
Schweiger Manuel, BSc

Connecting IoT Devices to the Cloud
using Message Queue Protocols

Master’s Thesis

to achieve the university degree of

Master of Science

Master’s degree programme: Computer Science

submitted to

Graz University of Technology

Supervisors

Dipl.-Ing. Dr.techn. BSc Georg Macher
Dipl.-Ing. BSc Michael Krisper

Institute of Technical Informatics
Head: Univ.-Prof. Dipl.-Infrom.Dr.sc.ETH Kay Uwe Römer

Graz, August 2020

Affidavit

I declare that I have authored this thesis independently, that I have not
used other than the declared sources/resources, and that I have explicitly
indicated all material which has been quoted either literally or by content
from the sources used. The text document uploaded to tugrazonline is
identical to the present master‘s thesis.

Date Signature

ii

Danksagung

An dieser Stelle möchte ich mich bei all denjenigen bedanken, die mich
während dieser Masterarbeit und meiner Studienjahre unterstützt und
motiviert haben.

Zuerst gebührt mein Dank den Herren Dipl.-Ing. Michael Krisper und Dr.
Georg Macher vom Institut für Technische Informatik an der TU Graz, die
meine Masterarbeit betreut und begutachtet haben. Trotz der speziellen
Umstände in dieser ungewöhnlichen Zeit wurden immer Wege gefunden
für eine gute Zusammenarbeit. Für die hilfreichen Anregungen und die
konstruktive Kritik bei der Erstellung dieser Arbeit möchte ich mich herzlich
bedanken.

Des Weiteren gilt mein Dank meinen beiden Arbeitgebern, Volker Knapp
und Michael Mally, die mich täglich fördern sowie motivieren und mir diese
Masterarbeit in ihrem Unternehmen primtec ermöglichten.

Ebenfalls bedanke ich mich bei meinen Eltern, Heidi und Fredi, die mich
während meines Studiums stets unterstützt und immer an mich geglaubt
haben.

Nicht zuletzt gebührt mein Dank Alexandra, die immer für mich da ist
und auf deren Unterstützung ein großer Teil meines erfolgreichen Studiums
beruht.

iii

Abstract

In the course of this work, the foundation for the development and imple-
mentation of an IoT/Cloud system is to be laid, with the aim of equipping
each product of the Styrian IT company primtec GmbH with IoT function-
alities to be able to carry out maintenance and support of these remotely.
At present, it is not possible to carry out remote maintenance, which is
reflected in enormous time and cost expenditures for the company. The
industrial environment in which primtec’s customers are located depicts
a further challenge due to its restrictions imposed by companies’ internal
network policies and firewalls.

The first part of this thesis focuses on the concepts Cloud and IoT by giving
a deep insight into their history, technology, and influence on science. Dur-
ing the second part, challenges and problems concerning primtec and its
customers are listed and evaluated, from which the implementation require-
ments were then derived. In the final part, a solution gets developed and
implemented by introducing a CloudIoT extension for the existing products.
This extension includes an intern IoT machine-to-machine communication
framework by using a RabbitMQ message broker and a so-called orchestrator
which handles the data exchange with the Cloud. In addition, this thesis
also provides a general comparison between the three most comprehensive
cloud providers and an analysis of the essential messaging protocols used
in connection with IoT.

Since the developed framework is a basic concept, additional improve-
ments and extensions are proposed to bring the final product to a sufficient
production level in terms of security and usability.

iv

Kurzfassung

Im Zuge dieser Arbeit sollen Grundsteine für die Entwicklung und Umset-
zung eines IoT/Cloud-Systems gelegt werden, mit dem Ziel jedes Produkt
des steirischen IT-Unternehmens primtec GmbH mit IoT-Funktionalitäten
auszustatten um Wartung und Support dieser aus der Ferne durchführen
zu können. Momentan ist eine Fernwartung nicht möglich, woduch hohe
Zeit- und Kostenaufwände für das Unternehmen entstehen. Das industrielle
Umfeld der Kunden primtecs stellt durch firmeninterne Netzwerkrichtlinien
und Firewalls eine weitere Herausforderung dar.

Der erste Teil dieser Arbeit fokussiert sich auf die Konzepte Cloud und
IoT, indem ein detaillierter Einblick in deren Geschichte, Technologie und
Einfluss auf die Wissenschaft gegeben wird. Im zweiten Teil werden die
Herausforderungen und Probleme, die primtec und dessen Kunden betref-
fen, analysiert und bewertet, woraus dann wiederum die Anforderungen an
die Implementierung abgeleitet werden. Im finalen Teil wird eine Lösung
entwickelt und implementiert, indem eine Cloud-Erweiterung für die beste-
henden Produkte eingeführt wird. Diese Erweiterung umfasst ein internes
IoT Machine-to-Machine-Kommunikations-Framework unter Verwendung
eines RabbitMQ Message Brokers und eines sogenannten Orchestrators, der
den Datenaustausch mit der Cloud abwickelt. Darüber hinaus wird in dieser
Arbeit ein allgemeiner Vergleich zwischen den drei größten Cloud-Anbietern
sowie eine Analyse der wichtigsten Messaging-Protokolle, die im Zusam-
menhang mit IoT verwendet werden, erstellt.

Da es sich bei dem entwickelten Framework um ein Basiskonzept handelt,
werden zusätzliche Verbesserungen und Erweiterungen vorgeschlagen, um
das Endprodukt in Bezug auf Sicherheit und Benutzerfreundlichkeit auf ein
ausreichendes Produktionsniveau zu bringen.

v

Contents

Abstract iv

Kurzfassung v

1 Introduction 1
1.1 Structure . 2

1.2 Introduction to primtec . 3

1.3 Products by primtec . 3

1.4 The Internet of Things . 6

1.5 Cloud Computing . 8

1.5.1 Cloud Service Models 9

1.5.2 Cloud Deployment Models 11

1.6 Messaging Protocols . 11

1.6.1 MQTT - Message Queuing Telemetry Transport Protocol 12

1.6.2 AMQP - Advanced Message Queuing Protocol 14

1.6.3 HTTP - Hyper Text Transport Protocol 16

1.6.4 WebSocket . 17

1.6.5 WebRTC . 18

2 Background 19
2.1 The three big Cloud Provider 19

2.1.1 AWS - Amazon Web Service 19

2.1.2 Microsoft Azure . 20

2.1.3 GCP - Google Cloud Platform 20

2.2 Message Brokers . 20

2.2.1 RabbitMQ . 21

2.2.2 Eclipse Mosquitto . 22

2.2.3 HiveMQ . 22

2.2.4 Other Message Brokers 22

vi

Contents

3 Related Work 24
3.1 Scientific Work related to Internet of Things 24

3.2 Scientific Work related to Cloud 26

3.3 Scientific Work related to Message Protocols and Message
Brokers . 27

4 Problem and Requirements 30
4.1 Current Situation . 30

4.2 Constraints . 31

4.3 Requirements . 31

4.3.1 R01: Reliability and Quality 32

4.3.2 R02: Confidentiality, Integrity, and Authenticity 33

4.3.3 R03: Restricted access to the World Wide Web 33

4.3.4 R04: Web Interface . 34

4.3.5 R05: Easy Integration to existing Products 35

4.3.6 R06: Logging to the Cloud 35

4.3.7 R07: Monitoring Data 36

4.3.8 R08: Remote Commands 36

4.3.9 R09: Statistics . 37

4.3.10 R10: Notification System 38

4.3.11 R11: Availability . 38

5 Contribution 40
5.1 Review and Comparison of the Cloud Providers 41

5.1.1 Free Trial . 41

5.1.2 Pricing Examples . 42

5.1.3 Choosing a Cloud Provider 45

5.1.4 Message Broker Comparison 45

5.2 General Architecture . 45

5.3 RabbitMQ Message Broker . 48

5.4 The Client Software . 49

5.4.1 NLog Configuration . 49

5.4.2 Log, Heartbeat and Command Service 51

5.5 The Orchestrator . 52

5.6 The Cloud . 53

5.7 The Web Service . 56

vii

Contents

6 Discussion and Evaluation 59

7 Limitations and Future Work 63
7.1 Security Improvements . 63

7.2 Usability Improvements . 64

7.3 Scalability Limitations . 64

7.4 Maturity of the Implementation 65

7.5 Threats to Validity . 65

8 Conclusion 66

Bibliography 68

viii

List of Figures

1.1 primtec GmbH RFID technology on a production line 2

1.2 primtec GmbH Packing Table 4

1.3 IP stack with IoT Technologies 12

1.4 Structure of the data transmission system using MQTT 13

1.5 Workflow of an MQTT connection 14

1.6 Structure of the data transmission system using AMQP 16

1.7 A Uniform Resource Identifier example 17

4.1 Website Concept . 34

5.1 Architecture Sketch of the IoT/Cloud Framework 46

5.2 The RabbitMQ configuration file 48

5.3 The NLog configuration file . 50

5.4 Configuration of the Google Cloud Database 54

5.5 The Google Cloud Database Dashboard 55

5.6 Database architecture . 56

5.7 Screenshot of the Web User Interface 57

5.8 The final architecture of the implementation 58

ix

List of Tables

4.1 Requirements and their importance 32

5.1 Hardware Details . 43

5.2 Google Cloud Provider Pricing 44

5.3 AWS Pricing . 44

5.4 Microsoft Azure Pricing . 44

6.1 Requirements and their NPLF rating 59

x

1 Introduction

Internet of Things (IoT) and Cloud are two highly innovative concepts which
are used in many areas today. Global players such as Google, Microsoft, and
Amazon derive the most of their profits from their cloud platforms, which
are being used by more and more companies due to their high scalability,
low costs, and simplicity. The Styrian IT company primtec GmbH also wants
to take a step towards advanced cloud technology. The basis for this is a
communication and control platform which will be researched, analyzed,
and implemented in this master thesis.

primtec is a company that focuses on the automatic identification of items
using the RFID technology as well as providing custom warehouse manage-
ment solutions. RFID (radio-frequency identification) describes the recognition
of so-called RFID-tags, which are usually small stickers bond to the objects
to be identified. By emitting an electromagnetic field using a dedicated
RFID-reader device, these tags get triggered and send digital data, usually
a unique code used for identification.

These RFID solutions by primtec are spread worldwide, but remote moni-
toring them is currently not possible. In case of an error, it can take hours
until the failure is recognized by an employee at the customer’s premises
and several additional hours until according error reports are forwarded to
primtec.

This work aims to develop and implement the base of an ”Internet of Things”
framework combined with cloud functionalities suited for an industrial
environment. This framework should make it possible to monitor these
devices, detect errors early, and provide additional features such as remote
updates. It should be easy to utilize in existing applications while also
providing the necessary functionalities to establish a connection with a
cloud platform automatically.

1

1 Introduction

Figure 1.1: primtec GmbH RFID technology on a production line, taken from primtec-IoT
(2020)

1.1 Structure

This chapter provides a brief introduction to primtec’s products, IoT, and
its architecture, as well as the definitions of cloud services and platforms.

Chapter 2 introduces and compares the three cloud provider Google Cloud
Platform, Amazon Web Service, and Microsoft Azure. So-called message
brokers are described in the concluding section.

Scientific related work to the topics Internet of Things, Cloud Computing, and
Message Brokers and Protocols can be found in chapter 3.

The current situation of primtec and the constraints imposed by the in-
dustrial sector are explained in chapter 4. From this, requirements for the
implementation of this software are defined and broken down in detail.

Chapter 5 describes the implemented solution by focusing on each module,
which are the messaging broker, the client software, the orchestrator, the
cloud, and the web interface, separately.

2

1 Introduction

Chapter 6 provides an assessment of how each requirement is met with the
current implementation.

Limitations, improvements, and future work are described in chapter 7.

Finally, in chapter 8, the whole thesis is briefly summarized once more, and
a conclusion is made.

1.2 Introduction to primtec

primtec GmbH is a company located in Graz (Austria), which creates so-
lutions for digitization in various industries and business areas. primtec’s
solutions include RFID picking stations, inventory systems, warehouse
management, and logistics technologies, all of which are supported and
automated by RFID technology. The customers are companies from industry,
logistics, medical technology, and public institutions, whereby in all areas,
the simple and error-free handling of the software plays an important role.

1.3 Products by primtec

This section shows two basic versions of primtec products currently used by
customers worldwide: the Packing Table and the Collector. They do not have
any decentralized data acquisition and are therefore the first products to
be equipped with the cloud systems presented in this thesis. Both products
have been developed for a Windows 10 environment and show information
on a connected display. These devices can be connected to the in-house
network either by LAN or WIFI but do not need access to the Internet.

The Packing Table

The Packing Table is one of primtec’s products for use in warehouses and
helps to pack products that have to be sent to customers correctly. It consists
of an ergonomic table, a computing unit with a monitor, an RFID reader

3

1 Introduction

Figure 1.2: The primtec GmbH Packing Table, taken from primtec-PackingTable (2020)

4

1 Introduction

mounted under the table surface, and an optional bar code scanner. It is
usually connected to a data source (e.g., SAP) and displays all the items
belonging to a particular order. While placing these articles in a box standing
on the table, the RFID labels are scanned and compared with the nominal
value. The display shows which items are missing or incorrectly placed, and
if each correct item is present, the user can complete the order by pressing a
button on the display.

Since the packing table uses the RFID technology, a prerequisite is that all
items are tagged with an RFID tag. However, in case of a broken RFID label,
the bar code scanner can be used as a fallback.

Each packing table uses a local database (SQLite) for logging. The RFID
tags read by the scanner get decoded and written into a database, as well
as connection changes to the reader, network, or other peripheral devices.
Another essential piece of information is the exact listing of each item of the
completed order. If an error appears, it is crucial to know which items are
shipped in which box.

Since the packing table can process hundreds of tags simultaneously, many
log entries can appear simultaneously. It is of high importance that no
log entries are lost, as this would distort the traceability of the actions
performed by the user. Missing tags or inaccurately recognized tags can
lead to incorrectly shipped products, which can have fatal consequences,
especially in the medical field. The timing of the logs plays a minor role, so
real-time data transfer is not necessary.

The packing table does not feature an update functionality. Therefore, if a
software update is required, a primtec technician must manually update
the program, either locally or remotely, using a screen-sharing software like
Teamviewer1.

The Data Collector

The Data Collector is a software module by primtec used in several custom
made solutions in many different scenarios like production lines or supply

1https://www.teamviewer.com/en/

5

1 Introduction

chains. It consists of two RFID readers, a computing unit, as well as a
display. It covers two functionalities: adding a tag entry to a list shown on
the display when an RFID tag gets read by the scanner and removing the
entry from the list if the RFID tag is departed. These entries are written to a
local database.

These two basic functionalities are an essential requirement for many prod-
ucts and projects by primtec. An example would be a production line where
each item must be tracked as it passes through a particular station or ma-
chine. Since it is often the case that several items pass the reader within one
second, fast evaluation and reporting are crucial to ensure a correct and
error-free process.

Similar to the packing table, there is no decentralized logging or update
mechanism, and real-time logging is not relevant, whereas the completeness
and integrity of the data are crucial.

1.4 The Internet of Things

The Internet is a dynamic technology still undergoing constant changes
and expansions. It started as a platform where people can connect and
communicate with each other and was hence mostly a human-to-human
(H2H) system. The term Internet of Things began to become popular in the
late 90s and described an autonomous network of smart devices based on
RFID identification. As stated by K. Chopra, K. Gupta, and A. Lambora
(2019): ”The next upcoming form of communication that uses Internet as
the underlying technology is The Internet of Things (IoT). IoT extends
the capabilities of Internet to enable machine-to-machine communication
(M2M).” This means that everyone and everything can communicate with
each other. This change opens a whole new world of possibilities since data
can be sent automatically by the smallest devices, in terms of processing
power, to large computer clusters, which process and analyze this data and
thus invoke specific actions based on this data that could otherwise not be
processed on small devices.

6

1 Introduction

As described in Dorsemaine et al. (2015), billions of objects will soon be
connected and communicating with each other without any need for hu-
man interference. Smart objects will take over control of daily routines
and communicate with each other. An illustrative example of this would
be a temperature sensor that measures the current temperature inside a
greenhouse and sends the data to a cloud platform. There, an unusually
low temperature can be detected based on past temperature changes and
with the help of machine learning. The cloud calculates the required power
of the heaters and sends the ”heat-command” to the corresponding heaters
inside the greenhouse. These actions only take a few seconds, on a controller,
inside a mini amateur greenhouse for under 100$.

We live in a world where everything is becoming smarter, more intelligent,
and more connected. The consumer market is already adapting accordingly,
and huge profits are made by selling smart devices such as Amazon Alexa,
smart light bulbs, or similar devices. Other examples are intelligent houses
equipped with smart light bulbs, door locks and loudspeakers, smart cities
with intelligent traffic lights, and smart cars with car-to-car communication
and intelligent car-to-infrastructure communication.

An Architecture for the Internet of Things

Numerous technologies are associated with IoT, such as wireless sensors,
networks, barcodes, RFID, NFC, low energy wireless communications (Lo-
RaWAN), Bluetooth Low Energy, Zigbee, Narrowband IoT, and cloud com-
puting (Li, Xu, and Zhao (2014)). Even though IoT and all related technolo-
gies differ significantly, the base architecture is identical. Dorsemaine et al.
(2015) described the underlying architecture based on four levels:

1. Local Environment: These are the actual IoT devices connect through
a wired (including Ethernet and optic fiber) or wireless technology
(including Bluetooth and WIFI) within their environment. Local pickup
points (optional) can gather the data from weak devices, in terms of
battery or computing power. They can act as a gateway to the other
layers of architecture.

2. Transport: This layer is used for communication between the IoT de-
vices (local environment) and the command servers (e.g., cloud).

7

1 Introduction

3. Storage and data mining: The storage and data mining levels act as
the ”brain” in an IoT network. It usually takes place inside the cloud
(described in 1.5), which provides a massive amount of processing
power and storage capacity.

4. Availability (GUI, API): The final level is used to access the data either
in the form of a graphic user interface (GUI) or an application pro-
gramming interface (API). An example of a GUI would be a website
that shows a dashboard containing charts and graphs of the data. An
API, on the other hand, is used to make the data accessible for other
programs that can further process it.

In this thesis, we use the following definition for IoT by Dorsemaine et al.
(2015): ”Group of infrastructures interconnecting connected objects and
allowing their management, data mining and the access to the data they
generate”.

1.5 Cloud Computing

The definition and taxonomy of the term cloud has and is steadily changing
over the last years. Fatemi Moghaddam et al. (2015) define cloud computing
as: ”Cloud computing is a technology that uses the concepts of virtualization,
processing power, storage, connectivity, and sharing to provide a pool of
resources, store and share them between various devices via a broad network
(i.e., Internet) to offer on-demand services to end-users in compliance with
the concepts of isolation, security, distribution, and elasticity”.

Due to the flexibility, the low costs, and the extensibility, cloud computing
is one of the most prominent keywords in the IT sector and industry
(Panetta (2020)). Today there are three big global players dedicated to cloud
computing and providing public cloud functionality: Amazon Web Services
(AWS) 2., Microsoft Azure 3, and Google Cloud 4, presented in 2.1. Alibaba

2https://aws.amazon.com/
3https://azure.microsoft.com/
4https://cloud.google.com/

8

1 Introduction

Cloud 5 would be another big global player that has gained much popularity,
especially in recent years, but is out of scope for this thesis.

1.5.1 Cloud Service Models

According to the National Institute of Standards and Technology (Mell and
Grance (2011)), also called NIST, three different kinds of cloud service
models are defined:

IaaS - Infrastructure-as-a-Service

”The capability provided to the consumer is to provision processing, storage, net-
works, and other fundamental computing resources where the consumer is able
to deploy and run arbitrary software, which can include operating systems and
applications. The consumer does not manage or control the underlying cloud infras-
tructure but has control over operating systems, storage, and deployed applications;
and possibly limited control of select networking components (e.g., host firewalls).”
(Mell and Grance (2011))

IaaS describes the virtualization of hardware, servers, operating systems,
and the physical network. Developers can define and configure these com-
ponents and, within certain limits, use it afterward as if it were their own.
Examples would be the Google Compute Engine 6, which is part of the Google
Cloud Platform, or most products of Amazon Web Services and Microsoft
Azure. IaaS is the most flexible of all cloud service models - the client
can completely control the infrastructure, resources can be purchased on-
demand, and the computational power is scalable based if needed.

PaaS - Platform-as-a-Service

”The capability provided to the consumer is to deploy onto the cloud infrastructure
consumer-created or acquired applications created using programming languages,

5https://www.alibabacloud.com/
6https://cloud.google.com/compute

9

1 Introduction

libraries, services, and tools supported by the provider. The consumer does not
manage or control the underlying cloud infrastructure including network, servers,
operating systems, or storage, but has control over the deployed applications and
possibly configuration settings for the application-hosting environment.” (Mell
and Grance (2011))

PaaS virtualizes the software back-ends, including run-time environments,
virtual machines, and libraries. An example would be AWS Elastic Beanstalk 7,
which can be used to deploy, manage, and scale web applications imple-
mented in, for example, ASP.NET. The advantage is the flexibility regarding
the resources, which can be scaled dynamically, the accessibility for devel-
opers, and the simplification of deployment workflows.

SaaS - Software-as-a-Service

”The capability provided to the consumer is to use the provider’s applications
running on a cloud infrastructure. The applications are accessible from various
client devices through either a thin client interface, such as a web browser (e.g.
web-based email), or a program interface. The consumer does not manage or control
the underlying cloud infrastructure, including network, servers, operating systems,
storage, or even individual application capabilities, with the possible exception
of limited user-specific application configuration settings.” (Mell and Grance
(2011))

The virtualization of specific applications and front-ends is called SaaS.
The advantage of SaaS is that applications can be hosted on cloud servers
and be accessed from all around the world without the need for client-side
installation, maintenance, and updating. Usually, a standard web browser,
such as Google Chrome or Mozilla Firefox, is sufficient to use these online
apps. Dropbox, Cisco WebEx, and WhatsApp Web are commonly used
examples (some of these SaaS applications provide downloadable software
in addition, which is not considered as SaaS).

7https://aws.amazon.com/elasticbeanstalk/

10

1 Introduction

1.5.2 Cloud Deployment Models

In addition to the described cloud service models, the NIST also defined
four deployment models for clouds (Mell and Grance (2011)):

• Private Cloud: It describes a cloud hosted for exclusive use by a single
organization. It is owned and managed by the organization or a third
party.

• Community Cloud: This service model stands for a cloud hosted for ex-
clusive use by a specific community of consumers/organizations with
shared concerns. It may be owned by one or more of the organizations
or a third party.

• Public Cloud: Public cloud, on the other hand, describes a model
where the cloud is hosted by a company, academic or governmental
organization and is used by the general public.

• Hybrid Cloud: A hybrid cloud is a combination of the two or more
models described above.

1.6 Messaging Protocols

IoT devices and cloud servers need to communicate with each other. There-
fore languages with different grammar and guidelines, standardized shapes,
and certain flexibility are required. These languages must be recognizable
and processable by all devices - the World-Wide-Web, E-Mails, or any kind
of data exchange, would otherwise not be possible. The Internet today uses
a plethora of protocols, each with specific purposes for different layers of
abstraction (ISO/OSI stack), such as DNS for resolution of names to IP
addresses, TCP for reliable communication of packets, FTP for file trans-
fers, and HTTP as transfer-protocol. Although they are made for different
purposes and have different characteristics, they are based on the internet
protocol stack, as shown in Figure 1.3.

Assuming we have a cloud server, also known as the data requestor, and
multiple IoT devices, the data providers, the only thing missing is the
middleware, including the message protocol best suited for this purpose. It
should handle the connection between data requestor and data providers,

11

1 Introduction

Figure 1.3: IP stack with IoT Technologies, taken from Naik (2017)

while also validating each participant. Over the years, different protocols
of this kind have emerged, all associated with different advantages and
disadvantages and suited for specific requirements.

As claimed by Naik (2017), choosing the right messaging protocol can be
a challenging and daunting task for organizations, and therefore four of
the most popular and widely accepted protocols in IoT are described and
compared in this section: MQTT, AMQP, HTTP, WebSockets, and WebRTC.

1.6.1 MQTT - Message Queuing Telemetry Transport
Protocol

MQTT was introduced in 1999 and is designed in a very simple and light-
weight way. It is often used in large networks with weak computational
devices. MQTT is a publish/subscribe protocol, which means that a client,
for example, a smart temperature sensor, publishes its data to a specific
channel, while another client can subscribe to this channel and thus receives
all data. A so-called message broker takes care of all channels and ensures
that all subscribed clients receive the corresponding data. Additionally, the
broker can save the data for future clients, which means that all data from
the past is transmitted if a client subscribes to a channel. The basic structure
of an MQTT data transmission system is shown in Figure 1.4

12

1 Introduction

Figure 1.4: Structure of the data transmission system using MQTT, taken from Uy and Nam
(2019)

The payload of an MQTT message can take up to 256 megabytes, which is
usually sufficient to transmit logs and sensor data. The data itself is sent in
plain text, which means that MQTT does not feature any kind of encryption,
but due to the fact that messages are sent over TCP, TLS/SSL can take care
of the security and integrity.

MQTT features three levels of ”Quality of Service” (QoS) which can be
chosen by the client:

• At most once: Messages sent with this QoS follow the ”fire and forget”
principle, which means that each message is sent without a guarantee
of delivery. The message broker does not store them, and no data is
re-transmitted.

• At least once: This level guarantees that messages are received by the
subscriber. The publisher stores and resends the message until a so-
called ”PUBACK” (publish acknowledgement) package is received.

• Exactly once: ”Exactly once” is the last and most time-consuming QoS.
A ”handshake” is performed to guarantee that the message is received
once by the subscriber.

A workflow of the ”At most once” QoS can be seen in Figure 1.5. Client-1
connects to the MQTT network while Client-2, which is already connected,
publishes a message to the ”Log” channel. As soon as Client-1 subscribes to
”Log”, it receives the message from Client-2, which in the meantime, has
been stored at the broker.

The whole documentation and specification of MQTT can be found at the
”OASIS Open” homepage (OASIS-Open (2020))

13

1 Introduction

Figure 1.5: Workflow of an MQTT connection with the least Quality of Service, redrawn
from Wikipedia (2020)

1.6.2 AMQP - Advanced Message Queuing Protocol

AMQP, developed in 2003, is another publish/subscribe based protocol
using a message broker as middleware, but in contrast to MQTT, features
additionally a request/response system as well as a wide range of features
such as reliable queuing, topic-based publish/subscribe messaging, flexible
routing and transactions (Naik (2017)).

The main difference to MQTT is that messages are not routed directly to
the consumer but instead, are sent to a so-called ”exchange” (Uy and Nam
(2019)). These exchanges can be compared to post offices that distribute
copies of the messages to queues, according to predefined rules called
”bindings”. Clients can subscribe to these queues and therefore receive the
messages automatically or fetch them on demand. The queue/exchange
data transmission system can be seen in Figure 1.6. Four different routing
algorithms, which can be used by the exchanges, are supported.

14

1 Introduction

Direct Exchange

”Direct Exchange” can be used both for ”unicast”, which means a single
message recipient, and for ”multicast”, where several message receivers are
desired. This algorithm utilizes a ”routing key” k used by the queue to bind
on a particular exchange. If a message enters the exchange with a routing
key r, the exchange routes the message to the queue if a rule k = r was
defined (RabbitMQ (2020)).

Fanout exchange

The ”Fanout Exchange” can be compared to the MQTT topic subscrip-
tion. The routing key, if defined, is ignored, and incoming messages are
distributed as copies to all bound queues (RabbitMQ (2020)).

Topic Exchange

If messages can have specific types, the ”Topic Exchange” should be used. If
the message’s routing key matches a pattern defined during the binding of
the queue to the exchange, the messages get delivered (RabbitMQ (2020)).

Headers Exchange

When the exchange uses the ”Headers Exchange” algorithm, the routing key
is ignored; instead, specific attributes are taken from the message header.
The message gets distributed from the exchange to the queue if the header’s
value matches a value specified in the binding (RabbitMQ (2020)).

Similar to MQTT, AMQP also builds upon TCP as transport-protocol with
TLS/SSL for security, and it also features the same QoS levels as described
in 1.6.1. While sending messages, publishers can attach meta-data, the so-
called ”message attributes”, which is, with a few exceptions, not visible to
the broker and can be used by the receiving applications.

15

1 Introduction

Figure 1.6: Structure of the data transmission system using AMQP, taken from Uy and Nam
(2019)

1.6.3 HTTP - Hyper Text Transport Protocol

HTTP, developed by Tim Berners-Lee at the Cern in 1989 and released
in 1997, is an application protocol to communicate between servers and
clients. It functions as a request-response protocol, which means that the
client requests data, and the server responds to it. In contrast to AMQP
and MQTT, HTTP does not use topics to which messages are related to, but
instead, it uses an ”Universal Resource Identifier” (URI) which consists out
of:

• Scheme: The scheme specifies the context behind the URI. The software
which is used to access the URI knows in consequence how to interpret
the requested data. Common schemes are HTTP, HTTPS, FTP, file and
mailto.

• Authority: The authority contains an optional and according to RFC
3986 obsolete userinfo and the host. The host can either be a DNS
registered name or an IP address, followed by an optional port.

• Path: The path is a sequence of segments separated by a slash and
usually relates to the file path on the corresponding server. It ends
either at the end of the URI, at a hash symbol, or a question mark.

• Query: If the path alone is not sufficient to identify the requested data,
an optional query can be used introduced by a question mark. Queries
are often used if data is saved to a database.

• Fragment: Fragments, identifiable by the prefix ”#”, can be used to
refer to specific segments within the requested resource. An example
would be the URI to a particular section on a website.

16

1 Introduction

Figure 1.7: A Uniform Resource Identifier example

Real-time data transfer is not possible with HTTP since the client always has
to perform a data request. This means that, if a website shows, for example,
the live state of a soccer game, the client must request the intermediate state
permanently in a defined time interval. This behavior is described as polling
and can be considered as a so-called half-duplex mode. HTTP also uses TCP
as transport protocol and can be secured via TLS/SSL but does not feature
any kind of QoS.

Nowadays, HTTP is the standard protocol of the world-wide-web - the Inter-
net, as we know it, would not be possible without this protocol. However, in
IoT, HTTP plays only a minor role because HTTP opens and closes a connec-
tion on each data request due to its half-duplex design. Additionally, HTTP
requires a specific URI, which may not be available if the communication
partner is unknown. Nevertheless, it is often used for authentication and
authorization mechanisms, such as in Guner, Kurtel, and Celikkan (2017),
where an IoT system based on MQTT communication was developed, and
the administrative tasks were performed using HTTP.

1.6.4 WebSocket

WebSocket, standardized in 2011, is a protocol providing full-duplex com-
munication. Full-duplex describes simultaneous communication in both
directions, which is not possible using standard HTTP. With HTTP version
1.1, pipelining was released, giving the client the opportunity to send mul-
tiple requests without waiting for a response. Controversially, this is also
sometimes referred to as full-duplex).

17

1 Introduction

In contrast to HTTP, real-time data transfer is possible as soon as the client
and the server have an open WebSocket connection. This means that the
server can send data to the client without a previous data request.

Like HTTP, WebSocket uses TCP as transport-protocol, and the connection
can also be encrypted using TLS/SSL.

1.6.5 WebRTC

WebRTC8 is an open-source project developed for real-time communication
in web browsers and mobile applications. Intending to eliminate the co-
occurrence of communication browser plugins and applications, the World
Wide Web Consortium (W3C) and the Internet Engineering Task Force (IETF)
released the first version in 2011 (Edan, Al-Sherbaz, and Turner (2017)).
Today it is supported by all common web browsers, including Google
Chrome, Mozilla Firefox, and Microsoft Edge.

The peer-to-peer communication relies on a UDP connection encrypted with
DTLS, which is a derivative of SSL.

8https://webrtc.org/

18

2 Background

This chapter provides a quick overview of cloud-providers and message bro-
kers. Considering the fast-growing field of cloud computing and providers,
the results of this master thesis represent a snapshot of 2020.

2.1 The three big Cloud Provider

2.1.1 AWS - Amazon Web Service

Amazon Web Services (AWS) was founded in 2006 and has grown to become
one of the largest cloud providers. According to MarketWatch (2020), AWS
had a dominant market share of 51% in 2017. In recent years, this number
has been shrinking as other large companies entered the cloud market.
Currently, according to ParkMyCloud (2020), Amazon Web Services holds a
market share of 32.4%, which is about one-third of the total cloud provider
market and is therefore still in the lead.

Today, an enormous amount of companies use AWS, including Netflix, Face-
book, BBC, and LinkedIn. AWS offers a wide range of services and provides
daily updates and expansions. Theses services include databases, storage,
Internet of Things frameworks, machine learning, block-chain frameworks,
developer tools, and many more. Payment is usually on a pay-as-you-go
basis, which means that there is no fixed subscription cost, but a fee based
on the usage (e.g., messages per second), the hardware architecture chosen
by the user, and various additional services such as security and redundancy
features. Primarly due to the large number of different options, services, and
frameworks, pricing can become intransparent and challenging to calculate
in complex applications.

19

2 Background

2.1.2 Microsoft Azure

With a market share of about 17.6% (ParkMyCloud (2020)), Microsoft Azure
is the second major player in cloud computing. It was publicly released in
2010 and has become a suitable counterparty for AWS. At first glance, the
number of features is similar to AWS, but it is not as advanced in detail.
However, a significant advantage of Microsoft Azure is the integration
of .Net developers. Several development packages are available for .Net
applications, making it very easy to connect the application to the cloud.
The pricing for Microsoft Azure is similar in structure compared to AWS.

2.1.3 GCP - Google Cloud Platform

Google Cloud Platform, publicly released in 2012, is the newcomer among
the cloud providers. A market share at about 6% (ParkMyCloud (2020))
in 2020 is relatively low compared to AWS and Azure, but it is on the
rise. Enormous investments in data centers worldwide have been made to
provide excellent connectivity, availability, and latency in all regions. The
pricing is different from AWS since the user can choose a suitable hardware
architecture, and costs are calculated by specifying the server uptime.

2.2 Message Brokers

A message broker is a software module that enables applications, machines,
and services, located in a network, to communicate. The communication
is based on messages sent from a source to a destination, which can also
be called a message-oriented middleware. The message broker handles the
delivery of the messages to the destinations while also providing additional
features, for example, the validation of the sent messages or storing them
(IBM-Cloud-Education (2020)).

Another technology, often used by the message broker itself, is called message
queues. These message queues act as a temporary message store waiting for
a message destination to receive those messages actively.

20

2 Background

Message brokers are distinguishable by the two modes in which they can
work:

1. Point-to-point messaging: Point-to-point messaging describes a commu-
nication pattern where messages are sent from one sender to exactly
one message receiver. This can be compared to postal traffic, where
the sender of a letter has to provide the desired recipient’s address
to send this exact message to exactly this recipient. Systems with this
behavior are often called one-to-one systems.

2. Publish/Subscribe messaging: Using the Publish/Subscribe pattern, in
contrast to point-to-point messaging, multiple message receivers can
be addressed. This is done by publishing the message to be sent to a
particular topic. This message is then forwarded to all those who have
subscribed to this topic. Unlike point-to-point messaging, it can not be
compared to mail traffic, but rather to a magazine subscription where
each subscriber gets a copy of the original message. This broadcast-
style message distribution can, therefore, also be called a one-to-many
system (Sachs et al. (2010)).

2.2.1 RabbitMQ

RabbitMQ1 is one of the most popular open-source message brokers. Origi-
nally developed for the telecommunication industry, it is nowadays used by
many influential companies such as Runtastic, Trivago, and Reddit.

The RabbitMQ server program, implemented in Erlang, was designed to
work with AMQP but has extended to a plugin infrastructure, which makes
it possible to use RabbitMQ also with MQTT and STOMP.

In addition to the server software, operable on Windows, Linux, and ma-
cOS, RabbitMQ published numerous software libraries that can be used to
implement the client software in the most common programming/scripting
languages, including C#, Python, Java, and JavaScript.

RabbitMQ provides two security functionalities: SSL/TLS support and client
user authentication.

1https://www.rabbitmq.com/

21

2 Background

2.2.2 Eclipse Mosquitto

Eclipse Mosquitto2 is an open-source MQTT broker implemented in the
language C with the great advantage of being designed in a light-weight
way, making it possible to run on nearly every device even though the
computational power is low. Additionally, Mosquitto provides C libraries
for the implementation of MQTT clients.

Mosquitto can also be used in combination with SSL/TLS; however, accord-
ing to Babovic, Protic, and Milutinovic (2016), it does have some performance
issues in specific scenarios.

2.2.3 HiveMQ

HiveMQ3 is another MQTT broker designed for business-critical IoT systems
and, according to their website (https://www.hivemq.com/), scales up to
10 million connected devices. It can be deployed to a local private cloud, a
hybrid cloud, or a public cloud, including AWS and Microsoft Azure.

HiveMQ is not open-source, but they released a light open-source com-
munity edition. As stated on their website, the main differences between
the HiveMQ Profession/Enterprise and HiveMQ Community Edition are the
features for business-critical applications, enterprise security integration,
and monitoring/observability functionalities.

2.2.4 Other Message Brokers

There are countless message brokers supporting different messaging pro-
tocols, using various technologies, and being either open-source or closed-
source. Some of them gained popularity because of good marketing and
search engine optimization, and some disappeared over the years. In this
thesis, only three are presented due to the sheer number of brokers, which
would go beyond this work scope. However, it must be pointed out that

2https://mosquitto.org/
3https://www.hivemq.com/

22

2 Background

there are many more that could be considered to implement the solu-
tion. A rough overview of the most popular message brokers, and a small
comparison regarding their features, can be found on https://ultimate-
comparisons.github.io/ultimate-message-broker-comparison/. A more sci-
entific approach was made by John and Liu (2017) who surveyed the mes-
sage brokers that are ”in vogue” today.

23

3 Related Work

This chapter focuses on related work about the Internet of Things, cloud,
and message protocols. Several concepts and technologies are presented,
and work based on the terminology is explained.

3.1 Scientific Work related to Internet of Things

In 1999 Kevin Ashton used to term ”Internet-Of-Things” in one of his
presentations. According to Ashton et al. (2009), he was the creator of the
term and the philosophy behind it. The concatenation of the two words
”Internet” and ”Things” basically describes the shift from the ”classic”
internet, where every information is created by humans, to a new idea,
where information is created and reprocessed by machines - the so-called
”things”. Computers combined with RFID technology could thus interact
with the real world for the first time while also being connected amongst
themselves.

Since 1999 several definitions and changes to IoT appeared, and it is still
changing. In 2014 Li, Xu, and Zhao (2014) created an overview of IoT in the
past, present, and future.

A few significantly milestones are presented in Madakam, Ramaswamy,
and Tripathi (2015) such as:

• 1999: The term Internet of Things is coined by Kevin Ashton.
• 2000: LG announced its first Internet of refrigerator plans.
• 2003-2004: RFID is deployed on a massive scale by the US Department

of Defense in their Savi program and Wal-Mart in the commercial
world.

24

3 Related Work

• 2005: The UN’s International Telecommunications Union (ITU) pub-
lished its first report on the Internet of Things topic.

• 2008: Recognition by the EU and the First European IoT conference is
held.

• 2008: US National Intelligence Council listed the IoT as one of the 6

“Disruptive Civil Technologies” with potential impacts on US interests
out to 2025.

• 2010: Chinese Premier Wen Jiabao calls the IoT a key industry for
China and has plans to make major investments in Internet of Things.

The Internet of Things is nowadays a fast-growing field with many differ-
ent technologies and application fields, such as medical, industrial, and
governance. Madakam, Ramaswamy, and Tripathi (2015) showed that there
are also some flaws within IoT. Their main observation is the lack of stan-
dardization in definitions, in architecture as well as protocols. A step in
the direction of standardization is made by Dorsemaine et al. (2015), who
invented a taxonomy to create the greatest common divisor in terms of
naming conventions between all technologies and fields in IoT.

Besides, Gigli and Koo (2011) tried to provide application developers a start-
ing point in the confusing and overwhelming world of IoT and simplified
IoT by introducing a categorization of its services.

To make IoT even clearer and standardize the technology, a three-layer archi-
tecture, as proposed by Zhonggui Ma et al. (2013), can be used, consisting
of a physical layer, a network layer, and an application layer. However, this
can still be extended to 6 levels, as suggested by M. Zhang, Sun, and Cheng
(2012), who also discussed the key technologies used, including RFID, SOA,
and WSN.

Another publication that focuses on the generalization of IoT was published
by Kriti Chopra, Kunal Gupta, and Annu Lambora (2019), who reviewed
the future of IoT while also explaining the overall basic workflow, some
possible applications, and generic architecture.

One of the leading research areas is the authentication and security of
IoT and clouds. Saadeh et al. (2016) discussed the main security issues
in IoT and also compared several different authentication techniques as
well as analyzing them regarding their security. Another overview of IoT

25

3 Related Work

security strategies was made by Gou et al. (2013) The authentication and
authorization are especially focused by Albalawi et al. (2019), who, after
comparing and surveying different methods, concluded that there is no best
solution. However, the selection of security methods should instead be based
on the requirements of IoT systems and their security needs.

Nevertheless, there are always security aspects that must be taken into
account when developing an IoT solution. Twenty of these considerations
were presented by Singh et al. (2016), including the protection against
attackers during data transmission, identity management, certification, and
protection against the cloud provider itself.

3.2 Scientific Work related to Cloud

A brief introduction and the explanation of the basic terms to Cloud systems
can be found in 1.5 as well as in Rimal, Choi, and Lumb (2009). Prajapati,
Sharma, and Badgujar (2018) explained the history of the cloud, described
the basic concepts, and gave an analysis using the example of a smart city.

Over the last years, many different benefits have been gained, and an
enormous amount of applications, e.g., image processing (Ghaffar and Vu
(2015)), voice and emotion recognition (Z. Zhang and Lim (2015)), have
arisen by offloading heavy computations from one device to the cloud.

K. Kumar and Lu (2010) asked whether outsourcing computationally in-
tensive calculations on mobile devices to the cloud can save energy and
concluded that this is certainly possible, but that the problems of security,
privacy, and reliability are again being faced.

Another topic of cloud research is the comparison and analysis, regarding
a specific topic or in general, between different cloud providers, such as
AWS, GCP, and Azure, presented in 2.1. Dordevic, Jovanovic, and Timcenko
(2014) compared Microsoft Azure and Amazon Web Services regarding
their performance, usability, and features, and came to the conclusion that
each provider has its pros and cons but is generally similar. Since there is no
direct winner of theses three, an evaluation has to be made for each situation.
Ghaffar and Vu (2015) were examining AWS, CloudSigma, and Azure in

26

3 Related Work

order to establish a satellite image processing service and identified AWS as
their favorite because it met their needs the most.

A different approach to clouds was made by Buyya, Yeo, and Venugopal
(2008), who looked at the cloud providers from a market-oriented point
of view. They discussed the idea of computation-power-resource trading,
where brokers mediate between cloud providers and consumers by buying
capacities of resource power and lease these directly to the customer. How-
ever, one of the notable concerns was the interchangeability between cloud
providers, requiring better support for interaction protocols to accomplish
compatibility between them.

3.3 Scientific Work related to Message Protocols
and Message Brokers

As described in 3.1, the Internet of Things is all about communication between
things and the Internet. The language and its grammar, which is used
by these things, is called Message Protocol. There exist numerous of these
protocols, and some of them, which are particularly crucial for IoT and
therefore for this thesis, have been described in 1.6.

Yassein, Shatnawi, and Al-zoubi (2016) did a more comprehensive survey
about application layer protocols. In their detailed analysis and comparison,
they concluded that each protocol has its strengths and weaknesses in a
specific scenario and should be chosen according to the application require-
ments and environmental constraints. For example, MQTT is considered the
right choice for low power devices, whereas a RESTFUL web service may be
more useful for bigger machines due to its easy and simple implementation
and well-known protocol base.

A web performance test of IoT messaging protocols, including AMQP
and MQTT combined with different message broker implementations, was
performed by Babovic, Protic, and Milutinovic (2016). As a result, they rec-
ommend MQTT in most IoT scenarios but also warn against using message
brokers without further investigation. The message broker Mosquitto (2.2.2),

27

3 Related Work

in particular, was used as a negative example due to its poor performance
in certain scenarios.

Sreeraj, N. S. Kumar, and G. S. Kumar (2017) worked the other way around
by implementing a framework that predicts the performance of MQTT
and AMQP in different scenarios based on several variables, including the
latency, packet loss, payload size, and Quality of Service, which is described
in 1.6.1.

Guner, Kurtel, and Celikkan (2017) showed an excellent example of how to
use a message broker and several message protocols to implement an IoT
application. They set up an architecture consisting of several IoT sensors,
a message broker, a so-called orchestrator, and mobile devices as data
requestors. This system is especially relevant for this work, since the data
providers, i.e., the sensors, are not connected to the Internet, but are in an
internal network. Since the data-requestor, i.e., the mobile device, wants
to query the data via the Internet, the orchestrator must form the bridge
between the Inter- and Intranet. The intern communication was done by
using MQTT and HTTP for authentication and authorization. However, this
architecture was described as too complex to handle by Kang et al. (2017)
because of the maintenance of the additional orchestrator and message
broker. They instead advise using the AWS IoT Core, which acts as a
message broker in the cloud. This system’s disadvantage is the required
internet connection of the IoT devices, which would not be feasible for
primtec.

A comparative evaluation of AMQP and MQTT was done by Luzuriaga
et al. (2015), who tested both protocols in scenarios similar to vehicular
networks, where the connection may suffer, and the latency may be high.
Both protocols performed well, and in conclusion, they recommend using
AMQP to build reliable and scalable infrastructures.

The lack of additional security features using MQTT on devices with low
computational powers was the topic of the paper written by Peniak and
Franeková (2018). They invented an application node called the Validator,
which validates the published data values based on a functional transforma-
tion and by comparison with an expected pattern.

28

3 Related Work

Hoffmann et al. (2018) also analyzed the security and safety of MQTT, CoAP,
and MQTT by comparing them to the safety standards IEC-61508 and IEC-
61784. They describe the situation as a trade-off between more safety and
more energy consumption and are currently working on adapting one of
the existing protocols.

29

4 Problem and Requirements

The subject of this thesis is the investigation and implementation of an
IoT/Cloud concept that is to be used by all products of primtec. The goal is
that every primtec device should be equipped with the IoT functionalities,
but in this thesis, the focus is on the “Packing Table” and “DataCollector”,
described in the introduction. This chapter provides a quick overview of
the current situation at primtec and its customers while also describing the
industrial field’s limitation. In addition, section 4.3 lists all requirements
that are needed for the end product.

4.1 Current Situation

The life-cycle of a primtec product begins with the installation and commis-
sioning. Usually, a primtec employee must be on-site, which takes one to two
full days, followed by several days of manual monitoring and observation.

The products are designed to operate continuously - reliability is mandatory
but can not be guaranteed. As these products consist of many different
components, for example, the operating system, the software, an RFID
reader, and a PLC interface, problems will eventually occur - they can not be
prevented. However, early detection could significantly reduce their effect.

If a problem occurs, it can currently take up to several days for the customer
to recognize it, followed by additional days for internal problem solving
and redistribution of the update, which again requires a primtec employee
at the customer’s premises. Since logging is done offline, the log files
must be gathered by a worker and sent to the primtec office for further
investigation.

30

4 Problem and Requirements

These processes are time-consuming, cost-intensive, and prone to error.
Therefore, primtec needs a centralized server (cloud) that collects all logs,
metadata, and status updates from all customers and their products. This
makes it possible to detect failures at an early stage, update the products
remotely, and monitor each device separately without the need of a primtec
employee to be on-site at the customer’s premises.

4.2 Constraints

Since most customers are from an industrial sector, client-side internet
connection to a server may not be possible due to security reasons. The local
network may also fail since the WIFI connection may not be available at all
locations.

primtec uses the Microsoft .Net framework for all projects, which must
be easy to combine with the IoT/Cloud solution of this thesis. Addition-
ally, primtec has a Microsoft subscription, which includes Microsoft Azure.
Therefore other non-open-source IoT or cloud frameworks may be ineligi-
ble.

Windows is not the only platform that should be supported. In the future,
the cloud system should also be usable with Linux and Android devices.

As described in 1.4 as well in 3.1, IoT, and the technologies associated with
it are rapidly growing and ever-changing. Therefore it is essential that the
IoT solution of the thesis can be extended and changed without much
effort. Besides, a so-called vendor lock-in should be avoided. Vendor lock-in
describes a scenario where a customer cannot easily replace a used service
or product with an equivalent solution from another provider.

4.3 Requirements

To be able to compare different solutions for the given problems, require-
ments are defined. Some of these requirements are essential, while others
are less important in the first step. Therefore each requirement can have

31

4 Problem and Requirements

either high, medium, or low importance. An overview of all requirements
can be seen in Table 4.1.

Requirement Importance
R01: Reliability and Quality High Importance
R02: Confidentiality, Integrity and Authenticity High Importance
R03: Restricted access to the World Wide Web High Importance
R04: Web Interface High Importance
R05: Easy Integration to existing Products High Importance
R06: Logging to the cloud High Importance
R07: Monitoring Data Medium Importance
R08: Remote Commands Medium Importance
R09: Statistics Low Importance
R10: Notification System Low Importance
R11: Availability Low Importance

Requirements

Table 4.1: The requirements and their importance

4.3.1 R01: Reliability and Quality

A highly reliable system describes a system which continuously performs
according to its requirements, whereas the quality defines how it performs
these actions.

Regarding this thesis, a solution is needed that guarantees that the data
sent by the client to the cloud is not lost. As described in 4.2, clients can
be offline for an undefined time, hence data buffering is required. Once
the client reconnects, all buffered data must be transferred to the cloud. To
ensure that the data is received by the cloud, an acknowledgment needs to
be sent from the cloud to the data sender, thus directly to the client or the
message broker.

32

4 Problem and Requirements

4.3.2 R02: Confidentiality, Integrity, and Authenticity

In IT security, confidentiality refers to protecting the data against attackers,
which in the case of this thesis, means that the information in the data is
not readable to anyone but the trusted clients and the cloud system itself.

Integrity defines that data sent by one party, in this case, the client, to
another party, the cloud, has not been altered during its transmission and
also has no errors.

On the other hand, authenticity ensures that the data being sent is really
from this client and not from another party.

All three keywords are of high importance and must be ensured since
customers of primtec are generally from the industrial sector, and industrial
espionage and manipulation pose a real threat.

4.3.3 R03: Restricted access to the World Wide Web

Due to security reasons, most customers of primtec have their own intranet,
which is used for data transmission, sharing information, machine control,
or simple chat tools. In most cases, this intranet is accessible throughout the
entire company premises via WiFi hot spots.

A connection from outside the intranet is usually prohibited and only
feasible in exceptional cases under strict control. To create an IoT solution,
where multiple IoT clients exchange data with a decentralized cloud, it is
necessary to keep the access points from inside to outside and vice versa to
an absolute minimum.

To accomplish this, a so-called orchestrator is required, which acts in the
intranet as a central point of contact for all data traffic as well as managing
the clients. This service is the only one equipped with internet access,
whereas the IoT clients communicate only within the intranet.

33

4 Problem and Requirements

Figure 4.1: Website concept mockup showing all devices of a customer, their states and the
log collection

4.3.4 R04: Web Interface

The features described above should be easy to access by a primtec employee
- therefore, a web interface is required. After a login procedure, the primtec
employee should see all primtec software clients currently available and
the associated operating data (4.3.7). The remote commands (4.3.8) should
be executed with one button click, and the statistics should be clearly
presented.

A design concept of such a web interface can be seen in Figure 4.1. The
customers are listed in the navigation area on the right side. By clicking
on a customer, a general information page should appear, showing all
currently used devices, their log entries, and statistics. The overall status
at the customer’s site can be easily recognized by the color-coding of the
log levels, monitoring data, and device statuses. This web interface should
initially only be visible to primtec employees, but a dedicated web interface
for customers would also be conceivable in the future.

34

4 Problem and Requirements

4.3.5 R05: Easy Integration to existing Products

In recent years, many different solutions have been produced by primtec
for many different customers. A subsequent integration should not require
much effort, and future primtec developers should be able to use this system
without much additional work.

This requires a system that is as transparent as possible and that operates
from the background without having an impact on other processes. Device
configuration and user intervention are to be brought down to a minimum
to provide a plug and play user experience.

4.3.6 R06: Logging to the Cloud

Logging is an essential part of software development as it is used for trou-
bleshooting, analysis, and general information. The log entries can be seen
as a diary of the software consisting of one-time messages describing the
current action of the devices, problems that occurred, or simple information
with the addition of a timestamp and a log level that can be interpreted as
the importance of the log entry. These logs enable a developer to understand
and reconstruct the procedures of the software.

primtec software uses the inbuilt .NET log framework to perform logging
with six different log levels:

• Trace
• Debug
• Information
• Warning
• Error
• Critical

This framework also offers the possibility to define the target of these logs,
such as a file or a simple console window. These log entries are currently
saved in a local file that can be opened and examined with a simple text
reader software. Since this requires direct access to the device and a worker
on-site, it is not feasible with several customers distributed worldwide.

35

4 Problem and Requirements

One goal of this thesis is to extend the log targets by a cloud destination.
From the programmer’s point of view, the whole cloud logging should be
completely transparent, which means that there should be no additional
function calls, but only a small setting in the software configuration.

4.3.7 R07: Monitoring Data

In addition to logging, primtec needs a system to store specific operating
data generated by the software and the machines. This data could include
software versions, temperature values, hardware load, or data describing
the status of the RFID readers. All this information should be stored in
another database and easy to access via the web interface (4.3.4).

Critical device data must be easily recognized by color-coding the individual
states, e.g., red for errors and yellow for warnings.

To show the online/offline state of each device, a heartbeat system is needed.
After a certain amount of time, a device can be assumed as offline.

Based on the monitoring, a primtec employee could then attempt to optimize
the processes, correct errors, or even analyze the yield for the customer.
This feature is not necessary for the first step, but it should be possible to
implement it in the future.

4.3.8 R08: Remote Commands

As access to the machines is usually difficult due to local distances, remote
commands are required. These commands can include prompts to initiate
an update process, reconfigure the RFID reader’s parameters or increase
and decrease the log level as described in 4.3.6.

Especially the update procedure is one of the most time-consuming pro-
cesses at primtec. The software update is currently sent to the customer by
Email, where one of the workers has to update each device manually. This
can be avoided by triggering an update process remotely. Therefore, the

36

4 Problem and Requirements

online web interface has to display each device’s current software version
while also providing the functionality to start the update procedure.

Since primtec products can be offline for longer periods, these commands
should be executed as soon as the device gets an online connection to the
cloud system.

For the implementation of the remote commands, two different approaches
were be considered:

• Dynamic Commands: Dynamic commands can be seen as a regular
program code which could be sent from the web-service to the client.
This code gets then processed and executed by the client.

• Static Commands: In contrast to dynamic commands, static commands
only use a fixed set of commands. Each command from the web service
triggers a particular action on the client.

Dynamic commands would have the benefit of being completely dynamic.
The website user could write individual code which then gets executed as
soon as it arrives at the client. This approach, however, would be highly
vulnerable to security attacks. Since the just written code gets sent through
the Internet, manipulation of the messages can not be ruled out (man-in-the-
middle attack), so that the introduction of malicious code would be possible.
To keep the attack vector as low as possible, static commands should be
used.

4.3.9 R09: Statistics

Another add-on is statistics, which should be visible in the web interface
(4.3.4). These statistics should show how the values described above (4.3.7)
change in a given time window. Since these statistics are not only of interest
to primtec but also to the customer itself, an export feature is required,
making it possible to pass on this data to the customer.

The importance of statistics is low in the first step, but would later be an
enriching feature for the customers.

37

4 Problem and Requirements

4.3.10 R10: Notification System

Based on the data described in 4.3.7, a notification system would be another
conceivable feature. If, for example, the CPU load of a computer at the
customer exceeds a critical value, an Email or SMS should be sent to a
primtec employee.

Similar to 4.3.7, this is not a quintessential feature, but it should be possible
to implement it as an add-on.

4.3.11 R11: Availability

The availability of a system defines the time frame in a certain time interval
in which the functionality of this system is available. Cloud provider usually
outline their availability with a ratio of server up-time per year. Azure
(2020), for instance, guarantees an availability of 99,99%, also called a ”four
nine” availability, for most of their cloud database services. This means
that their cloud service can have a maximum server down-time of 4 min-
utes 23 seconds per month. Another method to categorize the availability of
machines and services in classes is the Availability Environment Classification
(AES) developed by the Harvard Research Group (Kaskade (2020)). The classes
are:

• Conventional (AEC-0): Function can be interrupted, data integrity is
not essential.

• Highly Reliable (AEC-1): Function can be interrupted, data integrity
must be however ensured.

• High Availability (AEC-2): Function may be minimum interrupted only
within fixed times during the main operating hours.

• Fault Resilient (AEC-3): Function must be maintained, within fixed
times during the main operating hours, continuously.

• Fault Tolerant (AEC-4): Function must be maintained continuously, 24-7
enterprise (24 hours, 7 days the week) must be ensured.

• Disaster tolerant (AEC-5): Function must be available under all circum-
stances.

38

4 Problem and Requirements

The cloud availability is not of high importance to primtec since the cloud
solution is an add-on to their products, reducing the error rate in the
longer term. Immediate error correction is not possible due to the possibility
of offline clients, and therefore a cloud availability of 99%, which means
less than 8 hours per month, would already be sufficient. In terms of the
Availability Environment Classification, the class AEC-1 would be adequate.

39

5 Contribution

The contribution of this thesis consists of two parts: a review of the cloud
providers and the actual implementation.

First, in part one, a comparison between the cloud providers, presented
in 2.1, based on the pricing and features, and between the message brokers,
presented in 4.2, was made. Furthermore, the relevance and need for the
primtec IoT solution were determined. The results can be seen in Table 5.2,
Table 5.4, and Table 5.3.

Then, in part two, based on the constraints given in section 4.2 and on
the requirements stated in section 4.3, a solution was implemented. The
model of the implementation was the idea presented by Guner, Kurtel,
and Celikkan (2017), which was explained in chapter 3.3, but due to the
requirements, several modifications and adaptions have had to be made. An
overview of the actual architecture is visualized and explained in 5.2.

The solution itself consists of a total of five parts, which are broken down and
explained individually. A detailed description of the individual technologies
used can be found in chapter 2. Visual Studio 2019 was used as development
platform, and some software libraries by primtec were utilized, which get
explained briefly but not in detail due to the corporate secret.

40

5 Contribution

5.1 Review and Comparison of the Cloud
Providers

5.1.1 Free Trial

Each of the three cloud providers offers different types of free trials for new
cloud developers.

Google Cloud Provider - Free Trials

Google offers a whole year of free usage for multiple different products.
These products include ”Compute Engine”, ”Cloud Storage”, ”App Engine”,
and ”Firestore”, which is used for databases. The full list can be found
on Google’s website: https://cloud.google.com/free. Each of these free
products is limited to a certain amount of storage or requests per month,
which is usually more than enough to start developing a cloud system. In
addition, Google Cloud Provider allocates 300$ for new users, which can be
spent on non-free products.

After 12 months or after spending the 300$, the free trial ends, which means
that all resources are stopped, and all data in the Compute Engine is lost.
However, by upgrading to a paid account, the data can be restored within
the next 30 days.

Microsoft Azure - Free Trial

Microsoft also offers, similar to Google, a free trial account for one year.
During the year, a wide range of free products can be used, each limited by
either a time window or a certain amount of storage (Free Azure Products).
To register for the free trial, the user has to start with a free 30-day account.
As a bonus, Microsoft provides 170$, which can be spent within this time
frame. If the user spends more than the 170$ or after 30 days, an account
upgrade has to be performed to unlock the full 1-year trial.

41

https://cloud.google.com/free
https://azure.microsoft.com/en-us/free/search/

5 Contribution

From this point on, the user may be charged for exceeding the free products’
limits or for using the non-free products.

Amazon Web Services - Free Trial

AWS also offers a 1-year free trial, which includes over 60 different products
(Free AWS Products). These can be used within the 12 months or even
forever, but are also limited by a certain amount of storage or requests per
month. Additionally, a rotating selection of new products can be used for a
short time free of charge in order to test them.

5.1.2 Pricing Examples

Comparing the three cloud providers based on pricing is a difficult task as it
depends heavily on metrics such as server availability, message count, and
hardware. Online services like www.cloudability.com and www.reoptimize.

io were only created to compare the prices in specific scenarios, which in
turn are not free of charge. For this thesis, the largest common divisor
between these services regarding primtec was chosen - a cloud database for
saving the device logs.

Thus, three different scenarios were created that could be relevant for
primtec, a low-budget scenario, a mid-tier scenario, and a high-end solu-
tion.

Low-Budget Scenario

The low budget scenario focuses on keeping the price as low as possible.
Therefore, the device logs are only transmitted in a two-hour time frame.
This results in a cloud database that only needs to be online for a small
amount of time, saving much money. However, the disadvantage is that
the device logs are not available in real-time, and the user may have to
wait a whole day to receive the corresponding logs. Since real-time can not
be achieved, the latency of the connection is not essential. Each log entry

42

https://aws.amazon.com/free/
www.cloudability.com
www.reoptimize.io
www.reoptimize.io

5 Contribution

expires after one week, which keeps the required amount of storage low.
This scenario is regarded as the starting point for a cloud environment,
which means that only a few customers with few IoT devices are supported.
The type of database management system does not matter, so the cheapest
one is selected.

Mid-Tier Scenario

The mid-tier scenario is an upgraded version of the low-budget scenario.
The logs are transmitted within a few seconds and saved for one week.
The system should be able to handle up to 10 customers, each with up to
10 devices. If available, Microsoft SQL Server or PostgreSQL is used as a
database management system, and a backup mechanism is provided.

High-End Scenario

In this scenario, the cloud should handle hundreds of customers with up
to one hundred devices. Database backups and duplicates are needed to
ensure a 100% reliability. The data should be stored for one month, and all
additional service features by the cloud providers are used.

Name Provider # vCPUs RAM per Core
db-pg-f1-micro GCP 1 0,6 Gb
db.t3.micro AWS 2 0,5 Gb
db.t3.medium AWS 2 2 Gb
db.x1.16xlarge AWS 64 15,25 Gb
db.z1d.2xlarge AWS 48 8 Gb

Instance Type Details

Table 5.1: Details to hardware acronyms used in the tables below

43

5 Contribution

System Low Budget Mid-Tier High End
Database System Postgre-SQL Postgre-SQL SQL Server 2017 Standard
Number of Instances 2 4 4
Instance Type db-pg-f1-micro 2 vCores - 4Gb Ram 32 vCores - 16 Gb Ram
Location Frankfurt Frankfurt Frankfurt
Storage Type HDD SSD SSD
Storage Amount 10 Gb 1 Tb 30 Tb (maximum)
Hours / Day 2 24 24
Days / Week 5 7 7
Backup Size - 50 Gb 5 Tb
High Availability no no yes
Price per Month 1,69 € 1.131,15 € 68.676,44 €

Google Cloud Provider

Table 5.2: The pricing of the three scenarios with Google Cloud Provider

System Low Budget Mid-Tier High End
Database System Postgre-SQL Postgre-SQL SQL Server Standard
Number of Instances 1 4 4
Instance Type db.t3.micro db.t3.medium db.z1d.2xlarge
Location Frankfurt Frankfurt Frankfurt
Storage Type SDD SSD SSD
Storage Amount 20 Gb 1 Tb 16 Tb (maximum)
Hours / Day 2 24 24
Days / Week 5 7 7
Backup Size - 500 Gb 16 Tb
Notes - RDS Aurora Backup RDS Aurora Backup
Price per Month 3,63 € 1.227,79 € 47.395,56 €

Amazon Web Services

Table 5.3: The pricing of the three scenarios with Amazon Web Services

System Low Budget Mid-Tier High End
Database System Postgre-SQL Postgre-SQL Azure SQL

Instance Type 1 vCore Gen 5
4 vCore - 32 Gb worker &

 4 vCore - 16 Gb coordinator 80 vCore Gen5
Location Germany West Central Germany West Central Germany West Central

Storage Amount 10 Gb
1 Tib (worker) &

 1 Tib (coordinator) 30 Tb (maximum)
Hours / Day 2 24 24
Days / Week 5 7 7

Backup Retention - -
Weekly backup retention

 for 5 weeks
Backup Size - 100 % provisioned storage 4 Tb
Tier Basic Memory Optimized Business Critical
Price per Month 2,48 € 1.614,44 € 43.628,53 €

Microsoft Azure

Table 5.4: The pricing of the three scenarios with Microsoft Azure

44

5 Contribution

Hardware Details

The cloud hardware, also called the instance type, is specified using an
abbreviation or acronym. Table 5.1 lists all of them, used in the other tables
to compare prices, and describes the hardware architecture in detail.

5.1.3 Choosing a Cloud Provider

Google Cloud Provider was chosen as the host for the database used in
the implementation since the free trial program was most appealing and
easy to set up. High Availability can be enabled, ensuring that the database
is spread across multiple data centers, preventing long downtimes due to
maintenance or network errors. However, any cloud provider can be used,
as databases are supported by any cloud provider, and High Availability is
offered by all three.

5.1.4 Message Broker Comparison

Choosing a message broker was not a particularly challenging task since
all of them are sufficient for the solution. Encrypted communication is the
most crucial feature, which all of them presented in 1.6, provide. RabbitMQ
was chosen, which also has the benefit of being an open-source project. It
provides NuGet packages, the libraries used while developing a C# project,
which also favored this choice. During the implementation, attention was
paid to the interchangeability of these brokers in order to be able to exchange
the brokers without significant notable in case of later design changes.

5.2 General Architecture

Like Guner, Kurtel, and Celikkan (2017), the solution consists of a cloud/server,
a message broker, an orchestrator, and multiple clients. The basic idea is to
install the message broker on a server at the customer’s premises, which

45

5 Contribution

Figure 5.1: Architecture Sketch of the IoT/Cloud Framework

administrates the AMQP and MQTT communication. A sketch showing the
architecture containing all components can be seen in Figure 5.1.

The actual IoT devices, from now on only called ”clients”, are connected to
the customer’s intranet (e.g., via WIFI) and use AMQP and MQTT in order
to broadcast their log information into the ”log-channel”, send heartbeat
signals into the ”heartbeat-channel” as well as receive commands from the
”command-channel”. The message broker ensures that these messages get
sent over the network to all subscribed parties and can also be configured
to store these messages for future subscribers. It is important that the whole
communication takes place in the local network - therefore, internet access
by the clients is not needed, fulfilling the requirement ”Restricted access to
the World Wide Web” 4.3.3.

Since all messages sent to the ”log-channel” have to be forwarded to the
cloud, an additional instance is needed called the ”orchestrator”. The or-
chestrator is implemented as a Windows service, which can be hosted on
the same local server as the message broker. A Windows service is similar
to a regular application, except it is invisible for the user and operates from
the background. The advantage of this solution is that after a reboot of the

46

5 Contribution

system, and if configured correctly, Windows restarts the installed services,
which means that no extra restart of the orchestrator by a user is needed.

The orchestrator represents the bridge between the cloud, hosted in the
world wide web, and the customer’s intranet. This means that the orches-
trator is the only part that requires access to the Internet. The main task
of the orchestrator is to listen to the log- and heartbeat-channel. As soon
as it receives a client’s log message, it transmits the message to a cloud
database. Since remote commands are required (4.3.8), the orchestrator also
forwards messages the other way round, which means that a predefined
set of commands can be sent from the Internet (in this case, the web user
interface) to the clients by using the the ”command-channel”.

The next component is the cloud, which is hosted on the world wide web.
This implementation uses only a cloud database as cloud feature, which is
offered by all cloud providers described in 2.1. It can easily be exchanged,
and a ”vendor lock-in” does not happen.

In summary, the implementation now consists of clients generating logs and
sending them to the local network. These logs are then sent via the message
broker to the orchestrator, which sends these logs from the local network to
a cloud database on the world wide web.

The final component is a web service and web user interface, which, similar
to a regular website, can be hosted with dedicated web hosting platforms,
on an own server infrastructure, or a cloud provider, a feature provided by
all three introduced cloud providers.

This website can be accessed using a regular web browser, e.g., Google
Chrome, by using the corresponding IP address or, if needed, by a domain,
which of course, has to be registered beforehand. All log messages by all
clients are visible on this web site in a clear and structured way. They can
be filtered and sorted, and additional information about the current state of
the client is shown.

47

5 Contribution

Figure 5.2: The RabbitMQ configuration file using SSL

5.3 RabbitMQ Message Broker

The backbone of the whole implementation is the RabbitMQ1 message bro-
ker (presented in section 2.2.1), which is available for Windows, macOS, and
Linux. After installation and before starting the broker service, TLS has to
be enabled to meet the requirement ”Confidentiality, Integrity and Authen-
ticity” (4.3.2). Detailed information on how TLS ensures these features can
be found on How TLS provides identification, authentication, confidentiality, and
integrity by IBM (2020).

Configuring RabbitMQ can be done by using the configuration file, shown
in Figure 5.2. To use a TLS encrypted communication, a signed certificate
file is needed for the RabbitMQ message broker along with a certificate
for each client and one for the orchestrator. In this proof of concept setup,
self-signed certificates were generated using the tls-gen2 tool available on
GitHub.

It is important to note that these certificates are meant to be used in the
development and should be swapped with real signed certificates provided
by the customer’s network administrator.

In addition to the TLS communication, the second RabbitMQ authentication
feature is used: a username/password pair for each client and the orchestra-
tor. These login credentials can either be configured on the RabbitMQ web
UI, which is hosted locally as soon as the message broker is started, or by
using the RabbitMQ command-line tool rabbitmqctl.

1https://www.rabbitmq.com/download.html
2https://github.com/michaelklishin/tls-gen

48

5 Contribution

The user authentication system provides the possibility to manage permis-
sions for each channel. For this solution, the ”log-channel” can only be read
by the orchestrator user, while the client users are the only ones with the
permission to write in this channel. The command channel, on the other hand,
is configured in exactly the opposite way.

Since the user credentials are by default sent in plain text while establish-
ing the connection, it is essential to use the user authentication only in
combination with TLS.

Finally, the plugin rabbitmq-mqtt was enabled using rabbitmqctl to allow
MQTT messages next to AMQP. The RabbitMQ message broker should be
running on a separate machine and needs access to the customer’s local
network.

5.4 The Client Software

5.4.1 NLog Configuration

Software by primtec GmbH is usually contained within an application con-
tainer which provides the UI skeleton, basic functionalities as well as the
basic NLog3 logging configuration. NLog is a free, open-source logging
framework designed for .NET, and can be used by simply including the
dedicated NLog NuGet package to the application project. The benefit of
NLog is that the developer only has to configure the NLog.Logger once in
this application by loading an NLog configuration file.

Inside the configuration file, which can be swapped on demand, one can
specify log targets such as files, a database, a simple console window, and
many more while also defining each target’s log level.

For this solution, a local SQLite database target was added to the existing
ones inside the primtec NLog configuration file, which can be seen in 5.3.
This ensures that each log message gets written into a local database in

3https://nlog-project.org/

49

5 Contribution

Figure 5.3: The NLog configuration file

50

5 Contribution

addition to a file. An additional custom column named ”Synced” was added
to mark previously synced log entries.

5.4.2 Log, Heartbeat and Command Service

The previously described database target can now be directly examined
on the machine with a database software, but since these logs should be
forwarded to the cloud, an additional service was needed - the ”primtec
syncing service”. This company owned Windows service is usually used to
synchronize data between two databases or files permanently, and therefore
was extended by an MQTT and an AMQP destination.

As soon as the ”syncing service” starts, all entries in the database are
traversed and sent to the RabbitMQ ”log-channel” by serializing the log
message object to a JSON string, also called ”marshalling”. The user creden-
tials were added to the RabbitMQ send method as properties, otherwise,
these messages would be rejected by the RabbitMQ message broker. As
mentioned above, a filter is used that excludes all database entries where the
column ”Synced” is set to true. This assures that previously sent logs are not
sent again. The synchronization service can be configured to synchronize
the data once or infinitely often in a specified time interval. For this solution,
a time interval of 30 seconds has been defined so that the data is sent in
batches rather than individually. The prerequisite for a successful sync is,
of course, an existing network connection. If this is not present, the sync
service waits for the next trigger.

Another service was implemented, called the ”heartbeat service”, which
sends messages to the ”heartbeat channel” in a given time interval. Imple-
menting a service can be done by using a NuGet package made by Topshelf 4,
which is used by primtec GmbH in many different projects. After extending
an application with the Topshelf functionalities, it can either be started as
a simple executable or installed as a service. The heartbeat message, sent
similarly to the log messages as a JSON string, contains information about
the device, customer identification, and timestamps and is used to check
the client’s current state.

4http://topshelf-project.com/

51

5 Contribution

The last service, the ”command service”, which does not send messages but
listens to incoming command requests sent on the ”command-channel”.

The primtec application container has been extended such that these services
get started in an individual background thread at application start. The
server credentials are saved within a App.config file, which gets read on
application start. Otherwise, no additional configurations are needed by
the user, which meets the requirement ”Transparent Integration to existing
Products” 4.3.5.

5.5 The Orchestrator

The orchestrator is implemented as a windows service, as described in 5.2,
and should be running on a separate machine at the customer’s site but can
also be hosted on the same device as the RabbitMQ message broker. Unlike
the other components, it requires a connection to the Internet. In industrial
settings, such access to the Internet is seen as a security issue and therefore
has to be granted explicitly by the administrator according to the company
policy.

As seen from the RabbitMQ side of view, the orchestrator is not different
from a regular client except it uses the predefined orchestrator user cre-
dentials. This gives it the possibility to listen to the log-channel and the
heartbeat-channel while also writing to the command channel. As soon as
it receives messages in the log-channel, it ”unmarshalls” the JSON string
back to the original log message objects and saves it to a predefined remote
database by using the .Net Entity Framework5.

.Net Entity Framework is the open-source library made by Microsoft, used
to work with databases. Most of today’s standard database systems are sup-
ported and can be downloaded and used via the corresponding database
provider NuGet package. primtec GmbH generally uses SQL Server, Post-
greSQL, Oracle, and SQLite, all of which are supported. Switching from
one database system to another can be done by swapping the database
connection string found in the corresponding configuration file. This makes

5https://docs.microsoft.com/en-us/ef/

52

5 Contribution

it straightforward to move from one database to another without getting
stuck in the ”vendor lock-in”.

If heartbeat messages are received on the heartbeat-channel, they get
”unmarshalled” and saved to the remote database, similarly to the log-
messages.

To handle and forward remote commands from the website, an RPC server
class was implemented. RPC (remote procedure call) is a form of client-
server communication, where procedures are provided by an RPC server,
which can be called from clients over a shared network, similarly as a
local procedure call would be implemented. Many open-source libraries are
available on the Internet that could be used in this solution, but due to the
fact the primtec used gRPC6 in other projects, this particular open-source
framework was chosen.

This class was integrated into the orchestrator, which means that from the
view of the web-api, the orchestrator acts as an RPC server, whereas the
web-api represents an RPC client. In the current state of development, only a
single remote command was defined - the ”update command”. The update
command utilizes a UpdateRequest object as message payload, consisting
of an update-file-path and a client name. If this update command is called
from the web-api at the orchestrator, this UpdateRequest object gets first
serialized again applying JSON, and then sent to the clients using the
command-channel. Based on the object type of the message data, the client
can then start specific procedures, for example, an update-procedure, which,
however, was not implemented during this work. The client’s name inside
this message object could be used to reject remote commands if not matched
with the client’s name. The gRPC communication is encrypted by using
SSL/TLS, assuming certificates are used correctly.

5.6 The Cloud

The database described in 5.5 could be hosted on a server at the customer’s
premises, but since the log messages should be accessible from around

6https://grpc.io/

53

5 Contribution

Figure 5.4: Configuration of the Google Cloud Database

54

5 Contribution

Figure 5.5: The Google Cloud Database Dashboard

the world, a cloud database was configured. To save costs in this proof of
concept setup, the most cost-effective cloud database provider from the
three providers presented in 2.1 was chosen.

At that time, this was the Google Cloud hosting a PostgreSQL instance, but
since the database used by the orchestrator can be changed as described
in 5.5, any other could have been used.

As a requirement for a Google Cloud database, a Google account is needed.
After registration, a cloud product can be chosen, in this case, the Post-
greSQL database, and then configured by defining the region of the database
server, arranging the hardware components, and generating the admin pass-
word. The cloud configuration screen can be seen in Figure 5.4. Additionally,
backup and maintenance time frames, if additionally purchased, can be
specified.

After the setup, the cloud database is finally assembled and ready to use.
The dashboard 5.5 shows the current memory usage, CPU utilization, as
well as the public IP address. The database itself consists out of six tables:
the Log-table, the Heartbeat-table, the Device-table, the User-table, the Role-table

55

5 Contribution

Figure 5.6: Database architecture

and a User-Role-Mapping-Table. The heartbeat- and log-table each reference a
device using a foreign key. The user-table is needed for the user login on the
website. Also, a role can be chosen for each user, mapped using a mapping
table. An overview of the database tables and their relations can be seen in
Figure 5.6.

5.7 The Web Service

The last component is the web service and its web view, shown in Figure 5.7.
It was implemented in ASP.Net7, an open-source web-application framework
by Microsoft. Most of the web applications by primtec GmbH are imple-
mented using the ASP.Net framework since they can be developed using
C# and the entire primtec code base. Due to a previous primtec project,
Vue8 combined with Vuetify9 was used for the front-end implementation.
The correct corporate design of primtec was achieved by utilizing Vuetify’s
UI components, which provide a predefined style according to the Google
Material Design, and by using the primtec colors.

In the current expansion stage, the website has the following features:

7https://dotnet.microsoft.com/apps/aspnet
8https://vuejs.org/
9https://vuetifyjs.com/en/

56

5 Contribution

Figure 5.7: Screenshot of the Web User Interface

1. User Management: To access the website, a user account with a user-
name/password combination is required. These accounts can be cre-
ated and edited with the user management feature. In addition, a
user can have different roles, such as an administrator or customer
role, which can be used for certain restrictions on the website. The
user objects and their hashed passwords are all stored on the same
database as the logs.

2. Log View: The log view shows the received logs in detail. The log
message, the client, the timestamp, and the log level are shown in
different columns and can be filtered separately. An export feature
makes it possible to download the whole table as an Excel file.

3. Device Status View: The device status view shows all devices which
have sent log messages. An offline/online status visualizes if this
device has sent a heartbeat signal in the last time-frame, which can be
configured using a config file.

4. Remote Commands: The last feature is the remote command triggering
using the according gRPC client class described in 5.5. Next to the
device status in the view described above, buttons, representing these

57

5 Contribution

Figure 5.8: The final architecture of the implementation, graphics taken from freepik

remote commands, can be clicked. An information message is shown
if the remote command was triggered successfully.

The website can be hosted in many different ways, starting with the local
machine used during development. IIS (Internet Information Services), a
web server software from Microsoft, can be used as a professional solution
as well as a cloud provider. For this thesis, the Google Cloud was used, as it
was already configured to host the PostgreSQL database. The whole project
can be published to the ”Google App Engine” by defining a configuration
file in the ”PublishProfiles” folder created by Visual Studio.

An illustration of the final architecture, including all used components, can
be seen in Figure 5.8

58

6 Discussion and Evaluation

The solution presented in chapter 5 was implemented based on the con-
straints and requirements shown in 4.2 and 4.3. This chapter analyzes
the implementation and shows how each requirement was met. For a de-
tailed evaluation, the N-P-L-F system, standardized with ISO/IEC 15504

(Mesquida, Mas, and Amengual (2011)), was used assigning each require-
ment one of the four values:

• not achieved: (0 − 15%)
• partially achieved: (15 − 50%)
• largely achieved: (50 − 85%)
• fully achieved: (85 − 100%)

An overview of each requirement, its importance and the corresponding
N-P-L-F rating can be seen in Table 6.1.

Requirement Importance NPLF Rating
R01: Reliability and Quality High Importance fully achieved
R02: Confidentiality, Integrity and Authenticity High Importance partially achieved
R03: Restricted access to the World Wide Web High Importance fully achieved
R04: Web Interface High Importance fully achieved
R05: Easy Integration to existing Products High Importance partially achieved
R06: Logging to the cloud High Importance fully achieved
R07: Monitoring Data Medium Importance partially achieved
R08: Remote Commands Medium Importance largely achieved
R09: Statistics Low Importance not achieved
R10: Notification System Low Importance not achieved
R11: Availability Low Importance fully achieved

Requirement Evaluation

Table 6.1: Requirements and their NPLF rating

59

6 Discussion and Evaluation

R01: Reliability and Quality

Reliability is one of the most essential properties of an industrial solution.
Therefore, the implementation was designed in a fail-safe manner where,
when each module fails due to software bugs, connection problems, or any
other technical failures, there is always a local database installed on each
device containing all data which was sent and is to be sent. Therefore, this
requirement was fully achieved.

R02: Confidentiality, Integrity, and Authenticity

HTTPS was used for sending data over the Internet as well as within the
customer’s network. This approach can be considered as secure as long
as HTTPS is used correctly, including correctly signed certificates and a
certificate revocation process. For this implementation, only self-signed cer-
tificates were used which must not be applied in a real-world scenario, and
a revocation process was not implemented, resulting in a partially achieved
requirement. Improvements in security and related future work are dis-
cussed in chapter 7.

R03: Restricted access to the World Wide Web

Restricted access to the Internet was the main reason why a self-made
IoT/Cloud system was necessary. The advantage of this design is the com-
munication which completely takes place within a local network except
for the orchestrator-web service data exchange. This makes it more secure
against attacks, easier to maintain and set-up regarding the Internet poli-
cies, which usually prohibit connections outside the local network at the
customer’s premises. This requirement was fully achieved.

R04: Web Interface

This requirement was fully achieved, as a complete website was imple-
mented, offering all features which were primarily needed. An additional

60

6 Discussion and Evaluation

user administration system, which is already used in other solutions of
primtec, was integrated as well as roles that can be assigned to the users and
consequently prohibit access to certain parts of the website.

R05: Easy Integration to existing Products

Logging, heartbeat, and remote commands where each implemented as
services that can be started during the boot process of the program. Except
for a few configuration parameters listed in the application config files,
no additional setup steps are needed. Logs can be created as usual by
calling the NLog functions, which makes the system entirely invisible to the
programmer.

The only part missing is the user credential setup needed on the Rab-
bitMQ side, which can be very time consuming - the requirement was
partially achieved. More about this topic can be found in Chapter 7.

R06: Logging to the Cloud

Transferring the log messages to the cloud was the main goal of the imple-
mentation. In addition to the local database, where each log entry is saved,
each log message gets additionally stored in a cloud database. This system
works utterly invisible in the background, and no notable configuration is
needed resulting in a fully achieved requirement.

R07: Monitoring Data

A heartbeat system was integrated, giving each client the opportunity to
send heartbeat signals in a specified interval. Based on these heartbeat
signals, an online/offline state can be shown on the website. Additional
data, including software version, hardware load, or other operating data
concerning the client machine, is currently not sent but can be added later
by merely implementing an additional service next to the heartbeat-service
and the logging-service. This requirement was partially achieved.

61

6 Discussion and Evaluation

R08: Remote Commands

Remote commands have been implemented by using gRPC. Currently, only
a single update-command can be sent containing a file path, which is not
processed by the client yet. Due to the fact that gRPC is easy to use, the
remote commands can be extended without much effort - this requirement
was largely achieved.

R09: Statistics

Statistics were not implemented because they are outside of the scope of
this thesis. However, Vuetify, the front-end framework used for the website
does feature a framework containing graphs and charts. This requirement
was not achieved. However, the website is capable, and statistics can be
integrated in the future.

R10: Notification System

Since other data, except a heartbeat signal, is not sent, no notification
system was implemented, and therefore the requirement was not achieved.
Nevertheless, ASP.Net, the framework used for the implementation of the
web service, does feature an SMPT-Client class providing all necessary
functionalities for sending Emails.

R11: Availability

Availability is determined by the cloud providers, and since all three of the
presented ones have an availability above 90% and additional availability
settings, with data redundancy spread over multiple data centers, this
requirement was fully achieved.

62

7 Limitations and Future Work

The solution presented in chapter 5 fulfills most of the requirements defined
in section 4.3. Some of them, however, could not be met entirely, such
as the requirement ”Confidentiality, Integrity and Authenticity” (4.3.2) as
well as ”Easy Integration to existing Products” (4.3.5). This section lists
improvements and work which needs to be done in the future to raise the
implemented IoT/Cloud system to a professional level.

7.1 Security Improvements

The security of the implemented IoT/Cloud system relies on TLS (Transport
Layer Security), which is used to encrypt the AMQP and MQTT messages
and the communication to the web service. As a prerequisite, signed cer-
tificates are needed for the clients, the orchestrator as well as the message
broker. In the implementation presented in 5, self-signed certificates were
used, which must not be applied in a real-world scenario. Therefore a correct
certificate should always be used created and maintained by the customer’s
system administrator.

Due to the risk that a correctly signed certificate, more specifically the private
key, could be compromised, a certificate revocation procedure should be
implemented. This procedure should invalidate the certificate and block
any further message transactions. Since all devices must be equipped with
newly generated certificates, and since manual certificate installation is not
feasible, an automatic certificate distribution would be needed.

Finally, before deploying these systems at the customer’s premises, a pro-
fessional information security audit and analysis would be advisable, evalu-

63

7 Limitations and Future Work

ating potential vulnerabilities. This would exceed the scope of this master
thesis and should be carried out by an IT security expert.

7.2 Usability Improvements

A plug and play experience was mentioned in the requirement description
”Easy Integration to existing Products” (4.3.5). This means that after in-
stalling the software on the devices and after hosting the message broker
and the orchestrator, the IoT/Cloud framework should be ready for launch.
This has not yet been finally realized in the current expansion stage. Each
client needs a specific RabbitMQ user with the correct permissions, which
must be predefined and configured using either the RabbitMQ web interface
or a command-line tool on the machine hosting the RabbitMQ message
broker. This makes the initiation process cumbersome and not scalable for
hundreds of clients. Ideally, client users should be created and assigned via
the web interface dynamically, making it possible to add new devices later
without much effort.

7.3 Scalability Limitations

One key feature and advantage of IoT and Cloud Computing is its scalability
and expandability on demand. Thousands of these small ”things” can
communicate with each other while a cloud back-end administrates the
dataflow. This was also the idea of this master thesis and its implementation;
however, its scalability was not tested. It would be advisable to perform a
stress test with simulated IoT-clients in order to measure the performance
of the system and RabbitMQ.

Additionally, a requirements evaluation concerning the configuration of the
cloud database should be made with the aim to configure it as efficient as
possible.

64

7 Limitations and Future Work

7.4 Maturity of the Implementation

The implementation in this thesis represents a proof-of-concept implementa-
tion which means that it is not ready to be used at the customer. In addition
to the security audit and analysis (7.1), a code review of a primtec software
developer is needed to meet all industrial requirements. Numerous scien-
tific work on how to perform theses code reviews and detailed analysis
regarding its advantages was released in the past (e.g., Thongtanunam et al.
(2015) and Czerwonka, Greiler, and Tilford (2015)), and these techniques
should be applied.

7.5 Threats to Validity

This work was meticulously prepared and the topics covered were re-
searched as thoroughly as possible. However, errors and gaps can not be
excluded since the topics IoT and Cloud are very extensive. Especially the
products of the cloud providers are challenging to research in their seem-
ingly infinite number, which makes it possible that the requirements defined
in section 4.3 could be met with one of their premade products. Neverthe-
less, the solution presented in this thesis as has been demonstrated in the
evaluation chapter successfully solves primtec’s problems.

65

8 Conclusion

The goal of this thesis was to introduce the Styrian IT-company primtec
GmbH to the concepts of Internet of things (IoT) and Cloud Computing by
developing and implementing an IoT/Cloud framework for their software.
This framework should be designed to provide the opportunity for remote
controlling, monitoring, and maintenance.

After presenting two products of primtec and their current problems, which
is the lack of remote access to the worldwide spread machines, the first part
of this work focused on the cloud and IoT, their history, the corresponding
terminology, and the fundamental ideas of these novel technologies. Google
Cloud Provider, Microsoft Azure, and Amazon Web Services, the three biggest
cloud providers, were described and compared regarding their different
products, prices, and their general advantages and disadvantages. In consid-
eration of the continually changing and evolving product portfolio and their
overall high quality in terms of security and availability, no recommendation
could be made.

Since IoT is all about the communication between machines, the different
”languages” (MQTT, AMQP, HTTP, and WebSockets), better known under
the generic term Message Protocols, which are commonly used in combination
with IoT, were investigated and compared regarding their relevance for the
primtec software framework.

In addition, current research and state of the art in the scientific field were
presented and explained in these areas.

The second part of this thesis dealt with the practical implementation of
the IoT/Cloud framework for primtec. First, the problems and limitations
of the industrial sector, in which almost all primtec customers are located,
were explained and broken down. From these constraints, requirements

66

8 Conclusion

were defined, which had to be fulfilled by the implementation. With these
requirements in mind, a solution was developed consisting out of the
following parts:

• The Client Software: The client software is an addition to the already
existing software container, including a ”heartbeat-signals service”
and ”log-message synchronization service” using MQTT and AMQP.

• The Orchestrator: This module receives the locally sent messages by the
clients in the network and forwards them to a cloud database.

• The Message Broker: A message broker (RabbitMQ) was used to handle
the MQTT/AMQP communication within the network.

• The Cloud Database: A PostgreSQL database hosted using the Google
Cloud Provider, which was chosen for the sole reason of the lowest cost
at that time, was used to store the log messages.

• The Web Service: A website based on Vue was implemented, showing
the currently active devices and their corresponding log-messages and
online states.

The entire implementation can be considered a proof-of-concept and is not
yet ready to be deployed at the customer’s site due to security reasons and
various simplifications and features that still need to be implemented. These
extensions were discussed in the final part of this thesis, and an outlook on
future work was given.

67

Bibliography

Albalawi, A. et al. (2019). “A Survey on Authentication Techniques for the
Internet of Things.” In: 2019 International Conference on Computer and
Information Sciences (ICCIS), pp. 1–5 (cit. on p. 26).

Ashton, Kevin et al. (2009). “That ‘internet of things’ thing.” In: RFID journal
22.7, pp. 97–114 (cit. on p. 24).

Azure, Microsoft (2020). SLA for Azure SQL Database. Microsoft Azure. url:
https://azure.microsoft.com/en- us/support/legal/sla/sql-

database/v1_4/ (visited on 04/17/2020) (cit. on p. 38).
Babovic, Z. B., J. Protic, and V. Milutinovic (2016). “Web Performance Evalu-

ation for Internet of Things Applications.” In: IEEE Access 4, pp. 6974–
6992 (cit. on pp. 22, 27).

Buyya, R., C. S. Yeo, and S. Venugopal (2008). “Market-Oriented Cloud
Computing: Vision, Hype, and Reality for Delivering IT Services as
Computing Utilities.” In: 2008 10th IEEE International Conference on High
Performance Computing and Communications, pp. 5–13 (cit. on p. 27).

Chopra, K., K. Gupta, and A. Lambora (Feb. 2019). “Future Internet: The
Internet of Things-A Literature Review.” In: 2019 International Conference
on Machine Learning, Big Data, Cloud and Parallel Computing (COMITCon),
pp. 135–139. doi: 10.1109/COMITCon.2019.8862269 (cit. on p. 6).

Chopra, Kriti, Kunal Gupta, and Annu Lambora (Feb. 2019). “Future Inter-
net: The Internet of Things-A Literature Review.” In: pp. 135–139. doi:
10.1109/COMITCon.2019.8862269 (cit. on p. 25).

Czerwonka, J., M. Greiler, and J. Tilford (2015). “Code Reviews Do Not Find
Bugs. How the Current Code Review Best Practice Slows Us Down.” In:
2015 IEEE/ACM 37th IEEE International Conference on Software Engineering.
Vol. 2, pp. 27–28 (cit. on p. 65).

68

https://azure.microsoft.com/en-us/support/legal/sla/sql-database/v1_4/
https://azure.microsoft.com/en-us/support/legal/sla/sql-database/v1_4/
https://doi.org/10.1109/COMITCon.2019.8862269
https://doi.org/10.1109/COMITCon.2019.8862269

Bibliography

Dordevic, Borislav, Slobodan Jovanovic, and Valentina Timcenko (Nov. 2014).
“Cloud Computing in Amazon and Microsoft Azure platforms: Perfor-
mance and service comparison.” In: pp. 931–934. doi: 10.1109/TELFOR.
2014.7034558 (cit. on p. 26).

Dorsemaine, B. et al. (Sept. 2015). “Internet of Things: A Definition amp;
Taxonomy.” In: 2015 9th International Conference on Next Generation Mobile
Applications, Services and Technologies, pp. 72–77. doi: 10.1109/NGMAST.
2015.71 (cit. on pp. 7, 8, 25).

Edan, N. M., A. Al-Sherbaz, and S. Turner (2017). “Design and evaluation
of browser-to-browser video conferencing in WebRTC.” In: 2017 Global
Information Infrastructure and Networking Symposium (GIIS), pp. 75–78

(cit. on p. 18).
Fatemi Moghaddam, F. et al. (Aug. 2015). “Cloud computing: Vision, ar-

chitecture and Characteristics.” In: 2015 IEEE 6th Control and System
Graduate Research Colloquium (ICSGRC), pp. 1–6. doi: 10.1109/ICSGRC.
2015.7412454 (cit. on p. 8).

Ghaffar, M. A. A. and T. T. Vu (2015). “Cloud computing providers for
satellite image processing service: A comparative study.” In: 2015 Inter-
national Conference on Space Science and Communication (IconSpace), pp. 61–
64 (cit. on p. 26).

Gigli, Matthew and Simon Koo (Jan. 2011). “Internet of Things: Services
and Applications Categorization Abstract.” In: Adv. Internet of Things 1,
pp. 27–31. doi: 10.4236/ait.2011.12004 (cit. on p. 25).

Gou, Q. et al. (2013). “Construction and Strategies in IoT Security System.”
In: 2013 IEEE International Conference on Green Computing and Commu-
nications and IEEE Internet of Things and IEEE Cyber, Physical and Social
Computing, pp. 1129–1132 (cit. on p. 26).

Guner, A., K. Kurtel, and U. Celikkan (2017). “A message broker based
architecture for context aware IoT application development.” In: 2017
International Conference on Computer Science and Engineering (UBMK),
pp. 233–238 (cit. on pp. 17, 28, 40, 45).

Hoffmann, J. et al. (2018). “Towards a Safety and Energy Aware protocol
for Wireless Communication.” In: 2018 13th International Symposium on
Reconfigurable Communication-centric Systems-on-Chip (ReCoSoC), pp. 1–6

(cit. on p. 29).
IBM (2020). How TLS provides identification, authentication, confidentiality, and

integrity. IBM. url: https://www.ibm.com/support/knowledgecenter/

69

https://doi.org/10.1109/TELFOR.2014.7034558
https://doi.org/10.1109/TELFOR.2014.7034558
https://doi.org/10.1109/NGMAST.2015.71
https://doi.org/10.1109/NGMAST.2015.71
https://doi.org/10.1109/ICSGRC.2015.7412454
https://doi.org/10.1109/ICSGRC.2015.7412454
https://doi.org/10.4236/ait.2011.12004
https://www.ibm.com/support/knowledgecenter/SSFKSJ_9.0.0/com.ibm.mq.sec.doc/q009940_.html
https://www.ibm.com/support/knowledgecenter/SSFKSJ_9.0.0/com.ibm.mq.sec.doc/q009940_.html
https://www.ibm.com/support/knowledgecenter/SSFKSJ_9.0.0/com.ibm.mq.sec.doc/q009940_.html

Bibliography

SSFKSJ_9.0.0/com.ibm.mq.sec.doc/q009940_.html (visited on
06/18/2020) (cit. on p. 48).

IBM-Cloud-Education (2020). Message Brokers. IBM. url: https://www.ibm.
com/cloud/learn/message-brokers (visited on 07/04/2020) (cit. on
p. 20).

John, Vineet and Xia Liu (2017). “A Survey of Distributed Message Broker
Queues.” In: ArXiv abs/1704.00411 (cit. on p. 23).

Kang, D. et al. (2017). “Room Temperature Control and Fire Alarm/Suppression
IoT Service Using MQTT on AWS.” In: 2017 International Conference on
Platform Technology and Service (PlatCon), pp. 1–5 (cit. on p. 28).

Kaskade, Jim (2020). What Does HA in the Cloud Mean? Jim Kaskade. url:
https://jameskaskade.com/?p=448 (visited on 07/04/2020) (cit. on
p. 38).

Kumar, K. and Y. Lu (2010). “Cloud Computing for Mobile Users: Can
Offloading Computation Save Energy?” In: Computer 43.4, pp. 51–56

(cit. on p. 26).
Li, Shancang, Li Xu, and Shanshan Zhao (Apr. 2014). “The internet of things:

A survey.” In: Information Systems Frontiers 17. doi: 10.1007/s10796-
014-9492-7 (cit. on pp. 7, 24).

Luzuriaga, J. E. et al. (2015). “A comparative evaluation of AMQP and MQTT
protocols over unstable and mobile networks.” In: 2015 12th Annual IEEE
Consumer Communications and Networking Conference (CCNC), pp. 931–936

(cit. on p. 28).
Madakam, Somayya, R Ramaswamy, and Siddharth Tripathi (Apr. 2015).

“Internet of Things (IoT): A Literature Review.” In: Journal of Computer
and Communications 3, pp. 164–173. doi: 10.4236/jcc.2015.35021 (cit.
on pp. 24, 25).

MarketWatch (2020). Amazon rules the public cloud. MarketWatch, Inc. url:
https://www.marketwatch.com/story/amazon-rules-the-public-

cloud-but-google-microsoft-alibaba-are-growing-faster-2017-

12-20 (visited on 02/21/2020) (cit. on p. 19).
Mell, Peter and Tim Grance (2011). The nist definition of cloud computing.

NIST. url: https://csrc.nist.gov/publications/detail/sp/800-
145/final (visited on 01/03/2020) (cit. on pp. 9–11).

Mesquida, Antoni Lluı́s, Antònia Mas, and Esperança Amengual (2011).
“An ISO/IEC 15504 Security Extension.” In: Software Process Improvement
and Capability Determination. Ed. by Rory V. O’Connor et al. Berlin,

70

https://www.ibm.com/support/knowledgecenter/SSFKSJ_9.0.0/com.ibm.mq.sec.doc/q009940_.html
https://www.ibm.com/support/knowledgecenter/SSFKSJ_9.0.0/com.ibm.mq.sec.doc/q009940_.html
https://www.ibm.com/support/knowledgecenter/SSFKSJ_9.0.0/com.ibm.mq.sec.doc/q009940_.html
https://www.ibm.com/cloud/learn/message-brokers
https://www.ibm.com/cloud/learn/message-brokers
https://jameskaskade.com/?p=448
https://doi.org/10.1007/s10796-014-9492-7
https://doi.org/10.1007/s10796-014-9492-7
https://doi.org/10.4236/jcc.2015.35021
https://www.marketwatch.com/story/amazon-rules-the-public-cloud-but-google-microsoft-alibaba-are-growing-faster-2017-12-20
https://www.marketwatch.com/story/amazon-rules-the-public-cloud-but-google-microsoft-alibaba-are-growing-faster-2017-12-20
https://www.marketwatch.com/story/amazon-rules-the-public-cloud-but-google-microsoft-alibaba-are-growing-faster-2017-12-20
https://csrc.nist.gov/publications/detail/sp/800-145/final
https://csrc.nist.gov/publications/detail/sp/800-145/final

Bibliography

Heidelberg: Springer Berlin Heidelberg, pp. 64–72. isbn: 978-3-642-21233-
8 (cit. on p. 59).

Naik, N. (Oct. 2017). “Choice of effective messaging protocols for IoT sys-
tems: MQTT, CoAP, AMQP and HTTP.” In: 2017 IEEE International
Systems Engineering Symposium (ISSE), pp. 1–7. doi: 10.1109/SysEng.
2017.8088251 (cit. on pp. 12, 14).

OASIS-Open (2020). MQTT Version 3.1.1. OASIS Open. url: http://docs.
oasis-open.org/mqtt/mqtt/v3.1.1/os/mqtt-v3.1.1-os.html (visited
on 04/23/2020) (cit. on p. 13).

Panetta, Kasey (2020). Gartner Top 10 Strategic Technology Trends for 2018. Gart-
ner. url: https://www.gartner.com/smarterwithgartner/gartner-
top-10-strategic-technology-trends-for-2018/ (visited on 02/07/2020)
(cit. on p. 8).

ParkMyCloud (2020). AWS vs Azure vs Google Cloud Market Share 2020: What
the Latest Data Shows. ParkMyCloud. url: https://www.parkmycloud.
com/blog/aws-vs-azure-vs-google-cloud-market-share/ (visited on
04/02/2020) (cit. on pp. 19, 20).

Peniak, P. and M. Franeková (2018). “Extended Model of Secure Communica-
tion for Embedded Systems with IoT and MQTT.” In: 2018 International
Conference on Applied Electronics (AE), pp. 1–4 (cit. on p. 28).

Prajapati, A. G., S. J. Sharma, and V. S. Badgujar (2018). “All About Cloud:
A Systematic Survey.” In: 2018 International Conference on Smart City and
Emerging Technology (ICSCET), pp. 1–6 (cit. on p. 26).

primtec-IoT (2020). primtec IoT Device. primtec GmbH. url: https : / /

primtec.eu/produkte/iot-device/ (visited on 02/07/2020) (cit. on
p. 2).

primtec-PackingTable (2020). primtec Packing Table. primtec GmbH. url:
https : / / primtec . eu / produkte / rfid - arbeitstisch/ (visited on
02/07/2020) (cit. on p. 4).

RabbitMQ (2020). AMQP 0-9-1 Model Explained. RabbitMQ. url: https:
//www.rabbitmq.com/tutorials/amqp- concepts.html (visited on
06/26/2020) (cit. on p. 15).

Rimal, B. P., E. Choi, and I. Lumb (2009). “A Taxonomy and Survey of Cloud
Computing Systems.” In: 2009 Fifth International Joint Conference on INC,
IMS and IDC, pp. 44–51 (cit. on p. 26).

71

https://doi.org/10.1109/SysEng.2017.8088251
https://doi.org/10.1109/SysEng.2017.8088251
http://docs.oasis-open.org/mqtt/mqtt/v3.1.1/os/mqtt-v3.1.1-os.html
http://docs.oasis-open.org/mqtt/mqtt/v3.1.1/os/mqtt-v3.1.1-os.html
https://www.gartner.com/smarterwithgartner/gartner-top-10-strategic-technology-trends-for-2018/
https://www.gartner.com/smarterwithgartner/gartner-top-10-strategic-technology-trends-for-2018/
https://www.parkmycloud.com/blog/aws-vs-azure-vs-google-cloud-market-share/
https://www.parkmycloud.com/blog/aws-vs-azure-vs-google-cloud-market-share/
https://primtec.eu/produkte/iot-device/
https://primtec.eu/produkte/iot-device/
https://primtec.eu/produkte/rfid-arbeitstisch/
https://www.rabbitmq.com/tutorials/amqp-concepts.html
https://www.rabbitmq.com/tutorials/amqp-concepts.html

Bibliography

Saadeh, M. et al. (2016). “Authentication Techniques for the Internet of
Things: A Survey.” In: 2016 Cybersecurity and Cyberforensics Conference
(CCC), pp. 28–34 (cit. on p. 25).

Sachs, Kai et al. (Apr. 2010). “Benchmarking Publish/Subscribe-Based Mes-
saging Systems.” In: vol. 6193, pp. 203–214. doi: 10.1007/978-3-642-
14589-6_21 (cit. on p. 21).

Singh, J. et al. (2016). “Twenty Security Considerations for Cloud-Supported
Internet of Things.” In: IEEE Internet of Things Journal 3.3, pp. 269–284

(cit. on p. 26).
Sreeraj, S., N. S. Kumar, and G. S. Kumar (2017). “A framework for pre-

dicting the performance of IoT protocols, a use case based approach.”
In: 2017 International Conference On Smart Technologies For Smart Nation
(SmartTechCon), pp. 577–580 (cit. on p. 28).

Thongtanunam, P. et al. (2015). “Who should review my code? A file location-
based code-reviewer recommendation approach for Modern Code Re-
view.” In: 2015 IEEE 22nd International Conference on Software Analysis,
Evolution, and Reengineering (SANER), pp. 141–150 (cit. on p. 65).

Uy, N. Q. and V. H. Nam (2019). “A comparison of AMQP and MQTT
protocols for Internet of Things.” In: 2019 6th NAFOSTED Conference on
Information and Computer Science (NICS), pp. 292–297 (cit. on pp. 13, 14,
16).

Wikipedia (2020). MQTT. Wikipedia. url: https://en.wikipedia.org/
wiki/MQTT (visited on 04/02/2020) (cit. on p. 14).

Yassein, M. B., M. Q. Shatnawi, and D. Al-zoubi (2016). “Application layer
protocols for the Internet of Things: A survey.” In: 2016 International
Conference on Engineering MIS (ICEMIS), pp. 1–4 (cit. on p. 27).

Zhang, Minghui, Fuqun Sun, and Xu Cheng (2012). “Architecture of Internet
of Things and Its Key Technology Integration Based-On RFID.” In: 2012
Fifth International Symposium on Computational Intelligence and Design 1,
pp. 294–297 (cit. on p. 25).

Zhang, Z. and J. S. Lim (2015). “Emotion Recognition Algorithm Based on
Neural Fuzzy Network and the Cloud Technology.” In: 2015 10th Inter-
national Conference on Broadband and Wireless Computing, Communication
and Applications (BWCCA), pp. 576–579 (cit. on p. 26).

Zhonggui Ma et al. (2013). “The architecture and key technologies of Internet
of Things in logistics.” In: International Conference on Cyberspace Technology
(CCT 2013), pp. 464–468 (cit. on p. 25).

72

https://doi.org/10.1007/978-3-642-14589-6_21
https://doi.org/10.1007/978-3-642-14589-6_21
https://en.wikipedia.org/wiki/MQTT
https://en.wikipedia.org/wiki/MQTT

	Abstract
	Kurzfassung
	Introduction
	Structure
	Introduction to primtec
	Products by primtec
	The Internet of Things
	Cloud Computing
	Cloud Service Models
	Cloud Deployment Models

	Messaging Protocols
	MQTT - Message Queuing Telemetry Transport Protocol
	AMQP - Advanced Message Queuing Protocol
	HTTP - Hyper Text Transport Protocol
	WebSocket
	WebRTC

	Background
	The three big Cloud Provider
	AWS - Amazon Web Service
	Microsoft Azure
	GCP - Google Cloud Platform

	Message Brokers
	RabbitMQ
	Eclipse Mosquitto
	HiveMQ
	Other Message Brokers

	Related Work
	Scientific Work related to Internet of Things
	Scientific Work related to Cloud
	Scientific Work related to Message Protocols and Message Brokers

	Problem and Requirements
	Current Situation
	Constraints
	Requirements
	R01: Reliability and Quality
	R02: Confidentiality, Integrity, and Authenticity
	R03: Restricted access to the World Wide Web
	R04: Web Interface
	R05: Easy Integration to existing Products
	R06: Logging to the Cloud
	R07: Monitoring Data
	R08: Remote Commands
	R09: Statistics
	R10: Notification System
	R11: Availability

	Contribution
	Review and Comparison of the Cloud Providers
	Free Trial
	Pricing Examples
	Choosing a Cloud Provider
	Message Broker Comparison

	General Architecture
	RabbitMQ Message Broker
	The Client Software
	NLog Configuration
	Log, Heartbeat and Command Service

	The Orchestrator
	The Cloud
	The Web Service

	Discussion and Evaluation
	Limitations and Future Work
	Security Improvements
	Usability Improvements
	Scalability Limitations
	Maturity of the Implementation
	Threats to Validity

	Conclusion
	Bibliography

