
Hannah Brunner, BSc

Bringing Cross-Technology Communication to Life:

Implementation of a Gateway-Free Smart Home

using Off-The-Shelf Devices

MASTERARBEIT

zur Erlangung des akademischen Grades

Diplom-Ingenieurin

Masterstudium Information and Computer Engineering

eingereicht an der

Technischen Universität Graz

Betreuer

Ass.Prof. Dott. Dott. mag. Dr.techn. MSc Carlo Alberto Boano

Institut für Technische Informatik

Graz, August 2020

EIDESSTATTLICHE ERKLÄRUNG

Ich erkläre an Eides statt, dass ich die vorliegende Arbeit selbstständig ver-
fasst, andere als die angegebenen Quellen/Hilfsmittel nicht benutzt und die
den benutzten Quellen wörtlich und inhaltlich entnommenen Stellen als solche
kenntlich gemacht habe. Das in TUGRAZonline hochgeladene Textdokument
ist mit der vorliegenden Masterarbeit identisch.

Datum, Unterschrift

Hannah Brunner, BSc

Bringing Cross-Technology Communication to Life:

Implementation of a Gateway-Free Smart Home

using Off-The-Shelf Devices

MASTER’S THESIS

to achieve the university degree of

Master of Science

Master’s degree programme: Information and Computer Engineering

submitted to

Graz University of Technology

Supervisor

Ass.Prof. Dott. Dott. mag. Dr.techn. MSc Carlo Alberto Boano

Institute of Technical Informatics

Graz, August 2020

AFFIDAVIT

I declare that I have authored this thesis independently, that I have not used
other than the declared sources/resources, and that I have explicitly indicated
all material which has been quoted either literally or by content from the
sources used. The text document uploaded to TUGRAZonline is identical to
the present master’s thesis.

Date, Signature

Kurzfassung

In den letzten Jahren ist die Anzahl der eingesetzten Geräte im Internet der Dinge
stark gestiegen. Einer der Hauptgründe dieser Entwicklung ist die Verbreitung von Smart
Home Technologien. Diese ermöglichen eine komfortable, drahtlose Steuerung unterschied-
lichster Haushaltsgeräte, wie Lampen, Türschlössern und vielem mehr. In Smart Home
Anwendungen werden verschiedene Funktechnologien eingesetzt, die jeweils unterschied-
liche Anforderungen erfüllen. Die meisten Smart Home Geräte verwenden eine der drei
beliebtesten und weit verbreitesten Technologien im 2.4 GHz ISM Frequenzband: Blue-
tooth Low Energy (BLE), ZigBee oder Wi-Fi. Obwohl diese Funktechnologien die selben
Frequenzen nutzen, können Geräte mit unterschiedlichen Technologien aufgrund inkom-
patibler Bitübertragungsschichten nicht direkt miteinander kommunizieren. Um trotzdem
einen Datenaustausch zu ermöglichen, werden Gateways eingesetzt. Gateways sind Geräte,
die mehrere Funkstandards unterstützen und Daten dementsprechend in die unterschied-
lichen Technologien übersetzen können. Der Einsatz von Gateways bringt jedoch mehrere
Nachteile mit sich. Als Beispiele können erhöhte Kosten, gesteigerte Komplexität und
zusätzlicher Datenverkehr im Netzwerk genannt werden.

In dieser Masterarbeit machen wir uns eine technologieübergreifende Kommunikati-
onsmethode (Cross-Technology Communication - CTC) zu Nutze, um eine Smart Home
Anwendung ohne die Verwendung von teuren Gateways zu entwickeln. Basierend auf
dem Framework X-Burst, wird die Kommunikation zwischen Geräten inkompatibler Art
ermöglicht. Im Speziellen wurde X-Burst auf einem Smartphone mit Wi-Fi Unterstützung,
einer ZigBee Lampe und einem BLE Türschloss implementiert. Dadurch kann gezeigt
werden, dass Gateway-freie, technologieübergreifende Kommunikation mit den wichtigs-
ten Funktechnologien im 2.4 GHz ISM Frequenzband möglich ist. Außerdem wird ein
Verfahren vorgestellt, welches die gleichzeitige Nutzung von CTC und herkömmlichen
Funktechnologien, genauer ZigBee und BLE, zulässt. Diese Arbeit ist eine der ersten, die
technologieübergreifende Kommunikation auf handelsüblichen und tatsächlich eingesetz-
ten Geräten ermöglicht, zeigt das Potenzial dieser Kommunikationsmethode im Bereich
des Smart Homes und ist ein erster Schritt in Richtung einer breiteren Anwendung von
CTC.

V

Abstract

In the recent years, the number of connected devices in the Internet of Things has been
rising steeply. A main driver for these advances is the adoption of smart home technology,
which allows homeowners to remotely control light bulbs, blinds, door locks, and more. In
smart home applications, various wireless technologies are used to satisfy different require-
ments. Most devices employ one of the three most popular and widespread protocols in
the 2.4 GHz ISM frequency band: Bluetooth Low Energy (BLE), ZigBee, or Wi-Fi. Even
though working on the same frequencies, these heterogenous devices cannot communicate
with each other due to incompatible physical layers. Currently, multi-radio gateways are
used to allow a data exchange despite different underlying technologies. These devices
translate data from one technology to another and introduce several drawbacks, including
higher costs, increased complexity, and additional network traffic.

In this thesis, we leverage Cross-Technology Communication (CTC) to build an exem-
plary gateway-free smart home application, where heterogeneous off-the-shelf devices can
directly communicate to each other and with a smartphone. Towards this goal, the CTC
framework X-Burst is implemented on a smartphone using Wi-Fi, a ZigBee light bulb, and
a BLE door lock. Thereby, it can be shown that seamless bidirectional communication
between the three most popular wireless technologies in the 2.4 GHz ISM frequency band
is possible without the use of costly gateways. Furthermore, a coexistence mechanism is
introduced to allow the concurrent use of CTC and other existing communication stacks
(i.e., ZigBee and BLE). This work is one of the first to bring CTC capability on real-world
devices and marks an initial steps towards a broader adoption of CTC in the Internet of
Things, and in smart home applications in particular.

VI

Danksagung

Diese Diplomarbeit wurde im Jahr 2020 am Institut für Technische Informatik an der
Technischen Universität Graz durchgeführt.

Zuerst möchte ich mich bei meinem Betreuer Carlo Alberto Boano für seine stetige, her-
vorragende Unterstützung und das hilfreiche Feedback während der gesamten Durchführung
dieser Arbeit bedanken. Weiters danke ich auch Rainer Hofmann, sowie Markus Schuß,
für ihren Support und viele hilfreiche Tipps.

Ich möchte auch meiner Familie und insbesondere meinen Eltern danken, dass sie
mir auf meinem Lebens- und Bildungsweg völlige Freiheit gegeben, und mich gleichzeitig
jederzeit auf unterschiedlichste Weise unterstützt haben. Abschließend, danke Stephan
für dein Verständnis, die hilfreichen Diskussionen und die grenzenlose Unterstützung.

Graz, im August 2020 Hannah Brunner

VII

Acknowledgments

This Master Thesis was written during the year 2020 at the Institute of Technical Infor-
matics at Graz University of Technology.

First and foremost, I would like to thank my supervisor Carlo Alberto Boano for his
continuous and excellent support, as well as his helpful feedback throughout the entire
time. Furthermore, I thank Rainer Hofmann and Markus Schuß for their support and
many helpful tips.

I would also like to thank my family, especially my parents, who gave me complete
freedom of choice during my entire life and education, while supporting me in every possible
way. Finally, thank you Stephan for your understanding, the useful discussions and the
unlimited support.

Graz, August 2020 Hannah Brunner

VIII

Contents

1 Introduction 1
1.1 Problem Statement . 1
1.2 Thesis Contributions . 3
1.3 Thesis Structure . 4

2 Background 5
2.1 Main Wireless Technologies Operating in the 2.4 GHz ISM Band 5

2.1.1 ZigBee . 5
2.1.2 Bluetooth Low Energy (BLE) . 7
2.1.3 Wi-Fi . 8

2.2 Cross-Technology Communication . 9
2.3 X-Burst . 10

2.3.1 Concept . 10
2.3.2 Requirements . 12
2.3.3 Modular Architecture . 13
2.3.4 Achievable Throughput . 15

2.4 Employed Hardware . 15
2.4.1 Wi-Fi Devices . 15
2.4.2 ZigBee Devices . 16
2.4.3 BLE Devices . 17

2.5 Employed Software . 18
2.5.1 Contiki . 18
2.5.2 Nexmon . 19
2.5.3 EmberZNet PRO SDK . 19
2.5.4 nRF5 SDK . 19

3 Related Work 21
3.1 Building a Smart Home using Gateways . 21

3.1.1 Vendor-specific Hubs . 21
3.1.2 Smart Home Gateways . 21
3.1.3 Voice Assistants . 22
3.1.4 Generic Gateway Approaches . 22
3.1.5 Limitations . 22

3.2 Existing Cross-Technology Communication Schemes 23
3.2.1 Packet Level Modulation . 23

IX

3.2.2 Physical Layer Emulation . 24
3.2.3 Limitations . 24

4 Enabling X-Burst on Wi-Fi Devices 26
4.1 Overview . 26
4.2 Software Architecture . 26
4.3 Transmission . 28
4.4 Reception . 29
4.5 General Considerations . 30

4.5.1 Channel Selection . 30
4.5.2 Alphabet Computation . 30

5 Design and Implementation 33
5.1 Overview . 33
5.2 Bringing X-Burst on the Nexus 6P . 34

5.2.1 Design Challenges . 35
5.2.2 Software Implementation . 35
5.2.3 Limitations . 36

5.3 Bringing X-Burst on the IKEA Tr̊adfri Light Bulb 38
5.3.1 Design Challenges . 38
5.3.2 Software Implementation . 39
5.3.3 Coexistence with the existing ZigBee Stack 40
5.3.4 Limitations . 41

5.4 Bringing X-Burst on the DanaLock Door Lock 42
5.4.1 Design Challenges . 42
5.4.2 Software Implementation . 44
5.4.3 Coexistence with the existing BLE Stack 44
5.4.4 Limitations . 45

5.5 Bringing it all Together: Demonstrator . 45

6 Evaluation 48
6.1 X-Burst Properties . 48

6.1.1 Experimental Setup . 48
6.1.2 Nominal Throughput . 49
6.1.3 Packet Reception Rate in the Presence of external RF Interference . 51
6.1.4 Communication Range . 53

6.2 Coexistence with existing Communication Stacks 55
6.2.1 Memory Footprint . 55
6.2.2 Coexistence of ZigBee and CTC . 57
6.2.3 Coexistence of BLE and CTC . 58

6.3 Demonstrator . 60

7 Conclusions & Future Work 62
7.1 Conclusion . 62
7.2 Future Work . 63

Bibliography 65

X

List of Figures

1.1 Tr̊adfri Gateway Setup . 2
1.2 Smart Home Setup with CTC enabled Devices 3

2.1 Working Principle of X-Burst . 10
2.2 Frame Format of X-Burst Messages . 11
2.3 Modular Architecture of X-Burst . 14
2.4 Contiki’s Network Stack including X-Burst Integration 18

4.1 Software Architecture of Wi-Fi CTC Implementation 27
4.2 Wi-Fi Frame Structure . 28
4.3 Channel Selection . 30

5.1 Overview of Main Architecture . 34
5.2 Software of Wi-Fi CTC Implementation . 36
5.3 Frame Injection Timing Problem . 37
5.4 Tr̊adfri Teardown . 39
5.5 Tr̊adfri Pinout . 39
5.6 Coexistence Communication Principle . 42
5.7 Danalock Teardown . 43
5.8 Smart Home Demonstrator App . 46

6.1 Throughput of Nexus 6P in Transmission Mode for different Payload Sizes . 50
6.2 Throughput of Nexus 6P in Reception Mode for different Payload Sizes . . 51
6.3 Throughput of Danalock and Tr̊adfri in Reception Mode using a 4-bit Mapping 52
6.4 Packet Reception Rate at Presence of Radio Interference 52
6.5 Evaluation of Communication Range . 54
6.6 Memory Footprint of the Tr̊adfri . 55
6.7 Memory Footprint of the Danalock . 56
6.8 Throughput and PRR at Coexistence of CTC and ZigBee 57
6.9 PRR at Coexistence of CTC and ZigBee at different Traffic Loads 58
6.10 Throughput and PRR at Coexistence of CTC and BLE 59
6.11 PRR of CTC at different Connection Intervals 60
6.12 PRR of CTC at different Advertising Intervals 60
6.13 Smart Home Demonstrator Devices . 61

XI

List of Tables

2.1 Examples of ZigBee Clusters . 7

3.1 Examples of Smart Home Gateways . 22

4.1 Minimum and Maximum Duration of IEEE 802.11b Frames 29
4.2 Duration Limits of Wi-Fi, ZigBee and BLE 31
4.3 Durations Candidates for a Common Alphabet 32

5.1 Alphabet for Nexus 6P . 35
5.2 Pinmap of the Danalock V3 . 43

XII

Abbreviations

ACK Acknowledgment.

API Application Programming Interface.

BLE Bluetooth Low Energy.

CTC Cross-Technology Communication.

HAL Hardware Abstraction Layer.

IEEE Institute of Electrical and Electronics Engineers.

IoT Internet of Things.

ISM Industrial, Scientific and Medical.

MAC Medium Access Control.

OS Operating System.

PRR Packet Reception Rate.

RAM Random Access Memory.

RDC Radio Duty Cycling.

ROM Read-Only Memory.

RSS Received Signal Strength.

SDK Software Development Kit.

SDR Software Defined Radio.

TI Texas Instruments.

UDP User Datagram Protocol.

WLAN Wireless Local Network.

WPAN Wireless Personal Network.

ZLL ZigBee Light Link.

XIII

Chapter 1

Introduction

The interest in the Internet of Things (IoT) is unbroken since it was first mentioned in
1999 [23]. It consists of connected everyday objects equipped with sensors and actuators,
thus opening up a wide range of applications. Popular application examples are fitness
tracking using wearables, air quality monitoring in smart cities, and the deployment of
wireless objects within a smart home. The IoT plays also a major role in an industrial
context: sensor data can be used to predict failures on critical infrastructure and thereby
help to minimize downtime and costs [45]. The number of connected IoT devices has been
rising steeply in the last decade and reached more than 9 billion in 2019. IoT Analytics
[35] identified the adoption of smart home devices as one of the main drivers for the recent
advances. In smart homes, common objects such as lamps, door locks, blinds or speakers,
are connected wirelessly to allow remote control and make the residents’ life easier. The
potential of the smart home market is huge. According to [36], it is expected to reach
144 billion dollar by 2025. Especially, since big global players such as Google, Amazon, or
Apple entered the stage, more and more people get familiar with smart home devices.

1.1 Problem Statement

Despite the rising sales of smart home systems, their adoption is slowed down by the
increasing complexity of installation and usage [12]. Furthermore, the lack of an industry-
wide communication standard leads to compatibility issues and frustration on the cus-
tomers’ side [11, 31, 50].

Incompatible wireless technologies. Due to a variety of different Internet of Things
applications, several wireless technologies and protocols have been developed to satisfy
the emerging requirements. Depending on the applications’ goal and employed hardware
platforms, it is necessary to exhibit certain properties (e.g., video streaming requires very
high bandwidth, while small battery-operated sensors usually send only a few bytes of
data but need to support low-power modes to serve a long lifetime). Typical requirements
to be considered are data rate, bandwidth, power consumption, communication range,
security, and price. In smart home applications, the most popular protocols are ZigBee,
Z-Wave, and Bluetooth Low Energy (BLE), which are designed for low-power and low-
bandwidth communication. While their data rates are clearly sufficient for controlling

1

CHAPTER 1. INTRODUCTION 2

Figure 1.1: To control a Tr̊adfri light bulb with a smartphone, two additional mains-
powered devices are required: a router and a Tr̊adfri gateway. Furthermore, three protocol
translations are necessary for a simple on/off command, introducing additional network
traffic and latency.

lamps, doorlocks or thermostats, they are not feasible for streaming multimedia content
or security footage. A common alternative is Wi-Fi (IEEE 802.11), which features high
bandwidth but is very power hungry. Apart from Z-Wave, these technologies all operate
in the 2.4 GHz license-free Industrial, Scientific and Medical (ISM) band. Nevertheless,
devices employing different wireless technologies, even if working in the same frequency
band, cannot directly communicate with each other due to incompatible physical layers.

Gateways as alleged solution. As a smart home solely based on one technology is
not feasible, multi-radio gateways are used to allow data exchange between devices with
different underlying physical layers. Gateways, sometimes refered to as hubs, translate
and forward data from one protocol to another. They are costly devices with high power
demand and introduce a single point-of-failure. Furthermore, translation overhead and
complexity increases significantly. A simple real-world example is illustrated in Fig. 1.1
and emphazises the effort introduced by the usage of multiple radios and gateways.

Lack of compatibility across different manufacturers. Another obstacle on the
path to a running smart home environment are conflicting platforms. Gateways often
support only devices of the same brand or selected other products. Making sure all devices
are compatible with each other is a heavy burden for customers and transforms “the dream
home into a nightmare”[15]. The introduction of voice-controlled gateways, such as Alexa
or Google Home eased the problem, as they support a lot of devices due to their growing
popularity. However, these ecosystems are still unlikely to comprehend everything [50].

No transparency on the application layer. The deployment of several different
devices introduces the “app problem”[50]. Each device requires an individual app for
installation and usage, as each vendor offers its own special features. Despite the inconve-
nience of these circumstances, the use of separate apps make a direct data exchange and
control between devices impossible. Hence, a truly smart home, where devices exchange
sensor data and adjust light, blinds or locks autonomously, cannot work across different
vendors or without a central entity. Adding a number of devices in a smart home can
require just as many gateways and apps, which soon leads to a confusing, complex and
inefficient setup. [27]

CHAPTER 1. INTRODUCTION 3

Figure 1.2: Example of a smart home without (a) and with cross-technology communica-
tion (b). In the conventional scenario (a), several gateways and many protocol translations
are required. The devices cannot communicate directly and, for each device, a different
app needs to be installed. The introduction of cross-technology communication allows a
direct data exchange and makes gateways obsolete, as all devices can be controlled with
a single app (b).

Cross-Technology Communication (CTC) can help to circumvent the aforementioned
problems. It is a mechanism that allows devices employing incompatible wireless tech-
nologies to directly communicate with each other without the need of a gateway [29]. The
application of CTC on smart home devices can make the use of gateways obsolete, help
to save costs and simplify a smart home setup drastically, as shown in Fig. 1.2. The goal
of this thesis is to show the feasibility of CTC to overcome problems introduced by the
deployment of smart home devices with incompatible wireless technologies. In particalur,
we want to demonstrate a gateway-free data exchange between heterogenous off-the-shelf
devices and thus ultimately build a basis to enable interoperability between any smart
home device, regardless of its brand or employed wireless technology.

1.2 Thesis Contributions

To enable a smart home architecture as proposed in Fig. 1.2 and to show the potential
of cross-technology communication in a real-world scenario, we port and apply X-Burst
[29] on several off-the-shelf smart home devices. X-Burst is a CTC framework and enables
bidirectional communication between devices with incompatible wireless technologies. It
has previously been showcased on ZigBee and BLE devices, but its principle is independent
of the underlying technology. Data is encoded in the duration of energy bursts, which can
be decoded by any device on the same channel using energy sensing. Hence, it is a suitable
approach in the smart home domain, where most devices operate on overlapping channels
in the 2.4 GHz ISM band.

Extension of X-Burst to support Wi-Fi devices. We apply X-Burst on two off-
the-shelf Wi-Fi devices, to allow seamless and bidirectional communication between the
three most popular wireless technologies in the 2.4 GHz ISM band: Wi-Fi, ZigBee and

CHAPTER 1. INTRODUCTION 4

BLE. In the context of a seminar project, we have ported X-Burst to the Raspberry Pi
3B+ already. Since smartphones are used as the main remote control for many smart
home appliances, we enable CTC support on the Wi-Fi chip bcm4358 of the Nexus 6P in
this thesis.

Applying X-Burst on off-the-shelf smart home devices. We show the feasibility
of CTC on popular real-world smart home devices. In particular, we can control a ZigBee-
based light bulb and a BLE-based doorlock with a smartphone’s Wi-Fi radio. Towards
this goal, X-Burst is ported to the IKEA Tr̊adfri, a smart light bulb employing a ZigBee
radio. Further, X-Burst is ported to a BLE-enabled door lock, the Danalock V3.

Seamless coexistence of CTC with the existing communication stacks. We
implement the CTC functionality such that BLE and ZigBee devices can use their native
communication mechanisms and CTC simultaneously. In other words, all smart home
devices can still be controlled with their original remote controllers, while additional data
exchange with any other CTC-enabled device is now possible.

Building a concrete smart home demonstrator making use of CTC. We build a
demonstrator to show that a gateway-free smart home is possible despite incompatibilities
of the employed wireless technologies. In particular, the demonstrator allows to control a
BLE-enabled door lock and a ZigBee-enabled light bulb using a Wi-Fi based smartphone
from one single app.

1.3 Thesis Structure

The remainder of this thesis is structured as follows. Chapter 2 contains an overview of
the three most popular wireless technologies in the 2.4 GHz ISM band, which have been
considered in this thesis. Furthermore, it introduces the reader to cross-technology com-
munication and, in particular, to the CTC framework X-Burst. At the end of the chapter,
the employed hardware and software platforms are described briefly. In Chapter 3, current
approaches to enable communication between incompatible wireless devices are presented.
First, smart home gateway solutions are described, followed by a summary of existing
work on CTC. Chapter 4 identifies the requirements to enable CTC on Wi-Fi devices, i.e.,
how to port X-Burst on the Raspberry Pi 3B+ and the Nexus 6P. Chapter 5 is devoted to
the design of a gateway-free smart home application. The necessary implementation steps
to allow seamless cross-technology communication between the Nexus 6P smartphone, the
IKEA Tr̊adfri light bulb, and the Danalock V3 door lock are described. We perform an
experimental evaluation on all devices and show its results in Chapter 6. The evaluation
contains information about the achievable throughput, the communication range and the
reception performance in the presence of external radio interference. Furthermore, the
seamless coexistence between CTC and the existing communication stacks is evaluated.
Finally, we conclude the thesis in Chapter 7 and give an outlook on future work.

Chapter 2

Background

This chapter contains a description of the three most popular wireless technologies in the
2.4 GHz frequency band that have been considered in this thesis in Sec. 2.1. Furthermore,
the basic idea and concepts of cross-technology communication are explained in Sec. 2.2,
followed by a more detailed discussion on the CTC mechanism X-Burst in Sec. 2.3. Finally,
an overview of the employed hardware platforms and software is given in Sec. 2.4 and
Sec. 2.5, respectively.

2.1 Main Wireless Technologies Operating in the 2.4 GHz
ISM Band

The Industrial, Scientific and Medical (ISM) bands are unlicensed, hence freely usable
parts of the frequency spectrum. Especially the 2.4 GHz ISM band is very popular due to
its global availability. It is the favored target for cross-technology communication schemes,
as many different wireless technologies operate on overlapping channels within these bands.
The most dominating wireless technologies used in smart home applications work also in
these frequencies. In the following section, we give an overview of the three most wide-
spread wireless technologies in the 2.4 GHz band, namely ZigBee, Bluetooth Low Energy,
and Wi-Fi.

2.1.1 ZigBee

ZigBee is a standard for cost-effective low power wireless communication. ZigBee defines
the behavior of wireless devices from radio to application layer to provide robust and reli-
able communication along with interoperability across different vendors. It is managed by
the ZigBee Alliance [14], consisting of more than 200 companies trying to standardize the
communication in different domains. ZigBee is especially popular in smart home applica-
tions, due to its low power-consumption and smart-home tailored application profiles.

Physical Layer

ZigBee is based on the IEEE 802.15.4 radio specification. IEEE 802.15.4 is a standard
for Low-Rate Wireless Personal Area Networks (LR-WPAN). It defines the physical layer
and the Medium Access Control (MAC) layer of ZigBee’s network stack. ZigBee supports

5

CHAPTER 2. BACKGROUND 6

different network topologies such as star and mesh topology, and can operate in several
ISM frequency bands (868 MHz, 915 MHz and 2.4 GHz). It is commonly used in the 2.4
GHz band, as it is the only one that is freely available world-wide. In this band, the IEEE
802.15.4 specification defines 16 possible channels (11-26), spaced 5 MHz apart, with a
bandwidth of 2 MHz each. The communication is based on the Direct-Sequence Spread
Spectrum (DSSS) technique and allows a data rate of up to 250 kbit/s and a range of 10
- 100 m. The physical layer further supports sleep modes, which is especially of interest
for battery driven IoT devices with small energy budget [33].

Device Types

ZigBee devices can be configured as one of the three following device types:

• Coordinator
• Router
• End Device

The coordinator is a device which starts and controls the network. It selects operational
parameters (e.g., channel, network identifier) and stores network information. A router is
a device which can relay messages from other devices and thus extends the network area
coverage. End devices cannot perform any routing operations but can only talk to their
parents [20].

ZigBee Cluster Library (ZCL)

ZigBee defines several application profiles to allow interoperability for devices employed
in specific application domains. Among others, there are application profiles for Home
Automation (HA), Smart Energy (SE) and Smart Lighting (ZLL). Application profiles
specify the messaging scheme between devices in a specific application and are based on
the ZigBee Cluster Library (ZCL). The ZCL is a library of clusters, containing a set of
attributes and messages, corresponding to the required functionality. The clusters can be
reused to add desired capabilities to an application. Examples for clusters are shown in
Table 2.1 [40].

ZigBee Light Link (ZLL)

ZigBee Light Link (ZLL) is an application profile tailored for smart lighting. It aims to
provide a user-friendly and intuitive installation procedure and has been introduced to
maximize the interoperability between products of different smart light manufacturers.
ZLL includes several clusters defined in the ZCL, which are required to control smart
lighting devices, such as bulbs, remotes, switches or sensors.

ZLL further features a ’ZLL Commissioning’ cluster enabling Touchlink installation
of ZLL devices. Touchlink allows network commissioning without the need of a coordi-
nator device and should thereby simplify the installation and configuration procedure for
customers. Commonly, switches and remotes are configured as so-called ’initiators’ which
want to connect to light bulbs (’targets’). During a Touchlink pairing process, the devices
are hold very close to each other. The initiator starts the commissioning (e.g., by pressing
a button) and retrieves network parameters from the target. To complete the pairing

CHAPTER 2. BACKGROUND 7

process, the initiator requests the target to form a new network or join an existing one.
Hence, a remote can connect to several bulbs simultaneously in an easy and quick way
[39].

Cluster Description

Basic
This cluster contains basic information of the ZigBee
device and allows to set user-defined properties.

Time
This cluster provides access to the real-time clock
of a ZigBee device.

On/Off
This cluster includes messages to set a device into
’on’ or ’off’ state, respectively.

Level Control This cluster allows to set the level of a device’s physical quantity.

Table 2.1: Examples of clusters defined in the ZigBee Cluster Library (ZCL).

2.1.2 Bluetooth Low Energy (BLE)

Bluetooth Low Energy (BLE) is a wireless communication standard developed for short-
range communication. It is part of the Bluetooth 4.0 specification and, compared to Blue-
tooth Classic, especially designed for low-power applications on battery-operated devices.
Although covered in the same specification, BLE and Bluetooth Classic (the well-known
technology for e.g., wireless headphones) are not compatible with each other. Despite
BLE’s rather young age (it has been introduced in 2010), it is wide-spread and highly
adopted in modern consumer devices such as smartphones and notebooks. This fact, com-
bined with the low costs of integrated BLE chips, makes it a popular wireless technology
for many IoT applications [49].

The BLE stack implementation is separated into two main parts: the Controller and
the Host. The Controller includes the radio specification consisting of physical layer and
link layer, while the Host contains upper layer functionality [46].

Physical Layer

BLE devices operate in the 2.4 GHz frequency band on 40 different channels. Each channel
has a 2 MHz bandwidth and spacing, i.e., the channels are adjacent. Three of these
channels (37, 38, 39) are reserved for advertisement messages as explained in further
detail below. The remaining channels can be used for bidirectional data exchange. The
applied modulation scheme, called Gaussian Frequency Shift Keying (GFSK), allows a
data rate of up to 1 Mbps. BLE devices typically have a range of a few tens of meters.

Device Types

BLE supports two different types of communication: connection-less broadcasting and
bidirectional connection-based communication.

CHAPTER 2. BACKGROUND 8

Using connection-less broadcasting, two separate device roles are specified:

• Broadcaster;
• Observer.

A Broadcaster can transmit non-connectable packets periodically to several devices simul-
taneously. Oberservers are devices that repeatedly scan the advertising channels to receive
broadcast messages. Broadcasting can only be used for small amounts of data and does
not feature any security provisions.

Connection-based communication involves two different device types:

• Central;
• Peripheral.

A Peripheral is commonly a small and battery-powered device (e.g., a sensor), which
can connect to a single Central device at a given time. Therefore, a Peripheral transmits
connectable advertising packets on predefined channels (37, 38, 39) to indicate its presence.

A Central is typically more powerful (e.g., smartphone, tablet) and can connect to
several Peripherals. It constantly scans the advertising channels for packets and, if desired,
establishes a connection with the Peripheral. Once they are connected, the Central is
responsible for timing and can initiate a bidirectional data exchange periodically, i.e.,
the Peripheral can only respond after receiving a request from the Central device. The
connection interval defines the time between two data transfers and is configurable between
7.5 to 4000 ms [49].

Generic Attribute Profile (GATT)

The Generic Attribute Profile (GATT) specifies how two BLE devices exchange applica-
tion specific data. In GATT, data is organized in a hierarchical way using services and
characteristics. Services combine several related characteristics into a logical block. A
characteristic describes a single value with a well-defined format. For example, a humidity
service may include a temperature characteristic as well as a humidity characteristic. As
GATT offers many standard services and characteristics, it allows to easily create new
applications and provides interoperability among different vendors, similar to the ZigBee
Cluster Library (ZCL) in ZigBee.

2.1.3 Wi-Fi

Wi-Fi is a wireless communication technology for Wireless Local Area Networks (WLAN)
specified in the IEEE 802.11 standard. It is highly adopted and commonly used to connect
devices such as notebooks, smartphones and tablets to the Internet. In contrast to BLE
and ZigBee, focusing on low-power communication, Wi-Fi is optimized for high-throughput
data transfer. As high data rates imply high energy requirements, Wi-Fi is often not
suitable for constrained battery-powered IoT devices. It is considered a valid choice in
the smart home domain, however, as many smart home appliances are mains-powered
by default (e.g., light bulbs) or have high bandwidth demands (e.g., security camera).
Furthermore, the prevelance of Wi-Fi access points in customers’ homes is beneficial, as
installation effort and costs can be kept low.

CHAPTER 2. BACKGROUND 9

Physical Layer

The main bands used for Wi-Fi communication are the 2.4 GHz and 5 GHz band. In IEEE
802.11, 14 different channels are defined in the 2.4 GHz band, of which only 13 are allowed
to use in Europe. The channels have a bandwidth of 22 MHz each and are separated 5
MHz apart from each other. It is common to use the most popular channels 1, 6 and
11 only, as they do not overlap. Depending on the Wi-Fi version, different modulation
schemes are applied and data rates of several tens of Mbit/s can be achieved.

2.2 Cross-Technology Communication

Cross-Technology Communication (CTC) allows devices with heterogeneous wireless tech-
nologies to directly communicate with each other. The possibility to exchange data
across different technologies can help to mitigate problems arising in the crowded 2.4
GHz ISM band. CTC can be used to apply channel coordination schemes to minimize
cross-technology interference [51]. Further, the deployment of multi-radio gateways can
be avoided, which reduces network traffic and channel congestion. Another application of
CTC is clock synchronization of incompatible devices [52].

Existing CTC techniques can be divided into two categories: packet-level modulation
and physical-layer emulation.

In physical-layer emulation, a packet of one technology is embedded within the payload
of another. For instance, the parts of a Wi-Fi frame are adjusted such that this portion
resembles a ZigBee packet and can hence be decoded by commodity ZigBee receivers [34].
While this technology-specific approach enables cross-technology transmission with very
high data rates, it does not allow for bidirectional communication, as only the high-end
transmitter can send to a low-end receiver.

Packet-level modulation leverages packet-level information such as transmission power,
duration, or interval of standard-compliant packets to encode information. Almost any
wireless device on the same channel, regardless of the underlying technology, can extract
and decode the corresponding data by means of energy sensing. Energy sensing is typi-
cally used for Clear Channel Assessment (CCA), i.e., to determine if a channel is occupied
before transmission. Therefore, almost all radios provide this feature, which makes packt-
level modulation a very generic approach. Packet-level modulation features two types of
encoding: energy modulation, where information is encoded in the energy of the packets
(transmission power), and time modulation, where information is encoded in the timing
of the packets (duration, interval). Due to sparse packet-level information and low sam-
pling rates, physical-layer emulation outperforms the packet-level modulation mechanism
in terms of achievable data rates. However, packet-level modulation is not limited to a
specific technology and thus allows bidirectional communication between various commu-
nication standards. Furthermore, broadcast cross-technology frames can be sent, i.e., it
is possible to transmit information to devices making use of heterogeneous technologies
simultaneously. This cannot be done using physical-layer emulation.

CHAPTER 2. BACKGROUND 10

Figure 2.1: Principle of X-Burst’s CTC mechanism. Transmitters translate data into
predefined durations and transmit legitimate packets of corresponding length. Receivers
detect the packets by continuously sampling the energy level (i.e., using RSS sampling)
and extract the durations by comparing the retrieved RSS values against a predefined
threshold. The durations are translated back to data.

2.3 X-Burst

X-Burst [29] is a generic and portable CTC framework based on packet-level modula-
tion. Compared to other approaches implemented on high-end transceivers or Software
Defined Radios (SDRs) [19, 53], X-Burst is applicable on off-the-shelf devices with severe
constraints in processing and sampling rates. Integrated into Contiki OS, it can easily
be ported to various hardware platforms with heterogeneous characteristics. X-Burst has
been previously showcased on the TI CC2650 LaunchPad (BLE and ZigBee), Zolertia Fire-
fly (ZigBee) and TelosB mote (ZigBee). Its principle is not limited to BLE and ZigBee,
and thus can be applied on any wireless technology operating in the same frequency bands
(e.g., Wi-Fi). Further, it allows seamless bidirectional communication and data rates up
to 5 kBit/s, depending on the radio characteristics of the participating devices.

2.3.1 Concept

The working principle of X-Burst, as suggested by the name, is based on the transmission
of timely encoded energy bursts (see Fig. 2.1). On the transmitter side, energy bursts are
generated by sending legitimate data packets. The receiver, operating on the same channel,
can detect those bursts by continuously monitoring the energy level. The data is encoded
in the duration of the burst, i.e., several bits of information are mapped to a predefined
duration. Hence, arbitrary data can be translated into durations and transmitted as a
successive stream of energy bursts. The length of energy bursts is controlled by adjusting
the payload length accordingly. Any receiver can extract the durations of the bursts by
monitoring the energy level on the channel by means of RSS sampling. The Received

CHAPTER 2. BACKGROUND 11

Figure 2.2: Frame format of X-Burst messages. A message must at least contain a pre-
defined preamble, a 1-byte header and payload of arbitrary length. The header byte
is a bitmask containing information about the composition of the CTC message. The
remaining fields (colored in grey) are optional.

Signal Strength (RSS) is a parameter representing the energy present on a given channel
and is obtained by means of Energy Detection (ED). Once the retrieved RSS value exceeds
a certain threshold, the beginning of a burst is detected and its duration measured and
stored accordingly. Finally, the sequence of stored durations can be retranslated into data.

Frame Format

X-Burst messages are composed of a preamble, a header and an arbitrary sized payload.
It is further possible to embed additional information within the message according to
X-Burst’s frame format shown in Fig. 2.2. Its fields are described in more detail below.

Preamble

Each CTC message must be preceded by a preamble to allow receivers to distinguish CTC
traffic from background noise. The preamble, a predefined series of bursts, is configurable
and must be shared among all participating devices prior to CTC communication. After
detection of a preamble, receivers start to extract and store the durations of energy bursts
on the channel. If no more bursts can be detected, i.e., if the pause between two successive
bursts exceeds a predefined value, the end of the CTC message is assumed and the stored
durations are processed accordingly.

Header

The 1-byte header is a bitmask containing information about the composition of the CTC
message. If the corresponding bit is set, the desired additional field (e.g., checksum or
address information) is appended to the header in a fixed order. If the Acknowledge
Request-bit is set, no additional data is transmitted, but the receiver is required to send
an Acknowledgement Frame upon message reception.

Network ID, Receiver Address, Transmitter Address

These optional fields contain addressing information and can be used to direct messages
to specific receivers. They allow a distinction between broadcast and unicast messages

CHAPTER 2. BACKGROUND 12

and to assign devices to different networks. The network ID is one byte long, the length
of receiver and transmitter address is configurable.

Length

The length byte is optional and indicates the number of bytes transmitted in the payload.
It allows the receiver to discard falsely detected bursts after the expected number of bursts
has been received.

Payload

The payload field contains the actual data. Its length can be chosen arbitrary.

Checksum

The optional checksum field allows the detection of transmission errors. It is one byte long
and simply represents the sum computed over all payload bytes. After the reception of
a CTC message containing the checksum, the receiver can calculate the checksum of the
received payload and compares it with the checksum contained in the message. If they
are not identical, the message is considered invalid and is discarded.

2.3.2 Requirements

X-Burst’s CTC mechanism is not bound to a specific wireless technology or hardware
platform. However, a device has to fulfill the following requirements to qualify for the
deployment of X-Burst.

Shared Frequency Band and Overlapping Channels

Participating devices have to operate in the same frequency band and agree on a common
channel. While a partial overlap of the selected channel is sufficient for communication,
a complete overlap proves to be more robust. Previous work on X-Burst and this thesis
focus on communication in the 2.4 GHz ISM frequency band, as it is the most common
target for IoT devices. In principle, however, X-Burst is not limited to this portion of the
spectrum.

Continuous RSS Sampling

To receive CTC messages, a device must be able to detect energy bursts by means of
RSS sampling. In order to reliable determine the duration of an energy burst, a minimum
sampling rate of RSS measurements is required. The sampling rate influences the minimal
detectable duration as well as the minimal difference between two durations, which can be
distinguished properly. Generally, the Nyquist criteria applies, i.e., the sampling interval
cannot be larger than half the minimum duration and half the minimum difference be-
tween durations, respectively. Furthermore, the RSS sampling rate affects the achievable
throughput as further described in Sec. 2.3.4

CHAPTER 2. BACKGROUND 13

Transmission of Packets with arbitrary Length

A CTC transmitter has to be able to generate energy bursts of different length. Hence,
the ability to send packets with varying payload length is required. The minimum and
maximum duration of a burst (i.e., the minimum/maximum length of a packet) depends on
the used communication standard, data rate, and payload and affects the chosen alphabet
as described below.

Agreement on a Common Alphabet

In order to allow a seamless and bidirectional communication, all devices have to agree
on a common alphabet. The alphabet is the mapping of symbols to a predefined set of
durations. It strongly depends on the hardware characteristics of the participating devices
(e.g., timer resolution, RSS sampling frequency) and the employed wireless technology (the
minimum/maximum burst duration and the granularity of a duration is determined by
the radio standard). In X-Burst, the alphabet size is configurable. It is given by 2n with
n = {1, 2, 4}. For example, in a 2-bit mapping (n = 2), two bit of information are mapped
to one duration. Hence, a set of 22 = 4 distinct durations is required to allow the encoding
of one byte and four consecutive bursts have to be sent to transmit one byte of data.

An alphabet, which satisfies the constraints of all involved devices, can be computed
using the following rules [29]:

• Across the minimum burst durations (i.e., shortest packet which can be generated)
of all participating devices, choose the longest as the minimum duration (d0) used
in the alphabet.

• Across the maximum burst durations (i.e., longest packet which can be generated)
of all participating devices, choose the shortest as the maximum duration (dmax)
used in the alphabet.

• For each device, compute the minimum spacing (s) between two burst durations,
which can still be detected reliably by all devices. s depends on the RSS sampling
interval and must fulfill the Nyquist criteria (s = 2 · tsampling).

• The largest s among all devices (smax) can be further used to compute the final set
of durations, with di = di−1 + smax, with i = 1, . . . , 2n.

• Verify if each di ≤ dmax, else recalculate the set of durations with a different mapping.
E.g., 4-bit mapping requires 16 distinct durations, some of which can be very long.

2.3.3 Modular Architecture

A main advantage of X-Burst is its modular and generic design. Compared to other CTC
mechanisms, which are implemented on specific hardware platforms only, it is integrated
into the Contiki operating system and therefore easily portable to a mass of devices. Fur-
thermore, its modular architecture, shown in Fig. 2.3, makes X-Burst highly configurable
and thus, allows adaptation to heterogeneous hardware capabilities.

CHAPTER 2. BACKGROUND 14

Frame Management
Specifies the format and performs the
assembly/disassembly of CTC frames

Application

Hardware Abstraction Layer
Abstracts hardware-specific functionality to the upper layers

Coding Scheme
Maps symbols based on a given alphabet

Alphabet
Computation

Automatically derives the
set of properties used

to map a symbol

Hardware

properties

Encoding
Instructs the radio to send encoded CTC frames

Decoding
Processes RSS measurements

generate_burst()

set_power()
sample_RSS()

User

policies

Alphabet

Figure 2.3: X-Burst’s modular architecture [17].

Hardware Abstraction Layer

A Hardware Abstraction Layer (HAL) separates platform-specific implementation details
from the actual CTC functionality. It is the only layer which has direct access to radio
functionality and is thus required to keep the CTC implementation hardware-agnostic.
The HAL layer has to be realized for each device individually and provides functions to
perform radio initialization, RSS sampling, and to generate bursts of a certain length.

Encoding Module

The encoding module uses primitives offered by the HAL to instruct the radio to transmit
energy bursts of different length. The simplest and most robust approach is to encode
the data in the length of durations only, hence this module simply forwards the durations
to the lower layer (burst-only). Another possibility is to additionally exploit the gaps
between two bursts to encode data. In this case, the encoding module is responsible
for delaying the transmission of successive bursts accordingly (burst-and-gap). Due to
hardware constraints, we consider just the burst-only coding scheme in this thesis.

Decoding Module

The decoding module retrieves RSS measurements from the underlying HAL layer and is
responsible for extracting the length of the energy bursts (and, if required, the duration
of the gap between two bursts).

Coding Scheme

In this module, the selected alphabet, as described in Sec. 2.3.2, is applied, i.e., the data is
translated into burst durations (burst-only) or burst and gap durations (burst-and-gap)
and forwarded to the encoding module. Conversely, during reception, the extracted burst
lengths are remapped to data.

CHAPTER 2. BACKGROUND 15

Frame Management

Finally, CTC messages are assembled and disassembled in the Frame Management layer,
which includes at least the creation/processing of a preamble, a 1-byte header and the
payload. Further options, such as the addition of a checksum or addresses are possible as
explained in Sec. 2.3.2 in more detail.

2.3.4 Achievable Throughput

Using the burst-only coding scheme, X-Burst allows a throughput of up to 3 kbit/s
[29]. The throughput depends on hardware properties of the participating devices and the
applied alphabet.

Since data transmission is based on bursts with different length, the predefined set
of durations influences the throughput directly. High processing speeds and RSS sam-
pling rates allow an alphabet composed of short durations, which increases the achievable
throughput. The latter further depends on the actual content of the CTC message, as
higher values (e.g., ’0xFF’) are translated into longer durations than low values (e.g.,
’0x00’) and are thus transmitted slower. The actual achievable throughput cannot be
determined without prior knowledge of the data, but only an upper and lower bound can
be given.

Some device-specific characteristics affect the possible throughput indirectly for all
devices (e.g., the RSS sampling rate has an impact on the chosen alphabet). The radio’s
preparation time, instead, has an immediate impact on the transmission speed of each
device individually. The preparation time defines the required time between the generation
of two successive energy bursts. It varies depending on the used hardware and hence, the
devices’ possible throughput differs even if a common alphabet is used. A certain minimum
preparation time is necessary to allow the distinction between consecutive bursts. High
values, however, decrease the achievable throughput significantly.

2.4 Employed Hardware

In the following section, the hardware used throughout this thesis is described briefly. The
devices, ranging from real-world smart home devices to radio-specific development kits,
are categorized into their employed wireless technologies.

2.4.1 Wi-Fi Devices

Smartphone Nexus 6P

The Huawei Nexus 6P [2] is a smartphone developed by Google and was released in 2015.
It features a 5.7” display, up to 128 GB of internal memory and a 12.3 MP camera. It
supports the Android 8.0 (Oreo) operating system, running on an octa-core Cortex-A57.
The Nexus 6P offers the most common sensors (e.g., fingerprint sensor, accelerometer,
barometer) and communication interfaces (e.g., Bluetooth, NFC, USB, GPS). Further-
more, it employs a bcm4358 Broadcom Wi-Fi chip, which allows the implementation of
X-Burst as explained in Chap. 4 and Sec. 5.2, respectively.

CHAPTER 2. BACKGROUND 16

Raspberry Pi 3B+

The Raspberry Pi 3B+ [8] is the third generation of the Raspberry Pi series of single-
board computers and was released in 2018. It is popular due to its low cost (currently
35$) and small size. Featuring a 1.4 GHz 64-bit quad-core ARM Cortex-A53 CPU and 1
GB of RAM, it offers, among others, interfaces for USB, Ethernet, Bluetooth and HDMI.
A 40 pin GPIO header allows the connection and control of further devices (e.g., a display
or sensors). Typically, it is used with the recommended Debian-based operating system
called Raspberry Pi OS (formerly known as Raspbian). However, there is a variety of
alternative operating systems available.

As the Raspberry Pi 3B+ employs a bcm4355c0 Broadcom Wi-Fi chip, it has been
previously used to enable X-Burst on Wi-Fi devices (see Chap. 4) and to even generate
controllable RF interference [43].

2.4.2 ZigBee Devices

IKEA Tr̊adfri Bulb

In this thesis, we use the IKEA Tr̊adfri GU10 light bulb [3]. It is part of the popular IKEA
Tr̊adfri product family, which aims to bring affordable smart home solutions into people’s
homes and includes different smart gadgets, such as lighting, outlets, and blinds. The
Tr̊adfri bulb can be turned on, switched off or dimmed remotely using an IKEA Tr̊adfri
remote control or, if an IKEA Tr̊adfri gateway is present, a smartphone running the IKEA
app. The IKEA app allows to assign several light sources to specific groups to enable
smart control based on the users’ needs. The wireless communication between the Tr̊adfri
bulb and the corresponding remote/gateway is based on ZigBee. Up to ten devices can be
connected to a single remote using the ZigBee Touchlink pairing procedure.

The IKEA Tr̊adfri is also a popular target for DIY enthusiasts, as it has been cracked
open previously and allows to flash custom firmware. According to [47], the Tr̊adfri em-
ploys a powerful Silicon Labs EFR32MG1 Wireless Mighty Gecko SoC, integrating a Zig-
Bee radio feasible to implement X-Burst.

Silicon Labs Thunderboard Sense

The Thunderboard Sense [44] is a compact low-power development platform for wireless
sensor nodes based on the EFR32 Mighty Gecko SoC. The board contains six different
environmental sensors, RGB LEDs and several buttons. It further features an on-board
J-Link debugger to allow easy programming via USB, breakout pads for connection to
external hardware and a CR2032 coin cell connector. The board’s core is the EFR32MG
SoC, integrating an ARM Cortex M4 CPU (with 256 kB flash and 32 kB RAM) and a
2.4 GHz radio module. The radio module allows the implementation of multiprotocol
applications including ZigBee, BLE and proprietary protocols. The Thunderboard Sense
can be used with different operating systems (e.g., Contiki-NG). Typically, however, the
employed software is based on SDKs offered by Silicon Labs, as explained in Sec. 2.5.3.

Both the Tr̊adfri bulb and the Thunderboard Sense employ the same EFR32 SoC,
which allows us to use the latter as a development kit for the CTC implementation on the

CHAPTER 2. BACKGROUND 17

EFR32, offering a more convenient programming and debugging experience compared to
the bulb.

Zolertia Firefly

The Firefly [54] is a breakout board from Zolertia designed for the development of IoT
applications. Besides two buttons, one RGB LED, two hardware encryption engines and
an on-board USB-to-UART bridge to allow fast and easy programming, the board is
equipped with a CC2538 ARM Cortex-M3 (512 kB flash, 32 kB RAM) and two radio
transceivers operating on the 868 MHz, 915 MHz, and 2.4 GHz ISM bands. Furthermore,
the Firefly is a ZigBee-compliant device and fully supported in Contiki OS.

The Firefly board has been previously used in [29] to showcase the functionality of
X-Burst. In this thesis it is used as reference platform in the evaluation presented in
Chap. 6.

2.4.3 BLE Devices

Danalock

The Danalock V3 [21] is a wireless smart lock developed by the Danish company Danalock
International ApS. It can be controlled with the smartphone via BLE and is compatible
with standard doors. Danalock offers an app which allows to grant access to the user’s
home for family members, friends and guests. Security is provided thanks to AES 256
encryption. The lock is battery-powered and features a lifetime of more than 12 months
depending on daily use.

According to [38], the Danalock V3 employs a Nordic nRF52832 Bluetooth 5.2 SoC,
combining an ARM Cortex M4 32-bit processor with 512 kB flash and 64 kB RAM and a
2.4 GHz BLE compliant radio transceiver.

Nordic Semiconductor nRF52840 DK

The nRF52840 DK is a single board development kit for wireless communication in the
2.4 GHz band on the nRF52840 SoC. It supports multiple protocols (e.g., BLE, ZigBee,
Thread, IEEE 802.15.4) and is equipped with plenty of components such as LEDs, buttons,
a NFC antenna, external memory and more. As Nordic Semiconductor offers a lot of
prebuild firmware binaries and application examples, it is a versatile tool to develop IoT
applications. Nordic Semiconductor further provides the nRF5 SDK, which is required to
program the nRF52840 DK and is explained in more detail in Sec. 2.5.4.

Compared to the nRF52832 employed in the Danalock, the nRF52840 provides more
memory (1 MB flash and 256 kB RAM) and supports more wireless protocols. Still, the
devices behave similar and the software is based on the same SDK; hence the nRF52840
can be used for the development of CTC.

TI CC2650 LaunchPad

The TI CC2650 LaunchPad [48] is a development kit for the ultra-low-power CC2650 wire-
less MCU, integrating a 32-bit ARM Cortex M3 processor and a 2.4 GHz RF transceiver
compatible with BLE 4.2 and IEEE 802.15.4. The MCU embeds 128 kB of flash and 20 kB

CHAPTER 2. BACKGROUND 18

Figure 2.4: Contiki’s network stack including the integration of X-Burst, taken from [29].
The network stack consists of a radio layer, RDC and MAC layer as well as a network
layer on top. X-Burst is integrated using a virtual radio to schedule CTC operations next
to normal network traffic.

of RAM, and provides extremely low power-consumption, due to the support of low-power
modes. Similar to other development boards, the TI CC2650 LaunchPad features buttons,
LEDs and a convenient USB programming interface.

The LaunchPad can be used with Contiki OS and was the first hardware platform
to support X-Burst [28]. Equally to the Firefly, we use the TI CC2650 LaunchPad for
evaluation purposes.

2.5 Employed Software

The following section contains information about the software used on the aforementioned
devices. We describe the Contiki OS, on which X-Burst has been first implemented, and
Nexmon, a patching framework required to extract CTC-related features on Wi-Fi devices.
Finally, an overview of the SDKs used for development on the EFR32 and nRF52 SoCs is
given.

2.5.1 Contiki

Contiki [22] is a lightweight open-source operating system for IoT devices. It has been
developed to run on tiny low-power, memory-constrained microcontrollers and supports
a variety of different platforms. Implemented in C, it is based on an event-driven ker-
nel and aims to allow the development of hardware independent IoT applications. As
Contiki is targeted for wireless devices, it features a network stack including several stan-
dard low-power protocols such as IPv6 over Low power Wireless Personal Area Networks
(6LoWPAN), Routing Protocol for Low power and Lossy Networks (RPL) and the Con-
strained Application Protocol (CoAP).

Contiki’s network stack consists of four layers shown in Fig. 2.4 in light blue. The
radio layer contains the implementation of platform-specific radio functionalities (e.g.,
the transmission and reception of packets). The RDC layer includes different duty-cycling
protocols to enable energy-saving network operations. The MAC layer is responsible for
organizing access to the radio channel to prevent collisions and transmission errors. Finally,
the network layer provides addressing and routing mechanisms.

CHAPTER 2. BACKGROUND 19

Contiki offers CTC support, since X-Burst has been previously integrated into its net-
work stack [29]. As shown in Fig. 2.4, a virtual radio is used to schedule CTC operations
without affecting normal network traffic. The virtual radio allows to enqueue CTC mes-
sages and informs the application layer about incoming packets. Non-CTC related data
is simply forwarded between RDC and radio layer, thus the conventional Contiki network
stack remains unchainged.

2.5.2 Nexmon

Nexmon [42] is a C-based patching framework for Broadcom Wi-Fi chips. It allows to in-
vestigate, replace and modify the firmware of different Broadcom Wi-Fi radios employed
in popular smartphones (e.g., Nexus 6P, Huawei P9, Samsung Galaxy S7) and the newest
Raspberry Pi generations. Nexmon has been developed to exploit features of Wi-Fi chips
exceeding normal operation and to analyze existing proprietary Wi-Fi firmware to allow
assessment of its security. It has been previously used to build a Wi-Fi testbed for bench-
marking of wireless protocols [43], a CSI extractor that allows to retrieve channel state
information [25], and a reactive Wi-Fi jammer [41].

Nexmon provides the possibility to extract ROM and RAM of the existing Wi-Fi
firmware to gather insights on its behavior and to extract address information, i.e., to
locate funtions and variables. It offers means to add custom functionality by placing
firmware patches at desired regions in the code and further allows to replace and reuse ex-
isting functions. The firmware patches can be written in C, which allows fast prototyping
and makes them easily portable across different Wi-Fi chips. Example patch code, con-
tained in Nexmon’s public GitHub repository [4], allows devices to enable monitor mode,
perform Wi-Fi frame injection and to exploit further features such as RSS sampling, CSI
extraction or the arbitrary configuration of Wi-Fi settings (e.g., channel selection, trans-
mission power).

2.5.3 EmberZNet PRO SDK

EmberZNet PRO is the ZigBee SDK for Silicon Labs EFR32 SoCs and can be accessed
upon purchase of one of Silicon Labs’ mesh networking development kits. It contains a
complete ZigBee protocol stack, several examples, drivers and an Application Framework
Interface to allow the development of custom applications. The ZigBee stack can be built
and configured using Simplicity Studio, an Integrated Development Environment (IDE)
offered by Silicon Labs. Simplicity Studio is used to define the desired ZigBee functionali-
ties (i.e., ZigBee device type, supported ZCL clusters, employed security mechanism) of a
device. It further offers a flashing tool, a console for debugging and a Radio configurator
to adjust the EFR32 chip’s physical radio settings.

2.5.4 nRF5 SDK

The nRF5 SDK [5] is a software development kit for Nordic Semiconductor’s nRF51 and
nRF52 Bluetooth SoCs. It is freely available and offers a variety of code examples and
peripheral drivers to allow fast, easy and robust application development. Nordic provides
a fully qualified BLE stack in form of the so-called SoftDevice. The latter is a precompiled
binary file and implements BLE-related functionality, from low-level radio operations up

CHAPTER 2. BACKGROUND 20

to application-related features. As it is a standalone binary file, it has to be flashed onto
the platform along with custom code and its features can be accessed using the SoftDevice
API.

In order to allow fast application development paired with efficiency and cross-platform
compatibility, the nRF5 SDK contains several predefined Bluetooth services, such as a
heart rate service, a battery service or a LED button service. Those allow standardized
communication between BLE devices and are easily configurable using the SoftDevice
API. Furthermore, Nordic offers an app called nRF Connect, which allows to scan for
BLE devices and parses advertisement data. This way, any smartphone running nRF
Connect can connect to available BLE devices and access their corresponding services. It
can hence be used to test and control newly developed applications on nRF platforms.

Chapter 3

Related Work

This chapter describes approaches to enable communication between devices with incom-
patible physical layers. Nowadays, and in smart home applications in particular, multi-
radio gateways are used to translate data from one protocol into another. A collection of
different gateway-based solutions applied in current smart homes are presented in Sec. 3.1.
Thereafter, in Sec. 3.2, an overview of existing work on cross-technology communication
is given, which connects heterogenous devices without the need of additional hardware.

3.1 Building a Smart Home using Gateways

In current smart home setups, it is common to employ multi-radio gateways to allow the
communication between smart home devices with incompatible communication technolo-
gies. Different types of gateways, in this context often referred to as smart home hubs,
are available and explained below.

3.1.1 Vendor-specific Hubs

Most smart home manufacturers offer a smartphone app to setup and control their devices.
As some devices (e.g., ZigBee or Z-Wave devices) cannot directly be controlled with the
smartphone’s interfaces, vendor-specific hubs are introduced (e.g., IKEA Tr̊adfri gateway,
Hive hub). A vendor-specific hub is not only used to translate and forward data, but can
also act as a central control to enable home automation. However, the lack of compat-
ibility with other smart home devices is a limiting factor regarding automated control.
Furthermore, the employment of devices from different brands requires the installation
and usage of separate apps, which can be a cumbersome and frustrating procedure for the
user.

3.1.2 Smart Home Gateways

To tackle this problem, multi-radio smart home gateways have been developed supporting
a variety of devices from different manufacturers. They thus allow to control the devices
within a single app using a single gateway. These gateways are typically mains-powered
devices and offer Wi-Fi to allow control using the smartphone. The setup of new smart

21

CHAPTER 3. RELATED WORK 22

home devices commonly still requires the installation of each individual app [27] before-
hand. In Table 3.1, several commercially available smart home gateway solutions are
listed, along with the supported protocols and number of supported devices. Although
most gateways are compatible with a high number of different devices already, not all of
them support the three main wireless technologies in the 2.4 GHz band (BLE, ZigBee,
Wi-Fi).

Vendor Supported Protocols Supported Devices

Samsung SmartThings ZigBee, Z-Wave, Wi-Fi 300+

Apple Homekit BLE, Wi-Fi 130+

Wink Hub ZigBee, Z-Wave, BLE, Wi-Fi, Lutron Clear 120+

VeraSecure ZigBee, Z-Wave, BLE, Wi-Fi, VeraLink 210+

Homey ZigBee, Z-Wave, 433 MHz, Wi-Fi, BLE 70

HomeSeer Z-Wave, Wi-Fi, Serial, Ethernet 160+

Table 3.1: Examples of commercial available smart home gateways [11].

3.1.3 Voice Assistants

In recent years, voice assistants (e.g., Alexa, Google Assistant) gained popularity and
are used to control devices within the users’ home. Smart speakers such as Amazon
Echo and Google Home allow to control lights, plugs and other devices by voice. They
support a variety of different smart home gadgets, although smart home gateways are
still required as they typically employ a Wi-Fi and BLE radio only. The Amazon Echo
recently got equipped with a ZigBee radio and hence allows even direct communication
with ZigBee devices. The main disadvantage of voice control is, that it requires Internet
connectivity during operation, as communication drivers and speech recognition are cloud-
based. The latter raises also privacy concerns, as personal conversations are processed
online. Furthermore, the smart home devices have to be set up conventionally prior
to connection to the voice assistant and often, only a subset of the devices’ features is
supported.

3.1.4 Generic Gateway Approaches

The incompatibility problem has also been addressed in academic work. In [11], a generic
multi-radio gateway is proposed, which automatically retrieves application and control
information of the pairing device to allow communication regardless of manufacturer and
technology. Other approaches aim to replace gateway devices with existing infrastrature,
such as TV boxes [24] or smartphones [37].

3.1.5 Limitations

There are several disadvantages associated with gateway-based smart home solutions.
The deployment of gateways introduces additional costs, as separate hardware is required.
Since multi-radio gateways have to support several wireless technologies simultaneously,
they are commonly powerful, mains-powered devices. The costs vary from 90€ for the

CHAPTER 3. RELATED WORK 23

cheapest Samsung SmartThing hub without BLE support, to almost 400€ for a more
powerful Homey Smart Home hub. Gateways further cause translation overhead, generate
additional network traffic and lead to increasing complexity, especially, if multiple gateways
are required. Finally, as gateways act as a central control, they introduce a single point
of failure.

3.2 Existing Cross-Technology Communication Schemes

Cross-technology communication is an alternative way to enable data exchange between
devices with heterogenous wireless technologies and does not require the deployment of
additional hardware. In the following, an overview of previous work on cross-technology
communication is given, divided into packet-level modulation and physical-layer modu-
lation schemes (their difference is explained in Sec. 2.2). Thereafter, the limitations of
existing CTC mechanisms and their implementation are discussed.

3.2.1 Packet Level Modulation

Esense. Esense [18], an early work in the context of cross-technology communication, is
based on sensing and interpreting energy profiles and enables unidirectional data trans-
mission from Wi-Fi to ZigBee devices. Similar to X-Burst, it defines an alphabet of packet
sizes to create energy bursts of different lengths. Compared to X-Burst, it is not possible
to transmit arbitrary data, but only predefined messages contained in the alphabet. It is
possible to construct an alphabet of up to 100 different packets and a throughput of up
to 5 kbps, in the absence of background traffic, can be achieved.

Gap Sense. In Gap Sense [53], a CTC preamble is prepended to a legacy frame to
exchange information between incompatible wireless devices. The preamble is a series
of signal pulses that exploits the gap between two pulses to encode data. Receivers can
retrieve the information by means of energy sensing. It is a generic approach but supports
only a limited set of values to be transmitted. Furthermore, it has been only showcased
using a powerful SDR.

FreeBee. FreeBee [32] is communication framework that enables communication be-
tween Wi-Fi, BLE and ZigBee devices. While data exchange between Wi-Fi and ZigBee
is possible in a bidirectional manner, the BLE device can only act as a receiver. The
communication mechanism of FreeBee is based on shifting the timing of periodic beacon
frames, known as Pulse Position Modulation (PPM). As the beacon frames are manda-
tory for the used wireless standards, no additional network traffic is introduced. FreeBee,
however, offers only a limited data rate of 14.6 to 31.5 bps, depending on the communica-
tion direction. Furthermore, the transmission of CTC messages is only possible on BLE’s
advertisment channels.

B2W2: N-Way Concurrent Communication. B2W2 [19] allows N-way concurrent
communication among Wi-Fi and BLE devices, i.e., a BLE device can transmit data to
a Wi-Fi device while still supporting BLE to BLE and Wi-Fi to Wi-Fi communication.

CHAPTER 3. RELATED WORK 24

Compared to the previous approaches, where timing information is used to encode data,
B2W2 leverages the energy level of BLE packets to modulate data using discrete amplitude
and frequency-shift keying (DAFSK). In particular, the transmission power of adjacent
BLE packets is adjusted to create a sine wave. The actual data is encoded in the frequency
of this wave, which can be decoded using the Channel State Information (CSI) on Wi-Fi
devices. B2W2 provides unidirectional cross-technology communication only and supports
a throughput of about 1.5 kbps. Although the advantages of concurrent CTC to normal
communication are undeniable, B2W2 suffers from several limitations, as it has only been
showcased on a powerful RF testbed and requires collisions between BLE and Wi-Fi
packets during operation.

WiZig. Employing modulation techniques in both the amplitude and temporal dimen-
sion, WiZig [26] enables unidirectional communication from Wi-Fi to ZigBee devices. Its
design focuses on robust data exchange in noisy environments. The data is encoded in
the amplitude of packets transmitted within a specified time window. Depending on the
channel conditions, which are permanently monitored, the time window is adjusted. In
absence of external interference, the window can be kept short to optimize the throughput,
while a long window helps to mitigate the error rate in case of a noisy channel. WiZig has
been demonstrated using a SDR transmitting to a commercial ZigBee device and supports
a throughput of about 150 bps in a real office environment.

3.2.2 Physical Layer Emulation

BlueBee. Exploiting physical layer emulation, BlueBee [30] enables high data rate com-
munication from BLE to ZigBee devices. Data rates up to 225 kbps can be achieved by
encapsulating a ZigBee packet within the payload of a standard-compliant BLE frame.
This way, cross-technology communication is possible while being compatible with both
BLE and ZigBee protocols. Furthermore, the embedded frames can be received by any Zig-
Bee legacy device. Emulation is possible due to similar modulation techniques of BLE and
ZigBee, but does not allow communication in reverse direction. BlueBee further requires
an established BLE connection to allow the transmission of CTC messages.

WEBee. WEBee [34] is another CTC approach targeting ZigBee receivers. It enables
Wi-Fi devices to transmit frames with a selected payload emulating a legitimate ZigBee
packet. ZigBee devices can detect the ZigBee preamble embedded in the Wi-Fi frame and
start the reception. The preceding Wi-Fi header and subsequent data is ignored, as it is
considered as noise. WEBee allows a data rate of up to 250 kbps, the bit rate of standard
ZigBee, but features unidirectional communication only.

3.2.3 Limitations

The described CTC approaches mostly lack generality regarding different wireless tech-
nologies. In particular, physical layer emulation based techniques are tailored to specific
technologies by design and support only unidirectional communication. Although most
packet-level modulation schemes are, in principle, applicable to different technologies and

CHAPTER 3. RELATED WORK 25

communication directions, FreeBee is the only framework that has successfully demon-
strated bidirectional communication, but cannot offer feasible data rates.

Although quite a large number of work has been published in the last years, CTC is still
a rather young research topic and remains mostly confined to academia. Therefore, recent
work was mostly based on prototyping, emphazising each novel technique and achievable
throughput, but has not been implemented on real-world off-the-shelf smart devices. The
aforementioned CTC approaches were showcased on commidity development platforms or
even on powerful hardware with SDRs.

Another missing link towards the application and acceptance of CTC in a larger scale,
which has not been targeted concretely yet, is the parallel operation of CTC and existing
communication protocols.

In the next section, we will show that it is possible to apply CTC on real-world off-
the-shelf smart home devices, paving the way for an industrial adoption of CTC.

Chapter 4

Enabling X-Burst on Wi-Fi
Devices

The following chapter describes how X-Burst can be ported to a Raspberry Pi 3B+ (RPi3)
and a Nexus 6P smartphone. The content is mainly based on [16], where we have ported
X-Burst to the RPi3 in the context of a seminar project. Nevertheless, the concept applies
to any device employing a Broadcom Wi-Fi chip: in particular, implementation details
and challenges faced when porting X-Burst on the Nexus 6P, are described in more detail
in Sec. 5.2.

4.1 Overview

To emphasize the technology independence of X-Burst’s CTC principle, we have enabled
CTC capability on Wi-Fi devices. Since Wi-Fi is among the most popular wireless tech-
nologies in the IoT domain and highly adopted, bringing CTC support to Wi-Fi platforms
is a crucial step towards tackling interoperability issues.

In order to allow packet-level based cross-technology communication on Wi-Fi devices,
continuous RSS sampling as well as the transmission of arbitrary packets is required. Al-
though some platforms (e.g., TI CC3220, ESP32) provide the possibility to send custom
Wi-Fi frames, they do not allow continuous RSS sampling, as it is not part of the Wi-Fi
standard. As both the RPi3 and the Nexus 6P employ a Broadcom Wi-Fi chip (i.e., a
bcm43455c0 and bcm4358, respectively), we use Nexmon [42], a C-based patching frame-
work, to overcome these limitations. Nexmon allows to modify and extend the firmware of
Broadcom radio chips and it is thereby possible to enable frame injection as well as RSS
sampling functionality.

4.2 Software Architecture

The implementation of X-Burst on the RPi3 and the Nexus 6P is twofold, as shown in
Fig. 4.1. The actual CTC functionality is implemented in a user-space python script,
consisting of several modules according to X-Burst’s architecture explained in Sec. 2.3.3.
Radio-related features are made available in the firmware. In particular, the firmware

26

CHAPTER 4. ENABLING X-BURST ON WI-FI DEVICES 27

Figure 4.1: Software architecture of the Wi-Fi CTC implementation. The Wi-Fi firmware
has been modified to allow burst generation and RSS sampling. The actual CTC func-
tionality is implemented in an user-space script, which has the same format as suggested
in the original Contiki implementation of X-Burst in Sec. 2.3.3. Communication between
firmware and user-space is performed using the frame injection tool scapy, UDP frames
and IOCTL system calls.

modifications enable frame injection, energy sensing as well as configuration of the desired
Wi-Fi channel. To allow interaction between user-space application and Wi-Fi firmware,
several ways of communication are available [42], which are described in more detail below.

Input/output control (IOCTL) system calls. Nexmon offers nexutil, a user-
space program which triggers IOCTL system calls and thereby initiates synchronous data
exchange with the firmware. IOCTL commands contain an identification number and
a pointer to a buffer including its length. It is possible to define custom IOCTL com-
mands and implement their corresponding function in firmware. In our implementation,
IOCTL system calls are used to configure the required channel, disable the chips’ power
management and to enable/disable the continuous RSS sampling.

Scapy. Scapy [9] is an open-source packet manipulation program and allows frame
injection of custom Wi-Fi packets. We use scapy to initiate the transmission of Wi-Fi
packets, as its execution is way faster compared to IOCTL commands.

User datagram protocol (UDP) frames. To transfer data from the firmware to
a user-space application, data can be encapsulated in UDP frames. If sent to the broad-
cast Internet Protocol (IP) address (i.e., 255.255.255.255), the frames are automatically
accepted by the linux kernel and passed on to user-space applications. This approach,
in contrast to the former communication mechanisms, allows data transfer without root
privileges. We use UDP frames to retrieve RSS information from the firmware.

CHAPTER 4. ENABLING X-BURST ON WI-FI DEVICES 28

Figure 4.2: A Wi-Fi frame consists of a PHY-header and a MAC frame. The PHY-header
has a fixed length of 192µs. The length of the MAC frame depends on the chosen payload
size and the data rate.

4.3 Transmission

Packet Injection using JamLab-NG

To create energy bursts of different length we transmit legitimate Wi-Fi frames with
varying payload size and data rate. The transmission of such bursts is based on JamLab-
NG’s tool Jelly [43], which allows to send arbitrary Wi-Fi packets. It exploits the monitor
mode of Broadcom Wi-Fi chips in combination with the frame injection program scapy.
Monitor mode is required to enable the transmission of Wi-Fi packets without the need
of a prior connection to an access point. In monitor mode, raw Wi-Fi frames can then
be forwarded to the firmware using the L2Socket feature of scapy. In the firmware, the
transmission is initiated by calling Nexmon’s sendframe() function. Using scapy, it is
further possible to prepend a radiotap header to the Wi-Fi frame. A radiotap header [7],
standardized for IEEE 802.11 frame injection, contains radio-specific parameters such as
data rate and transmission power.

Minimum and Maximum Burst Length

In order to compute a feasible alphabet as described in Sec. 2.3.2, we need to determine
the minimum and maximum burst length that can be generated using Wi-Fi frames. As
we want to send only standard-compliant packets, the standardized Wi-Fi frame structure
as illustrated in Fig. 4.2 has to be considered. A Wi-Fi frame consists of a preamble and a
header, part of the IEEE 802.11 PHY layer, and a Wi-Fi MAC frame [10]. The preamble,
necessary for synchronization, and the PHY header, containing information about packet
format and data rate, have a fixed length of tPHY = 192 µs1. The Wi-Fi MAC frame
contains a header of 24 byte and a variable payload. It is possible to send a maximum of
1514 bytes to the firmware. As 40 bytes are reserved for radiotap and Wi-Fi header, up to
1474 bytes of payload can be transmitted. The length of the MAC frame depends on the
chosen payload size as well as the selected data rate. Hence, the duration of one Wi-Fi

1The IEEE 802.11 standard specifies also a short preamble with a length of 96 µs. However, this feature
is not supported in our current implementation.

CHAPTER 4. ENABLING X-BURST ON WI-FI DEVICES 29

packet in microseconds is given by:

tWiFi(n) = tPHY + tHDR + tPL = 192 +
24 · 8
DR

+
n · 8
DR

(4.1)

where DR is the data rate in Mbps and n the number of payload bytes.

Using Eq. 4.1, we can derive the minimum and maximum packet length for each sup-
ported data rate (Table 4.1) and further determine the overall minimal/maximal burst
duration for a Wi-Fi device with tWiFi,min = 210 µs and tWiFi,max = 11952 µs.

Rate (Mbps) tWiFi,min (µs) tWiFi,max (µs)

1 384 11952

2 288 6072

5.5 227 2330

11 210 1261

Table 4.1: Minimum and maximum duration of IEEE 802.11b frames.

4.4 Reception

RSS Sampling using Hardware Timer

As explained in Sec. 2.3, the reception of CTC messages is based on the detection of energy
bursts by means of RSS sampling. In order to allow the continuous measurement of the
RSS value on a given channel, modifications in the firmware are required. We make use
of a periodic timer to trigger an existing energy detection function.

Reporting every single RSS value back to the user-space application for further processing
introduces significant and uncontrollable delays due to the transmission of UDP frames
through the device’s network stack. Hence, the analysis of the retrieved RSS value is
implemented in the firmware directly, to keep the number of transmitted UDP frames
at a minimum. After each RSS measurement, the obtained value is compared against a
threshold to detect the beginning and end of an energy burst. The extracted duration is
returned to the CTC application in user-space.

The threshold is a fixed value stored in the firmware. It has been determined once by
retrieving the noise floor and defining a threshold just above it. It is a rather aggres-
sive threshold selection to maximize the communication range, but sensitive to external
interference as any signal above the noise floor is detected. The implementation of an
adaptive threshold selection would be beneficial to find a trade-off between sensitivity and
robustness, but is outside the scope of this thesis and may be addressed in future work.

Limited Sampling Rate

Even though implementing the burst detection in the firmware directly helps to speed up
the RSS sampling process significantly, the sampling interval is still large, compared to

CHAPTER 4. ENABLING X-BURST ON WI-FI DEVICES 30

Figure 4.3: Standardized channels of Wi-Fi, ZigBee and BLE. Proposals for appropriate
CTC channel selection are colored in grey. The advertising channels of BLE are colored
in light blue and should not be used for CTC communication.

other devices. On the RPi3, the sampling interval amounts to tsampling = 97 µs, while
devices such as the TI CC2650 and Firefly, which have been used with X-Burst previously,
feature sampling intervals of approximately 23 µs and 8 µs, respectively [29]. Conse-
quently, the limited sampling rate has to be accounted for in the alphabet computation,
as the ability to distinguish two distinct energy bursts diminishes with increasing sampling
interval.

4.5 General Considerations

4.5.1 Channel Selection

As described in Sec. 2.3.2, participating CTC devices have to operate in the same fre-
quency band and agree on a common channel. Wi-Fi, ZigBee and BLE devices feature
different channel configurations in the 2.4 GHz ISM band. The Wi-Fi standard specifies
13 different channels with a bandwidth of 22 MHz each. BLE and ZigBee radios, instead,
employ a bandwidth of 2 MHz on 40 and 16 channels, respectively. To achieve a robust
communication, the channels should be selected, such that:

• BLE and ZigBee channels overlap completely;
• BLE and ZigBee channels are located in the center of the Wi-Fi channel.

Fig. 4.3 shows the channels of Wi-Fi, ZigBee and BLE as well as proposals for appropriate
channel selection.

4.5.2 Alphabet Computation

In order to find a common alphabet, we have to identify the constraints of all involved de-
vices. As the goal is to allow communication between the three most popular technologies
in the 2.4 GHz ISM band, namely BLE, ZigBee and Wi-Fi, we consider the properties of
the RPi3 (Wi-Fi), the Firefly (ZigBee) and the TI CC2650 LaunchPad (BLE). The timing
constraints of ZigBee and BLE devices have been investigated previously in [28].

CHAPTER 4. ENABLING X-BURST ON WI-FI DEVICES 31

Determining the Minimum and Maximum Burst Length

Table 4.2 shows the minimum and maximum achievable packet length of each technology
(i.e., burst durations). It further contains the granularity, i.e., the minimum difference
between burst durations which can be generated by the radio. ZigBee devices show the
worst granularity (32 µs), due to the low data rate. Hence, only durations which are a
multiple of 32 are valid choices for the common alphabet. Considering these aspects, the
overall minimum and maximum burst lengths are:

• dmin = 224 µs
• dmax = 1984 µs

Wi-Fi ZigBee BLE

tmin (µs) 210 192 80

tmax (µs) 11952 4256 2120

Granularity (µs) 0.7 - 8 32 8

Table 4.2: Duration limits of Wi-Fi, ZigBee and BLE.

Computing the Minimum Difference between Burst Lengths

The minimum spacing between different burst durations, which can be distinguished by
all devices, is determined by the sampling interval of the RPi3, as it has by far the lowest
RSS sampling speed. Given the sampling interval of tsampling = 97 µs the spacing between
two burst lengths must be at least s = 2 · 97 = 194 µs. In [16] it could be shown that
a spacing of s = 192 µs is sufficient to differentiate two burst lengths reliably and at the
same time fulfills the granularity constraints of ZigBee devices.

Defining the Alphabet

Considering the timing constraints explained above, the set of durations which can be
generated and correctly detected by all participating devices can be computed. Using the
formula di = di−1+smax from Sec. 2.3.2 with d0 = 224 µs and smax = 192 µs, the possible
durations can be determined and are shown in Table 4.3.
Since dmax = 1984 µs leaves only durations d0 . . . d9 as valid choices, 4-bit mapping is not
supported as it would require a set of 16 distinct durations. Hence, the selected alphabet
is a 2-bit mapping consisting of durations d0 . . . d3. Such a configuration, with an alphabet
size of 22 = 4, proves to be the most robust configuration anyway [29].
To account for uncertainties in the detection of burst durations, Table 4.3 further includes
upper and lower limits for each duration, i.e., a duration is considered valid, if it lies
between this di,min and di,max. These limits are computed with di ± smax

2 .

CHAPTER 4. ENABLING X-BURST ON WI-FI DEVICES 32

i di (µs) di,min (µs) di,max (µs)

0 224 128 320

1 416 320 512

2 608 512 704

3 800 704 896

4 992 896 1088

5 1184 1088 1280

6 1376 1280 1472

7 1568 1472 1664

8 1760 1664 1856

9 1952 1856 2048

10 2144 2048 2240

11 2336 2240 2432

12 2528 2432 2624

13 2720 2624 2816

14 2912 2816 3008

15 3104 3008 3200

Table 4.3: Set of duration candidates for a common alphabet.

Chapter 5

Design and Implementation

This chapter contains design considerations and implementation details of each smart
home component addressed in this thesis. In Sec. 5.1 an overview of the main implemen-
tation goal is given and the corresponding requirements are identified. Furthermore, the
implementation of X-Burst on the Nexus 6P smartphone (Sec. 5.2), the Tr̊adfri light bulb
(Sec. 5.3), and the Danalock V3 door lock (Sec. 5.4) is explained in more detail. Finally,
we describe the final demonstration in Sec. 5.5.

5.1 Overview

The main goal of this thesis is to allow a seamless and bidirectional communication between
incompatible smart home devices without the deployment of cost-intensive gateways. To-
wards this goal, we enable CTC functionality on three off-the-shelf platforms and build a
smart home scenario as illustrated in Fig. 5.1.

The main setup consists of:

• Smartphone Nexus 6P (Wi-Fi1);

• Danalock V3 (BLE);

• IKEA Tr̊adfri light bulb (ZigBee).

Using this architecture, a single application on the smartphone can be used to control
all participating devices regardless of the underlying technology. Furthermore, broadcast
communication is possible, i.e., any device can transmit cross-technology frames to multi-
ple heterogeneous devices simultaneously.

Additionally, we include in the demonstration setup:

• an original IKEA Tr̊adfri Remote (ZigBee);

• any smartphone supporting the nRF Connect App (BLE).

This allows us to showcase that CTC functionality can be implemented in a seamless way,
i.e., without breaking the native communication mechanism.

1The Nexus 6P employs also a BLE radio. In this thesis, we use it as Wi-Fi device only.

33

CHAPTER 5. DESIGN AND IMPLEMENTATION 34

Figure 5.1: Overview of the main demonstration setup. It contains three devices employing
incompatible technologies: a Nexus 6P smartphone (Wi-Fi), a Tr̊adfri light bulb (ZigBee)
and a Danalock V3 (BLE). The implementation of CTC allows a seamless communication
between all of them without the deployment of multi-radio gateways. A Tr̊adfri remote
and a smartphone using the nRF Connect app are used to show the coexistence of CTC
and the native communication technologies ZigBee and BLE, respectively.

Requirements. While adhering these goals, we put emphasis on three key requirements.

Adequate throughput and reliability. The CTC implementation should provide adequate
throughput to allow a data exchange feasible for smart home applications. Furthermore,
the reliable decoding of CTC messages, in case of external interference, must be ensured.

Minimal memory footprint. As many smart home devices are based on resource-constraint
radio platforms, the memory footprint should be kept at a minimum. This way, a firmware
update to introduce CTC functionality is possible for legacy devices with small memory
budget.

Coexistence with native communication stacks. The CTC implementation should be inte-
grated seamless next to the existing communication stack without breaking its functional-
ity. In particular, the packet reception rate of the native communication mechanism (i.e.,
ZigBee or BLE) should not drop below 95%.

5.2 Bringing X-Burst on the Nexus 6P

The smartphone is an important and popular device in the smart home domain. Most
manufacturers provide a smartphone app to control their devices. It can thus combine the
functionality of several remotes in one device. While current smartphones employ both
a BLE and Wi-Fi radio, it is not possible to control ZigBee devices, such as smart light
bulbs, directly without the deployment of a gateway, as the underlying communication
technologies are incompatible. Moreover, even though immediate communication with

CHAPTER 5. DESIGN AND IMPLEMENTATION 35

BLE or Wi-Fi devices is possible, each smart home component usually relies on a separate
app, since commonly different application protocols are used. These circumstances are
cumbersome for the user during both setup and usage of a smart home devices. Hence,
adopting X-Burst on a smartphone allows to reduce installation complexity and increases
user-friendliness.

The Nexus 6P smartphone employs a bcm4358 Broadcom Wi-Fi chip and is on the list
of Nexmon’s supported devices. Thus, we have chosen the Nexus 6P as this allows us to
reuse existing work based on the RPi3 to enable CTC functionality.

5.2.1 Design Challenges

Detection of required Functions using ROM Extraction

Although the bcm4355c0 employed on the RPi3 and the bcm4358 of the Nexus 6P offer the
same features, not all of them are accessible on the Nexus 6P. In particular, functions for
RSS sampling and the initiation of a hardware timer have not yet been extracted. Nexmon
offers the possibility to retrieve the content of the chips’ ROM and RAM. Combining both
yields a complete binary of the firmware, which can be analyzed to extract the required
functions. Using software reverse engineering tools, such as Ghidra [1], the firmware
binary can be disassembled into C-like code, which helps to understand the control flow.
By comparison with existing code and other binaries, the addresses of the desired functions
can be found and later be used in the firmware patch.

Alphabet Computation

i di (µs) di,min (µs) di,max (µs)

0 224 48 400

1 576 400 752

2 928 752 1104

3 1280 1104 1456

Table 5.1: Alphabet for Nexus 6P including lower and upper limits.

The alphabet can be determined in accordance with the computation considerations
for the RPi3, explained in Sec. 4.5.2. The only but major difference is the limited RSS
sampling rate of the Nexus 6P. While on the RPi3, a single RSS measurement can be
retrieved every 97 µs, the Nexus 6P shows a sampling interval tsampling = 170 µs, which
is almost twice as long. Hence, the minimum spacing between two bursts (s) has to
be adapted accordingly. Considering the Nyquist criteria, a minimum spacing of s =
2 · tsampling = 340 µs is required. Taking into account, that ZigBee devices can only create
bursts which are a multiple of 32 µs, the selected spacing amounts to smax = 352 µs and
an alphabet as shown in Table 5.1.

5.2.2 Software Implementation

The software implementation resembles the architecture on the RPi3 explained in Sec. 4.2.
As shown in Fig. 5.2, it consists of the modified Wi-Fi firmware, a CTC script and an

CHAPTER 5. DESIGN AND IMPLEMENTATION 36

Figure 5.2: The CTC implementation on the Nexus 6P consists of three software compo-
nents: the modified Wi-Fi firmware, a qPython script implementing the CTC functionality
and an Android app, serving as user interface.

application.
Once the required functions of the firmware are extracted as detailed in Sec. 5.2.1, the

Wi-Fi firmware can be adapted accordingly to allow RSS sampling and frame injection.
The CTC python scripts implemented on the RPi3 can be reused with minor adaptions

in the HAL. As Python cannot be interpreted on smartphones natively, we make use of the
qPython [6], a script engine which allows to run Python programs in Android. qPython
offers no support for scapy. Therefore, the Wi-Fi frames are forwarded to the firmware us-
ing raw sockets from the Python’s standard library. The remaining interaction between
firmware and CTC script using UDP and IOCTLs works just as on the RPi3.

On top of the CTC implementation, an Android app serves as a graphical user interface.
When starting the app, an additional process containing the CTC python script is created.
The separation is necessary, since root privileges are required for the execution of low-level
commands (IOCTLs) and the use of raw sockets. As it is not possible to request root
access for these operations directly within the app, the CTC functionality is outsourced
to the separate script, which can then be executed in a privileged process using Java’s
ProcessBuilder class. The ProcessBuilder is further responsible for the data exchange
between CTC script and Android app. The communication is based on pipes, i.e., the
data is forwarded from the app’s standard output to the script’s standard input (and vice
versa) and can be accessed using Java’s InputStream and OutputStream, respectively.

5.2.3 Limitations

Unstable Frame Injection

The transmission mechanism in X-Burst is based on the generation of consecutive energy
bursts. The gap between those bursts should be of a certain length. If the pause is very
long, the time-on-air is increased and it is more likely that external interference disturb
the communication. A very short gap, on the other hand, can lead to burst detection
errors, i.e., a receiver might, due to the limited RSS sampling rate, merge two bursts and
decode them as one. The gap between two bursts is defined by the radio preparation
time. The radio preparation time defines how much time the radio requires between
the transmission of two packets. For the TI CC2650 and the Firefly, the preparation

CHAPTER 5. DESIGN AND IMPLEMENTATION 37

Figure 5.3: The timely distribution of energy bursts for different values of TX GAP. If the
transmission of two successive bursts is delayed sufficiently (TX GAP = 550 µs), the bursts
are generated with constant gaps in between. If the packets are queued very fast (TX GAP

= 200 µs), the gap between two bursts is not predictable.

time is constant with 400 µs and 240 µs, respectively. Unfortunately, on the Nexus 6P,
the gap between two bursts is varying, due to uncontrollable delays introduced by the
firmware. To keep the timely bursts generation as stable as possible, it is crucial to delay
the transmission of subsequent bursts sufficiently, i.e., to wait a specific time (TX GAP)
before initiating the transmission of the next packet. Fig. 5.3 shows generated bursts
recorded with a PicoScope with different selections of TX GAP. If the delay between two
burst transmissions is long enough (e.g., TX GAP = 550 µs), an equidistant generation
is achieved. With decreasing TX GAP, however, the bursts tend to be transmitted in an
arbitrary manner and the distinction on receiver side is aggravated.

Another problem regarding frame injection is a bug in the existing Wi-Fi chip’s
firmware. The repeated and fast queuing of packets can lead to a null-pointer access,
which crashes the radio. Identical behavior has been encountered and solved on the RPi3.
Applying the same solution on the Nexus 6P disables the frame injection mechanism and,
hence, does not solve the problem. If a crash occurs, the CTC application is inoperable
for a few seconds, as the firmware needs to be reloaded and reconfigured. Although the
problem could not be solved entirely, a careful selection of the TX GAP helps to avoid a
crash.

Moreover, it appears that the operation of Bluetooth during CTC transmission has a
negative impact on the burst timing. Not only does it impair the constant gap between
two bursts, but crashes are provoked more frequently. It is therefore recommended to
disable the smartphone’s Bluetooth functionality.

Increased Sensitivity to Interference due to large Bandwidth

Wi-Fi channels have a large bandwidth of 22 MHz, compared to BLE’s and ZigBee’s
2 MHz channels. Hence, Wi-Fi devices are more sensitive to external interference, as the
RSS sampling is performed over a wider spectrum. Further, the large bandwidth has a
negative impact on the sensing range, since the narrow bursts of BLE and ZigBee devices

CHAPTER 5. DESIGN AND IMPLEMENTATION 38

contribute to the energy level of the channel only in a small part. Finding a way to divide
a Wi-Fi channel into smaller sub-bands would not only help to mitigate these problems,
but the interference on other on-going traffic could be kept at a minimum.

Root Access during Operation

In the current implementation, root access is not only required once to install the modified
Wi-Fi firmware, but continuously during operation. To transfer data from user-space into
the firmware (e.g., for frame injection) high privilege functions, such as IOCTL system
calls and raw sockets, are necessary. On the other hand, reception is possible without
root privileges, as the RSS information is reported back to user-land using UDP frames.
On the Nexus 5, it could be shown that bidirectional UDP communication is possible and
would allow the operation of CTC without root privileges [4]. This approach, however,
has not yet been implemented on the Nexus 6P and is outside the scope of this thesis.

5.3 Bringing X-Burst on the IKEA Tr̊adfri Light Bulb

The IKEA Tr̊adfri product family contains popular and cheap smart home devices, such
as smart lightning, plugs, or blinds. The system is based on ZLL and allows to control
the appliances wireless with a Tr̊adfri remote or the Tr̊adfri app.

The Tr̊adfri GU10 light bulb has been disassembled previously and reveals an EFR32MG1,
one of Silicon Labs’ Wireless Gecko SoCs, integrating an ARM Cortex M4 MCU and a
ZigBee radio [47]. As it is possible to replace the firmware with custom code, the Tr̊adfri
is a perfect candidate to show CTC functionality on a real-world smart home device.

5.3.1 Design Challenges

Teardown

In order to allow the flashing of custom firmware on the Tr̊adfri bulb, hardware access
to the device’s circuit board is required. Therefore the bulb has to be cut open and
disassembled as shown in Fig. 5.4. The Tr̊adfri consists of a housing, a LED module and
a PCB, which further includes a power supply and the small Tr̊adfri module. The bulb’s
Tr̊adfri module contains an EFR32 ZigBee SoC, a flash memory and a 38.4 MHz crystal
[47]. Thankfully, several pins are exposed to the outside of the module and appropriate
wires and connectors can be soldered easily. The pinout is shown in Fig. 5.5.

The chip can be programmed using the Serial Wire Debug (SWD) interface on pins
PF0-PF2 and a JTAG/SWD programmer accordingly (e.g., a J-Link EDU Base Program-
mer from Segger). The bulb can be turned on and off by controlling the LED modules
connected to PB12 and PB13. Using a PWM (Pulse Width Modulation) on these pins
further allows to adjust the light’s brightness. The remaining pins are used for debug
purposes and a serial interface.

Using the Radio Configurator to improve CTC Performance

The IEEE 802.15.4 standard, on which the ZigBee protocol is based on, specifies that
each sampled RSS value is the average over the last eight symbols (i.e., over the last 128

CHAPTER 5. DESIGN AND IMPLEMENTATION 39

Figure 5.4: Opened Tr̊adfri light
bulb, consisting of a LED module
(a), a circuit board (b) and a hous-
ing (c).

Figure 5.5: Pinout of the Tr̊adfri
module.

µs). While comparable devices with IEEE 802.15.4 radios, such as the TI CC2650 or the
Firefly, allow to retrieve the averaged RSS value every 10-25 µs, on the EFR32 it is only
possible to measure the RSS after tSampling = 128 µs, resulting in a poorer decoding and
reception performance.

The EFR32 platform reveals limitations also from a transmitter’s perspective. Silicon
Labs’ Radio Abstraction Interface Layer (RAIL), which is used to access the chips’ radio
functionalities, allows the transmission of ZigBee packets only if the payload length exceeds
at least 4 bytes. This gives a minimum burst duration of dmin = 320 µs and would lead
to an alphabet containing long durations, such that the achievable throughput is limited.

To bypass these radio constraints, it is possible to change the radio configuration of the
EFR32. In particular, Silicon Labs offers a Radio Configurator to adjust the physical radio
properties as desired. We can therefore decrease the RSS update period to tSampling = 8 µs
improve reception and reconfigure the transmission rate to allow the generation of bursts
with dmin = 96 µs.

5.3.2 Software Implementation

X-Burst should be implemented on the Tr̊adfri in a way, such that the existing function-
ality is not compromised, i.e., the bulb can still be controlled using the original IKEA
Tr̊adfri remote. The Tr̊adri remote is a ZLL device, which can be paired with up to ten
light sources. We therefore make use of the Silicon Labs EmberZNet PRO ZigBee Stack
Software, a ZigBee implementation for EFR32 devices [13], which is explained in more
detail in Sec. 2.5.3. It can be configured in Simplicity Studio, Silicon Labs’ own IDE, and
offers a so-called application framework interface on top of the stack to implement custom
applications.

CHAPTER 5. DESIGN AND IMPLEMENTATION 40

To allow a seamless interaction with the Tr̊adfri remote, the bulb is configured as a ZLL
target. It enables ZigBee network formation and pairing using Touchlink commissioning,
as described in Sec. 2.1.1. The Tr̊adfri remote offers a button to initiate the Touchlink
commissioning process and to connect to the bulb. We further configure the supported
ZigBee clusters and implement their behavior. In particular, the Tr̊adfri bulb has to
support the On/Off and Level Control clusters and control the LED module accordingly.

To implement user-specific functionality after reception of ZigBee messages (e.g., an
‘On’ command from the remote), an application framework is provided. It sits on top
of the EmberZNet ZigBee stack and allows to handle attribute changes of the predefined
clusters. The framework further allows the execution of custom code in an event based
manner. Custom events, such as timer or button events, have to be configured at compile
time and are scheduled alternating with the EmberZNet ZigBee stack. In these events,
it is also possible to access the device’s radio functionality using the Radio Abstraction
Interface Layer (RAIL).

We therefore make use of a periodic timer event to integrate X-Burst and to enable the
simultaneous support of CTC and ZigBee communication, as described in more detail in
the following section. The CTC functionality itself is implemented according to X-Bursts’
architecture described in Sec. 2.3.3.

5.3.3 Coexistence with the existing ZigBee Stack

The access to the EFR32’s radio has to be coordinated, as it is a shared resource between
the ZigBee and the CTC stack. The ZigBee stack and user events, in which the CTC
functionality is implemented, are executed alternating in a non-preemptive way, i.e., once
a function runs, it cannot be interrupted until it returns. Furthermore, user events have
full access to the radio during execution. Hence, they should be kept as short as possible
to avoid negative impact on the ZigBee communication.

The basic principle of the coexistence mechanism is illustrated in Fig. 5.6. The CTC
functionality is enabled periodically using a timer event with a period of tInterval. At the
beginning of each CTC ‘slot’, the radio is configured accordingly, i.e., the desired channel
for CTC communication is selected and the RSS sampling rate is increased. Consequently,
the default configuration for ZigBee communication has to be restored upon return.

In each slot, the device performs RSS sampling to sense for ongoing CTC transmissions.
If no energy bursts could be detected within tSense, the next CTC slot is scheduled and
the device allows the ZigBee stack to run again. This way, if no CTC communication
takes place, the time allocated to the radio is kept to a bare minimum. If a burst of valid
length is detected, the device stays in CTC mode, scans for a preamble, and receives the
CTC message. If the message is considered valid, an acknowledgment frame (ACK) is
sent immediately to inform the transmitter of the successful reception. The transmitting
device, which has to send the same CTC message consecutively for tInterval, can then stop
the transmission to avoid unnecessary traffic on the channel. The ACK is a predefined set
of consecutive burst durations and can be configured arbitrarily. In case of a broadcast
CTC message, no ACK should be sent, as it could prevent other CTC devices to receive
the message successfully.

The following timing constraints have to be considered, in order to allow a reliable
CTC without affecting the simultaneous ZigBee communication:

CHAPTER 5. DESIGN AND IMPLEMENTATION 41

• tInterval is the time between the beginning of two CTC slots. It should not be too
short, as a frequent reconfiguration of the radio affects ZigBee’s performance. Fur-
thermore, the maximum CTC message length that can be reliably detected depends
on tInterval. A small value would allow only the transmission of short CTC mes-
sages. On the other hand, the interval should not be too long to avoid long delays at
message reception and increased channel occupancy due to the required successive
transmission.

• tAck is the time required to transmit an ACK frame and has to be determined
after defining the ACK frame. Any transmitter has to wait for tAck,max between
the transmission of two successive CTC messages to be able to receive an ACK
accordingly. tAck,max is the maximum tAck of all devices participating in the CTC
communication.

• tSense is the maximum time a device tries to detect energy bursts within one CTC
slot. To reliably detect any ongoing CTC transmission tSense must be greater than
max(tAck,max, dmax + tGap,max). tGap,max is the maximum required time between
two successive energy bursts considering all devices and dmax is the longest duration
used in the chosen alphabet.

• tScan is the time a device scans for a preamble after an energy burst has been
detected. In the worst case, the CTC receiver detects an ongoing transmission at
the beginning of the message and, thus, has to wait until the entire message has
been retransmitted before a correct decoding is possible. Therefore, tScan has to be
greater than tMsg,max + tAck,max. (tMsg,max describing the maximum CTC message
length).

• tDecode is the time required for decoding the CTC message and is at most tMsg,max.
To avoid starvation of the ZigBee stack, the decoding process is aborted as soon as
an invalid burst is detected.

5.3.4 Limitations

Since the ZigBee and the CTC stack both utilize the same radio, truly concurrent commu-
nication is not possible, i.e., it is only possible to transmit/receive with one technology at
the time. In particular, if any ZigBee-related radio activity is observed at the beginning
of a CTC slot, the slot is immediately rescheduled and the radio is returned to the ZigBee
stack to finish its operation. Hence, ZigBee is given priority over CTC and packets of the
latter type might be missed.

As mentioned above, a CTC slot is non-preemptive, i.e., once the CTC event is started
it has full access to the radio and cannot be interrupted. Accordingly, if a CTC operation
has been successfully initiated (i.e., if no ZigBee activity has been detected at the beginning
of the slot), it can be executed as long as required. In the meantime, ZigBee packets cannot
be received.

The implications on the packet reception rate of both communication mechanisms have
been evaluated in Sec. 6.2.

CHAPTER 5. DESIGN AND IMPLEMENTATION 42

Figure 5.6: Principle of coexistence between CTC and ZigBee protocol. The device enters
CTC mode periodically after tInterval and tries to detect ongoing transmissions. If no
bursts could be extracted within tSense, the device returns the access to the radio to
the ZigBee stack. Otherwise, it stays in CTC mode and receives the message. After
reception, an ACK frame is sent to inform the transmitter about the successful reception.
The transmitter has to send the CTC messages consecutively for tInterval or until an ACK
is received.

5.4 Bringing X-Burst on the DanaLock Door Lock

The Danalock V3 is a BLE-enabled smart lock and employs a nRF52832 Bluetooth LE
SoC. We implement X-Burst on the Danalock to complement the set of CTC-enabled
real-world smart home gadgets with a BLE device.

5.4.1 Design Challenges

Teardown

The Danalock is encapsulated in an aluminum case and can be disassembled easily as
shown in Fig. 5.7. Once screwed open, it reveals a battery connector (the lock is powered
by four CR132A batteries providing 12V in total), a M22E-13 DC motor to turn the lock
and a PCB containing the following components:

• Nordic nRF52832 Bluetooh 5.2 SoC
• TI DRV8872 DC motor driver
• TPS62177 step down converter
• RGB LED
• Button

The pinmap can be learned based on visual inspection and probing using a multimeter’s
continuity mode. The connections that are of our interest, i.e., the pins connected to the
programming interface, motor, LEDs and button, are shown in Table 5.2.

Similar to the Tr̊adfri, the Danalock can be programmed using the SWD interface
and a Jlink Segger programmer. The SWD interface is exposed to a set of test pads on
the PCB, where it is possible to attach small wires that can then be connected to the
programmer device.

CHAPTER 5. DESIGN AND IMPLEMENTATION 43

(a) Danalock V3 [21] (b) Danalock V3 opened

Figure 5.7: Danalock V3 before (a) and after (b) teardown. The lock contains a DC motor,
a circuit board and a battery connector.

Name Pin Description

Button P0.07 Small user button, accessible to reset device

LED Red P0.27 Red part of RGB LED

LED Green P0.26 Green part of RGB LED

LED Blue P0.25 Blue part of RGB LED

Motor 1 P0.22 Connected to pin1 of DC motor, used to turn motor left

Motor 2 P0.23 Connected to pin2 of DC motor, used to turn motor right

Motor Enable P0.05
Enables motor driver,
must be set to ’high’ to allow DC motor to work

UART TX P0.12 Additionally available pin, used for UART communication

UART RX P0.11 Additionally available pin, used for UART communication

Reset P0.21/RESET SWD Interface, exposed to test pad

SWD Clock SWCLK SWD Interface, exposed to test pad

SWD Data SWDIO SWD Interface, exposed to test pad

Ground GND 0V, exposed to test pad

Table 5.2: Pinmap of the Danalock V3.

CHAPTER 5. DESIGN AND IMPLEMENTATION 44

Further hardware modifications are necessary to allow the use of the serial interface
for debugging purposes. In particular, we add wires to available pins (P0.11 and P0.12)
and attach a FTDI adapter to enable UART communication. Additional user interaction
is possible using the RGB LED (P0.25-P0.27) and a button (P.07).

In order to control the motor, i.e., to actually turn the lock, the TI DRV8872 motor
driver must be enabled. This can be done by setting the corresponding pin (P.05), which
controls a transistor-switch to supply the motor driver accordingly. By default, the motor
driver is not powered to minimize the lock’s energy consumption. The motor itself can be
controlled via PWM on P0.22 and P0.23 to turn the lock left and right, respectively.

5.4.2 Software Implementation

The goal of the software implementation is to allow interaction with the lock using CTC
while it can still be controlled with conventional BLE communication. Towards this goal,
we make use of the Nordic nRF5 SDK [5]. The nRF5 SDK is a software development kit
for nRF52 and nRF51 Bluetooth SoCs and contains various drivers and examples for fast
application development on Nordic platforms. It further features a Bluetooth 5.1 qualified
BLE protocol stack, the so called SoftDevice. The SoftDevice is a precompiled binary
file which implements BLE-related features and can be flashed along with custom code to
build BLE based applications.

The nRF5 SDK contains a set of predefined BLE services and corresponding examples.
Our implementation is based on the LED Button Service, as it allows one BLE device
(i.e., a central) to control the LED value of another device (i.e., the peripheral). In our case,
the LED value corresponds to the status of the lock. The LED Button Service requires
a connection-based communication for data exchange, as described in Sec. 2.1.2. Conse-
quently, the Danalock’s nRF52 is configured as a BLE peripheral and handles changes of
the LED value accordingly, i.e., it turns the motor to open/close the lock. The smart-
phone, on the other hand, acts as a central device. Nordic Semiconductor offers an app
called nRF Connect, which allows to scan for BLE devices, parses their advertisement and
service data and, after connecting, allows to adjust their attributes (i.e., the LED value)
accordingly. This way, any smartphone running the nRF Connect app can be used to
control the lock using BLE.

In order to enable CTC functionality along with BLE communication, access to the
radio is required. In general, when using the SoftDevice, the radio functionalities are not
available but have to be explicitly requested using the Timeslot API, which is explained
in more detail below. Similar to the code on the Tr̊adfri, the CTC implementation itself
follows X-Burst’s modular design described in Sec. 2.3.3.

5.4.3 Coexistence with the existing BLE Stack

In principle, the considerations previously made for the Tr̊adfri in Sec. 5.3.3 apply for the
Danalock as well, i.e., the access to the radio must be timely coordinated between the CTC
and BLE/ZigBee stack. In contrast to the Tr̊adfri’s EFR32 chip, where the radio is freely
available to custom events, the nRF52’s radio is only accessible through the Timeslot API.

The Timeslot API offers primitives to request the radio for a given amount of time
within a specific interval. Hence, it is possible to periodically obtain a timeslot to perform

CHAPTER 5. DESIGN AND IMPLEMENTATION 45

CTC communication. The access to the radio is granted if currently no BLE communica-
tion takes place and the transmission of advertising packets is not scheduled before the end
of the requested timeslot. Otherwise, the timeslot is delayed to the earliest possible point
in time where the BLE stack is idle. Once granted a timeslot, the radio is configured in
BLE mode, which is feasible to create adequate energy bursts and perform RSS sampling.
However, the radio has to be turned on at the beginning of the slot, as it is disabled by
default. The application (i.e., the CTC implementation) can return the access to the radio
to the SoftDevice at any time and is obliged to do so before the end of the timeslot to
prevent a hardfault.

5.4.4 Limitations

As the SoftDevice can deny a timeslot request, BLE communication is given priority over
CTC implicitly. Furthermore, the longest timeslot which can be requested is 100 ms and
thus limits the maximum CTC message length, as detailed in the evaluation in Sec. 6.2.3.
The Timeslot API offers the possibility to ask for a timeslot extension of up to 128s. Since
the grant of such an extension is uncertain, it is not used for CTC reception to keep the
timing properties as predictable as possible and allow an implementation according to
Sec. 5.3.3. For transmission, however, the timeslot extension is leveraged to enable the
transmitting device to send packets consecutively for tInterval. This implies, that if the
timeslot extension is not successful, the messages are not transmitted for the entire CTC
period and might thus be missed by the receiving devices. Unsuccessful transmissions
have to be handled in the application accordingly.

Contrary to the Tr̊adfri, where the original IKEA remote can be used to control the
lamp, the original Danalock app is not supported. The replication of the Danalock’s
pairing process and GATT services has not been possible due to its encryption mechanism.
Therefore, the nRF Connect app is used to demonstrate the coexistence between CTC and
the conventional BLE stack. Another limitation is that the communication with the nRF
Connect app is not secured (i.e., any BLE central can control the lock). The CTC-enabled
Danalock is thus feasible for demonstration purpose only.

5.5 Bringing it all Together: Demonstrator

To demonstrate the convenient control of smart home devices using cross-technology com-
munication and to complete the demonstration setup as described above (Fig. 5.1), we
designed an Android app as shown in Fig. 5.8. It allows to turn on, switch off and dimm
the Tr̊adfri light bulb and to lock/unlock the Danalock V3 door lock. The ability to
transmit CTC broadcast messages can also be demonstrated by controlling both devices
simultaneously. The status displays of the light bulb and the lock gives information of
their current state, while the debug window shows CTC stack internal events, such as the
initiation of a CTC transmission or the reception of an ACK frame.

All devices have to be configured with the same alphabet (e.g., 4-bit mapping with
d0 = 224 µs and s = 92 µs), and a common preamble and acknowledgment have to be
defined. The Tr̊adfri and the Danalock are assigned a fixed 1-byte address to allow the
distinction in case of unicast transmissions. They both run the CTC stack and their
conventional communication stacks ZigBee and BLE, respectively, in parallel. Hence, the

CHAPTER 5. DESIGN AND IMPLEMENTATION 46

Figure 5.8: Screenshot of the smart home demonstrator app. The Tr̊adfri light bulb and
the Danalock V3 door lock can be controlled separately using unicast CTC messages, or
simultaneously using broadcast communication. A debug window provides information of
the smartphone’s running CTC stack (e.g., encoding information, received ACKs).

CHAPTER 5. DESIGN AND IMPLEMENTATION 47

light bulb can still be used with the original IKEA Tr̊adfri remote, while the Danalock
can be controlled by BLE-enabled devices.

This demonstrator shows that a gateway-free smart home setup is possible, despite
incompatibilities of the employed wireless technologies. It is worthwhile noting, that the
setup is not limited to the above mentioned smart home devices, but can easily be extended
with further CTC-enabled platforms.

Chapter 6

Evaluation

This chapter contains the results of the experimental evaluation of the CTC implementa-
tion. In Sec. 6.1, the nominal properties of X-Burst on the new hardware platforms (i.e.,
the Nexus 6P, the Tr̊adfri and the Danalock V3) are investigated, i.e., we evaluate the CTC
performance only, hence the existing communication protocols are disabled. In particular,
the achievable throughput and the packet reception rate in the presence of external radio
interference is obtained. We further evaluate the communication range. Sec. 6.2 contains
an analysis of the memory footprint and experiments tackling the coexistence mechanism.
In particular, the PRR and throughput at simultaneous transmission of CTC and Zig-
Bee/BLE packets are shown. Finally, Sec. 6.3 shows the CTC smart home demonstrator
in action.

6.1 X-Burst Properties

In the following section, we evaluate the performance of X-Burst on the newly added plat-
forms (i.e., the Nexus 6P, the Tr̊adfri and the Danalock V3). In particular, the throughput
at different payload sizes is investigated along with the packet reception rate in the presence
of external radio interference. Furthermore, an evaluation of the achievable communication
range is given.

6.1.1 Experimental Setup

The experiments are performed in an office environment, i.e., the devices are not com-
pletely shielded from background noise. However, an appropriate channel selection is used
to minimize external interference. If not stated otherwise, the devices are placed 1 m apart
and a common 2-bit alphabet, as derived in Sec. 5.2.1, is applied.

In addition to the aforementioned devices, the Raspberry Pi 3B+ (Wi-Fi), the TI
CC2650 LaunchPad (BLE) and the Firefly (ZigBee) are included in the setup to give
more comprehensive evaluation results and show the compatibility with existing X-Burst
enabled devices. For convenience, we use a Thunderboard Sense development platform
instead of the actual Tr̊adfri bulb for evaluation. The Thunderboard Sense employs the
same ZigBee SoC (EFR32) as the Tr̊adfri, but offers more debug capabilities (e.g., buttons
and GPIO pins) and a USB programming interface. Similarly, the Danalock is replaced

48

CHAPTER 6. EVALUATION 49

with a nRF52840 Development Kit as the chips of both devices belong to the same BLE
SoC family.

As the focus of this section lies on the properties of the cross-technology communication
mechanism, the devices are configured such that they perform CTC only, i.e., the native
BLE/ZigBee functionality is disabled.

6.1.2 Nominal Throughput

As discussed in Sec. 2.3.4, the achievable throughput depends on the chosen alphabet, i.e.,
the set of predefined burst durations. In our implementation, as all devices have to agree on
a common alphabet to allow bidirectional and seamless communication, the throughput is
mainly limited due to the slow RSS sampling rate of the Nexus 6P. The throughput further
depends on the chosen payload, as higher values (e.g., ‘0xFF’) are translated into longer
durations and hence require more time for transmission. The messages in the following
experiments contain equally distributed byte values (i.e., ‘0x01 - 0xEF’) to account for
these considerations and allow to compute the average value of the achievable throughput.

To evaluate the throughput, we transmit 10x100 CTC messages back-to-back from one
device to another. Recording the transmission time and the number of received messages,
the throughput can be calculated. Each CTC message is encapsulated in a 1-byte header
and a 1-byte checksum, which allows to verify if the message has been received correctly.
Only the payload bytes are considered for the throughput calculation, i.e., header and
checksum are omitted. Hence, if more bytes are transmitted within one message (i.e.,
a higher payload size is chosen), the throughput can be increased as less overhead is
introduced.

Throughput of Nexus 6P in Transmission Mode

Fig. 6.1 shows the throughput of the Nexus 6P when transmitting CTC messages of
different payload size to several counterparts. It can be seen that the throughput differs
depending on the receiving device. As the transmission time is constant, the different
results are based on the timing properties (e.g., RSS sampling rate) and hence the reception
capabilities of each device. The BLE devices (TI CC2650 and Danalock) outperform the
other devices, as they are capable of instantaneous RSS measurements. Similar, yet little
worse results are measured on the ZigBee devices (Tr̊adfri and Firefly). Their radios, based
on IEEE 802.15.4, provide averaged RSS measurements. A significantly lower throughput
can be observed on the Raspberry Pi, due to its slow RSS sample rate.

As expected, the throughput increases with higher payload sizes. At a certain payload
size, however, the packet reception rate starts to decrease, leading to a decline of the
throughput. This is due the increased chances of bit corruptions, and is particularly
evident on the RPi3. Nevertheless, a throughput of more than 1 kbit/s for each device is
possible.

Throughput of Nexus 6P in Reception Mode

Fig. 6.1 shows the throughput of the Nexus 6P when receiving CTC messages of different
payload size from several counterparts. The achievable throughput for each device deviates
significantly, due to differences in the radio preparation time, i.e., the time required between

CHAPTER 6. EVALUATION 50

Figure 6.1: Throughput of Nexus 6P when transmitting to several counterparts depending
on the payload size.

the transmission of two energy bursts. The Firefly, the Danalock and the Tr̊adfri all
feature a preparation time of around 200 µs and hence, allow a similar throughput. The
TI CC2650 LaunchPad, with a preparation time of 400 µs cannot compete with this
transmission speed. Again, the RPi3 shows the worst performance, as it requires a gap of
around 480 µs between the transmission of two bursts. The previous experiments show,
however, that bidirectional communication based on X-Burst is also possible for devices
employing the same wireless technology (i.e., Wi-Fi to Wi-Fi).

In general, the throughput of the Nexus 6P in transmission mode (Fig. 6.1) is lower
than in reception mode (Fig. 6.2) and is based on the long preparation time of the Nexus
6P (about 800 µs on average).

Summarized, the Nexus 6P can receive CTC messages with a data rate of 1.2 to 1.8
kbit/s and transmit with rates from 1 to 1.15 kbit/s, depending on the selected device.
Considering the smart home devices addressed in this thesis, namely the Danalock and
the Tr̊adfri, bidirectional communication with a throughput of 1.1 to 1.7 kbit/s can be
achieved.

Throughput of Danalock and Tr̊adfri

The previous experiments (Fig. 6.1 and Fig. 6.2) have shown that the Danalock and
the Tr̊adfri can communicate with the Nexus 6P with data rates up to 1.7 kbit/s. The
achievable throughput for communication between Danalock and the Tr̊adfri has not been
shown explicitly yet. However, due to their superior timing properties compared to the
smartphone, it can be safely assumed that they receive each other’s CTC messages at least
as well as the Nexus 6P.

To show that both devices are capable of even faster communication, we apply an
alphabet consisting of shorter durations and retrieve the throughput. In particular, a
4-bit mapping with d0 = 224 µs and s = 92 µs is used and messages with 16 bytes of
payload are transmitted. Fig. 6.3 shows the throughput of the Danalock and the Tr̊adfri
in reception mode. It can be seen that both devices support a throughput of more than 2.7

CHAPTER 6. EVALUATION 51

Figure 6.2: Throughput of Nexus 6P when receiving from several counterparts depending
on the payload size.

kbit/s when communicating with each other. The Nexus 6P is not able to retrieve CTC
messages composed of such an alphabet due to its slow RSS sampling rate. Transmission,
however, is possible and a throughput of more than 1.6 kbit/s can be achieved, which
is an enhancement of more than 30% compared to throughput achieved previously. The
difference between the data rate of the Nexus 6P compared to the Danalock and Tr̊adfri
is again based on the different preparation times of the devices.

6.1.3 Packet Reception Rate in the Presence of external RF Interference

In the following, the influence of external interference on X-Burst’s robustness is investi-
gated. In particular, the PRR under three different interference scenarios is shown.

First, the PRR is retrieved in the absence of radio interference, building a reference for
further measurements. Additionally, two Wi-Fi interference patterns are created: audio
streaming (i.e., using Spotify) and video streaming (i.e., from YouTube). In order to allow
the repeatable creation of Wi-Fi traffic, we record the desired network packets using a TP-
Link USB Wi-Fi adapter. The adapter can be used in monitor mode to capture network
traffic, which can be further filtered using the open-source packet analyzer Wireshark.
This way, we create a set of Wi-Fi packets corresponding to the mentioned scenarios.
During the experiments, they are repeatedly transmitted using the tcpreplay command.

To obtain the PRR, the experimental setup described previously is applied. For each
measurement point, we send 10x100 16-byte long CTC messages back-to-back from the
Nexus 6P to several counterparts and vice versa. The TP-Link adapter is placed at a dis-
tance of 1 m to the receiving device. The Wi-Fi interference is created with a transmission
power of 13 dBm on the same Wi-Fi channel used for CTC communication.

In Fig. 6.4 the PRR obtained under different interference patterns can be seen for both
transmission and reception of the Nexus 6P. As expected, the reception rates decrease

CHAPTER 6. EVALUATION 52

Figure 6.3: Throughput of Danalock and Tr̊adfri in reception mode using a 4-bit mapping
with d0 = 224 µs and s = 92 µs.

Figure 6.4: Packet reception rate at different interference scenarios. The PRR is obtained
once for the transmission from Nexus 6P to several CTC enabled devices (a) and vice
versa (b).

CHAPTER 6. EVALUATION 53

with rising severeness of the interference. In absence of any especially generated external
traffic, the PRR is around 95% for each device and communication direction. The pres-
ence of Wi-Fi interference lets the PRR decline significantly. While reception rates are
still adequate during audio streaming (72% to 80%), they drop below 50% at interference
introduced by video streaming.

Considering the latter scenario, it can be observed that the PRR is constant for each
device if the Nexus 6P acts as a transmitter. Contrary, if the Nexus 6P receives the
CTC messages, the PRR varies from device to device. These observations are based on
the experimental setup combined with differences in the preparation time of each device.
The Nexus 6P sends broadcast messages with a constant preparation time and hence,
the time required for the transmission time of one set of test messages is constant. This
transmission time differs for the other devices and is shorter compared to the Nexus 6P.
Thus, variations in the interference patterns (e.g., due to buffering during video streaming)
affects the PRR of each test point more severely. In addition, although sending with the
same transmission power, the antenna characteristics and RF front ends of the devices
vary and affect the ability to decode energy bursts in presence of interference.

6.1.4 Communication Range

This section contains an evaluation of the achievable communication range between the
Nexus 6P, the Danalock and the Tr̊adfri. More precisely, the PRR at different distances
between receiver and transmitter is investigated.

Again, we transmit 10x100 16-byte CTC messages to obtain the PRR. The experiment
is performed in a corridor, which allows us to take measurement at distances in a range
of 5 to 25 m. All devices are mounted on stands about 1 m above the ground. The PRR
is obtained for each of the three devices (Nexus 6P, Danalock, Tr̊adfri) receiving from the
others. The results are shown in Fig. 6.5.

It can be seen, that both the Tr̊adfri (b) and the Danalock (c) can receive CTC mes-
sages from all devices within a distance of 25 m while the PRR stays constant for the
entire range. On the Nexus 6P smartphone (a), on the other hand, a decline of the PRR
can be observed at 20 m, although a communication is still possible, and significantly
worsens at a distance of 25 m. When conducting the experiment, it could be noticed that
the smartphone’s orientation has a substantial influence on the RSS sampling capability.
It is thus kept constant during the entire measurements (i.e., in an upright position, the
back facing the counterparts).

In summary, all devices feature a communication range of at least 25 m, while the
Nexus 6P can receive CTC messages reliably for more than 15 m. The limited reception
range of the Nexus 6P is probably based on the RSS sampling bandwidth, i.e., the Nexus
6P’s Wi-Fi radio measures the energy level on the entire 22 MHz Wi-Fi band. The impact
of the 2 MHz energy burst generated by the counterparts on the measured RSS value
is therfore rather low. Nonetheless, considering a smart home application where many
devices are located within one room, these numbers are sufficient.

CHAPTER 6. EVALUATION 54

Figure 6.5: Packet Reception Rate (PRR) at different distances for Nexus 6P (a), Tr̊adfri
(b), and Danalock (c) in reception mode.

CHAPTER 6. EVALUATION 55

Figure 6.6: Memory footprint of the Tr̊adfri light bulb, divided into RAM (a) and ROM
(b) usage.

6.2 Coexistence with existing Communication Stacks

In this section, we evaluate the coexistence mechanism as described in Sec. 5.3.3 in order
to show that the concurrent use of CTC and other existing communication technologies is
possible. Furthermore, we analyze the memory footprint of the CTC stack compared to
the existing protocols.

6.2.1 Memory Footprint

We analyze the memory on the Tr̊adfri and the Danalock in terms of RAM and ROM
usage. The required memory for the CTC implementation amounts to:

• 0.61 kB of RAM and 2.72 kB of ROM on the Tr̊adfri;

• 0.67 kB of RAM and 3.16 kB of ROM on the Danalock.

Compared to the memory required for the existing communication stack (see Fig. 6.6
for the Tr̊adfri and Fig. 6.7 for the Danalock), the CTC implementation is very lightweight
and thus feasible for resource-constrained devices. The main portion of the memory con-
sumption is caused by buffers which are required to store the extracted burst durations and
the corresponding data. Limiting the maximum payload size could therefore, if required,
reduce the memory footprint further.

CHAPTER 6. EVALUATION 56

Figure 6.7: Memory footprint of the Danalock V3 door lock, divided into RAM (a) and
ROM (b) usage.

CHAPTER 6. EVALUATION 57

Figure 6.8: PRR of ZigBee communication and throughput of CTC for concurrent Zig-
Bee/CTC transmission.

6.2.2 Coexistence of ZigBee and CTC

Experimental Setup

To demonstrate that a coexistence between ZigBee and CTC is possible, we concurrently
transmit ZigBee and CTC packets to the Tr̊adfri and obtain the PRR of the ZigBee
communication and the throughput of CTC. Therefore, the Nexus 6P smartphone sends
10x100 16-byte unicast CTC messages consecutively, while determining the throughput. A
4-bit mapping (as used in Sec. 6.1.2 already) is applied. Simultaneously, we use a Silicon
Labs Wireless Development Kit, acting as a ZigBee remote, to periodically transmit a
ZigBee on/off command and obtain the PRR. The CTC and ZigBee communication
takes place on separate radio channels.

Throughput depending on CTC Interval

First, we investigate the CTC throughput at different configurations of the CTC interval
(tInterval). ZigBee packets are transmitted with a constant period of tZigBee = 500 ms. As
shown in Fig. 6.8, the achievable throughput highly depends on the chosen CTC interval.
As a short tInterval allows the device to scan for CTC messages more frequently, the
throughput can be maximized if tInterval is decreased. Compared to the observations in
Sec. 6.1.2, where the radio is used for CTC communication only, the latter is significantly
lower, as only one packet per CTC interval can be received. Still, a throughput of more
than 500 bit/s can be achieved.

The experiment also shows, that the existing ZigBee communication stack can still
operate adequately, as a PRR of about 99% can be observed. Single ZigBee packets get
lost if a CTC frame and a ZigBee message collide time wise, i.e., if a ZigBee message is
transmitted during the reception of a CTC frame.

CHAPTER 6. EVALUATION 58

Figure 6.9: PRR of CTC and ZigBee communication for different values of the ZigBee
transmission interval.

PRR depending on Traffic Load

The higher the traffic load, i.e., the more frequently messages are transmitted, the higher
is the chance for collisions. Since the ZigBee remote is not bound to any schedule, but
can transmit at arbitrary points in time, collisions cannot be avoided completely but
have to be accounted for in higher layers (e.g., using retransmissions). Fig. 6.9 shows
the PRR for both ZigBee and CTC at different traffic loads, i.e., for different intervals
between two ZigBee messages at a constant tInterval = 200 ms. It can be seen that a high
amount of frequent ZigBee messages has negative consequences on the CTC reception
rate, highlighting the implicit prioritization of ZigBee traffic, as pointed out in Sec. 5.3.4.
It is in particularly evident at small intervals, as pronounced with a high variance shown
at tInterval = 100 ms and tZigBee = 100 ms in Fig. 6.8 and Fig. 6.9, respectively.

6.2.3 Coexistence of BLE and CTC

Maximum Message Length

As mentioned in Sec. 5.4.4, the Timeslot API (used to allocate the radio for CTC opera-
tions) allows to request timeslots up to a length of tSlot = 100 ms only. Considering the
coexistence mechanism explained in Sec. 5.3.3, we can thereby derive a maximum message
length tMsg,max, which can be reliably received within one slot.

In the worst case, the CTC reception is started at the beginning of one message, right
after the first burst and without detecting the preamble. Hence, the device has to wait
until the entire message has been retransmitted before a correct decoding is possible. In
this case, the reception time of one message amounts to tRX = 2 · tMsg + tAck,max. With

tRX = tSlot, the maximum message length is given by tMsg,max =
tSlot−tAck,max

2 .
In the current implementation, a fixed, predefined preamble with tAck,max = 6 ms is

used, which gives a maximum message length of tMsg,max = 47 ms. The actual maximum
amount of payload bytes that can be transmitted within one message depends on the

CHAPTER 6. EVALUATION 59

Figure 6.10: PRR of BLE communication and throughput of CTC for concurrent
BLE/CTC transmission.

employed alphabet, the selected preamble, the message overhead (e.g., header, checksum),
as well as the payload content. It is further platform-dependent, as the radio preparation
time affects the transmission speed.

Experimental Setup

The experimental setup is in principle identical to the ZigBee-based coexistence evaluation.
The Nexus 6P smartphone transmits consecutive unicast CTC frames to the Danalock,
while another device periodically sends BLE packets. To satisfy the maximum message
length retrieved before, CTC frames with a payload of maximum 7 bytes (with equally
distributed values) can be transmitted. We use a nRF52840 Development Kit as BLE
counterpart. It is configured as BLE Central to transmit one BLE packet per connection
interval tBLE .

Throughput depending on CTC Interval

Fig. 6.10 shows the CTC throughput for different CTC intervals at a constant BLE con-
nection interval of tBLE = 500 ms. As expected, the throughput decreases with rising
CTC interval. Compared to the previous experiment conducted on the ZigBee device,
the throughput is lower due to the limited message length. A throughput of up to 235
bit/s can still be considered feasible for smart home related communication. Furthermore,
the CTC interval cannot be arbitrarily low, as the SoftDevice is not able to schedule its
operations accordingly. The minimum CTC interval that allows the CTC stack to run
properly is 200 ms.

Contrary to the ZigBee communication, not a single BLE packet gets lost. Thanks
to the connection-based communication scheme, the BLE packets are received with a
reception rate of 100% regardless of any ongoing CTC activity.

CHAPTER 6. EVALUATION 60

Figure 6.11: PRR of CTC at simul-
taneous BLE communication for dif-
ferent connection intervals.

Figure 6.12: PRR of CTC in non-
connected state at different adver-
tising intervals.

PRR depending on Traffic Load

We evaluate the PRR using different traffic loads for the BLE communication. Therefore,
the connection interval is varied, while the CTC interval is kept constant at 200 ms. As
shown in Fig. 6.11, the PRR of the CTC communication is very high regardless of the
used connection interval. This is due to the schedule mechanism of the Timeslot API
combined with the short size of the CTC packets: if a CTC slot cannot be granted due
to an ongoing BLE reception, the slot is rescheduled at the earliest point in time and the
reception of a CTC packet can still be possible.

Even if no actual BLE communication is ongoing, i.e., if no central device is connected,
there are still BLE operations scheduled, since the BLE peripheral is required to transmit
advertisement packets. We therefore evaluate the PRR in non-connected mode at different
advertisement intervals. The results are similar to the earlier measurements and shown in
Fig. 6.12.

During both experiments, the PRR of the BLE communication is constantly at 100%
and is thus omitted in the evaluation plots.

6.3 Demonstrator

In order to show the functionality of the smart home CTC demonstrator described in
Sec. 5.1 and Sec. 5.5, we recorded a video showing, that it is possible to conveniently
control smart home devices using CTC. The latter can be seen in Fig. 6.13.

The video is available on https://github.com/hanuka24/ctc-smarthome.

https://github.com/hanuka24/ctc-smarthome

CHAPTER 6. EVALUATION 61

Figure 6.13: Devices used in the CTC smart home demonstrator: a Nexus 6P smartphone,
an IKEA Tr̊adfri light bulb and a Danalock V3 door lock.

Chapter 7

Conclusions & Future Work

In this chapter, we give a summary of the thesis contributions and outline the evaluation
results in Sec. 7.1. Finally, in Sec. 7.2 and overview of open challenges and future work is
given.

7.1 Conclusion

In this thesis, we extend the cross-technology communication mechanism X-Burst to sup-
port Wi-Fi devices (i.e., a Raspberry Pi 3B+ and a Nexus 6P smartphone). We can
thereby show that a communication between the three most popular wireless technologies
in the 2.4 GHz ISM band is possible. In particular, X-Burst allows BLE, ZigBee and
Wi-Fi devices to exchange data in a seamless and bidirectional manner, despite incompat-
ible physical layers and without the need of a costly multi-radio gateway. Furthermore,
X-Burst is applied on two off-the-shelf smart home devices, namely: a ZigBee-based IKEA
Tr̊adfri light bulb and a BLE-based Danalock V3 door lock. The CTC mechanism is im-
plemented such that a seamless coexistence between an existing communication stack and
CTC is possible, i.e., such that devices can operate using ZigBee/BLE and CTC simul-
taneously. This capability opens up the opportunity to provide legacy devices with CTC
functionality without breaking existing features.

Our CTC implementation, based on packet-level modulation, can achieve data rates
of more than 1 kbit/s, which is sufficient for the typical requirements of a smart home,
as only small amounts of data have to be transmitted commonly (e.g., to control lamps
or to get sensor data). Nonetheless, compared to native communication technologies, the
throughput is limited and as the time-on-air for each packet is rather long, the influence
of external interference may be substantial. The transmission speed and reception capa-
bilities are highly dependent on the employed hardware and can thus be maximized using
appropriate platforms. During the evaluation process, a promising communication range
of at least 15 m for all considered devices was observed, which is sufficient for in-home
applications. Furthermore, the memory footprint of the CTC implementation is minimal
and allows the deployment on resource-constrained devices.

While existing work on CTC focuses on novel techniques maximizing the throughput
and is mostly confined to academia, this thesis presents a concrete smart home application
using real-world platforms and is a first step towards the actual deployment of CTC in a

62

CHAPTER 7. CONCLUSIONS & FUTURE WORK 63

broader scope. Although kept rather simple and small, the demonstration setup gives a
glance of the potential of CTC in networks consisting of several different heterogeneous
devices, which in particular applies to smart homes. We could show, that thanks to its
general and modular design, X-Burst is feasible for a variety of different devices. Further-
more, its implementation is non-invasive, i.e., no hardware modifications are required. A
simple firmware update can bring CTC capabilities to legacy devices and even allows to
keep the existing communication functionality in place.

Yet, still a prototype, there are several open points which can be addressed in future
work and are discussed in the following.

7.2 Future Work

Improving X-Burst support on Wi-Fi devices. In the current implementation, as
shown in the evaluation, Wi-Fi devices and the Nexus 6P in particular, have the worst
CTC performance with regard to throughput and communication range. Improvements in
RSS sampling rates, alternative reception approaches (e.g., using Wi-Fi’s Channel State
Information (CSI)), as well as decreasing the radio preparation time would be beneficial
in order to achieve a higher throughput and mitigate the influence of external radio in-
terference, as the time-on-air can be reduced. It would further be of interest to divide a
Wi-Fi channel into several subcarriers. This way, not only the sensitivity to external dis-
turbances is decreased, but the generated interference on other ongoing traffic is reduced.

Improving X-Burst in general. In order to increase the robustness of the CTC
mechanism, the implementation of encoding schemes tailored to X-Burst is of interest. The
application of error-correcting codes could help to recover from transmission errors. An-
other possibility would be to adapt the encoding scheme to the data, i.e., to map frequently
used symbols to short durations and use long durations for rarely used symbols only. In
general, however, X-Burst’s performance mainly depends on (and is often limited by) the
hardware characteristics of the participating devices. Currently, the operation properties
(e.g., alphabet and preamble) are derived manually and have to be shared among the
devices at compile time. The computation of the ‘fastest’ possible configuration during
run-time would help to automatically maximize the throughput for each set of devices.

Beyond X-Burst: Design of a smart home application layer. Cross-technology
communication helps to overcome incompatibilities regarding wireless technologies. To
allow a gateway-free, simple and convenient smart home setup as envisioned in the in-
troduction, an application layer is required to allow seamless interaction between various
smart home devices. Furthermore, a device discovery mechanism and addressing scheme
is necessary to automatically add new devices to the network. CTC holds also potential
for other applications besides smart homes. The possibility of direct data exchange be-
tween incompatible devices allows the implementation of channel-coordination schemes to
mitigate cross-technology interference, which is especially of interest in the crowded 2.4
ISM GHz frequency band.

CHAPTER 7. CONCLUSIONS & FUTURE WORK 64

Security is a necessity. An important step towards the actual deployment of CTC-
enabled devices and networks, is the implementation of security mechanisms. As any
device on the same channel can participate in CTC communication, encryption is im-
portant to avoid eavesdropping, or even worse, the external, unwanted control of the
CTC-enabled smart home appliance. A possible scheme could be a pairing process sim-
ilar to the Touchlink commissioning used in ZigBee, where the devices have to be held
very close to exchange keys and to establish a secure connection. In BLE and ZigBee
stacks, encryption primitives are implemented, as both protocols provide the possibility
for secure communication. Hence, their encryption algorithms could possibly be reused to
secure CTC.

Bibliography

[1] Ghidra. A software reverse engineering (SRE) suite of tools developed by NSA’s
Research Directorate in support of the Cybersecurity mission https://ghidra-sre.

org/.

[2] HUAWEI Nexus 6P. https://consumer.huawei.com/uk/support/phones/

nexus-6p/.

[3] IKEA Tr̊adfri GU10. https://www.ikea.com/gb/en/p/

tradfri-led-bulb-gu10-400-lumen-wireless-dimmable-warm-white-60420041/.

[4] Nexmon https://github.com/seemoo-lab/nexmon.

[5] nRF5 SDK. https://www.nordicsemi.com/Software-and-tools/Software/

nRF5-SDK. Accessed: 2020-08-05.

[6] QPython - Python on Android https://www.qpython.com/.

[7] Radiotap https://www.radiotap.org/.

[8] Raspberry Pi 3 Model B+. https://www.raspberrypi.org/products/

raspberry-pi-3-model-b-plus/.

[9] Scapy. Packet crafting for Python2 and Python3 https://scapy.net/.

[10] Wi-Fi: Overview of the 802.11 Physical Layer and Transmitter Measurements.

[11] Smart Home Compatibility: Towards an open Eco System? https://www.

hestiamagazine.eu/smart-home-compatibility-towards-an-open-eco-system,
2019. Accessed: 2020-07-07.

[12] The Greatest Barrier to ‘Smart Home’ Adoption is Com-
plexity, New Study Shows. https://www.strata-gee.com/

the-greatest-barrier-to-smart-home-adoption-is-complexity-new-study-shows/,
2019. Accessed: 2020-07-07.

[13] EmberZNet PRO Zigbee® Protocol Stack Software. https:

//www.silabs.com/products/development-tools/software/

emberznet-pro-zigbee-protocol-stack-software, 2020. Accessed: 2020-07-27.

[14] ZigBee Alliance. https://zigbeealliance.org/, 2020. Accessed: 2020-07-27.

65

https://ghidra-sre.org/
https://ghidra-sre.org/
https://consumer.huawei.com/uk/support/phones/nexus-6p/
https://consumer.huawei.com/uk/support/phones/nexus-6p/
https://www.ikea.com/gb/en/p/tradfri-led-bulb-gu10-400-lumen-wireless-dimmable-warm-white-60420041/
https://www.ikea.com/gb/en/p/tradfri-led-bulb-gu10-400-lumen-wireless-dimmable-warm-white-60420041/
https://github.com/seemoo-lab/nexmon
https://www.nordicsemi.com/Software-and-tools/Software/nRF5-SDK
https://www.nordicsemi.com/Software-and-tools/Software/nRF5-SDK
https://www.qpython.com/
https://www.radiotap.org/
https://www.raspberrypi.org/products/raspberry-pi-3-model-b-plus/
https://www.raspberrypi.org/products/raspberry-pi-3-model-b-plus/
https://scapy.net/
https://www.hestiamagazine.eu/smart-home-compatibility-towards-an-open-eco-system
https://www.hestiamagazine.eu/smart-home-compatibility-towards-an-open-eco-system
https://www.strata-gee.com/the-greatest-barrier-to-smart-home-adoption-is-complexity-new-study-shows/
https://www.strata-gee.com/the-greatest-barrier-to-smart-home-adoption-is-complexity-new-study-shows/
https://www.silabs.com/products/development-tools/software/emberznet-pro-zigbee-protocol-stack-software
https://www.silabs.com/products/development-tools/software/emberznet-pro-zigbee-protocol-stack-software
https://www.silabs.com/products/development-tools/software/emberznet-pro-zigbee-protocol-stack-software
https://zigbeealliance.org/

BIBLIOGRAPHY 66

[15] M. Brown. Apple, Google and Amazon’s plan could finally end
the smart home nightmare. https://www.inverse.com/article/

61830-apple-google-and-amazon-s-smart-home-standard.

[16] H. Brunner. Enabling Bidirectional Cross-Technology Communication on Off-The-
Shelf Wi-Fi Devices, 2019. Seminar Project.

[17] H. Brunner, R. Hofmann, M. Schuß, J. Link, M. Hollick, C. A. Boano, and K. Römer.
Demo: Cross-Technology Broadcast Communication between Off-The-Shelf Wi-Fi,
BLE, and IEEE 802.15.4 Devices. In Proceedings of the 2020 International Conference
on Embedded Wireless Systems and Networks, EWSN ’20, page 176–177, USA, 2020.
Junction Publishing.

[18] K. Chebrolu and A. Dhekne. Esense: Energy Sensing-Based Cross-Technology Com-
munication. IEEE Transactions on Mobile Computing, 12(11):2303–2316, Nov. 2013.

[19] Z. Chi, Y. Li, H. Sun, Y. Yao, Z. Lu, and T. Zhu. B2W2: N-Way Concurrent
Communication for IoT Devices. In Proceedings of the 14th ACM Conference on
Embedded Network Sensor Systems CD-ROM, SenSys ’16, page 245–258, New York,
NY, USA, 2016. Association for Computing Machinery.

[20] Daintree Networks. Getting Started with ZigBee and IEEE 802.15.4. https://www.
coursehero.com/file/20658485/Zigbee-GettingStarted/, 2008. Accessed: 2020-
07-29.

[21] Danalock International ApS. Danalock V3 Smart Lock. https://danalock.com/

products/danalock-v3-smart-lock/.

[22] A. Dunkels, B. Gronvall, and T. Voigt. Contiki - A Lightweight and Flexible Oper-
ating System for Tiny Networked Sensors. In Proceedings of the 29th Annual IEEE
International Conference on Local Computer Networks, LCN ’04, page 455–462, USA,
2004. IEEE Computer Society.

[23] K. D. Foote. A Brief History of the Internet of Things. https://www.dataversity.
net/brief-history-internet-things/, 2016. Accessed: 2020-07-07.

[24] C. Gavrila, V. Popescu, M. Fadda, M. Anedda, and M. Murroni. On the Suitability
of HbbTV for Unified Smart Home Experience. IEEE Transactions on Broadcasting,
pages 1–10, 2020.

[25] F. Gringoli, M. Schulz, J. Link, and M. Hollick. Free Your CSI: A Channel State
Information Extraction Platform For Modern Wi-Fi Chipsets. In Proceedings of the
13th International Workshop on Wireless Network Testbeds, Experimental Evalua-
tion and Characterization, WiNTECH ’19, page 21–28, New York, NY, USA, 2019.
Association for Computing Machinery.

[26] X. Guo, X. Zheng, and Y. He. WiZig: Cross-technology energy communication over
a noisy channel. In Proceedings of IEEE INFOCOM, pages 1–9, 2017.

https://www.inverse.com/article/61830-apple-google-and-amazon-s-smart-home-standard
https://www.inverse.com/article/61830-apple-google-and-amazon-s-smart-home-standard
https://www.coursehero.com/file/20658485/Zigbee-GettingStarted/
https://www.coursehero.com/file/20658485/Zigbee-GettingStarted/
https://danalock.com/products/danalock-v3-smart-lock/
https://danalock.com/products/danalock-v3-smart-lock/
https://www.dataversity.net/brief-history-internet-things/
https://www.dataversity.net/brief-history-internet-things/

BIBLIOGRAPHY 67

[27] J. Hendrickson. How to Control Your Entire Smarthome
Through One App. https://www.howtogeek.com/435765/

how-to-control-your-entire-smarthome-through-one-app/, 2019. Accessed:
2020-07-07.

[28] R. Hofmann. X-Burst: Cross-Technology Communication for Off-the-Shelf IoT De-
vices. Master’s thesis, Graz University of Technology, 2018.

[29] R. Hofmann, C. A. Boano, and K. Römer. X-Burst: Enabling Multi-Platform Cross-
Technology Communication between Constrained IoT Devices. In Proceedings of the
16th IEEE International Conference on Sensing, Communication and Networking
(SECON), pages 1–9. IEEE, 2019.

[30] W. Jiang, Z. Yin, R. Liu, Z. Li, S. M. Kim, and T. He. BlueBee: A 10,000x Faster
Cross-Technology Communication via PHY Emulation. In Proceedings of the 15th
ACM Conference on Embedded Network Sensor Systems, SenSys ’17, New York, NY,
USA, 2017. Association for Computing Machinery.

[31] J. Kastrenakes. It’s really complicated to connect the Home
of the Future. https://www.theverge.com/2018/8/20/17724278/

smart-home-installation-setup-complicated-home-of-the-future-grant-imahara,
2018. Accessed: 2020-07-07.

[32] S. M. Kim and T. He. FreeBee: Cross-Technology Communication via Free Side-
Channel. In Proceedings of the 21st Annual International Conference on Mobile
Computing and Networking, MobiCom ’15, page 317–330, New York, NY, USA, 2015.
Association for Computing Machinery.

[33] A. Koubaa, M. Alves, and E. Tovar. IEEE 802.15.4 for Wireless Sensor Networks:
A Technical Overview. Polytechnic Institute of Porto, Technical Report TR-050702,
2005.

[34] Z. Li and T. He. WEBee: Physical-Layer Cross-Technology Communication via
Emulation. In Proceedings of the 23rd Annual International Conference on Mobile
Computing and Networking, MobiCom ’17, page 2–14, New York, NY, USA, 2017.
Association for Computing Machinery.

[35] K. L. Lueth. IoT 2019 in Review: The 10 Most Relevant IoT Developments of the
Year. https://iot-analytics.com/iot-2019-in-review/, 2020. Accessed: 2020-
07-07.

[36] Meticulous Research. Top 10 Companies in Smart Home Market. https:

//meticulousblog.org/top-10-companies-in-smart-home-market/, 2020. Ac-
cessed: 2020-08-22.

[37] M. Moazzami, G. Xing, D. Mashima, W. Chen, and U. Herberg. SPOT: A
smartphone-based platform to tackle heterogeneity in smart-home IoT systems. In
2016 IEEE 3rd World Forum on Internet of Things (WF-IoT), pages 514–519, 2016.

https://www.howtogeek.com/435765/how-to-control-your-entire-smarthome-through-one-app/
https://www.howtogeek.com/435765/how-to-control-your-entire-smarthome-through-one-app/
https://www.theverge.com/2018/8/20/17724278/smart-home-installation-setup-complicated-home-of-the-future-grant-imahara
https://www.theverge.com/2018/8/20/17724278/smart-home-installation-setup-complicated-home-of-the-future-grant-imahara
https://iot-analytics.com/iot-2019-in-review/
https://meticulousblog.org/top-10-companies-in-smart-home-market/
https://meticulousblog.org/top-10-companies-in-smart-home-market/

BIBLIOGRAPHY 68

[38] Nordic Semiconductors. Poly-Control Aps employs nRF52832 to create retrofit smart
door lock. https://www.nordicsemi.com/news/2017/10/poly-control%20aps%

20danalock%20v3%20smart%20lock, Accessed: 2020-08-03.

[39] NXP Semiconductors. ZigBee Light Link User Guide, 2016.

[40] NXP Semiconductors. ZigBee Cluster Library (for ZigBee 3.0) User Guide, 2018.

[41] M. Schulz, F. Gringoli, D. Steinmetzer, M. Koch, and M. Hollick. Massive Reac-
tive Smartphone-Based Jamming Using Arbitrary Waveforms and Adaptive Power
Control. In Proceedings of the 10th ACM Conference on Security and Privacy in
Wireless and Mobile Networks, WiSec ’17, page 111–121, New York, NY, USA, 2017.
Association for Computing Machinery.

[42] M. Schulz, D. Wegemer, and M. Hollick. Nexmon: Build Your Own Wi-Fi Testbeds
With Low-Level MAC and PHY-Access Using Firmware Patches on Off-the-Shelf
Mobile Devices. In Proceedings of the 11th ACM International Workshop on Wire-
less Network Testbeds, Experimental Evaluation & Characterization, WiNTECH ’17,
pages 59–66, New York, NY, USA, 2017. ACM.

[43] M. Schuß, C. A. Boano, M. Weber, M. Schulz, M. Hollick, and K. Römer. JamLab-
NG: Benchmarking Low-Power Wireless Protocols under Controllable and Repeatable
Wi-Fi Interference. In Proceedings of the 2019 International Conference on Embed-
ded Wireless Systems and Networks, EWSN ’19, page 83–94, USA, 2019. Junction
Publishing.

[44] Silicon Labs. UG250: Thunderboard Sense User’s Guide, 2017.

[45] E. Sisinni, A. Saifullah, S. Han, U. Jennehag, and M. Gidlund. Industrial Internet of
Things: Challenges, Opportunities, and Directions. IEEE Transactions on Industrial
Informatics, PP:1–1, 2018.

[46] M. Spörk, C. A. Boano, M. Zimmerling, and K. Römer. BLEach: Exploiting the Full
Potential of IPv6 over BLE in Constrained Embedded IoT Devices. In Proceedings of
the 15th ACM Conference on Embedded Network Sensor Systems, SenSys ’17, New
York, NY, USA, 2017. Association for Computing Machinery.

[47] B. Stottelaar. Hacking the IKEA TRÅDFRI. https://github.com/basilfx/

TRADFRI-Hacking, 2020. Accessed: 2020-07-27.

[48] Texas Instruments. SimpleLink CC2650 wireless MCU LaunchPad Development Kit.
https://www.ti.com/tool/LAUNCHXL-CC2650.

[49] K. Townsend. Getting Started with Bluetooth Low Energy. O’Reilly, 2014.

[50] WIRED Brand Lab. Why the Typical Smart Home Has Some Growing Up To Do.
https://www.wired.com/brandlab/2018/10/typical-smart-home-growing/. Ac-
cessed: 2020-07-07.

https://www.nordicsemi.com/news/2017/10/poly-control%20aps%20danalock%20v3%20smart%20lock
https://www.nordicsemi.com/news/2017/10/poly-control%20aps%20danalock%20v3%20smart%20lock
https://github.com/basilfx/TRADFRI-Hacking
https://github.com/basilfx/TRADFRI-Hacking
https://www.ti.com/tool/LAUNCHXL-CC2650
https://www.wired.com/brandlab/2018/10/typical-smart-home-growing/

BIBLIOGRAPHY 69

[51] Z. Yin, Z. Li, S. M. Kim, and T. He. Explicit Channel Coordination via Cross-
Technology Communication. In Proceedings of the 16th Annual International Con-
ference on Mobile Systems, Applications, and Services, MobiSys ’18, page 178–190,
New York, NY, USA, 2018. Association for Computing Machinery.

[52] Z. Yu, C. Jiang, Y. He, X. Zheng, and X. Guo. Crocs: Cross-Technology Clock
Synchronization for WiFi and ZigBee. In Proceedings of the 2018 International Con-
ference on Embedded Wireless Systems and Networks, EWSN ’18, page 135–144, USA,
2018. Junction Publishing.

[53] X. Zhang and K. G. Shin. Gap Sense: Lightweight coordination of heterogeneous
wireless devices. In Proceedings of IEEE INFOCOM, pages 3094–3101, 2013.

[54] Zolertia. Zolertia Firefly Revision A2 Internet of Things hardware development plat-
form, for 2.4-GHz and 863-950MHz, IEEE 802.15.4, 6LoWPAN and ZigBee Appli-
cations, 2017.

	Introduction
	Problem Statement
	Thesis Contributions
	Thesis Structure

	Background
	Main Wireless Technologies Operating in the 2.4 GHz ism Band
	ZigBee
	Bluetooth Low Energy (ble)
	Wi-Fi

	Cross-Technology Communication
	X-Burst
	Concept
	Requirements
	Modular Architecture
	Achievable Throughput

	Employed Hardware
	Wi-Fi Devices
	ZigBee Devices
	ble Devices

	Employed Software
	Contiki
	Nexmon
	EmberZNet PRO sdk
	nRF5 sdk

	Related Work
	Building a Smart Home using Gateways
	Vendor-specific Hubs
	Smart Home Gateways
	Voice Assistants
	Generic Gateway Approaches
	Limitations

	Existing Cross-Technology Communication Schemes
	Packet Level Modulation
	Physical Layer Emulation
	Limitations

	Enabling X-Burst on Wi-Fi Devices
	Overview
	Software Architecture
	Transmission
	Reception
	General Considerations
	Channel Selection
	Alphabet Computation

	Design and Implementation
	Overview
	Bringing X-Burst on the Nexus 6P
	Design Challenges
	Software Implementation
	Limitations

	Bringing X-Burst on the IKEA Trådfri Light Bulb
	Design Challenges
	Software Implementation
	Coexistence with the existing ZigBee Stack
	Limitations

	Bringing X-Burst on the DanaLock Door Lock
	Design Challenges
	Software Implementation
	Coexistence with the existing ble Stack
	Limitations

	Bringing it all Together: Demonstrator

	Evaluation
	X-Burst Properties
	Experimental Setup
	Nominal Throughput
	Packet Reception Rate in the Presence of external RF Interference
	Communication Range

	Coexistence with existing Communication Stacks
	Memory Footprint
	Coexistence of ZigBee and ctc
	Coexistence of ble and ctc

	Demonstrator

	Conclusions & Future Work
	Conclusion
	Future Work

	Bibliography

