
Real-time e�cient scaling mechanism for high

speed processing of analog measurements

Yashas Nagaraj Udupa B.Eng

Master's Thesis

to achieve the university degree of

Diplom-Ingenieur

Master's Degree Programme: Information and Computer Engineering

submitted to

Graz University of Technology

Supervisors

Univ.-Prof. Dr. Marcel Carsten Baunach

Institute of Technical Informatics (ITI)

Dr. Benjamin Steinwender

KAI GmbH

I

A�davit

I declare that I have authored this thesis independently, that I have not used
other than the declared sources/resources, and that I have explicitly indicate-
d all material which has been quoted either literally or by content from the
sources used. The text document uploaded to TUGRAZonline is identical to
the present master’s thesis.

(Ort, Datum) (Unterschrift)

II

Abstract

Real-time processing of data is of utmost importance in embedded systems since the
micro-computing device present in the embedded system handles a tremendous amount
of data coming from environmental events and internal events. The current trending
micro-computing device in embedded systems is a lightweight high-performance
system on a chip. This system on a chip, along with the microcomputer environments
contains smart power devices for providing diagnostic and protection features.

At Kompetenzzentrum fur Automobil- und Industrieelektronik GmbH there exists
a reliability test system concept for testing of semiconductor power devices called
Modular Power Stress test architecture [1]. The performance of the reliability test
during the design of semiconductor power devices and its system plays a vital role
as in real-world, semiconductor devices are subjected to numerous stresses. These
stresses are electrical stress, mechanical stress or thermal stress. In response to the
mentioned stresses, several electrical signals need to be measured in the semiconductor
device. Measurement and interpretation of these electrical signals are performed using
a microcontroller in the Modular Power Stress test architecture. The Microcontroller
acts as a controlling and measuring agent of the stress that is undergone by the
semiconductor power devices. To measure the analog signals, the microcontroller makes
use of a data processing mechanism. In this work, high-speed analog measurement
processing concepts for a microcontroller are delivered and processing of analog
measurements is automated irrespective of the type of stress tests that are performed.

III

Acknowledgements

I heartfully thank Dr. Prof. Marcel Carsten Baunach for being my university supervisor
and for providing the directions and technical knowledge to perform the thesis. I
also thank Dr. Benjamin Steinwender for providing the opportunity to carry out this
research work. I carry immense pleasure for the exposure, learning, challenges and
knowledge transfer that I have received during this work. I obtained the right freedom,
encouragement, criticism, and guidance to do this project.

I further thank my colleagues of KAI GmbH and Embedded Automotive Software
Graz, ITI, Graz University of Technology, who supported in multiple ways that kept me
progressing in my thesis. I thank Mr. Keerthi Datta Konanur Ramanna for assisting me
in my academics and also providing helpful insights many times. I most prominently
thank my family for their moral support, encouragement, and lessons that have led
me to be persistent in my endeavors. Finally, I would like to thank everyone who has
supported me to pursue my studies.

IV

This work was funded by the Austrian Research Promotion Agency (FFG, Project
No. 874907). The work in this thesis has been sponsored by KAI GmbH and has been
carried out under the joint supervision by KAI GmbH and Embedded Automotive
Software Group, ITI, Graz University of Technology. Their support is hereby greatly
acknowledged.

V

Contents

List of Figures IX

List of Tables XI

1 Introduction 1

1.1 Problem Statement and Motivation . 2
1.2 Research Questions . 4
1.3 Thesis Structure . 5

2 Fundamentals 6

2.1 Programming languages . 6
2.1.1 Embedded C . 6
2.1.2 Lua . 7
2.1.3 LabVIEW . 7

2.2 Hardware peripherals . 8
2.2.1 I2C . 8
2.2.2 UDP . 9
2.2.3 Analog-to-digital converter . 10

2.3 Tools . 12
2.3.1 DAVE . 12
2.3.2 Git . 13

2.4 Markup languages for data interchange 13
2.4.1 JSON . 13

3 Related Work 14

3.1 MTS architecture . 14
3.2 MoPS Distributed System . 17

3.2.1 Hardware architecture . 18
3.2.2 Software architecture . 21

VI

3.2.3 Measurement environment of MoPS 29
3.3 State of the art . 33

4 Approach and Methodology 36

4.1 Overview . 36
4.2 Derive data processing concepts for stress test environment 36

4.2.1 Acquiring a signal model . 36
4.2.2 Derive transfer characteristics to find scaling parameters. 39
4.2.3 Find a linear scaling function from obtained scaling parameters. 42
4.2.4 Extended scaling mechanism. 43

4.3 Identify the boards and prepare LookUp-Table (LUTs) in web server . . 44
4.3.1 Board UID extraction. 44
4.3.2 Prepare board ID database in MoPS web server. 45
4.3.3 Store the scaling values meaningfully in MoPS web server database. 45
4.3.4 Send UIDs before MicroMoPS enters into real-time mode. 46

4.4 Resolve UIDs in SAM and send the scaling values to MicroMoPS 46
4.4.1 Resolution of UIDs in SAM . 46
4.4.2 Send the scaling values to MicroMoPS. 48
4.4.3 Execute Low Voltage Test System 48

5 Implementation and Realization 49

5.1 Extraction of UID of DUT and application board 49
5.2 Update the microcontroller’s configuration file for linear scaling compu-

tation . 50
5.3 Board UIDs communication to SAM . 51
5.4 Resolution of UIDs in SAM and scaling values communication from

SAM to MicroMoPS . 52
5.5 Parse the scaling parameters dynamically in MicroMoPS 57
5.6 Compute scaling mechanisms in MicroMoPS 57

6 Evaluation and Analysis 59

6.1 Answers to the Research questions . 63

7 Summary and Outlook 64

7.1 Summary . 64
7.2 Outlook . 64

Bibliography 66

VII

Acronyms 69

VIII

List of Figures

1.1 MicroMoPS, BuckMoPS and LGA771 arrangement. 1

1.2 Measurement environment. 3

2.1 I2C protocol overview. 8

2.2 User Datagram Protocol. 10

2.3 Sampled Signal. 11

2.4 Sampled Signal. 12

3.1 MTS architecture. 15

3.2 Climate chamber that exerts stress on semiconductor power devices. . . 16

3.3 Modular Power Stress Distributed system Architecture [18]. 17

3.4 MicroMoPS . 19

3.5 Low Voltage application board - BuckMoPS. 20

3.6 DUT board plugged to Low voltage application board - BuckMoPS. . . 22

3.7 Software Architecture for MoPS . 24

3.8 Test Actor . 25

3.9 TinyHost application . 26

IX

3.10 Test plan builder application . 28

3.11 Oven plan window . 28

3.12 Channels hierarchy . 31

3.13 Analog signal conditioning circuit . 32

3.14 State of the art . 34

4.1 Enhancements. 37

4.2 Low Voltage Modular test system. 38

4.3 Signal path of measurement data acquisition. 38

4.4 Resolution of board UIDs and scaling values communication 47

5.1 Serialization of JSON objects into LabVIEW data structures 53

5.2 Verification of boards with oven plan entry. 54

5.3 Communication of channel name and associated scaling values to Micro-
MoPS. 54

5.4 Serialization of "scaling.json" objects into LabVIEW data structures . . . 55

5.5 Filtering of scaling values . 56

5.6 Communication of scaling values . 57

5.7 Implementation of data processing module 58

6.1 Distribution of execution time of the scaling functions 61

X

List of Tables

4.1 Component values . 39

4.2 Measurements range . 41

4.3 Measurement parameters . 43

5.1 Boards and their respective UID . 50

6.1 Real-time performance comparision . 62

XI

1 Introduction

System on Chip (SoCs) play a prominent role in the leap forward of today’s tech-
nological evolution. The ability to perform complex functionalities within a small
object created the demand for the extensive need of SoCs in almost every semiconduc-
tor industry. SoCs are leading to provide smart solutions for the dominant, real-life
complex problems because of their intelligent features. To utilize the benefits of the
capabilities of SoC and to ensure the operation of such micro computing environments
and power devices, it is essential to predict the life span of the SoC or Device Under
Test (DUT) that helps in determining the reliability to use the DUT in the real world
embedded applications. The determination of reliability of DUT involves a classical
procedure of introducing the semiconductor into various stress scenarios. From the
obtained behavior to predict the SoCs’ lasting capabilities and reliability. This is a
very essential procedure for semiconductor manufacturers during the development
and release of any new semiconductor products. Various types of stress tests [2] are

Figure 1.1: MicroMoPS, BuckMoPS and LGA771 arrangement.

1

performed to extract the characteristics of the DUT. These stress tests obey a flexible test
approach called the Modular test system. This test system is split into two instances,
namely the host system and the hardware module. The hardware module is termed
as MicroMoPS in this test environment. The host system is named as Software Archi-
tecture for MoPS (SAM) and controls the overall test flow and communicates with the
MicroMoPS1. Many MicroMoPS units may be connected to the host computer via an
Ethernet network. The host computer forwards the stress pattern to the MicroMoPS and
receives preprocessed (digitized and filtered) measurement data application and status
information. The inclusion of the application module between MicroMoPS and the
stress subjected semiconductor device is for integrating the test circuit, to monitor vital
parameters of DUT during test runs as well as to provide protection circuits to avoid
catastrophic destruction of the test setup in case of a DUT failure. Each application
module is connected to one MicroMoPS, which controls the application test, performs
measurement data acquisition and logs device status information. The application
modules are tailored to an individual type of test. In this work, scaling functions
such as Reverse Polish Notation (RPN) and linear scaling are incorporated into the
data processing module of MicroMoPS for time and memory-efficient processing of
analog measurements. Measurement circuits are analyzed to deduce the linear scaling
equation that fits for the data processing system of the Modular test system. Also, the
processing of data is automated via SAM regardless of the type of stress test application
that is performed. The attainment of high speed processing of analog measurements
and the automation of processing of data are investigated on a particular stress test
type called a Low Voltage stress test system. The application module and DUT that are
associated (Figure 1.1) to the Low Voltage stress test system are termed as BuckMoPS
and LGA771 respectively.

1.1 Problem Statement and Motivation

In this sophisticated test environment, the stress exertion on to the DUT is achieved by
running so-called test plans in MicroMoPS. This test plan[3] is created by test engineers.
When creating a test plan, it is necessary to initialize all the hardware parameters and
test parameters. Also, the calculation of measurement related scaling parameters is
described in the test plan. This method of manual scaling is error-prone and the scaling
values may vary based on the type of stress test that is performed. Semiconductor

1MoPS stands for Modular Power Stress

2

Analog signal
conditioning

Host System -
SAM

Application module

UID

ASC

DUT

UID
ASC ADC

MicroMoPS

Signal Path
V, T, I V’

ASC

UID

Analog signal conditioning

Unique Identification

Control Module

Figure 1.2: Measurement environment.

devices are subjected to various application specific stress tests [2] such as power cycling,
automotive repetitive short circuit testing, and inductive clamping. In order to avoid manual
scaling, the procedure of scaling needs to be automated. This way, writing the test
plan is simplified and human error possibilities are much reduced. Using the SAM [1]
and the Unique Identification (UID) of application module and DUT module, the
possibility of automation of data processing is identified. Another concern is that, the
data processing system of MicroMoPS uses a standard scaling mechanism to process
the analog measurements [2] into MicroMoPS operating voltage values. But, from the
analog signal conditioning circuit (see Figure 3.13) that lies between the source of the
analog to digital converter of control module and source of the analog signal at the
application module, there is a scope of deriving a linear scaling equation that processes
the digital data in the control module. Introducing linear scaling over standard scaling
function improves the speed of processing of analog measurements that are generated
on SoC. Also, in a few other scenarios, the scaling function need not have to be
linear because of the complex analog signal conditioning circuit that could exist in the
measurement environment. To address this scenario, a memory-efficient mathematical
notation called RPN is introduced to the data processing system of the control module.
Hence, the linear scaling mechanism and RPN mechanism are investigated for scaling
in this work.

3

1.2 Research Questions

• Is it possible to incorporate a robust scaling function to boost the performance of
measurement data processing?

• Is it possible to derive a linear scaling equation in the test environment that
involves complex measurement circuits?

• Is it possible to automate the method of scaling in the test environment?

4

1.3 Thesis Structure

The rest of the thesis is structured as follows:

1. Chapter 2 provides a brief overview of the software tools, programming lan-
guages, and hardware peripherals that are used in this work.

2. Chapter 3 presents the underlying concepts of the Modular stress test environ-
ment, hardware and software modules in the test environment, measurement
data acquisition and processing concepts of MicroMoPS.

3. Chapter 4 explores the milestones of this project, analysis of the measurement
circuit and the approach at which the milestones are achieved.

4. Chapter 5 explains the performed software implementations concerning to the
mentioned milestones.

5. Chapter 6 describes the results that are obtained from performing this work and
some analysis with the existing systems.

6. Chapter 7 concludes the research work of this thesis and provides some recom-
mendations for future works.

5

2 Fundamentals

To perform this thesis, the pre-existing firmware image of MicroMoPS and the host
application software of the MicroMoPS are extended. The extension of the Micro-
MoPS firmware is achieved by utilizing the associated Integrated and Development
Environment(IDE), Digital Application Virtual Engineer (DAVE), and the extension
of host application software is achieved by developing applications in the Laboratory
Virtual Instrument Engineering Workbench (LabVIEW) Actor framework of the host
application. The overview of the relevant software tools, programming languages,
hardware peripherals, and scripts that are associated with this work is provided in the
following sections:

2.1 Programming languages

2.1.1 Embedded C

This is a programming language which is used most widely to develop microcontroller
based applications (low level and high level). The reason for the usage of Embedded
C [4] is that programs for embedded systems become more complex. The complexity
arises from the processor operation where the processors are bound to perform complex
functionalities such as analog signals analysis, processing of analog signals by applying
filtering algorithms, low level I/O operations, fixed-point operators, usage of different
memory spaces. Syntactically and semantically, Embedded C inherits concepts from
standard C along with some real-time programming concerns such as dynamic memory
allocation and de-allocation, mutexes and semaphores.

6

2.1.2 Lua

Lua is a lightweight, high-level programming language, written in C and utilizes a
minimum of RAM while still performing as well as expected. It is designed to be
used as an extension language, which means Lua has no idea of a "main" function.
Instead, it can be incorporated into any C based program to enhance its functionality.
Lua is therefore majorly used for providing customizable applications where for the
complex applications, macros and scripts may be integrated using Lua. Lua is not very
verbose but a very expressive language. The example of a Lua program is as shown in
Listing 2.1

Listing 2.1: Lua example

func t ion swap (a , b)
return b , a

end

a , b = swap (2 0 0 , 300)

As it can be seen from lua example code Listing 2.1, functions can return multiple
values. Lua is a dynamically typed language: variables do not have types; only values
do. Lua also supports object-oriented programming.

2.1.3 LabVIEW

Laboratory Virtual Instrument Engineering Workbench (LabVIEW) is a graphical pro-
gramming environment used for testing, measuring and controlling of any computer
based data acquisition. This software offers a Virtual Instrument (VI) component, which
enables users to create their own application in the form of VIs and this application
could be interfaced with the microcontroller to acquire, process and store the data.
Applications in LabVIEW are usually built using well-known design patterns [5] which
allows the developed VIs to appear much more organized and flexible to provide soft-
ware extension. LabVIEW uses the concepts of object-oriented programming such as
classes, inheritance, and encapsulation. These concepts provide advantage to LabVIEW
to build any software application since the VIs which are created using these concepts
help to modify the code in respective VIs and the modification does not affect the other
sections of code. A powerful feature of LabVIEW is the Actor framework. The Actor
Framework [6], [7] is used to design and build scalable multi-actor systems [8] to solve
problems requiring a high level of concurrency.

7

2.2 Hardware peripherals

2.2.1 I2C

I2C communication protocol [9] is used in communication between multiple slave
devices and one or more master devices. It is a serial communication interface used for
short distance intra board communication. The data exchange using I2C must adhere a
certain protocol for valid I2C communications. Data transfers are achieved using a data
line Serial Data Line (SDA) and a clock signal Serial Clock Line (SCL). The bus states
that are communicated using the I2C protocol are:

H

L

H

L

L Low

H High

Figure 2.1: I2C protocol overview.

Idle Bus is idle when both, SDA and SCL, are inactive, i.e they are logic HIGH.

START START condition is initiated when there is a change in the state of SDA from
HIGH to LOW while SCL is still HIGH.

Repeated START Repeated START condition is initiated when there is a transition of
SDA from HIGH to LOW while SCL is still HIGH. The master uses this condition
to repeat the transfer of data immediately at the end of the data transfer.

8

MS bit The data that the master is intended to transfer is sent in accordance with the
generation of SCL pulses. The data on SDA remains unchanged during the entire
high pulse of SCL; Transitions of SDA occur only during the LOW state of SCL.
Subsequently, data is sent to a receiving device bit wise during the rising edge of
SCL. As shown in the Figure 2.1, the Most Significant Bit (MSB) of data remains
unchanged during the first clock pulse of SCL, it follows that the MSB is shifted
into the receiving device during the rising edge of the SCL pulse. Likewise, the
data is sent bit wise until the Least Significant Bit (LSB) of the data is received at
the receiver.

Acknowledge bit For every byte data transmission, an acknowledgement bit must be
received at the master. The master must generate a separate clock pulse associated
to the reception of an acknowledgement bit.

STOP A STOP condition is initiated when there is a change in state of SDA from LOW
to HIGH while SCL is still HIGH.

Using I2C communication, data can be read by a master device from slave device.
DS28CM00 [10] acts as a slave in this work. DS28CM00 is a UID chip that contains UID
of a slave device.

2.2.2 UDP

User Datagram Protocol (UDP) [11] is a Transport Layer protocol [12] used for low-
latency connectionless communication in IP-based networks. Communication is
achieved by transmitting information in the form of datagrams from source to destina-
tion without verifying the state of the receiver. UDP provides two services such as the
port number and checksum capability. Port numbers are used to distinguish different
user requests and checksum is an optional feature that is used to detect errors in the
data that has arrived.

A UDP header has four fields, each of these fields is of length 2 bytes. The fields of
UDP are:

• Source port: The Source port represents the port of the sender.

9

UDP Header UDP Data

Source port
16 bits

Destintaion port
16 bits

Length
16 bits

Checksum
16 bits

Figure 2.2: User Datagram Protocol.

• Destination port: The Destination port represents the port the datagram is
addressed to.

• UDP length: The UDP length represents the length in bytes of the UDP header.

• Checksum: The Checksum is used for checking error.

UDP, unlike other transmission protocols, does not use handshaking dialogues to
provide a guarantee that data delivers to its destination. However, it has very low
overhead. UDP works by encapsulating data inside the header field and these data are
sent as packets to their destinations. UDP protocol is most commonly used as a basic
protocol in client-server application protocols such as TFTP, DNS, etc.

2.2.3 Analog-to-digital converter

Analog-to-digital converter (ADC) is an electronic component [13] that converts an
analog electrical signal (mostly voltage signal) into a digital value. Analog signals
are the continuous-time and continuous-amplitude signals that could mean physical
quantities such as sound, light, temperature, and motion.

Microcontroller consists of an ADC for the conversion of these physical quantities
into digital values because microcontrollers can only work with discrete values. ADC
follows certain signal processing concepts as shown in the Figure 2.3 in performing the
conversion of analog signals into digital values.

10

Sampling Quantizer Scaling

Analog
measurements

(e.g. Continuous
voltage levels)

Sampled
signals

Digitized

(e.g. Digital
values)

Scaled

(e.g. Discrete
voltage levels)

Figure 2.3: Sampled Signal.

Signal sampling Sampling of a signal is performed in order to reduce the continuous-
time signal to a discrete-time signal where, any physical quantity such as sound
wave or light wave is converted into a sequence of samples. Sampling within
an ADC obeys a fixed sampling rate that depends on the input signal, known
as sampling frequency (fs). The sampled signal (see Figure 2.4) is used in the
digitization of its every slice. The digitization follows a fundamental principle
known as the Nyquist theorem [14] to successfully construct a digital signal from
the input signal caused by sampling. According to the Nyquist theorem, the
sampling frequency needs to be at least twice the highest analog frequency
component (fmax) of the input signal in order to construct a digital representation.

The equation that represents the Nyquist criterion is given by:

fs >= 2fmax

Resolution The ADC’s resolution is the smallest change in voltage that can be detected
and thus causes a change in the digital input. This change is also known as the
step size of the ADC. The resolution (N) of the ADC can be determined by a
bit length that is specific to the ADC. An ADC which has ’n’ bit digital output
provides 2n digital values (resolution), i.e.,

N = 2n (2.1)

For example, if the digital output is of a bit length of 12-bit for an ADC, the
resolution of this ADC is 212, i.e., 4096. This also means that for ADC with the
resolution 4096, the digital values for each sample of an ADC range from 0 to
4095.

Scaling The processing of the digital data into microcontroller specific discrete voltage
values is known as Scaling. Scaling is performed by using the bit length, digital

11

data, and reference voltage information. The standard scaling function of an ADC
is given by:

f(x) =

(
Vmax � Vmin

N

)
· d � Vmin, (2.2)

f(x) = Scaling function,
Vmax = Maximum analog voltage to be converted to digital output,
Vmin = Minimum analog voltage to be converted to digital output,
N = Resolution (see equation 2.1) of the ADC,
d = digital value.

Figure 2.4: Sampled Signal.

2.3 Tools

2.3.1 DAVE

DAVE 1 is an Eclipse based IDE using the GNU C-compiler, designed for firmware de-
velopment of ARM-based 32-bit XMC Infineon processors. Using the C/C++ language,
firmware is developed. DAVE includes the building blocks of software development
such as code editor, compiler, and debugger. The configuration wizard of DAVE pro-
vides an overview over the hardware peripherals, control units, and modules. DAVE
provides a graphical user interface and wizard, which gets easy for the beginner to

1https://www.infineon.com/dave

12

https://www.infineon.com/dave

get acquainted with the development tool. DAVE’s interactive user interface provides
a configuration window which allows the designer to select and configure a specific
product and then automatically generate system initialization code for that product,
including its core, memory, peripherals, driver functions, and interrupts. In DAVE,
user-specific functionality can be added to the automatically generated code without
having overwritten the parts when applying further changes to the microcontroller
configurations.

2.3.2 Git

Git [15] is a distributed version control tool that supports distributed non-linear work-
flows. It is designed for facilitating the co-ordination between the connected program-
mers in developing software and, track or reverse the changes that are done in the
development stages.

2.4 Markup languages for data interchange

2.4.1 JSON

JSON [16] is short for JavaScript Object Notation, is a standard file format used
primarily for serialization and de-serialization. Serialization converts an Object-oriented
programming’s (OOP) object into a JSON string and de-serializing is to do the inverse
operation. It is represented in key-value pairs and is used widely in web applications
to generate and parse data.

13

3 Related Work

This chapter describes the underlying concepts that are involved in this sophisticated
stress test environment and their correspondence in meeting the objectives of this work.
This chapter explains the stress test procedure that is developed and incorporated at
KAI, hardware and software systems that are used for the stress test architectures, the
measurement Data AcQuisition (DAQ) system of MicroMoPS, the scaling mechanism
that exists for processing the acquired measurement data, communication channels’ spe-
cific analog signal conditioning circuits and their role in the acquisition of measurement
data.

3.1 MTS architecture

At KAI, there is a pre-developed modular, flexible and adaptable test system architecture
incorporated for reliability stress testing of power semiconductors, which is called
Modular Power Stress (MoPS) architecture [1]. This stress test system as shown in
Figure 3.1 follows a certain flow in delivering a smart approach of executing a reliability
stress test on DUT to estimate their lifetime. In this stress test system, multiple DUTs
are subjected to stress test patterns under automotive environment conditions. The
MTS architecture is split into two parts, namely the host computer and control module
(MicroMoPS). The host computer is the central unit system which controls the overall
test flow and communicates with the control modules. The host computer forwards
the test patterns termed as test plans generated by Test Plan Builder [3]. Based on
the test patterns that are received by control module from a host computer, signals
are generated by the control module to provide stimuli to the semiconductor device
under test. Thereby, the DUT undergoes stress as mentioned in the test pattern. The
control module further senses the output responses and closes the control loop from a
PI controller integrated with the application module, which leads the control module

14

Figure 3.1: MTS architecture.

to start recording the measurement parameters of the test. The key advantage of MTS
architecture is that there is a total separation of control and measurement part of the test
system from the test circuits. The test circuits are built within the application module
and further, the application module is connected to a semiconductor device under
test by a special connector. Thus, by the integration of application modules to control
modules, it is possible to subject DUTs into various types of stress tests. In order to
meet reliability stress testing of power semiconductors under automotive environment
conditions, multiple DUTs and local control modules are attached to the application
module and placed inside an environmental chamber as shown in Figure 3.2. These
application modules are designed for subjecting DUTs into specific types of stress test.

Currently, the types of stress tests are:

1. Low Voltage Test System: A board called the Buck MoPS is chosen as a Point-
of-Load (PoL), which is a DC-DC power converter application. The DUTs such
as power switches are subjected to an application-specific stress test called power

15

Figure 3.2: Climate chamber that exerts stress on semiconductor power devices.

cycling. DUTs are heated to reach a temperature between 85 °C and 125 °C for
consumer devices, 150 °C for automotive devices and are supplied with a supply
voltage that is set to the maximum level which still complies the datasheet
specification of DUT. Intermittent electronic loads are submitted to DUTs which
toggle between a high load of 100% that nearly reaching DUTs to their maximum
operating temperature and a low load of 10 % [2].

2. Mid Voltage Test System [17]: Board such as the PoL converter is chosen as an
application module. The DUTs are power transistors which are subjected to
medium voltage stress up to 600V.

3. High Voltage Test System: Devices such as Insulated Gate Bipolar Transistor
and Metal-Oxide Semiconductor Field Effect Transistor (MOSFET) transistors are
tested by subjecting to a high voltage of up to 1.5 kV.

The analog measurement data from a DUT is acquired by the data acquisition system
of MicroMoPS via the dedicated application module communication channels. The
analog measurements [17] such as voltage, current and temperature signals are acquired

16

Figure 3.3: Modular Power Stress Distributed system Architecture [18].

and go through several stages of attenuation at the application module because of the
presence of signal conditioning circuits. These signal conditioning circuits are meant
for conditioning the measurement data signals into control module specific operating
voltage ranges (0 V to 3 V).

3.2 MoPS Distributed System

The Modular Power Stress (MoPS) is a system architecture concept [1], [18] developed
to provide a modular infrastructure for customizable stress test applications. The most
essential components of MoPS system architecture as shown in Figure 3.3 are:

Device subsystem The components other than control module that are present in
the device subsystem act as supporting elements to perform a stress test on a
semiconductor device under test. For example, a guard module protects the DUT
from damage by shutting down the power from the control module when there
is a device failure. The control module acts as an intermediate agent to trigger
application specific stress tests on the DUT. The control module is situated close
to DUT to establish nearly a lossless one-to-one communication. From the stress

17

tests, the electrical signals that are generated in the DUT module are measured in
the control module via communication channels of the control module.

Master system This is a centralized host, single control entity (see Section 3.2.2) which
forwards the stress pattern created by test engineers to a control module (Micro-
MoPS), to execute stress on the DUT module.

Serial Data Bus This component helps to establish back and forth stress test associated
communication between host computer software and the control module. It is
also called global bus. Some of the mandatory data exchanges that occur between
the host computer software and the control module include:

1. Reception of test plan by control module from SAM.

2. Reporting of status and measurement results from control module to SAM
via Ethernet.

Channel subsystem The stress test correspondent electronic circuitry namely ARCTIS
is present in this subsystem. An electronic load is driven towards the DUT via
channel subsystem. Also, the real-time controller is part of this system which
provides closed loop control logic for the acquisition of the analog measurements.

3.2.1 Hardware architecture

This section describes the hardware modules of MoPS distribution system.

MicroMoPS

The Control module that is used for testing the semiconductor device under test is
called MicroMoPS. It is a XMC4700 [19] microcontroller based on the 32bit ARM
Cortex-M4 processor core. The following are the hardware features that are available in
MicroMoPS:

• Ethernet communication supported with automatic calculation of Medium Access
Control (MAC) address deduced from the unique identification number (UID) of
the XMC Micro Controller (µC).

18

Figure 3.4: MicroMoPS

• 4 analog input modules capable of acquiring up to 24 input signals with a
resolution of 12 bits at rates up to 1.8 MHz.

• 4 analog output channels with a 12 bit resolution.

• 4 Delta-Sigma Demodulator (DSD) channels to gather analog data from galvani-
cally isolated sensors.

• 6 Pulse Width Modulation (PWM) outputs are divided into 6 units, in which 2
units are provided with an inverted output for half-bridge control.

• 1 Serial Peripheral Interface (SPI) for communicating to a variety of peripherals,
such as real-time clocks, memory and control devices such as DAC.

• 1 Inter-Integrated Circuit (I2C) for communicating at low-speed to a variety of
peripherals. A Key feature of I2C is the capability to control the network of device
chips with two General Purpose Input Output (GPIOs) pins.

• 2 Light Emitting Diode (LEDs) to indicate run and error states.

• 12 GPIO pins.

• Synchronous DRAM of size 8 MB to store analog measurement data.

• Ethernet and Universal Serial Bus (USB) communication interfaces.

• Up to 4 software timers of 16-bit width with 1ms resolution for triggering custom
events in the test Finite-State Machine (FSM).

19

BuckMoPS

BuckMoPS is the application module which carries the control module - MicroMoPS
and DUT - a power switch (IC) to indulge into a low-voltage application stress test
system. BuckMoPS is a DC-DC power stage application. The reason behind the addition
of an application module together with a control module in the test environment is that
it provides a clear separation of stress application from DUT and control module. Also,
by introducing an application module into the test system, the DUTs are subjected to
application-equivalent conditions, which helps in the exclusive measurement of power
semiconductor device parameters. The measurement parameters which are described
for the low voltage application stress test system are: input voltage or input current of
the DUT, output voltage or output current of the DUT and temperature of the DUT [17].

Figure 3.5: Low Voltage application board - BuckMoPS.

Auxiliary supply: This module is meant for supplying power to the control
module and application module.

Guard Block: This provides smart protection functions that are used to protect
the DUT board from over-voltage, which would avoid the damage of the device.

Analog controller: This component plays a role in providing a suitable control
logic to drive and measure test on DUT board.

20

DUT board socket: This is the area where the DUT board is held and tested.

Analog signal conditioning: This component consists of Op-Amps to amplify
the signal received from the control module. Op-amps are used for conditioning
the analog measurement signal i.e. to attenuate analog differential voltage signals
into single-ended voltage values that lie within the control module’s range.

Power connector: This is the medium by which the power is supplied to applica-
tion module.

Buffer and Filter capacitors: These are useful to support the power supply at
high transient events.

Module connector: This is the connector that is used to interface control modules.

Current sensors: This component is useful for input and output current measure-
ment.

Device under test

The DUT is a pair of MOSFETs transistors connected as shown in Figure 3.6. The
Low Voltage application board i.e. BuckMoPS consists of a mentioned DUT. These
DUTs internally have passive inductors and capacitors to achieve application-equivalent
behavior. It requires only a PWM signal from the control module for the operation of
DUT.

3.2.2 Software architecture

This section describes the software layer of MoPS distribution system.

21

Figure 3.6: DUT board plugged to Low voltage application board - BuckMoPS.

MoPS-CORE Microcontroller Firmware

The MoPS-CORE Microcontroller Firmware is a firmware version of XMC-based mi-
crocontroller hardware targets with some CPU resource limitations and memory con-
straints. The major handlers that essentially run the entire operation of the MicroMoPS
microcontroller are the ones that are included within the main loop. By means of
measure_time() handler the time of the main loop is measured for statistical and in-
vestigation purposes. The handler comm_handle_msg() is used in communication
between the internal modules of the microcontroller and also to exchange information
between the host application i.e. SAM via Ethernet. The handler check_uplink() is used
in testing the connection status between the host and the control module before the test
plans are executed on the control module. Furthermore, the guard_feed() is a handler
that provides a watch-dog guard mechanism, which is a hardware timer capable of
resetting the microcontroller, unless it is periodically reset by the software. Through the
led_active() handler, the status of the controller is easily detected where there are two
LEDs that are dedicated to give visual indicators to the user about the working state of
the controller software. Finally, the firmware runs the FSM handler that is developed
by test engineers as test procedures and the Lua code that is part of FSM diagram is
executed to interface the hardware modules of the microcontroller.

Listing 3.1: MoPS test loop

void t e s t _ l o o p (void) {
t e s t _ i d e n t i f y _ b o a r d s () ;

22

while (1) {
measure_time () ;
comm_handle_msg () ;
check_uplink () ;
handle_fsm () ;
guard_feed () ;
l e d _ a c t i v e () ;

}
}

There are three essential components that are associated to MoPS-CORE Firmware,
they are:

Electronic Data Sheet The Electronic Data Sheet (EDS) is the configuration informa-
tion of control modules that are necessary for performing tests. This configuration
information includes Hardware version, peripheral information, and device scal-
ing parameters. Fundamentally, the EDS is a JSON string, which is generated
upon microcontroller booting. The microcontroller firmware uses the pre-defined
compiled hardware configuration to generate the JSON string. After the gener-
ation of EDS, the same is uploaded to the MoPS project web server by SAM so,
that other MoPS applications can access the information.

MoPS web server The MoPS web server is the server software dedicated for storing
Hardware information of the MicroMoPS and delivering Hardware information
of the MoPS microcontroller to the corresponding host software application such
as TestPlan Builder.

Lua interpreter The Lua interpreter [20], [21] is to provide flexibility to the hardware
designers and product engineers of the company in configuring a test sequence
directly without having to deal with the low-level programming of microcon-
trollers. A set of Lua commands are available to provide a hardware interface
and they are simple to use. These Lua commands contain the implementation of
custom modules and hardware access routines. They access hardware modules
via defined C-APIs. Each Lua command (enclosed within FSM) present in the
test plan accesses it’s corresponding C-Application Programming Interface (API)
from the Lua space of MicroMoPS firmware and thus, allows the MicroMoPS to
execute the entire test plan.

23

Figure 3.7: Software Architecture for MoPS

Software Architecture for MoPS

Software Architecture for MoPS is a host layer software [1] developed using LabVIEW.
This software is designed for test engineers to perform any type of stress testing from
their respective host computers. The stress tests are applied by loading a test plan into
SAM software. This software makes use of the Actor framework [6] of LabVIEW to
essentially create multiple independent software agents called as Actors. These actors
have a separate GUI window displaying their concerned attributes. Furthermore, these
actors also run some tasks in the background and accordingly their corresponding GUI
is refreshed and displayed to provide test engineers a user-friendly interface to interact
with.

SAM is organized in a hierarchical manner as shown in the Figure 3.7 where each of
these software agents is meant for particular tasks that are fundamentally connected
to a target system and responsible for the acquisition of measurement of electrical
characteristics of semiconductor power device such as voltage, current, and temperature.
SAM also facilitates in applying stress to DUT via control module and to automate the
MicroMoPS related host software functionalities.

The Actors that play a major role in the entire operation of SAM are:

24

Main Actor This actor is initiated as soon as the SAM application begins to run
and during the start-up of this application, the associated child actors i.e. log
actor and communication interface are initialized. The Main actor is a root actor
that is responsible for facilitating the coordination between its sibling actors using
queues of LabVIEW’s Actor Framework.

Log Actor This actor is used by every other actors to print and log error messages
at log actor’s Graphical User Interface (GUI) display window of SAM. Thereby,
these messages help SAM users and developers to identify and fix bugs that arise
while reconfiguring or extending the SAM software.

Communication Interface The Communication interface deals with sending mes-
sages to and receiving messages from the control modules via the Ethernet or
USB interface.

Node Actor The Node actor is responsible for managing a hardware target that
is connected to a host computer. In the operational case of SAM, the moment
the hardware target is connected to SAM, the instance of the hardware node is
created and the hardware node’s GUI window is counter created to display the
hardware node’s corresponding attributes. The GUI of the Node Actor displays
information about the node and the test. Measurement data acquired by the
hardware target is also viewed in this actor.

Test Actor.lvlib:Test.lvclass:Actor Core.vi
C:_work\mops_sam\src\Actors\Test Actor\Test\Actor Core.vi
Last modified on 16.10.2019 at 16:44
Printed on 06.12.2019 at 11:19

Page 1

FSMStatus

Test Actions

Target Name DUT marking State Slot Load Board Target FSM
10.132.112.1 A01 IDLE

Ovenplan

Test plan

Test Status

Unload

Stop Test

Start Test

Figure 3.8: Test Actor

Test Actor Test actor provides a GUI platform to display the test status to the user
and also provides the interface to send test events to the control module. GUI

25

display of Test Actor is as shown in the Figure 3.8. To start the test, "start" is the
event that is executed. To stop the test, "stop" is the event that is executed. Once,
when the test starts running, the analog measurements can be acquired by an
event "meas", which is executed from the FSM window of Test actor. Test actor in
much general sense executes the finite state machine given in the test plan (see
Section 3.2.2).

Figure 3.9: TinyHost application

TinyHost

A small application called TinyHost exists to test the communication interface of
the MicroMoPS and also to send messages to the hardware targets. Through, this
application the messages can be sent to the hardware targets manually and thereby,

26

commands that are part of Lua interpreter which are present in the microcontroller’s
firmware are executed. To get a sense of TinyHost’s purpose, an example of one of
the tests that are performed during this thesis is considered. In this work, to test
the functionality of hardware target’s analog input communication modules and their
channels’ value (see Section 3.2.3), Lua code (see Section 2.1.2) is written to invoke Lua
commands that are present at the Lua space of microcontroller’s firmware, as shown in
the Figure 3.9. Subsequently, the result is displayed on the log field of the TinyHost as
shown in the Figure 3.9.

Test Plan Builder

Test plan builder [3] is an application used to create a test plan in the form of a FSM
diagram where each state of the FSM diagram is fundamentally a set of Lua commands
that are defined in the microcontroller’s firmware. Test plan builder also downloads the
EDS from the MoPS web server to know the details of the latest hardware configuration
of MicroMoPS. Consequently, from the knowledge of hardware configurations, Test-
plan builder enables the test engineers to create a test plan. The development procedure
of test plans and the syntactic rules that are applicable to successfully build test
plans are described in detail in Plankensteiner’s Master thesis [3]. EDS configuration
information is necessary for verifying the respective hardware capabilities before a test
starts. The Test-Plan Builder requires this information to provide knowledge to test
design engineers about the available hardware and software modules that could be
used in creating test plans. A sample of the test plan is as shown in the Figure 3.10.
In principle, there are two sections in the layout of a Test plan tab of Test plan builder,
they are:

1. HOST: The FSM diagram in Host is meant for providing control over the operation
of the Target FSM diagram. As soon as the start button is pressed after loading
the test plan to SAM, there occurs a transition from the IDLE state of Host FSM to
the START state in test execution. This START state machine sends a "start" event
to the IDLE state machine of Target FSM which, leads Target FSM to propagate
further from the IDLE state.

2. TARGET: The FSM diagram in Target is the starting point for the control module
to subject DUT into stress, where the functionality of Target FSM is totally
controlled by the Host FSM. Intuitively, the running of all the state machines

27

Figure 3.10: Test plan builder application

Figure 3.11: Oven plan window

of Target FSM except INIT is nothing but the invoking of Lua commands that
are specific to microcontroller’s firmware modules ([1], p.39). As soon as Target
FSM is triggered by Host FSM by receiving a start event, there occurs a transition
from the IDLE state to the INIT state in Target FSM. Consequently, at INIT a
digital stimuli is generated towards the DUT because of the PWM signal from

28

the control module. Furthermore, Target FSM reaches to running state which, is
an indication that the test is running. Finally, the test is stopped by pressing a
stop button in SAM, which results in the Target FSM diagram to reach to its IDLE
state from any given state.

Oven plan The oven plan of the Test plan builder tool provides an interface to select
desired DUT, application module and Hardware target. Test engineers select the board
names based on the stress type they want to perform. The selection of boards is done
by a drop-down present in the oven plan window of the test plan builder. A variant of
MicroMoPS (classified by their IP address), Application module and DUT are chosen as
shown in the Figure 3.11. The test FSM diagram in the test plan window and hardware
selection in the oven plan window fulfills the protocol of the creation of the test plan.
Further, to which the test plan is generated as a JSON file. The JSON file is loaded to
SAM to execute the stress test.

3.2.3 Measurement environment of MoPS

This section describes the measurement data acquisition system of MicroMoPS, mea-
surements communicating channels of MicroMoPS, signal conditioning circuits present
in the measurement environment and processing concepts.

Measurement data acquisition of MicroMoPS

Data AcQuisition (DAQ) of MicroMoPS is responsible for acquiring, displaying and
storing the analog measurements that are obtained from tests. The analog measure-
ments such as temperature, voltage, and current of the test are sent to Analog-to-digital
converter (ADC) of the MicroMoPS via dedicated analog input channels. These mea-
surements that are received at the ADC of MicroMoPS, are sampled and quantized to
convert into a certain range of digital values. In general, the ADC of a MicroMoPS is of
12 bit resolution, therefore the analog values that are converted into digital values range
from 0 and 4095 and represent the microcontroller’s specific voltage values range from
0 V to 3 V. These measurements go through some signal conditioning (see Figure 3.13)
before they are used by the ADC to perform digital conversion. The analog measure-
ments that are communicated using analog communication channels are classified into
two types:

29

1. Single-ended multi-channel measurements: This type of measurement requires
the analog value to be referenced to the well chosen common-mode i.e. Ground.

2. Differential measurements: This type of measurement does not have common-
mode reference but have a difference in analog value between the two input signal
leads.

The communication channels which conduct analog measurements follow a certain
hierarchy in their design (see Figure 3.12) and these measurements are converted from
differential measurements/single-ended channel measurements to single-ended values
by allowing them to go through signal conditioning. Because of this, the measurements
are achieved in delimiting them into the microcontroller operating voltage range i.e.,
0 V to 3.30 V.

Channels hierarchy and their purpose

Analog-to-digital conversions in MicroMoPS can be executed in two modes. They are:

1. Synchronous mode - Channels belonging to a synchronous group can do an
analog-to-digital conversion in parallel as the ADC kernels of these channels are
synchronized with each other.

2. Scan mode - Channels belonging to the scan group follow a configurable linear
sequence that allows the dedicated channels to do analog-to-digital conversion
one after another.

With respect to the modes of analog-to-digital conversion, there are dedicated channel
modules such as sync0, sync1, scan0, scan1, and scan2. The mentioned channel modules
as they are named, correspond to synchronous and scan conversion modes. These
channel modules are further classified as follows:

1. sync[0,1][0,3]B - Unipolar Analog-to-Digital conversion synchronous channels,
where first index, i.e, [0,1] represents the module number, second index, i.e, [0,3]
represents the module’s specific channel number and third index represents the
channel’s specific group name. The group name assigned to this channel is ’B’.

30

sync

sync0

sync1

scan

scan0

scan1

scan2

sync0:0

sync0:1

sync0:2

sync0:3

sync1:0

sync1:1

sync1:2

sync1:3

scan0:0

scan0:1

scan1:0

scan1:1

scan2:0

scan2:1

sync0:0A

sync0:0B

sync0:1A

sync0:1B

sync0:2A

sync0:2B

sync0:3A

sync0:3B

sync1:0A

sync1:0B

sync1:1A

sync1:1B

sync1:2A

sync1:2B

sync1:3A

sync1:3B

Figure 3.12: Channels hierarchy

2. sync[0,1][0,3]A[N,P] - Bipolar Analog-to-Digital conversion synchronous chan-
nels, where first index, i.e, [0,1] represents the module number, second index, i.e,
[0,3] represents the module’s specific channel number and third index represents
the channel’s specific group together with the polarity, i.e, -/+ of the elelctrical
signal. The group name assigned to this channel is ’A’.

3. scan[0,1,2][0,1] - Analog-to-Digital conversion scan channels, where first index,
i.e, [0,1] represents the module number, second index, i.e, [0,1] represents the
module’s specific channel number.

The Differential Voltage measurements such as Switch Node Voltage (Vswh), Mea-
surement voltage from Auxiliary MicroMoPS node 1 (Aux1), IC current monitor (Imon),
Converter input voltage (Vin) and Converter output voltage (Vout) are acquired via
bipolar Analog-to-Digital conversion channels i.e. sync[0,1][0,3]A[N,P]. Aux1 and Aux2
are the auxiliary MicroMoPS that are used to cover multiple functions available on the
test device.

The single ended Voltage or Current or Temperature measurements such as Converter
input current (Iin), Converter output current (Iout), DUT case temperature (Tc), DUT

31

board temperature (Tbrd), Driver current (Idrv), Driver Voltage (Vdrv), IC current
monitor (Imon) and IC temperature monitor (Tmon) are acquired via unipolar analog-
to-digital conversion synchronous channels i.e. sync[0,1][0,3]B.

The above measurement parameters are part of the Low Voltage MTS environ-
ment [17].

Analog signal conditioning circuits

To most of the measurement signals, the analog signal conditioning circuit setting is
merely the differential amplifier with a series resistor and standard voltage divider
circuits convention as shown in the Figure 3.13. This signal conditioning circuit is
designed by the hardware designers of KAI.

Figure 3.13: Analog signal conditioning circuit

Conditioning of the voltage, temperature, and current signals is achieved by using
an analog signal conditioning circuit (see Figure 3.13) with some standard component
values. The analog signal conditioning circuit for Converter input current (Iin) and
Converter output current (Iout) are placed on the application module and the resulting

32

conditioned signal is directly fed to analog-to-digital converters of the control module.
The analog signal conditioning circuit for Converter input voltage (Vin), Converter
output voltage (Vout) and IC current monitor (Imon) are placed on the control module.
For the DUT case temperature measurement i.e. DUT case temperature (Tcase), the
resistive sensor is supplied from a constant current source with a provision of voltage
amplification. IC temperature monitor (Tmon) in an application module to monitor the
DUT temperature. Driver voltage (Vdrv) in the application module consists of a Voltage
divider circuit to drive MicroMoPS. Finally, Driver current (Idrv) in the application
module to supply current to MicroMoPS.

Processing concepts

Finally, in order to convert the digital measurements (representative of the analog
measurements of the DUT) into microcontroller’s specific analog values which range
from 0 V to 3 V, the respective digital values need to be processed. The method of
processing digital values is called a scaling function. This scaling function can vary
from channel to channel because of the varying microcontroller specific analog value
range for particular test measurements. For an instance, the microcontroller specific
analog value range for the channel sync[1][0]A ranges from �1.50 V to 1.50 V whereas,
the microcontroller specific analog value bandwidth for the channel sync[0][0]B ranges
from 0 V to 3 V. Standard scaling function (see Equation (2.2)) is used to process the
analog measurements.

3.3 State of the art

Stress test application on a high level goes at a particular flow. This flow essentially
provides the state of the art that exists in this stress test environment. The flow of the
stress test as depicted in Figure 3.14 is explained accordingly in steps as follows:

1. The starting point of the stress test application is from the control module. A
control module is flashed with a stress test application integrated firmware image
to execute the test plan. Upon booting of microcontroller, an EDS is generated in
the MoPS CORE firmware project folder.

33

DUT

1

During stress test

Before stress test

Control
Module

ADC

Application
module

Control
Signal

conditioning
circuits

MoPS webserver

Sense

Stress

2

3

4

5

6

7

8

9

10

1. EDS generation

 2. Host reads EDS

3. Host updates to server

 4. Test plan created

5. Test plan loaded to SAM

 6. Test plan executed

 7. Control signal

 8. Stress is executed

 9. Processed using scaling function

 10. Measurements data acquisition

Electronic
Data Sheet

Test plan

Standard scaling
function

Figure 3.14: State of the art

2. SAM accesses the latest EDS that is generated in the MoPS CORE firmware project
folder.

3. SAM further updates the latest EDS to MoPS web server.

4. Test plan builder tool downloads the EDS to create and validate the test plans
that are created by test engineers.

5. A Semiconductor is not subjected to stress test until this point. SAM further keeps
waiting to receive test plans to subject DUT into an application-specific stress test.
Subsequently, Test plans (see Section 3.2.2) that are created by test engineers are
loaded to SAM.

6. Test plans are forwarded by SAM to MicroMoPS for it’s execution.

7. Test plans are executed and as a part of execution, the PWM signal is sent from
the control Module to DUT. The control (PWM) signal makes the DUT go into an
operational mode.

34

8. Electrical stresses are applied onto DUT through the application module.

9. Electrical signals are generated in the DUT because of the electrical stresses that
are exerted on the semiconductor device.

10. The generated electrical signals are measured through the analog communication
channels of MicroMoPS.

11. The analog measurements are digitized using an ADC of MicroMoPS and the
digitized values are later processed using a standard scaling function (see Sec-
tion 2.2.3) to convert them into discrete MicroMoPS specific voltage values.

12. The processed data are acquired by SAM to retain the original values of analog
measurements. The retained values are used in the SAM for further interpretation
such as, for calculating the end of life of DUT.

35

4 Approach and Methodology

4.1 Overview

After understanding the scope of improvement in the existing analog measurement
signals processing methodology, a new approach is worked out and implemented
within the Low Voltage MTS setup. The new approach involves some action items
that are needed to be completed at a certain chronology. The sequence of action items
is depicted in Figure 4.1. Section 4.2 describes the data processing concepts that are
derived for processing analog measurements in MicroMoPS. Section 4.3 describes the
identification of boards in the stress test environment and preparation of board related
information in the MoPS web server. Section 4.4 describes the automated procedure of
processing analog measurements regardless of the board combinations.

4.2 Derive data processing concepts for stress test

environment

4.2.1 Acquiring a signal model

In the modular stress test environment, the application module is used for submitting
stresses on DUT. The used application module involves its own application specific
characteristic circuitry. In this work, since it is the Low-Voltage stress test system that
is used, the discrete power transistors are submitted to power cycling ([2], p.2) test. This
is a test in which DUTs are pulled to their extreme operating conditions by introducing
them into various scenarios. Further, in response to a "power cycling" test, certain MTS
parameters are measured. These parameters of the Low Voltage MTS are recorded
based on the control logic implemented by a PI controller at BuckMoPS (Section 3.2.1).

36

Circuit
analysis

MicroMoPS

Electronic
Data Sheet

Application
module

Test plans

DUT

1

2,3,4
5

8

9

10

ADC

During stress test

Before stress test

6,7

10

Figure 4.1: Enhancements.

As a result, the measurement signals are automatically monitored by a control module
throughout the entire test. These measurement signals go through conditioning before
reaching the ADC, as explained in Section 3.2.3. To obtain the real time efficient scaling
mechanism for MicroMoPS, the path that the measurement signals traverse from the
source of the signal conditioning circuits to the source of the analog-to-digital converter
of the control module as shown in Figure 4.3, are analysed in this work. The path that
the measurement signals travel consist of the measurement circuits that are associated
with acquisition of measurements. Further, the signal path information is obtained
by following the hardware schematics of MicroMoPS and application module. The
values of every active and passive device that are present in the measurement circuitry
is important to know because it helps in obtaining scaling factor associated parameters
which are specific to the respective type of measurements.

37

Figure 4.2: Low Voltage Modular test system.

Analog signal
conditioning

Signal path
V,T,IV‘

Application module

MicroMoPS

ASC ASC

DUT

UID

UID

ASC
Analog signal
conditioning

ADC

Figure 4.3: Signal path of measurement data acquisition.

The series resistors (R1, R3), differential operational amplifier and the standard
voltage divider circuit (R2, R4, R5 and R6) conventions (see Figure 3.13) are part of
the analog signal conditioning circuit as described in Section 3.2.3. They are defined
by Hardware designers at KAI to appropriately attenuate the electrical signals into
MicroMoPS operating voltage range from 0 V to 3 V. The defined circuit component
values are listed as shown in Table 4.1.

38

Table 4.1: Component values

Signal R1 R2 R3 R4 R5 R6
Iin 18 kΩ 60kΩ 18kΩ 60kΩ 15kΩ 15kΩ
Iout 27kΩ 60kΩ 27kΩ 60kΩ 75kΩ 75kΩ
Vin 26.9kΩ 4.02KΩ 26.9kΩ 2kΩ NP NP
Vout 6.7kΩ 4.02KΩ 6.7kΩ 2kΩ NP NP
Imon 2kΩ 2kΩ 2kΩ 2kΩ 4.02kΩ 2kΩ

4.2.2 Derive transfer characteristics to �nd scaling parameters.

After obtaining a signal model which provides information about the measurement
circuit of the Low Voltage stress test environment, the circuits that are present in the
signal path are analysed to derive the transfer function between the source of the
signal conditioning circuits and the source of the analog-to-digital converter of the
MicroMoPS. Derivation of the transfer function is done using one of the standard circuit
analysis techniques (e.g. Superposition theorem). Measurements such as Vin, Vout,
Iin, Imon and Iout with differential amplifier circuits (see Section 3.2.3) are analysed
using Superposition theorem. Using the Superposition theorem, three equations of
input/output relations are obtained from which, the transfer function is derived. The
derived transfer function is further simplified. The steps that are involved in deriving
the transfer function are as follows:

1. V1 and V2 are shorted.

Vo1 = Vref .
R3||R4

R6 +R3||R4

.
(
1+

R2

R1 +R5

)
2. V1 and Vref are shorted.

Vo2 = V2 .
R4||R6

R3 +R4||R6

.
(
1+

R2

R1 +R5

)
3. V2 and Vref are shorted.

Vo3 = V1 .
(
�
R2

R1

)

Vout results in Vout = Vo1 + Vo2 + Vo3, which equals the expression of nodal analysis, i.e.

39

Vout =
R3R4R6

R3R4 +R3R6 +R4R6

(
R2

R1 +R5

+
Vref

R6

)(
1+

R2

R1

+
R2

R5

)
-
R2

R1

V1.

The resistor relations assumptions are applied:

R1 = R3

R2 = R4

R5 = R6

This further simplifies the Vout equation to

Vout =
R2

R1

(V1 - V2) +
R2

R5

Vref , where (V1 - V2) = Vin

Further, the information of MicroMoPS’ voltage range and resistor values as described in
Section 3.2.3 and Table 4.1, respectively, are specific to measurement channels. These
values are plugged into the derived transfer function to obtain the measurement range
of the voltage or current or temperature signal before conditioning. The algebraic
method of performing the above explained calculation is demonstrated by considering
a ’Vin’ measurement parameter’s signal path as an example.

For ’Vin’ measurement parameter the Vout equation simplifies to,

Vout =
R2

R1

.Vin, (4.1)

To find ’Vin’ measurement range, the maximum voltage condition of MicroMoPS is
considered and the values corresponding to Vin are put to Equation (4.1),

3V =
4.02k
26.9k

Vimax,

-> Vimax = 20.17500 V

Similarly, minimum voltage condition corresponding to Vin becomes,

0V =
4.02k
26.9k

Vimin,

40

Table 4.2: Measurements range

Signals min max
Iin -5A 10A
Iout -5A 70A
Vin 0V 20.175V
Vout 0V 5.020V
Imon 0V 0.305V

-> Vimin = 0 V

Likewise, the measurement range of the signal at source is found for all the measurement
parameters. They are listed in Table 4.2.

Also, the measurement range of other parameters are found by either simple nodal analysis
method or they are present in hardware schematics of application module.

Using the obtained measurement ranges, the measurement specific linear equation fit-
ting scaling parameters are found out. The algebraic method of finding out scaling
parameters is explained by reconsidering the same measurement parameter, i.e., Vin.

Linear scaling function is given by
y = k*x + d,
where, y = analog value,
k = scaling factor,
x = digital representation of analog measurement,
d = offset

For maximum voltage condition of Vin, the digital value is 4095 (12 bit resolution, see
Section 3.2.3), the analog value is the maximum Vin measurement from the Table 4.2

20.175 = k(4095) + d (4.2)

Similarly, for minimum voltage condition of Vin, the digital value is 0, the analog value is
the minimum Vin measurement from the Table 4.2

0 = k(0) + d (4.3)

41

Solving Equation (4.2) and Equation (4.3) using substitution method, the values of scal-
ing parameters that are associated to Vin measurement parameter are obtained as below.

k = 0.0049267399267399,
d = 0

From the obtained scaling parameters ’k’ and ’d’, it is evident that the found scaling
parameters could be used for processing the digitized stress measurements to original
signal value (signal before conditioning) but not to MicroMoPS specific voltage range.
Therefore, the linear equation is further improved by considering additional parameters
in the scaling function.

4.2.3 Find a linear scaling function from obtained scaling parameters.

The improvement of the linear scaling function as discussed in the previous section
is achieved by considering the changing factor inside the linear scaling function. The
mentioned changing factor influences in determining the appropriate scaling values
that precisely process analog measurements into MicroMoPS specific voltage values. It
is given by,

y =

[(
k �

Vmax � V
′
max

4096

)
∗ x+ d

]
V

If the measurement parameter is temperature or voltage signal then, the improved
linear scaling equation is as shown below,

y =

[(
k �

(I|T)max ∗ g � V′max

4096

)
∗ x+ d

]
V

where, ’I’ is the current measurement signal and ’T’ is the temperature measurement
signal. The changing factor represents the change in maximum value of the original
(V/T/I) signal and the maximum voltage of the attenuated signal (V’) as represented
in the Figure 4.3. The value ’4096’ in the equation represents the factor that contributes
in the occurring change. Finally, the transconductance parameter ’g’ does the necessary
conversion of temperature or current signals into respective voltage values (V’).

42

For the measurement parameter Tcase [17], since it is the resistive sensor that is
fed directly on to ADC of the MicroMoPS instead of a differential amplifier, the
scaling parameters for Tcase are found in a differently instead of deriving transfer
function. The DUT board is let to go into temperature ranging between �55 °C and
37 °C. Consequently, the corresponding voltage that is generated because of voltage
amplification for every different board temperature is measured. Using the generated
voltage information, scaling parameters (’k’, ’d’) and transconductance parameter
(’g’) are found. Scaling parameters of all the measurements and the measurements
respective units are listed in Table 4.3.

Table 4.3: Measurement parameters

Scaling parameters associated to Measurements
Signals k d Units
Iin 0.000732601 0.0 A
Iout 0.000732601 0.0 A
Vin 0.000363 0.0 V
Vout 0.000363 0.0 V
Imon 0.000732601 0.0 A
Vdrv 0.000732609 0.0 V
Idrv 0.000733 0.0 A
Imon 0.000732601 -1.5 V
Tcase 0.000734056 0.0 C
Vswh 0.000732601 0.0 V
Tmon 0.000732601 0.0 V
Aux1 0.000732601 -1.5 V
Aux2 0.000732601 0.0 V

Supposedly, if the stress test is of any application other than Low Voltage MTS,
then the respective test application specific processing parameters such as k, d, Vmax,
V′max and g are the only information that are needed to precisely process the analog
measurements.

4.2.4 Extended scaling mechanism.

Reverse Polish Notation (RPN) is a memory-efficient method that could be used
in performing the scaling function. The working principle of RPN is explained by

43

considering the scaling function of one of the channels (see Section 3.2.3) of MicroMoPS
as an example.

For example, the Scaling function of channel sync[0][0]B is (d/4096)*3 where d is a
digital value. RPN method of computing this scaling function is:

Step1: Convert the scaling function into a string i.e "d 4096 / 3 *". For the sake
of understanding, if d is given a digital value of 2048 then, the RPN notation
becomes "2048 4096 / 3 *".

Step2: Push 2048 onto Lua stack.

Step3: Push 4096 onto Lua stack.

Step4: Pop from lua stack twice, use the operator ’/’ to calculate 2048/4096 and
push the result i.e. 0.5 onto Lua stack.

Step5: Push 3 onto Lua stack.

Step6: Pop from Lua stack twice, use operator ’*’ to calculate 0.5*3 and push the
result i.e 1.5 onto Lua stack.

This way, the scaling is performed for every communication channel of Micro-
MoPS using RPN.

4.3 Identify the boards and prepare LUTs in web server

4.3.1 Board UID extraction.

The starting point of the Low-Voltage MTS setup is the operation of the test sequence
in MicroMoPS. The test sequence is executed by the central control entity i.e SAM as a
test plan. Before, the DUT is subjected to power cycling (see Section 3.1), the extraction
of UID of the boards is an important step. It is considered important because it helps in
meeting one of the objectives of this work, which is to automate the processing of analog
measurements in MicroMoPS. Identification of the UID of the application module and
DUT is done by pursuing I2C communication between the control module and a UID
provider chip (see Section 5.1) of application module and DUT, respectively. To achieve
I2C communication, the concerned functional pins of the control module are used
and standard steps of the communication procedure are followed (see Section 2.2.1).
Thereby, the UID of MicroMoPS itself is read from a register.

44

4.3.2 Prepare board ID database in MoPS web server.

The board UIDs which are obtained from the MicroMoPS are communicated through
Ethernet to its host application system called SAM. Proactively, every board combination
which corresponds to a particular type of stress test along with the board UIDs are
stored as a lookup database as shown in the Listing 4.1, in MoPS web server (see
Section 3.2.2).

Listing 4.1: MoPS Boards

{
"date" : "2019-09-29T18:15:11+02:00" ,
"applicationModule" : [

{
"name" : "Buck MoPS v3.1" ,
"uids" : [

"0000000000d8d3c7"

]
}

] ,
"dutBoard" : [

{
"name" : "LGA771" ,
"uids" : [

"0000000001052523"

]
}

]
}

4.3.3 Store the scaling values meaningfully in MoPS web server database.

Based on the communication channels’ configuration information provided in the EDS
and mathematically obtained scaling parameters for each of these communi cation
channels, a LUT is created as shown in the Listing 4.2, in the MoPS web server. The
created LUT contains the scaling related information.

Listing 4.2: MoPS Scaling example

45

{
"date" : "2019-09-28T10:18:02+02:00" ,
"scaling" : [

{
"hwTarget" : "uMoPS_v5" ,
"appModule" : "Buck MoPS v3.1" ,
"dutBoard" : "LGA771" ,
"channel" : "sync0:0B" ,
"rpn" : "" ,
"description" : "V_drv" ,
"unit" : "V" ,
"scale" : 0 .000732609 ,
"offset" : 0

}
]

}

4.3.4 Send UIDs before MicroMoPS enters into real-time mode.

The extracted board UIDs along with their directional pins are embedded as a single
string and communicated as a payload to SAM using Ethernet communication. The
board UIDs communication is ensured to take place before the firmware enters into
the main loop. The reason for the UIDs communication before main loop is to avoid
redundant communication of UIDs and also to keep short the time that elapses from
entering into main loop till the test pattern starts to execute in MicroMoPS. The time at
which the control module enters inside an infinite loop is considered as an entrance
towards the real-time mode of this stress test environment. In the real-time mode, the
role of the control module is to endlessly perform tasks that are associated with the
stress test system.

4.4 Resolve UIDs in SAM and send the scaling values to

MicroMoPS

4.4.1 Resolution of UIDs in SAM

Before the control module enters into a real-time mode the EDS is generated. SAM
reads the latest EDS from the MicroMoPS firmware project. The EDS that is read by

46

SAM is uploaded to the MoPS web server (see Section 3.2.2). SAM becomes functional
when test engineers at KAI start to perform the application specific stress test. As
soon as SAM starts running, it downloads LUTs associated to scaling and boards (see
Figure 1.1) that are created in MoPS web server. The LUTs associated to scaling and
boards are as shown in Listing 4.2 and Listing 4.1 respectively. The LUTs associated
to scaling and boards together help the SAM to automate the scaling mechanism
regardless of the type of stress tests that are performed. Test plans are created by test
engineers and are loaded to SAM.

The flow at which the resolution of board UIDs and the communication of associated
channel and scaling related parameters to MicroMoPS is depicted in Figure 4.4. The
Board UIDs that SAM receives from MicroMoPS are verified with the board UID LUT
which is downloaded by SAM. Subsequently, board UIDs are searched in the board
UID LUT to filter the respective board names. The board names that are fetched after

Copyright © Infineon Technologies AG 2019. All rights reserved.

11

Data acquisition system

DP:UIDs UIDs:board names

2019-12-09 restricted

Test environment boards Software Architecture

for MoPS

MoPS web server

UIDs obtained

(I2C)

UIDs

commun

ication

Resolution

boards.json
board names

Verify

testplan.json

Filter

board names

board names

scaling.json

board names:scaling Data

processing

scaling

Automation

11

Figure 4.4: Resolution of board UIDs and scaling values communication

the resolution of the board UIDs, are further authenticated with the board names that
are present in the test plan. The board names that are present in the test plan are
the hardware information provided by test engineers. Verification of boards are done
in order to maintain consistency between the actual board connections and the test

47

engineers selection of boards in the test plan. After the successful verification of board
names in SAM, the verified board names are searched in the scaling connected LUT to
fetch the appropriate MicroMoPS channels and their scaling values.

4.4.2 Send the scaling values to MicroMoPS.

The fetched communication channels and their corresponding scaling values are sent
in queue as a string back to data processing system of MicroMoPS, using Ethernet com-
munication. The communication channels and their scaling values that are received at
scaling related receiver handler of MicroMoPS are dynamically parsed to appropriately
adjust the scaling values to the channels specific scaling variables (see Listing 5.1).

4.4.3 Execute Low Voltage Test System

After successful adjustment of the scaling parameters in the MicroMoPS, the test
sequence which is forwarded by SAM is executed on MicroMoPS. Finally, after all
the above phases, the linear scaling mechanism and the Reverse Polish Notation get
successfully integrated into the data processing system of MicroMoPS. The entire
procedure of resolving the board UIDs supports to the automation of processing of
analog measurements in MicroMoPS. Measurements that are processed using linear
scaling and Reverse Polish Notation are acquired at SAM and manipulated to retain
the original values of analog measurements for any interpretation.

48

5 Implementation and Realization

The discussed approach is brought into existence in this sophisticated test environ-
ment by accessing MicroMoPS and its peripherals, by extending the pre-developed
MicroMoPS firmware and by effectively utilizing the Actor framework of SAM. The
implementation of the proposed approach is done for a Low Voltage stress test system.
The boards that are associated with the Low voltage stress test system (Figure 1.1) are
termed in the MoPS environment as follows:

• Application module - BuckMoPS

• DUT module - LGA771

5.1 Extraction of UID of DUT and application board

Board IDs are selected by using relevant GPIO pins of MicroMoPS, which are meant for
I2C (see Section 2.2.1) communication. In this work, MicroMoPS is treated as a Master
block, DS28CM00 [10] UID chip of application module and DUT as slave modules.
The operation of reading the board UID is succeeded by initializing and utilizing
accordingly the appropriate digital IO pin of MicroMoPS. The digital pin corresponding
to the Master Module is set to appropriate mode at the very beginning of the operation.
Setting digital pin into an appropriate mode drives the Serial interface clock input
(SCL) (see Section 2.2.1). Two PCA9515A [22] ICs are embedded in the BuckMoPS to
facilitate the MicroMoPS in reading UID of application board and DUT module. With
the support of PCA9515A ICs and UID chip, the corresponding DUT and application
module are interacted from MicroMoPS using I2C communication.

Obtainment of the board IDs is primarily controlled as per the programmer’s re-
quirement by utilizing the select line of the UIN chip of BuckMoPS. PCA9515A ICs

49

are part of UIN chip present in BuckMoPS, which facilitates accessing the DS28CM00
module. When the select line is set as logic 0, PCA9515A of application module is
enabled, which further establishes communication between MicroMoPS and UID chip
of application module. Application module’s UID can be requested using this com-
munication. Similarly, when the select line is chosen as logic 1, PCA9515A of DUT
is enabled, which further establishes communication between MicroMoPS and UID
chip of DUT. DUT’s UID can be requested using this communication. There are two
communication lines which need to be synchronously used by the master to write to
UID chip or read from UID chip. They are, SDA and SCL lines (see Section 2.2.1). SDA
line is used for sending the data from master to slave or receiving the data from slave
to master and SCL is used for providing synchronization in communication between
master and slave. Because the concern is to read the board id of DUT and application
module from MicroMoPS, systematic sequential communication procedure is followed
(see Section 2.2.1). The received data is CRC verified using standard 8-bit polynomial
i.e X8 + X5 + X4 + 1 [10], to authenticate the corruption of received data.

The above operation is implemented inside the test_identify_boards() handler (see
Section 3.2.2) of MicroMoPS firmware to successfully extract the board UID of Buck-
MoPS and LGA771.

The board UIDs extracted from slave devices are listed in the Table 5.1:

Table 5.1: Boards and their respective UID

Board type Board name Unique Identity
Number

Select line

Application
module

BuckMoPS 0x0d8d3c7 0

Device under
test

LGA771 0x1052523 1

5.2 Update the microcontroller's con�guration �le for linear

scaling computation

The configuration file of a MicroMoPS contains the initializations of MicroMoPS as-
sociated peripheral modules. These modules are configurable based on the firmware

50

developer’s needs. In the MicroMoPS firmware project, there is a dedicated configura-
tion file to manage the configurations of a MicroMoPS called "config.c".

To incorporate the linear scaling mechanism to MicroMoPS, the scaling module
i.e MoPS scaling, is extended by adding two parameters as shown in the Listing 5.1.
The added parameters are scaling factor and offset in adjacent to the respective analog
channel (.name) parameter. The scaling values that are assigned are the default scaling
values. These values are meaningful to measurement circuits of the Low-Voltage stress
test system. These scaling values are updated automatically with different values when
the stress test system that is performed is different from the Low-Voltage test system.

The EDS is generated every time when the MicroMoPS firmware starts. The EDS
contains the communication channels and channels’ specific scaling parameters. The
DUT creation in the mops web server based on the EDS information and downloading
of the LUTs when SAM starts running was carried out by summer students of KAI.

Listing 5.1: MoPS scaling

MoPS_scale MoPS_scaling [] = {
// 0 . . 1 . 5
{ . name = "sync1:2A" , . s c a l e = 0.0003662109375 f , . o f f s e t = 0 . f , } ,
// 0 . . 3
{ . name = "sync0:0B" , . s c a l e = 0.000732421875 f , . o f f s e t = 0 . f , } ,
// 0 . . 61
{ . name = "sync0:2A" , . s c a l e = 0.014892578125 f , . o f f s e t = 0 . f , } ,
// −1.5 . . 1 . 5
{ . name = "sync1:0A" , . s c a l e = 0.000732421875 f , . o f f s e t = −1.5 f , } ,
// −61 . . 61
{ . name = "sync0:0A" , . s c a l e = 0.02978515625 f , . o f f s e t = −61.0 f , } ,
END_OF_LIST ,

} ;

5.3 Board UIDs communication to SAM

The byte-wise data of UID, which are received from the UID chip is collected and
combined inside test_identify_boards() (see Section 3.2.2) handler to reproduce UID
(64-bit length) of the board. In this work, UID of BuckMoPS and LGA771 are restored.
The restored UIDs are further communicated to SAM using the dedicated MicroMoPS’
test handlers [1].

51

5.4 Resolution of UIDs in SAM and scaling values

communication from SAM to MicroMoPS

The resolution of Board IDs in SAM is implemented by utilizing the LabVIEW software
packages. The basic step before the implementation of the algorithm which mainly
resolves the board ids is the serialization of the application module’s objects and
dutBoard’s objects into LabVIEW data structures as shown in the Figure 5.1. The
application module’s objects and the dutBoard’s objects are present in the "boards.json".
The board UIDs are cached offline using I2C communication and communicated to
SAM. The derived scaling values and board UIDs are stored in a database of MoPS
web server. As described in the Section 4.4.1, the board database, and scaling database
are downloaded by SAM from the MoPS web server. Intuitively, "boards.json" and
"scaling.json" are downloaded by the main actor of SAM to facilitate the board UIDs
resolution. The resolution of board UIDs is done in the Node actor (see Section 3.2.2)
of SAM. To achieve board UIDs resolution, variables such as "name" and "uids" are
declared as string and array of string data members of class "Board IDs", respectively as
shown in the Figure 5.1. Similarly, variables such as applicationBoards and dutBoards
are declared as data members of "Board ID export" class. The data members of "Board
ID export" i.e applicationBoards and dutBoards, are an instance of the class "Board
IDs".

The classes that are created by the name "Board IDs" and "Board ID export" are
the LabVIEW classes. The serialization methods that are present in the classes do
the conversion of JSON objects present in "boards.json" into strings. These strings
are nothing but the key-value pair of applicationModule and dutBoard as shown in
the Listing 4.1. Thus, by means of serialization, the board name and uid values of
applicationModule JSON object and dutBoard JSON object are assigned to applica-
tionBoards and dutBoards data members of "Board ID export", respectively. In the
same way, the board UIDs along with their directional pin that are received by SAM
from MicroMoPS, are assigned to data members of "Board Info item". Based on the
directional pin value, the received board UIDs are classified into appropriate board
type and accordingly, the board UIDs are assigned to UID data member of "Board Info
item". After a successful serialization, the UIDs of data members (applicationBoards
and dutBoards) of "Board Info item" are compared with the UID of data members
(applicationModules and dutModules) of "Board ID export".

52

Board IDs

+ uids: String[]
+ name: String

 +From serial form
 +To serial form

Board ID Export

+time date
+applicationBoards

 +From serial form
 +To serial form

+dutBoards

Board Info Item

+UID String
+name String

 +From serial form
 +To serial form

Board Info

+applicationModules

 +From serial form
 +To serial form

+dutModules

+type enum

dutBoards: BoardIDs

+uids: String[]
+name: String

 +From serial form
 +To serial form

applicationBoards: BoardIDs

+uids: String[]
+name: String

 +From serial form
 +To serial form

dutModules: Board Info Item

+UID: String

+type: String

 +From serial form
 +To serial form

applicationModules: Board Info Item

+UID: String

+type: String

 +From serial form
 +To serial form

+String: UID+String: UID

Figure 5.1: Serialization of JSON objects into LabVIEW data structures

This, comparison if found matched, the respective board names such as BuckMoPS
and LGA771 are updated to application module and dutModule objects which are

53

Node Actor.lvlib:Node.lvclass:Check Boards.vi
C:_work\mops_sam\src\Actors\Node Actor\Node\Check Boards.vi
Last modified on 16.10.2019 at 17:09
Printed on 13.12.2019 at 14:49

Page 1

error in (no error) error out

Board Info

MoPS Test.lvclass
Ovenplan

Node.lvclass
Title

Ovenplan Entry.lvclass

DUT Board
LoadBoard

 False

 True

Board Info.lvclass

dut Board
application Module

 No Error

Node in

Node out

MoPS Test.lvclass

5000

HW target not found in ovenplan.

 False

 True

 Error

Figure 5.2: Verification of boards with oven plan entry.

instances of "Board Info". Earlier to this update, only a UID information and the type
was known to application module and dutModule objects, through the MicroMoPS
communication. Successful comparison leads to the resolution of board UIDs. The
updated board names along with their respective types in "Board Info" are logged on
to the log GUI display of SAM. Logging of board names with their type helps the test
engineers or SAM developers to know the status of detection of boards by SAM.
Node Actor.lvlib:Node.lvclass:Scaling values to uc.vi
C:_work\mops_sam\src\Actors\Node Actor\Node\Scaling values to uc.vi
Last modified on 16.10.2019 at 17:39
Printed on 10.12.2019 at 19:48

Page 1

error out

Node out

error in (no error)

Node in

scaling.json
1 2 3 4

 No Error

 Error

Figure 5.3: Communication of channel name and associated scaling values to
MicroMoPS.

54

Further, the board names that are present in the application module and dutModule
objects are verified with the Hardware information present in the oven plan as shown
in the Figure 5.2. The Serialization procedure as described earlier is undergone by test
plan (JSON) to un-flatten the oven plan JSON objects into LabVIEW data structures.
The Hardware information which is present in the oven plan entry class (due to
serialization) is verified with the board names that are present in the application
modules and dutModules. If the verification is unsuccessful, the conflicting board
information is reported to the MoPS web server.

Scale Channel

+ rpn: String

+ hwTarget: String

 +From serial form
 +To serial form

Scale HW Targets

+scaling
+date

 +From serial form
 +To serial form

+ channel_name: String

+ app-module: String
+ dutBoard: String

+ scale: float
+ offset: float
+ unit: char
+ description: String

scaling: Scale Channel

+ rpn: String

+ hwTarget: String

 +From serial form
 +To serial form

+ channel_name: String

+ app-module: String
+ dutBoard: String

+ scale: float
+ offset: float
+ unit: char
+ description: String

Figure 5.4: Serialization of "scaling.json" objects into LabVIEW data structures

After successful verification, the board names correspondent combination is searched
from the "Scale HW Targets" LabVIEW object. "Scaling" object is a result of serialization
of "scaling.json" (Figure 5.3) into LabVIEW objects. Serialization of "scaling.json"
(Figure 5.3) into LabVIEW objects enables the conversion of JSON objects (Listing 4.2)
present in the "scaling.json" into strings. After Serialization, filtering of channel names,
scaling values and offset parameters, and communication of the same are done at a

55

particular sequence as shown in the Figure 5.3. Below are the operations that are done
at the mentioned sequence:

1. Read the configuration path.

2. The text present in the text file is read.

3. De-serialization of JSON objects into LabVIEW objects is performed.

4. The data members of the "Scaling" object i.e Hardware Target, application module
and DUT board combination are compared with the applicationModule and
dutModule objects. In the case of successful match, the board combination
specific scaling value, offset and channel name are filtered from the "Scaling"
object. The filtered parameters are further communicated to the board ID receiver
handler [1] of MicroMoPS.

Scale HW Targets.lvclass:Filter.vi
C:_work\mops_sam\src\Actors\Node Actor\Auxiliary\Scale HW Targets\Filter.vi
Last modified on 16.10.2019 at 14:33
Printed on 13.12.2019 at 15:40

Page 1

error in (no error) error outScale Channel.lvclass

dutBoard
app-module

hwTarget

scaling scaling

 No Error

Scale HW Targets in Scale HW Targets out

hwTarget

appModule

dutBoard

 Error

Figure 5.5: Filtering of scaling values

The filtering of the scaling values are implemented as shown in the Figure 5.5. The
"Scaling" object is an instance of "Scale Channel" class which contains the hwTarget, app-
module, dutBoard, channel_name, rpn, scale, offset, unit and description data members.
Data members such as scale, offset and channel_name are filtered by performing
a comparison between the board names that are obtained after resolution and the
hwTarget, app-module and dutBoard data members, respectively. The control module’s
board name is obtained from the hardware information present in EDS.

Finally, the filtered parameters are communicated to the board ID receiver han-
dler of MicroMoPS. The filtered parameters are specific to every individual channel.
The parameters are channel-wise communicated in a queue to MicroMoPS. The VI
implementation of communication of scaling values is as shown in the Figure 5.6.

56

Node Actor.lvlib:Node.lvclass:Communicate scale to uc.vi
C:_work\mops_sam\src\Actors\Node Actor\Node\Communicate scale to uc.vi
Last modified on 16.10.2019 at 17:34
Printed on 13.12.2019 at 15:40

Page 1

Node out

error outerror in (no error)

scaling

Node in

%s=%f:%f

 No Error

 Error

Figure 5.6: Communication of scaling values

5.5 Parse the scaling parameters dynamically in MicroMoPS

Sequentially, the board combination specific communication channels and their respec-
tive scaling parameters are received as a payload (string data) from SAM to board ID
receiver handler (MoPS_cmd_handler_BOARDID()) of MicroMoPS (see Figure 5.7). The
string data that is obtained at board ID receiver handler of MicroMoPS is delimited
by ’:’ between channel name and scaling parameters. It as shown in the example:
"sync0:0B:0.0007326007326:0". Where, sync0:0B is a channel name and module (see
Section 3.2.3), 0.0007326007326 is a value of the scaling factor denoted by ’k’ and 0 is
a value of offset denoted by ’d’. This string is dynamically parsed and assigned to
channel-specific scale (.scale) and offset (.offset) variables (see Figure 5.7) present in the
"MoPSscaling" module. Other parameters such as .func and .name are presesnt in order
to define the RPN function and the communication channel module, respectively. These
parameters are globally used in MoPS firmware, which are defined in the configuration
file of MoPS firmware. At present, the RPN string corresponding to the communication
channels is not communicated from SAM.

5.6 Compute scaling mechanisms in MicroMoPS

In this work, linear scaling formula (see Section 4.2.3) and Reverse Polish notation
(see Section 4.2.4) are implemented within the Lua handler of analog input module of
MicroMoPS. The linear scaling formula uses the updated scaling parameters to process

57

MoPS_lua.c

• lua_pushnumber()

• lua_checknumber()

MoPS_test.c

•MoPS_cmd_handler_BOARDID()

rpn.c

•rpn_get_type()

•rpn_eval()

•rpn_calc()

MoPS_ai.c

•ai_read_scaled()

SAM

payload

MicroMoPS

MoPS_Scaling[] =

.name, .func,

.scale, .offset

Figure 5.7: Implementation of data processing module

the analog measurements. RPN computation is achieved by making use of three
fundamental handlers, such as ‘rpn_get_type()’, ‘rpn_eval()’ and ‘rpn_calc()’. These
handlers are defined in the ‘rpn.c’ file (see Figure 5.7). The ‘rpn_get_type()’ handler is
meant for decoding the respective operations or tokens based on the string data that is
received from the SAM. The allowed operations in the RPN module are float variables,
addition, subtraction, multiplication, division, square root, minimum function, and
maximum function. From the decoded type the respective operation is performed
through the ‘rpn_eval()’ handler. The ‘rpn_calc()’ handler makes use of ‘rpn_get_type()’
and ‘rpn_eval()’ handlers to perform the RPN computation. Along with the mentioned
handlers the ‘rpn_calc()’ handler makes use of some of the functions that are part of
Lua interpreter to memory efficiently (see Section 4.2.4) perform the RPN computation.
Finally, the MoPS_scaling module (ai_read_scaled()) makes use of either ‘rpn_calc()’ or
linear scaling formula to process the data using dynamically parsed scaling parameters
(see Section 5.5). The operation of the RPN scaling mechanism is tested by hard coding
the RPN string (see Section 4.2.4) to channel-specific .func variable (updated in the
config file). Hard coding of RPN string is achieved by communicating the RPN string
from TinyHost to MicroMoPS.

58

6 Evaluation and Analysis

The enhancement in the existing software architecture to improve the processing
speed of DUT electrical measurements are evaluated and analysed in this chapter.
The processing capabilities of Reverse Polish Notation and linear scaling function are
evaluated by measuring their time and memory consumption in performing the scaling
computation. In order to compute Reverse Polish Notation or linear scaling function,
a piece of code is written in the digital processing module of MicroMoPS. Scaling
operation is performed as many times as the number of communication channels that
are present in the MicroMoPS (see Section 5.5). The scaling operation comes as a
part of the execution of test plans, and the Lua modules or classes that are specific
to scaling are used in the test plan script to invoke the corresponding Lua C-API of
MoPS-CORE microcontroller firmware. The Lua class that is meant for invoking the
scaling function corresponding C-API i.e., ‘ai_read_scaled()’ (see Section 5.6) is ‘ai’ [1].
The real-time performance of the scaling operations is tested by invoking the scaling
function multiple times from the TinyHost (see Section 3.2.2), while the test plan is
not running. Before invoking scaling functions setting some of the configurations (see
Figure 3.9) that are specific to the communication channel is necessary. These test
runs of a scaling operation are done at a very indeterministic interval to determine
the stable values of the time that is consumed by the scaling operation. The time
measurements that are recorded during the test runs are approximated to the closest
simpler representation. The real-time performance of Reverse Polish Notation and
linear scaling function is discussed in the following sections.

Real-Time performance of RPN function

As described in the Section 5.6, the ‘ai_read_scaled()’ handler makes use of ‘rpn_calc()‘
handler to perform RPN computation. The Memory consumption of the RPN is

59

calculated by investigating the code that is associated in performing the RPN. The
code snippet which performs the data processing (RPN) computation is built by using
several local variables that are specific to ‘rpn_calc()‘ (see Figure 5.7) handler. The
memory consumption of each of the local variables that are part of ‘rpn_calc()’ is as
follows:

1. rpn_string = 32 bytes (max)

2. *temp(char) = 1 byte

3. *delim(char) = 1 byte

4. is valid(bool) = 1 byte

5. *save(char) = 1 byte

6. *snippet(char) = 1 byte

7. lua_number – res, a, b (float) = 4bytes*3 = 12 bytes

The sum of the memory consumption of the local variables that are part of ‘rpn_calc()’
is 49 bytes.

Consumption of time in performing RPN function is calculated by making use of
the ‘time_it()’ handler from the ‘MoPS_time.c’ module. The calculation of the consump-
tion of time is done for around 50 test runs. After around 50 test runs, the range of
consumption of time to perform RPN is calculated. The time consumed by the RPN
function approximately ranges from 45 µs to 66 µs.

Real-Time performance of Linear scaling mechanism

Similarly, the real-time performance of "Linear scaling mechanism" is measured by
calculating the time and memory consumption of the code that performs the compu-
tation. The Memory consumption of the linear scaling mechanism is calculated by
investigating the code that is associated in performing the linear scaling function. Mere
linear scaling equation is implemented within a ‘ai_read_scaled()’ handler to perform
the processing (linear scaling function) of data. The Memory consumption of each of
the local variables that are part of linear scaling mechanism is as follows:

60

1. scale (float) = 4 bytes

2. digital_result (float) = 4 bytes

3. offset (float) = 4 bytes

The sum of the memory consumption of the local variables that are part of linear scaling
function is 12 bytes.

The method of calculation of time consumption remains the same as how it is done
for RPN function. Also, for the calculation of consumption of time to compute linear
scaling function, around 50 samples of measurements are taken. The time consumed
by linear scaling mechanism approximately ranges from 29 ns to 134 ns.

Figure 6.1: Distribution of execution time of the scaling functions

61

The distribution of the execution time of the linear scaling and Reverse Polish
Notation function is as shown in the Figure 6.1. The test runs of scaling computation
are performed in this sophisticated stress test environment to record the time that is
consumed by the scaling operation. At rare times the execution time of the scaling
computation lies closer towards the Best-Case Execution Time (BCET) of the given
scaling computation because of the less interrupt load during the scaling operation.
However, most of the other times the execution time of the scaling computation varies
around the Worst Case Execution Time (WCET) of the given scaling computation
because of the substantial interrupt load during the scaling operation. In the case of a
linear scaling mechanism, out of 50 disordered test runs, 8 to 10 test runs that records
the execution time lies between 29 and 70 nanoseconds, and the rest of the test runs
that records the execution time lies between 95 and 134 nanoseconds. Similarly, in
the case of Reverse Polish Notation, out of 50 disordered test runs, 2 to 4 test runs
that records the execution time lies between 45 and 57.5 microseconds, and the rest of
the test runs that records the execution time lies between 57.5 and 65 microseconds.
From the obtained execution time distribution, it can be inferred that there exists the
stable region around the WCET, which means almost all the times regardless of the
increase or decrease of test runs from 50, the execution time of scaling operation only
keeps moving within the stable region and at rare times towards the BCET. The stable
region for Reverse Polish Notation and linear scaling function lies between 95 and 134
nanoseconds, and 57.5 and 65 microseconds, respectively.

The real-time performance comparison of Reverse Polish Notation and linear scaling
mechanism is as shown in the Table 6.1.

Table 6.1: Real-time performance comparision

Scaling mechanism Time Memory Test runs
consumption consumption

RPN 45 µs - 66 µs 49 bytes ≈50
Linear scaling 29 ns - 134 ns 12 bytes ≈50

From Table 6.1, it can be concluded that the linear scaling mechanism consumes
less time and memory in comparison with the Reverse Polish Notation function. This,
further implies that the linear scaling mechanism is more real-time efficient scaling
mechanism compared to Reverse Polish Notation.

On the other hand, the entire procedure of resolution of board UIDs from multiple
different sources such as the test plan, board and scaling database in web server, board

62

UIDs communication from MicroMoPS, and subsequent communication of scaling
parameters to the data processing system of MicroMoPS supports to an automation of
processing of analog measurements in the stress test environment regardless of any
plausible combination of hardware target, application module and DUT. Every plausible
combination of boards correspond to an individual type of stress test application. The
main benefit of the automation of the processing of data is the avoidance in the
maintenance of the scaling database of every application-specific stress test system in
the control module. This results in a conservation of quite an amount of memory of the
MicroMoPS. Also, by automating the processing of data, the method of manual feed of
scaling values is avoided, which helps in minimizing human error.

6.1 Answers to the Research questions

The above analysis and evaluation of the results bring a conclusion to the raised research
questions (see Section 1.2).

• By analysis of the various existing application boards, a linear model solution
could be found. The performance of the linear model over the Reverse Polish
Notation model is greatly enhanced.

• The derivation of a linear scaling mechanism and their precise conversion of
analog measurements into control module-specific voltages, proves the possibility
of a linear scaling mechanism in this stress test environment.

• The resolution of board UIDs and the filtering of scaling values establishes
the automation of data processing. This exhibits the possibility of automated
processing of analog measurements in this stress test environment.

63

7 Summary and Outlook

7.1 Summary

In this sophisticated stress test environment to improve the data processing mechanism,
the electrical circuits that are associated with measuring the physical quantities that
generate in a semiconductor, are analyzed. A classical linear scaling mechanism
is introduced to the data processing system of a control module by analyzing the
measurement circuits. Also, the Reverse Polish Notation scaling computation function
is incorporated into the data processing system of the control module which opens up
the possibility of performing a complex level of scaling functions.

The boards that are present in the stress test environment are identified by the extrac-
tion of the respective board ids. The extraction of board ids and their correspondence
in the resolution of board information coming from different sources such as test plan
and MoPS web server, led to the automation of processing of analog measurements
that generate in the semiconductor, irrespective of the stress test application.

The automation in the processing of analog measurements has simplified the writing
procedure of test plans and manual scaling is no more involved within the test plans.
Human error is minimized because of the automated method of scaling. The improved
data processing mechanism is implemented and tested in the KAI lab.

7.2 Outlook

Real-time efficient scaling mechanism and automation of processing of analog mea-
surements provide gateway for conducting advanced application stress testing in the
stress test environment. The newly introduced scaling mechanism known as Reverse

64

Polish Notation can be used for further improvement of a scaling function. The gain
function introduced by a differential operational amplifier itself could be a non-linear
function. The differential input/output impedance of an operational amplifier can
be of a significant effect in calculation of discrete voltage values specfic to control
module. The internal circuits of the differential operational amplifier can be analysed
and the contribution from its gain function in performing the scaling can be described
using Reverse Polish Notation. The implementation of the Lua interpreter influences
in the real-time performance of the Reverse Polish Notation because the RPN uses
Lua stack to perform the scaling operation. Lua interpreter even though it utilizes a
minimum of RAM because of its implementation in Lua, there is a scope to optimize
the implementation of the Lua interpreter. Optimization of the implementation of the
Lua interpreter results in the improved execution time performance of the Reverse
Polish Notation. Similarly, the execution time performance of Reverse Polish Notation
could significantly be improved by replacing the division operation that takes place
during the scaling computation by right shifting 12 times the digital output along with
some operation to handle the decimal result.

65

Bibliography

[1] B. Steinwender, “A Distributed Controller Network for Modular Power Stress
Tests,” Ph.D. dissertation, Alpen-Adria-Universität Klagenfurt, Jun. 2016 (cit. on
pp. III, 3, 14, 17, 24, 28, 51, 56, 59).

[2] R. Sleik, M. Glavanovics, S. Einspieler, A. Muetze, and K. Krischan, “Modular Test
System Architecture for Device, Circuit and System Level Reliability Testing,”
in Proceedings of the 31st annual IEEE Applied Power Electronics Conference and
Exposition (APEC 2016), Long Beach Convention Center, California, USA: IEEE,
Apr. 2016, pp. 759–765. doi: 10.1109/APEC.2016.7467957 (cit. on pp. 1, 3, 16, 36).

[3] K. Plankensteiner, “Test Plan Generation and Verification for a Modular Power
Stress Test System,” M.S. thesis, Graz University of Technology, 2015 (cit. on
pp. 2, 14, 27).

[4] B. W. Kernighan and D. M. Ritchie, The C programming language, 2nd ed. London,
Englewood Cliffs, NJ: Prentice Hall, 1988 (cit. on p. 6).

[5] E. Gamma, R. Helm, R. Johnson, and J. Vlissides, Design Patterns: Elements of
Reusable Object-Oriented Software, 1st ed. Addison-Wesley Professional, 1994, p. 416,
isbn: 978-0201633610 (cit. on p. 7).

[6] Actor Framework, National Instruments, Nov. 2012. [Online]. Available: http:
//ni.com/actorframework (visited on 11/21/2012) (cit. on pp. 7, 24).

[7] S. R. Mercer and A. C. Smith, Using the Actor Framework in LabVIEW, 2011. [On-
line]. Available: https://readthedocs.web.cern.ch/download/attachments/
5571215/Using%20the%20Actor%20Framework%203.0%20in%20LabVIEW.pdf?

version=1&modificationDate=1390810919000&api=v2 (visited on 11/08/2019)
(cit. on p. 7).

[8] C. Hewitt, Actor Model of Computation: Scalable Robust Information Systems, arXiv:1008.1459v38
[cs.PL], Jan. 21, 2015. [Online]. Available: https://arxiv.org/abs/1008.1459v38
(visited on 09/06/2018) (cit. on p. 7).

66

https://doi.org/10.1109/APEC.2016.7467957
http://ni.com/actorframework
http://ni.com/actorframework
https://readthedocs.web.cern.ch/download/attachments/5571215/Using%20the%20Actor%20Framework%203.0%20in%20LabVIEW.pdf?version=1&modificationDate=1390810919000&api=v2
https://readthedocs.web.cern.ch/download/attachments/5571215/Using%20the%20Actor%20Framework%203.0%20in%20LabVIEW.pdf?version=1&modificationDate=1390810919000&api=v2
https://readthedocs.web.cern.ch/download/attachments/5571215/Using%20the%20Actor%20Framework%203.0%20in%20LabVIEW.pdf?version=1&modificationDate=1390810919000&api=v2
https://arxiv.org/abs/1008.1459v38

[9] I2C-bus specification and user manual, 6th ed., NXP Semiconductors, 2014 (cit. on
p. 8).

[10] DS28CM00 - I²C/SMBus Silicon Serial Number, Rev. 072406, Maxim Integrated,
2006 (cit. on pp. 9, 49, 50).

[11] A. S. Tanenbaum and D. J. Wetherall, Computer Networks, 5 ed., H. Michael, Ed.
Prentice Hall, 2010, isbn: 0-13-212695-8 (cit. on p. 9).

[12] J. D. Day and H. Zimmermann, “The OSI reference model,” Proceedings of the
IEEE, vol. 71, no. 12, pp. 1334–1340, Dec. 1983, issn: 0018-9219. doi: 10.1109/
PROC.1983.12775 (cit. on p. 9).

[13] D. A. Rauth and V. T. Randal, “Analog-to-digital conversion. part 5,” IEEE
Instrumentation & Measurement Magazine, vol. 8, no. 4, pp. 44–54, Oct. 2005. doi:
10.1109/mim.2005.1518622 (cit. on p. 10).

[14] F. Miller, A. Vandome, and J. McBrewster, Nyquist-Shannon Sampling Theorem:
Aliasing, Sine Wave, Signal Processing, Nyquist Rate, Nyquist Frequency, Sampling Rate,
Shannon-Hartley Theorem, Whittaker-Shannon Interpolation Formula, Reconstruction
from Zero Crossings. Alphascript Publishing, 2010, isbn: 9786130045814 (cit. on
p. 11).

[15] J. Loeliger and M. McCullough, Version Control with Git: Powerful tools and tech-
niques for collaborative software development. O’Reilly Media, Inc., 2012 (cit. on
p. 13).

[16] The JSON Data Interchange Format, ECMA International, 2013. [Online]. Available:
http://www.ecma-international.org/publications/files/ECMA-ST/ECMA-

404.pdf (visited on 11/02/2017) (cit. on p. 13).

[17] R. Sleik, “System Level Reliability Testing Under Application Stress Conditions,”
Ph.D. dissertation, Graz University of Technology, Jun. 2018 (cit. on pp. 16, 20, 32,
43).

[18] B. Steinwender, S. Einspieler, M. Glavanovics, and W. Elmenreich, “Distributed
power semiconductor stress test & measurement architecture,” English, in Pro-
ceedings of the 11th IEEE International Conference on Industrial Informatics, Bochum,
Germany, Jul. 2013, pp. 129–134. doi: 10.1109/INDIN.2013.6622870 (cit. on
p. 17).

[19] XMC4700/XMC4800 Reference Manual, Infineon Technologies, 2016 (cit. on p. 18).

67

https://doi.org/10.1109/PROC.1983.12775
https://doi.org/10.1109/PROC.1983.12775
https://doi.org/10.1109/mim.2005.1518622
http://www.ecma-international.org/publications/files/ECMA-ST/ECMA-404.pdf
http://www.ecma-international.org/publications/files/ECMA-ST/ECMA-404.pdf
https://doi.org/10.1109/INDIN.2013.6622870

[20] R. Ierusalimschy, L. H. de Figueiredo, and W. C. Filho, “Lua—an extensible
extension language,” Software: Practice and Experience, vol. 26, no. 6, pp. 635–652,
1996, issn: 1097-024X. doi: 10.1002/(SICI)1097-024X(199606)26:6<635::AID-
SPE26>3.0.CO;2-P (cit. on p. 23).

[21] B. Steinwender, M. Glavanovics, and W. Elmenreich, “Executable Test Definition
for a State Machine Driven Embedded Test Controller Module,” in Proceedings of
the 13th IEEE International Conference on Industrial Informatics, 2015. doi: 10.1109/
INDIN.2015.7281729 (cit. on p. 23).

[22] PCA951A - Dual Bidirectional I2C Bus and SMBus Repeater, Texas Instruments, 2014
(cit. on p. 49).

68

https://doi.org/10.1002/(SICI)1097-024X(199606)26:6<635::AID-SPE26>3.0.CO;2-P
https://doi.org/10.1002/(SICI)1097-024X(199606)26:6<635::AID-SPE26>3.0.CO;2-P
https://doi.org/10.1109/INDIN.2015.7281729
https://doi.org/10.1109/INDIN.2015.7281729

Acronyms

µC Micro Controller.

API Application Programming Interface.

ARCTIS Advanced Repetitive Clamping Test Integrated System.

BCET Best-Case Execution Time.

DAQ Data AcQuisition.

DAVE Digital Application Virtual Engineer.

DSD Delta-Sigma Demodulator.

DUT Device Under Test.

EDS Electronic Data Sheet.

FSM Finite-State Machine.

GPIO General Purpose Input Output.

GUI Graphical User Interface.

I2C Inter-Integrated Circuit.

Idrv Driver current.

69

Iin Converter input current.

Imon IC current monitor.

Iout Converter output current.

LabVIEW Laboratory Virtual Instrument Engineering Workbench.

LED Light Emitting Diode.

LSB Least Significant Bit.

LUT LookUp-Table.

MoPS Modular Power Stress.

MOSFET Metal-Oxide Semiconductor Field Effect Transistor.

MSB Most Significant Bit.

MTS Modular Test System.

PoL Point-of-Load.

PWM Pulse Width Modulation.

RPN Reverse Polish Notation.

SAM Software Architecture for MoPS.

SCL Serial Clock Line.

SDA Serial Data Line.

SoC System on Chip.

SPI Serial Peripheral Interface.

70

Tcase DUT case temperature.

Tmon IC temperature monitor.

UDP User Datagram Protocol.

UID Unique Identification.

USB Universal Serial Bus.

Vdrv Driver voltage.

VI Virtual Instrument.

Vin Converter input voltage.

Vout Converter output voltage.

WCET Worst Case Execution Time.

71

	List of Figures
	List of Tables
	1 Introduction
	1.1 Problem Statement and Motivation
	1.2 Research Questions
	1.3 Thesis Structure

	2 Fundamentals
	2.1 Programming languages
	2.1.1 Embedded C
	2.1.2 Lua
	2.1.3 LabVIEW

	2.2 Hardware peripherals
	2.2.1 I2C
	2.2.2 UDP
	2.2.3 Analog-to-digital converter

	2.3 Tools
	2.3.1 DAVE
	2.3.2 Git

	2.4 Markup languages for data interchange
	2.4.1 JSON

	3 Related Work
	3.1 MTS architecture
	3.2 MoPS Distributed System
	3.2.1 Hardware architecture
	3.2.2 Software architecture
	3.2.3 Measurement environment of MoPS

	3.3 State of the art

	4 Approach and Methodology
	4.1 Overview
	4.2 Derive data processing concepts for stress test environment
	4.2.1 Acquiring a signal model
	4.2.2 Derive transfer characteristics to find scaling parameters.
	4.2.3 Find a linear scaling function from obtained scaling parameters.
	4.2.4 Extended scaling mechanism.

	4.3 Identify the boards and prepare LUT in web server
	4.3.1 Board UID extraction.
	4.3.2 Prepare board ID database in MoPS web server.
	4.3.3 Store the scaling values meaningfully in MoPS web server database.
	4.3.4 Send UIDs before MicroMoPS enters into real-time mode.

	4.4 Resolve UIDs in SAM and send the scaling values to MicroMoPS
	4.4.1 Resolution of UIDs in SAM
	4.4.2 Send the scaling values to MicroMoPS.
	4.4.3 Execute Low Voltage Test System

	5 Implementation and Realization
	5.1 Extraction of UID of DUT and application board
	5.2 Update the microcontroller's configuration file for linear scaling computation
	5.3 Board UIDs communication to SAM
	5.4 Resolution of UIDs in SAM and scaling values communication from SAM to MicroMoPS
	5.5 Parse the scaling parameters dynamically in MicroMoPS
	5.6 Compute scaling mechanisms in MicroMoPS

	6 Evaluation and Analysis
	6.1 Answers to the Research questions

	7 Summary and Outlook
	7.1 Summary
	7.2 Outlook

	Bibliography
	Acronyms

