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Abstract

The main assumption of computer systems is that processed secrets are
inaccessible for an attacker due to security measures in software and
hardware. However, side-channel attacks allow an attacker to still deduce
the secrets by observing certain side effects of a computation.

For software-based attacks, unprivileged code execution is often suffi-
cient to exploit side-channel weaknesses in applications. More recently,
it was also shown that native code execution is not strictly necessary for
certain attacks. Software-based side-channel attacks are even possible in
JavaScript, a sandboxed scripting language found in modern browsers.

In this thesis, we further investigate software-based side-channel at-
tacks to develop effective countermeasures. We show that state-of-the-art
countermeasures are not always effective, as the assumptions on which the
countermeasures are based are not always correct. Our research resulted
in novel side channels, reduction of requirements for existing attacks, and
enabling attacks in environments which were considered too restricted
before. This results in a better understanding of attack requirements and
attack surface. As a consequence, we were able to propose better defenses
against this class of attacks, both for native and restricted environments.

This thesis consists of two parts. In the first part, we introduce
software-based side-channel and microarchitectural attacks. We provide
the required background on side channels, microarchitecture, caches,
sandboxing, and isolation. We then discuss state-of-the-art attacks and
defenses. The second part consists of a selection of my peer-reviewed
unmodified papers.1 I was the main contributor and first author to
these papers which have all been accepted and presented at renowned
international security conferences.

1The content of the papers is unmodified from the conference-proceeding versions
of the papers. Only the format of the papers was changed to fit the style and layout of
this thesis.
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1
Introduction and Motivation

Computer systems are often used for complex computations with secret
values, e.g., cryptographic operations. The central assumption is that
processed secrets are inaccessible for an attacker due to security measures
in software and hardware. However, side-channel attacks allow an attacker
to observe certain side effects of computations to still deduce the secrets.

Hardware-based side-channel attacks have long been known as powerful
attacks. However, until recently, little attention was paid to software-
based side-channel attacks. Countermeasures have been developed to
harden devices against physical attacks, e.g., ensuring that algorithms
have a constant runtime. While these countermeasures can prevent cer-
tain hardware-based attacks, they are incomplete against software-based
attacks. Kocher [106] was the first to describe how runtime differences
introduced by computer caches can be exploited to break constant-time
implementations of cryptographic algorithms. Since then, caches play
a predominant role in software-based side-channel attacks, as they are
present on most modern processors and are comparatively easy to ex-
ploit by an attacker. Cache-based attacks include Prime+Probe [132,
136], Evict+Time [132], Flush+Reload [201] and further variants, such as
Flush+Flush [64] or Evict+Reload [63, 113]. These attack techniques have
been used to, e.g., break cryptographic algorithms [26, 91, 93, 119, 132,
136, 201] or spy on user input [63, 113, 153]. Recently, cache attacks were
also leveraged as building blocks for Meltdown [114] and Spectre [105],
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2 Chapter 1. Introduction and Motivation

two powerful attacks which break the security guarantees of modern pro-
cessors. Meltdown effectively breaks the security boundary between user
space and kernel space, allowing unprivileged attackers to read arbitrary
memory. Spectre exploits the branch prediction of modern processors to
achieve the same goal. While Meltdown exploited an implementation bug
in out-of-order execution and Spectre exploited branch prediction, both
attacks leveraged the cache as an intermediate medium to encode and
later transmit the leaked data.

Compared to hardware-based side-channel attacks, software-based
attacks have fewer requirements, e.g., they do not require full control
over the device. Instead, unprivileged code execution is often sufficient
to exploit side-channel weaknesses in applications. Side-channel attacks
from unprivileged code cannot only attack other applications [26, 63,
91, 93, 113, 119, 132, 136, 201], but can also leak information from the
underlying operating system [66, 68, 78, 96, 153, 157]. More recently, it
was also shown that native code execution is not strictly necessary for
certain attacks. Oren et al. [131] demonstrated the first cache attack,
namely Prime+Probe, in JavaScript, a sandboxed scripting language
found in modern browsers. Moreover, Gruss et al. [67] mounted a page-
deduplication attack [167] in JavaScript, showing that even restricted
environments allow mounting powerful attacks. Thus, while JavaScript is
a language-level sandbox preventing classical memory-safety violations,
such sandboxes do not necessarily prevent side-channel attacks. This is
also true for other forms of isolation, such as virtual machines. Several side-
channel attacks can be mounted across virtual machines, either to steal
data [119, 209], or to covertly transmit data from one virtual machine to
a different virtual machine [125, 197, 198]. In many scenarios, sandboxing
or virtualization was considered an effective security measure. However,
this is not always the case when taking side-channel attacks into account.

In this thesis, we further investigate the possibilities for mounting
software-based side-channel and microarchitectural attacks from restricted
environments, such as sandboxes, operating-system-level virtualization,
and virtual machines. Such isolation mechanisms limit the impact of
classical attacks. At first glance, some of these mechanisms also appear to
mitigate certain side-channel attacks. However, we present novel attack
primitives to enable known side-channel and microarchitectural attacks
in these environments. Moreover, we show novel side channels which
can even be exploited without requiring native code execution, e.g., in
JavaScript.
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We furthermore show that side-channel attacks are applicable to oth-
erwise isolated environments, such as trusted-execution environments. We
were the first to not only mount cache side-channel attacks on secure
enclaves protected by Intel SGX but also from within such secure enclaves.
These attacks are stealthy and not detectable or preventable by state-
of-the-art detection and prevention mechanisms. This also introduces a
novel threat model, where trusted-execution environments are not only the
target of an attack but are abused to disguise attacks. Although trusted-
execution environments are usually limited in functionality to prevent
precisely such a scenario [83], we show that the provided functionality is
still sufficient to mount powerful attacks.

In this thesis, we further investigate existing and novel side-channel
attacks to develop effective countermeasures against software-based side-
channel attacks. My research focused on finding novel side channels,
reducing the requirements of existing attacks, and enabling attacks in
environments which were considered too restricted. Such an overall picture
of what is actually required to mount attacks allows reasoning about
effective and efficient defenses which target the root cause of a problem,
and not single instances of attacks. We show that for certain attack classes,
such as inter-keystroke-timing attacks, as well as for certain environments,
such as specific variants of JavaScript, it is indeed feasible to prevent all
known attacks and possibly even future attacks. By first identifying the
root cause, we ensure that our proposed solutions only result in minimal
performance overhead.

Figure 1.1 shows all the papers in context. The y-axis shows the
required level of control over the execution. It spans from native code
execution (bottom), over sandboxes (e.g., Enclaves, VMs, Containers),
script languages (e.g., JavaScript), to full remote attack (i.e., only network
access to the victim is required). The x-axis provides a classification of
how the paper advanced the state of the art. Papers on the left introduced
a new side channel or class of attacks/defenses. Papers on the right side
use an existing side channel and show how to reduce the requirements to
mount an attack, e.g., how to be independent from a specific functionality.
As papers can be a combination of both these factors, the classification is
not binary.

1.1 Main Contributions

As one of the goals in the thesis, we strive to reduce the requirements
of existing side-channel attacks further, allowing them to be mounted
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Spectre [105]

NetSpectre [155]

JTA [151] JSZero [152]

KeyDrown [153]

DoubleFetch [148]

MGX [154]
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Hello [125]
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SGX-ROP [156] SGXJail [190]

ScatterCache [193]
Transient SoK [37]
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Store2Leak [157]

Page Cache Attacks [66]

Figure 1.1: A relation between all the papers. Red and blue papers represent
papers which are in the thesis, gray papers are co-authored papers
which will not appear in the thesis. Blue represents defenses, and red
represents attacks. Solid arrows indicate that ideas and techniques
directly influenced a paper, whereas dotted arrows indicate an
indirect or loose connection between papers.

from more restricted environments. We started working on reducing
the requirements for the DRAM side channel [139]. Pessl et al. [139]
showed that the DRAM can be used in a similar manner as the cache
to transmit data covertly. By building on techniques from Gruss et al.
[69], we managed to implement this covert channel in JavaScript. This
enabled exploitation of the side channel directly from the browser. The
paper was published at FC 2017 [150] in collaboration with Clémentine
Maurice, Daniel Gruss, and Stefan Mangard.

The experience with cache eviction and sandboxes allowed us to im-
plement Prime+Probe in the sandbox-like environment of Intel SGX.
Intel SGX is designed to protect applications and their data in hostile
environments using so-called enclaves. These enclaves run unprivileged
code with further restrictions to prevent them from running harmful code.
We were the first to show that this guarantee does not hold and that it is
possible to mount cache attacks from within SGX [154]. To enable such
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attacks, we combined the DRAM side channel [139] with our previously
developed timing primitives [150]. Moreover, we showed that Intel SGX
does not protect against software-based side channel attacks. The paper
was published at DIMVA 2017 [154] in collaboration with Samuel Weiser,
Daniel Gruss, Clémentine Maurice, and Stefan Mangard.

Due to the exact measurement methods used for Prime+Probe in
SGX [154], we observed spikes in our timing measurements caused by
keystrokes. We showed that these spikes can also be generated using
artificial interrupts, which allowed us to build the first effective counter-
measure against keystroke-timing attacks. By hiding the actual keystrokes
among specially crafted noise, we prevented keystroke-timing attacks on
both x86 and ARM. This paper was published at NDSS 2018 [153] in
collaboration with Moritz Lipp, Daniel Gruss, Samuel Weiser, Clémentine
Maurice, Raphael Spreitzer, and Stefan Mangard.

As a consequence of the novel attacks in JavaScript [116, 150], we
presented a generic countermeasure to prevent side-channel attacks from
the browser. With JavaScript Zero [152], we developed a framework which
transparently modifies or replaces functionality in the JavaScript language,
effectively preventing all known side-channel attacks without noticeable
side effects. The paper provides a classification of all known side-channel
attacks in JavaScript and identifies the required actions to prevent all of
them and possibly even future attacks. The research was published at
NDSS 2018 [152] in collaboration with Moritz Lipp and Daniel Gruss.

Double-fetch vulnerabilities are a special kind of race condition, where
a privileged environment fetches data multiple times from an unprivileged
environment, exposing the privileged environment to the risk of working
on inconsistent data. We were the first to show that Flush+Reload can
be leveraged to detect vulnerable code inside SGX enclaves and the kernel.
We showed that Flush+Reload cannot only be used to detect double-
fetch vulnerabilities, but also to reliably exploit them, which significantly
advanced the state of the art for such exploits. Moreover, we showed that
Intel TSX can be used to automatically prevent the exploitation of such
bugs due to the properties inherent to transactional memory. The paper
was published at AsiaCCS 2018 [148] in collaboration with Daniel Gruss,
Moritz Lipp, Clémentine Maurice, Thomas Schuster, Anders Fogh, and
Stefan Mangard.

We investigated how much information JavaScript engines leak about
the environment by developing a template attack which automatically
finds differences in JavaScript properties influenced by the environment.
In addition with 2 new side-channel attacks on the JavaScript engine, we
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showed that attackers can in most cases detect the exact browser version
and environment. This information can be used for fingerprinting, targeted
exploitation, and tailoring side-channel attacks to the specific environment.
The paper was published at NDSS 2019 [151] in collaboration with Florian
Lackner, and Daniel Gruss.

1.2 Other Contributions

While working on covert channels, we came up with techniques to ensure
error-free transmission for such channels, advancing the state of the
art in reliability [125]. We showed that with techniques from wireless
communication, cache-based covert channels can transmit data without
errors. We demonstrated that it is possible to establish an SSH connection
between two Amazon virtual machines by solely using the cache as the
transmission medium. The paper was published at NDSS 2017 [125]
in collaboration with Clémentine Maurice, Manuel Weber, Lukas Giner,
Daniel Gruss, Carlo Alberto Boano, Kay Römer, and Stefan Mangard.

In response to multiple side-channel attacks against KASLR [68, 78,
96], we designed and implemented a new technique for operating systems
to manage virtual address spaces such that the kernel is better protected
against these and similar attacks. Our design unintentionally mitigated
Meltdown [114] as well and is now part of every modern operating system.
The paper was published at ESSoS 2017 [65] in collaboration with Daniel
Gruss, Moritz Lipp, Richard Fellner, Clémentine Maurice, and Stefan
Mangard.

We showed that the keystroke-timing attack we prevented [153] is not
only exploitable from native code, but also from JavaScript. By using
previously discovered timing primitives [150], we were able to mount
keystroke-timing attacks from the browser. The paper was published at
ESORICS 2018 [116] in collaboration with Moritz Lipp, Daniel Gruss,
David Bidner, Clémentine Maurice, and Stefan Mangard.

Our effort to show that Intel SGX can be abused to hide malicious
software resulted in a novel Rowhammer variant which can be hidden
inside SGX enclaves [62]. We were able to circumvent all published
countermeasures against Rowhammer, showing that more research is still
required to find effective countermeasures. Moreover, we showed that
the memory encryption of Intel SGX can also be exploited for a denial-
of-service attack. In a collaboration with Daniel Gruss, Moritz Lipp,
Daniel Genkin, Jonas Juffinger, Sioli O’Connell, Wolfgang Schoechl, and
Yuval Yarom, we presented several new techniques to make Rowhammer
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attacks more stable and stealthy in the paper, which was published at
S&P 2018 [62].

Use-after-free attacks are a class of attacks known for a long time in
many programming languages. We generalized these attacks, showing
that they apply to different scenarios. Moreover, we showed that email
addresses can also introduce use-after-free attacks. The paper was pub-
lished at AsiaCCS 2018 [71] in collaboration with Daniel Gruss, Matthias
Wübbeling, Simon Guggi, Timo Malderle, Stefan More, and Moritz Lipp.

After our stronger kernel protection [65], we further investigated attacks
on the kernel space. This led to the discovery that out-of-order execution
on Intel CPUs allows circumventing the privilege definition in page-table
entries, ultimately allowing an attacker to read arbitrary memory. The
class of attacks we introduced with this paper is now widely known
as Meltdown attacks. The paper was published at USENIX Security
2018 [114] in collaboration with Moritz Lipp, Daniel Gruss, Thomas
Prescher, Werner Haas, Anders Fogh, Jann Horn, Stefan Mangard, Paul
Kocher, Daniel Genkin, Yuval Yarom, Mike Hamburg.

While working on Meltdown [114], we also identified security problems
caused by branch prediction and the subsequent speculative execution.
Leveraging these design problems also allowed reading the memory of
other applications. The class of attacks we introduced with this paper is
now widely known as Spectre attacks. This paper was published at IEEE
S&P 2019 [105] in collaboration with Paul Kocher, Jann Horn, Anders
Fogh, Daniel Genkin, Daniel Gruss, Werner Haas, Mike Hamburg, Moritz
Lipp, Stefan Mangard, Thomas Prescher, and Yuval Yarom.

With NetSpectre [155], we reduced the requirements for Spectre at-
tacks [105], such that no local code execution is required anymore. We
show that we can mount a variant of Evict+Reload over the network, and
exploit Spectre gadgets in a remote attack. Furthermore, we show that
Spectre does not require the cache to leak information by introducing
a new covert channel leveraging SIMD instructions. This paper was a
collaboration with Martin Schwarzl, Moritz Lipp, and Daniel Gruss and
was published at ESORICS 2019 [155].

In addition to reducing the requirements for Spectre attacks [155], we
also reduced the requirements for Rowhammer attacks, making it possible
to mount them remotely [115]. This paper is currently in submission and
is a collaboration with Moritz Lipp, Misiker Tadesse Aga, Daniel Gruss,
Clémentine Maurice, Lukas Raab, and Lukas Lamster.

We showed that techniques from microarchitectural side-channel at-
tacks are also applicable to the operating-system layer. As operating
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systems also provide caches for pages loaded from the hard disk, we
showed that we can mount cache attacks on these software caches. This
paper was a collaboration with Daniel Gruss, Erik Kraft, Trishita Tiwari,
Ari Trachtenberg, Jason Hennessey, Alex Ionescu, and Anders Fogh and
was published at CCS 2019 [66].

With Malware Guard Extension [154], we showed that side-channel
attacks can be mounted from SGX. SGX ROP [156] continues with the
idea of malicious enclaves and demonstrates that traditional malware can
be hidden inside SGX enclaves. Due to the asymmetry in the memory-
access model, SGX enclaves can mount return-oriented programming
(ROP) attacks on the host to execute arbitrary code. This paper was a
collaboration with Samuel Weiser and Daniel Gruss and was published at
DIMVA 2019 [156].

After demonstrating malicious SGX enclaves [156], we proposed a
generic defense similar to site isolation [171] and KAISER [65] to prevent
attacks from a large class of malicious enclaves. Our defense, SGXJail,
does not require any changes to existing enclaves. The paper was a
collaboration with Samuel Weiser, Luca Mayr, and Daniel Gruss and was
published at RAID 2019 [190].

With ScatterCache [193], we proposed a novel cache design which
breaks the direct mapping between addresses and cache sets, making
eviction-based attacks infeasible. Our cache design does not only prevent
Prime+Probe, Evict+Time, and Evict+Reload, but also outperforms
state-of-the-art caches for certain realistic workloads. The paper was
published at USENIX Security 2019 [193] in collaboration with Mario
Werner, Thomas Unterluggauer, Lukas Giner, Daniel Gruss, and Stefan
Mangard.

Since our discovery of Meltdown [114] and Spectre [105], many transient-
execution attacks were presented. We unified the naming scheme and
classified all existing attacks, which led to the discovery of new attacks
which were overlooked so far. We also classified and evaluated proposed
and existing defenses against transient-execution attacks. The paper was
published at USENIX Security 2019 [37] in collaboration with Claudio
Canella, Jo Van Bulck, Moritz Lipp, Benjamin von Berg, Philipp Ortner,
Frank Piessens, Dmitry Evtyushkin, and Daniel Gruss.

As most defenses against transient-execution attacks turned out to
be incomplete, we proposed a novel generic defense based on annotating
secrets and taint tracking. Our defense tackles the root cause by preventing
secrets and values derived from secrets to be used in a transient execution.
The paper is currently in submission [149] and is a collaboration with
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Robert Schilling, Florian Kargl, Moritz Lipp, Claudio Canella, and Daniel
Gruss.

After showing that Meltdown can leak memory from the line-fill
buffer [114], we showed with ZombieLoad [158] that this enables powerful
attacks allowing to leak data across all privilege boundaries, such as pro-
cesses, the kernel, SGX enclaves, and even virtual machines. The paper
was published at CCS 2019 [158] and is a collaboration with Moritz Lipp,
Daniel Moghimi, Jo Van Bulck, Julian Stecklina, Thomas Prescher, and
Daniel Gruss.

We showed another transient-execution attack exploiting store-to-load
forwarding of the store buffer and its effects on the TLB. Exploiting a
missing permission check on Intel CPUs, we can abuse the store-to-load-
forwarding logic to spy on the TLB state of any address and break KASLR
within a few milliseconds. The paper is currently in submission [157] and
is a collaboration with Claudio Canella, Lukas Giner, and Daniel Gruss.

In another transient-execution attack, we showed that the store buffer
can be exploited to leak previously written data. This enabled us to leak
data written by the kernel such as AES keys. The paper is currently
in submission [126] and is a collaboration with Marina Minkin, Daniel
Moghimi, Moritz Lipp, Jo Van Bulck, Daniel Genkin, Daniel Gruss, Frank
Piessens, Berk Sunar, and Yuval Yarom.

1.3 Outline

This thesis consists of two parts. In the first part (Chapters 2 to 4), we
present on overview of the topic of this thesis, consisting of background,
state of the art, and conclusions.

Chapter 2 provides the background required for this thesis. Section 2.3
introduces side channels and microarchitectural side-channel attacks. Sec-
tion 2.1 explains virtual memory. Section 2.2 explains various types of
caches and how they work. Finally, Section 2.4 gives an overview of
sandboxing and isolation.

Chapter 3 gives an overview on the state of the art. In Section 3.1, we
discuss state-of-the-art microarchitectural attacks, including side-channel
attacks and transient-execution attacks. In Section 3.2, we discuss pro-
posed and implemented defenses against microarchitectural attacks.

In Chapter 4, we draw conclusions from our work and discuss future
work.

In the second part (Chapters 5 to 10), we present the main contribu-
tions, i.e., the publications which comprise this thesis.
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In Chapter 5, we present new timing techniques for JavaScript, which
were published as a conference paper at Financial Crypto 2017 [150].
In Chapter 6, we show how Intel SGX can be abused to hide cache
attacks completely, which is a conference paper published at DIMVA
2017 [154]. In Chapter 7, we demonstrate an efficient technique to prevent
keystroke-timing attacks, which is an NDSS 2018 conference paper [153].
In Chapter 8, we introduce a browser defense against all known microar-
chitectural and side-channel attacks in JavaScript, which is published as
an NDSS 2018 conference paper [152]. In Chapter 9, we are the first to
show benign cache attacks to detect double-fetch vulnerabilities, which
was published as a conference paper at AsiaCCS 2018 [154]. In Chapter 10,
we show how to automatically find side-channel information in browsers
exploitable for attacks, which is a conference paper published at NDSS
2019 [151]. In Chapter 11, we show a transient-execution attack leaking
data across all privilege boundaries, which is published at CCS 2019 [158].



2
Background

In this chapter, we provide the required background for this thesis. In
Section 2.1, we first explain the concept of virtual memory. In Section 2.2,
we explain caches in more detail, as cache attacks play a predominant role
in microarchitectural attacks, either as an attack primitive itself, or as
part of an attack. We explain the cache organization (Section 2.2.1), how
data is managed in caches (Section 2.2.2 and Section 2.2.3) and describe
caches of Intel x86 CPUs in detail (Section 2.2.4). In Section 2.3, we then
define side channels (Section 2.3.1) and microarchitecture (Section 2.3.2),
and discuss the general idea of side-channel and microarchitectural side-
channel attacks (Section 2.3.3). Finally, Section 2.4 provides background
on restricted environments, such as sandboxes and trusted-execution
environments.

2.1 Virtual Memory

With the rise of multi-processing, it became necessary to isolate different
processes, both from each other as well as from the operating system.
Thus, processes nowadays do not work directly on physical addresses,
i.e., addresses directly referring to the main memory, but instead on
virtual addresses. With virtual addresses, each process has its own virtual
address space which does not interfere with other processes. The processor

11
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Figure 2.1: On x86 64, every process has a 4-level page-table hierarchy used
for the translation from virtual to physical addresses by the MMU.
The CR3 register points to the first level of the page tables. The
virtual address is split into parts which are used to index the page
tables.

translates every virtual address of a process to a corresponding physical
access.

The translation from virtual to physical addresses relies on multi-level
page tables, which are defined per process. These page tables define a
process-specific mapping with a granularity of typically 4 KB, mapping
virtual pages to physical pages. In addition to this mapping, the page
tables also define permissions for every virtual page.

On 64-bit x86 CPUs, a virtual address has 48 bit and the CPU uses 4
levels of page tables for the translation from virtual to physical addresses.
An extension to 57-bit virtual addresses and 5 levels of page tables is
specified for newer processors and already supported by Linux. Figure 2.1
illustrates the multi-level page-table hierarchy. The first level, the Page-
Map Level 4 (PML4) is referenced by the process-specific processor register
CR3. The PML4 is basically an array consisting of 512 PML4 entries,
each of them 64 bit wide. Every entry contains several flags, e.g., whether
the entry is valid and thus refers to the next page-table level, the Page-
Directory Pointer Table (PDPT). The index into the PML4, i.e., which
PML4 entry is used, is determined by bits 47 to 39 of the virtual address.
The PDPT follows the same structure as the PML4, with 512 PDPT
entries. Starting from the PDPT, each entry specifies whether it directly
maps a physical page or whether it points to the next level of the page
tables. The PDPT entry used for the translation is determined by bits 38
to 30 of the virtual address. If the PDPT entry directly maps a physical
page, the size of the corresponding page is 1 GB, and the remaining 30
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bits of the virtual address are used as an offset into this page. Otherwise,
bits 21 to 29 of the virtual address are used to select the entry in the next
level, the Page Directory (PD). If the PD entry directly maps a physical
page, the size of the corresponding page is 2 MB, and the remaining 21
bits of the virtual address are used as an offset into this page. Otherwise,
bits 20 to 12 of the virtual address are used to select the entry in the next
level, the Page Table (PT). The remaining 12 bits of the virtual address
are used as an offset into the 4 KB page referenced by the PT entry.

As all paging structures are stored in memory, caches (cf. Section 2.2)
are used to reduce the number of memory accesses. Furthermore, the
Translation Lookaside Buffer (TLB) is a separate cache which caches the
result of recent translations from virtual to physical addresses.

2.2 Caches

In this section, we discuss how caches work. In Section 2.2.1, we describe
how caches are organized. Section 2.2.2 gives more details about how data
is stored in caches. Section 2.2.3 describes cache-replacement policies of
modern CPUs. Finally, Section 2.2.4 looks explicitly at caches in Intel
x86 CPUs.

2.2.1 Cache Organization

While the performance of CPUs increased, the performance of the main
memory (DRAM) did not increase with the same rate. Thus, DRAM is
the bottleneck for computation. As a consequence, caches were introduced
to get rid of this bottleneck.

Caches are small and fast buffers between the CPU and the DRAM.
Thus, all memory accesses go through the cache. Caches keep copies of
recently used data. If a memory access can be served from the cache, this
is called a cache hit. If the data for the memory access is not in the cache,
this is a cache miss, and it has to be served from DRAM.

Caches are usually organized in a cache hierarchy as illustrated in
Figure 2.2 for Intel CPUs. The fastest and smallest caches are directly
connected to the CPU core and are usually private to the core. The further
away caches are from the CPU, the larger and slower they are. Caches
are typically grouped into cache levels. The cache closest to the CPU is
called first-level (L1) cache, and it is usually followed by a second-level
(L2) cache. The last-level cache (LLC) is the slowest and largest cache
level and it is often shared among CPU cores.
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Figure 2.2: The cache hierarchy on modern Intel CPUs. Every CPU core has
a private L1 cache which is statically split into an L1 instruction
(L1I) and L1 data (L1D) cache, and a private unified L2 cache. The
L3 cache (LLC) is split into slices. Every core can access one slice
directly and the other slices via a ring bus.

Inclusiveness. If a hierarchy of caches exists, these caches can either
be inclusive, non-inclusive or exclusive with respect to other cache levels.
An inclusive cache includes all data of the other cache levels to which the
inclusiveness property refers to. For example, if the L3 is inclusive to the
L1 cache, all data stored in the L1 cache must also be stored in the L3
cache. Exclusive caches ensure that data is always stored in exactly one of
the mutually exclusive cache levels. Non-inclusive caches do not provide
such strict guarantees. Data in non-inclusive caches might also be in other
cache levels.

2.2.2 Set-associative Caches

Most modern processors use set-associative caches as illustrated in Fig-
ure 2.3. There, the cache is divided into cache sets which are further
divided into cache ways. Each cache way in a cache set is called a cache
line.

The actual data is stored within the cache line which is also tagged.
The tag is used to check whether a cache way contains the requested data
and not unrelated data mapping to the same cache set.

Both the cache set and the tag are derived from the address of the
data, whereas the cache way is determined by the cache-replacement policy
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Figure 2.3: A simple example of a two-way set-associative cache. The cache
set is determined by n bits of the memory address, the cache way
is determined by the cache-replacement policy. The lowest b bits of
the address are only used to address the byte inside a cache line.
The highest bits of the address are used as the tag.

(cf. Section 2.2.3). Different cache designs use different combinations of
virtual and physical address to calculate the set and tag. Mainly, there
are 2 types of caches: virtually indexed and physically tagged (VIPT), as
well as physically indexed and physically tagged (PIPT).

2.2.3 Cache-replacement Policies

As the size of the cache is limited and compared to the DRAM extremely
small, data in the cache has to be regularly replaced with data from
the DRAM. This is automatically done by the cache, transparent to the
applications.

For set-associative caches, the cache set is determined by a fixed set of
bits of the address of the memory access. For addresses mapping to the
same set, the cache-replacement policy decides in which cache way the
data is stored, and which cache way is replaced with the newly fetched
data.

As the cache-replacement policy has a significant impact on the overall
system performance, it is usually considered intellectual property and thus
not disclosed by CPU vendors. Common cache-replacement policies are
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least-recently used (LRU) and pseudo-random. These were used in older
Intel microarchitectures and ARM CPUs respectively.

Least-recently used keeps track of when the data in a cache way was
last accessed, and always replaces the cache way that has not been accessed
for the longest time. While this policy is relatively straightforward, it is
not so easy to implement. It also requires additional metadata to keep
track of the last access time. A pseudo-random policy is much simpler to
implement, as no additional metadata is required, and the performance is
not much worse.

Newer Intel processors use more sophisticated policies, which only
degrade to LRU in a worst-case scenario. Such adaptive policies are
Bimodal Insertion Policy (BIP) [142] or Quad-age LRU [95], a pseudo-
LRU variant which is easier to implement than LRU.

2.2.4 Caches on Intel x86 CPUs

The cache hierarchy of most Intel x86 CPUs is comprised of three levels,
as illustrated in Figure 2.2. The L1 cache is statically split in half into an
L1 data cache and an L1 instruction cache. The L1 cache is private to
one physical core and hence only shared among sibling hyperthreads. The
L2 cache is a unified cache that contains both data and instructions. The
L2 is also private to one physical core.

The LLC is split into slices and shared among all cores of the CPU.
Every physical core has direct access to one of the LLC slices, and access
to all other slices through the bus. To balance the load on the cache slices,
the CPU uses a simple hash function [124] to calculate the slice from the
physical address.

Until Skylake-X, the LLC is also an inclusive cache, meaning that all
data stored in the L1 and L2 is also stored in the LLC. The cache design
of the LLC changed with Skylake-X to a non-inclusive cache.

2.3 Side-Channel and Microarchitectural Attacks

Side-channel attacks are a class of attacks which do not directly attack
an application. Such attacks rather observe side effects of applications to
infer the processed data. While hardware-based side-channel attacks, e.g.,
power-analysis attacks, were long known, they were long not seen as a
threat to general-purpose commodity systems. The reason for this is that
they require an attacker to have physical access to the target as well as
sophisticated measurement equipment. However, recently, it was shown
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Figure 2.4: Different abstraction layers of a cryptographic algorithm (RSA
decryption). The mathematical description is proven to be secure,
however the software leaks timing information when e.g., imple-
mented using the non-constant-time square-and-multiply algorithm.
On the hardware level, there can even be leakage for constant-time
algorithms due to electrical properties of the hardware.

that side-channel attacks can also be mounted purely with software. This
reduced the requirements to local execution of unprivileged code.

In this section, we first define what we consider a side channel. Then,
we describe why the implementation of modern processors makes them
vulnerable to side-channel attacks, which are exploitable from software.

2.3.1 Side Channels

Side channels arise from implementation details, which are often caused
by abstraction layers. A simple example of an abstraction layer which
introduces side-channel leakage is illustrated in Figure 2.4 using a crypto-
graphic algorithm. The algorithm is mathematically proven to be secure,
and the software implementing the algorithm is free of software errors.
However, when implementing the algorithm in software, the runtime of
the algorithm depends on which bits in the secret keys are set. This arises
from the property that not all (mathematical) operations have the same
execution time on modern CPUs. The mathematical description is only
an abstraction of the actual software implementation, and this abstraction
introduces the side-channel information.

In this example, a side channel can also exist in a different layer.
Specifically, the abstraction of the instruction-set architecture (ISA) and
the actual hardware implementation. Even if the same instructions are
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used for different key bits, the power consumption can be correlated with
the number of bits set in the operand of the instructions.

Side-channel attacks exploit the leakage of data from such side channels.
In contrast to traditional attacks, which target, e.g., algorithms, protocols,
or implementation errors, side-channel attacks assume bug-free and correct
implementations. They often attack a layer which exists due to the
combination of abstraction layers and is thus not directly considered in
any specification.

2.3.2 Microarchitecture

The continuous performance optimizations of modern CPUs also lead to
increasing complexity of CPUs. While the ISA defines an abstraction
of the CPU, i.e., the CPU architecture, it does not define the actual
implementation. The implementation details of an ISA are defined by the
microarchitecture and vary between different CPUs which implement the
same ISA.

The microarchitecture is typically not visible to the programmer and
thus often not fully documented in detail. The same ISA can be imple-
mented in different ways, leading to different microarchitectures. For
example, Intel’s implementation details, i.e., the microarchitecture, of the
x86 ISA differ significantly between, e.g., their Core, Xeon, and Atom
CPUs. Similarly, AMD has different implementations, e.g., Bulldozer,
Zen, or Bobcat. Moreover, microarchitectural changes do not only exist
between different CPU types (e.g., desktop, server) but also between differ-
ent versions of the same CPU type. Thus, even if architectural parameters
of a CPU are the same (e.g., the same number of cores and same clock
speed), the performance can differ significantly due to microarchitectural
optimizations, e.g., branch prediction or out-of-order execution.

Although the microarchitecture is implementation specific, there are
various microarchitectural elements which are widely deployed as they
improve the performance of CPUs. Such elements include pipelines with
out-of-order execution to parallelize execution, caches to reduce the latency
of repeatedly used data (cf. Section 2.2), and various predictors to reduce
the stalling time of CPUs. Some of these elements have such a significant
impact on the performance that their parameters are explicitly stated for
the CPU, e.g., the number and respective sizes of caches. While improving
the performance of CPUs, they again introduce an abstraction layer in
CPUs, as their side effects are not specified in the ISA.
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A programmer as well as a compiler, however, are supposed to only
adhere to the specification of the ISA, and should not care about the
microarchitectural details. Taking the microarchitecture into account when
writing programs does not only impair the portability of the applications.
The ISA defines the guaranteed functionality of the underlying CPU
and is thus an abstraction of the underlying microarchitecture. Both a
developer as well as a user can rely on the stability of the ISA specification,
making programs compatible with all CPUs correctly implementing the
ISA. The microarchitecture can and does change without notice, thus
relying on specific microarchitectural properties reduces the portability
of an application. The same is true for microarchitectural elements –
developers cannot rely on the existence of specific microarchitectural
elements, such as the cache.

Hence, the microarchitecture has to be as transparent as possible,
i.e., it has to perform all optimizations without explicit help and even
knowledge of the developer. While this is beneficial for the performance
of CPUs, it again introduces side channels. For any optimization with a
visible performance impact, there is information leakage if the optimization
depends on data or meta data. That is, if any operation uses fewer
resources (e.g., power, time) for specific inputs, the observation of these
optimizations allows an attacker to infer information about the input.
Such information leakage is exploited in microarchitectural attacks.

2.3.3 Microarchitectural Side-Channel Attacks

Microarchitectural side-channel attacks exploit information leakage, which
is specifically introduced by the microarchitectural implementation of a
CPU. In contrast to traditional side-channel attacks, microarchitectural
side-channel attacks are typically exploited solely from software.

The microarchitecture is designed to improve the performance of
applications. As performance is an essential factor for many applications,
there are several functionalities built into modern CPUs to measure
the performance of applications. There are both architecturally defined
measurement methods as well as microarchitecture-specific measurement
methods. Architecturally-defined methods include high-resolution time-
stamp counters which are exposed via the unprivileged rdtsc instruction
on x86. Microarchitectural methods include performance counters which
are exposed via special CPU registers, so-called model-specific registers
(MSRs). The granularity of microarchitectural measurement methods is
often even below the instruction level, allowing developers to measure
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performance bottlenecks caused by the microarchitecture. The granularity
of architectural measurement methods is usually limited by the CPU speed
(e.g., time-stamp counters), or the instruction level (e.g., exceptions).

While performance-measurement methods are obviously necessary to
measure the performance, they can be abused for microarchitectural side-
channel attacks. Specifically, in a microarchitectural side-channel attack,
an attacker application tries to infer information from a victim application
by monitoring side channels.

Microarchitectural side-channel attacks typically rely on the existence
of a microarchitectural element with the following properties:

P1 It is shared between attacker and victim application.

P2 Its state changes based on the processed data.

P3 The state can be inferred from (a combination of) side channels.

Microarchitectural elements only affect applications which use the
microarchitectural element. Thus, if the attacker and victim application do
not use the same microarchitectural element (P1), the attacker application
cannot infer anything about the victim application via the state of the
microarchitectural element.

Property P1 generally defines the scope of a microarchitectural side-
channel attack as illustrated in Figure 2.5 for a modern Intel x86 CPU.
Some microarchitectural elements are private to the CPU core (e.g.,
registers), shared among hyperthreads (e.g., L1 caches), shared among all
CPU cores (e.g., some last-level caches), or even shared among all CPUs
(e.g., main memory). Thus, the domain in which the element is shared
defines the domain in which the attacker can mount an attack.

Some microarchitectural elements optimize the performance of an
application independently of the processed data. An example for this
is a microarchitectural element which implements constant-time AES
encryption and decryption. However, many microarchitectural elements
achieve different performance optimizations depending on the processed
data (P2). For example, a data cache reduces the access latency for
recently used data, i.e., data the application used before. For these
elements, the current internal state is influenced by previously processed
meta data and data, and observing the internal states leaks information.

As microarchitectural elements usually do not provide an interface
to query their state, an attacker can only observe the internal state via
side channels (P3). In many microarchitectural side-channel attacks, the
timing is used as a side channel. That is, based on the execution time
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Figure 2.5: The multiple scopes of shared resources: private per thread, shared
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the entire system.
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of an operation, an attacker can infer information on the internal state
of a microarchitectural element. The execution time often depends on
whether the element can optimize a specific operation, or cannot optimize
a specific operation anymore due to actions of the victim application (e.g.,
memory access, control-flow prediction).

Sometimes the timing cannot directly be measured, but an indirection
is required to observe side-channel information. For example, an attacker
can infer information about the internal state of a control-flow predicting
mechanism such as the branch predictor by observing the memory access
time of subsequent instructions.

Summarizing, for microarchitectural side-channel attacks, an attacker
relies on a microarchitectural element fulfilling P1, P2, and P3. Then,
the observed leakage can be used to infer information about a victim
application.

2.4 Sandboxing and Isolation

Sandboxes provide a restricted environment for executing typically un-
trusted code. A sandbox strictly controls the resources available to the
code running inside the sandbox. This control can be enforced by the
hardware, operating system, runtime environment, or design of the lan-
guage itself. While there are multiple different types of sandboxes, we
focus mostly on JavaScript in this thesis.

Isolation is orthogonal to sandboxing. Sandboxes solve the problem of
running untrusted code inside a trusted environment. Isolation, however,
solves the problem of running trusted code inside an untrusted environment.
As the hardware is usually assumed to be trusted, isolation is often enforced
by the hardware, e.g., process and kernel isolation, trusted execution
environments, or hardware security modules. In this thesis, we focus
mostly on Intel SGX as an isolation technique as it is commonly available
on modern Intel CPUs.

2.4.1 JavaScript

JavaScript is a scripting language extensively used on the web and thus
supported by most modern browsers [183]. JavaScript programs are
generally untrusted and executed automatically when opening a website.

To prevent any harm to the system, scripts are only run inside the
JavaScript sandbox. Furthermore, the language itself already provides
good sandboxing by only providing limited functionality. JavaScript



2.4. Sandboxing and Isolation 23

Application

Trusted part

C
al

l
G

a
te

Untrusted part

Create Enclave

Call Trusted Fnc.

. . .

Trusted Fnc.

Return

Operating System

Figure 2.6: In the SGX model, applications are split into a trusted (enclave)
and an untrusted (host) part. The hardware prevents any access
to the trusted part. The only communication between enclave and
host is via predefined ECALLs and OCALLs.

does not expose the concept of memory addresses and pointers to the
programmer, and there is no interface to the operating system, e.g.,
syscalls.

Hence, while JavaScript is designed to prevent traditional exploits, its
limitations also impede microarchitectural attacks. In most browsers, there
are no high-resolution timers available anymore [150]. Thus, observing
timing differences in JavaScript is not straightforward.

2.4.2 Intel SGX

Intel Software Guard Extension (SGX) is an x86 instruction-set exten-
sion introduced with the Skylake microarchitecture for isolating trusted
code [83]. With Intel SGX, applications are split into a trusted enclave
and an untrusted application (cf. Figure 2.6). The CPU fully isolates the
trusted enclave, and neither the application nor the operating system can
access the enclave’s memory. Furthermore, to protect against bus-probing
attacks on the DRAM bus and cold-boot attacks, the memory range used
by SGX is encrypted via transparent memory encryption.

The application and enclave can only communicate through a well-
defined interface. Using the eenter function, applications can call func-
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tions provided by the enclave. The hardware prevents any other access
to the enclave. In the attacker model of Intel SGX, only the hardware is
trusted. All software, including the operating system, is assumed to be
compromised and, therefore, untrusted.

Although SGX enclaves run native code, there are several restrictions
for enclaves to reduce the attack surface [83]. Enclave code cannot use
any I/O operations, including syscalls. Thus, any communication with
the operating system is only possible by using the untrusted application
as a proxy. Moreover, certain other instructions are not supported, such
as rdtsc. Hence, Intel SGX also impedes microarchitectural attacks.
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State of the Art

In this chapter, we discuss state-of-the-art microarchitectural attacks and
defenses. In Section 3.1, we discuss microarchitectural side-channel attacks
and transient-execution attacks. In Section 3.2, we discuss the defenses
against microarchitectural side-channel attacks and transient-execution
attacks.

3.1 Software-based Microarchitectural Attacks

Software-based microarchitectural side-channel attacks exploit leakage
from the state of microarchitectural elements. The predominant microar-
chitectural element for attacks is the cache, as caches are well documented,
encode a large state, and their state is comparably easy to observe in
software. However, there are also state-of-the-art attacks on different
microarchitectural elements, namely predictors and DRAM. Moreover,
transient-execution attacks are a novel class of extremely powerful microar-
chitectural attacks using microarchitectural side channels as a building
block.

3.1.1 Cache Attacks

Cache attacks exploit the fundamental property of caches that data residing
in the cache can be accessed faster than data not residing in the cache.

25
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There are different methods of how an attacker can abuse this property
to infer whether a specific memory location resides in the cache. Cache
attacks exploit the observation that the information whether a specific
memory location is in the cache often correlates with the activity of the
victim application, thus leaking information about the victim application.

Cache attacks can be divided into three main categories. For the first
type of cache attacks (Evict+Time), the attacker modifies the cache state
and monitors the runtime of the victim. In the second type of cache
attacks (Prime+Probe), the attacker brings the cache into a known state
and monitors whether the victim execution influenced this known state
without directly observing memory accesses of the victim. In the third
type of cache attacks (Flush+Reload), the attacker measures cache-state
changes directly on memory which is shared with the victim, e.g., shared
libraries.

Evict+Time

The first cache attacks [27, 136] targeted cryptographic algorithms and
were generalized as Evict+Time by Osvik et al. [132]. With Evict+Time,
an attacker manipulates the cache state by evicting a specific cache set of
the victim from the cache. Then, the attacker monitors the runtime of the
victim, trying to detect timing differences in the execution time. If the
attacker measures a difference in the runtime, the attacker can conclude
that the victim accessed data which maps to the evicted cache set.

Evict+Time has been used to attack OpenSSL AES on x86 [132, 174],
as well as on mobile ARM platforms [113, 163]. Hund et al. [78] exploited
Evict+Time to de-randomize the kernel address space, and Gras et al.
[60] exploited it to break ASLR from JavaScript.

Eviction sets To target a certain cache set for the eviction, eviction-
based attacks require an eviction set and an eviction strategy. By accessing
the addresses of the eviction set with a specific strategy, the current data
of the targeted cache set is evicted from the cache.

The cache set is typically directly determined by several bits of the
physical address. On CPUs without cache slices, this makes it easy to
generate the eviction set [113, 132, 163]. Modern x86 CPUs1 additionally
partition the last-level cache using cache slices. The mapping from physical
addresses to cache slices is not documented. However, it has been reverse

1Intel introduced cache slices with the Sandy Bridge microarchitecture
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engineered for multiple CPUs using performance counters [124] and timing
measurements [64, 78, 81, 92, 119, 202].

Nowadays, physical addresses are not exposed to an unprivileged
attacker anymore. Hence, creating eviction sets is not straightforward.
State-of-the-art approaches rely on a combination of static and dynamic
approaches to find eviction sets [181]. Several attacks exploit large 2 MB
pages [69, 91, 119, 125, 150]. There, the least-significant 21 bits of the
physical and virtual address are the same, which is sufficient to determine
the cache set. More generic variants only rely on timing and can even
be mounted from JavaScript [32, 60, 131, 181]. We show that the time
to generate an eviction set can be further improved by combining timing
information with side-channel information from the DRAM [154].

For older CPUs, it is sufficient to simply access all addresses in the
eviction set. However, modern CPUs use more complex cache-replacement
policies, requiring different strategies for accessing eviction sets. Gruss et al.
[69] and Briongos et al. [36] present different eviction strategies for multiple
CPUs and methods to find and evaluate such strategies.

Prime+Probe

Prime+Probe was also first used on cryptographic algorithms [27, 136]
and generalized by Osvik et al. [132]. It is a more generic, and thus more
powerful, cache attack, as it does not require the indirection of measuring
the victim’s execution time. Similarly to Evict+Time, Prime+Probe also
requires eviction of a specific cache set.

Figure 3.1 illustrates the steps of a Prime+Probe attack. The basic
idea of Prime+Probe is to populate (“prime”) a cache set with attacker-
controlled data ( 1 ). If the victim accesses data that falls into this cache
set, the CPU has to evict the attacker data and replace it by the victim
data ( 2 ). Then, the attacker probes the cache state by priming it again
and measuring how long it takes ( 3 ). If the victim caused any attacker-
controlled data to be evicted from the cache set, this step takes longer
as compared to the case where the cache set is still populated with only
attacker-controlled data.

Prime+Probe attacks have first been demonstrated on the L1 cache [136].
Most Prime+Probe attacks on the L1 cache target cryptographic algo-
rithms [56]. Attacks have been demonstrated on both the L1 instruction
cache [2, 5, 7, 209] as well as the L1 data cache [1, 3, 4, 30, 174].

With the reverse engineering of the cache slicing functions, in addition
to the inclusiveness of the last-level cache, Prime+Probe attacks became
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Figure 3.1: In a Prime+Probe attack, the attacker fills a target cache set with
data (“prime”). If the victim accesses data in this cache set, the
attacker data is evicted. The next time the attacker fills the cache
set (“probe”), the time depends on whether the victim evicted the
attacker data.

possible on the last-level cache as well. Ristenpart et al. [144] were the first
to mount a Prime+Probe attack on the last-level cache on older CPUs.
Maurice et al. [123] presented a Prime+Probe covert channel on modern
Intel CPUs. Similar to attacks on the L1 cache, most Prime+Probe
attacks exploiting the last-level cache target cryptographic algorithms,
such as AES [91, 97, 113] or ElGamal [80, 119]. Oren et al. [131] presented
the first Prime+Probe attack from JavaScript to spy on user behavior.
Genkin et al. [57] showed that Prime+Probe attacks are also possible from
PNaCl and WebAssembly. With Multi-Prime+Probe [153], we improved
state-of-the-art Prime+Probe-attacks by spying on multiple cache sets in
parallel, enabling reliable attacks on user input.

Prime+Probe attacks on the last-level cache have also been studied in
cloud scenarios, both as side channels [209] as well as covert channels [125,
197, 198].

As Prime+Probe attacks do not require any form of shared memory or
access to the victim, they have also been used to attack trusted execution
environments such as Intel SGX. In concurrent work, Brasser et al. [33],
Moghimi et al. [127] and Götzfried et al. [59] showed how a malicious
operating system can leverage Prime+Probe to leak secrets from SGX. In
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Figure 3.2: In a Flush+Reload attack, the attacker flushes a shared cache line
out of the cache (“flush”). If the victim accesses the cache line, it
is brought back into the cache. A subsequent access of the attacker
(“reload”) is then faster.

addition, we also showed that Prime+Probe can be mounted from inside
an SGX enclave, showing the first malicious enclave [154].

In addition to Prime+Probe as an attack by itself, it has also been
used as a building block for transient-execution attacks [173].

Flush+Reload

Gullasch et al. [73] described the first flush-based attack, which led to the
generic Flush+Reload attack introduced by Yarom et al. [201]. Flush+
Reload is considered an extremely powerful cache attack, as it is basically
noise-free and has cache-line granularity.

Flush+Reload exploits the fact that on x86, the clflush instruction
is an unprivileged instruction which allows flushing a specific cache line
from the cache. Moreover, as the cache works with physical addresses,
shared memory is only once in the cache. Thus, flushing it in one process,
flushes it for all processes.

Figure 3.2 illustrates the Flush+Reload attack. The attacker targets
a memory region shared with the victim, e.g., a shared-memory segment.
First, the attacker flushes the shared memory location from the cache
using the clflush instruction ( 1 ). If the victim accesses the shared
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memory location, it is cached again ( 2 ). Then, the attacker measures
how long it takes to access the shared memory location ( 3 ). If it is fast,
the attacker learns that the victim has accessed it. Otherwise, the attacker
knows that the victim has not accessed the shared memory location.

Flush+Reload does not require knowledge of physical addresses, as
clflush uses virtual addresses. Moreover, there is no eviction required.
The target can be directly flushed from the cache. As both the access and
the flushing are reliable operations, and data is unlikely to be cached by
accident (e.g., due to hardware prefetching or misspeculation), Flush+
Reload is an extremely reliable cache attack.

As Prime+Probe and Evict+Time, Flush+Reload has been used for
attacks on cryptographic algorithms [10, 12, 26, 55, 63, 73, 89, 93, 137,
140, 200, 201] as well as on user behavior [63, 113, 185, 209].

Due to its robustness, Flush+Reload is also used as a building block
for other attacks, mainly as the covert channel for transient-execution
attacks [37]. We showed that Flush+Reload can also be used for benign
use cases, such as detecting double-fetch bugs [148].

Flush+Flush Gruss et al. [64] demonstrated a variant of Flush+Reload
which exploits timing differences of the clflush instruction. Hence,
instead of measuring how long it takes to reload the data (cf. Figure 3.2,
3 ), the attacker measures how long it takes to flush the data.

Flush+Flush has been used to build attacks on cryptographic algo-
rithms [35, 64], user behavior [64], and page tables [177].

Evict+Reload In certain environments, e.g., in JavaScript, there is
no instruction to flush a specific cache line. Evict+Reload is a variant
of Flush+Reload, where the flush (cf. Figure 3.2, 1 ) is replaced by
eviction [63, 113].

Evict+Reload enabled Flush+Reload-type attacks on ARM processors
without a flush instruction [113]. Moreover, Evict+Reload is used to
mount cache attacks on the own process from JavaScript, which does not
provide access to the flush function [60, 105, 146, 157].

TLB Attacks

Besides attacks on data and instruction caches, there are also attacks
exploiting timing differences in the page-translation caches, i.e., TLBs. As
with data and instructions caches, TLBs also expose measurable timing
differences for cached and uncached translations. Hence, an attacker can
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deduce from the time it takes to read from an address whether the address
translation is present in the TLB.

These timing difference have been exploited to de-randomize the kernel
address space [68, 78, 96, 157], attack cryptographic algorithms [61], and
spy on user behavior [157]. Van Schaik et al. [178] leverage the MMU for
building cache-eviction sets by exploiting that page tables are cached, and
that the MMU accesses these cached page tables in a deterministic way.

3.1.2 Attacks on Predictors

Modern CPUs use several prediction mechanisms to avoid pipeline stalls.
These predictors include branch predictors, prefetchers, and memory-
aliasing predictors. As predictions are based on previously observed data,
an attacker can often infer information from observing the predictions.

Branch predictors were first exploited by Acıiçmez et al. [6, 8] by
measuring differences in the execution time of a victim on branch mis-
predictions. They also presented a variant in which a victim’s update
to the branch predictor evicts one of the spy branches, leading to a mis-
prediction in the spy. This is even the case for victims running inside
SGX enclaves [51, 111]. Cock et al. [44] observed that the number of
branch mispredictions can be monitored through a cycle counter on ARM.
Evtyushkin et al. used the branch-prediction side channel to build a covert
channel [52] and to break ASLR [53]. With Spectre [105], we showed that
branch predictors can also be leveraged for transient-execution attacks to
leak actual data.

In addition to branches, CPUs also predict future memory accesses and
already cache the predicted memory locations ahead of time. Wang et al.
[184] reverse engineered the prefetcher on the Intel Atom in-order CPUs to
reduce the prefetcher interference when mounting Prime+Probe attacks.
Prefetchers have also been reverse engineered on out-of-order Intel CPUs
and exploited to attack cryptographic algorithms [28, 161]

Another prediction mechanism used for microarchitectural attacks is
the memory-aliasing prediction, also known as memory disambiguation.
This prediction mechanism in out-of-order CPUs tries to ensure that a
load (partially) depending on a previous store gets its value from the most
recent store, and not a stale value from the cache. Modern CPUs use
store-to-load forwarding, where the the store buffer is used to directly
forwarded a store to the respective load. Mispredictions in the store-to-
load forwarding logic were exploited to build a covert channel [166] and to
learn physical addresses [94]. We showed that the store-to-load forwarding
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Figure 3.3: In a DRAMA attack, the attacker exploits that DRAM banks are
shared among attacker and victim, and that the row buffer acts as
a cache.

misses permission checks, allowing to de-randomize the kernel address
space and break ASLR from JavaScript [157].

3.1.3 DRAM Attacks

The DRAM is another microarchitectural element which can be abused
for microarchitectural side-channel attacks. Especially as the DRAM
is shared among multiple CPUs, DRAM-based attacks can be mounted
across CPUs. DRAM modules contain row buffers which act as caches for
the rows in the DRAM. Every read requires the data to be copied from
the destination row to this buffer. As with CPU caches, accessing data
which is already in the row buffer results in faster access times.

Pessl et al. [139] introduced the DRAMA attack, a side-channel attack
which exploits the timing differences caused by the row buffer. Figure 3.3
illustrates the basic concept of a DRAMA attack. First, the attacker
accesses attacker-controlled data residing in a DRAM row ( 1 ). If the
attacker accesses data which falls into a conflicting DRAM row ( 2 ), i.e.,
a different row in the same DRAM bank [139], the row-buffer content is
replaced with this row. Finally, the attacker accesses attacker-controlled
data, which are in the same row as the victim data and measures the
access time ( 3 ). If the access is fast, the attacker knows that the victim
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accessed data in this row, as the row is in the row buffer. Otherwise, the
row buffer content has to be replaced for the current access, which results
in a slower access.

We showed that DRAMA attacks are even possible in JavaScript by
building a DRAM-based covert channel [150]. We also demonstrated that
the DRAM side channel can be used to learn parts of the physical address
in Intel SGX enclaves [154].

3.1.4 Transient-Execution Attacks

Transient-execution attacks are a class of microarchitectural attacks ex-
ploiting out-of-order and speculative execution of modern CPUs to leak
data. Transient-execution attacks rely on computations which were never
intended in an application’s control flow. Such computations by transient
instructions can be a result of mispredictions in the control or data flow,
or out-of-order execution after an exception. While these transient in-
structions are never committed to the architectural state, they may show
side effects in the microarchitectural state. These side effects can then be
made visible in the architectural domain using traditional side-channel
attacks.

With Meltdown [114] and Spectre [105], we presented the first transient-
execution attacks, exploiting out-of-order and speculative execution re-
spectively.

Spectre

Spectre is a class of transient-execution attacks exploiting control- and
data-flow mispredictions of CPUs. By triggering such a misprediction,
Spectre attacks transiently execute code to access data that is architec-
turally accessible but never reached. Subsequently, Spectre attacks encode
the accessed data in the microarchitectural state, e.g., in the cache. An
attacker can then rely on traditional side-channel attacks to transfer the
microarchitectural state to the architectural state.

Figure 3.4 illustrates the basic idea of a Spectre attack using Spectre-
PHT [105] (also known as Spectre v1) as an example. First, the attacker
mistrains a conditional branch used for an out-of-bounds check, e.g., by
providing multiple valid values. Then, when the attacker provides an
out-of-bounds value ( 1 ), the CPU mispredicts the conditional jump ( 2 ).
This leads to a transient out-of-bounds access to the data ( 3 ). The
accessed data can then be encoded into a microarchitectural state, e.g.,
by caching a shared memory location corresponding to the value of the
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Figure 3.4: In a Spectre attack, an attacker manipulates a branch predictor
such that the victim accesses and encodes data which is normally
not accessed. Using a side-channel attack, the attacker recovers the
encoded data.

leaked data ( 4 ). Finally, the attacker can use a side-channel attack to
probe the microarchitectural state and infer the leaked data value.

We showed the first Spectre attacks exploiting the branch-target buffer
(BTB) and the pattern-history table (PHT) [105]. Further Spectre variants
also exploit the PHT [101] as well as the return-stack buffer (RSB) [110,
121] and memory-aliasing predictor [75]. As a side channel for recovering
the leaked data value, we used Flush+Reload [105], Evict+Reload [155]
as well as timing differences caused by the AVX unit [155]. Other side
channels that have been shown to work are Prime+Probe [173] and port
contention [29].

Spectre attacks have also been demonstrated to leak values from
SGX [40, 129] and the system management mode [50]. We showed
that Spectre attacks can be mounted from JavaScript [105] and even
remotely [155].

Meltdown

Meltdown is a class of transient-execution attacks exploiting transient
instructions caused by out-of-order execution after an exception. On af-
fected CPUs, memory loads triggering an exception still return data which
can be used in the transient execution to encode it in a microarchitectural
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state. After the exception is handled (or suppressed), an attacker can
again use a side channel to transfer the microarchitectural state into the
architectural state.

Figure 3.5 illustrates the basic idea of a Meltdown attack based on
Meltdown-US, i.e., the original Meltdown attack [114]. The attacker
accesses a memory location which results in a fault ( 1 ), e.g., a kernel
address. Although the fault ensures that subsequent instructions are
not executed architecturally, they are still executed out of order ( 2 ).
Moreover, on affected CPUs, the loaded data is forwarded to these transient
instructions and can thus be encoded in a microarchitectural element,
such as the cache ( 3 ). Finally, the attacker can use, e.g., Flush+Reload
to recover the leaked values.

With Meltdown [114], we showed the first Meltdown attack which broke
the process isolation, allowing an attacker to read arbitrary kernel-memory
locations. This attack exploited the lazy enforcement of the user-accessible
permission in the page table. Van Bulck et al. [176] exploited the present
bit in the page table to attack Intel SGX enclaves. Their attack can also be
mounted from virtual machines to leak hypervisor data [192]. Meltdown
has also been shown using other bits in the page table causing exceptions,
such as the read-only bit [101], and memory-protection keys [37]. Other
exceptions which have been used for Meltdown attacks are the device-
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not-present exception to leak from floating-point registers [164], and
bounds-checking exceptions to read out-of-bounds values [37].

Transient exceptions, such as microcode assists [158] have also been
exploited for Meltdown attacks. Van Schaik et al. [146] and we [158]
demonstrated Meltdown attacks on the line-fill buffer and load port,
leaking data currently used by the current and sibling hyperthread. We
also showed a Meltdown attack on the store buffer to leak values recently
written by the current hyperthread [126].

3.2 Defenses against Software-based Microarchi-
tectural Attacks

While side-channel leakage can be reduced by reducing the sharing of
resources, this is in most cases not a practical solution. Hence, there are
various proposals to reduce or even altogether remove side-channel leakage
using various defense strategies.

We can classify defenses against software-based microarchitectural
attacks based on where they are implemented: in the software layer,
system layer, or in the hardware. Several countermeasures also require
the interaction of multiple layers, i.e., software and operating support
for modified hardware. Due to their severity, generic countermeasures
against transient-execution attacks are widely deployed on all of the
three layers. In contrast, generic countermeasures against traditional
side-channel attacks are not that widespread and mainly implemented in
cryptographic libraries and browsers.

3.2.1 Software Layer

Software-layer countermeasures can be applied by the application itself to
protect against microarchitectural side-channel attacks.

Constant Time. In addition to introducing cache-timing attacks, Bern-
stein [27] also emphasized to implement cryptographic algorithms that
run in constant time. Constant-time implementations were also shown to
mitigate side-channel leakage in later works [45, 209]. Agosta et al. [9]
argued that side-channel leakage can be eliminated if there are no secret-
dependent memory accesses or branches. Andrysco et al. [18] presented a
side-channel free library for floating-point operations.

While algorithms without secret-dependent memory accesses and
branches protect against side-channel attacks, they are not easy to write.
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Several tools have been proposed to verify whether an implementation is
constant time [13, 49, 63, 109, 143, 189, 195, 204]. Still, several proclaimed
constant-time implementations turned out to be not completely constant
time [55, 137, 189, 191].

Detection. Different proposals suggest to detect side-channel attacks
and abort the computation in such a case. The advantage of these
approaches is that they are more generic, as it is not necessary to find a
constant-time variant of an algorithm.

To reliably detect cache attacks, Gruss et al. [70] leverage Intel TSX
to automatically abort cryptographic operations if data is evicted from
the cache. SGX enclaves can also leverage TSX to detect side-channel
or controlled-channel attacks on page tables, and consequently abort any
ongoing operation [160, 165].

Confining Speculation. Spectre attacks trick the victim application
into accessing memory, which should not be accessed in a normal control
flow. Hence, if an application wants to protect itself against Spectre
attacks, it has to ensure that misspeculations do not leak secrets.

One possibility for Spectre-PHT is to stop speculation using memory
fences after vulnerable branches [16, 24, 37, 82]. For Spectre-BTB, the
branch predictor can be tricked into always misspeculating to a safe
location [175]. Another possibility is to confine the speculation target to
only safe locations by arithmetically applying bitmasks to array indices [39].
If enabled, memory fences are automatically generated by the Microsoft
compiler [104, 105]. Both GCC and LLVM support the confinement using
bitmasks [39, 120].

3.2.2 System Layer

System-layer countermeasures are provided by the environment in which
vulnerable applications are executed. This can be the operating system,
hypervisor, or a runtime environment.

Impair Timing Measurement. To impair side-channel attacks relying
on timing differences, a system can introduce noise into the measurements
of an attacker. Hu [76] proposed fuzzy time, which introduces noise into
any event measurable by an attacker. This concept was later implemented
in the Xen hypervisor [180] and proposed as a hardware modification [122].
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The concept of fuzzy time was also proposed for browsers [107, 152] and
is implemented in most major browsers [11, 31, 43, 138, 182].

However, even if the environment does not provide a high-resolution
timer, an attacker can build a timer using shared data and concurrency [44,
194]. Such self-built timers have been used for attacks on ARM devices
without access to a high-resolution timer [113]. We also showed that a
variable, which is continuously incremented by a thread, can be used as
a timing primitive in Intel SGX where no other high-resolution timer is
available [154]. In concurrent work, Gras et al. [60] and we [150] showed
that such a timer can also be built in JavaScript, which is now state of
the art for attacks in JavaScript.

There are multiple proposed solutions to limit the theoretic leakage
rate by hiding timing differences from an external observer. This can be
accomplished by bucketing, i.e., always padding times to multiples of a
pre-defined bucket size [108, 205]. Li et al. [112] proposed to run three
replicas of the system and return the average execution time to an external
observer. Wu et al. [196] extended the virtual-time-based deterministic
execution frameworks from Aviram et al. [25] and Ford et al. [54], limiting
the theoretical leakage rate to 1 Kb/s. Kohlbrenner and Shacham [107]
applied the concepts to browsers to ensure that all operations appear
deterministic.

Adding Noise. Instead of adding noise to the timing primitives, noise
can also be added to the observed event. Brickel et al. [34] proposed
to randomize and prefetch lookup tables for AES computation to make
attacks harder. However, for events which can be repeatedly observed by an
attacker, adding noise only increases the number of required measurements.
Using statistical methods, statistically independent noise can be averaged
out by combining multiple traces [119, 155].

For one-time events, however, adding noise can make attacks infeasible.
We showed that by injecting artificial keyboard interrupts, we can ensure
that the interrupt density is uniform over time, making side-channel
attacks on keystroke timings infeasible [153]. Similarly, adding noise to
other user inputs have also been shown to make side-channel attacks
infeasible [162].

State Flushing. One possibility to prevent information leakage through
a microarchitectural state is to ensure that the state is flushed before the
attacker can exploit it [208]. Exiting Intel SGX enclaves flushes the TLB
to not leak information about enclave memory accesses [47]. Similarly,
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switches into the kernel flush the return-stack buffer and the branch-target
buffer to prevent Spectre attacks from the user space [19, 46, 87, 100].

Godfrey and Zulkernine [58] proposed that cloud providers flush the
entire cache hierarchy if the CPU switches security domains. To prevent
Foreshadow-VMM [192], virtual machines flush the L1 cache on VM
exit [84]. Additionally, to prevent RIDL [146], ZombieLoad [158] and
Fallout [126], every context switch has to also flush the store buffer,
load ports, and line-fill buffer [85]. However, all these mitigations are
only sufficient if an attacker cannot mount an attack in parallel, e.g.,
on a hyperthread. Hence, the system has to ensure that only mutually
trusted processes are scheduled on the same physical core [85], or that
time slices are long enough that the attacker cannot interrupt the victim
computation [179].

Partitioning. Reducing the sharing of resources can also reduce the
leakage observable through side-channel attacks. To prevent the sharing
of cache sets, and thus mitigate Prime+Probe, Shi et al. [159] proposed
cache coloring. With cache coloring, mutually untrusted applications do
not share cache sets with each other. Costan et al. [47] showed that this
also helps to protect the trusted-execution environment from cache attacks.
Kim et al. [99] and Cock et al. [44] demonstrated that cache coloring
has only a small performance overhead. However, it has a large memory
overhead, as cache coloring statically splits the cache into partitions.

Instead of partitioning the cache by cache sets, Intel CAT allows
partitioning the cache by cache way. Liu et al. [118] leveraged Intel CAT
to mitigate cache-based side-channel attacks in the cloud. Zhou et al.
[211] showed that cache partitioning can also prevent cache-line sharing
in the cloud.

To prevent attacks from hyperthreads, processes can be scheduled
to ensure mutually untrusted applications are not running on the two
hyperthreads of the same physical core [85, 133, 147]. This was also
demonstrated for Intel SGX [130].

To mitigate transient-execution attacks, the system can ensure that
secrets are not mapped into the attacker’s address space. We proposed
KAISER [65] to split the kernel and the user space into two different ad-
dress spaces. KAISER is implemented in all major operating systems [37]
to prevent Meltdown-US [114]. A similar approach has been shown for
virtual machines [77]. Instead of preventing Spectre attacks, Chromium
relies on site isolation, which ensures that no secrets are mapped into the
attacker’s address space [171].
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Blocking Functionality. Certain functions which are used for attacks
can be blocked by the system. On ARM, the operating system can decide
to prevent unprivileged programs from using the flush instruction [113].
This prevents Flush+Reload attacks, and an attacker has to resort to
eviction-based attacks such as Evict+Reload.

Linux removed the unprivileged access to the pagemap [103] which is
used by applications to translate virtual addresses to physical addresses.
This impairs attacks requiring knowledge of physical addresses, such as
Evict+Reload or Prime+Probe.

Vattikonda et al. [180] blocked direct access to the timestamp counter
in the Xen hypervisor. We showed that blocking direct access to timing
sources and other functions commonly used for side-channel attacks is
also a possibility in JavaScript [152].

Safe Speculation. In theory, Spectre attacks can be mitigated by
turning off all speculation features in CPUs. However, in practice, this is
neither possible nor desirable for performance reasons. We showed that
marking secret values as uncachable prevents transient execution from
accessing and hence leaking them [149].

Detection. An alternative to preventing attacks is to detect attacks.
Irazoqui et al. [90], proposed MASCAT, a static-analysis framework to
scan binaries for side-channel attacks similar to antivirus software.

A dynamic approach is to mount dummy attacks and see whether there
is any interference from real attacks [63, 79, 210]. For the detection of
ongoing attacks, performance counters can provide useful data, especially
the number of cache hits and misses [41, 64, 74, 128, 208]. Payer et al.
[135] presented a framework to combine multiple performance counters
for detecting ongoing attacks. Demme et al. [48] used these performance
counters to detect malware, which was later improved by leveraging
machine learning [169].

Performance counters can also be used to detect cross-VM attacks.
Cardenas et al. [38] and Zhang et al. [207] leveraged performance counters
to detect denial-of-service attacks. Zhang et al. [206] and Chouhan and
Hasbullah [42] leveraged performance counters to detect cross-VM side-
channel attacks. Paundu et al. [134] proposed to use hypervisor events in
combination with machine learning to detect cache attacks.

However, these detection methods suffer from false positives and false
negatives [56]. Moreover, attackers can adapt their attacks or find new
attacks which are not easily detectable through performance counters [64].
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We also showed that trusted-execution environments, such as Intel SGX,
can be abused to protect attacks from being detected [154].

3.2.3 Hardware Layer

Various countermeasures proposed on the hardware layer try to either
get rid of the root cause of a microarchitectural side channel or make it
infeasible to exploit it.

Constant Time. Microarchitectural side-channel attacks exploiting
runtime differences in certain instructions can be prevented by making
the instructions execute in constant time. Gruss et al. proposed this for
the clflush instruction to mitigate the Flush+Flush attack [64] and for
the software-prefetch instructions to mitigate prefetch-based attacks [68].

With ARMv8.5, ARM supports a Data-Independent-Timing (DIT)
bit in the processor-state register to make supported instructions run in
constant time [21]. If enabled, the runtime of instructions does not depend
on the data operated on. With the conditional-move instruction family
(CMOVxx), Intel also provides a constant-time operation which can be used
for implementing side-channel-resistant cryptographic algorithms [86].

Wang et al. [186] proposed to change the row-buffer policy of the
DRAM controller to always close a DRAM row. This might eliminate the
timing differences exploited in DRAMA attacks [139].

Cache Designs. To thwart cache attacks, various proposals for alterna-
tive or adapted cache designs exist. Wang and Lee [188] proposed PLcache,
which allows to lock cache lines in the cache temporarily. This ensures
that an attacker cannot evict the cache lines in a cache attack. Certain
ARM cache controllers support such a cache lockdown by cache way and
cache line [20].

Tan et al. [168] suggested such a locking mechanism for the BTB to
defend against branch-prediction attacks.

RPcache [188] and NewCache [187] use a random per-process mapping
from addresses to cache sets. With this design, an attacker cannot con-
struct an eviction set for a target cache set. Liu and Lee [117] proposed
random fill caches, where data on a cache miss is sent directly to the
processor and not cached. Instead, they cache a random address in the
neighborhood of the data.

The time-secure cache [172] uses a cache-set-indexing function based on
the process ID. However, we have shown that the used indexing function
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is weak [193]. We generalized the concept of the time-secure cache and
used a stronger indexing function [193]. CEASER [141] relies on a similar
principle. However, due to its design, the inter-process cache interference
is predictable for an attacker.

Saileshwar et al. [145] proposed to add a “zombie bit” to every cache
line on an explicit flush. Cache hits to zombie lines suffer an additional
delay making them indistinguishable from cache misses, consequently
thwarting Flush+Reload attacks.

Instruction Set Extensions. While constant-time cryptographic al-
gorithms can be implemented in software, most processors provide a
constant-time instruction-set extension for computing at least AES [14,
22, 23, 72]. The hardware AES implementation is not only faster but also
resistant against software-based side-channel attacks.

Strackx et al. [165] proposed small changes to the SGX instruction-set
extension to protect against page-table side-channel attacks.

Intel and AMD extended the instruction set with functionality to have
more control over branch prediction [15, 17, 88]. With these extensions,
the branch prediction for indirect branches can be limited to privilege
levels and hyperthreads [37], and the speculative store bypass can be
disabled. ARM introduced speculative barriers as well as control registers
to restrict speculation in ARMv8.5 [21].

Safe Transient Execution. As Meltdown attacks are vulnerabilities
in the CPU, they ultimately require fixes in hardware. While this of-
ten requires a new hardware revision, some Meltdown attacks can be
fixed by changing the hardware behavior through microcode updates [37].
Meltdown-GP [24, 82] on Intel CPUs has been fixed using a microcode
update [82]. For Meltdown-P [176, 192], Meltdown-MCA [146, 158] (also
known as ZombieLoad or RIDL), and Meltdown-STL [126] (also known
as Fallout), Intel released microcode updates which expose new flushing
functionalities for the L1, store buffer, line-fill buffer, and the load ports.

For Spectre attacks, this is more difficult, as their root cause is intended
and cannot directly be fixed. Most countermeasures try to mitigate Spectre
by preventing extraction of the leaked data through the cache [98, 102,
199]. However, the cache is not the only covert channel which can be
used to extract data [29, 105, 155]. Hence, these countermeasures are
incomplete [37].

We proposed a different approach using taint tracking of secrets [105,
149]. By annotating and tracking secrets, our approach ensures that
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secrets can never be used in transient execution, thus preventing any
leakage of secret data. A similar approach was also proposed by Yu et al.
[203].





4
Conclusion

In this thesis, we researched the requirements for software-based microar-
chitectural attacks, showing that several wrong assumptions about their
requirements existed. From our results, we can conclude several things.

Few Requirements. Mounting software-based microarchitectural at-
tacks does not require many primitives. For many attacks it is sufficient
to have read access to the memory, compute on these values, and measure
time. While it is hardly possible to restrict memory access and general-
purpose computation, it is even difficult to prevent timing measurement.
We showed that the lack of a timer can be overcome as long as shared
resources and concurrent execution is possible in a language [116, 150,
151, 154].

Based on these results, we showed software-based microarchitectural
attacks in environments which were assumed to be too restricted, such
as Intel SGX or JavaScript [150, 151, 154]. Moreover, we demonstrated
that the techniques learned from the past years of microarchitectural
side-channel attacks can also be applied to different abstraction layers,
such as the operating system [66], which makes the attacks even hardware-
agnostic.

Code Execution. Many countermeasures built upon the assumption
that attack code runs natively and can thus be inspected or detected.

45
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However, by moving attacks inside sandboxes [150, 151, 154] this is
only partly true. Moreover, we were the first to show a fully remote
Spectre attack [155], and a remote Rowhammer attack [115] also shown
in concurrent work [170].

These results show a trend to move attacks from native code to more
restricted environments and even allow attackers to mount attacks remotely.
While the performance of these attacks can still be improved significantly,
it shows that current threat models might not be complete.

New Side Channels. During this thesis, we discovered several novel
side channels [139, 151, 153, 155, 157]. From that, we can conclude that
there are still many undiscovered side channels in modern CPUs. Moreover,
we will see more sophisticated side channels in the future which combine
multiple effects, as we have shown with Store-to-leak forwarding [157].

We have seen that performance optimizations often introduce new
side channels. Hence, we assume that as CPUs are mainly optimized for
performance and not for security, there will be more side channels in the
future.

Hardware Vulnerabilities. With transient-execution attacks [37, 105,
114], we have shown that side-channel attacks are even more powerful
than assumed. Side-channel attacks are a vital part of transient-execution
attacks to leak secrets from the transient to the architectural domain.
Hence, side-channel attacks are a tool to look into the microarchitectural
state of the CPU.

In addition to the hardware vulnerabilities we have already discovered
using side-channel attacks [37, 105, 114, 126, 157, 158], we can expect to
see more hardware vulnerabilities which can be exploited. Especially as
transient-execution attacks have so far mainly exploited the low-hanging
fruit, we can expect even more sophisticated transient-execution attacks.

Effective Defenses. To build effective defenses against attacks, it is
extremely important to first understand the attack surface and require-
ments. Only then, it is possible to build defenses which mitigate entire
classes of attacks [65, 148, 149, 152], or fully prevent leakage of specific
data [153]. We have shown that otherwise, defenses can be bypassed by
adapting attacks [62, 116, 150]. Hence, it is necessary to further research
attacks to be able to build complete defenses.

We assume that many defenses cannot simply be retrofitted to the
existing architectures and software infrastructure [149, 153]. Instead,
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cooperation between hardware and software will be required to ensure
efficient and effective defenses. While we see this as a promising direction,
it requires changes in all layers, i.e., in hardware, operating systems, and
toolchains. Thus, we have to move from CPUs designed as black boxes that
run any software to hardware-software co-design [149]. Side-channel-aware
CPU designs potentially reduce the difficulty of writing side-channel-
resistant applications. In general, it is not realistic to eliminate all side
channels in all scenarios [105]. However, tighter integration of software
and hardware gives the hardware the possibility to reduce information
leakage for sensitive data while still providing performance optimizations
for other data [149, 152]. This might also require developers to potentially
provide metadata for data [105, 149, 203]. With additional metadata,
the CPU can then selectively disable specific optimizations when working
with sensitive data [149]. However, this does not only require changes to
software and hardware, there also needs to be an awareness of side-channel
leakage among software developers, which might take more time.
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Abstract

Research showed that microarchitectural attacks like cache attacks can be
performed through websites using JavaScript. These timing attacks allow
an adversary to spy on users secrets such as their keystrokes, leveraging fine-
grained timers. However, the W3C and browser vendors responded to this
significant threat by eliminating fine-grained timers from JavaScript. This
renders previous high-resolution microarchitectural attacks non-applicable.

We demonstrate the inefficacy of this mitigation by finding and eval-
uating a wide range of new sources of timing information. We develop
measurement methods that exceed the resolution of official timing sources
by 3 to 4 orders of magnitude on all major browsers, and even more on
Tor browser. Our timing measurements do not only re-enable previous
attacks to their full extent but also allow implementing new attacks. We
demonstrate a new DRAM-based covert channel between a website and
an unprivileged app in a virtual machine without network hardware. Our
results emphasize that quick-fix mitigations can establish a dangerous
false sense of security.

1 Introduction

Microarchitectural attacks comprise side-channel attacks and covert chan-
nels, entirely implemented in software. Side-channel attacks exploit timing
differences to derive secret values used in computations. They have been
studied extensively in the past 20 years with a focus on cryptographic
algorithms [2, 10, 16, 29–31, 48]. Covert channels are special side channels
where a sender and a receiver use the side channel actively to transmit

The original publication is available at https://link.springer.com/
chapter/10.1007/978-3-319-70972-7_13.
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data covertly. These attacks require highly accurate timing and thus are
typically implemented in native binaries written in C or assembly language
to use the best available timing source.

Side channels exist on virtually all systems and software not hardened
against side channels. Thus, browsers are an especially easy target for
an attacker, because browsers process highly sensitive data and attackers
can easily trick a victim to open a malicious website in the browser.
Consequently, timing side-channel attacks have been demonstrated and
observed in the wild, to recover a user’s browser history [8, 13, 41], but also
a user’s geolocation [14], whether a user is logged in to another website [4]
and even CSRF tokens [11]. Van Goethem et al. [37] exploited more
accurate in-browser timing to obtain information even from within other
websites, such as contact lists or previous inputs.

Oren et al. [28] recently demonstrated that cache side-channel attacks
can also be performed in browsers. Their attack uses the performance.now
method to obtain a timestamp whose resolution is in the range of nanosec-
onds. It allows spying on user activities but also building a covert channel
with a process running on the system. Gruss et al. [9] and Bosman et al.
[5] demonstrated Rowhammer attacks in JavaScript, leveraging the same
timing interface. In response, the W3C [40] and browser vendors [1, 3,
6] have changed the performance.now method to a resolution of 5 µs.
The timestamps in the Tor browser are even more coarse-grained, at
100 ms [25]. In both cases, this successfully stops side-channel attacks by
withholding necessary information from an adversary.

In this paper, we demonstrate that reducing the resolution of timing
information or even removing these interfaces is completely insufficient
as an attack mitigation. We propose several new mechanisms to obtain
absolute and relative timestamps. We evaluated 10 different mechanisms
on the most recent versions of 4 different browsers: Chrome, Firefox, Edge,
as well as the Tor browser, which took even more drastic measures. We
show that all browsers leak highly accurate timing information that exceeds
the resolution of official timing sources by 3 to 4 orders of magnitude on
all browsers, and by 8 on the Tor browser. In all cases, the resolution is
sufficient to revive the attacks that were thought mitigated [28].

Based on our novel timing mechanisms, we are the first to exploit
DRAM-based timing leaks from JavaScript. There were doubts whether
DRAM-based timing leaks can be exploited from JavaScript, as it is not
possible to directly reach DRAM [32]. We demonstrate that a DRAM-
based covert channel can be used to exfiltrate data from highly restricted,
isolated execution environments that are not connected to the network.
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More specifically, we transmit data from an unprivileged process in a
Virtual Machine (VM) without any network hardware to a website, by
tunneling the data through the DRAM-based covert channel to the Java-
Script running in a web browser on the same host machine.

Our key contributions are:

• We performed a comprehensive evaluation of known and new mech-
anisms to obtain timestamps. We compared 10 methods on the 3
major browsers on Windows, Linux and Mac OS X, as well as on
Tor browser.

• Our new timing methods increase the resolution of official methods
by 3 to 4 orders of magnitude on all browsers, and by 8 orders of
magnitude on Tor browser. Our evaluation therefore shows that
reducing the resolution of timer interfaces does not mitigate any
attack.

• We demonstrate the first DRAM-based side channel in JavaScript
to exfiltrate data from a highly restricted execution environment
inside a VM with no network interfaces.

• Our results underline that quick-fix mitigations are dangerous, as
they can establish a false sense of security.

The remainder of this paper is organized as follows. In Section 2, we provide
background information. In Section 3, we comprehensively evaluate new
timing measurement methods on all major browsers. In Section 4, we
demonstrate the revival of cache attacks with our new timing primitives
as well as a new DRAM-based covert channel between JavaScript in a
website and a process that is strictly isolated inside a VM with no network
hardware. Finally, we discuss effective mitigation techniques in Section 5
and conclude in Section 6.

2 Background

2.1 Microarchitectural attacks

A large body of recent work has focused on cross-VM covert channels.
A first class of work uses the CPU cache for covert communications.
Ristenpart et al. [33] are the first to demonstrate a cache-based covert
channel between two Amazon EC2 instances, yielding 0.2 bps. Xu et al. [47]
optimized this covert channel and assessed the difference in performance
between theoretical and practical results. They obtain 215.11 bps with an
error rate of 5.12%. Maurice et al. [23] built a cross-VM covert channel,
using the last-level cache and a Prime+Probe approach, that achieves a
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bit rate of 751 bps with an error rate of 5.7%. Liu et al. [21] demonstrated
a high-speed cache-based covert channel between two VMs that achieves
transmission speeds of up to 600 Kbps and an error rate of less than 1%.
In addition to the cache, covert channels have also been demonstrated
using memory. Xiao et al. [46] demonstrated a memory-based covert
channel using page deduplication. Wu et al. [45] built a covert channel
of 746 bps with error correction, using the memory bus. Pessl et al. [32]
reverse engineered the DRAM addressing functions that map physical
addresses to their physical location inside the DRAM. The mapping
allowed them to build a covert channel that relies solely on the DRAM
as shared resource. Their cross-core cross-VM covert channel achieves a
bandwidth of 309 Kbps. Maurice et al. [24] demonstrated an error-free
covert channel between two Amazon EC2 instances of more than 360 Kbps,
which allows building an SSH connection through the cache.

2.2 JavaScript and timing measurements

JavaScript is a scripting language supported by all modern browsers, which
implement just-in-time compilation for performance. Contrary to low-level
languages like C, JavaScript is strictly sandboxed and hides the notion
of addresses and pointers. The concurrency model of JavaScript is based
on a single-threaded event loop [26], which consists of a message queue
and a call stack. Events are handled in the message queue, moved to the
call stack when the stack is empty and processed to completion. As a
drawback, if a message takes too long to process, it blocks other messages
to be processed, and the browser becomes unresponsive. Browsers received
the support for multithreading with the introduction of web workers. Each
web worker runs in parallel and has its own event loop [26].

For timing measurement, the timestamp counter of Intel CPUs pro-
vides the number of CPU cycles since startup and thus a high-resolution
timestamp. In native code, the timestamp counter is accessible through the
unprivileged rdtsc instruction. In JavaScript, we cannot execute arbitrary
instructions such as the rdtsc instruction. One of the timing primitives
provided by JavaScript is the High Resolution Time API [40]. This API
provides the performance.now method that gives a sub-millisecond times-
tamp. The W3C standard recommends that the timestamp should be
monotonically increasing and accurate to 5 µs. The resolution may be
lower if the hardware has no support for such a high resolution.

Remarkably, until Firefox 36 the High Resolution Time API returned
timestamps accurate to one nanosecond. This is comparable to the native
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rdtsc instruction which has a resolution of 0.5 ns on a 2 GHz CPU. As
a response to the results of Oren et al. [28], the timer resolution was
decreased for security reasons [3]. In recent versions of Chrome and
WebKit, the timing resolution was also decreased to the suggested 5 µs [1,
6]. The Tor project even reduced the resolution to 100 ms [25]. The
decreased resolution of the high-resolution timer is supposed to prevent
time-based side-channel attacks. In a concurrent work, Kohlbrenner et al.
[18] showed that it is possible to recover a high resolution by observing
clock edges, as well as to create new implicit clocks using browser features.
Additionally, they implemented fuzzy time that aims to degrade the native
clock as well as all implicit clocks.

2.3 Timing attacks in JavaScript

Van Goethem et al. [37] showed different timing attacks in browsers based
on the processing time of resources. They aimed to extract private data
from users by estimating the size of cross-origin resources. Stone [35]
showed that the optimization in SVG filters introduced timing side chan-
nels. He showed that this side channel can be used to extract pixel
information from iframes.

Microarchitectural side channels have only recently been exploited in
JavaScript. Oren et al. [28] showed that it is possible to mount cache
attacks in JavaScript. They demonstrated how to generate an eviction set
for the last-level cache that can be used to mount a Prime+Probe attack.
Based on this attack, they built a covert channel using the last-level cache
that is able to transmit data between two browser instances. Furthermore,
they showed that the timer resolution is high enough to create a spy
application that tracks the user’s mouse movements and network activity.
As described in Section 2.2, this attack caused all major browsers to
decrease the resolution of the performance.now method.

Gruss et al. [9] demonstrated hardware faults triggered from JavaScript,
exploiting the so-called Rowhammer bug. The Rowhammer bug occurs
when repeatedly accessing the same DRAM cells with a high frequency [15].
This “hammering” leads to bit flips in neighboring DRAM rows. As
memory accesses are usually cached, they also implemented cache eviction
in JavaScript.

All these attacks require a different timestamp resolution. The attacks
from Goethem et al. [37] and Stone [35] require a timestamp resolution
that is on the order of a microsecond, while the attack of Oren et al. [28]
relies on the fine-grained timestamps on the order of nanoseconds. More
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generally, as microarchitectural side channel attacks aim at exploiting
timing differences of a few CPU cycles, they depend on the availability of
fine-grained timestamps. We note that decreasing the resolution therefore
only mitigates microarchitectural attacks on the major browsers that have
a resolution of 5 µs, but mitigates more side-channel attacks on the Tor
browser which has a resolution of 100 ms.

3 Timing Measurements in the JavaScript Sand-
box

This section describes techniques to get accurate measurements with a
high-resolution timestamp in the browser. In the first part, we describe
methods to recover a high resolution for the provided High Resolution
Time API. The second part describes different techniques that allow
deriving highly accurate timestamps, with implicit timers. These methods
are summarized in Table 5.1.

3.1 Recovering a high resolution

In both Chrome and Webkit, the timer resolution is decreased by rounding
the timestamp down to the nearest multiple of 5 µs. As our measurements
fall below this resolution, they are all rounded down to 0. We refer to the
underlying clock’s resolution as internal resolution and to the decreased
resolution of the provided timer as provided resolution. It has already been
observed that it is possible to recover a high resolution by observing the
clock edges [18, 22, 34, 38]. The clock edge aligns the timestamp perfectly
to its resolution, i.e., we know that the timestamp is an exact multiple of
its provided resolution at this time.

Clock interpolation

As the underlying clock source has a high resolution, the difference between
two clock edges varies only as much as the underlying clock. This property
gives us a very accurate time base to build upon. As the time between
two edges is always constant, we interpolate the time between them. This
method has also been used in JavaScript in a concurrent work [18].

Clock interpolation requires a calibration before being able to return
accurate timestamps. For this purpose, we repeatedly use a busy-wait loop
to increment a counter between two clock edges. This gives us the number
of steps we can use for the interpolation. We refer to the average number
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of increments as interpolation steps. The time it takes to increment the
counter once equals the resolution we are able to recover. It can be
approximated by dividing the time difference of two clock edges by the
number of interpolation steps. This makes the timer independent from
both the internal and the provided resolution.

The measurement with the improved resolution works as follows. We
busy wait until we observe a clock edge. At this point, we start with the
operation we want to time. After the timed operation has finished, we
again busy wait for the next clock edge while incrementing a counter. We
assume that the increment operation is a constant time operation, thus
allowing us to linearly interpolate the passed time. From the calibration,
we know the time of one interpolation step which will be a fraction of the
provided resolution. Multiplying this time by the number of increments
results in the interpolated time. Adding the interpolated time to the
measured time increases the timer’s resolution again.

Using this method, we recover a highly accurate timestamp.

Listing 7.1 shows the JavaScript implementation. Table 5.1 shows the
recovered resolution for various values of provided resolution. Even for a
timer rounded down to a multiple of 100 ms, we recover a resolution of
15 µs.

Edge thresholding

We do not require an exact timestamp in all cases. For many side-channel
attacks it is sufficient to distinguish two operations ffast and fslow based on
their execution time. We refer to the execution times of the short-running
function and long-running function as tfast and tslow respectively.

We devise a new method that we call edge thresholding. This method
again relies on the property that we can execute multiple constant-time
operations between two edges of the clock. Edge thresholding works as long
as the difference in the execution time is larger than the time it takes to
execute one such constant-time operation. Figure 5.1 illustrates the main
idea of edge thresholding. Using multiple constant-time operations, we
generate a padding after the function we want to measure. The execution
time of the padding tpadding is included into the measurement, increasing
the total execution time by a constant value. The size of the padding
depends on the provided resolution and on the execution time of the
functions. We choose the padding in such a way that tslow + tpadding
crosses one more clock edge than tfast + tpadding , i.e., both functions take
a different amount of clock edges.



3. Timing Measurements in the JavaScript Sandbox 81

fslow

ffast Padding

Padding

Figure 5.1: Edge thresholding: apply padding such that the slow function
crosses one more clock edge than the fast function.
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Figure 5.2: Results of edge thresholding where the difference between the
function’s execution time is less then the provided resolution.

To choose the correct padding, we start without padding and increase
the padding gradually. We align the function start at a clock edge and
measure the number of clock edges it takes to execute the short-running
and the long-running function. As soon as the long-running function
crosses one more clock edge than the short-running function, we have
found a working padding. Subsequently, this padding is used for all
execution time measurements. Figure 5.2 shows the results of classifying
two functions with an execution time difference of 0.9 µs and a provided
resolution of 10 µs. A normal, unaligned measurement is able to classify
the two functions only in the case when one of the measurements crosses
a clock edge, whereas the edge thresholding method categorizes over 80%
of the function calls correctly by their relative execution time. Moreover,
there are no false classifications.

3.2 Alternative timing primitives

In cases where the High Resolution Time API [40] is not available, e.g., on
Tor browser, we have to resort to different timing primitives, as highlighted
by Kohlbrenner et al. [18]. As there is no different high-resolution timer
available in JavaScript and we cannot access any native timers, we have
to create our own timing sources. In most cases, it is sufficient to have
a fast-paced monotonically increasing counter as a timing primitive that
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is not a real representation of time but an approximation of a highly
accurate monotonic timer. While this concept was already presented
by Wray in 1992 [44], Lipp et al. [20] recently demonstrated a practical
high-resolution timing primitive on ARM using a counting thread. As
JavaScript is inherently based on a single threaded event loop with no
true concurrency, the timing primitive has to be based either on recurring
events or non-JavaScript browser features.

We present several novel methods to construct timing primitives in
JavaScript. We refer to them as free-running timers and blocking timers.
Free-running timers do not depend on the JavaScript’s event loop and
run independently from the remaining code. Blocking timers are based on
JavaScript events and are either only usable to recover a high resolution
or in combination with web workers. If used in combination with web
workers, the timers become free-running timers.

At first, it seems that timing primitives blocking the JavaScript event
loop might not be useful at all. The higher the resolution of the timing
primitive, the more events are added to the event queue and the less time
remains for actual code. However, there are still two constructions that
are able to use such primitives. First, these primitives can be used for
very accurate interpolation steps when applying either clock interpolation
or edge thresholding. Second, it is possible to take advantage of the
multithreading support with web workers to run the timing primitive in
parallel to the method to time.

Timeouts

The first asynchronous feature dating back to the introduction of Java-
Script is the WindowTimers API. Specifically the setTimeout and
setInterval functions allow scheduling a timer-based callback. The
time is specified in a millisecond resolution. After specifying the timeout,
the browser keeps track of the timer and calls the callback as soon as the
timer has expired.

A concurrent timer-based callback allows us to simulate a counting
thread. We create a callback function that increments a global counter and
schedules itself again using the setTimeout function. This method has
also been used in a concurrent work [18]. Although the minimal supported
timeout is 0, the real timeout is usually larger. The HTML5 specification
defines a timeout of at least 4 ms for nested timers, i.e., specifying the
timeout from within the callback function has a delay of at least 4 ms [42].
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This limitation also applies to timeouts specified by the setInterval

function.

Most browsers comply to the HTML5 specification and treat all time-
outs below 4 ms as 4 ms. In Firefox, the minimum timeout is determined
by the value of the flag dom.min timeout value which defaults to 4 ms
as well. Note that the timeout only has such a high frequency if it is run
in an active tab. Background tasks do not allow such high frequencies.

Microsoft implemented another timeout function in their browsers
which is not standardized. The setImmediate function behaves similarly
to the setTimeout function with a timeout of 0. The function is not
limited to 4 ms and allows to build a high-resolution counting thread. A
counting thread using this function results in a resolution of up to 50 µs
which is three orders of magnitude higher than the setTimeout method.

Message passing

By default, the browser enforces a same-origin policy, i.e., scripts are
not allowed to access web page data from a page that is served from a
different domain. JavaScript provides a secure mechanism to circumvent
the same-origin policy and to allow cross-origin communication. Scripts
can install message listeners to receive message events from cross-origin
scripts. A script from a different origin is allowed to post messages to a
listener.

Despite the intended use for cross-origin communication, we can use
this mechanism within one script as well. The message listener is not
limited to messages sent from cross-origin scripts. Neither is there any
limitation for the target of a posted message. Adding checks whether a
message should be handled is left to the JavaScript developer. According
to the HTML standard, posted messages are added to the event queue,
i.e., the message will be handled after any pending event is handled. This
behavior leads to a nearly immediate execution of the installed message
handler. A counting thread using the postMessage functions achieves a
resolution of up to 35 µs. An implementation is shown in Listing 7.2.

To obtain a free-running timing primitive, we have to move the message
posting into separate web workers. This appears to be a straightforward
task. However, there are certain limitations for web workers. Web workers
cannot post messages to other web workers (including themselves). They
can only post messages to the main thread and web workers they spawn,
so called sub workers. Posting messages to the main thread again blocks
the main thread’s event loop, leaving sub web workers as the only viable
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option. Listing 7.3 shows a sample implementation using one worker and
one sub worker. The worker can communicate with the main thread and
the sub worker. If the worker receives a message from the main thread, it
sends back its current counter value. Otherwise, the worker continuously
“requests” the current counter value from the sub worker. The sub worker
increments the counter on each request and sends the current value back to
the worker. The resulting resolution is even higher than with the blocking
version of the method. On Tor browser, the achieved resolution is up to
15 µs, which is 4 orders of magnitude higher than the resolution of the
native timer.

An alternative to sub workers are broadcast channels. Broadcast
channels allow the communication between different sources from the
same origin. A broadcast channel is identified by its name. In order to
subscribe to a channel, a worker can create a BroadcastChannel object
with the same name as an existing channel. A message that is posted to
the broadcast channel is received by all other clients subscribed to this
broadcast channel. We can build a construct that is similar to the sub
worker scenario using two web workers. The web workers broadcast a
message in their broadcast receiver to send the counter value back and
forth. One of the web workers also responds to messages from the main
thread to return the current counter value. With a resolution of up to
55 µs, this method is still almost as fast as the worker thread variant.

Message Channel

The Channel Messaging API provides bi-directional pipes to connect two
clients. The endpoints of the pipe are called ports, and every port can
both send and receive data. A message channel can be used in a similar
way as cross-origin message passing. Listing 7.4 shows a simple blocking
counting thread using a message channel.

As with the cross-origin message passing method, we can also adapt this
code to work inside a web worker yielding a free-running timing primitive.
Listing 7.5 shows the implementation for web workers. The resolution
for the free-running message channel method is up to 30 µs, which is
lower compared to the cross-origin communication method. However, it is
currently the only method that works across browsers and has a resolution
in the order of microseconds.
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CSS animations

With CSS version 3, the support for animations [39] was added. These
animations are independent of JavaScript and are rendered by the browser.
Users can specify keyframes and attributes that will then be animated
without any further user interaction.

We demonstrate a new method that uses CSS animations to build
a timing primitive. A different method using CSS animations has been
used in a concurrent work [18]. We define an animation that changes the
width of an element from 0 px to 1 000 000 px within 1 s. Theoretically,
if all animation steps are calculated, the current width is incremented
every microsecond. However, browsers limit the CSS animations to 60 fps,
i.e., the resolution of our timing primitive is 16 ms in the best case.
Indeed, most monitors have a maximum refresh rate of 60 Hz, i.e., they
cannot display more than 60 fps. Thus, a higher frame rate would only
waste resources without any benefit. To get the current timestamp, we
retrieve the current width of the element. In JavaScript, we can get
the current width of the element using window.getComputedStyle(elem,

null).getPropertyValue("width").

SharedArrayBuffer

Web workers do not have access to any shared resource. The communi-
cation is only possible via messages. If data is passed using a message,
either the data is copied, or the ownership of the data is transferred. This
design prevents race conditions and locking problems without having to
depend on a correct use of locks. Due to the overhead of message passing
for high-bandwidth applications, approaches for sharing data between
workers are discussed by the ECMAScript committee [27]. An experimen-
tal extension for web workers is the SharedArrayBuffer. The ownership
of such a buffer can be shared among multiple workers, which can access
the buffer simultaneously.

A shared resource provides a way to build a real counting thread with
a negligible overhead compared to a message passing approach. This
already raised concerns with respect to the creation of a high-resolution
clock [19]. In this method, one worker continuously increments the value
of the buffer without checking for any events on the event queue. The
main thread simply reads the current value from the shared buffer and
uses it as a high-resolution timestamp.

We implemented a clock with a parallel counting thread using the
SharedArrayBuffer. An implementation is shown in Listing 7.6. The
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resulting resolution is close to the resolution of the native timestamp
counter. On our Intel Core i5 test machine, we achieve a resolution of up
to 2 ns using the shared array buffer. This is equivalent to a resolution
of only 4 CPU cycles, which is 3 orders of magnitude better than the
timestamp provided by performance.now.

3.3 Evaluation

We evaluated all methods on an Intel Core i5-6200U machine using the
most popular browsers, up to date at the time of writing: Firefox 51,
Chrome 53, Edge 38.14393.0.0, and Tor 6.0.4. All tests were run on
Ubuntu 16.10, Windows 10, and Mac OS X 10.11.4. Table 5.1 shows the
timing resolution of every method for every browser and operating system
combination. We also evaluated our methods using Fuzzyfox [17], the fork
of Firefox hardened against timing attacks [18].

The introduction of multithreading in JavaScript opened several pos-
sibilities to build a timing primitive that does not rely on any provided
timer. By building a counting thread, we are able to get a timer resolution
of several microseconds. This is especially alarming for the Tor browser,
where the provided timer only has a resolution of 100 ms. Using the
demonstrated methods, we can build a reliable timer with a resolution
of up to 15 µs. The lower resolution was implemented as a side channel
mitigation and is rendered useless when considering the results of the
alternative timing primitives.

The best direct timing source we tested is the experimental SharedAr-
rayBuffer. The best measurement method we tested is edge thresholding.
Both increase the resolution by at least 3 orders of magnitude compared
to performance.now in all browsers. Countermeasures against timing
side-channels using fuzzy time have been proposed by Hu et al. [12] and
Vattikonda et al. [38]. They suggested to reduce the provided resolution
and to randomize the clock edges. However, we can fall back to the
constructed timing primitives if this countermeasure is not applied on all
implicit clocks.

In a concurrent work, Kohlbrenner et al. [18] proposed Fuzzyfox, a fork
of Firefox that uses fuzzy time on both explicit and implicit clocks, and
aims to cap all clocks to a resolution of 100 ms. Our evaluation shows that
the explicit timer performance.now is reduced to 100 ms, and is fuzzed
enough that the interpolation and edge thresholding methods do not work
to recover a high resolution. Similarly, some of the implicit timers, such
as setTimeout, postMessage, and Message Channel, are also mitigated,
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Table 5.1: Timing primitive resolutions on various browsers and operating
systems.
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performance.now 3 5 µs 5 µs 1 µs 100 ms 100 ms

CSS animations 3 16 ms 16 ms 16 ms 16 ms 125 ms
setTimeout 4 ms 4 ms 2 ms 4 ms 100 ms

setImmediate – – 50 µs – –
postMessage 45 µs 35 µs 40 µs 40 µs 47 ms
Sub worker 3 20 µs –2 50 µs 15 µs –

Broadcast Channel 3 145 µs – – 55 µs 760 µs
MessageChannel 12 µs 55 µs 20 µs 20 µs 45 ms

MessageChannel (W) 3 75 µs 100 µs 20 µs 30 µs 1120 µs
SharedArrayBuffer 3 2 ns3 15 ns4 – – 2 ns

Interpolation1 500 ns 500 ns 350 ns 15 µs –
Edge thresholding1 2 ns 15 ns 10 ns 2 ns –

with a resolution between 45 ms and 100 ms. However, the Broadcast
Channel, Message Channel with web workers, and SharedArrayBuffer still
have a fine grained resolution, between 2 ns and 1 ms. It is to be noted
that, while these methods stay accurate, the resulting clock is too fuzzy
to derive a finer clock with either interpolation or edge thresholding.

4 Reviving and Extending Microarchitectural
Attacks

In this section, we demonstrate that with our timing primitives, we are able
to revive attacks that were thought mitigated, and build new DRAM-based
attacks.

4.1 Reviving Cache Attacks

Oren et al. [28] presented the first microarchitectural side-channel attack
running in JavaScript. Their attack was mitigated by decreasing the timer
resolution. We verified that the attack indeed does not work anymore on

1Uses performance.now for coarse-grained timing information.
2Sub workers do not work in Chrome, this is a known issue since 2010 [7].
3Currently only available in the nightly version.
4It has to be enabled by starting Chrome with --js-flags=--harmony-sharedarraybuffer

--enable-blink-feature=SharedArrayBuffer.
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Figure 5.3: Histogram for cache hits and cache misses.

current browser versions. However, we are able to revive cache attacks
by using our newly discovered timing sources. Figure 5.3 shows the
timing difference between cache hits and cache misses, measured with
the SharedArrayBuffer method. The ability to measure this timing
difference is the building block of all cache attacks.

4.2 A New DRAM-based Covert Channel

Pessl et al. [32] established that timing differences in memory accesses can
be exploited to build a cross-CPU covert channel. We demonstrate that
this attack is also possible using JavaScript. In our scenario, the sender is
an unprivileged binary inside a VM without a network connection. The
receiver is implemented in sandboxed JavaScript running in a browser
outside the VM, on the same host.

Overview

To communicate, the sender and the receiver agree on a certain bank and
row of physical memory. This agreement can be done in advance and is not
part of the transmission. The receiver continuously measures the access
time to a value located inside the agreed row. For continuous accesses, the
value will be cached in the row buffer and the access will be fast, resulting
in a low access time. The receiver considers this as a 0. If the sender
wants to transmit a 1, it accesses a different row inside the same bank.
This access triggers a row conflict, resulting in a replacement of the row
buffer content. On the receiver’s next access, the request cannot be served
from the row buffer but has to be fetched from the DRAM, resulting in a
high access time.
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Challenges

For the sender, we assume that we can run arbitrary unprivileged binary
programs inside the VM. We implement the sender in C, which allows us
to use the computer’s high-resolution timestamp counter. Furthermore,
we can flush addresses from the cache using the unprivileged clflush
instruction. The only limitation on the sender is the absence of physical
addresses.

On the receiver side, as the covert channel relies on timing differences
that are in the order of tens of nanoseconds, we require a high-resolution
timing primitive. We presented in Section 3 different methods to build
timing primitives if the provided High Resolution Time API is not accurate
enough. However, implementing this side channel in JavaScript poses
some problems besides high-resolution timers. First, the DRAM mapping
function requires the physical address to compute the physical location,
i.e., the row and the bank, inside the DRAM. However, JavaScript does
not know the concept of pointers. Therefore, we neither have access to
virtual nor physical addresses. Second, we have to ensure that memory
accesses will always be served from memory and not the cache, i.e., we
have to circumvent the cache. Finally, the noise present on the system
might lead to corrupt transfers. We have to be able to detect such bit
inversions for reliable communication.

Address selection

The DRAM mapping function reverse engineered by Pessl et al. [32] takes
a physical address and calculates the corresponding physical memory
location. Due to the absence of addresses in JavaScript, we cannot simply
use these functions. We have to rely on another side channel to be able to
infer address bits in JavaScript.

We exploit the fact that heap memory in JavaScript is allocated on
demand, i.e., the browser acquires additional heap memory from the
operating system if this is required. These heap pages are internally
backed by 2 MB pages, called Transparent Huge Pages (THP). Due to
the way virtual memory works, for THPs, the 21 least-significant bits of
a virtual and physical address are the same. On many systems, this is
already sufficient as input to the DRAM mapping function. This applies
to the sender as well, with the advantage that we know the virtual address
which we can use immediately without any further actions.

To get the beginning of a THP in JavaScript, we iterate through an
array of multiple megabytes while measuring the time it takes to access
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the array element, similarly to Gruss et al. [9]. As the physical pages
for these THPs are also mapped on-demand, a page fault occurs as soon
as an allocated THP is accessed for the first time. Such an access takes
significantly longer than an access to an already mapped page. Thus,
higher timings for memory accesses with a distance of 2 MB indicate the
beginning of a THP. At this array index, the 21 least-significant bits of
both the virtual and the physical address are 0.

Cache circumvention

To measure DRAM access times we have to ensure that all our accesses
go to the DRAM and not to the cache. In native code, we can rely on
the clflush instruction. This unprivileged instruction flushes a virtual
address from all cache levels, i.e., the next access to the address is ensured
to go to the DRAM.

However, in JavaScript we neither have access to the clflush instruc-
tion nor does JavaScript provide a function to flush the cache. Thus, we
have to resort to cache eviction. Cache eviction is the process of filling
the cache with new data until the data we want to flush is evicted from
the cache. The straightforward way is to fill a buffer with the size of the
last-level cache with data. However, this is not feasible in JavaScript as
writing multiple megabytes of data is too slow. Moreover, on modern
CPUs, it might not suffice to iteratively write to the buffer as the cache
replacement policy is not pseudo-LRU since Ivy Bridge [43].

Gruss et al. [9] demonstrated fast cache eviction strategies for numerous
CPUs. They showed that their functions have a success rate of more than
99.75% when implemented in JavaScript. We also rely on these functions
to evict the address which we use for measuring the access time.

Transmission

To transmit data from inside the VM to the JavaScript, they have to agree
on a common bank. It is not necessary to agree on a bank dynamically, it
is sufficient to have the bank hardcoded in both programs. The sender
and the receiver both choose a different row from this bank. Again, this
can be hardcoded, and there is no requirement for an agreement protocol.

On the sender side, the application inside the VM continuously accesses
a memory address in its row if it wants to transmit a binary 1. These
accesses cause row conflicts with the receiver’s row. To send a binary 0,
the sender does nothing to not cause any row conflict. On the receiver
side, the JavaScript constantly measures the access time to a memory
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Figure 5.4: One packet of the covert channel. It has a 2-bit preamble ‘‘10’’,
5 data bits, 3 bits of error detection code and a 1 bit sequence
number.

address from its row and evicts the address afterwards. If the sender has
accessed its row, the access to the receiver’s row results in a row conflict.
As a row conflict takes significantly longer than a row hit, the receiver
can determine if the sender has accessed its row.

To synchronize sender and receiver, the receiver measures the access
time in a higher frequency than the sender is sending. The receiver
maintains a constant-size sliding window that moves over all taken mea-
surements. As soon as the majority of the measurements inside the sliding
window is the same, one bit is received. The higher the receiver’s sam-
pling frequency is, compared to the sender’s sending frequency, the lower
the probability of wrongly measured bits. However, a higher sampling
frequency also leads to a slower transmission speed due to the increased
amount of redundant data.

Due to different noise sources on the system, we encounter transmission
errors. Such noise sources are failed evictions, high DRAM activity of other
programs or not being scheduled at all. To have a reliable transmission
despite those interferences, we encapsulate the data into packets with
sequence numbers and protect each packet with an error detection code as
shown in Figure 5.4. The receiver is then able to detect any transmission
error and to discard the packet. The sequence number ensures to keep
the data stream synchronized. Thus, transmission errors only result in
missing data, but the data stream is still synchronized after transmission
errors. To deal with missing data, we can apply high-level error correction
as shown by Maurice et al. [24].

Using the SharedArrayBuffer, we achieve a transmission rate of
11 bps for a 3 kB file with an error rate of 0% on our Intel Core i5 test
machine. The system workload did not influence the transmission, as
long as there is at least one core fully available to the covert channel. We
optimized the covert channel for reliability and not speed. We expect that
it is possible to further increase the transmission rate by using multiple
banks to transmit data in parallel. However, the current speed is two
orders of magnitude higher than the US government’s minimum standard
for covert channels[36].
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5 Countermeasures

Lowering the timer resolution

As a reaction to the JavaScript cache attacks published by Oren et al. [28],
browsers reduced the resolution of the high-resolution timer. Nevertheless,
we are able to recover a higher resolution from the provided timer, as well
as to build our own high-resolution timers.

Fuzzy time

Vattikonda et al. [38] suggested the concept of fuzzy time to get rid of
high-resolution timers in hypervisors. Instead of rounding the timestamp
to achieve a lower resolution, they move the clock edge randomly within
one clock cycle. This method prevents the detection of the underlying
clock edge and thus makes it impossible to recover the internal resolution.
In a concurrent work, Kohlbrenner et al. [18] implemented the fuzzy
time concept in Firefox to show that this method is also applicable in
JavaScript. The implementation targets explicit clocks as well as implicit
clocks. Nonetheless, we found different implicit clocks exceeding the
intended resolution of 100 ms.

Shared memory and message passing

A proposed mitigation is to introduce thread affinity to the same CPU core
for threads with shared memory [19]. This prevents true parallelism and
should therefore prevent a real asynchronous timing primitive. However,
we showed that even without shared memory we can achieve a resolution
of up to 15 µs by using message passing. Enforcing the affinity to one
core for all communicating threads would lead to a massive performance
degradation and would effectively render the use of web workers useless. A
compromise is to increase the latency of message passing which should not
affect low- to moderate-bandwidth applications. Compared to Fuzzyfox’s
delay on the main event queue, this has two advantages. First, the overall
usability impact is not as severe as only messages are delayed and not
every event. Second, it also prevents the high accuracy of the Message
Channel and Broadcast Channel method as the delay is not limited to the
main event queue.
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6 Conclusion and Outlook

High-resolution timers are a key requirement for side-channel attacks in
browsers. As more side-channel attacks in JavaScript have been demon-
strated against users’ privacy, browser vendors decided to reduce the timer
resolution.

In this article, we showed that this attempt to close these vulnerabilities
was merely a quick-fix and did not address the underlying issue. We
investigated different timing sources in JavaScript and found a number
of timing sources with a resolution comparable to performance.now.
This shows that even removing the interface entirely, would not have
any effect. Even worse, an adversary can recover a resolution of the
former performance.now implementation through measurement methods
we proposed. We evaluated our new measurement methods on all major
browsers as well as the Tor browser that has applied the highest penalty to
the timer resolution. Our results are alarming for all browsers, including
the privacy-conscious Tor browser, as we are able to recover a resolution
in the order of nanoseconds in all cases. In addition to reviving attacks
that were now deemed infeasible, we demonstrated the first DRAM-based
side channel in JavaScript. In this side-channel attack, we implemented a
covert channel between an unprivileged binary in a VM with no network
interface and a JavaScript program in a browser outside the VM, on the
same host.

While fuzzy timers can lower the resolution of the provided timer
interfaces, we show that applying the same mitigation on all implicit clocks,
including the one that are not discovered yet, is a complex task. Thus, we
conclude that it is likely that an adversary can obtain sufficiently accurate
timestamps when running arbitrary JavaScript code. As microarchitectural
attacks are not restricted to JavaScript, we recommend to mitigate them
at the system- or hardware-level.
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7 Appendix: JavaScript Code

1 f unc t i on c a l i b r a t e ( )
2 {
3 var counter = 0 , next ;
4 for ( var i = 0 ; i < 10 ; i

++)
5 {
6 next = wait edge ( ) ;
7 counter += count edge

( ) ;
8 }
9 next = wait edge ( ) ;

10 return ( wai t edge ( ) − next
) /

11 ( counter / 1 0 . 0 ) ;
12 }
13

14 f unc t i on measure ( fnc )
15 {
16 var s t a r t = wait edge ( ) ;
17 fnc ( ) ;
18 var count = count edge ( ) ;
19 return ( performance . now ( )−

s t a r t ) − count ∗
c a l i b r a t e ( ) ;

20 }

a: Clock interpolation.

1 f unc t i on wait edge ( )
2 {
3 var next , l a s t =

performance . now ( )
;

4 while ( ( next =
performance . now ( )
) == l a s t ) {}

5 return next ;
6 }
7

8 f unc t i on count edge ( )
9 {

10 var l a s t =
performance . now ( )
, count = 0 ;

11 while ( performance .
now ( ) == l a s t )
count++;

12 return count ;
13 }

b: Helper functions.

Listing 7.1: Clock interpolation: calibrate returns the time one increment
takes, measure uses interpolation to measure the execution time
of fnc
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1 var count = 0 ;
2

3 f unc t i on counter ( )
4 {
5 count++;
6 window . postMessage ( nu l l , window . l o c a t i o n ) ;
7 }
8 window . addEventListener ("message" , counter ) ;
9 window . postMessage ( nu l l , window . l o c a t i o n ) ;

Listing 7.2: Abusing cross-origin communication to build a counting thread.

1 var t s = new
2 Worker ( ’subworker.js’ ) ;
3 t s . postMessage (0 ) ;
4

5 f unc t i on counter ( event )
6 {
7 timestamp = event . data ;
8 }
9 t s . addEventListener ("

message" , counter ) ;
10 [ . . . ]
11

12 // get timestamp

13 t s . postMessage (0 ) ;

a: Timing measurement example.

1 var count = 0 ;
2

3 onmessage = func t i on ( event )
4 {
5 count++;
6 postMessage ( count ) ;
7 }

b: subworker2.js

1 var sub = new
2 Worker ("subworker2.

js" ) ;
3 sub . postMessage (0 ) ;
4

5 var count = 0 ;
6

7 sub . onmessage = msg ;
8 onmessage = msg ;
9

10 f unc t i on msg( event )
11 {
12 i f ( event . data !=

0)
13 {
14 count = event .

data ;
15 sub .

postMessage (0 ) ;
16 }
17 else
18 s e l f . postMessage

( count ) ;
19 }

c: subworker.js

Listing 7.3: Message passing with web workers to get a free-running timer.
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1 var count = 0 , channel = n u l l ;
2 f unc t i on handleMessage ( e )
3 {
4 count++;
5 channel . port2 . postMessage (0 ) ;
6 }
7

8 channel = new MessageChannel ( ) ;
9 channel . port1 . onmessage = handleMessage ;

10 channel . port2 . postMessage (0 ) ;

Listing 7.4: A blocking timing primitive using a message channel.

1 var worker = new
2 Worker ("mcworker.js" ) ;
3 var main channel = new

MessageChannel ( ) ;
4 var s i d e c h a n n e l = new

MessageChannel ( ) ;
5

6 f unc t i on handleMessage ( e )
7 {
8 timestamp = e . data ;
9 }

10

11 main channel . port2 .
onmessage =
handleMessage ;

12 worker . postMessage (0 ,
13 [ main channel . port1 ,

s i d e c h a n n e l . port1 ,
s i d e c h a n n e l . port2 ] )
;

14 [ . . . ]
15

16 // get timestamp

17 main channel . port2 .
postMessage (0 ) ;

a: Timing measurement example.

1 var main port , port1 ,
port2 , count = 0 ;

2

3 s e l f . onmessage =
func t i on ( event )

4 {
5 main port = event .

por t s [ 0 ] ;
6 port1 = event . por t s

[ 1 ] ;
7 port2 = event . por t s

[ 2 ] ;
8 main port . onmessage

=
9 f unc t i on ( )

10 {
11 main port .

postMessage ( count ) ;
12 } ;
13 port1 . onmessage =
14 f unc t i on ( )
15 {
16 count++;
17 port2 .

postMessage (0 ) ;
18 } ;
19 port2 . postMessage (

count ) ;
20 } ;

b: mcworker.js

Listing 7.5: Message passing with web workers to get a free-running timer.
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1 var b u f f e r = new
SharedArrayBuffer (16)
;

2 var counter = new
3 Worker ("counter.js" ) ;
4 counter . postMessage ( [

b u f f e r ] ,
5 [ b u f f e r ] ) ;
6 var ar r = new
7 Uint32Array ( b u f f e r ) ;
8 [ . . . ]
9

10 timestamp = arr [ 0 ] ;

a: Timing measurement example.

1 s e l f . onmessage =
func t i on ( event )

2 {
3 var [ b u f f e r ] = event .

data ;
4 var ar r = new
5 Uint32Array ( b u f f e r ) ;
6 while (1 )
7 {
8 ar r [0]++;
9 }

10 }

b: counter.js

Listing 7.6: Parallel counting thread without additional overhead.
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Abstract

In modern computer systems, user processes are isolated from each other by
the operating system and the hardware. Additionally, in a cloud scenario
it is crucial that the hypervisor isolates tenants from other tenants that
are co-located on the same physical machine. However, the hypervisor
does not protect tenants against the cloud provider and thus the supplied
operating system and hardware. Intel SGX provides a mechanism that
addresses this scenario. It aims at protecting user-level software from
attacks from other processes, the operating system, and even physical
attackers.

In this paper, we demonstrate fine-grained software-based side-channel
attacks from a malicious SGX enclave targeting co-located enclaves. Our
attack is the first malware running on real SGX hardware, abusing SGX
protection features to conceal itself. Furthermore, we demonstrate our
attack both in a native environment and across multiple Docker containers.
We perform a Prime+Probe cache side-channel attack on a co-located
SGX enclave running an up-to-date RSA implementation that uses a
constant-time multiplication primitive. The attack works although in
SGX enclaves there are no timers, no large pages, no physical addresses,
and no shared memory. In a semi-synchronous attack, we extract 96 % of
an RSA private key from a single trace. We extract the full RSA private
key in an automated attack from 11 traces.

1 Introduction

Modern operating systems isolate user processes from each other to protect
secrets in different processes. Such secrets include passwords stored in pass-
word managers or private keys to access company networks. Leakage of

The original publication is available at https://link.springer.com/
chapter/10.1007/978-3-319-60876-1_1.

https://link.springer.com/chapter/10.1007/978-3-319-60876-1_1
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these secrets can compromise both private and corporate systems. Similar
problems arise in the cloud. Therefore, cloud providers use virtualization
as an additional protection using a hypervisor. The hypervisor isolates
different tenants that are co-located on the same physical machine. How-
ever, the hypervisor does not protect tenants against a possibly malicious
cloud provider.

Although hypervisors provide functional isolation, side-channel attacks
are often not considered. Consequently, researchers have demonstrated
various side-channel attacks, especially those exploiting the cache [15].
Cache side-channel attacks can recover cryptographic secrets, such as
AES [29] and RSA [33] keys, across virtual machine boundaries.

Intel introduced a new hardware extension SGX (Software Guard
Extensions) [27] in their CPUs, starting with the Skylake microarchitecture.
SGX is an isolation mechanism, aiming at protecting code and data from
modification or disclosure even if all privileged software is malicious [10].
This protection uses special execution environments, so-called enclaves,
which work on memory areas that are isolated from the operating system
by the hardware. The memory area used by the enclaves is encrypted to
protect application secrets from hardware attackers. Typical use cases
include password input, password managers, and cryptographic operations.
Intel recommends storing cryptographic keys inside enclaves and claims
that side-channel attacks “are thwarted since the memory is protected by
hardware encryption” [25].

Hardware-supported isolation also led to fear of super malware inside
enclaves. Rutkowska [44] outlined a scenario where an enclave fetches
encrypted malware from an external server and executes it within the
enlave. In this scenario, it is impossible to debug, reverse engineer, or
analyze the executed malware in any way. Costan et al. [10] eliminated
this fear by arguing that enclaves always run with user space privileges and
can neither issue syscalls nor perform any I/O operations. Moreover, SGX
is a highly restrictive environment for implementing cache side-channel
attacks. Both state-of-the-art malware and side-channel attacks rely on
several primitives that are not available in SGX enclaves.

In this paper, we show that it is very well possible for enclave malware
to attack its hosting system. We demonstrate a cross-enclave cache attack
from within a malicious enclave that is extracting secret keys from co-
located enclaves. Our proof-of-concept malware is able to recover RSA
keys by monitoring cache access patterns of an RSA signature process in a
semi-synchronous attack. The malware code is completely invisible to the
operating system and cannot be analyzed due to the isolation provided
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by SGX. We present novel approaches to recover physical address bits,
as well as to recover high-resolution timing in absence of the timestamp
counter, which has an even higher resolution than the native one. In an
even stronger attack scenario, we show that an additional isolation using
Docker containers does not protect against this kind of attack.

We make the following contributions:

1. We demonstrate that, despite the restrictions of SGX, cache attacks
can be performed from within an enclave to attack a co-located
enclave.

2. By combining DRAM and cache side channels, we present a novel
approach to recover physical address bits even if 2 MB pages are
unavailable.

3. We obtain high-resolution timestamps in enclaves without access to
the native timestamp counter, with an even higher resolution than
the native one.

4. In an automated end-to-end attack on the wide-spread mbedTLS
RSA implementation, we extract 96 % of an RSA private key from
a single trace.

Section 2 presents the required background. Section 3 outlines the
threat model and attack scenario. Section 4 describes the measurement
methods and the online phase of the malware. Section 5 explains the
offline-phase key recovery. Section 6 evaluates the attack against an up-
to-date RSA implementation. Section 7 discusses several countermeasures.
Section 8 concludes our work.

2 Background

2.1 Intel SGX in Native and Virtualized Environments

Intel Software Guard Extensions (SGX) are a new set of x86 instructions
introduced with the Skylake microarchitecture. SGX allows protecting
the execution of user programs in so-called enclaves. Only the enclave
can access its own memory region, any other access to it is blocked by
the CPU. As SGX enforces this policy in hardware, enclaves do not need
to rely on the security of the operating system. In fact, with SGX the
operating system is generally not trusted. By doing sensitive computation
inside an enclave, one can effectively protect against traditional malware,
even if such malware has obtained kernel privileges. Furthermore, it allows
running secret code in a cloud environment without trusting hardware
and operating system of the cloud provider.
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An enclave resides in the virtual memory area of an ordinary application
process. This virtual memory region of the enclave can only be backed by
physically protected pages from the so-called Enclave Page Cache (EPC).
The EPC itself is a contiguous physical block of memory in DRAM that
is encrypted transparently to protect against hardware attacks.

Loading of enclaves is done by the operating system. To protect the
integrity of enclave code, the loading procedure is measured by the CPU.
If the resulting measurement does not match the value specified by the
enclave developer, the CPU will refuse to run the enclave.

Since enclave code is known to the (untrusted) operating system, it
cannot carry hard-coded secrets. Before giving secrets to an enclave, a
provisioning party has to ensure that the enclave has not been tampered
with. SGX therefore provides remote attestation, which proves correct
enclave loading via the aforementioned enclave measurement.

At the time of writing, no hypervisor with SGX support was available.
However, Arnautov et al. [4] proposed to combine Docker containers
with SGX to create secure containers. Docker is an operating-system-
level virtualization software that allows applications to run in separate
containers. It is a standard runtime for containers on Linux which is
supported by multiple public cloud providers. Unlike virtual machines,
Docker containers share the kernel and other resources with the host
system, requiring fewer resources than a virtual machine.

2.2 Microarchitectural Attacks

Microarchitectural attacks exploit hardware properties that allow inferring
information on other processes running on the same system. In particular,
cache attacks exploit the timing difference between the CPU cache and
the main memory. They have been the most studied microarchitectural
attacks for the past 20 years, and were found to be powerful to derive
cryptographic secrets [15]. Modern attacks target the last-level cache,
which is shared among all CPU cores. Last-level caches (LLC) are usually
built as n-way set-associative caches. They consist of S cache sets and
each cache set consists of n cache ways with a size of 64 B. The lowest 6
physical address bits determine the byte offset within a cache way, the
following log2 S bits starting with bit 6 determine the cache set.

Prime+Probe is a cache attack technique that has first been used
by Osvik et al. [39]. In a Prime+Probe attack, the attacker constantly
primes (i.e., evicts) a cache set and measures how long this step took.
The runtime of the prime step is correlated to the number of cache ways
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that have been replaced by other programs. This allows deriving whether
or not a victim application performed a specific secret-dependent memory
access. Recent work has shown that this technique can even be used across
virtual machine boundaries [33, 34].

To prime (i.e., evict) a cache set, the attacker uses n addresses in same
cache set (i.e., an eviction set), where n depends on the cache replacement
policy and the number of ways. To minimize the amount of time the prime
step takes, it is necessary to find a minimal n combined with a fast access
pattern (i.e., an eviction strategy). Gruss et al. [20] experimentally found
efficient eviction strategies with high eviction rates and a small number
of addresses. We use their eviction strategy on our Skylake test machine
throughout the paper.

Pessl et al. [42] found a similar attack through DRAM modules. Each
DRAM module has a row buffer that holds the most recently accessed
DRAM row. While accesses to this buffer are fast, accesses to other
memory locations in DRAM are much slower. This timing difference can
be exploited to obtain fine-grained information across virtual machine
boundaries.

2.3 Side-Channel Attacks on SGX

Intel claims that SGX features impair side-channel attacks and recom-
mends using SGX enclaves to protect password managers and crypto-
graphic keys against side channels [25]. However, there have been specula-
tions that SGX could be vulnerable to side-channel attacks [10]. Xu et al.
[50] showed that SGX is vulnerable to page fault side-channel attacks
from a malicious operating system [1].

SGX enclaves generally do not share memory with other enclaves, the
operating system or other processes. Thus, any attack requiring shared
memory is not possible, e.g., Flush+Reload [51]. Also, DRAM-based
attacks cannot be performed from a malicious operating system, as the
hardware prevents any operating system accesses to DRAM rows in the
EPC. However, enclaves can mount DRAM-based attacks on other enclaves
because all enclaves are located in the same physical EPC.

In concurrent work, Brasser et al. [8], Moghimi et al. [37] and
Götzfried et al. [17] demonstrated cache attacks on SGX relying on a
malicious operating system.
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2.4 Side-Channel Attacks on RSA

RSA is widely used to create asymmetric signatures, and is implemented by
virtually every TLS library, such as OpenSSL or mbedTLS , which is used
for instance in cURL and OpenVPN. RSA essentially involves modular
exponentiation with a private key, typically using a square-and-multiply
algorithm. An unprotected implementation of square-and-multiply is
vulnerable to a variety of side-channel attacks, in which an attacker learns
the exponent by distinguishing the square step from the multiplication
step [15, 51]. mbedTLS uses a windowed square-and-multiply routine for
the exponentiation. Liu et al. [33] showed that if an attack on a window
size of 1 is possible, the attack can be extended to arbitrary window sizes.

Earlier versions of mbedTLS were vulnerable to a timing side-channel
attack on RSA-CRT [3]. Due to this attack, current versions of mbedTLS
implement a constant-time Montgomery multiplication for RSA. Addi-
tionally, instead of using a dedicated square routine, the square operation
is carried out using the multiplication routine. Thus, there is no leakage
from a different square and multiplication routine as exploited in previous
attacks on square-and-multiply algorithms [33, 51]. However, Liu et al.
[33] showed that the secret-dependent accesses to the buffer b still leak
the exponent. Boneh et al. [7] and Blömer et al. [6] recovered the full RSA
private key if only parts of the key bits are known.

3 Threat Model and Attack Setup

In this section, we present our threat model. We demonstrate a malware
that circumvents SGX and Docker isolation guarantees. We successfully
mount a Prime+Probe attack on an RSA signature computation running
inside a different enclave, on the outside world, and across container
boundaries.

3.1 High-Level View of the Attack

In our threat model, both the attacker and the victim are running on the
same physical machine. The machine can either be a user’s local computer
or a host in the cloud. In the cloud scenario, the victim has its enclave
running in a Docker container to provide services to other applications
running on the host. Docker containers are well supported on many cloud
providers, e.g., Amazon [13] or Microsoft Azure [36]. As these containers
are more lightweight than virtual machines, a host can run up to several
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Figure 6.1: The threat model: both attacker and victim run on the same
physical machine in different SGX enclaves.

hundred containers simultaneously. Thus, the attacker has good chances
to get a co-located container on a cloud provider.

Figure 6.1 gives an overview of our native setup. The victim runs a
cryptographic computation inside the enclave to protect it against any
attacks. The attacker tries to stealthily extract secrets from this victim
enclave. Both the attacker and the victim use Intel SGX features and
thus are subdivided into two parts, the enclave and loader, i.e., the main
program instantiating the enclave.

The attack is a multi-step process that can be divided into an online
and an offline phase. Section 4 describes the online phase, in which
the attacker first locates the victim’s cache sets that contain the secret-
dependent data of the RSA private key. The attacker then monitors the
identified cache sets while triggering a signature computation. Section 5
gives a detailed explanation of the offline phase in which the attacker
recovers a private key from collected traces.

3.2 Victim

The victim is an unprivileged program that uses SGX to protect an RSA
signing application from both software and hardware attackers. Both
the RSA implementation and the private key reside inside the enclave,
as suggested by Intel [25]. Thus, they can never be accessed by system
software or malware on the same host. Moreover, memory encryption
prevents physical information leakage in DRAM. The victim uses the RSA
implementation of the widely deployed mbedTLS library. The mbedTLS
library implements a windowed square-and-multiply algorithm, that relies
on constant-time Montgomery multiplications. The window size is fixed to
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1, as suggested by the official knowledge base [2]. The victim application
provides an API to compute a signature for provided data.

3.3 Attacker

The attacker runs an unprivileged program on the same host machine as
the victim. The goal of the attacker is to stealthily extract the private key
from the victim enclave. Therefore, the attacker uses the API provided
by the victim to trigger signature computations.

The attacker targets the exponentiation step of the RSA implementa-
tion. The attack works on arbitrary window sizes [33], including window
size 1. To prevent information leakage from function calls, mbedTLS uses
the same function (mpi montmul) for both the square and the multiply
operation. The mpi montmul takes two parameters that are multiplied
together. For the square operation, the function is called with the current
buffer as both arguments. For the multiply operation, the current buffer is
multiplied with a buffer holding the multiplier. This buffer is allocated in
the calling function mbedtls mpi exp mod using calloc. Due to the de-
terministic behavior of the tlibc calloc implementation, the used buffers
always have the same virtual and physical addresses and thus the same
cache sets. The attacker can therefore mount a Prime+Probe attack on
the cache sets containing the buffer.

In order to remain stealthy, all parts of the malware that contain
attack code reside inside an SGX enclave. The enclave can protect the
encrypted real attack code by only decrypting it after a successful remote
attestation after which the enclave receives the decryption key. As pages
in SGX can be mapped as writable and executable, self-modifying code is
possible and therefore code can be encrypted. Consequently, the attack is
completely stealthy and invisible from anti-virus software and even from
monitoring software running in ring 0. Note that our proof-of-concept
implementation does not encrypt the attack code as this has no impact
on the attack.

The loader does not contain any suspicious code or data, it is only
required to start the enclave and send the exfiltrated data to the attacker.

3.4 Operating System and Hardware

Previous work was mostly focused on attacks on enclaves from untrusted
cloud operating systems [10, 46]. However, in our attack we do not make
any assumptions on the underlying operating system, i.e., we do not rely
on a malicious operating system. Both the attacker and the victim are
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unprivileged user space applications. Our attack works on a fully-patched
recent operating system with no known software vulnerabilities, i.e., the
attacker cannot elevate privileges.

We expect the cloud provider to run state-of-the-art malware detection
software. We assume that the malware detection software is able to
monitor the behavior of containers and inspect the content of containers.
Moreover, the user can run anti-virus software and monitor programs
inside the container. We assume that the protection mechanisms are either
signature-based, behavioral-based, heuristics-based or use performance
counters [12, 21].

Our only assumption on the hardware is that attacker and victim run
on the same host system. This is the case on both personal computers
and on co-located Docker instances in the cloud. As SGX is currently
only available on Intel Skylake CPUs, it is valid to assume that the host
is a Skylake system. Consequently, we know that the last-level cache is
shared between all CPU cores.

4 Extracting Private Key Information

In this section, we describe the online phase of our attack. We first build
primitives necessary to mount this attack. Then we show in two steps
how to locate and monitor cache sets to extract private key information.

4.1 Attack Primitives in SGX

Successful Prime+Probe attacks require two primitives: a high-resolution
timer to distinguish cache hits and misses and a method to generate
an eviction set for arbitrary cache sets. Due to the restrictions of SGX
enclaves, implementing Prime+Probe in enclaves is not straight-forward.
Therefore, we require new techniques to build a malware from within an
enclave.

High-resolution Timer

The unprivileged rdtsc and rdtscp instructions, which read the times-
tamp counter, are usually used for fine-grained timing outside enclaves.
In SGX, these instructions are not permitted inside an enclave, as they
might cause a VM exit [24]. Thus, we have to rely on a different timing
source with a resolution in the order of 10 cycles to reliably distinguish
cache hits from misses as well as DRAM row hits from row conflicts.
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To achieve the highest number of increments, we handcraft a counter
thread [31, 49] in inline assembly. The counter variable has to be accessible
across threads, thus it is necessary to store the counter variable in memory.
Memory addresses as operands incur an additional cost of approximately
4 cycles due to L1 cache access times [23]. On our test machine, a simple
counting thread executing 1: incl (%rcx); jmp 1b achieves one incre-
ment every 4.7 cycles, which is an improvement of approximately 2 % over
the best code generated by gcc.

We can improve the performance—and thus the resolution—further,
by exploiting the fact that only the counting thread modifies the counter
variable. We can omit reading the counter variable from memory. There-
fore, we introduce a “shadow counter variable” which is always held in a
CPU register. The arithmetic operation (either add or inc) is performed
on this register, unleashing the low latency and throughput of these in-
structions. As registers cannot be shared across threads, the shadow
counter has to be moved to memory using the mov instruction after
each increment. Similar to the inc and add instruction, the mov instruc-
tion has a latency of 1 cycle and a throughput of 0.5 cycles/instruction
when copying a register to memory. The improved counting thread,
1: inc %rax; mov %rax, (%rcx), jmp 1b, is significantly faster and
increments the variable by one every 0.87 cycles, which is an improvement
of 440 % over the simple counting thread. In fact, this version is even
15 % faster than the native timestamp counter, thus giving us a reliable
timing source with even higher resolution. This new method might open
new possibilities of side-channel attacks that leak information through
timing on a sub-rdtsc level.

Eviction Set Generation

Prime+Probe relies on eviction sets, i.e., we need to find virtual addresses
that map to the same physical cache set. An unprivileged process cannot
translate virtual to physical addresses and therefore cannot simply search
for virtual addresses that fall into the same cache set. Liu et al. [33] and
Maurice et al. [34] demonstrated algorithms to build eviction sets using
large pages by exploiting the fact that the virtual address and the physical
address have the same lowest 21 bits. As SGX does not support large
pages, this approach is inapplicable. Oren et al. [38] and Gruss et al. [20]
demonstrated automated methods to generate eviction sets for a given
virtual address. Due to microarchitectural changes their approaches are
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Figure 6.2: Access times when alternately accessing two addresses which are
64 B apart. The (marked) high access times indicate row conflicts.

either not applicable at all to the Skylake architecture or consume several
hours on average before even starting the actual Prime+Probe attack.

We propose a new method to recover the cache set from a virtual
address without relying on large pages. The idea is to exploit contiguous
page allocation [28] and DRAM timing differences to recover DRAM row
boundaries. The DRAM mapping functions [42] allow to recover physical
address bits.

The DRAM organization into banks and rows causes timing differences.
Alternately accessing pairs of two virtual addresses that map to the same
DRAM bank but a different row is significantly slower than any other
combination of virtual addresses. Figure 6.2 shows the average access
time for address pairs when iterating over a 2 MB array. The highest two
peaks show row conflicts, i.e., the row index changes while the bank, rank,
and channel stay the same.

To recover physical address bits we use the reverse-engineered DRAM
mapping function as shown in Table 6.1. Our test machine is an Intel
Core i5-6200U with 12 GB main memory. The row index is determined by
physical address bits 18 and upwards. Hence, the first address of a DRAM
row has the least-significant 18 bits of the physical address set to ‘0’. To

Table 6.1: Reverse-engineered DRAM mapping functions from Pessl et al. [42].

Address Bit
22 21 20 19 18 17 16 15 14 13 12 11 10 09 08 07 06

2 DIMMs

Channel ⊕ ⊕ ⊕ ⊕ ⊕ ⊕
BG0 ⊕ ⊕
BG1 ⊕ ⊕
BA0 ⊕ ⊕
BA1 ⊕ ⊕
Rank ⊕ ⊕



4. Extracting Private Key Information 115

detect row borders, we scan memory sequentially for an address pair in
physical proximity that causes a row conflict. As SGX enclave memory is
allocated contiguously we can perform this scan on virtual addresses.

A virtual address pair that causes row conflicts at the beginning of a
row satisfies the following constraints:

1. The least-significant 18 physical address bits of one virtual address
are zero. This constitutes a DRAM row border.

2. The bank address (BA), bank group (BG), rank, and channel de-
termine the DRAM bank and must be the same for both virtual
addresses.

3. The row index must be different for both addresses to cause a row
conflict.

4. The difference of the two virtual addresses has to be at least 64 B
(the size of one cache line) but should not exceed 4 kB (the size of
one page).

Physical address bits 6 to 17 determine the cache set which we want
to recover. Hence, we search for address pairs where physical address bits
6 to 17 have the same known but arbitrary value.

To find address pairs fulfilling the aforementioned constraints, we
modeled the mapping function and the constraints as an SMT problem and
used the Z3 theorem prover [11] to provide models satisfying the constraints.
The model we found yields pairs of physical addresses where the upper
address is 64 B apart from the lower one. There are four such address pairs
within every 4 MB block of physical memory such that each pair maps to
the same bank but a different row. The least-significant bits of the physical
address pairs are either (0x3fffc0, 0x400000), (0x7fffc0, 0x800000),
(0xbfffc0, 0xc00000) or (0xffffc0, 0x1000000) for the lower and higher
address respectively. Thus, at least 22 bits of the higher addresses least-
significant bits are 0. As the cache set is determined by the bits 6 to 17, the
higher address has the cache set index 0. We observe that satisfying address
pairs are always 256 KB apart. Since we have contiguous memory [28], we
can generate addresses mapping to the same cache set by adding multiples
of 256 KB to the higher address.

In modern CPUs, the last-level cache is split into cache slices. Ad-
dresses with the same cache set index map to different cache slices based
on the remaining address bits. To generate an eviction set, it is necessary
to only use addresses that map to the same cache set in the same cache
slice. However, to calculate the cache slice, all bits of the physical address
are required [35].



116 Chapter 6. Malware Guard Extension

As we are not able to directly calculate the cache slice, we use another
approach. We add our calculated addresses from the correct cache set to
our eviction set until the eviction rate is sufficiently high. Then, we try to
remove single addresses from the eviction set as long as the eviction rate
does not drop. Thus, we remove all addresses that do not contribute to
the eviction, and the result is a minimal eviction set. Our approach takes
on average 2 seconds per cache set, as we already know that our addresses
map to the correct cache set. This is nearly three orders of magnitude
faster than the approach of Gruss et al. [20]. Older techniques that have
been comparably fast do not work on current hardware anymore due to
microarchitectural changes [33, 38].

4.2 Identifying and Monitoring Vulnerable Sets

With the reliable high-resolution timer and a method to generate eviction
sets, we can mount the first stage of the attack and identify the vulnerable
cache sets. As we do not have any information about the physical addresses
of the victim, we have to scan the last-level cache for characteristic
patterns corresponding to the signature process. We consecutively mount
a Prime+Probe attack on every cache set while the victim is executing
the exponentiation step.

We can then identify multiple cache sets showing the distinctive pattern
of the signature operation. The number of cache sets depends on the RSA
key size. Cache sets at the buffer boundaries might be used by neighboring
buffers and are more likely to be prefetched [18, 51] and thus, prone to
measurement errors. Consequently, we use cache sets neither at the start
nor the end of the buffer.

The measurement method is the same as for detecting the vulnerable
cache sets, i.e., we again use Prime+Probe. Due to the deterministic
behavior of the heap allocation, the address of the attacked buffer does
not change on consecutive exponentiations. Thus, we can collect multiple
traces of the signature process.

To maintain a high sampling rate, we keep the post-processing during
the measurements to a minimum. Moreover, it is important to keep the
memory activity at a minimum to not introduce additional noise on the
cache. Thus, we only save the timestamps of the cache misses for further
post-processing. As a cache miss takes longer than a cache hit, the effective
sampling rate varies depending on the number of cache misses. We have
to consider this effect in the post-processing as it induces a non-constant
sampling interval.
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Figure 6.3: A raw measurement trace over 4 000 000 cycles. The peaks in the
pre-processed trace on the bottom clearly indicate ‘1’s.

5 Recovering the Private Key

In this section, we describe the offline phase of our attack: recovering the
private key from the recorded traces of the victim enclave. This can either
be done inside the malware enclave or on the attacker’s server.

Ideally, an attacker would combine multiple traces by aligning them
and averaging out noise. From the averaged trace, the private key can
be extracted more easily. However, most noise sources, such as context
switches, system activity and varying CPU clock, alter the timing, thus
making trace alignment difficult. We pre-process all traces individually
and extract a partial key out of each trace. These partial keys likely suffer
from random insertion and deletion errors as well as from bit flips. To
eliminate the errors, we combine multiple partial keys in the key recovery
phase. This approach has much lower computational overhead than trace
alignment since key recovery is performed on partial 4096-bit keys instead
of full traces containing several thousand measurements.

Key recovery comes in three steps. First, traces are pre-processed.
Second, a partial key is extracted from each trace. Third, the partial keys
are merged to recover the private key. In the pre-processing step we filter
and resample raw measurement data. Figure 6.3 shows a trace segment
before (top) and after pre-processing (bottom). The pre-processed trace
shows high peaks at locations of cache misses, indicating a ‘1’ in the RSA
exponent.

To automatically extract a partial key from a pre-processed trace, we
first run a peak detection algorithm. We delete duplicate peaks, e.g.,
peaks where the corresponding RSA multiplications would overlap in time.
We also delete peaks that are below a certain adaptive threshold, as they
do not correspond to actual multiplications. Using an adaptive threshold
is necessary since neither the CPU frequency nor our timing source (the
counting thread) is perfectly stable. The varying peak height is shown
in the right third of Figure 6.3. The adaptive threshold is the median
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over the 10 previously detected peaks. If a peak drops below 90 % of this
threshold, it is discarded. The remaining peaks correspond to the ‘1’s
in the RSA exponent and are highlighted in Figure 6.3. ‘0’s can only
be observed indirectly in our trace as square operations do not trigger
cache activity on the monitored sets. ‘0’s appear as time gaps in the
sequence of ‘1’ peaks, thus revealing all partial key bits. Note that since
‘0’s correspond to just one multiplication, they are roughly twice as fast
as ‘1’s.

When a correct peak is falsely discarded, the corresponding ‘1’ is
interpreted as two ‘0’s. Likewise, if noise is falsely interpreted as a ‘1’, this
cancels out two ‘0’s. If either the attacker or the victim is not scheduled,
we have a gap in the collected trace. However, if both the attacker and
the victim are descheduled, this gap does not show up prominently in the
trace since the counting thread is also suspended by the interrupt. This is
an advantage of a counting thread over the use of the native timestamp
counter.

In the final key recovery, we merge multiple partial keys to obtain the
full key. We quantify partial key errors using the edit distance. The edit
distance between a partial key and the correct key gives the number of
bit insertions, deletions and flips necessary to transform the partial key
into the correct key.

The full key is recovered bitwise, starting from the most-significant bit.
The correct key bit is the result of the majority vote over the corresponding
bit in all partial keys. To correct the current bit of a wrong partial key,
we compute the edit distance to all partial keys that won the majority
vote. To reduce the performance overhead, we do not calculate the edit
distance over the whole partial keys but only over a lookahead window of
a few bits. The output of the edit distance algorithm is a list of actions
necessary to transform one key into the other. We apply these actions
via majority vote until the key bit of the wrong partial key matches the
recovered key bit again.

6 Evaluation

In this section, we evaluate the presented methods by building a malware
enclave attacking a co-located enclave that acts as the victim. As discussed
in Section 3.2, we use mbedTLS , in version 2.3.0.

For the evaluation, we attack a 4096-bit RSA key. The runtime of the
multiplication function increases exponentially with the size of the key.
Hence, larger keys improve the measurement resolution of the attacker. In
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Figure 6.4: A high-level overview of the average times for each step of the
attack.
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Figure 6.5: The 9 cache sets that are used by a 4096-bit key and their error
ratio when recovering the key from a single trace.

terms of cache side-channel attacks, large RSA keys do not provide higher
security but degrade side-channel resistance [41, 48, 51].

6.1 Native Environment

We use a Lenovo ThinkPad T460s with an Intel Core i5-6200U (2 cores,
12 cache ways) running Ubuntu 16.10 and the Intel SGX driver. Both the
attacker enclave and the victim enclave are running on the same machine.
We trigger the signature process using the public API of the victim.

Figure 6.4 gives an overview of how long the individual steps of an
average attack take. The runtime of automatic cache set detection varies
depending on which cache sets are used by the victim. The attacked
buffer spans 9 cache sets, out of which 6 show a low bit-error ratio, as
shown in Figure 6.5. For the attack we select one of the 6 sets, as the
other 3 suffer from too much noise. The noise is mainly due to the buffer
not being aligned to the cache set. Furthermore, as already known from
previous attacks, the hardware prefetcher can induce a significant amount
of noise [18, 51].

Detecting one vulnerable cache set within all 2048 cache sets requires
about 340 trials on average. With a monitoring time of 0.21 s per cache
set, we require a maximum of 72 s to eventually capture a trace from a



120 Chapter 6. Malware Guard Extension

10 15 20 25 30 35 40 45 50
0

20

40

Runtime [s]

39

31

4 3 2 2 2 2 2

6.7
10.3 9.7 11.9 15

19.6
25.6

31.2
37.6

Lookahead window size

B
it

-e
rr

o
rs

(a) Increasing the lookahead reduces bit
errors and increases runtime.

3 5 7 9 11
0

20

40

60

80

Runtime [s]

69

15
4 1 0

4.1
6.3

9.7
13.3

18.5

Traces

B
it

-e
rr

o
rs

(b) Increasing the number of traces re-
duces bit errors and increases run-
time.

Figure 6.6: Relation between number of traces, lookahead window size, number
of bit errors, and runtime.

vulnerable cache set. Thus, based on our experiments, we estimate that
cache set detection—if successful—always takes less than 3 min.

One trace spans 220.47 million CPU cycles on average. Typically, ‘0’
and ‘1’ bits are uniformly distributed in the key. The estimated number of
multiplications is therefore half the bit size of the key. Thus, the average
multiplication takes 107 662 cycles. As the Prime+Probe measurement
takes on average 734 cycles, we do not have to slow down the victim
additionally.

When looking at a single trace, we can already recover about 96 % of
the RSA private key, as shown in Figure 6.5. For a full key recovery we
combine multiple traces using our key recovery algorithm, as explained
in Section 5. We first determine a reasonable lookahead window size.
Figure 6.6a shows the performance of our key recovery algorithm for
varying lookahead window sizes on 7 traces. For lookahead windows
smaller than 20, bit errors are pretty high. In that case, the lookahead
window is too small to account for all insertion and deletion errors, causing
relative shifts between the partial keys. The key recovery algorithm is
unable to align partial keys correctly and incurs many wrong “correction”
steps, increasing the overall runtime as compared to a window size of 20.
While a lookahead window size of 20 already shows a good performance,
a window size of 30 or more does not significantly reduce the bit errors.
Therefore, we fixed the lookahead window size to 20.

To remove the remaining bit errors and get full key recovery, we have
to combine more traces. Figure 6.6b shows how the number of traces
affects the key recovery performance. We can recover the full RSA private
key without any bit errors by combining only 11 traces within just 18.5 s.
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Table 6.2: Our results show that cache attacks can be mounted successfully in
the shown scenarios.

Attack from
Attack on Benign Benign Benign

Userspace Kernel SGX Enclave

Malicious Userspace 3 [33, 39] 3 [22] 3 new
Malicious Kernel — — 3 new [8, 17, 37]
Malicious SGX Enclave 3 new 3 new 3 new

This results in a total runtime of less than 130 s for the offline key recovery
process.

Generalization

Based on our experiments we deduced that attacks are also possible in a
weaker scenario, where only the attacker is inside the enclave. On most
computers, applications handling cryptographic keys are not protected
by SGX enclaves. From the attacker’s perspective, attacking such an
unprotected application does not differ from attacking an enclave. We
only rely on the last-level cache, which is shared among all applications,
whether they run inside an enclave or not. We empirically verified that
such attacks on the outside world are possible and were again able to
recover RSA private keys.

Table 6.2 summarizes our results. In contrast to concurrent work on
cache attacks on SGX [8, 17, 37], our attack is the only one that can be
mounted from unprivileged user space, and cannot be detected as it runs
within an enclave.

6.2 Virtualized Environment

We now show that the attack also works in a virtualized environment. As
described in Section 2.1, no hypervisor with SGX support was available at
the time of our experiments. Instead of full virtualization using a virtual
machine, we used lightweight Docker containers, as used by large cloud
providers, e.g., Amazon [13] or Microsoft Azure [36]. To enable SGX
within a container, the host operating system has to provide SGX support.
The SGX driver is then simply shared among all containers. Figure 6.7
shows our setup where the SGX enclaves communicate directly with the
SGX driver of the host operating system. Applications running inside the
container do not experience any difference to running on a native system.
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Figure 6.7: Running the SGX enclaves inside Docker containers to provide
further isolation. The host provides both containers access to the
same SGX driver.

Considering the performance within Docker, only I/O operations and
network access have a measurable overhead [14]. Operations that only
depend on memory and CPU do not see any performance penalty, as these
operations are not virtualized. Thus, caches are also not affected by the
container.

We were successfully able to attack a victim from within a Docker
container without any changes in the malware. We can even perform a
cross-container attack, i.e., both the malware and the victim are running
inside different containers, without any changes. As expected, we require
the same number of traces for a full key recovery. Hence, containers do
not provide additional protection against our malware at all.

7 Countermeasures

Most existing countermeasures cannot be applied to a scenario where a
malicious enclave performs a cache attack and no assumptions about the
operating system are made. In this section, we discuss 3 categories of
countermeasures, based on where they ought to be implemented.

7.1 Source Level

A generic side-channel protection for cryptographic operations (e.g., RSA)
is exponent blinding [30]. It will prevent the proposed attack, but other
parts of the signature process might still be vulnerable to an attack [45].
More generally bit slicing can be applied to a wider range of algorithms
to protect against timing side channels [5, 47]
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7.2 Operating System Level

Implementing countermeasures against malicious enclave attacks on the
operating system level requires trusting the operating system. This would
weaken the trust model of SGX enclaves significantly, but in some threat
models this can be a viable solution. However, we want to discuss the
different possibilities, in order to provide valuable information for the
design process of future enclave systems.

Detecting Malware

One of the core ideas of SGX is to remove the cloud provider from the root
of trust. If the enclave is encrypted and only decrypted after successful
remote attestation, the cloud provider has no way to access the secret
code inside the enclave. Also, heuristic methods, such as behavior-based
detection, are not applicable, as the malicious enclave does not rely on
malicious API calls or user interaction which could be monitored. However,
eliminating this core feature of SGX could mitigate malicious enclaves in
practice, as the enclave binary or source code could be read by the cloud
provider and scanned for malicious activities.

Herath and Fogh [21] proposed to use hardware performance counters to
detect cache attacks. Subsequently, several other approaches instrumenting
performance counters to detect cache attacks have been proposed [9, 19,
40]. However, according to Intel, SGX enclave activity is not visible
in the thread-specific performance counters [26]. We verified that even
performance counters for last-level cache accesses are disabled for enclaves.
The performance counter values are three orders of magnitude below the
values as compared to native code. There are no cache hits and misses
visible to the operating system or any application (including the host
application). This makes it impossible for current anti-virus software and
other detection mechanisms to detect malware inside the enclave.

Enclave Coloring

We propose enclave coloring as an effective countermeasure against cross-
enclave attacks. Enclave coloring is a software approach to partition the
cache into multiple smaller domains. Each domain spans over multiple
cache sets, and no cache set is included in more than one domain. An
enclave gets one or more cache domains assigned exclusively. The as-
signment of domains is either done by the hardware or by the operating
system. Trusting the operating system contradicts one of the core ideas of
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SGX [10]. However, if the operating system is trusted, this is an effective
countermeasure against cross-enclave cache attacks.

If implemented in software, the operating system can split the last-level
cache through memory allocation. The cache set index is determined by
physical address bits below bit 12 (the page offset) and bits > 12 which
are not visible to the enclave application and can thus be controlled by the
operating system. We call these upper bits a color. Whenever an enclave
requests pages from the operating system (we consider the SGX driver as
part of the operating system), it will only get pages with a color that is
not present in any other enclave. This coloring ensures that two enclaves
cannot have data in the same cache set, and therefore a Prime+Probe
attack is not possible across enclaves. However, attacks on the operating
system or other processes on the same host would still be possible.

To prevent attacks on the operating system or other processes, it
would be necessary to partition the rest of the memory as well, i.e.,
system-wide cache coloring [43]. Godfrey et al. [16] evaluated a coloring
method for hypervisors by assigning every virtual machine a partition of
the cache. They concluded that this method is only feasible for a small
number of partitions. As the number of simultaneous enclaves is relatively
limited by the available amount of SGX memory, enclave coloring can
be applied to prevent cross-enclave attacks. Protecting enclaves from
malicious applications or preventing malware inside enclaves is however
not feasible using this method.

Heap Randomization

Our attack relies on the fact, that the used buffers for the multiplication
are always at the same memory location. This is the case, as the used
memory allocator (dlmalloc) has a deterministic best-fit strategy for
moderate buffer sizes as used in RSA. Freeing a buffer and allocating it
again will result in the same memory location for the re-allocated buffer.

We suggest randomizing the heap allocations for security relevant data
such as the used buffers. A randomization of the addresses and thus
cache sets bears two advantages. First, automatic cache set detection is
not possible anymore, as the identified set will change for every run of
the algorithm. Second, if more than one trace is required to reconstruct
the key, heap randomization increases the number of required traces by
multiple orders of magnitude, as the probability to measure the correct
cache set by chance decreases.
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Although not obvious at first glance, this method requires a certain
amount of trust in the operating system. A malicious operating system
could assign only pages mapping to certain cache sets to the enclave,
similar to enclave coloring. Thus, the randomization is limited to only a
subset of cache sets, increasing the probability for an attacker to measure
the correct cache set.

Intel CAT

Recently, Intel introduced an instruction set extension called CAT (cache
allocation technology) [24]. With Intel CAT it is possible to restrict CPU
cores to one of the slices of the last-level cache and even to pin cache lines.
Liu et al. [32] proposed a system that uses CAT to protect general purpose
software and cryptographic algorithms. Their approach can be directly
applied to protect against a malicious enclave. However, this approach
does not allow to protect enclaves from an outside attacker.

7.3 Hardware Level

Combining Intel CAT with SGX

Instead of using Intel CAT on the operating system level it could also be
used to protect enclaves on the hardware level. By changing the eenter

instruction in a way that it implicitly activates CAT for this core, any
cache sharing between SGX enclaves and the outside as well as co-located
enclaves could be eliminated. Thus, SGX enclaves would be protected
from outside attackers. Furthermore, it would protect co-located enclaves
as well as the operating system and user programs against malicious
enclaves.

Secure RAM

To fully mitigate cache- or DRAM-based side-channel attacks memory
must not be shared among processes. We propose an additional fast,
non-cachable secure memory element that resides inside the CPU.

The SGX driver can then provide an API to acquire the element for
temporarily storing sensitive data. A cryptographic library could use
this memory to execute code which depends on secret keys such as the
square-and-multiply algorithm. Providing such a secure memory element
per CPU core would even allow parallel execution of multiple enclaves.

Data from this element is only accessible by one program, thus cache
attacks and DRAM-based attacks are not possible anymore. Moreover,
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if this secure memory is inside the CPU, it is infeasible for an attacker
to mount physical attacks. It is unclear whether the Intel eDRAM imple-
mentation can already be instrumented as a secure memory to protect
applications against cache attacks.

8 Conclusion

Intel claimed that SGX features impair side-channel attacks and recom-
mends using SGX enclaves to protect cryptographic computations. Intel
also claimed that enclaves cannot perform harmful operations.

In this paper, we demonstrated the first malware running in real SGX
hardware enclaves. We demonstrated cross-enclave private key theft in
an automated semi-synchronous end-to-end attack, despite all restrictions
of SGX, e.g., no timers, no large pages, no physical addresses, and no
shared memory. We developed a timing measurement technique with the
highest resolution currently known for Intel CPUs, perfectly tailored to
the hardware. We combined DRAM and cache side channels, to build a
novel approach that recovers physical address bits without assumptions on
the page size. We attack the RSA implementation of mbedTLS , which uses
constant-time multiplication primitives. We extract 96 % of a 4096-bit
RSA key from a single Prime+Probe trace and achieve full key recovery
from only 11 traces.

Besides not fully preventing malicious enclaves, SGX provides protec-
tion features to conceal attack code. Even the most advanced detection
mechanisms using performance counters cannot detect our malware. This
unavoidably provides attackers with the ability to hide attacks as it elimi-
nates the only known technique to detect cache side-channel attacks. We
discussed multiple design issues in SGX and proposed countermeasures
for future SGX versions.

Acknowledgments

This project has received funding from the Euro-
pean Research Council (ERC) under the European
Union’s Horizon 2020 research and innovation programme

(grant agreement No 681402).
This work was partially supported
by the TU Graz LEAD project
”Dependable Internet of Things in
Adverse Environments”.



References 127

References

[1] Ittai Anati, Frank McKeen, Shay Gueron, Haitao Huang, Simon
Johnson, Rebekah Leslie-Hurd, Harish Patil, Carlos V. Rozas,
and Hisham Shafi. Intel Software Guard Extensions (Intel SGX).
Tutorial Slides. Tutorial Slides presented at ICSA 2015. 2015.

[2] ARMmbed. Reduce mbed TLS memory and storage footprint. https:
//tls.mbed.org/kb/how-to/reduce-mbedtls-memory-and-storage-

footprint. Retrieved on October 24, 2016. 2016.

[3] Cyril Arnaud and Pierre-Alain Fouque. “Timing attack against
protected RSA-CRT implementation used in PolarSSL.” In: CT-
RSA 2013. 2013.

[4] Sergei Arnautov et al. “SCONE: Secure Linux Containers with
Intel SGX.” In: 12th USENIX Symposium on Operating Systems
Design and Implementation (OSDI 16). 2016.

[5] Eli Biham. “A fast new DES implementation in software.” In:
International Workshop on Fast Software Encryption. 1997, pp. 260–
272.

[6] Johannes Blömer and Alexander May. “New partial key exposure
attacks on RSA.” In: Crypto’03. 2003.

[7] Dan Boneh, Glenn Durfee, and Yair Frankel. “An attack on RSA
given a small fraction of the private key bits.” In: International
Conference on the Theory and Application of Cryptology and In-
formation Security. 1998.

[8] Ferdinand Brasser, Urs Müller, Alexandra Dmitrienko, Kari Kosti-
ainen, Srdjan Capkun, and Ahmad-Reza Sadeghi. “Software Grand
Exposure: SGX Cache Attacks Are Practical.” In: (2017). url:
http://arxiv.org/abs/1702.07521.

[9] Marco Chiappetta, Erkay Savas, and Cemal Yilmaz. Real time
detection of cache-based side-channel attacks using Hardware Per-
formance Counters. Cryptology ePrint Archive, Report 2015/1034.
2015.

[10] Victor Costan and Srinivas Devadas. Intel SGX explained. Tech.
rep. Cryptology ePrint Archive, Report 2016/086, 2016.

[11] Leonardo De Moura and Nikolaj Bjørner. “Z3: An efficient SMT
solver.” In: International conference on Tools and Algorithms for
the Construction and Analysis of Systems. Springer. 2008, pp. 337–
340.

https://tls.mbed.org/kb/how-to/reduce-mbedtls-memory-and-storage-footprint
https://tls.mbed.org/kb/how-to/reduce-mbedtls-memory-and-storage-footprint
https://tls.mbed.org/kb/how-to/reduce-mbedtls-memory-and-storage-footprint
http://arxiv.org/abs/1702.07521


128 Chapter 6. Malware Guard Extension

[12] John Demme, Matthew Maycock, Jared Schmitz, Adrian Tang,
Adam Waksman, Simha Sethumadhavan, and Salvatore Stolfo.
“On the feasibility of online malware detection with performance
counters.” In: ACM SIGARCH Computer Architecture News 41.3
(2013), pp. 559–570.

[13] Docker. Amazon Web Services - Docker. https://docs.docker.

com/machine/drivers/aws/. 2016.

[14] Wes Felter, Alexandre Ferreira, Ram Rajamony, and Juan Rubio.
“An updated performance comparison of virtual machines and
linux containers.” In: 2015 IEEE International Symposium On
Performance Analysis of Systems and Software (ISPASS). 2015.

[15] Qian Ge, Yuval Yarom, David Cock, and Gernot Heiser. A Survey
of Microarchitectural Timing Attacks and Countermeasures on
Contemporary Hardware. Tech. rep. Cryptology ePrint Archive,
Report 2016/613, 2016., 2016.

[16] Michael Misiu Godfrey and Mohammad Zulkernine. “Preventing
Cache-Based Side-Channel Attacks in a Cloud Environment.” In:
IEEE Transactions on Cloud Computing (Oct. 2014).
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Abstract

Besides cryptographic secrets, software-based side-channel attacks also
leak sensitive user input. The most accurate attacks exploit cache timings
or interrupt information to monitor keystroke timings and subsequently
infer typed words and sentences. These attacks have also been demon-
strated in JavaScript embedded in websites by a remote attacker. We
extend the state-of-the-art with a new interrupt-based attack and the first
Prime+Probe attack on kernel interrupt handlers. Previously proposed
countermeasures fail to prevent software-based keystroke timing attacks
as they do not protect keystroke processing through the entire software
stack.

We close this gap with KeyDrown, a new defense mechanism against
software-based keystroke timing attacks. KeyDrown injects a large number
of fake keystrokes in the kernel, making the keystroke interrupt density
uniform over time, i.e., independent of the real keystrokes. All keystrokes,
including fake keystrokes, are carefully propagated through the shared
library to make them indistinguishable by exploiting the specific properties
of software-based side channels. We show that attackers cannot distinguish
fake keystrokes from real keystrokes anymore and we evaluate KeyDrown
on a commodity notebook as well as on Android smartphones. We show
that KeyDrown eliminates any advantage an attacker can gain from using
software-based side-channel attacks.

1 Introduction

Modern computer systems leak sensitive user information through side
channels. Among software-based side channels, information can leak, for

The original publication is available at http://wp.internetsociety.org/
ndss/wp-content/uploads/sites/25/2018/02/ndss2018_04B-1_Schwarz_
paper.pdf.

http://wp.internetsociety.org/ndss/wp-content/uploads/sites/25/2018/02/ndss2018_04B-1_Schwarz_paper.pdf
http://wp.internetsociety.org/ndss/wp-content/uploads/sites/25/2018/02/ndss2018_04B-1_Schwarz_paper.pdf
http://wp.internetsociety.org/ndss/wp-content/uploads/sites/25/2018/02/ndss2018_04B-1_Schwarz_paper.pdf
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example, from the system or microarchitectural components such as the
CPU cache [11] or the DRAM [43]. Historically, side-channel attacks have
exploited these information leaks to infer cryptographic secrets [30, 40, 58],
whereas more recent attacks even target keystroke timings and sensitive
user input directly [14, 39, 43].

In general, keystroke attacks aim to monitor when a keyboard input
occurs, which either allows inferring user input directly or launching
follow-up attacks [50, 60]. In particular, mobile devices may expose
this information through sensor data, but practical mitigations [48] have
already been proposed. Furthermore, restrictions (on the procfs) have
already been implemented in Android O [13, 24] and are likely to be
upstreamed to the main Linux kernel. Consequently, attackers are left with
side channels to obtain keystroke timings. Especially microarchitectural
attacks allow monitoring memory accesses with a granularity of single
cache lines, and thus also allow recovering keystroke timings with a high
accuracy.

Keystroke timing attacks are hard to mitigate, compared to side-
channel attacks on cryptographic implementations. Indeed, attacks on
cryptographic implementations can be mitigated with changes in the
algorithms, such as making execution paths independent of secret data.
On the contrary, user input travels a long way, from the hardware interrupt
through the operating system and shared libraries up to the user space
application. In order to detect a keystroke, an attacker just needs to probe
a single spot in the keystroke path for activity.

In the general case, keystrokes are non-repeatable low-frequency events,
i.e., if the attacker misses a keystroke, there is no way to repeat the
measurement. However, an attacker that explicitly targets a password
field can record more timing traces when the user enters the password
again. While these traces have variations in timing, due to the variance of
the typing behavior, it allows an attacker to combine multiple traces and
to perform a more sophisticated attack. This makes attacks on password
fields even harder to mitigate.

State-of-the art defense mechanisms [13, 24, 48] only restrict access
to the system interfaces providing interrupt statistics [9, 60], and do
not address all the layers involved in keystroke processing. Therefore,
these defenses do not prevent all software-based keystroke timing attacks.
We first demonstrate two novel side-channel attacks to infer keystroke
timings, that work on systems where previous keystroke timing attacks
are mitigated [13, 24]. The first attack uses the rdtsc instruction to
determine the execution time of an interrupt service routine (ISR), which



136 Chapter 7. KeyDrown

is then used to determine whether or not the interrupt was caused by the
keyboard. The second attack uses Multi-Prime+Probe on the kernel to
determine when a keystroke is being processed in the kernel.

Based on these investigations and state-of-the-art attacks, we identify
three essential requirements for successful elimination of keystroke timing
attacks on the entire software stack. In the presence of the countermeasure:

1. Any classifier based on a single-trace side-channel attack may not
provide any advantage over a random classifier.

2. The number of side-channel traces a classifier requires to detect all
keystrokes correctly must be impractically high.

3. The implementation of the countermeasure may not leak information
about its activity or computations.

Based on the identified requirements, we present KeyDrown, a new
defense mechanism against keystroke timing attacks exploiting software-
based side channels. KeyDrown covers the entire software stack, from the
interrupt source to the user space buffer storing the keystroke, both on
x86 systems and on ARM devices. We cover both the general case where
an attacker can only obtain a single trace, and the case of password input
where an attacker can obtain multiple traces. KeyDrown works in three
layers:

1. To mitigate interrupt-based attacks, KeyDrown injects a large num-
ber of fake keyboard interrupts, making the keystroke interrupt
density uniform over time, i.e., independent of the real keystrokes.
Prime+Probe attacks on the kernel module are mitigated by unifying
the control flow and data accesses of real and fake keystrokes such
that there is no difference visible in the cache or in the execution
time.

2. To mitigate Flush+Reload and Prime+Probe attacks on shared
libraries, KeyDrown runs through the same code path in the shared
library for all, fake and real, keystrokes.

3. To mitigate Prime+Probe attacks on password entry fields, KeyDrown
updates the widget buffer for every fake and real keystroke.

We evaluate KeyDrown on several state-of-the-art attacks as well as
our two novel attacks. In all cases, KeyDrown eliminates any advantage
an attacker can gain from the side channels, i.e., the attacker cannot
deduce sensitive information from the side channel.

We provide a proof-of-concept implementation, which can be installed
as a Debian package compatible with the latest long-term support release of
Ubuntu (16.04). It runs on commodity operating systems with unmodified
applications and unmodified compilers. KeyDrown is started automatically
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and is entirely transparent to the user, i.e., requires no user interaction.
Although our countermeasure inherently executes more code than an
unprotected system, it has no noticeable effect on keystroke latency.
Finally, we also define what KeyDrown cannot protect against, such as
word completion lookups or immediate forwarding of single keystrokes
over the network.

Contributions. The contributions of this work are:

1. We present two novel attacks to recover keystroke timings, that work
in environments where previous attacks fail [13, 24].

2. We identify three essential requirements for an effective countermea-
sure against keystroke attacks.

3. We propose KeyDrown, a multi-layered solution to mitigate keystroke
timing attacks.1

4. We evaluate KeyDrown and show that it eliminates all known at-
tacks.

Outline. The remainder of the paper is organized as follows. In Section 2,
we provide background information. In Section 3, we introduce our novel
attacks and define requirements a defense mechanism has to provide to
successfully mitigate attacks. In Section 4, we describe the three layers
of KeyDrown. In Section 5, we demonstrate that KeyDrown successfully
mitigates keystroke timing attacks. In Section 6, we discuss limitations
and future work. We conclude in Section 7.

2 Background

In this section, we provide background information on interrupt handling
as well as on software-based side channels that leak keystroke timing
information.

2.1 Linux Interrupt Handling

Interrupt handling is one of the low-level tasks of an operating system
and thus highly architecture and machine dependent. This section covers
the general design of how interrupts and their handling within the Linux
kernel work on both x86 PCs and ARMv7 smartphones.

1The code and a demo video are available in a GitHub repository:
https://github.com/IAIK/keydrown.

https://github.com/IAIK/keydrown
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Figure 7.1: Linux interrupt handling on x86.

Interrupts on x86 and x86 64

Figure 7.1 shows a high-level overview of interrupt handling on a dual-
core x86 CPU. Interrupts are handled by the Advanced Programmable
Interrupt Controller (APIC) [21]. The APIC receives interrupts from
different sources: locally and externally connected I/O devices, inter-
processor interrupts, APIC internal interrupts, performance monitoring
interrupts, and thermal sensor interrupts. On multi-core systems, every
CPU core has a local APIC (LAPIC) to handle interrupts. All LAPICs are
connected to one or more I/O APICs which handle the actual hardware
interrupts. The I/O APICs are part of the chipset and provide multi-core
interrupt management by distributing the interrupts to the LAPICs as
described in the ACPI system description tables [36].

Interrupt-generating hardware, such as the keyboard, is connected to
an I/O APIC pin ( 1 ). The I/O APIC uses a redirection table to redirect
hardware interrupts and the raised interrupt vector to the destination
LAPIC ( 2 ) [20]. In the case of multiple configured LAPICs for one
interrupt, the I/O APIC chooses a CPU based on task priorities in a
round-robin fashion [5].

The LAPIC receiving the interrupt vector fetches the corresponding
entry from the Interrupt Descriptor Table (IDT) ( 3 ) which is set up by
the operating system. The IDT contains an offset to the Interrupt Service
Routine (ISR) for every interrupt vector. The CPU saves the current CPU
flags and jumps to the interrupt service routine ( 4 ) which then handles
the interrupt.

After processing, the interrupt service routine acknowledges the inter-
rupt by sending an end-of-interrupt (EOI) to the LAPIC ( 5 ). It then
returns using the iret instruction to restore the CPU flags and to enable
interrupts again. The LAPIC forwards the EOI to the I/O APIC ( 6 )
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Figure 7.2: Linux interrupt handling on ARM.

which then resets the interrupt line to enable the corresponding interrupt
again.

Interrupts on ARM

Figure 7.2 shows a high-level overview of interrupt handling on a dual-core
ARMv7 CPU. On ARM, interrupts are handled by the General Interrupt
Controller (GIC). The GIC is divided into two parts, the distributor,
and a CPU interface for every CPU core [2]. Every interrupt-generating
device is connected to the distributor of the GIC ( 1 ). The distributor
( 2 ) schedules between CPU interfaces according to the interrupt’s affinity
mask.

When a CPU interface receives an interrupt, it signals it to the cor-
responding CPU core ( 3 ). The core reads the interrupt number from
the interrupt acknowledge register to acknowledge it. If the interrupt was
sent to multiple CPU interfaces, all other CPU cores receive a spurious
interrupt, as there is no more pending interrupt.

When receiving an interrupt, the CPU finishes executing the current
instruction, switches to IRQ mode, and jumps to the IRQ entry of the
Interrupt Vector Table (IVT) ( 4 ). The IVT contains exactly one instruc-
tion to jump to a handler function ( 5 ). In this handler function, the
OS branches to the Interrupt Service Routine (ISR) corresponding to the
interrupt number ( 6 ).

When the CPU is done servicing the interrupt, it writes the interrupt
number to the End Of Interrupt register ( 7 ) to signal that it is ready to
receive this interrupt again [1].



140 Chapter 7. KeyDrown

2.2 Microarchitectural Attacks

CPU caches are a small and fast type of memory, buffering frequently used
data to speed-up subsequent accesses. There are typically three levels of
caches in modern x86 CPUs, and two levels in modern ARM CPUs. The
last-level cache is typically shared across cores of the same CPU, which
makes it a target for cross-core side-channel attacks. On Intel x86 CPUs,
the last-level cache is divided into one slice per core. The smallest unit
managed by a cache is a cache line (typically 64 B). Modern caches are
set-associative, i.e., multiple cache lines are considered a set of equivalent
storage locations. A memory location maps to a cache set and slice based
on the physical address [19, 33, 59].

Flush+Reload. Flush+Reload [17, 58] is a technique that allows an
attacker to monitor a victim’s cache accesses at a granularity of a single
cache line. The attacker flushes a cache line, lets the victim perform an
operation, and then reloads and times the access to the cache line. A
low timing indicates that the victim accessed the cache line. While very
accurate, it can only be performed on shared memory, i.e., shared libraries
or binary code. Flush+Reload can neither be performed on dynamic
buffers in a user program nor on code or data in the kernel. Gruss et al.
[14] presented cache template attacks as a technique based on Flush+
Reload to automatically find and exploit cache-based leakage in programs.

Prime+Probe. Prime+Probe [30, 40, 41] is a technique that allows
an attacker to monitor a victim’s cache accesses at a granularity of a cache
set. The attacker primes a cache set, i.e., fills the cache set with its own
cache lines. It then lets the victim perform an operation. Finally, it probes
its own cache lines i.e., measures the access time to them. This technique
does not require any shared memory between the attacker and the victim,
but it is difficult due to the mapping between physical addresses and cache
sets and slices. As Prime+Probe only relies on measuring the latency of
memory accesses, it can be performed on any part of the software stack.
It is possible to perform Prime+Probe on dynamically generated data [28]
as well as kernel memory [40]. Preventing Prime+Probe attacks is difficult
due to the huge attack surface and the fact that Prime+Probe uses only
innocuous operations such as memory accesses on legitimately allocated
memory, as well as timing measurements.

DRAMA. Besides the cache, the DRAM design also introduces side
channels [43], i.e., timing differences caused by the DRAM row buffer. A
DRAM bank contains a row buffer caching an entire DRAM row (8 KB).
Requests to the currently active row are served from this buffer, resulting
in a fast access, whereas other requests are significantly slower. DRAM
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side-channel attacks do not require shared memory and work across CPUs
of the same machine sharing a DRAM module.

2.3 Keystroke Timing Attacks

Keystrokes from Keystroke Timing. Keystroke timing attacks at-
tempt to recover what was typed by the user by analyzing keystroke timing
measurements. These timings show characteristic patterns of the user,
which depend on several factors such as keystroke sequences on the level
of single letters, bigrams, syllables or words as well as keyboard layout
and typing experience [44]. Existing attacks train probabilistic classifiers
like hidden Markov models or neural networks to infer known words or to
reduce the password-guessing complexity [49, 50, 60].

Most keystroke timing attacks exploit the inter-keystroke timing, i.e.,
the timing difference between two keystrokes, but according to Idrus et al.
[18] combinations of key press and key release events could also be exploited.
Pinet et al. [44] report inter-keystroke interval values between 160 ms and
200 ms for skilled typists. Lee et al. [27] define the values depending on
whether a text sequence was trained or entered for the first time, resulting
in inter-keystroke intervals between 125 ms and 215 ms with a variance
between 43 ms and 106 ms, again for trained and untrained text sequences.

Keystroke Timing from Software. A direct software side channel
for keystroke timings is provided through OS interfaces, such as instruction
pointer and stack pointer information leaked through /proc/stat, and
interrupt statistics leaked through /proc/interrupts [60]. As the instruc-
tion pointer and stack pointer information became too unpredictable, Jana
and Shmatikov [22] showed that CPU usage yields much more reliable
information on keystroke timings. Diao et al. [9] demonstrated high-
precision keystroke timing attacks based on /proc/interrupts. However,
these attacks are not possible anymore in Android O [13, 24], as access to
these resources has been restricted.

Vila et al. [53] recovered keystroke timings from timing differences
caused by the event queue in the Chrome browser. Based on the native
attack we present in Section 3.2, Lipp et al. [29] implemented the same
attack in JavaScript. They recovered keystroke timings and identified
user-typed URLs. They also showed that users can be distinguished based
on this attack.

Gruss et al. [14] demonstrated that Flush+Reload allows distinguishing
specific keys or groups of keys based on key-dependent data accesses in
shared libraries. Ristenpart et al. [46] demonstrated a keystroke timing
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attack using Prime+Probe with a false-negative rate of 5 % while mea-
suring 0.3 false positive keystrokes per second. Pessl et al. [43] showed
that it is possible to use DRAM attacks to monitor keystrokes, e.g., in
the address bar of Firefox. However, this attack only works if the target
application performs a massive amount of memory accesses to thrash the
cache reliably on its own.

3 Keystroke Timing Attacks & Defenses

Due to the amount of code executed for every keystroke, there are many
different side channels for keystroke timings. In this section, we introduce
our two novel attacks and compare them to state-of-the-art keystroke
timing attack vectors, in order to understand the requirements for effective
countermeasures. Finally, we derive three requirements for countermea-
sures to be effective against keystroke timing attacks.

The requirements are defined based on precision and recall of side-
channel attacks. The precision is the fraction of true positive detected
keystrokes in all detected keystrokes. If the precision is low, the side
channel yields too many false positives to derive the correct keystroke
timings. The recall is the fraction of true positive detected keystrokes
in all real keystrokes. If the recall is low, i.e., the side channel misses
too many true positives, inter-keystroke timings are corrupted too. A
standard measure of accuracy is the F-score, i.e., the geometric mean of
precision and recall. An F-score of 1 describes a perfect side channel. An
F-score of 0 describes that a side channel provides no information at all.

Note that there is only a limited number of keystroke time frames
that can be reliably distinguished by an attacker, due to the typing speed
and the variance of inter-keystroke timing (cf. Section 2.3). A keystroke
timing attack providing nanosecond-accurate timestamps is actually only
providing the binary information in which time frames a keystroke occurred.
Hence, we can compare side-channel-based classifiers to binary decision
classifiers for these time frames.

An always-zero oracle which never detects any event has an F-score of
0. An always-one oracle which “detects” an event in every possible time
frame, i.e., a large number of false positives, no false negatives, and no
true negatives, is a channel which provides zero information. Similarly,
a random-guessing oracle, which decides for every possible time frame
whether it “detects” an event based on an apriori probability, also provides
zero information. For 8 keystrokes and 100 possible time frames per second,
the F-score for the always-one oracle is 0.15 which is strictly better than
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the F-score of the random-guessing oracle (0.14). An attacker relying on
any side-channel-based classifier with a lower F-score could achieve better
results by simply using an always-one oracle, i.e., in such a case it would
not make sense to use the side-channel-based classifier in the first place.
In the remainder of the paper, we assume that an attacker wants to find
the real 8 keystrokes in 100 possible time frames per second.

This attack model does not have the concept of processes or windows.
Indeed, this is an accurate representation, as side-channel attacks on
keystroke timings are system-wide attacks on shared code, cache sets,
or other shared parts of the microarchitecture. This makes them very
powerful but also provides us a means to defeat them, i.e., an attacker
cannot distinguish real keyboard input in one process or window from
fake keyboard input in another process or window.

3.1 Keystroke Timing Attack Surface

Keystroke processing involves computations on all levels of the software
stack. Hence, targeted solutions like Cloak cannot provide complete
protection in this case [16]. The keyboard interrupt is handled by one
of the CPU cores, which interrupts the currently executed thread. A
significant amount of code is executed in the operating system kernel and
the keyboard driver until the preprocessed keystroke event is handed over
to a user space shared library that is part of the user interface. The
shared library distributes the keystroke event to all user interface elements
listening for the event. Finally, the shared library hands over the keyboard
input to the active user space process which further processes the input,
e.g., store a password character in a buffer. This abundance of code and
data that is executed and accessed upon a keystroke provides a multitude
of possibilities to measure keystroke timings.

3.2 New Attack Vectors

Software side channels through procfs interfaces can be mitigated by
restricting access to them [9, 60]. However, such restrictions do not
prevent keystroke timing attacks. We demonstrate two new attacks to
infer keystroke timings: the first one exploits interrupt timings to detect
keystrokes, and the second one relies on Prime+Probe to attack a kernel
module. Table 7.1 compares the novel attacks we describe in the following
with the state-of-the-art attack vectors (cf. Section 2.3) in terms of attack
techniques and the exploited attack surface.



144 Chapter 7. KeyDrown

Table 7.1: State-of-the-art Software-based Keystroke Timing Attacks and their
Targets.

Kernel Shared library User process

Interface-based 3 [9, 22, 60] 8 8

Timing-based 3 ours 8 8

Flush+Reload 8 3 [14] 8

Prime+Probe on
L1

3 [46] 3 [46] 3 [46]

Prime+Probe on
LLC

3 ours 3 ours 3 ours

DRAMA 8 8 3 [43]

Low-Requirement Interrupt Timing Attack. We propose a new
timing-based attack that only requires unprivileged sand-boxed code exe-
cution on the targeted platform and an accurate timing source, e.g., the
rdtsc instruction or a counter thread. The basic idea is to monitor differ-
ences in the execution time of acquiring high-precision time stamps, e.g.,
the rdtsc instruction, as outlined in Algorithm 1. While small differences
between successive time stamps allow us to infer the CPU utilization,
larger differences indicate that the measurement process was interrupted.
In particular, I/O events like keyboard interrupts lead to clearly visible
peaks in the execution time, due to the interaction of the keyboard ISR
with hardware and the subsequent processing of keystrokes. Modern
operating systems have core affinities for interrupts, which generally do
not change until the system is rebooted, and core affinities for threads.
Hence, once a thread runs on the core for the keyboard interrupt, it will
continuously be interrupted by every keyboard interrupt, making this
attack surprisingly reliable. By starting multiple threads an attacker can
first run on all cores and after detecting which thread receives keyboard
interrupts, terminate all threads but the one that is running on the right
core.

Note that this attack does not benefit at all from attacker process
and victim process running on the same core. The keyboard interrupt is
scheduled based on its core affinity and not based on the core affinity of
any victim thread. Hence, the attack works best if the attacker has a lot
of computation time on the interrupt-handling core, but not the victim
core.

Figure 7.3 illustrates these observations in a timing trace recorded
while the user was typing a password. The bars indicate actual keystroke
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for i ∈ {1, . . . , N} do
tsc[i]← rdtsc();
if tsc[i]− tsc[i− 1] > threshold then

events[i]← tsc[i];
diff [i]← tsc[i]− tsc[i− 1];

end

end
Algorithm 1: Recording interrupt timing
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Figure 7.3: Measured delta between continuous rdtsc calls while entering a
password. Keystroke events interrupt the attacker and thus cause
higher deltas. Background color illustrates the keystroke ground
truth. Periodic interrupts at 1.025 and 1.049 have a different
interruption time.

events, which almost perfectly match certain measurement points. Based
on this plot, we can clearly distinguish keyboard interrupts (around 60 000
cycles) from other interrupts. For example, rescheduling interrupts can
be observed with a difference of about 155 000 cycles. In this attack, we
achieve a precision of 0.89 and a recall of 1, resulting in an F-score of
0.94, which means a significant advantage over an always-one oracle of
+537.4 %.

In our attack, we targeted the laptop keyboard of a Lenovo ThinkPad
T460s (i.e., a PS/2 keyboard), and touchscreens of multiple smartphones
(cf. Appendix). The attack might not work on USB keyboards, as they
are typically configured for polling instead of interrupts. However, the
defense mechanism we present in Section 4 protects USB keyboards as
well.

A preliminary version of our attack was the basis for an implementation
without rdtsc in JavaScript embedded in websites [29]. The authors used
this attack to detect the URL typed by the user with a high accuracy
and even distinguish different users typing on the same machine. Showing
that the attack even works in this much more constrained environment
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Figure 7.4: Multi-Prime+Probe attack on password input. Keystrokes cause
higher activity in more cache sets. Background color illustrates the
keystroke ground truth.

underlines the practicality of our attack. It is not influenced by foreground,
background, or sandboxed operation.

Multi-Prime+Probe Attack on the Kernel. Our second attack
relies on Prime+Probe to attack the keyboard interrupt handler within
the kernel. More specifically, we target the code in the keyboard interrupt
handler that is executed each time a key is pressed. Thereby, keystroke
events can be inferred by observing cache activity in the cache set used
by the keyboard interrupt handler.

To find the cache sets that are accessed by the keyboard interrupt
handler, we first need to find the physical addresses where the code is
located. We can use the TSX-based side channel by Jang et al. [23] to locate
the code within the kernel. Kernel Address-Space-Layout Randomization
was not enabled by default until Ubuntu 16.10. Thus, an attacker can also
just use known physical addresses from an attacker-controlled system.

To reduce the influence of system noise, we developed a new form of
Prime+Probe attack called Multi-Prime+Probe. Multi-Prime+Probe com-
bines the information from multiple simultaneous Prime+Probe attacks
on different addresses. Figure 7.4 shows the result of such a Multi-Prime+
Probe attack on the keyboard interrupt handler. In a post-processing step,
we smoothed the Multi-Prime+Probe trace with a 500 µs sliding window.
The keystroke events cause higher activity in the targeted cache sets and
thus produce clearly recognizable peaks for every key event. Despite
doubts that such an attack can be mounted [15], our attack is the first
highly accurate keystroke timing attack based on Prime+Probe on the
last-level cache. More specifically, we achieve a precision of 0.71 and a
recall of 0.92, resulting in an F-score of 0.81, which is significantly better
than state-of-the-art Prime+Probe attacks.
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3.3 Requirements for Elimination of Keystroke Timing At-
tacks

As demonstrated in the previous section, we are able to craft new attacks
with fewer requirements than state-of-the-art attacks. Hence, countermea-
sures against keystroke timing attacks must be designed in a generic way,
in all affected layers of the software stack, covering known and unknown
attacks.

Attack Model. We assume that an attacker can run an unprivileged
program on the target machine, with a recently updated system. As
sensor-based attacks [6] are already addressed in [48], and Android O [13,
24] also mitigates various procfs attacks, we consider them out of scope
for this paper.

The attacker is able to continuously monitor a side channel to obtain
traces for all user input. We assume the (hypothetical) countermeasure
against keystroke timing attacks was already installed when the attacker
gained unprivileged access to the machine. Consequently, the attacker
cannot obtain keystroke timing templates and thus cannot perform a
template attack.

We assume that an attacker can generally obtain only a single trace
for any user input sequence, but multiple traces for password input. In
contrast to side-channel attacks on algorithms, which can be repeated
multiple times, user input sequences are generally not (automatically)
repeatable, and thus an attacker cannot obtain multiple traces. An
exception are phrases that are repeatedly entered in the same way, such
as login credentials and especially passwords. A countermeasure must
address both cases.

To effectively eliminate keystroke timing attacks, we identify the 3
following requirements a countermeasure must fulfill.

R1 : Minimize Side Channel Accuracy. As user input sequences
are in general not (automatically) repeatable, keystroke timing attacks
require a high precision and high recall to succeed. To be effective, a coun-
termeasure must reduce the F-score enough so that the attacker does not
gain any advantage from using the side channel over an always-one oracle.
More specifically, the F-score of the side-channel based classifier may not
be above the F-score of the always-one oracle (0.15). Ristenpart et al. [46]
reported a false-negative rate of 5 % with 0.3 false positives per second. At
an average typing speed for a skilled typist of 8 keystrokes per second [44],
the F-score is thus 0.96, which is an advantage over an always-one oracle
of +545.3 %. Gruss et al. [14, 15] reported false-negative rates ≤ 8 % with
no false positives, resulting in an F-score of > 0.96, which is an advantage
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over an always-one oracle of +546.9 %. Thus, we assume a countermeasure
is effective if it reduces the F-score of side channels significantly, such that
using the side channel gives an advantage over an always-one oracle of
≤0.0 %.

R2 : Reduction of Statistical Characteristics in Password In-
put. In the case of a password input, we assume that an attacker can
combine information from multiple traces, i.e., exploit statistical character-
istics. A countermeasure is effective if the attacker requires an impractical
number of traces to reach the F-score of state-of-the-art attacks, i.e.,
higher than 0.95.

Specifically, if the side-channel attack requires more traces than can
be practically obtained, we consider the side-channel attack not practical.
Studies [7, 8, 10, 47, 54] estimate that most users have 1–5 different
passwords and enter 5 passwords per day on average. It is also estimated
that 56% of users change their password at least once every 6 months.
Thus, even if we assume that we attack a user with a single password
that is entered 5 times per day, the expected number of measurement
traces that an attacker is able to gather after 6 months is 913. Assuming
that attackers might come up with new side-channel attacks, a generous
security margin must be applied. We consider a countermeasure effective
if it requires more than 1825 traces, i.e., traces for a whole year, to reach
an F-score of 0.95.

R3 : Implementation Security. R1 and R2 define how the coun-
termeasure must be designed to be effective. However, the implementation
itself can indirectly violate R1 or R2 by leaking side-channel information
on computations of the countermeasure itself. Consequently, an attacker
may be able to filter the true positive keystrokes. We thus require that the
countermeasure may not have distinguishable code paths or data access
patterns to guarantee that it is free from leakage.

If the implementation does not leak by itself, an attacker is only left
with the low F-scores from R1 and R2 . If all requirements are met,
classical password recovery attacks like brute force and more sophisticated
attacks using Markov n-grams [32, 37], probabilistic context-free grammars
(PCFG) [52, 55], or neural networks [35], are more practical than a side-
channel attack in the presence of the countermeasure.

In the following section, we describe the design of a countermeasure
that fulfills all three requirements.
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Figure 7.5: Multi-layered design of KeyDrown.

4 KeyDrown Multi-layer Design

We designed KeyDrown as a multi-layered countermeasure.1 Each layer
builds up on the layer beneath and adds additional protection. Fig-
ure 7.5 shows how the layers are connected to each other. The first layer
implements a protection mechanism against interrupt-based attacks and
timing-based attacks by artificially injecting interrupts. Any real keyboard
interrupt only replaces one fake keyboard interrupt within a multitude of
fake interrupts, i.e., it perfectly blends in the stream of random fake key-
board interrupts. The implementation ensures that it makes the keystroke
interrupt density uniform over time and thus, independent of the real
interrupts. Figuratively speaking, plotting the number of keystroke inter-
rupts over time will yield a line which has no deviations at the points in
time where real keystrokes occur.

KeyDrown exploits that keystroke timing side channels do not provide
the information which process or window is receiving the keystroke. These
side channels are system-wide attacks on shared code, shared cache sets,
or other shared parts of the microarchitecture. While this makes them
very powerful (cross-core, cross-user attacks), it is also the basis for our
defense mechanism. An attacker cannot distinguish real keyboard input
in one process or window from fake keyboard input in another process or
window. KeyDrown exploits this technicality and sends the fake keyboard
input through the entire software stack into a special process and window.

1The code and a demo video are available in a GitHub repository:
https://github.com/keydrown/keydrown.

https://github.com/keydrown/keydrown


150 Chapter 7. KeyDrown

Hook IRQStart timer

Eventis real? Inject IRQ

Inject timer interrupt

Randomly delay ISR

Fetch IRQ handler

Send eventRestart timer

TimerIRQ

Yes

N
o

Figure 7.6: General flowchart of the kernel module.

All keystrokes, i.e., real keystrokes and fake keystrokes, are passed to
the library in a way which is indistinguishable for an attacker. The only
difference is the key code value as well as the target process and window,
which both cannot be obtained in keystroke timing side channels.

The second layer protects the library handling the user input against
Flush+Reload attacks, including cache template attacks, and Prime+
Probe attacks. For every keystroke event received from the kernel, a
random keystroke is sent to a hidden window. The library cannot dis-
tinguish between real and fake keystrokes and thus both have the same
execution path. Note that this also triggers screen redraw events, hence,
the screen-redraw interrupt side channel is also covered by KeyDrown.

In the third layer, the actual password entry field is protected against
Prime+Probe attacks by accessing the underlying buffer whenever a real
or a fake keystroke is received.

Combining the three layers, the system-wide set of cache lines that
are touched by the code paths through the entire software stack for real
and fake keystrokes, are identical. As there is no difference, this voids any
advantage an attacker could have gained from a cache side channel.

4.1 First Layer

Basic Concept. Figure 7.6 shows the program flow for the kernel part of
KeyDrown for both x86 and ARM. We use a non-periodic one-shot timer
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interrupt with a random delay to inject a fake keystroke.1 This leads to a
uniform random distribution of keystrokes over time.

The kernel module handles two types of events: Hardware interrupts
from the input device, and the timer interrupts. If the kernel module
receives one of our timer interrupts, it injects a keyboard interrupt. If
it receives a keyboard interrupt, it injects a non-periodic one-shot timer
interrupt. Thus, for real and fake keystrokes both interrupts occur. To
minimize the effect of the real keyboard interrupt on the interrupt density,
the upcoming non-periodic one-shot timer interrupt is canceled. Note
that the time between the fake keyboard interrupt and the user pressing
a key was also a random delay. KeyDrown acts as if this random delay
was planned for the fake keyboard interrupt all along. That is, the
real keyboard interrupt takes the place of our fake keyboard interrupt.
Hence, the real keyboard interrupt has no additional influence on the
keystroke interrupt density function. This guarantees that overall, the
keystroke interrupt density remains uniform and real keystrokes cannot
be distinguished from fake keystrokes.

For the fake keystrokes, the kernel uses a typically unused key value.
The kernel does not have varying code paths and data accesses based on
the key value, hence, the same code is executed for both real and fake
keystrokes. In both cases, the keystroke handler is delayed by a small
random delay to hide timing differences from interrupt runtimes. Finally,
all keystrokes are passed to the library through the same data structures
(cf. Figure 7.5). Consequently, the attacker cannot use a Prime+Probe
or Multi-Prime+Probe attack on the kernel to distinguish real and fake
keystrokes.

Implementation Details. The first layer of KeyDrown is imple-
mented as a Linux kernel module that aims to prevent interrupt-based
attacks on keystrokes. We do not require a custom kernel or any patches
to the Linux kernel itself, but only the Linux kernel header files for the
running kernel. All functionality is implemented in one generic kernel
module that can be loaded into any Linux kernel from version 3.4 to
4.10, the newest release at the time of writing. The interrupt hardware
and handling mechanism is compatible with all personal computers; thus,
there is no further limitation on PC hardware or Linux distributions.

1Timer interrupts are often known as periodic interrupts triggering regular op-
erations, e.g., scheduling. However, on modern systems there are significantly more
features to timer interrupts, such as non-periodic one-shot timers [21]. One-shot timers
are architectural features that can be used through legitimate kernel interfaces and
have no side effects on any system timers.
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Figure 7.7: Linux kernel module design for x86 and the Snapdragon SoC.
Snapdragon specific functions are marked in blue.

Figure 7.7 shows the implementation details of the KeyDrown kernel
module. The non-periodic one-shot timer interrupts are implemented
using the Linux platform-independent high-resolution timer API [31]. On
Linux, a driver can register an interrupt handler for a specific interrupt
which is called whenever the CPU receives the interrupt. The interrupt
service routine do IRQ calls the general handle irq function which sub-
sequently calls generic handle irq desc to execute the correct handler
for every interrupt. To receive all hardware interrupts, we change the
input device’s interrupt handler to a function within our kernel module.
Afterwards, we forward the interrupt to the actual input device driver
(i.e., i8042 interrupt on x86, and irq touch handler on the Nexus 5
(ARM)). Every time the kernel receives one of the non-periodic timer
interrupts or a real hardware interrupt, we restart the non-periodic timer
with a new random delay to maintain the uniform random distribution
over time.

The kernel module triggers a hardware interrupt for every non-periodic
timer interrupt. On x86, we can simply execute the int assembly instruc-
tion with the corresponding interrupt number. This spurious keyboard
interrupt travels up until the point where the keyboard driver tries to
read the scancode from the hardware. As the driver does not execute
the entire i8042 interrupt function for spurious interrupts, we access
the remaining function to fetch it into the cache as if it was executed. In
contrast, for real keys, we access the code that injects the keys to fetch
it into the cache as if it was executed. From an attacker’s point of view,
there is no difference in cache activity between a data fetch and a code
fetch, i.e., a Prime+Probe attack cannot determine the difference.
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We inject a scancode of a typically unused key, such as F16 or a Win-
dows multimedia key using the standard serio interrupt interface. Thus,
from this point on the only difference between real and fake keystrokes is
the scancode. Finally, all scancodes are sent to the upper software layers
and run through the same execution path.

On the ARM platform, hardware interrupts and device drivers are
hardware dependent. We decided to implement our proof-of-concept on
the widespread Qualcomm Snapdragon Mobile Station Modem (MSM)
SoC [45].

ARM processors generally do not provide an assembly instruction to
generate arbitrary interrupts from supervisor mode. Instead, we have
to communicate with the interrupt controller directly. The Snapdragon
MSM SoC implements its own intermediate I/O interrupt controller. All
interrupt generating hardware elements are connected to this interrupt
controller and not directly to the GIC. Therefore, if we want to inject
an interrupt, we write the interrupt state of the touchscreen interrupt
via memory mapped I/O registers to the MSM I/O interrupt controller.
The remaining execution path is analogous to the x86 module. When the
driver aborts due to a spurious interrupt, we fetch the irq touch handler

to produce the same cache footprint as if it was executed. We inject an
out-of-bounds touch event using the input event, input report abs,
and input sync functions, which is then handed to the upper layers.

4.2 Second Layer

Basic Concept. The second layer countermeasure ensures that the
control flow within the key-handling library is exactly the same for both
real and injected keystrokes. The fundamental idea of the second layer is
that real and injected keystrokes should have the same code paths and
data accesses in the library. We rely on the events injected in the first
layer to propagate them further through the key-handling library. The
injected keys sent by our first layer are valid, but typically unused keys,
thus they travel all the way up to the user space to the receiving user
space application. However, these unused keys might not have the exact
same path within the library.

Gruss et al. showed that an attacker can build cache template attacks
based on Flush+Reload [14] to detect keystrokes and even distinguish
groups of keys. This cache leakage can also be measured with Multi-
Prime+Probe. Both attacks exploit the cache activity of certain functions
that are only called if a keystroke is handled, i.e., varying execution paths
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and access patterns [14]. We mitigate these attacks by duplicating every
key event (cf. Figure 7.5) running through multiple execution paths and
access sequences simultaneously. The key value of the duplicated key
event is replaced by a random key value, and the key event is sent to a
hidden window. Hence, the two key events, the real and the duplicated
one, are processed simultaneously by the remainder of the library and the
two applications. This introduces a significant amount of noise on cache
template attacks on the library layer.

The real key event at this point may still be a fake keystroke from the
kernel. However, we duplicate the key event in order to trigger key value
processing and key drawing in the library and the hidden window for both
fake and real keystrokes. Consequently, we cannot distinguish real and
fake keystrokes on the library layer using a side channel anymore.

Implementation Details. One of the most popular user interface
libraries for Linux is GTK+ [57]. The GTK+ library handles the user
input for many desktop environments and is included in most Linux
distributions [51]. As we cannot hide cache activity, we generate artificial
cache activity for the same cache lines that are active when handling real
user inputs.

The kernel provides all events, such as keyboard inputs, through the
/dev/input/event* pseudo-files to the user space. The X Window System
uses these files to provide all events to the GTK+ event queue.

On x86, the second layer is a standalone GTK+ application. On
system startup, we create a hidden window containing a text field. The
application uses poll to listen to the /dev/input/event* interface to
get notified whenever a keyboard event occurs. This allows KeyDrown
to have a very low performance overhead, as the application is not using
CPU time as long as it is waiting inside the poll function. Whenever we
receive a keystroke event from the kernel, we create an additional GTK+
keystroke event with a random key that is associated with the text field
of the hidden window. For every keystroke — regardless of whether it is a
printable character or not — that comes from the kernel, the same path is
active within the library. Thus, an attacker cannot distinguish an injected
keystroke from a real keystroke anymore.

The second layer has no knowledge of an event’s source. Thus, it
cannot violate R3 , as the information whether a keystroke is real or
injected is not present in the second layer.

On Android, the handling of input events is considerably simpler.
The injected events travel directly to the foreground application without
going to any non-Android library. Thus, all events have exactly the
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same execution path, and it is only necessary to drop our fake event
immediately before the registered touch event handler is called. To not
leak any information through the non-executed touch handler, we access
the cache lines in the same way as if the touch handler was executed.

4.3 Third Layer

Basic Concept. While the first layer protects against interrupt-based
attacks and the second layer prevents attacks on the library handling the
user inputs, the buffer that stores the actual secret is not protected and
can still be monitored using a Prime+Probe attack. The fake keystrokes
sent by the kernel are unused key codes, which do not have any effect
on the user interface element or the corresponding buffer. We mitigate
cache attacks on this layer by generating cache activity on the cache lines
that are used when the buffer is processed for any key code received from
the kernel. More specifically, we access the buffer every time the library
receives a keystroke event from the kernel. This ensures that the buffer is
cached for both real and fake keystrokes.

An attacker who mounts a Flush+Reload attack against the library, or
a Prime+Probe attack directly on the buffer, sees cache activity for both
real and injected events. This is also the case for cache template attacks,
as the injected events induce a significant amount of noise in both the
profiling and the exploitation phase. Therefore, the third layer protects
against attacks that are mounted against the Android keyboard as shown
by Lipp et al. [28], or Multi-Prime+Probe attacks directly on the input
field buffer (cf. Section 3.2).

Implementation Details. In GTK+, the GtkEntry widget imple-
ments the GtkEditable interface, which describes a text-editing widget,
used as a single-line text and password entry field. By setting its visibility
flag, entered characters are shown as a symbol and, thus, hidden from the
viewer.

Implementing the countermeasure directly in the GTK+ library would
require rebuilding the library and all of its dependencies. As this is
highly impractical, we chose a different approach: LD PRELOAD allows
listing shared objects that are loaded before other shared objects on the
execution of the program [26]. By using this environment variable, we can
overwrite the gtk entry new function that is called when a new object
of GtkEntry should be created. In our own implementation, we register
a key press event handler for the new entry field. This event handler is
called on both real and injected keys and accesses the underlying buffer.
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On Android, the basic concept is the same. It is, however, implemented
as part of the keyboard and not the library. The keyboard relies on the
inotifyd command to detect touch events provided by the kernel. If a
password entry field is focused, the keyboard accesses the password entry
buffer on every touch event by calling the key handling function with a
dummy key. This ensures that both the buffer as well as the keyboard’s
key handling functions are active for every event.

5 Evaluation

We evaluate KeyDrown with respect to the requirements R1 , R2 , R3
as well as discuss the performance of our implementation. We evaluate
the x86 version of KeyDrown on a Lenovo ThinkPad T460s (Intel Core
i5-6200U) and the ARM version on both an LG Nexus 5 (ARMv7) and
a OnePlus 3T (ARMv8). A large comparison table can be found in
the appendix. As the results are very similar for all architectures, we
provide the results for the LG Nexus 5 (ARMv7) and the OnePlus 3T
(ARMv8) in the appendix. We evaluate four different side channels with
and without KeyDrown: procfs, rdtsc, Flush+Reload (including cache
template attacks), and Prime+Probe on the last-level cache. We discuss
Prime+Probe attacks on the L1 cache and DRAMA side-channel attacks.
Table 7.2 gives an overview of all known and new attacks and whether
KeyDrown prevents them.

To evaluate KeyDrown, we chose a uniform key-injection interval
[0 ms, 20 ms]. Note that this is not a constant interrupt rate but quite
the opposite. Any real keystroke replaces the currently scheduled key
injection. Real keystrokes are much rarer and when splitting time into
20 ms intervals, the distribution of real keystrokes in these 20 ms intervals
is uniform, identical to the uniform distribution of our key-injection delay.
Hence, based on the time a keystroke arrives there is no side channel
leaking whether it was a fake one, or a real one. This leads to a uniform
interrupt density function with 100 events per second, independent of the
real keystrokes.

As described in Section 3, we compare our results to an always-one
oracle and a random-guessing oracle. A random-guessing oracle, which
chooses randomly — without any information — for every 10 ms interval
whether there was a keystroke based on an apriori probability, would
achieve an F-score of 0.14. The always-one oracle performs slightly better,
as it has a higher true positive rate of 100 %, but it also has a false positive
rate of 100 %, i.e., the oracle neither uses nor provides any information.
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Table 7.2: Overview which attacks work ( ), partly work ( ) and do not work
( ) with enabled (3) and disabled (8) KeyDrown.

Android < 8 Android ≥ 8 Linux
KeyDrown 8 3 8 3 8 3

Interface-based [9, 22, 60]
Interrupt-based (rdtsc, [53])

Prime+Probe on L1 [46]
Prime+Probe on LLC

Multi-Prime+Probe
Flush+Reload [14]

DRAMA [43]

The F-score of the always-one oracle is 0.15 and thus, higher than the
F-score of a random-guessing oracle. If a side channel yields an F-score of
this value or below, the attacker gains no advantage over the always-one
oracle from this side channel.

For all evaluated attacks, we provide the precision of the attack with
and without KeyDrown, based on the best threshold distinguisher we can
find. KeyDrown does not influence the recall, as it does not reduce the
number of true positives and it also does not increase the number of real
keystrokes. However, we provide the recall for all attacks with a recall
below 1. The harmonic mean of precision and recall — the F-score —
gives an indication how well the countermeasure works. We provide the
advantage over the always-one oracle as a direct indicator on whether it
makes sense to use the side channel or not.

5.1 Requirement R1

We evaluate KeyDrown with respect to R1 , the elimination of single-trace
attacks. R1 defines that a side channel may not provide any advantage
over an always-one oracle, i.e., the advantage measured in the F-score
must be ≤0.0 %. We show that KeyDrown fulfills this requirement by
mounting state-of-the-art attacks with and without KeyDrown. Table 7.3
summarizes the F-scores for all attacks with and without KeyDrown. In
all cases, KeyDrown eliminates any advantage that can be gained from the
side channel, when considering single-trace attacks only. In some cases,
the numerous false positives and false negatives lead to an even worse
F-score.
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Table 7.3: F-score without and with KeyDrown and advantage over always-
one oracle for state-of-the-art attacks. KeyDrown eliminates any
side-channel advantage.

Side Channel no KeyDrown (∆ always-one) KeyDrown (∆ always-one)

procfs 1.00 (+575.0 %) 0.15 (+0.0 %)
rdtsc 0.94 (+537.4 %) 0.14 (−3.8 %)
Flush+Reload 0.99 (+569.3 %) 0.09 (−40.2 %)
LLC Prime+
Probe

0.81 (+440.0 %) 0.11 (−27.7 %)
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Figure 7.8: Flush+Reload attack on address 0x381c0 of libgdk-3.so. Injected
keystrokes (N) and real events (•) are not distinguishable when
KeyDrown is active (before dotted line).

Flush+Reload. Flush+Reload allows an attacker to monitor ac-
cesses to memory addresses of a shared library with a very high ac-
curacy. Figure 7.8 shows the result of such an attack against the
gdk keymap get modifier mask function at address 0x381c0 of libgdk-
3.so (v3.20.4 on Ubuntu Linux), the shared library isolating GTK+ from
the windowing system. This function is executed on every keystroke
to retrieve the hardware modifier mask of the windowing system. The
attacker measures cache hits on the monitored address whenever a key
is pressed and, thus, can spy on the keystroke timings very accurately.
While KeyDrown is active, the attacker measures additional cache hits
on every injected keystroke and cannot distinguish between real and fake
keystrokes. When KeyDrown is not active, the attack is successful.

For other addresses found using cache template attacks, we made
the same observation. Without KeyDrown, both profiling and exploit-
ing vulnerable addresses is possible. With KeyDrown, we still find all
addresses that are loaded into the cache upon keystrokes, however, as we
cannot distinguish between real and fake keystrokes we cannot exploit this
anymore. Without KeyDrown, the precision is 1.00 and the F-score is 0.99,
which is a +569.3 % advantage over an always-one oracle. If KeyDrown
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Figure 7.9: Multi-Prime+Probe attack on the 5 cache sets from 0x2514250 to
0x2514390 of i8042 interrupt. Injected keystrokes (N) and real
events (•) are not distinguishable with KeyDrown (before dotted
line).

is active, the precision is lowered to 0.05 and, thus, the resulting F-score
is 0.09, which is a (negative) advantage of −40.2 % over the always-one
oracle.

Prime+Probe. If an attacker cannot use Flush+Reload, a fallback
to Prime+Probe is possible. The disadvantage of a Prime+Probe attack
on the last-level cache is the amount of noise that increases the false-
positive rate. Prior to this work, there was no successful keystroke attack
using Prime+Probe on the last-level cache. We perform the Multi-Prime+
Probe attack presented in Section 3.2 to attack keystroke timings.

Figure 7.9 shows the results of inferring keystrokes by detecting the
keyboard interrupt handler’s cache activity using Multi-Prime+Probe. We
monitored 5 cache sets in parallel for a higher noise robustness. Without
KeyDrown, the precision is already at a quite low value of 0.71 with a
recall of only 0.92, yielding an F-score of 0.81, which is an advantage
over an always-one oracle of +440.0 %. Memory accesses to one of the
cache sets by any other application cannot be distinguished from a cache
set access by the keyboard interrupt handler, causing a high number of
false positives. If we enable KeyDrown, the precision drops to 0.06, as
the attacker additionally measures the noise generated by the injected
keystrokes. The F-score is then 0.11, which is a (negative) advantage over
an always-one oracle of -27.7 %.

Figure 7.10 shows the results of mounting a Multi-Prime+Probe attack
on the buffer of a password field within a GTK+ application. Although
there is more noise visible in the traces, we achieve the same precision
and F-score as for the attack on the kernel module when KeyDrown is
disabled. If we enable KeyDrown, the precision drops to 0.05, which is a
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Figure 7.10: Multi-Prime+Probe attack on the 5 cache sets corresponding to
a password field’s buffer within a demo application. Injected
keystrokes (N) and real events (•) are not distinguishable with
KeyDrown (before dotted line).

bit lower than the precision on the kernel, resulting in an F-score of 0.10,
which is again no advantage over an always-one oracle.

Interrupts. KeyDrown also protects against interrupt-based attacks,
including our new timing-based attack. For the attacks based on the
procfs interface [9, 22], we measure an average reading interval of 980
cycles. With our new attack based on rdtsc, we can measure every 95
cycles on average, resulting in a probing frequency one order of magnitude
higher.

Figure 7.11 and Figure 7.12 illustrate the effect of our countermea-
sure on the procfs-based interrupt attack and the rdtsc-based attack,
respectively. Without KeyDrown, we achieve a precision of 1.00 for the
procfs-based attack and a precision of 0.89 for the rdtsc-based attack,
resulting in an F-score of 1.00 and 0.94 respectively. Enabling KeyDrown
reduces the precision to 0.08 and 0.07 respectively. Thus, the resulting
F-score is 0.15, which is exactly the same as the always-one oracle, for
the procfs-based attack, and 0.14 for the rdtsc-based attack, which is a
(negative) advantage over an always-one oracle of -3.8 %.

5.2 Requirement R2

KeyDrown reduced the F-score of all state-of-the-art attacks such that
using the side channel gives an advantage over an always-one oracle of
≤0.0 %. An attacker might still be able to combine multiple traces from
the same user and build a binary classifier, if the user predictably and
repeatedly types the same character sequence. Such a classifier may
achieve a higher precision and a higher F-score, as long as there is actually
meaningful information in the corresponding traces. However, there is a
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Figure 7.11: procfs-based attack. Injected keystrokes (N) and real events (•)
are not distinguishable when KeyDrown is active (after dotted
line).
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Figure 7.12: rdtsc-based attack. Injected keystrokes (N) and real events (•)
are not distinguishable when KeyDrown is active (after dotted
line).

practical limit on the number of traces an attacker can gather from the
user, which R2 estimates to be 1825 traces.

In our attack scenario, we model a powerful attacker who can take
advantage of the following properties:

1. Noise-free side channel: The used side channel is noise-free, i.e.,
only real and fake keystrokes are recorded, no other system noise.

2. Perfect (re-)alignment: The attacker can detect when a password
input starts with a variance as low as the variance of a single inter-
keystroke interval. Additionally, the attacker has an alignment-oracle
providing perfect re-alignment for the traces after each guessed
keystroke. This leads to the same variance for every key instead of
an accumulated variance.

3. Known length: The attacker knows the exact length of the pass-
word and expects exactly as many keystrokes.

This attacker is far stronger than any practical attacker.

We generate simulated traces that fulfill the properties above and
calculate the average of the perfectly (re-)aligned traces. As our attacker
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knows the length n of the password, he finds the n most likely positions
where a Gaussian distribution with the known inter-keystroke interval
variance matches. If the expected value µ of each Gaussian curve is within
the variance of the real keystroke, we assume that the number of traces
was sufficient to extract the positions of the real keystrokes.

We set the simulated typing variance to ±40 ms which is a bit less than
the value reported by Lee et al. [27] for trained text sequences. In total,
we generated 300 000 simulated traces, each containing 8 keystrokes within
2 s. From this set of simulated traces, we evaluated how many randomly
chosen traces we have to combine to extract the correct positions of the
keystrokes. We found that an attacker requires an average of 2458 traces
to extract the correct positions. This is significantly more than the 1825
traces deemed to be secure in R2 .

5.3 Requirement R3

As KeyDrown fulfills R1 and R2 , we can be assured that the underlying
technique is a working countermeasure. However, as the implementation
of a countermeasure itself can leak information, we need to ensure that
KeyDrown does not create a new software-based side channel in order to
satisfy R3 .

First Layer. The first layer runs in the kernel and can thus only
be attacked using Prime+Probe. Figure 7.7 shows that, in general, we
have the same execution flow and data accesses. For the few deviations,
we prevent any potential cache leakage from non-executed code paths by
performing the same memory accesses as if they were executed. As an
attacker cannot distinguish if a cache activity is caused by an execution
or a memory read, the module’s cache activity does not leak additional
information to an attacker. We investigated the cache activity on the
cache sets used by the KeyDrown kernel module in a Prime+Probe attack
and found no leakage from our module.

Second Layer. To make use of the same noise as in the first layer,
the second layer listens to the /dev/input/event0 pseudo-file containing
all keyboard events. This file is not world-readable but only readable by
members of the input group. Thus, this layer runs as a separate keydrown
user with default limited privileges and additional access to this file.

As the second layer is a user space binary, an attacker could theoreti-
cally mount a Flush+Reload attack against the second layer. However,
attacking the second layer does not result in any additional information.
The second layer does not know whether an event is generated from a real
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or an injected keystroke. For every event, a random printable character
is sent to the hidden window. Thus, the execution path for printable
characters is always active, and the attacker cannot learn any additional
information from attacking the second layer. The same is also true for
Prime+Probe, even a successful attack does not provide additional in-
formation. We investigated the cache activity of the KeyDrown shared
library parts and the KeyDrown user space binary using a template attack
and did not find any leakage.

Third Layer. The third layer builds upon the second layer, and thus
the same argumentation as for the second layer holds. An attacker cannot
distinguish real and injected keystrokes in the second layer as all events
are merged within the kernel. As the third layer relies on the same source
as the second layer, there is also no leakage from the third layer. Thus,
any attack on the third layer does not give an attacker any advantage
over any other attack. We investigated the cache activity of the control
flow and data accesses up to the point where the input is stored in the
buffer in a Prime+Probe attack and found no leakage.

5.4 Performance

On the x86 architecture, we evaluate the performance impacts of running
our KeyDrown implementation on standard Ubuntu 16.10. We use lm-
bench [34], a set of micro benchmarks for performance analysis of UNIX
systems, and PARSEC 3.0 [4], a benchmark suite intended to simulate a
realistic workload on multicore systems.

The lmbench results for the latency benchmarks show a performance
overhead of 6.9 %. However, as the execution time of the lmbench bench-
marks is in the range of microseconds to nanoseconds, the overhead does
not allow for definite conclusions about the overall system performance.
Still, we can see that the injected interrupts have only a small impact on
the kernel performance.

To measure the overall performance, we run the PARSEC 3.0 bench-
mark with different numbers of cores. The average performance overhead
over all measurements for any number of cores is 2.5 %. For workloads
that do not use all cores, the performance impact is only 2.0 % for one core
and 2.5 % for two cores. Only if the CPU is under heavy load, we observe
a higher performance impact of 3.1 % when running the benchmarks on
all cores.

On ARM, we evaluate the battery consumption of KeyDrown. We
measure the power consumption in three different scenarios, always over
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the timespan of 5 min. First, if the screen is off, our fake interrupts are
completely disabled, and thus, KeyDrown does not increase the power
consumption if the mobile phone is not used. Second, if the screen is
turned on, but the keyboard is not shown, KeyDrown increases the power
consumption slightly by 3.9 %. Third, if the keyboard is shown, the power
consumption with KeyDrown increases by 15.6 %. However, as most of the
time, the keyboard is not shown, KeyDrown does not have great impacts
on the overall power consumption. In total, KeyDrown reduces the battery
life time of an average user by 4.6 %.1

Note that all the performance measurements were done using the
proof-of-concept. We expect that the proof-of-concept can be considerably
improved in terms of performance overhead and battery usage by not
injecting the fake interrupts all the time but only while the user is actually
entering text.

5.5 Other Attacks

While we already demonstrated that the most powerful side-channel
attacks are mitigated, we discuss three other attacks subsequently. The
Prime+Probe side channel results from the victim program evicting a
cache line of the attacker. As the last-level cache is inclusive, any eviction
from the last-level cache also evicts this line from the L1 cache. However,
if a cache line is evicted from the L1 cache it may still be in the last-level
cache. In this case, the attacker would miss the eviction and thus the
targeted event. In our evaluation, we find that the recall is very close to
1 in all cases. This means that we do not miss any events. Hence, there
is no additional information that an attacker could gain from a Prime+
Probe attack on the L1 cache. Consequently, evaluating Prime+Probe on
the last-level cache is sufficient to conclude that Prime+Probe on the L1
cache does not leak additional information.

The DRAMA side-channel attack presented by Pessl et al. [43] results
from a massive number of secret-dependent memory accesses that lead to
heavy cache thrashing, i.e., the victim program accesses lots of memory
locations that are mapped to the same cache lines. It is therefore unclear
whether or not KeyDrown protects against DRAMA. In particular, it does
not protect against the specific attack against keystrokes in the Firefox

1For an average user, with a screen-on-time of 145 minutes, 2617 touch actions [56],
and 1 charge per day (21.7 hours standby time) [25], an average typing speed of 20
words per minute [3] and hence, 100 characters per minute [38], we can assume a
keyboard-shown time of 26 minutes per battery charge. For modern devices, screen-on
consumes approximately 33 times more battery than standby [12].
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address bar (cf. Section 6). However, we observe that KeyDrown adds
significant amounts of noise to the attack.

To our surprise, we found that KeyDrown also mitigates the keystroke
timing attack based on the event queue of the Chrome browser by Vila et al.
[53] (USENIX Sec’17). They state that the leakage is due to the time it
takes Chrome to enqueue and dispatch every keystroke event. However, we
investigated their attack and were able to reproduce it on MacOS systems
reliably, but not on other operating systems, indicating that this effect
is not purely Chrome-specific, but also has other influences. We believe
that their attack exploits multiple effects in combination: the Chrome
event queue and the interruption by the hardware interrupts as in our
rdtsc-based attack, which is additionally amplified by the significantly
higher I/O latency caused by the atypical MacOS design for interrupt
handling [42].1

A preliminary version of our rdtsc-based interrupt timing attack was
the basis for the same attack in JavaScript [29]. They were able to identify
the user typed URL, and distinguish different users based on this attack.
As they report, KeyDrown successfully mitigates their attack in JavaScript
as well.

KeyDrown has a significant effect on the attack by Jana et al. [22],
exploiting CPU utilization spikes. The fake keystrokes introduce similar
small CPU utilization spikes making their attack impractical. Similarly,
KeyDrown triggers screen redraws through the hidden window (cf. Sec-
tion 4). Hence, KeyDrown also makes the screen-redraw-based attack by
Diao et al. [9] impractical.

6 Limitations and Future Work

KeyDrown mitigates software-based side-channel attacks on keystrokes
and keystroke timings in general. This includes even the application layer
without changing an existing application if either:

• the input is processed only after the user finished entering the text
(e.g., pressing a button on a login form), and there is no immediate

1Interrupt handlers on MacOS only enqueue the task to handle an interrupt in
a queue, taking almost zero time. This queue is processed by an interrupt service
thread, doing the actual interrupt handling. This additional step increases the total
computation time compared to traditional interrupt handling. As the attack is not
influenced by which thread does the actual interrupt handling, this increased interruption
time amplifies the side channel.
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action when a key is pressed (e.g., as with password fields or simple
text input fields),

• or the application is designed to remove side-channel information.

Otherwise, the application layer might still leak timing information when
performing intense computations for every single keystroke, e.g., autocom-
plete or live search features [43].

Song et al. [50] demonstrated keystroke timing attacks performed by
a malicious observer on the same network. Zhang et al. [60] speculated
that this attack vector could also be exploited through /proc/net, which
might still be available in Android O. However, this is not a local software-
based attack but a side channel for a remote attacker. Hence, dedicated
countermeasures beyond KeyDrown should be implemented to prevent
this attack.

Some software-based side channel attacks may be unaffected by
KeyDrown, e.g., the sensor-based attacks exploiting the accelerometer [6],
but these attacks can be thwarted by introducing noise [48].

KeyDrown protects against software-based attacks on keystrokes as
well as touch events. However, swipe movements are not protected as
their interrupt rate is too high. While this is not a problem in the case of
a password input — if a password can be swiped and thus pasted from a
dictionary, there is little to protect — it is future work to investigate how
to extend KeyDrown to protect swipe movements.

Furthermore, our novel side channels emphasize the necessity to deploy
KeyDrown widely. Multi-Prime+Probe attacks provide a significantly
higher accuracy than previous Prime+Probe attacks on dynamic memory
and kernel memory. It is likely that Multi-Prime+Probe works similarly
in cloud systems and thus allows highly accurate attacks like keystroke
timing attacks across virtual machine boundaries.

Our current proof-of-concept is not optimized for usability. For most
of the system, the real and fake keystrokes are indistinguishable, the
keystrokes are just led to different windows. Known limitations are that
fake keystrokes interrupt key repetition and may interfere with input
methods in modern computer games. However, these limitations can be
overcome by adapting how key repetition is implemented.

7 Conclusion

Keystrokes are processed on many different layers of the software stack and
are thus not entirely covered by previously proposed defense mechanisms.
In this article, we presented KeyDrown, a novel defense mechanism that
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mitigates keystroke timing attacks. KeyDrown injects a large number
of fake keystrokes on the kernel level and propagates them — through
all layers of the software stack — up to the user space application. A
careful design and implementation of this countermeasure ensures that
all software routines involved in the processing of a keystroke are loaded,
irrespective of whether a real or a fake keystroke is processed. Thereby,
KeyDrown mitigates interrupt-based attacks, Prime+Probe attacks, and
Flush+Reload attacks on the entire software stack. With KeyDrown, an
attacker cannot distinguish fake from real keystrokes in practice anymore.
Our evaluation shows that KeyDrown eliminates any advantage an attacker
can gain from side channels, i.e., ≤0.0 % advantage over an always-one
oracle, thus, it successfully mitigates keystroke timing attacks.
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Appendix

We compare the accuracy of four different side channels with and without
KeyDrown (procfs, rdtsc, Flush+Reload, and Prime+Probe on the
last-level cache) on three different architectures: a Lenovo ThinkPad
T460s (Intel Core i5-6200U), an LG Nexus 5 (ARMv7), and a OnePlus
3T (ARMv8). Table 7.4 summarizes the F-scores for all attacks with and
without KeyDrown. KeyDrown prevents keystroke timing attacks in all
cases when considering single-trace attacks only.

We performed our experiments on the touchscreen soft-keyboard of the
Nexus 5. With KeyDrown, the precision is lowered to 0.01 and, thus, the
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Table 7.4: F-score without and with KeyDrown for state-of-the-art attacks.

Device Side Channel unprotected KeyDrown

ThinkPad T460s procfs 1.00 0.15
LG Nexus 5 procfs 1.00 0.15
OnePlus 3T procfs 1.00 0.15

ThinkPad T460s Interrupt-timing (rdtsc) 0.94 0.14
LG Nexus 5 Interrupt-timing 0.94 0.14
OnePlus 3T Interrupt-timing 0.99 0.15

ThinkPad T460s Flush+Reload 0.99 0.09
LG Nexus 5 Flush+Reload 0.99 0.02
OnePlus 3T Flush+Reload 0.93 0.10

ThinkPad T460s Prime+Probe on LLC 0.81 0.11
LG Nexus 5 Prime+Probe on LLC 0.80 0.11
OnePlus 3T Prime+Probe on LLC 0.89 0.07
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Figure 7.13: procfs-based attack on the Nexus 5. Injected keystrokes (N) and
real events (•) are not distinguishable with KeyDrown (before
dotted line).

resulting F-score of 0.02 means a ≤−86.5 % advantage over an always-one
oracle.

Figure 7.13 and Figure 7.14 show a procfs-based interrupt attack and a
timing-based attack, both on the Nexus 5. Without KeyDrown, we achieve
a precision of 1.00 for the procfs-based attack and 0.89 for the timing-
based attack, resulting in an F-score of 1.00 and 0.94 respectively. Enabling
KeyDrown reduces the precision to only 0.08 and 0.07 respectively. Thus,
the resulting F-score is 0.15 for the procfs-based attack, and 0.14 for the
timing-based attack, which is an advantage of ≤0.0 % over an always-one
oracle.

Figure 7.15 shows the results of inferring keystrokes by detecting the
touchscreen interrupt handler’s cache activity using Multi-Prime+Probe
on the Nexus 5. We monitored 5 cache sets in parallel for noise robustness.
Without KeyDrown, the precision is 0.71 with a recall of only 0.92, as
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Figure 7.14: Timing-based attack on the Nexus 5. Injected keystrokes (N) and
real events (•) are not distinguishable with KeyDrown (before
dotted line).
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Figure 7.15: Multi-Prime+Probe attack on the 5 cache sets from 0x382659be

to 0x38265abe of touch irq handler on the Nexus 5. Injected
keystrokes (N) and real events (•) are not distinguishable when
KeyDrown is active (before dotted line).

an access to one of the cache sets by any other application cannot be
distinguished from a cache set access by the touchscreen interrupt handler,
resulting in a high number of false positives. If we enable KeyDrown, the
precision drops to 0.06, as the attacker additionally measures the noise
generated by the injected keystrokes. Thus, the F-score is 0.11.

We performed our experiments on the OnePlus 3T touchscreen soft-
keyboard. Figure 7.16 shows a Flush+Reload attack on libflinger.so.
Without KeyDrown, the precision is 0.88 and the F-score is thus 0.93.
If KeyDrown is active, the precision is lowered to 0.05 and, thus, the
resulting F-score of 0.10 means a ≤−32.5 % advantage over an always-one
oracle.

Figure 7.17 and Figure 7.18 show a procfs-based interrupt attack as
well as a timing-based attack, both on the OnePlus 3T. The attack has a
precision of 1.00 (F-score of 1.00) and 0.99 (F-score of 0.99) respectively.
Enabling KeyDrown reduces the precision to only 0.08 (F-score is 0.15)
and 0.07 (F-score is 0.15) respectively, which is a 0.0 % advantage over an
always-one oracle.
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Figure 7.16: Flush+Reload attack on address 0x28ec0 of libflinger.so on
the OnePlus 3T. Injected keystrokes (N) and real events (•) are
not distinguishable when KeyDrown is active (before dotted line).
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Figure 7.17: procfs-based attack on the OnePlus 3T. Injected keystrokes (N)
and real events (•) are not distinguishable with KeyDrown (before
dotted line).

Figure 7.19 shows the results of inferring keystroke timings by detecting
the touchscreen interrupt handler’s cache activity using Multi-Prime+
Probe on the OnePlus 3T. We monitored 5 cache sets in parallel for a
higher noise robustness. Without KeyDrown, the precision is already at a
quite low value of 0.80 with a recall of only 1.00, as access to one of the
cache sets by any other application cannot be distinguished from a cache
set access by the touchscreen interrupt handler. Thus, this attack has
a high number of false positives. If we enable KeyDrown, the precision
drops to 0.10, as the attacker additionally measures the noise generated
by the injected keystrokes. Thus, the F-score is 0.07, which is a ≤−52.7 %
advantage over an always-one oracle.
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Figure 7.18: Timing-based attack on the OnePlus 3T. Injected keystrokes (N)
and real events (•) are not distinguishable with KeyDrown (before
dotted line).
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Figure 7.19: Multi-Prime+Probe attack on the 5 cache sets from 0x3fc0355c28

to 0x3fc0355d68 of msm gpio irq handler of the OnePlus 3T.
Injected keystrokes (N) and real events (•) are not distinguishable
when KeyDrown is active (before dotted line).
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Abstract

Modern web browsers are ubiquitously used by billions of users, connecting
them to the world wide web. From the other side, web browsers do not
only provide a unified interface for businesses to reach customers, but
they also provide a unified interface for malicious actors to reach users.
The highly optimized scripting language JavaScript plays an important
role in the modern web, as well as for browser-based attacks. These
attacks include microarchitectural attacks, which exploit the design of the
underlying hardware. In contrast to software bugs, there is often no easy
fix for microarchitectural attacks.

We propose JavaScript Zero, a highly practical and generic fine-grained
permission model in JavaScript to reduce the attack surface in modern
browsers. JavaScript Zero facilitates advanced features of the JavaScript
language to dynamically deflect usage of dangerous JavaScript features. To
implement JavaScript Zero in practice, we overcame a series of challenges
to protect potentially dangerous features, guarantee the completeness
of our solution, and provide full compatibility with all websites. We
demonstrate that our proof-of-concept browser extension Chrome Zero
protects against 11 unfixed state-of-the-art microarchitectural and side-
channel attacks. As a side effect, Chrome Zero also protects against 50 % of
the published JavaScript 0-day exploits since Chrome 49. Chrome Zero has
a performance overhead of 1.82% on average. In a user study, we found that
for 24 websites in the Alexa Top 25, users could not distinguish browsers
with and without Chrome Zero correctly, showing that Chrome Zero has no
perceivable effect on most websites. Hence, JavaScript Zero is a practical
solution to mitigate JavaScript-based state-of-the-art microarchitectural
and side-channel attacks.

The original publication is available at http://wp.internetsociety.org/
ndss/wp-content/uploads/sites/25/2018/02/ndss2018_07A-3_Schwarz_
paper.pdf.
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1 Introduction

Over the past 20 years, JavaScript has evolved to the predominant language
on the web. Of the 10 million most popular websites, 94.7 % use Java-
Script [54]. Dynamic content relies heavily on JavaScript, and thus, most
pages use JavaScript to improve the user experience, using, e.g., AJAX
and dynamic page manipulation. Especially for platform-independent
HTML5 applications, JavaScript is a vital component.

With the availability of modern browsers on mobile devices, web
applications target smartphones and tablets as well. Furthermore, mobile
platforms typically provide a number of sensors and features not present
on commodity laptops and desktop computers. To make use of these
additional features, the World Wide Web Consortium (W3C) provides
drafts and recommendations for additional APIs [53]. Examples include
the Geolocation API [52] and the Battery Status API [49]. These APIs are
supported by most browsers and allow developers to build cross-platform
web applications with similar functionality as native applications.

Undoubtedly, allowing every website to use such APIs has security
and privacy implications. Websites can exploit sensors to fingerprint the
user [51] by determining the number of sensors, their update frequency,
and also their value (e.g., for battery level or geolocation). Furthermore,
sensor data can be exploited to mount side-channel attacks on user input [7,
23].

Microarchitectural attacks can also be implemented in JavaScript,
exploiting properties inherent to the design of the microarchitecture, such
as timing differences in memory accesses. Although JavaScript code runs
in a sandbox, Oren et al. [33] demonstrated that it is possible to mount
cache attacks in JavaScript. Since their work, a series of microarchitectural
attacks have been mounted from websites, such as page deduplication
attacks [14], Rowhammer attacks [15], ASLR bypasses [13], and DRAM
addressing attacks [40].

As a response to these attacks, some—but not all—of the APIs have
been restricted by reducing the resolution (e.g., High Precision Time
API) [2, 6, 9] or completely removing them (e.g., DeviceOrientation Event
Specification) [50]. However, these countermeasures are incomplete as
they do not cover all sensors and are circumventable [13, 40].

A common trait of all attacks is that they rely on the behavior of
legitimate JavaScript features, which are rarely required by benign web
applications. However, removing these JavaScript features entirely breaks
the compatibility with the few websites that use them in a non-malicious
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way. This is, for example, the case with NoScript, a browser extension
that completely blocks JavaScript on a page [10].

We propose JavaScript Zero, a fine-grained JavaScript permission sys-
tem, which combines ideas from existing permission systems in browsers
and smartphone operating systems. JavaScript Zero facilitates advanced
features of the JavaScript language to overcome the following three chal-
lenges:

C1 Restrictions must not be circumventable using self-modifying code,
such as higher-order scripts.

C2 Restricting access to potentially dangerous features must be irre-
versible for a website.

C3 Restrictions must not have a significant impact on compatibility and
user experience.

To overcome challenge C1, we utilize advanced language features such
as virtual machine layering [19] for security. In contrast to previous
approaches [56], virtual machine layering allows redefining any function
of the JavaScript virtual machine at runtime. Hence, we can cope with
obfuscated code and higher-order scripts, i.e., scripts that generate scripts.
JavaScript Zero replaces all potentially dangerous functions with secure
wrappers. When calling such a function, JavaScript Zero decides whether
to perform a pre-defined action or ask the user for permission to execute
the function.

To overcome challenge C2, we utilize closures, another advanced feature
of the JavaScript language, for security. Variables in closures cannot
be accessed from any outside scope, providing us with language-level
protection for our countermeasure. With closures, we make all references
to original unprotected functions inaccessible to the website.

We provide a proof-of-concept implementation as a Chrome browser
extension, Chrome Zero. In contrast to previous protection techniques [18,
24], Chrome Zero requires no changes to the browser source code. Hence,
Chrome Zero requires lower maintenance efforts while at the same time
users also benefit from the security of the most up-to-date browser.

To overcome challenge C3, we keep user interactions to a minimum
and provide multiple protection levels with pre-defined restrictions. We
do not only provide a binary permission system to block or allow certain
functionality, but we also allow to modify the semantics of functions
and objects. For example, the user can allow the usage of the high-
precision timing API but decides to reduce the available resolution to
100 ms instead of 5 µs. These settings can be configured by either the user
or the community, through a protection list.
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We evaluate the efficacy of Chrome Zero on 23 recent side-channel
attacks, microarchitectural attacks, and 0-day exploits. We show that it
successfully prevents all microarchitectural and side-channel attacks in
JavaScript. Although not a main goal of Chrome Zero, it also prevents
50 % of the published JavaScript 0-day exploits since Chrome 49. This
shows that we were able to solve challenges C1 and C2.

To evaluate whether Chrome Zero solves challenge C3, we measure the
performance overhead and the impact on the user experience for the Alexa
Top 25 websites, at the second highest security level. On average, we
observe a performance overhead of 1.82 %. In a double-blind user study,
we found that for 24 websites out of the Alexa Top 25, users could not
distinguish browsers with and without Chrome Zero showing that Chrome
Zero has no significant effect on the user experience.

Contributions. The contributions of this work are:

1. We propose JavaScript Zero, a fine-grained JavaScript permission
system to mitigate state-of-the-art microarchitectural and side-
channel attacks.

2. We show that combining advanced and novel features of the Java-
Script language, e.g., virtual machine layering, closures, proxy ob-
jects, and object freezing, can be retrofitted to form a basis for
strong security boundaries.

3. We show that JavaScript Zero successfully prevents all published
microarchitectural and side-channel attacks and as a side effect
also mitigates 50 % of the published JavaScript 0-day exploits since
Chrome 49.

4. We evaluate our proof-of-concept implementation Chrome Zero in
terms of performance and usability. Chrome Zero has 1.82 % per-
formance overhead on average on the Alexa Top 10 websites. In a
double-blind user study, we show that users cannot distinguish a
browser with and without Chrome Zero for 24 of the Alexa Top 25
websites.

The remainder of the paper is organized as follows. Section 2 provides
preliminary information necessary to understand the defenses we propose.
Section 3 defines the threat model. Section 4 describes the design of
JavaScript Zero. Section 5 details our proof-of-concept implementation
Chrome Zero. Section 7 provides a security analysis of Chrome Zero as
an instance of JavaScript Zero. Section 7 provides a usability analysis of
Chrome Zero. Section 8 discusses related work. We conclude our work in
Section 8.
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Table 8.1: Requirements of state-of-the-art side-channel attacks in JavaScript.
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Rowhammer.js [15]
Practical Memory Deduplication Attacks in Sandboxed Javascript [14]

Fantastic Timers and Where to Find Them [40] †

ASLR on the Line [13] †

The spy in the sandbox [33]
Loophole [47]

Pixel perfect timing attacks with HTML5 [44] †

The clock is still ticking [45]
Practical Keystroke Timing Attacks in Sandboxed JavaScript [20] †

TouchSignatures [23]
Stealing sensitive browser data with the W3C Ambient Light Sensor API [31]

† If accurate timing is not available, it can be approximated using a combination of
multithreading and shared data.

2 Preliminaries

In this section, we provide preliminary information on microarchitectural
attacks in native code and JavaScript, and on JavaScript exploits.

2.1 Microarchitectural Attacks

Modern processors are highly optimized for computational power and
efficiency. However, optimizations often introduce side effects that can
be exploited in so-called microarchitectural attacks. Microarchitectural
attacks comprise side-channel and fault attacks on microarchitectural
elements or utilizing microarchitectural elements, e.g., pipelines, caches,
buses, DRAM. Attacks on caches have been investigated extensively in the
past 20 years, with a focus on cryptographic implementations [4, 17]. The
timing difference between a cache hit and a cache miss can be exploited to
learn secret information from co-located processes and virtual machines.
Modern attacks use either Flush+Reload [55], if read-only shared memory
is available, or Prime+Probe [34] otherwise. In both attacks, the attacker
manipulates the state of the cache and later on checks whether the state
has changed. Besides attacks on cryptographic implementations [34, 55],
these attack primitives can also be used to defeat ASLR [13] or to build
covert-channels [22].
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2.2 Microarchitectural and Side-Channel Attacks in Java-
Script

Microarchitectural attacks were only recently exploited from JavaScript.
As JavaScript code is sandboxed and inherently single-threaded, attackers
face certain challenges in contrast to attacks in native code. We identified
several requirements that are the basis for microarchitectural attacks, i.e.,
every attack relies on at least one of these primitives. Moreover, sensors
found on many mobile devices, as well as modern browsers introduce side-
channels which can also be exploited from JavaScript. Table 8.1 gives an
overview of, to the best of our knowledge, all 11 known microarchitectural
and side-channel attacks in JavaScript and their requirements.

Memory Addresses JavaScript is a sandboxed scripting language
which does not expose the concept of pointers to the programmer. Even
though pointers are used internally, the language never discloses virtual
addresses to the programmer. Thus, an attacker cannot use language
features to gain knowledge of virtual addresses. The closest to virtual
addresses are ArrayBuffers, contiguous blocks of virtual memory. Array-
Buffers are used in the same way as ordinary arrays but are faster and
more memory efficient, as the underlying data is actually an array which
cannot be resized [26]. If one virtual address within an ArrayBuffer is
identified, the remaining addresses are also known, as both the addresses
of the memory and the array indices are linear [13, 14].

Gras et al. [13] showed that ArrayBuffers can be exploited to recon-
struct virtual addresses. An attacker with knowledge of virtual addresses
has effectively defeated address space layout randomization, thus cir-
cumventing an important countermeasure against memory corruption
attacks.

Microarchitectural attacks typically do not rely on virtual addresses
but physical addresses. Cache-based attacks [15, 33] rely on parts of the
physical address to determine cache sets. DRAM-based attacks [14, 15,
40] also rely on parts of the physical address to determine the beginning
of a page or a DRAM row. However, for security reasons, an unprivileged
user does not have access to the virtual-to-physical mapping. This is not
only true for JavaScript, but also for any native application running on a
modern operating system.

Consequently, microarchitectural attacks have to resort to side-channel
information to recover this information. Gruss et al. [14] and Gras et al.
[13] exploit the fact that browser engines allocate ArrayBuffers always
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page aligned. The first byte of the ArrayBuffer is therefore at the
beginning of a new physical page and has the least significant 12 bits set
to ‘0’.

For DRAM-based attacks, this is not sufficient, as they require more
bits of the physical address. These attacks exploit another feature of
browser engines and operating systems. If a large chunk of memory is
allocated, browser engines typically use mmap to allocate this memory,
which is optimized to allocate 2 MB transparent huge pages (THP) instead
of 4 KB pages [15, 40]. As these physical pages are mapped on demand,
i.e., as soon as the first access to the page occurs, iterating over the array
indices results in page faults at the beginning of a new page. The time to
resolve a page fault is significantly higher than a normal memory access.
Thus, an attacker knows the index at which a new 2 MB page starts. At
this array index, the underlying physical page has the 21 least significant
bits set to ‘0’.

Accurate Timing Accurate timing is one of the most important primi-
tives, inherent to nearly all microarchitectural and side-channel attacks. As
most of the microarchitectural and side-channel attacks exploit some form
of timing side channel, they require a way to measure timing differences.
The required resolution depends greatly on the underlying side channel.
For example, DRAM-row conflicts [15, 40], cache-timing differences [13,
33], and interrupt timings [20] require a timing primitive with a resolution
in the range of nanoseconds, whereas for detecting page faults [14, 15, 40],
exploiting SVG filters [44], or mounting cross-origin timing attacks [45], a
resolution in the range of milliseconds is sufficient.

JavaScript provides two interfaces for measuring time. The Date object
represents an instance in time, used to get an absolute timestamp. The
object provides a method to get a timestamp with a resolution of 1 ms.
The second interface is the Performance object which is used to provide
information about page performance. This interface provides several
timing relevant properties and functions, such as the performance.now()

function, which provides a highly accurate timestamp in the order of
microseconds [40]. Another part of the Performance object is the User
Timing API, a benchmarking feature for developers, which also provides
timestamps in the order of microseconds.

However, the resolution of these built-in timers is not high enough to
measure microarchitectural side channels, where the timing differences are
mostly in the order of nanoseconds. Thus, such attacks require a custom
timing primitive. Usually, it is sufficient to measure timing differences, and
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an absolute timestamp is not necessary. Thus, access to a full-blown clock is
not required, and attackers usually settle for some form of a monotonically
incremented counter as a clock replacement. Kohlbrenner et al. [18] and
Schwarz et al. [40] investigated new methods to get highly accurate timing.
Most of their timing primitives rely on either building counting loops
using message passing [40] or on interfaces for multimedia content [18].
Using such self-built timers, it is possible to measure timing differences
with a nanosecond resolution.

Multithreading JavaScript is inherently single-threaded and based on
an event loop. All events, such as function calls or user inputs, are pushed
to this queue and then serially, and thus synchronously, handled by the
engine. HTML5 introduced multithreading to JavaScript, in the form of
worker threads (web workers), allowing real parallelism for JavaScript code.
With web workers, every worker has its own (synchronous) event queue.
The synchronization is handled via messages, which are again events.
Thus, JavaScript does not require explicit synchronization primitives.

The support for true parallelism allows to mount new side-channel
attacks. Vila et al. [47] exploited web workers to spy on different browser
windows by measuring the dispatch time of the event queue. This timing
side-channel attack allows to detect user inputs and identify pages which
are loaded in a different browser window. A similar attack using web
workers was shown by Lipp et al. [20]. However, this attack does not
exploit timing differences in the browser engine, but on the underlying
microarchitecture. An endless loop running within a web worker detects
CPU interrupts, which can then be used to deduce keystroke information.

Shared Data To synchronize and exchange data, web workers have
to rely on message passing. Message passing has the advantage over
unrestricted memory sharing as there is no requirement for synchronization
primitives. Sending an object to a different worker transfers the ownership
of the object as well. Thus, objects can never be changed by multiple
workers in parallel.

As transferring the ownership of objects can be slow, JavaScript intro-
duced SharedArrayBuffers. A SharedArrayBuffer is a special object
which behaves the same as a normal ArrayBuffer, but it can be simul-
taneously accessed by multiple workers. Inherently, this can reintroduce
synchronization problems.

Schwarz et al. [40] and Gras et al. [13] showed that this shared data
can be exploited to build timing primitives with a nanosecond resolution.
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Their timing primitive requires only one worker running in an endless loop
and incrementing the value in a SharedArrayBuffer. The main thread
can simply use the value inside this shared buffer as a timestamp. Using
this method, it is possible to get a timestamp resolution of 2 ns, which is
almost as high as Intel’s native timestamp counter, and thus sufficient to
mount DRAM- and cache-based side-channel attacks.

Sensor API As JavaScript is also used on mobile devices, HTML5
introduced interfaces to interact with device sensors. Some sensors are
already restricted by the existing permission system in the browser, such
as the geolocation API. This permission system uses callback functions
to deliver results. Hence, it is inherently incompatible with existing syn-
chronous APIs and cannot be instrumented to protect arbitrary JavaScript
functions. As these sensors can affect the user’s privacy, the user has to
explicitly permit usage of these interfaces on a per-page basis. However,
several other sensors are not considered invasive in terms of security or
privacy.

Mehrnezhad et al. [23] showed that access to the motion and orientation
sensor can compromise security. By recording the data from these sensors,
they were able to infer PINs and touch gestures (e.g., zoom) of the user.
Although not implemented in JavaScript, Spreitzer [42] showed that access
to the ambient light sensor (as specified by the W3C [48]) can also be
exploited to infer user PINs. Similarly, Olejnik [31] utilized the Ambient
Light Sensor API to recover information on the user’s browsing history,
to violate the same-origin policy, and to steal cross-origin data.

2.3 JavaScript Exploits

In addition to microarchitectural and side-channel attacks, there are also
JavaScript-based attacks exploiting vulnerabilities in the JavaScript engine.
An exploit triggers an implementation error in the engine to divert the
control flow of native browser code. These implementation errors can—and
should—be fixed by browser vendors. Side-channel attacks, however, often
arise from the hardware design. In contrast to software, the hardware and
hardware design cannot be easily changed.

As exploits are based on implementation errors and not design issues,
we cannot identify general requirements for such attacks. Every Java-
Script function and each interface can be potentially abused if there is a
vulnerability in the engine. Thus, we cannot provide a general protection
against exploits, and exploits are therefore not in the scope of this paper.
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However, we can still reduce the attack surface of the browser, and we
provide practical protection against 50 % of the published JavaScript 0-day
exploits since Chrome 49.

Exploits often rely on arrays to craft their payload. Moreover, bugs
are often triggered by errors in functions responsible for parsing complex
data (e.g., JSON). As some of the functions used in exploits are also
requirements for microarchitectural and side-channel attacks, we also
evaluate exploits in this paper to confirm that our permission system is
also applicable to reduce the general attack surface of the browser, i.e.,
hardening browsers against 0-day exploits until they are fixed by the
browser vendors.

3 Threat Model

In our threat model, we assume that the attacker is capable of performing
state-of-the-art microarchitectural and software-based side-channel attacks
in JavaScript. This is a reasonable assumption, as we found most published
attacks to be accompanied with proof-of-concept source code allowing us
to reproduce the attacks.

We assume that the victim actively uses a browser, either natively, or
in a virtual machine. The attacker resides either in a different, co-located
virtual machine [14, 40] or—for most attacks—somewhere else on the
internet. In all state-of-the-art microarchitectural and software-based side-
channel attacks, the attacker has some form of remote code execution. In
line with these works, we assume that the attacker was able to maliciously
place the attack code in a benign website. This can be achieved if the
benign website either includes content from a (malicious) third party,
such as advertisements or libraries, or if an attacker has compromised the
benign site in some way. Another possibility is that the victim navigated
to a malicious website controlled by the attacker. Hence, in all cases, the
attacker-controlled JavaScript code is executed in the victim’s browser.

The browser contains a JavaScript engine that executes code embedded
in a website inside the browser sandbox. The sandbox ensures that
JavaScript code cannot access any system resources not intended to
be accessed. Furthermore, every page has its own execution context
protected by the sandbox, i.e., code on different pages cannot influence
each other. We assume that an attacker is not aware of exploitable bugs
in the JavaScript engine, and hence, can only use legitimate JavaScript
features. Exploiting bugs in the interpreter, sandbox, or other execution
environments, is out of scope for this paper.
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(Malicious) JavaScript Code

JavaScript Engine

Permission System

Loops,
Conditions,
Arithmetic,
· · ·

Functions,
Objects,
· · ·

Figure 8.1: The permission system acts as an abstraction layer between the
JavaScript engine and the interfaces provided to a JavaScript de-
veloper.

4 Design of JavaScript Zero

In this section, we present the design of our JavaScript permission system,
JavaScript Zero. We propose a fine-grained policy-based system which
allows to change the behavior of standard JavaScript interfaces and func-
tions. Policies enforce certain restrictions to a website to protect users
from malicious JavaScript. They allow to quickly adapt the permission
system to protect against newly discovered attacks. Furthermore, different
policies can be combined by the user, depending on the desired level of
protection.

The idea of JavaScript Zero is to introduce an abstraction layer between
the JavaScript engine and the interface provided to a (malicious) JavaScript
developer. The basic idea of this layer is to protect functions, interfaces,
and object properties, as shown in Fig. 8.1. The abstraction layer can block,
modify, or simply forward every interaction of the code with the JavaScript
engine. The layer is completely transparent to the web application and,
thus, no modification of any existing source code is required to deploy
JavaScript Zero. JavaScript Zero can intercept all calls to functions
provided by the language, which also includes constructors of objects
and getters of object properties. However, it does not interfere with
the constructs of the language itself, i.e., loops and primitive data types
bypass the abstraction layer. In the remainder of this paper, we use the
term “functions” to refer to general functions, object constructors, and
getters of object properties for the sake of brevity.

The exact behavior of JavaScript Zero is defined by a protection policy.
A protection policy is a machine-readable description which contains a
policy for every function, property, or object that should be handled by
the permission system. Listing 8.1 shows an excerpt of such a policy.
In this sample policy, the function to go back to the last website is
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1 function : {
2 "window.performance.now":

3 { action: "modify",

4 return: "Math.floor(window.performance.now()

5 / 1000.0) * 1000.0" },
6 "history.back":

7 { action: "block" },
8 "navigator.getBattery":

9 { action: "ask", default: "null" }

Listing 8.1: Excerpt of a protection policy. The
function performance.now is modified to return
timestamps with a lower resolution, the function
history.back is blocked.

completely blocked, i.e., if a script calls this function, it does nothing.
Furthermore, the resolution of the high-resolution timer is reduced from
several microseconds to one second. Finally, the battery API requires
permission from the user, and if the user denies access to the function, it
simply returns no information.

The policies can be designed by any user and shared with other users.
Thus, as soon as a new exploit, side-channel attack, or microarchitectural
attack emerges, a new policy preventing it can be created and shared
with all users. We propose a community-maintained policy repository
where users can subscribe to certain kinds of policies, e.g., more or less
strict policies for their specific hardware and software. The functionality
of JavaScript Zero does not fundamentally rely on the community, and
every user can also write their own policies, or thoroughly inspect third-
party policies before applying them. Hence, a careful user can avoid the
inherent limitations of a community-maintained policy, e.g., adversarial
modifications, which can happen in any open-source project.

For every policy, there are four different possibilities how it affects a
function used on a website:

1. Allow. The function is explicitly allowed or not specified in the
policy. In this case, no action is performed and the function can be
used normally.

2. Block. The function is blocked. In this case, JavaScript Zero
replaces the function by a stub that only returns a given default
value.

3. Modify. The function is modified. In this case, JavaScript Zero
replaces the original function with a policy-defined function. This
function can still call the original function if necessary.



190 Chapter 8. JavaScript Zero

Script

Wrapper

Extension ContextPage Context

C
a
ll

R
et

u
rn

Call

Allowed?

Original Function

Yes

No

Default value

Filtered value

Figure 8.2: A policy replaces a function by a wrapper. The extension imple-
ments the logic to ask the user whether the function shall be blocked
or the original function is executed.

4. User permission. The function requires the permission of the user.
In this case, JavaScript Zero has to pause execution of the current
function, display a notification to the user, and wait for the response
of the user.

In the fourth case, the user has to explicitly grant permission. The
user can opt to save the decision, to not be bothered again, and, thus,
user interruptions are kept to a minimum.

We opted for a browser extension, as it can be easily installed in a
user’s browser and neither relies on modification of the source code of
the website or the browser, nor any external service, e.g., a web proxy.
Thus, there is no constant maintenance of a forked browser source base
necessary. Moreover, by designing JavaScript Zero as a browser extension,
it can easily be implemented for any browser supporting extensions (e.g.,
Chrome, Firefox, Edge) as the design of JavaScript Zero is independent
of the browser.

Figure 8.2 shows the general design of this approach. Functions are
replaced by wrapper functions which can either immediately return a
result or divert the control flow to the browser extension. The browser
extension can then ask the user whether to allow the function call or block
it.

To allow regular users to use such a browser extension on a day-to-day
basis, we propose a simple interface for handling protection policies. This
interface defines so-called protection levels, each grouping one or more
protection policies. Thus, a user only chooses a protection level out of
a predefined set of levels, e.g., one of none, low, medium, high, paranoid.
Although this simplification reduces the flexibility of the extension, we
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chose this approach as for a regular user it is clearly not feasible to choose
from protection policies or even define custom protection policies.

5 Implementation of Chrome Zero

In this section, we describe Chrome Zero, our open-source1 proof-of-
concept implementation of JavaScript Zero for Google Chrome 49 and
newer. Implementing Chrome Zero faces certain challenges:

C1 Restrictions must not be circumventable using self-modifying code,
such as higher-order scripts.

C2 Restricting access to potentially dangerous features must be irre-
versible for a website.

C3 Restrictions must not have a significant impact on compatibility and
user experience.

In addition to the aforementioned challenges, implementing JavaScript
Zero as a browser extension results in a trade-off between compatibility
with up-to-date browsers and functionality we can use, i.e., we cannot
change the browser and thus have to rely on functions provided by the
extension API.

First, we describe in Section 5.1 how to retrofit virtual machine layer-
ing for security and extend it for objects using proxy objects [28]. Virtual
machine layering was originally developed for low-overhead run-time mon-
itoring of functions [19]. We use it to guarantee that a policy is always
applied to a function (Challenge C1). In Section 5.2, we show that Java-
Script closures in combination with object freezing can be utilized to
secure the virtual machine layering approach to guarantee irreversibility
of policies (Challenge C2). This combination of virtual machine layering
and closures provides strong security boundaries for Chrome Zero. Finally,
we discuss in Section 5.3 how to maintain practical usability of Chrome
Zero (Challenge C3), despite the restrictions it introduces.

5.1 Virtual machine layering

To ensure that our own function is called instead of the original function,
without modifying the browser, we facilitate a technique known as virtual
machine layering [19]. Although this technique was originally developed
for low-overhead run-time monitoring, we show that in combination with
JavaScript closures, it can also be applied as a security mechanism. For

1Chrome Zero: https://github.com/IAIK/ChromeZero

https://github.com/IAIK/ChromeZero
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1 var o r i g i n a l r e f e r e n c e = window . performance . now ;
2 window . performance . now = function ( ) { return 0 ; } ;
3 // call the new function (via function name)

4 a l e r t ( window . performance . now ( ) ) ; // == alert(0)

5 // call the original function (only via reference)

6 a l e r t ( o r i g i n a l r e f e r e n c e . c a l l ( window . performance ) )
;

Listing 8.2: Virtual machine layering applied to the function
performance.now. The function name points to
the new function, the original function can only be
called using the reference.

security, virtual machine layering has a huge advantage over state-of-the-
art source rewriting techniques [36, 38, 56], where functions are replaced
directly in the source code. Ensuring that source rewriting cannot be
circumvented is a hard problem, as function calls can be generated dynam-
ically and are thus not always visible in the source code [1]. Support for
such higher-order scripts is strictly necessary for full protection, as failing
to apply a policy to only one function breaks the security guarantees of the
security policies. However, higher-order scripts are often out-of-scope or
not fully supported [24]. In contrast, virtual machine layering ensures that
functions are replaced at the lowest level, right before they are executed
by the JavaScript engine.

Listing 8.2 shows an example of virtual machine layering. As JavaScript
allows to dynamically extend and modify prototypes, existing functions
can be changed, and new functions can be added to every object. Virtual
machine layering takes advantage of this language property. Chrome Zero
saves a reference to the original function of an object and replaces the
original function with a wrapper function. The original function can only
be called using the saved reference. Calling the function by using the
function name will automatically call the wrapper function. As Chrome
Zero has full access to the website, it can use virtual machine layering
to replace any original function. We can ensure that the code of Chrome
Zero is executed before the page is rendered, and thus, that no other code
can save a reference to the original function.

Additionally, virtual machine layering covers higher-order scripts with-
out any additional costs. Higher-order scripts are scripts which are dy-
namically created (or loaded) and executed by existing scripts. There
are multiple ways of creating higher-order scripts, including eval, script
injection, function constructors, event handlers, and setTimeout. As any
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Figure 8.3: Dangerous objects are wrapped in proxy objects. The proxy ob-
ject decides whether methods of the original object are called or
substituted by a different functions.

higher-order script automatically uses the re-defined function without
further changes, policies are automatically applied to higher-order scripts
as well, and there is no possibility for obfuscated code to circumvent the
function replacement.

As JavaScript Zero supports policies not only for functions but also
for properties and objects, we have to extend virtual machine layering,
which was originally only intended for functions.

Properties

Typically, a property of a prototype is not a function, but a simple data
value. JavaScript allows to replace all properties by special functions
called accessor properties. Accessor properties are a special kind of prop-
erty, where every access to the property triggers a user-defined function.
In case the property was already an accessor property, Chrome Zero
simply replaces the original function. Thus, regardless of the type of
property, we can convert every property to an accessor property using
Object.defineProperty.

Objects

To be able to apply policies to objects, we wrap the original object within
a proxy object as shown in Fig. 8.3. The proxy object contains the original
object and forwards all functions (which are not overwritten) to the
original object. Thus, all states are still handled by the original object,
and only functions for which a policy is defined have to be re-implemented
in the proxy object.

Although JavaScript prototypes have a constructor, simply applying
virtual machine layering to the constructor function is not sufficient. The
constructor function is only a pointer to the real constructor and not
used to actually instantiate the object. The alternative to the proxy
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1 ( function ( ) {
2 // original is only accessible in this scope

3 var o r i g i n a l = window . performance . now ;
4 window . performance . now = function ( ) {
5 return Math . f l o o r ( ( o r i g i n a l . c a l l ( window .

performance ) )
6 / 1000 .0 ) ∗ 1 0 0 0 . 0 ;
7 } ; }) ( ) ;

Listing 8.3: Virtual machine layering applied to the function
performance.now within a closure. The function
name points to the new function, the original
function can only be called using the reference.
However, the reference is not visible outside the
scope, i.e., only the wrapper function can access
the reference to the original function.

object for replacing the constructor is to re-implement the entire object
with all methods and properties. However, as this requires considerable
engineering effort and cannot easily be automated, it is not feasible, and
we thus rely on the proxy object.

5.2 Self-protection

An important part of the implementation is that it is not possible for
an attacker to circumvent the applied policies (Challenge C2). Thus, an
implementation has to ensure that an attacker cannot get hold of any
reference to the original functions. We utilize JavaScript closures for
security, by creating anonymous scopes not connected to any object and
thus inaccessible to code outside of the closure. Listing 8.3 shows virtual
machine layering wrapped in a closure.

With the original version of virtual machine layering as shown in
Listing 8.2, an attacker could simply guess the name of the variable holding
the original reference. Furthermore, all global variables are members of
the JavaScript root object window, and an attacker could use reflection
to iterate over all variables until the function reference is discovered.
Closures provide a way to store data in a scope not connected to the
window object. Thus, by applying the virtual machine layering process
within a closure, the reference to the original function is still available to
the wrapper function but inaccessible to any code outside of the closure.
This guarantees that the virtual machine layering is irreversible.
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Figure 8.4: (a) A normal, unmodified function call as reference. (b) If a function
is blocked, it can be immediately replaced with a function returning
the default value. (c) If the return value has to be modified, the
function can be replaced by an anonymous JavaScript closure which
applies the modification directly on the page. (d) Only if the user
has to be asked for permission, a switch into the extension context
is necessary.

At the time of writing, there is no mechanism to modify a function
without redefining it. Thus, an attacker cannot inject new code into the
wrapper function (or modify the existing code) without destroying the
closure and therefore losing the reference to the original function.

Additionally, objects have to be protected using Object.freeze after
the virtual machine layering process. This ensures that deleting the
function does not revert to the original function pointer, as it is otherwise
the case in Google Chrome.

If a policy requires user interaction, i.e., the user has to decide whether
a function shall be executed or not, this logic must also be protected
against an attacker. By relying on a browser extension, we already have
the advantage of a different execution context and thus a different security
context. A website cannot access data inside an extension or influence
code running inside an extension. This also protects the policies, which
are stored within the extension. Therefore, there is no possibility for a
malicious website to modify or inject new policies.

5.3 User Interface

Challenge C3 is to have no significant impact on compatibility and user
experience. This implies that Chrome Zero must not have a perceivable
performance impact (cf. Section 7).

As diverting the control flow into the extension (cf. Figure 8.2) is
relatively costly, we only do that if absolutely necessary. Figure 8.4 shows



196 Chapter 8. JavaScript Zero

how Chrome Zero only diverts the control flow to the extension if a policy
requires that the user is asked for permission. In all other cases, we can
directly replace the function with a stub or wrapper function (Figure 8.4b
and Figure 8.4c) before loading a page.

As JavaScript does not provide a mechanism to block scripts, except for
the built-in pop-up boxes (e.g., alert), pausing a function to ask the user
for permission requires interaction with the browser extension. Chrome
Zero relies on the Google Chrome Debugger API [12] which extends the
functionality of JavaScript to influence and inspect the internal state of
the JavaScript engine. Using Chrome’s remote debugging protocol [11],
Chrome Zero registers a function which is called whenever a script uses
the debugger keyword. The effect of the debugger keyword is that the
JavaScript engine pauses all currently executing scripts before calling the
registered function [27].

While the script—and thus the entire page—is paused, Chrome Zero
asks the user for permission to execute the current function. The result
is then returned to the calling function by writing it to a local variable
within the closure, and function execution is resumed using the Debugger
API. Note that only Chrome Zero can access the local variable that
stores the result, as all variables within the closure are inaccessible to
the remaining page (cf. Section 5.2). The function then either resumes
execution of the function, or returns a default value in case the user
does not give permission to execute the function. Spurious usage of the
debugger keyword on a (malicious) website has no effect, as Chrome Zero
just continues if no policy is found for the current function.

Chrome Zero does not instrument the existing browser permission
system, as it cannot be retrofitted to protect arbitrary functions and
objects. The existing browser permission system only works for APIs
designed to be used with the permission system, i.e., the API has to be
asynchronous by relying on callback functions or promises. The browser
asks the user for permission, and if the user accepts, the browser calls
a callback function with the result, e.g., the current geolocation. Hence,
synchronous APIs, e.g., the result of the function call is provided as
a return value, cannot be protected with the browser’s asynchronous
permission system. For the protection to be complete, we have to handle
both synchronous as well as asynchronous function calls, and can therefore
not rely on the browser’s internal permission system.
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Table 8.2: All discussed policies (except for sensors) and their effect on attacks.
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Buffer ASLR
Array preloading
Non-deterministic array
Array index randomization
Low-resolution timestamp
Fuzzy time * * * *
WebWorker polyfill
Message delay
Slow SharedArrayBuffer

No SharedArrayBuffer * * * *

Summary

Symbols indicate whether a policy fully prevents an attack, ( ), partly
prevents and attack by making it more difficult ( ), or does not prevent

an attack ( ).
A star (*) indicates that all policies marked with a star must be

combined to prevent an attack.

6 Security Evaluation

In this section, we evaluate JavaScript Zero by means of our proof-of-
concept Chrome extension, Chrome Zero. In the first part of the evaluation,
we show how Chrome Zero prevents all microarchitectural and side-channel
attacks that can be mounted from JavaScript (cf. Table 8.1). Furthermore,
we show how policies can prevent exploits. We evaluate how many exploits
are automatically prevented by protecting users against microarchitectural
and side-channel attacks.

6.1 Microarchitectural and Side-Channel Attacks

To successfully prevent microarchitectural and side-channel attacks, we
have to eliminate the requirements identified in Section 2.4. Depending
on the requirements we eliminate, microarchitectural and side-channel
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Table 8.3: A table of how policies correspond to the protection levels of Chrome
Zero.

Requirement

Protection
Level Off Low Medium High Paranoid

Memory addresses - Buffer ASLR Array preloading Non-deterministic array Array index randomization
Accurate Timing - Ask Low-resolution timestamp Fuzzy time Disable
Multithreading - - Message delay WebWorker polyfill Disable
Shared data - - Slow SharedArrayBuffer Disable Disable
Sensor API - - Ask Fixed value Disable

attacks are not possible anymore (cf. Table 8.1). Consequently, we discuss
policies to eliminate each requirement. Table 8.2 shows a summary of
all policies and how they affect state-of-the-art attacks. Table 8.3 shows
which policy is active on which protection level.

Memory Addresses

In all known attacks, array buffers are used to retrieve information on the
underlying memory address. An attacker can exploit that array buffers
are page-aligned to learn the least significant 12 bits of both the virtual
and physical address [33]. Thus, we have to ensure that array buffers are
not page-aligned and that an attacker does not know the offset of the
array buffer within the page.

Array buffers are raw binary data buffers, storing values of arrays.
However, their content cannot be accessed directly, but only using typed
arrays or DataViews. Thus, we have to proxy both the DataView object
as well as all typed arrays (e.g., Uint8Array, Uint16Array, etc.).

Buffer ASLR To prevent the arrays from being page-aligned, we intro-
duce buffer ASLR, which randomizes the start of the array buffer. We
overwrite the length argument of the constructor to allocate additional
4 KB. This allows us to move the start of the array anywhere on the page
by generating a random offset in the range [0; 4096). This offset is then
added to the array index for every access. Hence, all data is shifted, i.e.,
the value at index 0 is not page-aligned but starts at a random position
within the page. Thus, an attacker cannot rely on the property anymore
that the 12 least significant address bits of the first array buffer index are
‘0’.

Preloading However, the protection given by buffer ASLR is not com-
plete, as an attacker can still iterate over a large array to detect page
borders using page faults [15, 40]. With 21 bits of the virtual and physi-
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(b) Page border detection with random accesses.

Figure 8.5: Page border detection without and with Chrome Zero. When
iterating over an array, page faults cause a higher timing than
normal accesses, visible as timing peaks.

cal address, a THP page border contains even more information for an
attacker. One simple prevention for this attack is to iterate through the
array after constructing it. Accessing all underlying pages triggers a page
fault for every page, and an attacker subsequently cannot learn anything
from iterating over the array, as the memory is already mapped. Thus,
Rowhammer.js [15] and the DRAM covert channel [40] are prevented by
Chrome Zero.

Non-determinism Instead of preloading, (i.e., iterating over the array
after construction), we can modify the setter of the array to add a memory
access to a random array index for every access to the array. This has two
advantages in terms of security. First, with only preloading, an attacker
could wait for the pages to be swapped out, or deduplicated, enabling page
border detection again. The random accesses prevent the page border
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Figure 8.6: When adding random accesses, the timings for cache hits and misses
blend together, making it impractical to decide whether an access
was a cache hit or a miss. In contrast to a benign use case, the
access time is significantly increased as the adversary is priming
(i.e., thrashing) the cache and any memory access is likely a cache
miss.

detection, as an attacker cannot know whether the page fault was due to
the regular access or due to a random access. As shown in Figure 8.5, with
the random accesses, the probability to trigger a page fault for the first
accesses is relatively high, as pages are not mapped in the beginning. This
probability decreases until all pages are mapped. Thus, an attacker cannot
reliably detect the actual border of a page but only the number of pages.
Second, this prevents the generation of eviction sets [13, 15, 33, 40]. A
successful eviction of a cache set requires an attacker to measure the access
time of a special memory access pattern [15]. Adding random accesses in
between prevents an attacker from obtaining accurate measurements, as
the random accesses influence the overall timing (cf. Figure 8.6). Note that
the access time is significantly increased as the adversary is priming (i.e.,
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thrashing) the cache and thus, any additional memory access is likely a
cache miss. Hence, this does not relate to any benign use case performance
or access time.

Array Index Randomization One attack that cannot be thwarted
with the discussed policies is the page-deduplication attack [14]. In this
attack, an attacker only has to be in control over the content of one
page to deduce if a page with the same content already exists in memory.
Allocating a large array still gives an attacker control over at least one
page. To prevent a page deduplication attack from being successful, we
have to ensure that an attacker cannot deterministically choose the content
of an entire page. One possible implementation is to make the mapping
between the array index and the underlying memory unpredictable by
using a random linear function.

We overwrite the array to access memory location f(x) when accessing
index x with f(x) = ax+b mod n where a and b are randomly chosen and
n is the size of the ArrayBuffer. Furthermore, a and n must be co-prime
to generate a unique mapping from indices to memory locations. To find
a suitable a, we can simply choose a random a in the array constructor
and test whether gcd(a, n) = 1. As the probability of two randomly
chosen numbers to be co-prime is 1

ζ(2) = 6
π2 ≈ 61% (for n→∞) [30], this

approach is computationally efficient. That is, the expected value is 1.64
random choices to find two co-prime numbers (for n→∞).

As a and b are inaccessible to an attacker, the mapping ensures that
an attacker cannot predict how data is stored in physical memory. An
attacker can also not reverse a and b because there is no way to tell
whether a guess was correct, as buffer ASLR and preloading prevent any
reliable conclusions from page faults. Thus, an attacker cannot control
the content of a page, thwarting page deduplication attacks [14].

Accurate Timing

Many attacks within the browser require highly accurate time measure-
ments. Especially microarchitectural attacks require time measurements
with a resolution in the range of nanoseconds [13, 15, 33, 40]. Such high-
resolution timestamps were readily available in browsers [33] but have been
replaced by lower resolution timestamps in all modern browsers in 2015 [2,
6, 9, 25]. However, Schwarz et al. [40] showed that it is still possible
to get a nanosecond resolution from these timestamps by exploiting the
underlying high-resolution clock.
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1 ( function ( ) {
2 var wpn = window . performance . now , l a s t = 0 ;
3 window . performance . now = function ( ) {
4 var f uzz = Math . f l o o r (Math . random ( ) ∗ 1000) , //1ms

5 now = Math . f l o o r (wpn . c a l l ( window . performance )
∗1000) ;

6 var t = now − now % fuzz ;
7 i f ( t > l a s t ) l a s t = t ;
8 return l a s t / 1 0 0 0 . 0 ;
9 } ;} ) ( ) ;

Listing 8.4: Fuzzy time [46] applied to the high-resolution
timing API with a 1 ms randomization.

Low-resolution timestamps As a policy, we can simply round the
result of the high-resolution timestamp (window.performance.now) to a
multiple of 100 ms. This is exactly the same behavior as implemented
in the Tor browser. Thus, we achieve the same protection as the Tor
browser, where the recoverable resolution is only 15 µs, rendering it useless
for many attacks [40].

Fuzzy time A different approach is to apply fuzzy time to timers [46].
In addition to rounding the timestamp, fuzzy time adds random noise to
the timestamp to prevent exact timing measurements but still guarantees
that the timestamps are monotonically increasing. Kohlbrenner et al. [18]
implemented this concept in Fuzzyfox, a Firefox fork. We can achieve
the same results using a simple policy that implements a variant of the
algorithm proposed by Vattikonda et al. [46] shown in Listing 8.4, without
requiring constant maintenance of a browser fork.

We evaluated our policies for low-resolution timestamps and fuzzy
time by creating two functions with a runtime below the resolution of
the protected high-resolution timer. Using edge thresholding [40], we
tried to distinguish the two functions based on their runtime. For the
evaluation, we rounded timestamps to a multiple of 1 ms and used a 1 ms
randomization interval for the fuzzy time. The two functions fslow and
ffast , which we distinguish, have an execution time difference of 300 µs.
Figure 8.7 shows the results of this evaluation. If no policy is applied
to the high-resolution timer, the functions can always be distinguished
based on their runtime. With the low-resolution timestamp and edge
thresholding, the functions are correctly distinguished in 97 % of the cases,
as the underlying clock still has a resolution in the range of nanoseconds.
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Figure 8.7: Edge thresholding to distinguish whether the function fslow takes
longer than ffast . The difference between the execution times is
less then the provided resolution.

When fuzzy time is enabled, the functions are correctly distinguished in
only 65 % of the cases, and worse, in 27 % of the cases the functions are
wrongly classified, i.e., the faster-executing function is classified as the
slower function.

Figure 8.8 shows the result of fuzzy time on the JavaScript keystroke
detection attack by Lipp et al. [20]. Without fuzzy time, it can be
clearly seen whenever the user taps on the touch screen of a mobile
device (Figure 8.8a). By enabling the fuzzy time policy, the attack is fully
prevented, and no taps can be seen in the trace anymore (Figure 8.8b).

Multithreading

As the resolution of the built-in high-resolution timer has been reduced
by all major browsers [2, 6, 9, 25], alternative timing primitives have been
found [13, 18, 40]. Although several new timing primitives work without
multithreading [18, 40], only the timers using multithreading achieve a
resolution that is high enough to mount microarchitectural attacks [13,
20, 40, 47].

WebWorker polyfill A drastic—but effective—policy is to prevent real
parallelism. To achieve this, we can completely replace WebWorkers by
a polyfill intended for unsupported browsers. The polyfill [29] simulates
WebWorkers on the main thread, trying to achieve similar functionality
without support for real parallelism. Thus, all attacks relying on real
parallelism [13, 20, 40, 47] do not work anymore.
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Figure 8.8: Without Chrome Zero, taps can be clearly seen in the attack by
Lipp et al. [20] (Figure 8.8a). With Chrome Zero, the attack is
prevented and no taps are visible (Figure 8.8b).

Message delay A different policy to specifically prevent certain timing
primitives [40] and attacks on the browser’s rendering queue [47] is to delay
the postMessage function. If the postMessage function randomly delays
messages (similar to Fuzzyfox [18]), the attack presented by Vila et al.
[47] does not work anymore, as shown in Figure 8.9.

Shared Data

SharedArrayBuffer is the only data type which can be shared across
multiple workers in JavaScript. This shared array can then be abused
to build a high-resolution timer. One worker periodically increments the
value stored in the shared array while the main thread uses the value as
a timestamp. This technique is the most accurate timing primitive at
the time of writing, creating a timer with a resolution in the range of
nanoseconds [13, 40].
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Figure 8.9: Running the attack by Vila et al. [47] shows keystrokes among other
system and browser activity (Figure 8.9a). With Chrome Zero in
place, the postMessage timings are delayed and thus keystrokes
cannot be detected anymore (Figure 8.9b).

No SharedArrayBuffer At the time of writing, the SharedArrayBuffer
is by default deactivated in modern browsers. Thus, websites should not
rely on this functionality anyway, and a policy can simply keep the
SharedArrayBuffer disabled if vendors enable it.

Slow SharedArrayBuffer On our Intel i5-6200U test machine, we
achieve a resolution of 0.77± 0.01 ns with the SharedArrayBuffer tim-
ing primitive. This allows use to clearly distinguish cache hits from
cache misses (Figure 8.10a), and thus mount the attacks proposed by
Schwarz et al. [40] as well as Gras et al. [13]. To protect users from these
attacks, our policy randomly delays the access to the SharedArrayBuffer.
Using this policy, we reduce the resolution to 4215.25±69.39 ns, which is in
the same range as the resolution of the native performance.now() timer.
Thus, these microarchitectural attacks, which require a high-resolution
timer, do not work anymore as shown in Figure 8.10b.
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Sensor API

As mobile devices are equipped with many sensors, JavaScript provides
several APIs allowing websites to access sensor data, e.g., accelerometer,
ambient light, or battery status. While some of those interfaces allow
developers to build more functional and user-friendly applications, they
also facilitate leakage of sensitive information. While modern browsers
explicitly ask the user for permission if the running websites want to access
the user’s geolocation, access to other APIs is silently permitted.

Battery Status API After Olejnik et al. [32] showed the potential
privacy risk of the HTML5 Battery Status API as a tracking identifier,
Firefox disabled the interface with version 52 [8]. However, Chrome still
offers unrestricted access to this API without asking for permission. Thus,
we introduce a policy allowing to either randomize the properties of the
battery interface, to set them to fixed values, or to disable the interface
entirely. With this policy, the Battery Status API can not be used as a
tracking identifier anymore.

Ambient Light Sensor The ambient light sensor can be used to infer
user PINs [42] or to recover browsing history information [31]. While the
API needs to be enabled manually in the Chrome browser, it is enabled by
default in the Firefox browser. By introducing a policy that either returns
constant values for the ambient light sensor, or disables the interface, an
attacker is unable to perform these attacks.

Device Motion, Orientation, and Acceleration The motion sensor
data and orientation sensor data of mobile web browsers can be exploited
to infer user PIN input [23]. Both are available to websites without any
permissions. In order to mitigate such attacks, we introduce a policy that
allows to spoof the sensor data or to prohibit access entirely.

6.2 Exploits

Although exploits are out-of-scope for the permission system (cf. Sec-
tion 2.3), we investigate the (side-)effect of our policies on JavaScript
exploits. For this, we investigate CVEs that are exploitable via JavaScript
and were discovered since Chrome 49, as Chrome Zero requires Chrome
49 and later.

To evaluate whether Chrome Zero protects a user from a specific exploit,
we first reproduce the exploit without Chrome Zero and then activate



7. Usability Evaluation 207

Chrome Zero to check whether the exploit still works. We reproduced all
12 CVEs1 for the Chrome JavaScript engine, which were discovered since
2016 for Chrome 49 or later and for which we could find proof-of-concept
implementations online. All of the 12 CVEs lead to either a crash of the
current tab or to information leakage.

With Chrome Zero in place, half of them are prevented, leaving only
6 CVEs that are still exploitable. The prevented CVEs all rely on at
least one object which we modify (e.g., ArrayBuffer) and thus do not
work with the modified object. Furthermore, we expect that actual
remote code execution using the working exploits gets more complicated
if policies such as array index randomization or buffer ASLR are in place.
Thus, Chrome Zero provides additional protection against 0-days without
requiring explicit policies. Creating policies to specifically target CVEs is
left to future research.

7 Usability Evaluation

In this section, we analyze the usability impact of Chrome Zero by per-
forming a performance analysis and a double-blind user study. We first
analyze how many websites use functionality which is also used in microar-
chitectural and side-channel attacks. We then analyze the performance
impact on the Alexa Top 10 websites. Finally, we show whether the
protection mechanism has any impact on the browsing experience, i.e.,
whether there are pages that do not work as expected anymore, for the
Alexa Top 25 websites.

7.1 Performance

We evaluated the performance overhead of Chrome Zero in both micro
and macro benchmarks.

First, we evaluated the impact of Chrome Zero on the loading time of
a page. We measured a page loading latency between 10.64 ms if no policy
is active, and 89.08 ms if policies protecting against all microarchitectural
and side-channel attacks are active. As on every page load the current
policies are loaded and injected into the current tab, the latency grows
linearly with the number of policies, and delays the actual rendering of
the page. On average, we measured a latency of approximately 3.4 ms per

1CVE-2016-1646, 1653, 1665, 1669, 1677, 5129, 5172, 5198, 5200, 9651, 2017-5030,
5053
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Table 8.4: Results of the JSZJetStream benchmark.

Without Chrome Zero With Chrome Zero

Latency 71.46 ± 4.43 71.33 ± 2.43
Throughput 220.45 ± 6.80 214.71 ± 3.50

Total 134.90 ± 5.96 132.81 ± 2.92

The higher the score, the better the performance.

active policy, i.e., every policy delays the loading of a newly opened page
by 3.4 ms.

Second, we investigated the overhead for Chrome’s JavaScript engine
by using the internal profiler. Figure 8.11 shows the overhead for the
Alexa Top 10 websites. The runtime increase of the JavaScript engine had
a median of 1.82 %, which corresponds to only 16 ms.

Finally, we used the JSZJetStream [3] browser benchmark, which is
developed as part of the WebKit engine. We measure a performance
overhead of 1.54 % when using Chrome Zero. Table 8.4 shows the detailed
scores of the benchmark.

A reason for the low overhead of Chrome Zero is the JavaScript Just-
In-Time (JIT) compiler. Chrome’s JIT consists of several compilers,
producing code on different optimization levels [39]. As the code is
continuously optimized by the JIT, our injected functions are compiled
to highly efficient native code, with a negligible performance difference
compared to the original native functions. The results of our benchmarks
show that Chrome Zero does not have a visible impact on the user
experience for an everyday usage.

7.2 Compatibility

For Chrome Zero to be usable on a day-to-day basis, it is important
that the majority of websites is still usable if policies are active. We
analyzed the Alexa Top 100 websites with a protection level of high, the
second highest protection level (cf. Table 8.3). Out of the 100 pages,
all of them used JavaScript, and 57 relied on functions for which the
protection level high defines policies. For all these pages, we verified that
Chrome Zero did not cause any error when testing some of the site’s basic
functionality. For a thorough evaluation, we conducted a double-blind
user study to test whether Chrome Zero has an impact on the browsing
experience. We designed the study to have 24 participants to have a
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maximum standard error below 15 % at a confidence level of 85 %. The
24 participants, which we recruited by advertising it through word-of-
mouth, had different backgrounds, ranging from students without any IT
background to information-security post-doctoral researchers.

Method

We explained every participant that we developed a browser extension
which provides additional protection against attacks. We showed two
instances of Google Chrome to the participant, one without Chrome
Zero (A) and one with Chrome Zero set to protection level high (B) for
every website in the Alexa Top 25. For every website, a fully automated
script randomly chose whether browser instance A or B had Chrome Zero
activated, without any interaction of the study conductor or the study
participant. Hence, neither the study participant nor the study conductor
knew which of the two browsers had Chrome Zero activated, making the
study double blind. After 1 minute, the script asked the user whether
there was any noticeable difference between the two pages, and if so,
whether browser A or browser B had Chrome Zero enabled. The results
of these questions were saved in a file and automatically evaluated after
the user tested all 25 pages. Every correct user answer was counted as a
100 % correct answer, if the user did not notice any difference, we counted
it as a 50% probability to make the correct guess, and if the user answered
incorrectly, we counted a 0 % correct answer.

Results

Figure 8.12 shows the results of our user study. The overall probability to
correctly detect the presence of Chrome Zero was 50.2 %. The maximum
average success rate of a participant was 60 %; the minimum was 40 %.

The maximum detection rate for a website was 62.5 % for yahoo.com
(standard error ±0.05). For all other websites, the detection rate was not
better than random guessing. The minimum detection rate for a website
was 41.7 % for amazon.com and sina.com.cn (standard error ±0.05).

For the 6 websites where no Chrome Zero policy was active, users
guessed correctly in 48.3 % on average (standard error ±0.049), i.e., a
deviation of 1.7pp to random guessing. For the 19 websites where at least
one Chrome Zero policy was active, users guessed correctly in 50.8 % on
average (standard error ±0.055), i.e., a deviation of 0.8pp to random guess-
ing. This highlights how negligible the differences in the user experience
are.
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While their classification of the instance was many times incorrect,
participants stated loading time, cookie-policy dialogues and website
redirections as the reason for selecting the instance as the one using
Chrome Zero.

Although our implementation is only a proof-of-concept implementa-
tion, the results of the study confirm that JavaScript Zero is practical,
and our implementation of Chrome Zero is usable on a day-to-day basis.

8 Related Work

In this section, we discuss related work on protecting users from the
execution of potential harmful JavaScript code. While there are several
proposed solutions, JavaScript Zero is the only technique fully imple-
mented as a browser extension only (Chrome Zero) without negatively
affecting the browsing experience. Chrome Zero does not rely on any
changes to existing source code or the system’s environment and thus does
not require support by developers or browser vendors.

Browser extensions Browser extensions such as NoScript [10] or
uBlock [37] allow users to define policies to permit or prohibit the ex-
ecution of JavaScript depending on their origin, i.e., a page can either
completely block JavaScript or execute it without any restrictions. In
contrast, Chrome Zero offers a more fine-grained permission model that
operates on function level and does not interfere with dynamic website
content. Furthermore, JavaScript Zero directly targets attack prevention,
whereas existing browser extensions aim primarily at blocking advertise-
ments and third-party tracking code.

In concurrent work, Snyder et al. [41] proposed a browser extension
to protect against exploits in general, based on the same generic idea as
JavaScript Zero. They first exhaustively evaluate the usage statistics of
JavaScript APIs and their connection to CVEs and then, similar to our
approach, selectively block the corresponding JavaScript APIs. Based
on this approach they block 52% of all CVEs, while only impacting the
usability of 4% to 7% of the tested websites. When a usability impact on
16% of the tested websites is still acceptable, they can even block 72%
of all CVEs. This is a significantly lower usability impact than previous
approaches like NoScript [10] or uBlock [37]. With our focus on mitigating
microarchitectural and side-channel attacks, we complement the work by
Snyder et al. [41] and show that the underlying generic idea is not only
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applicable to CVEs or side-channel attacks, but to both types of attacks.
This highlights the strength of the underlying idea of both papers.

Modified browsers Meyerovich et al. [24] modified the JavaScript
engine of Internet Explorer 8 to enforce fine-grained application-specific
runtime security policies by the website developer. In contrast, JavaScript
Zero is implemented as a browser extension and does not rely on any
developer to define security policies. Patil et al. [35] analyzed the access
control requirements in modern web browsers and proposed JCShadow,
a fine-grained access control mechanism in Firefox. JCShadow splits the
running JavaScript into groups with an assigned isolated copy of the
JavaScript context. A security policy then defines which code is allowed to
access objects in other shadow contexts to separate untrusted third-party
JavaScript code from the website. Stefan et al. [43] proposed COWL, a
label-based mandatory access control system to sandbox third-party scripts.
Bichhawat et al. [5] proposed WebPol, a fine-grained policy framework
to define the aspects of an element accessible by third-party domains
by exposing new native APIs. All these approaches assume a benign
website developer protecting their website from untrusted—and possibly
malicious—third-party libraries trying to manipulate their website. In
contrast, JavaScript Zero does not make any assumptions in this direction.
Any website or library developer may be malicious, trying to attack the
user. JavaScript Zero neither relies on website developers nor requires
any modifications of the browser or the JavaScript engine.

Kohlbrenner et al. [18] proposed Fuzzyfox, a modified version of Firefox
that mediates all timing sources by degrading the resolution of explicit
timers and implicit clocks to 100 ms. In contrast to Fuzzyfox, JavaScript
Zero successfully prevents not only timing attacks but also attacks which do
not require high-resolution timing measurements. Mao et al. [21] studied
timing-based probing attacks that indirectly infer sensitive information
from the website. Their tool only allows to identify malicious operations
performing timing-based probing attacks based on generalized patterns,
e.g., the frequency of timing API usage. JavaScript Zero directly prevents
the attack by either disallowing timers or making them too coarse-grained.

Code rewriting Reis et al. [38] implemented BrowserShield, a service
that automatically rewrites websites and embedded JavaScript to apply
run-time checks to filter known vulnerabilities. Yu et al. [56] proposed
to automatically rewrite untrusted JavaScript code through a web proxy,
in order to ask the user how to proceed on possible dangerous behavior,
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e.g., opening many pop-ups or cookie exfiltration attacks. Their model
only covers policies with respect to opening URLs, windows, and cookie
accesses, and does not protect against side-channel attacks. Moreover,
JavaScript Zero does neither rewrite any existing code nor rely on any
possibly platform-dependent service such as a web proxy.

JavaScript frameworks Agten et al. [1] presented JSand, a client-side
JavaScript sandboxing framework that enforces a server-specified policy
to jail included third-party libraries. Phung et al. [36] proposed to modify
code in order to protect it from inappropriate behavior of third-party
libraries. Their implementation requires website developers to manually
add protection code to their website. However, their protection does not
apply to scripts loaded in a new context, i.e., with <frame>, <iframe>, or
refresh directives. Guan et al. [16] studied the privacy implications of the
HTML5 postMessage function and developed a policy-based framework
to restrict unintended cross-origin messages. As our countermeasure is
implemented solely as a browser extension, it does not rely on any website
developer to use a certain library or to apply any changes to the code.

9 Conclusion

In this paper, we presented JavaScript Zero, a highly practical and generic
fine-grained permission model in JavaScript to reduce the attack surface
in modern browsers. JavaScript Zero leverages advanced JavaScript
language features, such as virtual machine layering, closures, proxy objects,
and object freezing, for security and privacy. Hence, JavaScript Zero is
fully transparent to website developers and users and even works with
obfuscated code and higher-order scripts. Our proof-of-concept Google
Chrome extension, Chrome Zero, successfully protects against 11 unfixed
state-of-the-art microarchitectural and side-channel attacks. As a side
effect, Chrome Zero successfully protects against 50 % of the published
JavaScript 0-day exploits since Chrome 49. Chrome Zero has a low-
performance overhead of only 1.82% on average. In a double-blind user
study, we found that for 24 websites in the Alexa Top 25, users could not
distinguish browsers with and without Chrome Zero correctly, showing
that Chrome Zero has no perceivable (negative) effect on most websites.
Our work shows that transparent low-overhead defenses against JavaScript-
based state-of-the-art microarchitectural attacks and side-channel attacks
are practical.
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Figure 8.10: Using SharedArrayBuffer in combination with web worker to
build a high-resolution timing primitive as proposed by Gras et al.
[13] and Schwarz et al. [40]. Without Chrome Zero, cache hits
and misses are clearly distinguishable (Figure 8.10a). Configur-
ing Chrome Zero to delay accesses to the SharedArrayBuffer

leads to a uniform distribution in timings, thwarting the attacks
(Figure 8.10b).
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Abstract

Double-fetch bugs are a special type of race condition, where an unpriv-
ileged execution thread is able to change a memory location between
the time-of-check and time-of-use of a privileged execution thread. If an
unprivileged attacker changes the value at the right time, the privileged
operation becomes inconsistent, leading to a change in control flow, and
thus an escalation of privileges for the attacker. More severely, such
double-fetch bugs can be introduced by the compiler, entirely invisible on
the source-code level.

We propose novel techniques to efficiently detect, exploit, and eliminate
double-fetch bugs. We demonstrate the first combination of state-of-the-
art cache attacks with kernel-fuzzing techniques to allow fully automated
identification of double fetches. We demonstrate the first fully automated
reliable detection and exploitation of double-fetch bugs, making manual
analysis as in previous work superfluous. We show that cache-based
triggers outperform state-of-the-art exploitation techniques significantly,
leading to an exploitation success rate of up to 97 %. Our modified fuzzer
automatically detects double fetches and automatically narrows down this
candidate set for double-fetch bugs to the exploitable ones. We present
the first generic technique based on hardware transactional memory, to
eliminate double-fetch bugs in a fully automated and transparent manner.
We extend defensive programming techniques by retrofitting arbitrary
code with automated double-fetch prevention, both in trusted execution
environments as well as in syscalls, with a performance overhead below
1 %.

The original publication is available at https://dl.acm.org/citation.cfm?
id=3196508.

https://dl.acm.org/citation.cfm?id=3196508
https://dl.acm.org/citation.cfm?id=3196508
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1 Introduction

The security of modern computer systems relies fundamentally on the
security of the operating system kernel, providing strong isolation between
processes. While kernels are increasingly hardened against various types of
memory corruption attacks, race conditions are still a non-trivial problem.
Syscalls are a common scenario in which the trusted kernel space has
to interact with the untrusted user space, requiring sharing of memory
locations between the two environments. Among possible bugs in this
scenario are time-of-check-to-time-of-use bugs, where the kernel accesses a
memory location twice, first to check the validity of the data and second
to use it (double fetch) [65]. If such double fetches are exploitable, they
are considered double-fetch bugs. The untrusted user space application
can change the value between the two accesses and thus corrupt kernel
memory and consequently escalate privileges. Double-fetch bugs can
not only be introduced at the source-code level but also by compilers,
entirely invisible for the programmer and any source-code-level analysis
technique [5]. Recent research has found a significant amount of double
fetches in the kernel through static analysis [70], and memory access
tracing through full CPU emulation [38]. Both works had to manually
determine for every double fetch, whether it is a double-fetch bug.

Double fetches have the property that the data is fetched twice from
memory. If the data is already in the cache (cache hit), the data is fetched
from the cache, if the data is not in the cache (cache miss), it is fetched
from main memory into the cache. Differences between fetches from cache
and memory are the basis for so-called cache attacks, such as Flush+
Reload [56, 77], which obtain secret information by observing memory
accesses [21]. Instead of exploiting the cache side channel for obtaining
secret information, we utilize it to detect double fetches.

In this paper, we show how to efficiently and automatically detect, ex-
ploit, and eliminate double-fetch bugs, with two new approaches: DECAF
and DropIt.

DECAF is a double-fetch-exposing cache-guided augmentation for
fuzzers, which automatically detects and exploits real-world double-fetch
bugs in a two-phase process. In the profiling phase, DECAF relies on cache
side channel information to detect whenever the kernel accesses a syscall
parameter. Using this novel technique, DECAF is able to detect whether a
parameter is fetched multiple times, generating a candidate set containing
double fetches, i.e., some of which are potential double-fetch bugs. In the
exploitation phase, DECAF uses a cache-based trigger signal to flip values
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while fuzzing syscalls from the candidate set, to trigger actual double-fetch
bugs. In contrast to previous purely probability-based approaches, cache-
based trigger signals enable deterministic double-fetch-bug exploitation.
Our automated exploitation exceeds state-of-the-art techniques, where
checking the double-fetch candidate set for actual double-fetch bugs is
tedious manual work. We show that DECAF can also be applied to trusted
execution environments, e.g., ARM TrustZone and Intel SGX.

DropIt is a protection mechanism to eliminate double-fetch bugs.
DropIt uses hardware transactional memory to efficiently drop the current
execution state in case of a concurrent modification. Hence, double-fetch
bugs are automatically reduced to ordinary non-exploitable double fetches.
In case user-controlled memory locations are modified, DropIt continues
the execution from the last consistent state. Applying DropIt to syscalls
induces no performance overhead on arbitrary computations running in
other threads and only a negligible performance overhead of 0.8 % on the
process executing the protected syscall. We show that DropIt can also
be applied to trusted execution environments, e.g., ARM TrustZone and
Intel SGX.

Contributions. We make the following contributions:

1. We are the first to combine state-of-the-art cache attacks with kernel-
fuzzing techniques to build DECAF, a generic double-fetch-exposing
cache-guided augmentation for fuzzers.

2. Using DECAF, we are the first to show fully automated reliable
detection and exploitation of double-fetch bugs, making manual
analysis as in previous work superfluous.

3. We outperform state-of-the-art exploitation techniques significantly,
with an exploitation success rate of up to 97 %.

4. We present DropIt, the first generic technique to eliminate double-
fetch bugs in a fully automated manner, facilitating newfound effects
of hardware transactional memory on double-fetch bugs. DropIt has
a negligible performance overhead of 0.8 % on protected syscalls.

5. We show that DECAF can also fuzz trusted execution environments
in a fully automated manner. We observe strong synergies between
Intel SGX and DropIt, enabling efficient preventative protection
from double-fetch bugs.

Outline. The remainder of the paper is organized as follows. In Section 2,
we provide background on cache attacks, race conditions, and kernel
fuzzing. In Section 3, we discuss the building blocks for finding and
eliminating double-fetch bugs. We present the profiling phase of DECAF
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in Section 4 and the exploitation phase of DECAF in Section 5. In
Section 6, we show how hardware transactional memory can be used to
eliminate all double-fetch bugs generically. In Section 7 we discuss the
results of we obtained by instantiating DECAF. We conclude in Section 8.

2 Background

2.1 Fuzzing

Fuzzing describes the process of testing applications with randomized
input to find vulnerabilities.

The term “fuzzing” was coined 1988 by Miller [49], and later on
extended to an automated approach for testing the reliability of several
user-space programs on Linux [51], Windows [18] and Mac OS [50]. There
is an immense number of works exploring user space fuzzing with different
forms of feedback [12, 14, 19, 22–25, 32, 39, 61, 67]. However, these are
not applicable to this work, as we focus on fuzzing the kernel and trusted
execution environments.

Fuzzing is not limited to testing user-space applications, but it is
also, to a much smaller extent, used to test the reliability of operating
systems. Regular user space fuzzers cannot be used here, but a smaller
number of tools have been developed to apply fuzzy testing to operating
system interfaces. Carrette [9] developed the tool CrashMe that tests the
robustness of operating systems by trying to execute random data streams
as instructions. Mendoncca et al. [48] and Jodeit et al. [36] demonstrate
that fuzzing drivers via the hardware level is another possibility to attack
an operating system. Other operating system interfaces that can be fuzzed
include the file system [7] and the virtual machine interface [20, 46].

The syscall interface is a trust boundary between the trusted kernel,
running with the highest privileges, and the unprivileged user space. Bugs
in this interface can be exploited to escalate privileges. Koopman et al.
[40] were among the first to test random inputs to syscalls. Modern
syscall fuzzers, such as Trinity [37] or syzkaller [69], test most syscalls with
semi-intelligent arguments instead of totally random inputs. In contrast
to these generic tools, Weaver et al. [71] developed perf fuzzer, which uses
domain knowledge to fuzz only the performance monitoring syscalls.

2.2 Flush+Reload

Flush+Reload is a side-channel attack exploiting the difference in access
times between CPU caches and main memory. Yarom and Falkner [77]
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presented Flush+Reload as an improvement over the cache attack by
Gullasch et al. [31]. Flush+Reload relies on shared memory between the
attacker and the victim and works as follows:

1. Establish a shared memory region with the victim (e.g., by mapping
the victim binary into the address space).

2. Flush one line of the shared memory from the cache.
3. Schedule the victim process.
4. Measure the access time to the flushed cache line.

If the victim accesses the cache line while being scheduled, it is again
cached. When measuring the access time, the attacker can distinguish
whether the data is cached or not and thus infer whether the victim
accessed it. As Flush+Reload works on cache line granularity (usually
64 B), fine-grained attacks are possible. The probability of false positives
is very low with Flush+Reload, as cache hits cannot be caused by different
programs and prefetching can be avoided. Gruss et al. [28] reported
extraordinarily high accuracies, above 99 %, for the Flush+Reload side
channel, making it a viable choice for a wide range of applications.

2.3 Double Fetches and Double-Fetch Bugs

In a scenario where shared memory is accessed multiple times, the CPU
may fetch it multiple times into a register. This is commonly known as
a double fetch. Double fetches occur when the kernel accesses data
provided by the user multiple times, which is often unavoidable. If proper
checks are done, ensuring that a change in the data during the fetches is
correctly handled, double fetches are non-exploitable valid constructs.

A double-fetch bug is a time-of-check-to-time-of-use race condition,
which is exploitable by changing the data in the shared memory between
two accesses. Double-fetch bugs are a subset of double fetches. A double
fetch is a double-fetch bug, if and only if it can be exploited by concurrent
modification of the data. For example, if a syscall expects a string and
first checks the length of the string before copying it to the kernel, an
attacker could change the string to a longer string after the check, causing
a buffer overflow in the kernel. This can lead to code execution within
the kernel.

Wang et al. [70] used Coccinelle, a transformation and matching engine
for C code, to find double fetches. With this static pattern-based approach,
they identified 90 double fetches inside the Linux kernel. However, their
work incurred several days of manual analysis of these 90 double fetches,
identifying only 3 exploitable double-fetch bugs. A further limitation
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of their work is that double-fetch bugs not matching the implemented
patterns, cannot be detected. Xu et al. [75] used static code analysis in
combination with symbolic checking to identify 23 new bugs in Linux.
Again, double-fetch bugs not matching their formal definition are not
identified.

Not all double fetches, and thus not all double-fetch bugs, can be found
using static code analysis. Blanchou [5] demonstrated that especially in
lock-free code, compilers can introduce double fetches that are not present
in the code. Even worse, these compiler-introduced double fetches can
become double-fetch bugs in certain scenarios (e.g., CVE-2015-8550).
Jurczyk et al. [38] presented a dynamic approach for finding double
fetches. They used a full CPU emulator to run Windows and log all
memory accesses. Note that this requires significant computation and
storage resources, as just booting Windows already consumes 15 hours
of time, resulting in a log file of more than 100 GB [38]. In the memory
access log, they searched for a distinctive double-fetch pattern, e.g., two
reads of the same user-space address within a short time frame. They
identified 89 double fetches in Windows 7 and Windows 8. However, their
work also required manual analysis, in which they found that only 2 out
of around 100 unique double fetches were exploitable double-fetch bugs.
Again, if a double-fetch bug does not match the implemented double-fetch
pattern, it is not detected. In summary, we find that all techniques for
double-fetch bug detection are probabilistic and hence incomplete.

Race Condition Detection

Besides research on double fetches and double-fetch bugs, there has been
a significant amount of research on race condition detection in general.
Static analysis of source code and dynamic runtime analysis have been used
to find data race conditions in multithreaded applications. Savage et al.
[62] described the Lockset algorithm. Their tool, Eraser, dynamically
detects race conditions in multithreaded programs. Pozniansky et al. [59,
60] extended their work to detect race conditions in multithreaded C++
programs on-the-fly. Yu et al. [79] described RaceTrack, an adaptive
detection algorithm that reports suspicious activity patterns. These
algorithms have been improved and made more efficient by using more
lightweight data structures [17] or combining various approaches [74].

While these tools can be applied to user space programs, they are
not designed to detect race conditions in the kernel space. Erickson et al.
[15] utilized breakpoints and watchpoints on memory accesses to detect
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data races in the Windows kernel. With RaceHound [54], the same idea
has been implemented for the Linux kernel. The SLAM [3] project uses
symbolic model checking, program analysis, and theorem proving, to
verify whether a driver correctly interacts with the operating system.
Schwarz et al. [63] utilized software model checking to detect security
violations in a Linux distribution.

More closely related to double-fetch bugs, other time-of-check-to-time-
of-use bugs exist. By changing the content of a memory location that
is passed to the operating system, the content of a file could be altered
after a validity check [4, 8, 72]. Especially time-of-check-to-time-of-use
bugs in the file system are well-studied, and several solutions have been
proposed [13, 42, 57, 58, 68].

2.4 Hardware Transactional Memory

Hardware transactional memory is designed for optimizing synchronization
primitives [16, 78]. Any changes performed inside a transaction are not
visible to the outside before the transaction succeeds. The processor
speculatively lets a thread perform a sequence of operations inside a
transaction. Unless there is a conflict due to a concurrent modification
of a data value, the transaction succeeds. However, if a conflict occurs
before the transaction is completed (e.g., a concurrent write access), the
transaction aborts. In this case, all changes that have been performed in
the transaction are discarded, and the previous state is recovered. These
fundamental properties of hardware transactional memory imply that once
a value is read in a transaction, the value cannot be changed from outside
the transaction anymore for the time of the transaction.

Intel TSX is a hardware transactional memory implementation with
cache line granularity. It is available on several CPUs starting with the
Haswell microarchitecture. Intel TSX maintains a read set which is limited
to the size of the L3 cache and a write set limited to the size of the L1
cache [26, 34, 45, 80]. A cache line is automatically added to the read
set when it is read inside a transaction, and it is automatically added
to the write set when it is modified inside a transaction. Modifications
to any memory in the read set or write set from other threads cause the
transaction to abort.

Previous work has investigated whether hardware transactional mem-
ory can be instrumented for security features. Guan et al. [30] proposed
to protect cryptographic keys by only decrypting them within TSX trans-
actions. As the keys are never written to DRAM in an unencrypted form,
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they cannot be read from memory even by a physical attacker probing
the DRAM bus. Kuvaiskii et al. [41] proposed to use TSX to detect
hardware faults and roll-back the system state in case a fault occurred.
Shih et al. [66] proposed to exploit the fact that TSX transactions abort
if a page fault occurred for a memory access to prevent controlled-channel
attacks [76] in cloud scenarios. Chen et al. [10] implemented a counting
thread protected by TSX to detect controlled-channel attacks in SGX
enclaves. Gruss et al. [29] demonstrated that TSX can be used to protect
against cache side-channel attacks in the cloud.

Shih et al. [66] and Gruss et al. [29] observed that Intel TSX has
several practical limitations. One observation is that executed code is not
considered transactional memory, i.e., virtually unlimited amount of code
can be executed in a transaction. To evade the limitations caused by the L1
and L3 cache sizes, Shih et al. [66] and Gruss et al. [29] split transactions
that might be memory-intense into multiple smaller transactions.

3 Building Blocks to Detect, Exploit, and Elim-
inate Double-Fetch Bugs

In this section, we present building blocks for detecting double fetches,
exploiting double-fetch bugs, and eliminating double-fetch bugs. These
building blocks are the base for DECAF and DropIt.

We identified three primitives, illustrated in Figure 9.1, for which we
propose novel techniques in this paper:

P1: Detecting double fetches via the Flush+Reload side channel.
P2: Distinguishing (exploitable) double-fetch bugs from (non-exploitable)

double fetches by validating their exploitability by automatically
exploiting double-fetch bugs.

P3: Eliminating (exploitable) double-fetch bugs by using hardware trans-
actional memory.

In Section 4, we propose a novel, fully automated technique to detect
double fetches (P1) using a multi-threaded Flush+Reload cache side-
channel attack. Our technique complements other work on double-fetch
bug detection [38, 70] as it covers scenarios which lead to false positives
and false negatives in other detection methods. Although relying on a
side channel may seem unusual, this approach has certain advantages over
state-of-the-art techniques, such as memory access tracing [38] or static
code analysis [70]. We do not need any model of what constitutes a double
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DECAF
(Syscall) Fuzzer

Exploit dou-
ble fetch (P2)

Report
general bug

Detect double
fetches (P1)

Double fetch
candidates

Report double-
fetch bug

Fix double-fetch bug
(P3), e.g., DropIt

Figure 9.1: An overview of the framework. Detecting (Primitive P1) and ex-
ploiting (Primitive P2) double fetches runs in parallel to the syscall
fuzzer. Reported double-fetch bugs can be eliminated (Primitive
P3) after the fuzzing process.

fetch in terms of memory access traces or static code patterns. Hence, we
can detect any double fetch regardless of any double fetch model.

Wang et al. [70] identified as limitations of their initial approach that
false positives occur if a pointer is changed between two fetches and
memory accesses, in fact, go to different locations or if user-space fetches
occur in loops. Furthermore, false negatives occur if multiple pointers
point to the same memory location (pointer aliasing) or if memory is
addressed through different types (type conversion), or if an element is
fetched separately from the corresponding pointer and memory. With a
refined approach, they reduced the false positive rate from more than 98 %
to only 94 %, i.e., 6 % of the detected situations turned out to be actual
double-fetch bugs in the manual analysis. Wang et al. [70] reported that
it took an expert “only a few days” to analyze them. In contrast, our
Flush+Reload-based approach is oblivious to language-level structures.
The Flush+Reload-trigger only depends on actual accesses to the same
memory location, irrespective of any programming constructs. Hence, we
inherently bypass the problems of the approach of Wang et al. [70] by
design.

Our technique does not replace existing tools, which are either slow [38]
or limited by static code analysis [70] and require manual analysis. In-
stead, we complement previous approaches by utilizing a side channel,
allowing fully automatic detection of double-fetch bugs, including those
that previous approaches may miss.

In Section 5, we propose a novel technique to automatically determine
whether a double fetch found using P1 is an (exploitable) double-fetch
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bug (P2). State-of-the-art techniques are only capable of automatically
detecting double fetches using either dynamic [38] or static [70] code anal-
ysis, but cannot determine whether a found double fetch is an exploitable
double-fetch bug. The double fetches found using these techniques still
require manual analysis to check whether they are valid constructs or
exploitable double-fetch bugs. We close this gap by automatically testing
whether double fetches are exploitable double-fetch bugs (P2), eliminating
the need for manual analysis. Again, this technique relies on a cache side
channel to trigger a change of the double-fetched value between the two
fetches (P2). This is not possible with previous techniques [38, 70].

As the first automated technique, we present DECAF, a double-fetch-
exposing cache-guided augmentation for fuzzers, leveraging P1 and P2
in parallel to regular fuzzing. This allows us to automatically detect
double fetches in the kernel and to automatically narrow them down to
the exploitable double-fetch bugs (cf. Section 5), as opposed to previous
techniques [38, 70] which incurred several days of manual analysis work by
an expert to distinguish double-fetch bugs from double fetches. Similar to
previous approaches [38, 70], which inherently could not detect all double-
fetch bugs in the analyzed code base, our approach is also probabilistic
and might not detect all double-fetch bugs. However, due to their different
underlying techniques, the previous approaches and ours complement each
other.

In Section 6, we present a novel method to simplify the elimination of
detected double-fetch bugs (P3). We observe previously unknown inter-
actions between double-fetch bugs and hardware transactional memory.
Utilizing these effects, P3 can protect code without requiring to identify
the actual cause of a double-fetch bug. Moreover, P3 can even be applied
as a preventative measure to protect critical code.

As a practical implementation of P3, we built DropIt, an open-source 1

instantiation of P3 based on Intel TSX. We implemented DropIt as a
library, which eliminates double-fetch bugs with as few as 3 additional
lines of code. We show that DropIt has the same effect as rewriting the
code to eliminate the double fetch. Furthermore, DropIt can automati-
cally and transparently eliminate double-fetch bugs in trusted execution
environments such as Intel SGX, in both desktop and cloud environments.

1The source can be found at https://www.github.com/IAIK/libdropit.

https://www.github.com/IAIK/libdropit
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Figure 9.2: Flush+Reload timing trace for a syscall with a double fetch. The
two downward peaks show when the kernel accessed the argument.

4 Detecting Double Fetches

We propose a novel dynamic approach to detect double fetches based
on their cache access pattern (P1, cf. Section 3). The main idea is to
monitor the cache access pattern of syscall arguments of a certain type,
i.e., pointers or structures containing pointers. These pointers may be
accessed multiple times by the kernel and, hence, a second thread can
change the content. Other arguments that are statically copied or passed
by value, and consequently are not accessed multiple times, cannot lead
to double fetches.

To monitor access to potentially vulnerable function arguments, we
mount a Flush+Reload attack on each argument in dedicated monitoring
threads. A monitoring thread continuously flushes and reloads the memory
location referenced by the function argument. As soon as the kernel
accesses the function argument, the data is loaded into the cache. In this
case, the Flush+Reload attack in the corresponding monitoring thread
reports a cache hit.

Figure 9.2 shows a trace generated by a monitoring thread. The trace
contains the access time in cycles for the memory location referenced by
the function argument. If the memory is accessed twice, i.e., a double
fetch, we can see a second cache hit, as shown in Figure 9.2. This provides
us with primitive P1.

4.1 Classification of Multiple Cache Hits

Multiple cache hits within one trace usually correspond to multiple fetches.
However, there are rare cases where this is not the case. To entirely
eliminate spurious cache hits from prefetching, we simply disabled the
prefetcher in software through MSR 0x1A4 and allocated memory on
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different pages to avoid spatial prefetching. Note that this does not have
any effect on the overall system stability and only a small performance
impact. We want to discuss two other factors influencing the cache access
pattern in more detail.

Size of data type Depending on the size of the data type, there are
differences in the cache access pattern. If the data fills exactly one cache
line, accesses to the cache line are clearly seen in the cache access pattern.
There are no false positives due to unrelated data in the same cache set,
and every access to the referenced memory is visible in the cache access
pattern.

To avoid false positives if the data size is smaller than a cache line (i.e.,
64 B), we allocate memory chunks with a multiple of the page size, ensuring
that dynamically allocated memory never shares one cache line. Hence,
accesses to unrelated data (i.e., separate allocations) do not introduce
any false positives, as they are never stored in the same cache line. Thus,
false positives are only detected if the cache line contains either multiple
parameters, local variables or other members of the same structure.

Parameter reuse With call-by-reference, one parameter of a function
can be used both as input and output, e.g., in functions working in-place
on a given buffer. Using Flush+Reload, we cannot distinguish whether
a cache hit is due to a read of or write to the memory. Thus, we can
only observe multiple cache hits without knowing whether they are both
caused by a memory read access or by other activity on the same cache
line.

4.2 Probability of Detecting a Double Fetch

The actual detection rate of a double fetch depends on the time between
two accesses. Each Flush+Reload cycle consists of flushing the memory
from the cache and measuring the access time to this memory location
afterwards. Such a cycle takes on average 298 cycles on an Intel i7-6700K.
Thus, to detect a double fetch, the time between the two memory accesses
has to be at least two Flush+Reload cycles, i.e., 596 CPU cycles.

We obtain the exact same results when testing a double fetch in kernel
space as in user space. Also, due to the high noise-resistance of Flush+
Reload (cf. Section 2), interrupts, context switches, and other system
activity have an entirely negligible effect on the result. With the minimum
distance of 596 CPU cycles, we can already detect double fetches if the
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scheduling is optimal for both applications. The further the memory
fetches are apart, the higher the probability of detecting the double fetch.
The probability of detecting double fetches increases monotonically with
the time between the fetches, making it quite immune to interrupts such
as scheduling. If the double fetches are at least 3000 CPU cycles apart, we
almost always detect such a double fetch. In the real-world double-fetch
bugs we examined, the double fetches were always significantly more than
3000 CPU cycles apart. Fig. 9.9 (Appendix A) shows the relation between
the detection probability and the time between the memory accesses,
empirically determined on an Intel i7-6700K.

On a Raspberry Pi 3 with an ARMv8 1.2 GHz Broadcom BCM2837
CPU, a Flush+Reload cycle takes 250 cycles on average. Hence, the
double fetches must be at least 500 cycles apart to be detectable with a
high probability.

4.3 Automatically Finding Affected Syscalls

Using our primitive P1, we can already automatically and reliably detect
whether a double fetch occurs for a particular function parameter. This is
the first building block of DECAF. DECAF is a two-phase process, con-
sisting of a profiling phase which finds double fetches and an exploitation
phase narrowing down the set of double fetches to only double-fetch bugs.
We will now discuss how DECAF augments existing fuzzers to discover
double fetches within operating system kernels fully automatically.

To test a wide range of syscalls and their parameters, we instantiate
DECAF with existing syscall fuzzers. For Linux, we retrofitted the well-
known syscall fuzzer Trinity with our primitive P1. For Windows, we
extended the basic NtCall64 fuzzer to support semi-intelligent parameter
selection similar to Trinity. Subsequently, we retrofitted our extended
NtCall64 fuzzer with our primitive P1 as well. Thereby, we demonstrate
that DECAF is a generic technique and does not depend on a specific
fuzzer or operating system.

Our augmented and extended NtCall64 fuzzer, NtCall64DECAF works
for double fetches and double-fetch bugs in proof-of-concept drivers. How-
ever, due to the severely limited coverage of the NtCall64 fuzzer, we did
not include it in our evaluations. Instead, we focus on Linux only and
leave retrofitting a good Windows syscall fuzzer with DECAF for future
work.

In the profiling phase of DECAF, the augmented syscall fuzzer chooses
a random syscall to test. The semi-intelligent parameter selection of the
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syscall fuzzer ensures that the syscall parameters are valid parameters
in most cases. Hence, the syscall is executed and does not abort in the
initial sanity checks.

Every syscall parameter that is either a pointer, a file or directory
name, or an allocated buffer, can be monitored for double fetches. As
Trinity already knows the data types of all syscall parameters, we can easily
extend the main fuzzing routine. After Trinity selects a syscall to fuzz, it
chooses the arguments to test with and starts a new process. Within this
process, we spawn a Flush+Reload monitoring thread for every parameter
that may potentially contain a double-fetch bug. The monitoring threads
continuously flush the corresponding syscall parameter and measure the
reload time. As soon as the parameter is accessed from kernel code, the
monitoring thread measures a low access time. The threads report the
number of detected accesses to the referenced memory after the syscall has
been executed. These findings are logged, and simultaneously, all syscalls
with double fetches are added to a candidate set for the interleaved
exploitation phase. In Sect. 5, we additionally show how the second
building block P2, allows to automatically test whether such a double
fetch is exploitable. Figure 9.8 (Appendix A) shows the process structure
of our augmented version of Trinity, called TrinityDECAF.

4.4 Double-Fetch Detection for Black Boxes

The Flush+Reload-based detection method (P1) is not limited to double
fetches in operating system kernels. In general, we can apply the technique
for all black boxes fulfilling the following criteria:

1. Memory references can be passed to the black box.
2. The referenced memory is (temporarily) shared between the black

box and the host.
3. It is possible to run code in parallel to the execution of the black

box.

This generalization does not only apply to syscalls, but it also applies
to trusted execution environments.

Trusted execution environments are particularly interesting targets
for double fetch detection and double-fetch-bug exploitation. Trusted
execution environments isolate programs from other user programs and
the operating system kernel. These programs are often neither open source
nor is the unencrypted binary available to the user. Thus, if the vendor
did not test for double-fetch bugs, researchers not affiliated with the
vendor have no possibility to scan for these vulnerabilities. Moreover, even
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the vendor might not be able to apply traditional double-fetch detection
techniques, such as dynamic program analysis, if these tools are not
available within the trusted execution environment.

Both Intel SGX [47] and ARM TrustZone [1] commonly share memory
buffers between the host application and the trustlet running inside the
trusted execution environment through their interfaces. Therefore, we can
again utilize a Flush+Reload monitoring thread to detect double fetches
by the trusted application (P1).

5 Exploiting Double-Fetch Bugs

In this section, we detail the second building block of DECAF, primitive
P2, the base of the DECAF exploitation phase. It allows us to exploit any
double fetch found via P1 (cf. Section 4) reliably and automatically. In
contrast to state-of-the-art value flipping [38] (success probability 50 % or
significantly lower), our exploitation phase has a success probability of 97 %.
The success probability of value flipping is almost zero if multiple sanity
checks are performed, whereas the success probability of P2 decreases
only slightly.

5.1 Flush+Reload as a Trigger Signal

We propose to use Flush+Reload as a trigger signal to deterministically
and reliably exploit double-fetch bugs. Indeed, Flush+Reload is a reliable
approach to detect access to the memory, allowing us to flip the value
immediately after an access. This combination of a trigger signal and
targeted value flipping forms primitive P2.

The idea of the double-fetch-bug exploitation (P2) is therefore similar
to the double-fetch detection (P1). As soon as one access to a parameter
is detected, the value of the parameter is flipped to an invalid value. Just
as the double-fetch detection (cf. Sect. 4), we can use a double-fetch trigger
signal for every black box which uses memory references as parameters in
the communication interface.

As shown in Figure 9.3, the exploitation phase can target double-
fetch bugs with an even lower time delta between the accesses, than the
double-fetch detection in the profiling phase (cf. Section 4). The reason
is that only the first access has to be detected and changing the value
is significantly faster than a full Flush+Reload cycle. Thus, it is even
possible to exploit double fetches where the time between them is already
too short to detect them. Consequently, every double fetch detected in
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Figure 9.3: The probability of successfully exploiting a double-fetch bug de-
pending on the time between the accesses.

the profiling phase can clearly be tested for exploitability using P2 in the
exploitation phase.

As a fast alternative to Flush+Reload, Flush+Flush [28] could be used.
Although Flush+Flush is significantly faster than Flush+Reload, Flush+
Reload is usually the better choice as it has less noise.

5.2 Automated Syscall Exploitation

With the primitive P2 from Section 5.1, we add the second building block
to DECAF, to not only detect double fetches but also to immediately
exploit them. This has the advantage that exploitable double-fetch bugs
can be found without human interaction, as the automated exploitation
leads to evident errors and system crashes. As described in Section 4,
DECAF does not only report the double fetches but also adds them to
a candidate set for double-fetch bug testing. If a candidate is added to
this set, the double-fetch bug test (P2) is immediately interleaved into
the regular fuzzing process.

We randomly switch between four different methods to change the
value: setting it to zero, flipping the least significant bit, incrementing the
value, and replacing it by a random value. Setting a value to zero or a
random value is useful to change pointers to invalid locations. Furthermore,
it is also effective on string buffers as it can shorten the string, extend the
string, or introduce invalid characters. Incrementing a value or flipping the
least significant bit is especially useful if the referenced memory contains
integers, as it might trigger off-by-one errors.

In summary, in the exploitation phase of DECAF, we reduce the
double-fetch candidate set (obtained via P1) to exploitable double-fetch
bugs without any human interaction (P2), complementing state-of-the-art
techniques [38, 70]. The coverage of DECAF highly depends on the fuzzer
used. Fuzzing is probabilistic and might not find every exploitable double
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fetch, but with growing coverage of fuzzers, the coverage of DECAF will
automatically grow as well.

6 Eliminating Double-Fetch Bugs

In this section, we propose the first transparent and automated technique
to entirely eliminate double-fetch bugs (P3). We utilize previously un-
known interactions between double-fetch bugs and hardware transactional
memory. P3 protects code without requiring to identify the actual cause
of a double-fetch bug and can even be applied as a preventative measure
to protect critical code.

We present the DropIt library, an instantiation of P3 with Intel TSX.
DropIt eliminates double-fetch bugs, having the same effect as rewriting
the code to eliminate the double fetch. We also show its application to
Intel SGX, a trusted execution environment that is particularly interesting
in cloud scenarios.

6.1 Problems of State-of-the-Art Double-Fetch Elimina-
tion

Introducing double-fetch bugs in software happens easily, and they often
stay undetected for many years. As shown recently, modern operating
systems still contain a vast number of double fetches, some of which are
exploitable double-fetch bugs [38, 70]. As shown in Section 4 and Section 5,
identifying double-fetch bugs requires full code coverage, and before our
work, a manual inspection of the detected double fetches. Even when
double-fetch bugs are identified, they are usually not trivial to fix.

A simple example of a double-fetch bug is a syscall with a string
argument of arbitrary length. The kernel requires two accesses to copy
the string, first to retrieve the length of the string and allocate enough
memory, and second, to copy the string to the kernel.

Writing this in a näıve way can lead to severe problems, such as
unterminated strings of kernel buffer overflows. One approach is to use
a retry logic, as shown in Algorithm 2 (Appendix B), as it used in the
Linux kernel whenever user data of unknown length has to be copied to
the kernel. Such methods increase the complexity and runtime of code,
and they are hard to wrap into generic functions.

Finally, compilers can also introduce double fetches that are neither
visible in the source code nor easily detectable, as they are usually within
just a few cycles [5].
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6.2 Generic Double-Fetch Bug Elimination

Eliminating double-fetch bugs is not equivalent to eliminating double
fetches. Double fetches are valid constructs, as long as a change of the
value is successfully detected, or it is not possible to change the value
between two memory accesses. Thus, making a series of multiple fetches
atomic is sufficient to eliminate double-fetch bugs, as there is only one
operation from an attacker’s view (see Sect. 2.4). Curiously, the concept
of hardware transactional memory provides exactly this atomicity.

As also described in Section 2.4, transactional memory provides atom-
icity, consistency, and isolation [33]. Hence, by wrapping code possibly
containing a double fetch within a hardware transaction, we can benefit
from these properties. From the view of a different thread, the code
is one atomic memory operation. If an attacker changes the referenced
memory while the transaction is active, the transaction aborts and can be
retried. As the retry logic is implemented in hardware and not simulated
by software, the induced overhead is minimal, and the amount of code is
drastically reduced.

In a nutshell, hardware transactional memory can be instrumented as
a hardware implementation of software-based retry solutions discussed in
Section 6.1. Thus, wrapping a double-fetch bug in a hardware transaction
does not hide, but actually eliminates the bug (P3). Similar to the
software-based solution, our generic double-fetch bug elimination can be
automatically applied in many scenarios, such as the interface between
trust domains (e.g., ECALL in SGX). Naturally, solving a problem with
hardware support is more efficient, and less error-prone, than a pure
software solution.

In contrast to software-based retry solutions, our hardware-assisted
solution (P3) does not require any identification of the resource to be
protected. For this reason, we can even prevent undetectable or yet
undetected double-fetch bugs, regardless of whether they are introduced
on the source level or by the compiler. As these interfaces are clearly
defined, the double-fetch bug elimination can be applied in a transparent
and fully automated manner.

6.3 Implementation of DropIt

To build DropIt, our instantiation of P3, we had to rely on real-world
hardware transactional memory, namely Intel TSX. Intel TSX comes with
a series of imperfections, inevitably introducing practical limitations for
security mechanisms, as observed in previous work [29] (cf. Section 2.4).
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However, as hardware transactional memory is exactly purposed to make
multiple fetches from memory consistent, Intel TSX is sufficient for most
real-world scenarios.

To eliminate double-fetch bugs, DropIt relies on the XBEGIN and XEND

instructions of Intel TSX. XBEGIN specifies the start of a transaction as
well as a fall-back path that is executed if the transaction aborts. XEND

marks the successful completion of a transaction.

We find that on a typical Ubuntu Linux the kernel usually occupies
less than 32 MB including all code, data, and heap used by the kernel and
kernel modules. With an 8 MB L3 cache we could thus read or execute
more than 20 % of the kernel without causing high abort rates [29] (cf.
Section 2.4). In Section 7.4, we show that for practical use cases the abort
rates are almost 0 % and our approach even improves the system call
performance in several cases.

DropIt abstracts the transactional memory as well as the retry logic
from the programmer. Hence, in contrast to existing software-based
retry logic (cf. Section 6.1), e.g., in the Linux kernel, DropIt is mostly
transparent to the programmer. To protect code, DropIt takes the number
of automatic retries as a parameter as well as a fall-back function for the
case that the transaction is never successful, i.e., for the case of an ongoing
attack. Hence, a programmer only has to add 3 lines of code to protect
arbitrary code from double fetch exploitation. Listing 9.2 (Appendix E)
shows an example how to protect the insecure strcpy function using
DropIt. The solution with DropIt is clearly simpler than current state-
of-the-art software-based retry logic (cf. Algorithm 2). Finally, replacing
software-based retry logic by our hardware-assisted DropIt library can
also improve the execution time of protected syscalls.

DropIt is implemented in standard C and does not have any dependen-
cies. It can be used in user space, kernel space, and in trusted environments
such as Intel SGX enclaves. If TSX is not available, DropIt immediately
executes the fall-back function. This ensures that syscalls still work on
older systems, while modern systems additionally benefit from possibly
increased performance and elimination of yet unknown double-fetch bugs.

DropIt can be used for any code containing multiple fetches, regardless
of whether they have been introduced on a source-code level or by the
compiler. In case there is a particularly critical section in which a double
fetch can cause harm, we can automatically protect it using DropIt. For
example, this is possible for parts of syscalls that interact with the user
space. As these parts are known to a compiler, a compiler can simply add
the DropIt functions there.
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DropIt is able to eliminate double-fetch bugs in most real-world scenar-
ios. As Intel TSX is not an ideal implementation of hardware transactional
memory, use of certain instructions in transactions is restricted, such as
port I/O instructions [35]. However, double fetches are typically caused
by string handling functions and do not rely on any restricted instructions.
Especially in a trusted environment, such as Intel SGX enclaves, where
I/O operations are not supported, all functions interacting with the host
application can be automatically protected using DropIt. This is a partic-
ularly useful protection against an attacker in a cloud scenario, where an
enclave containing an unknown double-fetch bug may be exposed to an
attacker over an extended period of time.

7 Evaluation

The evaluation consists of four parts. The first part evaluates DECAF (P1
and P2), the second part compares P2 to state-of-the-art exploitation
techniques, the third part evaluates P1 on trusted execution environments,
and the fourth part evaluates DropIt (P3).

First, we demonstrate the proposed detection method using Flush+
Reload. We evaluate the double-fetch detection of TrinityDECAF on both
a recent Linux kernel 4.10 and an older Linux kernel 4.6 on Ubuntu 16.10
and discuss the results. We also evaluate the reliability of using Flush+
Reload as a trigger in TrinityDECAF to exploit double-fetch bugs (P2).
On Linux 4.6, we show that TrinityDECAF successfully finds and exploits
CVE-2016-6516.

Second, we compare our double-fetch bug exploitation technique (P2)
to state-of-the-art exploitation techniques. We show that P2 outperforms
value-flipping as well as a highly optimized exploit crafted explicitly for
one double-fetch bug. This underlines that P2 is both generic and extends
the state of the art significantly.

Third, we evaluate the double-fetch detection (P1) on trusted execu-
tion environments, i.e., Intel SGX and ARM TrustZone. We show that
despite the isolation of those environments, we can still use our techniques
to detect double fetches.

Fourth, we demonstrate the effectiveness of DropIt, our double-fetch
bug elimination method (P3). We show that DropIt eliminates source-
code-level double-fetch bugs with a very low overhead. Furthermore, we
reproduce CVE-2015-8550, a compiler-introduced double-fetch bug. Based
on this example we demonstrate that DropIt also eliminates double-fetch
bugs which are not even visible in the source code. Finally, we measure the
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performance of DropIt protecting 26 syscalls in the Linux kernel, where
TrinityDECAF reported double fetches.

7.1 Evaluation of DECAF

To evaluate DECAF, we analyze the double fetches and double-fetch bugs
reported by TrinityDECAF. Our goal here is not to fuzz an excessive
amount of time, but to demonstrate that DECAF constitutes a sensible
and practical complement to existing techniques. Hence, we also used old
and stable kernels where we did not expect to find new bugs, but validate
our approach.

Reported Double-Fetch Bugs Besides many double fetches Trinity-
DECAF reports in Linux kernel 4.6, it identifies one double-fetch bug
which is already documented as CVE-2016-6516. It is a double-fetch bug
in one of the ioctl calls. The syscall is used to share physical sections of
two files if the content is identical.

When calling the syscall, the user provides a file descriptor for the
source file as well as a starting offset and length within the source file.
Furthermore, the syscall takes an arbitrary number of destination file
descriptors with corresponding offsets and lengths. The kernel checks
whether the given destination sections are identical to the source section
and if this is the case, frees the sections and maps the source section into
the destination file.

As the function allows for an arbitrary number of destination files,
the user has to supply the number of provided destination files. This
number is used to determine the amount of memory required to allocate.
Listing 9.1 (Appendix C) shows the corresponding code from the Linux
kernel. Changing the number between the allocation and the actual access
to the data structure leads to a kernel heap-buffer overflow. Such an
overflow can lead to a crash of the kernel or even worse to a privilege
escalation.

Trinity already has rudimentary support for the ioctl syscall, which
we extended with semi-intelligent defaults for parameter selection. Con-
sequently, while Trinity does not find CVE-2016-6516, TrinityDECAF
indeed successfully detects this double fetch in the profiling phase. Fig. 9.4
shows a cache trace while calling the vulnerable function on Ubuntu 16.04
running an affected kernel 4.6. Although the time between the two accesses
is only 10 000 cycles (approximately 2.5 µs on our i7-6700K test machine),
we can clearly detect the two memory accesses.
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Figure 9.4: The two memory accesses of the FIDEDUPERANGE ioctl in Linux
kernel 4.5 to 4.7 can be clearly seen at around 1.5 · 105 and 1.6 · 105

cycles.

When, in the exploitation phase, the monitoring thread changes the
value to a higher value (cf. Section 5.2) exceeding the actual number of
provided file descriptors, the kernel iterates out-of-bounds, as the number
of file descriptors does not match the actual number of file descriptors
anymore. This out-of-bounds access to the heap buffer results in a denial-
of-service of the kernel and thus a hard reboot is required. Consequently,
the denial-of-service shows that the double fetch is an exploitable double-
fetch bug.

This demonstrates that DECAF is a useful complement to state-of-the-
art fuzzing techniques, allowing to automatically detect bugs that cannot
be found with traditional fuzzing approaches.

Reported Double Fetches Besides Linux kernel 4.6, we also tested
TrinityDECAF on a recent Linux kernel 4.10. We let TrinityDECAF
investigate all 64-bit syscalls (currently 295) without exceptions for one
hour on an Intel i7-6700K. On average, every syscall was executed 8058
times. Due to the semi-intelligent parameter selection of TrinityDECAF,
most syscalls are called with valid parameters. In our test run, 75.12 % of
the syscalls executed successfully. Hence, on average, every syscall was
successfully executed 6053 times, indicating a high code coverage for every
syscall.

For every syscall parameter, TrinityDECAF displays a percentage of
the calls where it detected a double fetch. Out of the 295 tested 64-bit
syscalls, TrinityDECAF reported double fetches for 68 syscalls in Linux
kernel 4.10. This is not surprising and in line with state-of-the-art work [70]
which reported 90 double fetches in Linux, but only 33 in syscalls. For each
of the reported syscalls, we investigated the respective implementation.
Table 9.1 (Appendix A) shows a complete list of reported syscalls and the
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reason why TrinityDECAF detected a double fetch. We can group the
reported syscalls into 5 major categories, explaining the detected double
fetch.

• Filenames. Most syscalls handling filenames (or paths) are reported
by TrinityDECAF. Many of them use getname flags internally to copy
a filename to a kernel buffer. This function checks whether the filename
is already cached in the kernel, and copies it to the kernel if this is not
the case, resulting in multiple accesses to the file name. The exploitation
phase automatically filtered out all non-exploitable double fetches in
this category.

• Shared input/output parameters. We found 5 syscalls which are
reported by TrinityDECAF although they do not contain a double fetch.
In these syscalls, one of the syscall parameters was used as input and
output. As reads and writes are not distinguishable through the cache
access pattern (cf. Sect. 4.1), these syscalls are filtered out automatically
in the exploitation phase.

• Strings of arbitrary length. As with filenames, some syscalls expect
strings from the user that do not have a fixed length. To safely copy such
arbitrary length strings, some syscalls (e.g., mount) use an algorithm
similar to Algorithm 2. Thus, the detected double fetch is due to the
length check and the subsequent string copy. The exploitation phase
automatically filtered out all non-exploitable double fetches in this
category.

• Sanity check. Many syscalls check—either directly, or in a sub-
routine—whether the supplied argument is sane. There are sanity
checks that check whether it is safe to access a user-space pointer before
actually copying data from or to it. Such a check can also trigger a cache
hit if the value was actually accessed. All correct sanity checks were
automatically filtered out in the exploitation phase. The exploitation
phase correctly identified the ioctl syscall in the Linux kernel 4.6, but
also correctly filtered it out in Linux kernel 4.10.

• Structure elements. If a syscall has a structure as parameter, double
fetches can be falsely detected if structure members fall into the same
cache line (cf. Sect. 4.1). If members are either copied element-wise or
neighboring members are simply accessed, TrinityDECAF will detect a
double fetch although two different variables are accessed. Again, these
false positives are filtered out in the exploitation phase.

Our evaluation showed that TrinityDECAF provides a sensible com-
plement to existing double-fetch bug detection techniques. The fact that
we found only 1 exploitable double-fetch bug in 68 double fetches is not
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Figure 9.5: Comparing three exploits for CVE-2016-6516. Our Flush+Reload-
based trigger in TrinityDECAF succeeds in 97 %, outperforming the
provided proof-of-concept (84 %) and the state-of-the-art method
of value flipping (25 %).

surprising, and in line with previous work, e.g., Wang et al. [70] found 3
exploitable double-fetch bugs by manually inspecting 90 double fetches
they found. However, it also shows that the coverage of DECAF highly
depends on the fuzzer used to instantiate it. Future work may retrofit
other fuzzers with DECAF, to extend the spectrum of bugs that the fuzzer
covers and thereby also extend the coverage of DECAF. Furthermore, as
Trinity is continuously extended, the coverage of TrinityDECAF grows
automatically with the coverage of Trinity.

7.2 Evaluation of P2

To evaluate P2 in detail, we compare three different variants to exploit
the double-fetch bug reported in CVE-2016-6516.

First, the provided exploit, which calls ioctl multiple times, always
changing the affected variable after a slightly increased delay. Second, we
use state-of-the-art value flipping to switch the affected variable as fast
as possible between the valid and an invalid value. Third, the automated
approach P2, integrated into TrinityDECAF.

Fig. 9.5 shows the success rate of 1000 executions of each of the three
variants. Value flipping has by far the worst success rate, although in
theory, it should have a success rate of approximately 50 %. In half of
the cases, the value is flipped before the first access. Thus, the exploit
fails, as the value is smaller at the next access. In the other cases, the
probability to switch the value at the correct time is again 50 % resulting
in an overall success rate of 25 %.
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Figure 9.6: The probability of double-fetch bug exploitation decreases with the
number of sanity checks as it only succeeds if the value changes
between the last two accesses.

The original exploit is highly optimized for this specific vulnerability.
It uses a trial-and-error busy wait with steadily increasing timeouts, which
works surprisingly well, as there is sufficient time between the two accesses.
Depending on the scheduling, the attacker sometimes sleeps too long (4 %)
and sometimes too short (12 %). Still, the busy wait outperforms the
value flipping in this scenario, increasing the success probability from 25 %
to 84 %.

Even though our Flush+Reload-based trigger (P2) is generic and does
not require fine-tuning of the sleep intervals, it has the highest success
rate. There is no case where the value was changed too early, as there are
no false positives with Flush+Reload in this scenario. Furthermore, as
the time between the two memory accesses is long enough, we achieve an
almost perfect success rate of 97 %. The remaining 3 %, where we do not
trigger a change of the value, are caused by unfortunate scheduling of the
application.

The success rate of value flipping drops significantly if the two values
have to fulfill specific constraints, e.g., the value has to be higher on the
second access. For example, if an application does not only fetch the
value twice, but multiple times for sanity checking, the probability of
successfully exploiting it using value flipping decreases exponentially.

Fig. 9.6 shows the probability to exploit a double fetch similar to
CVE-2016-6516, with additional fetches for sanity checks. To successfully
exploit the vulnerability, the value has to be the same for all sanity checks
and must be higher for the last access. Flipping the value between a valid
and an invalid value decreases the chances by 50 % for every additional
sanity check.

Our Flush+Reload-based method (P2) does not suffer significantly
from additional sanity checks. We can accurately trigger on the second to
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last access to change the value. The slightly decreased probability is only
due to missed accesses.

7.3 Evaluation of P1 on Trusted Execution Environments

We evaluate P1 on trusted execution environments by successfully detect-
ing double fetches in Intel SGX and ARM TrustZone.

Intel SGX Intel SGX allows running code in secure enclaves without
trusting the user or the operating system. A program inside an enclave is
not accessible to the operating system due to hardware isolation provided
by SGX. Weichbrodt et al. [73] showed that synchronization bugs, such as
double fetches, inside SGX enclaves, can be exploited to hijack the control
flow or bypass access control.

As it has been shown recently, enclaves leak information through the
last-level cache, even to unprivileged user space applications, as they share
the last-level cache with regular user space applications [6, 27, 53, 64].
SGX enclaves provide a communication interface using so-called ecalls
and ocalls, similar to the syscall interface. Enclaves fulfill the properties
of Sect. 4.4, and we can thus detect double fetches within enclaves, even
without access to the binary. Therefore, we can apply our method to
identify double fetches within SGX enclaves.

To test our Flush+Reload detection mechanism (P1), we implemented
a small enclave application. This application consists of only one ecall,
which takes a memory reference as a parameter. As enclaves can access
non-enclave memory, the user can simply allocate memory and provide the
pointer to the enclave. The enclave accesses the memory once, idles a few
thousand cycles and reaccesses the memory. Although the enclave should
be isolated from other applications, the monitoring application can clearly
detect the 2 cache hits. Fig. 9.11 (Appendix D) shows the measurement of
the Flush+Reload thread running outside the enclave on an Intel i5-6200U.
Similarly, Appendix D evaluates P1 on ARM TrustZone.

7.4 Evaluation of DropIt

To evaluate our open-source library DropIt, as an instantiation of P3, we
investigate two real-world scenarios. In the first scenario, we demonstrate
how DropIt eliminates a compiler-introduced real-world double-fetch bug
in Xen (CVE-2015-8550). In the second scenario, we evaluate the effect
of DropIt on Linux syscalls with double fetches. Our findings show that
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DropIt successfully eliminates all double-fetch bugs and can be used as a
preventative measure to protect double fetches in syscalls generically.

Eliminating Compiler-Introduced Double-Fetch Bugs As dis-
cussed in Section 2.3, compilers can also introduce double-fetch bugs.
Especially switch statements are prone to double-fetch bugs if the variable
is subject to a race condition [5, 52]. This is not an issue with the com-
piler, as the compiler is allowed to assume an atomic value for the switch
condition [11]. We are aware of two scenarios where code generated by
gcc contains a double-fetch bug.

If a switch is translated into a jump table with a default case, gcc
generates two accesses to the switch variable. The first access checks
whether the parameter is within the bounds of the jump table, the second
access calculates the actual jump target. Thus, if the parameter changes
between the accesses, a malicious user can divert the control flow of the
program.

If the switch is implemented as multiple conditional jumps, the compiler
is allowed to fetch the variable for every conditional jump. This leads to
cases where the switch executes the default case as the variable changes
while checking the conditions [52].

We evaluated DropIt on the real-world compiler-introduced double-
fetch bug CVE-2015-8550. This vulnerability in Xen allowed arbitrary
code execution due to a compiler-introduced double fetch within a switch
statement. Note that such a switch statement is a common construct
and can occur in any other kernel, e.g., Linux, or Windows, if a memory
buffer is shared between user space and kernel space. Wrapping the switch
statement using DropIt results in a clean and straightforward fix without
relying on the compiler. With DropIt, any compiler-introduced switch-
related double-fetch bug is successfully eliminated using only 3 lines of
additional code.

To compare the overhead of traditional locking and DropIt, we imple-
mented a minimal working example of a compiler-introduced double-fetch
bug. Our example consists of a switch statement that has 5 different cases
as well as a default case. The condition is a pointer which is subject to a
race condition. The average execution time of the switch statement with-
out any protection is 7.6 cycles. Using a spinlock to protect the variable
increased the average execution time to 83.7 cycles. DropIt achieved a
higher performance than the traditional spinlock with an average execu-
tion time of 68.0 cycles. Thus, DropIt is not only easy to deploy but also
achieves a better performance than traditional locking mechanisms.
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Figure 9.7: The number of executed file operations per second of our re-
implemented getname flags using DropIt (green) does not signifi-
cantly differ from the version in the vanilla kernel (red) measured
with the IOZone Fileops benchmark.

Preventative Protection of Linux Syscalls To show that DropIt
provides an automated and transparent generic solution to eliminate
double-fetch bugs, we also used DropIt in the Linux kernel. As discussed
in Sect. 7.1, a majority of the double fetches we detected in the Linux
kernel are due to the getname flags function handling file names. We
replaced this function with a straight-forward implementation protected
by DropIt. With this small change, all double fetches previously reported
in 26 syscalls were covered by DropIt, and thus all potential double-fetch
bugs were eliminated.

To compare the performance of DropIt with the vanilla implementation,
we executed 210 million file operations in both cases. All benchmarks
were run on a bare metal kernel to reduce the impact of system noise.
Fig. 9.7 shows the result of the IOzone filesystem benchmark [55]. On
average, the benchmarks show a 0.8 % performance degradation on the
tested file operations that are affected by our kernel change. In some cases,
DropIt even has a better performance than the vanilla implementation.
We therefore conclude that DropIt has no perceptible performance impact.
The variances in the tests are probably due to the underlying hardware,
i.e., the SSDs on which we performed the file operations.

Thus, DropIt provides a reliable and straightforward way to cope with
double-fetch bugs. It is easily integrable into existing C projects and does
not negatively influence the performance compared to state-of-the-art
solutions. Furthermore, it even increases the performance compared to
traditional locking mechanisms. DropIt in SGX performs even better,
since many operations interrupting TSX transactions are forbidden in
SGX enclaves anyway.
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8 Conclusion

In this paper, we proposed novel techniques to efficiently detect, exploit,
and eliminate double-fetch bugs. We presented the first combination of
state-of-the-art cache attacks with kernel-fuzzing techniques. This allowed
us to find double fetches in a fully automated way. Furthermore, we
presented the first fully automated reliable detection and exploitation of
double-fetch bugs. By combining these two primitives, we built DECAF,
a system to automatically find and exploit double-fetch bugs. DECAF
is the first method that makes manual analysis of double fetches as in
previous work superfluous. We show that cache-based triggers, as we use in
DECAF, outperform state-of-the-art exploitation techniques significantly,
leading to an exploitation success rate of up to 97 %.

DECAF constitutes a sensible complement to existing double-fetch
detection techniques. Future work may retrofit more fuzzers with DECAF,
extending the spectrum of bugs covered by fuzzers. Hence, double-fetch
bugs do not require separate detection tools anymore, but testing for these
bugs can now be a part of regular fuzzing. With continuously growing
coverage of fuzzers, the covered search space for potential double-fetch
bugs grows as well.

With DropIt, we leverage a newfound interaction between hardware
transactional memory and double fetches, to completely eliminate double-
fetch bugs. Furthermore, we showed that DropIt can be used in a fully
automated manner to harden Intel SGX enclaves such that double-fetch
bugs cannot be exploited. Finally, our evaluation of DropIt in the Linux
kernel showed that it can be applied to large systems with a negligible
performance overhead below 1 %.
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A TrinityDECAF and Detected Double Fetches

In this section, we show implementation details of TrinityDECAF (our
augmented version of Trinity) as well as a complete list of syscalls reported
by TrinityDECAF.

Figure 9.8 shows the process structure of our augmented version of Trin-
ity, called TrinityDECAF. The syscall fuzzer Trinity is extended with one
monitoring threads per syscall argument. Each of the monitoring threads
mounts a Flush+Reload attack to detect double fetches (cf. Section 4.3).

Figure 9.9 shows the probability that TrinityDECAF detects a double
fetch depending on the time between the two accesses to the memory (cf.
Section 4.2)

Table 9.1 is a complete table of reported syscalls and the reason why
TrinityDECAF detected a double fetch. The categories are discussed in
detail in Section 7.1.

TrinityDECAF

trinity-main trinity-watchdog

do syscall 1 do syscall 2 do syscall n

monitor 1 ... monitor m

Figure 9.8: The structure of TrinityDECAF with the Flush+Reload monitoring
threads for the syscall parameters.
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Figure 9.9: The probability of detecting a double fetch depending on the time
between the accesses.
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Table 9.1: Double fetches found by TrinityDECAF.

Category Syscall

Filenames open, newstat, truncate, chdir, re-
name(at), mkdir(at), rmdir, creat,
unlink, link, symlink(at), read-
link(at), chmod, (l)chown, utime,
mknod, statfs, chroot, quotactl,
*xattr, fchmodat

Shared input/output sendfile, adjtimex, io setup,
recvmmsg, sendmmsg

Strings mount, memfd create

Sanity check sched setparam, ioctl,
sched setaffinity, io cancel,
sched setscheduler, futimesat,
sysctl, settimeofday, gettimeofday

Structure elements recvmsg, msgsnd, sigaltstack,
utime

B Safe String Copy

In this section, we show the pseudo-code of a standard algorithm used
to safely copy an arbitrary-length string. Algorithm 2 first retrieves the
length of the string, to allocate a buffer and copy the string up to this
length. Then, it checks whether the string is terminated, and if not, retries
again as the buffer was apparently changed before copying it.

A similar algorithm is used in the Linux kernel whenever user data of
unknown length has to be copied to the kernel.
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input : string
copy:
len ← strlen(string);
buffer ← allocate(len + 1);
strncpy(buffer, string, len);
if not isNullTerminated(buffer) then

free(buffer);
goto copy; // or abort with error if too many retries

end
Algorithm 2: Safe string copy for arbitrary string lengths with
software-based retry logic.

C CVE-2016-6516

CVE-2016-6516 is a double-fetch bug in an ioctl call used to share
physical sections of two files if the content is identical. This deduplicates
the identical section to save physical storage. On a write access, the
identical section has to be copied to ensure that the changes are only
visible within the changed file.

The user provides a file descriptor for the source file as well as a
starting offset and length within the source file. Additionally, the syscall
takes an arbitrary number of destination file descriptors including offsets
and lengths. The kernel maps the source section into the destination file
if the given destination sections are identical to the source section.

The function supports an arbitrary number of destination files. Thus,
the user has to supply the number of provided destination files, so that
the kernel can determine the required amount of memory to allocate.
Listing 9.1 shows the corresponding code from the Linux kernel. If the
number changes between the allocation and the actual access to the
data structure, the kernel accesses the buffer out-of-bounds, leading to a
heap-buffer overflow.
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1 // first access of dest_count

2 i f ( g e t u s e r (count , &argp->dest count) ) { [ . . . ] }
3 // allocation based on dest_count

4 s i z e = o f f s e t o f ( struct f i l e d e d u p e r a n g e u s e r ,
5 i n f o [ count ] ) ;
6 same = memdup user ( argp , s i z e ) ;
7 i f ( IS ERR( same ) ) { [ . . . ] }
8 r e t = v f s d e d u p e f i l e r a n g e ( f i l e , same) ;
9 // function accesses same->dest count, not count

Listing 9.1: The vulnerable ioctl file dedupe range

function that was present in the Linux kernel from
version 4.5 to 4.7. The dest count member is
accessed twice and can thus be changed between
the accesses by a malicious user, leading to a kernel
heap-buffer overflow.

D ARM TrustZone
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Figure 9.10: A double fetch of a trustlet running inside the ARM TrustZone
of a Raspberry Pi 3. The cache hits can be clearly seen at around
0.96 · 106 and 3.01 · 106 cycles as the access time drops from >160
cycles to <120 cycles.

ARM TrustZone is a trusted execution environment for the ARM
platform. The processor can either run in the normal world or the trusted
world. As with Intel SGX, the worlds are isolated from each other using
hardware mechanisms. Trustlets—applications running inside the secure
world—provide a well-defined interface to normal world applications. This
interface is accessed through a secure monitor call, similar to a syscall.

To use the ARM TrustZone, the normal-world operating system re-
quires TrustZone support. Furthermore, a secure-world operating system
has to run inside the TrustZone. For the evaluation, we used the TrustZone
of a Raspberry Pi 3. We use the open-source trusted execution environ-
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Figure 9.11: Monitoring a double fetch inside an SGX enclave. The cache hits
can be clearly seen at around 0.75 · 106 and 1.21 · 106 cycles as
the access time drops from >150 cycles to <140 cycles.

ment OP-TEE [43] as a secure-world operating system. The normal world
runs a TrustZone-enabled Linux kernel.

As with Intel SGX (cf. Section 7.3), we again implement a trustlet
providing a simple interface for receiving a pointer to a memory location.
However, there are some subtle differences compared to the SGX enclave.
First, trustlets are not allowed to simply access normal-world memory. To
pass data or messages from normal world to secure world and vice versa,
world shared memory is used, a region of non-secure memory, mapped
both in the normal as well as in the secure world. With the world shared
memory, we fulfill all criteria of Sect. 4.4.

On ARM, there are generally no unprivileged instructions to flush the
cache or get a high-resolution timestamp [2]. However, they can be used
from the operating system. Thus, in contrast to the double-fetch detection
in syscalls or Intel SGX, we require root privileges to detect double fetches
inside the TrustZone. This is not a real limitation, as we use the detection
only for testing, and discovering bugs. An attacker using Flush+Reload
as a trigger to exploit a double-fetch bug can rely on different time sources
and eviction strategies as proposed by Lipp et al. [44].

Fig. 9.10 shows a recorded cache trace of the trustlet. Similarly to Fig-
ure 9.11, a trace from Intel SGX, the cache hits are clearly distinguishable
from the cache misses. Thus, we can detect double-fetch bugs in trustlets,
even without having access to the corresponding binaries.

E Example of DropIt

In this section, we show a small example of how to use DropIt. Listing 9.2
shows an example how to protect the insecure strcpy function using
DropIt. A programmer only has to add 3 lines of code (highlighted in the
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1 dropit t config = dropit init(1000);

2 dropit start(config);

3 l en = s t r l e n ( s t r ) ; // First access

4 i f ( l en < s izeof ( b u f f e r ) ) {
5 s t r cpy ( bu f f e r , s t r ) ; // 2nd access ,

6 // length of ’str’ could have changed

7 } else {
8 p r i n t f ("Too long!\n" ) ;
9 }

10 dropit end(config, { printf("Fail!"); exit(-1);});

Listing 9.2: Using DropIt to protect a simple string copy
containing a double-fetch bug from being exploited.
Only the highlighted lines (1, 2, and 10) have to
be added to the existing code to eliminate the
double-fetch bug.

listing) to protect arbitrary code from double fetch exploitation. DropIt
is clearly simpler than current state-of-the-art software-based retry logic
(cf. Algorithm 2).

DropIt is implemented in standard C without any dependencies on
other libraries, and can thus be used in user space, kernel space, as well
as in trusted execution environments (e.g., Intel SGX). If Intel TSX is
not available, DropIt has the possibility to execute a fall-back function
instead.
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Abstract

Today, more and more web browsers and extensions provide anonymity
features to hide user details. Primarily used to evade tracking by websites
and advertisements, these features are also used by criminals to prevent
identification. Thus, not only tracking companies but also law-enforcement
agencies have an interest in finding flaws which break these anonymity
features. For instance, for targeted exploitation using zero days, it is
essential to have as much information about the target as possible. A failed
exploitation attempt, e.g., due to a wrongly guessed operating system, can
burn the zero-day, effectively costing the attacker money. Also for side-
channel attacks, it is of the utmost importance to know certain aspects of
the victim’s hardware configuration, e.g., the instruction-set architecture.
Moreover, knowledge about specific environmental properties, such as the
operating system, allows crafting more plausible dialogues for phishing
attacks.

In this paper, we present a fully automated approach to find subtle
differences in browser engines caused by the environment. Furthermore,
we present two new side-channel attacks on browser engines to detect
the instruction-set architecture and the used memory allocator. Using
these differences, we can deduce information about the system, both
about the software as well as the hardware. As a result, we cannot only
ease the creation of fingerprints, but we gain the advantage of having
a more precise picture for targeted exploitation. Our approach allows
automating the cumbersome manual search for such differences. We collect
all data available to the JavaScript engine and build templates from these
properties. If a property of such a template stays the same on one system
but differs on a different system, we found an environment-dependent
property.

We found environment-dependent properties in Firefox, Chrome, Edge,
and mobile Tor, allowing us to reveal the underlying operating system,
CPU architecture, used privacy-enhancing plugins, as well as exact browser
version. We stress that our method should be used in the development
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of browsers and privacy extensions to automatically find flaws in the
implementation.

1 Introduction

Today, more than half of the world’s population is connected to the
internet [35]. Regardless of whether people use websites from a computer
or a smartphone, they require a web browser to do so. Most web browsers
follow the standards defined by the World Wide Web Consortium (W3C),
an international organization responsible for standards concerning the
world wide web. Although the standards define many aspects of how
websites are rendered and how they behave, they do not define everything
on the implementation level.

As a consequence, implementation details differ significantly between
different browsers. The differences can be found in supported standardized
features, browser-specific features, as well as aspects which are undefined
according to the standard [18]. With JavaScript, a scripting language
supported by all modern browsers, websites can gather information about
the concrete implementation of the browser. Furthermore, JavaScript
allows to obtain details about the host system, e.g., the screen resolution,
operating system, installed plugins. This can be used to adapt a website
to the specific properties of a user’s device and environment, providing an
optimal user experience. However, the amount of information available
to a website can also be abused to create a fingerprint consisting of a
set of properties. Such a fingerprint can be used to uniquely identify a
browser, and therefore a user, across multiple sessions and even across
webpages [19, 38, 50].

Browsers aiming at the protection of the privacy of the user, such as
the Tor browser, try to prevent fingerprinting. They do so by removing
differences caused by the browser as well as the environment. They
also block functionality such as Canvas elements [57]. There are also
approaches to prevent fingerprinting by adding randomness instead of
removing functionality [39]. The aim is always to prevent the creation of
unique fingerprints of a browser and thus also user.

There are many legitimate reasons to prevent tracking and identifica-
tion, and for certain groups, such as journalists or whistleblowers, it is in
many cases even vital. However, for criminal actors, it is undoubtedly also
beneficial to prevent tracking and unique identification. Thus, browsers

The original publication is available at https://www.ndss-symposium.org/
wp-content/uploads/2019/02/ndss2019_01B-4_Schwarz_paper.pdf.

https://www.ndss-symposium.org/wp-content/uploads/2019/02/ndss2019_01B-4_Schwarz_paper.pdf
https://www.ndss-symposium.org/wp-content/uploads/2019/02/ndss2019_01B-4_Schwarz_paper.pdf
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such as the Tor browser are also heavily used for criminal activities [17,
60]. The anti-fingerprinting methods ensure that users cannot be tracked
across websites, preventing deanonymization through the user’s usage
pattern of websites [57]. Thus, attackers trying to reveal the identity of
such users cannot rely on simply tracking a user with fingerprinting.

However, an attacker does not necessarily want to uniquely identify
a user for the purpose of tracking. For an attacker, it might be even
more desirable to gather as much information about the environment as
possible to mount a targeted attack [50]. Especially for nation-state actors
or law-enforcement agencies, it can already be advantageous if only some
information is known about a user. Information fragments can then be
used to, e.g., link a suspect to a browser session, or mount a targeted
exploit on the user.

In this paper, we propose a method to automate the search for data
leakage which reveals information about the user’s environment. To auto-
mate the leakage detection, we build so-called templates over properties in
different environments. A property can be anything which can be read by
JavaScript. Multiple runs on one system reveal unstable properties, result-
ing in a deterministic set of static properties for a specific environment.
We analyzed all unstable properties and show that in most cases they
do not provide any reliable information about the environment. We also
show how our method can be extended to the unstable properties that can
be used for fingerprinting. The JavaScript property template we obtain
allows us to match a specific target system to one of the environments in
our template. Hence, an attacker can deduce what the environment of the
target system is, and thus, which attacks can be mounted.

It is well known that law-enforcement agencies actively try to de-
anonymize Tor users [16, 24, 61, 78]. Various exploits have already been
used to do this, some of which were discovered later on by researchers.
The exploits are usually zero-day exploits mainly targetting users with
Windows operating system [22, 78]. However, exploits are not limited to
zero-day exploits.

Nowadays, there is a repertoire of powerful, software-based side-channel
attacks. These side-channel attacks exploit various microarchitectural
elements, most prominently caches [33, 55, 56, 81], DRAM [58], or branch
prediction [2, 3, 21]. Side-channel attacks are not only able to break
cryptographic algorithms [5, 37, 64], but are even able to read arbitrary
memory contents [8, 36, 41, 74, 80]. With powerful side-channel attacks,
it is plausible that nation-state actors also use side-channel attacks to
de-anonymize Tor users.
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Although some side-channel attacks can be mounted directly from
the browser [23, 25, 26, 31, 32, 36, 43, 62] or even remotely [42, 65, 71],
many powerful side-channel attacks require native code execution. Both
zero-day exploits, as well as side-channel attacks, require knowledge of
the attacked system. Trying to use an attack for a system which is not
affected might draw attention to the exploit, and worse, might even leak
a zero-day to the public, rendering it useless for future attacks.

Hence, there is an arms race between browser vendors emphasizing on
the privacy of the user (e.g., Tor), and attackers and tracking companies
trying to learn as much about the system as possible. Attackers try
to find new ways to leak information which browser vendors prevent as
soon as they become public. This requires considerable effort on both
sides. Thus, both parties have an interest in automating this approach.
Automated leakage detection has already been used to detect leakage from
the cache [29], memory accesses [79], procfs pseudo-file system [68], and
Android API [69].

Our fully-automated approach we propose can replace the tedious work
of identifying such properties manually. As it is easily integrated into the
development and testing chain, it will allow providing strong guarantees
for this security and privacy aspect of modern browsers.

Furthermore, we present two new side-channel attacks which can be
mounted from JavaScript. They allow an attacker to reveal the instruction-
set architecture and the memory allocator. Both properties are essential
aspects of both side-channel attacks as well as traditional zero-day exploits.

Contributions. The contributions of this work are:

1. We are the first to propose a fully-automated method to identify
browser properties which can be used for fingerprinting.

2. We show that we can deduce information about the host system
even in browsers employing anti-fingerprinting techniques.

3. We present two new side-channel attacks in JavaScript to deduce
further information about the host system.

4. We show that privacy-enhancing browser extension can leak more
information than they disguise and can even be semi-automatically
circumvented, leading to a false sense of security.

Outline. The remainder of the paper is organized as follows. In Section 2,
we provide background information on browser fingerprinting and side-
channel attacks. In Section 3, we present our fully-automated method to
find leakage from browser properties. In Section 4, we present two novel
side-channel attacks to deduce information about the environment. In
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Section 5, we apply the method to real-world scenarios and discuss the
detected properties which are useful for targeted attacks and fingerprinting.
In Section 6, we analyze the coverage we reach with our approach. In
Section 7, we discuss the limitations of the approach. We conclude in
Section 8.

2 Background and Related Work

In this section, we provide background about state-of-the-art browser
fingerprinting and anti-fingerprinting mechanisms employed in current
browsers. Furthermore, we also discuss related work which aims to auto-
matically detect leakage in similar scenarios and give a short overview of
side-channel attacks in JavaScript.

2.1 Browser Fingerprinting

Browser fingerprinting tries to uniquely identify a user across multiple
webpages or visits to the same webpage without storing information in the
browser. Thus, browser fingerprinting does not rely on classical tracking
mechanisms such as cookies, making it hard for a user to prevent tracking.

Fingerprinting is usually done via a script which is executed when
a user visits a website. This script collects several properties of the
browser, such as the browser version, operating system, screen resolution,
or installed plugins. While each of the properties itself does not allow
tracking of a user, the combination of properties is unique enough to
identify a user [19, 38].

There are many properties that can be used to fingerprint users. These
properties include fonts [6, 50], plugins [50], rendering differences [9, 70],
the battery status [53], and audio processing [20].

2.2 Anti-Fingerprinting Mechanisms

To prevent the tracking and identification of users, several software- and
research projects try to minimize the fingerprinting surface. There are
mainly two approaches to accomplish this goal.

First, some applications, such as, e.g., the Tor browser [57], hide the
actual values of properties by either not exposing them or replacing them
with the same value on all platforms. The Tor browser tries to prevent
fingerprinting attempts which rely on browser properties that can be
retrieved using JavaScript, plugins, or CSS [57]. Thus, the fingerprint of
all Tor browsers in their default configuration is supposed to be the same.
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There are also browser extensions for hiding values of properties as
well as complete functionality that can be used for fingerprinting from a
website. Such extensions include, e.g., Canvas Defender or the WebAPI
Manager [66].

Second, some applications, such as, e.g., the FPRandom browser [39] or
PriVaricator [51], try to break the stability of fingerprints by randomizing
properties. FP-Block [72] spoofs properties in a way that they are the
same for subsequent visits to one site, but differ between domains to
prevent cross-domain tracking.

However, anti-fingerprinting mechanisms can be detected through
additional, missing, or inconsistent values they create [1, 19, 46, 50].

2.3 Microarchitectural Attacks

Microarchitectural attacks have recently gained a lot of attention. Typi-
cally they are timing attacks that exploit the behavior of the microarchitec-
ture, e.g., caches, branch predictors, or DRAM. The cache, in particular,
was exploited in many attacks over the past years, leading to different
attack techniques. Osvik et al. [55] described Evict+Time, where the
attacker measures the influence of evicting a cache set on the runtime of
an algorithm run by the victim, and Prime+Probe, where the attacker
continuously measures whether the victim evicted a cache line in a specific
cache set. Yuval and Falkner [81] described Flush+Reload, where the
attacker continuously measures whether the victim reloaded a cache line.
Several variations of these attacks were proposed, e.g., Flush+Flush [30],
Evict+Reload [29, 40]. The recently discovered Meltdown [8, 41, 74, 80]
and Spectre [36] attacks are significantly more powerful microarchitectural
attacks. In some cases, they can infer values from arbitrary memory loca-
tions from other contexts, e.g., other processes or the operating system
kernel.

2.4 Microarchitectural and Side-Channel Attacks in Java-
Script

Although microarchitectural attacks exploit effects on a very low level
of the CPU, they can even be exploited from JavaScript. In contrast
to native code, JavaScript code is sandboxed and less powerful in terms
of multithreading. Thus, there are several challenges an attacker has to
overcome [63].

Still, many microarchitectural properties can be inferred from Java-
Script [23, 25, 26, 31, 36, 43, 54, 62]. Moreover, sensors found on many
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mobile devices as well as modern browsers, introduce side channels which
can be exploited from JavaScript [44, 52, 67]. It has also been shown that
microarchitectual properties can be used for fingerprinting [46].

2.5 Template-based Leakage Detection

Chari et al. [10] introduced template attacks as a strong form of side-
channel attacks. They first collect side-channel traces from an attacker-
controlled device, the so-called template. Then, they collect a single trace
from an identical device processing an unknown secret. The unknown
secret can then be recovered by comparing the trace to the recorded
templates.

Brumley and Hakala [7] applied template attacks to cache-based timing
attacks. They rely on Prime+Probe to automatically detect and exploit
cache leakage. However, their method is limited to an attacker who runs
on the same CPU core as the victim. Gruss et al. [29] demonstrated a
Flush+Reload-based template attack to detect and exploit cache leakage
automatically. As their attack leverages the shared last-level cache, it
does not rely on the attacker’s ability to run on the same core as the
victim. Weiser et al. [79] dynamically instrumented binaries to generate
templates consisting of all memory access. By comparing templates for
different secret inputs, they can automatically detect whether the binary
contains secret-dependent memory accesses.

On a higher level, Spreitzer et al. used template attacks on Android
to infer application launches and visited websites via the procfs pseudo-
file system [68] as well as the Android API [69]. For both approaches,
they first create a template by gathering all available information from
the proc file system [68] or Android API [69]. In the analysis phase,
they compare templates gathered from different applications to classify
application launches and fingerprint websites based on the templates.

3 JavaScript Template Attacks

JavaScript Template Attacks can automatically identify language features
of JavaScript that leak information about the environment, e.g., the
operating system or hardware. For this purpose, they leverage the well-
known concept of template attacks (cf. Section 2.5) and apply it to
JavaScript. As with all template attacks, JavaScript Template Attacks
detect leakage through template differences caused by a secret. For
JavaScript, the secret is the environment of the website, i.e., the browser,
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Figure 10.1: A JavaScript Template Attack consists of two phases. In the
profiling phase, all available properties of a browser are collected
multiple times. In the analysis phase, the template is pruned by
removing duplicates and changing values. The resulting identifed
properties leak properties about certain aspects of the environ-
ment.

operating system, and underlying hardware. A template is a matrix of
properties (rows) for various environments (columns). All properties, e.g.,
browser properties, are retrieved through JavaScript.

Finding leakage is equivalent to detecting differences in these collected
properties of the templates. The advantage of template attacks is that it is
not necessary to understand the cause of the information leak. Hence, the
template attack works fully automated. If the template contains different
properties for different environments, our attack can deduce information
about the (inaccessible) environment. This information can then be used
by an attacker to mount a targeted exploit.

Our attack works in two phases which are outlined in Figure 10.1.
The first phase is the profiling phase, which creates several profiles by
collecting a set of properties, which are accessible via JavaScript, in
different environments. These profiles are then combined to a template. In
the analysis phase, we compare the properties of templates to automatically
find differences caused by the environment. These discovered differences
leak information about the environment which can be used on any webpage
to mount a targeted attack.

3.1 Profiling Phase

The first phase is the profiling phase which builds the templates consisting
of multiple profiles. The profiling phase runs entirely inside the browser
and is implemented in JavaScript.
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1 function g e t P r o p e r t i e s ( o ) {
2 var r e s u l t = [ ] ;
3

4 while ( o !== null ) {
5 r e s u l t = r e s u l t . concat ( R e f l e c t . ownKeys ( o ) ) ;
6 o = Object . getPrototypeOf ( o ) ;
7 }
8 return r e s u l t ;
9 }

Listing 3.1: Using reflections on all objects of the prototype chain results in
a list of property names defined either directly in the object or
inherited from an object on the prototype chain.

As a first step, the profiling code creates a list of properties which
are accessible from JavaScript. In JavaScript, the accessible properties
are either functions, numbers, strings, booleans, arrays, or objects. We
refer to numbers, strings, and booleans as primitive types, as they have a
single value which can directly be accessed and read. Objects and arrays
(which are only a special type of object) are complex types, as they do not
have a single generically comparable value. Instead, they are comprised
of multiple primitive types and possibly further complex types.

Functions are more complex and require at least a certain understand-
ing of the semantics to invoke them. This is an orthogonal problem [34],
and thus, the properties that are returned by function calls are subject
to future work. Solving this problem also allows applying JavaScript
Template Attacks trivially to properties returned by functions. Even
though we do not evaluate functions, we can still leverage functions for
the templates. First, functions itself have a set of properties, e.g., name
or length. Second, with artificial properties, we describe a way to add
custom properties to the profiling phase. This allows us to convert simple
functions, e.g., the toString function, into properties.

We distinguish between native properties, which are defined by the
language or the browser, and artificial properties which can be added
manually or automatically before the profiling phase.

• Native Properties. Native properties are primitive or complex
types which are defined either by the language, i.e., in the EC-
MAScript standard, or by the browser. Examples include the length
property of almost every object or the document property of the
window object. Moreover, browsers often introduce own properties
to support features which are not yet standardized, or which aid
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Figure 10.2: In the JavaScript object hierarchy, every object is derived from
Object. The window object is the root of all accessible objects
and thus, for JavaScript Template Attacks.

developers in the debugging process of web applications. Exam-
ples include the window.chrome property in Google Chrome or the
window.sidebar property in Mozilla Firefox.

• Artificial Properties. We introduce the term artificial proper-
ties for properties which are typically not available in JavaScript.
As JavaScript allows adding properties dynamically to any object,
additional properties can be added to the profiled objects. These ad-
ditional properties can, for example, be results of preceding function
calls.

Moreover, accessor properties can be added to the profiled objects.
These properties are actually functions, as they do not return a
static value but the result of a function. In contrast to functions,
these properties do not support arguments. Thus, functions without
arguments (e.g., toString) can be converted to artificial properties,
allowing them to be used in the profiling phase.

Exploration Step

The first step of the profiling phase is to explore the list of all accessible
properties. We leverage both reflections and the JavaScript functionality
of iterating through properties of an object. Listing 3.1 shows our method
to collect all properties from a given object. The properties include both
inherited properties, which are not defined directly in the object but in
the prototype chain, and non-inherited properties.

The goal is to identify as many properties as possible. There is no list
of all available objects which can be used in the exploration step. However,
in JavaScript, objects are linked with each other in so-called prototype
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Figure 10.3: The histogram of non-static properties (e.g., the DOM parsing
time) can be used to, e.g., create fingerprints.

chains. This is similar to class inheritance in other languages such as
C++. Thus, from an arbitrary object, we can traverse all child elements
and all parent elements. The root object of every object is Object.

Furthermore, JavaScript has an object hierarchy as illustrated in
Figure 10.2. Accessible objects (e.g., global objects, functions, HTML
DOM) are referenced in the window object (representing the browser
window), or in one of its child elements. Hence, by starting the property
exploration step at the window object, we reach all accessible properties.
The result of the exploration step is a list of accessible properties.

The exploration step has to run only once per environment, as the set
of properties is static and does not change.

Collection Step

During the collection step, the JavaScript code creates a profile consisting
of the properties identified in the exploration step and their values. The
collection step runs again inside the browser in JavaScript.

Our property collection algorithm takes a list of properties which were
identified in the exploration step. For every property, the collection step
acquires the actual value of the property. As we only considered properties
which have a concrete value (e.g., no property which first requires a function
to be called), we can directly read the value of every such property. Note
that this step is not limited to properties with concrete values, as adding
properties resulting from function calls works the same if there is a way
to call functions in an automated way. We refer to the set of collected
properties as a profile. Combining profiles by running the collection step
in different environments results in a template.

The template still contains properties which are not useful in the
further analysis (cf. Section 3.2), as they are not static. Examples include
the page load time or the render time. These values change every time the
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page is reloaded. Exploiting such properties requires an understanding
of the semantics of the values which is an orthogonal problem. Although
semantics could theoretically be inferred using machine learning, our
manual investigations already showed that these non-static properties did
not contain any information we deemed usable for deducing environment
information. Thus, we focussed on the more interesting static properties.
For fingerprinting, non-static properties might still be useful and can be
exploited by collecting histograms of the values which can then be matched
to single users (cf. Figure 10.3).

To later on detect which properties are not static (cf. Section 3.2),
i.e., which properties do not have the same value on every read, the
collection step needs to run multiple times. Every run collects the same
properties and the hash of the corresponding object. Thus, after multiple
runs (typically 3 to 4), there is a list of values for every property from the
exploration step, composing the profile.

The profile is finally transmitted to the back-end server (e.g., using
AJAX) for incorporation into the template used for further analysis.

3.2 Analysis Phase

The analysis phase is an offline phase which finds the properties leaking
information about the environment. In contrast to the profiling phase, this
second phase of the templating process does not run inside the browser.

The input to the analysis is the template generated in the profiling
phase. Depending on the profiles contained in the template, the analysis
phase can detect properties leaking different aspects of the environment.
For example, if all profiles are recorded with the same browser on differ-
ent operating systems, the analysis phase detects properties leaking the
operating system.

The analysis phase is also split into two steps, the cleanup step and
the property extraction step.

Cleanup Step

In the first step, the template has to be cleaned. Profiles collected in
the profiling phase often contain duplicate properties. There are multiple
reasons for this.

First, JavaScript objects are often heavily linked to other objects. This
creates entries in the profile which appear to have a different name but
are the same properties. For example, window.frames.window.name is
the same property as window.name. These properties are detected if the
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objects have the same hash (which was stored in the collection phase),
and are then unified.

Second, due to our method of collecting all properties (cf. Listing 3.1),
the same property for one object might be collected multiple times. As
we iterate through the entire prototype chain, we might get properties
which are already overwritten by the child object. For example, the name

property is collected for every object in the prototype chain. However, we
can only access the name property of the last child, as it overwrites this
property for all other objects in the prototype chain. These properties
are trivial to remove as they have exactly the same name.

After the pruning of duplicates, the cleanup step has to identify
properties which are not static, i.e., properties which have changing values
on different reads. For the collected values of every property, we test
whether all the values are identical. If at least one of the values is different,
we do not consider this property further. For example, the timestamp when
the page was fully loaded (window.performance.timing.responseEnd)
differs between multiple runs of the collection step. Although this property
contains information about the environment, we cannot use it in an
automated manner, as our automated method does not understand the
semantics of properties (i.e., that this is a timestamp).

In all observed cases, it was sufficient to run the collection step 3 to 4
times to filter out non-static properties in the cleanup step.

Property Extraction Step

Using the cleaned template, the property extraction step identifies proper-
ties which leak information. In this step, we first create the union of all
properties from all profiles of the template. This is necessary, as in many
cases not all properties are present in all profiles.

For every property in the unified property list, the collected values in
the different profiles are compared. If a property has the same value in all
profiles, it can be ignored as it does not contain any information. This is
the case for the majority of the properties, as properties are in the most
cases not influenced by the environment, but only the current page.

However, if the value of a property varies between different profiles
in the template, this property contains information that can be used to
distinguish the environments. The same holds true if a property cannot be
found in a template at all. The absence of a property is treated as a value
of undefined for this property. In Section 5, we show that the absence of
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Browser Profiling (once) Profiling (twice) Analysis Total

Firefox 0.8 s 3.4 s <0.1 s 3.5 s
Chrome 1.8 s 5.6 s <0.1 s 5.7 s
Tor browser 0.7 s 3.2 s <0.1 s 3.3 s
FPRandom 0.7 s 3.2 s <0.1 s 3.3 s

Table 10.1: The time it takes to run a JavaScript Template Attack for various
browsers. As the analysis phase does not run inside the browser,
the time difference is due to the number of collected properties.
For all browsers, the total time is well below 10 s.

properties can, for example, be used to detect whether a browser is used
in private-browsing mode.

The final output of the analysis phase is a matrix of properties (rows)
and their corresponding values for a set of different environments (columns).
For all properties of the template matrix (i.e., for each row), the value
differs for at least one environment column. The more templates contain
a different value for the property, the higher the entropy of the property,
and thus the more it is able to deliver information about the environment.
Section 5 shows the results of the JavaScript Template Attack on various
browsers, including the properties which leak information.

3.3 Performance

In contrast to other template attacks [29, 68, 69, 79], JavaScript Template
Attacks are extremely fast. Table 10.1 shows the runtime of the profiling
and analysis phase for several different browsers. For all browsers, the
runtime is well below 10 s, and could still be optimized.

The performance of the profiling phase depends on the performance of
the JavaScript engine in the browser, and also on the number of properties
provided by the browser. The higher the number of properties collected
during the profiling phase, the longer this phase takes. If only native
properties, i.e., properties which are provided by the browser, are collected,
the time of the profiling phase is below 2 s for all tested browsers. The
artificial properties increase the runtime measurably.

The collection step of the profiling phase has to be run at least twice to
remove properties which are not static, thus, the real time of the profiling
phase increases by the number of runs. However, in all tests, the maximum
number of required runs was 4. Moreover, to filter out properties which
only change every second (e.g., a timestamp), we wait for 2 s between each
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run of the collection phase. Still, the profiling phase for most browsers is
below 5 s.

As the analysis phase is offline, i.e., it does not run in the browser,
and thus, there are only negligible performance differences for different
browsers, due to the number of properties and environment provided. The
resulting runtime in all our tests was less than 0.1 s.

The total runtime of a JavaScript Template Attack is the sum of the
profiling phase(s) and the analysis phase. This time slightly depends on
the browser, but for most our tests it is below 5 s.

4 Low-Level Properties

In this section, we show how the JavaScript Template Attack (cf. Section 3)
can be augmented with properties reflecting low-level properties of the
environment. For this, we add artificial properties (cf. Section 3.1) to
the browser before running the profiling phase. The artificial properties
are not properties per se but the result of functions deriving information
about the underlying architecture or even microarchitecture.

Neither architectural nor microarchitectural properties are directly
accessible in JavaScript. JavaScript code is platform independent. Thus,
environmental properties have to be abstracted by the JavaScript engine.
Moreover, for security reasons, JavaScript code runs in a sandbox and has
no direct access to the underlying environment.

Still, recent research showed that such low-level properties can be
obtained via side channels in JavaScript [26, 31, 43, 54, 62]. In this
section, we present 2 new side channels to obtain architectural properties.

4.1 Instruction-Set Architecture

JavaScript is an interpreted language executed in a sandbox. Thus, the
language itself is independent of the instruction-set architecture (ISA) of
the machine it runs on. However, for performance reasons, JavaScript
functions which are frequently executed are compiled to machine code
using a just-in-time (JIT) compiler [15, 73].

Although JavaScript is oblivious to the ISA, the JIT compiler is
limited by the ISA of the current platform. Thus, the JIT compiler
behaves differently on CPUs with different ISAs. We can exploit this to
distinguish one ISA from another ISA in JavaScript.

We craft a code snippet for which the JIT compiler can generate
efficient code for one ISA and cannot generate equally efficient code for



4. Low-Level Properties 281

a different ISA. Then, we compare the runtime of this code snippet to a
very similar code snippet for which the JIT compiler can generate efficient
code on both ISAs. Using the runtime differences between the two code
snippets, we can infer the underlying ISA.

1 var a = 0 . 9 , b = c = d
= e = f = g = 0 ;

2 for ( var i = 0 ; i <
10000000; i++) {

3 b = 1 .0 / a ;
4 c = 2 .2 / b ;
5 d = 3 .4 / c ;
6 e = 4 .1 / d ;
7 f = 5 .8 / e ;
8 g = 6 .6 / f ;
9 // no operation

10 a = a + b + c + d + e
+ f + g + g ;

11 }

1 var a = 0 . 9 , b = c = d
= e = f = g = h =
0 ;

2 for ( var i = 0 ; i <
10000000; i++) {

3 b = 1 .0 / a ;
4 c = 2 .2 / b ;
5 d = 3 .4 / c ;
6 e = 4 .1 / d ;
7 f = 5 .8 / e ;
8 g = 6 .6 / f ;
9 h = 7 .1 / g ;

10 a = a + b + c + d + e
+ f + g + h ;

11 }

Listing 4.1: Two nearly identical code snippets to detect whether the code
runs in a 32-bit or 64-bit environment. In 64-bit environments,
both functions have basically the same execution time, whereas in
32-bit environments, the Firefox/Tor browser just-in-time compiler
generates slower code for the right function as fewer registers are
available to store intermediate results.

Listing 4.1 contains two functions which are very similar. Both func-
tions have data-dependent calculations with floating point numbers. How-
ever, the first function has one operation less. On x86, the JIT compiler
uses the SSE XMM registers for floating point operations. There are 8
XMM registers available on x86-32 but 16 XMM registers on x86-64.

Thus, on x86-64, all intermediate values can be kept in the registers for
both functions. However, on x86-32, all intermediate values can be kept
in the registers for the first function but not for the second function. This
increases the runtime of the 32-bit code significantly, as registers have to
be reused and thus temporarily saved on the stack (cf. Listing 4.2). As
the function is executed multiple thousand times, the runtime difference
is accumulated and can easily be measured.

The same approach can also be used to distinguish 32-bit ARM vs.
64-bit ARM environments. There, the number of floating-point registers is
the same, however, the number of general registers differ. On 32-bit ARM,



282 Chapter 10. JavaScrip Template Attacks

1 vaddss %xmm0,%xmm1,%
xmm1

2 vdivsd %xmm7,%xmm6,%
xmm6

3 vmovsd %xmm7, 0 x8(%esp )
4 vxorpd %xmm2,%xmm2,%

xmm2
5 vxorpd %xmm7,%xmm7,%

xmm7

1 vaddsd %xmm0,%xmm1,%
xmm0

2 vdivsd %xmm2,%xmm11,%
xmm3

3 vaddsd %xmm2,%xmm0,%
xmm0

4 vdivsd %xmm3,%xmm10,%
xmm4

Listing 4.2: The 32-bit x86 JIT compiler (left) cannot use as many registers as
the 64-bit JIT compiler (right) and has to reuse registers and also
save them onto the stack.

only 10 general registers (r0-r9) are used by the JIT compiler, whereas on
64-bit ARM, 32 general registers (r0-r31) are used by the JIT compiler.

We performed the measurement 10 000 times each on multiple 32-bit
and 64-bit environments. In our tests, 32-bit environments can always be
detected, 64-bit environments are in some cases classified as 32-bit due to
scheduling or other noise which results in a slower execution of the fast
function. However, we can still detect whether it is x86-32 or x86-64 with
a probability of >98 % for all tested environments.

In fact, the measurement does not even require a high-precision timer.
Noise does not play a role, as it can be averaged out by repeating the mea-
surements, and the timer resolution does not matter, as the number of loop
iterations (cf. Listing 4.1) can be increased until it is distinguishable. The
performance.now function with a resolution of 100 ms in Tor is already
sufficient to measure the difference if combined with edge thresholding [26,
62].

4.2 Memory Allocator

Many browser exploits rely on the underlying memory allocator [4, 28].
Buffer overflows as well as use-after-free vulnerabilities often require
knowledge of the memory layout to craft reliable exploits. As browsers use
different memory allocators, reliable exploits require information about
the allocation strategy.

Memory allocators differ between browsers, e.g., PartitionAlloc in
Chrome [14] and jemalloc in Firefox [4]. Due to platform-specific virtual
memory APIs, the memory allocator behavior in one browser can even
differ between operating systems [13]. However, all memory allocators
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Figure 10.4: Iterating over a large array shows timing spikes at different array
indices. The distances are caused by the internal memory allocator
which has to allocate new memory blocks. The timings which are
the easiest to detect (and thus have the highest frequency in the
histogram) are slow timings caused by the allocator requesting
more memory from the operating system.

have in common that they allocate memory in blocks. The size of such a
block is usually a power of 2.

Thus, there are two scenarios if a resizable data structure in JavaScript
has to grow. Either, there is still sufficient space in the allocated memory
block, and the data structure just uses this space. Or, the memory has to
be resized, which can lead to a reallocation of the memory and thus also
the data structure. In the latter case, we can measure a timing difference,
as this operation requires large amounts of memory to be copied which is
a slow process.

Moreover, memory allocators distinguish between small and large
allocations. While small allocations are handled directly by the memory
allocator, large allocations are delegated to the operating system. The
operating system can then directly map the required memory segments,
e.g., with mmap on Unix or VirtualAlloc on Windows. Attacks which
require knowledge of physical addresses [32, 62] exploited the fact that
memory mapped by the operating system is not initialized. When iterating
over the memory, the operating system has to handle a page fault for
every page that is accessed for the first time, which takes significantly
longer than an access to an already mapped page. Thus, an attacker
learns where a new page starts, and thus the least significant bits of the
physical address.

We only focus on the timing differences from the allocator itself, not on
timing differences caused by the operating system. Note that page faults
can of course also be used to learn information about the environment.
However, as most systems use pages with a size of 4 KB, there is not much
information to gain from exploiting this side channel.
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To infer information about the memory allocator of the browser, we
first allocate a small array of several kilobytes. We then choose a step
size of 512 B and continuously resize the array by this step size. For
every resize, we measure the time it takes using performance.now() in
combination with edge thresholding [26, 62]. This results in a sufficiently
high timer resolution to see the activity of the memory allocator. The
activity manifests itself in slightly higher timings compared to accesses
without memory allocator activity.

By comparing the distances between the high timings, we can infer
the allocated size of the memory region. Figure 10.4 shows a histogram
of the timing differences for Firefox and Chrome, grouped into typical
sizes used by memory allocators. The default allocation size is detected
correctly for both Chrome (512 KB) and Firefox (1 MB).

Measurement noise due to the coarse-grained performance.now timing
function and interrupts leads to spurious high timings and missed high
timings. The smaller buckets in the histogram are due to some smaller
buckets used by the memory allocators, as well as spurious high timings.
If the activity of a memory allocator (i.e., a high timing) is missed, the
bucket size is incorrectly identified as too large. However, as we see in
the histogram, in the majority of the cases (i.e., the highest peak in the
histogram) the allocation size is determined correctly.

4.3 Graphics

WebGL allows the browser to access low-level properties and functions
of the graphics card. The amount of information which can be gathered
from the graphics card has already been used as a source for browser
fingerprinting [9, 38]. Especially as WebGL does not require any browser
permissions, it is an easy-to-use source for properties. In this section, we
show that JavaScript Template Attacks can be trivially extended to also
detect leaking properties in the WebGL extension.

The WebGL extension is not a static object which is always available
through the object hierarchy (cf. Figure 10.2). Thus, on a blank site,
there is no reference to a WebGL object or any of the WebGL extensions.
However, by simply creating a WebGL element and attaching it to the
window object, we can use a JavaScript Template Attack on the WebGL
element as well.

Listing 4.3 shows the corresponding code to add WebGL as an artificial
property to the object hierarchy. WebGL requires an HTML canvas

element to instantiate the WebGL extension. We also add the canvas
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1 <canvas id="glCanvas" width="640" he ight="480"/>
2 <s c r i p t type="text/javascript">
3 // add artificial property "canvas"

4 window . canvas =
5 document . que rySe l e c to r ("#glCanvas" ) ;
6 // add artificial property "gl" for WebGL

7 window . g l = window . canvas . getContext ("webgl" ) ;
8 </s c r i p t >

Listing 4.3: Adding the canvas element as well as the WebGL object as an
artificial property to the window object.

element to the window object as an artificial property as it contains
properties as well.

The WebGL object contains 435 properties. 296 out of the 435 proper-
ties are only constants which refer to specific WebGL parameters that can
be actively queried from OpenGL. Thus, these properties itself do not con-
tain any information. Hence, we have to automatically query the values of
all parameters and again add them to window object as artificial properties.
Querying the value of a parameter is as simple as window.wgl[param] =

gl.getParameter(gl[param]) for every property of the WebGL object.

Adding the base WebGL parameters as artificial properties adds al-
ready close to 300 properties accessible to a JavaScript Template Attack.
Another large set of parameters corresponding to WebGL, and there-
fore the underlying hardware and environment, is not directly accessible
through the WebGL object but through WebGL extensions. WebGL
extensions provide additional functions and parameters of OpenGL to the
browser. All specified and not-yet specified extensions are registered in
the WebGL Extension Registry [27].

For every WebGL extension which is currently specified,
gl.getExtension

(extensionName) returns either an object of the extension if it is
supported, or null. If the browser and environment support the
extension, we can use it in the same way as the normal WebGL object.
Again, every extension provides constant properties which can be used to
query the parameter value from the extension. This is fully automated in
the same manner as for the WebGL object.

Adding the parameters of all extensions adds around 100 additional
properties to the window object. While the Tor browser does not provide
any WebGL extension, there are 96 parameters from 23 extensions in
Chrome and 115 parameters from 24 extensions in Firefox. In Section 5,
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Device ISA Operating System Browser

PC1 x86-64 Kubuntu 16.04.4 LTS Chrome, Firefox, Tor
Windows 10 Chrome, Firefox, Tor, Edge

PC2 x86-64 Kubuntu 18.04 LTS Chrome, Firefox, Tor
Windows 7 Chrome, Firefox, Tor, Edge

PC3 x86-64 Kubuntu 16.04.5 LTS Chrome, Firefox, Tor
Windows 10 Chrome, Firefox, Tor, Edge

VM1 x86-32 Windows XP Chrome, Firefox, Tor
VM2 x86-64 Kubuntu 17.04 Chrome, Firefox, Tor
VM3 x86-64 Windows 10 Chrome, Firefox, Tor, Edge
Phone1 AArch64 Android 7.0 Chrome, Firefox, Tor
Phone2 ARMv7 Android 6.0.1 Chrome, Firefox, Tor
Phone3 AArch64 Ubuntu 16.04 Chrome, Firefox, Tor

Table 10.2: List of environments used for the case studies.

we show that the properties created from WebGL parameters can be used
to infer information about the environment.

4.4 Microarchitectural Elements

There is a variety of other low-level properties which have already been
used in side-channel attacks from JavaScript [26, 31, 36, 43, 44, 54, 62,
75, 77]. All these properties can theoretically also be added as artificial
properties. However, these attacks are already powerful attacks itself.
Furthermore, these attacks are often quite fragile and require information
about the system itself, without providing information about the environ-
ment, but only about specific secrets. Thus, an attacker would rather use
such microarchitectural side-channel attacks to complement a JavaScript
Template Attack.

Moreover, as a consequence to the Spectre attacks, which have not only
been shown in native code but also in JavaScript, browser manufacturers
limited the access to high-precision timers rigorously. This does not only
include the provided performance.now function but also self-built timers
using SharedArrayBuffers [26, 62]. As a result, many of the well-known
microarchitectural attacks are currently prevented until a new timing
source is found, or browser vendors re-enable SharedArrayBuffers and
precise timers as, e.g., Google plans to do with Chrome [59].
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5 Case Studies

In this section, we provide multiple case studies of our JavaScript Template
Attack in various environments. We scan all native properties which are
in the hierarchy starting at window (cf. Figure 10.2). Additionally, we add
the artificial properties described in Section 4, which includes all WebGL
properties and WebGL extension properties, the memory allocator and the
ISA. As browsers, we used Google Chrome 67.0.3396.99, Mozilla Firefox
61.0.1, Tor 7.5.6, and–if available–Microsoft Edge 42.17134.1.0. Table 10.2
shows a table of all the environments we used for testing.

For all case studies, we used our open-source JavaScript Template
Attack framework.1 In the case studies, we tried to automatically infer as
much information about the environment as possible.

The collected information can be used directly or indirectly to mount
targeted exploits. Directly usable information includes, for example, the
operating system and architecture, which is required knowledge for many
exploits. Indirectly usable information includes, for example, the use of
privacy extensions or private mode which can be used to imitate plausible
looking system messages or dialogues, e.g., for phishing [11, 12].

In all use cases, we assume that we cannot simply read the correct
information directly from the browser, e.g., from the user agent. The user
agent string contains among others operating system, browser name and
version. Even if we get this information directly, an attacker cannot rely
on this information, as it can easily be modified using browser extensions.
Moreover, some browsers such as Tor do not even provide any information
about the environment in the user agent.

5.1 Browser Detection

The major browsers all have their own JavaScript and rendering engine.
Thus, exploitable bugs are usually limited to one browser. Especially
exploits which heavily rely on the internal functionality of the browser are
limited to a specific browser.

The differences between the browsers do not only prevent one browser
exploit to work in a different browser, but it also makes it easy to distin-
guish browsers. Every browser supports a distinct set of functions [18]
and also provides browser-specific properties through so-called vendor
prefixes [49]. Already the number of documented properties for the major

1The source of the framework can be found in a GitHub repository at https:
//github.com/IAIK/jstemplate

https://github.com/IAIK/jstemplate
https://github.com/IAIK/jstemplate
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browsers differs significantly, with 2698 for Chrome, 2247 for Firefox, and
1806 for Edge [47].

Moreover, as the JavaScript engine differs between browsers, the values
of properties are also different. We added the toString representation
of functions as simple artificial properties. As the representation is not
strictly defined, it differs between browsers. This difference has also been
exploited to detect the manipulation of the user-agent string [76].

However, not only the values of properties are different but also the
available properties differ between browsers. We compared all accessible
native and artificial properties of Firefox and Chrome running in exactly
the same environment. Every property which was not implemented was
assumed to have the value undefined, which is the case for every undefined
variable.

In total, our JavaScript Template Attack discovered 14 544 properties
which differed between Firefox and Chrome. With 60.1 %, the majority of
differing properties is the string representation of functions. Without these
artificial properties, there are still 5796 properties which differ between
the two browsers. Similarly, there are 15 670 different properties between
Edge and Firefox, and 8913 between Edge and Chrome.

Even between Firefox and the Tor browser (which is based on Firefox)
we found 3055 properties with different values. Again, the majority
of differing properties (63.6 %) is the string representation of functions.
However, as both browsers share the same code base, the difference is not
in the format of the string representing the function. The differences are
caused by functions which are only available in one of the two browsers.
Without considering functions, there are still 1111 properties with different
values between the two browsers.

Summarizing, even browsers which share a common code base can be
easily distinguished using our JavaScript Template Attack. For all tested
browsers, there are more than 1000 properties with different values which
can be used to uniquely identify a specific browser. We were successfully
able to distinguish all of the 40 tested setups (cf. Table 10.2) without
any false positives or false negatives. Even in the hypothetical case that
native properties do not leak this information anymore, the artificial
memory-allocator property (cf. Section 4.2) can be used to distinguish
browsers.
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Figure 10.5: The number of identified properties from Chrome 60 to 67 ( )
and Firefox 53 to 60 ( ). The trend shows that the number of
properties increases over time.

Browser Version

For many exploits, it is not only necessary to know which browser the
victim uses but also the exact browser version. As exploits are disclosed,
they are usually fixed by the browser vendor in one of the next versions.
Thus, to reliably run an exploit on a browser, knowing the browser version
is important for selecting a working exploit.

Figure 10.5 shows the number of properties discovered using a Java-
Script Template Attack for every Firefox and Chrome version since 53
and 60 respectively. For all versions of Firefox and Chrome, there are
many unique properties. We further compared the number of properties
between all versions of the browsers. There is always at least one property
which has changed between any two versions. For all tested browsers in
all setups, we were able to distinguish the versions of the browsers. We
can see a clear trend to an increasing number of properties, although in
some versions properties are removed due to changes in the standards or
deprecation of functions.

Summarizing, for all major browsers, it is easy to detect the actual
browser version by counting the number of implemented properties, even
without inspecting the values of the properties. As the trend is to con-
tinuously add more features instead of removing features, we expect the
browser version detection to work on newer versions of the browsers as
well.

5.2 Privacy-Extension Detection

There are several privacy-enhancing extensions for browsers, e.g., ad
blocker or anti-tracking extensions. Some of them modify the information
sent to servers (e.g., FP-Block [72]) or overwrite JavaScript functionality
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Sample Expression

Low 27 29 27 !!((Worker&&Worker.toString().indexOf(‘‘postMessage’’)

==-1)|0)

Medium - 28 28 !!((addEventListener&&addEventListener.toString()

.indexOf(‘‘block’’)!=-1)|0)

High - - 28 !!((performance.now&&performance.now.toString().indexOf

(‘‘fuzz’’)!=-1)|0)

Tin Foil Hat - - - !!((Array&&Array.toString().indexOf(‘‘Proxy’’)!=-1)|0)

Table 10.3: Every row of the table represents a protection level of Chrome
Zero [63]. On the left side of the table is the number of properties
which have a different value compared to the protection level in
the corresponding column. The right side of the table shows one
sample expression which is only true if the corresponding protection
level is active.

(e.g., Chrome Zero [63]). Often, such plugins change properties which
are accessible from JavaScript. Thus, a JavaScript Template Attack can
detect the presence of such plugins.

Note that the detection of such plugins can have various uses. First,
it allows an attacker to create dialogues which look as if they are coming
from such a browser extension, tricking the user into interacting with
them. For example, a user might be tricked into clicking on a fake update
dialogue from an extension, which actually triggers, e.g., a switch to
fullscreen mode or a file download. Second, exploits can be automatically
adapted to avoid functions which are modified by a browser extension
such as Chrome Zero [63]. Finally, as already described by Mowery et al.
[46], Eckersley [19], Acar et al. [1], or Nikiforakis et al. [50], such plugins
are a source for fingerprinting, as they lead to inconsistencies.

We evaluated Chrome Zero [63], Chameleon [45], Canvas Defender1,
CyDec Platform AntiFingerprint2, Ghostery3, and WebAPI Manager [66].
For Chrome Zero, we are not only able to detect that it is active but also
the current protection level (cf. Table 10.3).

Mounting a JavaScript Template Attack with the WebAPI Manager
extension [66] active leads to similar results. Again, we can detect that

1https://multiloginapp.com/canvasdefender-browser-extension/
2https://addons.mozilla.org/en-US/firefox/addon/cydec-platform-

antifingerprint/
3https://www.ghostery.com/

https://multiloginapp.com/canvasdefender-browser-extension/
https://addons.mozilla.org/en-US/firefox/addon/cydec-platform-antifingerprint/
https://addons.mozilla.org/en-US/firefox/addon/cydec-platform-antifingerprint/
https://www.ghostery.com/
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vs. Lite Conservative Aggressive

None 1492 1539 2381
Lite - 67 894
Conservative - - 843

Table 10.4: Every row of the table represents a protection level of the Web API
Manager [66]. The table contains the number of properties with a
different value compared to the protection level in the corresponding
column.

the extension is active as it modifies properties. Similar to the Chrome
Zero extension, we can also detect which protection level is used (lite,
conservative, aggressive) as shown in Table 10.4. As with Chrome Zero, it
is not possible to access the references to the original functions.

For Canvas Defender, we cannot only determine that it is used (105
distinguishing properties) but also semi-automatically circumvent it. Can-
vas Defender replaces functions which are used or can potentially be used
for fingerprinting with its own functions. However, as it requires the
original functionality as well, it stores references to the original functions
as properties of the window object. Thus, a JavaScript Template Attack
does not only discover the use of the extension, but it also reveals the
original functions. From an attacker’s perspective, the function references
are conveniently named the same as the original functions and just prefixed
with a random string. Thus, JavaScript Template Attacks cannot only
detect the tested extension. It can even be used to circumvent it, leaving
more than 30 000 users who have this extension installed with a false sense
of security.

Mounting a JavaScript Template Attack with the WebAPI Manager
extension [66] activated leads to similar results. Again, we can detect that
the extension is active as it modifies between 1472 and 2307 properties,
depending on the protection level. We can also easily detect whether
Chameleon or CyDec are active. Our JavaScript Template Attack identi-
fied 13 properties which are modified by Chameleon and 2365 properties
which are modified or added by CyDec. Each of these properties can be
used to detect that the user has Chameleon installed and activated. Inter-
estingly, Ghostery is only detectable when installed in Firefox. Ghostery
adds Ghostery-specific elements to every page in Firefox, revealing the
usage of this extension. In Chrome, there are no differences, making
Ghostery in Chrome not detectable with our automated method.
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We can conclude that JavaScript Template Attacks are a valuable
method for developers of privacy-enhancing extensions to test their ex-
tension. If extensions try to hide references instead of making them
inaccessible, they can be easily revealed again, allowing an attacker to
easily circumvent the extension. JavaScript Template Attacks can easily
uncover such leaked references during development.

5.3 Private Mode Detection

Similarly to privacy-enhancing extensions, Firefox, Chrome, and Edge
provide a built-in private-browsing mode. In this mode, the browser
does not keep any tracks of visited websites, such as cookies or history.
Furthermore, private browsing also includes some tracking protection [48].

We mounted a JavaScript Template Attack to detect whether there
are any differences between normal mode and private-browsing mode. In
Chrome, there are no detectable differences when using the browser in
private-browsing mode. Similarly, we cannot detect differences between
normal mode and guest mode, a feature similar to private-browsing mode.

For Firefox, however, there are properties revealing whether the current
window is a private-browsing window or a normal window. For example,
service workers are not available in private-browsing mode. Thus, all 73
properties corresponding to service workers are only detected in normal
mode and not available in private-browsing mode.

An additional hint that a Firefox window is in private-browsing mode
is the value of the doNotTrack property. Per default, this flag is set to
“unspecified” and only gets an actual value if the user specifies one in the
browser settings. In private-browsing mode, however, this flag is always
set to “1” if not configured differently by the user. Thus, if this value is
not “1”, the window is probably not in private-browsing mode.

For Edge, we can also detect whether the window is in private-browsing
mode or normal mode. We detected 72 properties corresponding to
local databases and Microsoft-specific properties, such as MSCredentials.
These features are only available in normal mode. Moreover, Edge handles
the doNotTrack property in the same way as Firefox, providing another
hint about the current mode.

5.4 Operating System Detection

If exploits interact with the environment, e.g., access operating-system
specific resources, an attacker has to know which operating system is used.
The same is true if an attacker tries to create fake system messages [11,
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12]. Most browsers are available for all major platforms and provide the
same functionality on all platforms. Thus, for a legitimate website, there
is usually no reason to detect the operating system for any functionality
except for statistics.

We mounted a JavaScript Template Attack to detect whether any
property would reveal the underlying operating system. For Microsoft
Edge, this would be trivial, as it only runs on Microsoft Windows. Thus,
we did not include this browser in our tests. Furthermore, to eliminate
influences which are not from the operating system, wherever possible,
we mounted the attack on the same hardware for the different operating
systems.

The Tor browser actively tries to eliminate all differences among
operating systems. Still, some properties differ between operating sys-
tems. An interesting difference in properties we detected is the win-

dow.innerWidth/window.innerHeight pair. Although the Tor browser
warns the user not to resize the window to prevent fingerprinting us-
ing these properties, they are not always the same. For example, win-
dow.innerWidth is 1000 on Linux (Kubuntu 16.04.4) but 1001 on Win-
dows 10. The reason for this is that Windows 10 has native support for
high-density displays and automatically scales application such that they
have a usable size. For the browser, the screen appears to be smaller than
the actual screen resolution. However, this scaling seems to introduce
rounding errors, which results in this difference in the window.innerWidth
property. On Android (with Orfox), this property is also different with a
value of 980.

The font rendering causes another difference between operating sys-
tems. The list of installed fonts is already known to provide reliable
fingerprints [6]. Due to different available fonts as well as differences
in the font rendering code, the same text has different dimensions on
different operating systems [50]. For example, in Tor, a default heading
on Windows 10 is 1 pixel higher than on Linux. Such differences do not
only exist for the Tor browser but also for Chrome.

For Firefox, we detected additional properties which give an
even better indication about the underlying operating system. Fire-
fox has experimental support for virtual-reality displays (e.g., win-

dow.navigator.activeVRDisplays). However, in the current version
(61.0.1), only Windows is fully supported. Linux is not supported, and
macOS is only partially supported. Thus, by detecting which functions are
available for virtual-reality displays, the operating system can be detected.
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Moreover, we detected differences in WebGL properties which al-
low distinguishing the operating system for both Firefox and Chrome.
One property which reveals whether the underlying operating sys-
tem is Windows is the UNMASKED RENDERER WEBGL property of the WE-

BGL debug renderer info extension. This property contains the OpenGL
renderer used for WebGL. On Windows, this string always contains ANGLE,
which stands for Almost Native Graphics Layer Engine, the OpenGL
compatibility layer on Windows [76]. The string Iris refers to Intel Iris
Graphics, a GPU which is mostly found in MacBook Pros and iMacs, thus
indicating that the browser is running on macOS.

The Android operating system can also be distinguished from other
operating systems mostly by the lack of functions (and thus proper-
ties). For example, Firefox on Android does not support speech syn-
thesis (e.g., window.SpeechSynthesis). Chrome on Android, for ex-
ample, does not support support inline installation of extensions (e.g.,
chrome.webstore.install). Both browsers do not support shared work-
ers (e.g., window.SharedWorker) and plugins on Android.

However, we detected one feature which is only available on Chrome
for Android. The window.MediaSession allows a mobile website to show
information about the currently played multimedia content in the notifi-
cation bar. If this property is available, the underlying operating system
is Android.

For some of the properties, the operating system can be directly
inferred, and by combining the detected properties, we can reliably detect
any of the major operating systems.

5.5 Architecture Detection

For exploits running binary code, it is vital to know the current ISA.
Assuming a wrong ISA (e.g., x86 instead of ARM) results in an unsuccessful
exploit. In both cases, the exploit attempt does not only fail, but it might
also be detected.

As with all other properties, the Tor browser tries to provide the same
functionality and properties on all architectures. On all desktop operating
systems, the Tor browser reports the platform as Win32, independent of
the actual operating system or ISA. However, we detected a difference
when running a JavaScript Template Attack on Orfox, the official An-
droid version of the Tor browser. There, the platform is not reported as
Win32 but the actual platform is reported (armv8l on an ARMv8 phone
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and armv7l on an ARMv7 phone). We also disclosed this issue to the
developers, and it will be fixed in one of the future versions.

Another property which indicates the underlying ISA is again the
renderer information as well as the vendor information from WebGL.
Adreno, Mali, and Tegra renderer are only available for ARM. Thus, if
this string is contained in the renderer information, the underlying ISA is
ARM. Similarly, on Linux, the renderer information can even contain the
specific microarchitecture. For example, on a Lenovo T460s with an Intel
Skylake CPU, the vendor string contains Intel and the renderer property
value is Mesa DRI Intel(R) HD Graphics 520 (Skylake GT2).

Finally, the artificial property presented in Section 4.1 can be used to
distinguish 32-bit and 64-bit x86. We achieve a classification rate which
is close to 100 %. Moreover, it has the huge advantage that it cannot
easily be hidden from an attacker, whereas the values of properties can be
anonymized by the browser vendors.

5.6 Virtual Machine Detection

Although virtual machines should not be distinguishable from native ma-
chines, we still detected one property which has a distinct value inside a
virtual machine. In Firefox, the WebGL extension can reveal that Firefox
is running inside a virtual machine.
The UNMASKED VENDOR WEBGL property of the WEBGL debug renderer info

extension is set to VMWare, Inc. when running inside VirtualBox or
VMWare. For the Tor browser and Chrome, we could not detect any
property which immediately reveals that the environment is a virtual
machine.

However, there are two properties which can give a hint that the under-
lying environment is a virtual machine. First is the reported screen reso-
lution (window.screen.availWidth / window.screen.availHeight). If
the value is an odd value, i.e., not one of the usually used resolutions
of screens, it is a strong indicator that the browser is running in a vir-
tual machine. For example, on our test machine, the screen resolution
is 1920x1080, and the reported resolution inside the VM is 1920x944.
Second, the number of reported CPUs can be easily queried using nav-

igator.hardwareConcurrency. For a native environment, this value is
usually a power of two on consumer hardware. A small number which is
not a power of two (e.g., 3) is also an indicator that the browser is running
inside a virtual machine.
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Browser MDN JavaScript Template

Firefox 2247 15 709
Chrome 2698 13 570
Edge 1806 9666
Firefox Android 2104 15 612
Chrome Android 2676 13 119
Tor browser 2247† 15 639

† As the MDN does not distinguish between the Tor browser and Firefox, we used the
Firefox numbers, as the Tor browser is based on Firefox.

Table 10.5: The number of properties documented in the MDN Web Docs
compared to the number of properties found using a JavaScript
Template Attack.

6 Coverage Analysis

In this section, we analyze the coverage of JavaScript Template Attacks.
As a baseline, we parsed the MDN Web Docs [47]. We then compared all
our detected properties to the properties extracted from the MDN Web
Docs.

Table 10.5 shows the number of properties we parsed from the MDN
Web Docs as well as the number of properties detected with a JavaScript
Template Attack for Firefox, Chrome (both on Linux and Android), Edge,
and the Tor browser (Linux only). Interestingly, the number of detected
properties for every browser is much higher than the number of properties
officially documented. One reason for this is that the documentation
is apparently not complete. Moreover, we access several internal, un-
documented properties. This is an interesting aspect, as our JavaScript
Template Attack also allows to find completely new properties which
might not have been considered for fingerprinting before as they are not
documented. Another reason is that we access the same property for
multiple objects, e.g., the length property. Properties from the prototype
chain are not documented if they are already documented for the parent
object. Thus, this property is counted twice although it is in principle the
same property.

Still, we do not achieve a 100 % coverage for multiple reasons. The
majority of the documented properties does not belong to static objects,
i.e., objects which always exists in the browser. Many objects have to be
dynamically created, e.g., exceptions, or instances of elements. Thus, we
cannot automatically explore the properties of these objects. It is, however,
possible to create such objects and add them to the hierarchy manually.
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Browser Exploration Without duplicates Usable

Firefox 18 443 16 450 15 709
Chrome 15 585 13 604 13 570
Edge 13 752 11 850 9666
Firefox Android 18 214 16 296 15 612
Chrome Android 15 556 13 608 13 119
Tor browser 17 217 15 645 15 639

Table 10.6: The number of properties found using a JavaScript Template Attack
and the number of properties which were left after the cleanup step
of the analysis phase (cf. Section 3.2).

We showed this for WebGL (cf. Section 4.3) and the toString function
(cf. Section 5.1). Future work has to research whether this step can be
automated to achieve an even higher coverage. Nonetheless, as shown in
Section 5, the coverage is already sufficient to find many properties which
reveal information about the environment.

Another reason for missing properties is that some browser-specific
properties are not referenced by the window root object and are thus not
in the hierarchy illustrated in Figure 10.2.

Table 10.6 shows that most of the detected properties were actually
usable for the property extraction step (cf. Section 3.2). The cleanup
step (cf. Section 3.2) removed only a small percentage (<15 %) of the
properties as they were duplicates. From the remaining properties, only a
few (<9 %) had to be discarded as they changed their value when read
multiple times. These properties were mostly timestamps.

For all browsers, we found around 10 000 usable properties. This
massive number of automatically detected, partly undocumented and
usable properties stresses the need for automated leakage detection.

7 Discussion

In this section, we discuss the differences between JavaScript Template
Attacks and traditional fingerprinting, its limitations, and possible future
improvements.

7.1 Difference to Fingerprinting

Although JavaScript Template Attacks look similar to fingerprinting,
they have a different goal. In traditional fingerprinting, attackers try to
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identify properties or combinations of properties which are unique for
a user. For JavaScript Template Attacks, we try to identify properties
or combinations of properties which are unique for an environment. In
contrast to fingerprinting, it is preferable that the identified properties do
not change for different users, but only for environments.

The overlap between JavaScript Template Attacks and fingerprinting
lies in the fact that many detected properties can be used for fingerprinting.
This makes JavaScript Template Attacks also a powerful method to
automatically search for new fingerprinting sources. It detects differences
in properties within seconds, without requiring any manual analysis. Thus,
this also reduces the time to search for new fingerprints. As shown in
Section 5, several of the properties we used to detect the environment are
indeed useful for fingerprinting.

7.2 Limitations and Future Work

We currently focussed mainly on properties, and only added the toString

function and the functions to query WebGL parameters. Thus, many
properties which are hidden behind function calls are not identified. We
expect that the results of function calls provide more information about
the environment, similar to function calls in Android [69].

The most simple case are functions which do not take any argu-
ment. Still, adding these functions as artificial properties is not as
straightforward as it seems at first glance. Several functions have to
be blacklisted, as they would abort the script (e.g., window.close() or
document.location.reload()) or pause the script until the user actively
continues execution (e.g., alert()). Moreover, cycles have to be detected
to not be stuck in endless loops (e.g., the result of toString is again a
string which provides a toString function).

Future research has to investigate how this approach can be applied to
functions with parameters. In contrast to Java [69], getting the number
and types of arguments for a function in JavaScript is not straightfor-
ward. Moreover, choosing sane values is a hard problem. It would be
interesting to combine techniques from fuzzing which select sane values
with JavaScript Template Attacks to automatically test the return values
of functions. However, fuzzing JavaScript APIs with a high coverage is
still an open research problem [34].

An interesting direction would also be to target certain web standards,
such as Web USB or Web NFC. To get useful results, a JavaScript
Template Attack would require some manual initialization and possibly
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user interaction to grant the corresponding permission. Thus, this is not
in the scope of this paper, as it requires more research into automatically
understanding the semantics of functions and calling them.

7.3 Countermeasures

Most browsers do not have the goal to prevent identification of the en-
vironment. While some properties which leak information about the
environment cannot easily be removed, others can be anonymized as it is,
e.g., done in the Tor browser. From our experiments, we have seen that
Tor’s anti-fingerprinting design [57] also prevents that an attacker can
leak a lot of information about the environment. Thus, anti-fingerprinting
techniques–if implemented correctly–are a viable method to also prevent
the detection of the environment.

As shown in Section 5, JavaScript Template Attacks can detect leakage
in privacy-enhancing browsers and extensions. Thus, the main use case
of JavaScript Template Attacks is to provide an automated augmenta-
tion for the development process of defense mechanisms. If used in the
development process of privacy-enhancing browsers and extensions, they
can detect overlooked properties, as, e.g., in the case of the Orfox browser
(cf. Section 5.5). This also shows shortcomings in the implementation
of extensions, e.g., the original function references are still accessible (cf.
Section 5.2).

8 Conclusion

In this paper, we presented JavaScript Template Attacks, a fully automated
novel technique to detect subtle differences in browser engines caused by
the environment. Furthermore, we showed two new side-channel attacks
on browsers, allowing to detect the instruction-set architecture and the
used memory allocator. Our techniques even work in the presence of
anti-fingerprinting mechanisms in the browser. By leveraging the found
differences in the browser engine, an attacker learns details about the
environment and can get a clearer picture of a system for a targeted exploit.
Moreover, our technique is applicable to identifying new fingerprints
automatically.

We found environment-dependent properties in all major browsers,
including Tor for Android, allowing us to reveal the underlying operating
system, CPU architecture, used privacy-enhancing plugins, and the exact
browser version. Furthermore, we showed that privacy-enhancing exten-
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sions can provide a false sense of security as they can be circumvented
semi-automatically using our technique if not implemented correctly. Thus,
we stress that our method should be used in the development process
of browsers and privacy extensions to automatically find flaws in the
implementation.
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Abstract

In early 2018, Meltdown first showed how to read arbitrary kernel memory
from user space by exploiting side-effects from transient instructions.
While this attack has been mitigated through stronger isolation boundaries
between user and kernel space, Meltdown inspired an entirely new class of
fault-driven transient-execution attacks. Particularly, over the past year,
Meltdown-type attacks have been extended to not only leak data from
the L1 cache but also from various other microarchitectural structures,
including the FPU register file and store buffer.

In this paper, we present the ZombieLoad attack which uncovers a
novel Meltdown-type effect in the processor’s fill-buffer logic. Our analysis
shows that faulting load instructions (i.e., loads that have to be re-
issued) may transiently dereference unauthorized destinations previously
brought into the fill buffer by the current or a sibling logical CPU. In
contrast to concurrent attacks on the fill buffer, we are the first to report
data leakage of recently loaded and stored stale values across logical
cores even on Meltdown- and MDS-resistant processors. Hence, despite
Intel’s claims [37], we show that the hardware fixes in new CPUs are
not sufficient. We demonstrate ZombieLoad’s effectiveness in a multitude
of practical attack scenarios across CPU privilege rings, OS processes,
virtual machines, and SGX enclaves. We discuss both short and long-
term mitigation approaches and arrive at the conclusion that disabling
hyperthreading is the only possible workaround to prevent at least the
most-powerful cross-hyperthread attack scenarios on current processors,
as Intel’s software fixes are incomplete.

The original publication is available at https://dl.acm.org/citation.cfm?
doid=3319535.3354252.
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1 Introduction

In 2018, Meltdown [47] was the first microarchitectural attack completely
breaching the security boundary between the user and kernel space and,
thus, allowed to leak arbitrary data. While Meltdown was fixed using a
stronger isolation between user and kernel space, the underlying principle
turned out to be an entire class of transient-execution attacks [8]. Over the
past year, researchers demonstrated that Meltdown-type attacks cannot
only leak kernel data to user space, but also leak data across user processes,
virtual machines, and SGX enclaves [72, 78]. Furthermore, leakage is not
limited to the L1 cache but can also originate from other microarchitectural
structures, such as the register file [71] and, as shown in concurrent work,
the fill buffer [61], load ports [61], and the store buffer [55].

Instead of executing the instruction stream in order, most modern
processors can re-order instructions while maintaining architectural equiva-
lence. Instructions may already have been executed when the CPU detects
that a previous instruction raises an exception. Hence, such instructions
following the faulting instruction (i.e., transient instructions) are rolled
back. While the rollback ensures that there are no architectural effects,
side effects might remain in the microarchitectural state. Most Meltdown-
type attacks exploit overly aggressive optimizations around out-of-order
execution.

For many years, the microarchitectural state was considered invisible
to applications, and hence security considerations were often limited to
the architectural state. Specifically, microarchitectural elements often do
not distinguish between different applications or privilege levels [8, 13, 39,
47, 59, 64, 65].

In this paper, we show that, first, there still are unexplored microar-
chitectural buffers, and second, both architectural and microarchitectural
faults can be exploited. With our notion of “microarchitectural faults”,
i.e., faults that cause a memory request to be re-issued internally without
ever becoming architecturally visible, we demonstrate that Meltdown-type
attacks can also be triggered without raising an architectural exception
such as a page fault. Based on this, we demonstrate ZombieLoad, a novel,
extremely powerful Meltdown-type attack targeting the fill-buffer logic.

ZombieLoad exploits that load instructions which have to be re-issued
internally, may first transiently compute on stale values belonging to pre-
vious memory operations from either the current or a sibling hyperthread.
Using established transient-execution attack techniques, adversaries can
recover the values of such “zombie load” operations. Importantly, in con-
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trast to all previously known transient-execution attacks [8], ZombieLoad
reveals recent data values without adhering to any explicit address-based
selectors. Hence, we consider ZombieLoad an instance of a novel type of
microarchitectural data sampling (MDS) attacks. Unlike concurrent data
sampling attacks like RIDL [61] or Fallout [55], our work includes the
first and only attack variant that can leak data even on the most recent
Intel Cascade Lake CPUs which are reportedly resistant against all known
Meltdown, Foreshadow, and MDS variants. We present microarchitec-
tural data sampling as the missing link between traditional memory-based
side-channels which correlate data addresses within a victim execution,
and existing Meltdown-type transient-execution attacks that can directly
recover data values belonging to an explicit address. In this paper, we
combine primitives from traditional side-channel attacks with incidental
data sampling in the time domain to construct extremely powerful at-
tacks with targeted leakage in the address domain. This not only opens
up new attack avenues but also re-enables attacks that were previously
assumed mitigated.

We demonstrate ZombieLoad’s real-world implications in a multitude
of practical attack scenarios that leak across processes, privilege bound-
aries, and even across logical CPU cores. Furthermore, we show that
we can leak Intel SGX enclave secrets loaded from a sibling logical core,
even on Foreshadow-resistant CPUs. We demonstrate that ZombieLoad
attackers may extract sealing keys from Intel’s architectural quoting en-
clave, ultimately breaking SGX’s confidentiality and remote attestation
guarantees. ZombieLoad is furthermore not limited to native code exe-
cution, but also works across virtualization boundaries. Hence, virtual
machines can attack not only the hypervisor but also different virtual
machines running on a sibling logical core. We conclude that disabling
hyperthreading, in addition to flushing several microarchitectural states
during context switches, is the only possible workaround to prevent this
extremely powerful attack.

Contributions. The main contributions of this work are:

1. We present ZombieLoad, a powerful data sampling attack leaking
data accessed on the same or sibling hyperthread.

2. We combine incidental data sampling in the time domain with tra-
ditional side-channel primitives to construct a targeted information
flow similar to regular Meltdown attacks.
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3. We demonstrate ZombieLoad in several real-world scenarios: cross-
process, cross-VM, user-to-kernel, and SGX. ZombieLoad even works
on Meltdown-resistant hardware.

4. We show that ZombieLoad breaks the security guarantees of Intel
SGX, even on Foreshadow-resistant hardware.

5. We are the first to do post-processing of the leaked data within the
transient domain to eliminate noise.

Outline. Sect. 2 provides background. Sect. 3 gives an overview of
ZombieLoad, and introduces a novel classification for memory-based side-
channel attacks. Sect. 4 describes attack scenarios and their attacker
models. Sect. 5 introduces and evaluates the basic primitives required for
mounting ZombieLoad. Sect. 6 demonstrates ZombieLoad in real-world
attack scenarios. Sect. 7 discusses possible countermeasures. We conclude
in Sect. 8.

Responsible Disclosure. We reported leakage of uncacheable-typed
memory from a concurrent hyperthread on March 28, 2018, to Intel. We
clarified on May 30, 2018 that we attribute the source of this leakage
to the LFB. In our experiments, this works identically for Foreshadow,
undermining the completeness of L1-flush-based mitigations. This issue
was acknowledged by Intel and tracked under CVE-2019-11091 (MDSUM).
We responsibly disclosed ZombieLoad Variant 1 to Intel on April 12, 2019.
Intel verified and acknowledged our attack and assigned CVE-2018-12130
(MFBDS) to this issue. Both MDSUM and MFBDS were part of the
Microarchitectural Data Sampling (MDS) embargo ending on May 14,
2019. We responsibly disclosed ZombieLoad Variant 2 (which is the only
MDS attack that works on Cascade Lake CPUs) to Intel on April 24, 2019.
This issue, which Intel refers to as Transactional Asynchronous Abort
(TAA) is assigned CVE-2019-11135 and is part of an ongoing embargo
ending on November 12, 2019. On May 16, 2019, we reported to Intel
that their mitigations using VERW are incomplete and can be circumvented,
which they verfied and acknowledged.

2 Background

In this section, we describe the background required for this paper.
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2.1 Transient Execution Attacks

Today’s high-performance processors typically implement an out-of-order
execution design, allowing the CPU to utilize different execution units in
parallel. The instruction stream is decoded in-order into simpler micro-
operations (µOPs) [14] which can be executed as soon as the required
operands are available. A dedicated reorder buffer stores intermediate
results and ensures that instruction results are committed to the architec-
tural state in-order. Any fault that occurred during the execution of an
instruction is handled at instruction retirement, leading to a pipeline flush
which squashes any outstanding µOP results from the reorder buffer.

In addition, modern CPUs employ speculative execution optimizations
to avoid stalling the instruction pipeline until a conditional branch is
resolved. The CPU predicts the outcome of the branch and continues
execution along that direction. We refer to instructions that are executed
speculatively or out-of-order but whose results are never architecturally
committed as transient instructions [8, 47, 72].

While the results and the architectural effects of transient instructions
are discarded, measurable microarchitectural side effects may remain
and are not reverted. Attacks that exploit these side effects to observe
sensitive information are called transient execution attacks [8, 44, 47].
Typically, these attacks utilize a cache-based covert channel to transmit
the secret data observed transiently from the microarchitectural domain to
an architectural state. In line with a recent exhaustive survey [8], we refer
to attacks exploiting misprediction [28, 42, 44, 45, 51] as Spectre-type,
whereas attacks exploiting transient execution after a CPU exception [8,
42, 47, 71, 72, 78] are classified as belonging to Meltdown-type.

2.2 Memory Subsystem

In this section, we overview memory loads in out-of-order CPUs.

Caches CPUs contain small and fast caches storing frequently used data.
Caches are typically organized in multiple levels that are either private
per core or shared amongst them. Modern CPUs typically use n-way
set-associative caches containing n cache lines per set, each typically 64 B
wide. Usually, Intel CPUs have a private first-level instruction (L1I) and
data cache (L1D) and a unified L2 cache. The last-level cache (LLC) is
shared across all cores.
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Virtual Memory CPUs use virtual memory to provide memory iso-
lation between processes. Virtual addresses are translated to physical
memory locations using multi-level translation tables. The translation ta-
ble entries define the properties, e.g., access control or memory type, of the
referenced memory region. The CPU contains the translation-look-aside
buffer (TLB) consisting of additional caches to store address-translation
information.

Memory Order Buffer µOPs dealing with memory operations are
handled by dedicated execution units. Typically, Intel CPUs contain 2
units responsible for loading and one for storing data. The memory order
buffer (MOB), incorporating a load buffer and a store buffer, controls
the dispatch of memory operations and tracks their progress to resolve
memory dependencies.

Data Loads For every dispatched load operation an entry is allocated
in the load buffer and the reorder buffer. To determine the physical
address, the upper 36 b of the linear address are translated by the memory
management unit. Concurrently, the untranslated lower 12 b are already
used to index the cache set in the L1D [18]. If the address translation
is in the TLB, the physical address is available immediately. Otherwise,
the page miss handler (PMH) performs a page-table walk to retrieve
the address translation as well as the corresponding permission bits. If
the requested data is in the L1D (cache hit), the load operation can be
completed.

If data is not in the L1D, it needs to be served from higher levels of the
cache or the main memory via the line-fill buffer (LFB). The LFB serves
as an interface to other caches and the main memory and keeps track of
outstanding loads. Memory accesses to uncacheable memory regions, and
non-temporal moves all go through the LFB.

On a fault, e.g., a physical address is not available, the page-table
walk does not immediately abort [18]. An instruction in a pipelined
implementation must undergo each stage and is simply reissued in case
of a fault [2]. Only at the retirement of the faulting µOP, the fault is
handled, and the pipeline is flushed [17, 18].

2.3 Processor Extensions

Microcode To support more complex instructions, microcode allows
implementing higher-level instructions using multiple hardware-level in-
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structions. This allows processor vendors to support complex behavior
and even extend or modify CPU behavior through microcode updates [31].
Preferably, new architectural features are implemented as microcode ex-
tensions, e.g., Intel SGX [40].

While the execution units perform the fast-paths directly in hardware,
more complex slow-path operations, such as faults or page-table modifica-
tions, are typically performed by issuing a microcode assist which points
the sequencer to a predefined microcode routine [12]. To do so, the execu-
tion unit associates an event code with the result of the faulting micro-op.
When the micro-op of the execution unit is committed, the event code
causes the out-of-order scheduler to squash all in-flight micro-ops in the
reorder buffer [12]. The microcode sequencer uses the event code to read
the micro-ops associated with the event in the microcode [6].

Intel TSX Intel TSX is an x86 instruction set extension for hardware
transactional memory [35] introduced with Intel Haswell CPUs. With
TSX, particular code regions are executed transactionally. If the entire
code regions completes successfully, memory operations within the trans-
action appear as an atomic commit to other logical processors. If an
issue occurs during the transaction, a transactional abort rolls back the
execution to an architectural state before the transaction, discarding all
performed operations. Transactional aborts can be caused by different
issues: Typically, a conflicting memory operation occurs where another
logical processor either reads from an address which has been modified
within the transaction or writes to an address which is used within the
transaction. Further, the amount of read and written data within the
transaction may not exceed the size of the LLC and L1 cache respec-
tively [31]. In addition, some instructions or system event might cause
the transaction to abort as well [35].

Intel SGX With the Skylake microarchitecture, Intel introduced Soft-
ware Guard Extension (SGX), an instruction-set extension for isolating
trusted code [31]. SGX executes trusted code inside so-called enclaves,
which are mapped in the virtual address space of a conventional host
application process but are isolated from the rest of the system by the
hardware itself. The threat model of SGX assumes that the operating
system and all other running applications could be compromised and,
therefore, cannot be trusted. Any attempt to access SGX enclave memory
in non-enclave mode results in a dummy value 0xff [33]. Furthermore,
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to protect against physical attackers probing the memory bus, the SGX
hardware transparently encrypts the used memory region [12].

A dedicated eenter instruction redirects control flow to an enclave
entry point, whereas eexit transfers back to the untrusted host application.
Furthermore, in case of an interrupt or fault, SGX securely saves CPU
registers inside the enclave’s save state area (SSA) before vectoring to the
untrusted operating system. Next, the eresume instruction can be used
to restore processor state from the SSA frame and continue a previously
interrupted enclave.

SGX-capable processors feature cryptographic key derivation facilities
through the egetkey instruction, based on a CPU-level master secret and
a secure measurement of the calling enclave’s initial code and data. Using
this key, enclaves can securely seal secrets for untrusted persistent storage,
and establish secure communication channels with other enclaves residing
on the same processor. Furthermore, to enable remote attestation, Intel
provides a trusted quoting enclave which unseals an Intel-private key and
generates an asymmetric signature over the local enclave identity report.

Over the past years, researchers have demonstrated various attacks
to leak sensitive data from SGX enclaves, e.g., through memory safety
violations [46], race conditions [77], or side-channels [56, 65, 73, 75]. More
recently, SGX was also compromised by transient-execution attacks [10,
72] which necessitated microcode updates and increased the processor’s
security version number (SVN). All SGX key derivations and attestations
include SVN to reflect the current microcode version, and hence security
level.

3 Attack Overview

In this section, we provide an overview of ZombieLoad. We describe what
can be observed using ZombieLoad and how that fits into the landscape
of existing side-channel attacks. By that, we show that ZombieLoad is a
novel category of side-channel attacks, which we refer to as data-sampling
attacks, opening a new research field.

3.1 Overview

ZombieLoad is a transient-execution attack [8] which observes the values
of memory loads and stores on the current CPU core. ZombieLoad exploits
that the fill buffer is used by all logical CPUs of a CPU core and that it
does not distinguish between processes or privileges.
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Whenever the CPU encounters a memory load during execution, it
reserves an entry in the load buffer. If the load was not an L1 hit, it
requires a fill-buffer entry. When the requested data has been loaded, the
memory subsystem frees the corresponding load- and fill-buffer entries,
and the load instruction may retire. Similarly, if stores miss the L1 or are
evicted from the L1, they are temporarily stored in a fill-buffer entry as
well.

However, we observed that under certain complex microarchitectural
conditions (e.g., a fault), where the load requires a microcode assist, it
may first read stale values before being re-issued eventually. As with any
Meltdown-type attack, this opens up a transient-execution window where
this value can be used for subsequent calculations. Thus, an attacker can
encode the leaked value into a microarchitectural element, such as the
cache.

In contrast to previous Meltdown-type attacks, however, it is not
possible to select the value to leak based on an attacker-specified address.
ZombieLoad simply leaks any value which is currently loaded or stored
by the physical CPU core. While this at first sounds like a massive
limitation, we show that this opens a new field of data sampling-based
transient-execution attacks. Moreover, in contrast to previous Meltdown-
type attacks, ZombieLoad considers all privilege boundaries and is not
limited to a specific one. Meltdown [47] can only leak data from the
attacker’s address space, Foreshadow [72] focussed exclusively on SGX
enclaves, Foreshadow-NG [78] afterwards investigated cross-process and
cross-VM leakage, and Fallout [55] can only leak kernel data on the same
logical core. We show that ZombieLoad is an even more powerful attack
in combination with existing side-channel techniques.

3.2 Microarchitectural Root Cause

For Meltdown, Foreshadow, Fallout, and RIDL, the source of the leakage
is apparent. Moreover, for these attacks, there are plausible explanations
on what is going wrong in the microarchitecture, i.e., what the root cause
of the leakage is [47, 55, 72, 78]. For ZombieLoad, however, this is not
entirely clear.

While we identified some necessary building blocks to observe the
leakage (cf. Section 5), we can only provide a hypothesis on why the
interaction of the building blocks leads to the observed leakage. As we
could only observe data leakage on Intel CPUs, we assume that this is
indeed an implementation issue (such as Meltdown) and not a design
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issue (as with Spectre). For our hypothesis, we combined our observations
with the little official documentation of the fill buffer [30, 31] and Intel’s
MDS analysis [29]. Ultimately, we could neither prove nor disprove our
hypothesis, leaving the verification or falsification of our hypothesis to
future work.

Stale-Entry Hypothesis. Every load is associated with an entry in
the load buffer and potentially an entry in the fill buffer [30].

When a load encounters a complex situation, such as a fault, it requires
a microcode assist [31]. This microcode assist triggers a machine clear,
which flushes the pipeline. On a pipeline flush, instructions which are
already in flight still finish execution [27].

As this has to be as fast as possible to not incur additional delays, we
expect that fill-buffer entries are optimistically matched as long as parts
of the physical address match. Thus, the load continues with a wrong
fill-buffer entry, which was valid for a previous load or store. This leads to
a use-after-free vulnerability [24] in the hardware. Intel documents the fill
buffer as being competitively shared among hyperthreads [31], giving both
logical cores access to the entire fill buffer (cf. Appendix F). Consequently,
the stale fill-buffer entry can also be from a previous load or store of the
sibling logical core. As a result, the load instruction loads valid data from
a previous load or store.

Leakage Source. We devised 2 experiments to reduce the number of
possible sources of the leaked data.

In our first experiment, we marked a page as “uncacheable” and
flushed it from the cache. As a result, every memory load from the page
circumvents all cache levels and goes directly to the fill buffer [31]. We then
write the secret onto the uncacheable page to ensure that there is no copy
of the data in the cache. When loading data from the page, we see leakage
in the order of bytes per second, e.g., 5.91 B/s (σx̄ = 0.18, n = 100, where
n is the number of experiments and σx̄ is the standard error of the mean)
on an i7-8650U. We can attribute this leakage to the fill buffer. This was
also exploited in concurrent work [61]. Our hypothesis is further backed by
the MEM LOAD RETIRED.FB HIT performance counter, which shows multiple
thousand line-fill-buffer hits (117 330 FB HIT/s (σx̄ = 511.57, n = 100)).

Intel claims that the leakage is entirely from the fill buffer [29]. This is
also what Van Schaik et al. [61] conclude for their RIDL attack. However,
our second experiment shows that the line-fill buffer might not be the
only source of the leakage for ZombieLoad. We rely on Intel TSX to
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ensure that memory accesses do not reach the line-fill buffer as follows.
Inside a transaction, we first write the secret value to a memory loca-
tion which was previously initialized with a different value. The write
inside the transaction ensures that the address is in the write set of the
transaction and thus in L1 [30, 62]. Evicting data from the write set
from the cache leads to a transactional abort [30]. Hence, any subsequent
memory access to the data from the write set ensures that it is served
from the L1, and therefore, no request to the line-fill buffer is sent [31].
In this experiment, we see a much higher rate of leakage, which is in the
order of kilobytes per second. More importantly, we only see the value
written inside the TSX transaction and not the value that was at the
memory location before starting the transaction. Our hypothesis that
the line-fill buffer is not the only source of the leakage is further backed
by observing performance counters. The MEM LOAD RETIRED.FB HIT and
MEM LOAD RETIRED.L1 MISS performance counters do not increase signifi-
cantly. In contrast, the MEM LOAD RETIRED.L1 HIT performance counter
shows multiple thousand L1 hits.

While accessing the data to leak on the victim core, we monitored
the MEM LOAD RETIRED.FB HIT performance counter on the attacker core
for 10 s. If the address was cached, we measured a Pearson correlation of
rp = 0.02 (n = 100) between the correct recoveries and line-fill buffer hits,
indicating no association. However, while continuously flushing the data
on the victim core, ensuring that a subsequent access must go through the
LFB, we measure a strong correlation of rp = 0.86 (n = 100). This result
indicates that the line-fill buffer is not the only source of leakage. However,
a different explanation might be that the performance counters are not
reliable in such corner cases. Van Schaik et al. [61] reported that the
RIDL attack can only leak data which is not served from the cache, i.e.,
which has to go through the fill buffers. Hence, we conclude that RIDL
indeed leaks from fill buffers, whereas the ZombieLoad leakage might not
be entirely attributed to the fill buffer. Future work has to investigate
whether other microarchitectural elements, e.g., the load buffer, are also
involved in the observed data leakage.

Comparison to RIDL In concurrent work, Van Schaik et al. [61]
presented the RIDL attack, which also leaks data from the fill buffers, as
well as from the load ports. Table 11.1 shows a table which summarizes
the main differences between RIDL and ZombieLoad. The most crucial
difference between the attacks is that ZombieLoad still works on the
newest generation of Intel CPUs (Cascade Lake with stepping B1) which
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Table 11.1: Comparison between the RIDL attack [61] and ZombieLoad.

RIDL ZombieLoad

Leakage Source Fill Buffer, Load Port Fill Buffer
Leaked Loads Uncached Loads Only (Fill Buffer) All Loads (Fill Buffer)
Leaked Stores All Stores (Fill Buffer) All Stores (Fill Buffer)
Known Variants 1 or 2† 5
Exploited Fault Page Fault Microcode Assist, Page Fault
Fixed with Countermeasures 3 8

Works on MDS-resistant CPUs 8 3 (Variant 2)

† The RIDL paper [61] only describes one variant leaking from the fill buffers, but

also mentions a variant leaking from the load ports without further description or

evaluation.

Instruction Pointer

AddressData
Meltdown

Memory-based
Side-channel Attacks

Data Sampling
(this paper)

Figure 11.1: The 3 properties of a memory operation: instruction pointer of
the program, target address, and data value. So far, there are
techniques to infer the instruction pointer from target address
and the data value from the address. With ZombieLoad, we show
the first instance of an attack which infers the data value from
the instruction pointer.

are not affected by RIDL or Fallout. RIDL can only leak loads which are
not currently in the L1 cache. ZombieLoad can leak all loads, independent
whether they are currently in the L1 cache or not. ZombieLoad has a
thorough analysis of the microarchitectural root cause, which leads to
more variants with unique features, such as leakage on an MDS-resistant
CPU.

3.3 Classification

In this section, we introduce a way to classify memory-based side-channel
and transient-execution attacks. For all these attacks, we assume a target
program which executes a memory operation at a certain address with a
specific data value at the program’s current instruction pointer. Figure 11.1
illustrates these three properties as the corner of a triangle, and techniques
which let an attacker infer one of the properties based on one or both of
the other properties.
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Figure 11.2: Meltdown-type attacks provide a varying degree of target control
(gray hatched), from full virtual addresses in the case of Meltdown
to nearly no control for ZombieLoad.

Traditional memory-based side-channel attacks allow an attacker to
observe the location of memory accesses. The granularity of the location
observation depends on the spatial accuracy of the used side channel.
Most common memory-based side-channel attacks [19–21, 23, 39, 58, 59,
75, 80, 82] have a granularity between one cache line [20, 21, 23, 82] i.e.,
usually 64 B, and one page [19, 39, 75, 80], i.e., usually 4 kB. These side
channels establish a connection between the time domain and the space
domain. The time domain can either be the wall time or also commonly
the execution time of the program which correlates with the instruction
pointer. These classic side channels provide means of connecting the
address of a memory access to a set of possible instruction pointers, which
then allows reconstructing the program flow. Thus, side-channel resistant
applications have to avoid secret-dependent memory access to not leak
secrets to a side-channel attacker.

Since early 2018, with transient-execution attacks [8] such as Melt-
down [47] and Spectre [44], there is a second type of attacks which allow
an attacker to observe the value stored at a memory address. Meltdown
provided the most control over target address. With Meltdown, the full
virtual address of the target data is provided, and the corresponding data
value stored at this address is leaked. The success rate depends on the
location of the data, i.e., whether it is in the cache or main memory.
However, the only constraint for Meltdown is that the data is addressable
using a virtual address [47]. Other Meltdown-type attacks [55, 72] also
connect addresses to data values. However, they often impose additional
constraints, such as that the data has to be cached in L1 [72, 78], the
physical address has to be known [78], or that an attacker can choose only
parts of the target address[55, 61].

Figure 11.2 illustrates which parts of the virtual and physical address
an attacker can choose to target data values to leak. For Meltdown, the
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virtual address is sufficient to target data in the same address space [47].
Foreshadow already requires knowledge of the physical address and the
least-significant 12 bits of the virtual address to target any data in the L1,
not limited to the own address space [72, 78]. When leaking the last writes
from the store buffer, an attacker is already limited in choosing which value
to leak. It is only possible to filter stores based on the least-significant 12
bits of the virtual address, a more targeted leakage is not possible [55].

Zombie loads, which are exploited by ZombieLoad and RIDL [61],
provide no control over the leaked address to an attacker. The only
possible target selection is the byte index inside the loaded data, which
can be seen as an address with up to 6-bit in case an entire cache line is
loaded. Hence, we do not count ZombieLoad and RIDL as an attack which
leaks data values based on the address. Instead, from the viewpoint of
the target control, ZombieLoad and RIDL are more similar to traditional
memory-based side-channel attacks. With ZombieLoad and RIDL, an
attacker observes the data value of a memory access. Thus, this side
channel establishes a connection between the time domain and the data
value. Again, the time domain correlates with the instruction pointer of
the target address. ZombieLoad and RIDL are the first instances of a
class of attacks which connects the instruction pointer with the data value
of a memory access. We refer to such attacks as data sampling attacks.
Essentially, this new class of data sampling attacks is capable of breaking
side-channel resistant applications, such as constant-time cryptographic
algorithms [26].

Following the classification scheme from Canella et al. [8], ZombieLoad
is a Meltdown-type transient-execution attack, and we propose Meltdown-
MCA as the canonical name for exploiting microcode assists (MCA, ex-
plained further) as exception type. We can further classify the different
variants of ZombieLoad (cf. Section 5.1). We propose Meltdown-US-LFB
for ZombieLoad Variant 1, as it exploits a page fault on a supervisor
page to leak from the fill buffer. For ZombieLoad Variant 2, we pro-
pose Meltdown-MCA-TAA (microcode assist caused by transactional
asynchronous abort), and for ZombieLoad Variant 3 Meltdown-MCA-AD
(micorcode assist caused by modifying the accessed or dirty bit). The
RIDL attack exploits non-present page faults caused by NULL-pointer
accesses [61]. Thus, we propose the canonical name Meltdown-P-LFB for
the RIDL attack.
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4 Attack Scenarios & Attacker Model

Following most side-channel attacks, we assume the attacker can execute
unprivileged native code on the target machine. We assume a trusted
operating system if not stated otherwise. This relatively weak attacker
model is sufficient to mount ZombieLoad. However, we also show that the
increased attacker capabilities offered in certain scenarios, e.g., SGX and
hypervisor attacks, may amplify the leakage while remaining within the
respective threat model.

At the hardware level, we assume a ubiquitous Intel CPU with simul-
taneous multithreading (SMT, also known as hyperthreading) enabled.
Crucially, we do not rely on existing vulnerabilities, such as Meltdown [47],
Foreshadow [72, 78], or Fallout [55]. Hence, even the most recent Intel
9th generation processors with silicon-level Meltdown mitigations remain
within our threat model.

User-Space Leakage In the cross-process user-space scenario, an un-
privileged attacker leaks values loaded or stored by another concurrently
running user-space application. We consider such a cross-process scenario
most dangerous for end users. Many secrets are likely to be found in
user-space applications such as browsers.

The attacker is co-located with the victim on the same physical but a
different logical CPU core, a common case for hyperthreading.

Kernel Leakage ZombieLoad can also leak across the privilege bound-
ary between user and kernel space. The values of loads and stores executed
in kernel space are leaked to an unprivileged attacker, executing either on
the same or a sibling logical core.

An unprivileged attacker performs a system call to the kernel, running
on the same logical core. Importantly, we found that kernel load leakage
may even survive the switch back from the kernel to user space. Hence,
hyperthreading is not required for this scenario.

Intel SGX Leakage ZombieLoad can observe loads and stores executed
inside an SGX enclave, even if the loads and stores target the encrypted
memory region, i.e., the enclave page cache. The attacker is executing
outside of an SGX enclave on a sibling logical core, co-located with the
victim enclave on the same physical core. In contrast to the kernel leakage,
we did not observe leakage on the same logical core after exiting the
enclave.
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Intel [36] suggests that a remote verifier might reject attestations
from a hyperthreading-enabled system “if it deems the risk of potential
attacks from the sibling logical processor as not acceptable”. Hence,
hyperthreading can decidedly be enabled safely on recent Intel Cascade
Lake CPUs which include hardware mitigations against Foreshadow [36],
but even older SGX machines with up-to-date patched microcode may
still run with hyperthreading enabled.

Within the SGX threat model, an attacker can, e.g., modify page table
entries [75], or precisely execute the victim enclave at most one instruction
at a time [74].

Virtual Machine Leakage ZombieLoad can leak loaded and stored
values across virtual-machine boundaries. An attacker running inside a
virtual machine can leak values from a different virtual machine co-located
on the same physical but different logical core.

As the attacker is running inside an untrusted virtual machine, the
attacker is not restricted to unprivileged code execution. Thus, the attacker
can, e.g., modify guest-page-table entries.

Hypervisor Leakage An attacker inside a virtual machine can use
ZombieLoad to leak values of loads and stores executed by the hypervisor.

As the attacker is running inside an untrusted virtual machine, the
attacker is not restricted to unprivileged code execution.

5 Building Blocks

In this section, we describe the building blocks for the attack.

5.1 Zombie Loads

The main primitive for mounting ZombieLoad is a load which triggers a
microcode assist, resulting in a transient load containing wrong data. We
refer to such a load as a zombie load. Zombie loads are loads which either
architecturally or microarchitecturally fault and thus cannot complete,
requiring a re-issue of the load at a later point. We identified multiple
different scenarios (cf. Appendix G) to create such zombie loads required
for a successful attack. Most variants have in common that they abuse
the clflush instruction to reliably create the conditions required for
leaking from a wrong destination (cf. Section 3.2). In this section, we
describe 3 different variants that can be used to leak data (cf. Section 5.2)
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Table 11.2: Overview of different variants to induce zombie loads in different
scenarios.

Scenario
Variant 1 2 3

Unprivileged Attacker
Privileged Attacker (root)

Symbols indicate whether a variant can be used in the corresponding attack scenario
( ), can be used depending on the hardware configuration as discussed in Sect. 5.1 ( ),
or cannot be used ( ).

Page p
2 MB

User mapping
v

4 KB

2 MB

Kernel
address

k 4 KB

2 MB

cache line

flushfaulting load

Figure 11.3: Variant 1: Using huge kernel pages for ZombieLoad. Page p is
mapped using a user-accessible address (v) and a kernel-space huge
page (k). Flushing v and then reading from k using Meltdown
leaks values from the fill buffer.

depending on the adversary’s capabilities. While there are more variants
(cf. Appendix G and Van Schaik et al. [61] for more known variants),
these 3 variants are fast, and each has a unique feature. Table 11.2
overviews which variants are applicable in which scenarios, depending on
the operating system and underlying hardware configuration.

Variant 1: Kernel Mapping. The first variant is a ZombieLoad setup
which does not rely on any specific CPU feature. We require a kernel
virtual address k, i.e., an address where the user-accessible bit is not set
in the page-table entry. In practice, the kernel is usually mapped with
huge pages (i.e., 2 MB pages). Thus k refers to a 2 MB physical page p.
Note that although we use such huge pages for our experiments, it is not
strictly required, as the setup also works with 4 kB pages. We also require
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the user to have read access to the content of the physical page through a
different virtual address v.

Figure 11.3 illustrates such a setup. In this setup, accessing the page p
via the user-accessible virtual address v provides an architecturally valid
way to access the contents of the page. Accessing the same page via the
kernel address k results in a zombie load similar to Meltdown [47] requiring
a microcode assist. Note that while there are other ways to construct an
inaccessible address k, e.g., by clearing the present bit [72], we were only
able to exploit zombie loads originating from kernel mappings.

To create precisely the scenario depicted in Figure 11.3, we allocate
a page p in the user space with the virtual address v. Note that p is
a regular 4 kB page which is accessible through the virtual address v.
We retrieve its physical address through /proc/pagemap, or alternatively
using a side channel [23, 38, 67]. Using the physical address and the base
address of the direct-physical map, we get an inaccessible kernel address
k which maps to the allocated page p. If the operating system does not
use stronger kernel isolation [22], e.g., KPTI [50], the direct-physical map
in the kernel is mapped in the user space and uses huge pages which are
marked as not user accessible. A privileged attacker (e.g., for hypervisor
or SGX-enclave attacks) can easily create such pages if they do not exist.

The disadvantage of this approach is that it does not work on Meltdown-
resistant machines. There, we have to use Variant 2.

Variant 2: Intel TSX With the second variant of inducing zombie
loads, we eliminate the requirement of a kernel mapping. We only require
a physical page p which is user accessible via a virtual address v. Any
page allocated in user space fulfills this requirement.

Within a TSX transaction, we encode the value of v in a cache covert-
channel likewise to Spectre or Meltdown. This ensures that v is in the
read set of the transaction [30]. Note that we perform a legitimate load
to the user-accessible address v which itself should not cause the TSX
transaction to fail. However, by inducing conflicts in the read set (cf.
Section 2.3), the TSX transaction “faults” and does not commit. There is
no architectural fault but only a transient fault which results in a zombie
load.

The main advantage of this approach is that it also works on machines
with hardware fixes for Meltdown, which we verified on an i9-9900K and
Xeon Gold 5218. However, in contrast to Variant 1, we require the Intel
TSX instruction-set extension which is only available in selected CPUs
since 2013.
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Variant 3: Microcode-Assisted Page-Table Walk. A variant sim-
ilar to Variant 1 is to trigger a microcode-assisted page-table walk. If
a page-table walk requires an update to the access or dirty bit in the
page-table entry, it falls back to a microcode assist [12].

In this setup, we require one physical page p which has 2 user-accessible
virtual addresses, v and v2. This can be easily achieved by using a shared-
memory segment or memory-mapped file, which is mapped twice in the
application. The virtual address v can be used to access the contents of p
architecturally. For v2, we have to clear the accessed bit in the page-table
entry. On Linux, this is not possible in the case of an unprivileged attacker,
and can thus only be used in attacks where we assume a privileged attacker
(cf. Section 4). However, we experimentally verified that Windows 10
(1803 build 17134.706) periodically clears the accessed bits. We assume
that the page-replacement algorithm is responsible for this. Thus, this
variant enables the attack on Windows for unprivileged attackers if the
CPU does not support Intel TSX.

When accessing the page through the virtual address v2, the accessed
bit of the page-table entry has to be set. This, however, cannot be done by
the page-miss handler [12]. Instead, microarchitecturally, the load faults,
and a micro-code assist is triggered which repeats the page-table walk and
sets the accessed bit [12].

If the access to v2 is done transiently, i.e., behind a misspeculated
branch or after an exception, the accessed bit cannot be set architecturally.
Thus, the leakage is not only exploitable once but instead for every access.

5.2 Data Leakage

To leak data with any setup described in Section 5.1, we constantly flush
the first cache line of p through the virtual address v. We achieve this
by executing the unprivileged clflush instruction on the user-accessible
virtual address v. For Variant 1, we leverage Meltdown to read from the
kernel address k which maps to the cache line flushed before. As with
Meltdown-US [47], there are various methods of preventing an architectural
exception. We verified that ZombieLoad with Variant 1 works with
exception prevention (i.e., speculative execution), handling (i.e., a custom
signal handler), and suppression (i.e., Intel TSX).

For Variant 2, the cache-line invalidation of the flush triggers a conflict
in the read set of the transaction and aborts the transaction. As there is
no architectural exception on a transactional conflict, there is no need to
handle exceptions.
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For Variant 3, we transiently, i.e., behind a mispredicted branch,
read from the address v2. Similar to Variant 2, there is no architectural
exception. Hence, there is no need to handle exceptions.

Counterintuitively, the resulting values leaked for all variants are not
coming from page p. Instead, we get access to data which is currently
loaded or stored on the current or sibling logical CPU core. Thus, it
appears that we reuse fill-buffer entries, and leak the data which the
entries references. For Variant 1 and Variant 3, this allowed us to access
all bytes from the cache line that the fill-buffer entry references. However,
for Variant 2, we are only able to recover the number of bytes of the
victim’s load or store operation and in contrast to Variant 1, not the entire
cache line.

5.3 Data Sampling

Independent of the setup for ZombieLoad, we cannot directly control
the address of the data to leak. Both the virtual addresses k and v, as
well as the physical address of p is arbitrary and does not correlate with
the leaked data. In any case, we simply get the value referenced by one
fill-buffer entry which we cannot specify.

However, there is at least control within the fill-buffer entry, i.e., we can
target specific bytes within the 64 B fill-buffer entry. The least-significant
6 bits of the virtual address v refer to the byte within the fill-buffer
entry. Hence, we can target a single byte at a specific position from the
fill-buffer entry. While at first, this does not sound powerful, it allows
leaking sensitive information, such as AES keys, byte-by-byte as shown in
Section 6.1.

As described in Section 4, the leakage is not limited to the own
process. With ZombieLoad, we observe values from all processes running
on the same as well as on the sibling logical CPU core. Furthermore,
we also observe leakage across privilege boundaries, i.e., from the kernel,
hypervisor, and Intel SGX enclaves. Thus, ZombieLoad allows sampling
of all data which is loaded or stored by any application on the current
physical CPU core.

5.4 Performance Evaluation

In this section, we evaluate ZombieLoad and the performance of our
proof-of-concept implementations1.

1Our proof-of-concept implementations can be found in a GitHub repository: https:
//github.com/IAIK/ZombieLoad

https://github.com/IAIK/ZombieLoad
https://github.com/IAIK/ZombieLoad
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Table 11.3: Tested environments. A ‘3’ indicates that the version works, ‘8’
that it does not work, and ‘-’ that TSX is disabled or not supported
on this CPU.

Variant
Setup CPU (Stepping) µ-arch. 1 2 3

Lab Core i7-3630QM (E1) Ivy Bridge 3 - 3

Lab Core i7-6700K (R0) Skylake-S 3 3 3

Lab Core i5-7300U (H0) Kaby Lake 3 3 3

Lab Core i7-7700 (B0) Kaby Lake 3 3 3

Lab Core i7-8650U (Y0) Kaby Lake-R 3 3 3

Lab Core i7-8565U (W0) Whiskey Lake 8 - 8

Lab Core i7-8700K (U0) Coffee Lake-S 3 3 3

Lab Core i9-9900K (P0) Coffee Lake-R 8 3 8

Lab Xeon E5-1630 v4 (R0) Broadwell-EP 3 3 3

Cloud Xeon E5-2670 (C2) Sandy Bridge-EP 3 - 3

Cloud Xeon Gold 5120 (M0) Skylake-SP 3 3 3

Cloud Xeon Platinum 8175M (H0) Skylake-SP 3 - 3

Cloud Xeon Gold 5218 (B1) Cascade Lake-SP 8 3 8

Environment We evaluated the different variants of ZombieLoad, de-
scribed in Section 5.1, on different environments listed in Table 11.3. The
tested CPUs range from Sandy Bridge (released 2012) to Cascade Lake
(released 2019). While we were able to mount Variant 1 and Variant 3
on different microarchitectures except for Whiskey Lake, Coffee Lake-R,
and Cascade Lake-SP, we successfully used Variant 2 on all systems where
Intel TSX was available. Thus, Variant 2 also works on microarchitectures
with hardware mitigations against Meltdown and Foreshadow.

Performance To evaluate the performance of each variant, we per-
formed the following experiment on an i7-8650U. While reading a specific
value on one logical core, we performed each variant of ZombieLoad on
the sibling logical core for 10 s, recording the number of successful and
unsuccessful recoveries. For Variant 1 using TSX to suppress the excep-
tion, we achieve an average transmission rate of 5.30 kB/s (σx̄ = 0.076,
n = 1000) and a true positive rate of 85.74 % (σx̄ = 0.0046, n = 1000).
For Variant 2, we achieved an average transmission rate of 39.66 kB/s
(σx̄ = 0.048, n = 1000) and a true positive rate of 99.99 % (σx̄ = 6.45−9,
n = 1000). With Variant 3 in combination with signal handling, we
achieved an average transmission rate of 0.08 kB/s (σx̄ = 0.002, n = 1000)
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and a true positive rate of 52.7 % (σx̄ = 0.0062, n = 1000). Variant 3 in
combination with TSX, achieves an average transmission rate of 7.73 kB/s
(σx̄ = 0.21, n = 1000) and a true positive rate of 76.28 % (σx̄ = 0.0055,
n = 1000).

6 Case Study Attacks

In this section, we present 5 attacks using ZombieLoad in real-world
scenarios.

6.1 AES-NI Key Leakage

To demonstrate that data sampling is a powerful side channel, we extract
an AES-128 key. The victim application uses AES-NI, which is resistant
against timing and cache-based side-channel attacks [26].

However, even with the hardware-assisted AES-NI, the key has to be
loaded from memory to a 128-bit XMM register. This is usually the case
before invoking AESKEYGENASSIST, which is used to derive the AES round
keys. The round-key derivation is entirely done in hardware using the
XMM registers. Hence, there is no memory load required for the derivation
of the 11 round keys used in AES-128. Thus, when the key is loaded
from memory before the round-key derivation starts is the point where
we can mount ZombieLoad to leak the value of the key. For OpenSSL
(v3.0.0), this is in the function aesni set encrypt key which is called by
EVP EncryptInit ex. Note that instead of leaking the key, we can also
leak the round keys loaded in the encryption process. However, to attack
the round keys, an attacker needs to leak (and distinguish) more different
values, making the attack more complex.

When leaking the key using ZombieLoad, we have first to detect which
load corresponds to the key. Moreover, as we can only leak one byte at a
time, we also have to combine the leaked bytes to the full AES-128 key
correctly.

Side-Channel Synchronization. For the attack, we assume a shared
library implementing the AES encryption, e.g., OpenSSL. Even though
OpenSSL (v3.0.0) has a side-channel resistant AES-NI implementation,
we can rely on classical memory-based side channels to monitor the
control flow. With Flush+Reload, we detect when a specific code part is
executed [15, 20]. This does not leak any secrets, but it is a synchronization
primitive for ZombieLoad.
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Figure 11.4: Additionally leaking domino bytes comprised of bits of different
AES-key bytes to filter out unrelated loads.

We constantly monitor a cache line of the code which is executed right
before the key is loaded from memory. In OpenSSL (v3.0.0), this is the
second cache line of aesni set encrypt key, i.e., 64 B after the start of
the function. Similarly to Schwarz et al. [62], we leverage the cache state
of the cache line as a trigger for the actual attack. Only if we detect
a cache hit on the monitored cache line, we start leaking values using
ZombieLoad. Hence, we already filter out most bytes not related to the
AES key. Note that the synchronization does not have to be perfect, as
independent system noise cancels itself out over multiple measurements.
Moreover, the key is always 16 B aligned, and we always leak an entire
cache line. Hence, there can be no bytewise shift of the AES key – the
first 16 B that we leak are always either from the key or from unrelated
noise.

Note that if there is no cache line before the load which can be used as
a trigger, we can still use a nearby cache line (i.e., a cache line after the
load) as a filter. In a parallel thread, we collect the timestamps of cache
hits in the nearby cache line. If we also save the timestamps of the values
leaked using ZombieLoad, in an offline post-processing step, we can filter
out values which were leaked at a different instruction-pointer location.

To further reduce unrelated loads, it is also possible to slow down
the victim using performance-degradation techniques such as flushing the
code [3, 15]. For OpenSSL, we used performance degradation on the code
directly following the load of the key.

Domino Attack. Inevitably, even when synchronizing ZombieLoad by
using a cache-based trigger, we also leak values not related to the key.
As the bytes in the AES key are independent of each other, we can only
assume that the byte which we leak most often per byte position is the
correct key byte. Thus, if there is a key byte suffering from noise from
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unrelated loads, we may assume that the noise is the correct key byte,
which leads to a wrong key.

Therefore, we propose the Domino attack, an innovative transient
error-detection technique for reducing noise when leaking multi-byte loads.
In addition to leaking every single key byte, we transmit a specially crafted
domino byte composed by combining bits from two adjacent key bytes.
Note that creating such a domino byte is possible, as the transient domain
has access to the full AES key and can use it for arbitrary computations
(as also shown with the transient error detection described in Section 6.3).
Figure 11.4 illustrates the idea of the Domino attack. In this case, we
leak (4,4) domino bytes consisting of 4 bits of two adjacent key bytes
respectively. By combining the lower nibble of one key byte with the
higher nibble of the next key byte, we transmit a domino byte which
encodes partial information of two key bytes.

In a post-processing step, we consider two adjacent bytes as correct,
if we not only leaked both of them often but additionally also the cor-
responding domino byte. Moreover, we do not look at two key bytes in
isolation, but we look at the entire key as a chain of key bytes linked
together by domino bytes. If all key bytes and the corresponding domino
bytes occurred often in the leaked values, we can assume that the entire
key is leaked correctly. Note that the selection of bits can be adapted to
the noise measurable before leaking the key, e.g., multiple(7,1) domino
bytes can be leaked that are shifted by only a single bit.

Results. We evaluated the attack in a cross-user-space attack (cf. Sec-
tion 4) using Variant 1. We always ran the attack until the correct key
was recovered, i.e., until the key with the highest probability is the correct
key. In a practical attack, the number of attacks can even be reduced,
as typically it is easy to verify whether a key candidate is correct. Thus,
an attacker can simply test all key candidates with a probability over a
certain threshold and does not have to wait until the highest probability
corresponds to the correct key.

On average, we recovered the entire AES-128 key of the victim in
under 10 s using the cache-based trigger and the Domino attack. During
this time, the victim loaded the key approximately 10 000 times.

6.2 SGX Sealing Key Extraction

In this section, we show that privileged SGX attackers can drastically
improve ZombieLoad’s temporal resolution and bridge from incidental data
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sampling in the time domain to the targeted reconstruction of arbitrary
enclave secrets (cf. Fig. 11.1). We first explain how state-of-the-art enclave
execution control and transient post-processing techniques can be leveraged
to reliably leak register values at any point during an enclave invocation.
Then we demonstrate the impact of this attack by recovering a full 128-bit
SGX sealing key, as used by Intel’s trusted provision and quoting enclaves
to decrypt the long-term EPID private attestation key.

Leaking Enclave Registers. We consider Intel SGX root attackers
that co-locate with a victim enclave on the same physical CPU. As a
system attacker, we can increase ZombieLoad’s temporal resolution by
leveraging previous research results exploiting page faults [75, 80] or
interrupts [56, 73] to regulate the victim enclave’s execution. We use the
SGX-Step [74] framework to precisely single-step the victim enclave one
instruction at a time, allowing the attacker to reach a code part where
sensitive information is stored in CPU registers. At such a point, we
switch to unlimited zero-stepping [72] by either setting the system timer
interrupt to a very short interval or revoking code page execute permissions
before resuming the victim enclave. This technique provides ZombieLoad
attackers with a primitive to repeatedly force-reload CPU registers from
the interrupted enclave’s SSA frame (cf. Sect. 2.3). Our experiments show
that even though the execution of the enclave instruction never completes,
any direct operands plus SSA register file contents are loaded from memory
each time. Importantly, since the enclave does not make progress, we
can perform unlimited ZombieLoad attack attempts to reconstruct CPU
register values from these implicit SSA memory accesses.

We further reduce noise from unrelated non-enclave loads on the
victim CPU by opting for timer-based zero-stepping with a user-space
interrupt handler [73] to avoid repeatedly invoking the operating system.
Furthermore, we found that executing the ZombieLoad attack code in a
separate address space avoids unnecessarily slowing down the spy through
implicit TLB invalidations on enclave entry/exit [33].

Note that the SSA frame spans multiple cache lines. With ZombieLoad,
we do not have explicit address-based control over which cache line is
being leaked. Hence, leaked data might come from different saved registers
that are at the same offset within a cache line. To filter out such noisy
observations, we use the Domino transient error detection technique
introduced in Sect. 6.1. Specifically, we implemented a “sliding window”
that transmits 7 different domino bytes for each candidate key byte, stuffed
with increasing bits from the next adjacent key byte candidate. Any noisy
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observations that do not match the overlap can now efficiently be filtered
out.

Attack on sgx get key. The Intel SGX design includes a secure key
derivation facility through the egetkey instruction (cf. Section 2.3). En-
claves execute this instruction to query a 128-bit cryptographic key from
the hardware, based on the calling enclave’s code layout or developer
identity. This is the underlying primitive used by Intel’s trusted pre-
built quoting enclave to unseal a long-term private attestation key from
persistent storage securely [12, 72].

The official Intel SGX SDK [33] offers a convenient sgx get key wrap-
per procedure that first executes egetkey with the necessary parameters,
and eventually copies the retrieved key into a provided buffer. We reverse
engineered the proprietary intel fast memcpy function and found that
in this case, the key is copied using two 128-bit moves to/from the xmm0

SSE register. We revert to zero-stepping on the last instruction of memcpy.
At this point, the attacker-induced zero-step enclave resumptions will
repeatedly reload a.o., the xmm0 register containing the 128-bit key from
the memory hierarchy.

Results. We evaluated the attack on a Kaby Lake i7-7700 CPU with an
up-to-date Foreshadow-patched microcode revision 0x8e and ZombieLoad
Variant 1.

In the first experiment, we implemented a benchmark enclave that
uses sgx get key to generate a new report key with different random key
IDs. We performed 100 key-recovery experiments on sgx get key with
different random keys. Our results show that 30 % of the times (in 30
experiments) the full 128-bit key is among the key candidates with average
remaining key space entropy of 8.8 bits. This entropy is calculated by
averaging the entropy of these 30 cases where the full key is among the
128-bit candidates. Among these cases, 3 % of the times the exact full key
has been recovered, and the worst-case entropy is about 14 bits. In the
other 70 % of the cases where the full key is not among the key candidates,
31 % of the times, we have partial key bytes among the recovered key
candidates. The average correct key bytes are 10 out of 16 bytes. In such
cases, where some of the key bytes are part of the candidates, most of
the failed key bytes reside in the first few bytes of the key. The reason is
that the Domino attack has a stronger effect on key bytes in the middle
that are surrounded by more key bytes. In the remaining 39 % of the
times where the correct key is not among the key candidates, our attack
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which uses the Domino technique with a sliding window did not reveal
any candidates, which means an attacker can simply repeat the attack in
such cases.

In the second experiment, we perform an attack on Intel’s trusted
quoting enclave. The quoting enclave performs a call to sgx get key to
derive the sealing key which is used to decrypt the EPID provisioning
blob. We executed the attack on a quoting enclave that is signed with
debug keys, so we can use it as ground truth to easily verify that we
have recovered the correct sealing key. We executed the attack multiple
times on our setup, and we managed to recover the correct 128-bit sealing
key after multiple executions of the attack and checking the candidates
against each other. The recovered sealing key matches the correct key,
and can indeed successfully decrypt the EPID blob for our debug signed
quoting enclave. While we did not yet reproduce this attack on the official
quoting enclave image signed by Intel, we believe that this experimental
evaluation showcased all the required primitives to break Intel SGX’s
remote attestation guarantees, as demonstrated before by Foreshadow [72].

6.3 Cross-VM Covert Channel

To evaluate the performance of ZombieLoad, we implement a covert
channel which can be used for all attack scenarios described in Section 4.
However, in this section, we focus on the cross-VM covert channel. While
covert channels are possible for Intel SGX, the kernel, and the hypervisor,
these are somewhat artificial scenarios. Moreover, there are various covert
channels available to user-space applications for stealthy inter-process
communication [16, 53].

For VMs, however, there are not many known covert channels which
can be used between two VMs. So far, all cross-VM covert channels either
relied on Prime+Probe [48, 52, 53, 60, 81], DRAMA [59, 63], or bus
locking [79]. We show that ZombieLoad can be used as a fast and reliable
covert channel between VMs scheduled on the same physical core.

Sender. For the fastest result, the sender repeatedly loads the value to
be transmitted from the L1 cache into a register. By not only loading
the value from one memory address but instead from multiple memory
addresses, the sender ensures that potentially multiple fill-buffer entries
are used. In addition, this also thwarts an optimization of Intel CPUs
which combines multiple loads from the same cache line to a single load [1].



6. Case Study Attacks 337

0xFF SEQ DATA DATA
071523

Figure 11.5: The packet format used in the covert channel. Every 32-bit packet
consists of 8 data bits, 8-bit checksum (two’s complement), 8-bit
sequence number, and a constant prefix.

On a CPU supporting AVX2, the sender can encode up to 256 bits
per load (e.g., using the VMOVAPS load).

Receiver. The receiver mounts ZombieLoad to leak the values loaded by
the sender. However, as the receiver leaks the loads only in the transient
domain, the leaked value have to be transferred into the architectural
domain. We encode the leaked values into the cache and recover them
using Flush+Reload. When encoding values in the cache, we require at
least 2 cache lines, i.e., 128 B, per bit to prevent the adjacent-cache-line
prefetcher from interfering with the encoding. In practice, we require one
physical page per possible value to prevent prefetcher interference. To
reduce the bottleneck, we transfer single bytes from the transient to the
architectural domain which already requires 256 runs of Flush+Reload.

As a result, our proof-of-concept limits the transmission of data to a
single byte per leaked load. However, we can use the remaining bits in
the load to ensure that the channel is free of errors.

Transient Error Detection. The transmission of the data between
sender and receiver is free of any noise. However, the receiver does not
only recover values from the sender, but also other loads from the current
and sibling logical core. Hence, to get rid of this noise, we encode the
data as shown in Figure 11.5. This allows the receiver to filter out data
not originating from the sender.

Although we cannot transfer the entire packet into the architectural
domain, we can compute on the packet in the transient domain. Thus, we
run the error detection in the transient domain and only transmit valid
packets to the architectural domain.

The challenge to run the error detection in the transient domain is
that the number of instructions is limited, and not all instructions can be
used. For reliable results, we cannot use instructions which speculate on
either control or data flow. Hence, the error-detection code has to be as
short as possible and branch free.
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Our packet structure allows for extremely efficient error detection. We
encode the data in the first byte and the two’s complement of the data in
the second byte as a checksum. To detect errors, we XOR the value of the
first byte (i.e., the data) onto the second byte (i.e., the two’s complement
of the data). If both values are received correctly, the XOR ensures that
the bits 8 to 15 of the packet are zero. Thus, for a correct packet, the
least-significant 16 bits of the packet represent a value between 0 and
255, and for a wrong packet, these bits represent a value which is larger
than 255. We use these resulting 16-bit value as an index into our oracle
array, i.e., an array consisting of 256 pages. Therefore, any value which is
not a correct byte is out of bounds and has thus no effect on the cache
state of the array. A correct byte is also a valid index into the oracle
array and ensures that the first cache line of the corresponding page is
cached. Finally, by applying a cache-based side-channel attack, such as
Flush+Reload, we can recover the byte from the cache state of the oracle
array [44, 47].

The error detection in the transient domain has the advantage that
we do not require computation time in the architectural domain. Instead
of waiting for the exception to become architecturally visible by doing
nothing, we already use this time to perform the required computation.
An additional advantage is that while we are still in the transient domain,
we can work on noise-free data. Thus, we do not require complex error
correction [53].

Additionally, we also encode a sequence number into the packet. The
sequence number allows ordering the received packets and is also recovered
using the same method as the data value.

Results. We evaluate the covert channel in a lab environment and a
public cloud. In the lab environment, we used 2 VMs running inside
QEMU KVM on an i7-8650U. For the cloud scenario1, we used 2 co-
located virtual machines running CentOS 7.6.1810 with a Linux kernel
version of 3.10.0-957 on a Xeon E5-2670 CPU.

Both on the cloud, as well as on our lab machine, we achieved an
error-free transmission. On our lab machine, we observed transmission
rates of up to 26.8 kb/s with Variant 1. As TSX was not available in the
cloud scenario, we achieved a transmission rate of 1.99 kb/s (σx̄ = 2.5 %,
n = 1000) with Variant 1 and signal handling.

Table 11.4 shows a comparison to the transmission rates of state-of-
the-art cross-VM covert channels.

1The cloud provider asked us not to disclose its name at this point.
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Covert channel Speed Error rate

Pessl et al. [59] 411 kb/s 4.11 %
Liu et al. [48] 600 kb/s 1 %
Maurice et al. [53] 362 kb/s 0 %
ZombieLoad (this) 26.8 kb/s 0 %
Maurice et al. [52] 751.2 b/s 5.7 %
Wu et al. [79] 746.8 b/s 0.09 %
Xu et al. [81] 215 b/s 5.12 %
Schwarz et al. [63] 11 b/s 0 %
Ristenpart et al. [60] 0.2 b/s -

Table 11.4: Transmission rates of state-of-the-art cross-VM covert channels
ordered by their transmission speed.

6.4 Browsing-Behavior Monitoring

ZombieLoad is also well suited for detecting specific byte sequences within
loaded data. We demonstrate an attack for which we leverage ZombieLoad
to fingerprint a web browser session. For this attack, we assume an
unprivileged attacker running on one logical core and a web browser
running on the sibling logical core. In this scenario, it is irrelevant whether
the attacker and victim run on a native machine or whether they are in
(different) virtual machines.

We present two different attacks, a keyword detection attack which
can fingerprint website content, and an URL recovery attack to monitor a
victim’s browsing behavior.

Keyword Detection. The keyword detection allows an attacker to
gain information on the type of content the victim is consuming. For this
attack, we constantly sample data using ZombieLoad and match leaked
values against a list of keywords defined by the attacker.

We leverage the fact that we have access to a full cache line and can
do arbitrary computations in the transient domain (cf. Section 6.3). As a
result, we only externalize a small integer indicating which keyword has
matched via a cache side channel.

One limitation is the length of the keyword list, as in the transient
domain, only a limited number of memory accesses are possible before
the transient execution aborts. The most reliable solution is to store the
keyword list entirely in CPU registers. Hence, the length of the keyword
list is limited by the available registers. Moreover, the length is also
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limited by the amount of code that is transiently executed to compare
leaked values to the keyword list.

URL Recovery. In the second attack, we recover accessed websites from
browser sessions without prior selection of interesting keywords. We take
a more indirect approach that relies on modern websites performing many
individual HTTP requests to the same domain, e.g., to load additional
resources such as scripts and images.

In the transient domain, we again sample data using ZombieLoad.
While still in the transient domain, we detect the substring “www.” inside
the leaked data. When we discover a match, we leak the character following
“www.” to the architectural domain using a cache side channel. This already
results in a set of first characters of domain names which we refer to as
the candidate set.

In the next iteration, for every domain in the candidate set, we take
the last four leaked characters (e.g., “ww.X”). We use this string in the
transient domain to filter leaked values, similar to the “www.” substring
in the first iteration. If a match is found, we leak the next character, until
the string ends with a top-level domain.

Note that this attack is not limited to URLs. Potentially all data
which follows a predictable pattern, such as session cookies or credit-card
numbers, can be leaked with this variant.

Results. We evaluated both attacks running an unmodified Firefox
browser version 66.0.2 on the same physical core as the attacker. For
both attacks, we used ZombieLoad Variant 2. Our proof-of-concept
implementation of the keyword-checking attack can check four up to
8-byte long keywords. Due to excessive precomputations of browsers
when entering an URL, a keyword is sometimes already matched during
the autocompletion of the URL. For highly dynamic websites, such as
nytimes.com, keywords reliably match on the first access of the website.
Accessing mostly static websites, such as gnupg.org, have a 60 % probability
of matching a keyword in this setup. We observed false positives after the
first website access when continuing to use the browser. We hypothesize
that memory locations containing the keywords get re-used and may thus
leak at a later time again.

For the URL recovery attack, we simulated user behavior by accessing
popular websites and refreshing them in a defined time interval. We
counted the number of refreshes necessary until we recovered the entire
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1 if (x < array_len) {

2 y = array[x];

3 }

Listing 6.1: A simple Spectre-PHT [44] prefetch gadget.

URL, including top-level domain. For each website, the experiment was
repeated 100 times.

Table 11.5: Number of accesses required to recover a website name. The
experiment was repeated 100 times per website.

Website Minimal Average Maximum

nytimes.com 1 1 3
facebook.com 1 2 4

kernel.org 2 6 13
gnupg.org 2 10 34

The actual number of refreshes needed depends on the nature of the
website that is visited. If it is a highly dynamic page, such as facebook.com
or nytimes.com, a small number of reloads is sufficient to recover the entire
name. For static pages, such as gnupg.org or kernel.org, the necessary
reloads increase by approximately a factor of 10. See Table 11.5 for a
detailed overview of required reloads.

6.5 Targeted Data Leakage

Inherently, ZombieLoad is a 1-dimensional side channel, i.e., the leakage
is only controlled by the time. Hence, leakage cannot be steered using
specific addresses as is the case, e.g., for Meltdown [47]. While this data
sampling is still sufficient for several real-world attacks, it is still a limiting
factor for general attacks.

In this section, we show how ZombieLoad can be combined with
prefetch gadgets [8] for targeted data leakage.

Speculative Data Leakage. Listing 6.1 illustrates such a gadget,
which is a common pattern for accessing an array element [8]. First,
the code checks whether the index lies within the bounds of the array.
Only if this is the case, the element is accessed, i.e., loaded. While it is
evident that for a user-controlled index the corresponding array element
can be loaded, such a gadget is more powerful.
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On a CPU vulnerable to Spectre, an attacker can mistrain the branch
predictor, e.g., by providing several valid values for the array index. Then,
by providing an out-of-bounds index, the branch is misspeculated and
speculatively accesses an out-of-bounds value. Alternatively, the attacker
can alternate between valid and out-of-bounds indices randomly to achieve
a high percentage of mispredictions without any prior branch predictor
mistraining.

ZombieLoad cannot only leak architecturally accessed data but also
speculatively accessed data. Hence, ZombieLoad can even see the value of
loads which are never architecturally visible. Such loads include, among
others, speculative memory loads and prefetches. Thus, any Spectre
gadget which is not hardened, e.g., using a fence [4, 5, 8, 32] or a mask [8,
9], can be used to leak data.

Moreover, ZombieLoad does not require classic Spectre gadgets con-
taining an indirect array access [44]. A simple out-of-bounds access (cf.
Listing 6.1) is sufficient. While such gadgets have been demonstrated for
breaking KASLR [66], they were considered as relatively harmless as they
do not leak data [8]. Hence, most approaches for finding gadgets do not
consider such gadgets [25, 76]. In the Linux kernel, however, such gadgets
are patched if they are discovered, mainly as they can be used together
with Foreshadow to leak arbitrary kernel memory [11, 70]. So far, 172
such gadgets were fixed in kernel 5.0 [8]. With ZombieLoad, we show that
such gadgets are indeed powerful and require patching.

A huge advantage of ZombieLoad over Meltdown is that it circumvents
KPTI. The targeted data is legitimately accessed in the kernel space
by the prefetch gadget. Thus, in contrast to Meltdown, stronger kernel
isolation [22] does not have any effect on the attack.

Potential Incompleteness of Countermeasures. Mainly, there are
2 methods to prevent exploitation of Spectre-PHT: memory fences after
branches [4, 5, 8, 32], or constraining the index to a valid range using a
bitmask [8, 9]. The variant using fences is implemented in the Microsoft
compiler [43, 44], whereas the variant using bitmasks is implemented in
GCC [49] and LLVM [9], and also used in the Linux kernel [49].

Both prevent exploitation of Spectre-PHT as the misspeculation cannot
load any data, making it also effective against ZombieLoad.

However, even with these countermeasures in place, there is a remaining
leakage which can be exploited using ZombieLoad. When architecturally
loading an in-bounds value, ZombieLoad can leak up to 64 bytes of the
load. Hence, with ZombieLoad, there is a potential leakage of up to
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63 bytes which are out of bounds if the last in-bounds value is at the
beginning of a cache line or the base of the array is at the end of a cache
line.

Data Leakage. To demonstrate the feasibility of prefetch gadgets for
targeted data leakage, we use an artificial prefetch gadget as given in
Listing 6.1. For our evaluation, we used such a gadget in the system-call
path of the Linux kernel 5.0.7. We execute ZombieLoad Variant 1 on one
logical core and on the other, we execute system calls switching between
out-of-bounds and in-bounds array indices to achieve a high frequency of
mispredictions in the gadget.

This approach yields leaked values with a large noise component from
unrelated loads. We repeat this setup without trying to generate mispre-
dictions to generate a baseline of noise values. We generate frequency
distributions for both runs and subtract the noise frequency from the
misprediction run. We then choose the byte value that was seen most
frequently. leverage We recover kernel memory at one byte per 10 s with
38 % accuracy. Probing bytes for 20 s improves the accuracy to 46 %.

As with Meltdown [47], common byte values such as 0x00 and 0xFF

occur too often and have to be removed from the leaked data for the
recovery to work. Our approach is thus blind to these values.

The speed and accuracy can be improved if there is a priori knowledge
of the target data. For example, a 7-bit ASCII string can be leaked with
a probing time of 10 s per byte with 72 % accuracy.

7 Countermeasures

As ZombieLoad leaks loaded and stored values across logical cores, a
straight-forward mitigation is disabling hyperthreading. Hyperthreading
improves performance for certain workloads by 30 % to 40 % [7, 54], and
as such disabling it may incur a significant performance impact.

Co-Scheduling. Depending on the workload, a more efficient mitigation
is the use of co-scheduling [57]. Co-scheduling can be configured to
prevent the execution of code from different protection domains on a
hyperthread pair. Current topology-aware co-scheduling algorithms [68]
are not concerned with preventing kernel code from running concurrently
with user-space code. With such a scheduling strategy, leaks between
user processes can be prevented but leaks between kernel and user space
cannot. To prevent leakage between kernel and user space, the kernel
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must additionally ensure that kernel entries on one logical core force the
sibling logical core into the kernel as well [29]. This discussion applies in
an analogous way to hypervisors and virtual machines.

Flushing Buffers. As ZombieLoad also works across protection bound-
aries on a single logical core, disabling hyperthreading or co-scheduling
are not fully effective as mitigation. Flushing the L1 cache (using
MSR IA32 FLUSH CMD) and issuing as many dummy loads as there are
fill-buffer entries is not sufficient. Intel provided a microcode update [29]
which added a side effect to the rarely used VERW instruction. Operating
systems have to issue a dummy VERW instruction on every context switch.
If the microcode update is installed, this clears the fill buffers and store
buffer. Otherwise, the instruction has no side effect. While the microcode
update (microcode 0xB4 on i7-8650U), in combination with a correct
usage of the VERW instruction does reduce the leakage, it does not fully
prevent it. We can still observe leakage from kernel values accessed on the
same logical core. However, the leakage rate drops from multiple kilobytes
per second to less than 0.1 B/s. Our hypothesis is that we can leak data
which is evicted from L1 to L2 after issuing the VERW instruction. As the
VERW instruction does not flush dirty L1-cache lines, these can be easily
leaked if the attacker partly evicts the L1. Evicting the L1 cache forces
the dirty L1-cache lines to go through the fill buffer to L2. Hence, to
fully mitigate ZombieLoad, the operating system has to additionally flush
the L1 cache. Our performance measurement showed that only flushing
the L1 takes on average 1070 cycles (i7-8650U, n = 1000, σx̄ = 1.08).
Therefore, we expect that flushing the L1 on every context switch would
have a considerable performance impact.

If the microcode update is not available for a specific CPU, Intel
provides code sequences to emulate that behaviour [29]. However, these
code sequences do not fully work on all CPUs. For example, on the
i7-8650U, we still observe leakage which we assume is caused by the
replacement policy of the line-fill buffer.

Selective Feature Deactivation. Weaker countermeasures target in-
dividual building blocks (cf. Section 5). Intel SGX can be disabled if not
required to disable the use of Variant 4 (cf. Appendix G) permanently.
The operating system kernel can make sure always to set the accessed
and dirty bits in page tables to impair Variant 3. To prevent Variant 2,
Intel may offer a microcode update to disable TSX. Such a microcode
update already exists for older microarchitectures with a faulty TSX im-
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plementation [34]. On the Amazon EC2 cloud, we observed that all TSX
transactions always fail, which indicates that such a microcode update
might already be deployed there. Unfortunately, Variant 1 is always
possible, if the attacker can identify an alias mapping of any accessible
user page in the kernel. This is especially true if the attacker is running
in or can create a virtual machine. Hence, we also recommend disabling
VT-x on systems that do not need to run virtual machines.

Removing Prefetch Gadgets. To prevent targeted data leakage,
prefetch gadgets need to be neutralized, e.g., using array index nospec in
the Linux kernel. This function clamps array indices into valid values and
prevents arbitrary virtual memory to be prefetched. Placing these func-
tions is currently a manual task and due to the incomplete documentation
of how Intel CPUs prefetch data, these mitigations cannot be complete.
Note that Spectre mitigations might be incomplete against ZombieLoad
(cf. Section 6.5).

Another way to prevent prefetch gadgets from reaching sensitive data
is to unmap data from the address space of the prefetch gadget. Exclusive
Page-Frame Ownership [41] (XPFO) partially achieves this for the Linux
kernel’s mapping of physical memory.

Instruction Filtering. For attacks inside of a single process (e.g., Java-
Script sandbox), the sandbox implementation must make sure that the
requirements for mounting ZombieLoad are not met. One example is to
prevent generation and execution of the clflush instructions, which so
far is a crucial part of the attack.

Secret Sharing. On the software side, we can also rely on secret sharing
techniques used to protect against physical side-channel attacks [69]. We
can ensure that a secret is never directly loaded from memory but instead
only combined in registers before being used. As a consequence, observing
the data of a load does not reveal the secret. For a successful attack, an
attacker has to leak all shares of the secret. This mitigation is, of course,
incomplete if register values are written to and subsequently loaded from
memory as part of context switching.

8 Conclusion

With ZombieLoad, we showed a novel Meltdown-type attack targeting
the processor’s fill-buffer logic. ZombieLoad enables an attacker to leak
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values recently loaded by the current or sibling logical CPU. We show that
ZombieLoad allows leaking across user-space processes, CPU protection
rings, virtual machines, and SGX enclaves. Furthermore, we show that
ZombieLoad even works on MDS- and Meltdown-resistant processors, i.e.,
even on the newest Cascade Lake microarchitecture. We demonstrated
the immense attack potential by monitoring browser behaviour, extracting
AES keys, establishing cross-VM covert channels or recovering SGX sealing
keys. Finally, we conclude that disabling hyperthreading is necessary to
fully mitigate ZombieLoad on current processors.
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F Fill-buffer Size

In this section, we analyze the size of the fill buffer in terms of fill-
buffer entries usable per logical core. Intel describes the fill buffer as a
“competitively-shared resource during HT operation” [31]. Hence, with 10
fill-buffer entries (Sandy Bridge and newer microarchitectures) [31], we
expect that when hyperthreading is enabled, every logical core can use up
to 10 entries.
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Figure 11.6: One logical core can leverage the entire fill buffer (12 entries). If
both logical cores execute stores, the fill buffer is competitively
shared, leading to an increased latency for both logical cores.
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Figure 11.7: One pre-Skylake, we measure 10 fill-buffer entries, matching Intel’s
documentation. On Skylake and newer, we measure 12 fill-buffer
entries.

Our experimental setup measures the time it takes to execute n stores
to DRAM, for n = 1, . . . , 20. We expect that the time increases linearly
with the number of stores n as long as there are unused fill-buffer entries.
To ensure that the stores occupy the fill buffer, we leverage non-temporal
stores which bypass the cache and directly go to DRAM. We repeated our
experiments 1 000 000 times, and we always measured the best case, i.e.,
the minimum latency, to get rid of any noise.

Figure 11.6 shows that both logical cores can indeed leverage the
entire fill buffer. When running the experiment on one (isolated) logical
core, while the other (isolated) logical core does nothing, we get a latency
increase when executing more than 12 stores. When we run the experiment
on both logical cores in parallel, the latency increase is still after 12 stores.

Interestingly, the documented number of fill buffers does not match
our experiments for Skylake and newer microarchitectures. While we
measure 10 entries on pre-Skylake CPUs as it is documented, we measure
12 entries on Skylake and newer (cf. Figure 11.7).

From our experiments we conclude that both logical cores can leverage
the entire fill buffer Therefore, every logical core can potentially use any
entry in the fill buffer.



348 Chapter 11. ZombieLoad

G Further Variants

As explained above, we hypothesized that load operations which require
a microcode assist might first transiently dereference unauthorized fill
buffer entries. Apart from the 3 main variants described in Section 5.1,
we experimentally verified multiple approaches to provoke a microcode
assist on attacker-controlled load operations.

Variant 4: SGX Abort Page Semantics. SGX-enabled processors
trigger a microcode assist whenever an address translation resolves into
SGX’s “processor reserved memory” area and the CPU is outside enclave
mode [12]. Next, the microcode assist replaces the address translation
result with the address of the abort page which yields 0xff for reads and
silently ignores writes.

For this attack variant, we require a virtual address v mapping to a
physical enclave page p. Whenever accessing v outside the enclave, abort
page semantics apply, and a microcode assist will be invoked. While this
ensures that the load instruction always reads 0xff at the architectural
level, we found however that unauthorized fill buffer entries accessed by
the sibling logical core may still be transiently dereferenced before abort
page semantics are applied.

In our experimental setup, much like Variant 2, we access v inside a
TSX transaction and encode it in a cache-based covert channel. Interest-
ingly, however, we found that for Variant 4 instead of flushing the first
cache line of p, it suffices to simply access it before the TSX transaction.
We conjecture that this is because abort page values never end up in the
cache hierarchy.

Variant 5: Uncachable Memory. A variant closely-related to Variant
4 and CVE-2019-11091, yielding the same effect is to use a memory page
that is marked as uncacheable instead of an enclave page. As the page
miss handler issues a microcode assist when page tables are in uncacheable
memory, we can leak data similar to the described SGX scenario where
memory can also be marked as write-back [12].
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Andrés Sánchez. “SPECTECTOR: Principled Detection of Specu-
lative Information Flows.” In: arXiv:1812.08639 (2018).

[26] Shay Gueron. Intel Advanced Encryption Standard (Intel AES)
Instructions Set – Rev 3.01. 2012.

[27] John L Hennessy and David A Patterson. Computer Architecture:
A Quantitative Approach. 6th ed. Morgan Kaufmann, 2017.

[28] Jann Horn. speculative execution, variant 4: speculative store bypass.
2018. url: https://bugs.chromium.org/p/project-zero/issues/
detail?id=1528.

[29] Intel. Deep Dive: Intel Analysis of Microarchitectural Data Sam-
pling. May 2019. url: https://software.intel.com/security-

software - guidance / insights / deep - dive - intel - analysis -

microarchitectural-data-sampling.

[30] Intel. Intel 64 and IA-32 Architectures Optimization Reference
Manual. 2019.

[31] Intel. Intel 64 and IA-32 Architectures Software Developer’s Man-
ual, Volume 3 (3A, 3B & 3C): System Programming Guide. 2016.

[32] Intel. Intel Analysis of Speculative Execution Side Channels. July
2018. url: https : / / software . intel . com / security - software -

guidance/api-app/sites/default/files/336983-Intel-Analysis-

of-Speculative-Execution-Side-Channels-White-Paper.pdf.

[33] Intel. Intel Software Guard Extensions SDK for Linux OS Developer
Reference. Rev 1.5. May 2016.

https://bugs.chromium.org/p/project-zero/issues/detail?id=1528
https://bugs.chromium.org/p/project-zero/issues/detail?id=1528
https://software.intel.com/security-software-guidance/insights/deep-dive-intel-analysis-microarchitectural-data-sampling
https://software.intel.com/security-software-guidance/insights/deep-dive-intel-analysis-microarchitectural-data-sampling
https://software.intel.com/security-software-guidance/insights/deep-dive-intel-analysis-microarchitectural-data-sampling
https://software.intel.com/security-software-guidance/api-app/sites/default/files/336983-Intel-Analysis-of-Speculative-Execution-Side-Channels-White-Paper.pdf
https://software.intel.com/security-software-guidance/api-app/sites/default/files/336983-Intel-Analysis-of-Speculative-Execution-Side-Channels-White-Paper.pdf
https://software.intel.com/security-software-guidance/api-app/sites/default/files/336983-Intel-Analysis-of-Speculative-Execution-Side-Channels-White-Paper.pdf


352 Chapter 11. ZombieLoad

[34] Intel. Intel Xeon Processor E3-1200 v3 Product Family Specification
Update. Aug. 2018. url: https://www.intel.com/content/dam/

www/public/us/en/documents/specification-updates/xeon-e3-

1200v3-spec-update.pdf.

[35] Intel. Intel® C++ Compiler 19.0 Developer Guide and Reference.
Apr. 2019.

[36] Intel. L1 Terminal Fault SA-00161. Aug. 2018. url: https://

software . intel . com / security - software - guidance / software -

guidance/l1-terminal-fault.

[37] Intel. Side Channel Vulnerability MDS. May 2019. url: https:

/ / www . intel . com / content / www / us / en / architecture - and -

technology/mds.html.

[38] Saad Islam, Ahmad Moghimi, Ida Bruhns, Moritz Krebbel, Berk
Gulmezoglu, Thomas Eisenbarth, and Berk Sunar. “SPOILER:
Speculative Load Hazards Boost Rowhammer and Cache Attacks.”
In: USENIX Security Symposium. 2019.

[39] Yeongjin Jang, Sangho Lee, and Taesoo Kim. “Breaking Kernel
Address Space Layout Randomization with Intel TSX.” In: CCS.
2016.

[40] Simon P. Johnson, Uday R. Savagaonkar, Vincent R. Scarlata,
Francis X. McKeen, and Carlos V. Rozas. Technique for Supporting
Multiple Secure Enclaves. US Patent 2012/0159184 A1. June 2012.

[41] Vasileios P Kemerlis, Michalis Polychronakis, and Angelos D
Keromytis. “ret2dir: Rethinking kernel isolation.” In: USENIX
Security Symposium. 2014.

[42] Vladimir Kiriansky and Carl Waldspurger. “Speculative Buffer
Overflows: Attacks and Defenses.” In: arXiv:1807.03757 (2018).

[43] Paul Kocher. Spectre Mitigations in Microsoft’s C/C++ Compiler.
2018.

[44] Paul Kocher et al. “Spectre Attacks: Exploiting Speculative Exe-
cution.” In: S&P. 2019.

[45] Esmaeil Mohammadian Koruyeh, Khaled Khasawneh, Chengyu
Song, and Nael Abu-Ghazaleh. “Spectre Returns! Speculation At-
tacks using the Return Stack Buffer.” In: WOOT. 2018.

https://www.intel.com/content/dam/www/public/us/en/documents/specification-updates/xeon-e3-1200v3-spec-update.pdf
https://www.intel.com/content/dam/www/public/us/en/documents/specification-updates/xeon-e3-1200v3-spec-update.pdf
https://www.intel.com/content/dam/www/public/us/en/documents/specification-updates/xeon-e3-1200v3-spec-update.pdf
https://software.intel.com/security-software-guidance/software-guidance/l1-terminal-fault
https://software.intel.com/security-software-guidance/software-guidance/l1-terminal-fault
https://software.intel.com/security-software-guidance/software-guidance/l1-terminal-fault
https://www.intel.com/content/www/us/en/architecture-and-technology/mds.html
https://www.intel.com/content/www/us/en/architecture-and-technology/mds.html
https://www.intel.com/content/www/us/en/architecture-and-technology/mds.html


References 353

[46] Jaehyuk Lee, Jinsoo Jang, Yeongjin Jang, Nohyun Kwak, Yeseul
Choi, Changho Choi, Taesoo Kim, Marcus Peinado, and Brent
Byunghoon Kang. “Hacking in Darkness: Return-oriented Program-
ming against Secure Enclaves.” In: USENIX Security Symposium.
2017.

[47] Moritz Lipp et al. “Meltdown: Reading Kernel Memory from User
Space.” In: USENIX Security Symposium. 2018.

[48] Fangfei Liu, Yuval Yarom, Qian Ge, Gernot Heiser, and Ruby B.
Lee. “Last-Level Cache Side-Channel Attacks are Practical.” In:
S&P. 2015.

[49] LWN. Spectre V1 defense in GCC. July 2018. url: https://lwn.
net/Articles/759423/.

[50] LWN. The current state of kernel page-table isolation. Dec.
2017. url: https : / / lwn . net / SubscriberLink / 741878 /

eb6c9d3913d7cb2b/.

[51] G. Maisuradze and C. Rossow. “ret2spec: Speculative Execution
Using Return Stack Buffers.” In: CCS. 2018.

[52] Clémentine Maurice, Christoph Neumann, Olivier Heen, and
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