

Abstract

Clock synchronization is an essential service for wireless sensor networks,
as it allows to correctly interpret and fuse consistent sensor data, as well as
to achieve a high energy efficiency and localization accuracy. Whilst several
techniques have been proposed in the literature to achieve an accurate
clock synchronization in a low-power wireless sensor network, the focus
has always been on homogeneous networks, i.e., on networks composed of
devices making use of the same wireless technology and hence employing
compatible physical layers (PHYs). With the advent of the Internet of Things
(IoT), a plethora of different wireless technologies have been designed and
commercialized in order to cover the diverse requirements of different IoT
application domains. This results in heterogeneous networks making use
of different technologies (e.g., BLE, IEEE 802.15.4, Wi-Fi), as well as in an
increased usage of multi-radio gateways. The latter are needed to coordinate
the operations of heterogeneous devices, to distribute information, as well
as to collect and timestamp measurements. Such multi-radio gateways,
however, are expensive, inflexible, and represent a single point of failure.

In this Master thesis we present X-Sync, a novel cross-technology clock
synchronization (CTCS) scheme that allows to seamlessly exchange times-
tamps between IEEE 802.15.4 and BLE devices as well as to synchronize
their clocks with microsecond level accuracy. X-Sync enables such an accu-
rate clock synchronization despite the use of packet-level cross-technology
communication (CTC), which is characterized by unpredictable delays, low
data rates and error prone transmissions. To overcome these challenges,
X-Sync adapts and extends a packet-level CTC scheme, named X-Burst, to
allow timestamping at the medium access control layer, and provides novel
features to compensate the delays added by the use of CTC. X-Sync was
implemented on the Contiki-NG operating system for different off-the-shelf
hardware platforms to show its generality and portability. These platforms
include the TI CC2650 LaunchPad and Sensortag, the TelosB node, as well
as the Zolertia Firefly. An experimental evaluation shows that X-Sync can
achieve a bidirectional synchronization between these off-the-shelf IEEE
802.15.4 and BLE devices with an accuracy as low as ±125µs (CC2650,
Firefly, and TelosB configured as transmitter) and ±4ms (TelosB configured
as receiver) when using an update rate of 60 seconds.

v

Kurzfassung

Taktsynchronisation bezeichnet einen essentiellen Dienst in drahtlosen Netz-
werken, der erlaubt Sensordaten zusammenzufügen und zu interpretieren.
Es wurden in der Literatur verschiedene Techniken vorgestellt, die eine
präzise Synchronisierung erlauben, doch der Fokus lag immer auf homoge-
nen Netzwerken. Also ein Netz aus Geräten, die dieselbe Funktechnologie
verwenden. Mit dem Aufkommen des ”Internet of Things“ (IoT) wurden
viele verschiedene Funktechnologien entwickelt und kommerzialisiert, um
diversen Anforderungen von IoT – Anwendungsgebieten gerecht zu wer-
den. Die Folge waren einerseits heterogene Netzwerke, die unterschiedliche
Funktechnologien kombinieren (zum Beispiel BLE, IEEE 802.15.4, Wi-Fi)
und andererseits ein erhöhter Bedarf an Gateways, die mit mehreren inte-
grierten Funktechnologien ausgestattet sind. Diese werden verwendet um
alle Teilnehmer des heterogenen Netzwerks zu koordinieren, Informationen
zu verteilen, Messergebnisse zu sammeln und mit einem Zeitstempel zu
versehen. Diese Gateways mit mehreren integrierten Funktechnologien sind
jedoch teuer, unflexibel und stellen einen einzelnen Ausfallspunkt dar.

In dieser Arbeit präsentieren wir X-Sync, ein neuartiges, technologieüber-
greifendes Taktsynchronisierungsschema, welches das Austauschen von
Zeitstempel zwischen IEEE 802.15.4 und BLE Geräten erlaubt. Dadurch
können deren interne Uhren mit einer Genauigkeit im Mikrosekunden-
bereich synchronisiert werden. Dafür wird eine paket-basierte, technolo-
gieübergreifende Kommunikationsmethode verwendet, die durch unvor-
hersehbare Verzögerungen, langsame Übertragungsraten und störanfällige
Übertragungen charakterisiert wird. Deswegen basiert X-Sync auf X-Burst,
einer technologieübergreifenden Kommunikationsmethode. Dies ermöglicht
eine Synchronisierung auf der MAC (medium access control) Schicht und
erlaubt das Kompensieren von Verzögerungen. X-Sync wurde auf Basis des
Contiki-NG Betriebssystems implementiert. Um die Portabilität zu zeigen,
wurden verschiedene Entwicklungsplattformen verwendet, wie TI CC2650
LaunchPad and Sensortag, TelosB und Zolertia Firefly. Die Evaluierung zeigt
das X-Sync wechselseitige Synchronisation zwischen IEEE 802.15.4 und BLE
Plattformen mit einer Genauigkeit von ±125µs (CC2650, Firefly und TelosB
konfiguriert als Sender) und ±4ms (TelosB konfiguriert als Empfänger) bei
einem Synchronisationsintervall von 60s ermöglicht.

vi

Contents

Abstract v

1 Introduction 1
1.1 Problem Statement . 2
1.2 Contributions . 6
1.3 Thesis Structure . 8

2 Background 10
2.1 Wireless Sensor Networks . 10

2.1.1 IEEE 802.15.4 . 11
2.1.2 Bluetooth Low Energy 12

2.2 Clock Synchronization in Wireless Sensor Networks 13
2.2.1 Timestamp Transmission/Reception 14
2.2.2 High-Level Synchronization Schemes 16

2.3 Cross-Technology Communication 19
2.3.1 Packet-level CTC . 19
2.3.2 PHY Emulation CTC . 23

2.4 X-Burst . 24
2.5 Related Work . 28

2.5.1 Coexistence between IEEE 802.15.4 and IEEE 802.11
through cross-technology signaling 28

2.5.2 Cross-technology wireless experimentation: Improv-
ing IEEE 802.11 and 802.15.4e coexistence 29

2.5.3 Exploiting Programmable Architectures for Wi-Fi/ZigBee
Inter-Technology Cooperation 29

2.5.4 Crocs . 31
2.6 Employed Hardware . 33

2.6.1 TI CC2650 Launchpad and Sensortag 33
2.6.2 TelosB Mote . 34
2.6.3 Zolertia Firefly . 36

2.7 Employed Software . 36

3 X-Sync: Design 38
3.1 Requirements . 38
3.2 Overview . 40

vii

Contents

3.3 Precise Transmission Timing of CTC Messages 43
3.3.1 High-Precision Clocks 43
3.3.2 Radio Queues . 43
3.3.3 Interrupt Priority Masking 44
3.3.4 MAC Timestamp Transmission 45

3.4 Precise Reception Timing of CTC Messages 47
3.4.1 Averaging delay τaveraging 48
3.4.2 Sampling delay τsampling 51

3.5 Validation and Synchronization 56
3.5.1 Linear Regression . 59
3.5.2 Thresholding . 59
3.5.3 RANSAC . 60
3.5.4 RANSAC and Linear Regression 62

4 X-Sync: Implementation 63
4.1 Supplementary Blocks . 64

4.1.1 Application Block . 64
4.1.2 Frame Management Block 66
4.1.3 Alphabet Communication Block 67
4.1.4 Coding Scheme Block 68

4.2 Transmission Blocks . 72
4.2.1 Encoding Block . 72
4.2.2 HAL - Transmission Part 74

4.3 Reception Blocks . 75
4.3.1 Decoding and CTC Delay Correction Block 75
4.3.2 HAL - Reception Part 80

4.4 Validation/Correction Blocks 83
4.4.1 Clock Skew Estimation and Filtering Block 83
4.4.2 Clock Correction Block 83

5 Evaluation 85
5.1 Experimental Setup . 85

5.1.1 Parameters . 87
5.1.2 X-Sync Message . 88
5.1.3 Block Configuration . 88
5.1.4 Measurement Procedure 89

viii

Contents

5.2 Synchronization Accuracy . 90
5.2.1 Synchronization Interval Isend 90
5.2.2 Synchronization Preamble Length Ns 94
5.2.3 Number of Stored Synchronization Pairs N 98

5.3 Energy Consumption . 104
5.4 Memory Footprint . 106
5.5 Reliability . 107
5.6 X-Sync in Action . 108

6 Conclusion and Future Work 119
6.1 Conclusion . 119
6.2 Future Work . 120

Bibliography 122

ix

List of Figures

1.1 Two heterogeneous networks (e.g., BLE and IEEE 802.15.4)
where devices exchange information through a multi-radio
gateway. 3

1.2 Two heterogeneous networks (e.g., BLE and IEEE 802.15.4)
where devices directly exchange information without the
need of a multi-radio gateway. 5

1.3 Synchronization of all nodes in a heterogeneous network,
assuming that a master device acts as a reference clock for all
nodes. First, the two border nodes are synchronized using
CTCS (in this case to the BLE master). Second, within each
network, the nodes autonomously synchronize to the clock of
the border node using standard clock synchronization (CS)
schemes. Note that the border node of the IEEE 802.15.4
network can also act as reference clock. 6

2.1 Frequency spectrum of IEEE 802.15.4 in the 2.4 GHz band. . . 12
2.2 Frequency spectrum of BLE. The orange bands indicate the

advertising channels. 13
2.3 Clock synchronization building blocks. Clock skew estima-

tion algorithms are included in most high level clock syn-
chronization schemes. 14

2.4 Critical path between sender and receiver with timespans
divided into deterministic and non-deterministic delays. La-
tency l1 shows the uncompensated delay between the ini-
tiation of the synchronization message at the transmitting
node (TX) and the reception of the complete message at the
receiving node (RX). With the use of MAC timestamping,
non-deterministic delays can be avoided which is shown by
latency l2. 15

2.5 Working principle of NTP’s clock synchronization algorithm. 17
2.6 Overlapping frequency spectrum of BLE and IEEE 802.15.4. . 20
2.7 CSMA/CA algorithm used in the IEEE 802.15.4 standard. . . 21

x

List of Figures

2.8 Simplified illustration of packet-level CTC transmissions. Ar-
bitrary data will be encoded using a packet-level CTC en-
coder and a communication alphabet and gets then sent on
the shared RF channel. The receiver will continuously sample
the channel state information to obtain information about the
energy burst length and intensity, which can then be decoded
using the same principle. 22

2.9 Working principle of PHY emulation schemes. An emulated
CTC packet is embedded into a valid PHY packet. 23

2.10 Working principle of X-Burst [20]. 25
2.11 Example transmission of a small packet using hexadecimal

encoding with burst only modulation (no data is encoded in
gaps between bursts). 27

2.12 X-Bursts modular architecture, taken from [42]. 27
2.13 Working principle of the cross-technology TDMA scheme

proposed in [43]. 29
2.14 Working principle of the cross-technology TDMA scheme

proposed in [45]. 30
2.15 Working principle of the cross-technology TDMA scheme

proposed in [46]. 30
2.16 The high-level operating principle of Crocs [49]. 31
2.17 Barker Sequences used in Crocs [49]. 32
2.18 CC2650 functional block diagram [40]. 34
2.19 Functional block diagram of the TelosB open-source hardware

design, its components, and buses [24]. 35

3.1 Accumulated timing error from a commercial-off-the-shelf
crystal oscillator. Image taken from [60]. 39

xi

List of Figures

3.2 Overview of the X-Sync CTCS scheme, divided into a trans-
mitter (device A) and a receiver (device B) section with the
shared cross-technology channel illustrated in between. De-
vice A begins by sending the CTC preamble, followed by
a synchronization preamble and the actual timestamp T1.
Device B detects CTC preamble on the shared channel, syn-
chronizes upon the synchronization preamble and finally
receives the timestamp T1. At this stage, device B knows both
timestamps T1 and T2, checks them for validity and uses them
to correct its local clock. The exact moment when T1 and T2
are sampled, at the transmitter and the receiver respectively,
are indicated explicitly. 41

3.3 Packet-level transmission without the use of radio queues.
Energy bursts will be enqueued, eventually processed by the
radio state machine and transmitted. The microcontroller is
then responsible for waiting the amount of time specified for
the gap. This process is repeated until the CTC message is
transmitted. 45

3.4 Packet-level transmission with the use of radio queues. All
energy bursts and gaps will be enqueued using the mecha-
nisms provided by the radio. Once all data is processed, the
transmission of the whole queue will be triggered. Thereby,
the radio state machine is managing the precise burst and
gap timings, instead of the microcontroller. 46

3.5 Transmission delay within X-Sync, divided into deterministic,
non-deterministic, CTC related, and IEEE 802.15.4 specific
delays. In this scenario, a transmitting node (TX) sends a
synchronization message to a receiving node (RX). The CTC
related sampling delay τsampling and the IEEE 802.15.4 specific
averaging delay τaveraging are further defined and described
in Section 3.4.2 and 3.4.1 respectively. 47

3.6 X-Burst transmission with an IEEE 802.15.4 receiver, whose
RSS values are filtered by a moving average filter, in compli-
ance with the standard. The difference between the received
RSSI (solid, black), and the actual energy on the channel
(dashed, blue), varies greatly. 48

xii

List of Figures

3.7 RSS measured at an IEEE 802.15.4 node (solid, black) versus
the actual RSS values seen at the channel without any aver-
aging (dashed, blue). The τaveraging delay is defined as the
interval between these two graphs and varies depending on
the selected RSS threshold. 49

3.8 Transmission of one energy burst between one transmitter
(TX) and one receiver (RX). The sampling delay τsampling is
defined by the timespan between the real start of the burst
on the physical channel and the detected start of the receiver
τsampling = TE − TR. This delay is caused by the low RSS
sampling speed which is inherent in packet-level CTC solutions. 52

3.9 Timeframes of a X-Sync preamble used to compensate the
varying sampling delay τsampping by applying a binary search
algorithm. 53

3.10 X-Sync sample delay τsampling compensation strategy shown
without the division into separate timeframes. TR indicates
the start of the energy burst at the transmitter and TE is the
current estimate of TR. 55

3.11 Consecutive timestamp transmissions between the transmit-
ting node A and the receiving node B using X-Sync. Each
successful transmission results in a synchronization pair con-
sisting of the transmitting timestamp, the receiving times-
tamp, and the transmission delay. 56

3.12 Simulated synchronization error assuming ideal synchroniza-
tion every second and a typical clock skew of 40ppm without
clock skew compensation. 57

3.13 Disturbance on the CTC channel during an ongoing X-Sync
transmission. Tburst is the nominal burst duration, which is
set to 224µs in this example. The received energy burst is
superposed by the channel disturbance, which results in a
measured duration of 230µs. It can be seen that the rising
edge of the transmission TR is obfuscated and the binary
search algorithm will decide for the wrong side of the interval.
This will result in an outlier, which has to be filtered by the
upper clock synchronization layers. 58

xiii

List of Figures

3.14 Simulation of linear regression with one outlier at t=45. It
shows that one outlier in the dataset will greatly influence the
clock skew estimation, and therefore, the achievable accuracy. 60

3.15 Simulation of linear regression with one outlier using a
threshold filter. In this example, the outlier will be filtered,
and the result is again nearly ideal. 61

4.1 The highly modular implementation of X-Sync extending
X-Burst [42], divided into transmission, reception, valida-
tion/correction and supplementary blocks. 63

4.2 High-level structure of a X-Sync message divided into manda-
tory and optional parts. Every message starts with the CTC
preamble, which allows receiving nodes to detect a begin-
ning of a transmission. The frame management block adds
a synchronization preamble to allow compensation of the
delays inherent in X-Sync. Next, the header defines the op-
tional fields included in the message, such as the network
ID, the length byte, the receiver and transmitter addresses, a
timestamp, and the checksum. If a field is enabled, it will get
appended to the message accordingly. 66

4.3 Division of binary data (0xC6) into symbols (shown in hex-
adecimal digits) using different encodings (4-bit, 2-bit, 1-bit).

. 69
4.4 The mapping to energy bursts using the 1-bit coding scheme.

Table 4.3 shows the used alphabet, and the information is
encoded using energy-bursts only. 70

4.5 The mapping to energy bursts using the 2-bit coding scheme.
Table 4.3 shows the used alphabet, and the information is
encoded using energy-bursts only. 71

4.6 The mapping to energy bursts using the 4-bit coding scheme.
Table 4.3 shows the used alphabet, and the information is
encoded using energy-bursts only. 71

4.7 Example of a CTC preamble consisting of five energy bursts
and varying gap durations in-between. Hereby, the following
preamble durations were chosen: 192 µs, 192 µs, 256 µs, 192
µs, and 192 µs. The gap durations are not relevant for the
correct detection of the preamble at the receiving node. 73

xiv

List of Figures

4.8 An example synchronization preamble consisting of eight
energy bursts and precisely defined gaps in-between. Hereby,
the shortest possible energy burst of 192 µs is repeated eight
times with a well defined gap duration of 200 µs in between. 73

4.9 The payload (0xC6) mapped to energy bursts and gap du-
rations in-between using the 2-bit coding scheme. Table 4.3
shows the used alphabet. 74

4.10 State machine for detecting the CTC preamble on the shared
channel. Timeout checks are thereby not shown for simpli-
fication. First, the receiver samples the current RSS until a
whole burst is detected, whose duration d gets calculated.
This duration gets added to the queue, and the whole buffer
gets compared with the known preamble. If the stored buffer
and the known preamble are equal (including tolerances), the
preamble is successfully detected, and the next part of the
X-Sync message can be received. 77

4.12 Energy burst reception on a BLE node, which is a non-
averaging radio. Image taken from [20]. 79

4.13 Energy burst reception on a IEEE 802.15.4 node, which is an
averaging radio. Image taken from [20]. 80

4.11 State machine for compensating the averaging delay (Taveraging)
by using a binary search algorithm on the synchronization
preamble. The timestamp T2 will be corrected and can be
used by the upper blocks, once the finished state is reached. . 82

5.1 The experimental setup used for all evaluations showing
the arrangement of the wireless sensor nodes. Each node is
connected to a synchronized signal using a free GPIO pin.
Whenever a rising edge is detected, the synchronized clock is
sampled and stored to a database using an UART connection. 86

5.2 Evaluation of the synchronization accuracy depending on the
synchronization interval Isend. A CC2650 node in BLE mode
was used as transmitter and all other nodes were configured
as receivers. The results are shown as a boxplot diagram,
where the X-axis shows the synchronization interval and
the Y-axis shows the relative synchronization error between
transmitter and receiver. 92

xv

List of Figures

5.3 Evaluation of the synchronization accuracy depending on the
synchronization interval Isend. The CC2650 node in BLE mode
was configured as receiver, while the transmitter was changed
throughout the test. A boxplot diagram shows the results,
where the X-axis shows the synchronization interval and
the Y-axis shows the relative synchronization error between
transmitter and receiver. 94

5.4 Evaluation of the synchronization accuracy in dependence of
the synchronization preamble length Ns. Hereby, a CC2650
node in BLE mode was used as transmitter and all other
nodes were configured as receivers. The result is shown as
a boxplot diagram where the X-axis shows Ns and the Y-
axis shows the relative synchronization error between the
transmitter and the receiver. 96

5.5 Evaluation of the synchronization accuracy depending on
the synchronization preamble length Ns. Hereby a CC2650
node in BLE mode was used as receiver and all other nodes
were one-by-one configured as transmitters. The results are
shown as a boxplot diagram, where the X-axis shows Ns and
the Y-axis shows the relative synchronization error between
transmitter and receiver. 98

5.6 Evaluation of the synchronization accuracy depending on the
number of stored synchronization pairs N. Hereby a CC2650
node in BLE mode was used as transmitter and all other
nodes were configured as receivers. The results are shown
as a boxplot diagram where the X-axis shows the amount
of stored synchronization pairs N and the Y-axis shows the
relative synchronization error between transmitter and receiver.102

5.7 Evaluation of the synchronization accuracy depending on the
number of stored synchronization pairs N. Hereby a CC2650
node in BLE mode was used as a receiver and all other nodes
were configured one-by-one as transmitters. The results are
shown as a boxplot diagram where the X-axis shows the
amount of stored synchronization pairs N and the Y-axis
shows the relative synchronization error between transmitter
and receiver. 103

xvi

List of Figures

5.8 This figure shows the time-domain plot of the long-term X-
Sync evaluation. Hereby the CC2650 node in BLE mode was
used as a transmitter and all other nodes were configured as
receivers, forming a broadcast configuration. 113

5.9 Time-domain plot of the long-term X-Sync evaluation zoomed
between t=5h and t=6h. Hereby the CC2650 node in BLE
mode was used as a transmitter and all other nodes were
configured as receivers, forming a broadcast configuration. . 114

5.10 CDF of the modulus of the relative synchronization error of
the long-term X-Sync evaluation seen in Figure 5.8. Hereby
the CC2650 node in BLE mode was used as a transmitter
and all other nodes were configured as receivers, forming a
broadcast configuration. 115

5.11 Time-domain plot of the long-term X-Sync evaluation. Hereby
the CC2650 node in BLE mode was configured as receiver and
all other nodes were configured one-by-one as transmitters,
forming a unicast configuration. 116

5.12 Time-domain plot of the long-term X-Sync evaluation zoomed
between t=5h and t=6h. Hereby the CC2650 node in BLE
mode was configured as receiver and all other nodes were
configured one-by-one as transmitters, forming a unicast
configuration. 117

5.13 CDF of the modulus of the relative synchronization error of
the long-term X-Sync evaluation seen in Figure 5.11. Hereby
the CC2650 node in BLE mode was configured as receiver and
all other nodes were configured one-by-one as transmitters,
forming a unicast configuration. 118

xvii

List of Tables

2.1 X-Burst mapping scheme using a common alphabet and hex-
adecimal encoding. 26

2.2 Summary of the available memory for the used off-the-shelf
IoT development platforms. 33

4.1 X-Sync communication alphabet with focus on throughput
between IEEE 802.15.4 and BLE nodes, as defined in X-Burst
[20]. 69

4.2 X-Sync communication alphabet with focus on reliability
between IEEE 802.15.4 and BLE nodes, as defined in X-Burst
[20]. 70

4.3 Coding scheme for 1-bit, 2-bit and 4-bit symbols based on the
encoding alphabet defined in Table 4.1. 71

5.1 X-Sync configuration parameters used to test the achiev-
able synchronization accuracy. The synchronization interval
(Isend), the number of synchronization preamble bursts (Ns)
and the number of stored synchronization Pairs (N) get varied
in every iteration of the following evaluations. 90

5.2 This table shows the results from Figure 5.2 in more detail.
For each receiver, the maximum, the minimum, the average,
and the standard deviation of the relative synchronization
error are shown. 93

5.3 This table shows the results from Figure 5.3 in more de-
tail. For each transmitter, the maximum, the minimum, the
average, and the standard deviation of the relative synchro-
nization error are reported. 95

5.4 This table shows the results from Figure 5.4 in more detail.
For each receiver, the maximum, the minimum, the average,
and the standard deviation of the relative synchronization
error are shown. 97

5.5 This table shows the results from Figure 5.5 in more de-
tail. For each transmitter, the maximum, the minimum, the
average, and the standard deviation of the relative synchro-
nization error are shown. 99

xviii

List of Tables

5.6 This table shows the results from Figure 5.6 in more detail.
For each receiver, the maximum, the minimum, the average,
and the standard deviation of the relative synchronization
error are shown. 100

5.7 This table shows the results from Figure 5.7 in more de-
tail. For each transmitter, the maximum, the minimum, the
average, and the standard deviation of the relative synchro-
nization error is shown. 101

5.8 Current consumption for each hardware platform in different
operating modes (Iactive, Iactive+TX and Iactive+RX). This prop-
erties are taken from each node’s datasheet ([23], [24] and
[53]). 104

5.9 Power consumption for each hardware platform in different
operating modes (Pactive, Pactive+TX and Pactive+RX). 104

5.10 The specific parts of a minimal X-Sync message, the amount of
bursts needed for the transmission/reception and the average
time spent in each operating mode. 105

5.11 Energy usage for each hardware platform for transmission
and reception of a minimal X-Sync message. 106

5.12 X-Sync configuration parameters used to evaluate the mem-
ory footprint. All parameters not relevant for the memory
footprint are omitted. 106

5.13 The static memory usage in terms of RAM and ROM when
X-Sync is added to an existing IoT application using a typical
configuration listed in Table 5.12. Additionally, the RAM and
ROM usage of X-Burst are included, taken from [42]. 107

5.14 X-Sync configuration parameters used for the long-term eval-
uation. 108

5.15 This table shows the results of the long-term X-Sync eval-
uation (Figure 5.8) in more detail. For each receiver, the
maximum, the minimum, the average, and the standard de-
viation of the relative synchronization error is shown. 109

5.16 The summarized results of the CDF (Figure 5.10) showing
the median (50%) as well as the 95% and 99% modulo of the
relative synchronization accuracy. 110

xix

List of Tables

5.17 This table shows the results of the long-term X-Sync eval-
uation (Figure 5.11) in more detail. For each transmitter,
the maximum, the minimum, the average, and the standard
deviation of the relative synchronization error is shown. . . . 111

5.18 The summarized results of the CDF (Figure 5.13) showing
the median (50%) as well as the 95% and 99% modulo of the
relative synchronization accuracy. 112

xx

1 Introduction

The Internet of Things (IoT) connects everyday objects (things) such as sen-
sors, vehicles and household appliances to other objects or their respective
backends over the Internet and allows monitoring, detection and control-
ling of these devices [1]. The areas of application are thereby widespread
and include smart cities, industry 4.0, connected cars, as well as consumer
IoT applications such as wearables and smart home devices [2]. With an
increasing number of deployed IoT systems in these and other application
domains, the number of interconnected IoT devices is expected to grow
continously and reach 75 billions by 2025 [3].

A fundamental building block to create IoT systems that sense the envi-
ronment and connect to each other and to the Internet are Wireless Sensor
Networks (WSN). These networks are typically self-organizing and con-
nected in a multi-hop fashion [4]. WSNs differ from conventional networks,
as they focus on low-cost, battery-powered nodes and as they are charac-
terised by unreliable links and computationally constrained nodes. Apart
from that, the number of nodes is very high compared to a classical (wireless)
network.

Clock synchronization is hereby an essential aspect for WSNs [5]. It plays a
very important role in the interpretation of sensor data, fusion of (consistent)
measurements, energy efficiency, and localisation. Apart from that, it is
crucial for the correct and efficient operation of network protocols [6] and
management tools [7]. For example, stale and inconsistent measurements
within a power grid may result in erroneous control that endangers the
grid’s safety [8]. De-synchronization of consumer smart meters may as well
lead to instability of the real-time energy market [9].

Another example for the need of a tight clock synchronization in an indus-
trial environment is a large-scale manufacturing line. Sensors have to be
deployed on each segment, continuously delivering status updates. These
sensors have to be precisely synchronized to each other for the control unit
to enable specific production steps at the right time. Synchronization failures
can, for example, cause clashes of robot arms and disrupt the production
pipeline.

1

1 Introduction

1.1 Problem Statement

Increasing heterogeneity of wireless devices. With the advent of embed-
ded and cyber-physical systems, different wireless technologies with incom-
patible physical layers were developed to satisfy largely diverse application
requirements [10]. While some technologies focus on very high data rates
e.g., Wi-Fi, others focus on energy consumption, e.g., IEEE 802.15.4 and
Bluetooth Low Energy (BLE).
Wireless sensor systems are typically based on homogeneous networks (e.g.,
composed of devices making all use of a BLE radio), where every node
implements the same physical radio layer, and can hence send and receive
messages on the shared radio channel. Examples of such homogeneous
networks are volcanic eruption monitoring [11], and health monitoring
[12].

Monitoring volcanic eruptions is hereby an application for homogeneous
wireless sensor networks. The authors use infrasonic sensor modules to
sample low-frequency acoustic signals which are then transmitted using
ZigBee to a multi-radio gateway. This gateway translates the received packets
and transmits them over a long distance to a base station. Based on this data,
the authors created an algorithm which detects for local explosions. This
only works if the sensor readings are synchronized to each other, which
is achieved by using a clock synchronization protocol with one central
time server equipped with a GPS reference clock. Another example of a
homogeneous application is described in the paper “Health Monitoring of
civil infrastructures using WSN” [12]. In this application, the sensor boards
sample the instantaneous acceleration with a high precision sensor utilizing
a high sampling frequency. The clocks on these sensors are synchronized
to each other using a standard clock synchronization protocol. The sensor
boards use a (homogeneous) ZigBee network to send the measurement data
to a base station, where it is stored and analysed.

Recent papers show that the requirements of WSNs are becoming more
diverse [13], [14]. Depending on the application, several different WSNs
using various technologies have been deployed in the same area, which
results in “islands” of nodes employing different PHY layers operating
autonomously and being orchestrated by means of multi-radio gateways

2

1 Introduction

[15], [16]. The use of multi-radio gateways actually represents the state-of-
the-art solution to synchronize heterogeneous networks.

The authors of [13] develop such a heterogeneous WSN for smart home and
building automation. They use three different wireless technologies (Wi-Fi,
ZigBee and BLE) to create a multi-hop network. This network was evaluated
by implementing a building automation system prototype which controls
and manages air-conditioners and AC power meter units. Another recent
paper evaluates a multi-radio ZigBee/BLE gateway for remote parameter
monitoring [14]. A Linux gateway is used to implement a low-cost platform
which communicates with both the BLE and the ZigBee networks and
provides access to the Internet. SSL and DTLS connections are then used to
establish a connection to the cloud.

This heterogeneous networking approach can be seen in Figure 1.1, which
conceptually shows two heterogeneous networks where devices directly
exchange information (e.g., BLE and IEEE 802.15.4). For simplicity, only
one-hop communication with a small number of nodes is sketched. In
reality, a wireless sensor network can inherit a multi-hop system with
complex routing requirements. The used multi-radio gateway embeds both
radios (i.e., a BLE and an IEEE 802.15.4 radio) to dynamically translate the
received packets from one technology to the other. Apart from the additional
hardware costs, this effectively introduces a single point of failure, increases
network traffic, and leads to higher end-to-end delays.

Figure 1.1: Two heterogeneous networks (e.g., BLE and IEEE 802.15.4) where devices
exchange information through a multi-radio gateway.

3

1 Introduction

Communication between devices with incompatible physical layers is also
possible by using cross-technology communication (CTC) schemes, which pro-
vide an alternative to the use of gateways. Cross-technology communication
is a new paradigm that consists in transmitting data directly from one
physical layer to another without the need of additional hardware.

One of the first papers in the field of CTC was E-Sense, a communication
framework based on energy sensing [17]. It enables unidirectional com-
munication from Wi-Fi to ZigBee devices by encoding information into
the duration of energy bursts. Hereby, each energy burst signature repre-
sents a specified information such as a predefined message, command, or
value and thus does not allow an arbitrary information exchange. Another
early work in the field of CTC was GapSense, a lightweight coordination
mechanism for heterogeneous wireless devices [18]. Hereby, a preamble is
defined and, upon detection of this preamble, receivers can react accord-
ingly. Applications of that mechanism include collision avoidance (in both
time and frequency domain) and clock rate management. Like E-Sense,
GapSense also does not allow arbitrary data transmissions, but only prede-
fined symbols. Another noteworthy paper in this field is about cooperative
carrier signalling, which aims to harmonize the coexistence of Wi-Fi and
ZigBee devices [19]. This novel mechanism significantly reduces collisions
of both networks. It works by sending a busy tone from a ZigBee node to
the nodes in the Wi-Fi network. These nodes can sense this information and
adjust their behaviour accordingly. No arbitrary data can be sent and the
communication is only unidirectional.

State-of-the-art CTC approaches can be divided into two categories: PHY
layer emulation schemes and packet-level schemes [20]. The former work
by using the modulation scheme similarities, defined in the PHY layer,
between radios operating on the same frequency band. By using analytical
calculations, a mapping alphabet can be found which allows the emulation
of packets of another PHY layer. For example, BlueBee is an influential
work in this field allowing the emulation of ZigBee 1 packets within a valid
BLE frame [21]. Using BlueBee, the IEEE 802.15.4 device is then able to
decode the transmitted packet and interpret the data. However, if the two

1The terms Zigbee and IEEE 802.15.4 will be used interchangeably throughout this
thesis.

4

1 Introduction

used wireless physical layers are fundamentally different, finding a suitable
mapping alphabet gets more difficult, if not impossible.

Packet-level CTC schemes work by sending and sensing energy durations
or energy levels. This is achieved by sending valid packets onto the shared
physical channel with varying lengths or transmission power. The receiver
has to be able to sense the signal strength on the channel and recover the
encoded duration or energy level.

With the use of CTC, the example given in Figure 1.1 could be replaced by
the node arrangement shown in Figure 1.2. Any node could now directly
communicate with any other node in the heterogeneous network without
the need for a gateway. In this example, we assume that each network has
one dedicated node carrying out CTC communication.

Figure 1.2: Two heterogeneous networks (e.g., BLE and IEEE 802.15.4) where devices
directly exchange information without the need of a multi-radio gateway.

Building upon such a network configuration, we assume that we have a
master device which acts as a clock reference for all nodes in both hetero-
geneous networks. In order to achieve that, the synchronization process
can be divided in two steps, as shown in Figure 1.3. First, the two nodes
carrying out CTC (called “border nodes”) are synchronized using cross-
technology clock synchronization. Second, within each network, the nodes
autonomously synchronize to the clock of the border node using standard
clock synchronization schemes. If, for whatever reason, the border node
fails, the network could elect a new border node, because each node in the
network is capable of carrying out CTCS. This eliminates the single point of

5

1 Introduction

failure of conventional solutions based on a multi-radio gateway. In addition
to that, the end-to-end delay can be significantly lowered and no additional
hardware costs are necessary.

Figure 1.3: Synchronization of all nodes in a heterogeneous network, assuming that a
master device acts as a reference clock for all nodes. First, the two border nodes
are synchronized using CTCS (in this case to the BLE master). Second, within
each network, the nodes autonomously synchronize to the clock of the border
node using standard clock synchronization (CS) schemes. Note that the border
node of the IEEE 802.15.4 network can also act as reference clock.

1.2 Contributions

To allow high accuracy cross-technology clock synchronization between
wireless devices with incompatible physical layers, we extend and revise
an existing cross-technology communication scheme, called X-Burst [20]. X-
Burst is a portable framework that allows multiple constrained IoT platforms
with diverse characteristics to seamlessly interact using packet-level CTC. In
their original paper [20], the authors explicitly target the BLE and the IEEE
802.15.4 physical radio layers due to their widespread use in IoT systems.
However, due to its generality, X-Burst is not limited to these communication

6

1 Introduction

schemes and can also be used with other wireless standards [22]: this is
possible as the scheme only makes use of energy sensing features available
in standard compliant off-the-shelf devices.

Due to the nature of packet-based CTC, indeterministic delays are intro-
duced, which greatly reduces the achievable synchronization accuracy. We
explore methods to compensate these delays and consequentially allow the
transmission and reception of cross-technology timestamps with microsec-
ond accuracy. Additionally, we explore ways to improve the synchronization
accuracy by applying filtering and clock skew estimation algorithms. Fur-
thermore, we have integrated our solution into the Contiki-NG operating
system and evaluated it on various off-the-shelf development platforms. In
summary, our contributions are 5-fold:

Design and development of a cross-technology clock synchronization
scheme. In this thesis we have developed an extension for the X-Burst
cross-technology communication scheme which allows transmission of
timestamps in the medium access control (MAC) layer of BLE and IEEE
802.15.4 devices. MAC layer timestamping is hereby needed to remove the
indeterministic delays present in radio transmissions. We call this cross-
technology clock synchronization scheme X-Sync, which allows accurate
clock synchronization in heterogeneous wireless networks without the need
of a multi-radio gateway.

Exploring ways to compensate the non-deterministic delays present in
packet-level CTC transmissions. Due to the packet-level nature of X-Burst,
non-deterministic delays are introduced, which are highly varying and too
big to neglect to achieve microsecond-level accuracy. To compensate these
delays, X-Sync defines software algorithms to detect and compensate the
various delays, which is essential to achieve an accurate synchronization.

Exploring ways to increase the relative synchronization accuracy between
a transmitting node and one (or many) receiving nodes. The notion of
time at two independent clocks will always be different. This is called clock
skew and can be linearly approximated, assuming short-term and constant
environmental conditions. Accounting for that reduces the number of syn-
chronization packets needed for a given accuracy and therefore reduces
the overall energy consumption of the connected system. We explore and
evaluate the use of two clock skew estimation algorithms, linear regression

7

1 Introduction

and random sample consensus (RANSAC), in a cross-technology context.
As packet-level CTC schemes inherently have a higher susceptibility to
disturbances on the used radio channel, the use of filtering algorithms
such as RANSAC allows the detection of outliers and a more accurate
synchronization even in congested environments.

Integration of cross-technology clock synchronization into Contiki-NG.
We integrate X-Sync into the Contiki-NG operating system while still main-
taining interoperability with X-Burst. Contiki-NG introduces a generic layer
on top of the used IoT hardware platform, which allows to write platform
independent code for higher portability. However, due to the precise timing
requirements, we also change the hardware specific code and optimize it
for low-latency MAC timestamp transmission.

Evaluation on different hardware platforms. We evaluate X-Sync in terms
of synchronization accuracy, preamble length, buffer size, synchronization
accuracy, energy consumption, and long-term synchronization accuracy.
Additionally, we evaluate the performance of different clock skew com-
pensation algorithms for their application in a cross-technology context.
We use the following off-the-shelf IoT development platforms to show the
generality of this solution: the TI CC2650 LaunchPad and Sensortag [23],
the Tmote Sky [24], and the Zolertia Firefly [25].

1.3 Thesis Structure

This thesis is structured as follows. In Chapter 2, background information
regarding this thesis’ context, clock synchronization, and cross-technology
communications are given. Additionally, related works are compared, and
the foundation of this work, X-Burst, is presented in detail. The last part
of this section describes the employed hardware and software employed in
this thesis.

In Chapter 3, we first define requirements for the sought solution, followed
by an overview of X-Sync and its working principle. From these require-
ments, we derive the corresponding challenges and propose solutions for
each of them.

8

1 Introduction

The concepts of the previous chapter are then implemented in Chapter 4,
which shows how X-Sync is divided into blocks for extensibility and to
reduce the complexity of the solution. These blocks are then described in
detail.

Chapter 5 describes the experimental setup and presents an evaluation
about the accuracy, energy consumption, memory footprint and reliability
of X-Sync. These findings are then combined and used for a long-term,
real-world evaluation at the end of this chapter.

Finally, Chapter 6 summarizes the contributions of this thesis and gives a
short outlook into possible future work.

9

2 Background

A short introduction to wireless sensor networks is given in Section 2.1,
which also introduces the wireless technologies employed in this thesis,
followed by an introduction to classical clock synchronization systems in
homogeneous networks (Section 2.2). Section 2.3 distinguishes between
packet-level and physical layer emulation schemes for cross-technology
communication and describes them. Thereafter, the working principle of
X-Burst, which is the base for X-Sync, is explained in Section 2.4. Albeit
CTCS being a relatively new research area, the related works in this field
are summarized in Section 2.5. Finally, the employed off-the-shelf hardware
platforms (Section 2.6), as well as the employed software (Section 2.7) are
discussed.

2.1 Wireless Sensor Networks

The Internet of Things represents the idea of expanding the Internet to the
real world, embracing everyday objects. Physical items are now connected
to the Internet as access points, sharing and acting upon information [26].
As the number of connected devices is continuously increasing, maintaining
and creating a wired infrastructure is an obstacle and makes the use of
wireless technologies compulsory for the number of nodes in a typical IoT
network [27]. Wireless sensor networks solve this problem by providing
a way to connect thousands of nodes to the Internet or to each other.
Application designers can choose from a variety of wireless technologies
with varying specifications, costs, and functional properties.

Specialized wireless technologies have been developed or adapted for the
use in IoT networks, with the most prominent ones being Bluetooth Low
Energy (BLE) and IEEE 802.15.4 (ZigBee). Other relevant wireless technolo-
gies in this context include, but are not limited to, LoRa/LoraWAN [28] and
many vendor specific protocols like LowPowerLabs [27]. The properties of
a wireless technology are greatly influenced by the used carrier frequency
and the specified modulation scheme. Apart from the fact that only some
frequency bands are licensed for the use in IoT networks, lower carrier

10

2 Background

frequencies result in lower data rates and higher maximum ranges. In this
thesis, we specifically focus on BLE and IEEE 802.15.4 radios operating in
the 2.4 GHz frequency band, which are the most widespread technologies
in today’s IoT products.

2.1.1 IEEE 802.15.4

ZigBee is one prominent example for low-rate WPAN that builds upon the
IEEE 802.15.4 standard [29], which describes the MAC and the physical
layer of the network stack [30]. Other standards building upon IEEE 802.15.4
include ISA100.11a [31], WirelessHART [32], 6LoWPAN [33] and many more.
For the purpose of this thesis, only these two lower layers are relevant. IEEE
802.15.4 is designed for low-power, energy-efficient and battery operated
usage in networks with over thousands of nodes in one network. This is
achieved by allowing nodes to turn off their radios during inactivity. The
power consumption during radio activity is relatively high compared to the
consumption during CPU activity. The typical way to extend the battery life
of nodes is to keep the active radio time as short as possible. This is normally
achieved by synchronizing the nodes to each other by defining active and
sleep times, often referred to as ”duty-cycling” technique. The original
physical layer standard (2003) defines three different usable unlicensed
frequency bands:

• 868.0–868.6 MHz: Licensed in Europe, allows one channel.
• 902–928 MHz: Licensed in North America, allows thirty channels.
• 2400–2483.5 MHz: Licensed for worldwide use, up to sixteen available

channels, numbered from 11 to 26.

Figure 2.1 shows the spectrum of IEEE 802.15.4 radios in the 2.4 GHz band.
The 3 MHz gaps between the channels are needed because of the use of
direct sequence spread spectrum as modulation scheme. In the crowded
2.4 GHz band, a multitude of wireless technologies operate due to its
classification as industrial, scientific and medical (ISM) band.

The IEEE 802.15.4 standard further defines a carrier sense multiple access
mechanism to lower the amount of collisions on the channel. Before a trans-
mission will be started, the activity on the intended channel is measured

11

2 Background

Figure 2.1: Frequency spectrum of IEEE 802.15.4 in the 2.4 GHz band.

by retrieving the radio signal strength information (RSSI). This value will
measure the current activity on the chosen channel in dBm and is compared
against a clear channel assessment (CCA) threshold. According to the IEEE
802.15.4 standard [29], the radio will apply a moving window averaging
filter before returning the requested energy information. We will refer to this
property as averaging radios, according to the definition in [20]. According
to the result, the radio will either delay the transmission and try again after
a defined or random back-off period, or send the requested radio packet. To
save energy, CCA is also used to wake-up from sleep mode.

Further specifications include data rates between 25 kBit/s and 250kBit/s
depending on the chosen frequency band and the chosen configuration.
Typical achievable ranges are between 10 and 100 meters, depending on the
configured transmission power.

2.1.2 Bluetooth Low Energy

Bluetooth low energy (BLE), also sometimes referred to as Bluetooth Smart,
is a standard for low-rate WPAN that focuses on low-energy applications.
Due to this focus, it is not compatible with classical Bluetooth and thus
many hardware manufacturers offer chips with a built-in dual-stack lay-
out supporting both standards. BLE is operating with forty 2-MHz wide
channels in the 2.4 GHz band. It offers a significant higher peak bitrate
than the IEEE 802.15.4 standard with 1 MBit/s while still maintaining the
100 meter transmission range under ideal conditions. This is possible by
using a Gaussian frequency shift keying modulation scheme. The frequency
spectrum of BLE can be seen in Figure 2.2. In addition to data channels,
three advertising channels are defined: these allow devices to broadcast

12

2 Background

advertising packets. This mechanism enables devices to easily connect to
existing networks.

Figure 2.2: Frequency spectrum of BLE. The orange bands indicate the advertising channels.

Other than the IEEE 802.15.4 standard, BLE does not implement a form of
clear channel assessment algorithm. Instead, it uses channel hopping and
blacklisting to determine occupied channels. However, the most prominent
BLE transceiver manufacturers (TI, Nordic Semiconductor and Cypress)
include RSSI querying into their BLE radio ICs, which can be seen as a
de-facto standard feature.

2.2 Clock Synchronization in Wireless Sensor
Networks

Clock synchronization schemes in WSN can be divided into two layers
building on top of each other, as seen in Figure 2.3. The timestamp trans-
mission/reception layer provides a fundamental building block of any high
level synchronization scheme as described in Section 2.2.1. The accuracy of
the clock synchronization scheme is primarily defined in this layer. High-
level clock synchronization schemes build on top of this layer, as shown in
Section 2.2.2. These schemes can define methods to synchronize multi-hop
networks, increase the synchronization accuracy, estimate the skew rate,
and/or choose a reference node from all the nodes in the network.

13

2 Background

Figure 2.3: Clock synchronization building blocks. Clock skew estimation algorithms are
included in most high level clock synchronization schemes.

2.2.1 Timestamp Transmission/Reception

At the lowest architectural level, clock synchronization works by sending
timestamps from a transmitting node to one (or many) receiving nodes.
This fundamental primitive is used by high level synchronization protocols
as a building block. The accuracy of the clock synchronization system is
hence primarily limited by the delays introduced in this layer. Constant,
deterministic delays can be compensated in higher layers, but varying, non-
deterministic delays have a direct impact on the achievable accuracy. Figure
2.4 shows the critical path of a typical timestamp transmission.

Without the compensation of the delays shown in Figure 2.4, the accu-
racy of the clock synchronization is lowered significantly. Therefore, MAC
timestamping can be used.

MAC Timestamping

MAC timestamping is based on appending timestamps on the lowest pos-
sible layer in the latest possible moment before transmission. This allows
to avoid non-deterministic delays during synchronization. Upon reception,
this timestamp will be processed as fast as possible and further decoded by
the upper layers. In detail, MAC timestamping works as follows:

• Create and enqueue a new packet on node A with enough space
reserved for the MAC timestamp.

• When the transmission is started, replace the reserved space with a
generated timestamp T1.

• As soon as the preamble is received on the receiving node B, generate
a timestamp T2

14

2 Background

Figure 2.4: Critical path between sender and receiver with timespans divided into deter-
ministic and non-deterministic delays. Latency l1 shows the uncompensated
delay between the initiation of the synchronization message at the transmitting
node (TX) and the reception of the complete message at the receiving node (RX).
With the use of MAC timestamping, non-deterministic delays can be avoided
which is shown by latency l2.

• After successful reception of the packet, node B has now a clock
synchronization pair consisting of (T1, T2) that can be used for syn-
chronization.

The transmission time, the propagation time, as well as the time to process
the preamble cannot be compensated for within one transmission. High-
level clock synchronization schemes can compensate for them by using
round-trip synchronization, if they assume that both transmission paths
have the same delays. This delays have hence certain properties:

• hardware specific;
• deterministic;
• predictable;
• direct proportional to the distance between transmitter and receiver;
• constant under the same environmental conditions;

15

2 Background

2.2.2 High-Level Synchronization Schemes

High-level synchronization schemes make use of a timestamp transmis-
sion/reception building block with the goal of increasing the achievable
accuracy and/or supporting multi-hop networks. In addition to that, these
schemes often include algorithms to find the best suitable node acting as
a time reference for the whole WSN. Skew rate estimation is an impor-
tant mechanism to lower the overall energy consumption and increase the
achievable accuracy and is explained in detail in this section. Followed by
that, the most prominent high level synchronization schemes are listed and
briefly described.

Clock Skew Compensation

All practical clocks are running at slightly different rates with respect to
each other. The drift factor between two oscillators / clocks is called clock
skew. Correcting this skew becomes especially important for long-term syn-
chronization and has a major impact at the power consumption by keeping
the number of synchronization packets low [5]. Assuming short-term con-
stant environmental temperature conditions, this dependency is assumed
to be linear [5]. Most high-level synchronization schemes already include
compensation algorithms, although clock skew compensation can also be
seen as intermediate layer between high-level synchronization schemes and
timestamp transmission/reception primitives.

Existing Schemes

Simple one-way broadcast synchronization. The simplest high-level syn-
chronization algorithm works only for one-hop synchronization. The idea
is that one node acts as a time server, while all other one-hop nodes act as
clients. The number of synchronization packets are kept at a minimum, as
no further communication is necessary. If a new node joins this one-hop
synchronization network, it simply has to wait until enough packets have
been received to estimate the server’s clock. While this scheme is easy to

16

2 Background

implement, the synchronization accuracy can still be improved by using
another, more sophisticated high-level synchronization scheme.

Round-trip synchronization. NTP [34] is a networking protocol for clock
synchronization that is built upon a timestamp transmission/reception
primitive. Figure 2.5 shows the working principle, which is based on two
nodes: a server node (A) and a client node (B). The algorithm works as
described below:

1. Node B requests the current clock of node A at time T1 using a
timestamp transmission primitive.

2. Node A receives the query at T2, processes it, and replies at T3.
3. As soon as Node B receives the response, it can calculate the clock

offset to f f set using the following formula:

to f f set =
(T2 − T1) + (T3 − T4)

2
(2.1)

Under the assumption that the transmission and reception of both
messages took the same time.

Figure 2.5: Working principle of NTP’s clock synchronization algorithm.

17

2 Background

RBS. The reference broadcast synchronization scheme [35] and its appli-
cation in WSNs [36] is fundamentally different from other clock synchro-
nization schemes, as it is based on receiver-receiver clock synchronization.
Instead of sending timestamps, a reference node broadcasts a reference
beacon that does not contain any timing information to all receivers. Upon
reception, the receivers note their local time and then exchange timing infor-
mation with their neighbouring nodes. The reference clock of the network
can then be calculated by comparing these timestamps, even in multi-hop
networks.

Prior to perfoming this synchronization, RBS [35] describes ways to choose
the reference node, which should periodically send the reference beacons.
After successful synchronization, a least squares fit algorithm is used to
account for clock skew variations between nodes. The main advantage of
RBS is the short critical path, which only includes the transmission and
reception delay of the reference node, which is typically in the µs range.

TPSN. The timing-sync protocol for sensor networks (TPSN) [37] is a high
level synchronization scheme for WSNs that uses a tree to organize the
network topology for multi-hop networks. It consists of two consecutive
phases: the level discovery and the synchronization phase. The former is run
once upon network deployment and establishes a tree network structure
where the reference time server is on level 0, also called the root node. If no
distinct server is defined, the role of the time server is periodically switched
between different nodes. Once the network topology is constructed, the
latter defines pair-wise synchronization between nodes beginning at the
root node and traversing the tree. Each synchronization uses a round-trip
algorithm to further increase the achievable accuracy.

By using MAC timestamping as a timestamp transmission/reception prim-
itive, TPSN claims to achieve a twice as good precision than RBS [37].
However, it does not define a skew rate estimation algorithm, so the syn-
chronization accuracy mentioned can only be achieved by periodic runs of
the synchronization phase.

FTSP. The flooding time synchronization protocol (FTPS) [38] is similar
to TPSN but, instead of using pair-wise synchronization, the root node
broadcasts its reference time using the MAC timestamping primitive to
all reachable client nodes. Upon reception, these nodes will adjust their

18

2 Background

clocks and act as the new reference node for all the next bunch of reachable
client nodes. In this way, a mesh network will be formed, where all nodes
will be synchronized to the root node. A big advantage of FTSP is that
topology changes are now handled with ease and no new tree structure has
to be discovered like in TPSN. In addition to that, FTSP defines methods to
periodically choose the best suitable root node, as well as methods for skew
rate corrections based on linear regression.

2.3 Cross-Technology Communication

Cross-technology communication (CTC) allows a direct communication
between devices with incompatible physical layers. The physical layer of
any wireless technology specifies the modulation scheme for sending and
receiving data. Due to the varying requirements, these modulation schemes
are highly optimized to specific applications and are not interoperable by
nature (e.g., a Wi-Fi device cannot directly communicate to a BLE device).
With CTC, arbitrary packets can be sent directly between devices with
different PHY layers. CTC can be divided into two groups: packet-level CTC
and PHY layer emulation.

2.3.1 Packet-level CTC

Packet level CTC can be used to transmit arbitrary data between incompati-
ble physical layers if the following fundamental pre-requisites are fulfilled.

• The used frequency bands overlap with each other. Figure 2.6 shows
the fully overlapping channels of BLE and IEEE 802.15.4 in the 2.4
GHz band.

• The current state of the channel can be queried. The IEEE 802.15.4
standard uses a carrier sense multiple access with collision avoidance
(CSMA/CA) algorithm which can be seen in Figure 2.7. Albeit BLE
does not support CSMA/CA, the most prominent available radio ven-
dors, e.g., Nordic, Texas Instruments, and STMicroelectronics, include

19

2 Background

vendor-specific extensions to retrieve the RSSI state information for
diagnostic purposes..

Figure 2.6: Overlapping frequency spectrum of BLE and IEEE 802.15.4.

By sending conventional arbitrary packets on the correct overlapping fre-
quency, the energy on the channel will increase significantly. A radio op-
erating on the same physical layer is hence able to detect and decode the
packet on the channel. However, radios with incompatible PHY layers can-
not decode the sent packet. Instead, they can sense the intensity and the
duration of the received noise by continuously observing the RSSI value i.e.,
by sampling the RSSI register at high frequency. In packet-level CTC, data
can hence be encoded by either sending legitimate data packet, i.e., energy
bursts, with different lengths (i.e., encode information in the duration of en-
ergy bursts) or by varying the transmission power (i.e., encode information
in the intensity of energy bursts). Figure 2.8 shows the CTC transmission

20

2 Background

Figure 2.7: CSMA/CA algorithm used in the IEEE 802.15.4 standard.

principle making use of the received signal strength information.

Below, several examples of state-of-the-art packet-level CTC schemes are
given:

B2W2. B2W2 is a cross-technology communication framework from BLE to
Wi-Fi that still allows standard Wi-Fi to Wi-Fi communications. It relies
on changing the transmission power level of adjacent BLE packets and
embedding a discrete sine wave into these levels. This “discrete amplitude
frequency shift keying converter” is used to map symbols to power levels of
valid BLE packets in different overlapping channels. In principle, decoding
works by obtaining a Wi-Fi channel state information (CSI). One major
drawback of this technology is that the power level embedded in this

21

2 Background

Figure 2.8: Simplified illustration of packet-level CTC transmissions. Arbitrary data will
be encoded using a packet-level CTC encoder and a communication alphabet
and gets then sent on the shared RF channel. The receiver will continuously
sample the channel state information to obtain information about the energy
burst length and intensity, which can then be decoded using the same principle.

information can only be read when collisions have occurred during the
transmission. In addition to that, only unidirectional transitions from BLE
to Wi-Fi are possible.

FreeBee. FreeBee is a cross-technology communication framework between
BLE, ZigBee and Wi-Fi [39]. The basic idea is to use Wi-Fi’s existing beacon
frames to encode data using pulse position modulation (PPM). Due to
the re-using of the already existing beacons, no additional communication
overhead is created. However, only a very low bandwidth of 30 bpm can be
achieved. Furthermore, this approach is very sensitive to noise and only the
three advertisement channels of Wi-Fi can be used for transmitting data.

X-Burst. X-Burst is a cross-technology bi-directional communication scheme
between BLE and ZigBee devices [20]. It uses precisely-timed energy bursts
to transmit information between incompatible physical layers. The arbitrary
data is encoded in packet lengths and intervals (gaps) between these energy
bursts. It is highly configurable and can be optimized to either achieve a

22

2 Background

high-reliability or a high transmission rate. It was first implemented on
the popular TI CC2650 LaunchPad and Sensortag [40], but has lately been
ported to more hardware platforms and also supports broadcasts, as well as
Wi-Fi platforms which was showcased in [22]. As X-Burst is a fundamental
building block of this thesis, it is described in more detail in Section 2.4.

2.3.2 PHY Emulation CTC

The physical layer describes the raw access scheme to the used wireless
channel in the defined frequency band. It therefore defines the modulation
scheme, which greatly influences radio characteristics such as transmission
speed, reliability, and energy efficiency. Often, two PHY layers with similar
characteristics share similar modulation schemes. Several recent works show
that this fact can be used to emulate another PHY layer within the sent
packet. Figure 2.9 shows the working principle.

Figure 2.9: Working principle of PHY emulation schemes. An emulated CTC packet is
embedded into a valid PHY packet.

The achieved transmission speed can be very high and error tolerant, as long
as the modulation schemes are similar. The problem is that this approach
cannot be extended easily because it takes a lot of analytical work to calculate
the mapping symbols between two PHY layers, as well as to generate the
required emulated preamble. If a solution exists and is found, it is very easy
to send and receive CTC packets. However, a mapping scheme between
two schemes does not necessarily exist. If this is the case, this approach
is not applicable. Furthermore, broadcast messages to multiple devices
with different PHY layers is not possible, as only one technology can be

23

2 Background

emulated at a time. For the reasons mentioned above, in this thesis, we will
use packet-level CTC as foundation for clock synchronization.

Several examples of state-of-the-art PHY emulation schemes are given
below:

BlueBee. BlueBee allows high data rate uni-directional communications
between BLE and ZigBee devices [21]. Due to the similarities between the
used modulation schemes, the autors found a way to emulate a valid ZigBee
frame within in a standard-complaint BLE packet. This allows very high
datarates of up to 225kpbs, but only works in one direction. Although in
theory, communications from ZigBee to BLE could be possible, reliable
decoding of the received frames is not possible, due to the nature of the
used modulation schemes.

WEBee. WEBee achieves uni-directional Wi-Fi to ZigBee transmissions by
using PHY layer emulation even in noisy environments [41]. Additionally,
WEBee can emulate up to two BLE packets within one Wi-Fi frame, thus
resulting in a higher spectrum efficiency. Due to the nature of PHY layer
emulation, the frame reception ratio for Wi-Fi to ZigBee transmission is
about 50%, which has to be compensated for in the upper layers. The authors
claim that enhanced versions of WEBee allow bi-directional communication,
which is currently under development.

2.4 X-Burst

X-Burst is a cross-technology, bi-directional, packet-level communication
framework between BLE and IEEE 802.15.4 devices [20]. It is designed to
be non-technology specific, which is shown by the support of a Wi-Fi radio.
Hence X-Burst allows bi-directional communication between Wi-Fi, BLE
and IEEE 802.15.4 devices simultaneously, including support for broadcast
transmissions [22]. Support for Wi-Fi was not available at the beginning of
this thesis and thus is not discussed furthermore. X-Burst uses precisely-
timed energy bursts to transmit information between incompatible physical
layers. These energy bursts are generated by sending legitimate data packets
of variable length. Thereby, the information is encoded in the duration of

24

2 Background

packets and/or in the intervals in-between. Figure 2.10 shows the working
principle of X-Burst.

Figure 2.10: Working principle of X-Burst [20].

In order to allow both BLE and IEEE 802.15.4 devices to transmit and receive
energy bursts, valid RF packets of the respective physical layer are used.
The duration of these energy bursts is therefore discrete and has certain
limitations defined in the PHY layer. In addition to that, user policies can
be applied to either focus on high data rates or high reliability. All these
considerations define the communication alphabet that maps arbitrary data
to X-Burst symbols. Table 2.1 shows a sample communication alphabet
with the packet length for both BLE and IEEE 802.15.4 using a hexadecimal
encoding.

The result of this mapping mechanism are “bursts” and “gaps” that can
then be sent on the RF channel. Any PHY-compatible radio can receive this
stream of information, where each burst (i.e, transmitted packet) would
have variable length. Radios with different PHY layers, however, can receive
the CTC encoded data by sampling the RSS at high frequency. Figure 2.11
shows an encoded packet on the RF channel using a hexadecimal mapping,
the RSSI sampling intervals, and the received reconstructed packets. Once
the packet is fully received, the same mapping scheme will be applied
again to recalculate encoded data / information. The recorded energy burst
duration can vary because of the slow sampling speed or because of external
interference.

25

2 Background

Value Energy Burst
Duration [µs]

Payload Bytes
BLE

Payload Bytes
IEEE 802.15.4

0x0 192 14 0
0x1 224 18 1
0x2 256 22 2
0x3 288 26 3
0x4 320 30 4
0x5 352 34 5
0x6 384 38 6
0x7 416 42 7
0x8 448 46 8
0x9 480 50 9
0xA 512 54 10
0xB 544 58 11
0xC 576 62 12
0xD 608 66 13
0xE 640 70 14
0xF 672 74 15

Table 2.1: X-Burst mapping scheme using a common alphabet and hexadecimal encoding.

One major challenge that X-Burst has successfully mastered is accurately
measuring the length of energy bursts, even when the RSSI value is aver-
aged with a moving window, according to the standard (IEEE 802.15.4).
A sampling strategy for the reception of X-Burst transmissions on these
radios has been developed and successfully evaluated. Instead of using
only one threshold to detect the presence of an energy burst, several config-
urable thresholds are used. In addition to that, during the preamble, X-Burst
compares the measured averaged durations to the nominal energy burst
durations and calculates a compensation offset value. This offset is then
used for the payload of the CTC packet.

X-Burst is implemented using a highly-modular architecture which reduces
complexity of the CTC implementation, maximises code reuse and increases
the portability to other hardware platforms [20], which is illustrated in
Figure 2.12. The hardware abstraction layer defines a minimal set of func-
tions which need to be implemented in order for X-Burst to work, such
as sample RSS or generate burst. Building on top of that layer are the
encoding and decoding layers, which manage X-Burst transmissions and
receptions respectively. At this layer, the durations are known but not the

26

2 Background

Figure 2.11: Example transmission of a small packet using hexadecimal encoding with
burst only modulation (no data is encoded in gaps between bursts).

actual data. With the use of the chosen coding scheme and therefore the
chosen communication alphabet, durations can be converted to data and
vice-versa. X-Burst transmissions are very versatile, and can be broadcasts,
unicasts or multicasts, can include a checksum and/or the payload length
and other features defined in the header. The frame management layer
handles these flags in the header and communicates with the application.

Figure 2.12: X-Bursts modular architecture, taken from [42].

27

2 Background

2.5 Related Work

This section gives an overview about the most important works in the field
of cross technology coexistence and cross-technology clock synchronization.
The first three Sections (2.5.1 - 2.5.3) focus on cross technology coexistence,
where time synchronization is a central aspect. All three works include
an evaluation in terms of transmission errors, but no evaluation of the
synchronization accuracy. Section 2.5.4 presents Crocs, to date, the only
other existing cross-technology clock synchronization scheme.

2.5.1 Coexistence between IEEE 802.15.4 and IEEE 802.11
through cross-technology signaling

The work of Bauwens. et. al. deals with the coexistence problem of IEEE
802.15.4 and IEEE 802.11 nodes [43], which conventionally results in perfor-
mance degradations. Their vision is that devices should be able to negotiate
medium access with each other, instead of implementing a contention based
access. They use a novel cross-technology time division multiple access
(TDMA) scheme, which works due to synchronization using an energy
pattern beacon. The working principle can be seen in Figure 2.13. A periodic
IEEE 802.11 beacon is sent from the central node. All other nodes can receive
this pattern by sampling the current energy on the shared radio channel
and can use this information to time their transmissions according to the
predefined schedule. Thereby, their goal is to minimize collisions, but not
to maximize synchronization accuracy, which means that nodes must only
listen for beacons if their clock drift is above a certain threshold. To show
the feasibility of the proposed TDMA scheme, it was successfully evaluated
in a large scale testbed.

A demo regarding the developed TDMA scheme [44] showcases this novel
solution. The impact of parameters such as distance to beacon transmitter,
CCA threshold, and interference were evaluated. The conclusion of this
demo is that a cross-technology TDMA scheme is a viable option to mitigate
cross-technology interference.

28

2 Background

Figure 2.13: Working principle of the cross-technology TDMA scheme proposed in [43].

2.5.2 Cross-technology wireless experimentation: Improving
IEEE 802.11 and 802.15.4e coexistence

The authors of [45] created a novel wireless experimentation framework
called WiSHFUL that facilitates the prototyping and experimental validation
of innovative solutions for heterogeneous wireless networks. The proposed
framework aims to separate the definition of logical behaviour in wireless
networks and the underlying device capabilities. One application of this
framework is cross-technology interference mitigation between IEEE 802.11
and IEEE 802.15.4e nodes, which is shown by implementing an on-the-
fly configurable TDMA scheme (Figure 2.14). The authors presented their
solution in an interactive demonstration which showed the effectiveness
of cross-technology interference mitigation and allowed the users to better
understand the WiSHFUL framework. The relative synchronization accuracy
of the IEEE 802.11 and IEEE 802.15.4e nodes was not evaluated.

2.5.3 Exploiting Programmable Architectures for
Wi-Fi/ZigBee Inter-Technology Cooperation

The authors of [46] created a cross-technology TDMA scheme, similar to
[43] and [45] by utilizing programmable platform-agnostic architectures,
namely Wireless MAC processor (WMP) [47] and SnapMAC [48]. These

29

2 Background

Figure 2.14: Working principle of the cross-technology TDMA scheme proposed in [45].

architectures allow to define a simple TDMA scheme in a hardware-agnostic,
cross-platform manner, as shown in Figure 2.15.

Figure 2.15: Working principle of the cross-technology TDMA scheme proposed in [46].

In their evaluation, the authors show that by using the TDMA protocol, this
lost time is recovered, and the channel is used much more efficiently without
negatively effecting the Wi-Fi throughput. The relative synchronization
accuracy of the Wi-Fi and ZigBee nodes was not evaluated.

30

2 Background

2.5.4 Crocs

Crocs is a cross-technology clock synchronization scheme for synchronizing
ZigBee to Wi-Fi networks. CTC is achieved by using the channel state
information sensing capabilities of the ZigBee nodes. The low software
sampling speed of these RSSI values makes the use of a synchronization
mechanism necessary. Crocs achieves that by sending Wi-Fi packets with
data encoded in the timespans between adjacent transmissions. Figure 2.16
shows the high-level operating principle of Crocs, which is divided into two
phases: the alignment phase and the timestamp transmission phase.

Figure 2.16: The high-level operating principle of Crocs [49].

Clock alignment phase. A specially encoded sequence called the Barker

31

2 Background

sequence will be sent to the ZigBee node by transmitting Wi-Fi packets with
data encoded in the time between adjacent transmissions. Upon reception,
the receiving node makes use of the autocorrelation function, which cor-
relates the received signal to itself. The exact same calculation is done at
the transmitter. The used Barker code possesses the ideal autocorrelation
property, which results in a peak at a specific point in time (that will be the
same at both the transmitting and the receiving node). This peak will be
used at the transmitter and at the receiver to sample the current local clock.
Figure 2.17 shows the autocorrelation of the used Barker sequences. The
peaks in this sequence are used to obtain synchronization between a Wi-Fi
and a ZigBee node.

Figure 2.17: Barker Sequences used in Crocs [49].

Timestamp transmission phase. The stored timestamps will be transmitted
afterwards in a non time-critical CTC transmission. Upon reception, the
receiving node now has a synchronization pair consisting of the transmit-
ting Wi-Fi nodes timestamp T1 and the receiving ZigBee nodes local T2
timestamp. [49] defines two different modulation schemes, which can both
be used to transmit the created timestamp of the Wi-Fi transmitter to the
ZigBee client. When the packet is successfully transmitted, the ZigBee node
has now both timestamps and can correct its clock, as well as estimate the
skew rate.

In the evaluation, Crocs achieves a synchronization accuracy of up to 1ms.
To achieve that, a USRP system was used to generate the required Wi-Fi

32

2 Background

synchronization sequence and to transmit the timestamp using CTC. To
conclude, Crocs has certain drawbacks which do not make the system
usable:

• no off-the-shelf hardware used;
• uni-directional synchronization scheme only;
• the achievable accuracy of 1ms is not enough for IoT applications.

2.6 Employed Hardware

To demonstrate the generic design of X-Sync, as well as to allow future
portability, we implemented the scheme on several off-the-shelf IoT develop-
ment platforms. The employed hardware platforms, which are listed below,
are largely diverse, and range from low clock speeds (8MHz) and only
IEEE 802.15.4 support to high speed (40MHz), dual radios (BLE and IEEE
802.15.4). Hereby, the available memory on each platform is given in Table
2.2.

Node available ROM [kB] available RAM [kB]

CC2650 (BLE) 128 28
Firefly (IEEE 802.15.4) 512 32
TelosB (IEEE 802.15.4) 48 10

Table 2.2: Summary of the available memory for the used off-the-shelf IoT development
platforms.

2.6.1 TI CC2650 Launchpad and Sensortag

Both the TI CC2650 Launchpad and the Sensortag platform are based on
the Texas Instruments CC2650 radio chip, which offers a low-cost and multi-
standard package supporting both BLE 4.2 and IEEE 802.15.4 in a single
package [40]. The chip consists of two integrated CPUs: the ARM Cortex-M3
main core and a separate Cortex-M0 core for the radio communication. The
former provides a 48 MHz clock and several low-power modes, while the

33

2 Background

latter handles time-critical radio communications. Communication between
these two is handled by the Communication Packet Engine (CPE) subsystem,
which provides an easy way to send and receive packets. Figure 2.18 shows
a block diagram of the RF subsystem which is fully supported in Contiki
and Contiki-NG.

Figure 2.18: CC2650 functional block diagram [40].

2.6.2 TelosB Mote

The TelosB Mote [50] is an ultra low-power IEEE 802.15.4 compliant wireless
sensor module. It is based on the MSP430 microcontroller paired with an
IEEE 802.15.4 compatible transceiver (TI CC2420 [51]). Figure 2.19 shows
the functional block diagram. The CPU is clocked at up to 8 MHz and offers

34

2 Background

an extended random access memory of 10 kB that is sufficient to run a
small operating system. This development platform is officially supported
by both Contiki and Contiki-NG. The Texas Instruments CC2420 transceiver
is a single-chip 2.4 GHz IEEE 802.15.4-compliant and ZigBee-ready RF
transceiver, which is interconnected to the main CPU using a 4 wire SPI
interface. Additional features include 1 MB external flash space as well
as light, temperature, and humidity sensors. Due to the popularity and
the open-source hardware design, many clones are existing today (e.g.,
Advanticsys MTM-CM5000 [52] and the Moteiv Tmote Sky [24]). In this
thesis, the Advanticsys MTM-CM5000 clone is used.

Figure 2.19: Functional block diagram of the TelosB open-source hardware design, its
components, and buses [24].

35

2 Background

2.6.3 Zolertia Firefly

The Zolertia Firefly development platform [25] was designed for 2.4 GHz
as well as 863-950 MHz IEEE 802.15.4 applications and is supported in
both Contiki and Contiki-NG. It features a CC2538 ARM Cortex-M3 micro-
controller [53] clocked at 32 MHz with an on-chip 2.4 GHz IEEE 802.15.4-
compliant RF transceiver. In addition to that, a CC1200 low-power, high
performance RF transceiver [54] is externally connected via SPI. This ra-
dio allows to use a number of different frequency bands, including the
ISM/SRD bands 169, 433, 868, 915 and 920 MHz.

2.7 Employed Software

In order to show the portability as well as the generality of our solution, we
implemented X-Sync on different hardware platforms. Operating systems
(OS) provide hardware-independent abstraction mechanisms to allow shar-
ing a common codebase between different development platforms. Due to
very strict timing requirements within low-level timestamp transmission
and reception, hardware-specific code has to be developed as well. However,
abstraction into more generic operating system layers is always preferable.
Due to its concurrency support, its high popularity, as well as its active
development, Contiki-NG was chosen as the operating system.

Contiki-NG describes itself as an OS for the next generation of IoT devices.
Contiki-NG is open source, supports several platforms, and focuses on
(secure and reliable) low-power wireless communication [55]. It is a fork of
the original Contiki OS and will most likely become its up-to-date succes-
sor. Hereby, Contiki-NG focuses on standard-based IPv6 communications,
modern IoT platforms (mostly 32-bit MCUs), and right on documentation.
To achieve these goals, it follows a agile development process with periodic
releases. By using this codebase, it is possible to write platform-agnostic
code with support for several higher layer protocols such as IPv4, IPv6,
UDP, and TCP. Platform-specific code is isolated from the main system and
can also be extended and modified. Like the original Contiki, Contiki-NG
has built-in support for protothreads [56], which are a low-level mechanism

36

2 Background

for concurrent programming. Protothreads are stackless, lightweight, and
non-preemptable threads ensuring that a running program block will be
executed in the correct order, while native, platform-dependent interrupts
are still possible.

37

3 X-Sync: Design

The first step in designing a CTCS scheme is define the requirements (Sec-
tion 3.1). Thereafter, we present a system overview in Section 3.2, where the
design rationale and working principle of our X-Sync CTCS scheme is dis-
cussed in detail. Afterwords Sections 3.3, 3.4, and 3.5 discuss in more detail
how X-Sync tackles a number of challenges in fulfilling the requirements
listed in Section 3.1.

3.1 Requirements

The requirements listed below are set by hardware and software limitations
by common applications, as well as by the state-of-the-art in the field of
clock synchronization.

The relative synchronization error between two synchronized nodes has
to be below 2.3µs under ideal conditions. The relative error between two
synchronized sensor nodes is an essential factor for the validity and in-
tegrity of distributed measurements. Depending on the type of application,
this error should be as low as possible, especially for real-time, industrial
environments. State-of-the-art synchronization protocols for homogeneous
wireless networks achieve synchronization accuracies of up to 1.5µs in a
one-hop scenario [57]. Petros et al. [58] conclude that for certain specialised
applications such as power lines and grids, an absolute accuracy of up to 1µs
is needed. To put this number into perspective, Figure 3.1 shows the accumu-
lated timing error from a commercial off-the-shelf crystal oscillator, which is
embedded into popular IoT platforms. The authors of [58] further claim that
the precision time synchronization protocol (PTP) in an IEEE 802.11 network
can achieve a maximum accuracy of 2.3µs under ideal conditions. All other
compared synchronization schemes in [58] are either hardware based or use
additional hardware such as time references and are therefore not usable
for this thesis. Existing works in cross-technology clock synchronization
achieve millisecond accuracy [49], which simply is not sufficient for most
applications, e.g., in industrial IoT applications [59]. For the aforementioned
reasons, one goal of this thesis is to sustain a synchronization accuracy of

38

3 X-Sync: Design

2.3µs under ideal conditions, which corresponds to the maximum accuracy
of PTP. This would mean that, although a cross-technology synchronization
scheme is used, no accuracy is lost compared to a conventional solution for
homogeneous networks.

Figure 3.1: Accumulated timing error from a commercial-off-the-shelf crystal oscillator.
Image taken from [60].

The synchronization between two nodes should be reliable. Packet-level
cross-technology communication works by continuously sampling the en-
ergy level on the channel. Any noise on the channel will hereby influence
the timing of the transmitted energy bursts and has direct impact on the
synchronization accuracy. Thus, disturbances are more likely than in ho-
mogeneous systems and have a bigger impact on data integrity. X-Sync
has to be reliable not only in low-noise laboratory experiments, but also in
real-world conditions.

Low memory footprint. If clock synchronization is needed for a specific
application, there should still be enough memory available on the node
for the application logic. The proposed solution should be configurable
in terms of memory consumption, albeit this could lower the sustained

39

3 X-Sync: Design

synchronization accuracy. Despite these limitations, X-Sync should run on
older, memory limited development platforms, such as the TelosB.

High energy efficiency. Wireless sensor nodes are often used in power-
constrained environments. Therefore, energy efficiency is significant, as the
available energy is limited and replacing batteries is expensive and often
not feasible in remote locations. X-Sync should hence allow to trade energy
efficiency against synchronization accuracy, which allows configuring X-
Sync to the requirements of the application and device.

Generality. Nodes with lower processing capabilities should be supported
by X-Sync seamlessly. However, not all hardware platforms have access to
accurate, high frequency timers. X-Sync should run on these platforms as
well, albeit with a reduced accuracy due to these limitations. Furthermore,
X-Sync should be portable to other hardware platforms, other operating
systems and other wireless technologies which allow RSS sampling.

3.2 Overview

In this section, we introduce X-Sync, a novel cross-technology clock synchro-
nization scheme that allows to seamlessly exchange timestamps between
IEEE 802.15.4 and BLE devices with a microsecond-level accuracy. It achieves
that by extending the packet-level CTC scheme X-Burst in a way to allow a
high-accuracy clock synchronization. Figure 3.2 gives an overview of the
X-Sync CTCS scheme, which we divide into three sections: transmission,
reception, and validation/clock correction.

Transmitting. Device A starts by sending a CTC preamble on the shared
cross-technology radio channel. Immediately, the current clock at the trans-
mitter is sampled and stored in T1, which will get transmitted at a later
stage. Next, the transmitter sends the synchronization preamble which is
needed for clock compensation at the receiver. Lastly, the header, a pay-
load (if any) and the formerly stored timestamp T1 are added to the CTC
transmission. The whole transmission and especially the transmission of
the synchronization preamble rely on having accurate timing behaviour, as
discussed in detail in Section 3.3, and primarily depends on the following:

40

3 X-Sync: Design

Figure 3.2: Overview of the X-Sync CTCS scheme, divided into a transmitter (device A)
and a receiver (device B) section with the shared cross-technology channel
illustrated in between. Device A begins by sending the CTC preamble, followed
by a synchronization preamble and the actual timestamp T1. Device B detects
CTC preamble on the shared channel, synchronizes upon the synchronization
preamble and finally receives the timestamp T1. At this stage, device B knows
both timestamps T1 and T2, checks them for validity and uses them to correct its
local clock. The exact moment when T1 and T2 are sampled, at the transmitter
and the receiver respectively, are indicated explicitly.

• The radio state machine (i.e., a limited set of states handling the
transmission and reception of radio packets) introduces several de-
terministic and non-deterministic delays during the transmission of
radio packets, which limits the achievable accuracy.

• During the transmission of multiple data packets, the CPU must not

41

3 X-Sync: Design

be interrupted by other tasks (e.g., interrupts). Inaccurate energy burst
timings greatly decrease the synchronization accuracy.

Receiving. With the detection of the CTC preamble, device B immedi-
ately samples the reception time T2. This timestamp will be corrected and
compensated for delays introduced due to the use of CTC by using the
synchronization preamble. The packet is then fully received, and the times-
tamps T1 and T2 form a clock synchronization pair. This process relies on
having an accurate reception timing, as discussed in more detail in Section
3.4 and depends on the following:

• The RSS sampling frequency is slow (e.g., 40kHz on some platforms)
and limited by the underlying hardware. Therefore, the detection
accuracy of the start of an energy burst is limited and has a direct
impact on the synchronization accuracy.

• The IEEE 802.15.4 standard is specifying a moving average RSS filter
that has to be implemented on the radio state machine. Thus, the
actual RSS value on the RF channel cannot be obtained. This greatly
reduces the achievable sampling precision.

• The reception process must not be disturbed by any other event hap-
pening on the microcontroller, such as interrupts. These events could
lead to wrong energy burst timings, which decreases the synchroniza-
tion accuracy.

Validation and correction. Once such a clock synchronization pair (T1, T2)
is available at device B, it is further processed and checked for validity by the
use of RANSAC. RANSAC is an iterative method to detect outliers within
a set of observed data. Due to the energy sampling nature of packet-level
CTC, transmissions are not equally reliable as traditional, homogeneous
networks. RF interference can hereby manifest in two ways:

• RF interference can lead to wrongly decoded symbols and therefore
wrong timestamps. Such transmission errors need to be detected and
must not be used for the synchronization process.

• RF interference can lead to wrong reception timings, which strongly
affects the achieved synchronization accuracy. Such outliers must be
detected and filtered during skew rate estimation.

42

3 X-Sync: Design

Once the received clock synchronization pair is checked for validity, clock
skew estimation is needed to reduce energy consumption and increase the
long-term synchronization accuracy. Finally, the local clock of the receiving
node can be corrected. This whole process is discussed in more detail in
Section 3.5.

3.3 Precise Transmission Timing of CTC
Messages

The averaging delay τaveraging compensation methods mentioned in Section
3.4 rely on having an accurate transmission timing as a substitute for high-
frequency sampling. X-Sync makes use of high-precision clocks (Section
3.3.1), radio queues (Section 3.3.2) and interrupt priority masking (Section
3.3.3) to achieve that. X-Sync transmissions also incorporate MAC times-
tamping (Section 3.3.4) to compensate the send and access times on the
transmitting node.

3.3.1 High-Precision Clocks

A pre-requisite of a high-precision clock synchronization scheme is to have a
stable, high frequency clock source connected to a timer. Hereby, properties
of such clocks vary greatly among the available hardware. Each available
timer was therefore evaluated and compared in terms of stability and
frequency. Furthermore, the free running timer is often limited to either 16
or 32 bits, which is not enough to keep track of the current time for a long
period. Thus, these timers had to be extended by counting the overflows
and extending the maximum count.

3.3.2 Radio Queues

Radio queues are a hardware feature of IEEE 802.15.4 and BLE radios
that allow the user to build a queue consisting of radio commands. These

43

3 X-Sync: Design

commands include instructions for packet transmission and waiting for a
specified duration. X-Sync uses this mechanism to enqueue packets (energy
bursts) and wait commands (gaps) in between these packets. Once such
a structure is built, the radio state machine will process these commands
one by one without being interrupted by other tasks happening on the
microcontroller. Precise timing is therefore guaranteed. Figure 3.3 illustrates
how energy bursts and gaps are transmitted conventionally. First, the current
packet is enqueued and will be processed whenever the radio state machine
is ready. After an successful transmission, the microcontroller waits for the
amount of time specified for the gap before repeating the whole process.
The transmission timing can hereby be influenced by the following events:

• The radio state machine is not always in the same state when the mi-
crocontroller enqueues and transmits an energy burst. This introduces
an uncertainty.

• The radio state machine has to tell the microcontroller once the trans-
mission is finished: depending on how this is done internally, it can
introduce lags.

• During the busy wait state (for creating the gaps), the microcontroller
must not be interrupted. If so, the gap timespan can be off.

Figure 3.4 illustrates how the same behaviour can be achieved with exact
transmission timings. A radio queue containing energy bursts and gaps is
built. This queue can then be processed by the radio state machine one by
one, without the need of any microcontroller interaction and with precise
timings.

X-Sync has to be versatile to allow both ways of transmission, as some
platforms may not have radio queues or similar mechanisms. This will be
described in detail in Chapter 5.

3.3.3 Interrupt Priority Masking

Interrupt priority masking is an important hardware feature for radios that
do not allow radio queues. Priorities can be assigned to interrupts that can
then be masked by setting a priority threshold. Interrupts with a lower
priority than the threshold will be masked and, therefore, ignored.

44

3 X-Sync: Design

Figure 3.3: Packet-level transmission without the use of radio queues. Energy bursts will
be enqueued, eventually processed by the radio state machine and transmitted.
The microcontroller is then responsible for waiting the amount of time specified
for the gap. This process is repeated until the CTC message is transmitted.

3.3.4 MAC Timestamp Transmission

MAC time-stamping provides a way to compensate delays introduced by
the transmitting process (send time, access time). It is based on appending
data on the MAC layer in the latest possible moment before the transmission
starts. Whenever data is going to be transmitted, it is pushed to the radio
core’s queue and is stored until the state machine of the radio is ready. This
introduces some jitter, as it is not deterministic when the packet is sent. The
following steps can be taken to overcome this problem:

1. Register for an interrupt / event when the data is actually sent or n
bytes are written;

45

3 X-Sync: Design

Figure 3.4: Packet-level transmission with the use of radio queues. All energy bursts and
gaps will be enqueued using the mechanisms provided by the radio. Once
all data is processed, the transmission of the whole queue will be triggered.
Thereby, the radio state machine is managing the precise burst and gap timings,
instead of the microcontroller.

2. Reserve some space for the synchronization timestamp in the X-Sync
message and build the radio queue consisting of energy bursts;

3. When the interrupt occurs, the timestamp will be recalculated, trans-
lated into energy bursts using the given encoding and replaced in the
X-Sync message.

46

3 X-Sync: Design

3.4 Precise Reception Timing of CTC Messages

Figure 3.5 shows the deterministic and non-deterministic delays of packet-
level clock synchronization systems. It illustrates a transmitting node (TX)
sending a X-Sync transmission to a receiving node (RX). All delays present
in conventional clock synchronization systems can be neglected or compen-
sated for using state-of-the-art methods. X-Sync employs novel strategies
to further compensate the non-deterministic delays inherent to packet-
level CTCS systems, the averaging delay τaveraging and the sampling delay
τsampling. The reasons for the former, as well as novel methods for its com-
pensation are discussed in Section 3.4.1, which allow for estimation of
τaveraging without increasing the number of packets sent. The reasons for the
latter are discussed in Section 3.4.2; For their compensation, an additional
synchronization preamble is appended to the CTC transmission, which is
also discussed in Section 3.4.2.

Figure 3.5: Transmission delay within X-Sync, divided into deterministic, non-deterministic,
CTC related, and IEEE 802.15.4 specific delays. In this scenario, a transmitting
node (TX) sends a synchronization message to a receiving node (RX). The CTC
related sampling delay τsampling and the IEEE 802.15.4 specific averaging delay
τaveraging are further defined and described in Section 3.4.2 and 3.4.1 respectively.

47

3 X-Sync: Design

3.4.1 Averaging delay τaveraging

In X-Burst [20], instantaneous and non-instantaneous RSSI measurements
are defined and discussed. Their respective radios are defined in the same
way as in this thesis. BLE and IEEE 802.15.4 make use of instantaneous and
non-instantaneous RSSI sampling, respectively. Figure 3.6 shows an example
of a X-Sync transmission on a non-instantaneous RSSI radio. It shows that a
moving average filter is used to filter the RSSI values. In addition to that, if
the RSSI querying speed is faster than the sampling speed, the same RSSI
value is retrieved twice. This has several implications:

• The energy burst durations strongly depend on the chosen threshold.
• The beginning of the energy burst (rising edge) needed for the pro-

posed CTCS also depends on the chosen threshold.

Figure 3.6: X-Burst transmission with an IEEE 802.15.4 receiver, whose RSS values are fil-
tered by a moving average filter, in compliance with the standard. The difference
between the received RSSI (solid, black), and the actual energy on the channel
(dashed, blue), varies greatly.

The averaging delay τaveraging is defined in Figure 3.7 as the timespan
between the nominal start of the burst if no averaging would be applied
and the actual detection of the energy burst. This delay has the following
properties:

• Threshold dependent. The averaging delay τaveraging is proportional to
the configured RSS threshold.

48

3 X-Sync: Design

• Location dependent. With decreasing distance between the transmitter
and the receiver, the maximum RSS of the energy burst increases. This
decreases the averaging delay τaveraging.

• Transmission power dependent. With decreasing transmission power,
the averaging delay τaveraging is also decreased.

• Non-deterministic.
• τaveraging is in the interval 0 < τaveraging < 128µs, because of the

moving average filter defined in the IEEE 802.15.4 standard, which
averages over exactly 8 samples.

Figure 3.7: RSS measured at an IEEE 802.15.4 node (solid, black) versus the actual RSS
values seen at the channel without any averaging (dashed, blue). The τaveraging
delay is defined as the interval between these two graphs and varies depending
on the selected RSS threshold.

Without further compensation, the achievable synchronization accuracy
would be limited by the change of the averaging delay between packets,
either due to changing transmission powers, or due to changed distances
between the transmitter and the receiver.

49

3 X-Sync: Design

Averaging delay τaveraging compensation

In order to define a compensation scheme for the averaging delay τaveraging,
a distinction between static and dynamic environments has to be made.
The former is defined as node arrangements where the position of the nodes
is not changed during the synchronization. Additionally, no change in the
transmission power is made. The latter covers the general case where every
node may be moved and the transmission power can be changed freely.

Static Environments. For each transmitter-receiver pair (i,j), it exists exactly
one averaging delay τaveraging,i,j (which is therefore constant). This constant
delay can be measured once when the physical arrangement of the nodes is
fixed and can then be easily compensated for by subtracting this interval
from the estimated clock at the receiver.

Dynamic Environments. The averaging delay between each transmitter-
receiver pair is varying between synchronizations. This non-deterministic
delay can vary by as much as 128µs, which directly influences the achievable
synchronization accuracy. When we assume short-term static conditions
during the transmission of the preamble, and assuming that we know
the difference between the measured duration dmeasured and the nominal
duration dnominal of the energy burst, this delay can be estimated using the
following formula:

τaveraging,estimation = 64µs− (dmeasured − dnominal)

2
(3.1)

By continuously sampling the energy on the cross-technology channel
and evaluating this energy with a predefined threshold, the measured
duration dmeasured is known. Based on this duration, the nearest nominal
duration dnominal can be calculated because only a distinct duration alphabet
is allowed. With this information, the estimation can be calculated for every
energy burst in the preamble. The average of those τaveraging,estimation can
then be subtracted from the estimated clock at the receiver.

50

3 X-Sync: Design

3.4.2 Sampling delay τsampling

All energy sensing CTC schemes are sampling the transmitted energy
burst in software, either in the time domain or in the energy domain. The
sampling and processing speed is therefore limited by the used hardware
and is in the range of 20µs to 60µs per measurement, which is equivalent to
a sampling rate of 50 to 16 kHz respectively. This has several implications
for the packet-level CTC sampling:

• The sampled energy burst durations are not equal to the nominal
durations. Instead, they can be off by as much as the RSSI sampling
time.

• These variations are highly varying and unpredictable.
• Sampling the energy burst durations with a sampling frequency which

is lower than twice the rise time of the energy burst effectively intro-
duces artefacts because of Nyquist’s sampling theorem.

Due to the low sampling rate of the RSS information, the detected start of
the energy burst, when the set RSS threshold is exceeded, is not equal to the
real start of a transmission. This can also be seen in Figure 3.8, which shows
the definition of the sampling delay in more detail. We call this interval
sampling delay τsampling, which has the following properties:

• Unpredictable and non-deterministic.
• Depending on the exact sampling point in time, τsampling is highly

varying between CTC transmissions.
• τsampling is in the interval 20 < τaveraging < 60µs for all used hardware

platforms in this thesis.
• τsampling can never be negative, because detecting the start of the

energy burst on the channel before it is sent is not possible.

Without compensation schemes, the achievable accuracy will always be
limited by this delay and by the RSSI sampling speed of the node. Com-
pensation methods are needed to achieve the required accuracy goal of
2.3µs.

51

3 X-Sync: Design

Figure 3.8: Transmission of one energy burst between one transmitter (TX) and one receiver
(RX). The sampling delay τsampling is defined by the timespan between the real
start of the burst on the physical channel and the detected start of the receiver
τsampling = TE − TR. This delay is caused by the low RSS sampling speed which
is inherent in packet-level CTC solutions.

Sampling delay τsampling compensation

The RSSI sampling and processing frequency is defined by the underlying
hardware and cannot be increased without changing the development
platform. However, the specific point in time when the RSSI sampling is
initiated can be chosen freely and with µs accuracy. The idea of X-Sync is to
use this property to compensate for the low RSSI sampling frequency.

A X-Burst message consists of energy bursts of variable lengths, separated
by variable breaks that can also be used for data encoding, if configured
accordingly. Sending a known synchronization sequence, including known
gaps between energy bursts, enables sampling with a sub-Nyquist frequency
with the proposed algorithm. The basic idea is that, instead of sampling in
real-time, the rising edge (the beginning of an energy burst) is repeated and
can be sampled consecutively. This is also called repetitive sampling.

The receiving node hereby knows the nominal durations of both the energy
bursts and gaps at compile-time and can calculate the beginning of each

52

3 X-Sync: Design

Figure 3.9: Timeframes of a X-Sync preamble used to compensate the varying sampling
delay τsampping by applying a binary search algorithm.

53

3 X-Sync: Design

energy burst in the synchronization preamble. We further refer to each of
these events as frames. Efficient searching for rising edges within frames
is done using the binary search algorithm. It works with a worst case
complexity of O(log2(n) + 1), where n is the number of energy bursts in
the synchronization preamble.

Figure 3.9 shows the implementation of the binary search algorithm within
consecutive frames. Each frame shows the uncertainty region, which will
get halved as the algorithm moves on. In the initial frame, the continuous
signal will be sampled with a limited RSSI sampling speed to get a a crude
estimation for the searched rising edge TR by sampling with the given
sampling speed. TR will now be within

T0
E − c0 ≤ TR ≤ T0

E (3.2)

where T0
E is the initial estimated beginning of the energy burst and c0 =

1
fsample

is the correction based on the sampling frequency. The superscript
index hereby represents the current frame index/iteration. By using this
inequality, the estimation for the next timeframe TE can be approximated to
be exactly in the middle of TE and TE− o0, which results in a new estimation

T1
E = T0

E − c1 (3.3)

The correction c needed for the next iteration is hereby c1 = (c0/2, where
fsample is the RSSI sampling speed of the X-Sync node.

In the next iteration, the signal is sampled exactly at this point in time. If the
result indicates that the sampling time was before the rising edge (leading),
the remaining interval shortens to

T1
E ≤ TR ≤ T0

E (3.4)

else (lagging) the remaining interval is

T0
E − c0 ≤ TR ≤ T1

E (3.5)

where the correction variable is halved again and for each following iteration:

ci+1 =
ci

2
(3.6)

54

3 X-Sync: Design

and

Ti+1
E =

(
Ti

E − ci i f leading
Ti

E + ci i f lagging

)
(3.7)

These steps can be repeated until the uncertainty region is sufficiently small.
The number of timeframes n needed for a given accuracy ta is given by:

n = log2(
1

fsample ∗ ta
) (3.8)

If we assume fsample to be at the worst case within all used hardware
platforms, at 16kHz, and ta to be as low as 1µs, the number of repetitive
timeframes, and therefore energy bursts needed, results to 5.96 ≈ 6.

Figure 3.10 shows the τsampling compensation principle on a message level.
As soon as the first energy burst after the preamble is detected, a binary
search estimation is started in the consecutive known timeframes. At the
end of the X-Sync preamble, the sampling delay will be compensated down
to the chosen accuracy.

Figure 3.10: X-Sync sample delay τsampling compensation strategy shown without the divi-
sion into separate timeframes. TR indicates the start of the energy burst at the
transmitter and TE is the current estimate of TR.

55

3 X-Sync: Design

3.5 Validation and Synchronization

Due to the nature of packet-level CTC communication, transmissions are
error-prone in terms of data integrity and timing integrity. X-Sync changes
the data integrity checks used in X-Burst to allow cyclic redundancy checks.
This filters the transmitted data to increase the data integrity. Assuming
that the data integrity is sufficiently checked, the result of a timestamp
transmission is forming a synchronization pair consisting of the timestamp
at the start of the transmission on node A (e.g., T1) and the timestamp at
the reception on node B (e.g., T2).

Figure 3.11: Consecutive timestamp transmissions between the transmitting node A and
the receiving node B using X-Sync. Each successful transmission results in a
synchronization pair consisting of the transmitting timestamp, the receiving
timestamp, and the transmission delay.

These synchronization pairs could be used to correct the clock of Node
B upon each arrival. Figure 3.12 shows the result of this synchronization
approach assuming that a perfect synchronization is happening every sec-
ond. Between these synchronization points, the error between two clocks
will grow linearly over time, until the next synchronization is happening,
because of the clock skew difference between Node A and B. Typically, these

56

3 X-Sync: Design

crystals have an accuracy α ranging from +40ppm to -40ppm [23] assuming
constant temperature and ignoring second order effects, such as ageing. So,
the following formula describes the drift d of two synchronized nodes as
time progresses.

d(t) = t (α1 − α2) (3.9)

Figure 3.12: Simulated synchronization error assuming ideal synchronization every second
and a typical clock skew of 40ppm without clock skew compensation.

It can be seen that clock skew estimation is therefore needed in every accu-
rate clock synchronization system. X-Sync has additional requirements on
the filtering of clock synchronization pairs because of the used packet-level
transmissions and the proposed transmission delay compensation method.
Figure 3.13 shows a sample transmission with a disturbance during time-
frame 2 on the channel during the X-Sync synchronization preamble. This
disturbance can either lead to a detection of an invalid X-Sync synchroniza-
tion preamble, or to a slight variation within the start of the used energy
bursts in the frames. In this case, the preamble will be detected to be valid,

57

3 X-Sync: Design

and the binary search algorithm will compensate T2 with wrong values,
leading to an invalid synchronization pair.

Figure 3.13: Disturbance on the CTC channel during an ongoing X-Sync transmission.
Tburst is the nominal burst duration, which is set to 224µs in this example. The
received energy burst is superposed by the channel disturbance, which results
in a measured duration of 230µs. It can be seen that the rising edge of the
transmission TR is obfuscated and the binary search algorithm will decide for
the wrong side of the interval. This will result in an outlier, which has to be
filtered by the upper clock synchronization layers.

Another important fact to consider is that, ideally, for any regression algo-
rithm, all past synchronization pairs (T1, T2) should be stored. In reality, the
available memory is constrained, which limits the amount of data that can
be stored on a wireless sensor node. The common solution to this problem
is to maintain a moving window buffer, where the last N elements are
stored. If a new pair is received, the oldest stored datapoint is deleted and
the new pair is added, in a first in-first out (FIFO) manner. Limiting the
number of elements stored will have a high impact on the synchronization
accuracy. Once these buffer is filled with synchronization pairs, a clock
skew estimation algorithm can be used to estimate the linear clock skew
difference.

58

3 X-Sync: Design

3.5.1 Linear Regression

One way of fitting a line into N given synchronization points using linear
regression {{x1, y1}....{xN , yN}} is the least squares algorithm. The primary
assumption is that the regression error is defined as:

E(x, y) =
N

∑
n=0

(yn − (axn + b))2 (3.10)

Using linear algebra, the minimum values for a and b can be found, leading
to this equation:

(
a
b

)
=

(
∑N

n=0 x2
n ∑N

n=0 xn

∑N
n=0 xn ∑N

n=0 1

)(
∑N

n=0 xnyn

∑N
n=0 yn

)
(3.11)

Albeit being the de-facto standard for linear estimation methods, this algo-
rithm is prone to errors, due to the fact that it is based on the assumption
that all data points are error-free. This behaviour can be seen in Figure 3.14,
which shows how a near perfect dataset can lead to a wrong clock skew
estimation if there is only one distinct outlier at t=45. Due to the eventual
generation of invalid X-Sync synchronization pairs, this clearly shows that
filtering is needed to ensure accurate and robust synchronization.

3.5.2 Thresholding

The simplest approach to filter the synchronization data is to set a fixed
threshold at compile-time. By carefully selecting this limit, invalid datapoints
can be filtered and only valid elements will be added to the moving window
buffer, as shown in Figure 3.15. However, this threshold can vary and, if it is
set too high, no packet will be stored in the moving window buffer. If it is
set too low, however, every synchronization packet will be stored, including
outliers.

59

3 X-Sync: Design

Figure 3.14: Simulation of linear regression with one outlier at t=45. It shows that one
outlier in the dataset will greatly influence the clock skew estimation, and
therefore, the achievable accuracy.

3.5.3 RANSAC

Random sample consensus (RANSAC) is an iterative method for differenti-
ating inliers and outliers. It defines inliers as data whose distribution can
be explained by the used model versus outliers as data which does not fit
in the model [61]. The following algorithm is used to find valid samples
(inliers) in the one dimensional case with resource constraints in mind:

1. Select a subset of the moving window buffer, called hypothetical
inliers. This set consists of two datapoints for the one dimensional
case.

2. Fit a simple model to the found set. Due to the fact that embedded
hardware imposes resource constraints, the simplest one dimensional

60

3 X-Sync: Design

Figure 3.15: Simulation of linear regression with one outlier using a threshold filter. In this
example, the outlier will be filtered, and the result is again nearly ideal.

model was used:

a =
y2 − y1

x2 − x1
, b = a (x2 − x1) + y1 (3.12)

where (x1, y1) is the first chosen synchronization tuple, and (x2, y2)
the second.

3. All other data is tested against this model described by a and b
using a model specific loss function. In case of X-Sync this is simply
a thresholding function. The number of valid samples is stored for
comparison.

4. If the maximum number of repetitions is reached, the model with
the most number of samples is used. Otherwise, the algorithm is
continued at 1.

The results of this modified version of RANSAC are the linear model
parameters of the best fit as well as a differentiation between outliers and

61

3 X-Sync: Design

inliers. In addition to that, the number of outliers gives a rough estimation
for the sample quality.

In general, RANSAC is used for robust, error-prone data filtering. However,
the best results are achieved when the maximum number of repetitions is
very high, which is not ideal for constrained embedded nodes.

3.5.4 RANSAC and Linear Regression

The downside of using this variant of RANSAC is that the resulting model
is only defined using two points, although all inliers could theoretically be
used to estimate the parameters a and b. In this approach, a least squares fit
algorithm was applied to all inliers to further improve the result.

62

4 X-Sync: Implementation

The following sections explain the implementation-specific details of the
X-Sync cross-technology clock synchronization scheme. To reduce the com-
plexity of the proposed solution, we implement X-Sync as an extension of
X-Burst [42] using a highly-modular architecture, which maximizes code
reuse and increases the portability to other hardware platforms. Figure 4.1
shows the proposed architecture that divides the application into different
blocks grouped by supplementary, transmission, reception and validation/-
correction blocks.

Figure 4.1: The highly modular implementation of X-Sync extending X-Burst [42], divided
into transmission, reception, validation/correction and supplementary blocks.

Supplementary blocks (Section 4.1) are needed to pre/post-process X-Sync
transmissions. These blocks include the application, the frame management,
the coding scheme, as well as the chosen communication alphabet and

63

4 X-Sync: Implementation

include only minor changes from the original X-Burst blocks. The trans-
mission blocks (Section 4.2) are divided into an encoding block and the
HAL. These blocks help to achieve accurate transmission timings, needed
for synchronization. For receiving X-Sync transmissions and achieving accu-
rate reception timings, the reception blocks (Section 4.3) are divided into
a decoding block, a CTC delay compensation block and the HAL. The
received time synchronization pairs are further filtered and processed in
the validation/correction blocks (Section 4.4), consisting of a clock skew
estimation and filtering block, as well as a clock correction block.

4.1 Supplementary Blocks

In this section, the supplementary blocks are described and discussed. All
blocks in this section are needed to construct/deconstruct X-Sync messages,
and their operation is not time-critical and fully hardware agnostic. Hereby,
all blocks except the frame management block are directly taken from
X-Burst [42] and will be described for reference reasons only. The frame
management block was changed to establish a new message format, which
includes the synchronization preamble, changes in the CTC header, and the
actual timestamp sent from the transmitter T1.

4.1.1 Application Block

This block defines the application logic, which uses X-Sync for cross-
technology clock synchronization. Sensors and actuators can be made avail-
able to the distributed network, and nodes can furthermore handle complex
tasks required by the application. Regarding synchronization, the applica-
tion can set the synchronization interval, the exact moment in time when the
synchronization happens, and the number of synchronization packets that
a X-Sync message consists of. All these parameters are depending on the
synchronization accuracy, memory consumption, and energy consumption
requirements.

64

4 X-Sync: Implementation

X-Sync packets can be constructed and sent at any time by specifying header
and payload (if any). The header, described in Section 4.1.2, includes a flag
that adds the synchronization information to the CTC packet. The lower
blocks abstract and hide the complex mechanisms during transmission
and reception from the application block. Upon reception of a X-Sync
transmission, the application block gets notified using a Contiki-NG event
and can access the synchronized clock. To summarize, the application block
interacts with the lower blocks using the following two actions:

• Specify header, payload and trigger a X-Sync transmission. The
CTCS functionality is embedded into Contiki-NG and follows the
specified calling conventions. The following shows the construction of
a header, where a timestamp and a checksum should be appended to
the transmitted data.

struct ctc_header header = {0};

header.bIncludeTimestamp = true;

header.bIncludeChecksum = true;

NETSTACK_RADIO.set_object(RADIO_PARAM_CTC_HEADER, &header,

sizeof(header));↪→

Once the application block decides to trigger a new X-Sync synchro-
nization, the following call will queue a new transmission, which then
gets processed by the frame management block. The transmission will
not start immediately, depending on the chosen radio duty cycle, as
described in detail in [20].

NETSTACK_RADIO.set_object(RADIO_PARAM_CTC_TX_DATA, ctc_data,

sizeof(ctc_data));↪→

• Receive CTC messages and access the synchronized clock. In com-
pliance with the Contiki-NG event system, the application detects a
ctc event including a parameter containing payload and the timing
information. The following shows a typical use-case:
while(1)

{

PROCESS_WAIT_EVENT_UNTIL(ev == CTC_EVENT);

struct ctc_rx_data rx_data = *(struct

ctc_rx_data*)data;↪→

}

65

4 X-Sync: Implementation

4.1.2 Frame Management Block

The frame management block assembles and disassembles X-Sync messages
using the structure shown in Figure 4.2.

Figure 4.2: High-level structure of a X-Sync message divided into mandatory and optional
parts. Every message starts with the CTC preamble, which allows receiving
nodes to detect a beginning of a transmission. The frame management block
adds a synchronization preamble to allow compensation of the delays inherent
in X-Sync. Next, the header defines the optional fields included in the message,
such as the network ID, the length byte, the receiver and transmitter addresses,
a timestamp, and the checksum. If a field is enabled, it will get appended to the
message accordingly.

At the beginning of a X-Sync message, the CTC preamble is sent, which
allows receiving nodes to detect the CTC message on the shared cross-
technology channel. To make that possible, receiver and transmitter both
know the amount of (Npre) and the duration of each CTC preamble burst
at compile-time. Next, the message includes a synchronization preamble
that allows compensation of the delays inherent in a packet-based CTCS
system, as described in Section 3.4. The number of synchronization bursts
Ns can be chosen depending on the synchronization accuracy requirements.
Section 5.2 will evaluate the impact of Ns on the synchronization accuracy.
Before the actual data and the timestamp T1 can be transmitted, a header
gets added to specify which fields are included in the X-Sync messages.
After the CTC header, the payload is added (if any). The fields of the header
and their purposes are described in more detail below:

• Synchronization Message: Appends the timestamp T1 to the X-Sync
message. Without this information, no clock synchronization is possi-

66

4 X-Sync: Implementation

ble at the receiver. Thereby, the size of timestamp T1 is configurable,
depending on the chosen clock source of the transmitter.

• TX Address: Appends a unique 8-byte transmission address to the
X-Sync message. With this field, any receiving node can determine the
origin of the message.

• RX Address: Enabling this flag and specifying a receiver address
allows for unicast and broadcast transmissions. If the address of the
receiving node does not match the RX address field, the message
gets ignored by the frame management block. Furthermore, if the RX
address field gets omitted, a broadcast can be created.

• Network ID: Setting this flag in the header will add a one-byte net-
work ID field used to create virtual networks within the heterogeneous
wireless sensor network. The frame management block will compare
this ID to the assigned network ID of the receiver and will discard the
message in case they do not match.

• ACK Request: When this flag is received, any message that is transmit-
ted needs to be acknowledged by the receiver. The frame management
block will thereby manage the reply.

• Payload Length: By specifying this flag, any receiver can check if the
received message length equals the sent message length used primarily
for validation purposes.

• Checksum: By setting the checksum flag, a CRC8 checksum byte
is appended at the end of the transmission to validate the correct
reception of the message.

4.1.3 Alphabet Communication Block

Both receiver and transmitter must use the same communication alphabet in
order to be able to communicate with each other over the cross-technology
channel. The alphabet block is directly taken from X-Burst [20], and it is pre-
computed for the user policies and the hardware properties. User policies
allow the user to set the focus on reliability or throughput, while the node’s
hardware properties are purely defined by its hardware capabilities. IEEE
802.15.4 and BLE radios cannot transmit packets with arbitrary transmission
durations but only distinct durations. The authors of [20] show that the

67

4 X-Sync: Implementation

following equations give the durations of IEEE 802.15.4 transmissions:

dZ(n) = σZ ∗ n =
1

250000
∗ n = 4 ∗ 10−6 ∗ ns; (4.1)

dZ,min = 192µs (4.2)

dZ,max = 4256µs (4.3)

where n is the number of sent bytes. Likewise, for BLE, the following
equations hold:

dZ(n) = σBLE ∗ n =
1

1000000
∗ n = 1 ∗ 10−6 ∗ n (4.4)

dBLE,min = 80µs (4.5)

dBLE,max = 2120µs (4.6)

With the use of BLE version 4.2 or lower, the maximum BLE transmission
duration dBLE,max can only be achieved by the use of BLE test packets,
whose length is limited to 255 bytes (2120µs on the TI CC2650). Later
versions of BLE allow for longer transmissions using normal messages. With
these limitations, a common set of durations (and therefore packet lengths)
between IEEE 802.15.4 and BLE radios, optimized for throughput, is given as
an example in Table 4.1. Table 4.2 shows a similar communication alphabet
focused on reliability, also between IEEE 802.15.4 and ZigBee devices.

4.1.4 Coding Scheme Block

The coding scheme block maps the bytes of the X-Sync message into symbols
which can be 1-bit (2 durations), 2-bit (4 durations) and 4-bit (16 durations)
wide, i.e., one burst contains 1,2 or 4 bits of information. This block is taken
from X-Burst [42]. These schemes work by dividing each byte of the X-Sync
message into groups of 1, 2, or 4 bits, as schematically shown in Figure 4.3.

68

4 X-Sync: Implementation

Energy Burst
Duration [µs]

Payload Bytes
BLE

Payload Bytes
IEEE 802.15.4

192 14 0
224 18 1
256 22 2
288 26 3
320 30 4
352 34 5
384 38 6
416 42 7
448 46 8
480 50 9
512 54 10
544 58 11
576 62 12
608 66 13
640 70 14
672 74 15

Table 4.1: X-Sync communication alphabet with focus on throughput between IEEE 802.15.4
and BLE nodes, as defined in X-Burst [20].

Each group can then be translated into durations by the use of the alphabet
defined in this block. Table 4.3 hereby shows a coding scheme for 1-bit, 2-bit
and 4-bit symbols based on the encoding alphabet defined in Table 4.1.

Figure 4.3: Division of binary data (0xC6) into symbols (shown in hexadecimal digits) using
different encodings (4-bit, 2-bit, 1-bit).

To demonstrate the impact of different coding schemes, a simple one-byte
payload (0xC6) is given. Figure 4.4, 4.5, and 4.6 show the translated energy
bursts for a 1-bit, 2-bit, and 4-bit encoding respectively. In this example, only
the energy bursts are used to encode information, but information could

69

4 X-Sync: Implementation

Energy Burst
Duration [µs]

Payload Bytes
BLE

Payload Bytes
IEEE 802.15.4

192 14 0
288 26 3
384 38 6
480 50 9
576 62 12
672 74 15
768 86 18
864 98 21
960 110 24
1056 122 27
1152 134 30
1248 146 33
1344 158 36
1440 170 39
1536 182 42
1632 194 45

Table 4.2: X-Sync communication alphabet with focus on reliability between IEEE 802.15.4
and BLE nodes, as defined in X-Burst [20].

also be encoded within the gap between consecutive bursts, as described in
[42].

Figure 4.4: The mapping to energy bursts using the 1-bit coding scheme. Table 4.3 shows
the used alphabet, and the information is encoded using energy-bursts only.

70

4 X-Sync: Implementation

Energy Burst
Duration [µs]

4-bit Coding
Scheme

2-bit Coding
Scheme

1-bit Coding
Scheme

192 0x0 0x0 0x0
224 0x1 0x1 0x1
256 0x2 0x2
288 0x3 0x3
320 0x4 0x4
352 0x5
384 0x6
416 0x7
448 0x8
480 0x9
512 0xA
544 0xB
576 0xC
608 0xD
640 0xE
672 0xF

Table 4.3: Coding scheme for 1-bit, 2-bit and 4-bit symbols based on the encoding alphabet
defined in Table 4.1.

Figure 4.5: The mapping to energy bursts using the 2-bit coding scheme. Table 4.3 shows
the used alphabet, and the information is encoded using energy-bursts only.

Figure 4.6: The mapping to energy bursts using the 4-bit coding scheme. Table 4.3 shows
the used alphabet, and the information is encoded using energy-bursts only.

71

4 X-Sync: Implementation

4.2 Transmission Blocks

This section groups all blocks relevant for the time-accurate transmission
of X-Sync messages. This includes the encoding block, which translates the
X-Sync messages into durations and also manages the transmission power.
Followed by that, the transmission part of the hardware abstraction layer is
described in detail.

4.2.1 Encoding Block

The encoding block receives all X-Sync durations as a parameter, processes
them, and passes all bursts including information about the gap between
two consecutive energy bursts, one-by-one to the HAL. The HAL only needs
to know how long the current energy burst is, as well as the duration of the
next gap. Depending on which part of the X-Sync message is transmitted,
the encoding block will choose a different encoding scheme:

• CTC preamble: The start of a CTC transmission on the shared channel
is indicated by sending the CTC preamble. Receivers have to detect
this preamble reliably also in the presence of noise on the channel.
Therefore, the encoding block encodes the CTC preamble only into
bursts, which lowers the susceptibility to noise, with the gaps in-
between set to zero. When the HAL processes these bursts and gaps,
it tries to keep the gaps as short as possible, with respect to the
capabilities of the used radio. The actual gap duration between bursts
can be varying and is not relevant for preamble detection at the receiver.
Figure 4.7 shows an example CTC preamble with exact energy burst
durations and varying gap durations in-between.

• Synchronization preamble: The transmission of the synchronization
preamble is time-critical, and all durations (burst and gaps) need to be
well defined and transmitted accurately. Therefore, the encoding block
maps these durations to energy bursts with fixed, well-defined gaps
in between. The worst-case radio processing time of the energy burst
defines the duration of these gaps, which ensures that the radio can
always prepare the next burst during a gap. The synchronization state

72

4 X-Sync: Implementation

Figure 4.7: Example of a CTC preamble consisting of five energy bursts and varying gap
durations in-between. Hereby, the following preamble durations were chosen:
192 µs, 192 µs, 256 µs, 192 µs, and 192 µs. The gap durations are not relevant
for the correct detection of the preamble at the receiving node.

machine of the receiver must be ready to accept the next energy burst
as well, which also limits the lowest possible gap delay. Figure 4.8
shows an example synchronization preamble with precisely defined
gaps and bursts.

Figure 4.8: An example synchronization preamble consisting of eight energy bursts and
precisely defined gaps in-between. Hereby, the shortest possible energy burst
of 192 µs is repeated eight times with a well defined gap duration of 200 µs in
between.

• Optional Fields, Payload and Timestamp T1: The rest of the transmis-
sion is not time-critical and thus, the encoding block can use burst-only
encoding or burst-and-gap encodings as defined in the X-Burst paper
[42]. An example of a burst-only encoding is given in Figure 4.5 using
the payload 0xC6 and the 2-bit encoding scheme. Figure 4.9 shows the
same payload using the burst-and-gap encoding.

The resulting tuples (dburst, dgap) are then passed to the lower blocks one-
by-one. In order to support HALs with radio queue support, the encoding
block further signals a finished transmission, which will trigger the actual
transmission at the HAL block. Moreover, the encoding block sets the output
power depending on the configuration.

73

4 X-Sync: Implementation

Figure 4.9: The payload (0xC6) mapped to energy bursts and gap durations in-between
using the 2-bit coding scheme. Table 4.3 shows the used alphabet.

4.2.2 HAL - Transmission Part

The transmission section of the HAL block is the interface between the
upper blocks and the actual radio hardware. Thereby, the responsibilities of
the HAL are 4-fold:

• Control radio transmissions using radio queues where available.
The underlying radio hardware could provide access to a radio queue,
as mentioned in Section 3.3.2. Thereby, such radio queues do not
implement a common standard, and access is platform-specific. Upon
a call of the send burst method from the encoding block with the
tuple (dburst, dgap) as parameter, this burst is enqueued. As soon as
the encoding block signals a finished transmission, the radio sends
the whole queue using hardware-dependent mechanisms. Thereby,
the radio completely takes control of the timing regardless of what is
happening on the CPU.

• Control radio transmissions by sending packets burst by burst. If no
radio queue is available on the hardware platform, each energy burst
is sent individually at the cost of accuracy. With a call of send burst,
the parameter tuple consisting of (dburst, dgap) is immediately sent
using native methods provided by the radio. This is implemented
as a blocking call, so the CPU waits for a finished transmission. For
sending the next tuple, the CPU will busy-wait for the amount of
time specified for the gap dgap and will then immediately send the
next energy burst dburst. The CPU must not be interrupted during
the busy-wait phase, as this can negatively influence the transmission
timing.

• Manage ISR priorities to enable accurate transmission timing. Most

74

4 X-Sync: Implementation

CPUs implement support for ISR priorities. If this is the case, the HAL
elevates the interrupt context of the transmission so that no other event
can interrupt the ongoing transmission. Other platforms, such as the
TelosB do not feature interrupt priorities and interrupts will simply be
disabled during the busy-wait phase.

• Implement MAC timestamping for cross-technology transmissions.
MAC timestamping uses different interrupts for timing that are differ-
ent among hardware platforms. Such interrupts include transmission-
started ISRs, x-bytes-transmitted ISRs and preamble-sent ISRs. Upon
the invocation of such an event, the current time at the transmitter
T1 is sampled and appended to the ongoing transmission using the
append mac timestamp(ctc clock time t T1) method.

Each node has to implement the following transmit method defined by the
HAL:

• send burst(uint16 t burst duration, uint16 t gap duration,

boolean last packet)

Additionally, each node has to define and call the following method for
MAC timestamping in an ISR context, with a timestamp as parameter,
sampled immediately when the ISR is invoked:

• append mac timestamp(ctc clock time t T1)

4.3 Reception Blocks

In this section, the block relevant for receiving X-Sync messages are de-
scribed in detail. Thereby, the decoding block includes the CTC delay
correction algorithms and builds upon the transmission part of the HAL
layer.

4.3.1 Decoding and CTC Delay Correction Block

The output of this block is the corrected clock T2 which gets passed to the
upper blocks. Three steps are executed consecutively in order to correct T2,

75

4 X-Sync: Implementation

which are described in detail below.

CTC Preamble Detection

Figure 4.10 shows the simplified state machine used for detecting the pres-
ence of a preamble on the CTC channel. First, the state machine calls the
sample RSS() method, provided by the HAL to get the current RSS value
of the shared channel, which then gets compared against a certain static
threshold known at compile-time. Once the value exceeds this threshold, the
current clock is sampled. If the RSS is falling below the threshold again, the
current clock gets sampled again, and the receiver calculates the duration
of the energy burst. This duration gets added to the queue, and the whole
buffer gets compared to the known preamble considering an allowed toler-
ance. if the measured durations match with the specified ones, the preamble
is detected successfully and the next part of the X-Sync message can be
received.

76

4 X-Sync: Implementation

Figure 4.10: State machine for detecting the CTC preamble on the shared channel. Timeout
checks are thereby not shown for simplification. First, the receiver samples the
current RSS until a whole burst is detected, whose duration d gets calculated.
This duration gets added to the queue, and the whole buffer gets compared
with the known preamble. If the stored buffer and the known preamble are
equal (including tolerances), the preamble is successfully detected, and the
next part of the X-Sync message can be received.

77

4 X-Sync: Implementation

Sampling Delay Compensation

The state machine given in Figure 4.11 implements the synchronization
phase, which is triggered once the CTC preamble was successfully detected.
The working principle of this complex state machine is described in Section
3.4.1 in detail and is divided into three phases:

• Phase One: Initialization. The first step in this phase is to initialize all
variables. First, due to the fact that the hardware-dependent sampling
frequency is known, the maximum correction that can be expected
is c0 = 1

fsample
, as described in Section 3.4.1. Second, the durations of

the energy bursts and the gaps of the synchronization preamble are
known at compile-time and the packet durations pi are defined as the
sum of those (for each iteration i of the state machine).
Once all variables are initialized, the state machine begins with search-
ing for the beginning of the first energy burst of the synchronization
preamble by using continuous RSS sampling. Once the receiver de-
tects this point in time, it immediately samples the clock using the
CTC TIMER NOW() method provided from the HAL which will be used
as a starting point for the binary search algorithm. The receiver can
then calculate the expected start of the next synchronization burst by
adding the packet duration pi.

• Phase Two: Sampling. In this phase, the actual sampling is taking
place. The IEEE 802.15.4 radio averages the current RSS level internally,
and therefore, this internal buffer has to be reset as a pre-requisite
for precise detection of the next rising edge, i.e., the beginning of
the next energy burst. Therefore, the HAL provides a method called
flush RSS buffer() for IEEE 802.15.4 radios which handle this task.
Next, precisely at the previously calculated timestamp Ti

E, the current
RSS value on the channel will be sampled by calling sample RSS().

• Phase Three: Calculation. The sampled RSS value gets compared
against the defined static threshold, and the result is either that the
energy burst was not yet sent (leading) or is already present on the
channel (lagging). The binary search algorithm then halves the uncer-
tainty region as described in Section 3.4.1, and will be repeated until
the last energy burst of the synchronization preamble was detected.

78

4 X-Sync: Implementation

The procedure ends when the correction value is zero, which means that
the binary search algorithm finished. After this process, timestamp T2 is
corrected and can be passed to the upper blocks for further processing.

Payload Reception

After the synchronization preamble, the receiver retrieves the payload and
the timestamp T1. The radio thereby samples either with a single threshold
or with multiple thresholds as described in [42]. The former is used for non-
averaging radios, like BLE. Figure 4.12 shows an example of an energy burst
reception using a BLE radio. Hereby, defining a single threshold is sufficient
to correctly determine the correct duration of the transmitted energy burst
including small deviations. In the upper block, durations can then be easily
mapped to symbols using burst-only or burst-and-gap encodings, a coding
scheme and a predefined communication alphabet.

Figure 4.12: Energy burst reception on a BLE node, which is a non-averaging radio. Image
taken from [20].

79

4 X-Sync: Implementation

The latter is used for averaging radios, such as IEEE 802.15.4 ones. Figure
4.13 shows an example of an energy burst reception using an IEEE 802.15.4
radio. Hereby, one threshold is not sufficient to determine the correct dura-
tion of the energy burst with a certain tolerance. Choosing a high threshold
will lead to significantly shorter durations (duration1), and likewise, choos-
ing a low threshold will lead to longer durations (duration2). The authors of
[20] therefore proposed to use multiple thresholds to increase the accuracy
in determining the correct duration. The actual duration of the energy burst
can then be calculated by averaging all given durations. These averaged
durations, which are now well within tolerances, can then be translated to
symbols again.

Figure 4.13: Energy burst reception on a IEEE 802.15.4 node, which is an averaging radio.
Image taken from [20].

4.3.2 HAL - Reception Part

The receive section of the hardware abstraction layer consists of three tasks
which the node has to fulfill:

80

4 X-Sync: Implementation

• Sample RSS values. Upper blocks can call sample RSS() in order to
retrieve the current RSS value on the channel. Hereby, averaging radios,
such as IEEE 802.15.4 ones, cannot provide the raw channel value and
will instead return an averaged RSS information.

• Flush the internal RSS buffer of the radio. Averaging radios need to
define a function which resets the radio’s hardware RSS buffer. The
IEEE 802.15.4 hereby does not provide a convenient way to achieve
this behaviour. However, the radio’s receive mode can be turned off
or on at any time. Thus, turning the radio off and then turning it on
again resets the buffer on all tested hardware platforms. Doing so
takes some time, which is hardware dependent. Therefore, the gaps in
the synchronization preamble have to be longer than this timespan in
order to allow the radio to reset the internal averaging buffer. Higher
blocks can precisely time this call of the flush RSS buffer() method
in order to receive one non-averaged RSS value.

• Provide a stable clock with a free-running timer. The HAL needs to
provide a stable and accurate clock as all upper blocks rely on having
an accurate timer value that can be read at any time. Therefore, the
upper blocks simply have to call CTC TIMER NOW() which will return a
free-running timer value whose data-type is also configurable by the
HAL (ctc timer clock t).

Summarizing, each node has to implement the following methods in the
receive section of the HAL:

• sample RSS(). Samples and returns the current RSS value on the CTC
channel.

• flush RSS buffer(). Flushes the internal averaging buffer of the radio.
This method is only needed for averaging radios, such as IEEE 802.15.4
ones.

• CTC TIMER NOW(). Returns the current value of the accurate, free-running
timer used for synchronization.

81

4 X-Sync: Implementation

Figure 4.11: State machine for compensating the averaging delay (Taveraging) by using a
binary search algorithm on the synchronization preamble. The timestamp T2
will be corrected and can be used by the upper blocks, once the finished state
is reached.

82

4 X-Sync: Implementation

4.4 Validation/Correction Blocks

In this section, blocks for the validation and correction of the synchronized
clock are grouped. Thereby, the equations for converting the transmitter’s
clock to the receiver’s clock are given, as well as the implementation of the
clock skew estimation and filtering algorithms explained in more detail in
Section 3.5.

4.4.1 Clock Skew Estimation and Filtering Block

This block gets the synchronization tuple (T1, T2) as input parameter and
generates the clock skew and offset values needed for the clock correction.
The first step is to filter the synchronization tuple using RANSAC, as de-
scribed in Section 3.5. Once the RANSAC algorithm filtered the outliers, the
clock skew is estimated using linear regression. Because both algorithms are
computationally intensive, the maximum amount of rounds can be adjusted.
Likewise, lowering the number of stored synchronization tuples will help
decreasing the consumed memory, but this influences the synchronization
accuracy, which can be seen in Section 5. This block passes the result, consist-
ing of the clock skew and the offset, to the upper blocks, once the calculation
is finished.

4.4.2 Clock Correction Block

The input to this block is the skew and offset calculated in the clock skew
estimation and filtering block. By using these two values, the receiver can
estimate the clock of the transmitter. Assuming that the transmitting node
is device A and the receiving node is device B, the following relationship
holds:

TB = skew ∗ TA + offset (4.7)

Vice-versa, if TA should be calculated, given TB:

TA =
TB − offset

skew
(4.8)

83

4 X-Sync: Implementation

The clock correction block provides methods to convert timestamps between
the two devices, instead of correcting the receiver’s clock. Doing that would
mean that the local clock needs to be stopped, set to a new value and
started again. This process would decrease the achievable accuracy, as the
starting delay of the clock is non-deterministic. The application can use the
conversion functions at any time, once the clock correction block receives
the first skew and offset parameter from the lower blocks.

84

5 Evaluation

In this section, we evaluate X-Sync in terms of synchronization accuracy,
energy efficiency, memory footprint, reliability, and real-world usage. There-
fore, we first start with defining the experimental setup in Section 5.1, used
for all evaluations in this thesis. Next, the synchronization accuracy is eval-
uated (Section 5.2), which primarily depends on the interval between two
synchronization messages Isend, the length of the synchronization preamble
Ns and the number of stored synchronization pairs N. Following that, the
energy consumption (Section 5.3) is calculated theoretically, which is needed
for identifying parameters and adjusting them accordingly. Another very
important aspect of X-Sync is the memory consumption (Section 5.4), which
is calculated and compared for each hardware platform. Furthermore, the
reliability of X-Sync is also evaluated (Section 5.5) and finally, a practical
use of X-Sync is shown in a long-term, real-world scenario (Section 5.6).

5.1 Experimental Setup

In this section, we describe the experimental setup used for all evaluations.
Figure 5.1 shows a schematic representation of the node arrangement, which
consists of four wireless sensor nodes, equally spaced such that each X-
Sync transmission path is exactly one meter. During the tests, nodes can
be disabled, but the placement and the connections of all nodes remain
unchanged.

The goal of this experimental setup is to measure the relative synchroniza-
tion accuracy between the transmitting and the receiving node. In order to
achieve that, the synchronized clock has to be sampled at the exact same
time on both nodes. All hardware platforms had at least one free general
purpose input output pin available, where a GPIO interrupt can be attached.
Every time a node registers a rising edge on this pin, the synchronized
clock signal is sampled. This sampling signal is connected to each node
and clocked at fsample, which generates a rising edge GPIO interrupt. A
function generator generates this signal on synchronized outputs and it gets
distributed using short BNC cables to lower cross-talk and noise. When

85

5 Evaluation

a rising edge event is detected, the nodes immediately sample and trans-
mit the synchronized timestamp using an UART connection to a database
hosted on an attached PC.

Figure 5.1: The experimental setup used for all evaluations showing the arrangement of the
wireless sensor nodes. Each node is connected to a synchronized signal using a
free GPIO pin. Whenever a rising edge is detected, the synchronized clock is
sampled and stored to a database using an UART connection.

X-Sync follows a highly configurable approach, where parameters can be
set depending on the application needs. The following sections describe the
used settings in more detail.

86

5 Evaluation

5.1.1 Parameters

The following parameters will be changed and varied throughout the eval-
uations in order to show the impact on synchronization accuracy, energy
consumption, reliability and memory footprint:

• Synchronization Interval (Isend): The time between two consecutive
X-Sync synchronization messages.

• Number of Synchronization Preamble Bursts (Ns): The number of
bursts of the synchronization preamble Ns that is used for compensat-
ing the timestamp T2.

• Number of Stored Synchronization Pairs (N): The number of stored
synchronization pairs (T1,T2) used to estimate the clock skew and the
offset.

Additionally, the following evaluation parameters are defined:

• Sampling Frequency (fsample): The rectangular-shaped sampling sig-
nal is connected to each node with a frequency of fsample. Whenever a
rising edge on this line is detected at any node, a GPIO interrupt is
triggered and the synchronized clock is sampled immediately. This
process interrupts any ongoing transmission/reception for a short
amount of time. Therefore, the sampling frequency must not be too
high as it would significantly lower the synchronization accuracy. Fur-
thermore, sampling at a too low frequency might not lead to correct
results. Hence, a sampling clock frequency of 1 Hz was chosen as a
compromise.

• Test Duration: Choosing a test duration which is too short results in
an obfuscated reality, where the results might be better than expected.
Likewise, setting the test duration too long means very long test runs,
which do not add any value to the results.

• Test Repetitions: Having independent runs lowers the environmental
effects which are likely to occur, such as RF disturbances on the shared
CTC channel. Thus repeating the measurement is necessary.

87

5 Evaluation

5.1.2 X-Sync Message

The parts included in a X-Sync message are highly configurable and can be
tailored for a specific application. For this evaluation, the X-Sync message
parts were chosen to be memory and energy efficient, as well as reliable:

• CTC Preamble: The preamble is straightly taken from X-Burst [20], in
order to maintain backwards compatibility, with a few adjustments.
This preamble is five bursts long and defined as follows: [192µs, 256µs,
192µs, 192µs, 192µs]. The time between two consecutive energy bursts
in the synchronization preamble is chosen such that even the slowest
node, i.e., the TelosB, has finished a full iteration of the synchronization
state machine.

• Synchronization Preamble: In the following evaluations, X-Sync uses
the shortest possible burst length (192µs for each energy burst in
the synchronization preamble.) repeated Ns times. This preamble is
used to compensate for the delays inherent in packet-based CTC
communications which results in T2 being corrected accordingly.

• CTC Header: The one-byte CTC header defines the included optional
data. For this evaluations, only the synchronization message, the
payload length and the checksum bits are set, which are described in
more detail below.

• Timestamp T1: To allow fast clock rates, a 64-bit timestamp was chosen.
This allows even the CC2650 (48 MHz) to run continuously without
overflows.

• Length Byte: To further increase the data integrity, the packet length
is added to each message, which gets verified upon reception.

• Checksum: A checksum is added to each X-Sync transmission to
increase the data integrity and detect bit errors.

All other optional fields, including the payload have been omitted.

5.1.3 Block Configuration

The blocks of X-Sync can be configured individually, which includes the
following settings:

88

5 Evaluation

• Coding Scheme: A reliable 2-bit encoding is chosen such that the
reliability of the X-Sync is increased. The payload is omitted to lower
the number of energy bursts and therefore increasing energy efficiency.

• Communication Alphabet: A reliable communication alphabet was
chosen. As the transmission of the timestamp (T2) is not time-critical,
using a more reliably alphabet at the cost of data rate is feasible.

• Averaging Delay τaveraging Compensation: For each transmitter-recei-
ver pair (i, j) exists exactly one averaging delay τaveraging i,j in a static
environment, which was measured at the beginning of each evaluation.
Since we evaluate X-Sync in a static environment, as described in
Section 3.4.1, this compensation factor can be measured and used to
compensate the averaging delay on all receiving nodes.

• CTC channel: The radio channel has to be chosen such that there is
a spectral overlap between the IEEE 802.15.4 and the BLE radio. For
all IEEE 802.15.4 devices, channel 24 was chosen which overlaps with
BLE channel 32. The channel mapping was already discussed and can
be found in Section 2.1.

5.1.4 Measurement Procedure

Each evaluation consists of two measurements:

• CC2650 (BLE) to all other nodes (IEEE 802.15.4). In the first measure-
ment, the CC2650 (BLE) node acts as transmitter, and all other nodes
as receivers. The relative synchronization error is always measured
pair-wise between the transmitter and the receiver.

• All other nodes (IEEE 802.15.4) to the CC2650 (BLE) node. In the
second measurement, the CC2650 (BLE) node acts as receiver and
all other nodes as transmitter in an alternating manner, i.e., only
one transmitter is active during an evaluation. This was achieved
by completely erasing the inactive nodes flash memory. These three
measurements with different transmitters are then combined and
plotted as one graph.

89

5 Evaluation

5.2 Synchronization Accuracy

The synchronization accuracy primarily depends on the following X-Sync
parameters: the synchronization interval (Isend), the synchronization pream-
ble length (Ns) and the number of stored synchronization pairs (N). Each
of those parameters has implications on the memory footprint, the energy
consumption and the reliability. The optimum of these parameters has to
be found before X-Sync can be further evaluated. Thereby, the following
parameters are used:

Parameter Value

Synchronization Interval (Isend) 1s, 10s, 30s, 60s, 180s, 300s
Number of Synchronization Preamble Bursts (Ns): 1, 4, 6, 8, 10, 12, 16, 20
Number of Stored Synchronization Pairs (N) 5, 8, 10, 20, 30, 40
External Sampling Clock Frequency (fsample) 1 Hz
Test Duration 200 ∗ Isend
Test Repetitions 3

Table 5.1: X-Sync configuration parameters used to test the achievable synchronization
accuracy. The synchronization interval (Isend), the number of synchronization
preamble bursts (Ns) and the number of stored synchronization Pairs (N) get
varied in every iteration of the following evaluations.

5.2.1 Synchronization Interval Isend

The synchronization accuracy primarily depends on the synchronization in-
terval (Isend), i.e., on the duration between two consecutive X-Sync messages.
Therefore, Isend is varied to prove its impact on the achievable accuracy and
to find the optimum (if any). Higher Isend expectedly results in a higher
energy consumption, while setting Isend too low results in a degraded syn-
chronization accuracy. The other relevant parameters are set such that they
do not limit the accuracy (Ns = 20, N = 40) and this tests were only re-
peated once because of the long test durations. Both directions BLE to IEEE
802.15.4 and vice-versa are evaluated in independent test runs:

90

5 Evaluation

BLE to IEEE 802.15.4

In this test, the CC2650 node in BLE mode acts as transmitter and reference
clock, and all other nodes act as receivers. Hereby, Ns and N are configured
such that these parameters do not influence the synchronization accuracy
and the synchronization interval is varied between 1s and 300s. A CC2650
node (BLE) acts as the clock reference, which transmits X-Sync messages
to all three receivers simultaneously in an interval of Isend, repeated in
three independent runs in order to minimize external disturbances on the
channel.

Figure 5.2 shows the results of the first evaluation. As expected, the higher
the send interval Isend, the lower the synchronization accuracy and vice-
versa. Furthermore, the 2.3µs accuracy goal specified in Section 3.1 was
reached on all nodes except for the TelosB, because of constrained hardware
capabilities. Especially the lack of an external crystal, the slow clock speed
of 3.9 MHz and the lack of pre-emptive interrupts limit the achievable
accuracy. Nevertheless, the TelosB node stayed at around 100µs relative
synchronization accuracy, which is still a satisfactory result for this node.
The results can be seen in more detail in Table 5.2, which shows the statistics
of the relative synchronization error between the transmitter and the receiver.
This includes the maximum (MAX), the minimum (MIN), the average (AVG)
and the standard deviation (STD) of the dataset. Regarding the optimum
value for Isend between energy consumption and accuracy, it can be seen
that the synchronization accuracy obeys a linear behaviour to about 60s. In
real world applications, a synchronization interval of 60s is reasonable and
can therefore be seen as an optimum. For very high values of Isend, the clock
drift is becoming visible, which means that the receiving node is unable to
compensate for the clock drift, or that the clock is drifting in a non-linear
fashion because of second order effects. These effects could theoretically
be compensated by using higher-order, non-linear clock skew estimation
algorithms [62], with the downside of needing processing power.

91

5 Evaluation

Figure 5.2: Evaluation of the synchronization accuracy depending on the synchronization
interval Isend. A CC2650 node in BLE mode was used as transmitter and all
other nodes were configured as receivers. The results are shown as a boxplot
diagram, where the X-axis shows the synchronization interval and the Y-axis
shows the relative synchronization error between transmitter and receiver.

IEEE 802.15.4 to BLE

Figure 5.3 shows the second evaluation regarding the synchronization accu-
racy. Each IEEE 802.15.4 node acts as transmitter once, while the CC2650
node in BLE mode acts as receiver during the whole test. For each test, two
nodes are always active, with all other nodes being disabled. Only when
the TelosB is used as transmitter, the goal of 2.3µs could not be reached.
Nevertheless, the relative synchronization error stays below 30µs on the
TelosB, which is still very good. The reason for the worse performance is its

92

5 Evaluation

Receiver Isend [s] MAX [µs] MIN [µs] AVG [µs] STD [µs]

CC2650
(IEEE 802.15.4)

1 0.517 -0.504 -0.072 0.281
10 0.601 -0.566 -0.029 0.231
30 0.621 -2.108 -0.275 0.536
60 -0.191 -2.566 -1.351 0.435
180 5.080 -5.629 0.159 1.940
300 73.517 -1.441 11.421 13.219

Firefly
(IEEE 802.15.4)

1 0.219 -0.218 0.006 0.094
10 1.511 -6.156 -2.457 1.396
30 0.657 -0.989 -0.152 0.395
60 2.615 -2.947 -0.846 0.919
180 4.823 -26.760 -4.189 6.592
300 92.448 -2.552 12.061 17.648

TelosB
(IEEE 802.15.4)

1 404.224 -132.109 12.707 93.454
10 228.495 -175.839 -10.665 67.621
30 457.828 -587.776 26.621 147.946
60 3164.849 -3344.797 79.268 816.672
180 6175.786 -11434.172 172.272 2097.065
300 14263.370 -13516.214 -487.450 2975.600

Table 5.2: This table shows the results from Figure 5.2 in more detail. For each receiver, the
maximum, the minimum, the average, and the standard deviation of the relative
synchronization error are shown.

already discussed limited hardware capabilities. The average synchroniza-
tion accuracy is not within this limit, but it could be drastically improved
by using a simple round-trip synchronization algorithm on top of X-Sync.
Regarding the optimum value for Isend between energy consumption and
accuracy, it can be seen that the synchronization accuracy also obeys a
linear behaviour to about 60s. The performance is degraded when using
a high send interval Isend which is due to the assumption of a linear clock
skew. All results can be seen in more detail in Table 5.3, which includes
the maximum, the minimum, the average and the standard deviation of the
relative synchronization accuracy.

93

5 Evaluation

Figure 5.3: Evaluation of the synchronization accuracy depending on the synchronization
interval Isend. The CC2650 node in BLE mode was configured as receiver, while
the transmitter was changed throughout the test. A boxplot diagram shows
the results, where the X-axis shows the synchronization interval and the Y-axis
shows the relative synchronization error between transmitter and receiver.

5.2.2 Synchronization Preamble Length Ns

Another important parameter to evaluate is the synchronization preamble
length Ns. A higher value results in a higher energy consumption per
transmission, but may also result in a higher achievable accuracy. Therefore,
Ns is varied to prove its impact on the achievable accuracy and to find the
optimum (if any). The other relevant parameters are set such that they do
not limit the accuracy (Isend = 1s, N = 40) and these tests were repeated
three times.

94

5 Evaluation

Transmitter Isend [s] MAX [µs] MIN [µs] AVG [µs] STD [µs]

CC2650
(IEEE 802.15.4)

1 0.360 -0.452 -0.006 0.192
10 -0.515 -1.869 -1.163 0.252
30 -1.910 -5.390 -3.318 0.601
60 3.194 -16.265 -0.713 4.039
180 79.944 0.402 17.636 18.914
300 0.381 -427.494 -91.692 127.408

Firefly
(IEEE 802.15.4)

1 0.233 -0.298 0.019 0.120
10 8.921 1.577 3.943 1.730
30 3.077 -5.329 -0.731 1.045
60 -1.392 -6.173 -2.488 0.498
180 299.671 -31.017 49.759 90.209
300 -0.517 -61.767 -16.695 17.648

TelosB
(IEEE 802.15.4)

1 0.000 -30.518 -1.017 5.478
10 0.000 -122.070 -40.843 24.614
30 152.588 -122.070 9.087 59.847
60 457.764 -152.588 111.279 119.306
180 976.562 -1007.080 -9.588 333.246
300 1037.598 -976.562 30.930 510.746

Table 5.3: This table shows the results from Figure 5.3 in more detail. For each transmitter,
the maximum, the minimum, the average, and the standard deviation of the
relative synchronization error are reported.

BLE to IEEE 802.15.4

Figure 5.4 shows such an evaluation where a CC2650 node in BLE mode
sends a periodic synchronization message to all other nodes. The number
of synchronization bursts gets varied between 1 and 20, and all other
parameters are chosen such that they do not influence the result. Figure 5.4
and Table 5.4 show the results, which include the maximum (MAX), the
minimum (MIN), the average (AVG) and the standard deviation (STD) of the
relative synchronization error between transmitter and receiver. Having a
synchronization preamble length of one cancels the binary search algorithm
used for the averaging delay correction after the first iteration. Therefore,
the estimated TE is leading before the actual start of the energy burst TR.
This estimated TE leads to a negative offset and a high standard deviation
in Figure 5.4. Furthermore, setting Ns to four leaves the state machine in a
lagging state where TE > TR, which can be seen as a positive offset in this
graph. The state machine is still not finished, and therefore, the standard

95

5 Evaluation

deviation is far off. Figure 5.4 furthermore shows that the synchronization
state machine finishes if Ns is set to twelve or higher. Having a higher Ns
does not significantly increase the relative synchronization error, as the
state machine has already finished. The relative synchronization error of
the TelosB node is, again, limited by its hardware capabilities, as already
discussed in Section 5.2.

Figure 5.4: Evaluation of the synchronization accuracy in dependence of the synchroniza-
tion preamble length Ns. Hereby, a CC2650 node in BLE mode was used as
transmitter and all other nodes were configured as receivers. The result is
shown as a boxplot diagram where the X-axis shows Ns and the Y-axis shows
the relative synchronization error between the transmitter and the receiver.

96

5 Evaluation

Receiver Ns MAX [µs] MIN [µs] AVG [µs] STD [µs]

CC2650
(IEEE 802.15.4))

1 51.023 -111.373 -30.111 13.613
4 141.335 -14.706 56.027 15.706
6 54.481 -36.977 -7.586 10.985
8 7.585 -10.581 -0.301 3.718
10 1.252 -0.935 -0.091 0.382
12 0.648 -0.373 0.006 0.158
16 0.606 -0.290 0.140 0.158
20 0.648 -0.394 -0.000 0.144

Firefly
(IEEE 802.15.4)

1 2.628 -24.455 -13.923 4.807
4 88.461 58.836 73.488 5.130
6 20.253 -1.914 8.212 4.571
8 6.441 -7.226 -1.315 2.440
10 4.607 -0.976 0.030 0.491
12 1.316 -0.705 -0.092 0.223
16 1.566 -0.580 -0.149 0.185
20 0.711 -0.455 -0.000 0.200

TelosB
(IEEE 802.15.4)

1 176.821 -301.721 -105.105 48.967
4 141.883 -379.554 20.141 62.181
6 103.196 -173.554 5.979 39.810
8 82.654 -174.659 -3.145 39.561
10 98.967 -195.742 -11.570 44.112
12 112.988 -163.887 -0.122 41.629
16 1294.863 -202.637 2.688 100.517
20 143.738 -225.178 -1.501 49.896

Table 5.4: This table shows the results from Figure 5.4 in more detail. For each receiver, the
maximum, the minimum, the average, and the standard deviation of the relative
synchronization error are shown.

IEEE 802.15.4 to BLE

For the second evaluation, receivers and transmitters are switched and
operate in unicast mode. Figure 5.5 shows the result of this evaluations and
Table 5.5 shows the results in more detail, which includes the maximum,
the minimum, the average and the standard deviation of the realative
synchronization error between transmitter and receiver. Again, both leading
and lagging states from the binary search algorithm can be seen as positive
and negative offsets, respectively. The result is an alternating behaviour
between detecting the burst too early and too late until the number of bursts
is sufficient to finish the state machine.

97

5 Evaluation

Figure 5.5: Evaluation of the synchronization accuracy depending on the synchronization
preamble length Ns. Hereby a CC2650 node in BLE mode was used as receiver
and all other nodes were one-by-one configured as transmitters. The results are
shown as a boxplot diagram, where the X-axis shows Ns and the Y-axis shows
the relative synchronization error between transmitter and receiver.

5.2.3 Number of Stored Synchronization Pairs N

The last parameter to evaluate is the number of stored synchronization
pairs N. We expect that having a high N results in a high insensitivity
against disturbances on the shared channel. On the other hand, the memory
on embedded devices is limited and, thus, a optimum could be found (if
any). The other relevant parameters are set such that they do not limit the
accuracy (Isend = 1s, Ns = 20) and these tests were repeated three times.

98

5 Evaluation

Transmitter Npre MAX [µs] MIN [µs] AVG [µs] STD [µs]

CC2650
(IEEE 802.15.4)

1 -20.458 -59.375 -40.619 8.050
4 68.125 29.854 47.349 8.043
6 22.229 -35.708 -11.501 10.309
8 10.979 -7.917 1.142 3.413
10 1.063 -1.167 -0.140 0.382
12 0.500 -0.625 -0.037 0.236
16 0.583 -0.542 0.040 0.180
20 0.583 -0.479 0.022 0.198

Firefly
(IEEE 802.15.4)

1 -18.063 -52.531 -37.049 7.639
4 70.281 31.562 48.440 8.195
6 22.750 -28.125 -13.894 7.955
8 6.125 -10.125 -0.199 2.740
10 0.594 -1.281 -0.415 0.354
12 0.469 -1.000 -0.168 0.280
16 0.312 -0.688 -0.230 0.170
20 0.469 -0.719 -0.080 0.204

TelosB
(IEEE 802.15.4)

1 0.000 -152.588 -48.014 17.298
4 91.553 0.000 40.385 16.494
6 0.000 -61.035 -26.652 11.844
8 30.518 -91.553 -13.123 18.691
10 0.000 -91.553 -22.888 14.341
12 122.070 -122.070 -19.124 30.323
16 61.035 -61.035 4.985 14.095
20 152.588 -122.070 -6.816 24.669

Table 5.5: This table shows the results from Figure 5.5 in more detail. For each transmitter,
the maximum, the minimum, the average, and the standard deviation of the
relative synchronization error are shown.

BLE to IEEE 802.15.4

For the first test regarding the number of synchronization pairs N, the
CC2650 node in BLE mode was configured as a transmitter, while all other
nodes were configured as receivers. The parameters were chosen such
that they do not influence this evaluation, and N was varied between 5
and 40. Figure 5.6 and Table 5.6 show the impact of the amount of stored
synchronization pairs N to the relative synchronization accuracy. Having
a higher N reduces the relative synchronization error on all nodes, except
on the TelosB. On that platform, no high-frequency crystal oscillator is
available which could be used as an internal clock reference. Instead, the

99

5 Evaluation

high frequency clock source makes use of an internal RC oscillator which
is highly unstable and non-linear. Because of the aforementioned reasons,
the low-frequency real-time reference clock of 32kHz is used on the TelosB.
While this clock inhibits very good linear characteristics, the frequency is
very low and thus the binary search algorithm is only partly working. It
simply does not achieve the clock granularity needed to decide whether
the state machine is currently leading or lagging and therefore, a higher
number of stored synchronization pairs does not help.

The other two nodes show that, albeit having a linear relationship, the
number of synchronization pairs N does not have a big influence on the
synchronization accuracy. This basically means that the filtering and estima-
tion algorithms already work quite well with only a small number of stored
samples. We chose N=20 to be a good compromise between accuracy and
memory usage for all following evaluations.

Receiver N MAX [µs] MIN [µs] AVG [µs] STD [µs]

CC2650
(IEEE 802.15.4)

5 31.585 -24.623 -0.035 2.901
8 96.190 -25.352 0.364 6.036
10 129.565 -34.435 0.403 8.272
20 2.106 -0.560 0.021 0.232
30 0.815 -0.540 -0.023 0.175
40 0.481 -0.435 -0.006 0.149

Firefly
(IEEE 802.15.4)

5 1.691 -1.351 -0.023 0.437
8 1.232 -1.976 -0.018 0.385
10 0.961 -2.934 -0.007 0.355
20 0.711 -0.851 -0.034 0.233
30 0.461 -0.601 -0.069 0.197
40 0.503 -0.601 -0.015 0.184

TelosB
(IEEE 802.15.4)

5 225.321 -508.617 -25.834 98.438
8 163.071 -140.117 -8.160 36.156
10 266.550 -298.971 -16.367 59.163
20 398.966 -705.138 -19.304 80.420
30 211.487 -230.659 0.390 48.066
40 152.008 -200.825 -20.582 43.935

Table 5.6: This table shows the results from Figure 5.6 in more detail. For each receiver, the
maximum, the minimum, the average, and the standard deviation of the relative
synchronization error are shown.

100

5 Evaluation

IEEE 802.15.4 to BLE

This evaluation was repeated with the CC2650 BLE node configured as
receiver and all other nodes configured as transmitters. Table 5.7 and Figure
5.7 show the results of this evaluation in detail, which include the maxi-
mum, the minimum, the average, and the standard deviation of the relative
synchronization error between transmitter and receiver. Both show that the
synchronization accuracy increases with increasing N, also seen in the first
test of this section. As for the TelosB, it operates on a clock frequency of
32kHz, which means that the receiver also estimates the synchronized clock
with a granularity of 32kHz. This results in distinct steps of approximately
30µs which are visible in the figure. For the other two nodes, it can again
be seen that N does not have a big influence to the synchronization accu-
racy and a value of 20 is sufficient to reach the requested accuracy goal of
2.3µs.

Transmitter N MAX [µs] MIN [µs] AVG [µs] STD [µs]

CC2650
(IEEE 802.15.4)

5 2.438 -1.563 0.041 0.532
8 1.250 -1.083 0.039 0.382
10 1.563 -1.021 -0.029 0.335
20 0.708 -0.771 -0.011 0.264
30 0.646 -0.854 -0.021 0.234
40 0.583 -0.583 0.006 0.203

Firefly
(IEEE 802.15.4)

5 1.406 -2.063 -0.211 0.499
8 1.156 -1.375 -0.194 0.414
10 0.844 -1.469 -0.189 0.385
20 0.687 -1.000 -0.187 0.269
30 0.344 -0.813 -0.183 0.205
40 0.437 -2.500 -0.140 0.224

TelosB
(IEEE 802.15.4)

5 183.105 -122.070 -0.254 16.385
8 762.939 -274.658 -6.307 54.025
10 30.518 -61.035 -1.221 9.573
20 30.518 -61.035 -0.814 8.772
30 30.518 -61.035 0.051 8.170
40 30.518 -91.553 -18.921 16.118

Table 5.7: This table shows the results from Figure 5.7 in more detail. For each transmitter,
the maximum, the minimum, the average, and the standard deviation of the
relative synchronization error is shown.

101

5 Evaluation

Figure 5.6: Evaluation of the synchronization accuracy depending on the number of stored
synchronization pairs N. Hereby a CC2650 node in BLE mode was used as
transmitter and all other nodes were configured as receivers. The results are
shown as a boxplot diagram where the X-axis shows the amount of stored
synchronization pairs N and the Y-axis shows the relative synchronization error
between transmitter and receiver.

102

5 Evaluation

Figure 5.7: Evaluation of the synchronization accuracy depending on the number of stored
synchronization pairs N. Hereby a CC2650 node in BLE mode was used as a
receiver and all other nodes were configured one-by-one as transmitters. The
results are shown as a boxplot diagram where the X-axis shows the amount of
stored synchronization pairs N and the Y-axis shows the relative synchronization
error between transmitter and receiver.

103

5 Evaluation

5.3 Energy Consumption

In Section 5.2, we showed the influence of the interval between synchroniza-
tion messages Isend and the achievable synchronization accuracy. The lower
Isend, the more X-Sync messages are sent, which has a direct impact on the
energy consumption. The authors of [20] show that the energy consumption
for the reception of CTC messages is determined by the duration of the RSS
sampling window (reception window), while the energy consumption in
case of transmissions mainly depends on the duration in which the radio
is active, i.e, transmitting data packets. Each node has a specific current
consumption during the transmission of energy bursts, the transmission of
gaps (node is still active) and the reception per second (Iactive, ITX and IRX
respectively). This property can be taken from each node’s datasheet ([23],
[24] and [53]) and is summarized in Table 5.8. For simplicity, an active CPU
is assumed during transmission and reception.

Mode CC2650 [mA] Firefly [mA] TelosB [mA]

Iactive 2.93 13 1.8
Iactive+TX @ 0dBm 9.03 24 19.5
Iactive+RX 8.83 20 21.8

Table 5.8: Current consumption for each hardware platform in different operating modes
(Iactive, Iactive+TX and Iactive+RX). This properties are taken from each node’s
datasheet ([23], [24] and [53]).

Assuming a nominal supply voltage of 3.3V for each hardware platform,
the power consumption can be estimated as shown in Table 5.9.

Mode CC2650 [mW] Firefly [mW] TelosB [mW]

Pactive 9.67 42.9 5.94
Pactive+TX @ 0dBm 29.8 79.2 64.35
Pactive+RX 29.14 66 71.94

Table 5.9: Power consumption for each hardware platform in different operating modes
(Pactive, Pactive+TX and Pactive+RX).

104

5 Evaluation

The energy consumption of X-Sync transmissions and receptions strongly de-
pends on the configuration, the alphabet, the coding scheme, and the chosen
encoding. Hence, a concrete value about the additional energy consumption
of a device using X-Sync cannot be given. However, to better understand
the additional energy consumption caused by X-Sync, the consumption of
a minimal synchronization message is shown. The optimal configuration
value for Ns is hereby taken from the previous evaluation (Section 5.2) and
is set to 12. The example given uses the following configuration:

• Alphabet: The used alphabet is given in Table 4.2.
• Encoding: 2-bit, burst-only encoding, i.e., each duration contains 2 bit

of information, taken from Table 4.3.
• Average burst duration for random data: Using Table 4.3 the average

burst duration can be calculated which results to be 240µs.
• Timestamp Size: 64 bit.
• Time between two consecutive energy burst (typical): 200µs.
• Number of synchronization preamble bursts Ns = 12.

Using this parameters, Table 5.10 shows a simple example of a minimal
X-Sync message consisting of a CTC preamble, a synchronization preamble,
a CTC header, and the timestamp T1. While adding a checksum is not
needed, it ensures data integrity. The table shows the average time spend
in each operating mode during reception (tactive + tRX) and transmission
(tTX).

Part of X-Sync Message Size [Bytes] # Bursts Transmission Reception
tactive (AVG) [µs] tTX (AVG) [µs] tRX (AVG) [µs]

CTC Preamble - 5 1000 1024 2024
Synchronization Preamble - Ns = 12 2400 2304 4704
CTC Header 1 4 800 960 1760
Timestamp 8 32 6400 7680 14080
Checksum 1 4 800 960 1760
Result - 57 11400 12928 24328

Table 5.10: The specific parts of a minimal X-Sync message, the amount of bursts needed
for the transmission/reception and the average time spent in each operating
mode.

Using the results from Table 5.10, the average power usage per transmis-
sion/reception of this X-Sync message can be calculated. The results can be

105

5 Evaluation

seen in Table 5.11 which shows that depending on the hardware platform,
the power consumption can vary greatly and transmitting the least amount
of X-Sync message should always be the goal. Nevertheless, the energy
consumption per X-Sync transmission is more than acceptable.

Node Energy Usage per Transmission [mWs]
(tactive ∗ Pactive + tTX ∗ Pactive+TX)

Energy Usage per Reception [mWs]
(tRX ∗ Pactive+RX)

CC2650 495.49 708.92
Firefly 1512.96 1605.65
TelosB 899.93 1750.16

Table 5.11: Energy usage for each hardware platform for transmission and reception of a
minimal X-Sync message.

5.4 Memory Footprint

IoT devices are limited in terms of hardware capabilities, such as processing
speed, power consumption, and available memory. In this section, we evalu-
ate the static memory usage that X-Sync adds to an existing IoT application.
Table 5.12 lists a typical X-Sync configuration, which is used as an example
to calculate the memory consumption. Hereby, the results from the previ-
ous evaluations (Section 5.2) were used, which define the synchronization
preamble length Ns = 12 and the number of stored synchronization pairs
N = 20.

Parameter Value

Number of Synchronization Preamble Bursts (Ns): 12
Number of stored Synchronization Pairs (N) 20
Size of Timestamp T2 64 Bit

Table 5.12: X-Sync configuration parameters used to evaluate the memory footprint. All
parameters not relevant for the memory footprint are omitted.

Depending on the used node, the memory footprint varies as different
compilers, architectures, and HAL layers are used. Table 5.13 shows the
ROM and RAM consumption of X-Sync for each platform. The ROM usage

106

5 Evaluation

is roughly equal on the different platforms while the RAM usage differs
significantly. Thereby, the TelosB node does not support radio queues, which
explains the low memory footprint of 1.18 kB. Both, the Firefly and the
CC2650 node make use of radio queues, whose structure and size is platform
dependent. The Firefly node allows to specify such a queue in an more
efficient way, which explains the rather low RAM usage, despite the use of a
queue. In comparison to X-Burst, X-Sync undeniably needs more resources.
That can be explained by the use of 64-bit timestamps for all timing-related
functions, radio queues, RANSAC filtering and the added state machines
for processing the synchronization preambles.

X-Sync X-Burst
Node ROM usage [kB] RAM usage [kB] ROM usage RAM usage

CC2650 (BLE) 15.20 9.90 7.36 1.10
CC2650 (IEEE 802.15.4) 15.44 9.97 7.86 1.17
Firefly (IEEE 802.15.4) 12.81 1.76 6.97 1.26
TelosB (IEEE 802.15.4) 14.20 1.18 6.78 0.75

Table 5.13: The static memory usage in terms of RAM and ROM when X-Sync is added
to an existing IoT application using a typical configuration listed in Table 5.12.
Additionally, the RAM and ROM usage of X-Burst are included, taken from
[42].

5.5 Reliability

The reliability of X-Sync transmissions primarily depends on the reliabil-
ity of the cross-technology communication scheme itself, which is used to
transmit the timestamp. The authors of X-Burst evaluate the transmission
reliability comprehensively, which can be found in their paper [42] and is
thus not repeated in this evaluation. Receiving a correct message, which
includes the timestamp T1, does not mean that the sampling delay compen-
sation algorithm is working reliably. Disturbances on the channel may lead
to wrong binary search results, and thus, the resulting time synchroniza-
tion pairs (T1, T2) need to be filtered and stored in a buffer, as described
in Section 3.5. Having a higher number of stored synchronization pairs
N will lead to a higher resistance against disturbances, but increases the

107

5 Evaluation

memory consumption, and results in a higher CPU load. This is shown in
Section 5.2.3. Due to the RANSAC filtering of the samples in conjunction
with the linear regression, only a very limited number of pairs is needed
to accomplish very good results. Thus, having a higher number of stored
synchronization pairs N does not influence the result greatly and N=20 is
used as a compromise for the following evaluation.

5.6 X-Sync in Action

The evaluations of the previous sections were used to determine the optimal
values for X-Sync, regarding energy and memory consumption, reliability
and accuracy. Table 5.14 summarizes the optional parameters. Using this
parameters, we did a long-term (35h) evaluation of X-Sync. This was only
done once because of the long test durations.

Parameter Value

Synchronization Interval (Isend) 60s
Number of Synchronization Preamble Bursts (Ns): 12
Number of stored Synchronization Pairs (N) 20

Table 5.14: X-Sync configuration parameters used for the long-term evaluation.

BLE to IEEE 802.15.4

In this evaluation, the CC2650 (BLE) node was configured as transmitter
and all other nodes were configured as receivers. The results are shown in
the time domain (Figure 5.8) and are summarized in Table 5.15. At t=1h and
t=17h, a disturbance on the channel can be seen on both the CC2650 node
in IEEE 802.15.4 mode and the Firefly node. On the TelosB, this disturbance
is not significant enough to be visible, as the synchronization accuracy
is limited by the hardware capabilities of the node. This is because the
sampling delay Tsampling correction algorithm needs a high-frequency and
stable clock source in order to work properly. A few minor disturbances on
the channel can also be seen throughout the evaluation (t=6h, t=22h, t=28h),

108

5 Evaluation

but their impact is filtered by the use of RANSAC and thus the effect on the
synchronization accuracy is only minor.

Figure 5.9 shows the accuracy between t=5h and t=6h in more detail to high-
light the expected short-term variations. It can be seen that the performance
of both the CC2650 node, as well as the Firefly node is remarkable and no
major outliers can be seen. As for the TelosB, quantization effects can clearly
be seen, which are caused by the fact that double-precision floating point
arithmetic is not supported by the used GCC compiler. X-Sync therefore
runs on single-point arithmetic that results in visible quantization steps.

Summarized, the achieved relative synchronization accuracy is outstanding
(< ±45µs for the CC2650 and the Firefly) and still note-able on the TelosB
(< ±4ms) given the hardware constraints. To further show the accuracy
of X-Sync, the cumulative distribution function (CDF) of the modulus of
the relative synchronization error was calculated for each transmitter and
receiver combination and is shown in Figure 5.10. These results are further
summarized in Table 5.16, which show the median (50%) as well as the
95% and 99% value of the CDF. It can be seen that the modulus of the
relative synchronization accuracy stays below 3µs on the CC2650 platform
and below 7µs on the Firefly for 95% of the time, which is remarkable. The
TelosB results still show that the synchronization accuracy stays well below
1µs for the same 95% of the time.

Receiver MAX [µs] MIN [µs] AVG [µs] STD [µs]

CC2650
(IEEE 802.15.4) 15.788 -13.754 0.320 1.556

Firefly
(IEEE 802.15.4) 35.032 -44.239 0.552 3.897

TelosB
(IEEE 802.15.4) 3745.703 -3774.859 -30.640 432.918

Table 5.15: This table shows the results of the long-term X-Sync evaluation (Figure 5.8) in
more detail. For each receiver, the maximum, the minimum, the average, and
the standard deviation of the relative synchronization error is shown.

109

5 Evaluation

Receiver Median (50%) 95% 99%

CC2650
(IEEE 802.15.4) 0.580 µs 2.517 µs 7.233 µs

Firefly
(IEEE 802.15.4) 0.927 µs 6.157 µs 17.989 µs

TelosB
(IEEE 802.15.4) 246.771 µs 812.040 µs 1311.051 µs

Table 5.16: The summarized results of the CDF (Figure 5.10) showing the median (50%) as
well as the 95% and 99% modulo of the relative synchronization accuracy.

IEEE 802.15.4 to BLE

The same test is repeated with the CC2650 BLE node configured as receiver
and all other nodes, one-by-one, as transmitter. The results of this time-
domain evaluation can be seen in Figure 5.11 and is summarized in Table
5.17. Because of the fact that the transmitting capabilities were evaluated
one-by-one in a unicast configuration, the nodes do not see the disturbances
on the channel at the same time. Some major disturbances occurred, whose
impact was filtered using RANSAC and linear regression. Both, the CC2650
node in IEEE 802.15.4 mode, as well as the Firefly node stay below a
relative synchronization error of ±45µs even during those events. The
TelosB node’s relative synchronization accuracy is, again, limited by its
hardware capabilities, which was already discussed in Section 5.2. The
discrete steps can be clearly seen in the results, which show that the used
timer on the TelosB is only clocking at 32kHz. Nevertheless, the TelosB
achieves a respectable performance when used as X-Sync transmitter and
always stays below ±125µs.

Figure 5.12 shows the accuracy between t=5h and t=6h in more detail to
highlight the expected short-term variations. It can be seen that the perfor-
mance of both the CC2650 node, as well as the Firefly node is remarkable
and no major outliers can be seen. As for the TelosB, the performance is
limited by the use of the low-frequency external 32kHz crystal oscillator,
which is needed for stability and is the only crystal oscillator available on
this hardware platform. Thus, one step is 1

32768 = 30.517µs which is exactly
what can be seen in the graph. Hereby, the TelosB nodes is configured as

110

5 Evaluation

transmitter and thus, the low frequency of the used oscillator influences the
results much less than in the other direction. This is because the sampling
delay (τsampling) correction algorithm needs a high-frequency and accurate
clock source in order to work properly.

Summarized, the achieved relative synchronization accuracy is outstanding
(< ±100µs for the CC2650 and the Firefly) and still very good on the TelosB
(< ±125ms) given it’s hardware constraints. To further show the accuracy
of X-Sync, the cumulative distribution function (CDF) of the modulus of
the relative synchronization error was calculated for each transmitter and
receiver combination and is shown in Figure 5.13. These results are further
summarized in Table 5.18, which shows the median (50%) as well as the
95% and 99% value of the CDF. Again, a step in the distribution can be seen
on the TelosB platform, caused by the use of the 32kHz crystal oscillator.
Nevertheless, the modulus of the relative synchronization error stays below
31µs regardless of the used platform for 95% of the time.

Transmitter MAX [µs] MIN [µs] AVG [µs] STD [µs]

CC2650
(IEEE 802.15.4) 96.923 -29.160 -0.082 4.706

Firefly
(IEEE 802.15.4) 51.827 -94.298 -1.589 8.771

TelosB
(IEEE 802.15.4) 91.553 -122.070 -25.830 12.728

Table 5.17: This table shows the results of the long-term X-Sync evaluation (Figure 5.11)
in more detail. For each transmitter, the maximum, the minimum, the average,
and the standard deviation of the relative synchronization error is shown.

111

5 Evaluation

Transmitter Median (50%) 95% 99%

CC2650
(IEEE 802.15.4) 0.819 µs 4.848 µs 13.598 µs

Firefly
(IEEE 802.15.4) 1.767 µs 10.798 µs 48.017 µs

TelosB
(IEEE 802.15.4) 30.518 µs 30.518 µs 61.035 µs

Table 5.18: The summarized results of the CDF (Figure 5.13) showing the median (50%) as
well as the 95% and 99% modulo of the relative synchronization accuracy.

112

5 Evaluation

Figure 5.8: This figure shows the time-domain plot of the long-term X-Sync evaluation.
Hereby the CC2650 node in BLE mode was used as a transmitter and all other
nodes were configured as receivers, forming a broadcast configuration.

113

5 Evaluation

Figure 5.9: Time-domain plot of the long-term X-Sync evaluation zoomed between t=5h
and t=6h. Hereby the CC2650 node in BLE mode was used as a transmitter and
all other nodes were configured as receivers, forming a broadcast configuration.

114

5 Evaluation

(a)

(b)

(c)

Figure 5.10: CDF of the modulus of the relative synchronization error of the long-term
X-Sync evaluation seen in Figure 5.8. Hereby the CC2650 node in BLE mode
was used as a transmitter and all other nodes were configured as receivers,
forming a broadcast configuration.

115

5 Evaluation

Figure 5.11: Time-domain plot of the long-term X-Sync evaluation. Hereby the CC2650 node
in BLE mode was configured as receiver and all other nodes were configured
one-by-one as transmitters, forming a unicast configuration.

116

5 Evaluation

Figure 5.12: Time-domain plot of the long-term X-Sync evaluation zoomed between t=5h
and t=6h. Hereby the CC2650 node in BLE mode was configured as receiver
and all other nodes were configured one-by-one as transmitters, forming a
unicast configuration.

117

5 Evaluation

(a)

(b)

(c)

Figure 5.13: CDF of the modulus of the relative synchronization error of the long-term
X-Sync evaluation seen in Figure 5.11. Hereby the CC2650 node in BLE mode
was configured as receiver and all other nodes were configured one-by-one as
transmitters, forming a unicast configuration.

118

6 Conclusion and Future Work

This chapter concludes the thesis with a summary of the contributions of
this thesis in Section 6.1 and an outlook about the future development of
X-Sync in Section 6.2.

6.1 Conclusion

In this thesis, we present X-Sync, a novel and accurate cross-technology
clock synchronization scheme between off-the-shelf BLE and IEEE 802.15.4
devices. Compared to other works in the field, X-Sync offers a superior
synchronization accuracy, of under 1µs (CC2650 and Firefly), depending
on the configuration. It also supports low-computing power nodes, such as
the TelosB, where a synchronization accuracy below 100µs can be achieved.
These results are achieved by adapting the packet-based CTC scheme X-
Burst [42] for time critical applications. Thereby, we analysed the delays
present in packet-based CTCS and then combined MAC timestamping mech-
anisms with novel CTC delay compensation schemes in order to compensate
and correct these delays. Furthermore, we used sophisticated filtering and
clock skew estimation algorithms to further improve the relative synchro-
nization accuracy.
X-Sync was integrated into the open source operating system Contiki-NG,
by adding and altering blocks from the modular architecture of X-Burst.
We hereby change the message format and introduce a synchronization
preamble, which is used to compensate the sampling delay inherent in
packet-based CTCS systems. Throughout all blocks, a special focus on accu-
rate timing was taken.
X-Sync was evaluated on real hardware showing a working cross-technology
synchronization between a ZigBee and a BLE device. The evaluation showed
that depending on the configuration, the relative synchronization error can
be lower than 1µs on the CC2650 and Firefly platform and lower than
100µs on the TelosB platform. Furthermore, the memory footprint, the en-
ergy consumption and the reliability of X-Sync were evaluated. Lastly, a
long-term evaluation showed that X-Sync is able to maintain the specified

119

6 Conclusion and Future Work

accuracies also in real-world applications and that X-Sync is able to cope
with disturbances on the shared CTC channel.

6.2 Future Work

In the following, an outlook about the future development of X-Sync is
given.

Implement a high-level time synchronization scheme on top. While the
evaluation shows a very good synchronization accuracy, it also shows that
the average synchronization error is sometimes significant, depending on
the configuration. The reasons for this effect need to be further analysed
and corrected. One possible explanation could be that a non-constant trans-
mission power is used, or the receivers automatic gain control is active.
Regardless of the reason, it results in non-static environmental conditions.
By using a simple round-trip synchronization algorithm on top of X-Sync
we could drastically improve this situation. Even more sophisticated algo-
rithm could be ported in order to achieve an even better synchronization
accuracy.

Interoperability with X-Burst. During the implementation of X-Sync, the
X-Burst message format was changed in order to include the synchroniza-
tion preamble as well as some additional fields. This effectively means
that X-Sync is not compatible with X-Burst anymore. By reordering the
fields, and sending the synchronization preamble at a later point in time,
interoperability would be possible.

Adding Wi-Fi support. X-Burst was already also ported to Wi-Fi [22] and
therefore, the next logical step is to also port X-Sync to Wi-Fi. One mayor
challenge hereby is the time-critical HAL layer, which also has to be imple-
mented.

Port X-Sync to another hardware platform. So far, X-Sync is implemented
on three hardware platforms with only one supporting BLE. The next logical
step is to port X-Sync to another BLE node.

120

6 Conclusion and Future Work

Software-defined radio implementation. In order to simulate, observe and
debug ongoing transmissions, a software defined radio implementation of
X-Sync would be very helpful. It could help in improving the timing and
thereby the relative synchronization accuracy.

121

Bibliography

[1] H. Hejazi et al., “Survey of platforms for massive IoT,” in IEEE Inter-
national Conference on Future IoT Technologies (Future IoT), 2018.

[2] P. Scully, The Top 10 IoT Segments in 2018 - based on 1,600 real IoT Projects,
2019. [Online]. Available: https://iot-analytics.com/top-10-iot-
segments-2018-real-iot-projects/ (visited on 09/30/2018).

[3] T. Alam, “A reliable communication framework and its use in Internet
of Things (IoT),” 2018.

[4] F. Gao et al., “Design and optimization of a cross-layer routing protocol
for multi-hop wireless sensor networks,” in Proc. of the International
Conference on Sensor Network Security Technology and Privacy Communi-
cation System, 2013.

[5] Q. M. Chaudhari et al., “Estimation of Clock Parameters for Synchro-
nization in Wireless Sensor Networks,” in Proc. of the IEEE International
Conference on Signal Processing and Communications, 2007.

[6] M. Buettner et al., “X-mac: A short preamble mac protocol for duty-
cycled wireless sensor networks,” in Proc. of the 4th International Con-
ference on Embedded Networked Sensor Systems, 2006.

[7] J. D. Case et al., Simple Network Management Protocol (SNMP), 1990.

[8] D. P. Shepard et al., “Evaluation of the vulnerability of phasor mea-
surement units to GPS spoofing attacks,” International Journal of Critical
Infrastructure Protection, 2012.

[9] R. Tan et al., “Impact of Integrity Attacks on Real-time Pricing in Smart
Grids,” in Proc. of the 2013 ACM SIGSAC Conference on Computer &
Communications Security, 2013.

[10] X. Guo et al., “ZIGFI: Harnessing Channel State Information for Cross-
Technology Communication,” IEEE INFOCOM 2018 - IEEE Conference
on Computer Communications, 2018.

[11] G. Werner-Allen et al., “Monitoring Volcanic Eruptions with a Wireless
Sensor Network,” in Proc. of the Second European Workshop on Wireless
Sensor Networks, 2005.

122

https://iot-analytics.com/top-10-iot-segments-2018-real-iot-projects/
https://iot-analytics.com/top-10-iot-segments-2018-real-iot-projects/

Bibliography

[12] S. Kim et al., “Health Monitoring of Civil Infrastructures Using Wire-
less Sensor Networks,” in Proc. of the Sixth International Symposium on
Information Processing in Sensor Networks, 2007.

[13] K. Khanchuea and R. Siripokarpirom, “A Multi-Protocol IoT Gateway
and WiFi/BLE Sensor Nodes for Smart Home and Building Automa-
tion: Design and Implementation,” in Proc. of the 10th International
Conference of Information and Communication Technology for Embedded
Systems, 2019.

[14] M. Hawelikar and S. Tamhankar, “A design of Linux based ZigBee
and Bluetooth low energy wireless gateway for remote parameter
monitoring,” in Proc. of the 2015 International Conference on Circuits,
Power and Computing Technologies, 2015.

[15] G. Aloi et al., “A Mobile Multi-Technology Gateway to Enable IoT
Interoperability,” in Proc. of the First International Conference on Internet-
of-Things Design and Implementation, 2016.

[16] T. Zachariah et al., “The Internet of Things Has a Gateway Problem,”
2015.

[17] K. Chebrolu et al., “Esense: Communication through energy sensing,”
in Proc. of the 15th annual international conference on Mobile computing
and networking, 2009.

[18] X. Zhang and K. G. Shin, “Gap Sense: Lightweight coordination of
heterogeneous wireless devices,” in Proc. of the IEEE International
Conference on Computer Communications, 2013.

[19] ——, “Cooperative Carrier Signaling: Harmonizing Coexisting WPAN
and WLAN Devices,” IEEE/ACM Transactions on Networking, 2013.

[20] R. Hofmann, “X-Burst: Cross-Technology Communication for Off-the-
Shelf IoT Devices,” Master’s thesis, Graz University of Technology,
2018.

[21] W. Jiang et al., “BlueBee: A 10,000x Faster Cross-Technology Commu-
nication via PHY Emulation,” in Proc. of the 15th ACM Conference on
Embedded Network Sensor Systems, 2017.

123

Bibliography

[22] H. Brunner et al., “Cross-Technology Broadcast Communication be-
tween Off-The-Shelf Wi-Fi, BLE, and IEEE 802.15.4 Devices,” in Proc.
of the 17th International Conference on Embedded Wireless Systems and
Networks, 2020.

[23] CC256x Dual-Mode Bluetooth Controller, SWRS121E, Texas Instruments,
2012.

[24] Tmote Sky Low Power Wireless Sensor Module, Moteiv Corporation, 2006.

[25] Zolertia Firefly Revision A2 Internet of Things hardware development plat-
form, for 2.4-GHz and 863-950MHz, IEEE 802.15.4, 6LoWPAN and ZigBee
Applications, ZOL-BO001-A2, Zolertia, 2017.

[26] F. Mattern and C. Floerkemeier, “From Active Data Management to
Event-based Systems and More,” in, 2010, ch. From the Internet of
Computers to the Internet of Things.

[27] D. Tomtsis et al., “Evaluating existing wireless technologies for IoT
data transferring,” in Proc. of the South Eastern European Design Au-
tomation, Computer Engineering, Computer Networks and Social Media
Conference, 2017.

[28] J. d. C. Silva et al., “LoRaWAN - A low power WAN protocol for
Internet of Things: A review and opportunities,” in Proc. of the 2nd
International Multidisciplinary Conference on Computer and Energy Science,
2017.

[29] “IEEE Standard for Low-Rate Wireless Networks,” IEEE Std 802.15.4-
2015 (Revision of IEEE Std 802.15.4-2011), 2016.

[30] ZigBee Specification, ZigBee Standards Organization, 2012. [Online].
Available: http://www.zigbee.org/wp- content/uploads/2014/
11/docs-05-3474-20-0csg-zigbee-specification.pdf (visited on
03/03/2019).

[31] P. Zand et al., “ISA100.11a: The ISA100.11a extension for supporting
energy-harvested I/O devices,” in Proc. of IEEE International Sympo-
sium on a World of Wireless, Mobile and Multimedia Networks, 2014.

[32] J. Song et al., “WirelessHART: Applying Wireless Technology in Real-
Time Industrial Process Control,” in Proc. of the 2008 IEEE Real-Time
and Embedded Technology and Applications Symposium, 2008.

124

http://www.zigbee.org/wp-content/uploads/2014/11/docs-05-3474-20-0csg-zigbee-specification.pdf
http://www.zigbee.org/wp-content/uploads/2014/11/docs-05-3474-20-0csg-zigbee-specification.pdf

Bibliography

[33] Z. Shelby and C. Bormann, 6LoWPAN: The Wireless Embedded Internet.
Wiley Publishing, 2010.

[34] D. L. Mills, Computer Network Time Synchronization: The Network Time
Protocol. CRC Press, Inc., 2006.

[35] J. Elson et al., “Fine-grained network time synchronization using
reference broadcasts,” ACM SIGOPS Operating Systems Review, 2002.

[36] C. Gu et al., “Broadcast time synchronization algorithm for wireless
sensor networks,” 2006.

[37] S. Ganeriwal et al., “Timing-sync Protocol for Sensor Networks,” in
Proc. of the 1st International Conference on Embedded Networked Sensor
Systems, 2003.

[38] M. Maróti et al., “The Flooding Time Synchronization Protocol,” in
Proc. of the 2nd international conference on Embedded networked sensor
systems, 2004.

[39] S. M. Kim et al., “FreeBee: Cross-technology Communication via Free
Side-channel,” in Proc. of the 21st Annual International Conference on
Mobile Computing and Networking, 2015.

[40] CC13x0, CC26x0 SimpleLink Wireless MCU, SWCU117H, Texas Instru-
ments, 2015.

[41] Z. Li and T. He, “Webee: Physical-layer cross-technology communica-
tion via emulation,” in Proc. of the 23rd Annual International Conference
on Mobile Computing and Networking, 2017.

[42] R. Hofmann et al., “X-Burst: Enabling Multi-Platform Cross-Technology
Communication between Constrained IoT Devices,” in Proc. of the 16th
Annual IEEE International Conference on Sensing, Communication, and
Networking, 2019.

[43] J. Bauwens et al., “Coexistence between IEEE802.15.4 and IEEE802.11
through cross-technology signaling,” in Proc. of the IEEE Conference on
Computer Communications Workshops, 2017.

[44] ——, “Demo abstract: Cross-technology TDMA synchronization using
energy pattern beacons,” in Proc. of the IEEE Conference on Computer
Communications Workshops, 2017.

125

Bibliography

[45] P. Ruckebusch et al., “Cross-technology wireless experimentation:
Improving 802.11 and 802.15.4e coexistence,” in Proc. of the IEEE 17th
International Symposium on A World of Wireless, Mobile and Multimedia
Networks (WoWMoM), 2016.

[46] P. Valck et al., “Exploiting programmable architectures for wifi/zigbee
inter-technology cooperation,” Eurasip Journal on Wireless Communica-
tions and Networking, 2014.

[47] I. Tinnirello et al., “Wireless mac processors: Programming mac pro-
tocols on commodity hardware,” in Proc. of the IEEE International
Conference on Computer Communications, 2012.

[48] P. d. Mil et al., “Snapmac: A generic mac/phy architecture enabling
flexible mac design,” Ad Hoc Networks, 2014.

[49] Z. Yu et al., “Crocs: Cross-Technology Clock Synchronization for WiFi
and ZigBee,” in Proc. of the International Conference on Embedded Wireless
Systems and Networks, 2018.

[50] TelosB Mote Platform, 6020-0094-03, MEMSIC.

[51] 2.4 GHz IEEE 802.15.4 / ZigBee-ready RF Transceiver, SWRS041c, Texas
Instruments, 2014.

[52] Advanticsys, Advanticsys MTM-CM5000-MSP. [Online]. Available:
https://www.advanticsys.com/shop/mtmcm5000msp- p- 14.html

(visited on 09/30/2018).

[53] CC2538 Powerful Wireless Microcontroller System-On-Chip for 2.4 GHz
IEEE 802.15.4, 6LoWPAN, and ZigBee Applications, SWRS096D, Texas
Instruments, 2012.

[54] CC1200 Low-Power, High Performance RF Transceiver, SWRS123D, Texas
Instruments, 2013.

[55] Contiki-NG GIT Repository. [Online]. Available: https://github.com/
contiki-ng/contiki-ng (visited on 09/30/2018).

[56] A. Dunkels et al., “Protothreads: Simplifying event-driven program-
ming of memory-constrained embedded systems,” in Proc. of the 4th
International Conference on Embedded Networked Sensor Systems.

[57] S. M. Lasassmeh and J. M. Conrad, “Time synchronization in wireless
sensor networks: A survey,” in Proc. of the IEEE SoutheastCon, 2010.

126

https://www.advanticsys.com/shop/mtmcm5000msp-p-14.html
https://github.com/contiki-ng/contiki-ng
https://github.com/contiki-ng/contiki-ng

Bibliography

[58] D. Petrov et al., “Distributed GNSS-based Time Synchronization and
applications,” in Proc. of the 8th International Congress on Ultra Modern
Telecommunications and Control Systems and Workshops, 2016.

[59] A. Flockett, Time-sensitive networking: reliable communication for Indus-
trial IoT, 2017. [Online]. Available: https://www.electronicspecifier.
com/blog/time-sensitive-networking-reliable-communication-

for-industrial-iot (visited on 09/30/2018).

[60] A. Mahmood et al., “Methods and performance aspects for wireless
clock synchronization in IEEE 802.11 for the IoT,” in Proc. of the IEEE
World Conference on Factory Communication Systems, 2016.

[61] M. A. Fischler et al., “Random Sample Consensus: A Paradigm for
Model Fitting with Applications to Image Analysis and Automated
Cartography,” Communications of the ACM, 1981.

[62] H. Wang et al., “Maximum likelihood estimation of clock skew in
wireless sensor networks with periodical clock correction under expo-
nential delays,” IEEE Transactions on Signal Processing, 2017.

127

https://www.electronicspecifier.com/blog/time-sensitive-networking-reliable-communication-for-industrial-iot
https://www.electronicspecifier.com/blog/time-sensitive-networking-reliable-communication-for-industrial-iot
https://www.electronicspecifier.com/blog/time-sensitive-networking-reliable-communication-for-industrial-iot

	Abstract
	Introduction
	Problem Statement
	Contributions
	Thesis Structure

	Background
	Wireless Sensor Networks
	IEEE 802.15.4
	Bluetooth Low Energy

	Clock Synchronization in Wireless Sensor Networks
	Timestamp Transmission/Reception
	High-Level Synchronization Schemes

	Cross-Technology Communication
	Packet-level CTC
	PHY Emulation CTC

	X-Burst
	Related Work
	Coexistence between IEEE 802.15.4 and IEEE 802.11 through cross-technology signaling
	Cross-technology wireless experimentation: Improving IEEE 802.11 and 802.15.4e coexistence
	Exploiting Programmable Architectures for Wi-Fi/ZigBee Inter-Technology Cooperation
	Crocs

	Employed Hardware
	TI CC2650 Launchpad and Sensortag
	TelosB Mote
	Zolertia Firefly

	Employed Software

	X-Sync: Design
	Requirements
	Overview
	Precise Transmission Timing of CTC Messages
	High-Precision Clocks
	Radio Queues
	Interrupt Priority Masking
	MAC Timestamp Transmission

	Precise Reception Timing of CTC Messages
	Averaging delay averaging
	Sampling delay sampling

	Validation and Synchronization
	Linear Regression
	Thresholding
	RANSAC
	RANSAC and Linear Regression

	X-Sync: Implementation
	Supplementary Blocks
	Application Block
	Frame Management Block
	Alphabet Communication Block
	Coding Scheme Block

	Transmission Blocks
	Encoding Block
	HAL - Transmission Part

	Reception Blocks
	Decoding and CTC Delay Correction Block
	HAL - Reception Part

	Validation/Correction Blocks
	Clock Skew Estimation and Filtering Block
	Clock Correction Block

	Evaluation
	Experimental Setup
	Parameters
	X-Sync Message
	Block Configuration
	Measurement Procedure

	Synchronization Accuracy
	Synchronization Interval Isend
	Synchronization Preamble Length Ns
	Number of Stored Synchronization Pairs N

	Energy Consumption
	Memory Footprint
	Reliability
	X-Sync in Action

	Conclusion and Future Work
	Conclusion
	Future Work

	Bibliography

