NIPS-Workshop: Advances in Approrimate
Bayesian Inference, 2016.

3 In addition to demonstrating the wide range of fields that play an important role for our current understanding

of belief propagation, the graph-zeta function also serves as a foundation for recent developments in spectral
clustering [SKZ14].
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[KP17] Christian Knoll and Franz Pernkopf. On loopy belief propagation — local stability
analysis for non-vanishing fields. In Proceedings of UAIL 2017.

[KMCP18] Christian Knoll, Dhagash Mehta, Tianran Chen, and Franz Pernkopf. Fixed
points of belief propagation — an analysis via polynomial homotopy continuation. [EEE
Transactions on Pattern Analysis and Machine Intelligence, 2018.

[KKP18] Christian Knoll, Florian Kulmer, and Franz Pernkopf. Self-guided belief propagation—
a homotopy continuation method. arXwv preprint arXiv:1812.01339, 2018.

[KP19] Christian Knoll and Franz Pernkopf. Belief propagation: Accurate marginals or
accurate partition function — where is the difference? In Proceedings of UAI 2019.

It is the very nature of most PhD theses to pinpoint and raise multiple questions before
providing some — hopefully insightful — answers to them. As is often the case, this thesis tackles
very specific problems in an already highly specialized field. One aspect, however, that widens
the scope and that made working on this thesis particularly interesting is that belief propagation
is applied in various scientific fields ranging from information theory and signal processing to
statistical physics and artificial intelligence. Our study of belief propagation brings insights from
all these fields together and benefits from a particularly large toolbox, fueled by such diverse
inputs. While it is interesting to delve into each particular field and emerge oneself in all the
associated details, it is nearly impossible to hide one’s past. Therefore, and for the purpose
of a consistent notation, we settle for the language used in the statistics and machine learning
community, point at relations to associated scientific fields if appropriate, and draw from them
if beneficial.

Writing a coherent thesis, even after completing the research tasks, remains an extensive task
that should ideally serve the interested reader. Therefore, this thesis — rather than being a con-
glomerate of the presented results — offers a thorough introduction and sticks to one coherent
story. In doing so, we identify an inherent structure that lends itself to a segmentation into two
major parts.

The first part (Chapter 2 - 4) provides all relevant background and serves as the preparation
for the subsequent chapters.

The whole thesis resides in the context of probabilistic graphical models, which are introduced
in Chapter 2. We briefly discuss the relevant background from probability- and graph-theory
and introduce pairwise graphical models that are the main focus of this work. Moreover, we
define the problem of inference with a particular focus on efficient exact methods.

Belief propagation (BP) is introduced as a method of approximate inference in Chapter 3.
After discussing some of the most serious issues of BP, we describe some of the underlying reasons
for failure of BP and introduce alternative characterizations of BP. In particular, we introduce
BP as a variational method and connect the properties of BP with the energy landscape of
the Bethe free energy. Additionally, we cast BP as a dynamical system. It turns out that
this characterizations provides a general framework, encompassing a wide range of approximate
inference methods. Moreover, the consideration as a dynamical system suggests various ways to
enhance the properties of BP.

Chapter 4 provides the reader with the most important background of dynamical system
theory and algebraic geometry. While this chapter does not contain novel insights, it provides
us with the relevant tools for analyzing BP in detail. In particular, the most prominent methods
for solving system of equations are introduced and discussed.

The second part (Chapter 5-7) builds upon the knowledge developed so far, presents the major
results and extends the current understanding of BP’s behavior.
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The consideration of BP as a dynamical system provides the foundation of the results devel-
oped in Chapter 5. We apply tools from dynamical systems theory, analyze the solution space
of BP, and gain new insights into the behavior of BP; the focus on the whole solution space
instead of just a single fixed point reveals how the number of fixed points, the approximation
quality of the individual fixed points, and the convergence properties are related to each other.
One major issue is that, despite being conceptually straightforward, it is problematic to find
the set of all fixed points. We present how the set of all BP fixed points can be computed
by using the numerical polynomial homotopy continuation (NPHC) method. This allows us to
assess and compare the accuracy of the individual BP fixed points and weighted combinations
thereof. Moreover, the knowledge of all fixed points allows us to extend the local stability anal-
ysis — previously restricted to models with vanishing local potentials — to more general models.
This generalization also explains the role of the local potentials and reveals how strong local
potentials enhance the convergence properties.

The focus of Chapter 6 is to exploit the theoretical finding that local and pairwise potentials
play an opposing role regarding the performance of BP. In this chapter we propose one way to
account for this observation and to enhance the performance of BP. By modifying BP according
to a homotopy continuation method we account for this observation and incorporate the pairwise
potentials only gradually. This procedure is deterministic, converges to a uniquely defined fixed
point, and thus resolves the dependence on a well-chosen initialization. Experiments on a wide
range of models reveal that the proposed method increases the performance without increasing
the computational burden; in particular we exemplify that the results are at least as accurate as
BP, if BP converges, and that accurate results are often obtained, even if BP fails to converge.
This empirical analysis is further supplemented with a theoretical analysis that proves optimality
— i.e., the proposed method converges to the global minimum of the Bethe free energy that
constitutes the fixed point with the most accurate marginals — for restricted models that have
all local potentials favoring the same state.

All models considered so far adhere to the common conjecture that accuracy with respect to
the marginals and with respect to the partition function are interchangeable. This conjecture
suggests that the most accurate marginals of BP are to be found at the global minimum of the
Bethe free energy. In Chapter 7 we aim to validate this assumption. We therefore introduce
patch potential models that simplify the analysis significantly. The parameter space of patch
potential models is split into multiple regions with fundamentally different properties. Elabo-
rating on one specific region we first exemplify why there is no strict relationship between the
accuracy of the marginals and the partition function and then provide sufficient and necessary
conditions for a fixed point to be optimal with respect to approximating both.

Finally, Chapter 8 concludes this thesis, summarizes the results obtained, and discusses the
extent to which our understanding of BP has changed. Furthermore, the most pressing questions
left unanswered are indicated, hence providing a pointer to potential future research directions.
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Understanding the Behavior of Belief Propagation

Background

”A mind is like a parachute.

It doesn’t work if it is not open.”
— Frank Zappa

This chapter introduces the necessary background and lays the foundation for the subsequent
chapters. The focus of this thesis lies at problems that arise in the context of probabilistic
graphical models. Accordingly, we begin with a brief introduction to probability theory, in
Section 2.1, and to graph theory, in Section 2.2, before we finally unite both concepts in proba-
bilistic graphical models, in Section 2.3. Section 2.4 discusses one specific class of probabilistic
graphical models, undirected binary pairwise models, that are studied extensively throughout
the thesis. We finally devote Section 2.5 to the tasks summarized under the notion of inference.

2.1 Probability Theory

We begin with a brief review of probability theory and introduce the most relevant notions.
Note that we will restrict our focus to discrete random variables throughout this thesis. Let us
therefore consider a discrete random variable X that maps from the sample space €2 to a discrete
finite set X, i.e., X : Q — X.

We denote the probability mass function that assigns a probability to the generic value z € X
by the shorthand notation Px(xz) = Px(X = z). Likewise, let X and Y be two discrete random
variables; then, with slight abuse of notation we define the joint distribution according to

Pxy(z,y) = Pxy (X =z)Nn(Y=y)). (2.1)
Now let us consider a set of N discrete random variables X = {X;, Xs,..., X} with the joint
distribution Px (x) where the range of X is the product space XV = X} x --- x X. We further
denote the configuration for a given set of random variables by x = {z1,z9,...,zn5}. The

marginal probability distribution for a subset Y C X is obtained by summing out all variables
X; that are not in Y according to

Pry)= Y. Y Px(x). (2.2)

X; E{X\Y} T, €EX;

(Conditional) statistical independence between random variables is a particularly important
property when dealing with probabilistic graphical models. We say that X is conditionally inde-
pendent of Y given Z whenever Px vy z(X,y|z) = Px|z(x|z)Pyz(y|z) holds for all configurations
xc XN yec YN andzc ZV.

Distributions are often characterized by their expectations. For a discrete random variable X
we define its expectation under the distribution Px(x) according to

E(x) =Y - Px(x). (2.3)

reX
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2.2 Graph Theory

One of the most persuasive properties of probabilistic graphical models is the representation of
joint probability distributions by using graphs. This section gives a self-contained introduction
to the basics of graph theory. We refer the interested reader to one of the many available books
on graph theory for a more in-depth treatment (e.g., [KV05,Diel6]).

Let us consider a graph G = (X, E) with a set of nodes (or vertices) X = {X7,..., Xy} and
a set of edges E. A graph is either directed or undirected and consists of directed or undirected
edges respectively. We denote an undirected edge by (i,7) € E (or equivalently by (j,7)) if it
joins two nodes X; € X and X; € X. Note that, for the remainder of this thesis, we will only
consider undirected graphs and further restrict our focus to simple graphs — that come without
parallel edges (that would join the same pair of nodes twice) and without self-loops (i.e., i # j).

Let us consider an edge (i,j) € E, then X, is a neighbor of X; and vice versa; the set of
neighbors for any variable X; € X is defined by

0(i) = {X; € X : (i,j) € B}. (2.4)

The degree of a node X; is the number of incident edges and is consequently defined by the
cardinality of the neighbor-set, i.e., by

d; = |0(i). (2.5)
We further denote the average degree of G by dg = %E‘ A path between two nodes X;, X € X

is a graph P = ({X;,... X}, {(4,i+1),...,(k—1,k)}), where X; and X}, are the end-nodes of
P. A path goes from X; to X if there is an edge-progression that connects those two nodes.

Definition 2.2.1 (Loop). A loop is a path from a node X; back to the same node along a
sequence of edges, i.e., a path P = ({X;, Xi+1,..., Xi},{(4,s +1),...,(k — 1,k)}) exists for
k=1.

Depending on the notational conventions, loops are sometimes also referred to as cycles or
circuits. Note that every loop has to contain at least three edges, since we do not allow for
self-loops.

A graph is said to be connected if, for every pair of nodes X; and Xj;, a path exists that
connects X; to X;. We only consider connected graphs in this thesis.

In the context of this thesis, there are certain graph types that are particularly relevant; most
notably these include the following:

Definition 2.2.2 (Tree). A connected graph that does not contain any loops is a tree.

Definition 2.2.3 (Complete Graph). A complete graph G = (X, E) has every pair of nodes X;
and X; connected by an edge (i, j); i.e., G is fully connected with E = {(4, j) : X;, X; € X,i # j}.
It follows that every node has an equal degree d; = N — 1. See Figure 2.1 for an illustration of
complete graphs of size one to four.

Definition 2.2.4 (Grid Graph). An m xn grid graph, or lattice graph, is a graph with N = mn
nodes that has all edges aligned along the square lattice. See Figure 2.2 for an illustration of a
two-dimensional grid graph.

It will often be necessary to consider only a part of the graph; we call this a subgraph.

Definition 2.2.5 (Subgraph). Let G = (X, E) be a graph and let X’ C X. Then, the subgraph
(or graph-component) G’ = (X', E) is induced by X', where E' = {(i,j) € E: X;, X; € X'}.
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Q O
O O——0

O O

Figure 2.1: Complete graphs of size N =1 to N = 4.

O—0O—0O
O—0O—0O

O—0O—=0O

Figure 2.2: Two-dimensional grid graph of size N =3 x 3

Complete subgraphs are of particular relevance and are often referred to as cliques.

Definition 2.2.6 (Clique). Let G’ = (X', E’) be a subgraph. If G’ is complete we call it a clique
and refer to it as C;. If any adjacent node X; € X\X' : (4,5) € E, X; € X’ exists that, by
adding, would render C; not complete anymore, C; is a maximal clique.

See Figure 2.1 that depicts the maximal cliques of size one to four. Note that any graph
G = (X, E) is complete if and only if G is a maximal clique.

Definition 2.2.7 (Regular Graph). Let G = (X, E) be a graph where all nodes X; € X have
equal degree d; = d. Then, we refer to G as a d-regular graph.

It follows that the average degree for a regular graph equals the degree of all individual nodes,
i.e., dg = dl

Definition 2.2.8 (Bipartite Graph). A bipartite Graph G = (X, E) is a graph that decomposes
into two disjoint subgraphs Y and Z where X = YUZ and Y NZ = @ so that every edge
connects those two subgraphs; i.e., for all Y; € Y we have 9(Y;) € Z and vice versa.

Definition 2.2.9 (Adjacency Matrix). The adjacency matrix A represents the connections of
a finite graph. A is a 0 — 1 matrix with rows and columns indexed by the set of nodes so that
a;; = 1 if and only if (4, j) € E. Note that A is symmetric for undirected graphs.

2.3 Probabilistic Graphical Models

Probabilistic graphical models provide a compact representation of joint distributions and are
particularly well suited for representing distributions with many random variables. The straight-
forward specification of a distribution in N random variables requires one to define and store
the probabilities of all |X|V configurations; considering the fact that typical problems often have
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hundreds of random variables renders such an approach impracticable. The representation of
the joint distribution by the means of a graph on the other hand is intuitive and comes with
the advantage of being interpretable by humans. Moreover, and of even greater relevance, the
graph exploits the statistical dependencies of the distribution and makes them explicit. This is
required if confronted with (even moderately) high-dimensional joint distributions.

Probabilistic graphical models come in different forms that represent the statistical dependen-
cies in slightly different ways. These include the most prominent types such as factor graphs,
Bayesian networks, and Markov random fields. We will, however, restrict our focus to Markov
random fields (which are also termed undirected graphical models).

2.3.1 Undirected Graphical Models (Markov Random Fields)

A probabilistic graphical model U = (G, ¥) consists of an undirected graph G = (X, E) and a set
of K potentials (sometimes called clique potentials, or compatibility functions) ¥ that defines
the joint distribution Px(x).

There is a certain elegance to graphical models; one that relates the structural properties
of the graph to the properties of the associated joint distribution. Specifically, a one-to-one

correspondence between the set of nodes X = {X7,..., Xy} and the set of random variables*
holds. Additionally, each edge (i, j) represents the existence of a statistical dependency between
Xi and Xj.

The correspondence between edges and statistical dependencies manifests itself into the global
Markov property. Let U C X be a subset of nodes; we say that U separates two disjoint (sets
of) nodes V and W (i.e., VN'W = () if every path connecting the sets V and W contains
at least one variable U; € U. Removing the subgraph induced by U from G thus eliminates all
paths between V and W. Let us assume that U separates V and W as discussed for G; then a
joint distribution Px(x) satisfies the global Markov property with respect to G if

Py wiu(v,wlu) = Pyju(viu) Pwiu(wlu). (2.6)

See Figure 2.3 for a visualization of a graph that satisfies (2.6).

The global Markov property entails strong restrictions on the factorization properties of the
joint distribution. Specifically, according to the Hammersley-Clifford-Theorem [HCT1], the joint
distribution factorizes into a set of potentials ¥ = {®¢,,...,Pc, } specified over the set of
cliques C = {C1,...,Ck} of the graph. That is

Px(x) = 5 I ®cixe). (27)
C;eC

where the potentials ®¢,(x¢,) only depend on the values of random variables belonging to the
given clique, i.e., x¢, = {x; : X; € C;}. Although the potentials need to be non-negative and
may remind us of conditional probabilities, it is important to stress that this is not the case
and that potentials do not necessarily have a specific probabilistic interpretation (cf. [KF09,
Example 4.2]). The flexibility one has in assigning values to the potential function comes at
a cost, however: the product over all potential functions may require a normalization function
(partition function) Z to ensure that the product in (2.7) constitutes a valid distribution.’
The product in (2.7) can, in principle, consist of potentials specified only over the max-
cliques of the graphs. This may, however, hide the factorization properties of the underlying
problem [KF09, p.108] and it is thus often preferable to consider only smaller (sub)-cliques as

4 We consider only random variables with a discrete alphabet X although the framework would generalize to

continuous random variables with X = R as well.
The partition function is evaluated by computing the unnormalized sum over all states and is usually denoted
by the letter Z to denote its origin in the German word Zustandssumme.

5
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Figure 2.3: Graphical representation of the conditional independencies implied by (2.6). The set of nodes U
separates V from W, i.e., the after removing the subgraph induced by U from G two separate
subgraphs remain.

e.g., of size two for pairwise models. Pairwise models are particularly well-suited for a theoretical
analysis because of their simplicity and will therefore be the main focus of this thesis. Because of
their central role, we devote the following section to the introduction of binary pairwise models.

2.4 Binary Pairwise Models

Throughout the main part of this thesis, we will focus on one particular type of undirected mod-
els: these are binary pairwise graphical models. Binary pairwise models admit a relatively simple
treatment while being rich enough to represent a wide class of problems. Indeed, most practical
problems permit a representation as a binary pairwise graphical models, which highlights that
the class is much less restrictive as it may seem at first.

We will first provide a formal introduction in Section 2.4.1 and then discuss both the lim-
itations and the relevance of binary pairwise graphical models in Section 2.4.2. Finally, we
introduce the exponential representation in Section 2.4.3 and clarify the relation to the Ising
model in Section 2.4.4.

2.4.1 Model Description

Binary models are graphical models where every random variable X; € X takes values from the
binary alphabet, e.g., according to z; € X = {—1,+1}. Pairwise models have potential functions
that consist of two random variables at most; i.e., potentials are only associated with cliques
C; € C of size |X¢,| < 2. We resort to an even finer-grained representation that separately
specifies the potentials over the nodes and edges. Complying to this representation, we then
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define the joint distribution according to

1
PX(X) = E H (I)Xi7Xj (mi,.fj) H (I)Xi(xi)7 (2'8)
(4,7)€E X;eX

where we introduced two different potential-types. These are: the pairwise potentials ®x; x; (@i, 25)
that act on the edges (i,7) € E and the local potentials @y, (z;) that act on the nodes X; € X.
Note that each pairwise potential is only considered once as (i,j) = (j,7). We will prefer to
denote the local and pairwise potentials by their shorthand notation ®(z;) and ®(x;, x;), unless
the actual values of the associated random variables are of immediate relevance.

Note that the factorization in (2.7) considers the set of all cliques (with varying sizes), whereas
the factorization in (2.8) considers cliques of size two at most. Therefore, note that every
connected pair of variables is also a clique (albeit possibly only a subset of a larger clique). This
means that both forms become identical — even in the presence of larger cliques — whenever all
higher-order potentials are trivial.b

The representation in (2.8) has yet another equivalent factorization

1
PX(X) = E H @C(i’j) ({I:Z'a .’E])
Cig)€C

that incorporates all local potentials into the pairwise ones. Such a compact representation
clearly reduces the overall number of potentials, but may obscure the underlying structure.
This often makes the model much less intuitive to interpret. We will now discuss and compare
the different ways of factorizing the joint distribution by means of the following example.

Example 1 (Factorization into Potentials of Varying Size).
Consider the undirected graphical model U = (G, V) depicted in Figure 2.4.

Xy

X3

Figure 2.4: Complete graph with three random variables with its potentials specified over the set of edges
and the set of nodes according to (2.8).

We consider a joint distribution that is specified according to (2.8) in terms of local potentials
®(z;) and pairwise potentials ®(z;,z;) so that

Px(x)= %@(ml, x2) (22, x3) P (23, 1) P(21)P(22) P (23). (2.9)

As discussed above, one possible factorization stems from incorporating the local potentials
into the pairwise ones. The specific model in Figure 2.4 provides one obvious way of doing

A trivial potential does not influence the values of the joint distribution. One way of making a potential trivial
is by assigning identical values, as for example ®¢(xc) = 1, for all possible configurations x¢.
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so; therefore, let us define the clique potentials according to

@C(i,j)<$i,$]‘) = @(a:i,xj)@(a:j) (2.10)
so that
1
Px(x) = Eq)C(m) (1‘1,1’2)@0@’3) (mg,mg)éqs’m(mg,ml). (2.11)

Note that (2.10) is just one possible way of constructing clique potentials from the local and
the pairwise ones. One only has to make sure that every potential is considered exactly
once, as the joint distribution in (2.11) would not conform with its original definition in (2.9)
otherwise.

Finally, it is always possible to factorize the joint distribution over the maximum cliques.
Note that, in this example, G is already a maximum clique, which makes it possible to
express the joint distribution by a single clique potential. This potential of the maximum
clique incorporates all pairwise- and singleton- potentials according to

Py g (z1,22,23) = ®(x1, 22) P (22, 23)P(23, 1) P(21)P(22) P (23) (2.12)
so that
1
Px(x) = §<I>C<17273) (21,22, 23). (2.13)

The above example highlights the influence of the particular factorization on the overall num-
ber of potentials. Higher-order cliques reduce the overall number of potentials but, simultane-
ously, tend to conceal the underlying structure of the joint distribution [KF09, Chapter 4.2]).
Similarly, pairwise graphical models enforce one specific factorization and may thus hide the
“true” factorization of the underlying distribution as well. Factor graphs, on the other hand,
provide a flexible representation that makes this underlying factorization explicit. We will, how-
ever, except for the application to error-correcting codes, restrict ourselves to pairwise graphical
models for the remainder of this thesis.

2.4.2 Generality of Binary Pairwise Models

The simplicity of binary pairwise models is compelling, although the exclusion of other models
— not representable by binary pairwise models — may seem rather restrictive. Despite this
impression, binary pairwise models provide a general framework. That is, most graphical models
can be directly converted into a binary pairwise model [YFWO01, Wei00].

The conversion from general undirected models to binary pairwise models becomes immedi-
ately apparent for models with strictly positive potentials, in which case, a simple reduction
to the binary pairwise case exists [EG13]. Note, however, that such a conversion potentially
scales up the problem immensely and is therefore not always ideal from a practical point of
view [Mac01].

From a theoretical point of view, however, it is beneficial to study binary pairwise models;
these models are rich enough to exhibit complex behavior — thus demonstrating many interesting
aspects, though they still admit a simplified treatment — thus avoiding many technical subtleties.
Moreover, the study of binary pairwise models carries great relevance; not only because they
are still far from being fully understood but also because theoretical insights carry over to more
general models (by conversion of one model-class to the other).
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Besides their generality, binary pairwise models are important in their own right as they arise
in various applications.

2.4.3 Exponential Representation and Model Parametrization

So far we have not considered the actual specification of the potentials. We will now introduce
one specific parameterization of binary pairwise models, show why it belongs to an exponential
family, and define different model-classes with fundamentally different behavior. Besides, we
will fix our naming convention and briefly point to alternative ones. Note that, because of its
immediate connection, the terminology is often rooted in the physical interpretations of the
quantities.

Many relevant problems have a non-zero probability for all configurations x, such that the
joint distribution factorizes into strictly positive potentials. This allows us to assign some energy
E(x) to every configuration, so that the joint distribution from (2.8) can be expressed in its
exponential form according to

Px(x) = = - e B, (2.14)

For the remainder of this thesis we shall use a minimal representation of binary pairwise
models (cf. [WJ08, Section 3.3]) that defines the energy in terms of couplings J;; € R, that act
on the edges (i,j) € E and local fields 6; € R, that act on the nodes X; € X. Note that we drop
the subscripts and write J;; = J or 0; = 0 whenever the parameters are identical for all edges
or for all nodes respectively.”

Let the local and pairwise potentials of state x; € {—1,+1} be ®(z;) = exp(6;z;) and
O(z4,25) = exp(Jijzixj). Then, if we plug these potentials into (2.8) we end up with a joint
distribution that has its energy (cf. (2.14)) given by

E(X) = — Z Jijmiwj — Z 91331 (2.15)

(i,7)EE X;eX

The energy (and consequently the joint distribution) depends not only on x but on J;; and
0; as well; we will, however, only make this dependence explicit by FE(x,J,0) if of immediate
relevance.

In the literature, one distinguishes two different types of interactions between variables: if a
coupling is positive (J;; > 0) then the associated edge (i, j) is attractive; if a coupling is negative
(Jij < 0) then the associated edge (4, j) is repulsive. In accordance with this naming-convention,
we call a model U attractive if it contains only attractive edges (these models are also known
as ferromagnetic models [MMO09] or log-supermodular models [Ruol2]); we call it repulsive (or
antiferromagnetic) if it contains only repulsive edges; and we call a model general if it contains
both types of edges.

The particular representation of (2.15) is also known as Hopfield network (cf. [Hop82] and
[Mac03, Chapter 42]) or Boltzmann machine (cf. [HS86, WT03] and [Mac03, Chapter 43]) in the
machine learning community and as Ising model (cf. [Bru67] and [Mac03, Chapter 31]) in the
physics literature. The Ising model has been studied for a long time in statistical physics. For
its particular relevance, we will devote the subsequent section to the Ising model, discuss its
most important properties, and provide a brief historical outline of its development.

7 If all nodes have the same value 6; = 6 we will sometimes refer to 6 as the external field.
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2.4.4 The Ising Model

The study of pairwise models in the form of (2.14) actually dates back for more than a century.®
In the field of statistical physics, one studies the macroscopic behavior of systems with a large
number of interacting components (e.g., atoms or molecules) in the thermodynamic limit of
infinitely many components.

One concept of central relevance are phase transitions; these are points in the parameter
space where the partition function becomes non-analytic. Phase transitions trigger fundamental
changes in the system behavior, as for example the change from a fluid to gas. In computer sci-
ence, we often encounter algorithms that have many “components” interacting with each other
(e.g., as in message passing algorithms); such algorithms often exhibit rapid performance-drops
for certain points in the parameter space, which clearly remind us of phase transitions.

One extensively studied model in statistical physics is the Ising model: it consists of N atoms
in a configuration o = (01, ...,0y) with spins o; € {—1,+1} that lie on a d-dimensional lattice
and that are magnetically coupled.” As a model for magnetic bodies, the Ising model’s phase
transitions describe the change from the paramagnetic to the ferromagnetic region among others.
The Ising model is one of the simplest models that is sufficiently rich to exhibit phase transitions;
therein lies its appeal.

The interaction between two neighboring spins is specified by the coupling strength J that
is either ferromagnetic (i.e., positive) or anti-ferromagnetic (i.e, negative). Two neighbors then
energetically favor the same state in case of ferromagnetic interactions and the opposite state in
case of anti-ferromagnetic interactions. The energy of a configuration o is

N

E(o)=-8J Z oo + HZUZ', (2.16)
(4,5)€E i=1

where H is the external magnetic field and § = k;;% is the inverse temperature with kp being

the Boltzmann constant.

The appreciation of the Ising model had its ups and downs. After being dumped as a too
simplified model with no physical usefulness, it took some years before the Ising model received
its well-deserved attention. We outline some of the cornerstones in this development below and
refer the interested reader to the surprisingly exciting read [Bru67] for a review of the major
events in the history of the Ising model.

Wilhelm Lenz proposed the Ising model, as a simplified model for the interactions inside
magnetic bodies, with the aim of developing a better understanding of the underlying properties.
One of his students, Ernst Ising, solved the one-dimensional case (by applying the transfer-
matrix method) in his thesis. The result, rather surprisingly, revealed the inexistence of phase-
transitions in the one-dimensional case. Being unable to solve it in higher dimensions, he
concluded that the Ising model is generally incapable of experiencing phase transitions. This
conjecture, however, was in stark contrast to the ferromagnetic theory developed by Pierre
Currie, which led to the disregard of the Ising model.

Finally, this contradiction was resolved by Lars Onsanger who solved the Ising model on the
two-dimensional grid in a mathematical “tour-de-force” (as the Onsanger solution is nowadays
often referred to) and revealed the existence of phase transitions in two dimensions. Note that
the exact solution of the Ising model is only known in these two cases and it remains an open

8 Distributions of this form were first introduced by Ludwig Boltzmann and by Josiah Willard Gibbs and

provide the foundation of statistical physics. In the physics literature, one often refers to distributions of the
form (2.14) as Boltzmann-distributions or Gibbs-measures.

Here we use the standard notation for the Ising model, although the correspondence to the notation in this
thesis becomes obvious by comparing (2.15) to (2.16).

9
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problem to compute the exact solution for higher-dimensional cases.

The classical Ising model, with its energy defined according to (2.16), provides a powerful
generalization: the spin glass model has the (local) fields #; and the couplings J;; take potentially
different values for all nodes and edges and has its energy defined according to

N
E(O‘) =-0 Z JijUin + Zelo—z (2.17)
1

(4,7)€EE i=

What makes these spin glass models so interesting is that we have a much poorer understanding
of them as opposed to the classical Ising model. The lack of understanding is mainly because of
frustrations [Gé77]. These are configurations that have some pairs of random variables X;, X;
energetically favor states that contradict the coupling of the associated edge (i,j) (cf. Exam-
ple 4). To make this more precise we introduce the product of couplings along some cycle P,
ie.,

Ip =[] 7 (2.18)
P

Then, a graph is frustrated whenever it contains a cycle for which Jp equates to a negative
number. For the classical Ising model where all couplings take the same value, the existence
of frustrations depends only on the graph structure (i.e., if cycles of odd-length exist). For
spin glasses, however, the existence of frustrations depends on both the graph structure and the
parameters. This is one of the main reasons for studying spin glasses as frustrations can lead to
a complex solution space with potentially many different solutions.

So far, we have seen that binary pairwise models constitute a very general class of graphical
models and fit nicely into the framework of statistical physics. Although this emphasizes the
relevance of binary pairwise models, we barely mentioned the purpose of introducing graphical
models. We will now shift our focus to the problems we intend to solve and thus reveal the
elegance and the advantages of graphical models.

2.5 Inference

The task of inference plays an important role in many scientific fields and it is a prerequisite for
probabilistic reasoning. In a nutshell, inference deals with drawing statistical conclusions about
a certain subset of random variables, given some (possibly noisy) observations [PPT14].

Applications include, but are not limited to, computer vision and speech processing where
the observations are corrupted versions of the image or the speech-signal and one is interested
in finding the most probable explanation. Ideally, one would hope that the best explanation for
the given observations matches the original image or signal. Another important application is
found in the context of error-correcting codes, where the observation is the received codeword
and one is interested in obtaining the sent codeword.

To make the task of inference more precise we consider a joint distribution Px(x) over a
set of nodes X that consists of two disjoint subsets, i.e, X = YU O and YN O = @. The
observed variables are denoted by O and the unobserved ones are denoted by Y. Without loss
of generality, we will restrict ourselves to problems without observed variables O = () throughout
this thesis. Now we present the following three central problems of probabilistic inference.

e Mazimum a posterior (MAP) inference estimates the mode of the distribution with the
aim of identifying the joint assignment y* that maximizes the probability according to
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*

y" = argmax,yv| Pyjo(y|o). Note that, strictly speaking, this is the most probable
explanation (MPE) estimate, whereas the MAP estimate deals with the more general
problem of maximizing the probability for any subset of Y; it is quite common, however,
to neglect this distinction despite MPE inference being the easiest instance [KFDT07,
Chapter 2.3]. We abide to this convention and, provided O = @, aim to obtain

x* = argmax Px(x). (2.19)
xeXN

e Marginal inference is the task of computing the marginal distribution for a subset of
random variables Y C X, i.e., to compute Py (y) according to (2.2). Note that we will
sometimes use the following shorthand notation for this double-summation where

Py(y)= > Px(x)=> Px(x)= > Y Px(x). (2.20)
o

X\Y X;€0 z,eX

We will be particularly interested in the singleton marginals Px,(x;) for single random
variables and the pairwise marginals Py, x; (i, z;) for pairs of random variables.

For binary models it is often more convenient to work with the expectations, which are the
mean m; (or magnetization) and the correlation x;;, instead of considering the singleton
marginals Px,(x;) and the pairwise marginals Px,, X; (x4, :L‘j) explicitly, where

m; = E(Xl) = PXZ'(Xi = 1) - PXi(Xi = —1), (2.21)

e Another important problem is to evaluate the partition function
2= Y I ®aixe). (2.23)
xeXxN C;eC

which is the normalization coefficient of the joint distribution in (2.7).

We will primarily focus on the problems of computing marginal distributions and evaluating the
partition function in this thesis. Note that these two problems are in fact closely related as the
marginal distribution Px,(x;) equals the ratio between a partial partition function Z(X;) and
the partition function:

ORI TED I | R

X\ X; X\X; ~ CieC
1
= E Z H q)ci(xci)7
X\Xz CiEC
> CHCq)Ci(XCi) Z(x
S _ 2 (2.24)
> Il ®ci(xc;) Z
XEXN C,L'EC

The computation of the marginals seems relatively straightforward according to (2.24). Yet,
there is one fundamental problem that prohibits the application of (2.24) to practical problems,
which essentially boils down to the overall number of variables involved. Even if the joint
distribution Px(x) is known — neglecting the fact that the memory complexity of storing Px (x)
is exponential in the number of variables — computing Px,(x;) is problematic. More specifically,

November 8, 2019 - 35 —




2 Background

consider a joint distribution Px(x) specified over N random variables with k£ = |X| states. Then,
the sum in the numerator of (2.24) is evaluated N — 1 times and goes over k terms each time;
i.e., in total computing a marginal distribution would require the summation over k¥ ~! terms
in total.

This drastically limits the problem size for which the marginals can be evaluated in practice.
On the positive side, however, we have already encountered the compact representation of prob-
abilistic graphical models. We will subsequently show how to utilize this representation and
how this opens the door for efficient inference methods. Before considering arbitrary models, we
focus on models with certain graph structures that lend themselves to particularly elegant ways
of performing inference. Ideally one should aim to exploit this representation beyond that and
extend it to the central problems of inference.

2.5.1 Exact Inference: Efficient Methods

Tree-Structured Graphs

Chains and trees posses Markov properties that, if exploited properly, give rise to efficient infer-
ence methods. The statistical dependencies imposed by tree-structured models admit inference
methods that, instead of manipulating the joint distribution directly, recursively perform local
computations; this reduces the computational complexity immensely. Various inference methods
were independently introduced in different fields (cf. Section 3.1 for a brief overview) that all
rely on the very same principle to perform efficient inference. The basic principle is to perform
a set of local computations, often interpreted as messages between random variables; this also
explains the term message passing algorithms that is often used to unite all those algorithms.
The following example demonstrates the underlying principles and highlights the efficiency of
message passing algorithms.

Example 2 (Exact Inference on a Tree).

Consider the undirected graphical model U = (G, V) depicted in Figure 2.5. First, we express
the joint distribution as the product over all pairwise clique potentials according to (2.7) so
that

1
Pe(x) = + T @)
C;eC
1
= 7¢C(1y4) (x17x4)q)0<214) (332,.%4)@0(3’4) (.’133,%'4)@0(4’5) (1’4,1’5)‘

Z
(1)0(5,6) (x57x6)q)0<6,7) (SUG,.’E’?). (225)

Note that the factorization in terms of pairwise cliques equals the factorization in terms of
maximum cliques for tree-structured models for the lack of loops.

Second, we compute the singleton marginals for one specific random variable, e.g., X5, by
summing over all other variables such that

Pras) =23 3 3 T etxe) (2.26)
T1EX r4€X reEX x7eX C;€C

A closer look at the clique potentials reveals the benefits of reordering of the summations.
The total amount of summations becomes much more manageable if we make use of the
commutative and the distributive law and rewrite (2.26) according to
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Px;(ws) =< > By, (@, 25)-

T4EX

(Z @C<1,4)(x1’x4> (Z e Jr7275‘74) (Z Doy 4 903#64)))

r1EX ToEX 23€X

Ba4(za) Koy (a) Bag(Ta)
H45(x5)
(32 @t o5.20) (3 B feorr)) 221
reEX T7EX
N76(5[36)
,11,65(135)

Note that we introduced the powerful notion of messages in (2.27); messages y,;(z;) provide
a compact notational convention and express the consequence of summing over the respective
variable. We say that p,;(z;) is passed along the edge from X; to X (see Figure 2.5).

The desired marginal distribution Py, (z5) is then given by the normalized product of all
incoming messages. We consequently realize from (2.27) that

Py (5) = 125 (5 (). (225)

Figure 2.5: Tree-structured model that illustrates the concept of message passing with the purpose of
computing the marginal distribution Px,(xs). All messages of (2.27) are illustrated next to
the associated edges.

Note how the messages p,5(x5) and f45(25) incorporate all messages of the sub-trees rooted
in X4 and Xg. Consequently, knowledge of only the two messages fi5(5) and pgs(zs5) is
sufficient to compute the marginal Px,(x5) according to (2.28).

The reordering of the summations reduces the overall amount of required summations
notably. Comparison of (2.26) and (2.27) reveals that the computational complexity reduces
from O(|X|Y) to O(|X|?).

Remember how 5 (25) accounted for all messages that come from the subgraph induced by
X' = {X31, X9, X3, X4}. This suggests a recursive rule for computing the messages without the
need for explicitly rearranging the summations. In particular, we can compute the message
,ul-j(:cj) by taking the product of all incoming messages, except the one from Xj;, times the
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pairwise potential ¢, (i, ;) so that

:uz'j(xj) = Z q)o(i,j) (@i, ;) H Pei (7). (2.29)

T EX Xpe{0(i)\X,}

The message ,uij(wj) is a vector over all states ; € X. One can interpret this message as the
belief of node X; about the relative probabilities that X is in state x; given all the information'®
that is available to X;, except from Xj.

The notion of messages has a further advantage: if we wish to compute the marginals Py, (x;)
for multiple nodes in the graphical model we can, instead of performing the procedure multiple
times, reuse the already computed messages. It suffices to pass the messages back and forth
throughout the whole graph only once. For a chain this means propagating the messages along
both directions.'t If we wish to apply this procedure to a tree we must first fix some ordering,
i.e., pick one node as root, before then passing the messages upwards from the leaves and then
pass the messages down again.

The representation of the summations in (2.27) in terms of messages captures an important
property of tree-structured graphical models. For every X; € X it holds that any pair of its
neighbors { Xy, X;} € 9(4) is conditionally independent given X, i.e.,

P, xy1x; (@k, xi|i) = Px, x, (@k|2:) Py, x, (@1]2). (2.30)

These statistical independence statements further impose one important property on the graph.
Namely, that removing the edge (i, k) creates two disconnected subgraphs Gl = (X(i),E(i)) :
X; e X and g = (X(k),E(’“)) : X;, € X(®) Note that the existence of any alternative path
between G and G| i.e., the existence of loops, would violate (2.30).

Graphs with Loops

So far we have witnessed the capabilities of message passing algorithms for chains and tree-
structured models; one might ask how this concept generalizes and if it is able to cope with
loops. This is a critical question for two reasons: efficient inference methods are essential when
confronted with large and loopy models; and many problems of practical relevance correspond
to loopy models. Every general-purpose inference method must, therefore, be able to cope with
loops.

Unfortunately, this is not the case for message passing algorithms. Loopy graphs violate the
independence statements in (2.30) and thus prevent a straightforward generalization of message
passing to loopy graphs.

As discussed, excluding models with loops is not a viable option either. Nonetheless, ex-
ploiting the Markov properties seemed promising. Fortunately, we can have both. That is,
an algorithm exists that is both capable of accounting for loops and capable of exploiting the
Markov properties. These seemingly conflicting intentions are satisfied by modifying the graph
and carefully constructing certain subgraphs until we finally end up with a tree again.

The failure of message passing is demonstrated on a loopy graph in Example 3. Subsequently,
we show how the graph needs to be modified to allow for efficient inference.

10 We are using the term information here only figuratively in the sense that all necessary summations for

evaluating Px, (x;) are subsumed in p;;(z;). This does not adhere to the formal definition of entropy as an
information-theoretic measure.
1 In the particular case of a chain the messages actually equal the Chapman Kolmogorov equations.
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Example 3 (Exact Inference on Loopy Graphs).

We create a loopy graph by adding the edge (5,7) to the model of Example 2 (cf. Fig-
ure 2.6 (a)). Let us focus on the subgraph induced by X’ = { X5, Xg, X7}. We first observe
that the conditional independence statements of (2.30) are violated as

Px. x71x6 (75, 27|76) # Pxy)x7 (T5]77) Pxg|x, (6|77); (2.31)

and second that information flows from X7 towards X5 (and the remainder of the
graph) via two different paths: once via P1 = ({X5,X7},{(7,5)}) and once via Py =
({ X5, X6, X7}, {(7,6),(6,5)}). As a result, the message ps;(x7), if computed according
to (2.29), incorporates the belief stemming from X7 via one path and erroneously propa-
gates it back to X7 via the other path.

(a) (b)

Figure 2.6: (a) Model from Ezample 2 with the additional edge (5,7) that creates a loop. (b) Junction
tree for the same model; note that variable grouping renders the graph tree-structured again.

The graphical model needs to be tree-structured in order to satisfy the formal requirements
for message passing to work; this, however, is not the case as seen in Figure 2.6(a). We can,
however, form super-nodes, consisting of multiple variables, until no more loops are present in
the graph to leverage the power of message passing. For our current example one can simply
group the variables X5, Xg, and X7 together into X5_¢_7 and define the pairwise potential
between X, and this super-node according to

Py sgm (T4, @5, 36, 27) = Py 5 (T4, 5) P56 (5, T6) R 1) (T6, 27) 5 5, (@5, T7).
(2.32)

The resulting graph is depicted in Figure 2.6 (b). Now that we have created a tree-structured
model again (cf. Figure 2.6(b)), we can simply perform message passing on this modified graph
and compute the marginals accordingly. Note how the new node X5_¢_7 has an increased
number of states according to |X|/“5~6-71 = |X'|3 now. Despite the exponential growth of the
state space, grouping variables together has its merits. In particular, it suggests an optimal
way of rearranging the variables in the computation of the marginals that maintains the
Markov properties despite the existence of loops.

We have seen in Example 3 that performing inference on loopy graphs increases the computa-

tional complexity. This is an immediate consequence of considering higher-order cliques in the

construction of the junction tree (i.e., the modified graph). In general — and for models with

multiple intertwined loops in particular — however, there is not just one but many possibilities
of grouping variables together. Consequently, one should construct the junction tree such that
the largest clique is kept as small as possible. If one wants to keep the complexity in check, it
is thus of utmost importance to carefully construct the junction.

One might ask whether a modified graph (i.e., a clique- or junction-tree) without loops always
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exists — and how it is constructed. Indeed, for every graphical model such a junction tree exists
and the construction of an optimal junction tree — with as small cliques as possible — involves
three major steps. These steps define the junction tree algorithm [LS88] that we will review
below. We do not give an exhaustive introduction with all the details but rather aim to provide
an overview that highlights the overall idea of the required operations.

First, note that every graph G has an associated junction tree if and only if G is triangu-
lated [LS88]. A graph is triangulated (or chordal) if every cycle of length four or greater has
a chord (i.e., an edge that joins two nodes of the cycle). Usually, a graph possesses multiple
valid triangulated graphs, the choice of which has a major influence on the overall computa-
tional complexity [KF09, Section 10.4]. Finding an optimal, that is a minimal, triangulation is
NP-hard on its own but various heuristics exist that find reasonably good triangulation. Most
of these heuristics rely on a particular form of variable elimination, whereas it depends on the
given graph which method performs best [KF09, Section 9.4.3.2].

Second, the triangulated graph provides the basis for the construction of the junction tree.
The nodes in the junction tree correspond to maximal cliques in the triangulated graph; if a
variable is present in two cliques, the cliques are joined by an edge in the junction tree. A
triangulated graph usually admits multiple junction trees of varying sizes. The construction of
the junction tree thus has a major influence on the overall efficiency. Typically, one assigns a
weight to each edge that corresponds to the number of variables included in both cliques and
subsequently constructs a maximum spanning tree [KF09, Section 10.4.2].

Finally, once the junction tree is constructed an efficient inference method, for example mes-
sage passing, can be applied to the junction tree to yield the marginal distributions over all
cliques. The singleton marginals are then obtained by direct summation over a clique contain-
ing the desired variable.

The junction tree algorithm is straightforward in principle and provides a graph-based ap-
proach that exploits the factorization properties for loopy graphs. Although the junction tree
significantly reduces the complexity of exact inference, it is still of limited practical use. This
stems from working with the maximal cliques of the triangulated graph and the exponential
growth of the state space with the clique-size. The applicability of the junction tree algorithm
is consequently limited by the size of its largest clique [BKvdEvdGO1].

Nonetheless, there are two reasons that justify the introduction of the junction tree: First,
despite its limitation to problems with relatively small tree-width, the junction tree is efficient in
some sense; in particular, no general exact inference method exists that is computationally more
efficient than the junction tree [Bis06, Section 8.4.6]. The junction tree thus serves as the method
of choice for estimating the ground truth when assessing approximate inference methods in the
subsequent chapters. Second, the junction tree algorithm reveals how the inherent properties
of loopy graphs increase the complexity of exact inference; this further emphasizes the need for
efficient approximation methods.

In the subsequent chapter, we will explicitly focus on loopy graphs and show how to tackle
the related complexity issues. We take different points of view on performing approximate
inference, extend the underlying concept of message passing to more general graphs, and discuss
how these methods cope with the existence of loops. Ultimately, this search for efficient methods
culminates in a wide range of available approximate inference methods.
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Approximate Inference: Belief Propagation

”The stars bend like slaves to laws not
decreed for them by human intelligence,

but gleaned from them.”
— Ludwig E. Boltzmann

Owing to belief propagation’s specific relevance for this thesis, we present belief propagation
(BP) in detail. This includes the classical definition as a message passing algorithm in Section 3.2,
as well as the variational interpretation in Section 3.3 that highlights the connection to methods
from statistical physics. Moreover, we cast BP as a dynamical system and elaborate on the
resulting implications in Section 3.5. The perspective of dynamical systems gives rise to a
whole group of message passing algorithms for approximate inference, where every particular
instance comes with its own pitfalls and limitations. We briefly discuss some popular variants
of BP and describe how each one enhances the performance over the standard implementation
in Section 3.5.2- 3.5.4.

Much of this chapter summarizes established textbook knowledge (cf. [KF09, MW J99, MMO09])
although we review some of the most recent developments as well. The representation of BP
as a dynamical system is rather obvious and has thus been considered multiple times (e.g.,
in [MKO05, RKDW10, TR06)); here, we emphasize the added value of doing so and show how
casting BP as a dynamical system provides a unifying framework. The presentation of BP
variants in Section 3.5.3 contains results developed in collaboration with Michael Rath, Sebastian
Tschiatschek, and Franz Pernkopf [KRTP15].

3.1 Motivation

In Chapter 2 we have seen how exact inference methods suffer from the existence of loops. In
fact, exact inference is NP-hard [Co090], unless the probabilistic graphical model is appropriately
restricted, which, however, would rule out many models of practical relevance. This highlights
the need for efficient approximate inference methods. Even approximate inference, however, is
NP-hard if a certain accuracy is required [Rot96, DL93]. Note, however, that this pessimistic
statement does not render approximate inference completely useless, but only indicates that
specific models do exist for which achieving the desired accuracy is intractable.

If one wants to perform approximate inference, one can choose from a wide range of different
methods. Before one can make a well-informed choice and select an appropriate variant it is
necessary to have a good understanding of a given method’s capabilities and limitations. Hence,
developing this understanding is of central importance. Knowledge of the limitations and failure
modes further has the advantage of suggesting ways to improve upon.

We will focus on one specific class of approximate inference methods. That is the class of
message passing algorithms. As discussed in Section 2.5.1 message passing algorithms efficiently
perform exact inference on tree-structured models; the existence of loops, however, has a severe
effect on message passing and impedes the straightforward generalization (cf. Example 3).
Nonetheless, the elegance and simplicity of performing only local operations remain indisputable
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and it is tempting, therefore, to ignore the existence of loops, apply the same principles, and
hope for a reasonable outcome.

Indeed, various approximate inference methods work according to this very principle. In fact,
because of their appealing simplicity, similar concepts were independently introduced multiple
times in different fields: Judea Pearl introduced message passing algorithms in the machine
learning- and statistics-community [Pea88]| for tree-structured graphs, terming it belief propaga-
tion. He already advocated the extension to loopy graphs as an approximate method [Pea88, Sec-
tion 4.4] — nowadays often referred to as loopy belief propagation to emphasize the approximate
nature of the method.'? In the information theory community, message passing algorithms were
first introduced in the PhD Thesis of Robert Gallager [Gal68] for decoding low-density-parity-
check codes. The capabilities of message passing — known as the sum-product-algorithm — were,
however, largely overlooked until the success of Turbo codes [BGT93]. Relying on the very
same principles, this renewed interest finally put the original work into perspective and ulti-
mately led to its well-deserved recognition. Very similar concepts are also applied with success
in the signal-processing community as in the Kalman filter [Kal60] for state estimation, or in
the Viterbi algorithm [Vit67] for hidden Markov models. Probably the first explicit application
of local operations for approximating the global behavior has to be attributed to the physics
community: Hans Bethe and Rudolf Peierls introduced this concept to the field of statistical
physics with the aim of understanding the behavior of large, otherwise incomprehensible, inter-
acting systems [Bet35,Pei36]. This approximation is known as the Bethe-Peierls approximation
or the Cavity method.'3

3.2 Preliminaries

Here in this section, we will finally define belief propagation. Let us consider a binary pairwise
graphical model U = (G, ¥). First, we define messages that are passed along the edges, where
the message from X; to X; is denoted by uZ(x]) with n € Z numbering the current iteration.
The messages are updated according to the recursive rule:

AR CHESDBEICRHEICHR | ITHCH) (3.1)

T €X Xpe{o(i)\X;}

To compute the messages, BP collects all messages sent to X;, except from X; and multiplies this
product with the local potential ®(z;) and the pairwise potential ®(x;, x;). Finally, the sum over
all states x; € X is sent. In practice, the messages require some form of normalization [IFWO05];
we will normalize the messages by a7 € R} so that sze x H5(xj) = 1, which gives the messages
a probabilistic interpretation. Note that all messages are consequently restricted to f;; (z;) €
[0,1] and the application of the update rule (3.1) does not change this.

Lemma 1. Normalized messages, sent from node X; to X; over (i, j) € E, represent probabilities
and remain so under successive application of the BP update equation — provided all messages
are initialized to be positive.

Proof. Positive potentials in (3.1) guarantee that all messages remain positive at every iteration.

12 We will overload the terminology and, for the sake of brevity, always refer to it as belief propagation; irre-
spective whether the graph contains loops or not.

Nowadays, the connections between the coding- and the artificial intelligence community [KFLO1] as well
as the connections to the physics community [YEWO05] are well established and may seem rather obvious in
hindsight. Looking at the original literature, however, it becomes clear that, because of the different formalism,
these findings were indeed rather surprising at first.

Two neighboring nodes are joined by a single edge by definition. Note, that information has to flow into both
directions and that two distinct messages are passed along opposing directions over every edge.

13

14
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Consequently, a normalization term o} exists so that ZX M%H(xj) =1. O
S

The update equation in (3.1) closely resembles the recursive definition of the messages in
Section 2.5.1, except for one fundamental difference. For tree-structured graphs the recursive
definition of the messages results from simply reorganizing the summations. Consequently, the
messages converge once all messages were passed up and down the tree. For loopy graphs,
however, such a reorganization is not possible — since the recursive definition of a message, say
tij(x), contains the message p;;(z;) itself. For the very same reason, the notion of passing
the messages up and down the tree is simply not possible anymore. Instead, one can neglect
the existence of loops, update the message according to the recursive definition, accept the
approximate nature of this approach, and hope for the messages to converge to the fized point
messages fi;;(;).

After convergence of BP, one can approximate the marginals similar as for the tree-structured
models. Note that the marginals were defined over any possible subset of random variables
in (2.2), though we will only consider the singleton marginals Px,(z;) and the pairwise marginals
Px; x;(xi,z;) in this thesis. In general, the marginals over any subset of random variables are
computed by the product of incoming messages times the associated potentials. Accordingly,
we approximate the singleton and pairwise marginals by

- 1 .
Px,(zi) = — ®(xi) T i), (3.2)
’ X,€0(i)
D 1 o o
P, x; (@i, x) = @ (@) ®(25) (xi, 25) T sy JI wi@, (3.3)
Y Xp€{0()\X;} X,€{0(5)\X:}

where Z;, Z;; € R’ guarantee that all probabilities sum to one. We denote the set of all
approximated singleton- and pairwise marginals by

PB = {pXi(mi)apXi,Xj (wi,xj) : Xi S X, (’L,]) € E}, (3.4)

and refer to Pp as the pseudomarginals.'® This naming-convention should highlight the fact that,
in general, BP only approximates the marginals. In fact, one may end up with pseudomarginals
that do not correspond to any valid distribution at all.

Example 4 (Unrealizable Pseudomarginals).
Let us consider the pairwise graphical model in Figure 3.1 where X is a set of three binary
random variables with z; € X = {—1,1}.

The model is frustrated and contains two attractive edges with J;; = 1 (depicted by solid
lines) and one repulsive edge with J;; = —1 (depicted by the dashed line).

Let us specify the pairwise potentials so that

[ exp(J)  exp(—J)]
lexp(—J) exp(J) |’
[ exp(J) exp(—J)]
lexp(—J) exp(J) |’
exp(—J)  exp(J) ]
| exp(J)  exp(—J)]

Ox, x,(1,22) =
O, x,(T2,23) =

Ox, x,(r3,21) =

15 Note that the pseudomarginals are also often called beliefs, hence the name belief propagation.
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3 Approximate Inference: Belief Propagation

Figure 3.1: Example of a frustrated model. The solid edges are attractive and the dashed edge is repulsive;
note that the product of couplings along all edges (cf. (2.18)) equates to a negative number,
which characterizes the existence of frustrations. While X2 tries to pull X1 and X3 towards
the same state, both variables are pushed apart by each other because of the repulsive edge.

We further set all local potentials to identical values and choose 8 = 0 so that

o= [3%)-

Belief propagation converges to a unique fixed point defined by ,ug’j(wj) = 0.5 for all z; €
X. It is well-established that this particular fixed point exists and does not depend on the
pairwise potentials if § = 0 (cf. Section 5.7.1). The fact that these messages u;;(z;) = 0.5
constitute a fixed point becomes immediately obvious if we plug in all potentials into the
update equation (3.1).

The pairwise marginals are subsequently approximated by PXZ,, X, (i, ;); in particular we
have

~ [0.44  0.06]
PX17X2($1’J:2): 006 044 I (36)
. [0.44  0.06]
PXQ,X3<$27CU3): 006 044 I (37)
- [0.06 0.44]
PX37X1(./L'3,$1): 044 006 . (38)

Now we will proof by contradiction that the pairwise marginals from above are unrealizable;

i.e., one cannot specify a joint distribution over three random variables that has its pairwise

marginals correspond to (3.6) - (3.8). To make this more precise, note that by (3.6) and by

the sum-rule we have Px(—1,41, —1) 4+ Px(—1,+1,+1) = 0.06, so that the joint probability
| |

for both configurations must satisfy Px(—1,41,—1) < 0.06 and Px(—1,+1,+1) < 0.06.
Accordingly, (3.6) - (3.8) reveal the joint probabilities for all configurations x € |X|V. In
this example all joint probabilities must satisfy

~ !
Px(x) < 0.06. (3.9)
The total probability is thus bounded from above according to

> Px(x) <2V-0.06 = 0.48, (3.10)

which violates the fundamental rules of probability. Consequently, the pseudomarginals ob-
tained by BP cannot belong to a valid joint distribution.
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The above example demonstrated why the pseudomarginals may fail to represent a valid dis-
tribution. Still, unrealizable pseudomarginals need not pose a serious problem. In fact, we
usually resort to BP whenever evaluating the exact marginals is not possible, so that approx-
imating the marginals reasonably well is often sufficient (even if they are unrealizable). The
main motivation for considering BP was the hope for its efficient nature to carry over to loopy
graphs. This is unfortunately not always the case and, in the presence of loops, BP — besides
only approximating the marginals — may fail to converge altogether.

Nonetheless, despite all these shortcomings, BP often works surprisingly well, even for models
that contain many loops. So far we have depicted BP as a pure heuristic without any theoretical
motivation. This is unsatisfactory, and the situation was exactly like this for many years until a
close relation to variational methods was revealed. The variational perspective of BP is appealing
for several reasons: it relates to a similar problem, well studied in statistical physics; it provides
a more lucid justification of BP; and it explains the approximate nature of BP. It is for all those
reasons that the variational perspective spurred much of the research on BP in the last decade
and significantly improved the theoretical understanding of BP.

3.3 Variational Interpretation of BP — A Physics Perspective

Ultimately, the aim of approximate inference is to approximate some unknown complex distri-
bution in a way that simplifies answering probabilistic queries, as for example estimating the
marginals. One particularly powerful way of approximating distributions is available in the form
of variational methods. The variational free energy approach [JGJS99] was first formalized in the
context of statistical mechanics by Richard Feynman [Fey72, Section 3.4]. Although variational
methods originate from the physics literature, they are not limited to problems arising in this
context and have become a reliable tool in the machine learning community. For our purpose,
we focus on the Bethe free energy Fp that bridges the gap from BP to variational methods.

We show how the Bethe free energy emerges quite naturally if we approximate Px(x) ac-
cording to the variational free energy principle and follow the excellent deductive presentation
of [YFWO05] or [Mac03, Chapter 33]. An exhaustive treatment of variational representations
in the context of probabilistic graphical models that elucidates how a variety of approximate
inference methods can be understood in terms of their variational representations is presented
in the excellent review article [WJ08]. Despite its origin, we refrain, however, from discussing
the insights of specific relevance for problems in physics and refer the interested reader to some
of the many well-written books [Geoll, Hua63] for a more in-depth treatment of the Bethe ap-
proximation from the physics perspective.

When approximating a joint distribution Px (x), we first introduce a trial distribution Px(x).
The aim is to manipulate the trial distribution so that the mismatch between both distributions
is reduced. Therefore, we quantify the mismatch by the Kullback-Leibler divergence, defined
according to

Px(x)
) (3.11)

D(Px||Px) = > Px(x)log

xeXN

where, with slight abuse of notation, log(:) corresponds to the natural logarithm. Note that
the Kullback-Leibler is a non-symmetric function and not a proper distance measure. It does,
however, satisfy the Gibbs inequality, i.e., it satisfies D(Px||Px) > 0 with equality if and only
if Px(x) = Px(X).IG

16 Different proofs can be found in the literature for this property of the Kullback-Leibler divergence that, e.g.,
rely on the log-sum or the Jensen’s inequality [MMO09, p.7].
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Let Px(x) belong to an exponential family, defined by (2.14), and let Px(x) be an arbitrary
trial distribution. Then we can rewrite the Kullback-Leibler divergence according to

D(Px|[Px) = > Px(x)logPx(x)+ > Px(x)E(x)+ » Px(x)logZ. (3.12)

xexN xexN xeXxN

Overloading our notation, we further define the average energy F (]SX) = Ex(F(x)) and the
entropy S(ﬁx) = Ex (—log(Px(x))) so that

= ) Px(x)E(x) (3.13)
xeXxXN

— Y Px(x)logPx(x). (3.14)

xexXN

We can now plug the average energy and the entropy into the definition of the Kullback-Leibler
divergence and express (3.12) in a simplified way according to

D(Px||Px) =logZ + E(Px) — S(Px). (3.15)

Let us define two important quantities, namely the Helmholtz free energy (or the negative log-
partition function)

Fy = —logZ, (3.16)
and the Gibbs free energy, which is given by
Fg(Px) = E(Px) — S(Px). (3.17)

Then, we can finally rearrange terms, plug the Gibbs free energy into (3.15) and express it in a
sensible way that suggests how to estimate F3; (and thus the partition function Z.

Fg(Px) = Fy + D(Px||Px). (3.18)

The properties of the Kullback-Leibler divergence imply that Fg > Fy with equality if and
only if Px(x) = Px(x). This is a pleasant formalism that opens the door for variational
approaches; in particular minimizing fg(ﬁ’x) provides F and additionally, at its minimum,
where the Kullback-Leibler divergence vanishes, the trial distribution converges to the exact one
Px(x). More formally, for the set of all valid trial distribution Px (x) over X" we have

Px (x) = arg min Fg(Px). (3.19)
Px (x)

Note that this constitutes the central problems of inference, i.e., evaluating the partition func-
tion and computing marginal distributions (cf. Section 2.5). The formulation as an optimization
problem provides an elegant way of solving those inference problems but — in its current form
— is of limited relevance. Evaluation of the Gibbs free energy alone becomes infeasible with
increasing model size as both terms in the Gibbs free energy require a summation over exponen-
tially many terms (cf.(3.13) and (3.14)). The importance of (3.19), however, lies in the fact that
a whole family of tractable approximation methods results from restricting the possible choices
of trial distributions.

One popular approximation method that follows this idea is the mean field method. In its
simplest form, one assumes that the trial distribution is defined over independent random vari-
ables. Consequently, the joint distribution factorizes into the product of the singleton marginals

- 46 — November 8, 2019




3.3 Variational Interpretation of BP — A Physics Perspective

according to

Px(x)= ] Pxi(z). (3.20)

Restricting ourselves to trial distributions of the form (3.20), the minimization of the Gibbs free
energy suddenly becomes tractable. The minimizer of (3.19) then approximates the marginals.
Some problems exist for which the mean field approximation even becomes asymptotically exact,
as for example for infinite size Ising grid graphs with Cig = 0o [MMO09, p.80]. The approximation
tends to require a high average degree to work well. In general, however, this is not the case and
the mean field method often provides poor approximations. This is mainly because of statistical
dependencies that are present in Px(x), which the mean field method fails to account for.

It is an obvious next step to enhance the approximation quality by accounting for the corre-
lations between pairs of random variables. One prevalent way comes in the form of the Bethe
approximation that is of particular relevance for this work. Not only does the Bethe free energy
Fp restrict the class of trial distributions but it inherently approximates the Gibbs free energy
as well. The latter is a result of the average energy Ep(Pp) and the Bethe entropy Sp(Pp) that
are evaluated over the pseudomarginals Pp instead of the joint distribution according to

Ep(Pg) = — > Px.. (xm) - In®x, (xm)
X e{X; eX}U{X;,X;:(i,5)€E}
== > ) Pxlz)n®@)— > Y Pxx, (@) n®(z,z;)  (3.21)
X, eXz;eXx (4,))€EE x;,x;€ X2
S(Pp)=— > Y Px,x,(zi2;)nPx, x, (2, 2;)
(4,§)€EE z;,2,;€ X2

+ > (di—1) Y Px,(a) In Py, (). (3.22)

X;eX T, €X2
This subsequently defines the Bethe free energy in accordance with (3.17) so that

Fs(Pp) =Eg(Pp) — Sg(Pp) (3.23)

= Z Z PXi,Xj (@i, 25) IHW — ZZPXZ(QJZ) In ®(z;)

(4,5)EE T4, T; Xi T

o Z (d’ - 1) ZPXz (1‘1) In PXi (xz) (3.24)
X; x;

In comparison to the Gibbs free energy, the Bethe free energy reduces the computational
burden drastically; solely because Fp is evaluated over the pseudomarginals, i.e., the singleton
and pairwise marginals, instead of the full joint distribution. Just as the minimum of Fg
provides the partition function and the marginals, one would hope that — as Fp approximate
Fg — minimizing Fg will provide approximations to the partition function and the marginals.

In order to minimize Fg efficiently, we had to restrict the choice of trial distributions. A
similar restriction is required for minimizing Fp; the most obvious class of trial distributions
are realizable pseudomarginals that adhere to the sum-rule of probability. This constraints the
pseudomarginals so that they correspond to some valid distribution Px(x); we refer to this set
as the marginal polytope.
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Definition 3.3.1 (Marginal Polytope). The marginal polytope is the set of all pseudomarginals
that are jointly realizable by a valid joint distribution Px(x); i.e.,

1(0) = { Px. (), Prx, (0) = (o) = 3 Pl) s X € X
X\ X;

Px, x, (i, z;) = Z Px(x): (i,]) € E} (3.25)
X\{Xi, X5}

Note that the number of constraints in the marginal polytope depends on the structure of the
graph as the singleton marginals and the pairwise marginals are only defined over the set of all
nodes and the set of all edges respectively. We will refrain from making the dependence on the
graph explicit, however, and only refer to the marginal polytope as M.

The constrained minimization of the Bethe free energy, i.e., miny .7-"5(]53), seems like a stan-
dard optimization problem. It is, but the huge amount of constraints in M impedes the op-
timization in practice [Murl2, Section 22.3]. This issue is usually dealt with by relaxing the
set of constraints. Accordingly we may relax the requirement from globally realizable marginals
to locally consistent marginals. This makes the dependence on Px(x) superfluous and only re-
quires two properties to be satisfied: all singleton and pairwise marginals have to be properly
normalized, and the singleton marginals must be consistent with the pairwise marginals. These
constraints then define the local polytope L.

Definition 3.3.2 (Local Polytope). The local polytope is the set of all pseudomarginals that
are locally consistent, i.e.,

L(g) = {PX,-(%)?PXZ-,X]- (@i, 25) Y Px(@i) =1,
Px,(zi)= > Pxi,Xj(xi,mj)} (3.26)

As for the marginal polytope, we will also refrain from making the dependence on the graph
structure explicit and only refer to the local polytope by IL. Further note that I. contains fewer
constraints than M and thus provides an outer bound on the marginal polytope (with equality
for tree-structured models (cf. [WJ08, Prop. 4.1]).

It is worth pointing out a few differences that set the Bethe approximation apart from other
variational methods. On the one hand, we would like to stress that the Bethe approximation
approximates the marginals well in many cases. On the other hand, there are some conceptional
shortcomings: First, the minimization must be performed over the local polytope; the obtained
marginals are consequently only locally consistent and, in general, do not belong to a valid joint
distribution. Second, except for certain sub-classes of graphical models, the Bethe free energy
does not upper bound (nor lower bound) the original objective. This seems to fundamentally
jeopardize the main assumption that the minimum of ]:B(pB) should be somewhat close to the
minimum of Fg(Px).

To summarize, the Bethe approximation has the potential to work well and may thus serve as
an efficient approximation method but, at the same time, its properties indicate that performance
guarantees will often be hard to come by. This highlights the need for developing a good
understanding of the Bethe approximation and its shortcomings. The Bethe approximation is
well-studied in statistical physics. Note, however, that the models studied in physics differ from
the ones studied in computer science in one important aspect. Whereas physicists usually study
the behavior in the thermodynamic limit, i.e., for graphs of infinite size,'” in computer science,

17 This allows one to take limits and admits an analytical treatment in some cases.
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we are confronted with models of finite size. Although we expect a similar behavior to a certain
degree, we will see that finite-size effects will often have a notable effect on the properties of Fx.

3.3.1 Energy Landscape of the Bethe Free Energy

Let us now focus on the practical aspects of minimizing the Bethe free energy directly. In
particular, we will take a closer look at how to approximate the marginals and the partition
function in this setting. Similar as the partition function corresponds to the Helmholtz free
energy (cf. (3.16)), we introduce the Bethe partition function Zp that corresponds to the Bethe
free energy according to

Zp = exp(—Fp). (3.27)

Just as Fp approximates Fp, Zp approximates Z. Note that there is literally no difference
between both quantities and instead of minimizing Fz one could equivalently maximize Zp. We
stick to the notion of minimizing the Bethe free energy, primarily for historical reasons.

Let us recap the two key-ingredients of the Bethe approximation again: we must replace the
Gibbs free energy by the Bethe free energy and replace the constraints of the marginal polytope
by the ones of the local polytope. This gives us the global minimum of the constrained Bethe
free energy according to

F" = min Fr(Pp), (3.28)
where the pseudomarginals are specified by the associated minimizer

P}, = arg min Fp(Pp). (3.29)
L

Although the relaxation to L reduces the complexity, it concurrently alters the energy landscape
with drastic consequences. As opposed to the convex Gibbs free energy, the Bethe free energy
is generally a non-convex function (cf. Example 5).

We will denote all stationary points of the constrained Bethe free energy by
Fg° ¢ {.7:3 : Vflg(pB) = 0}. (3_30)

Finally, local minima of the constrained Bethe free energy are particularly relevant. Let us
express the Hessian of the Bethe free energy by V2Fs(Pg). Then we denote local minima
explicitly by

Fg™ e {.7:3 : V}"B(PB) = O,VQ}"B(ZBB) is positive deﬁnite}. (3.31)

Note, that the different types of stationary points consequently satisfy Fp* C {Fg™} C {F5°}.

3.3.2 The Bethe Approximation and Belief Propagation

One might ask where the added value of the variational approach lies exactly? The main reason
is the immediate connection between the stationary points of the Bethe free energy and the fixed
points of BP. The rich history of studying the Bethe free energy thus benefits our understanding
of BP directly, as the theoretical properties carry over through this relationship.
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Explicit Connection

There is a fundamental connection between the stationary points of the Bethe free energy and
the BP fixed points p° (and the associated pseudomarginals ]5f3’) In a nutshell, the stationary
points are in a one-to-one correspondence with the fixed points. We take advantage of the fact
that Fp is defined over the pseudomarginals (cf. (3.28)) and express the relation between the
stationary points F5° and the pseudomarginals according to

F5° = Fi(Pp). (3.32)

This correspondence becomes apparent when specifying the minimization of Fp explicitly
and including the constraints of the local polytope as a Lagrangian. Taking the derivatives and
setting them to zero then yields the BP update equations [YFWO01]. Consequently, at stationary
points of Fp (where all partial derivatives are zero), all BP messages remain unaffected by the
update rule (which constitutes a BP fixed point). In fact, every fixed point of BP is an interior
stationary point of the constrained Bethe free energy [YFWO05]. Note that the nature of this
correspondence further reveals a subtle, yet important, detail of BP: updating a message forces
one gradient at a time to zero while keeping all other variables fixed, which albeit often going
downwards is not a gradient descent step per se. The variational principle, however, suggests
that we should specifically consider minima of Fz; luckily, the BP updates still tend to proceed
in a sensible way towards minima of 5 [Hes03, AMO0O].

Implications

Stable fixed points of BP (see. Section. 4.4 for a thorough discussion on stability) are of particular
relevance in practice. Let us index all stable fixed points Pés) by s = 1,...,5. Every stable
fixed point (s) then has an associated local minimum F5'®), an associated partition function

(s)

Z](;), and associated pseudomarginals PyY: we denote the set of all S stable fixed points by

s={(zy. PY),.... (25 P} (3.33)
Likewise, we consider the set of all fixed points that constitute minima of the Bethe free energy

M:{(Zﬁ,ﬁé),...,(zg,ﬁg)}, (3.34)
and the total set of fixed points

T={ (25 P), ... (25 PE)}. (3.35)

Further note that all stable fixed points of BP must be minima of Fz. In the presence of
frustrated cycles, however, minima may be unstable as well [Hes03, MWJ99]. The different
types of fixed points thus relate to each other according to S C M C T.

One important question is to understand under which conditions a fixed point is unique, i.e.,
when |T| = 1. It seems appealing to utilize the connection between BP and Fp for that purpose.
Besides for very simple models, however, conditions for convexity of Fp are hard to come by, and
established conditions are often far from necessary [PA02, Hes04]. A good overview of different
conditions for convexity of Fp is presented in [MKO7].

Besides these results for uniqueness, not many results aim to characterize the expected number
of fixed points. One work that pursues this direction is [WF09]. Note that — at least as long
as some proper form of message normalization is used [MLF11] — the number of fixed points is
always finite (cf. Theorem 7 and Lemma 2 in [WF09]). Another important insight is that the
number of fixed points is always odd.
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We will later characterize the number of fixed points and asses their stability in Chapter 5
and in Chapter 7 for a range of models. As of now, we will show the correspondence between
stationary points of Fp and fixed points of BP for one exemplary model.

Example 5 (Energy Landscape of Fp for an Attractive Ising Model).

Let us take a closer look at the relationship between the Bethe free energy and BP by means
of an attractive Ising model, specified on an infinite-size two-dimensional grid graph. Let
all variables have identical local potentials, specified by 6; = 6 > 0, and all edges have
identical pairwise potentials, specified by J;; = J > 0. We illustrate a slice of the Bethe- and
the Gibbs- free energy along the marginals of one variable Px,(x;) for a model with weak
couplings (Figure 3.2) and for a model with strong couplings (Figure 3.3) Note that the Bethe
free energy upper bounds the Gibbs free energy for attractive models (cf. Section 3.4).

’—]—'B (approx.) — F (exact) ‘

Figure 8.2: Schematic illustration of the energy landscape that shows a slice along Px,(x;) for an at-
tractive model with weak couplings. The exact and the approximate results are depicted for
both the partition function and the marginals.

If the couplings are sufficiently small, Fg is convex and BP has a unique and stable fixed
point that has the whole message-space as a region of attraction (cf. Section 5.6). BP will
thus always converge independently of its initialization.

’_-7:3 (approx.) — F (exact) ‘

—InZ

Figure 3.3: Schematic illustration of the energy landscape for an attractive model with strong couplings.
The Bethe free energy is non-convez and BP may converge to one of the local minima. Note
how P%, () is more accurate than Py, (z:).
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Let us now consider a model with strong couplings. Note how Fg becomes non-convex
and exhibits multiple stationary points that correspond to BP fixed points. We will later
show in Chapter 5 that both local minima are stable fixed points and that the message
initialization will determine to which fixed point BP converges. This has a major influence
on the overall quality of the approximated quantities as the difference to the exact marginals
Px,(x;) (i-e., the values minimizing the Gibbs free energy) and thus the accuracy varies
considerably between different fixed points.

3.3.3 Other Variational Approaches

The one-to-one correspondence between stationary points of Fg and fixed points of BP led to
an improved understanding of BP and paved the way for methods that minimize the Bethe free
energy directly [WT01, WT03, YR03]. The minimization of Fp, however, remains non-trivial
and usually requires additional considerations to render it viable.

The consideration of the Bethe free energy opens the door for provable convergent algorithms.
Belief optimization [WT01] minimizes F by following the negative gradient and is guaranteed to
converge. The minimization takes place along the edges of the local polytope, which guarantees
that the marginalization constraints in (3.26) are satisfied throughout. Alternatively, one can
decompose the non-convex Fp into a convex and a concave problem (this decomposition is
in general not unique) and optimize both objectives in an alternating fashion. This procedure,
known as the constrained convex-concave procedure [YR03],, is guaranteed to obtain a stationary
point of Fg. Although both methods converge to stationary points of Fp, two major limitations
remain: first, the approximation quality may vary considerably between different stationary
points and only obtaining some (local) extremum may yield sub-optimal solutions; and second,
despite the appeal of convergence guarantees, run-time guarantees are often just as important
in practice.

To counteract some of these problems, one can also relax the Bethe free energy and come
up with well-behaved surrogates that can be minimized efficiently. Convex surrogates seem
to be specifically well-suited for this task and have thus received considerable attention. One
can, for example, upper bound the objective by a convex function as in tree-reweighted be-
lief propagation (TRW) [WJWO03b, WIJWO05, Kol06] that enforces a concave entropy-term as a
combination of tree-entropies. Note, however, that there are multiple ways of coming up with
convex surrogates [MGW09, GJO7, HS08]. One comprehensive overview that unifies many dif-
ferent approaches in terms of the chosen counting number is presented in [MJGF09]. Overall
these convex versions are well-behaved and can be optimized efficiently. A trade-off between
convergence-properties and accuracy, however, persists and — if it can be minimized — the Bethe
approximation often outperforms its convex surrogates in terms of accuracy [MJGF09, WJ14a].

This observation led to a renewed focus on trying to minimize the Bethe free energy efficiently
(i.e., in polynomial run-time). The efficient minimization of F5 becomes possible if we impose
certain properties on the graphical model (in terms of its structure or parameters) and consider
e-approximating the stationary points. In particular, this includes sparse models [Shil2], where
a projection scheme in the minimization task allows for a fully polynomial-time approximation
on graphs with max(d;) = O(logN). For attractive models (not necessarily sparse), this al-
gorithm is further improved in [WJ14a| so that it obtains the global minimum of the Bethe
free energy. If both properties are fulfilled, i.e., for locally tree-like attractive models the Bethe
approximation is exact and can be optimized efficiently [DM10].

From a completely different point of view, the approximation quality can also be enhanced by
better approximations of Fg. The concept of the Bethe approximation, that only accounts for
the singleton- and pairwise marginals, generalizes to the Kikuchi method that accounts for the
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marginals of larger cliques as well. The same principle — i.e., considering larger cliques — gener-
alizes BP as well; this method is accordingly termed as generalized belief propagation [YFWO01].
Both the accuracy and the convergence properties improve by adopting the computations to
larger cliques. Although larger cliques inevitably increase the computational complexity, the
principles of generalized belief propagation are flexible enough to allow moving freely along this
trade-off.

Gauge transformations [CC06, CCTO08] are somewhat similar in that they work with the exact
partition function Z directly while simplifying its estimation. This is achieved by express-
ing the exact partition function via a loop-series expansion of Zp. Interestingly, all terms in
the loop-series correspond to fixed points of BP, which suggests one way of computing them.
The number of terms in the expansion, however, may be large for models with many loops so
that computing all terms is often not an option. Nonetheless, gauge transformations provide a
principled approach to improve upon BP by at least accounting for some terms in the loop-series.

To conclude this section, a variety of variational approaches are available that aim to find the
sweet spot between accuracy and complexity when performing approximate inference. Most of
the above methods build upon the fundamental principles of the Bethe approximation, that — al-
though providing a considerable simplification over the Gibbs free energy — remains problematic
to minimize in practice.

3.4 Approximation Quality

So far we have already discussed various approximate inference methods. Different methods
will perform differently and, depending on the given model, achieve varying accuracy. If we
want to evaluate and compare approximate inference methods, it is important to measure the
accuracy of the approximation. Having said that, approximate inference methods are usually
applied to problems that forbid the computation of the exact solution. This prohibits measuring
the accuracy by comparison to the exact solution and highlights the need for some qualitative
measures of the expected performance for a given problem. Essentially, one would like to provide
model-specific performance guarantees and bounds on the approximation error. Few bounds
on the approximation quality are, however, established and some bounds require considerable
computational resources on their own, not to mention that most bounds are often relatively
loose.

In this section, we outline how the error in the approximation of the partition function and
the marginals will be measured throughout the thesis. Moreover, we will discuss some of the
available error-bounds for both quantities.

Partition Function

The error of the partition function is usually evaluated in terms of the relative error between
the log-partition functions (i.e., the negative value of the Bethe free energy) according to

_ [logZF —logZ| _ |Fg — FB™|

FE
z(m) logZ —Fg

(3.36)

where Z = Zp(P®) is the Bethe partition function of the m* fixed point [GMK07]. Note
that (3.36) quantifies the error in the partition function and in the free energy.

Existing bounds on the partition function usually combine an upper bound [WJWO05, JJ97]
with some lower bound as e.g., the naive mean field [WJ08]. Other bounds are based on the
loop-series expansions [WSWO08] or the non-backtracking operator [SKZ14].
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3 Approximate Inference: Belief Propagation

One intriguing detail of the Bethe approximation is that it only approximates the partition
function but neither provides an upper nor a lower bound of it. For the important class of
attractive models, however, the Bethe partition function does indeed lower bound the partition
function, i.e., Zgp < Z [Ruol2]. This has the important consequence that minimizing Fp is
always optimal with respect to the approximation quality of the partition function for attractive
models, since arg minzm (Ez(m)) = exp(— ming, Fs(P)).

An alternative, arguably more intuitive, proof that reveals how the Bethe partition function
lower bounds the true partition function relies on the concept of clamping [WJ14b]. The main
idea is to condition (i.e., to clamp) on a variable taking one specific value at a time and to evalu-
ate the partition function as a sum over all sub-partition functions. This brings the advantage of
working directly on the Bethe free energy and obviates the need for relying on additional concepts
such as graph covers [Von13,Ruo13] or loop-series expansions [WSWO08|. Moreover, for attractive
models clamping always improves the approximation quality of the partition function over BP.
This is particularly true if selecting the clamped variables wisely, as for example according 