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Abstract

One of the problems in user-based collaborative �ltering recommender systems is
the cold-start users. To overcome this problem, a viable solution is to collect as much
information about the users of interest as possible. A particular example is a trust
network that encodes explicit or implicit trust statements by a user indicating their
trust of another user’s taste or judgement. �e aim of this work is to leverage the
information obtained from trust networks associated with recommender systems
by using graph nodes embedding. �e work focuses on evaluating di�erent graph
embedding approaches on cold-start users recommendation in three benchmark
datasets: Filmtrust, Ciao and Epinions. �e embedding of each of these datasets
is generated using several graph embedding approaches, then the recommenda-
tions to cold-start users are based on their obtained embedding. To this end, four
di�erent baselines and ten graph embedding approaches are considered. �e graph
embedding approaches are categorized into four families: (i) factorization-based ap-
proaches,(ii) random-walk-based approaches,(iii) deep-learning-based approaches
and (iv) an edge-reconstruction-based approach. To analyze how certain methods
outperform others, a statistical ranking test is performed on their results. Moreover,
�e e�ect of hyperparameters on the performance of certain methods is studied
with further experiments and visualizations. Furthermore, two alternatives for
dealing with directed graphs are analyzed: the bibliographic coupling graph and
the cocitation graph. �e obtained results show that the embedding approaches
constantly outperform the baselines in terms of nDCG score and the statistical test
suggests that random-walk-based embedding approaches achieve the highest ranks
on average comparing to other families with node2vec achieving the highest rank
overall. Finally, the tests on the special undirected versions of the graph show that
the choice of ignoring the direction is a more feasible choice with higher accuracy
and relatively less overhead.
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1 Introduction

User-based collaborative �ltering is one simple yet common paradigm in recom-
mender systems. �is technique depends on �nding similar users based on users’
ratings of items, that is, the user-item matrix. However, its dependence on the users’
rating results in the problem of cold-start users, that are users who did not add
enough ratings to build a speci�c pro�le or taste. In some systems, the user-item
interaction is associated with the possibility of a user-user interaction through
several activities, e.g., upvoting/downvoting a review, adding friends or issuing
explicit trust statements of another user. �is associating information provides more
information about users and helps �nding their preferences in order to generate
meaningful recommendations.

In this work, we examine the example of the trust-based recommender systems. In
such a system, a user can build a directed trust relationship with another user in case
the former �nds the la�er’s choices similar to what they might choose; which results
in a trust network with directed edges. To exploit this network, similarities between
users must be measurable, which can be accomplished by obtaining an embedding
of the graph that preserves some network properties of interest. �e obtained
embedding is an encoding of each node (user) into a vector in a d-dimensional
vector space, in which one can apply known vector similarity metrics, such as dot
product, to decode similarities between pairs of users. Similarity between nodes in
a trust network can be a strong indicator to similarity in preferences and hence a
basis to form a collaborative �ltering process a�erwards.

�e main goal of this work is to evaluate how di�erent graph embedding approaches
perform on the following task: ”Given a directed, possibly weighted trust network in
a recommender system context, generate an embedding that can be used to compute
similarities between users for a user-based collaborative �ltering approach to generate
recommendations to cold-start users.” �e evaluated score is the accuracy in terms
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1 Introduction

of nDCG score.1

Another common issue in graph embedding context is the direction information
of links in the network. We try to examine how to handle such type of graphs by
evaluating on di�erent versions of the given graphs as an undirected graphs.

�e main research questions that this work tries to address can be formulated as
follows

Q1) How do di�erent families of graph embedding approaches perform on the
trust-based cold-start recommendation problem?

Q2) How well can the directionality information, embedded within links direc-
tions, help obtaining a high-quality embedding?

To tackle the �rst question, three benchmark datasets from trust-based recom-
mender systems are used for experiments: Filmtrust, CiaoDVD and Epinions, each
of which contains a set of ratings as well as a set of directed trust statements
building a trust network. Experiments are conducted using ten graph embedding
approaches categorized into

1. Factorization-based approaches (LLE [47], LE [5], GF [2] and HOPE [43]).
2. Random-walk-based approaches (DeepWalk [45], node2vec [18] and role2vec [3]).
3. Deep-learning-based approaches (DNGR [9] and GraphSAGE [21]).
4. An edge-reconstruction-based approach (LINE [52]).

�ese are compared to the performance of four simple baselines. �e resulting
embedding of each of the studied methods is used to �nd the k-nearest neighbors
(k-NN) of each user and then generate the recommendations for a certain user
based on the ratings of their k-NN.

To address the second question, the same datasets are used to obtain the biblio-
graphic coupling graph and the cocitation graph, and then generate the embedding
of a subset of the aforementioned embedding approaches, and analyze how the
accuracy changes accordingly.

�e results of performed experiments mainly suggest that

1�e terms ’accuracy’ and ’nDCG’ may be used interchangeably in this work considering that
they refer to the same concept in this very work.
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1) Graph embedding approaches constantly achieve higher accuracy on the
considered task with the random-walk-based approaches in particular out-
performing the other embedding approaches on average.

2) Ignoring the links direction is a feasible simple solution that results in a good
performance in the environment of trust network and in the course of the
studied task while incorporating the link direction results in an overhead
with slight or no increase in recommendation accuracy.

�e next chapter (Chapter 2) gives a background of the problem, introduces a
terminology and reviews work conducted on network-based recommender systems
as well as graph embedding. Chapter 3 explains the two-phase pipeline this work
follows and discusses graph embedding approaches which are considered for ex-
perimentation. Chapter 4 analyzes the datasets, shows the hyperparameter se�ings
and explains the conducted experiments and the statistical ranking test as well
as the dimensionality and the directionality experiments. Chapter 5 summarizes
and visualizes the results of the conducted experiments. Chapter 6 highlights the
interesting results and the main �ndings of this work, and analyzes some observa-
tions through further experimentation. Finally, chapter 7 concludes the thesis and
proposes directions for future work.

A part of this thesis will be submi�ed to ECIR 2020 conference as the thesis is a part
of a larger body of joint work with other researchers. �e majority of the conducted
experiments here are used for evaluation and discussion in that work.
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2 Related Work

2.1 Background

2.1.1 Graph theory basics and terminology

A graph (or a network) G = (V,E) can be de�ned by two sets:

• a set of nodes (vertices) V 1, which represent entities in our data, and
• a set of edges (links) E ⊆ V 2 which carry the relationship information

between pairs of nodes.

Edges can carry relationship (e.g., knowledge graphs), but in this work this rela-
tionship is only considered to be a scalar.

A graph can be either

• unweighted, where an edge can have a weight in {0, 1}, or
• weighted, where the edge can have any weight in R.

A graph can be either

• directed, where the edge (u, v) is a sorted set, and it does not provide any
knowledge about (v, u) or even whether such an edge exists, or

• undirected, where the edge (u, v) refers to the same entity as the edge (v, u).

�e graph G = (V,E) is usually represented as a matrix A of size n× n called the
adjacency matrix. For a weighted graph, we haveA ∈ Rn×n, and for an unweighted
graph, we have A ∈ {0, 1}n×n. For an undirected graph, we have A = AT , whereas
this statement does not hold for a directed graph. Figure 2.1 shows an example of a
directed unweighted graph with its adjacency matrix.

1Conventionally, |V | = n ∈ N.
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Figure 2.1: An example graph with its corresponding adjacency matrix.

Note: the terms ’graph’ and ’network’ are both used in this work to refer to the same
entity G = (V,E). �e term ’graph’, however, is mostly used in order not to confuse
the term ’network’ with the short name of ’arti�cial neural networks’ which is used
o�en in this work.

Random walks

In its simple form, a random walk W starting at a node u0 is a sequence of nodes
W = (u0, u1, ..., u|W |−1), where each node ui : 0 < i < |W | is sampled from a
uniform distribution over the set of the node ui−1 neighbors (that isN (ui−1)). �is
reduces to a one-step transition of a Markov chain [55, 32].

Random surfers transform the graph into a set of walks, each of which is a list of
nodes generated from a single random walk, stating at a certain node. �e walks
can be used to get co-occurrences between nodes, which can be used as a similarity
measure, but the co-occurrence itself depends on the parameters and the bias of
the random walk as some high-order random walk methods work.

From directed to undirected

As some algorithms on graphs work be�er on or only exist for undirected graphs [24],
it seems viable to turn the directed graph into an undirected one. One of the pos-
sibilities is to ignore the link directions, which is simple to implement and keeps
the adjacency matrix sparse, but it causes a loss of direction information. Another
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2.1 Background

solution is to use the cocitation or bibliographic coupling graphs. �e cocitation
matrix is computed by C = ATA where the element Cu,v represents the number of
nodes that have outgoing edges to both u and v. �e bibliographic coupling matrix
is computed by B = AAT where the element Bu,v represents the number of nodes
that have incoming edges from both u and v. �ese alternatives make the matrix
denser but they preserve direction information implicitly.

2.1.2 Graph node embedding problem

Given a graph G = (V,E), a graph node embedding is a mapping ENC : V → Rd,
where d� n and ENC is usually referred to as the encoder function [22]. �e goal
is to obtain such a mapping which preserves certain properties of the graph in order
to make it more e�cient to discover information about the relationships between
nodes and infer knowledge about their hidden features using known mathematical
similarity metrics in a Euclidean space, such as dot product and cosine similarity.
For a node u ∈ V , its embedding is denoted as zu = ENC(u) ∈ Rd

Usually, a set of parameters Θ is associated with the mapping ENC which makes
the function trainable. A simple example of the encoder function is the shallow
embedding encoder, which most transdutive graph node embedding approaches
use. It is calculated by a shallow lookup:

zu = ENCΘ(u) = Θ · Iu, (2.1)

where Θ ∈ Rd×n is the embedding (encoding) parameter, I ∈ Rn×n is the identity
matrix of size n, and Iu is just the u−th column in I . �is means that a node
embedding is just a column in Θ and the training directly optimizes the embeddings
themselves, which makes these methods inherently transductive [22]. �is idea is
visualized in �gure 2.2.

Note: �e term ’graph node embedding’ is sometimes referred to simply as ’graph
embedding’. In this work, both terms are used interchangeably, with no reference
to other types of graph embeddings such as whole-graph embedding or subgraph
embedding unless stated explicitly.
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Figure 2.2: Shallow lookup embedding.

2.1.3 Trust-based recommender systems

In trust-based recommender systems, we are given a user-item rating matrix, R
along with a directed, probably weighted trust networkG = (V,E), represented
by an adjacency matrix A ∈ Rn×n. An element Au,v : (u, v) ∈ V 2, represents
whether user u trusts user v. Di�erent platforms de�ne this trust relationship in
di�erent ways: some explicitly, some implicitly. Mainly, one can intuitively assume
that a user u will only trust user v if they think v’s choices of items are potential
choices for them.

�e goal is to generate recommendations, i.e., �lling up the blanks in R, using
information from both matrices.

User-based collaborative filtering. User-based nearest neighbor recommenda-
tion [25] is a form of collaborative �ltering which aims to provide recommendations
to an active user u by �nding the most similar users to u. �is similarity can be
depending on their ratings of items or any other relevant information such as their
position/role in the trust network in the trust-based case. One of the main problems
with the classic approach which depends on the user’s ratings is what is known as
the cold-start problem.

8



2.2 Literature review

cold-start users. �e user cold-start problem is a special case of the sparsity
problem in recommender systems, and it refers to cases where user u have not rated
many (or any) items yet. �is makes the job of generating recommendation for this
user more di�cult as no much inference can be done about the user’s preferences.
Additional data about the users, such as the associated social/trust network, can
ease the problem, and this is exactly the case this work deals with.

2.2 Literature review

�is work aims to evaluate di�erent graph embedding techniques on the task of
recommending items in a trust-based recommender systems. Following is a review
of literature related to the network-based recommender systems and graph node
embedding.

2.2.1 Network-based recommender systems

An earlier work on trust-based recommender systems by Massa and Avesani [35]
uses PageRank global metric of the trust network to build an estimated trust matrix,
that represents similarity between users in the network, which is then used along
with a similarity matrix from the ratings information to predict unknown ratings.
Ma et al. [33] use matrix factorization for social recommendation which utilizes
both the adjacency matrix and the user-item matrix simultaneously. Andersen et
al. [4] propose multiple approaches to the problem: a random-walk based recom-
mender, a majority-of-majority system that only applies to directed acyclic graphs,
a minimum-cut system and a personalized PageRank system.

Ma et al. [34] later interpret the di�erence between social-based and trust-aware
recommender systems. �ey use the social network as a regularizer that re�nes the
matrix factorization based target recommender system.

A more recent work by Li et al. [30] uses the overlapping community information
as a regularization term for user-item matrix factorization. Seo et al. [50] calculate
an expected friendship strength between users and use the explicit social network
to generate personalized recommendations. Finally, Duricic et al. [11, 12] use Katz
proximity measure in the trust network to generate a similarity matrix and then

9
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produce recommendations with collaborative �ltering aiming to overcome the
cold-start problem in recommender systems.

2.2.2 Graph embedding

Graph embedding problem has drawn a�ention in the past two decades, mostly in
the 2010s. Earlier approaches, such as LLE [47] and LE [5], depended on factorization
of the adjacency matrix but are not scalable as they needO(|E|d2) time. Later, Graph
Factorization [2] was proposed as a more scalable factorization-based approach
with a complexity ofO(|E|d). �e approaches mentioned so far aim to preserve �st-
order proximity, by embedding nodes close to each other in the target vector space
in case they share edges in the graph. GraRep [8] extendes the preserved property
to a de�ned kth−order proximity but had a complexity of O(|V |3). HOPE [43] also
preserves high-order proximity but generalized the similarity matrix to include
known measurements such as Katz similarity [27], personalized PageRank [51] and
Adamic-Adar [1]. LINE [52] only aims to preserve 1st− and 2nd−order proximity.
LINE uses a probabilistic based loss function and is not strictly classi�ed as a matrix
factorization approach.

Another line of graph embedding approaches, random walk based ones, was
spawned by DeepWalk [45] which generates a set of random walks and applies
Skipgram model [38] to generate embeddings for nodes similar to generating em-
beddings for words in word2vec using Skipgram model. Node2vec [18] follows the
same idea of DeepWalk but uses a 2nd-order random walk to control how deep
and how broad the random surfer is moving. A more complicated framework,
Struc2vec [46], focuses on the structural similarity regardless of node a�ributes
or position to build a multi-layer graph, from which a contexts of nodes are built
using random walks, then a latent representation is learned for each node. A more
recent approach, role2vec [3], introduces role-based random walks that traverse a
mapping of the nodes to a their structural role.

�e rapid advancement deep learning in the recent years has also made its way to
graph representation learning. Earlier neural-networks-based approaches [16, 37,
48] used recurrent neural networks to learn a node’s representation using message
passing between nodes through the RNN. Later, this was extended by Li et al. [31]
to use Gated Recurrent Units.

10
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Later on, several works a�empted to adapt convolutional neural networks to graph
data. Deep convolutional neural networks are mainly applied to grids with pre-
de�ned neighborhood, e.g. 4-connectivity in images, which makes the convolution
operator easily de�ned as opposed to graphs where the neighborhood is irregular
and di�ers from a node to another which is a challenge for deep convolution-
based approaches. Convolution-based models are, however, proven to work well so
far. Some work on these models aimed to obtain the convolution through linear
operators in the spectral domain. For example, Bruna et al. [6] utilize the graph
Laplacian as spectral representation of the graph and aim to �nd the spectrum
of the weights. Similarly, the GCN model [28] use multiplication in the spectral
domain and produce a simple, multi-layered propagation rule. More recently, spa-
tial convolutional approaches were proposed to overcome the complexity of the
spectral approaches and also to introduce an inductive se�ing of representation
learning on graphs, in contrast to most previously mentioned methods. For example,
with GraphSAGE [21], neighborhood information is propagated through �xed-size
sampling and symmetric aggregation. In contrast, GAT [53] introduces an a�ention-
based architecture that allows asymmetric aggregation of the neighborhood and
access to the entire neighborhood instead of a �xed-size sample. LCGL [14] aims to
enable regular convolutional operations on graph data. �ey propose k−largest
node selection that transforms each node’s aggregated neighborhood to a 1-D grid
on which a 1-D CNN is applied. PATCHY-SAN [42] had a di�erent approach of
applying CNNs on graphs: it de�ne a sequence of nodes for which a receptive �eld
is created and determines an embedding that preserves structural roles.

Other deep learning based approaches utilize the deep autoencoders which were
adapted to work on graphs by using an input feature vector representing the
similarity between the node and other nodes in the graph. DNGR [9], for example,
applies a stacked denoising autoencoder on normalized (with PPMI) nodes’ co-
occurrence vectors, which are obtained through random walks. SDNE [54], de�ne a
similar unsupervised component with the adjacency matrix in addition to another
supervised component that exploits the �rst-order proximity of some pairs of nodes,
that is used to re�ne the learned representations. �ese approaches, however, are
expensive since they take a global neighborhood of the node as an input.

Several recent works have surveyed the existing graph embedding approaches.
Some of them went a step further to test these methods on di�erent down-stream
machine learning tasks and visualize the embeddings in 2 dimensions to extract
some insights.
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Hamilton et al. [22] decompose the graph embedding problem into 4 main parts as
follows

(i) an encoder that transforms the network representation into the latent vector
representation,

(ii) the graph similarity measure which de�nes how two nodes (u, v) ∈ V × V
are similar based on the network information, e.g. the adjacency/weight
matrix, edge information

(iii) the decoder which can be seen as a latent vector (dis)similarity measure, e.g.
dot product, cosine similarity, euclidean distance

(iv) the loss function which de�nes the penalty on the di�erence between the
graph similarity and the latent vector similarity, and can be simply an absolute
di�erence, a squared di�erence, etc.

�is scheme makes it simpler to try di�erent combinations of components and inter-
pret the correlation between the results of di�erent known approaches. �ey classify
the embedding approaches into deep and shallow with the shallow approaches
always having the encoder function as a look-up table. Hamilton et. al [22] do not
only study methods of graph nodes embeddings but also whole graph embedding
and subgraphs embedding which are not considered in this work.

Cai et al. [7] provide a taxonomy for the graph embedding by problem se�ings,
i.e. input graph and output embedding, as well as by techniques which we dis-
cuss later on. �ey categorize the input graph types into homogeneous graphs
where each edge/node has a single type, heterogeneous graphs where multiple
types per node/edge are possible, graphs with auxiliary information (such as node
labels/features, edge a�ributes or knowledge bases) and graphs constructed from
non-relational data, e.g. constructing edges between documents based on a calcu-
lated similarity measure by applying KNN. �e output embedding is either node,
edge, hybrid (a combination such as node+edge embedding or subgraph embed-
ding [57]) or whole-graph embedding. �e embedding techniques are split into
matrix factorization, deep learning, edge reconstruction, graph kernel and generat-
ive models.

Zhang et al. [59] study the network representation learning methods and provide
a hierarchical taxonomy of methods based on supervision (unsupervised/semi-
supervised), preserved properties (structure preserving/content augmented) and
information sources (network structure/vertex labels and a�ributes). �ey show
the main advantages/disadvantages of each family of approaches and focus on
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how local/global the considered structural information are and further perform a
complexity analysis. �ey categorize 22 di�erent benchmark datasets and compare
seven unsupervised algorithms on vertex classi�cation and vertex clustering with
7 datasets.

Goyal and Ferrera [17] categorize the embedding methods into (i) matrix factoriza-
tion based, (ii) random walk based and (iii) deep learning based. �en they study
the performance of more than 10 methods on four di�erent tasks, i.e. node clas-
si�cation, graph reconstruction, clustering, and visualization, on corresponding
datasets. �ey further study the e�ect of dimensionality on the performance.

Finally, Wu et al. [56] study graph neural networks in general and explain the
overlap between this term and the graph embedding term. �ey de�ne a taxonomy
for graph neural networks by categorizing them into graph convolutional networks,
graph a�ention networks, graph auto-encoders, graph generative networks and
graph spatial-temporal networks. �e last two are not assumed to work as graph
embedding methods.
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In this chapter, we de�ne the task of interest and the recommendation approach
which is composed of two steps (obtaining the embedding and generating the
recommendation). �en we discuss the used graph embedding approaches and their
most interesting features.

3.1 Task definition and strategy

�e goal of our experiments is to evaluate di�erent graph embedding approaches
on the cold-start problem in recommender systems. We assume having a set of
users and a set of items, where users can rate the items, as well as trust relationships
between users.

3.1.1 Cold-start users

A cold-start user is a user who did not rate many items in a sense that makes
it hard for the system to infer information about the user in order to produce
recommendation for them. In this work, we select a threshold of 10 to de�ne the
cold-start users; in other words, we consider users that have 10 or less ratings for
items to be cold-start users.

In addition to rating items, a user u can issue a trust statement of another user v,
in case u �nds that v’s ratings are consistently valuable, which forms a network
of directed trust statements. �is trust relationship can be explicitly set by u or
implicitly inferred based on other information in the system. For example, if users
had the ability to provide wri�en reviews of items, and other users could rate these
reviews, we can infer a trust (or a distrust) relationship from a user u to a user v
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based on the the ratings u gives to the wri�en reviews of v. �erefore, the trust
statement in such a system intuitively implies a similarity in interests or preferences
of the two users.

3.1.2 Problem statement

To tackle the cold start problem, we aim to utilize this network using graph node
embedding approaches to �nd a low-dimensional vector representation of users
and then apply collaborative �ltering to generate recommendations for cold-start
users. We are given

1. a set of ratings as a relationship between items and users and
2. a directed graph G = (V,E) where nodes u ∈ V represent users and edges

represent trust statements between users, i.e., an edge (u, v) ∈ E means user
u trusts user v.

3.1.3 Recommendation strategy

Our methodology consists of two main phases:

1. Generating an embedded representation for each node (user) u ∈ V with a
size of d dimensions.

2. Applying collaborative �ltering to �nd similar users in the resulting d-
dimensional space and generate recommendations to target users on this
basis.

For the �rst phase, we only utilize the network and don’t use the set of ratings.
Our considered embedding approaches are therefore merely structural with no
nodes features and unsupervised with no feedback about the embdding quality.
As we are only interested in the embedding of unsigned networks that only have
non-negative edges, and since most datasets contain no explicit distrust statements
publicly for privacy reasons, we will only consider positive trust statements and
hence unsigned networks.

For the second phase, we use a user-based collaborative �ltering technique with a
k-nearest neighbors algorithm. �e similarity between two users is calculated using
the dot product of their representations (embeddings) in the d-dimensional vector
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space, generated by the �rst phase, which produces a similarity matrix between
users.

�rough our experiments, we consider two types of users:

• Cold-start users who have rated 1 ≤ q ≤ 10 items. �ese users are considered
as a target test set for our evaluations.

• Warm users who have rated q > 10 items. �ese users are considered as a
target validation set to perform our hyper-parameter optimization.

�ere is no need for a training set as the embedding approaches are completely
unsupervised.

For a target user u with q rated items, the 80 most similar non-target users are
found from the similarity matrix, and then used to generate a ranked list of items
(top-q items) to recommend to u. �e ranks are based on a score which is a linear
combination of the neighbors’ ratings times their similarities to u, computed as
follows for an item i:

score(u, i) =
∑

v∈k-NN(u)

sim(u, v) · 1(v, i), (3.1)

where the 1(v, i) is and indicator that equals 1 if user v provided a rating for item
i and is 0 in case user v has no rating for i. �ese items are then sorted based on
these scores, and the top-q items are recommended to u.

When generating recommendations for a warm user u in the validation phase, we
randomly remove 10 of u’s ratings, recommend the top-10 ranked items (which are
not contained in the remaining items rated by u) to u according to Equation 3.1. In
this case, k-NN(u) contains other warm users whose ratings are completely visible
while focusing on u. On the other hand, when generating recommendations for a
cold-start user uwith q ≤ 10 ratings, we remove all of their ratings and recommend
the top-q ranked items to u according to Equation 3.1. In the cold-start case, all
the ratings by all cold-start users are not visible and the k-NN(u) set contains only
warm users.
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3.2 Graph embedding approaches

�e graph node embedding approaches, considered for experiments, are explained
in this section to the level that serves the purpose of the experiments. �is work
follows the categorization of Goyal and Ferrera [17] which goes as follows.

3.2.1 Factorization-based approaches

Factorization-based methods aim to factorize a matrix representing a similarity
measure between pairs of nodes. �e similarity measure can be the, possibly
weighted, adjacency matrix A (with elements ai,j itself or another similarity matrix,
e.g. Katz similarity, PageRank, etc.). Factorization-based methods were generally
proposed earlier than other approaches.

Locally Linear Embeddings. LLE [47] treats each node representation as a
linear combination of its neighbors zu ≈

∑
v∈(N)(u) au,vzv and aims to minimize

the di�erence between the representation and this linear combination as follows∑
u∈V

|zu −
∑

v∈(N)(u)

au,vzv|2,

where zu is the embedding of node u.

Laplacian Eigenmaps. LE [5] aims to minimize the sum of squared di�erences
between the representations of pairs of nodes, with the sum being weighted by
the edge weight au,v in the adjacency matrix, which is 0 in case no edge exists. In
particular, the algorithm minimizes the cost function∑

(u,v)∈V 2

|zu − zv|2au,v.

Note that this method uses the L-2 norm (|.|2) as a decoder, the 1st-order proximity
as a similarity in graph and the multiplication as a loss function for a pair of
nodes.

By removing degenerate solutions and translational invariance, both LLE and LE
reduce to an eigenvalue decomposition problem.
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Graph Factorization. GF [2] follows a similar approach to LLE[47] and LE [5]
but improves the e�ciency by minimizing over existing edges. It uses the dot
product as a decoder and the L-2 norm as a loss function per edge. Additionally, it
introduces a regularization term that penalizes representations with big L-2 norms.
�e objective function turns out as

1

2

∑
(u,v)∈E

|zTu zv − au,v|2 +
λ

2

∑
u∈V

|zu|2 (3.2)

which is minimized using stochastic gradient descent that iterates until the vec-
tor representation converges. �is algorithm runs in O(|E|d) time comparing to
O(|E|d2) for both LLE and LE.

HOPE. HOPE [43] de�nes a more general cost function by utilizing a similar-
ity measure S that can be de�ned by the user as long as it can be represented
as S = M−1

g ·Ml. �e authors investigate di�erent similarity measures, namely,
Katz similarity [27], Rooted PageRank [44], Common neighbors and Adamic-Adar
(AA) [1] and �t them into that formulation and then solve the minimization prob-
lem

min ||S − Zs · ZtT ||2F , (3.3)

where Zs, Zt ∈ R|V |×d are, respectively, the source and the target embedding
vectors both with representation size d.

3.2.2 Random-walk-based approaches

Several approaches utilize the lists resulting from random walks as they can be
regarded as a regular (linear) form of data that represent context or similarity and
can be fed to machine learning models.

DeepWalk. DeepWalk [45] shows that techniques used to model natural lan-
guage can be also used to model community structure. It uses a stream of short
random walks in order to learn a latent representation Φ(v) for each node v ∈ V .
For a node vi in a short random walk v1, v2, ..., vlen, the language model, namely
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the skip-gram model [38], maximizes the probability of vi’s context given the latent
representation of vi which is Φ(vi):

max
Φ(vi)

Pr({vi−k, vi−k+1, ..., vi+k−1, vi+k}|Φ(vi))

where the unordered set {vi−k, vi−k+1, ..., vi+k−1, vi+k} is the context of node vi in
the corresponding random walk, and 2k + 1 is the window size.

Skip-gram algorithm is used to update the representation a�er obtaining each ran-
dom walk, and hierarchical so�max [39, 40] is used to approximate the probability
distribution.

node2vec. Grover et al. [18] follow the same scheme of DeepWalk [45] but
extend the de�nition of the random walk to a 2-nd order random walk that has
extra memory which is the predecessor node. Consider the current node ui ∈ V ,
the predecessor would be ui−1 ∈ V then the (unnormalized) probability of picking
a node v ∈ V would be

ui-1

1

1/p ui 1/q

1/q

ui-1

1

1 ui 1

1

Figure 3.1: A comparison between (le�) 1st order random walks as in DeepWalk and (right) 2nd
order random walks as in node2vec. �e labels on the edges get multiplied with the
corresponding weights and then normalized to be a probability distribution.

αui−1,ui
(v) =


1/p if d(ui−1, v) = 0

1 if d(ui−1, v) = 1

1/q if d(ui−1, v) = 2

(3.4)

where d(u, v) is the shortest distance between nodes u and v and p, q are parameters
of the random walk which de�ne how biased it would be towards depth-�rst or
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breadth-�rst search. Mainly, relatively higher p would mean it is less likely for the
random surfer to go back to a node that it just visited, which pushes the walks
towards depth. Conversely, relatively higher q means that the surfer is less likely to
explore outside and favors nodes that are closer to the predecessor node. node2vec
uses negative sampling to approximate the probability distribution.

Role2vec. Role2vec [3] introduces the concept of random walks which are tied
to a function that maps each vertex to a structural role instead of the vertex identity,
then embeddings are learned for types and not nodes. �is model can be applied to
new nodes, and can take vertex features as input.

�e mapping function is either de�ned manually by the user or learned automatic-
ally by means of low rank factorization of the feature matrix and then applying
k-means to map them to clusters (types). �e a�ributed random walks are then
generated simply by mapping each vertex in a random walk, which follows the
description of random walks in node2vec, to its type.

Role2vec, node2vec and DeepWalk use an asymmetric dot-product-based decoder

DEC(u, v) =
ez

T
u zv∑

k∈V e
zTu zk
≈ p(v|u), (3.5)

where p(v|u) models the probability of visiting v in a random walk starting at u.

�ey use a cross-entropy loss function

L =
∑

(u,v)∈D

log(DEC(u, v)), (3.6)

where D is sampled from the distribution p(.|.). �is loss is approximated through
hierarchical so�max in DeepWalk and through negative sampling in role2vec and
node2vec [22].

3.2.3 Deep-learning-based approaches

We consider one autoencoder-based method, and inductive convolutional-based
methods that are included as di�erent aggregators in GraphSAGE.
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DNGR. DNGR [9] starts with random sur�ng to build a probabilistic co-occurrence
matrix of nodes. �en it calculates the PPMI matrix of it. A stacked denoising autoen-
coder is then used to embed the nodes, which results in a non-linear mapping to the
low-dimensional vector representation unlike the SVD-based solutions that yield
linear mappings. �e PPMI matrix proposed by [29] is a version of PMI (pointwise
mutual information) matrix [10] which is de�ned as

PMIu,v = log(
#(u, v)|D|
#(u)#(v)

) (3.7)

where #(u) is the count of occurrences of u, #(u, v) is the count of co-occurrences
of u, v and |D| =

∑
u

∑
v #(u, v). �e PPMI (positive shi�ed PMI) is simply

PPMIu,v = max(0, PMIu,v).

GCN. Kipf et al. [28] suggest Graph Convolutional Networks (GCN), a multi-
layered model that can be de�ned with the recursive propagation rule

Z(i+1) = σ(D̃−
1
2 ÃD̃−

1
2Z(i)W (i)) : 0 < i ≤ h (3.8)

whereZ(i) ∈ RN×Fi is the output of the i-th layer, Ã = A+IN (the adjacency matrix
with added self-loops), D̃u,u =

∑
v Au,v , σ is a non-linearity unit,W (i+1) ∈ RFi×Fi+1

is a trainable weight matrix for layer i, h is the number of the hidden layers and
Z(0) is the input feature matrix. �e embedding of the nodes is represented by
Z(h) ∈ RN×Fh . �e input feature matrix in our case is just the identity as we do
not consider node features.

�e above formula is (Eq. 3.8) can be realized by a 1-localized approximation of
Chebyshev polynomials as suggested by Hammond et. al [23] and then approximat-
ing this by sharing weights between the 0- and 1-order of the polynomial in order
to accelerate the training process. By stacking multiple layers, the signal propagates
in the way the network learns.

Since the multiplication in the update rule happens in the spectral domain, it is
equivalent to a convolution in the spatial domain. Hence, the learned weights are
actually the spectral representation of the �lters.

GCN was not strictly used in this work with this spectral representation, but rather
with the spacial equivalent that is realized in GraphSAGE.
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GraphSAGE. Proposed by [21], GraphSAGE (Graph SAmple and aggreGatE)
model consists of several layers, each of which performs, as the name suggests,
sampling and aggregating on the incoming information from the previous layer to
generate a vector representation for each node.

�e sampling operation is uniform on the neighborhood of a node, but the number
of samples can di�er from a layer to another. �e suggested aggregators are (i)
mean-based aggregators (ii) LSTMs and (iii) pooling aggregators. A modi�ed version
of the mean-based aggreagator reduces to an inductive variant of GCN by [28]. �e
aggregated vectors are multiplied with a weight matrix and then a non-linearity
is applied to that result. �is is represented by the following propagation rule for
each layer 0 < i ≤ L:

ĥ(i+1)
u = AGG(i+1)

v∈N (u)(h
(i)
v )

h(i+1)
u = σ(W (i+1) · CONCAT(h(i)

u , ĥ
(i+1)
u )),

(3.9)

where AGG is the aggregation function, CONCAT denotes vector concatenation,
N (u) is node u’s sampled neighborhood, ĥ(i+1)

u is an intermediate representation
of the aggregation of the node u’s neighborhood, h(i)

u is the representation of node
u in layer i, L is the total number of layers, σ is a non-linearity unit and W (i) is
the learnable shared weight matrix in layer i.

�e weight matrix, as well as the LSTM and the pooling aggregators, is trainable. All
aggregators are meant to be symmetric with respect to the input samples, which is
why the LSTMs are fed with a random permutation due to their sequential nature.

�e loss function for the unsupervised case promotes the similarity between two co-
occurring nodes and penalizes the similarity between a node and several negative
samples. To use this loss function, a �xed-length random walk is applied to get a
co-occurrence relationships between pairs of nodes. �is yields the following loss
function

J(zu) = − log(σ(zTu zv))−Q · Evn∼Pn(v) log(σ(−zTu zvn)), (3.10)

where v is a vertex co-occurring with u in a random walk, σ is sigmoid function,
Pn is a negative sampling distribution and Q is the number of negative samples.
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3.2.4 Edge reconstruction based approach

LINE. LINE [52] model aims to preserve �rst-order and/or second-order proximity
between pairs. It is classi�ed by [7] as an edge-reconstruction-based approach and
it is always compared to node2vec [18] and DeepWalk [45].

�e empirical �rst-order proximity can be de�ned on an undirected (weighted)
graph G = (V,E) with weight matrix A ∈ R+|V |×|V | between two nodes (u, v) ∈
V × V , as p̂1(u, v) = au,v∑

(i,j)∈E ai,j
, which is 0 if there is no edge. To deal with

directed graph, we just ignore the direction of links here to get a symmetric A. �e
�rst-order proximity between their vector representations zu, zv is

p1(u, v) =
1

1 + exp(−zTu .zv)
(3.11)

which, as for the empirical one, de�nes a probability distribution p1(., .) over the
space V × V .

�e empirical second-order proximity, however, can be de�ned on both directed
and undirected graphs as p̂2(v|u) = au,v∑

(u,i)∈E au,i
. �is value should be close to the

second-order proximity of their vector representations which consists of two roles
for each node: zu is the representation of u as a vertex and z′u is its representation
as a context.

�e proximity is then de�ned as

p2(v|u) =
exp(< z′v, zu >)∑
k∈V exp(< z′k, zu >)

(3.12)

which again, as for the empirical second-order proximity, de�nes a conditional
probability distribution p2(.|u) over V .

Both types of proximity (�rst- and second-order) are preserved by minimizing the
KL-divergence between the empirical and the resulting distributions. �is gives the
following loss function for the �rst-order proximity case:

L1 = −
∑

(u,v)∈E

au,v log p1(u, v) (3.13)
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and the following one for the second-order proximity case:

L2 =
∑

(u,v)∈E

au,v log p2(v|u). (3.14)

�e relationship between LINE and random-walk-based approaches is the probabil-
istic decoder and loss function. �e major di�erence is that LINE does not generate
node context as a random walk, but uses the explicit proximity instead.
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�is chapter explains the experimental setup by introducing the datasets con-
sidered for the cold-start problem, listing the considered baselines and describing
the combinations of hyperparameters tested for each of the studied embedding
approaches, explains the evaluation protocol and introduces further experiments
that are conducted on a narrower scale.

4.1 Datasets description

�e experiments are conducted on three datasets: Filmtrust, CiaoDVD and Epinions,
each of which has a set of ratings done by users to evaluate items, and a trust
network that connects users. Some facts and statistics about the used datasets are
presented bellow.

Filmtrust. Filmtrust [15] was a website that provides movie recommendations
to users. It allows them to rate the movies and provide a trust rating for other users.
�is website was created to exploit the trust relationships between users in the
context of recommendation. Users can give ratings to movies, which vary between
half a star and 4 stars. �ey can follow other users and provide trust ratings for
them. �is rating is meant to represent how likely the trustor would watch a movie
that was highly rated by the trustee. �e rating can be accompanied by a free-text
review, which is not considered in this work.

�e considered dataset [20], that was crawled from the entire website in 2011,
consists of 1, 508 users and 2, 071 movies with 35, 497 ratings. In addition, a trust
network that have 874 of total users is provided. �is network has 1, 853 directed
edges representing trust statements (see Figure 4.4c for degree distribution).
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CiaoDVD. Ciao1 is an online-shopping website that allows users to write reviews
about items or rate them in addition to rating other people’s reviews. It allows the
user to create a ‘Circle of Trust’ which consists of the users whose reviews are
consistently helpful for that speci�c user. �e ratings of these reviews can vary
from 0 to 5. �ese trust relationships again form a network of trust.

�e CiaoDVD dataset [19] is crawled in December 2013 from the DVD category in
the website. It contains 17, 615 users that have rated 16, 121 items with a total of
72, 665 ratings. �e ratings �le also includes the rating date and the movie genre;
both will not be visible to the training or the evaluation phase. A trust network is
built depending on the circle of trust of the included users. However, in this dataset,
only 4, 658 of 17, 615 users have trust connections in the network, and the rest
are isolated. �e network has 40, 133 directed edges. Figure 4.2 shows the degree
distribution of CiaoDVD network. Lastly, a set of review ratings are available in
the dataset too, but this will not be visible to our approach either.

Epinions. Epinions2 is another online-shopping website, which has the same
ideas of the reviews rating and the ‘Circle of Trust’ described for Ciao.

�e considered dataset [36] contains 49, 288 users with 139, 738 items and 664, 824
user-item ratings. �e network contains all 49, 290 users with 487, 183 directed
edges. �e degree distribution of Epinions is shown in Figure 4.3. Table 4.1 sum-
marizes the statistics of the datasets.

4.1.1 Dataset split

We split each of the three datasets as pointed out in Chapter 3 into two subsets:
cold-start users and warm users, with warm users representing a validation set for
our hyperparameter se�ings search, and cold-start users representing the test set of
our experiments, on which we report the accuracy for the selected models. Table 4.2
shows the number of cold-start and warm users in each dataset and highlights their
numbers within the trust network. Users who have not provided any ratings are
neither cold-start nor warm users.

1www.ciao.co.uk
2www.epinions.com
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Figure 4.1: Filmtrust degree distribution
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Figure 4.2: CiaoDVD degree distribution
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Figure 4.3: Epinions degree distribution

Dataset User-item interaction Trust network statistics
Users Items Ratings Nodes Edges Density

Filmtrust 1,508 2,071 35,497 874 1,853 0.00243
CiaoDVD 17,615 16,121 72,665 4,658 40,133 0.00185
Epinions 49,290 139,738 664,824 49,288 487,183 0.00020

Table 4.1: Statistics of the datasets

4.2 Baselines

�e considered algorithms are evaluated on the datasets along with some classic
baseline methods from the literature. �e following baselines are considered in this
work.

Most popular. �e most popular items in each dataset, which are considered to
be the top 10 frequently rated items, are recommended to all users. �is is meant
to approximate the mainstream. It can also generate recommendations for any
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All users Users in the network
Dataset Cold-start Warm Total Cold-start Warm Total

Filmtrust 545 963 1,508 241 499 740
CiaoDVD 16,591 1,020 17,611 2,124 571 2,695
Epinions 25,393 14,770 40,163 25,393 14,770 40,163

Table 4.2: Statistics of the cold-start users and warm start users who provided at least one rating
in the datasets

user regardless of their trust statements or their number of ratings, and hence the
cold-start and warm users.

Explicit trust. �e trust links, outgoing from each user in the network, can be
used to �nd similar users and generate recommendations based on the taste of
the user’s trustees as a form of simple user-based collaborative �ltering. �is is a
di�erent way of applying collaborative �ltering by using the adjacency matrix itself
as a similarity matrix, and is rather shallow comparing to the graph embedding
based approaches.

Jaccard index. Jaccard index of two sets A and B is generally de�ned as the
intersection over union,

J(A,B) =
|A ∩B|
|A ∪B|

.

Considering two users u and v with their neighborhoods (sets of trustees) N (u) ⊆
V and N (v) ⊆ V respectively, the similarity in this baseline becomes

sim(u, v) = J(N (u),N (v)) =
|N (u) ∩N (v)|
|N (u) ∪N (v)|

, (4.1)

and the recommendation is, again, based on collaborative �ltering.

Katz similarity. Katz similarity measures the regular equivalence between nodes.
It is realized by the recursive intuition that similar nodes are nodes who have similar
neighbors, and is mathematically represented as

sim =
∞∑
k=0

(αA)k = (I − αA)−1 (4.2)
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whereA is the adjacency matrix andα ∈ (0, 1) is the a�enuation factor. �e formula
is approximated by se�ing a limit to k, i.e., kmax, and it represents a decaying e�ect
for longer paths comparing to longer paths. A�er the Katz similarity matrix is
computed, there are steps of degree normalization, row normalization and boosting
propagated similarities; all explained in depth in [11].

All four baselines were used by [11] for the same task on Epinions dataset.

4.3 Hyperparameter optimization

�e graph embedding approaches discussed in Section 3.2 are used with an output
dimensionality of 128. In the basic experiments which do not include the direction-
ality study, the direction of the links is ignored to deal with an undirected graph, as
preliminary tests on directed graphs showed that the considered methods in general
work be�er with the undirected version of the graph. Next, the used approaches that
were used in the experiments are listed with their optimized hyperparameters.

In total, we had 163 combinations for the hyperparameter optimization step, each
of which is applied to the three datasets, which gives a total of 489 experiments.

LE and LLE. LE and LLE are not parametrized methods so no se�ings were tested
on them, so there is only one test for each of them on each dataset.

Graph Factorization. GF was tested with three di�erent regularization weights
λ ∈ {0.1, 0.5, 1.0}.

HOPE. Two di�erent types of high-order proximity were tested for HOPE, i.e.,
Katz index and Rooted PageRank. Katz index has the decay β parameter which
determines how fast the weight of a path decay when the length of path grows as
explained in [43]. Rooted PageRank (RPR) depends on a random surfer which, given
it starts at a node u, will traverse to a neighbor of the current node with probability
α and will jump back to u with probability 1 − α. Katz index was tested with
β ∈ {0.01, 0.1, 0.9} and Rooted PageRank was tested with α ∈ {0.5, 0.85, 0.99}.
�is results in six di�erent se�ings for HOPE.
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4.3 Hyperparameter optimization

DeepWalk. �e main characteristics of DeepWalk are the random walk length,
which tells how far each random walk moves from the starting node, and the
skip-gram window size, which represents the size of the context to consider while
processing each visit in a random walk. �e random walk length values considered
are in the set wl ∈ {5, 10, 20, 40, 80, 120, 160} and window sizes are in the set
ws ∈ {1, 2, 3, 5, 8}. In all these experiments, the number of random walks per node
is set to 10, In total, we have 35 di�erent combinations for DeepWalk.

node2vec. Similar to DeepWalk, the walk lengths and the window sizes are
considered for tuning but with values wl ∈ {20, 40, 80} and ws ∈ {3, 5, 8} respect-
ively. Additionally, the hyperparameter search includes the interesting property of
node2vec which is the relationship between the return parameter p and the in-out
parameter q. Particularly, for each combination of the walk length and the window
size, the chosen cases for p and q are

• p is much greater than q (p = 1� q = 0.01),
• p is greater than q (p = 1 > q = 0.5),
• p and q are equal (p = q = 1),
• q is greater than p (p = 1 < q = 2),
• and q is much greater than p (p = 1� q = 100).

�is sums up to 45 di�erent cases of node2vec.

role2vec. Since role2vec is also random-walk-based, we also consider the walk
length as a hyper parameter to optimize with the same values used in Deep-
Walk: wl ∈ {20, 40, 80}. In addition, we optimize the number of clusters that
are de�ned by role2vec as a target of the mapping function φ, namely values
#Clusters ∈ {25, 50, 75}, and we try two di�erent types of structural features:
Weisfeiler-Lehman (WL) features and graph motif features with graphlet size of 4.
In total, we have 18 di�erent combinations for role2vec.

DNGR. We use three di�erent architectures for hidden layers/neurons (without
the output layer) of the autoencoder:

• Two hidden layers with sizes 256 and 192: [256, 192]
• Two hidden layers both with size 128: [128, 128]
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• �ree hidden layers all with size 128: [128, 128, 128]

�e �rst layer has the size of the input, which is the number of the graph nodes,
and the last layer carries the output and always has 128 neurons. For each of these
architectures, we have a random sur�ng rate of 0.98 and a random walk length of
10. In total, we have 3 di�erent architectures for DNGR.

GraphSAGE. Four di�erent aggregators are used: mean aggregator, GCN-based
aggregator, maxpooling and LSTM-based. For both choices, we try di�erent number
of negative samples inQ ∈ {3, 5, 8} and learning rates in ρ ∈ {0.0001, 0.001, 0.01}.
We run one epoch with model size set to small and sample size of 25 for the �rst
layer and 10 for the second one. We have 36 di�erent combinations for GraphSAGE
in total.

LINE. We use the 1st− and 2nd−order proximity and �x the total samples to
100M . �en we search for the best combination of the number of negative samples
in the set Q ∈ {3, 5, 8} and the learning rate in the set

ρ ∈ {0.0001, 0.001, 0.005, 0.01, 0.025, 0.125}.

�is gives a total of 18 parameter se�ings for LINE.

4.4 Evaluation protocol

For the hyperparameter search phase, we utilize the warm users (validation set)
as a target set. We pick the hyperparameter se�ings that achieve the highest re-
commendation accuracy (explained bellow) on the warm users. A�erwards, we
report our evaluations with the best hyperparameter se�ings on the cold-start users
(test set) and rank the approaches using a statistical ranking test, that is, Fried-
man test [13]. Some approaches are then considered for the further experiments
explained in Section 4.5. We refer to both cases as target users while we explain
the evaluation protocol.
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4.4 Evaluation protocol

4.4.1 Recommendation accuracy

As explained in Section 3.1.3, for a target user (cold-start or warm) with q ratings, we
recommend q items a�er ranking the items based on their score as in Equation 3.1.
�e accuracy for the recommendation is measured in terms of the nDCG@q [26]
metric, the normalized Discounted Cumulative Gain, for all target users in the
corresponding subset. �e nDCG@q is computed as follows a�er recommending q
items to a single user u:

DCG@q(u) =
∑

i∈REC(u,q)

2rel(u,i)

log (i+ 1)
,

IDCG@q(u) =
∑

i∈REL(u,q)

2rel(u,i) − 1

log (i+ 1)
,

nDCG@q(u) =
DCG@q(u)

IDCG@q(u)
,

(4.3)

where rel(u, i) is the relevance of the item i for the of the user u, REC(u, q) is
the list of q recommended items to u ranked by their score (Equation 3.1) and
REL(u, q) is the list of the relevant items to u, i.e., the items which u has rated
(these are exactly q in our case) ranked by u’s rating. �e relevance rel(u, i) is 1 if
user u has rated item i and 0 if not.

�is score is calculated for each target user and then the average over all target
users in the corresponding set is reported for each dataset.

4.4.2 Statistical ranking

To rank the studied embedding algorithms, we apply Friedman test [13] to the
methods’ nDCG@q score on the three datasets. �e ranks of these approaches is
then reported with the p-value of the Friedman test.
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4.5 Further experiments

4.5.1 E�ect of dimensionality

To further compare the representation power of the methods, we pick the best
performing parameter se�ing for each method on each dataset and test it on 9
di�erent output sizes, namely the powers of 2: {21, ..., 29}.

4.5.2 Other versions of the undirected graph

Most of the considered methods are typically not applied to directed graphs in
literature [53, 28, 58] as o�en as they are on undirected graphs. �is common
behavior has led us to ignore the directions of the links to transform the directed
trust network into an undirected one. We further investigate other alternatives,
namely the co-citation network and the bibliographic coupling network.

If we consider an unweighted network, represented by a matrix A ∈ Rn×n where
Ai,j represents the edge (i, j), the co-citation matrix C ∈ Rn×n where Ci,j repres-
ents how many times nodes i and j have an outgoing edge to the same node and is
calculated by C = AT .A. �e bibliographic coupling matrix B ∈ Rn×n however, is
calculated by B = A.AT and has Bi,j representing how many times nodes i and j
have an incoming edge from the same node. Both B and C are symmetric and can
be regarded as two undirected weighted graphs. �ese matrices are not as sparse
as A and can practically have a lot of isolated nodes. Table 4.3 shows the statistics
of the B and C networks of the three datasets, and Figure 4.4 shows a visualization
of Filmtrust network in its undirected version, bibliographic coupling version and
in cocitation version.

We take the best performing parameter se�ings for some methods on each dataset
again with an output size of 128 and apply these methods on the matrices B and C
of the corresponding dataset. We consider two di�erent alternatives to study the
content of B and C and its e�ect on the embedding.

1. Testing each of B and C as they result from the formulas.
2. Ignoring the weights in B and C an dealing with them as unweighted undir-

ected graphs.
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Figure 4.4: Filmtrust

For both options, we evaluate each of the two resulting embeddings. �ese tests
only include some of the considered methods in this work because of the high
density of the resulting graphs.

Dataset Co-citation Bibliographic coupling
Edges Density Isolates Edges Density Isolates

Filmtrust 11,572 0.01515 256 10,460 0.01369 393
CiaoDVD 957,938 0.04415 393 617,126 0.02844 3,264
Epinions 30,941,630 0.01274 627 39,785,378 0.01638 16,024

Table 4.3: Statistics of the co-citation and the bibliographic coupling networks
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5.1 Hyperparameter optimization

Following, we present the results of accuracy for the di�erent hyperparameter com-
binations we chose. Table 5.1 summarizes the parameter search for the considered
matrix factorization approaches in terms of accuracy (nDCG@q) on warm-start
users subsets. �en we select the best performing se�ings and apply it to generate
recommendations to the cold start users considering them as our test set.

�e parameter search for DeepWalk is depicted in Figures 5.1, 5.2 and 5.3 for
Filmtrust, Ciao and Epinions respectively as heatmaps of nDCG@q. �e parameter
search in node2vec and role2vec, is plo�ed in Figures 5.4 and 5.5 respectively as
heatmaps as well.

�e heatmap helps recognizing the e�ect and the sensitivity of each of the hyper-
parameters. �e scale of the color is one for each an approach on a dataset.

�e results for di�erent architectures for DNGR are shown in Table 5.2 as there are
only 3 choices for a dataset1.

GraphSAGE, however is again in a heatmap in Figure 5.6 as there are several
parameters to explore, similar to LINE which can be seen in Figure 5.7 for its
�rst-order proximity and Figure 5.8 for its second-order proximity.

�is optimization ends up by selecting the hyperparameters shown in Table 5.3 for
each approach on each dataset.2

1DNGR was notably very slow as it was not possible to utilize a GPU and it was necessary to
have only as few architectures/parameters as possible.

2LE and LLE are parameter-less
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5 Results

Filmtrust Ciao Epinions

GF
λ = 0.1 0.53754 0.01414 0.01807
λ = 0.5 0.53537 0.01701 0.01794
λ = 1.0 0.54257 0.01412 0.01802

HOPE (Katz)
β = 0.01 0.54102 0.01961 0.01988
β = 0.1 0.54202 0.01571 0.01181
β = 0.9 0.5415 0.0096 0.0085

HOPE (RPR)
α = 0.5 0.53995 0.01795 0.01284
α = 0.85 0.54413 0.01734 0.01467
α = 0.99 0.53762 0.01791 0.01377

Table 5.1: nDCG@10 score at hyperparameter search for matrix factorization based techniques
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0.54111 0.54494 0.54835 0.55050 0.55113 0.54472 0.54541

0.54647 0.54629 0.54486 0.55004 0.54809 0.54585 0.55148

0.54496 0.54726 0.54491 0.54933 0.54541 0.54466 0.54598

0.54234 0.54672 0.53969 0.54489 0.54676 0.54062 0.54078

0.54178 0.54218 0.54218 0.54697 0.54598 0.54103 0.53800

Filmtrust

Figure 5.1: DeepWalk hyperparameter e�ect on Filmturst

40



5.1 Hyperparameter optimization
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0.02098 0.02183 0.02162 0.02090 0.01993 0.02005 0.01874

0.02266 0.02160 0.02080 0.02204 0.02142 0.01977 0.02080

0.02273 0.02292 0.02315 0.02206 0.02221 0.01988 0.02050

0.02287 0.02513 0.02296 0.02173 0.02137 0.02183 0.02226

Ciao

Figure 5.2: DeepWalk hyperparameter e�ect on Ciao

Hidden Layers Filmtrust Ciao Epinions
[256,192] 0.54682 0.01863 0.02006
[128,128] 0.54621 0.01861 0.01923
[128,128,128] 0.54607 0.01994 0.01918

Table 5.2: nDCG@10 score at hyperparameter search for DNGR
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Figure 5.3: DeepWalk hyperparameter e�ect on Epinions

5.2 Statistical test on recommendation accuracy

Table 5.4 shows the best nDCG@q results for each of the models on the three
datasets considering cold-start users. �ese results are then taken as input for
Friedman test that is shown in Table 5.5. �e p-value for this Friedman test is
9.3628× 10−7.

5.3 Dimensionality

For each of the dataset, a�er picking the best performing parameter se�ing for each
method in terms of recommendation accuracy (nDCG@q) on the warm-start users
subset, we test the method with this parameter se�ing by having di�erent output
sizes (dimensionality).
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Figure 5.4: node2vec hyperparameter e�ect
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Figure 5.5: role2vec hyperparameter e�ect
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Figure 5.6: GraphSAGE hyperparameter e�ect
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Figure 5.7: LINE hyperparameter e�ect with 1st-order proximity
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Figure 5.8: LINE hyperparameter e�ect with 2nd-order proximity
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Approach Parameter Filmtrust Ciao Epinions
GF λ 1.0 0.5 0.1

HOPE Similarity RPR Katz Katz
α = 0.85 β = 0.01 β = 0.01

Deepwalk wl 160 10 120
ws 2 8 8

Node2vec

p 1 1 1
q 100 100 0.5
wl 80 40 80
ws 3 5 8

Role2vec
Feature type WL WL WL

wl 80 40 20
# Clusters 25 75 75

DNGR Hidden layers [256, 192] [128, 128, 128] [256, 192]

GraphSAGE
Model LSTM GCN GCN
ρ 10−3 10−3 10−4

Q 5 3 3

LINE
Order 2 1 1
ρ 10−4 10−2 0.025
Q 8 5 8

Table 5.3: Best performing hyperparameter se�ing for each method on nDCG@q of the warm-start
users of each dataset.

5.4 Co-citation and bibliographic coupling
networks

Table 5.6 summarizes the results of applying each of HOPE, DeepWalk, DNGR and
LINE on the unweighted bibliographic coupling networks and co-citation networks
of each dataset, whereas Table 5.7 shows the results on the weighted version.
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5.4 Co-citation and bibliographic coupling networks

nDCG
Family Algorithm Filmtrust Ciao Epinions

Baselines

Explicit trust 0.2739 0.0132 0.0261
Most Popular 0.3318 0.0135 0.0134
Jaccard 0.3387 0.0176 0.0373
Katz 0.3681 0.0158 0.0290

Factorization
Approaches

LLE 0.3649 0.0239 0.0309
LE 0.3715 0.0231 0.0318
GF 0.3686 0.0154 0.0138
HOPE 0.3718 0.0212 0.0331

Random Walk
Approaches

node2vec 0.3904 0.0229 0.0413
DeepWalk 0.3654 0.0247 0.0435
role2vec 0.3696 0.0138 0.0363

Deep Learning
Approaches

DNGR 0.3583 0.0197 0.0353
GraphSAGE 0.3678 0.0216 0.0325

Other LINE 0.3667 0.0222 0.0416

Table 5.4: nDCG score of studied methods on the cold-start users of the three datasets a�er hyper-
parameter optimization on the warm-start users.
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Figure 5.9: E�ect of dimensionality through Filmtrust
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Figure 5.10: E�ect of dimensionality through Ciao
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Figure 5.11: E�ect of dimensionality through Epinions
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5.4 Co-citation and bibliographic coupling networks

Rank Rank Sum Rank by SumFamily Algorithm Filmtrust Ciao Epinions

Baselines

Explicit trust 14 14 12 40 13
Most Popular 13 13 14 40 13
Jaccard 12 9 4 25 9
Katz 6 10 11 27 11

Factorization
Approaches

LLE 10 2 10 22 8
LE 3 3 9 15 3
GF 5 11 13 29 12
HOPE 2 7 7 16 5

Random Walk
Approaches

node2vec 1 4 3 8 1
DeepWalk 9 1 1 11 2
role2vec 4 12 5 21 6

Deep Learning
Approaches

DNGR 11 8 6 25 9
GraphSAGE 7 6 8 21 6

Other LINE 8 5 2 15 3

Table 5.5: Friedman test ranks on the obtained nDCG results for all considered methods.

Filmtrust Ciao Epinions
B C B C B C

HOPE 0.32755 0.36238 0.01048 0.02262 0.00817 0.02312
DeepWalk 0.3364 0.34573 0.00715 0.01877 0.0082 0.02613
DNGR 0.34782 0.35213 0.00949 0.0228 0.00777 0.02359
LINE 0.34338 0.36081 0.00776 0.01932 0.00734 0.01931

Table 5.6: nDCG@10 score for unweighted bibliographic coupling network and cocitation network

Filmtrust Ciao Epinions
B C B C B C

HOPE 0.32755 0.35715 0.01095 0.02262 0.00811 0.02312
DeepWalk 0.33446 0.36233 0.00732 0.02093 0.00779 0.02561
DNGR 0.35176 0.3506 0.00604 0.02411 0.00817 0.03346
LINE 0.35397 0.35633 0.01318 0.01859 0.00721 0.01745

Table 5.7: nDCG@10 score for weighted bibliographic coupling network and cocitation network
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6 Discussion

6.1 Statistical ranking of nDCG scores

�e ranking in Table 5.5 shows that all the graph embedding approaches achieve
higher recommendation accuracy (nDCG) than the baselines with the exception
of Graph Factorization (GF) which is outperformed by Jaccard index and Katz
similarity baselines. Despite its simplicity, the Jaccard index baseline achieves a
competitive accuracy on Epinions.

node2vec has the overall highest rank, with the overall best accuracy on Filmtrust,
which also makes it the best performing random-walk-based approach considered in
this work. Random-walk-based approaches achieve ranks 1 , 2 and 6 (for node2vec,
DeepWalk and role2vec respectively) making them the family with the highest
average rank. Althoug DeepWalk outperforms all others on Ciao and Epinions, it
has a rather low accuracy on Filmtrust such that it is not ranked �rst, but second
overall. LINE achieves the third highest ranking overall tied with LE which achieves
a competitive accuracy on Filmtrust and Ciao, the smaller datasets. LE, thus, achieves
the highest rank among the factorization-based approaches surprisingly beating
HOPE which is a more complex approach. GraphSAGE ranks the highest between
the two considered deep-learning-based approaches with the rank 6 overall. �is
underwhelming performance of the deep learning approaches highlights that such
approaches may be unable to scale to unsupervised learning on graphs, especially
with the target loss functions they have.

6.2 Hyperparameter sensitivity

In this section, we mention the interesting observations about the performance of
the examined approaches. We exclude LLE and LE as they are parameter-less, and
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GF as the only tested parameter is the learning rate.

HOPE. Using Rooted PageRank as a high-order similarity seems to achieve a
higher accuracy on Filmtrust whereas using Katz index outperforms it on Ciao
and Epinions in average. Katz index shows a diverse performance with changing
a�enuation factor β on Ciao and Epinions, and also shows a signi�cantly higher
performance with a very small a�enuation factor.

DeepWalk. An interesting hyperparameter to analyse in DeepWalk is the random
walk length. Figure 6.1 shows, for each dataset, the average nDCG score of each
choice of random walk length on cold-start users, taking di�erent window sizes
(normalized for comparison purposes). It shows a decrease in accuracy on Filmtrust
as the walk length increases. Meanwhile, it shows an increase in accuracy on
Epinions with the increasing walk length, that converges starting the walk length
of 80. �e accuracy on Ciao, however, drops at the lengths of 20 and 40 and then
remains steady starting 80 although it obtains its best average accuracy for a walk
length of 10. �ese observations support the hypothesis that longer random walks
suit larger graphs and vice versa.

node2vec. �e e�ect of the relative relation between the return parameter p
and the in-out parameter q on nDCG re�ects the dependence of this score on the
homophily and the structural role of the nodes in the considered datasets.

Figure 6.2 shows the average nDCG (max-min-normalized for comparison) for all
runs with di�erent walk lengths and window sizes on each choice of p and q1 for
each dataset. Although the maximum nDCG was realized using lower q for Epinions,
all three datasets get the highest average nDCG for higher q with Epinions and
Filmtrust tending to the case where p� q = 100.

Figure 6.2 indicates that utilizing structural roles of nodes leads to higher accuracy
on average. Nevertheless, the bigger range of nDCG that using lower q for Epinions
(Figure 5.4) indicates a higher response to changes in random walk length and
window size when using smaller q (homophily). �is is re�ected in Figure 6.3 where

1p is always 1 while q changes ∈ {0.01, 0.5, 1, 2, 100}
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6.2 Hyperparameter sensitivity
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Figure 6.1: E�ect of walk length on the performance of DeepWalk. For each dataset, the nDCG
scores are normalized via min-max normalization and then the average of these scores
per walk length choice is reported.

the standard deviation of Epinions drops dramatically as q grows. Ciao also shows
a higher nDCG standard deviation for lower q while Filmtrust does not.

�is suggests that lower q gives a higher variance as the walk length and the
window size changes, and recommends to optimize these two parameters in case
lower q is selected. Such an phenomenon can be interpreted as a consequence of
the oversampling performed when p is lower, that is, a walk tends to cover a small
area in the network as it has more probability to return and hence the random walk
length and the window size would have less of an e�ect. On the other hand, a lower
q indicates deeper walk, which can be more responsive to changes in walk length
and window sizes as they discover broader regions in the network.

role2vec. From Figure 5.5, the graph Weisfeiler-Lehman features increased the
performance on all considered datasets, whereas the poor performance of motif
features was mostly obvious on Epinions. �e other two hyperparameters did not
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Figure 6.2: Mean nDCG on the cold start users for node2vec’s q choices averaged over walk lengths
and window sizes to re�ect the e�ect of p and q values on node2vec accuracy. p = 1
for all the cases of q. For each dataset, the nDCG scores are normalized via min-max
normalization and then the average of these scores per walk length choice is reported.
NOTE: THE SCALE OF AXIS q IS TRANSFORMED.

show a certain interesting pa�ern on any of the datasets.

DNGR. Following Table 5.2, the architecture with more neurons in one layer was
the most suitable for Epinions and Filmtrust, while the deeper architecture was the
most suitable for Ciao.

GraphSAGE. Figure 5.6 shows that the best model type for GraphSAGE on two
datasets (Ciao and Epinions) was the GCN model. Despite the representational
power that the LSTMs have, GraphSAGE performed quite poorly with the LSTM-
based aggregator. On the other hand, the simpler models, that are GCN-based
and mean-based aggregators, obtained a be�er score. �e case of Epinions also
shows that less negative samples and smaller learning rate achieve a higher score
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6.3 Dimensionality
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Figure 6.3: Standard deviation of nDCG on the cold start users for node2vec (grouped similar to
Figure 6.2). For each dataset, the nDCG scores are normalized via min-max normalization
and then the average of these scores per walk length choice is reported. NOTE: THE
SCALE OF AXIS q IS TRANSFORMED.

whereas this was not the case for Ciao which mostly optimized with a learning rate
ρ = 0.01.

LINE. First-order proximity outperformed the second-order one on Ciao and
Epinions (Figures 5.7 and 5.8). �e learning rate seems to have a higher impact than
the number of negative samples on both Ciao and Epinions and using both orders
of proximity.

6.3 Dimensionality

Looking at Figure 5.9, one can notice an obvious oscillation in Filmtrust case
with a slightly noticeable overall increase as the number of dimensions increases.
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Moreover, a jump in accuracy is also obvious for 128 dimensions. �is last ob-
servation highlights that the choice of hyperparameters for Filmtrust was not an
indicator of their suitability for this dataset.

To examine the oscillation, a Friedman test was again applied to the measurements
with di�erent dimensions on each dataset for the six approaches. �e resulting
p-value was rather high for Filmtrust p-value= 6.3× 10−2 comparing to Epinions
p-value= 8.71× 10−6 and Ciao p-value= 1.27× 10−5. �is high p-value in case of
Filmtrust shows another indication of the insigni�cance of the di�erences achieved
via di�erent dimensions on this dataset.

Figure 5.10 shows more interpretable pa�erns for Ciao with most approaches
starting with a low accuracy and increasing gradually with more dimensions. While
DNGR seems to saturate at an early stage and remains steady a�erwards, most
other methods start to drop at some point, most notably with role2vec which drops
a�er increasing the number of dimensions to more than 64.

Finally, in Epinions case (Figure 5.11), all methods increase in nDCG with more
dimensions. While DeepWalk outperforms the others starting 64 dimensions, DNGR
starts strongly with a low number of dimensions ge�ing the highest nDCG among
all. Most methods converge as early as 64 dimensions whereas LINE and DeepWalk
do not show an obvious convergence in this range and get higher nDCG score for
higher dimensions.

6.4 Directionality

Using the bibliographic coupling and cocitation graphs was not helpful. Looking at
Tables 5.6 and 5.7, no increase in accuracy was recorded over the classical undirected
approach, that is ignoring link directions. Moreover, the processing of such graphs
is much more resource-consuming as the graphs are denser (Table 4.3).

Notably, the cocitation case constantly outperformed the bibliographic coupling
case. �is is a possible consequence of having many more isolates in bibliographic
coupling versions than in the cocication versions for all of our considered graphs.
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6.4 Directionality

To leverage the directionality information in the graph, we perform further experi-
ments in a parallel work 2 where we evaluate di�erent methods (including HOPE,
LINE, node2vec, GCN and GraphSAGE) on the semi-supervised classi�cation prob-
lem using three benchmark citation datasets: Cora, CiteSeer and Pubmed [49].
�e input to the compared methods is the graph in three di�erent cases: undir-
ected, directed and reverse-directed. �e results from that work (see Table 6.1)
support the idea that ignoring the link direction is a feasible solution which results
in an acceptable accuracy (for semi-supervised classi�cation in that case and for
recommendation accuracy in our case).

However, we propose an extension to common graph convolutional networks

Table 6.1: Top: Classi�cation accuracy on directed graphs: (cited→ citing), (cited← citing), and
undirected version (cited↔ citing). �e baseline is a fully connected neural network with
16 neurons in one layer. (*) hub representation, (**) authority representation. LINE(1)
(only applicable for undirected graphs) and LINE(2) refer to LINE with 1st- and 2nd-
order proximity respectively. Bo�om: Comparison of the three di�erent convolutional
architectures. �e best accuracy for a type and a dataset is underlined, the best accuracy
overall for a dataset is additionally in bold.

Dataset Cora CiteSeer Pubmed
Baseline 55.81 61.23 61.27

Directionality ↔ → ← ↔ → ← ↔ → ←
HOPE [43] 64.00 59.50 59.50 61.40 61.20 61.20 70.00 68.20 68.20

LINE(1) [52] 65.80 — — 63.90 — — 54.60 — —
LINE(2) [52] 67.00 57.20 58.70 66.40 56.90 62.30 65.20 49.30 58.20

node2vec [18] 76.70 57.10 56.00 67.70 61.70 30.00 70.60 39.40 54.20
GCN [28] 80.93 63.68 70.26 72.12 62.90 65.41 77.34 66.80 65.75

SAGE [21] 80.45 66.75 73.20 72.14 62.29 68.21 77.07 69.21 68.16
GAT [53] 80.91 66.73 73.36 73.64 65.32 70.31 77.62 68.34 67.52

Architecture ↔ AST SST ↔ AST SST ↔ AST SST
GCN 80.93 80.49 80.21 72.12 71.89 71.79 77.34 77.21 77.16

SAGE 80.45 80.05 79.79 72.14 73.00 72.73 77.07 77.64 77.83
GAT 80.91 81.04 81.33 73.64 73.18 73.33 77.62 75.45 76.26

2�e work is in a preliminary stage and being prepared for submission to a relevant venue.
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Figure 6.4: Le�: Classical undirected propagation architecture in graph convolution.Center: Proposed
asymmetric source-target (AST) extension that di�erentiates between incoming and
outgoing links while performing the convolution. Right: Proposed symmetric source-
target (SST) architecture allowing symmetric information �ow to zu in addition to the
di�erentiation in AST. Solid lines represent directed edges, dashed lines represent the
symmetric �ow, and do�ed lines represent the asymmetric �ow.

architecture. �e extension, explained in Figure 6.4, incorporates the directions
information in a simple manner, that is, di�erentiating between information propag-
ated from incoming edges and information propagated from outgoing edges.

�e results of applying these extensions to known graph convolutional models,
e.g. GCN, GraphSAGE and GAT, shows a slight improvement in accuracy in some
cases (namely, GAT with SST and AST on Cora as well as SAGE with AST on
CiteSeer and with SST on Pubmed) while still shows inferior accuracy in others.
�e interpretation we propose to this phenomenon is the dependence of the labels
in graphs of such nature on community structure, i.e., nodes in the same community
tend to have similar labels. To verify this, we aim to destroy community structure
in the given networks while keeping the degree distribution and compare the
convolutional architectures on the resulting graph in the three di�erent versions:
undirected, directed and reverse-directed.

We apply the con�guration model [41] on the given datasets, run the methods
and report the accuracy again. �e results (Table 6.2) show that the accuracy for
the three di�erent graph versions on the di�erent architectures sink to a similar
point, which suggests that destroying the community structure destroys the ability
of recognizing the labels for all considered propagation topologies. �is leads to
assume that community structure has the most valuable information graphs of
similar nature on the semi-supervised classi�cation task.
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6.4 Directionality

Table 6.2: �e accuracy of convolutional methods on the con�guration model of the considered
datasets.

Dataset Convolution type ↔ AST SST → ←

Cora
GCN 31.45 30.88 30.79 29.26 31.61

SAGE 26.50 30.42 31.01 20.34 26.74
GAT 22.74 27.51 27.36 19.71 30.52

CiteSeer
GCN 35.33 34.23 34.01 32.69 34.90

SAGE 30.02 34.03 34.55 26.85 26.58
GAT 35.97 35.04 33.76 28.40 31.67

Pubmed
GCN 52.21 52.28 52.23 55.89 59.72

SAGE 48.51 48.38 48.36 41.24 59.26
GAT 49.23 54.40 54.90 42.83 58.44
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7 Conclusion and future work

�is work compares 10 di�erent graph embedding approaches from four graph
embedding families on the trust-based recommendation task for cold-start users.
We show that the random-walk based approaches are a good choice for this problem
with node2vec achieving the highest accuracy. Deep-learning based approaches
were notably weak, an observation that implies a low-quality representation for
the unsupervised embedding on graphs. �e evaluations of di�erent random walk
lengths supported the hypothesis that larger graphs need longer random walks
while long walks do not perform well on smaller graphs. Experiments on node2vec
showed that a stronger response for random walk length and context size is realized
by utilizing homophily instead of nodes structural roles for the given datasets.

We outline the impact of the number of output dimensions that has to be optimized
carefully. Moreover, we show that ignoring the link directions is a feasible, e�cient,
e�ective solution to deal with directionality in comparison to using the bibliographic
coupling network or the co-citation network. Furthermore, we try to interpret the
low performance when ignoring the link direction as a consequence of a natural
correlation between community structure and the nodes properties.

Future work can explore the performance of di�erent graph embedding families
and approaches on di�erent tasks. Moreover, the scalability of deep-learning-based
approaches to unsupervised learning on graphs can be further investigated through
new methods of de�ning a target loss function. Finally, other solutions and models
to exploit directionality information in graphs can be a direction of interest.

63





Bibliography

[1] L. A. Adamic and E. Adar. Friends and neighbors on the web. Social Networks,
25:211–230, 2001.

[2] A. Ahmed, N. Shervashidze, S. Narayanamurthy, V. Josifovski, and A. J. Smola.
Distributed large-scale natural graph factorization. In Proceedings of the 22nd
international conference on World Wide Web, pages 37–48. ACM, 2013.

[3] N. K. Ahmed, R. Rossi, J. B. Lee, T. L. Willke, R. Zhou, X. Kong, and H. Eldardiry.
Learning role-based graph embeddings. arXiv preprint arXiv:1802.02896, 2018.

[4] R. Andersen, C. Borgs, J. Chayes, U. Feige, A. Flaxman, A. Kalai, V. Mirrokni,
and M. Tennenholtz. Trust-based recommendation systems: an axiomatic
approach. In Proceedings of the 17th international conference on World Wide
Web, pages 199–208. ACM, 2008.

[5] M. Belkin and P. Niyogi. Laplacian eigenmaps and spectral techniques for em-
bedding and clustering. In Advances in neural information processing systems,
pages 585–591, 2002.

[6] J. Bruna, W. Zaremba, A. Szlam, and Y. LeCun. Spectral networks and locally
connected networks on graphs. arXiv preprint arXiv:1312.6203, 2013.

[7] H. Cai, V. W. Zheng, and K. C.-C. Chang. A comprehensive survey of graph
embedding: Problems, techniques, and applications. IEEE Transactions on
Knowledge and Data Engineering, 30(9):1616–1637, 2018.

[8] S. Cao, W. Lu, and Q. Xu. Grarep: Learning graph representations with
global structural information. In Proceedings of the 24th ACM international on
conference on information and knowledge management, pages 891–900. ACM,
2015.

[9] S. Cao, W. Lu, and Q. Xu. Deep neural networks for learning graph represent-
ations. In �irtieth AAAI Conference on Arti�cial Intelligence, 2016.

65



Bibliography

[10] K. W. Church and P. Hanks. Word association norms, mutual information,
and lexicography. Computational linguistics, 16(1):22–29, 1990.

[11] T. Duricic, E. Lacic, D. Kowald, and E. Lex. Trust-based collaborative �ltering:
Tackling the cold start problem using regular equivalence. In Proceedings of
the 12th ACM Conference on Recommender Systems, pages 446–450. ACM, 2018.

[12] T. Duricic, E. Lacic, D. Kowald, and E. Lex. Exploiting weak ties in trust-
based recommender systems using regular equivalence. arXiv preprint
arXiv:1907.11620, 2019.

[13] M. Friedman. �e use of ranks to avoid the assumption of normality implicit
in the analysis of variance. Journal of the american statistical association,
32(200):675–701, 1937.

[14] H. Gao, Z. Wang, and S. Ji. Large-scale learnable graph convolutional networks.
In Proceedings of the 24th ACM SIGKDD International Conference on Knowledge
Discovery & Data Mining, pages 1416–1424. ACM, 2018.

[15] J. Golbeck, J. Hendler, et al. Filmtrust: Movie recommendations using trust
in web-based social networks. In Proceedings of the IEEE Consumer com-
munications and networking conference, volume 96, pages 282–286. Citeseer,
2006.

[16] M. Gori, G. Monfardini, and F. Scarselli. A new model for learning in graph
domains. In Proceedings. 2005 IEEE International Joint Conference on Neural
Networks, 2005., volume 2, pages 729–734. IEEE, 2005.

[17] P. Goyal and E. Ferrara. Graph embedding techniques, applications, and
performance: A survey. Knowledge-Based Systems, 151:78–94, 2018.

[18] A. Grover and J. Leskovec. node2vec: Scalable feature learning for networks.
In Proceedings of the 22nd ACM SIGKDD international conference on Knowledge
discovery and data mining, pages 855–864. ACM, 2016.

[19] G. Guo, J. Zhang, D. �almann, and N. Yorke-Smith. Etaf: An extended
trust antecedents framework for trust prediction. In Proceedings of the 2014
IEEE/ACM International Conference on Advances in Social Networks Analysis
and Mining, pages 540–547. IEEE Press, 2014.

66



Bibliography

[20] G. Guo, J. Zhang, and N. Yorke-Smith. A novel bayesian similarity measure
for recommender systems. In Twenty-�ird International Joint Conference on
Arti�cial Intelligence, 2013.

[21] W. Hamilton, Z. Ying, and J. Leskovec. Inductive representation learning on
large graphs. In Advances in Neural Information Processing Systems, pages
1024–1034, 2017.

[22] W. L. Hamilton, R. Ying, and J. Leskovec. Representation learning on graphs:
Methods and applications. arXiv preprint arXiv:1709.05584, 2017.

[23] D. K. Hammond, P. Vandergheynst, and R. Gribonval. Wavelets on graphs
via spectral graph theory. Applied and Computational Harmonic Analysis,
30(2):129–150, 2011.

[24] D. Helic. Lecture notes in network science, October 2017.

[25] D. Jannach, M. Zanker, A. Felfernig, and G. Friedrich. Recommender systems:
an introduction. Cambridge University Press, 2010.

[26] K. Järvelin, S. L. Price, L. M. L. Delcambre, and M. L. Nielsen. Discounted
cumulated gain based evaluation of multiple-query ir sessions. In C. Macdon-
ald, I. Ounis, V. Plachouras, I. Ruthven, and R. W. White, editors, Advances in
Information Retrieval, pages 4–15, Berlin, Heidelberg, 2008. Springer Berlin
Heidelberg.

[27] L. Katz. A new status index derived from sociometric analysis. Psychometrika,
18(1):39–43, 1953.

[28] T. N. Kipf and M. Welling. Semi-supervised classi�cation with graph convolu-
tional networks. arXiv preprint arXiv:1609.02907, 2016.

[29] O. Levy and Y. Goldberg. Neural word embedding as implicit matrix factoriza-
tion. In Advances in neural information processing systems, pages 2177–2185,
2014.

[30] H. Li, D. Wu, W. Tang, and N. Mamoulis. Overlapping community regulariza-
tion for rating prediction in social recommender systems. In Proceedings of
the 9th ACM Conference on Recommender Systems, pages 27–34. ACM, 2015.

[31] Y. Li, D. Tarlow, M. Brockschmidt, and R. Zemel. Gated graph sequence neural
networks. arXiv preprint arXiv:1511.05493, 2015.

67



Bibliography

[32] L. Lovász et al. Random walks on graphs: A survey. Combinatorics, Paul erdos
is eighty, 2(1):1–46, 1993.

[33] H. Ma, H. Yang, M. R. Lyu, and I. King. Sorec: social recommendation using
probabilistic matrix factorization. In Proceedings of the 17th ACM conference
on Information and knowledge management, pages 931–940. ACM, 2008.

[34] H. Ma, D. Zhou, C. Liu, M. R. Lyu, and I. King. Recommender systems with
social regularization. In Proceedings of the fourth ACM international conference
on Web search and data mining, pages 287–296. ACM, 2011.

[35] P. Massa and P. Avesani. Trust-aware collaborative �ltering for recommender
systems. In OTM Confederated International Conferences” On the Move to
Meaningful Internet Systems”, pages 492–508. Springer, 2004.

[36] P. Massa and P. Avesani. Trust-aware recommender systems. In Proceedings
of the 2007 ACM conference on Recommender systems, pages 17–24. ACM, 2007.

[37] A. Micheli. Neural network for graphs: A contextual constructive approach.
IEEE Transactions on Neural Networks, 20(3):498–511, 2009.

[38] T. Mikolov, K. Chen, G. Corrado, and J. Dean. E�cient estimation of word
representations in vector space. arXiv preprint arXiv:1301.3781, 2013.

[39] A. Mnih and G. E. Hinton. A scalable hierarchical distributed language model.
In Advances in neural information processing systems, pages 1081–1088, 2009.

[40] F. Morin and Y. Bengio. Hierarchical probabilistic neural network language
model. In Aistats, volume 5, pages 246–252. Citeseer, 2005.

[41] M. E. Newman. �e structure and function of complex networks. SIAM review,
45(2):167–256, 2003.

[42] M. Niepert, M. Ahmed, and K. Kutzkov. Learning convolutional neural net-
works for graphs. In International conference on machine learning, pages
2014–2023, 2016.

[43] M. Ou, P. Cui, J. Pei, Z. Zhang, and W. Zhu. Asymmetric transitivity preserving
graph embedding. In Proceedings of the 22nd ACM SIGKDD international
conference on Knowledge discovery and data mining, pages 1105–1114. ACM,
2016.

68



Bibliography

[44] L. Page, S. Brin, R. Motwani, and T. Winograd. �e pagerank citation ranking:
Bringing order to the web. Technical report, Stanford InfoLab, 1999.

[45] B. Perozzi, R. Al-Rfou, and S. Skiena. Deepwalk: Online learning of social rep-
resentations. In Proceedings of the 20th ACM SIGKDD international conference
on Knowledge discovery and data mining, pages 701–710. ACM, 2014.

[46] L. F. Ribeiro, P. H. Saverese, and D. R. Figueiredo. struc2vec: Learning node
representations from structural identity. In Proceedings of the 23rd ACM
SIGKDD International Conference on Knowledge Discovery and Data Mining,
pages 385–394. ACM, 2017.

[47] S. T. Roweis and L. K. Saul. Nonlinear dimensionality reduction by locally
linear embedding. science, 290(5500):2323–2326, 2000.

[48] F. Scarselli, M. Gori, A. C. Tsoi, M. Hagenbuchner, and G. Monfardini. �e
graph neural network model. IEEE Transactions on Neural Networks, 20(1):61–
80, 2008.

[49] P. Sen, G. Namata, M. Bilgic, L. Getoor, B. Galligher, and T. Eliassi-Rad. Col-
lective classi�cation in network data. AI magazine, 29(3):93–93, 2008.

[50] Y.-D. Seo, Y.-G. Kim, E. Lee, and D.-K. Baik. Personalized recommender system
based on friendship strength in social network services. Expert Systems with
Applications, 69:135–148, 2017.

[51] H. H. Song, T. W. Cho, V. Dave, Y. Zhang, and L. Qiu. Scalable proximity
estimation and link prediction in online social networks. In Proceedings of the
9th ACM SIGCOMM conference on Internet measurement, pages 322–335. ACM,
2009.

[52] J. Tang, M. �, M. Wang, M. Zhang, J. Yan, and Q. Mei. Line: Large-scale
information network embedding. In Proceedings of the 24th international
conference on world wide web, pages 1067–1077. International World Wide
Web Conferences Steering Commi�ee, 2015.
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