
Lisa Ronacher, BSc.

Machine Learning-based Location
Detection of Mathematical Expressions in

PDF

Master’s Thesis
to achieve the university degree of

Master of Science

Master’s degree programme: Computer Science

submi�ed to

Graz University of Technology

Supervisor

Dipl.-Ing. Dr.techn. Roman Kern

Institute for Interactive Systems and Data Science
Head: Univ.-Prof. Dipl-Inf. Dr. Stefanie Lindstaedt

Graz, August 2020

A�idavit

I declare that I have authored this thesis independently, that I have not used other
than the declared sources/resources, and that I have explicitly indicated all material
which has been quoted either literally or by content from the sources used. �e text
document uploaded to tugrazonline is identical to the present master‘s thesis.

Date Signature

ii

Abstract

Portable Document Format (PDF) is one of the most commonly used �le formats.
Many current PDF viewers support copy-and-paste for ordinary text, but not for
mathematical expressions, which appear frequently in scienti�c documents. If one
were able to extract a mathematical expression and convert them into another
format, such as LATEX or MathML, the information contained in this expression
would become accessible for a wide array of applications, for instance screen readers.
An important step to achieve this goal is �nding the precise location of mathematical
expressions, since this is the only unsolved step in the formula extraction pipeline.
Accurately performing this crucial step is the main objective of this thesis. Unlike
previous research, we use a novel whitespace analysis technique to demarcate
coherent regions within a PDF page. We then use the identi�ed regions to compute
carefully selected features from two sources: the grayscale matrix of the rendered
PDF �le and the list of objects within the parsed PDF �le. �e computed features
can be used as input for various classi�ers based on machine learning techniques.
In our experiments we contrast four di�erent variants of our method, where each
uses a di�erent machine learning algorithm for classi�cation. Further, we also aim
to compare our approach with three state of the art formula detectors. However, the
low reproducibility of these three methods combined with logical inconsistencies
in their documentation greatly complicated a faithful comparison with our method,
leaving the true state of the art unclear, which warrants further research.

iii

Contents

Abstract iii

1 Introduction 1

2 Related Work 7
2.1 Background . 7

2.1.1 Mathematical Expression Types 8
2.1.2 Preprocessing . 9

2.2 Traditional Detectors . 10
2.2.1 Optical Character Recognition 10
2.2.2 Rule-based Methods . 11

2.3 Data Driven Detectors . 12
2.3.1 Four Step Model . 12
2.3.2 Neural Networks and Deep Learning 14
2.3.3 Unsupervised Detectors 16

3 Method 19
3.1 PDF File Structure . 19

3.1.1 Coordinates . 21
3.2 Horizontal and Vertical Whitespace Analysis 22
3.3 Features for Displayed Expressions 28

3.3.1 Sparsity . 28
3.3.2 Horizontal Glyph Densities 29
3.3.3 Permutation Entropy . 33
3.3.4 Font Information . 35
3.3.5 Unsuccesful Features . 35

3.4 Machine Learning Algorithms . 40
3.4.1 Support Vector Machine 40
3.4.2 Random Forests . 43

v

Contents

3.4.3 Naive Bayes Classi�er . 46
3.4.4 Arti�cial Neural Networks 47

3.5 Method Overview . 48

4 Evaluation 51
4.1 Setup . 51

4.1.1 Dataset . 52
4.1.2 Ground Truth . 54
4.1.3 Measures . 56
4.1.4 Baselines . 62

4.2 Hyperparameter Analysis . 62
4.2.1 Support Vector Machine 62
4.2.2 Random Forest . 68
4.2.3 Naive Bayes . 70
4.2.4 Neural Network . 72
4.2.5 Experimental Hypotheses 73

4.3 Results . 74
4.4 Discussion . 79

5 Conclusion 83

Bibliography 85

vi

List of Figures

2.1 Displayed and embedded expressions 8
2.2 Phong system . 14
2.3 Succesive detection of a mathematical expression 17

3.1 PDF document when viewed with a text editor 19
3.2 Last three lines of 3 PDF �les . 20
3.3 PDF coordinate system versus image coordinate system 21
3.4 PDF bounding boxes around le�ers 24
3.5 Di�erent Gaussian �lter setings 25
3.6 Horizontal pixel sum of a PDF page 26
3.7 Horizontal whitespace problem and solution 27
3.8 Degree of sparsity for �ve example blocks 30
3.9 Horizontal glyph densities text example 31
3.10 Horizontal glyph densities formula example 32
3.11 Moran’s I examples . 38
3.12 Feature vector example . 39
3.13 SVM - binary classi�cation . 41
3.14 Weighted SVM . 43
3.15 Small decision tree . 45
3.16 Neuron of hidden layer . 48

4.1 Ground truth XML schema . 53
4.2 Overlap between two rectangles 54
4.3 �e eight possible detection results 60
4.4 Feature In�uence . 68
4.5 Random Forest feature importance 71

vii

1 Introduction

In present days, many Portable Document Format (PDF) documents exist and can
be accessed on the web. Alongside normal text, PDF documents can contain other
elements like images, tables and mathematical equations. Especially in some ar-
eas of scienti�c research the documents frequently contain formulas and shorter
mathematical expressions. While many current PDF viewers make it possible to
copy-and-paste ordinary text, this ability does not extend to mathematical expres-
sions. When one tries to copy a mathematical symbol that can not easily be typed
with a standard keyboard, the results are mixed: some symbols can be copied,
some will be substituted with a similar character, some will be le� out altogether.
Especially fraction bars are ignored and sub- or superscripts are no longer in their
correct position. For example, when copying ”xi” the iwill appear on the same level
as x, which results in ”xi”. Generally, one can say that it is not possible to copy a
substantial portion of mathematical symbols or larger mathematical expressions.

�e option to copy mathematical expressions and use in simple text editors or to
search for them in the web does not seem likely to become available in the near
future. �ere is simply no support for fractions or large operators like sums. How-
ever, something that is possible is the conversion from mathematical expressions
in PDFs into another format like LATEX or MathML.

LATEX is a popular choice for creating PDF documents that contain complex math-
ematical expressions. It is a markup language that is commonly used to write
scienti�c documents. However, writing mathematical expressions can be rather
time consuming, especially if a person is new to the LATEX syntax. �erefore, it
would be useful to copy a formula from a PDF document, transform it into LATEX
syntax and reuse it. MathML is used to present mathematical expressions on the
web and is an application of XML. It can also be parsed by screen readers. Screen
readers are tools that make it possible for visually impaired people to work with
a computer. �erefore, transforming mathematical expressions into the MathML

1

1 Introduction

format would be a �rst step to make PDF documents with mathematical content
more accessibly to visually impaired users. For the conversion between LATEX and
MathML a number of free tools exist1.

To convert a formula from a PDF document into LATEX syntax multiple approaches
are possible. One possibility is to analyze an image of the formula and to recognize
all symbols and their relationships. Another approach is to parse glyph names
and information regarding symbol positions directly from the PDF �le. Obtaining
di�erent information from both sources is also a promising path. In all these cases
the mathematical expression has to be detected at some point, whether by manual
clipping from an image or automatic detection through an algorithm. �e detection
of mathematical expressions and the recognition of its symbols can be treated as
two steps in the higher-level task of formula extraction.

Early a�empts for formula recognition are already about 25 years old [4, 10, 11].
At �rst the PDF format was not yet widely used or even developed. Many scienti�c
documents were �rst printed and later scanned so that only images of the documents
were available. Some PostScript documents existed, which is the predecessor of
PDF format. Still, at �rst only the optical recognition of mathematical expressions
was researched.

�e reason that we are able to copy ordinary text from a PDF today, is that very
good Optical Character Recognition (OCR) systems exist. �e recognition of text is
a quite old research topic. Berman and Fateman [4] refer to OCR systems with over
99% accuracy in 1994. However, OCR systems lose much of their accuracy when
it comes to mathematical expressions, since they were not designed for them. For
mathematical expressions it is o�en not enough to scan a line just from le� to right
like for plain text, because they frequently have two-dimensional elements. Such
elements are factions, sum or integral signs that include the upper and lower bounds
of the function, or simply sub- and super-scripts. Equation systems are another
mathematical structure that have a two-dimensional design. However, the main
example of two-dimensional structures in math are matrices. �ese mathematical
elements very rarely are mentioned in papers on the topic of formula detection or
recognition. �erefore it is o�en not clear if the proposed systems even support
matrices. While it is very likely that the individual elements of a matrix can be
detected by most formula detection systems, a matrix should be recognized as one

1For example LaTeXML h�ps://dlmf.nist.gov/LaTeXML/, Pandoc h�ps://pandoc.org/ or TeX4ht
h�ps://ctan.org/pkg/tex4ht

2

structure. In a similar fashion, equation systems should ideally be recognized as on
connected block.

Apart from the two-dimensional aspect mathematical expressions and ordinary
text di�er in fonts and font sizes that are used. While normal text is usually wri�en
in only one font, di�erent fonts or styles will appear quite frequently in mathe-
matical expressions. Additionally, it is almost not possible that a mathematical
expression that is longer than three symbols will be uniform in font size [33]. Small
symbols in sub and super-scripts, normal sized variables and larger symbols like
sum signs and large brackets for vectors and matrices alternate frequently. In the
same way di�erent styles will appear in mathematical expressions. All these aspects
prevent standard OCR systems from correctly recognizing mathematical expres-
sions, and make it inevitable that special recognition systems for math content are
developed.

Since the PDF format became more and more popular, formula recognition methods
gradually shi�ed away from solely OCR-based systems. Instead enough informa-
tion could be acquired trough PDF parsers to replicate a mathematical expression
without the help of a rendered representation of this expression. When it comes to
recognizing mathematical symbols, a purely visual approach can have problems
with similar looking symbols. For example the Greek le�er ρ (rho) is similar to a
lower case p in italics. In the same way a χ (chi) and X ($\mathcal(X)$ in LATEX)
look almost the same when the size is not taken into account. Special OCR systems
for formula recognition need di�erent categories for Greek le�ers, italic font types
and other typefaces that can be used in formulas and have their own meaning.
When the part of the PDF �le that includes those symbols is parsed, it should be
unambiguous which symbol was used.

However, working exclusively from the PDF without support from the document
image also has several di�culties. One of the main ones is, that di�erent programs
produce very di�erent PDFs with diverse amount of information. Structural infor-
mation and font names can be omi�ed and the resulting PDF can still look identical
to one that contains all this information. Omi�ing the additional information pro-
duces a smaller �le, so saving disk space or sending smaller �les are the main reason
for it. Another typical problem is that sometimes mathematical expressions or parts
of them are inserted as images. While mathematical expressions that are a mixture
of LATEX syntax and images will be a minority, mathematical expressions can also

3

1 Introduction

appear in �gures. Just with information from the PDF alone it is not possible to
recognize the content of these images.

Some commercial and free tools for formula recognition are available. �e IN-
FTY system2 [30] can convert images of PDF documents to LATEX, HTML or XML.
Mathpix3, a mainly free so�ware, can recognized mathematical expressions from
clipped screenshot images. Like mathpix some works on formula extraction omit
the detection step and assume that their input (image, PDF or both) includes only a
mathematical expression that was extracted by some other application or manually
[2]. In this thesis the focus is on this sometimes neglected detection step. �e goal
is therefore not to identify a certain mathematical symbol or expression, but to
�nd and mark the locations of them. Ideally, a mathematical expression should be
anything from a single variable, over short terms to complex formulas.

Methods for formula detection have reported good results for a number of years
now. For example in 2013 Chu and Liu[8] reported 95% precision and 91% recall for
the detection of displayed expressions. In one of the most recent works on formula
detection from Wang et al. [33] the precision and recall values are 93.6% and 99.4%
respectively. Many di�erent approaches are used: from classi�cation with Support
Vector Machines (SVMs), over deep neural networks to unsupervised methods.
Every new method compares itself to an older approach with lower detection results,
to show that an improvement was achieved. Nevertheless, evaluation results from
a method that was developed in 2013 are almost as high as from a very recent
method.

In this thesis we want to investigate how well di�erent machine learning algorithms
are suited for the task of formula detection and how this compares to other, some-
times more complex state of the art methods. A hybrid method is constructed that
relies on information gained with a PDF parser, but also uses the document image.
Via horizontal and vertical whitespace analysis we detect ”blocks”, which can be
either text paragraphs or displayed mathematical expressions. Features from both
sources (PDF parser and document image) are selected, to pro�t from the di�erent
information that both can provide. �e machine learning algorithms that we use
to classify between formula region and text region are: Support Vector Machine,
random forest, Naive Bayes and arti�cial neural networks.

2h�p://www.in�yproject.org/
3h�ps://mathpix.com/

4

�e structure of this thesis is as follows: �e second chapter focuses on the relevant
literature of formula recognition and detection. In the third chapter our method
and relevant background information for it are described. �is is followed by
the evaluation in Chapter 4, where we compare our method with a few selected
literature methods. �e last chapter summarizes the most important points of the
previous chapters and draws conclusions about our method.

5

2 Related Work

�e detection of mathematical content was a topic of research even before the PDF
format was developed and became a standard format for documents [11]. Instead
of digital �les printed pages were scanned and formula detection or recognition
were performed on the scanned image. While methods have drastically changed
over time, it is still a viable approach to only use Optical Character Recognition
(OCR) methods for the detection of mathematical expressions. �e PDF format
can give additional information about the document and the content of a page.
However, the amount of useful information and its structure varies depending on
the application that produced the PDF document. �erefore, the majority of state
of the art methods could not work accurately without rendering the document and
performing at least some of the detection steps on the resulting image.

In this chapter di�erent approaches for formula detection will be presented. Since
there are not many approaches that focus purely on formula detection, methods for
formula recognition are also included. For these methods we focus mostly on the
detection part. A large part of existing literature consists of supervised learning
methods. Some early approaches for formula recognition can not be included in this
category and some recent, state of the art methods lean more toward unsupervised
learning. Another way to categorize the literature is to determine whether the
approach is OCR-based or uses a PDF parser.

2.1 Background

In the �rst part of this section the two di�erent types of mathematical expressions
are described in detail. �e second part covers the importance of preprocessing
before PDF documents became popular. �is type of preprocessing is usually not
necessary for state of the art image-based formula recognition methods. However,

7

2 Related Work

Figure 2.1: Example of a displayed expression and multiple embedded expressions. A bounding box
surrounds each mathematical expression - blue for the displayed expression and red for
the embedded ones. In this example every variable is classi�ed as embedded expression.

the information is still relevant if mathematical expressions should be located or
extracted from an older document with less than perfect quality.

2.1.1 Mathematical Expression Types

Mathematical expressions can appear in two types on a page. Either as displayed
expressions or embedded expressions. Displayed formulae are isolated from other
components. Usually there is white-space above and below them and they are
centered on the page or in their column. A number can appear on the right side of
the displayed formula to act as reference number. �is would be an relatively easy
way to distinguish displayed formulas, but unfortunately they are not always used.
Another name for displayed mathematical expressions is isolated expressions.

�e other type of mathematical expressions are embedded expressions, which can
also be called inline expressions. �ey appear inside a text paragraph and have
no additional white-space that separates them from the surrounding text. �ey
also do not have a number for references. While displayed expressions are o�en
longer formulae, inline expressions can be very short, involving just a few symbols
or even just one variable. Ideally, everything that would be wri�en inside the $
$ environment in LATEXshould be considered an embedded expression. Figure 2.1
shows an example of displayed and embedded expressions in blue and red boxes
respectively.

�e detection of embedded expressions can be quite ambiguous. For example in
Figure 2.1 the sequence j, 1 ≤ j ≤ k is shown in two bounding boxes. �is does

8

2.1 Background

not look incorrect since all parts of the embedded expression were found, but the
whole sequence could also be detected as one.

2.1.2 Preprocessing

Preprocessing is o�en an important step �rst for methods that rely on Optical
Character Recognition systems. Especially when it comes to scanned documents
the quality of the image is never perfect. Noise, merged or broken characters
hinder accurate detection and recognition of mathematical expressions. Without
preprocessing many methods that rely on the image of a document would perform
substantially worse.Preprocessing is more o�en an issue in older works that were
wri�en before the PDF �le format was commonly used.

�e work of Fateman et al [11] is a good example for that. �e focus is not on
the detection of mathematical expressions but instead more on the recognition
of mathematical symbols. �is work does not mention PDF documents, since the
format was relatively new, but instead works with PostScript which is practically
the predecessor of PDF. In the overview of their design they mention that they do
not need to scan paper, but instead can convert a TEX�le to PostScript and next into
a bitmap, which is used as input. �is suggests that up to that point it was more
common to work with scanned images, than with originally digital �les.

When scanned images are involved it is important to have good preprocessing
steps, which are not always required when the document was never in printed
form. One part of preprocessing is de-skewing to properly align images that were
not placed perfectly in the scanner. Another important step is to remove noise from
multiple sources as much as possible. Possible sources of noise are the following:

• dirt on the document, that either got on the paper sometime before the scan
or was introduced through the scanning process

• artifacts on the paper that are picked up by the scanner, for example holes
on the side of the paper, staples (or holes from them) or even a crease

• imperfections introduced by the printer, possibly because of too li�le ink or
low resolution

Especially when the resolution of the printer was not high enough to produce a
document of good quality, it becomes very di�cult to improve the image a�er
scanning. Sometimes this causes le�ers to be too close together and appear as one

9

2 Related Work

symbol. For the detection of mathematical expressions this is not that much of a
problem, but once it comes to recognition, such compound symbols are di�cult to
process.

2.2 Traditional Detectors

�is section focuses on traditional formula recognition methods. A prominent
part of many traditional approaches is an Optical Character Recognition (OCR)
systems. �e basic characteristics of OCR systems and their potential problems
with mathematical expressions are described below. Additionally, some methods
that do not fall into the category of data driven approaches are mentioned.

2.2.1 Optical Character Recognition

Optical Character Recognition (OCR) is the automated recognition of printed or
handwri�en characters [10]. Most OCR systems are developed to primary recog-
nized le�ers and they perform poorly when trying to recognize a mathematical
expression. �is is in part due to the great amount of di�erent fonts, Greek le�ers
and mathematical symbols that have to be recognized in a formula. Another major
problem is the o�en 2-dimensional structure of mathematical expressions. Sub-
scripts, superscript, fractions and matrices (among others) pose a challenge, since
the linear way to process symbols that most OCR systems use does not work here
[12].

One step in the OCR process is a segmentation step [10], where connected com-
ponents are extracted. �ese are in most cases simply characters, but there are a
number of symbols that consist of more than one component. �e most frequent
one is the lower-case le�er ”i”, which consists of the dot and the stroke. In such cases
the components have to be combined to represent the correct character. Standard
OCRs have ways to handle this for typical characters like ”i” or even ”=”. However,
mathematical expressions can include a multitude of mathematical symbols that
are not one connected component, for example ≥,≤,≈ and variables like x̂, x̄ or ~x
to name a few.

10

2.2 Traditional Detectors

�e other problem of extracting connected components is that two symbols that are
too close together can appear as one. �is is o�en an issue for scanned images with
poor quality where two le�ers appear to be touching because of poor lighting, dirt
on the paper or simply bad printing quality. In mathematical expressions especially
sub- and superscripts are in danger of being too close to other characters. �e risk
is even higher when they appear in embedded expressions instead of displayed
ones.

While standard OCR systems are not suited for the recognition of mathematical
symbols, specialized OCR systems are the basis of many formula recognition meth-
ods. A prominent one is the INFTY system by Suzuki et al. [30]. Early on in its
character recognition part a commercial OCR system, developed for ordinary text,
processes the document image. It gives a good recognition result for ordinary text,
but fails and produces meaningless outputs when it comes to mathematical expres-
sions. �e INFTY system exploits this to gain an initial detection of mathematical
content. Later a specially developed ”Original Recognition Engine” handles the
previously found expressions. �is engine can distinguish font-types, which is
especially important for mathematical content. For example the di�erence between
”X” and ”X ” or between ”a” and ”α” may be critical for the meaning of a formula.

2.2.2 Rule-based Methods

Rule-based methods are more o�en used in older approaches, before many machine
learning algorithms became really popular. �e main characteristic of rule-based
methods is that they do not use machine learning. Instead, descriptive statistics
(mean, standard deviation) are used frequently to distinguish mathematical expres-
sions from ordinary text.

Toumit et al [31] and Garain and Chaudhuri [7, 14] search for common math
symbols, like the plus sign, equal sign or a fraction bar and tag this as mathematical
content. �en, the detection area is expanded to include the rest of the formula. For
example if a plus is found at least one symbol on the le� and right side belongs to
the mathematical expression. For fraction bars the area above and below them is
relevant. Similarly, if an opening parenthesis is found, everything on the right side
of it can belong to the formula until a closing parenthesis is detected. Parenthesis
do not always indicate a mathematical expression so additional decision steps are
necessary.

11

2 Related Work

�is process is more o�en applied to look for embedded mathematical expressions.
When it comes to displayed expressions it is easier to analyze the layout to �nd the
whole formula. In the work of Garain and Chaudhuri [14] displayed expressions
are detected without character recognition. Instead, they look for blocks that are
surrounded by white spacing and calculate the standard deviation of the bo�om
le� black pixel of each symbol. In a text line these pixels generally lie on a straight
line. However, in a mathematical expression the pixels are more vertically sca�ered.
A similar approach is taken by Kacem et al. [19], who observed that displayed
formulas have a much lower density of black pixels than a paragraph of plain
text.

2.3 Data Driven Detectors

Unlike most traditional formula detectors, contemporary methods mainly rely on
databases of PDF documents. �rough various machine learning techniques the
appearance of mathematical expressions is learned. �e majority of state of the art
formula detection methods fall into the category of supervised learning methods,
but there are also a few were weakly supervised or unsupervised ones.

2.3.1 Four Step Model

A�er looking at a number of data driven approaches for formula detection, we
observed that for many methods it is possible to split them into the following four
steps:

1. obtain text regions
2. split into lines
3. extract features
4. classify

In the �rst step regions areas that are not text blocks are removed. �is mostly
includes images, tables and possibly table of content pages or references. If necessary
image preprocessing steps such as de-skewing or noise removal will take place
at the beginning of this phase. �is is only done if the input �le was a scanned
document that is now presented as an image or PDF �le.

12

2.3 Data Driven Detectors

�e next step uses di�erent segmentation methods to split a block of text into
individual lines. �is can either be done from scratch or functions from existing
image processing libraries are used. A�er a list of lines is acquired the goal is to
detect mathematical expressions among them. To detect displayed expressions
classi�cation of the line is enough. However, to be able to also �nd embedded
expressions further segmentation of a line is necessary. Methods that include the
detection of embedded mathematical expressions usually �rst distinguish between
displayed expressions and text lines and subsequently split the text lines into words.
�is basically means that steps two, three and four have to be repeated on the lines
not classi�ed as displayed expression to detect embedded expressions.

Step three is feature extraction. �e system can only classify mathematical expres-
sions if it has learned what normal text and mathematical content looks like. In
order to learn this, some kind of features are extracted from lines or words. �e
speci�c features are o�en the main di�erence between methods. Features of a line
or word can be simple characteristics like for example in [8], where the height of
a line, the indent on the le� side, density of black pixels and centroid �uctuation
are used. Centroid �uctuation describes how much the word centers deviate from
the horizontal center of the line. On the other hand features can also be something
more abstract like spectral properties of the line [26], which can be obtained via
fast-fourier transform.

With the help of the extracted line and word features Support Vector Machines or
various types of neural networks can be trained to distinguish between normal text
and mathematical expressions. �e accuracy of the results highly depends on the
used features but the architecture of a neural network also contributes to it.

In the work of Phong et al. [26] Fast-Fourier-Transform (FFT) and Support Vector
Machines (SVM) are employed to detect mathematical expressions. �e focus is
on the detection of displayed expressions, while inline expressions are mostly
disregarded in this approach. However, the subsequent work [27] is dedicated to
�nding inline variables.

Figure 2.2 shows an overview of the steps this method applies. �e blue boxes
represent the �rst phase in which preprocessing and layout analysis takes place.
Features of the open source so�ware OCRopus are used in most of these steps. In the
second phase, depicted in red, the classi�cation of displayed expressions and normal
text takes place. Since this approach only aims to detect displayed expressions,
segmentation into lines that are either ordinary text or mathematical expressions is

13

2 Related Work

Figure 2.2: Flowcharts of the system used by Phong et al. [26]. �e right image shows the process
of how displayed expressions and ordinary text are classi�ed.

su�cient for the classi�cation. �ere is no further word segmentation. Phase and
magnitude values are obtained for the line images with FFT. �e density of black
pixels is di�erent for text lines and displayed expressions. Text lines normally have
a higher density. �e density can be compared through Power Spectrum which can
be computed with FFT.

�e phase and magnitude values are combined into Fscore in order to have a quanti-
tative measure for the line (Fscore = αFphase +βFmagnitude). �en the mean square
error (MSE) is calculated for two lines to determine the di�erence between them.
Training data for the SVM is obtained by calculating the MSE between all training
lines of displayed expressions and separately between all training text lines and
again training lines of displayed expressions. To classify the test images the MSE
between test images and training lines of displayed expressions is calculated and
given as input for the SVM classi�cation.

Tests showed that the systems can reliably extract mathematical expressions that are
no longer than one line. However, once the expression exceeds one line, extraction
errors appear more o�en.

2.3.2 Neural Networks and Deep Learning

In order to also detect inline expressions [27] builds on the previous work and
adds a new module for variable detection. A�er the classi�cation step that divided
the lines into displayed expressions and text lines, the la�er are processed further.
Since the goal is to �nd variables among normal words the �rst new step splits a

14

2.3 Data Driven Detectors

line into words. In order to obtain a good segmentation the sum of black pixels
in every column of the line image is utilized. �is is called the vertical projection
pro�le and the values are lower between words - this represents the white space.

For the feature extraction pre-trained Convolutional Neural Networks (CNN) are
used. Speci�cally AlexNet and ResNet-50 were tested and the results were be�er
with the la�er one. �e extracted features are then used to train a SVM, which
takes over for the classi�cation into variables and text words.

�e work of Gao et al [13] also falls into the category of data driven methods, but
contrary to many other learning-based approaches it does not precisely follow the
four step model. Instead of line and word segmentation, a region proposal network
is used to �nd candidate regions for formulae. �is is similar to some approaches
to object detection where the region proposal network locates regions in the image
that are likely to contain an object [28].

A sliding-window approach is o�en used for region proposals, but this does not
work very well for mathematical expressions because of their high variability in
size. �e region proposal in this case works with bo�om-up and top-down layout
analysis methods. Both approaches are used, since either one alone does not work
very well for some scenarios. By combining them it is possible to �nd all formula-
like regions.

For feature extraction two neural networks are trained. A convolutional neural
network (CNN) extracts visual features of text and formula regions, while a re-
current neural network (RNN) is used for sequential character features. �e RNN
extracts features similar to manually designed character features that are used by
traditional methods. A�er the input layer CNNs usually have alternately a number
of convolutional layers and pooling layers followed by a few fully connected layers
at the end. In this work max-pooling is used, however the last pooling layer is a
Spatial Pooling layer [17]. �is is important, because normally the input is required
to have the same size. However, an important aspect of mathematical expressions is
the variety of sizes in the individual symbols. �e Spatial Pooling layer makes the
size of input images changeable to retain this important feature of mathematical
expressions. A joint layer is used to connect the features from CNN and RNN.
A�erwards an additional fully connected layer transformes the features into a
two-dimensional vector, which serves as input for the so�max classi�er.

15

2 Related Work

In tests they show that the combination of both networks achieves be�er results
that either one network alone. �e accuracy of detected formulae is high (over 94%).
However, the system only detects displayed formulae, while ignoring embedded
expressions.

2.3.3 Unsupervised Detectors

While most state of the art methods use supervised learning, the Font Se�ing based
Bayesian (FSB) model by Wang and Liu [32] is an unsupervised algorithm. It �rst
uses heuristic rules to detect a number of key mathematical expressions. In a next
step new mathematical expressions are found through Bayesian inference, based on
the assumption that the style of mathematical expressions does not chance within
a document.

�e key expressions are mostly displayed expressions. Only mathematical expres-
sions that can be recognized with negligible error are chosen. A PDF parser extracts
the Unicode values and glyph names of all symbols. Greek le�ers, operators, rela-
tions or big operators are math symbols and can indicate a mathematical expression.
If no matched natural language word is found in the line that contains such a math
symbol, the line is treated as displayed expression. Embedded expressions are
slightly harder to �nd with high certainty. Nevertheless, mathematical function
names or symbols can be processed as embedded expressions.

With the described heuristic rules the FSB model is able to estimate a highly accurate
character level posterior. Since the font style of mathematical expressions does
not change within a document, new mathematical expressions can be found with
a likelihood ratio test. �rough this method most displayed expressions can be
correctly detected. An F1 score of 93.9% is reported.

In [33] Wang et al. take some ideas from the FSB model to develop another unsu-
pervised algorithm. It also relies on the likelihood ratio test to classify symbols, in
this case based on their font size. It is assumed that certain font sizes are used for
mathematical expressions and others for ordinary text. �e same font size might
not always indicate ordinary text when it comes to PDF documents from di�erent
sources, but within one document this should not change. �erefore, instead of
using ground truth to estimate the likelihood that a symbol with a certain font
size is a mathematical symbol, the required information is extracted from the PDF

16

2.3 Data Driven Detectors

Figure 2.3: Examples from [33] for the successive detection of a mathematical expression. Red boxes
indicate classi�cation as mathematical expression, while green stands for ordinary text.

page. For mathematical expressions the font size changes frequently within a small
number of symbols. �erefore, two groups for short and long sequences are es-
tablished and character sequences with the same font size are sorted into them.
�e likelihood for certain font sizes to be linked to mathematical expressions or
ordinary text can be estimated from the entries in the groups.

�e algorithm needs several steps from detecting mathematical symbols to correctly
identifying whole embedded or displayed expressions. As the example in Figure 2.3
shows, at �rst not all symbols in a mathematical expression are correctly detected
and the rest is split into multiple fragments. In the next step characters that are
closer to one another than a gap threshold are grouped together. False negatives
can be eliminated when they are in the same group as math symbols. Finally
mathematical expressions that lie next to each other, but with greater distances
between them, are also merged.

�is method can detect mathematical expression with high accuracy. �e F1 scores
for displayed and embedded expressions are 96.4% and 92.1% respectively. Many
false positive detections from the FSB model can be corrected.

To summarize, over time multiple approaches for formula detection were developed.
From methods that develop special OCR systems for mathematical content the trend
slowly progressed to PDF parsers. Most methods use supervised learning, which
means that a labeled data set is essential. Recently, two unsupervised methods were
developed that only require labeled data for an accurate evaluation, but do not need
to be trained. Most methods that were mentioned in this chapter claim to achieve a
high accuracy. Since new works are still being published on the topic of formula
detection the detection results are apparently still not high enough.

17

3 Method

In this chapter all relevant parts of our method are described. Additionally, some
related concepts are explained to provide relevant background information. It starts
with the internal structure of PDF �les and explains the basic concepts of our chosen
machine learning algorithms.

3.1 PDF File Structure

A comprehensive speci�cation on the PDF �le format was published by Adobe
Systems Incorporated [18]. One of the reasons why PDF is a popular �le format,
is that the document looks the same on any device. To achieve this the focus is
entirely on the graphical representation. What looks like a line of text in a PDF
viewer, can be constructed out of several fragments which are just positioned next
to each other on the page. �ey do not even have to appear in a consecutive order
in the PDF �le stream. �is fact can make it challenging to parse PDF �les correctly.
�e order of text has to be guessed from its position and white space has to be
analyzed to �nd separate paragraphs or columns of text.

Figure 3.1: Part of a PDF document when the �le is opened with a text editor. It shows a stream
object where the content is encoded.

19

3 Method

Figure 3.2: Last three lines of three di�erent PDF �les. �e cross reference section is at the beginning
of the �le for the middle example, and near the end for the other two �le.

Most of the actual content of a document is stored in so called stream objects. �ey
have a length parameter (/Length) that speci�es the number of bytes between the
keywords stream and endstream. Next is the optional �lter parameter (/Filter), which
lists the names of all �lters in the order that they were applied to the stream data.
In the example in Figure 3.1 only one �lter was applied: /FlatDecode. If a �lter has
parameters they are listed a�erwards under /DecodeParms. Since the �lter in the
example does not have any parameters, no decode parameters are listed.

�e object shown in the example is a so called indirect object. It has a positive integer
object number (in this case 22) followed by a non-negative integer generation
number (0). �e generation numbers are always 0 when the PDF �le is created and
higher numbers can only appear when the �le is updated later on. �e combination
of object number and generation number leads to a unique identi�er for the speci�c
object. �e keywords obj and endobj mark beginning and end of the object. It is
not required that indirect objects are numbered sequentially. �is type of object is
called indirect because indirect references that occur elsewhere in the �le can refer
to such an object.

Generally, it is recommended to start the parsing of a PDF document at the end of
the �le. �e reason for this lies in the general structure of PDF �les. Basic PDFs
have a one-line header followed by the body section, which contains all of the
objects. �e cross reference table (also called xref table), that contains references to
indirect objects, is most o�en located beneath the body. At the end of the �le is the
trailer, which ends with the end-of-�le marker %%EOF. In the two lines before that
the position of the last cross reference section is speci�ed. �e position is stated as
the byte o�set from the beginning of the �le.

Figure 3.2 shows the last three lines of three PDF �les that were opened with a text
editor. For the �rst and third �le the cross reference table is located near the end
of the �le. However, in the second example the table can be found nearly at the
beginning of the �le. �is shows how the structure of a PDF �le can vary. With

20

3.1 PDF File Structure

Figure 3.3: On the le� hand side the PDF coordinate system is shown. �e point of origin is on the
lower le� corner, which means that y-coordinates increase toward the top. On the right
hand side is the image coordinate system. �e origin is in the top le� corner same as for
matrices. Additionally, PDF page and image do not normally have the same dimensions.
In this example the PDF is 612 x 792 and the image 4250 pixel x 5500 pixel.

the help of the cross reference table all indirect objects can be found and parsed
relatively easy. Since, its location is evidently not �xed the best approach is to �rst
parse the last three lines of a PDF �le stream.

3.1.1 Coordinates

�e coordinate system of a PDF �le is set up di�erently than the coordinate system
of image �les, as is shown in Figure 3.3. In images the point of origin (0,0) is located
in the top le� corner. �e x-coordinates increase to the right and y-coordinates
increase toward the bo�om. �is is also the way indexing in matrices work. Since
images are normally represented as matrices on computers, where every pixel is an
entry, it is only natural that they use the same indexing system. However, in PDF
�les the origin is located in the bo�om le� corner. �e x-coordinates still increase
to the right, but y-coordinates represent the distance from the bo�om and increase
toward the top. An additional di�erence of PDF coordinates is that they are real
numbers, while image coordinates are integers since they represent entries in the

21

3 Method

image matrix.

Usually, the rendered PDF should have a high resolution. �erefore, the height
and width of the page as image will be much higher than the dimensions of the
same page as PDF �le. For example the dimensions for a PDF page can be 612 x 792
points and the corresponding image has a size of 4250 x 5500 pixels. To transform
PDF coordinates into image coordinates or vice versa it is necessary to know the
dimensions of both �les. To convert the x-coordinates, multiply the given value with
the ratio of PDF width and image width. To obtain the corresponding y-coordinate,
�rst subtract the y value from the image or PDF height before multiplying it with
the ratio of heights. �is is shown in Equations (3.1) and (3.2) where the PDF
coordinates are computed from the image coordinates. �e variables wpdf, wimg and
hpdf, himg describe the widths and heights of PDF and image respectively.

xpdf = ximg ·
wpdf

wimg
(3.1)

ypdf = (himg − yimg) ·
hpdf

himg
(3.2)

3.2 Horizontal and Vertical Whitespace Analysis

A problem that seems to occur quite o�en with the initial detection of displayed
mathematical expressions, is that the expression is incorrectly split into multiple
lines [21, 32]. �e reason for this is usually a segmentation step where the text
lines of a document are found. Parts of a displayed expression can be incorrectly
recognized as separate lines. Sub- and superscripts of large operators, for example
sum symbols, as well as numerator and denominator of fractions can be candidates
for such incorrect line splits. To prevent this spli�ing of displayed expressions we
decided to look at larger coherent blocks instead of lines. A block can for example
be a text paragraph, a �gure of some kind or a mathematical expression. Section
titles are also seen as blocks. Basically, everything that has substantial white-space
above and below it is a block. Some speci�c features of these blocks are later used
as input for di�erent machine learning algorithms to distinguish between displayed
expressions and other blocks.

22

3.2 Horizontal and Vertical Whitespace Analysis

Since there is also white-space between text lines or between the sum symbol and
its limits, it is necessary to make a paragraph or a mathematical expression appear
as one coherent block. To this end a Gaussian �lter is applied to the image. �e �lter
should blur it just enough that each block is blurred, without obscuring the white-
space between the blocks. �e most important parameter of the Gaussian �lter
method is the standard deviation, σ. It de�nes the size of the Gaussian kernel and
is responsible for the amount of blurring. A higher σ value leads to a more blurred
image. For a multi-dimensional input (like images) σ can be a sequence of values,
one for each axis. If only one number is given, the same standard deviation is used
for all axes. Since we want to keep larger horizontal white-space areas the standard
deviation in vertical direction has to be rather small. On the x-axis we do not have
to preserve white-space, therefore σ can have a larger value here. Examples can be
seen in Figure 3.5.

Not all PDF documents look the same. Documents from di�erent sources will
most likely not all have the same format, which means that among other things
the font size can vary. Since di�erent font sizes change the height of lines, the
sigma parameter can not be the same for every document. Instead it has to change
depending on the line height, or character height. For this reason, we compute a
scale value, which is set to the median of all character heights on the page. �e
mean value is not used here, because the goal is to �nd the height of a normal text
line and titles or section headings with larger font size will in�uence the mean too
much. �e character heights are calculated from the image of the PDF, since the
character coordinates that can be extracted from the PDF are much larger than the
actual character. Figure 3.4 shows an example of four characters and their di�erent
y-coordinates. �e green lines represent the upper and lower PDF y-coordinates
while the red lines show the actual start and end points of each character. As already
mentioned there is a large amount of space between the upper limit of the bounding
box and the �rst black pixel. However, the PDF bounding boxes have the advantage
that the y-coordinates are the same for all characters in a line, provided that they
have the same font size.

To get the actual size of a character, its PDF coordinates are transformed into image
coordinates and this area is extracted from the image. �en, each horizontal pixel
line is reduced to a Boolean value which depends on the existence of black pixels in
that line. Lastly, the di�erence between the indices of the �rst and last black pixel
line provide the size of the character. Once the actual size of all characters on a
page is known, we compute the median and use this value as scale parameter. A�er

23

3 Method

Figure 3.4: Four le�ers in the same font and font size start and end at di�erent y-coordinates. �e
PDF bounding boxes around these le�ers have the same y-coordinates (green lines).
However, the PDF coordinates are much larger than the actual characters (red lines).

the scale parameter is computed the Gaussian �lter is applied to the image with
σ = 0.5 · scale in y-direction and σ = scale in x-direction. �is leads to a stronger
blurring in horizontal direction. Figure 3.5 shows he e�ect of di�erent σ values.

�e next step is to detect blocks in the blurred image. For this the color in the image
is inverted, which means that everything that was white is now black and vice versa.
When humans look at a document, they interpret the white background as ”nothing
there” and only the black (or otherwise colored) areas as relevant. In images white
pixels have the maximum value (1 or 255) while black pixels have the value 0
which is exactly reversed to how humans perceive it. For the implementation it
makes li�le di�erence whether to search for blocks of low values (black) or high
values (white). But the process can be more easily described if original black pixels
have high values. For the inverted image the sum of each horizontal pixel line is
calculated, we call this horizontal dark pixel sum. �e sum of an originally white
line is zero. Figure 3.6 shows an example how the horizontal dark pixel sum looks
when plo�ed. On the le�-hand side of the Figure is the corresponding document.

To �nd the blocks in the image a simple threshold rule was implemented. Each
time the horizontal pixel sum rises above a certain threshold value a new block is
started. �e block ends once the value falls below the threshold again. To �nd a
good threshold we experimented with some values and came to the conclusion that

24

3.2 Horizontal and Vertical Whitespace Analysis

Figure 3.5: Image of a PDF document part with di�erent Gaussian �lter se�ings. a) original image
without �lter b) σ = scale for both directions c) σ = scale in x-direction and σ =
0.5 · scale in y-direction d) σ = 0.5 · scale for both directions. c) and d) are both
acceptable results, but the blurring in b) is too strong.

25

3 Method

Figure 3.6: Part of a PDF document and a plot of the horizontal dark pixel sum in this area. �e
sum is calculated from the blurred image so that smaller horizontal whitespace areas are
not detected.

a threshold between 7 and 20 gives good results. Even for those values problems
occur. On one hand, sometimes two blocks merge if the threshold is too low to
detect the space between the blocks. On the other hand there are cases where blocks
end too soon if the threshold is too large. In the end the threshold was set to 9
which at least avoids the la�er problem.

Another problem that occurs for all acceptable threshold values is that in some
cases it looks like there is enough whitespace above a formula but in reality the
distance between the last text line and the displayed expression is not large enough.
Figure 3.7 shows such an example. �e last text line has only one word in it and no
words above the displayed expression. Given that there is an considerable amount
of whitespace surrounding the formula, it would seem as if it is easy to detect it as
new block. However, the horizontal dark pixel sum between the last text line and
the beginning of the displayed formula does not fall below the threshold. In this
concrete example a slightly higher threshold would solve the problem, but there
are many cases where even a threshold value of 20 would not detect a new block.

To solve this problem we needed some additional checks whether a block should
end. Originally once a new block started each pixel line with a horizontal pixel sum

26

3.2 Horizontal and Vertical Whitespace Analysis

Figure 3.7: �e red line shows the start of a block and the blue line its end. In the upper image
the displayed expressions is not in a separate block even though it looks like there is
enough distance between it and the text paragraph. However, the word ”write” in the
line above is too close, so the horizontal dark pixel sum does not fall below the threshold
(orange line on the right). To solve this we look at the space directly above the displayed
expression. Since there is no text here a new block starts at the best y-coordinate between
”write” and the formula.

higher than the threshold was ignored. Now once we are scale · 2.5 pixels into the
block, there is an additionally check if there is text above the text of the current
line. To do that we look at the line scale · 2 pixels above and analyze where on the
horizontal line the text is. If the text locations of the current line and the line above
overlap for less than 20% a new block could start close to the current line. To �nd
the best beginning point we look at the pixel sums for 3 · scale lines above and
1 · scale below the current line and search for the minimum value. At the position
of the minimal value the current block ends, and a new one starts. However, if the
minimum is found at the topmost line no new block starts. In this case it is very
likely that we are still close to the beginning of the block. A distance of scale · 4
pixels should be large enough that the minimum representing the small whitespace
between the current text line and the previous text line is included. We chose all
values like scale · 2 based on the knowledge that the value of scale represents the
size of an average character. From there we could estimate how much space a line

27

3 Method

will typically need.

To summarize, the procedure to �nd a new block can be describes as follows :

• go over the list of horizontal dark pixel sums and set v to the current sum
value

• start new block if v > t
• end block if v <= t
• for lines in block check if the text in the line above overlaps with text from

current line
• if not end current block and start a new one at the best position around the

current pixel line

PDF documents o�en have a two column layout. To �nd blocks here the approach
from above has to be performed for each column. �erefore, before the horizontally
blurring Gaussian �lter, a vertical one is applied to each document image. Finding
columns is easier than horizontal blocks, since they are more clearly de�ned. All
columns that are found (even for single column layouts) are used as input for the
horizontal block detection step.

3.3 Features for Displayed Expressions

Supervised machine learning algorithms need features and corresponding labels as
input. In this case the features are measurable properties of blocks, which contain
either text or a displayed mathematical expression. In this section the features that
are used to train the machine learning algorithms are described. Additionally to
the features that were useful, we also include a few ideas that did not work and the
reason why these features were not used.

3.3.1 Sparsity

Displayed mathematical expressions are o�en shorter than the column width and
do not use all the available space in one line. �is leads to a great number of white
pixels surrounding them. Even if the formula is especially long the gap between
mathematical symbols is usually wider than the distances between characters within
a text paragraph. �erefore, our hypothesis is, that displayed expression areas have

28

3.3 Features for Displayed Expressions

more white pixels, than text areas. In other words, mathematical expressions are
more sparse than text paragraphs.

�e sparse property of non-text areas was also used to detect tables in [23]. Ying
et al. de�ne a sparse line property which is ful�lled if the minimum space gap
between consecutive words is larger than a threshold or if the length of the line
is shorter than a threshold. In our case only single characters are obtained from
the PDF instead of words. To merge characters into words the coordinates have to
be analyzed so that the white-space between two words can be found. However,
we decided to use the matrix de�nition of sparsity [15]. A matrix is called sparse
if most entries are zero and dense if most entries are non-zero. To compute the
sparsity of a matrix the number of elements which are zero is divided by the total
number of elements. Sparsity is measured in percent.

In an image matrix 0 represents a black pixel and white pixels have the maximum
value. So strictly speaking an image section with more white background than
black words is very dense instead of sparse. Nevertheless, since humans perceive
white on a page as ”nothing there” we will refer to sections with very li�le black as
sparse.

For the computation a section of the document that contains either a displayed
expression or text is considered. Such a section of the image will be referred to as
”block”. To get the sparsity a binary image is used, which means that all pixels are
either white or black without any gray in between. In Python this is represented as
a matrix with the values ”True” and ”False”. Since True can also be interpreted as 1,
it is possible to compute the sum of a block (number of white pixels) and divide it
by the total number of pixels in the block to obtain the sparsity value. Figure 3.8
shows a few examples of blocks and the corresponding sparsity values.

3.3.2 Horizontal Glyph Densities

While the PDF document does not really have the concept of words, it can give
coordinates for every symbol in it. As described in Section 3.2 and shown in Figure
3.4 the coordinates do not describe precisely where a symbol is. �ere is especially
much additional space above and below a character, while the le� and right bound-
aries are more accurate. If two characters lie next to each other on the page, the
right border of the le�most character is were the bounding box of the next character

29

3 Method

Figure 3.8: Five examples of blocks and the corresponding sparsity values. Overall the numbers
are rather high. Each block can be considered sparse, since the sparsity is over 50%.
Text examples have lower values than mathematical expressions, with the exception of
example e).

30

3.3 Features for Displayed Expressions

Figure 3.9: Horizontal glyph densities of a text block. Since no inline expressions are present there
are the same amount of y-coordinate entries as lines in the block. �e maximum is 54,
the mean 46.0 and the standard deviation 8.88.

begins. �e lower limits might not be accurate, however they are the same for all
characters that lie on the same line. Exceptions are sub-, and super-scripts which
have lower or higher y-coordinates respectively.

To utilize this we list all di�erent y-coordinates within a block and count how
many symbols lie on that speci�c horizontal line. �is list will be referred to as the
horizontal glyph densities of a block. �e assumption is that a text paragraph will
have multiply entries with a high number of symbols which represent the lines.
Figure 3.9 shows an example text block and the corresponding horizontal glyph
densities. �e y-coordinates come from the PDF, therefore they decrease toward
the bo�om of the page. Most of the lines have a similar number of characters in
them with the exception of the last line.

In a mathematical expression on the other hand, there should be more y-coordinate
entries with a few symbols each, due to subscripts, superscripts and fractions. �ere
can be a main line in a formula that contains more symbols, but the number should
be substantially smaller than the number of characters on a full text line. Figure
3.10 shows an example of how the horizontal glyph densities for a formula can look.
When compared to the text example from Figure 3.9 the number of characters with
the same y-coordinate is signi�cantly smaller. Both examples come from a PDF
document with a two column layout, which means that the di�erence in character
numbers for the text example could be even higher for a single column layout.

Since text paragraphs can contain embedded mathematical expressions there will

31

3 Method

Figure 3.10: Horizontal glyph densities for a displayed expression. �ere is one main line in the
formula and a few characters that lie slightly above or below this. �e di�erence between
the y-coordinates is much smaller than for the text example. �e maximum is 22, the
mean 9.67 and the standard deviation 8.73.

also be y-coordinate entries with very small symbol counts. Nevertheless, for the
most part the distribution should be di�erent enough that it is possible to distinguish
text blocks and formula blocks.

�e horizontal glyph densities alone can not be used as additional feature. �e
number of lines is di�erent for each block and machine learning algorithms only
accept a feature matrix. �is means that the vector of features must have the same
length for each sample. �erefore, the data has to be transformed into a single value
for each block.

Maximum

One value that can be useful is the maximal number of symbols in the horizontal
glyph density list from each block. �is can be helpful because a full line of standard
text should contain more symbols than a mathematical expression. �e distance
between characters is smaller in text since in mathematical expressions additional
space is needed for larger mathematical operators or sub- and superscripts, which
will o�en have separate entries. �erefore, even a displayed expression that spans
the entire width of a page should have a smaller maximum value than the typical text
block. Exceptions are any kind of section headings and short sentence fragments
that can appear, for example between two displayed expressions. �e maximum
number of symbols is also lower in two column layouts. In this case the maximum
value for displayed expressions should still be lower than the maximum for text

32

3.3 Features for Displayed Expressions

blocks. However displayed expressions blocks from single column layouts could
have higher maximum values, than text blocks from two column layouts.

Mean and Standard Deviation

Mean and standard deviation of the horizontal glyph densities could potentially also
be useful features. �ey give information about the distribution of the horizontal
glyph densities. �e maximum number of symbols on the same y-coordinate should
be smaller for displayed expressions. �is, together with many entries with low
values should lead to a smaller mean value. Text blocks, especially if they are long,
will have multiple entries with values near the maximum. Additionally to fewer low
valued entries this should lead to a higher mean value. Since the di�erent between
the high and low values is high, the standard deviation can also be expected to be
high. Mean x̄ and standard deviation s are calculated as follows:

x̄ =
1

n

n∑
i=1

xi (3.3)

s =

√√√√ 1

n

n∑
i=1

(xi − x̄)2 (3.4)

where n is the number of entries and xi is the number of characters on a y-
coordinate.

3.3.3 Permutation Entropy

Permutation Entropy belongs to the area of time series analysis. It captures permu-
tation pa�erns in the time series, i.e. the order relations between individual values
[3]. In our case the time series is an array of y-coordinates, which were sorted by
the corresponding x-coordinate.

PED,norm = − 1

log2D!

D!∑
i=1

pi log2 pi (3.5)

33

3 Method

Equation (3.5) shows how to calculate the �nal value of the Permutation Entropy.
However, there is a number of steps before, to get the values for pi. D is called the
embedding dimension and is used in the �rst step of calculating the Permutation
Entropy. �ere is another parameter that is not present in the equation: τ , the
embedding time delay. �e time series is transformed into a matrix with D rows.
�e columns of the matrix represent the e�ect of a sliding window with size D
moving over the time series. τ gives the step size and is o�en set to one, which
means that the window just moves one value to the le� in each step. �e value forD
is typically chosen to be between 3 and 7. �e next step is to link the column vector
to ordinal pa�erns. An ordinal pa�ern describes the relation between the values
of the vector. For example, if D = 3 one such pa�ern would be π1 = {0, 1, 2}.
Each vector [x, y, z]T where x < y < z would be mapped to this pa�ern. �ere are
always D! possible ordinal pa�erns. In the example where D = 3 there exist 3! = 6
permutations. To get the relative frequencies pi the number of times each ordinal
pa�ern appears is counted and divided by the total number of vectors. Finally,
Equation (3.5) can be used to compute the normalized Permutation Entropy.

�e normalized PE value is restricted between 0 and 1. A smaller PED,norm value
indicates a more regular pa�ern in the time series. If τ = 1 a result of 0 can only be
achieved by a monotonically increasing or decreasing time series. A value close to 1
means that the time series is more noisy or random. �e idea is to use Permutation
Entropy to look for regular pa�erns in the y-coordinates that were sorted by their
corresponding x-coordinates. For example, in a paragraph with four lines the �rst
four values should be the y-coordinates of the �rst character in each lines. �e
next four values should be the coordinates of the second characters and so on. If
embedded expressions are present this will distort the pa�ern somewhat. It should
be more di�cult to �nd some kind of regular pa�ern in displayed expressions.
�erefore, the Permutation Entropy should be closer to 1 than for text examples.

To make this possible τ has to be chosen separately for every block. It should
ideally represent the number of lines in a text block. To get this number the line
values are split into two groups. Smaller values that most likely represent part of a
mathematical expression, and large values that should represent whole lines of text.
To �nd the ideal spli�ing point the values are sorted in ascending order. �e largest
di�erence between two consecutive values is chosen as spli�ing point. �en, the
number of entries in the part with higher values represents the number of lines.

34

3.3 Features for Displayed Expressions

3.3.4 Font Information

Additionally to the position of each symbol in the PDF it is also possible to extract
the font name of this glyph [18]. �e name alone does not always provide much
information. �e font name can for example be ’Times-Roman’, or ’Times-Bold’,
which indicates that the font Times New Roman is used. Sometimes a symbol
has a font name like ’TXCMVS+CMMI8’. In this case ’cmmi8’ is the name of the
font and the six le�ers before it followed by the plus sign, indicate that this is a
subset embedded font. All subset embedded fonts can be identi�ed by six random
characters and a plus sign that will precede the font name. �is means that not
the whole font was embedded in the PDF document. Instead only the information
about the characters that were actually used is embedded to save space. �ere are
certain fonts that are more o�en used in mathematical expressions. However, it is
not guaranteed that each mathematical expression contains symbols in these fonts.
Nevertheless, the fonts used in mathematical expressions are o�en not the same
as the font of the majority of the document text. Since the font names can not be
used as feature, a suitable value that is somehow linked to the font name has to be
found.

One possible value is the relative frequency of the font. �e majority of each docu-
ment page will be wri�en in a font like for example Times New Roman. �erefore,
the relative frequencies of the other fonts are rather low. In each block the abso-
lute frequencies for all font names are counted. �en, the font with the maximum
number of appearances is chosen. For a text block this should be main font. For a
displayed expression on the other hand, this will in most cases be a di�erent one.
�e corresponding relative frequency from the whole document is used as feature
for this block.

3.3.5 Unsuccesful Features

During our search for appropriate features for the blocks there were some ideas
that did not work as expected. �is section describes the ones that were more
interesting, or where more time was invested.

35

3 Method

Character Information

When humans look at an extracted block it is clear on �rst glance if this block is
an displayed expression or not. �ere is an obvious di�erence between an ordi-
nary sentence and a mathematical formula. One of our �rst ideas was to use the
characters and symbols in a block in some way. In a paragraph of text there are
mostly alphabetical characters, whereas a displayed expression should have mostly
mathematical symbols. �e approach to count the number of mathematical symbols
was discarded very quickly, since it is di�cult to say which symbols should count
as mathematical. Many mathematical expressions include parenthesis or square
brackets, but they can also appear in text. Plus and minus signs are less common
in text, but �rstly they are not necessary in every mathematical expression and
secondly they can appear in embedded expressions in text blocks. �e same is true
for numbers.

A list of characters that appear in a certain block alone can unfortunately not be
used as feature. Features in machine learning have to be numeric values since
the underlying math will not work with anything else. It is however possible to
convert characters into numbers and use them that way. Since there have to be
the same number of features for each block, it is easiest to count the frequency of
each character in a block. It is still important that the frequency numbers always
correspond to the same characters. �e list can not change between blocks, but has
to include all characters that will ever appear from the beginning. A list of possible
characters like ASCII (American Standard Code for Information Interchange) is
an easy solution for this. ASCII includes Latin uppercase and lowercase le�ers,
numbers, the most common special characters and some white space characters. It
does not include all possible special characters, or le�ers from di�erent languages.
�e absolute frequency of ASCII characters in a block can be used as feature.

However, this has several problems. First, not all symbols that appear in the PDF
documents are part of ASCII. One example are Greek le�ers, which are used quite
frequently in mathematical context. Unicode and its encoding schemes, like UTF-8,
would include Greek le�ers among many other relevant characters. �e newest
version of Unicode1 consists of 143,859 characters. As a result of this large number
the list of absolute characters frequencies will be sparse for each block. If the
feature vectors that represents blocks have over 140,000 entries but a substantially

1h�ps://unicode.org/versions/Unicode13.0.0/

36

3.3 Features for Displayed Expressions

smaller number of data samples is available no good solution for the classi�cation
problem will be found. �e second problem is that too much context is lost by only
looking at the absolute frequency. Displayed expressions o�en contain words like
”max”, ”sin” and other mathematical function names. However, this information
can not be harnessed this way. Additionally, every symbol that appears in displayed
expressions can also appear in an embedded expressions and therefore in a text
block. A list of symbol appearances is therefore not the right kind of feature for
our method.

Gini Coe�icient

�e Gini coe�cient comes from economics and is usually used to represent the
wealth distribution of a country. Generally, it is a measure of statistical dispersion
and its de�nition is shown in Equation (3.6). �e values can range between zero
and one and are sometimes expressed as a percentage. A Gini coe�cient of zero
means an equal distribution is present, while a value close to one means that in
a number of data samples one has a very high value while the others are nearly
zero.

G =

n∑
i=1

n∑
j=1

|xi − xj|

2n
n∑

i=1

xi

(3.6)

�e idea was to compute the Gini coe�cient for the horizontal glyph densities
of every block. Text blocks should have more entries with roughly equal values,
which represent the lines in the paragraph. Displayed expressions should have a
greater number of entries with rather low values, since mathematical equations
o�en have a more two-dimensional structure. However, we found that there is not
enough di�erence between the results for text blocks and displayed expression
blocks. Too many text blocks include embedded formulas, which leads to too many
entries with small values. Additionally, it does not make much of a di�erence that
there are typically a higher number of symbols in a text line. In both cases a few
values are much higher than the majority, which leads to similar Gini coe�cients.
Combined with outliers from both cases this feature would have complicated the
classi�cation and was therefore discarded.

37

3 Method

Figure 3.11: Moran’s I examples: from total dispersion (-1) to perfect clustering(+1).

Moran’s I

Moran’s I [25] is a measure for spatial autocorrelation and measures the similarity
between one object and its neighbors. Its values range from -1 to 1. A value near 1
means that in the data similar objects lie near each other (clustering). �e opposite
is true for -1, where dissimilar objects are next to each other (dispersion). If the
Moran’s I value is 0 there is no autocorrelation in the data (perfect randomness)
which also means that the data might be independent. Independence of data is an
assumption made by many machine learning algorithms. Figure 3.11 shows some
examples how the values -1, 0 and 1 can be reached. Moran’s I is calculated as
follows:

I =
N

W

∑
i

∑
j wij(xi − x̄)(xj − x̄)∑

i(xi − x̄)2
(3.7)

where x is the variable of interest, x̄ is the mean of x, N is the size of x, wij is
a spatial weight matrix with zeros in the diagonal and W is sum of all wij . �e
weight matrix should re�ect assumptions about the data.

We experimented with di�erent approaches for the weight matrix: se�ing it to 1
everywhere except on the diagonal, using automatic weight matrices from a library
that includes an implementation for Moran’s I and we also tried to re�ect lines of
text in the weight matrix. However, no signi�cant di�erence between Moran’s I
values for text and formula blocks could be found. In most se�ings the results for

38

3.3 Features for Displayed Expressions

both text and formula block where between 0.8 and 0.9. Overall, the white pixels
are rather clustered together in both cases, which makes Moran’s I not a good
feature to discriminate between text and displayed expressions.

To summarize, our method uses the following features:

• sparsity of the image of a block
• maximum, mean and standard deviation of the horizontal glyph density list
• permutation entropy
• the relative frequency of the most used font in a block

Figure 3.12 shows an example of two blocks and the corresponding features. �e
presented values are exactly how they are �rst calculated. A�er collecting the
features for all PDF documents in the training set the data will be normalized
to have zero mean and unit variance. �is helps for example an SVM, which is
only successful when the values of all features lie in a certain range. If one feature
ranges between 10 and 100, and another has values between 0 and 1 many machine
learning algorithms will not work as expected. However, since the normalized
features are not easy to interpret for humans, the example shows the features
before normalization.

Sparsity Max Mean StD Perm. Entropy Font Label
0.87 83 37.67 37.68 0.81 0.90 0 (text)
0.95 18 5.5 5.80 0.74 0.03 1 (formula)

Figure 3.12: Examples for two blocks and the corresponding feature vector. �e red box contains a
text block while the green one contains a displayed expression. �e table below shows
the feature values for both blocks. �e values will be normalized to have zero mean
and unit variance before the data is used as input for a machine learning algorithm.

39

3 Method

3.4 Machine Learning Algorithms

�is section describes the basics of some machine learning algorithms. For our
method we experiment with Support Vector Machines, Random Forests, Naive
Bayes classi�ers and Arti�cial Neural Networks. For the la�er we do not dive
into the topic of Deep Neural Networks since the time needed to train one is not
comparable with the other machine learning algorithms.

3.4.1 Support Vector Machine

Support Vector Machines (SVMs) are machine-learning methods that can be used for
regression, binary and multi-class classi�cation [9]. �ey are a supervised learning
method, which means that labeled training data is used. �e goal of SVMs is to
�nd the optimal hyperplane that separates the classes. In the most simplistic case
this means �nding the optimal line between two classes (see Figure 3.13). A line is
optimal if it separates the classes with the highest possible margin.

In the following we formalize the concept of SVMs (cf.[9]): Let x ∈ Rn×d be a dataset
consisting of n vectors with d features and let y ∈ {−`, `}n be a set of n labels,
where ` and −` represent positive and negative classes respectively. Commonly
in literature the labels are set as ` = 1. �e goal of an SVM is to construct a
(d − 1)-dimensional hyperplane that splits x into two groups x+, x− such that
∀xi ∈ x+ : yi = ` and ∀xj ∈ x− : yj = −`.

It is not always possible to separate two classes as clearly as in Figure 3.13, i.e.
without errors. In this case it is inevitable to tolerate some misclassi�ed samples.
�e separating hyperplane should then maximize the margins while the number of
misclassi�ed samples is minimized.

Such a hyperplane can be constructed by solving the following primal optimization
problem

minimize
1

2
‖w‖2 + C

n∑
i=1

ξi (3.8)

subject to yi(w
Tφ(xi) + β) ≥ 1− ξi (3.9)
ξi ≥ 0 ∀i ∈ 1, . . . , n (3.10)

40

3.4 Machine Learning Algorithms

Figure 3.13: Binary classi�cation with SVM. �e solid line represents the optimal hyperplane be-
tween the two classes. �e dots with additional circles around them are the support
vectors. �e dashed lines represent the margin.

41

3 Method

where w are the weights, C is a penalty term, φ(·) is a kernel function and β is a
bias term. �e non-negative variables ξi represent the distance of a sample from its
correct margin boundary. With this hyperplane the SVM prediction

y′ = sign(wTφ(x) + b) (3.11)

should be correct in most cases. With a high value for C the penalty for misclassi-
�ed samples is higher, which means that more training samples will be classi�ed
correctly. A low C will lead to more generalization in the decision function.

Since data is not always linearly separable, for example in an XOR-case, it is common
to use kernel SVMs. A kernel is basically a mapping function that maps the data
to another space. In this space it should be possible to separate the classes. �e
following tabel shows some common SVM kernels, the mathematical explanation
and a list of parameters. �e basic linear SVM is also included.

Kernel Formula Parameters
linear K(x, y) = xTy + C C
polynomial K(x, y) = (γxTy + r)d C , γ, degree d, o�set r
RBF K(x, y) = exp(−γ‖x− y‖2) C , γ
sigmoid K(x, y) = tanh(γxTy + r) C , γ, o�set r

When it comes to imbalanced data, where one class has substantially more samples
than the other, the success of a classical SVM may be limited [1]. Formula detection
is typically an imbalanced classi�cation problem since most PDF documents have
more text than mathematical expressions. Usually, the negative samples are the
majority class and positive samples the minority. Figure 3.14 shows that more
samples are classi�ed as negative if both classes are treated equally. As a result the
accuracy is high due to the high number of correctly classi�ed negative samples.
However, many misclassi�cations happen for the positive class. To improve the
results of the positive class, class weights can be used. Basically, class weights make
the positive class more important and the penalty for misclassi�cation in this class
higher.

�e results of the class weights 1:10, which means that misclassi�cation penalty
for the positive class is ten times higher than for the negative class, can be seen in
the orange line in Figure 3.14. �e decision boundary has moved closer toward the
center of the negative class and almost all orange dots lie on the correct side. �e

42

3.4 Machine Learning Algorithms

Figure 3.14: Imbalanced data since there are ten times more negative samples (blue) than positive
ones (orange). �e classi�cation in the non weighted case is biased towards the majority
class, which means that the gray decision boundary is further from the center of the
majority class. In the weighted case the misclassi�cation penalty for a positive sample is
ten times as high as for a negative sample. �rough this the orange decision boundary
moves towards the majority class and more positive samples are correctly classi�ed.

class weights can be chosen as an inverse of the class imbalance ration [1]. For the
example, where the negative class has ten times more samples, this means se�ing
the weights 1 to 10 for the positive class.

3.4.2 Random Forests

A random forest can be used for classi�cation or regression. Random forests orig-
inated from decision-tree classi�ers, which were extremely fast at classi�cation
but could not be grown to arbitrary complexity without over��ing on the training

43

3 Method

data. Tin Kam Ho [20] was the �rst to use multiple trees (a forest) to overcome
the generalization bias of single trees. A random forest classi�er consists of an
ensemble of trees, that vote for the most popular class. �e trees are all slightly
di�erent from one another and should be relatively uncorrelated. �e idea behind
random forest is that even if a few trees make the wrong decision, the majority will
vote for the right class. Since the Strong Law of Large Numbers holds [6] even a
large number of trees can be used. If other hyperparameters of the random forest
are tuned accordingly the large number of trees does not lead to over��ing.

�e term ’random’ in random forest comes from the fact that each tree gets a
random subset of features. �is in�uences the trees at each node, when the best
feature to split the node is chosen. A classical decision tree that is not part of a
random forest has all features available, but the random forest tree only has a subset.
It cannot select the overall best spli�ing criterion and instead needs to rely on
the fewer features it has access to. �is ensures that multiple trees are di�erent
from each other and will ideally not produce the same outcome. Depending on the
random forest implementation, sometimes the nodes also only get a random subset
of all features of the tree. �is adds a second source of randomness.

We use the scikit learn implementation for random forests 2. In this implementation
it is possible to specify the number of trees, the maximal depth of trees and the class
weights among other parameters. �e outcome is the average of all predictions
given by the individual trees. �is implementation also o�ers the option that each
node has only access to a subset of the features. It is possible to use for example a
speci�ed �xed number or fraction of features, the square root of the total number
of available features or all features of a tree.

An example for a single decision tree from a random forest is shown in Figure 3.15.
At each node the value of a feature decides which path to take. �e leafs give the
resulting class. In this examples colors are used to visualize the class (here orange
for text and blue for formula) and the certainty behind the decision. In a node the
�rst line describes the split criterion, for examplemean ≤ −0.5. �e word ”gini” in
the second line refers to the Gini impurity measure, which is one method to choose
the best split criterion for a node. A lower Gini impurity value corresponds to a
lower probability for misclassi�cation. �e number of samples show how many
samples passed trough that node. �e root node has the total number of samples.

2h�ps://scikit-learn.org/stable/modules/generated/sklearn.ensemble.RandomForestClassi�er.html

44

3.4 Machine Learning Algorithms

Figure 3.15: Example of small decision tree. �e maximal depth of the tree was set to 3. Orange
nodes are classi�ed as text, blue ones as displayed expression. �e one white node is
classi�ed as text but there is not much certainty behind it.

45

3 Method

3.4.3 Naive Bayes Classifier

For a Naive Bayes classi�er Bayes’ theorem is applied while a strong independence
between the features is assumed. Since features rarely are all independent this
method is called ”naive”. Nevertheless, Naive Bayes o�en performs well when
compared with other machine learning algorithms. Bayes’s theorem can be seen in
equation (3.12)

p(Ck|x) =
p(x|Ck)p(Ck)

p(x)
(3.12)

where x = (x1, ..., xn) is a feature vector and Ck is one of K classes. Since the
features are assumed to be independent it follows that

p(x|Ck) =
n∏

i=1

p(xi|Ck) (3.13)

According to the work of Rish [29] a Naive Bayes classi�er also performs well for
functionally dependent features, where the mutual information I(x; y|Ck) is at its
maximum. A Naive Bayes classi�er can easily be constructed from the probability
model above and looks as follows:

y = argmaxk∈{1...K}p(Ck)
n∏

i=1

p(xi|Ck) (3.14)

where y is the assigned class label. �e most commonly used variants of Naive
Bayes are: Multinomial Naive Bayes, Bernoulli Naive Bayes and Gaussian Naive
Bayes. Multinomial Naive Bayes is most o�en used for text classi�cation. �erefore,
the features should usually be discrete values that represent word occurrences
in text, but term frequency-inverse document frequency (tf-idf) vectors are also
acceptable. �e likelihood p(x|Ck) is given by

p(x|Ck) =
(
∑

i xi)∏
i xi!

∏
i

pxi
ki (3.15)

46

3.4 Machine Learning Algorithms

A Bernoulli Naive Bayes classi�er is similar to the multinomial variant and is also
suited for text classi�cation. Instead of discrete value it takes binary values as input.
�is changes p(x|Ck) as follows

p(x|Ck) =
n∏

i=1

pxi
ki(1− pki)

(1−xi) (3.16)

Another popular variant, that is not so limited in its classi�cation task is the
Gaussian Naive Bayes classi�er. �is classi�er assumes that the likelihood of features
for each class is Gaussian.

p(x = v|Ck) =
1√

2πσ2
k

exp(−(v − µk)2

2σ2
k

) (3.17)

�e variables µk and σ2
k are parameters of the Gaussian distribution. Although

our features are most likely not independent, experimenting with Naive Bayes
classi�ers is an interesting endeavor, since there are many reported cases with
dependent features where it produced good results.

3.4.4 Artificial Neural Networks

Arti�cial Neural Networks are another commonly used type of supervised machine
learning. �ere are many variants and special areas of neural networks that can be
described in detail. However, this section will only outline the basic aspects of these
machine learning algorithms. Neural networks are networks with an input layer,
an output layer and an arbitrary number of hidden layers between them. �e units
within a layer are called neurons. �ey take a number of values as input, perform
a mathematical function on it and produce one value as output. �e output of a
single neuron can be described as

y = f(wx+ b) (3.18)

where x is the input vector, w a weight vector and b the bias. An activation function
f is applied to the sum of these vectors to produce the output y. Options for the

47

3 Method

Figure 3.16: A single neuron in a hidden layer. It receives some inputs (xi) with some weights (wi)
and applies the activation function f .

activation function are for example Recti�ed Linear Units (ReLU) or sigmoid. ReLu
in its simplest form sets values smaller than 0 to 0 and leaves positive values as
they are. Figure 3.16 shows an illustration of a neuron.

An important step for neural networks is backpropagation. A�er the information
has �own from the input layer through the whole neural network to the output
layer the error between actual output and desired output is calculated. �is error
is then backpropagated through the network to adjust the weights [34]. �rough
this the neural network learns. �e process is usually repeated until the change in
weights converges.

3.5 Method Overview

In this section we will recap the most important steps and aspects of our method.
First a PDF document and its rendered image are processed. �e coordinates, content
and font name are extracted for each character object. From the PDF coordinates and
the image, which provides the actual character size, the scale parameter is computed.
�en the horizontal and vertical whitespace is analyzed to �nd blocks. For this
a vertical Gaussian �lter is applied to the image to �nd all columns. A�erwards,
a horizontal Gaussian �lter with scale as σ blurs the original image and in each

48

3.5 Method Overview

column the horizontal dark pixel sum is calculated. A �xed threshold helps to �nd
blocks, which are de�ned by larger whitespace areas.

For each block the following features are computed: sparsity, maximum, mean,
standard deviation, permutation entropy and relative frequency of most used font.
Maximum, mean and standard deviation are calculated from the horizontal glyph
density lists which count how many characters lie on a certain y-coordinate. A
similar approach is used for the permutation entropy which is calculated on a list
of y-coordinates that was sorted by x-coordinate. In other words the list holds
the y-coordinates of each character from top to bo�om, le� to right. For the font
feature the relative frequencies of all fonts are calculated for the whole PDF. �en
the frequency value that corresponds to the font which was most used in a block is
selected.

Before evaluation can begin the blocks need correct labels. From XML ground truth
�les the coordinates of all displayed expressions are extracted and compared against
the coordinates of our blocks. If a block and a ground truth area overlap for at least
80%, the block gets the label 1. All other blocks are labeled as 0, which means they
are text blocks. �e features from all PDFs in the training set are normalized before
giving them to machine learning algorithms. A smaller subset is used as validation
set. We used SVMs, random forests, Naive Bayes classi�ers and Neural Networks
for our experiments.

49

4 Evaluation

In this chapter the evaluation of our formula detection method is described. We �rst
present the concrete setup of our evaluation by discussing the dataset, ground truth
handling, performance measures and baselines. �en, the results of a preliminary
hyperparameter analysis on a validation dataset are discussed, before �nally the
actual test results are presented and discussed.

4.1 Setup

To evaluate the developed method the results of speci�c measures is compared
against the results from literature methods. To be able to compare the results it
would be ideal to �nd available code of di�erent methods. �en, the measure results
can be veri�ed and a detailed evaluation is possible. When there is no source code
available it is preferable that the method is described in enough detail that it is
possible to re-implement it. Both of these scenarios are considered as reproducible.
For reproducible methods it is possible to verify the results and calculate additional
measures for evaluation. �e next best circumstance would be methods that were
evaluated on the same test data that we used. If a work used a di�erent dataset
but one that is publicly available it is possible to run our method on this data and
therea�er compare the new results. In the case that unknown data was used it is
not meaningful to compare results.

In Table 4.1 a number of state of the art methods are listed. Since the methods
themselves do not all have names that were mentioned in the works and the titles
are too long, only the author names are listed. �e corresponding work is referenced.
�e column ”Category” describes in one or two keywords how the method works.
”Dataset” gives the name of the PDF document collection that was used to gain the

51

4 Evaluation

Name Category Dataset Reproducible
Xing Wang, Jyh-Charn Liu [32] unsupervised Marmot no

Gao et al.[13] Deep Neural-Network Marmot + other no
Wang et al. [33] unsupervised Marmot no

Phong et al. [26] SVM random from Harvard
and In�y database no

Wei-Ta Chu, Fan Liu [8] SVM custom no

Table 4.1: Potential methods for comparison

presented results. �e last column, ”Reproducible” states whether we consider the
method as reproducible or not.

Out of all listed methods, the majority use the Marmot dataset. �is is fortunate,
because it is the dataset that we intended to use for the evaluation of our method.
Gao et al. [13] used the Marmot dataset as test set, but the training was done on a
custom dataset. Since they used a deep neural network, the Marmot dataset would
have been too small for training. None of the works that were found are easily repro-
ducible. While some [32, 33] are described in great detail, some crucial information
is always missing. �is prevented a re-implementation of the methods.

4.1.1 Dataset

For the evaluation the Marmot dataset 1 was used. It consist of 400 PDF documents
with corresponding image and ground truth �les. �e document pages were selected
from a variety of sources. �is includes journals, books, conference proceedings
and technical reports. Further, the documents where created in di�erent years,
with di�erent PDF versions, come from di�erent domains (including mathematics,
computer science and physics) and have di�erent page layouts. In total, 1575
displayed expressions (which are called isolated formulae here) and 7907 embedded
expressions appear in the dataset. Each document page is available as PDF �le
and as rendered image. �e ground truth is represented in XML �les. Position and
other relevant information about an isolated or embedded expression are stored in
appropriate tags, as shown in Figure 4.1. �e �gure shows the detailed a�ributes
only for an isolated formula, since an embedded formula has the same ones.

1h�p://www.icst.pku.edu.cn/cpdp/sjzy/index.htm

52

4.1 Setup

Figure 4.1: Visualization of the XML schema of ground truth for the Marmot Dataset [22]

53

4 Evaluation

Figure 4.2: In the example on the le� the two boxes overlap, therefore it is possible to compute
the overlap percentage. On the right side the bo�om border of the red box is above the
top border of the green one and they do not overlap. �is can be tested by checking if
y22 < y11. Since the the order of the boxes could be reversed (green box above the red
one), also test if y12 < y21. If either of these conditions are true, the boxes do not overlap.
In other scenarios it is necessary to also check if one box is to the le� of the le� edge of
the other box by comparing the x coordinates.

4.1.2 Ground Truth

�e evaluation data set includes a corresponding XML �le for each PDF document.
Every mathematical expression is listed as isolated or embedded formula and has an
a�ribute ”BBox” (short for bounding box) which stores the PDF coordinates of the
bounding box around the mathematical expression. �e coordinates are wri�en as
hexadecimal values and �rst have to be converted to double values. Next, the PDF
coordinates are transformed into image coordinates so that they can be compared
against the blocks of the image. As a reminder, in an image the point of origin is at
the top le� corner. Consequently the y-coordinates start with 0 at the top of the
image, and increase toward the bo�om edge.

�e image coordinates x1, y1 give the top le� corner of a bounding box and x2, y2

54

4.1 Setup

give the bo�om right corner. For two boxes x11, y11 and x12, y12 are the coordinates
of the �rst box and x21, y21 and x22, y22 the coordinates for the second box, the
ground truth box. To check if two boxes can overlap, �rst the y-coordinates are
compared. If y12, the bo�om edge of the �rst box, is smaller than y21, the upper
line of the second box, the boxes can not overlap since the �rst one lies completely
above the second one. �e same is true if y22 is smaller than y11. Figure 4.2 shows
this example. We also need to compare the x-coordinates to check if the right edge
of the le�most box lies to the le� of the other box. If the boxes overlap to some
degree, the size of the overlapping area is calculated. �e equation to compute the
overlapping area of two boxes is given by (4.1).

overlap = (min(x12, x22)−max(x11, x21))∗(min(y12, y22)−max(y11, y21)) (4.1)

Basically, it is just the equation to compute the area of a rectangle: multiply the
width of the rectangle with its height. Since we are working with coordinates instead
of lengths, some additional calculations are necessary to obtain the dimensions
of the overlap rectangle. To get the width, subtract the x-coordinate of the right
edge from the x-coordinate of the le� one. To get the height, to the same with
the y-coordinates. �e le� side of Figure 4.2 shows two overlapping boxes. In this
example we would compute x12 − x21 for the width and multiply it with y22 − y11.
However, if the green box would lie more to the right, computing x12 − x21 would
not always give us the overlapping area. �erefore, Equation (4.1) takes the le�most
right edge of both boxes (min(x12, x22)) and the rightmost le� edge (max(x11, x21))
to compute the width of the area. It is important to verify that the boxes have an
overlap area before computing it, because the equation gives a result regardless. If
the boxes do not overlap the result will be some area between them.

Since we can not gain much information from the absolute overlapping area alone,
we further compute the overlap percentage by dividing the overlapping area by
the size of the block area. �e last step is to assign labels to each block in the
image. If a block overlaps to 80% with one of the ground truth bounding boxes, it is
labeled as displayed expression. It is not practical to try to achieve 100% accurate
box coordinates. First of all, the ground truth coordinates refer to the location in
the PDF �le. A�er transforming the coordinates into image coordinates most of
them will not be integer values, which means they have to be adjusted. �is makes

55

4 Evaluation

a perfect overlap almost impossible. Secondly, if the detected box is a bit larger
than the displayed expression the additional area will most likely just be white.

In some cases our algorithm found multiple blocks where the ground truth lists only
one displayed expression. �is can happen when the distance between parts of the
displayed expression is especially large. Since our blocks contain only mathematical
content and lie within the ground truth area, this is not a problem. �e overlap
percentage will be 100% for every block that is enclosed in the ground truth area
and therefore all such blocks are labeled as displayed expression.

�e reverse, where one of our blocks contains multiple ground truth areas, can also
occur and needs to be handled di�erently. If two or more displayed expressions
are very close together they are not always detected individually. �e overlap
percentage will be lower than 80%, but if only mathematical content is in our block,
it should still be labeled as displayed expression. �erefore we search for all ground
truth areas that lie inside our block and then check if the distances between them
are small. If there is a text line in the block, the distance between two ground truth
areas should be bigger than scale ∗ 1.5, else the block can be labeled as displayed
expression.

Unfortunately it can still happen that a box will contain a text block and a displayed
expression because the gap between the two was not large enough. In this case
the box is substantially larger than the displayed expression and the overlap with
the corresponding ground truth coordinates will be smaller than 80% of the block
area. �erefore the box will not be labeled as displayed expression. �is is not ideal
since the mathematical expression was not found. Nevertheless, it is be�er than
treating the larger block like a displayed expression anyway. Our goal is to �nd the
bounding boxes of mathematical expressions and if a text paragraph is included in
this bounding box this defeats the purpose.

4.1.3 Measures

In works on formula detection, the most commonly used measures are precision and
recall. �ey are used instead of accuracy, which is de�ned as all correctly predicted
samples divided by the total number of samples. �e accuracy measure is unreliable
for imbalanced data sets because is does not distinguish between the numbers of
correct labels of di�erent classes [16]. It could be high when almost no positive

56

4.1 Setup

Actual \Predicted Text ME
Text True Negative False Positive
ME False Negative True Positive

Table 4.2: Confusion Matrix for binary classi�cation. �e two classes are Text and Mathematical
Expression (ME). Since the goal is to �nd mathematical expressions, ME is the positive
class.

samples were correctly predicted. For example, if the test data consists out of 80%
negative samples and a method classi�es everything as negative, the accuracy
would be 80%.

�e precision metric describes how precise or accurate the method is in identifying
positive samples. Precision is de�ned as

precision =
tp

tp+ fp
(4.2)

where ”tp” stands for true positive and ”fp” for false positive. In the formula de-
tection scenario true positive means that a mathematical expression was correctly
recognized. False positive means that instead of a formula, normal text was detected.
�is is also shown in Table 4.1.3. Precision is therefore the fraction of correctly
predicted positive samples out of all predicted positive samples.

Precision only considers true positive and false positive samples. It does not take
missed positive samples into account. �erefore, a second measure is needed: recall,
which is de�ned as

recall =
tp

tp+ fn
(4.3)

where ”fn” stands for false negative. For formula detection a false negative is a
mathematical expression that was missed. �erefore, the denominator gives the
number of actual positive samples. Recall then calculates what fraction of actual
positives were found by the method.

Depending on the scenario it can be more important to achieve high precision
or high recall. In formula detection one can argue that it is more important to
�nd all mathematical expressions instead of not misclassifying any normal text.
Mathematical expressions should be located so that they can later be extracted

57

4 Evaluation

by another method. If a text paragraph is labeled as mathematical expression it
will also be extracted, but the other method can most likely handle normal text. If
instead a formula is missed altogether it can not be extracted and the information
that this part of the PDF holds is lost. �is reasoning would mean that a high recall
value is more important. However, it is always ideal to have both, high precision
and high recall.

Another measure that is almost always used is the F1 score. It combines precision
and recall to give an overall score of the methods classi�cation performance.

F1 = 2 · precision · recall
precision + recall (4.4)

�e F1 score is the harmonic mean between precision and recall. Like accuracy,
the F1 score is a measure that can be used alone, while precision and recall should
generally not be mentioned without the other. However, accuracy can be misleading
when the classes have an uneven distribution. In this case the F1 score gives a
more meaningful result. Since an average PDF document will have more text
than mathematical expressions, formula detection de�nitely has an uneven class
distribution.

All measures that were described so far do not include the number of true negatives.
�e Ma�hews Correlation Coe�cient (MCC) [24] takes into account all classi�-
cation results from Table 4.1.3. While precision, recall and F1 score return values
between 0 and 1, the MCC returns a value between -1 and 1. Perfect prediction is
still indicated by a the value 1 and 0 means random prediction. If the result is -1
the prediction is always wrong, but in this case the labels could just be inverted to
be correct. �e coe�cient is de�ned as,

MCC =
tp ∗ tn− fp ∗ fn√

(tp+ fp)(tp+ fn)(tn+ fp)(tn+ fn)
(4.5)

MCC is especially useful in scenarios were the two classes are imbalanced (one class
has substantially more samples than the other) [5], but both are equally important.
Precision, recall and consequently the F1 score all focus on the positive class. It
can happen that all three measures give nearly perfect values, but if the classes are
switched the results become much lower. For example, the classi�cation results

58

4.1 Setup

can look like this: tp = 50, fp = 4, fn = 3, tn = 1. In this case precision is
50/(50 + 4) = 0.926 and recall is 50/(50 + 3) = 0.943. �ese are good results. If
the positive and negative class are switched, this leads to tp = 1, fp = 3, fn =
4, tn = 50. Now, precision has a value of 1/(1+3) = 0.25 and recall 1/(1+4) = 0.2
which are clearly not good results.

Ma�hews correlation coe�cient gives the same result regardless of which class is
labeled as positive class. A high MCC value shows that both classes are predicted
well. For the example above the result is 0.159, because the classi�er does not
perform well for one of the classes. MCC is a useful measure for imbalanced classes
or if both classes should be treated as equally relevant.

In [22] Lin et al. introduce additional evaluation measures for formula detection.
To be�er understand strengths and weaknesses of di�erent algorithms additional
recognition results are used. In total eight possible outcomes are de�ned, as shown
in Figure 4.3.

• Correct �e detected region is the same as exactly one region in the ground
truth set. NR

cor is the number of correct results.
• Missed A formula region from the ground truth set does not match any

detection result. NG
mis is the number of missed formula regions.

• False �e detection result does not match any region of the ground truths.
NR

fal is the number of false results.
• Partial �e detected region is part of exactly one ground truth region and

does not include any non-formula text. NR
par is the number of partial results.

• Expanded At least one formula region from the ground truth set is covered
entirely by the detected region, but it also includes non-formula regions or
parts of other formula regions. NR

exp is the number of expanded results.
• Partial & Expanded Combination of partial and expanded - the detected

region covers part of one formula but also non-formula regions or part of
another formula region. NR

p&e is the number of such results.
• Merged �e detection result covers two or more regions of the ground truth

set completely. No non-formula region is involved. NR
mer is the number of

merged results.
• Split �ere is more than one detected region overlapping with the ground

truth but the formula is covered entirely. NG
spl is the number of formulas that

are split.

59

4 Evaluation

Figure 4.3: �e eight possible detection results (cf. [22]). One, two and three are the classical results:
either a formula is found, missed or text is wrongly classi�ed as formula. In the other
�ve cases the mathematical expression was found to some degree. Either not all of it was
found, or the bounding box includes some additional areas.

60

4.1 Setup

From these di�erent detection cases an overall score is computed.

score =
1

WN
·

(
WcorN

R
cor −WmisN

G
mis −WfalN

R
fal +WparSpar+

WexpSexp +Wp&eSp&e +WmerSmer +WsplSspl

)
(4.6)

SA
par =

NR
par∑

i=1

Area(Ri ∩Gj)

Area(Gj)
(4.7)

SS
par =

NR
par∑

i=1

Symbol(Ri ∩Gj)

Symbol(Gj)
(4.8)

SA
exp =

NR
exp∑

i=1

Area(Ri ∩Gj)

Area(Ri)
(4.9)

SS
exp =

NR
exp∑

i=1

Symbol(Ri ∩Gj)

Symbol(Ri)
(4.10)

SA
p&e =

NR
p&e∑
i=1

Area(Ri ∩Gj)

Area(Ri)
(4.11)

SS
p&e =

NR
p&e∑
i=1

Symbol(Ri ∩Gj)

Symbol(Ri)
(4.12)

Smer =

NR
mer∑
i=1

1

NRi∩G
(4.13)

Sspl =

NR
spl∑

j=1

1

NGj∩R
(4.14)

61

4 Evaluation

4.1.4 Baselines

In addition to comparing with the results of the above literature methods, we
compare our method with trivial baselines. Any reasonable formula detection
method should outperform these baselines. �e baselines that our method will be
compared against are:

• negative always predicts the majority class for every sample. �is means
that the classi�cation result will always be the negative class.

• strati�ed random prediction that respects the class distribution of the train-
ing set.

• uniform the predictions are uniformly random.

�e ”negative” baseline is a very simple one that lends itself to binary classi�cation
tasks. However, if every sample is assigned to the negative class the number of
true positives and false positives will be zero. �erefore, none of the measures
that were previously described can be calculated. �e only available measure is
accuracy. To be able to compare other measures like the F1 score, the additional
baselines ”strati�ed” and ”uniform” are included. Both randomly label the samples
and therefore it should be possible to calculate precision, recall and F1 score. Both
baselines are initialized with a random seed.

4.2 Hyperparameter Analysis

�e validation set was used to adjust the hyperparameters of the proposed method.
Each machine learning algorithm has di�erent hyperparameters that need to be
adjusted to get the best results possible.

4.2.1 Support Vector Machine

Depending on the SVM kernel function there are di�erent hyperparameters. For
example with a polynomial kernel, the polynomial degree can be adjusted. For
the kernel parameters grid searches were performed. �is means that for each
hyperparameter a list of values is chosen and the result of each combination is
computed. To get a reasonable list of values we take the default value for the speci�c

62

4.2 Hyperparameter Analysis

parameters and choose additional values that are one magnitude smaller and larger.
A�er the initial search we might perform a �ner grid search with values closer to
the best value from the �rst search. For example if 1 performed best in the initial
grid search, we can try again with 0.5, 0.8, 1, 1.2, 1.5. �e grid searches will not
be performed inde�nitely long, a�er one or two �ner searches the best parameter
value will be chosen. Since the goal is to avoid over��ing it is not necessary to
test every possible value and choose the absolute best. To make the results more
manageable, only the F1 scores are reported.

�e linear SVM has only one parameter: C . �e default value of C is 1 and a lower
C leads to more generalization. A higher value for C means that the penalty for
misclassi�cation increases. If misclassi�cation is avoided the predicted results get
more precise but this can also lead to over��ing. However, a linear kernel can not
adapt very much so increasing C becomes pointless above a certain threshold.

C 0.1 0.3 1 10 100
F1 74.11 74.7 74.52 74.16 74.25

Table 4.3: Hyperparameter for linear SVM kernel: C . �e table shows F1 scores in percent for
di�erent C values. Best result for C = 0.3, which was found a�er a �ner search between
0.1 and 1.

Table 4.3 shows the F1 results for C = {0.1, 0.3, 1, 10, 100}. �e di�erence between
the results is not very large with only a 0.6% gap between best and worst result. �e
best F1 score is achieved with C = 0.3, which was found a�er a �ner grid search.
It is only slightly be�er than for the default value 1. �erefore C = 1 appears to be
also a good choice.

�e Radial Basis Funcion (RBF) kernel has two parameters: C and γ. C has the
same function for each kernel, therefore the same list of values was used. �e
parameter γ represents the amount of in�uence that a single training sample has.
Low γ values mean that the in�uence reaches far, while high values mean other
samples are only a�ected if they are very close. With a too small γ value a model
becomes too constrained, to the point where it behaves like a linear model. On
the other hand too large γ values will lead to over��ing. �e default value for γ
is ”scale” which is de�ned as 1/(nVar[X]), where n is the number of features and
Var[X] the variance of the training data. For our data it is 0.16.

�e results for di�erent parameter con�gurations are shown in Table 4.4. �ere are

63

4 Evaluation

C 0.1 1 1.2 10 100
γ = 0.01 0 73.87 73.55 75.34 79.03
γ = scale 73.85 80.48 80.63 79.85 79.27
γ = 1 79.78 79.66 79.18 79.56 75.47
γ = 10 41.61 75.97 76.12 73.23 71.98

Table 4.4: Hyperparameters for RBF kernel: C and γ. �e table shows F1 scores in percent for
di�erent con�gurations. C = 1.2, γ = scale gives the best result.

two parameter value pairs that achieve rather high results. �e highest F1 score of
80.63% is the result of C = 1.2, γ = scale. �e two default values C = 1, γ = scale
performed only slightly worse, while no other con�guration reaches 80% F1 score.

A polynomial kernel has 4 hyperparameters that can be adjusted. �ese parameters
are C , γ, degree and the coe�cient r. To keep the parameter space small, only the
two most signi�cant parameters were selected: γ and degree. For the polynomial
degree the values 2 to 5 were chosen, which also includes the default value 3. A
degree of 1 is redundant since this would lead to a linear solution. For C and r the
default values are used, which are 1 and 0 respectively. C = 1 has achieved good
results for linear and RBF kernels so it seem reasonable to choose it here.

degree 2 3 4 5
γ = scale 73.14 68.65 66.39 66.77
γ = 1 78.23 78.99 76.89 76.49
γ = 2 81.21 78.86 76.21 72.08

Table 4.5: Two out of four hyperparameters for polynomial kernel.C is set to 1 since this seems to be
the best se�ing for other kernels. r is set to zero. �e table shows the F1 scores in percent
for di�erent degree and γ con�gurations. �e best result is achieved for γ = 2, degree = 2.

�e resulting F1 scores are shown in Table 4.5. �e best value 81.21% is the result
of degree = 2 and γ = 2. �e results for degree 4 and 5 are always smaller than
for degree 2 and 3. Surprisingly, in this case the default value for γ performed
substantially worse than higher values. In the best case (degree 5) there is still a 5%
di�erence between the F1 score for γ = scale and γ = 2.

�e sigmoid kernel has three hyperparameters: C , γ and the coe�cient r. A�er a
few preliminary tests with di�erent values for r, the default value 0 appeared to be
a good choice. �erefore, the grid search was only necessary for C and γ.

64

4.2 Hyperparameter Analysis

C 0.05 0.09 0.1 1 10
γ = 0.05 0 60.83 66.77 74.0 65.42
γ = 0.1 59.44 73.93 74.37 66.5 64.02
γ = scale 72.94 74.64 74.57 64.72 61.93
γ = 0.5 25.51 26.26 26.62 27.14 27.28

Table 4.6: C and γ hyperparameter for sigmoid kernel. �e coe�cient r is set to 0. �e table shows
the F1 scores in percent for di�erent con�gurations. C = 0.09 and γ = scale give the
best result.

Table 4.6 shows the results from di�erent con�gurations. �e results for all entries
where γ = 0.5 are especially low. �e best F1 score is achieved with C = 0.09 and
γ = scale, but also (0.1, scale) and (0.1, 0.1) give reasonably good values. Instead
of C = 0.01 we listed results for C = 0.05 to have a comparison with the best C .
�e former value only produced 0 as result.

Validation Results

In table 4.7 we report the measured results with di�erent SVM kernels and varying
class weights. �e four available kernels (linear, RBF, polynomial and sigmoid)
were each used with four di�erent class weights. In most documents from the
dataset the ratio between text and formula blocks seems to be between 1:3 and 1:5.
�erefore, the four di�erent weights that were chosen are: no weights, 1:3, 1:4 and
1:5. Precision, recall, F1 score and MCC were all listed as percent values with two
decimal places. �e hyperparameters were chosen as follows:

• linear C = 0.3
• RBF C = 1.2, γ = scale
• polynomial C = 1, γ = 2, degree = 2, r = 0
• sigmoid C = 0.09, γ = scale, r = 0

�e polynomial kernel without weights achieved the highest precision, F1 score
and MCC values. �e highest recall value of 94.63% is the result of a sigmoid kernel
with the class weights 1:5. �e RBF kernel with no weights achieved the second
highest F1 score and MCC value. �e sigmoid and linear kernel give overall the
lowest results, even though the highest recall value was reached with a sigmoid
kernel. �e F1 score is more meaningful than just a recall value and all F1 scores for

65

4 Evaluation

SVM Kernel Class Weights Precision Recall F1 MCC
linear 1:1 74.6 77.85 76.19 69.05
linear 1:3 68.22 88.59 77.08 70.28
linear 1:4 66.26 90.27 76.42 69.6
linear 1:5 65.38 91.28 76.19 69.43
RBF 1:1 81.51 82.89 82.2 76.93
RBF 1:3 74.64 86.91 80.31 74.34
RBF 1:4 73.6 87.92 80.12 74.13
RBF 1:5 73.26 88.26 80.06 74.07

polynomial 1:1 81.82 84.56 83.56 78.15
polynomial 1:3 74.01 87.92 80.37 74.45
polynomial 1:4 72.38 87.92 79.39 73.2
polynomial 1:5 71.58 87.92 78.92 72.58

sigmoid 1:1 69.69 82.55 75.58 68.05
sigmoid 1:3 65.36 89.26 75.46 68.29
sigmoid 1:4 63.16 92.62 75.1 68.25
sigmoid 1:5 62.67 94.63 75.4 68.93

Table 4.7: Validation results for di�erent kernel and class weight con�gurations. All values are given
as percent.

66

4.2 Hyperparameter Analysis

linear and sigmoid kernel are lower than the lowest F1 score of RBF and polynomial
kernel. �e recall usually improves when class weights are used while the precision
results decrease. For the polynomial kernel with class weights the recall value does
not change when the weight ratio changes. With exception of the linear kernel the
F1 score always decreases when class weights are used. For the sigmoid kernel there
is a slight increase with 1:5 weights, but the F1 score is still lower than without
class weights.

Baseline Precision Recall F1 score Accuracy
negative - - - 77.4
strati�ed 27.2 22.5 24.6 68.8
uniform 22.1 48.0 30.3 49.9

Table 4.8: Baseline results. All values are given as percent.

When compared with the baseline results from Table 4.8 it is clear that the validation
results are substantially higher. �e negative scenario does not have any values
for precision, recall and F1 score. Since the prediction result is always negative,
there are no true positives and false positives, which leads to a division by zero for
precision and a zero in the denominator for recall. �e F1 score as combination
of precision and recall can also not be calculated. �e only available measure is
accuracy, which represents with 77.4% the percentage of negative samples in the
validation set. We do not want to report accuracy scores for each SVM con�guration,
because the high values can be misleading. Nevertheless, to compare the accuracy
of the negative baseline with something, the accuracy of the SVM con�guration
with lowest F1 score (sigmoid kernel with 1:4 weights) was calculated. �e results
are 1133 correct predictions and 183 incorrect ones. �is leads to an accuracy of
86.1%. �e scenario with the lowest precision (sigmoid with class weights 1:5) has
1132 correct and 184 incorrect predictions, which leads to 86.0% accuracy. �is is
still 8.6% higher than the best accuracy of the baselines.

If a linear kernel is chosen, it is possible to gain some information about the amount
of in�uence that individual features have on the result. Figure 4.4 shows the size of
the corresponding coe�cients for all 6 features. �e negative values are displayed
in green, while positive values are blue. �is shows whether a feature is linked
to the negative class (text) or the positive class (formula). �e size indicates how
important the feature was for the class separation.

67

4 Evaluation

Figure 4.4: Amount of in�uence that the individual features have on the results of a linear SVM.
Green means the feature is linked to the negative class (text), while blue is linked to
the positive class. Maximum and sparsity have the most in�uence on the decision for a
linear SVM.

�is can be useful for feature selection if the number of features is especially large.
If this is the case the computational cost of training a model is o�en high and the
risk of over��ing the training data also becomes more likely. For our method it is
not necessary to reduce the number of features. Still, we can see that the features
maximum and sparsity are the most important ones for the linear SVM.

4.2.2 Random Forest

�e random forest classi�er that we used2 had a large number of hyperparameters
available. Many of them in�uence how the decision trees are build. �e most
important ones however, are the number of trees for the forest and the maximal
depth of the trees. For these two hyperparameters a grid search was performed. �e
random forest classi�er uses randomly selected feature subsets, that in�uence the
outcome. When a classi�er with the same se�ings is trained and tested on a certain
dataset multiple times, the results are di�erent each time. Even a�er creating the
same random forest 50 times and taking the mean F1 score, there are di�erences

2h�ps://scikit-learn.org/stable/modules/generated/sklearn.ensemble.RandomForestClassi�er.html

68

4.2 Hyperparameter Analysis

trees 1 10 100 1000
max depth = 1 56.12 0 0 0
max depth = 3 66.79 80.12 79.94 79.75
max depth = 5 77.1 82.8 82.98 82.78
max depth = 10 72.97 82.93 84.11 83.81
max depth = 15 71.49 82.39 84.27 83.64
max depth = None 71.49 81.89 83.71 83.64

Table 4.9: F1 score results for random forest classi�er with di�erent number of trees and maximal
tree depth. 100 trees with a depth of 15 had the best F1 score of 84.27%.

of up to 0.05%. Since the di�erences between using a higher or lower number of
trees also appear to be rather small, a �xed random seed (15) was used for the grid
search.

Table 4.9 shows the results of di�erent tree count and depth con�gurations. If the
maximal depth is set to one it heavily depends on the random seed if there will be
useful results. For the random seed 15 we got a result with one tree, but for more
trees the classi�er classi�ed everything as negative. With di�erent random seeds
the predictions for more trees were sometimes be�er. Nevertheless, this shows that
the maximal depth should be greater than 1 for the classi�er to be reliable. �e
results for only one tree are mostly above 70% F1 score. However, a random forest
with a single tree is more likely to have problems with over��ing than random
forests with more trees. All results with at least 10 trees and a maximal depth of at
least 5 are above 80%. �e best F1 score of 84.27% was achieved with 100 trees and
a maximal tree depth of 15. �e result with 10 as maximal depth is only slightly
smaller. All results with 100 trees are be�er than with 1000 trees.

Random forest classi�ers also have a class weight option. �e default is to use no
weights and there is a ”balanced” option available, which calculates the weights
inversely proportional to class frequency in the dataset. However, as Table 4.2.2
shows, this does not improve the results. Contrary to weighted SVM, where at
least the recall values are higher, for random forest all results are lower when the
’balanced’ option is used.

Table 4.11 shows a comparison of all measures between a random forest with 100
trees and a maximal depth of 10 and another random forest with 15 as maximal
depth. �e �rst one has a higher recall value, but the random forest with more

69

4 Evaluation

Class weights Precision Recall F1 MCC
None 85.45 83.13 84.27 80.38
balanced 83.49 82.23 82.85 78.56

Table 4.10: Random forest with 100 trees and a maximal depth of 15 with and without weights. All
values decrease when weights are used.

max depth Precision Recall F1 MCC
10 84.5 83.73 84.11 80.12
15 85.45 83.13 84.27 80.38

Table 4.11: Validation results with �xed seed (15) and 100 trees for direct comparison

depth achieved almost 1% more precision. �is made F1 score and MCC slightly
higher than for the shallower random forest.

�e random forest classi�er has a property which gives some clue about the impor-
tance of the features. In Figure 4.5 the values were plo�ed, and according to this
measure sparsity is the most important feature. Mean seems to be the second most
important feature, while the rest have approximately the same value.

4.2.3 Naive Bayes

�e Naive Bayes classi�er applies Bayes’ theorem with strong feature independence
assumptions. Since our features are most probably not independent, we expect this
machine learning algorithm to perform worse than the others. �ere are di�erent
types of Naive Bayes classi�ers but not all can be used with our type of features.
For example there is the Categorical Naive Bayes, which assumes that the features
have a categorical distribution. Basically, this means that the features are expected
to be categories, which our features are not. Other variants are classi�ers that
assume a multinomial or Bernoulli distribution in the data and require discrete
and binary features, respectively. Apart from the di�erent variants, there are no
hyperparameters for the Naive Bayes classi�er.

Table 4.12 shows the validation results for a Gaussian, a multinomial and a Comple-
ment Naive Bayes classi�er. �e Gaussian Naive Bayes assumes that the likelihood

70

4.2 Hyperparameter Analysis

Figure 4.5: Feature importance in a random forest with 100 trees and a maximal depth of 15.

Type Precision Recall F1 MCC
Gaussian 67.95 90.06 77.46 71.92
Multinomial 46.25 90.96 61.32 52.69
Complement 38.01 97.89 54.76 46.21

Table 4.12: Naive Bayes validation results. Values are given in percent. Gaussian Naive Bayes is
clearly the best out of the three.

71

4 Evaluation

of the features is Gaussian. Since this Naive Bayes variant does not have any obvi-
ous feature limitation, we expected the best results from it. A multinomial Naive
Bayes classi�er is indented for text classi�cation and typically used with discrete
features. Nevertheless, we decided to use it, to have a comparison for the results
of the Gaussian classi�er. �e Complement Naive Bayes classi�er is similar to
the multinomial classi�er, but should be more suited for imbalanced datasets. As
the table shows,the precision is much lower than the recall value for all variants.
Recall is specially high for the Complement Naive Bayes, but since the precision
is especially low this classi�er gives the worst results. With accuracy values of
76.84% and 67.36% the multinomial and Complement classi�er perform worse than
our ”negative” baseline. �e Gaussian Naive Bayes classi�er reached an F1 score of
77.46% and is therefore about as good as a linear SVM.

4.2.4 Neural Network

From all machine learning algorithms that we used, neural networks have the
most con�guration possibilities. �e combinations of number of hidden layers
and neurons in them alone are practically endless. Additionally there are di�erent
options for activation functions in the neurons, di�erent ways to initialize weights
and bias, and di�erent functions to calculate the loss. Listing di�erent combinations
of all these se�ings would be rather pointless, especially since not all available
options can be expected to work well for a classi�cation task. �erefore, we will
only describe our se�ings and then discuss validation results for di�erent hidden
layer and neuron combinations.

�e weights are initialized with a normal distribution to have zero mean and unit
variance. �e biases are initialized with zeros. In the hidden layers we use Recti�ed
Linear Units (ReLU) as activation function. �e l1-norm is applied as regularizer
to help avoid over��ing. In the output layer with a single neuron the sigmoid
activation function produces an output between 0 and 1. �is is then rounded to
0 or 1 depending on whether the value is smaller than 0.5 or not. When training
the model we use the Adam optimization algorithm and compute the binary cross-
entropy loss. For the experiments with di�erent layer structures we always trained
for 100 epochs.

Like random forests neural networks also rely on randomness, for example for
initialization of weights. �erefore, even with the same con�gurations and the same

72

4.2 Hyperparameter Analysis

Neurons in Layers Precision Recall F1 MCC
6 81.0 75.78 78.29 73.1
6 - 6 80.33 78.31 79.3 74.17
6 - 3 80.14 76.45 78.23 72.94
2 78.35 71.51 74.77 68.89
9 80.05 76.57 78.26 72.95
18 82.26 78.92 80.55 75.79
10 - 5 78.67 75.9 77.2 71.63
24 81.13 78.73 79.91 74.94
12 - 12 76.63 78.37 77.39 71.67
6 - 4 - 2 64.39 62.44 63.37 59.28

Table 4.13: Neural network validation results for di�erent hidden layer combinations. One hidden
layer with 18 neurons achieved the best result.

data, the results from the neural network will be di�erent in each run. Contrary to
random forest it is not easily possible to set a random seed and always get the exact
same result. For this reason each experiment was repeated for 10 times and the
mean of the results was calculated. �is is still not enough to get the same results
a�er each run, but the di�erences should not be higher than 1%.

In Table 4.13 the validation results are presented. We started with one hidden layer
and 6 neurons, which matches the number of features. From there we tried a number
of di�erent combinations, though the number of layers and neurons in them never
became very large. One hidden layer with 18 neurons achieved the best results for
each measure. One layer with 24 neurons, and two layers with 6 neurons each have
the second and third highest results.

4.2.5 Experimental Hypotheses

For the Support Vector Machine both, RBF kernel and polynomial kernel can be
expected to produce good results. Both perform best without class weighs. �rough
the introduction of class weights the minority class becomes more important and
the decision boundary shi�s towards the majority class. As a consequence more
positive samples are correctly classi�ed, increasing the recall value. However, also
the number of false positives increases, which leads to a decrease in precision.

73

4 Evaluation

Except in the linear case with 1:3 weights, F1 score and MCC always decrease
which makes class weights not a good decision for our data.

A random forest with 100 trees performs best. A maximal depth of 10 or 15 seems to
be a good decision. If the depth is not limited the F1 score decreased again. As with
SVM, random forest also performs be�er without class weights. On the validation
set random forest achieved a higher F1 score than the best SVM result.

Only the Gaussian Naive Bayes Classi�er can be expected to achieve good results,
since the other two do not outperform one of the baselines. We expect that the
Gaussian classi�er will be about as good as a linear SVM.

It is hard to say if we found an adequate structure for the hidden layer of our neural
network. �ree di�erent se�ings achieved acceptable results: 18, 24 and two times
6 neurons. Since there is some variance in the results we do not expect the se�ing
with 18 neurons to be clearly be�er than the other two on the test set.

To summarize, from the validation results we form the following hypotheses about
the test results:

1. SVM: RBF and polynomial kernel without weights will achieve good results.
�is means that the F1 score and MCC should be higher than the results from
other kernels.

2. SVM: Class weights are not suited for our dataset.
3. SVM: When class weights are used the recall will increase while the precision

will decrease.
4. Random forest: Not limiting the tree depth leads to lower results.
5. Naive Bayes: Gaussian Naive Bayes will have similar results to the linear

SVM.

4.3 Results

In this section the result from the test set are presented. To examine whether our
hypotheses about the SVM test results were correct all combinations of kernel
type and class weights were again reported. �e results of a random forest with
three di�erent maximal depth se�ings are shown. We expect only one Naive Bayes
variant to work for our data, however to have a comparison we will also test on

74

4.3 Results

Test Validation
SVM Kernel Weights Precision Recall F1 MCC F1 MCC

linear 1:1 80.35 79.4 79.87 73.04 76.19 69.05
linear 1:3 77.66 90.99 83.79 78.11 77.08 70.28
linear 1:4 75.7 92.6 83.3 77.55 76.42 69.6
linear 1:5 74.74 93.56 83.09 77.35 76.19 69.43
RBF 1:1 92.22 82.73 87.22 83.37 82.2 76.93
RBF 1:3 87.45 88.95 88.19 84.11 80.31 74.34
RBF 1:4 86.11 90.45 88.23 84.11 80.12 74.07
RBF 1:5 85.24 91.09 88.07 83.89 80.06 74.07

polynomial 1:1 89.52 81.55 85.35 80.79 83.56 78.15
polynomial 1:3 80.7 89.27 84.77 79.39 80.37 74.45
polynomial 1:4 76.65 89.81 82.71 76.61 79.39 73.2
polynomial 1:5 75.29 90.24 82.09 75.79 78.92 72.58

sigmoid 1:1 75.82 84.44 79.9 72.71 75.58 68.05
sigmoid 1:3 72.51 92.27 81.21 74.76 75.46 68.29
sigmoid 1:4 73.28 90.34 80.92 74.24 75.1 68.25
sigmoid 1:5 71.43 91.2 80.11 73.22 75.4 68.93

Table 4.14: SVM result for the test set. All values are given in percent. �e two right most columns
are the results of the validation set, which are inserted here for an easier comparison. �e
results from all kernel and weight pairings are listed to examine whether our hypotheses
about the test results were correct or not.

a multinomial Naive Bayes classi�er. For the neural network we chose to test the
three se�ings with the best results, since it was not clear which one was the absolute
best.

Table 4.14 shows the results from all kernel and class weight con�gurations for SVM.
�e highest precision of 92.22% is achieved with the RBF kernel and no weights.
�e linear kernel with weights 1:5 obtains the highest recall value of 93.56%. �e
best F1 score and MCC value are both results of the RBF kernel. �e weights for the
best F1 score are 1:4 while both 1:3 and 1:4 achieve the best MCC results. No other
kernel achieves F1 and MCC values that are higher than any of the RBF results. For
the polynomial kernel F1 and MCC results steadily decreased when higher class
weights were used. For all other SVM kernels the se�ing without weights has the
lowest results. When compared against the F1 and MCC values from the validation

75

4 Evaluation

Test Validation
max depth Precision Recall F1 MCC F1 MCC

10 91.59 75.97 83.05 78.54 84.11 80.12
15 90.01 73.5 80.92 75.91 84.27 80.38

None 89.38 72.21 79.88 74.66 83.71 79.66

Table 4.15: Random forest test results for three di�erent depth limits and 100 trees. All values are
given in percent.

set, the test results are higher for all scenarios.

�e results for the random forest are shown in Table 4.15. Random forests with 100
trees and three di�erent depth limits were tested. To be able to compare the results
directly the same random seed was used for validation and tests. �e random forest
with a maximal depth of 10 achieved the highest results for each measure. On the
validation set a maximal depth of 15 was slightly be�er, but on the test set its F1
score is over 2% lower than for a depth limit of 10. If no maximal depth is used the
values are lower than in the other se�ings.

Test Validation
Type Precision Recall F1 MCC F1 MCC

Gaussian 58.87 91.64 71.69 65.14 77.46 71.92
Multinomial 44.51 94.33 60.48 52.24 61.32 52.69

Table 4.16: Naive Bayes test results for two Naive Bayes variants. All values are given in percent.

Table 4.16 shows the results for two Naive Bayes variants. As expected the Gaussian
Naive Bayes classi�er performed be�er than the multinomial one. However, there
is a quite substantial di�erence between the F1 score on the validation set (77.46%)
and the test set (71.69). For the multinomial classi�er the di�erence is much smaller.
�e precision for the Gaussian se�ing does not even reach 60%.

In Table 4.17 the test results of the Neural Network are presented. One layer with 18
neurons reached the highest values for precision, F1 and MCC. �e recall is slightly
higher when the layer has 24 neurons. �e F1 and MCC values from validation
and test are almost the same for all se�ings. However, precision and recall are very
di�erent.

76

4.3 Results

Test Validation
Neurons Precision Recall F1 MCC F1 MCC

6 - 6 73.93 87.03 79.93 74.68 79.3 74.17
18 74.59 87.33 80.46 75.34 80.55 75.79
24 74.3 87.36 80.3 75.15 79.91 74.94

Table 4.17: Neural Network results for three di�erent architectures. All values are given in percent.

SVM Kernel 1:1 1:3 1:4 1:5
linear +4.83% +8.71% +9.00% +9.06%
RBF +6.11% +9.81% +10.12% +10.00%

polynomial +2.14% +5.47% +4.18% +4.02%
sigmoid +5.72% +7.62% +7.75% +6.25%

Table 4.18: F1 score change between validation and test set for all SVM con�gurations. SVM with
RBF kernel and 1:4 weights has the highest change.

Type F1 change
Random Forest (10) -1.26%
Random Forest (15) -3.98%

Random Forest (None) -4.58%
Gaussian NB -7.45%

Multinomial NB -1.37%
Neural Network (6-6) +0.79%
Neural Network (18) -0.11%
Neural Network (24) +0.49%

Table 4.19: F1 score change between validation and test set for random forest, Naive Bayes and
neural networks. �e maximal depth of the random forest and the number of neurons
for neural networks are shown in the parentheses. �e F1 score decreases in all but two
cases. �e increases for the neural network are both less than 1%.

77

4 Evaluation

Table 4.18 and 4.19 show the relative di�erence between F1 scores for the validation
set and test F1 scores. In Table 4.18 the results for all SVM con�gurations are listed.
�ey are all positive, since the F1 results from the test set were always higher than
for the validation set. SVM with RBF kernel and 1:4 class weights has the highest
increase with +10.12%. Polynomial kernel has overall the smallest increases. �e F1
score changes for all other machine learning techniques can be seen in Table 4.19.
Most values here are negative, since the validation F1 scores were mostly higher
than the test results. Only two neural network variations have a slight increase in
F1 score. In both cases the relative di�erence is less than 1%.

Method Precision Recall F1
Deep Neural Network [13] - - 93.4
Font Se�ing Baysian (FSB) [32] 99.4 88.9 93.9
Unsupervised Font Modeling [33] 93.6 99.4 96.4
SVM 86.11 90.45 88.23
Random Forest 91.59 75.97 83.05
Naive Bayes 58.87 91.64 71.69
Neural Network 74.59 87.33 80.46

Table 4.20: Results from di�erent methods. �e �rst three are literature methods. For the �rst method
no precision and recall values were reported, which makes the comparison more di�cult.
All values are given in percent.

�e comparison of our method with other methods can be found in Table 4.20. For
each machine learning algorithm the se�ing with the best results was chosen and
is listed in the table. �e deep neural network method by Gao et al. [13] does not
report any precision and recall values. However, the F1 score is given, therefore
it is still possible to compare results from di�erent methods with this one. �e
unsupervised font modeling method by Wang et al. [33] achieves the highest scores
overall. Its F1 score is about 8% higher than the F1 score of our best result: the RBF
SVM. It was not possible to compute MCCs for the literature methods since no
information about the number of true negatives is given.

78

4.4 Discussion

4.4 Discussion

�e purpose of this paper was to explore di�erent machine learning algorithms
for formula detection combined with simple yet reasonable feature engineering
techniques. �e main motivation for this were the high complexity and low repro-
ducibility of existing approaches. To complete this exploration, we now evaluate our
formulated hypotheses and contrast our results with the performance of others.

Of the �ve hypotheses that were formed during the evaluation of the validation
set only three held entirely. �e �rst hypothesis, that RBF and polynomial kernel
without weights would achieve be�er results on the test set than linear and sigmoid
kernel, was correct. However, the results from the RBF kernel with weights are
even higher, which makes the second hypothesis incorrect. On the test set most
con�gurations with class weights produced be�er results than without weights.
�e polynomial kernel is the only scenario where the F1 score decreases when class
weights are used. �e results for the RBF kernel increased much more than for the
polynomial case. �is can also be seen in Table 4.18, where the relative di�erences
between validation and test results were calculated.

We consider the third hypothesis, about the increase in recall and decrease in
precision when class weights are used, to hold. �e precision decreases steadily for
all kernels. In case of the sigmoid kernel the recall value with 1:3 weights is higher
than without weights, but the results for 1:4 and 1:5 weights are lower than for 1:3.
Since both results (90.34% and 91.2%) are still higher than the recall without class
weights (84.44%), the third hypothesis is correct.

�e fourth hypothesis says that a random forest without depth limit will have lower
results than with a limit. As Table 4.15 shows, this is correct. �e F1 score without
a maximal depth is 79.88%, which is 1% less than with a depth restriction. A reason
for this could be that a too big decision trees leads to less generalization. Since the
random forest without maximal depth still achieves almost 80% F1 score, this is not
a real case of over��ing.

In the ��h hypothesis we speculated that Gaussian Naive Bayes classi�er and
linear SVM would have similar results. �is hypothesis did not hold. �e linear
SVM without weights has an F1 score of 79.87% , while the Gaussian Naive Bayes
classi�er has only reached 71.69%. All other results of a linear SVM are even
higher.

79

4 Evaluation

SVM with RBF kernel and 1:4 class weights achieved the best results overall. �is
SVM con�guration has also the highest relative di�erence between validation result
and test result. Only the results of SVM increased substantially between validation
and testing. Random forest, which had the best results on the validation set, is now
5% behind SVM when the F1 scores are compared.

When our method is compared to literature methods the results are visibly lower.
While all other methods have F1 scores above 90%, the best result from our method
is 88.23%. �e recall from SVM (90.45%) is higher than for the Font Se�ing Baysian
method, which only reaches 88.9%. No precision or recall results could be found for
the deep learning method, but since the F1 score is only sightly lower, it is possible
that they would have been similar to the results from the font se�ing Bayesian
(FSB) model.

While the literature method results suggest a very good detection of mathematical
expressions, we found some inconsistencies and potential problems in the methods.
�e deep neural network method [13] uses a custom training set which consists
of 1000 scienti�c papers from CiteSeerX3. �e marmot dataset, which is used for
testing, is also composed out of PDF documents from CiteSeerX. It is not clear if this
was taken into account or if the training and test set have overlapping documents.

Another inconsistency can be found in the performance results of the FSB model.
�e unsupervised font modeling method uses the results from FSB as a baseline.
Since the same author contributed to both methods we can assume that an accurate
implementation was used. However, the precision, recall and F1 values with which
the unsupervised font modeling method compares are not the same as the results
reported in the original work. �e values that are used as baseline are: precision
80.3%, recall 90.3% and F1 85.0%. �e precision and F1 results are substantially lower
than in Table 4.20 (precision 99.5%, recall 88.9%, F1 93.9 %). �ese values are also
lower than the best results from our method (precision 86.11%, recall 90.45%, F1
88.23%). A potential explanation for this discrepancy could be a documentation
error, a bug in their code or a limitation of the method, that was not mentioned in
the text.

To summarize, at �rst it seems as if our method is clearly inferior to all selected
literature methods. However, as described above the results of the FSB model are
questionable. When our method is compared with the FSB results as they are

3h�ps://citeseerx.ist.psu.edu/

80

4.4 Discussion

described in its successor work, our method achieved clearly higher results. We
were only able to compare with the reported results, since their documentation
provided insu�cient details for an accurate replication of their systems. �erefore,
the real performance of state of the art formula detectors remains unclear.

81

5 Conclusion

�e goal of this thesis was to �nd methods for the precise detection of mathematical
expressions in PDF documents an therefore close the remaining step in the formula
extraction pipeline. Most literature formula detectors focus on text lines for their
classi�cation. Contrary to that, we analyzed the horizontal and vertical whitespace
in a document to �nd larger coherent regions. �ese regions are either displayed
expressions or blocks of ordinary text. �e features for classifying these regions
come from two sources: the grayscale matrix of the rendered PDF �le and the
list of character objects that a PDF parser has extracted from the original �le.
�ese features were used as input for four machine learning algorithms: Support
Vector Machine, random forest, Naive Bayes classi�er and Neural Network. In our
experiments the Support Vector Machine with a radial basis function kernel was
superior to the other classi�ers.

Finally, we compared our results with three state of the art formula detectors.
While at �rst glance the results cannot quite keep up with other methods, we
discovered some inconsistencies that question the reliability of the state of the art
methods. Due to this, it is hard to faithfully assess the performance of our method.
To resolve these observed inconsistencies, we propose to conduct a survey, where
the most promising state of the art formula detection methods are analyzed and
reimplemented. �rough testing on a carefully selected benchmark dataset it will
be possible to achieve a more accurate comparison.

83

Bibliography

[1] R. Akbani, S. Kwek, and N. Japkowicz. Applying support vector machines to
imbalanced datasets. In European conference on machine learning, pages 39–50.
Springer, 2004.

[2] J. B. Baker, A. P. Sexton, and V. Sorge. A linear grammar approach to mathe-
matical formula recognition from pdf. In International Conference on Intelligent
Computer Mathematics, pages 201–216. Springer, 2009.

[3] C. Bandt and B. Pompe. Permutation entropy: A natural complexity measure
for time series. Phys. Rev. Le�., 88:174102, Apr 2002.

[4] B. P. Berman and R. J. Fateman. Optical character recognition for typeset
mathematics. In Proceedings of the international symposium on Symbolic and
algebraic computation, pages 348–353, 1994.

[5] S. Boughorbel, F. Jarray, and M. El-Anbari. Optimal classi�er for imbalanced
data using ma�hews correlation coe�cient metric. PloS one, 12(6), 2017.

[6] L. Breiman. Random forests. Machine learning, 45(1):5–32, 2001.

[7] B. Chaudhuri and U. Garain. An approach for processing mathematical expres-
sions in printed document. In International Workshop on Document Analysis
Systems, pages 310–321. Springer, 1998.

[8] W. Chu and F. Liu. Mathematical formula detection in heterogeneous docu-
ment images. In 2013 Conference on Technologies and Applications of Arti�cial
Intelligence, pages 140–145, Dec 2013.

[9] C. Cortes and V. Vapnik. Support-vector networks. Machine learning, 20(3):273–
297, 1995.

[10] L. Eikvil. Optical character recognition. citeseer. ist. psu. edu/142042. html,
1993.

85

Bibliography

[11] R. J. Fateman, T. Tokuyasu, B. P. Berman, and N. Mitchell. Optical character
recognition and parsing of typeset mathematics1. Journal of Visual Communi-
cation and Image Representation, 7(1):2–15, 1996.

[12] R. J. Fateman and T. A. Tokuyasu. Progress in recognizing typeset mathematics.
In Document Recognition III, volume 2660, pages 37–50. International Society
for Optics and Photonics, 1996.

[13] L. Gao, X. Yi, Y. Liao, Z. Jiang, Z. Yan, and Z. Tang. A deep learning-based
formula detection method for pdf documents. In 2017 14th IAPR International
Conference on Document Analysis and Recognition (ICDAR), volume 1, pages
553–558. IEEE, 2017.

[14] U. Garain and B. Chaudhuri. A syntactic approach for processing mathematical
expressions in printed documents. In Proceedings 15th International Conference
on Pa�ern Recognition. ICPR-2000, volume 4, pages 523–526. IEEE, 2000.

[15] G. H. Golub and C. F. Van Loan. Matrix computations, volume 3. JHU press,
2012.

[16] Q. Gu, L. Zhu, and Z. Cai. Evaluation measures of the classi�cation perfor-
mance of imbalanced data sets. In International symposium on intelligence
computation and applications, pages 461–471. Springer, 2009.

[17] K. He, X. Zhang, S. Ren, and J. Sun. Spatial pyramid pooling in deep convolu-
tional networks for visual recognition. IEEE transactions on pa�ern analysis
and machine intelligence, 37(9):1904–1916, 2015.

[18] Document management — portable document format — part 1: Pdf 1.7. Stan-
dard, Adobe Systems Incorporated, July 2008.

[19] A. Kacem, A. Belaı̈d, and M. Ben Ahmed. Automatic extraction of printed
mathematical formulas using fuzzy logic and propagation of context. In-
ternational Journal on Document Analysis and Recognition, 4(2):97–108, Dec
2001.

[20] H. T. Kam et al. Random decision forest. In Proceedings of the 3rd International
Conference on Document Analysis and Recognition, volume 1416, page 278282.
Montreal, Canada, August, 1995.

86

Bibliography

[21] X. Lin, L. Gao, Z. Tang, J. Baker, and V. Sorge. Mathematical formula identi�-
cation and performance evaluation in pdf documents. International Journal
on Document Analysis and Recognition (IJDAR), 17(3):239–255, 2014.

[22] X. Lin, L. Gao, Z. Tang, X. Lin, and X. Hu. Performance evaluation of mathe-
matical formula identi�cation. In 2012 10th IAPR International Workshop on
Document Analysis Systems, pages 287–291, March 2012.

[23] Y. Liu, K. Bai, and L. Gao. An e�cient pre-processing method to identify logical
components from pdf documents. In J. Z. Huang, L. Cao, and J. Srivastava,
editors, Advances in Knowledge Discovery and Data Mining, pages 500–511,
Berlin, Heidelberg, 2011. Springer Berlin Heidelberg.

[24] B. W. Ma�hews. Comparison of the predicted and observed secondary struc-
ture of t4 phage lysozyme. Biochimica et Biophysica Acta (BBA)-Protein Struc-
ture, 405(2):442–451, 1975.

[25] P. A. Moran. Notes on continuous stochastic phenomena. Biometrika,
37(1/2):17–23, 1950.

[26] B. H. Phong, T. M. Hoang, and T. Le. A new method for displayed mathematical
expression detection based on � and svm. In 2017 4th NAFOSTED Conference
on Information and Computer Science, pages 90–95, Nov 2017.

[27] B. H. Phong, T. M. Hoang, and T. Le. Mathematical variable detection based
on convolutional neural network and support vector machine. In 2019 Inter-
national Conference on Multimedia Analysis and Pa�ern Recognition (MAPR),
pages 1–5, May 2019.

[28] S. Ren, K. He, R. Girshick, and J. Sun. Faster r-cnn: Towards real-time object
detection with region proposal networks. In Advances in neural information
processing systems, pages 91–99, 2015.

[29] I. Rish et al. An empirical study of the naive bayes classi�er. In IJCAI 2001
workshop on empirical methods in arti�cial intelligence, volume 3, pages 41–46,
2001.

[30] M. Suzuki, F. Tamari, R. Fukuda, S. Uchida, and T. Kanahori. In�y: an integrated
ocr system for mathematical documents. In Proceedings of the 2003 ACM
symposium on Document engineering, pages 95–104, 2003.

87

Bibliography

[31] J.-Y. Toumit, S. Garcia-Salice�i, and H. Emptoz. A hierarchical and recursive
model of mathematical expressions for automatic reading of mathematical
documents. In Proceedings of the Fi�h International Conference on Document
Analysis and Recognition. ICDAR’99 (Cat. No. PR00318), pages 119–122. IEEE,
1999.

[32] X. Wang and J.-C. Liu. A font se�ing based bayesian model to extract mathe-
matical expression in pdf �les. In 2017 14th IAPR International Conference on
Document Analysis and Recognition (ICDAR), volume 1, pages 759–764. IEEE,
2017.

[33] Z. Wang, D. Beye�e, J. Lin, and J.-C. Liu. Extraction of math expressions from
pdf documents based on unsupervised modeling of fonts. In 2019 International
Conference on Document Analysis and Recognition (ICDAR), pages 381–386.
IEEE, 2019.

[34] B. J. Wytho�. Backpropagation neural networks: a tutorial. Chemometrics and
Intelligent Laboratory Systems, 18(2):115–155, 1993.

88

