
Rene Hölbling, BSc

Range-Only SLAM utilizing wireless sensor
nodes

Master’s Thesis

to achieve the university degree of

Diplom-Ingenieur

Master’s degree programme: Information and Computer Engineering

submitted to

Graz University of Technology

Supervisor

Assoc.Prof. Dipl.-Ing. Dr. Klaus Witrisal

Co-Supervisor

Dipl.-Ing. Stefan Josef Grebien, BSc

Institute of Signal Processing and Speech Communication
Head: Univ.-Prof. Dipl.-Ing. Dr.techn. Gernot Kubin

Graz, October 2019



Affidavit

I declare that I have authored this thesis independently, that I have not used other than the
declared sources/resources, and that I have explicitly indicated all material which has been
quoted either literally or by content from the sources used. The text document uploaded to
tugrazonline is identical to the present master‘s thesis.

Date Signature

ii



Abstract

Location awareness of mobile agents and the environment is a key component for many
Internet of Things applications. This theses proposes a simultaneous localization and
mapping algorithm for range-only measurements. The algorithm is designed to handle
three-dimensional indoor environments where electronic shelf labels are used as features
providing the range-only measurements. The approach is based on the FastSLAM algorithm
with a particle filter representation for the initialization of the features. To reduce the
computational cost of the particle filter representation methods like KLD-sampling and
a likelihood-based approach are implemented and compared. For the evaluation of the
algorithm, a simulation environment has been developed in MATLAB. The simulation
environment is based on the structure of grocery stores and warehouses. Furthermore, the
influences of the different parameters on the results are analyzed. The analysis is used to
define requirements on the location system and the quality of the range-only measurements.
The simulation results show the applicability and the performance of the algorithm. Using
range-only measurements with a standard deviation of 1 m, the algorithm achieves a local-
ization and mapping accuracy of 0.5 m and 0.8 m, respectively.
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Kurzfassung

Für viele IoT-Anwendungen ist die Lokalisierung von mobilen Geräten und die Stan-
dortbestimmung der Umgebung ein zentraler Bestandteil. Diese Arbeit präsentiert einen
Algorithmus für simultane Positionsbestimmung und Kartenerstellung (englisch simul-
taneous localization and mapping) unter Verwendung von Entfernungsmessungen zur
Umgebung. Elektronische Regalplatzetiketten werden als Features verwendet, welche die
Entfernungsmessungen zu den mobilen Geräten erzeugen. Das verwendete Konzept basiert
auf dem FastSLAM-Algorithmus mit einem ’particle filter’ als Lösung für die Initial-
isierung der Features. Um den Rechenaufwand eines ’particle filters’ zu reduzieren, wurden
verschiedene Methoden wie KLD-Sampling und ein wahrscheinlichkeitsbasierter Ansatz
implementiert und in weiterer Folge verglichen. Zur Evaluierung des Algorithmus wurde
eine Simulationsumgebung in MATLAB entwickelt. Die Simulationsumgebung wurde den
Anforderungen von Lebensmittelgeschäften und Lagerhallen nachempfunden. Anhand dieser
Simulationsumgebung werden die Einflüsse der verschiedenen Parameter auf die Ergebnisse
analysiert. Aus dieser Analyse lassen sich Anforderungen an die Lokalisierung und die
benötigte Qualität der Entfernungsmessungen definieren. Die Simulationsergebnisse spiegeln
die Anwendbarkeit und Performance des Algorithmus wieder. Unter Verwendung von Ent-
fernungsmessungen mit einer Standardabweichung von 1 m, erreicht der Algorithmus eine
Genauigkeit von 0.5 m für die Lokalisierung und von 0.8 m für die Standortbestimmung der
Features.
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1 Introduction

Advances in modern technologies, like 5G communications systems or radio frequency
identification (RFID) systems, make it possible to build high-accuracy indoor localization
systems. These are key components [1] of future Internet of Things related applications.
Such technologies are ideally suited for enabling improvements in the health care domain,
robotics, retail, and many more fields [2].

A recent survey on ambient intelligence in healthcare [3] illustrates a wide range of applica-
tion. In particular, applications for assisted living include behavioral monitoring to assess
the physical and mental health of individuals, emergency detection to alert caretakers or
emergency services, and even navigation assistance for visually impaired. For this field of
applications a centimeter-accuracy indoor positioning system is needed.
An example for robotics is the European Ubiquitous Networking Robotics in Urban Settings
project [4]. In this project, indoor localization is used for the evacuation in case of emergen-
cies, like the outbreak of a fire. The robots lead the people to a secure area via safe pathways.

Another possible improvement is the integration of the technology into electronic shelf
labels (ESLs). Consider a mobile agent, which could be a mobile robot or a human customer
with a shopping cart, who uses some kind of map to navigate through an environment
that contains ESLs. Such shelf labels allow navigation solutions inside a grocery store or a
warehouse scenario. Any mobile agent can be navigated to the products they are interested
in. In addition, logged customer paths can be used to optimize product placement. This is
made possible with the distance measurement between the static shelf labels and a mobile
agent.
This thesis focuses on this application scenario and extends the basic idea of localization
with simultaneous mapping of the ESL. A simultaneous localization and mapping (SLAM)
algorithm is presented which can deal with the range-only (RO) measurements. Using
synthetic data, the algorithm is able to achieve decimeter-accurate indoor localization and
mapping.
Furthermore, a simulation environment is implemented in order to evaluate the algorithm
and analyze the impact of several influencing factors, e.g., the quality of the measurements,
the velocity of the mobile agent, or different paths of the mobile agent. This enables the pos-
sibility to identify requirements on the ESLs for the purpose of achieving a decimeter-precise
localization and mapping.
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1 Introduction

1.1 Problem statement

In this thesis, grocery store and warehouse scenarios are examined. The basic idea in both
scenarios is that an arbitrary mobile agent is able to localize itself and map the positions
of the ESLs at the same time. The mobile agent could be a customer with a smartphone, a
shopping cart, or a mobile robot. The ESLs provide noisy distance measurements between
their positions and the mobile agent’s position. These range measurements are essential
for the mapping to prevent the localization from diverging. The mobile agent needs an
inertial measurement unit (IMU) to keep track of its position, due to the nature of the RO
measurements and their associated initialization difficulty for the position of the ESL. Unlike
most similar problems, the measurement correspondences are known, i.e., the measurements
include an identification which ESL provided the measurement.

The SLAM algorithm should be evaluated in the two different scenarios. A warehouse is
used to store goods. Therefore, warehouses usually are large buildings with wide corridors,
enabling cranes or forklifts to move goods. A common arrangement is to place the goods
on pallets and load them into pallet racks. Hence, it is reasonable to assume that the
distribution of shelf labels is not dense. The distance between shelf labels can be in the
range of meters.
A grocery store, on the other hand, provides less space. The corridors are smaller because
only customers with shopping carts or staff members have to pass through. In order to
ensure an efficient use of space, the products are narrowly crammed, leading to a huge
number of shelf labels deployed within a small area. The distance between shelf labels can
be in the range of centimeters.

1.2 Structure of the thesis

This thesis is structured as follows. Subsequent to the introduction, the theoretical back-
ground for the understanding of the thesis is covered in Chapter 2. The focus is put on the
probabilistic description of the overall problem. An explanation of the developed simulation
environment is given in Chapter 3, including all relevant parameters. Chapter 4 outlines
the development of the SLAM algorithm. Special attention is paid to the initialization
of the position of the ESLs. The achieved results are presented in Chapter 5. Different
influences on the outcome are compared and analyzed. The requirements on the localization
system are derived based on this analysis. Finally, in Chapter 6 the findings of this work
are summarized and an outlook on possible improvements and further developments is
given.
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2 Theoretical background

This chapter provides a brief introduction to relevant foundations which are necessary in
order to understand the advanced topics discussed later on in this thesis. First of all, the
problem statement is generalized to the well known SLAM problem. Then, Bayes filters
are introduced to solve this problem. Furthermore, two realizations of this approach are
presented, namely the Kalman filter (KF) and the particle filter (PF). Afterwards, the
interaction of the IMU and the ESLs in terms of the motion model and the measurement
model are outlined. Finally, the Cramér–Rao lower bound (CRLB) is introduced as an
instrument to validate potential estimators and to get an impression for the quality of the
expected distance measurements.

2.1 Simultaneous localization and mapping

Localization describes the task of determining where a mobile agent is located with respect
to a known environment, represented by a map. In this context, mapping is understood
as the ability of a mobile agent to construct maps of its environment when knowing its
location. The simultaneous localization and mapping (SLAM) problem is the combination
of those two problems. Therefore, SLAM asks if a mobile agent can determine its position
within an unknown environment and simultaneously generate a consistent map of this
environment.
In order to get a mathematical formulation of the SLAM problem, it is necessary to define
several quantities. At time instance t ∈ N0 the following quantities are defined:

• pt = [px,t, py,t, pz]
T : the agent position describing the three-dimensional (3D) location.

The height pz is assumed to be known and time-invariant.
• xt = [pt, vx,t, vy,t, ax,t, ay,t, θt]

T : the agent state vector consisting of the agent position,
velocity, acceleration and yaw angle.
• f (j) = [f

(j)
x , f

(j)
y , f

(j)
z ]T : a vector describing the true 3D position of the j-th feature.

The position is assumed to be time invariant.
• m = [f (1), f (2), ..., f (J)]T : the map consisting of all feature vectors.
• ut: the control vector describing the change of the agent pose.
• zt: the measurement vector consisting of the received (distance) observations from

the features within communication range.

3



2 Theoretical background

Figure 2.1: Graphical model of the SLAM problem. The shaded nodes are observable by the mobile agent.
The white nodes are unobservable and have to be estimated.

With these definitions, the probability density function of the SLAM problem can be written
as

p(xt,m|u1:t, z1:t,x0) (2.1)

and has to be estimated for all times t. The graphical model of the SLAM problem is
depicted in Figure 2.1.

This topic attracted a lot of attention in research over the last decades. Thus, solutions
for many different SLAM variations have been proposed. They can be categorized along
various properties. For instance, they can be distinguished by the type of sensors used to
perceive the environment or in the way the map is represented. Another important criterion
is the way the path is estimated. Full SLAM estimates the whole path in each time step.
In contrast to that, the online SLAM estimates only the most recent pose.
Figure 2.2 gives an overview of the resulting taxonomy, without claiming to be thorough
and complete. Further information on the taxonomy can be found in [5].

Although there are lots of paradigms, a vast majority of the proposed SLAM algorithms
can be derived from three main paradigms. The historically oldest one is called EKF SLAM.
It uses recursive Gaussian filter techniques. This paradigm became less popular due to
its restrictions representing complex probability distributions with normal distributions.
The second one uses graph-based or network-based representations. Graph-based SLAM
algorithms use sparse nonlinear optimization to solve the full SLAM problem. An elaborated
introduction on graph-based SLAM is given in [6]. The third and last paradigm applies
nonparametric filter techniques known as PFs. It is frequently used for the online SLAM
problem. One important characteristic of SLAM algorithms that made PF methods popular
is the customization to available resources. Thus, the solution is always an approximation
taking into consideration requirements of the application. PF methods enable an easy
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2 Theoretical background

tradeoff between accuracy of the approximation and computational costs. More detailed
explanations on the paradigms can be found in [7].

The class of RO online SLAM has a high relevance for this thesis because the prob-
lem statement is part of this class. The proposed SLAM algorithms in this class are mainly
distinguished by the way they handle the initialization problem arising from the RO mea-
surements. The initialization problem often determines the representation of the features.
Most state-of-the-art algorithms are based on the EKF-SLAM.
One of the older approaches [8] extends the EKF-SLAM with a grid-based voting scheme
for the localization of the features. Due to the underwater scenario the noisy range mea-
surements include many outliers. For this reason, the voting scheme is constructed to
filter outliers and cope with noisy measurements. The voting scheme needs a sufficient
dead-reckoning to work. Compared to the grocery store and warehouse scenarios, the
number of features is very small. Only four features were used.
In [9] the proposed approach uses a PF for the initialization of the features and then switches
back to the EKF representation after the particles have converged. A Gaussian mixture
model based on the polar parameterization is used in [10] to represent the features. As a
result of the considered independence between all azimuth and elevation angle parameters,
the EKF correction step is optimized.
In [11] a sum of Gaussian filters is used. Possible feature locations are represented with
Gaussian distributions. The initialization is done according to a geodesic grid with a fixed
number of equally spaced Gaussians. A recent approach is based on the sparse extended
information filter [12]. This approach has efficiency and scalability advantages compared
to the EKF. Additionally, inter-feature measurements are used, which improve map and
robot localization accuracies. Furthermore, they are speeding up the feature initialization.
Depending on the scenario and the quality of the range measurements, state-of-the-art RO
SLAM algorithms achieve absolute mapping errors from 0.35 m to 2 m.
More detailed information on the SLAM problem and its history can be found in [13].

2.2 Bayes filter

Bayes filtering is an approach to estimate an unknown probability density function using
measurements zt and a process model. In case of the SLAM problem described in Section
2.1, the process model becomes a dynamic motion model with control input ut. The online
SLAM problem requires to compute

p(xt,m|u1:t, z1:t,x0) (2.2)

for all time instances t. Starting with the probabilistic definition, the recursive form of
the Bayes filter can be derived. First the Bayes theorem is applied on (2.2), which then

5



2 Theoretical background
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Figure 2.2: A taxonomy of the SLAM problem. Figure adapted from [5].

becomes

p(zt|xt,m,u1:t, z1:t−1,x0) p(xt,m|u1:t, z1:t−1,x0)

p(zt|u1:t, z1:t−1,x0)
, (2.3)

where [p(zt|u1:t, z1:t−1,x0)]
−1 is a normalization term and has no further influence. For

convenience, the normalization term will be called η further on. Next, assuming the Markov
property, the expression simplifies to

η p(zt|xt,m) p(xt,m|u1:t, z1:t−1,x0). (2.4)

The term p(zt|xt,m) describes the measurement model. The last term is still difficult to
interpret. Therefore, the law of total probability is applied to rewrite the expression (2.4)
into

η p(zt|xt,m)

∫
p(xt,m|u1:t, z1:t−1,x0,xt−1)p(xt−1,m|u1:t, z1:t−1,x0)dxt−1. (2.5)

Using the Markov assumption one more time, the equation can be written as

η p(zt|xt,m)

∫
p(xt,m|ut,xt−1) p(xt−1,m|u1:t, z1:t−1,x0)dxt−1. (2.6)

The classical SLAM problem does not include path planning or active perception. Thus, the
current control input ut has no influence on p(xt−1,m|u1:t, z1:t−1,x0). The final expression
is formulated as

η p(zt|xt,m)

∫
p(xt,m|ut,xt−1) p(xt−1,m|u1:t−1, z1:t−1,x0)dxt−1. (2.7)

The term p(xt,m|ut,xt−1) corresponds to the state transition probability and is given by
the motion model. The term p(xt−1,m|u1:t−1, z1:t−1,x0) corresponds to the posterior of the

6



2 Theoretical background

last time step. Expression (2.7) can be rewritten in order to show the two-step recursive
formulation of the Bayes filter. The prediction step is given by

p(xt,m|u1:t, z1:t−1,x0) =

∫
p(xt,m|ut,xt−1) p(xt−1,m|u1:t−1, z1:t−1,x0)dxt−1. (2.8)

The correction step is given by

p(xt,m|u1:t, z1:t,x0) = ηp(xt|zt,ut)p(xt,m|u1:t, z1:t−1,x0). (2.9)

Bayes filters allow for recursive state estimation. The rest of the section is dedicated to
realizations of these estimators. Three of them will be explained briefly.

2.2.1 Kalman Filter

The most famous realizations of Bayes filters are Kalman filters (KFs). Introduced in
1960 by Rudolph Kalman [31], the KF is the best studied and most used technique for
implementing Bayes filters. The probability distributions are represented by multivariate
normal distributions. The definition of a Gaussian normal distribution is stated as

p(x) = det(2πΣ)−
1
2 exp

{
− 1

2
(x− µ)TΣ−1(x− µ)

}
, (2.10)

where µ is the mean and Σ is the covariance matrix. One of the fundamental properties
of Gaussian distributions is that they are unimodal. This means they possess a single
maximum. A random variable with a Gaussian distribution can be parameterized at time
instance t by its mean µt and its covariance Σt. The random variable is then denoted
as xt ∼ N (µt,Σt). The KF assumes a linear state space model describing the problem.
Hence, the state transition probability p(xt,m|ut,xt−1) and the measurement probability
p(zt|xt,m) have to be linear functions in their arguments. The state space model is then
expressed by the following equations

xt = Atxt−1 + Btut + wt (2.11)

zt = Ctxt + vt, (2.12)

where wt and vt are two Gaussian random vectors which are used to model the uncertain-
ties introduced by the state transition and the measurements. They are assumed to be
independent of each other and can be denoted as

wt ∼ N (0,Qt) (2.13)

vt ∼ N (0,Rt). (2.14)

Considering all the models and assumptions the state transition probability is given by

p(xt,m|ut,xt−1) = det(2πQt)
− 1

2

exp
{
− 1

2
(xt −Atxt−1 −Btut)

TQ−1
t (xt −Atxt−1 −Btut)

}
.

(2.15)
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2 Theoretical background

In the same manner the measurement probability is expressed by the following equation

p(zt|xt,m) = det(2πRt)
− 1

2 exp
{
− 1

2
(zt −Ctxt)

TR−1
t (zt −Ctxt)

}
. (2.16)

Finally, the formulation of the the iterative steps of the KF algorithm at time t can be
written as

µ̂t = Atµt−1 + Btut (2.17)

Σ̂t = AtΣt−1A
T
t + Qt (2.18)

Kt = Σ̂tC
T
t (CtΣ̂tC

T
t + Rt)

−1 (2.19)

µt = µ̂t + Kt(zt −Ctµ̂t) (2.20)

Σt = (I−KtCt)Σ̂t. (2.21)

Equations (2.17) and (2.18) represent the prediction step mentioned in equation (2.8).
Equation (2.17) predicts the state at the next time instance. Equation (2.18) is the propa-
gation of uncertainty from the old estimate to the new predicted state. Equations (2.19),
(2.20) and (2.21) correspond to the correction step. Equation (2.19) computes the so-called
Kalman gain Kt. Equation (2.20) incorporates the measurement update. Equations (2.19)
and (2.20) combined are equivalent to the maximum a posteriori estimator for linear models
with Gaussian prior. Equation (2.21) computes the covariance matrix of the estimate.
At time instance t the state is represented by the mean µt and the covariance matrix Σt.
The covariance matrix Σt expresses the uncertainty of the state. KFs work quite well if
the problem is linear, roughly Gaussian distributed and unimodal. Further details and
references can be found in [32]. Detailed mathematical derivations are given in [33].

2.2.2 Extended Kalman Filter

One limitation of the KF is the linearity of the state transition and the measurement
function. This is rarely the case in real world applications. Therefore, a concept is needed
that can deal with non-linear functions. This concept is an extension to the KF and is
called the extended Kalman filter (EKF).
The state space model of the EKF can be written as

xt = g(ut,xt−1) + wt (2.22)

zt = h(xt) + vt, (2.23)

with the non-linear state transition function g(ut,xt−1) and the non-linear measurement
function h(xt). These non-linear functions are linearized utilizing a first-order Taylor
expansion. The general Taylor expansion can be written as

g(ut,xt−1) =
∞∑
n=0

g(n)(ut,xt−1)

n!

∣∣∣
xt−1=µt−1

(xt−1 − µt−1)n, (2.24)

8



2 Theoretical background

where the nth derivation of g(ut,xt−1) yields

g(n)(ut,xt−1) =
∂(n)g(ut,xt−1)

∂x
(n)
t−1

. (2.25)

For the application of the KF a linear function is required. Therefore, all the higher order
terms are neglected. The linearizion is the approximation of a nonlinear function by a
linear function that is the tangent hyper-plane to the original function at the mean of the
Gaussian. This approximation results in the following approximation

g(ut,xt−1) ≈ g(ut,µt−1) + g′(ut,µt−1)︸ ︷︷ ︸
Gt

(xt−1 − µt−1). (2.26)

Gt is a matrix of size m× n with n denoting the dimension of the state and m denoting
the dimension of g. The matrix Gt can be calculated as

Gt =


∂g1(ut,xt−1)

∂x1

∣∣∣
xt−1=µt−1

. . . ∂g1(ut,xt−1)
∂xn

∣∣∣
xt−1=µt−1

...
. . .

...
∂gm(ut,xt−1)

∂x1

∣∣∣
xt−1=µt−1

. . . ∂gm(ut,xt−1)
∂xn

∣∣∣
xt−1=µt−1

 . (2.27)

Gt is called the Jacobian matrix of g. If the state transition is linear, Gt equals At. The
Jacobian Ht of the measurement functions is given by

Ht =


∂h1(xt)
∂x1

∣∣∣
xt=µt

. . . ∂h1(xt)
∂xn

∣∣∣
xt=µt

...
. . .

...
∂hm(xt)
∂x1

∣∣∣
xt=µt

. . . ∂hm(xt)
∂xn

∣∣∣
xt=µt

 . (2.28)

Analogous to Gt, the Jacobian Ht equals Ct if the measurement function is linear. After
the linearizion of the state model, the EKF algorithm can be formulated as

µ̂t = g(µt−1,ut) (2.29)

Σ̂t = GtΣt−1G
T
t + Qt (2.30)

Kt = Σ̂tH
T
t (HtΣ̂tH

T
t + Rt)

−1 (2.31)

µt = µ̂t + Kt(zt − h(µ̂t)) (2.32)

Σt = (I−KtHt)Σ̂t. (2.33)

The equations (2.29) to (2.33) have the same meaning as in the last section. The only
difference is the linearized state space model.
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2 Theoretical background

2.2.3 Particle Filter

Another limitation of the KF is the restriction to Gaussian distributions. Most real world
problems are non-linear and non-Gaussian. Therefore, a different approach may be advan-
tageous for the state representation. Thus, a particle filter (PF) as a sample-based Bayes
filter is used. The posterior is represented as a finite number of samples. The big advantage
of this approach is that every arbitrary probability distribution can be modeled if enough
samples are used. In the case of PFs, the samples of a posterior distribution are called
particles and are denoted as

Xt = {x(1)
t ,x

(2)
t , ...,x

(N)
t } (2.34)

The number of particles N that should be used to model a posterior distribution is mainly
depending on the complexity of the posterior distribution. Therefore, finding the best
number of particles is always a trade-off between accuracy and computational effort. A
larger number of particles leads to a more accurate representation but also to higher
computational costs.
The basic version has an intuitive explanation. Every particle x

(n)
t−1 corresponds to a

specific realization of the state xt−1. The state if each particle of the next time instance is
updated with the state transition function. Afterwards, the particles are rated regarding
the measurement model, utilizing the real measurements. In the end, they are resampled
according to this rating.

Algorithm 1 Particle filter algorithm

1: procedure particle step(Xt−1,ut, zt)
2: X̂t = Xt = ∅
3: for n = 1 to N do
4: get x

(n)
t−1 from Xt−1

5: sample x
(n)
t ∼ p(xt|ut,x(n)

t−1)

6: w
(n)
t = p(zt|x(n)

t )

7: add x
(n)
t and w

(n)
t to X̂t

8: for n = 1 to N do
9: normalize w

(n)
t in X̂t

10: for n = 1 to N do
11: draw x

(i)
t from X̂t with probability ∝ w

(n)
t

12: add x
(i)
t to Xt

13: return Xt

The pseudo code of the most basic version of the PF can be seen in Algorithm 1. The steps
of the intuitive explanation are directly seen in the pseudo code. The first for-loop (line
3-7) applies the motion model to each particle. Furthermore, a weight wmt is calculated
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from the measurement model. The weight rates the particles according to the measurement.
The second for-loop (line 8-9) normalizes all the weights. This has to be done to get a
valid probability distribution with a probability mass of 1. The last for-loop (line 10-12)
describes the resample procedure.
One has to be aware that only the basic version of the PF is discussed in this section. There
have been many improvements and extensions to this algorithm over the years. Most of
them try to make the PF computationally more efficient.
Good tutorials on the PF are [34] and [35]. These tutorials give a more elaborated instruction
and further references.

2.3 Inertial measurement unit

Next, a deeper look is taken into the motion model. Regarding the problem statement, no
specifications have been made for the mobile agent. As a consequence, no prior knowledge
can be incorporated into the motion model. Therefore, an electronic sensor system is
required that measures all the physical quantities needed to estimate the motion of the
mobile agent. Such a sensor system is called inertial measurement unit (IMU). An IMU
typically consists of accelerometers and gyroscopes to measure the acceleration and the
angular velocity.
Some IMUs additionally include magnetometers to determine the magnetic field strength in
a given direction. The magnetic field strength in the x- and y-direction are used to calculate
the orientation. This gives an absolute orientation with respect to the Earth’s magnetic
North. This is especially useful for navigation problems. Hence, this thesis simulates an
IMU with included magnetometer.

IMUs exist in two system configurations. The first configuration are stable platform type
systems. Stable platform type systems are mounted isolated from the external rotational
motion. This can be done using gimbals and torque motors. The gyroscopes signals are
fed back to the torque motors which rotate the gimbals to keep the platform always in
the same orientation. The orientation measurement can be read from the angles between
adjacent gimbals using angle pick-offs. As a result, the acceleration is in the global frame
and can be integrated twice to get the position. The stable platform inertial navigation
algorithm is visualized in Figure 2.3.
The second configuration are strapdown type systems. In this kind of systems, the inertial
sensors are mounted rigidly on the mobile agent. Thus, all the physical quantities are
measured in the agent frame and not in the global frame. Hence, to keep track of the
orientation, the gyroscope signals are integrated. A magnetometer helps with the initial-
ization of the orientation and the correction of the gyroscope signals. Using the known
orientation, the accelerometer signals can be transformed into the global frame. The global
acceleration signals are then integrated in the same manner as in the stable platform
algorithm. Strapdown type systems are computationally more demanding but mechanically
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Figure 2.3: Stable platform inertial navigation algorithm. Figure adapted from [36].

Figure 2.4: Strapdown inertial navigation algorithm. Figure adapted from [36].

less complex. Thus, they tend to be physically smaller and cheaper than stable platform
type systems. For these reasons, strapdown type systems are more feasible for an arbitrary
mobile agent. Therefore, all further IMUs are considered to be strapdown type system. The
strapdown inertial navigation algorithm is shown in Figure 2.4.

Unfortunately, measurements from IMUs are error prone. The main error sources for the
accelerometers and gyroscopes are identified as misalignment, scale factor, noise, and bias.
The bias itself consists of a static and a drifting bias. With a calibration procedure, the
misalignment, the scale factor, and the deterministic part of the bias can be corrected.
Assuming a calibrated IMU, only the noise and the drifting bias are considered as error
sources. The biggest issue with magnetometers is that they are adversely affected by other
magnetic fields. As this is difficult to simulate and not within the scope of this work, only
noise is considered for the magnetometer.
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Table 2.1: IMU grades. Reprinted from [37].

Perfomance
Parameters

Consumer Automotive Tactical
Navigation

I
Navigation

II

A
ccelerom

eter

Bias stability
(µg)

2400 1200 200-500 50-100 5-10

Scale Factor
(PPM)

- >1000 400-1000 100-200 10-20

Noise density

VRW(µg/
√

Hz) 1000 1000 200-400 50 5-10

G
y
roscop

e

Bias stability
(◦/h)

>200 10-200 1-10 0.1-1.0 <0.01

Scale Factor
(PPM)

- >500 200-500 100-200 5-50

Noise density

ARW (◦/
√
h)

(◦/h/
√

Hz)

3
180

3
180

0.2-0.5
12-30

0.05-0.2
3-12

0.002-0.005
0.12-0.3

The most common classification of IMUs is by their performance, not by their technology.
For the classification only accelerometers and gyroscopes are looked at. An interesting
fact regarding the classification of IMUs is that in many datasheets the performance of
the gyroscope is prioritized over the performance of the accelerometer. In Table 2.1, the
classification is presented with respect to typical associated performance parameters. The
presented classification should give a feeling for the capabilities of IMUs associated with a
certain grade term. For further information about IMUs see [36].

2.4 Smart electronic shelf labels

The emergence of online grocery shopping comes with a lot of advantages for the customers
like low prices and a wide product range. Hence, stationary retailers are required to adapt
their retail strategies. More and more grocery stores migrate from paper labels or plastic
labels to electronic shelf labels (ESLs). A recent study [38] shows that customers perceive
ESLs easy to use but are mostly unaware of their benefits. This creates the interest to
improve the functionality and make it clearer to recognize its benefits for the customer.
Hence, one of the next steps to make ESLs even smarter is to incorporate indoor localization
technology. Such ESLs do not only display the price of the product and useful information
but also know their position and help a mobile agent with its localization.
Indoor localization witnessed a lot of interest lately, due to the services it can provide for
the Internet of Things (IoT). Therefore, many different techniques such as Angle of Arrival,
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Time of Flight, Return Time of Flight, and Received Signal Strength based on technologies
such as WiFi, RFID, ultra wideband (UWB), and Bluetooth have been developed. A good
summary on indoor localization in general can be found in [39]. Furthermore, a lot of
systems utilizing these techniques and technologies have been proposed. A comparison of
different state-of-the-art systems is given in [40]. Although these systems are developed
for localization, the same technology could be used with small adaptations to solve the
SLAM problem. Because of the high numbers of ESLs in a grocery store, there are special
requirements on the system. It needs to be easily deployable, cheap and with a low energy
consumption. Thus, the most applicable technologies for ESLs are either UWB or RFID.
For convenience and to be consistent with the relevant literature, the ESLs will be called
features further on in the context of the SLAM problem.
One approach for such a system is to extract position-related parameters from the measured
signals and estimate the position in a second step. In our case the position-related parameter
is the distance from the feature to the mobile agent. The focus in the thesis is on the second
step. Hence, it does not matter which localization techniques or technologies are used. The
quality of the estimator specifies the probabilistic description of the measurement model of
the mobile agent.

2.5 Cramér–Rao lower bound

Before the quality of estimators can be discussed, the concept of estimators has to be
introduced. In general an estimator is a function that maps a set of observations to a set of
estimates. Henceforth, an estimator will be denoted as

ζ̂ = g(z). (2.35)

Two famous examples of estimators are the maximum likelihood and the maximum a
posteriori estimator. They can be formulated as

ζ̂ML = arg max
ζ

(p(z; ζ)) (2.36)

ζ̂MAP = arg max
ζ

(p(ζ|z)) = arg max
ζ

(
p(z|ζ)p(ζ)

p(z)

)
. (2.37)

An estimator determines the unknown parameters ζ using the observations z. The unknown
parameters ζ could be the distance, the observations z could be either one of the techniques
such as a Time of Flight or Received Signal Strength measurements. As two possible
measures for the performance of estimators, two statistical properties are used: the bias
and the variance. The bias and the variance are given by

bias(ζ̂) = E(ζ̂)− ζ unbiased
= 0 (2.38)

var(ζ̂) = E((ζ̂ − E(ζ̂))2). (2.39)
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The bias is defined as E(ζ̂)−ζ. The bias can be understood as the deviation of the expected
value of the estimator ζ̂ from the real value of the parameter ζ. An estimator is called
unbiased if the bias is zero. The variance is an indicator of how far, on average, the produced
estimates are from the expected value of the estimates. For an unbiased estimator, the
variance equals the mean squared error.

The preferable estimator is called minimum-variance unbiased (MVU) estimator. It is
unbiased and has the smallest possible variance of all unbiased estimator.
Even if the MVU estimator does not exist for a certain problem, a lower bound on its
variance can be found. A possibility to derive such a lower bound is the Cramér–Rao lower
bound (CRLB). This is often useful as a benchmark to rate the results of an estimator.
Additionally, the theory of CRLB is capable to determine if an estimator exists that attains
this limit.
The CRLB for scalar estimator is given by

var(ζ̂) ≥ 1

−E
(
∂2 ln(p(z;ζ))

∂ζ2

) , (2.40)

where the derivative is evaluated at the true value of the parameter ζ and the expected
value is taken with respect to the likelihood function. Because the CRLB holds for any
unbiased estimator ζ̂, the probability density function p(z; ζ) has to satisfy the regularity
condition

E

(
∂ ln(p(z; ζ))

∂ζ

)
= 0, ∀ζ. (2.41)

An often mentioned term related to the CRLB is the Fisher information (FI). The FI is
the inverse of the CRLB. The FI is explicitly given by

I(ζ) = −E
(
∂2 ln(p(z; ζ))

∂ζ2

)
= −

∫
∂2 ln(p(z; ζ))

∂ζ2
p(z; ζ)dz. (2.42)

The FI is used to conveniently express the condition for the MVU estimator as

∂ ln(p(z; ζ))

∂ζ
= I(ζ)(ζ̂ − ζ). (2.43)

If and only if this condition holds for all ζ the estimator ζ̂ = g(z) is an MVU estimator.
For the extension to the vector case, also the FI is used. The vector parameter CRLB is
defined as the elements of the main diagonal of the inverse FI matrix

var(ζ̂i) ≥ [I−1(ζ̂)]ii. (2.44)

The FI matrix is defined as

[I(ζ̂)]ij = −E

(
∂2 ln(p(z; ζ̂))

∂ζi∂ζj

)
. (2.45)

A detailed description of the CRLB can be found in [41] including many examples.
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3 Simulation environment

In the last chapter the basis for understanding the thesis were covered. Most topics of the
thesis will be based on this theoretical background. This chapter deals with the simulation
environment. The simulation environment is used to test the developed SLAM algorithm
in a setting close to real-world conditions. All the implementations were done in the
programming language MATLAB.

3.1 Mobile agent

The mobile agent is deliberately formulated in a broad way. The SLAM algorithm can be
applied to various applications. The mobile agent can take many different forms ranging
from a mobile robot with a sophisticated localization sensor system to a shopping cart
with a simplistic localization sensor system. The use case for the mobile robot is a decent
initialization of the map within a mostly unknown environment. In comparison, a shopping
cart as a mobile agent makes sense only with a map that is at least partially initialized.
The main focus in this case will be on the localization and the mapping will be fine-tuned.

Nonetheless, all mobile agents have in common that they have to be equipped with a
communication system that can receive signals from the features. To model which features
are in reach, a parameter called detection radius rdet is defined. This parameter determines
in which radius, regarding its current position, the mobile agent can receive signals from
the features. Typically, the position of the features is unknown to the mobile agent but for
some of the features, the position is known beforehand. This kind of features are called
anchors. These features with known position are important to the location part of the
SLAM algorithm.

The most important characteristic of the mobile agent is the odometry. Odometry can be
understood as the use of data from motion sensors to estimate the change in position over
time. Hence, it has a direct influence on the performance of the whole SLAM algorithm.
There are various ways to determine the odometry, for instance a rotary encoder on a
robot wheel. A rotary encoder can measure how far the wheels have rotated. With the
combination of the circumference of its wheels and the distance between the wheels the
relative motion can be computed. To keep the mobile agent as versatile as possible and
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Figure 3.1: Example trajectories for the warehouse scenario.

not rely on specific mobile sensors, the only requirement for the mobile agent is to have an
IMU.

3.1.1 Calculation of the trajectory

For the description of the mobile agent pose, the position and orientation is sufficient. For
the simulation including the IMU, more than just the covered path is necessary. The full
description consists of the position, orientation, velocity, acceleration, and angular velocity
of the mobile agent at all times t.
The actual calculation of the trajectory uses the MATLAB-function waypointTrajectory.
The function uses a set of 3D waypoints, the times at which these waypoints should
be reached, and the sample frequency to calculate the necessary quantities for the full
description. As already mentioned in the problem statement, the trajectories are restricted
to two-dimensional (2D) movement. Therefore the z-component of the 3D waypoints is
fixed. Examples of trajectories can be seen in Figure 3.1.

3.1.2 Modeling of the inertial measurement unit

In Section 2.3 the main error sources of IMUs were explained. A matching error model is
found in [37] and can be formulated as

am,t = at + δa + avrw (3.1)

ωm,t = ωyaw,t + δω + ωarw, (3.2)

where at and ωyaw,t denote the physical quantities of acceleration and the angle velocity
in yaw direction at time instance t. The error sources which have to be simulated are
the drifting biases δa and δω and the noises avrw and ωarw. The drifting bias for the
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accelerometer and gyroscope are modeled as a first-order Gauss-Markov process. The same
model is used in [42] and is defined as

δa′ = − 1

τa

δa + wabias (3.3)

wabias ∼ N (0,Σabias) (3.4)

δω′ = − 1

τω
δω + wωbias

(3.5)

wωbias
∼ N (0, σ2

ωbias
). (3.6)

The values for the variances can be found in the datasheet of the IMU under the name of
bias stability or bias instability. If there is no such entry, the variances can be calculated
using Allan deviation [43]. The noise is assumed to be normally distributed with

avrw ∼ N (0,Σvrw) (3.7)

ωarw ∼ N (0, σ2
arw). (3.8)

In terms of the accelerometer this noise is called velocity random walk and for the gyroscope
the noise is called angle random walk. These two parameter can also be found in the
datasheet. Regarding the magnetometer only the noise is simulated as

hm,t = ht + hnoise. (3.9)

Again a normal distribution is assumed for the noise with

hnoise ∼ N (0,Σhnoise). (3.10)

Knowing the horizontal component of the Earth’s magnetic field and the local declination
D [44], the orientation can be derived as follows

θm,t = tan−1

(
hm,x,t
hm,y,t

)
±D. (3.11)

In Table 3.1 the parameters for the simulation of the IMUs can be seen. In comparison to
that, the inertial sensor of the iPhone 4 are listed in Table 3.2. With the cheaper inertial
sensors the drifting bias gets problematic. While the noise is in the same range, the bias
error is higher. The same magnetometer is used for all the IMUs .

3.2 Scenario setting

As mentioned in Section 1.1 this thesis will focus on two scenarios: a grocery store and a
warehouse facility scenario. This section will take a deeper look at the two different settings
and the way they are modeled. Many requirements which were already mentioned in the
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Table 3.1: Parameters of the used IMUs.

IMU used in [42] MTi 1 series [45]
Parameter VTI SCA3000 ADI ADXRS150 Acc. Gyro. Mag.
Bias stability 100 µg 36 ◦/h 30 µg 10 ◦/h -

Noise density 450 µg/
√

Hz 180 ◦/h/
√

Hz 120 µg/
√

Hz 25 ◦/h/
√

Hz 0.5 mG√
Hz

Table 3.2: Inertial sensors used in the iPhone 4 [46].

STMicroelectronics
Parameter L3G4200D L1S331DLH
Bias stability 75 ◦/s 20 mg

Noise density 108 ◦/h/
√

Hz 218 µg/
√

Hz

problem statement will be revisited.
The two scenarios can be seen in Figure 3.2. To keep the simulations comparable, both
scenarios have similar layouts with two shelves. There are two basic parameters that
distinguish the scenarios: the spatial size of the room with their shelves and the density
of the features. A higher density means that the distance between two features is smaller
and vice versa. The features are equally spaced. In addition, the different features have
three possible heights, namely z1 = 0.5 m, z2 = 1 m, or z3 = 1.5 m. In the generation of the
scenario, they are placed randomly at one of those heights.
The warehouse facility is characterized by corridors with a width of 5 m, a distance between
the features of 2 m. In contrast, the grocery store scenario has smaller corridors of 2 m but
a shorter distance between the features of 0.3 m. A real grocery store has an even higher
density of features. A shorter distance between features of 0.1 m would be realistic. The
chosen distance can be explained with the computability of the SLAM algorithm and the
possibility of multiple runs using just a subset of all the features.

3.2.1 Simulation of the shelf labels

The idea of the distance estimator is that the mobile agent receives a signal from the feature
in reach. To calculate the distance from this received signal, the signal has to be modeled
as a convolution of the transmit pulse s(t) with the channel. Similar models as well as
the resulting CRLBs of the distance estimator are found in [41], [47]. The CRLB of the
distance estimator is expressed by

var(d) ≥ c2

8π2 SNR β2
, (3.12)

where β2 =
∫
f f

2|S(f)|2df∫
f |S(f)|2df is the mean square bandwidth of the Fourier transform S(f) of the

transmitted pulse s(t). For a block spectrum |S(f)|2 = 1
B

for |f | ≤ B
2

with the bandwidth

19



3 Simulation environment

Figure 3.2: Visualization of the warehouse facility and grocery store scenario.

B, the mean square bandwidth can be calculated as

β2 =

∫
f
f 2|S(f)|2df∫
f
|S(f)|2df

=

∫ B
2

−B
2

1

B
f 2df∫ B

2

−B
2

1

B
df

=
B2

12
. (3.13)

To get an assessment for the quality of the distance measurement, two bandwidths
B1 = 20 MHz and B2 = 200 MHz are considered to calculate the CRLBs. Two band-
widths are used to analyze the effect of different qualities of measurements. With an
assumed signal-to-noise ratio (SNR) of 30 dB the CRLBs can be calculated as

var(d1) ≥ c2

8π2 SNR β2
1

≈ (0.58 m)2 (3.14)

var(d2) ≥ c2

8π2 SNR β2
2

≈ (0.058 m)2. (3.15)

For the two discussed cases, minimal variances of approximately (0.58 m)2 and (0.058 m)2

are achieved. This is the optimal case for the MVU estimator. It is very unlikely to achieve
this results, thus a more realistic value for the variances of (1 m)2 and (0.1 m)2 is expected.
With this estimations the simulated measurements can be formulated. The distance for the
ith feature will be calculated according to the following equation

d(pt, f
(j)) = ||pt − f (j)||2 =

√
(px,t − f (j)

x )2 + (py,t − f (j)
y )2 + (pz − f (j)

z )2. (3.16)
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The final measurement will be generated as

z
(j)
t =

{
N (d(pt, f

(j)), var(d)), if d(pt, f
(j)) ≤ rdet

∅, otherwise
, (3.17)

with ∅ as the empty set.
For the simulation of the measurements, additive white Gaussian noise with the two
estimated variances is used. This measurement model may not model precisely the real-
world measurements. For example, a possible bias of the observations due to multipath is not
modeled at all. If a communication system is built, the assumed theoretical measurement
model has to be replaced with the measured model.

3.3 Simulation of the passage of time

The IMU as well as the features have a number of measurements they provide within a
certain time interval. The frequency parameters fIMU and ffeatures are introduced to model
this behavior. Even under the assumption that the mobile agent is synchronized with
the features and the features are synchronized with themselves it is still unlikely that
they operate on the same frequency. Hence, it can be assumed that the features provide
measurements at a different frequency than the IMU. Due to the energy efficiency of the
features, it is more likely that the IMU runs on a higher frequency than the features.
Therefore, the minimal time step ∆t is defined as

∆t =
1

fIMU

. (3.18)

This implies the time t in the simulation can only advance in this discrete time steps and
have to be a whole multiple of it

t = n ·∆t, n ∈ N. (3.19)

To ensure that in every time step an IMU measurement is available the frequencies need to
satisfy

mod (fIMU, ffeatures) = 0. (3.20)

By combining this requirements with the assumption that

fIMU � ffeatures, (3.21)

the feature measurements can be written as

zt =

{
z

(j)
t , if z

(j)
t 6= ∅ ∧ mod

(
t, 1
ffeatures

)
= 0

∅, otherwise
(3.22)

zt = {z(j)
t |j ∈ N ∧ j ≤ J}. (3.23)
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4 Algorithm

The previous chapter was dedicated to introduce the simulation environment in which
the SLAM algorithm is tested. This chapter deals with the development of the proposed
RO SLAM. A state of the art SLAM algorithm was implemented as a starting point.
FastSLAM [25] was chosen since it is a widely used SLAM algorithm. The basic version of
the FastSLAM has to be adapted to the simulation environment. Afterwards, the adapted
version of FastSLAM is extended to handle the initialization problem arising from the
RO measurements. To overcome the initialization problem, a PF is applied. Furthermore,
methods to decrease the computing effort of the PF are added to the extended FastSLAM.
Finally, a detection method is introduced for outliers.

4.1 Overview

The proposed SLAM algorithm is based on the FastSLAM algorithm, explained in Sec-
tion 4.2. As a starting point, the FastSLAM algorithm is adapted to our environment. For
this purpose, an EKF filter is designed for the motion model using the IMU measurements in
Section 4.3.1. For the feature representation, an EKF filter is designed in Section 4.2.1. This
EKF filter incorporates the measurement model. The naive adaptation of the FastSLAM
leads to the initialization problem of the EKF with RO measurement. To overcome the
initialization problem, a PF representation is introduced in Section 4.3.

An overview of the operation of the extended FastSLAM algorithm is given in form
of a flowchart in Figure 4.1. With the assumption of a known start position the initialization
of the agent position is straightforward. The first measurement for each feature initializes
the associated feature PF. Section 4.3.2 gives a detailed description about the initialization
procedure. For each measurement, the corresponding weights are calculated in the agent
PF. Subsequently to the calculation of all the weights, the weights will be normalized
within their affiliated PF. The normalized weights are then used to resample the agent and
the feature PF. Further details on the resampling process are given in Section 4.3.3. The
functionality of the resampling process is extended with two optional approaches to reduce
the computational effort. The first approach employs methods to reduce the number of
particles and is described in Section 4.3.5. The second approach switches back to the EKF
representation after the feature PF has converged, hence the initialization problem has
been solved. A detailed explanation is given in Section 4.3.6. Finally, the outlier detection
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Figure 4.1: Flowchart of the extended FastSLAM algorithm. The agent position is denoted by p̂n,t for the
n-th particle in the state particle filter. The algorithm represents each features with a PF. One

feature particle is denoted as f̂
(j)
n,k,t where n denotes the index of the agent particle, j denotes

the index of the feature, and k denotes the index of the particle.

is described in Section 4.3.7. It can be used as an optional step between the normalization
of the weights and the resampling procedure.

4.2 FastSLAM

The individual feature measurements are assumed to be independent of each other. For
a mapping-only problem, the determination of the feature locations can be divided into
independent estimation problems, one for each feature. Based on this idea, FastSLAM
decomposes the SLAM problem into a mobile agent localization problem, and a collection
of feature estimation problems that are conditioned on the agent pose estimate. FastSLAM
uses a PF for estimating the agent pose over the path of the mobile agent. The PF is
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Figure 4.2: Representation of the individual particles in the FastSLAM algorithm.

composed of N different particles. Each particle uses J EKFs to estimate the feature
locations, depending on the path estimate. Hence, each feature is represented by N EKFs
with 3D state vectors. The representation of the FastSLAM algorithm can be seen in
Figure 4.2.

4.2.1 Extended Kalman filter for the measurements

The representation of the FastSLAM algorithm requires an EKF with 3D state vectors
for each feature. In this special case where the EKF is used to estimate the positions of
static features, no transition function can be applied. Therefore, the prediction step is not
needed. The measurement function was already stated in equation (3.16). For convenience
the measurement function is restated here

h
(j)
t (pt, f

(j)) = d(pt, f
(j)) =

√
(px,t − f (j)

x )2 + (py,t − f (j)
y )2 + (pz − f (j)

z )2. (4.1)

From the measurement function, the Jacobian matrix can be derived

H
(j)
t =

[
∂h

(j)
t (pn,t,µ

(j)
t )

∂f
(j)
x

,
∂h

(j)
t (pn,t,µ

(j)
t )

∂f
(j)
y

,
∂h

(j)
t (pn,t,µ

(j)
t )

∂f
(j)
z

]
(4.2)

=

[
µ
(j)
x,t−px,n,t

d(pn,t,µ
(j)
t )
,

µ
(j)
y,t−py,n,t

d(pn,t,µ
(j)
t )
,

µ
(j)
z,t−pz,n,t

d(pn,t,µ
(j)
t )

]
. (4.3)

With the Jacobian matrix of the measurement function, the correction step for the used
EKFs can be formulated as

K
(j)
t = Σ

(j)
t−1(H

(j)
t )T

(
H

(j)
t Σ

(j)
t−1(H

(j)
t )T + R

(j)
t

)−1

(4.4)

µ
(j)
t = µ

(j)
t + K

(j)
t

(
z

(j)
t − h

(j)
t (pn,t,µ

(j)
t )
)

(4.5)

Σ
(j)
t =

(
I−K

(j)
t H

(j)
t

)
Σ

(j)
t−1. (4.6)
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Figure 4.3: Representation of the individual particles in the adapted FastSLAM algorithm.

The question arises, how to initialize µ
(j)
0 and Σ

(j)
0 . Even after adapting the FastSLAM

algorithm to the simulation environment, it cannot deal with the initialization of the
features. The probability distribution of the initialization is spherical shaped. For this
reason it cannot be well represented by a Gaussian distribution.

4.3 Extension of FastSLAM

The FastSLAM treats the mobile agent localization problem and the feature estimation
problems separately. As a consequence, the motion model can be decoupled from the
particles. Hence, in our adaption all particles share one EKF for the motion model. This
adapted version of the FastSLAM algorithm can be seen in Figure 4.3. The EKF estimates
the state vector xt from the IMU measurements. Individual particles use the 2D change in
position ∆p̂t to update their instances of the agent position. Additionally, a small noise is
added to account for the uncertainties of the IMU. The motion model can be written as

p̂n,t+1 = p̂n,t + ∆p̂t +N (0,Σmotion), (4.7)

with Σmotion depending on the maximum velocity of the mobile agent and the frequency of
the IMU.

4.3.1 Extended Kalman filter for the motion

An EKF has to be designed to estimate the position, orientation, velocity, acceleration
from the IMU measurements. The state vector xt was already mentioned in Section 2.1 but
is restated here

xt =
[
px,t, py,t, pz, vx,t, vy,t, ax,t, ay,t, θt

]T
. (4.8)
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The equations of the EKF introduced in Section 2.2.2 have to be adapted to the intended use,
since the prediction step is linear and the control input is scalar. The adapted formulation
is given by

µ̂t = Amµt−1 + Bmut (4.9)

Σ̂t = AmΣt−1A
T
m + Qt (4.10)

Kt = Σ̂tH
T
m,t(Hm,tΣ̂tH

T
m,t + Rt)

−1 (4.11)

µt = µ̂t + Kt(zm,t − hm(µ̂t)) (4.12)

Σt = (I−KtHm,t)Σ̂t. (4.13)

With the formulation of the motion EKF, the 2D change in position ∆p̂t is calculated
with

∆p̂t =

1 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0
0 0 1 0 0 0 0 0

µt −

1 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0
0 0 1 0 0 0 0 0

µt−1. (4.14)

The IMU provides measurements on acceleration, angular velocity and the orientation. All
measurements directly related to the state vector xt are considered in the correction step
of the EKF. The rest is treated as control input for the prediction step. Thus, the control
input consists of the angular velocity only

ut = ωm,t. (4.15)

The angular velocity for the yaw-rotation can be integrated to get the change in orientation.
With this knowledge the control-input matrix Bm is defined as

Bm =
[
0 0 0 0 0 0 ∆t

]T
. (4.16)

No information about the motion is known beforehand. Thus, no prior knowledge can be
used to improve the motion model. The position, velocity, and acceleration are obtained
through the following well-known relationships

pt = p0 +

∫ t

0

vtdt (4.17)

vt = v0 +

∫ t

0

atdt. (4.18)

The discretized versions of these relationships result in the system matrix Am of the state
transition function

Am =



1 0 ∆t 0 ∆t2

2
0 0

0 1 0 ∆t 0 ∆t2

2
0

0 0 1 0 ∆t 0 0
0 0 0 1 0 ∆t 0
0 0 0 0 1 0 0
0 0 0 0 0 1 0
0 0 0 0 0 0 1


. (4.19)

26



4 Algorithm

Due to the reason that a strapdown type IMU is used, the acceleration measurements
am,t are in the local coordinate system of the IMU. To calculate the local acceleration
measurements from the global accelerations in the state vector, the following equation are
used for a left hand coordinate system

am,t =

[
cos(θt) sin(θt)
−sin(θt) cos(θt)

]
at. (4.20)

With this equation the non-linear measurement function can be expressed as

hm1(xt) =

h1(xt)
h2(xt)
h3(xt)

 =

 cos(θt)ax,t + sin(θt)ay,t

−sin(θt)ax,t + cos(θt)ay,t

θt

 . (4.21)

From the measurement function the Jacobian matrix is calculated

Hm1,t =


∂h1(xt)
∂px,t

∂h1(xt)
∂py,t

∂h1(xt)
∂vx,t

∂h1(xt)
∂vy,t

∂h1(xt)
∂ax,t

∂h1(xt)
∂ay,t

∂h1(xt)
∂θt

∂h2(xt)
∂px,t

∂h2(xt)
∂py,t

∂h2(xt)
∂vx,t

∂h2(xt)
∂vy,t

∂h2(xt)
∂ax,t

∂h2(xt)
∂ay,t

∂h2(xt)
∂θt

∂h3(xt)
∂px,t

∂h3(xt)
∂py,t

∂h3(xt)
∂vx,t

∂h3(xt)
∂vy,t

∂h3(xt)
∂ax,t

∂h3(xt)
∂ay,t

∂h3(xt)
∂θt

 (4.22)

=

0 0 0 0 cos(θt) sin(θt) −sin(θt)ax,t + cos(θt)ay,t

0 0 0 0 −sin(θt) cos(θt) −cos(θt)ax,t − sin(θt)ay,t

0 0 0 0 0 0 1

 . (4.23)

The designed EKF is relying solely on the input of the IMU. Therefore, the EKF is at
the mercy of the error sources of the IMU. Especially, the drifting bias tends to make the
position estimate diverge over time. To correct this behavior, the mean position of the
resampled particles is used as additional measurement in the correction step. The mean
position is given by

p̂t =
1

N

N∑
n=1

p̂n,t. (4.24)

The new measurement function is given by

hm2(xt) =


h1(xt)
h2(xt)
h3(xt)
h4(xt)
h5(xt)

 =


cos(θt)ax,t + sin(θt)ay,t

−sin(θt)ax,t + cos(θt)ay,t

θt
px,t

py,t

 . (4.25)
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The corresponding Jacobian matrix is calculated in the same manner as before

Hm2,t =
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∂px,t

∂h1(xt)
∂py,t
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 (4.26)

=


0 0 0 0 cos(θt) sin(θt) −sin(θt)ax,t + cos(θt)ay,t

0 0 0 0 −sin(θt) cos(θt) −cos(θt)ax,t − sin(θt)ay,t

0 0 0 0 0 0 1
1 0 0 0 0 0 0
0 1 0 0 0 0 0

 . (4.27)

The problem that the IMU and the features have different frequencies was already encoun-
tered in Section 3.3. Hence, the measurement function and the Jacobian matrix change
depending if feature measurements are available. They are stated as

zm,t =


[
am,t, θm,t, p̂t

]T
, if mod

(
t, 1
ffeatures

)
= 0[

am,t, θm,t

]T
, otherwise

(4.28)

hm(xt) =

{
hm2(xt), if mod

(
t, 1
ffeatures

)
= 0

hm1(xt), otherwise
(4.29)

Hm,t =

{
Hm2,t, if mod

(
t, 1
ffeatures

)
= 0

Hm1,t, otherwise
. (4.30)

4.3.2 Overcoming the initialization problem

The basic idea is to overcome the initialization problem arising from the RO measurements
with an approach that can represent a spherical distribution. Thus, a PF is used to represent
the features. The new representation can be seen in Figure 4.4. The feature are represented
as a PF. The PF for the j-th feature position at time instance t is denoted by

F (j)
n,t = {f̂ (j)

n,1,t, f̂
(j)
n,2,t, ..., f̂

(j)
n,K,t}, (4.31)

where n denotes the index of the agent particle. The state PF Pt at time instance t can
then be denoted by

Fn,t = {F (1)
n,t ,F

(2)
n,t , ...,F

(J)
n,t } (4.32)

Pt = {{p̂1,t,F1,t}, {p̂2,t,F2,t}, ..., {p̂N,t,FN,t}}, (4.33)
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Figure 4.4: Representation of the individual particles in the extended FastSLAM algorithm.

Initialization of the feature particles

A PF can represent every arbitrary distribution if enough particles are used. The RO
measurements give only information on the distance between the current position pt of the
mobile agent and the position of the feature f (j). This means that the feature can be located
anywhere on the surface of a sphere with the radius of the given distance measurement.
Furthermore, with larger distance measurements the space that has to be covered with
the particles increases quadratical due to the 3D nature of the problem. Therefore, a high
number of particles is needed to cover the 3D space. A parameter K describing the number
of particles for the features has to be introduced. This number has a big impact on the
computing effort of the algorithm.

To initialize the particles, the spherical coordinate system is used. With this coordinate
system any point on the sphere can be represented with the radius, the azimuthal angle
θ, and the elevation angle ϕ. Figure 4.5 visualizes the spherical coordinate system for an
arbitrary particle. The particles should be equally distributed over the surface area of the
sphere. The naive approach, sampling the angles from a uniform distribution, will not work
because the surface area decreases towards the poles.

To get equally distributed points over the surface area of the sphere, a probability density
function (PDF) p(θ, ϕ) for the two angles has to be found. Additionally, the PDF p(θ, ϕ) has
to ensure that both angles are equally likely over the whole surface area of the sphere. This
PDF can be derived from the differential surface area element parameterized on the spherical
coordinate system. A differential surface area element can be seen as the multiplication of
two infinitesimal circle arcs. So, the differential surface area can be formulated as

dA = rdϕ · Ldθ = rdϕ · r sin(ϕ)dθ = r2 sin(ϕ)dϕdθ. (4.34)
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Figure 4.5: Relationship between the spherical polar coordinates and Cartesian coordinates.

With this equation, the probability that an arbitrary point Q lies in this infinitesimal
surface area is given by

p(Q)dA. (4.35)

Now the PDF p(Q) can be calculated as∫ π

0

∫ 2π

0

p(Q)dA
!

= 1 (4.36)

A =

∫ π

0

∫ 2π

0

dA =

∫ π

0

∫ 2π

0

r2sin(ϕ)dθdϕ = r24π (4.37)

p(Q) =
1

r24π
. (4.38)

The point Q can be represented differently using the parametrization of the angles θ, ϕ
with their corresponding PDF p(θ, ϕ). Therefore, the following equation must be applied

p(Q)dA = p(θ, ϕ)dθdϕ. (4.39)

From this equation the PDF p(θ, ϕ) can be calculated

p(θ, ϕ) =
1

4π
sin(ϕ). (4.40)
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The marginal PDFs are defined as

p(θ) =

∫ π

0

p(θ, ϕ)dϕ =
1

2π
(4.41)

p(ϕ) =

∫ 2π

0

p(θ, ϕ)dθ =
sin(ϕ)

2
. (4.42)

The last step is to generate angles which are distributed like their corresponding PDFs.
This can be achieved with the inversion method [48]. The main idea is to use samples from
a uniform distribution u1, u2 ∼ U(0, 1) to generate other probability distributions. This can
be done using the following equations

P (θ) = u1 (4.43)

P−1(u) = θ (4.44)

P (ϕ) = u2 (4.45)

P−1(u) = ϕ, (4.46)

with P (θ) and P (ϕ) being the cumulative distribution functions of the angles. The cumula-
tive distribution functions of the angles are given by

P (θ) =

∫ θ

0

p(θ̂)dθ̂ =
θ

2π
, 0 ≤ θ < 2π (4.47)

P (ϕ) =

∫ ϕ

0

p(ϕ̂)dϕ̂ =
1− cos(ϕ)

2
, 0 ≤ ϕ ≤ π. (4.48)

(4.49)

With this, the inversion method can be calculated as

θ = 2πu1 (4.50)

ϕ = arccos(1− 2u2). (4.51)

In the next step, K particles are generated. The received distance measurement corresponds
to the radius r of the sphere. This distance measurement contains noise. As a consequence,
the initialization procedure has to reflect the measurement model. To meet this requirement
the radius r is sampled from a normal distribution with the variance of the estimator. The
equations used to generate the particles are written as

r = N (z
(j)
t , var(d)) (4.52)

θ = 2πu1 (4.53)

ϕ = arccos(1− 2u2) (4.54)

After calculating the spherical coordinates, they are converted back to the Cartesian
coordinate system and the position of the mobile agent is added. The initialization for the
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Figure 4.6: Visualization of the restriction on the elevation angle.

k-th feature particle in the n-th agent particle can be formulated as

f̂
(j)
n,k,t =

r sin(θ) cos(ϕ)
r sin(θ) sin(ϕ)

r sin(ϕ)

+ p̂n,t. (4.55)

In real-world scenarios, the features are unlikely to be positioned above a certain height.
Furthermore, the features cannot be positioned below the floor. Thus, the particles could
be used more efficiently. To restrict the initialization to a reasonable area, a parameter for
the maximum height hmax is introduced. All the simulations conducted in Chapter 5 use a
maximum height of 3 m. A visualization of the resulting range of elevation angles can be
seen in Figure 4.6.
The limiting angles are calculated as

ϕfloor =

arccos
(
pz,n,t

z
(j)
t

)
if pz,n,t < z

(j)
t

0 otherwise
(4.56)

ϕheight =

arccos
(
hmax−pz,n,t

z
(j)
t

)
if hmax − pz,n,t < z

(j)
t

0 otherwise
. (4.57)

The standard elevation angle is an element of the interval [0, π]. The updated elevation
angle has a smaller interval of [0 + ϕheight, π − ϕfloor]. Thus, the limiting angles have to be
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(a) (b)

Figure 4.7: Comparison of the (a) spherical initialization and (b) annular initialization.

updated over the cumulative distribution function considering the new interval

ϕ̂floor =
1− cos(π − ϕfloor)

2
(4.58)

ϕ̂height =
1− cos(ϕheight)

2
. (4.59)

With the updated angles, the final elevation angle can be formulated as

unew ∼ U(ϕ̂height, ϕ̂floor) (4.60)

ϕ = arccos(1− 2unew). (4.61)

The restrictions on the elevation angle ϕ change the shape of the initialization from spheric
to angular. An instance of the two different initializations can be seen in Figure 4.7. The

initializations were generated with zfj ,t = 6 m, p̂n,t =
[
0 m, 0 m, 2 m

]T
, and var(d) =

0.01 m.

4.3.3 Resampling

In our approach a PF within a PF is applied. Hence, two PF depending on each other have
to be resampled. For the resampling algorithm all the particles have to be rated with a
certain weight that corresponds to the measurement model. The weight of a feature particle
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can be calculated as

ŵ
(j)
n,k,t =

1√
2πvar(d)

exp

(
−

(||p̂n,t − f̂
(j)
n,k||2 − z

(j)
t )2

2var(d)

)
· ŵ(j)

n,k,t−1. (4.62)

After the calculation of all the feature weights, they have to be normalized

w
(j)
n,k,t =

ŵ
(j)
n,k,t∑K

k=1w
(j)
n,k,t

. (4.63)

The weight for the agent particle can be calculated as

ŵn,t =
J∏
j=1

(
1

K

K∑
k=1

ŵ
(j)
n,k,t

)
· wn,t−1. (4.64)

Also the agent particle weight have to be normalized

wn,t =
ŵn,t∑N
n=1 ŵn,t

. (4.65)

From the different algorithms to resample a PF, systematic resampling was chosen because
it has a linear computational complexity [49] and only one random number is drawn per
resampling step. Furthermore, the systematic resampling algorithm achieves comparable
results compared to other resampling algorithms [50] but is the simplest method to imple-
ment. Two slightly modified versions of the basic systematic resampling algorithm are used
to resample the two PFs.

Algorithm 2 Systematic state resampling

1: procedure resample state
2: Pt = ∅
3: calculate w1,t−1

4: c1 = w1,t−1

5: for n = 2 to N do
6: calculate wn,t−1

7: cn = cn−1 + wn,t−1

8: u1 ∼ U(0, 1
N

)
9: i = 1

10: for l = 1 to N do
11: while ul > ci do
12: i = i+ 1

13: ul+1 = ul + 1
N

14: if i changed OR i is 1 then
15: get p̂i,t−1 from Pt−1

16: Fi,t = resample features

17: insert {p̂i,t−1,Fi,t} into Pt
18: return Pt
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Figure 4.8: Visualization of the systematic resampling algorithm with a particle number N = 8.

The pseudo code of the modified systematic resampling algorithm for the agent particles
can be seen in Algorithm 2. A good way to visualize the working principle is a wheel
where the outer ring correspond to the cumulative distribution function of the weights.
An example for such a wheel is given in Figure 4.8. A number of segments equivalent to
the number of resampled particles are equally spaced across the wheel (see dashed line in
Figure 4.8). An offset smaller than the angle between two segments is randomly drawn. All
the segment boundaries are rotated according to this offset (arrows in Figure 4.8). All the
particles where an arrow points on their weight in the outer ring are resampled.
The pseudo code mimics this behavior. First of all, the cumulative distribution function
(outer ring of the wheel) is generated (line 3-7). The offset (first arrow) is drawn from a
uniform distribution (line 8). The index i is used to determine which agent particles in Pt−1

get resampled. The first particle has the index i = 1 (line 11). The outer for-loop ensures
that exactly N agent particles are resampled (line 10). The inner while-loop is used to skip
all the agent particles until the next offset uj is reached (line 11-12). This corresponds to
the wheel where all the agent particles are skipped if no arrow is pointing onto them. The
offset is increased by 1

N
(line 13). Afterwards a particle from the old particle set is added

to the new particle set (line 11). If the index i has changed, the features of the particle
have to be resampled (line 14-16).
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Algorithm 3 Systematic feature resampling

1: procedure resample features
2: Fn,t = ∅
3: for j = 1 to J do
4: if #(new measurements) < M then
5: continue
6: F (j)

n,t = ∅
7: calculate w

(j)
n,1,t−1

8: c1 = w
(j)
n,1,t−1

9: for k = 2 to K do
10: calculate w

(j)
n,k,t−1

11: ck = ck−1 + w
(j)
n,k,t−1

12: i = 1
13: u1 ∼ U(0, 1

K
)

14: for l = 1 to K do
15: while ul > ci do
16: i = i+ 1

17: ul+1 = ul + 1
K

18: get f̂
(j)
n,i,t−1 from F (j)

n,t−1

19: f̂
(j)
n,i,t = f̂

(j)
n,i,t−1 + noise

20: insert f̂
(j)
n,i,t into F (j)

n,t

21: insert F (j)
n,t into Fn,t

22: return Fn,t

The pseudo code of the modified systematic resampling algorithm for the feature particles
can be seen in Algorithm 3. This version of the systematic resampling algorithm has two
major differences compared to the one used for the agent particles. There is one more
for-loop (line 3). This for-loop iterates over all the features where measurements were
already provided. In addition, a resampling step for the feature particles is not necessary
after each measurement. Therefore, the jth feature particle is resampled after M new
measurements (line 4-5). This number was empirically determined to be M = 3.

The second change is the little noise added to each resampled feature position f̂
(j)
n,i,t−1. If no

noise was added, the feature PF would be stuck with the particles from the initialization.

4.3.4 Numerical stability of agent particle weight

The smallest positive normalized floating-point number in IEEE double precision for
MATLAB is 2.225073858507201 · 10−308. With a high number of features J , the state
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particle weight ŵn,t can get smaller than the smallest floating point number. Single state
particle weights falling below the smallest floating point number would not be a problem
but if all the state particle weights get 0, a normalization is not possible anymore. To
circumvent this issue, the log-PF proposed in [51] is used. This version transfers the weight
to the logarithm domain with

ŵn,t =
J∑
j=1

(
log

(
wn,t−1 +

1

K

K∑
k=1

ŵ
(j)
n,k,t

))
. (4.66)

Before the resampling step the weight is transfered back with

w+
n,t = exp(ŵn,t −max

n
(ŵn,t)) (4.67)

and is normalized with

wn,t =
w+
n,t∑N

n=1 w
+
n,t

. (4.68)

4.3.5 Reduction of feature particles

The number of particles can be calculated with the multiplication of

Nparticles = N ·K · J, (4.69)

where N denotes the number of agent particles, K is the number of feature particles, and
J is the number of features in one scenario. This is also the number of particles that have
to be resampled. Most time of the algorithm is spent on resampling, due to this high
number of particles. Therefore, a reduction of the particles would mean a big decrease
in computing effort. The number of features J is set by the environment. So, not much
can be done about that. A reduction of the N agent particles would have the biggest
decrease in computing effort. Unfortunately, a certain number of particles is needed to
correct the drifting behavior of the IMU. Hence, the reduction of the number of feature
particles K would make sense since the feature position stays constant over time. Two
different approaches are investigated for the reduction. The approaches are applied before
of the resampling procedure to calculate a new number of particles for each feature PF.

The first reduction method is based on the likelihood of the particles. For that an es-
timate of the effective sample size K

(j)
eff,n,t introduced in [52] is used. The effective sample

size K
(j)
eff,n,t for the jth feature PF is given as

K
(j)
eff,n,t =

K

1 + var(w
(j)∗
n,k,t)

, (4.70)
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where w
(j)∗
n,k,t is referred to as the ”true weight”. The true weight cannot be determined, but

an estimate K̂
(j)
eff,n,t [34] can be obtained by

K̂
(j)
eff,n,t =

1∑K
k=1(w

(j)
n,k,t)

2
. (4.71)

Actually those two equations are a measure for the degeneracy of the PF. In [34] this
measure is applied to detect when the PF needs to be resampled. The variance of the
weights can only increase within one time step. Therefore, the estimate K̂

(j)
eff,n,t can only get

smaller in each time step. The method would reduce the particle number to one over time.
This would ruin the PF representation. Therefore, it must be guaranteed that the number
does not fall below a certain minimal particle number Kmin. The feature particle number
K

(j)
n,t is calculated as

K
(j)
n,t = max(Kmin, K̂

(j)
eff,n,t). (4.72)

This ensures that the PF has to maintain at least Kmin feature particles at all times.

The second reduction method is based on the Kullback–Leibler divergence. The key
idea of the KLD-sampling method is to bound the approximation error introduced by
the sample-based representation of the PF. The approximation error is measured by the
Kullback-Leibler divergence from the maximum likelihood estimate to the true distribution
modeled as a multinomial distribution. A small number of feature particles is chosen if the
density is focused on small parts of the state space. A large number of particle is chosen if
the state uncertainty is high. A derivation of the approach can be found in [53]. In contrast
to the first method, the KLD-sampling method can also increase the number of feature
particles. The problem with this method is that four design parameters have to be set. The
four parameter are the quantile 1− δ, the error bound ε, the n-dimensional bucket size of
the multinomial distribution bsize, and the minimal number of particles Kmin. Moreover,
these parameters are changing depending on the application of the scenario. That is why
these design parameters have been empirically determined. For integration of this reduction
method the implementation in [54] was used.

4.3.6 Switching to an EKF representation

For an even greater decrease in the computing effort, the representation of the feature
could be switched back to the EKF representation if the feature particles have converged.
The main idea, for switching back, is that the PF representation of the features is not
needed anymore since the initialization problem is overcome. The main issue is to determine
when the feature particles have converged. This task is rather straightforward with the
KLD-sampling method. If the minimal number of feature particles is reached, the PF
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has converged. With the likelihood approach this is not sufficient, since the method gives
information rather on the degeneracy than on the conversion of the PF. Therefore, a second
condition needs to be met. This condition is the variance of a feature PF. This variance
can be calculated with the covariance matrix of the feature PF. The covariance matrix is
defined as

Σ
(j)
cov,n,t =

1

K

K∑
k=1

(̂f
(j)
n,t − f̂

(j)
n,k,t)(̂f

(j)
n,t − f̂

(j)
n,k,t)

T , (4.73)

where f̂
(j)
n,t is the mean of the feature PF given by

f̂
(j)
n,t =

1

K

K∑
k=1

f̂
(j)
n,k,t. (4.74)

The variance of a feature PF is defined as the trace of the covariance matrix given by

var(̂f
(j)
n,t ) = Tr(Σ

(j)
cov,n,t). (4.75)

After defining the convergence of the particle filter there is still the issue of the initialization
of the EKF. Unlike in Section 4.2.1, the converged PFs can be used to initialize the EKF
with

µ
(j)
n,t = f̂

(j)
n,t (4.76)

Σ
(j)
n,t =

[Σ
(j)
cov,n,t]1,1 0 0

0 [Σ
(j)
cov,n,t]2,2 0

0 0 [Σ
(j)
cov,n,t]3,3

 . (4.77)

After the initialization the EKF is equivalent to the one derived in Section 4.2.1.

4.3.7 Outlier detection

Bad measurements can lead to the circumstance that a feature particle is initialized at the
wrong position. In addition, it may occur that a feature changes its position. In the grocery
store, this can happen if a customer or an employee accidentally throws down a label and
puts it back at the wrong position. A similar thing can happen with workers or machines
in the warehouse scenario. Thus, a mechanism has to be implemented that can recognize
this behavior.
The approach has to detect two things: the PF for the feature has converged and the PF is
in the wrong position. Therefore, two criteria are needed. A definition for the convergence of
a particle was already encountered in the last section. The wrong position can be detected
with the likelihood of the particles. The threshold for such a likelihood depends on the
measurement model and the definition of the outlier in the application. In the case of a
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Gaussian distribution, we define the feature particle as an outlier if the measurement is not
within three standard deviations. This interval includes 99.7 % of all measurements. The
likelihood threshold woutlier can then be calculated as

woutlier =
1

2πvar(d)
exp

(
−(3σ)2

2σ2

)
=

1

2πvar(d)
exp

(
−9

2

)
. (4.78)

If only the weight of one time step is used to detect the wrong position, one bad measurement
can trigger an outlier. Thus, the weights of the r last measurements for a feature PF are
used. Each feature PF stores the weights of the last r measurements. Thus, the likelihood
can be calculated as

ŵ
(j)
n,t =

1√
2πvar(d)

exp

(
−

(||p̂n,t − f̂
(j)
n,t ||2 − z

(j)
t )2

2var(d)

)
(4.79)

W = {weights ŵ
(j)
n,t of last r measurements} (4.80)

w
(j)
n,t =

∏
w∈W

w. (4.81)

Using more than one measurements also changes the calculated likelihood threshold woutlier.
The likelihood threshold has to ensure that each weight ŵ

(j)
n,t from the last r measurements

is classified as an outlier which leads to a r times multiplication of the original likelihood
threshold.

Algorithm 4 Outlier detection method

1: procedure outlier detection
2: calculate var(̂f

(j)
n,t )

3: calculate w
(j)
n,t

4: if var(̂f
(j)
n,t ) < σ2

f AND w
(j)
n,t < (woutlier)

r then

5: set F (j)
n,t = ∅ in Pt

6: reinitialize F (j)
n,t and insert into Pt

The pseudo code for the outlier detection mechanism can be seen in Algorithm 4. For the
EKF representation the feature particles have already converged. Hence, only the likelihood
condition needs to be checked.
The problem of this approach is that is does not distinguish between a bad localization
or the wrong positioning of a feature. Therefore, a decent localization is needed for this
outlier detection to work. The calculated likelihood threshold should be chosen with this in
mind. It is better to choose the threshold bigger than too small.
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From the previous chapters it can be seen that there are various parameters which influence
the results of the SLAM algorithm. They are related to the assumed mobile agent, the
environment and the algorithm itself.
The ideal evaluation would be the simulation of all combinations of all parameters with each
other. Such an approach would lead to a multi dimensional grid search which would not be
computable in a reasonable time. Consequently, the number of parameters for evaluation
have to be reduced, not every parameter can be evaluated. Moreover, it is not feasible
to analyze every parameter combination even with a reduced parameter set. Based on
these restrictions only the most important parameters are analyzed one at a time, the
rest of parameter set is fixed. Due to the high number of parameters, the focus is on the
parameters that have the biggest influence on the performance of the algorithm. For the
mobile agent this will be the trajectories and the IMUs. For the environment, the different
scenarios, number of anchors, and the measurement precision are evaluated. Furthermore,
the number of agent particles, the different reduction methods for the feature particles and
the outlier detection will be covered.
The first section introduces the RMSEs used to evaluate the different influences on the
SLAM algorithm. The remaining sections in this chapter deal with the analyses of the
mentioned parameters.

5.1 Evaluating the algorithm

The SLAM algorithm has to be tested with different realizations of the measurements. This
ensures that the SLAM algorithm not only works for one specific instance of measurements.
The realization is conducted with the control of the random number generator. The random
number generator has the option of an initialization with a natural number denoted as
the seed. The seed determines the sequence of the drawn random numbers. All the RO
measurements are generated directly after the initialization of the random number generator.
So, simulations with the same seed s get the same measurements.
To evaluate the SLAM algorithm, a suitable measure for the performance has to be found.
The obvious choice is to analyze and quantify the two parts of the algorithm: the localization
and the mapping. The RMSEs is used to evaluate the two parts. The RMSE is a suitable
measure because it accounts for the bias and the variance of the particles. The RMSE for
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an estimator ζ̂ of a true parameter ζ can be written as

RMSE(ζ̂) =

√
E((ζ̂ − ζ)2) =

√
var(ζ̂) + bias(ζ̂)2. (5.1)

Furthermore, the RMSE has an intuitive interpretation since the RMSE of vector to another
vector in space is the Euclidean distance between them.
The RMSE for the localization is calculated over the whole time of the simulation. Thus,
it is the RMSE of the Euclidean distances from the average agent position p̂t to the real
agent position pt at every time instant t. The localization RMSE for one simulation with
seed s is defined as

eloc,s =

√√√√ 1

T · fIMU

T∑
t=∆t

||p̂t − pt||22, (5.2)

where p̂t is the mean of the agent particles given by

p̂t =
1

N

N∑
n=1

p̂n,t (5.3)

as defined in (4.24) and T is the time elapsed. One localization RMSE is calculated for all
S simulations with

eloc =

√√√√ 1

S

S∑
s=1

e2
loc,s. (5.4)

Compared to the RMSE for the localization, the RMSE for the mapping is calculated after
the simulation has finished. It is defined as the RMSE of the three axes of the position of
the feature particle f̂

(j)
n,k to the real position of the feature fj. Therefore, the definition is

formulated as

emap3D,s =
√

(emapx,s)
2 + (emapy,s)

2 + (emapz,s)
2, (5.5)

with the RMSEs of the axes given by

emapx,s =

√√√√ 1

N

N∑
n=1

1

J

J∑
j=1

1

K

K∑
k=1

(f̂
(j)
x,n,k − f

(j)
x )2 (5.6)

emapy,s =

√√√√ 1

N

N∑
n=1

1

J

J∑
j=1

1

K

K∑
k=1

(f̂
(j)
y,n,k − f

(j)
y )2 (5.7)

emapz,s =

√√√√ 1

N

N∑
n=1

1

J

J∑
j=1

1

K

K∑
k=1

(f̂
(j)
z,n,k − f

(j)
z )2. (5.8)
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Table 5.1: SLAM results of the two scenarios with different resampling noise for z.

Grocery store Warehouse
Number of agent particles N 100 100
Number of feature particles K 2500 2500
Number of features J 200 70
Anchor density Nanchors

J
(%) 10 10

IMU frequency fIMU (Hz) 100 100
Feature frequency ffeature (Hz) 5 5
Estimator variance var(d) (m2) 1 1
Number of runs Nruns 10 10
Change of height within runs hruns (m) 0.1 0.1

Trajectory
Trajectory 2 in

Figure 3.1
Trajectory 2 in

Figure 3.1
Outlier detection off off
Detection radius warehouse rdet (m) 3.5 7

Additionally, a 2D RMSE for the mapping is defined as

emap2D,s =
√

(emapx,s)
2 + (emapy,s)

2, (5.9)

(5.10)

just taking into account the x- and y-directions. The 2D mapping RMSE is used to analyse
the influence of the missing movement in z-direction.
The two mapping RMSEs over all S simulations with different seeds can be calculated
with

emap3D
=

√√√√ 1

S

S∑
s=1

e2
map3D,s

(5.11)

emap2D
=

√√√√ 1

S

S∑
s=1

e2
map2D,s

. (5.12)

In general, a simulation S consists of several runs. A run is defined as one simulated
trajectory with a fixed height p̂z. Between the different runs the height is increased by
hruns = 0.1 m. The following results were achieved with Nruns = 10 runs of different heights,
where the starting position is known.
Furthermore, a standard parameter set is defined in Table 5.1. All the following simulations
are conducted with the standard parameter set if not stated differently. Only the parameter
to be evaluated is changed at a simulation. The choice of the individual parameters in
the standard parameter set should become clearer in the sections that are analyzing the
influence of the parameter.
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Table 5.2: SLAM results of the two scenarios

Grocery store Warehouse

only localization only mapping only localization only mapping
eloc (m) 0.19 - 0.12 -
emap3D

(m) - 0.23 - 0.55
emap2D

(m) - 0.06 - 0.24
emapx

(m) - 0.05 - 0.18
emapy

(m) - 0.04 - 0.16

emapz
(m) - 0.22 - 0.50

It is very hard to find appropriate parameters since many of the parameters influence each
other. Changing two parameters simultaneously could result in no effect. For instance, the
movement speed of the mobile agent and the frequency of the features. If the movement
speed of the mobile agent and the frequency of the features are increased in the same
manner, there is no observable effect. The positions of the mobile agent where measurements
are received stay the same. Only the overall time of the trajectory decreases. In real world
applications such a situation is not present since many parameter are fixed beforehand.
Especially, most of the environment related parameters will be fixed. Therefore, the remain-
ing parameters have to be adapted to the application and the required performance.

To get a lower limit on the RMSEs of the localization and the mapping, the CRLB
could be used. Calculating the CRLB would involve the variance of the measurements, the
position of the mobile agent at all time, and the position of the features. This calculation
is very cumbersome and impractical. Therefore, to get benchmark performance results, the
two problems that make up the SLAM problem are simulated independently, assuming
perfect knowledge of the other part.
The localization part is simulated with anchors only1. Thus, imprecise features cannot
interfere with the localization procedure. The other way around, the mapping part is
simulated with known mobile agent positions. Thus, a poorly localized mobile agent cannot
interfere with the mapping of the features. It should be noted that this limit only applies
to the extended FastSLAM algorithm with the standard parameter set. For every change
in the parameters the simulations have to be repeated.
The results can be seen in Table 5.2. The simulations show that the grocery store scenario
achieves a better mapping RMSE but the warehouse scenario achieves a better localization
RMSE. The difference of the localization RMSE is small and can be an artifact of the
number of simulations. In contrast, the difference in mapping RMSE is more significant and
cannot be neglected. The same observation is made in Section 5.2 where the two scenarios
will be compared.

1All features are simulated as anchors
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Table 5.3: SLAM results of the two scenarios with different resampling noise for z.

Grocery store Warehouse

Σr1 Σr2 Σr3 Σr1 Σr2 Σr3

eloc (m) 0.57 0.47 0.55 0.45 0.47 0.49
emap3D

(m) 0.79 0.57 0.62 0.79 0.77 0.77
emap2D

(m) 0.52 0.42 0.50 0.39 0.50 0.43
emapx

(m) 0.38 0.30 0.37 0.26 0.36 0.29
emapy

(m) 0.36 0.30 0.33 0.29 0.35 0.32

emapz
(m) 0.60 0.38 0.37 0.69 0.58 0.63

5.2 Scenario comparison

The most fundamental change in the environment can be attributed to the two scenarios,
since they change the position of the features and their density. To get comparable results,
the two scenarios are simulated with similar trajectories. Moreover, the detection radius
for the grocery store scenario is set to 3.5 m to match the smaller size of the environment.
Simulations were conducted with three different noise variances for the resampling of the
feature particles. In the first simulation the noise for the resampling was chosen to be

Σr1 =

σ2
x1

0 0
0 σ2

y1
0

0 0 σ2
z1

 =

0.012 0 0
0 0.012 0
0 0 0.022

 . (5.13)

The noise regarding the z-axis was twice as high as the noise of the x- and y-axis. In the
second simulation the chosen resampling noise was

Σr2 =

σ2
x2

0 0
0 σ2

y2
0

0 0 σ2
z2

 =

0.012 0 0
0 0.012 0
0 0 0.012

 . (5.14)

The noise has the same value for all three axes. In the thrid simulation the chosen resampling
noise was

Σr3 =

σ2
x3

0 0
0 σ2

y3
0

0 0 σ2
z3

 =

0.012 0 0
0 0.012 0
0 0 0.0052

 . (5.15)

In this case the noise regarding the z-axis was half the size of the other two axes. The rest
of the parameters stay the same. The results of the three simulations are stated in Table 5.3.

The three scenarios show different results depending on the resampling noise. Especially
the grocery store scenario is sensitive to the change in resampling noise of the z-axis. For
the bigger resamling noise, both scenarios perform equally well in the overall 3D mapping.
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The grocery store scenario performs slightly better than the warehouse scenario at the
mapping for the z-axis. In turn, the warehouse scenario performs better at the mapping for
the x- and y-axis, which is reflected in the localization. The 2D mapping influences the
localization. This can be seen with the direct relation of the mapping RMSE emap2D

and
the localization RMSE eloc. If the 2D mapping RMSE worsens, then the localization RMSE
also deteriorates by about the same value.
The results change with the smaller resampling noise for the z-axis. The 2D mapping RMSE
stays more or less the same but the mapping RMSE of the z-axis get better. In particular,
the grocery store scenario outperforms the warehouse scenario, in this aspect.
The difference in the performance has various reasons. First of all, the smaller environment
in the grocery store combined with a shorter detection radius has an advantage in the
initialization. The RO measurements are limited to smaller distances, where the same
number of feature particles cover less volume. The smaller volume for the initialization
helps to get smaller ranges for possible positions of the feature on the z-axis.
The bigger environment in the warehouse and the larger detection radius enables more
distinct positions of the mobile agent since there is more room for movement. This move-
ment helps to increase the mapping results for the x- and y-axes. The mapping for z-axis
converges slower than the other two axes in both scenarios due to the missing movement of
mobile agent in the z-direction.

Nevertheless, the findings of one scenario can also be applied to the other scenario. Fur-
thermore, our simulations suggest that the grocery store scenario would achieve similar or
even better results than the warehouse scenario with accurately adapted parameters. In
addition, the warehouse scenario simulation needs considerably less time due to the fewer
features. That is why, most of the simulations are conducted with the warehouse scenario.
Also the smaller variance Σr3 is used for the remaining simulations.

5.3 Convergence of the feature maps

An interesting aspect is the evolution of the mapping RMSE over time. In the last section
it was recognized that the resampling noise has a big influence on the performance. Thus,
the evolution of the mapping RMSE has also a close relation to the added noise after the
resampling procedure discussed in Section 4.3.3. The added noise was introduced so that the
particles do not stick with the initialization particles. The noise also serves a second purpose,
it limits the minimal variance of the feature PF. A converged PF has at least a variance
equal to the added noise after resampling. This means the PF cannot converge to one point
and the feature particles change their positions a little each resampling step. Therefore,
the feature PFs are still able to improve their representations. In Figure 5.1 the result of
the grocery store scenario is visualized for each axis. In Figure 5.2 the results of the ware-
house scenario is visualized for each axis. The vertical gray lines indicate the end of each run.
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Figure 5.1: The RMSEs of the axes for the grocery store scenario. The left graph shows the results of the
resampling variance Σr1 . The middle graph shows the results of the resampling variance Σr2 .
The right graph shows the results of the resampling variance Σr3 .

Figure 5.2: The RMSEs of the axes for the warehouse scenario. The left graph shows the results of the
resampling variance Σr1 . The middle graph shows the results of the resampling variance Σr2 .
The right graph shows the results of the resampling variance Σr3 .
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The RMSEs in both figures suggest that the feature particles converge to a point af-
ter approximately 1 run. This means the remaining 9 runs are used for improving the
mapping. Both figures show that the mapping RMSE for the x- and y-axis decreases with
more runs. This decrease gets smaller over time. With a bigger resampling noise for the
z-axis an anomaly occurs. The mapping RMSE for the z-axis starts to diverge. This is
especially apparent in the grocery store scenario, whereas in the warehouse scenario the
z-axis also diverges but much slower.
Such a behavior can be explained with the information entropy of the feature PF. The
ideal case would be that the information entropy decreases with each resampling step
due to the integration of the information in the measurements. A problem occurs if the
resampling procedure increases the information entropy more than the information in the
measurements can decrease it. In this case, the particles would start to spread and diverge
to a certain value. This is what happening to the mapping of the z-axis. The trajectory
only has movement in the x- and y-direction. For that reason, the measurements include
more information about these two axes.
With a smaller resampling noise for the z-axis the mapping RMSE improves slowly. In
particular the grocery store scenario benefits from the smaller resampling noise since the
z-axis RMSE stops diverging.

5.4 Trajectories

The movement of the mobile agent has a huge influence on the mapping results. Determining
the 3D location of a feature from multiple perfect range measurements is simply a matter of
finding where the corresponding spheres intersect. But even with non-noisy measurements
and perfect localization, a movement in just one direction would yield four indistinguishable
possible feature positions.
Unfortunately, perfect measurements are difficult to achieve in the real world. With noisy
measurements the area of possible feature positions gets bigger. Hence, the trajectory of
the mobile agent is crucial for the mapping of the features. The movement of the mobile
agent can be controlled. Therefore, a good trajectory can be chosen to help the mapping.
To determine a good trajectory, an investigation of different trajectories is necessary. For
this investigation the three trajectories in Figure 3.1 are simulated.

The first trajectory is characterized by movement in one direction at a time. Excep-
tion are the corners and the turnaround. Otherwise, the trajectory consists mostly of
movement solely in y-direction or x-direction. Hence, many features provide measurements
to the mobile agent with the same x- and y-position. The second trajectory has a lot of
combined movement in x- and y-direction. The mobile agent gets a lot of measurements
from the features in different positions. The third trajectory has a similar movement pattern
as the second trajectory, but the environment has one more corridor. The mobile agent
never passes through the middle corridor, so, the features in the middle corridor provide
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Figure 5.3: The three real and estimated trajectories with the real and estimated features after one run.
The blue circles show the real trajectory. The green circles show the estimated trajectory. The
magenta points depict the positions of the anchors. The red points depict the positions of the
features. The black squares show the estimated feature positions.

Table 5.4: SLAM results of the different trajectories.

RMSE Trajectory 1 Trajectory 2 Trajectory 3
eloc (m) 1.16 0.49 0.58
emap3D

(m) 2.55 0.77 0.95
emap2D

(m) 2.22 0.43 0.59
emapx

(m) 2.12 0.29 0.43
emapy

(m) 0.67 0.32 0.39

emapz
(m) 1.25 0.63 0.75

measurements to mobile agent positions in the other two corridors, only.

A snapshot of the environment with the trajectories after one run can be seen in Figure 5.3.
Moreover, also the feature and their corresponding PF estimates are visualized. For each
graph the origin of the coordinate system is the starting point of the trajectory. The RMSEs
for 100 simulations are stated in Table 5.4 and reflect the insights from the snapshots.
The first trajectory leads to problems with the mapping of the x-axis of some features since
they are positioned where the mobile agent only move in the y-direction. All the features
around the corners and the turnaround converge to a single position.
In the simulation with the second trajectory, the features PFs show better results. The
combined movement in both axes lets all the feature particles converge close to the real
features. One feature in the lower left corner is not converged yet. This feature is the furthest
away from the path of the mobile agent and provides the fewest measurements. Also some
feature PFs in the lower right have problems due to the positions of the trajectory. Other
than that, the mapping of the remaining features is working well.
The third trajectory shows the best convergence because this trajectory has the most turns.
For this reason the trajectory has the most distinct positions of the mobile agent. The PFs

49



5 Results

Figure 5.4: The standard deviation of the feature PFs over the number of measurements. The left graph
shows the standard deviations for the warehouse scenario with the second trajectory. The
middle graph shows the standard deviations for the grocery store scenario with the second
trajectory. The right graph shows the standard deviations for the warehouse scenario with the
first trajectory.

in the middle corridor are mapped slightly worse than the rest, since they provide fewer
and more distant measurements. These are also the features that make up the difference of
the results between the second and the third trajectory.
One issue that affects all trajectories is the quality of the estimated trajectory. If the
estimated trajectory does not match the real one in some direction, the initialized feature
particles are also mismatched in the same manner. With many realizations the second
trajectory achieves the best results. Hence, this trajectory is used for further simulations.

5.5 Convergence of feature particles

The convergence was already mentioned in Section 5.3. In this context, the convergence is
shortly analyzed with the number of runs and the mapping RMSE. Another interesting
aspect is to look at the convergence behavior of the feature PFs regarding the number of
measurements. Every feature provides a different number of measurements depending on
the trajectory, detection radius and the layout of the environment. Thus, the best way to
analyze the convergence behavior of the feature PFs is to look at the standard deviations
of PFs with the same number of provided measurements. If all the particles are positioned
within a small volume, the PF has converged. This definition is used to analyze the average
number of measurements for the convergence of the feature PF.

Figure 5.4 shows the development of the standard deviations of the different feature
PFs over the number of measurement they have provided. It can be seen that the standard
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Table 5.5: SLAM results of the different estimator variances.

RMSE var(d1) = (1m)2 var(d2) = (0.1m)2

eloc (m) 0.49 0.18
emap3D

(m) 0.77 0.50
emap2D

(m) 0.43 0.28
var(emap3D

) (m2) (0.13)2 (0.30)2

deviations have steps where they stay the same. That occurs because of the resampling
after M measurements discussed in Section 4.3.3. The results show that all the particles
have converged within 100 measurements for the second trajectory which can be seen in
the middle graph of Figure 5.4. The middle graph also indicates that the feature particles
in the grocery store scenario converge slightly slower compared to the warehouse scenario.
Furthermore, it can be seen that the warehouse scenario has a higher initialization standard
deviation since the detection radius was twice the range of the grocery store scenario. How-
ever, regardless of the initialization standard deviation, the feature PFs seem to converge
to roughly the same standard deviation. The trajectory of the mobile agent has a huge
impact on the convergence behavior. The right graph in Figure 5.4 shows that even after
200 measurements some features have not fully converged. This observation is consistent
with the findings in Section 5.4. The features which provide measurements to mobile agent
positions with a change in only one direction converge to two possible positions.

5.6 Estimator variance

In Section 3.2.1 two variances were derived for the distance estimator. The quality of the
variance is mostly determined by the bandwidth since it reduces the estimator variance
as a quadratic term. The SNR effects the variance calculation only in a linear manner.
Therefore the analysis of different estimator variances is mainly about the influence of the
bandwidth. Measurements with these two variances are simulated. The results of warehouse
scenario with the standard parameter set can be seen in Table 5.5.

Figure 5.5 shows the individual simulations of the SLAM problem and the mapping-
only problem over the seeds. An interesting phenomenon was observed. The variance of the
RMSEs, given by

var(emap3D
) =

1

S

S∑
s=1

(emap3D
− emap3D,s)

2, (5.16)

with a better estimator variance is higher compared to those with a worse one. This can
be clearly recognized by the red spikes of the 3D mapping error. This red spikes show a
significantly worse mapping RMSE for some simulations. The mapping-only problem shows
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Figure 5.5: The left graph shows the mapping RMSE for different estimator variances of the SLAM problem
over different seeds. The right graph shows the mapping RMSE for the mapping-only problem
over different seeds.

almost no such spikes.
In general, with the higher estimator variance the SLAM problem tends to be prone to
outliers. The simulations for the mapping-only problem show no such outliers. Therefore, it
can be concluded that a poor localization leads to wrong convergence of individual feature
PFs. The reason for this is the annular initialization of the feature particles. More precisely,
the reason is the radius of the spherical coordinate system. The equation for the radius is
given by

r = N (z
(j)
t , var(d)). (5.17)

A closer look at (5.17) reveals that the RO measurement defines the radius of the ring and
the variance defines the annular size. The annular size can be seen as the deviation from the
radius of the ring where feature particles are initialized. For a normal distribution 99.7 %
of the feature particles are positioned within the 3σ-interval. The higher the variance, the
bigger this interval and vice versa. For the larger variance var(d1) this interval is quantified
as ±3 m. This means the initialization covers a larger volume due to the measurement with
a higher noise. However, the larger volume makes it also more robust to deviations from
the localization. For the smaller variance var(d2) the interval is only ±0.3 m. This means if
the localization is off, the feature particles get initialized at the wrong place. Moreover,
several badly initialized feature particles pull the localization of future runs towards their
direction and reduce the influence of the anchors. This phenomenon can be remedied by
increasing the variance of the radius of the initialization.

If this phenomenon is neglected, general trends can be recognized. Especially, the lo-
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Table 5.6: SLAM results of the different IMUs.

RMSE Random walk IMU in [42] MTi 1 series iPhone 4
eloc (m) 10.03 0.49 0.48 3.06
emap3D

(m) 11.27 0.77 0.84 3.29
emap2D

(m) 11.19 0.43 0.41 3.00

calization is improved with better measurements. This can be explained that more precise
measurements make it easier to rate the agent particles. Therefore, only the best agent
particles get resampled. However, this behavior makes it easier for badly initialized feature
particles to alter the estimated path. Nonetheless, the feedback from the mean position of
the agent particles is better on average and subsequently, the correction of the drifting error
in the IMU works better. A more precise localization combined with a smaller initialization
volume naturally improves the mapping.

5.7 Inertial measurement unit

Three different IMUs were introduced in Section 3.1.2. The parameter of the three different
IMUs were simulated and compared to a random walk configuration. For the random walk,
the motion model was changed to

p̂n,t+1 = p̂n,t +N (0,Σrandom walk). (5.18)

The variance of the added normal distributed noise Σrandom walk was chosen to be bigger
compared to the noise of the IMU motion model. This was done to account for the missing
change in position ∆p̂t. The result can be seen in Table 5.6.
The two IMUs, besides the inertial sensors of the iPhone 4, achieve similar results. With a
certain quality of the IMU, the RMSEs stay roughly the same. This can be interpreted
that using a higher quality IMU would not necessarily contribute to the improvement of
the RMSE in the same way. Therefore, it would be better to apply a sensor fusion with
other sensor types used for dead reckoning to further improve the localization.
The inertial sensors used in the iPhone are not suitable for solving the initialization problem.
While they still achieve better results than the random walk approach, it is the worst out of
the three tested IMUs. Especially, the bias of the gyroscope is too big to get corrected. The
weak point in the orientation gets reduced due to the help of the simulated magnetometer,
since the same magnetometer is used for all the IMUs.
It can be assumed that in reality, there are more possibilities to improve the localization.
For example, in [55] a gyroscope, wheel encoders, and a camera are used to localize the
robot. Similar results as in our simulation are obtained there.
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Figure 5.6: The localization RMSE of the SLAM problem over different anchor densities.

5.8 Anchors

One essential part of the environment are the anchors. They are needed to prevent the
localization from divergence, especially for the drifting bias of the IMU. Thus, it is necessary
to analyze the influence of the density of anchors. Six different densities from 5 % to 50 %
were evaluated. The results for the localization can be seen in Figure 5.6 and the results
for the mapping in Figure 5.7.

The increase of the number of anchors is just useful to a certain percentage. From 20 % to
50 % only minor improvements of the RMSE are achieved.
In the beginning of each run, the mobile agent is well localized because the starting position
is known. Therefore, the localization RMSE is kept within limits. Also the mapping works
for the first sensors even with no anchors. The effects of having no anchors would be worse
with a bigger environment or a longer trajectory.

It is not realistic to have have a higher anchors density than 10 %. In the warehouse
scenario such a percentage would correspond to an anchor positioned every 20 m on the
circumference of the walls. In the grocery store scenario this percentage would be even lower
since the feature density is higher and the positions of the anchors have to be determined
by hand. This would mean a lot of anchors would have to be mapped manually.
In addition, the detection radius and the feature density influences the needed percentage
of anchors. As long as enough anchors are providing measurements to the mobile agent, the
localization procedure will work. It does not matter if this number is obtained by having a
high anchor density, a big detection radius or a high feature density.

The anchors are needed for the localization part. They have only an indirect influence on the
mapping part. A different type of feature could be used for a more practical realization of
the anchors. Another reason to use a different type of feature for the anchors is the imprac-
ticality to measure the exact position of many ESL. As an alternative, ArUco markers [56]
could be used. A calibrated camera is able to detect the ID and estimate the marker’s
6DoF pose. With known position, an ArUco marker could provide more information than a
shelf label.
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Figure 5.7: The mapping RMSEs of the SLAM problem over different anchor densities.

5.9 Feature particle reduction algorithms

In Section 4.3.5 different approaches to reduce the number of feature particles K are
introduced. The performance of the different approaches are compared with the same
setup and the standard parameter set. The algorithms are evaluated for the two different
resampling variances. The results are stated in Tables 5.7 and 5.8.

The best results are achieved by the extended FastSLAM. This was expected since a
higher number of particles leads to a more accurate representation of the posterior distribu-
tion. This accuracy comes at the cost of a higher computational effort which can be seen
from the computation time tcomp in both tables. This computational effort can be brought
down a lot if the feature PFs are switched to EKFs after convergence. Such an approach
combines the PF as a solution to the initialization with the EKF as a more computationally
efficient feature representation.
Moreover, the EKF versions of the reduction algorithms achieve a better performance.
This is especially apparent with the bigger feature resampling variance Σr1 . There are two
reasons for this behavior. The z-axis is not diverging and it is better to switch back to the
EKF representation than having few particles to cover the posterior distribution. The only
exception is the extended FastSLAM algorithm using the smaller resample variance Σr3

where none of those two reasons are apparent.

Furthermore, the PF converges faster with the smaller resampling variance. This can
be seen if the computation time tcomp of the KLD-sampling and the EKF versions of both
tables are compared. The computation time for KLD-sampling and all the EKF versions
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Table 5.7: SLAM results of the particles reduction algorithms with Σr1 .

Extended FastSLAM Likelihood-Sampling KLD-Sampling

only particles EKF only particles EKF only particles EKF
eloc (m) 0.45 0.51 1.00 0.84 0.64 0.61
emap3D

(m) 0.79 0.77 1.48 1.37 1.10 1.07
emap2D

(m) 0.39 0.48 1.11 1.01 0.66 0.66
emapx

(m) 0.26 0.33 0.84 0.70 0.47 0.44
emapy

(m) 0.29 0.34 0.72 0.72 0.47 0.49

emapz
(m) 0.69 0.60 0.98 0.93 0.89 0.84

tcomp (s) 28857 10045 2293 1823 10467 9800

Table 5.8: SLAM results of the particles reduction algorithms with Σr3 .

Extended FastSLAM Likelihood-Sampling KLD-Sampling

only particles EKF only particles EKF only particles EKF
eloc (m) 0.49 0.57 0.93 0.88 0.92 0.62
emap3D

(m) 0.77 0.86 1.29 1.33 1.18 0.95
emap2D

(m) 0.43 0.56 1.01 1.05 0.91 0.66
emapx

(m) 0.29 0.39 0.74 0.74 0.62 0.46
emapy

(m) 0.32 0.40 0.68 0.75 0.67 0.47

emapz
(m) 0.63 0.65 0.81 0.81 0.75 0.68

tcomp (s) 29024 8292 2003 1361 6230 4798
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decreases while the computation time of the remaining algorithms stays roughly the same.
That can only be the case if the KLD-Sampling uses less particles throughout the whole
simulation and the switch to the EKF representation happens earlier.
The likelihood approach attains the biggest speed up but also the worst results. Although,
the likelihood-sampling starts with the same number of particles than the rest, the number
of feature particles are reduced too fast. The KLD-sampling does a better job than the
likelihood-sampling but it is still worse than the extended FastSLAM with fixed number of
feature particles. This means, that a certain number of particles is beneficial at all times.

The EKF version of the extended FastSLAM offers the best trade-off between accuracy and
computational effort. It comes close to the computational effort of the KLD-sampling but
achieves better results. Therefore, this version could be an alternative to the basic version
of the extended FastSLAM. The lack in performance can be counteracted with the usage of
a bigger number of feature particles in the beginning.

5.10 Outlier detection

To test the outlier detection introduced in Section 4.3.7 an already preinitialized environment
is assumed. The setup is initialized that it roughly matches the results of the extended
FastSLAM in Table 5.7. To determine the variance of the feature PF, the findings in
Section 5.5 are used. A feature PF is initialized as

f̂
(j)
t0 = f (j) +N (0,Σj), (5.19)

where the feature covariance matrix is given by

Σj =

emap3D,x 0 0
0 emap3D,y 0
0 0 emap3D,z

 . (5.20)

This is the bias part of the mapping RMSE. Furthermore, the individual feature particles
are initialized as

f̂
(j)
n,k,t0

= f̂
(j)
t0 +N (0,Σ(j)

cov,n), (5.21)

where Σ
(j)
cov,n,t is the feature covariance matrix. This is the variance part of the mapping

RMSE. After the initialization of the feature particles, two predetermined features are
misplaced by the distance dmp on the shelf. The equations for the misplacement can be
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Figure 5.8: The used environment to evaluate the outlier detection. The green point depicts the positions
of the two chosen features. The green arrows show the possible misplacements.

written as

f (1) = f (1) −
f̂

(1)
y,t0

|f̂ (1)
y,t0|

 0
dmp

0

 (5.22)

f (2) = f (2) −
f̂

(2)
x,t0

|f̂ (2)
x,t0|

dmp

0
0

 . (5.23)

Two different features were chosen to analyze influences of the position of a feature. More-
over, the two chosen features were placed farther from the known starting position to
include the effect of a flawed localization. Figure 5.8 illustrates the two chosen features and
their possible misplacements.

Figure 5.9 shows the results of the two features. The percentage of detection indicates that
the outlier detection method works equally well for both features. A difference can be seen in
the mapping RMSE. The first feature achieves a better performance than the second feature.
This difference can be explained with a more favorably positioned first feature compared to
the second one. As a consequence, the first feature provides more measurements for distinct
positions of the mobile agent and converges towards the misplaced feature position even if
the misplacement is not detected.
One problem with this outlier detection method is that it is prone to false positives. The
high variance of the measurements and a bad localization of the mobile agent can interfere
with the detection procedure. So far, this approach can only deal with outliers in the PF
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Figure 5.9: The results for the outlier detection of the first (left) and the second feature (right). The upper
graphs show the detection percentage over the misplacement distance. The lower graphs show
the mapping RMSE over the misplacement distance.

representation. The evaluation of the outlier detection for the EKF representation implies
that the EKF converges towards the misplaced feature. The question is now whether an
outlier detection method for the EKF representation is necessary at all.

5.11 Number of agent particles

The number of agent particles N scales linearly with the computational effort. This means
reducing the number of agent particles N reduces the computational effort in the same
manner and vice versa. It is still unclear how the number of agent particles affects the results
in terms of the RMSEs. Therefore, a simulation was conducted with different numbers of
agent particles from 10 up to 300. The simulations consist of only 5 runs instead of 10 to
save time. Therefore, the results are a little worse compared to similar results discussed so
far. In Figure 5.10 the outcome of the simulations can be seen.

The figure implies that the number of agent particles influences the localization and
the mapping in a very similar way since both decrease in the same manner. Furthermore,
the results show that a higher number of agent particles achieves better results. This
gain in the performance decreases with a higher number of agent particles. The biggest
improvement happens from using only 10 agent particles to about 50 agent particles. There
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Figure 5.10: The localization and mapping RMSEs of the SLAM problem over different agent particles
numbers.

is still a reasonable improvement in the performance from 50 to 150. Afterwards, the
improvement seems to flatten more and more with a higher number of agent particles.
Hence, a break-even point between performance and computational effort is found around
a number of 100 agent particles.
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A SLAM algorithm has been proposed that can handle the initialization problem arising
from the RO measurements. The approach is based on the factored solution to the SLAM
problem by M. Montemerlo [25]. This extension to the FastSLAM uses a PF representation
instead of the EKF representation for the features. A solution to switch back to the EKF
representation has been shown. This switch does worsen the results slightly but speeds up
the algorithm by a factor of 3. Furthermore, a method to detect outliers has been developed.

The evaluations within the simulation environment demonstrate that the algorithm is
able to solve the initialization problem. An important consideration regarding the initial-
ization is the choice of the trajectory. Beyond that, the algorithm improves the positions of
the features over time. Thus, also the localization of the mobile agent gets more precise.
From that observation, it can be concluded that the localization and the mapping are
conditionally dependent on each other. Improving the performance of one of those two,
improves also the performance of the other one.

Moreover, the various parameters and their influence have been analyzed in many simu-
lations. From the findings, requirements on the capabilities of the mobile agent and the
features can be derived. Thus, basic preconditions for a certain accuracy can be estimated,
e.g, the needed localization accuracy for the mobile agent or the required bandwidth for
the range measurements.

6.1 Outlook

A logical next step would be to construct an experimental setup and take RO measurements
from similar hardware used in the ESL. With real-world observations the measurement
model can be adapted. Thus, the evaluation of the SLAM algorithm is more informative
with a more realistic measurement model. Moreover, the robustness of the algorithm will
be tested if real measurements are used instead of synthetic ones.

Future work should also deal with the problem that the first run of the initialization
influences all subsequent runs. The reason for this influence are wrongly initialized features
that pull the position of the mobile agent towards their location. The wrongly initialized
features mainly originate from the errors of the IMU and the shape of trajectories which

61



6 Conclusion

have a bad dilution of precision in certain parts of the environment. Many independent
runs with varying trajectories can be combined to overcome this issue.

The findings in Section 5.3 indicate that the results improve very slowly after the convergence
of the feature PFs. Different approaches have to be applied to accelerate the improvement of
the results. Moreover, the correspondence of the measurements to the feature are known and
could be used as a source for additional information. Just the availability of a measurement
from a feature at a certain time instance carries information about the position of the mobile
agent. Therefore, it would make sense to use approaches using optimization strategies
over several measurements, e.g., Graph-based SLAM algorithms. This would utilize the
correspondence of the measurements to make indirect connections between agent positions.
Furthermore, such an approach can be easily extended with measurements between features.

Incorporating a-priori knowledge of the environment can help the optimization strate-
gies to achieve better results. A floor plan could help to restrict the possible positions
of the mobile agent and discretize the positions of a feature. Especially, the mapping of
the z-axis still needs improvement, since its contribution to the mapping error is highest.
Such a discretization can be easily applied to the positions for the z-axis since the ESLs
can only be mounted on racks with certain heights. Therefore, each feature can only be
positioned in certain positions on the z-axis. A problem would be that this positions have
to be determined for each application scenario, for example, a grocery store has different
possible heights compared to a warehore. Another disadvantage is that the noise is then
split between the x- and y-axis which would probably decrease their mapping results.
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