




Abstract

Reformulation of lattice field theories in terms of dual variables is a powerful tool,

that has been studied intensively in recent years. A dual formulation may overcome

complex action problems and provides a different, very geometrical view on lattice field

theories. For the abelian case the dualisation is relatively easy and straightforward,

whereas in non-abelian theories this procedure turns out to be more difficult due to the

non-commutative character of the group elements. Nevertheless dual formulations for

non-abelian theories were suggested and are still subject of current intensive research.

In this work we present different approaches for solving the ”artificial” sign problem

of the dual representation of SU(2) pure lattice gauge theory. Sign problems are very

common in lattice field theory, the reason why we call this sign problem ”artificial” is,

that the conventional SU(2) lattice gauge theory does not have a sign problem while it

appears in the theory during the dualisation procedure.

The three different approaches discussed in this thesis are: i) analysing contributions

from the center group of SU(2) in search for new constraints for the theory, ii) resumming

the different contributions to obtain positive overall weights and iii) truncation of the

theory. The most promising approach turns out to be the truncation approach, where

we naively reformulate our dual theory to resemble a qubit representation. This idea

originated from the paper: Qubit regularization of the O(3) sigma model [1] and the

fact, that SU(2) can be related to O(3) by an isomorphism.

Finally we carry out simulations of the theory using the undualised and the truncated

representation of the theory. We then compare the data obtained by the simulations for

different lattice sizes and discuss the implications of our results.
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Kurzfassung

Reformulierung von Gitterfeldtheorien mittels dualer Variablen ist eine sehr mächtige

Methode, an welcher in den letzten Jahren verstärkt geforscht wurde. Eine duale For-

mulierung kann dabei helfen komplexe Wirkungsprobleme zu lösen und eine solche

Darstellung bietet eine sehr geometrische Sichtweise von Gitterfeldtheorien. Im abelschen

Fall ist die Dualisierung relativ leicht zu bewerkstelligen, wohingegen sich dieses Prozedere

in nicht-abelschen Theorien wegen dem nicht-kommutativen Charakter der Guppenele-

mente deutlich schwieriger gestaltet. Trotzem sind duale Formulierungen solcher nicht-

abelschen Theorien vorgestellt worden und sind weiterhin Gebiet intensiver Forschung.

In dieser Masterarbeit präsentieren wir verschiedene Ansätze zum Lösen des ”ar-

tifiziellen” Vorzeichenproblems der dualen Representation von der reinen SU(2) Git-

tereichtheorie. Vorzeichenprobleme sind sehr häufig in Gitterfeldtheorien, der Grund

warum wir dieses hier als ”artifiziell” betiteln ist der, dass die konventionelle SU(2)

Gittereichtheorie gar kein Vorzeichenproblem aufweist, sondern dieses erst durch den

Dualisationsprozess hinzugefügt wird.

Die drei erwähnten Ansätze, die wir in dieser Masterarbeit besprechen sind folgende:

i) Suche nach neuen Einschränkungen der Theorie durch Analyse der Zentrumsgrup-

penbeiträge von SU(2), ii) Resummation verschiedener Beiträge in der Hoffnung posi-

tive Gewichte zu erhalten und iii) Trunkierung der Theorie. Der Trunkierungsansatz,

bei dem wir die Variablen unserer dualen Theorie so umformulierten, dass diese einer

Qubit Diskretisierung ähneln, kristallisiert sich als der am vielversprechendste heraus.

Die Idee mit der Qubit Diskretisierung ist angelehnt an die Thematik von folgendem

Artikel: Qubit regularization of the O(3) sigma model [1] und dem Fakt, dass SU(2)

isomorph zu O(3) ist.

Schließlich simulieren wir die Theorie einmal mit der nicht-dualisierten und einmal mit

der trunkierten Formulierung der Theorie. Anschließend vergleichen wir die Datensätze

der verschiedenen Simulationen auf verschiedenen Gittergrößen und Diskutieren die Im-

plikationen dieser Resultate.
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Chapter 1

Introduction

The appearance of sign problems is a very common feature in lattice field theory and has

been the subject of major research activities more or less since the lattice formulation of

quantum field theory was first introduced. There are various ways how these sign prob-

lems come about, most notably complex action problems introduced by finite densities,

topological terms or a non-zero chemical potential. Over the years, various methods

have been developed and proposed to try and overcome these problems. One approach,

that especially in recent years succeeded in solving different types of sign problems is

the method of using a dual representation of lattice field theory. In the past this method

has successfully been applied to solve the complex action problem of various abelian

theories. More recent research is focused on developing this formalism for non-abelian

theories.

”Dual representation” refers to a method of exactly rewriting the partition sum of the

theory in terms of new, dual variables. These new degrees of freedom are world-lines of

conserved flux for the matter fields and world-sheets for gauge fields. This rewriting of

the theory can help uncover new symmetry aspects of the theory. However, we need to

stress, that the dual representations are not unique. This is to say, that using different

dualisation schemes may highlight different symmetry aspects of the theory. There is

however one caveat: just because a dual representation of the theory exists does not

automatically guarantee that the sign problem is solved. This is because the weights

in the dual formulation can be negative or even complex. A good overview of the dual

formulation of lattice field theories is given in [2].

This thesis explores the dual representation of non-abelian lattice field theories. But

in contrast to the examples of the complex action sign problems mentioned above, the

sign problem only gets introduced by the dualisation scheme. Conventional SU(2) lattice

gauge theory does not have a sign problem. However, during the dualisation, because we
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need to choose a specific representation of the SU(2) matrices, we introduce a relative

sign. This thesis is devoted to developing methods to overcome this sign problem. Thus,

the work done in this thesis is mostly of algebraic nature. To check the validity of our

approach, we also perform simulations of the theory and compare these results to the

results obtained by the conventional simulation.

This thesis is structured as follows: Chapter 2 serves as an introduction for the

topic of lattice field theories. Here we explain in great detail why lattice field theories

are useful, how to obtain the lattice formulation of a theory, e.g., U(1) gauge theory. Fur-

thermore in this chapter we explain the basics of the Monte Carlo simulation technique,

which was used to obtain the numerical results given in Chapter 5.

In Chapter 3 we give the dualisation of SU(2) lattice gauge theory and elaborate

on how the sign problem emerges. We also discuss the dual representation of the theory

originally developed in [3] using the Abelian Colour Cycles. Last but not least we

discuss the observables of interest, namely the plaquette expectation value 〈Up〉 and the

susceptibility χ.

Chapter 4 explains the approaches we developed to try and overcome the sign prob-

lem. These methods are: Factoring out the center group of SU(2), dualisation with

index parametrization and finally truncation of the theory. In this chapter we give the

full mathematical reformulations for each of the approaches and discuss the individual

advantages and disadvantages.

Finally in Chapter 5 we explain how to simulate the theory using two different

simulation schemes, i.e., the conventional matrix valued simulation and the simulation

using the dual variables from the truncated approach. We then compare and discuss the

results for the observables obtained by the two simulation methods.

Chapter 6 ends this master thesis with a summary of the results we achieved in the

previous chapters.



Chapter 2

Overview of Lattice Field

Theories

Lattice discretisation or lattice regularisation is one of the most powerful tools to further

our understanding of non-perturbative phenomena in quantum field theories. The full

formulation of this method as well as introductions to quantum field theories in general

can be found in great detail in many textbooks (e.g. [4], [5], [6]), however for self

consistency and to set our notation we provide a short introduction to the topic and the

methods used in this thesis.

Thus we will first give an outline of the main concepts of the lattice regularisation

method, after which we will provide an overview of the formulation of pure lattice gauge

theory, as this is the main focus of this thesis. For completeness we also include a short

remark on fermions in lattice field theory. To conclude this section we will introduce the

concept of Monte Carlo simulation of a lattice field theory and afterwards discuss the

dual variable approach as well as interesting observables to compute.

Sections 2.1, 2.2 and 2.3 follow closely an introductory book to quantum chromody-

namics on the lattice [7].

2.1 Path integrals in quantum field theories

Quantum field theories are may be described and quantised using the path integral

method, first introduced by Feynman [8], which has become a very popular method and

is a useful tool for elementary particle physics. Hence this method is also used when

quantising lattice field theories, with the slight difference, that here we are dealing with

Euclidean rather than Minkowski space-time. The main principle of the path integral

description of quantum mechanics is to sum over all trajectories of a particle from a

point ~x to a point ~y and to use a Boltzmann factor with the classical action as a weight
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factor for these paths. Because of this form there exists an analogy between quantum

field theories and statistical mechanics, which in turn allows one to perform Monte

Carlo simulations. In this first section we will give a short overview of the path integral

formulation in the continuum and how to discretise it on a lattice.

2.1.1 From continuum to lattice

2.1.1.1 The path integral formulation in quantum mechanics

To introduce the Feynman path integral method, we will first discuss it in a quantum

mechanical setting and only afterwards expand it to quantum field theory. To describe

a propagation from a state |x〉 to a state 〈y| in quantum mechanics one has to evalu-

ate the matrix element with the time evolution operator, which is computed from the

Hamiltonian. This matrix element can also be computed with the path integral method

and one arrives at the following relation:

〈y|eiĤt|x〉 =

∫
D[~r] eiS[~r], (2.1)

where S denotes the classical action associated with a specific trajectory ~r, Ĥ is the

Hamilton operator of the quantum mechanical system and
∫
D[~r] is the functional inte-

gral over all classical paths ~r from ~x to ~y. As one can see from this formula, instead of

operators we are now dealing with functions and infinite-dimensional integrals. Having

infinite dimensional integrals is almost never a good sign, and indeed a rigorous defini-

tion of
∫
D[~r] is possible in the continuum, but only for very few cases. However, when

we discretise the theory on a lattice, a rigorous definition of the path integral is possible.

One more problem arises, because the term eiS is complex and strongly oscillating,

therefore preventing the use of Monte Carlo methods. Luckily there is a way to bypass

this problem by performing a Wick rotation of the time coordinate t → −ix4, with x4

being the Euclidean time coordinate. After performing the Wick rotation, the Euclidean

space-time version of (2.3) reads

〈y|e−Ĥx4 |x〉 =

∫
D[~r] e−SE [~r], (2.2)

with −SE = iS being the Euclidean action.

To show the analogy of quantum field theory to statistical mechanics let us consider

the known partition function from statistical mechanics

Zβ = Tr[e−βĤ ], (2.3)
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with the quantum mechanical Hamiltonian Ĥ = p̂2

2m + V̂ . We here discuss the partition

sum for finite inverse temperature β = 1
kBT

. Later we will be interested in the limit

T → 0, i.e., β → ∞. The trace from Equation (2.3) can be written in terms of the

position eigenstates |x〉,

Tr[e−βĤ ] =

∫
dx 〈x|e−βĤ |x〉︸ ︷︷ ︸

Matrix elements

. (2.4)

The evaluation of the exponential e−βĤ is not straightforward since the kinetic and

the potential part in Ĥ do not commute due to the relation [x̂, p̂] = i from quantum

mechanics (here ~ is set to 1). Because of [p̂2, V̂ ] 6= 0 we have to use the Trotter

decomposition for evaluating e−βĤ . For this we write β = N · ε where ε is an infinitely

small quantity and perform the decomposition in the following way:

e−βĤ = lim
N→∞

(e−εĤ)N , with e−εĤ = e−
ε
2
V̂ e−ε

p̂2

2m e−
ε
2
V̂ [1 +O(ε)] . (2.5)

We then consider the operator Ŵε := e−
ε
2
V̂ (x̂)e−ε

p̂2

2m e−
ε
2
V̂ (x̂), and calculate the matrix

elements 〈x|Ŵε|y〉. The calculation of these matrix elements is straightforward using the

following relations:

• V̂ (x̂)|x〉 = V (x)|x〉 ,

• 〈x|p〉 = 1√
2π
eipx ,

• Ix =
∫
dx |x〉〈x| ,

• Ip =
∫
dp |p〉〈p| ,

•
∫
dp e−ε

p2

2m
1

2πe
ip(x−y) =

√
m

2πεe
− (x−y)2m

2ε ,

with the last equation being just an ordinary Gaussian integral. After a bit of algebra,

we arrive at the expression

〈x|Ŵε|y〉 =

√
m

2πε
e−

ε
2
V (x)e−

(x−y)2m
2ε e−

ε
2
V (y) . (2.6)

What remains to be done to compute e−βĤ is to take the limit: limN→∞(Ŵε)
N = e−βĤ ,

with ε = β
N . The final steps of the construction are

Zβ = Tr[e−βĤ ] =

∫
dx0〈x0|e−βĤ |x0〉 = lim

N→∞

∫
dx0〈x0| Ŵε · · · Ŵε︸ ︷︷ ︸

N times

|x0〉 .
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and inserting Ix =
∫
dx |x〉〈x in between every Ŵε yields

Zβ = lim
N→∞

∫
dx0dx1 · · · dxN−1 〈x0|Ŵε|x1〉〈x1|Ŵε|x2〉 · · · 〈xN−1|Ŵε|x0〉 .

Evaluating all the matrix elements as described above, we can finally complete the

construction of the path integral description. We therefore have obtained the full path

integral formulation of our quantum mechanical system with Euclidean time:

Zβ = lim
N→∞

(Cε)
N

∫
D[x] e−ε

∑N−1
j=0

[
m
2

(
xj+1−xj

ε
)2+V (xj)

]
≈
∫
D[x] e−SE [x][1 +O(ε)] ,

(2.7)

where the overall constants Cε have been dropped in the last step. The integral
∫
D[x]

over all paths is now rigorously defined as

D[x] =
N−1∏
j=0

∫ ∞
−∞

dxj , (2.8)

and we use periodic boundary conditions xN = x0. The Euclidean action SE [x] is given

by

SE [x] = −ε
N−1∑
j=0

[m
2

(
xj+1 − xj

ε
)2 + V (xj)

]
. (2.9)

2.1.1.2 Path integral and lattice regularisation of quantum field theory

Considering quantum field theories, all the steps described in the previous section work

in principle analogously. But as the name suggests, we are now dealing with fields instead

of a single degree of freedom. To briefly demonstrate the path integral formulation in a

quantum field theoretical setting, let us consider a simple example theory, namely the

Klein-Gordon equation with a potential. The Lagrangian of the theory is given by:

L =
1

2
(∂µφ)(∂µφ)− 1

2
m2φ2 − V (φ(x)) . (2.10)

It needs to be stressed, that the fields φ(t, ~x) are not quantised yet and we still consider

classical fields. From Eq. (2.8) we can easily obtain the Hamiltonian by using the

canonical momentum field π(t, ~x) = ∂L
∂φ̇(t,~x)

= φ̇ and a Legendre transformation,

H =

∫
d3x π(t, ~x)φ̇(t, ~x)−L =

∫
d3x

[1

2
π(t, ~x)2 +

1

2

(
∇φ(t, ~x)

)2
+
m2

2
φ(t, ~x)2 +V (φ)

]
.

(2.11)

Now follows the quantisation procedure, where we promote the fields to operators in the

Schödinger picture: φ(t, ~x) → φ̂(~x) and π(t, ~x) → π̂(~x), and require the following com-

mutation relations to hold: [φ̂(~x), φ̂(~y)] = [π̂(~x), π̂(~y)] = 0 and [φ̂(~x), π̂(~y)] = iδ(3)(~x−~y),



7

∀~x, ~y. The Hamilton operator then becomes:

Ĥ =

∫
d3x

[1

2
π̂(~x)2 + Û(~x)

]
, (2.12)

with Û(~x) = 1
2

(
∇φ̂(~x)

)2
+ m2

2 φ̂(~x)2 + V (φ̂) denoting the potential term.

Using the Hamiltonian given in Equation (2.10) we are now able to obtain the path

integral formulation of the quantum field theory, as stated before, in complete analogy

to the steps described in Section 2.1. As this thesis is devoted to lattice field theory we

now need to introduce the lattice regularistaion of a quantum field theory.

To discretise the theory on a lattice, we first introduce a finite dimensional spatial

lattice with a finite number of lattice sites and therefore a finite volume. To achieve the

discretisation we replace the position vectors ~x ∈ R3 in the Hamiltonian (2.10) with a

3-d, spatial lattice, we will refer to as Λ. Therefore the vector ~x gets replaced by a site

on that lattice Λ. To put these replacements into a mathematical description we write

R3 → Λa3

~x 7→ a~n with ~n =


n1

n2

n3

 , ni : 0, 1, 2, · · · , L− 1

Thus we consider a 3-dimensional lattice of size L3 and lattice spacing a.

There are some more substitutions needed to go from the continuum formulation to the

lattice regularised theory, which will be shown and explained in the following. As just

described, the position argument ~x of the continuum fields gets replaced by the lattice

vector ~n. Also when considering discretised quantum field theories, we are dealing with

sums over all lattice sites, rather than an integral over space, and last but not least

we need to replace the derivative operators with suitable differences. Here a symmetric

discretisation of the derivatives is used, such that the discretisation error is O(a2) rather

than O(a). We shortly summarize the steps of the discretisation as follows:

• φ̂(~x) −→ φ̂(~n) ,

• π̂(~x) −→ π̂(~n), ~n ∈ Λ ,

•
∫
d3x −→ a3

∑
~n∈Λ ,

• ∂jφ̂(~x) −→ φ̂(~n+ĵ)−φ̂(~n−ĵ)
2a +O(a2) ,
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Here ĵ denotes the unit vector in direction j. Using all these substitutions we arrive at

the discretised Hamiltonian

Ĥ = a3
∑
~n∈Λ

[1

2
π̂(~n)2 +

1

2

3∑
j=1

( φ̂(~n+ ĵ)− φ̂(~n− ĵ)
2a

)2
+ V (φ̂(~n)) +

m2

2
φ̂(~n)2

]
, (2.13)

with the conjugate momentum given by π̂(~n) = −ia−3 ∂
∂φ(~n) . Thus we have the following

commutation relations:

• [φ̂(~n), φ̂(~m)] = [π̂(~n), π̂(~m)] = 0 .

• [φ̂(~n), π̂(~m)] = iδ
(3)
~n,~ma

−3, the factor a−3 is there to get the dimensions right.

If we now repeat all the steps from Section 2.1 in the quantum field theoretical set-

ting, i.e., inserting I =
∏
~n∈Λ

∫∞
−∞ dφ(~n)|φ〉〈φ| and using the ”wave function of fields”

〈φ|π〉 = 1
(2π)|Λ|/2

ei
∑
~n∈Λ π(~n)φ(~n) for the Gaussian integrals, we finally arrive at an analo-

gous expression to Equation (2.7):

Zβ = lim
N→∞

(C)N
N−1∏
j=0

∏
~n∈Λ

∫ ∞
−∞

dφ(~n) e
−εa3

∑N−1
j=0

∑
~n∈Λ

(
φj+1(~n)−φj(~n)

ε

)2

−ε
∑N−1
j=0 U [φj ]

.

(2.14)

Inserting the potential term and the abbreviation of the integral measure

∫
D[φ] =

N−1∏
j=0

∏
~n∈Λ

∫ ∞
−∞

dφ(~n) , (2.15)

into Equation (2.12) gives

Zβ =

∫
D[φ] e

−εa3

[∑N
j=0

∑
~n∈Λ

(
φj+1(~n)−φj(~n)

ε

)2
+
∑3
µ=1

(
φj(~n+µ̂)−φj(~n−µ̂)

2a

)2
+m2

2
φj(~n)2+V [φj(~n)]

]
.

(2.16)

It needs to be stressed that the fields obey periodic boundary conditions in the Euclidean

time direction φN (~n) = φ0(~n). Now using this fact and promoting the subindex of the

fields j to a new argument, we can now identify the whole argument as a 4-vector n on

a 4-dimensional lattice of size L3 ×N which we denote by

Λ4 = {n = (~n, n4)|ni = 0, 1, · · · , L− 1; i = 1, 2, 3;n4 = 0, 1, · · · , N − 1} . (2.17)

We relabel the fields in the following way: φj(~x)|~x=a~n → φ(~n, j) = φ(n). Setting ε = a

the term ε
∑N−1

j=0 a3
∑

~n∈Λ becomes a4
∑

n∈Λ4
, the integral measure term becomesD[φ] =∏

n∈Λ4
φ(n) and last but not least we change the one sided derivative term

φj+1(~n)−φj(~n)
ε

to the symmetric form φ(~n+4̂)−φ(~n−4̂)
2a . Using all this, we finally arrive at the following
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term for the full 4-dimensional, discretised partition sum:

Zβ =
∏
n∈Λ4

∫
dφ(n) e−SE [φ] , (2.18)

with the Euclidean action now given by:

SE [φ] = a4
∑
n∈Λ4

[(φ(n+ µ̂)− φ(n− µ̂)

2a

)2
+
m2

2
φ(n)2 + V [φ]

]
. (2.19)

Note that we have identified the inverse temperature β with β = a · N . Thus for the

zero temperature limit we need to consider N →∞.

2.2 Gauge theories on the lattice

Gauge theories have played an important role in physics since the discovery of Maxwells

theory of classical electrodynamics. The gauge principle has led to the development

of many interesting quantum field theories, among them the standard model of particle

physics which is a gauge theory with the underlying gauge group being SU(3)×SU(2)×
U(1). Even general relativity and more so the quantum approach to general relativity

may be considered as gauge theories. Although gauge theories are a key ingredient of

all particle physics theories, there are still some unsolved problems.

The key idea of a gauge theory is to find certain local transformations of the fundamen-

tal fields such that the Lagrangian stays unchanged under these gauge transformations.

In the following we will introduce the concept of gauge invariance and gauge transfor-

mations first in the continuum formulation and then construct the corresponding lattice

formulation.

2.2.1 Continuum formulation

2.2.1.1 U(1) gauge theory

For our introduction to gauge theories, we will consider a simple example theory namely

U(1) gauge theory with fermions, which will help to illustrate many important facts

of gauge theories. In the next section we will then generalise the introduced concepts

to non-abelian Lie groups. Some reasons for choosing the U(1) group as our showcase

theory are:

• it is the simplest unitary Lie group

• it’s the gauge group of electrodynamics

• it’s abelian and thus simpler for a first discussion
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As we have now specified the group in which our gauge fields live, let’s introduce the

fermion fields denoted by ψ and their adjoint fields ψ̄ = ψ†γ0, which are the Dirac

spinors

ψ(x) =


ψ1(x)

ψ2(x)

ψ3(x)

ψ4(x)

 ψ̄(x) =
[
ψ̄1(x), ψ̄2(x), ψ̄3(x), ψ̄4(x)

]
.

The second type of fields we need are the gauge fields Aµ(x) ∈ R and the corresponding

field strength tensor

Fµν(x) = ∂µAν(x)− ∂νAµ(x) . (2.20)

Here we use euclidean spacetime indices µ, ν = 1, 2, 3, 4. From a course in electrody-

namics or various textbooks we know that for given electric and magnetic fields, the

vector potential Aµ(x) is not unique and we have a certain freedom to change it with a

gauge transformation. This also implies a gauge transformation for the fermion fields in

the form of a local phase shift. We may summarize the U(1) gauge transformation as

follows:

A′µ(x) = Aµ(x)− ∂µΛ(x) , Λ(x) ∈ R arbitrary , (2.21)

ψ′(x) = eieΛ(x)ψ(x) , ψ̄′(x) = ψ̄(x)e−ieΛ(x) , (2.22)

where e denotes the coupling constant which for U(1) is the electric charge. The trans-

formation of the fields leaves the field strength tensor invariant:

F ′µν(x) = ∂µA
′
ν(x)− ∂νA′µ(x) = ∂µ(Aν(x)− ∂νΛ(x))− ∂ν(Aµ(x)− ∂µΛ(x))

= ∂µAν(x)− ∂νAµ(x)− ∂µ∂νΛ(x) + ∂ν∂µΛ(x) = ∂µAν(x)− ∂νAµ(x) = Fµν(x) .

The next step is to separate the Euclidean action into a gauge part and a fermionic

part S[ψ̄, ψ,A] = SG[A] +SF [ψ̄, ψ,A] and consider these parts individually with respect

to their gauge invariance. The gauge part of the action reads

SG[A] =
1

4

∫
d4x Fµν(x)Fµν(x) , (2.23)

which we have just proven to be gauge invariant.

The fermionic part of the action is given by

SF [ψ̄, ψ,A] =

∫
d4x ψ̄(x)[γµ(∂µ + ieAµ(x)) +m)]ψ(x) , (2.24)

where the γµ are the Euclidean Dirac matrices. In the mass term the phases that
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ψ̄(x) and ψ(x) pick up in the gauge transformation (2.18) cancel, such that this term is

trivially gauge invariant. To show that the other terms are gauge invariant, we introduce

a quantity called covariant derivative Dµ = ∂µ + ieAµ(x) which can easily be seen to

obey a transformation relation of the following form: D′µ(x) = eieΛ(x)Dµ(x)e−ieΛ(x).

With this, the theory is invariant under the gauge transformations (2.17),(2.18).

2.2.1.2 SU(N) gauge theory

As mentioned earlier, we can now easily generalise the procedure described in the pre-

vious section to gauge theories with arbitrary non-abelian Lie groups, such as SU(N).

These theories are generally also known as Yang-Mills theories. The key difference is

now, that the gauge transformation is no longer just a phase shift, like in the U(1) case,

but rather a more general transformations with the generators of the SU(N) group.

We consider a SU(N) invariant theory, with arbitrary N . The action is now given by

S[ψ̄, ψ,A] =
1

2g2

∫
d4x Tr[Fµν(x)Fµν(x)]︸ ︷︷ ︸

SG[A]

+

Nf∑
f=1

∫
d4x ψ̄(f)(x)[m(f) + /D(x)]ψ(f)(x)︸ ︷︷ ︸

SF [ψ̄,ψ,A]

,

(2.25)

with Fµν(x) = ∂µAν(x) − ∂νAµ(x) + i[Aµ(x), Aν(x)] again denoting the field strength

tensor, which in the SU(N) case picks up a new term, due to the non-abelian character

of the group. The gauge transformation of the fermion fields is simply given by ψ(x)′ =

Λ(x)ψ(x), and for the adjoint fields ψ̄(x)′ = ψ̄(x)Λ(x)† where Λ(x) denotes the gauge

transformation matrix which is an element of the group SU(N). Also here the kinetic

term ∂µ is the one that breaks the gauge symmetry. Thus we again need to introduce the

covariant derivative Dµ = ∂µ + igAµ(x). As we are now dealing with a general theory,

we denote the coupling constant with g, as stated before. For the covariant derivative

we demand the following transformation rule

D′µ(x) = Λ(x)Dµ(x)Λ(x)† , (2.26)

which in turn implies the following transformation rule for the gauge field

A′µ(x) = Λ(x)Aµ(x)Λ(x)† − i

g
Λ(x)(∂µΛ(x)†) , (2.27)

such that the Lagrangian is now completely invariant.

2.2.1.3 Lattice regularisation of SU(N) gauge theory

If we now discretise the action given in Equation (2.22), we need to repeat the sub-

stitutions we performed to regularise the theory as described in Section 2.1.1.2. So we
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replace the continuous spacetime by a hypercubic spacetime lattice, therefore the deriva-

tive ∂µψ(x) becomes ψ(n+µ̂)−ψ(n−µ̂)
2a , x gets mapped to n ∈ Λ4 and of course the integral

over all configurations gets replaced by a sum over all lattice sites. When requiring

invariance of the Lagrangian under the gauge transformation ψ(n)′ = Λ(n)ψ(n) with

Λ(n) ∈ SU(N) and Λ(n)†Λ(n) = I, we see that in the fermionic part the mass term is

invariant while the nearest neighbour terms of the derivative transform into

ψ̄′(n)γµψ
′(n+ µ̂) = ψ̄(n) Λ(n)†Λ(n+ µ̂)︸ ︷︷ ︸

6=I

γµψ(n+ µ̂) ,

which is definitely not invariant. Unlike in the continuum formulation we do not in-

troduce a covariant derivative here to render this term invariant, but rather introduce

quantities Uµ(n) which are commonly referred to as gauge links or link variables and are

added in the nearest neighbour terms

ψ̄(n)γµψ(n+ µ̂)→ ψ̄(n)γµUµψ(n+ µ̂) . (2.28)

These gauge links obey the transformation rule

U ′µ(x) = Λ(n)Uµ(n)Λ(n+ µ̂) ,

such that the nearest neighbour terms (2.25) are invariant. These gauge links sit on the

Uµ(n)

n n+ µ̂ n n+ µ̂

Uµ(n)†

Figure 2.1: Graphical representation of the gauge link variables.

link between two lattice sites and may be illustrated as shown in Figure 2.1. The link

variables play the role of the gauge fields on the lattice, which is justified as they have

the information of the gauge fields encoded within them: we may write the group valued

link variables Uµ(n) with the algebra valued fields Aµ(n): Uµ(n) = eiaAµ(n) and using

expansion in a one may show that the terms (2.25) give rise to the covariant derivative.

All that is left to do now is construct a gauge invariant term for the gauge part of the

action. To achieve this we need to find a suitable expression for the field strength tensor

in terms of the gauge links. For this we use the following notation of the field strength

tensor Fµν(x) = 1
ig [Dµ(x), Dν(x)] and then try to build a gauge invariant quantity using

the gauge links. To achieve this we want to build a gauge invariant quantity formed by

the gauge links Uµ(x). One quickly finds that a simple gauge invariant quantity one can

construct out of the gauge links is the trace of a product of gauge links arranged along
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the squares of the lattice. We we denote the plaquettes as pµν and define them as

pµν(n) = Uµ(n) Uν(n+ µ̂) Uµ(n+ ν̂)† Uν(n)† . (2.29)

These so-called plaquettes may be represented graphically as shown in Fig. 2.2.

Uµ(n)

Uν(n+ µ̂)

Uµ(n+ ν̂)†

Uν(n)†

n n+ µ̂

n+ µ̂+ ν̂n+ ν̂

Figure 2.2: Graphical illustration of a plaquette on the lattice.

We now show that the trace of a plaquette is gauge invariant:

Tr[pµν(n)] = Tr[Uµ(n) Uν(n+ µ̂) Uµ(n+ ν̂)† Uν(n)†]

= Tr[Λ(n)Uµ(n) Λ(n+ µ̂)†Λ(n+ µ̂)︸ ︷︷ ︸
I

Uν(n+ µ̂) Λ(n+ µ̂+ ν̂)†Λ(n+ µ̂+ ν̂)︸ ︷︷ ︸
I

Uµ(n+ ν̂)† Λ(n+ ν̂)†Λ(n+ ν̂)︸ ︷︷ ︸
I

Uν(n)†Λ(n)†]

= Tr[Λ(n) Uµ(n) Uν(n+ µ̂) Uµ(n+ ν̂)† Uν(n)† Λ(n)†] = Tr[pµν(n)] .

In the last step we used the cyclic permutation property of the trace. This then concludes

our proof. Using the plaquette we can now identify the gauge part of the action for a

SU(N) theory to be

SG[U ] =
2

g2

∑
n∈Λ4

∑
µ<ν

Re(Tr[I− pµν(n)]) , (2.30)

commonly often referred to as Wilson gauge action. The factor 2
g2 is included to match

the continuum action which again we may obtain by writing Uµ(n) = eiaAµ(n) and

expanding in a.

As promised in the beginning we will now give a short and rudimentary overview of the

aspects of dealing with fermions in a lattice theory. The first thing to stress is that due to

the Pauli exclusion principle, fermion field operators obey anti-commutation relations.

In the path integral formulation we describe fermions with Grassmann numbers, which

are anti-commuting and nilpotent. With these numbers and their properties one can

easily derive derivation and integration rules for the fermion fields (see e.g. [9]). The
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partition sum for the full theory can be written as follows:

Z =

∫
D[U ]e−SG[U ]

∫ Nf∏
f=1

D[ψ̄(f), ψ(f)]

Nf∏
f=1

e−SF [ψ̄(f),ψ(f),U ] , (2.31)

with Nf denoting the number of flavours. As in the continuum the fermion action is

a bilinear form, where the kernel is lattice discretisation of the Dirac operator m + /D.

Thus we can write the lattice fermion action as

SF =
∑
x,y

ψ̄(x)D(x, y)ψ(y) ,

whereD(x, y) is the lattice Dirac operator. We do not discuss further details of the lattice

Dirac operator, but remark that it is necessary to add the so-called Wilson term which

removes additional mass poles of the theory and has the properties of being irrelevant

for a→ 0 and decoupling from the theory in this limit. With this we conclude our brief

remarks on lattice fermions.

2.3 Monte Carlo simulation in lattice field theory

Monte Carlo simulations, originally developed in statistical physics, can be applied to

numerous fields including stock market analysis, simulation of board games and many

others. In the area of theoretical physics Monte Carlo methods play an important role in

the simulation of lattice field theories. To be more precise in our work we actually use a

specific Monte Carlo method called Metropolis algorithm. In lattice field theory as well

as in statistical physics, Monte Carlo simulations based on the Metropolis algorithm are

the method to use for simulating the dynamics of a theory and calculating observables.

For introducing the method, we again use a simple scalar theory with partition func-

tion defined by

Z =

∫
D[φ] e−S[φ] , (2.32)

and the action is given by

S[φ] = a4
∑
n∈Λ

1

2

[
m2 +

8

a2

]
φ(n)2 + λφ(n)4 −

4∑
µ=1

φ(n)φ(n+ µ̂) ,

with Λ = N3
spatial ·Ntemporal being the spacetime lattice. Possible simple observables are,

e.g., the mean value of φ2 or the correlation function of the fields. We then can obtain

the vacuum expectation value of an observable in the following way:

〈O〉 =
1

Z

∫
D[φ] e−S[φ] O[φ] . (2.33)
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The reason to use Monte Carlo methods here is, that this integral cannot be solved

exactly. Monte Carlo simulations approximate the integral by the average of the ob-

servables evaluated on N sample field configurations which are generated randomly

according to a probability distribution. If we then would send N to infinity, we would

obtain the exact value of the integral of interest. For the integral (2.29) we can identify

the probability distribution as P [φ] = 1
Z e
−S~ .

In this setting the Metropolis algorithm works like the following:

1) Generate a new proposal field configuration φ̃ near the current one, typically by

changing the field at a single site.

2) Calculate a quantity called Metropolis ratio ρ = P [φ̃]
P [φ] , which is given by the ratio

of the weight factors of the proposal and the old field configuration.

3) Generate a random number r, uniformly distributed in the interval [0, 1].

4) Check the relation r < ρ, if true, accept the new field configuration and overwrite

the old one or else keep the old one as the current one.

The above described steps of the Metropolis algorithm are repeated in a loop over all

lattice sites and updating all fields with the steps 1)-4) is called a sweep.

The general structure of the Monte Carlo simulation for our example theory is given

in the following steps:

i) Choose the values of the parameters m,λ and set φ(n) = 0, ∀n.

ii) Perform equilibrating sweeps of the order O(104) - O(106).

iii) Loop over the number of measurements N one wants to perform, usually of the

order O(106). Inside this loop:

– Perform sweeps of the order O(10) - O(102) to decorrelate the theory.

– Calculate the observables.

– Write them into an array.

iv) calculate the mean value 〈O〉N = 1
N

∑N
i=1O[φi] and the numerical statistical error,

which scales ∼ 1√
N

All our simulation results have been obtained using the steps i)-iv).
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2.4 Dual approach to lattice theories

It is well known that when dealing with lattice theories at finite chemical potential or

with a topological term, one usually stumbles over a sign problem which causes problems

for a Monte Carlo simulation. These sign problems arise from the fact, that the action

S is complex and thus the Boltzmann factor e−S cannot be used as a stochastic weight

for the simulation process. The main idea for the dual approach is to exactly rewrite

the partition sum of the theory in terms of new variables which are called dual variables.

Using the concept of dual variables has a long history and one of its earliest applications

was to compute the critical point of the 2-dimensional Ising model [10]. A key aspect of

the dualisation method is that using different representations reveal different aspects of

a theory. In more recent years it has been understood that the dualisation method may

overcome and solve sign problems in many abelian theories. It gets a little more tricky

when dealing with non-abelian theories due to the non-commutative factor of the group

elements, but dual representations are known and are still subject of intensive research.

The general outline of the dualisation process is as follows. First one factorises the

Boltzmann factor into local exponents and then expands them in a Taylor series. The

next step is to perform the integration over the original fields, after which the expansion

indices can be identified as our dual variables and replace the conventional fields as the

new degrees of freedom for the theory.

In this introduction we will show how the dualisation method works using U(1) lattice

gauge theory. U(1) lattice gauge theory has no sign problem, but it needs to be men-

tioned that we did encounter a sign problem in the SU(2) theory this thesis is devoted

to. But the appearance of that sign problem had a different reason than that of a normal

complex action sign problem.

2.4.1 Dualisation of U(1) gauge theory

Before we begin with the dualisation, we first need to introduce the theory. The degrees

of freedom are the gauge link fields Ux,ν ∈ U(1) sitting on the links of the lattice. We

use a 4-dimensional lattice with periodic boundary conditions. As we are dealing with

a pure gauge theory, the action is simply the U(1) Wilson gauge action, given by

SG[U ] = −β
2

∑
x

∑
ν<ρ

[Ux,νρ + U∗x,νρ] . (2.34)

The variable β denotes the inverse gauge coupling and the arguments of the gauge action

are the plaquette variables Ux,νρ which are formed by the oriented product of the link
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variables

Ux,νρ = Ux,ν Ux+ν̂,ρ U
∗
x+ρ̂,ν U

∗
x,ρ .

We to stress, that the star denotes complex conjugation, which is justified because we are

only dealing with elements of U(1) here and hermitean conjugation reduces to complex

conjugation. We now label the lattice sites with x rather than n, different from the

notation used in the previous section, but that is just a convention.

The partition sum for the theory is given by

Z =

∫
D[U ] e−SG , (2.35)

with the integral measure being a product over all lattice sites x and all directions ν. We

will later use the following parametrisation for the integration of our gauge variables:

Ux,ν = eiϕx,ν ∈ U(1), which then are integrated over the unit cycle. The integral measure

then reads ∫
D[U ] =

∏
x,ν

∫ π

−π

dϕx,ν
2π

,

where 1
2π is the normalisation factor of the integral.

The first step now is to insert the gauge action and write Equation (2.31) in the form

Z =

∫
D[U ] e

β
2

∑
x

∑
ν<ρ[Ux,νρ+U∗x,νρ] . (2.36)

We can now pull the sums in the exponents down as products and factorise the expo-

nentials, as described in the introduction to this section, after which we Taylor-expand

the individual components and arrive at the following expression

Z =

∫
D[U ]

∏
x

∏
ν<ρ

∞∑
mx,νρ=0

∞∑
m̄x,νρ=0

(β
2

)mx,νρ
mx,νρ!

(β
2

)m̄x,νρ
m̄x,νρ!

(Ux,νρ)
mx,νρ(U∗x,νρ)

m̄x,νρ , (2.37)

where we have introduced (mx,νρ, m̄x,νρ) ∈ [0,∞) as expansion indices that are attached

to the plaquettes. We can now introduce the sum over all configurations of our expansion

indices as
∑
{m,m̄} =

∏
x

∏
ν<ρ

∑∞
mx,νρ=0

∑∞
m̄x,νρ=0 and write the partition function as

follows

Z =

∫
D[U ]

∑
{m,m̄}

∏
x

∏
ν<ρ

((β
2

)mx,νρ+m̄x,νρ

mx,νρ! m̄x,νρ!

)
(Ux,νρ)

mx,νρ(U∗x,νρ)
m̄x,νρ .
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We can identify the factor that contains β and the factorials as a weight factor and

introduce the abbreviation

W [β] =
∏
x

∏
ν<ρ

((β
2

)mx,νρ+m̄x,νρ

mx,νρ! m̄x,νρ!

)
, (2.38)

for convenience. The next step is to write out the plaquette variables in terms of the link

variables, factorise them and reorganise the terms, by shifting the indices, into powers of

the gauge links Ux,ν . The whole calculation can be found in Appendix A. The partition

function now becomes

Z =

∫
D[U ]

∑
{m,m̄}

W [β]
∏
x

∏
ν

(Ux,ν)
∑
ρ:ν<ρ[mx,νρ+m̄x−ρ̂,νρ]+

∑
ρ:ρ<ν [mx−ρ̂,ρν+m̄x,ρν ] ×

∏
x

∏
ν

(U∗x,ν)
∑
ρ:ν<ρ[m̄x,νρ+mx−ρ̂,νρ]+

∑
ρ:ρ<ν [m̄x−ρ̂,ρν+mx,ρν ] .

As our gauge link variables are elements of U(1), we can use the property Umx,ν∗ =

((eiϕx,ν )∗)m = (e−iϕx,ν )m = (eiϕ)−m = (Ux,ν)−m to rewrite the expression in the follow-

ing way

Z =

∫
D[U ]

∑
{m,m̄}

W [β] ×

∏
x

∏
ν

(Ux,ν)
∑
ρ:ν<ρ[mx,νρ−m̄x,νρ+m̄x−ρ̂,νρ−mx+ρ̂,νρ]+

∑
ρ:ρ<ν [mx−ρ̂,ρν−m̄x−ρ̂,ρν+m̄x,ρν−mx,ρν ] .

We introduce a new variable px,νρ = mx,νρ−m̄x,νρ which we promote to a new dynamical

variable of our theory px,νρ ∈ Z. This together with another set of variables we call

qx,ν ∈ N0. This is the final set of dual variables we use to describe our gauge fields. They

are related to mx,νρ and m̄x,νρ via the relations mx,νρ−m̄x,νρ = px,νρ and mx,νρ+m̄x,νρ =

|px,νρ|+ 2qx,νρ. Inserting this in the equation from above gives

Z =

∫
D[U ]

∑
{p,q}

W [β]
∏
x

∏
ν

(Ux,ν)
∑
ρ:ν<ρ[px,νρ−px−ρ̂,νρ]+

∑
ρ:ρ<ν [px−ρ̂,ρν−px,ρν ] , (2.39)

with W [β] now given by

W [β] =
∏
x

∏
ν<ρ

( (β
2

)|px,νρ|+2qx,νρ

(|px,νρ|+ qx,νρ)! (qx,νρ)!

)
.

The variables p will be referred to as plaquette occupation numbers or plaquette vari-

ables and will in the end be identified as our new dual variables. The plaquette variables

consist of an oriented flux running along the links, counterclockwise if positive and clock-

wise if negative. Note that also the plaquettes Ux,νρ had this kind of orientation.
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After this rewriting and factorisation we can finally evaluate the integral. For this we

plug in the U(1) Haar measure given in Equation (2.32) and the definition for Ux,ν into

Equation (2.34) and arrive at

Z =
∑
{p,q}

W [β]
∏
x,ν

1

2π

∫ π

−π
dϕx,ν (eiϕx,ν )

∑
ρ:ν<ρ[px,νρ−px−ρ̂,νρ]+

∑
ρ:ρ<ν [px−ρ̂,ρν−px,ρν ] .

The terms in the integral are just integrations over a phase and give rise to Kronecker

deltas. These in turn implement constraints for the flux running along links shared by

two adjacent plaquette variables. For notational convenience the Kronecker deltas will

be denoted as δn,o = δ(n). Furthermore, since the qx,νρ do not have any constraints, the

summation over the variables qx,νρ can in this case be done in closed form, using the

series representation of the modified Bessel function
∑∞

q=0

(
β
2

)|p|+2q

(|p|+q)! (q)! = I|p|(β) = Ip(β).

With all this taken into account the partition function reads

Z =
∑
{p}

( ∏
x,ν<ρ

Ipx,νρ(β)
)(∏

x,ν

δ
( ∑
ρ:ν<ρ

[px,νρ−px−ρ̂,νρ]+
∑
ρ:ρ<ν

[px−ρ̂,ρν−px,ρν ]
))

, (2.40)

where we have finally obtained the dualised version of the theory, which only depends

on the dual variable px,νρ.

To shortly summarise what has been done in this chapter, we have mapped our original

theory to a dual representation by integrating out the conventional U(1) gauge fields and

replacing them with plaquette variables px,νρ ∈ Z, which are our new degrees of freedom.

The plaquette variables have to obey certain constraints concerning the flux that runs

along the links of the lattice. Thus the configurations cannot be chosen arbitrarily.

As we will see in Chapter 3, the general steps of the dualisation work the same for

any of the SU(N) Lie groups, e.g. in our case SU(2). However, these groups are no

longer abelian which brings in new challenges for the dualisation.

2.5 Observables in the dual representation

As discussed in the beginning of this chapter, we will now briefly discuss some observables

of interest. These observables are also the ones we calculated and analysed in our model.

The first observable on can extract from equation (2.35) is the plaquette expectation

value

〈px,νρ〉 = − 1

6V

∂ ln(Z)

∂(β2 )
, (2.41)

which is obtained in the same way as the energy of a canonical system in statistical

physics, as a derivative with respect to the inverse gauge coupling. More specifically it
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is the action density of the U(1) lattice gauge theory we consider. The term 1
6V is the

normalisation constant in 4-dimensions. The second observable we are interested in is

the plaquette susceptibility χ of the system. The susceptibility is obtained by taking

another derivative of equation (2.36) with respect to the inverse gauge coupling β, or

otherwise written as

χ =
∂

∂(β2 )
〈px,νρ〉 = − 1

6V

∂2 ln(Z)

∂(β2 )2
. (2.42)

Of course there are many other interesting observables, e.g. correlators, but as for this

thesis we did not consider them and hence there is no use in dwelling on this topic any

longer.



Chapter 3

Dual representation of pure SU(2)

lattice gauge theory

As mentioned in the introduction to Section 2.4., the dualisation method has been

successfully applied to many abelian theories in the past. In recent years there have

been efforts to extend the use of this technique to non-abelian theories. A few such

representations are known by now, but they present some challenges for the dualisation

procedure as well as for numerical simulations. One of the problems arises because of

the non-commutative character of the group elements, while another problem concerns

finding a suitable parametrisation of the group elements. The basis for our work is

taken from the paper [3] in which a new technique was developed to dualise SU(2)

lattice gauge theory. The new technique featured in this paper is named Abelian Colour

Cycles (ACC) and comes about when we decompose the gauge action into abelian parts,

which after dualisation gives rise to new degrees of freedom that can be interpreted as

loops around a plaquette in colour space, the ACCs. We remark that the paper also

deals with the dualisation of fermions which will not be covered in this thesis.

One good reason to consider the SU(2) model is that it is the easiest non-abelian Lie

group which comes in handy for a first discussion and furthermore gives us a simpli-

fied model theory for QCD. The technique described in the paper above has also been

extended to SU(3) already [11]. However, the SU(3) version however will not be fea-

tured here, as we use the SU(2) ”toy model” as a tool to search for different strategies

to overcome the above mentioned problems and develop new dual representations for

simulations.

In the following sections we will outline the dualisation steps of the theory, highlight

the features and problems that arise during the procedure, and finally present a graphical

representation of the new found approach. The discussion of the following sections

follows closely the steps of [3].

21
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3.1 Dualisation of SU(2) lattice gauge theory

The model used in [3] is SU(2) lattice gauge theory with the Wilson gauge action given

by

SG[U ] = −β
2

∑
x,µ<ν

Tr[Ux,µUx+µ̂,νU
†
x+ν̂,µU

†
x,ν ] , (3.1)

where the gauge link variables Ux,µ ∈ SU(2) denote the dynamical degrees of freedom

which sit on the links of a 4-dimensional lattice with periodic boundary conditions. The

trace operation here is understood as a trace in colour space. The partition function of

the theory is given by

Z =

∫
D[U ] e−SG[U ] . (3.2)

The key aspect of the new ACC technique is, as stated in the paper, to write the trace

over the colour indices and the matrix multiplications as an explicit sum. With this

Equation (3.1) takes the following form

SG[U ] = −β
2

∑
x,µ<ν

1∑
a,b,c,d=0

Uabx,µU
bc
x+µ̂,νU

dc ∗
x+ν̂,µU

ad ∗
x,ν . (3.3)

If we compare the U(1) theory given in Section 2.4 with the SU(2) theory, we find that

each lattice site picks up an additional degree of freedom, i.e., the colour dimension.

Instead of a hermitean conjugation a complex conjugation is used in Equation (3.2) as

we now consider the matrix elements Uabx,µ, which are complex numbers. The products

of these matrix components Uabx,µU
bc
x+µ̂,νU

dc ∗
x+ν̂,µU

ad ∗
x,ν are referred to as Abelian Colour

Cycles. The ACCs are complex numbers and feature 4 colour indices (a, b, c, d), one at

each corner of the plaquette. Since we consider SU(2) here we find that the colour indices

can only take 2 different values, namely 0 or 1. These values were chosen differently in

the paper (as 1,2), but our choice is more convenient when simulating the theory.

x0
x+ µ̂

x+ ν̂ x+ µ̂+ ν̂1

U10
x,µ

U01
x+µ,ν

U11 ∗
x+ν,µ

U11 ∗
x,ν

Figure 3.1: Graphical representation of the example 1011 ACC. This Figure adapted
from [3]

.
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Figure 3.2: All 16 possible ACC configurations. (Figure taken from [3] )

To get a better understanding of this and what is meant by the loops winding in colour

space, it is useful to find a geometrical representation of the ACCs. In Fig. 3.1 we depict

as an example the 1011 ACC in the µ−ν-plane, which is given by U10
x,µU

01
x+µ̂,νU

11 ∗
x+ν̂,µU

11 ∗
x,ν

in terms of the elements of the link variables. Here we use two layers labeled 0 and 1 to

illustrate the two different colours. As shown in the figure, each of the ACC elements

is a directed flux running from one lattice site to a neighbour site, with the direction

indicated by the arrow. The first element of the ACC is depicted by the front link in

Figure 3.1 and connects the site x which has the associated colour value a = 1 with the

site x+ µ̂ with corresponding colour b = 0, with the flux running in positive µ direction.

The element U10
x+µ̂,ν points in positive ν direction and connects site x+ µ̂ and colour 0

with site x+ µ̂+ ν̂ and colour 1. The other two link representatives, i.e., U11 ∗
x+ν̂,µ, U

11 ∗
x,ν ,

in the ACC are complex conjugated, which we illustrate in Figure 3.1 by the arrow in

negative direction, and thereby close the ACC. We stress that for SU(2) the trace of the

plaquette is already real. Because of this one does not need to explicitly project out the

real part of the action. Thus all plaquettes are oriented in a mathematically positive

sense.

As stated before, there are 16 possibilities a loop can wind around a plaquette all of

which we depict in Figure 3.2.

If we insert the gauge action of Equation (3.3) into the partition function (3.2) we get

Z =

∫
D[U ] e

β
2

∑
x,µ<ν

∑
a,b,c,d U

ab
x,µU

bc
x+µ̂,νU

dc ∗
x+ν̂,µU

ad ∗
x,ν . (3.4)

In complete analogy to the steps in Section 2.4 we can now pull the sums from the

exponent down as products and expand the Boltzmann factors in a power series, such

that the partition function becomes

Z =

∫
D[U ]

∏
x,µ<ν

∏
a,b,c,d

∞∑
pabcdx,µν=0

(
β
2

)pabcdx,µν

pabcdx,µν !

(
Uabx,µU

bc
x+µ̂,νU

dc ∗
x+ν̂,µU

ad ∗
x,ν

)pabcdx,µν . (3.5)

The expansion index pabcdx,µν ∈ N0 will be regarded as cycle occupation number which

counts how many loops wind around the plaquette (x, µν) with a specific configuration

a, b, c, d of colours on the 4 corners. These cycle occupation numbers will later be

identified as our dual variables.
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One immediately notices that the term that contains β and the factorial does not

depend on the link variables Uabx,µ and can therefore be pulled out of the integral as

a weight factor. We introduce the sum over all configurations of the cycle occupation

numbers as
∑
{p} =

∏
x,µ<ν

∏1
a,b,c,d=0

∑∞
pabcdx,µν=0 and write the integral measure as

∫
D[U ] =

∏
x,µ

∫
dUx,µ , (3.6)

where dUx,µ is the Haar measure for the link Ux,µ. We arrive at the following expression

for Equation (3.5)

Z =
∑
{p}

[ ∏
x,µ<ν

∏
a,b,c,d

(
β
2

)pabcdx,µν

pabcdx,µν !

]∏
x,µ

∫
dUx,µ

∏
x,µ<ν

1∏
a,b,c,d=0

(
Uabx,µU

bc
x+µ̂,νU

dc ∗
x+ν̂,µU

ad ∗
x,ν

)pabcdx,µν .

(3.7)

Note that the arguments in the integral, i.e., the ACC, are only complex numbers thus

we can commute and rewrite them such that the integral takes a more convenient form.

This is done in a similar way as for the U(1) theory by reorganising the terms. The

corresponding calculation can be found in Appendix B.

After the steps given in Appendix B, we arrive at the following expression:

Z =
∑
{p}

Wβ[p]
∏
x,µ

∫
dUx,µ

1∏
a,b=0

(
Uabx,µ

)Nab
x,µ
(
Uab ∗x,µ

)N̄ab
x,µ . (3.8)

We have introduced abbreviations for the exponents

Nab
x,µ =

∑
ν:µ<ν

pabssx,µν +
∑
ρ:ρ<µ

psabsx−ρ̂,ρµ , N̄ab
x,µ =

∑
ν:µ<ν

pssbax−ν̂,µν +
∑
ρ:ρ<µ

passbx,ρµ , (3.9)

and for notational convenience we introduced a shorthand notation for the weight factor

in front of the integral in Eq. (3.7):

Wβ[p] =

 ∏
x,µ<ν

∏
a,b,c,d

(
β
2

)pabcdx,µν

pabcdx,µν !

 . (3.10)

In Equation (3.9) we have introduced a summation index s to indicate that these colour

indices are summed over, e.g., pabssx,µν =
∑

c,d p
abcd
x,µν .

The next step towards obtaining the final form of the dualised partition function is to

perform the integration. For this we need to choose a representation of our gauge link

variables and the corresponding SU(2) Haar measure. The representation chosen in the
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paper is

Ux,µ =

[
cos(θx,µ)eiαx,µ sin(θx,µ)eiβx,µ

− sin(θx,µ)e−iβx,µ cos(θx,µ)e−iαx,µ

]
, (3.11)

with the angles θx,µ ∈ [0, π2 ] and αx,µ, βx,µ ∈ [0, 2π]. Using this one can easily identify

the normalised Haar measure to be

dUx,µ = 2 dθx,µ cos(θx,µ) sin(θx,µ)
dαx,µ

2π

dβx,µ
2π

. (3.12)

Inserting the parametrisation (3.11) and the Haar measure (3.12) into (3.8) we get

Z =
∑
{p}

Wβ[p]
∏
x,µ

(−1)J
01
x,µ 2

∫ π
2

0
dθx,µ(cos(θx,µ))1+S00

x,µ+S11
x,µ(sin(θx,µ))1+S01

x,µ+S10
x,µ

×
∫ 2π

0

dαx,µ
2π

eiαx,µ[J 00
x,µ−J 11

x,µ]

∫ 2π

0

dβx,µ
2π

eiβx,µ[J 01
x,µ−J 10

x,µ] , (3.13)

where we have introduced integer valued fluxes J abx,µ and Sabxµ, given by

J abx,µ =
∑
ν:µ<ν

[pabssx,µν − pssbax−ν̂,µν ]−
∑
ρ:ρ<µ

[passbx,ρµ − psabsx−ρ̂,ρµ] , (3.14)

Sabx,µ =
∑
ν:µ<ν

[pabssx,µν + pssbax−ν̂,µν ] +
∑
ρ:ρ<µ

[passbx,ρµ + psabsx−ρ̂,ρµ] . (3.15)

Note that the link (x, µ, a, b) is contained in 6 different plaquettes which all contribute

to the final value of the J -flux and S-flux for a specific configuration.

We first consider the last two integrals in Equation (3.13). This type of integral can

be solved in closed form and gives rise to Kronecker deltas, which we again denote in

the form δ(n) (cf. Section 2.4.). The Kronecker deltas in turn imply constraints on the

fluxes J in the following form

J 00
x,µ − J 11

x,µ = 0 , J 01
x,µ − J 10

x,µ = 0 , ∀x, µ . (3.16)

When we consider the integral over θx,µ, we recognise that it can be identified as a

representation of the Beta function B, which is defined as follows

2

∫ π
2

0
dφ (cos(φ))1+m(sin(φ))1+n = B

(m
2

+ 1|n
2

+ 1
)
. (3.17)

In order to further simplify the Beta function we show the following properties of the

fluxes S:

S00
x,µ + S11

x,µ = even , S01
x,µ + S10

x,µ = even , ∀x, µ . (3.18)
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To check these we write out the first equation in (3.16) in terms of the dual variables

pabcdx,µν :

∑
ν:µ<ν

[p00ss
x,µν − pss00

x−ν̂,µν ]−
∑
ρ:ρ<µ

[p0ss0
x,ρµ − ps00s

x−ρ̂,ρµ]−

−
∑
ν:µ<ν

[p11ss
x,µν − pss11

x−ν̂,µν ] +
∑
ρ:ρ<µ

[p1ss1
x,ρµ − ps11s

x−ρ̂,ρµ] = 0 .

We convert the minus signs into plus signs by adding 2-times the negative terms on both

sides, which yields

∑
ν:µ<ν

[p00ss
x,µν + pss00

x−ν̂,µν ] +
∑
ρ:ρ<µ

[p0ss0
x,ρµ + ps00s

x−ρ̂,ρµ] +
∑
ν:µ<ν

[p11ss
x,µν + pss11

x−ν̂,µν ]+

+
∑
ρ:ρ<µ

[p1ss1
x,ρµ + ps11s

x−ρ̂,ρµ] = 2

( ∑
ν:µ<ν

[pss00
x−ν̂,µν + p11ss

x,µν ] +
∑
ρ:ρ<µ

[p0ss0
x,ρµ + ps11s

x−ρ̂,ρµ]

)
.

The left hand side can now trivially be identified as S00
x,µ + S11

x,µ, and we write

S00
x,µ + S11

x,µ = 2

( ∑
ν:µ<ν

[pss00
x−ν̂,µν + p11ss

x,µν ] +
∑
ρ:ρ<µ

[p0ss0
x,ρµ + ps11s

x−ρ̂,ρµ]

)
.

The terms on the right hand side of the equation above are now multiples of 2 and

therefore always even, which concludes our proof.

For even m and n we can use

B
(m

2
+ 1|n

2
+ 1
)

=
Γ
(
m
2 + 1

)
Γ
(
n
2 + 1

)
Γ
(
m+n+2

2 + 1
) =

(
m
2

)
!
(
n
2

)
!(

m+n+2
2

)
!
, (3.19)

where we used: Γ(n+1) = n!. Inserting all this in the partition function (3.13) we arrive

at the final dualised form

Z =
∑
{p}

Wβ[p] WH [p] (−1)
∑
x,µ J 01

x,µ

∏
x,µ

δ(J 00
x,µ − J 11

x,µ) δ(J 01
x,µ − J 10

x,µ) , (3.20)

where we have introduced another weight factor WH [p] for the terms that originate from

the Haar measure integration. This weight factor depends on the S fluxes and has the

following form

WH [p] =
∏
x,µ

(S00
x,µ+S11

x,µ

2

)
!
(S01

x,µ+S10
x,µ

2

)
!(S00

x,µ+S11
x,µ+S01

x,µ+S10
x,µ

2 + 1
)
!
. (3.21)

We may shortly summarise our steps so far. The partition function in (3.19) now is a

sum over the configurations of the cycle occupation numbers pabcdx,µν ∈ N0 attached to the

plaquettes. We have introduced two different fluxes J and S that live on the links of the
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J 00
x,µ J 11

x,µ

=
∑ ∑

and =
∑ ∑

J 01
x,µ J 10

x,µ

Figure 3.3: Graphical illustration of the constraints of the J abx,µ-fluxes. Figure adapted
from [3].

lattice for notational and illustrative convenience. Also we have identified two weight

factors, one containing the inverse gauge coupling β and explicitly the cycle occupation

number pabcdx,µν and the other one consisting of weights for the S-fluxes. The Kronecker

deltas give rise to constraints for the J -flux running along the individual links, which

can graphically be illustrated as shown in Fig. 3.3.

The constraints shown in Figure 3.3 imply that for the whole lattice, the total amount

of J -flux running in the 0 colour layer of the lattice must match the amount of flux run-

ning in the 1 layer. Also the number of flux crossings from 0 to 1 must be equal to the

number of fluxes that cross from 1 to 0. All valid configurations one can construct have

to obey theses conditions.

Furthermore we recognise that Equation (3.19) has an explicit sign factor (−1)
∑
x,µ J 01

x,µ

which arises from the (0, 1)-matrix element of the parametrisation of the link variables

in (3.11). This sign factor implies that certain configurations of the cycle occupation

numbers to contribute negatively to the partition sum. Having negative contributions is

a challenge for a numerical study due to the sign problem they introduce. The exponent

of the sign contribution is the sum over all the fluxes J 01
x,µ pointing from site x to site

x+ µ̂, with µ = 1, 2, 3, 4 and from colour layer 0 to 1. Thus the sign of each contribution

is dependening on the number of flux crossings that occur on the whole lattice. Thus

we may write

(−1)
∑
x,µ J 01

x,µ = (−1)# flux crossings . (3.22)

As stated before and as can be seen from the definition of the J -fluxes, there are 6

different plaquettes contributing to each link flux J 01
x,µ. The structure of the contribution

is illustrated in Figure 3.4.

Having introduced and understood the geometrical representation along with the con-

straints to the fluxes, we can now go on to discuss examples of admissible configurations

of our dual fields. It is straightforward to construct configurations which obey all the

constraints, with the simplest being closed surfaces of oriented plaquettes where certain

cycle occupation numbers are occupied. To give an example one may start with pabcdx,µν

set to 0 for all values of x, µ, ν, a, b, c, d. One may then set p0000
x,µν = 1 for all plaquettes

in the µ− ν-plane. This trivially keeps all the constraints intact, as the fluxes all run in

the same layer and compensate each other, because of the fact that all the plaquettes

are mathematically positively oriented. To briefly elaborate this in more detail, the
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px ,μν
01 ss

−px, ρμ
0 ss1

−px−ν̂ ,μν
ss 10

px−ρ̂ ,ρμ
s01 s

μ ν

ρ

Figure 3.4: Schematical illustration of the ACCs contributing to the J -flux. Here
the example flux of J 01ss

x,µν is taken since it is the one contributing to the negative sign.
The dashed lines are the summed up cycles indicated by the index s. This figure is

adapted from [3].

flux of the link (x, µ, 0, 0) is pointing in positive µ-direction from plaquette p0000
x,µν and

in negative µ-direction from plaquette p0000
x−ν̂,µν , thus the contributions cancel out. We

stress that this configuration does not have any flux crossing and thus has a positive

sign contribution. The next step one might perform is to change the configuration by

inverting all the colour indices for one plaquette p0000
x0,µν → p1111

x0,µν , where x0 denotes a

specific site. Subsequently certain colour indices of the adjacent plaquettes need to be

adjusted according to the constraints, namely the colour indices that are situated at the

links shared with the modified plaquette. This now generates flux crossings, but always

in multiples of 2, which does not create a negative contribution.

Another modification for obtaining a different admissible configuration is to simply

switch the colour indices of certain sites and afterwards adjusting the indices of the 4
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x0
x+ µ̂

x+ ν̂ x+ µ̂+ ν̂1

Figure 3.5: Graphical illustration of the example configuration given in Equation
(3.23), which gives rise to a negative contribution. Drawn in black with the full line is
p0001x,µν , in green with the dashed lines is p0010x,µν , the dotted red line is the ACC of p1111x,µν

and finally the blue, dash-dotted line is the p1100x,µν ACC. This figure is adapted from [3].

plaquettes that contain this site accordingly. Again this will not give negative contribu-

tions to the partition function, since changing 2 colour indices also gives flux crossings

in multiples of 2. One can repeat these two updates for all the sites in the plane µ− ν,

thereby generating closed flux surfaces which contain all the 16 possible ACCs. This

strategy is straightforwardly generalised to higher occupation numbers, surfaces wind-

ing around the periodic boundaries (which we will later refer to as ”sheets”) and non

orientable surfaces.

As said before, having negative contributions in the theory is problematic for numerical

simulations, but it can be shown that all configurations that can be constructed up to

the order β3, i.e., 3 non-zero occupation numbers are positive. Only if we consider, e.g.,

4 non-zero occupation numbers or higher there appear configurations that contribute

with a negative sign. One example of such a configuration is given by:

p0001
x,µν = 1 , p0010

x,µν = 1 , p1111
x,µν = 1 p1100

x,µν = 1 . (3.23)

To analyse it better, we illustrate this configuration graphically in Figure 3.5. We see

clearly, that all the constraints of the theory are intact, but this configuration has an

odd number of flux crossings and gives rise to a negative sign in Equation (3.19).

Before we discuss the observables of interest that can be computed from the dualised

SU(2) gauge theory, we would like to dwell a little longer on the negative contributions.

The main motivation for our work is to find out whether this sign problem is funda-

mental, i.e., that it cannot be eliminated or somehow worked around, or if there exist

some other representation of the theory that can be used during the dualisation such

that it may resolve the problem. To check this we have developed 3 different methods

to try and overcome the sign problem. The detailed discussion of these methods will

be subject of the following chapters, but we nevertheless already want to mention them

here:

• factorising out the center of the group SU(2) ,
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• introducing colour flux indices ,

• truncating the theory .

All these approaches have their positive and negative aspects all of which we will work

out in detail in the chapters to come.

3.2 Observables of SU(2) lattice gauge theory

The observables of interest are essentially the same as for the U(1) case (cf. Section

2.4). These are the expectation value of the plaquette 〈Up〉 which is defined as

〈Up〉 ≡
1

6V

∂ ln(Z)

∂
(β

2

) =
1

6V

1

Z

∂Z

∂
(β

2

) , (3.24)

and the plaquette susceptibility χp which can be computed in the following way

χp =
∂〈Up〉
∂
(β

2

) =
1

6V

∂2 ln(Z)

∂
(β

2

)2 . (3.25)

The term 1
6V is the normalisation factor, with V being the total number of lattice sites

and the factor 6 in the denominator denotes the number of different planes that come

together at each site in 4-dimensions.

However, instead of immediately showing the results for the observables of the dual

theory, we would like to take a short detour and first display the observables of the

original matrix form of the theory. Having written this down will be useful once we

discuss the simulation of the theory. The plaquette expectation value of the original

SU(2) theory with matrix valued link variables can be calculated as follows

〈U〉 =
1

6V

〈 ∑
x,µ<ν

Tr
[
Ux,µ Ux+µ̂,ν U

†
x+ν̂,µ U

†
x,ν

]〉
. (3.26)

Using Equation (3.24) we arrive at the following expression for the susceptibility

χ =
1

6V

(〈[ ∑
x,µ<ν

Tr
[
Ux,µ Ux+µ̂,ν U

†
x+ν̂,µ U

†
x,ν

]]2〉
−

〈 ∑
x,µ<ν

Tr
[
Ux,µ Ux+µ̂,ν U

†
x+ν̂,µ U

†
x,ν

]〉2)
. (3.27)

Equation (3.25) and (3.26) can be obtained trivially, hence we do not show the calcula-

tion.
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To conclude this section we will now also compute the observables in the dual repre-

sentation. For this we need to evaluate Equation (3.23) with the partition function in

the form of Equation (3.19). We write

〈Up〉 =
1

6V

1

Z

∂

∂
(β

2

)∑
{p}

Wβ[p] WH [p] (−1)
∑
x,µ J 10

x,µ

∏
x,µ

δ(J 00
x,µ − J 11

x,µ) δ(J 01
x,µ − J 10

x,µ) .

(3.28)

One can easily gather from this that the derivative with respect to β/2 will only act on

the weight factor Wβ[p] and ignore all others. For the case of the plaquette expectation

value we will briefly demonstrate the computation steps in the following. First we write

X =
∏
j

(
β
2

)pj
pj !

=

∏
j

1

pj !

(β
2

)∑
j pj

⇒ ∂X

∂
(
β
2

) =

∏
j

1

pj !

(β
2

)(
∑
j pj)−1

·
∑
j

pj .

We have written the weight factor Wβ[p] as X and for illustrative purposes reduced

the number of products to one. One can now split up the term and since the term β
2

does not depend on j convert the product over j into a sum in the exponent. Taking

the derivative here is similar to taking the derivative of
(
β
2

)n
, where n here is

∑
j pj .

This yields a factor of (
∑

j pj) − 1 in the exponent. To restore this factor we multiply

the equation by 1 =
β
2
β
2

. Inserting the full expression for Wβ[p] we find the following

expression:

∂

∂
(β

2

)[ ∏
x,µ<ν

∏
a,b,c,d

(
β
2

)pabcdx,µν

pabcdx,µν !

]
=

2

β

∏
x′,µ′<ν′

∏
a′,b′,c′,d′

(
β
2

)pa′b′c′d′
x′,µ′ν′

pa
′b′c′d′
x′,µ′ν′ !

×
∑
x,µ<ν

∑
a,b,c,d

pabcdx,µν ,

where the product indices need to fulfill the following conditions: x′ 6= x, µ′ 6= µ, ν ′ 6= ν,

a′ 6= a, b′ 6= b, c′ 6= c, d′ 6= d. Inserting this back into Equation (3.27) yields the

plaquette expectation value:

〈Up〉 =
1

6V

2

β

〈 ∑
x,µ<ν

∑
a,b,c,d

pabcdx,µν

〉
. (3.29)

The derivation of the plaquette susceptibility in the dual representation requires to

take another derivative of Eq. (3.28) with respect to the inverse gauge coupling and

can be obtained by a straightforward calculation. The result of this calculation is the
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following

χ =
1

6V

4

β2

〈 ∑
x,µ<ν

∑
a,b,c,d

pabcdx,µν

2〉
−

〈 ∑
x,µ<ν

∑
a,b,c,d

pabcdx,µν

〉2

−

〈 ∑
x,µ<ν

∑
a,b,c,d

pabcdx,µν

〉 ,

(3.30)

which looks similar to the term in Equation (3.26) with the exception of the last term

which originates from the derivative of the prefactor 2
β .

This concludes our discussion of the dualisation of SU(2) lattice gauge theory. In the

next chapter we will introduce the different methods we developed to deal with the sign

problem and discuss the advantages as well as the disadvantages of each.



Chapter 4

Possible approaches for a

simulation

As stated in the previous chapter, we have tried three different approaches to overcome

the sign problems of the dualisation of SU(2) lattice gauge theory in Monte Carlo

simulations. The first one was to factor out the center group of SU(2), dualise the

theory and check whether we could achieve some new constraints for the dual variables

in this way. We discuss this in Section 4.1.

The second idea was to find a new representation such that we may be able to resum

the negative contributions and obtain positive overall weights. For this we rewrite the

exponentiated term given in Equation (3.5) as a product with index jx,µν running from 1

to pabcdx,µν . The new index j is site-and direction dependent. We later on change variables

and identify certain combinations of the colour indices as a colour flux living on the links

of the lattice. The insights we got from that approach will be discussed in Section 4.2.

For the third and last approach of this thesis we constructed new dual variables out

of the cycle occupation numbers. We then truncate the theory such that the cycle

occupation numbers can only take specific values. Doing this we were able to obtain the

well known spin algebra and relate it to the qubit regularisation method. This will be

elaborated in more detail in Section 4.3.

4.1 Factoring out the center group of SU(2)

The first idea to overcome the sign problem was to change the representation of our

gauge links. This is done by explicitly taking out the center of the group SU(2), i.e.,

Z2. In other words we replace the link variables

Ux,µ → σx,µUx,µ , (4.1)

33
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with σx,µ ∈ Z2. The hope of this was that it may produce additional constraints for the

dual variables pabcdx,µν , which could not be seen in the original setting.

Inserting this representation in the partition function (3.5) gives

Z =

∫
D[U ]

∑
{σ}

∏
x,µ<ν

1∏
a,b,c,d=0

e
β
2

(σx,µUabx,µ σx+µ̂,νU
bc
x+µ̂,ν σx+ν̂,µU

dc ∗
x+ν̂,µ σx,νUad ∗x,ν ) , (4.2)

where we have introduced
∑
{σ} as the sum over all Z2 configurations σ. One immedi-

ately sees that the σ’s do not have colour indices, thus are not traced over and can be

pulled out. Again, using a power series expansion we arrive at

Z=

∫
D[U ]

∑
{σ}

∏
x,µ<ν
a,b,c,d

∞∑
pabcdx,µν=0

(
β
2

)pabcdx,µν

pabcdx,µν !

(
σx,µσx+µ̂,νσx+ν̂,µσx,νU

ab
x,µU

bc
x+µ̂,νU

dc ∗
x+ν̂,µU

ad ∗
x,ν

)pabcdx,µν
.

The expansion indices pabcdx,µν will later again be identified to be our dual variables. We

introduce the weight factor Wβ[p] as given in Equation (3.10) and write the sum over

all configurations of the cycle occupation numbers as
∑
{p} =

∏
x,µ<ν

∏
a,b,c,d

∑∞
pabcdx,µν=0.

The partition function thus becomes

Z =
∑
{p}

Wβ[p]

∫
D[U ]

∑
{σ}

∏
x,µ<ν
a,b,c,d

(σx,µσx+µ̂,νσx+ν̂,µσx,ν)p
abcd
x,µν

(
Uabx,µU

bc
x+µ̂,νU

dc ∗
x+ν̂,µU

ad ∗
x,ν

)pabcdx,µν
.

(4.3)

We now only consider the term containing the sigmas, which reads

∑
{σ}

∏
x,µ<ν

(σx,µσx+µ̂,νσx+ν̂,µσx,ν)
∑
a,b,c,d p

abcd
x,µν . (4.4)

Here we have already converted the product over the colour indices into a sum in the

exponent, since the sigmas do not depend on them. As the sigmas are elements of Z2

we can also express them in the following way: σx,µ = (−1)rx,µ . We have introduced a

new variable rx,µ ∈ {0, 1}, therefore the sum over the configurations of σ now becomes

a sum over the configurations of the variable r. With this and repeating for the variable

rx,µ the reorganising steps given in Appendix B, we can express the term in Equation

(4.3) in the following way

∑
{σ}

∏
x,µ<ν

(
(−1)rx,µ+rx+µ̂,ν−rx+ν̂,µ−rx,ν

)Qx,µν ,

where we have introduced a shorthand notation for the exponent
∑

a,b,c,d p
abcd
x,µν = Qx,µν .

The signs for the individual r terms in the exponent were chosen in this particular way

such that we can later express our result in terms of differential forms on the lattice,
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which will be explained in more detail in Appendix C. Changing some of the signs of

the terms in the exponentials is justified due to the identity (−1)n = (−1)−n.

Next we want to reorder the terms in the exponent in the following way: (rx+µ̂,ν −
rx,µ)− (rx+ν̂,µ − rx,µ). In doing so, we are able to identify the term in the exponential

as the exterior derivative differential form, which in its general form is given in the

following way (cf. Equation (C.4)):

(dr)x,µ1···µl =

l∑
k=1

(−1)k+1[rx+k̂,µ1···̊µk···µl − rx,µ1···̊µk···µl ] . (4.5)

Here the circle above the index denotes that this index is left out in the sum. If we now

take l = 2 and rename the directional indices µ1 = µ and µ2 = ν this identification is

complete. Thus the term we are considering becomes

∑
{r}

∏
x,µ<ν

(−1)(dr)x,µν Qx,µν =
∑
{r}

(−1)
∑
x,µ<ν(dr)x,µν Qx,µν .

We can now shift the differential operator from the r to the Q term by a partial inte-

gration where we end up with the term

∑
{r}

(−1)±
∑
x,µ rx,µ (δQ)x,µ ,

where the δ denotes the boundary operator. The partial integration here essentially

transforms the 2-forms of the exponent (dr)x,µν and Qx,µν into 1-forms rx,µ and (δQ)x,µ,

living on the links. Pulling down the sums from the exponent and rewriting the sum

over all configurations of r as
∑
{r} =

∏
x,µ

1
2

∑1
rx,µ=0 we get

∏
x,µ

1

2

1∑
rx,µ=0

(−1)rx,µ (δQ)x,µ =

+1 if (δQ)x,µ even

0 if (δQ)x,µ odd
,

which implies an evenness constraint upon the term (δQ)x,µ. Using the definition of the

boundary operator and introducing the evenness function E(n) as

E(n) =

1 if n is even

0 if n is odd
, (4.6)

we can write the final result of the term in Equation (4.4) as

∏
x,µ

E((δQ)x,µ) =
∏
x,µ

E

∑
ν

∑
a,b,c,d

[
pabcdx,µν − pabcdp−ν̂,µν

] .
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Inserting this back into the partition function (4.3) we get:

Z =
∑
{p}

Wβ[p]

∫
D[U ]

∏
x,µ<ν

∏
a,b,c,d

(
Uabx,µU

bc
x+µ̂,νU

dc ∗
x+ν̂,µU

ad ∗
x,ν

)pabcdx,µν∏
x,µ

E((δQ)x,µ) . (4.7)

One can now repeat the dualisation steps given in Chapter 3 to arrive at the final

dualised result of this approach:

Z =
∑
{p}

Wβ[p] WH [p] (−1)
∑
x,µ J 10

x,µ

∏
x,µ

δ(J 00
x,µ − J 11

x,µ) δ(J 01
x,µ − J 10

x,µ)
∏
x,µ

E((δQ)x,µ) .

(4.8)

This result looks very similar to the one obtained in Chapter 3, with the additional

constraint of the evenness function. Unfortunately this constraint on the Q variable is

not new but can be shown to correspond to the constraints for the J -flux.

To summarise this approach, we were able to factorise out the center of the group and

solve this part in closed form. After having done this, we could dualise the theory in the

way given in Chapter 3. However this did not produce any new constraints of interest,

which was the goal we would have hoped for.

4.2 Dualisation with index parametrisation

Our next approach to the sign problem was a method we called ”index parametrisation”.

The idea here is to take the partition sum in Equation (3.2) with the original gauge action

given in Equation (3.1), expand this in a power series which yields

Z =
∑
{p}

Wβ[p]

∫
D[U ]

∏
x,µ<ν

(
Tr
[
Ux,µUx+µ̂,νU

†
x+ν̂,µU

†
x,ν

])px,µν
︸ ︷︷ ︸

(∗)

, (4.9)

and only afterwards write the trace operation as explicit sums over the colour indices.

The key difference to the original approach is, that instead of taking the trace term to

the power of the cycle occupation number, we now introduce another product with index

jx,µν , which is site dependent and runs from 1 to the cycle occupation number px,µν .

Note that here the variables px,µν do not get a colour index. For notational simplicity

we sometimes neglect the indices of jx,µν . When we apply this to the term (∗) from

Equation (4.5) we get

(∗)=

 ∏
x,µ<ν

px,µν∏
j=1

∑
ajx,µν

∑
bjx,µν

∑
cjx,µν

∑
djx,µν

 ∏
x,µ<ν

px,µν∏
j=1

U
ajx,µνb

j
x,µν

x,µ U
bjx,µνc

j
x,µν

x+µ̂,ν U
∗ djx,µνcjx,µν
x+ν̂,µ U

∗ ajx,µνdjx,µν
x,ν ,



37

where we see, that also our colour indices became local and pick up the product index

j. One now may introduce the sum over all the colour configurations as follows

∑
{a,b,c,d}

=
∏
x,µ<ν

px,µν∏
jx,µν=1

∑
a
jx,µν
x,µν

∑
b
jx,µν
x,µν

∑
c
jx,µν
x,µν

∑
d
jx,µν
x,µν

, (4.10)

which leads us to the following expression for (∗):

(∗) =
∑
{a,b,c,d}

∏
x,µ<ν

px,µν∏
jx,µν=1

U
a
jx,µν
x,µν b

jx,µν
x,µν

x,µ U
b
jx,µν
x,µν c

jx,µν
x,µν

x+µ̂,ν U
∗ djx,µνx,µν c

jx,µν
x,µν

x+ν̂,µ U
∗ ajx,µνx,µν d

jx,µν
x,µν

x,ν . (4.11)

We use the steps described in Appendix B to bring this term in a form similar to the

integrand in Equation (3.8):

(∗)=
∑
{a,b,c,d}

∏
x,µ

(
(Ux,µ)

∑
ν:µ<ν

∑px,µν
jx,µν=1 a

jx,µν
x,µν b

jx,µν
x,µν

)(
(Ux,µ)

∑
ρ:ρ<µ

∑px−ρ̂,ρµ
jx−ρ̂,ρµ=1 b

jx−ρ̂,ρµ
x−ρ̂,ρµ c

jx−ρ̂,ρµ
x−ρ̂,ρµ

)
(

(U∗x,µ)
∑
ν:µ<ν

∑px−ν̂,µν
jx−ν̂,µν=1 d

jx−ν̂,µν
x−ν̂,µν c

jx−ν̂,µν
x−ν̂,µν

)(
(U∗x,µ)

∑
ρ:ρ<µ

∑px,ρµ
jx,ρµ=1 a

jx,ρµ
x,ρµ d

jx,ρµ
x,ρµ

)
,

(4.12)

where we had to shift the indices of the colour indices as well as of the summation index

j, because they are both site dependent.

To proceed with the dualisation we need to choose a representation of the gauge links.

We again chose the one given in (3.11). However, having the colour indices now explicitly

as exponents, we came up with a clever way to represent the matrix elements Uabx,µ. After

a straightforward calculation we found that the matrix elements can be written as

Uabx,µ =

[(
cos(θx,µ) eiαx,µ

)1−b (
sin(θx,µ) eiβx,µ

)b]1−a
×[(

− sin(θx,µ) e−iβx,µ
)1−b (

cos(θx,µ) e−iαx,µ
)b]a

, (4.13)

where we use the colour index as a tool to switch on the different components of the

matrix. This of course can be multiplied out and the term in (4.9) reduces to

Uabx,µ = (−1)a−ab (cos(θx,µ))(1−a−b+2ab) (sin(θx,µ))(a+b−2ab) eiαx,µ(1−b−a) eiβx,µ(b−a) .

(4.14)
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Inserting this into Equation (4.8) we arrive at the following, rather lengthy expression

for (∗):

(∗) =
∏
x,µ

[
(−1)

∑
ν:µ<ν

[∑px,µν
jx,µν=1

(
a
jx,µν
x,µν − a

jx,µν
x,µν b

jx,µν
x,µν

)
+
∑px−ν̂,µν
jx−ν̂,µν=1

(
d
jx−ν̂,µν
x−ν̂,µν − d

jx−ν̂,µν
x−ν̂,µν c

jx−ν̂,µν
x−ν̂,µν

)]

(−1)

∑
ρ:ρ<µ

[∑px,ρµ
jx,ρµ=1

(
a
jx,ρµ
x,ρµ − d

jx,ρµ
x,ρµ a

jx,ρµ
x,ρµ

)
+
∑px−ρ̂,ρµ
jx−ρ̂,ρµ=1

(
b
jx−ρ̂,ρµ
x−ρ̂,ρµ − c

jx−ρ̂,ρµ
x−ρ̂,ρµ b

jx−ρ̂,ρµ
x−ρ̂,ρµ

)]

(cos(θx,µ))
∑
ν:µ<ν

[∑px,µν
jx,µν=1

(
1
jx,µν
(x,µν)

− b
jx,µν
x,µν − a

jx,µν
x,µν +2 a

jx,µν
x,µν b

jx,µν
x,µν

)]

(cos(θx,µ))

∑
ν:µ<ν

[∑px−ν̂,µν
jx−ν̂,µν=1

(
1
jx−ν̂,µν
(x−ν̂,µν)

− c
jx−ν̂,µν
x−ν̂,µν − d

jx−ν̂,µν
x−ν̂,µν +2 d

jx−ν̂,µν
x−ν̂,µν c

jx−ν̂,µν
x−ν̂,µν

)]

(cos(θx,µ))
∑
ρ:ρ<µ

[∑px,ρµ
jx,ρµ=1

(
1
jx,ρµ
(x,ρµ)

− a
jx,ρµ
x,ρµ − d

jx,ρµ
x,ρµ +2 a

jx,ρµ
x,ρµ d

jx,ρµ
x,ρµ

)]

(cos(θx,µ))

∑
ρ:ρ<µ

[∑
jx−ρ̂,ρµ

(
1
jx−ρ̂,ρµ
(x−ρ̂,ρµ)

− b
jx−ρ̂,ρµ
x−ρ̂,ρµ − c

jx−ρ̂,ρµ
x−ρ̂,ρµ +2 b

jx−ρ̂,ρµ
x−ρ̂,ρµ c

jx−ρ̂,ρµ
x−ρ̂,ρµ

)]

(sin(θx,µ))
∑
ν:µ<ν

[∑px,µν
jx,µν=1

(
b
jx,µν
x,µν +a

jx,µν
x,µν − 2 a

jx,µν
x,µν b

jx,µν
x,µν

)]

(sin(θx,µ))

∑
ν:µ<ν

[∑px−ν̂,µν
jx−ν̂,µν=1

(
c
jx−ν̂,µν
x−ν̂,µν +d

jx−ν̂,µν
x−ν̂,µν −2 d

jx−ν̂,µν
x−ν̂,µν c

jx−ν̂,µν
x−ν̂,µν

)]

(sin(θx,µ))
∑
ρ:ρ<µ

[∑px,ρµ
jx,ρµ=1

(
a
jx,ρµ
x,ρµ +d

jx,ρµ
x,ρµ −2 a

jx,ρµ
x,ρµ d

jx,ρµ
x,ρµ

)]

(sin(θx,µ))

∑
ρ:ρ<µ

[∑
jx−ρ̂,ρµ

(
b
jx−ρ̂,ρµ
x−ρ̂,ρµ +c

jx−ρ̂,ρµ
x−ρ̂,ρµ −2 b

jx−ρ̂,ρµ
x−ρ̂,ρµ c

jx−ρ̂,ρµ
x−ρ̂,ρµ

)]

e
iαx,µ

∑
ν:µ<ν

[∑px,µν
jx,µν=1

(
1
jx,µν
(x,µν)

− b
jx,µν
x,µν − a

jx,µν
x,µν

)]

e
iαx,µ

∑
ν:µ<ν

[∑px−ν̂,µν
jx−ν̂,µν=1

(
−1

jx−ν̂,µν
(x−ν̂,µν)

+c
jx−ν̂,µν
x−ν̂,µν +d

jx−ν̂,µν
x−ν̂,µν

)]

e
−iαx,µ

∑
ρ:ρ<µ

[∑px,ρµ
jx,ρµ=1

(
1
jx,ρµ
(x,ρµ)

− a
jx,ρµ
x,ρµ − d

jx,ρµ
x,ρµ

)]

e
−iαx,µ

∑
ρ:ρ<µ

[
sum

px−ν̂,µν
jx−ρ̂,ρµ

(
−1

jx−ρ̂,ρµ
(x−ρ̂,ρµ)

+b
jx−ρ̂,ρµ
x−ρ̂,ρµ +c

jx−ρ̂,ρµ
x−ρ̂,ρµ

)]

e
iβx,µ

(∑
ν:µ<ν

[∑px,µν
jx,µν=1

(
b
jx,µν
x,µν −a

jx,µν
x,µν

)
+
∑px−ν̂,µν
jx−ν̂,µν=1

(
−c

jx−ν̂,µν
x−ν̂,µν +d

jx−ν̂,µν
x−ν̂,µν

)])

e
−iβx,µ

(∑
ρρ<µ

[∑px,ρµ
jx,ρµ=1

(
d
jx,ρµ
x,ρµ −a

jx,ρµ
x,ρµ

)
+
∑px−ρ̂,ρµ
jx−ρ̂,ρµ

(
b
jx−ρ̂,ρµ
x−ρ̂,ρµ −c

jx−ρ̂,ρµ
x−ρ̂,ρµ

)])]
.

Note that the each of the terms in the equation above has a term-specific combination

of colour indices in the exponent. Next we identify the colour index combinations in

the exponents of the α and β terms as a quantity we refer to as colour fluxes. These

quantities live on the links between the lattice sites. The flux variables are given as

follows:

I = 1− b− a i = b− a K = 1− d− a k = c− d

L = 1− d− a l = d− a R = 1− b− c r = c− b . (4.15)

The flux denoted by the big letters match the combinations of the α exponent terms and
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ν = 2

µ = 1

α: I = 1− a− b
β: i = b− a

α: −K = −(1− d− c)

β: −k = −(c− d)

Figure 4.1: Illustration of the colour fluxes that arise from the combination of colour
indices in (∗). The origin of the colour fluxes is denoted by the α or β in front of the

definition. Here we illustrate the plane µ < ν.

the small letter fluxes the ones in the exponent with the β term. These colour fluxes

can be illustrated as shown in Figure 4.1 and 4.2. As illustrated in Figures 4.1 and 4.2

we have that the orientation of the fluxes is defined as the colour at site x + î minus

the colour at site x, where î denotes the unit vector in direction {1̂, 2̂, 3̂, 4̂}. Thus they

are positive if they run in mathematical positive direction and negative otherwise. This

matches the orientation of the gauge links (cf. Section 2).

Using the definitions in (4.16) we can also consider the composite terms a · b that

appear in (∗). First we need to express a and b in terms of our new variables:

a =
1− I − i

2
b =

1− I + i

2
. (4.16)

A straightforward calculation then yields

a · b =
1

4
(1− 2I + I2 − i2) (4.17)

a− a · b =

(
1

2
− i

2

)2

− I4

4
. (4.18)
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µ = 2

ρ = 1

α: −L = −(1− a− d)

β: −l = −(d− a)
α: R = 1− c− b

β: r = c− b

Figure 4.2: Illustration of the colour fluxes that arise from the combination of colour
indices in (∗). The origin of the colour fluxes is denoted by the α or β in front of the

definition. Here we illustrate the plane ρ < µ.

Substituting the colour index combinations with the terms given in (4.16), (4.17) and

(4.18) the term (∗) becomes

(∗) =
∏
x,µ

[
(−1)

∑
{ν,jx,µν}

(
1−i

jx,µν
x,µν
2

)2

−
(
I
jx,µν
x,µν

2

)2

+
∑
{ν,jx−ν̂,µν}

 1−k
jx−ν̂,µν
x−ν̂,µν

2

2

−

 I
jx−ν̂,µν
x−ν̂,µν

2

2

(−1)

∑
{ρ,jx,ρµ}

(
1−l

jx,ρµ
x,ρµ
2

)2

−
(
L
jx,ρµ
x,ρµ

2

)2

+
∑
{ρ,jx−ρ̂,ρµ}

 1−r
jx−ρ̂,ρµ
x−ρ̂,ρµ

2

2

−

R
jx−ρ̂,ρµ
x−ρ̂,ρµ

2

2

(cos(θx,µ))

∑
{ν,jx,µν}

 1+

(
I
jx,µν
x,µν

)2
−
(
i
jx,µν
x,µν

)2

2

+
∑
{ν,jx−ν̂,µν}

 1+

(
K
jx−ν̂,µν
x−ν̂,µν

)2
−
(
k
jx−ν̂,µν
x−ν̂,µν

)2

2



(cos(θx,µ))

∑
{ρ,jx,ρµ}

 1+

(
L
jx,ρµ
x,ρµ

)2
−
(
l
jx,ρµ
x,ρµ

)2

2

+
∑
{ρ,jx−ρ̂,ρµ}

 1+

(
R
jx−ρ̂,ρµ
x−ρ̂,ρµ

)2
−
(
r
jx−ρ̂,ρµ
x−ρ̂,ρµ

)2

2



(sin(θx,µ))

∑
{ν,jx,µν}

 1−
(
I
jx,µν
x,µν

)2
+

(
i
jx,µν
x,µν

)2

2

+
∑
{ν,jx−ν̂,µν}

 1−
(
K
jx−ν̂,µν
x−ν̂,µν

)2
+

(
k
jx−ν̂,µν
x−ν̂,µν

)2

2



(sin(θx,µ))

∑
{ρ,jx,ρµ}

 1+

(
L
jx,ρµ
x,ρµ

)2
−
(
l
jx,ρµ
x,ρµ

)2

2

+
∑
{ρ,jx−ρ̂,ρµ}

 1+

(
R
jx−ρ̂,ρµ
x−ρ̂,ρµ

)2
−
(
r
jx−ρ̂,ρµ
x−ρ̂,ρµ

)2

2



e
iαx,µ

[(∑
{ν,jx,µν} I

jx,µν
x,µν +

∑px−ν̂,µν
jx−ν̂,µν=1−K

jx−ν̂,µν
x−ν̂,µν

)
−
(∑

{ρ,jx,ρµ} L
jx,ρµ
x,ρµ +

∑
jx−ρ̂,ρµ

−R
jx−ρ̂,ρµ
x−ρ̂,ρµ

)]

e
iβx,µ

[(∑
{ν,jx,µν} i

jx,µν
x,µν +

∑px−ν̂,µν
jx−ν̂,µν=1−k

jx−ν̂,µν
x−ν̂,µν

)
−
(∑

{ρ,jx,ρµ} l
jx,ρµ
x,ρµ +

∑
jx−ρ̂,ρµ

−r
jx−ρ̂,ρµ
x−ρ̂,ρµ

)]]
,

where we have introduced an abbreviation for the double sums, e.g.,
∑
{ν,jx,muν} =∑

ν:µ<ν

∑px,µν
jx,µν=1.

We recall that the colour indices (a, b, c, d) can only take the values 0 and 1. When
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we insert this into the definition of the colour fluxes (4.16), we find that the colour

fluxes can take values −1, 0, 1, depending on the current configuration of colour indices.

However, as the fluxes denoted by the capital letters and their corresponding small letter

fluxes I ↔ i, L ↔ l, R ↔ r,K ↔ k, individually contain the same colour indices, they

are not independent of one another. Thus, if we have a configuration, e.g., a = 0, b = 0,

according to (4.16) we have that I = 1 and i = 0 respectively. Inserting the different

combinations leads to the following relation:

i
jx,µν
x,µν = 1⇒ I

jx,µν
x,µν = 0

i
jx,µν
x,µν = 0⇒ I

jx,µν
x,µν = ±1

i
jx,µν
x,µν = −1⇒ I

jx,µν
x,µν = 0 .

This in turn allows us to express the exponents in (∗) in terms of either the capital or

the small fluxes, for which we chose the latter. This further reduces the (∗) term, which

now reads

(∗) =
∏
x,µ

[
(−1)

∑
{ν,jx,µν}

(
1−i

jx,µν
x,µν
2

i
jx,µν
x,µν

)2

+
∑
{ν,jx−ν̂,µν}

 1−k
jx−ν̂,µν
x−ν̂,µν

2
k
jx−ν̂,µν
x−ν̂,µν

2

(−1)

∑
{ρ,jx,ρµ}

(
1−l

jx,ρµ
x,ρµ
2

l
jx,ρµ
x,ρµ

)2

+
∑
{ρ,jx−ρ̂,ρµ}

 1−r
jx−ρ̂,ρµ
x−ρ̂,ρµ

2
r
jx−ρ̂,ρµ
x−ρ̂,ρµ

2

(cos(θx,µ))

∑
{ν,jx,µν}

(
1−
(
i
jx,µν
x,µν

)2
)

+
∑
{ν,jx−ν̂,µν}

(
1−
(
k
jx−ν̂,µν
x−ν̂,µν

)2
)

(cos(θx,µ))

∑
{ρ,jx,ρµ}

(
1−
(
l
jx,ρµ
x,ρµ

)2
)

+
∑
{ρ,jx−ρ̂,ρµ}

(
1−
(
r
jx−ρ̂,ρµ
x−ρ̂,ρµ

)2
)

(sin(θx,µ))

∑
{ν,jx,µν}

(
i
jx,µν
x,µν

)2
+
∑
{ν,jx−ν̂,µν}

(
k
jx−ν̂,µν
x−ν̂,µν

)2

(sin(θx,µ))

∑
{ρ,jx,ρµ}

(
l
jx,ρµ
x,ρµ

)2
+
∑
{ρ,jx−ρ̂,ρµ}

(
r
jx−ρ̂,ρµ
x−ρ̂,ρµ

)2

e
iαx,µ

(∑
{ν,jx,µν} I

jx,µν
x,µν +

∑px−ν̂,µν
jx−ν̂,µν=1−K

jx−ν̂,µν
x−ν̂,µν

)
−
(∑

{ρ,jx,ρµ} L
jx,ρµ
x,ρµ +

∑
jx−ρ̂,ρµ

−R
jx−ρ̂,ρµ
x−ρ̂,ρµ

)

e
iβx,µ

[(∑
{ν,jx,µν} i

jx,µν
x,µν +

∑px−ν̂,µν
jx−ν̂,µν=1−k

jx−ν̂,µν
x−ν̂,µν

)
−
(∑

{ρ,jx,ρµ} l
jx,ρµ
x,ρµ +

∑
jx−ρ̂,ρµ

−r
jx−ρ̂,ρµ
x−ρ̂,ρµ

)]]
.

Inserting this back into Equation (4.9) we can evaluate the integral as shown in Chap-

ter 3 by using the SU(2) Haar measure. This then yields the following result for the
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dual partition function

Z =
∑
{p}

Wβ[p]
∑
{i,k,l,r}

∏
x,µ

(−1)

∑
{ν,jx,µν}

(
1−i

jx,µν
x,µν
2

i
jx,µν
x,µν

)2

+
∑
{ν,jx−ν̂,µν}

 1−k
jx−ν̂,µν
x−ν̂,µν

2
k
jx−ν̂,µν
x−ν̂,µν

2

(−1)

∑
{ρ,jx,ρµ}

(
1−l

jx,ρµ
x,ρµ
2

l
jx,ρµ
x,ρµ

)2

+
∑
{ρ,jx−ρ̂,ρµ}

 1−r
jx−ρ̂,ρµ
x−ρ̂,ρµ

2
r
jx−ρ̂,ρµ
x−ρ̂,ρµ

2

(
Giklrx,µν

2

)
!
(
Ḡiklrx,µν

2

)
!((∑

ν:µ<ν (p̃x,µν + p̃x−ν̂,µν) +
∑

ρ:ρ<µ (p̃x,ρµ + p̃x−ρ̂,ρµ)
)
/2 + 1

)
!
×

δ

( ∑
ν:µ<ν

(
Ĩx,µν − K̃x−ν̂,µν

)
−
∑
ρ:ρ<µ

(
L̃x,ρµ − R̃x−ρ̂,ρµ

))

δ

( ∑
ν:µ<ν

(
ĩx,µν − k̃x−ν̂,µν

)
−
∑
ρ:ρ<µ

(
l̃x,ρµ − r̃x−ρ̂,ρµ

))
. (4.19)

Here the letters with the tilde denote the colour flux variables, where the sum over the

index j has been carried out. The Giklrx,µν and Ḡiklrx,µν are abbreviations for the following

terms:

Giklrx,µν =
∑
ν:µ<ν

∑
jx,µν

(
1−

(
i
jx,µν
x,µν

)2
)

+
∑

jx−ν̂,µν

(
1−

(
k
jx−ν̂,µν
x−ν̂,µν

)2
)+

∑
ρ:ρ<µ

∑
jx,ρµ

(
1−

(
l
jx,ρµ
x,ρµ

)2
)

+
∑

jx−ρ̂,ρµ

(
1−

(
r
jx−ρ̂,ρµ
x−ρ̂,ρµ

)2
) ,

Ḡiklrx,µν =
∑
ν:µ<ν

∑
jx,µν

(
i
jx,µν
x,µν

)2
+

∑
jx−ν̂,µν

(
k
jx−ν̂,µν
x−ν̂,µν

)2

+

∑
ρ:ρ<µ

∑
jx,ρµ

(
l
jx,ρµ
x,ρµ

)2
+
∑

jx−ρ̂,ρµ

(
r
jx−ρ̂,ρµ
x−ρ̂,ρµ

)2

 .

With this we have successfully reformulated the dual theory in terms of the colour

micro fluxes and Equation (4.19) is the final version of the dual partition function in

the index parametrisation. Although the approach seems very interesting, we decided

to abandon it in favour of the approach explained in the next section.
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4.3 Truncation and connection to qubit regularisation

The final approach we used was to truncate the already dualised theory such that it

matches the terms expected for a method called qubit regularisation. This method is de-

scribed in greater detail in [1] using the O(3)-spin model as an example, but we nonethe-

less briefly want to summarise the main concepts and discuss why this is applicable to

the dual SU(2) lattice gauge theory. We want to stress that all of the stated equations

in this chapter hold for all lattice sites x, all directional indices µ, ν and all colour indices.

The main goal of qubit regularisation is to develop a method which can be used to

simulate a quantum (lattice) field theory on a quantum computer. This, as stated in

[1], may prove particularly useful when simulating, e.g., non-equilibrium processes or

strongly coupled theories. The reason for this is that in these cases the currently avail-

able classical computational resources are very limited. Quantum computation may help

overcome this problem. In order to simulate a quantum field theory on a quantum com-

puter one has to first apply lattice regularisation and furthermore use a method referred

to in the paper as qubit regularisation. Basically this means formulating the theory us-

ing a local finite-dimensional Hilbert space which can then be represented with qubits.

Thus when considering a theory in d dimensions, this formulation effectively makes the

theory d+ 1 dimensional. The paper gives an example of a qubit regularisation scheme

called ”D-theory approach”, which claims that a (d + 1)-dimensional quantum lattice

Hamiltonian can be taken as a qubit regularisation of a traditional lattice quantum field

theory in d + 1 spacetime dimensions. Next they construct the qubit regularisation of

the O(3)-sigma model using a singlet-triplet representation as states on each site of the

lattice, after which they formulate the theory using worldlines.

There are a few reasons why we chose to try formulating the SU(2) lattice gauge

theory using qubit regularisation. In [1] each site gets added an additional finite di-

mensional Hilbert space in which a qubit lives. Since a qubit is a two-level system this

additional dimension can be thought of as adding a layer at each site. The dual formu-

lation of our SU(2) lattice gauge theory can graphically be represented as consisting of

2, in this case, colour layers. Thus we can draw a straightforward analogy between these

two formulations. Another reason is that SU(2) and SO(3) are related via the isomor-

phism SU(2)/Z2
∼= SO(3) and furthermore SU(2) is the universal cover group of SO(3).

For the above stated analogy to work we constructed two new dual variables from

the cycle occupation numbers. These new variables V abcd
x,µν and Dabcd

x,µν are defined in the
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following way:

V abcd
x,µν = pabcdx,µν − pāb̄c̄d̄x,µν , (4.20)

Dx,µν = pabcdx,µν · pāb̄c̄d̄x,µν . (4.21)

Here the bar above the colour index denotes the anti-colour or inverse colour index, i.e.,

ā = 1− a. It is straightforward to see that the following relation holds for the variable

V with the anti-colours:

V āb̄c̄d̄
x,µν = −V abcd

x,µν . (4.22)

Inverting the colour indices does not affect the variable Dabcd
x,µν . Using the definitions in

(4.15) and (4.16) and exploiting the relation given in Equation (4.17) one can also easily

change back to the cycle occupation number representation:

pabcdx,µν =
|V abcd
x,µν |+ V abcd

x,µν

2
+Dabcd

x,µν , (4.23)

pāb̄c̄d̄x,µν =
|V abcd
x,µν | − V abcd

x,µν

2
+Dabcd

x,µν . (4.24)

Furthermore, to complete the analogy to the qubit model we needed to truncate the

theory in such a way that the dual variables pabcdx,µν can only take the values 0 and 1. This

is a crude truncation since now for each plaquette (x, µ, ν) there can be either no loop or

one loop winding around the plaquette for a specific configuration of colours. Inserting

these truncated values into the definition of our new dual variables V abcd
x,µν and Dabcd

x,µν we

find that they can only take the following values:

V abcd
x,µν ∈ {0,±1} ,

Dabcd
x,µν ∈ {0, 1} .

As the V and D cannot be changed independently of each other we find that they

come in 4 different combinations, which are displayed in Table 4.1. The table also helps

to better illustrate the connection between the values of the truncated cycle occupation

numbers and the new dual variables.

There are a few interesting features one can extract from Table 4.1. First we get a

constraint for the new dual variables which reads

Dabcd
x,µν ≤ 1− |V abcd

x,µν | , (4.25)

which is an important statement in the numerical simulation of the theory. Furthermore

the numbers in Table 4.1 already hint at the singlet-triplet structure with the spin

algebra. In analogy to spin states in quantum mechanics we now introduce a quantity
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Table 4.1: Conversion table for connecting the two dual representations of our dual
SU(2) lattice gauge theory.

pāb̄c̄d̄x,µν

pabcdx,µν 0 1

0
V abcd
x,µν = 0 V abcd

x,µν = +1

Dabcd
x,µν = 0 Dabcd

x,µν = 0

1
V abcd
x,µν = −1 V abcd

x,µν = 0

Dabcd
x,µν = 0 Dabcd

x,µν = 1

Figure 4.3: Illustration of example plaquette states where all the colours are in the
same layer: on the far left is the singlet state |1, 0〉, and then from left to right the

triplet states in the order |0,+1〉, |0, 0〉, |0,−1〉.

which we named plaquette state as

|Dabcd
x,µν , V

abcd
x,µν 〉 . (4.26)

With this we are now able to complete the analogy of our dual variables with the qubit

states from [1] and obtain the singlet-triplet representation like follows:

plaquette singlet: |1, 0〉

plaquette triplet:


|0,+1〉

|0, 0〉

|0,−1〉

(4.27)

Note however that the notation differs from the conventional spin algebra, where the

labels 0 and 1 are exchanged in the first entry of the state.

We can illustrate the plaquette states using the graphical representation of the ACCs

introduced in Chapter 3. This representation is shown in Figure 4.1.

Figure 4.1 shows that the singlet state corresponds to the ACC and the anti-ACC

winding around the same plaquette, where for the triplet state either the ACC or the

anti-ACC is occupied. The loop in the bottom layer can be identified as the ACC p0000
x,µν

and the one at the top to its anti-ACC p1111
x,µν . The third option of the triplet is that all

the occupation numbers in a given colour configuration vanish.

Having introduced the variable transformation and truncation we insert (4.18) and

(4.19) into our dual partition function (3.20) and rewrite all the variables and fluxes in

terms of our new dual variables V abcd
x,µν and Dabcd

x,µν . First we consider the weight factor

WH [p] given in Equation (3.21), i.e., the sum of S-fluxes. If we write this sum more
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generally with colours a, b and anti-colours ā, b̄ we get:

Sabx,µ + S āb̄x,µ =
∑
ν:µ<ν

[
|V abss
x,µν |+ V abss

x,µν

2
+Dabss

x,µν +
|V ssba
x−ν̂,µν |+ V ssba

x−ν̂,µν
2

+Dssba
x−ν̂,µν

]
+

+
∑
ρ:ρ<µ

[
|V assb
x,ρµ |+ V assb

x,ρµ

2
+Dassb

x,ρµ +
|V sabs
x−ρ̂,ρµ|+ V sabs

x−ρ̂,ρµ
2

+Dsabs
x−ρ̂,ρµ

]
+

+
∑
ν:µ<ν

[
|V āb̄ss
x,µν |+ V āb̄ss

x,µν

2
+Dāb̄ss

x,µν +
|V ssb̄ā
x−ν̂,µν |+ V ssb̄ā

x−ν̂,µν
2

+Dssb̄ā
x−ν̂,µν

]
+

+
∑
ρ:ρ<µ

[
|V āssb̄
x,ρµ |+ V āssb̄

x,ρµ

2
+Dāssb̄

x,ρµ +
|V sāb̄s
x−ρ̂,ρµ|+ V sāb̄s

x−ρ̂,ρµ
2

+Dsāb̄s
x−ρ̂,ρµ

]
.

If we use the relation given in Equation (4.17) the V terms without the modulus cancel

and the term reduces to

Sabx,µ + S āb̄x,µ =
∑
ν:µ<ν

[
|V abss
x,µν |+ 2 Dabss

x,µν + |V ssba
x−ν̂,µν |+ 2 Dssba

x−ν̂,µν

]
+

+
∑
ρ:ρ<µ

[
|V assb
x,ρµ |+ 2 Dassb

x,ρµ + |V sabs
x−ρ̂,ρµ|+ 2 Dsabs

x−ρ̂,ρµ

]
. (4.28)

Next we consider the J -fluxes and the terms in the Kronecker delta of (3.20). Inserting

(4.18) into the definition of the J -fluxes yields

J abx,µ =
∑
ν:µ<ν

[
|V abss
x,µν |+ V abss

x,µν

2
+Dabss

x,µν −

(
|V ssba
x−ν̂,µν |+ V ssba

x−ν̂,µν
2

+Dssba
x−ν̂,µν

)]
−

−
∑
ρ:ρ<µ

[
|V assb
x,ρµ |+ V assb

x,ρµ

2
+Dassb

x,ρµ −

(
|V sabs
x−ρ̂,ρµ|+ V sabs

x−ρ̂,ρµ
2

+Dsabs
x−ρ̂,ρµ

)]
,

which as a single term will be of interest when we discuss the sign. Last but not least

we consider the arguments of the Kronecker deltas which now read:

J abx,µ − J āb̄x,µ =
∑
ν:µ<ν

[
|V abss
x,µν |+ V abss

x,µν

2
+Dabss

x,µν −

(
|V ssba
x−ν̂,µν |+ V ssba

x−ν̂,µν
2

+Dssba
x−ν̂,µν

)]
−

−
∑
ρ:ρ<µ

[
|V assb
x,ρµ |+ V assb

x,ρµ

2
+Dassb

x,ρµ −

(
|V sabs
x−ρ̂,ρµ|+ V sabs

x−ρ̂,ρµ
2

+Dsabs
x−ρ̂,ρµ

)]
−

−

( ∑
ν:µ<ν

[
|V āb̄ss
x,µν |+ V āb̄ss

x,µν

2
+Dāb̄ss

x,µν −

(
|V ssb̄ā
x−ν̂,µν |+ V ssb̄ā

x−ν̂,µν
2

+Dssb̄ā
x−ν̂,µν

)]
−

−
∑
ρ:ρ<µ

[
|V āssb̄
x,ρµ |+ V āssb̄

x,ρµ

2
+Dāssb̄

x,ρµ −

(
|V sāb̄s
x−ρ̂,ρµ|+ V sāb̄s

x−ρ̂,ρµ
2

+Dsāb̄s
x−ρ̂,ρµ

)])
.
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Again using (4.17) we see that the modulus of the V and the D terms cancel and this

term straightforwardly reduces to

J abx,µ − J āb̄x,µ =
∑
ν:µ<ν

[
V abss
x,µν − V ssba

x−ν̂,µν

]
−
∑
ρ:ρ<µ

[
V assb
x,ρµ − V sabs

x−ρ̂,ρµ

]
. (4.29)

Finally if we insert (4.18) into the definition of the weight factor Wβ[p], it becomes

Wβ[p] =

 ∏
x,µ<ν

∏
a,b,c,d

(
β
2

)( |V abcdx,µν |+V
abcd
x,µν

2
+Dabcdx,µν

)
(
|V abcdx,µν |+V abcdx,µν

2 +Dabcd
x,µν

)
!

 . (4.30)

With all the terms from the dual partition sum (3.20) now given in terms of the new,

truncated dual variables we are ready to carry out the simulations. In the next section

we will explain the algorithms and update schemes we used to perform the simulation.

We will also display and discuss the results obtained by the simulations.



Chapter 5

Numerical Simulation

The previous chapters compiled the theoretical description of the theory, its problems

and how we want to solve them. This chapter now is devoted to the more practical part

of the thesis, namely the numerical simulation of the theory and the calculation of the

observables given in Section 3.2.

We have split this chapter into three subchapters, which feature the two different

simulation ideas we used to simulate the theory. In the first part we explain how we

simulated SU(2) lattice gauge theory using the action given in Equation (3.1), which uses

SU(2) matrix valued gauge links. Since this is the original formulation of the theory, the

results obtained from its simulation serve as a reference for the results obtained from the

simulation of the dual representation. As it would take too much space to put the whole

code in the thesis, we will instead show the algorithm in the form of a pseudo-code. The

second part is mainly a conceptual part where we explain how to simulate the theory

using the dual cycle occupation numbers pabcdx,µν as our main degrees of freedom for the

simulation. Last but not least, in the third subsection we describe how we simulated

the theory using the new dual variables obtained by the truncation approach in Section

4.3.

5.1 Simulation of conventional SU(2) lattice gauge theory

5.1.1 Description of the algorithm

For the simulation of the conventional formulation we start by considering the action

given in Equation (3.1). Our fundamental degrees of freedom for the simulation here

are the SU(2) valued gauge links Ux,µ. To simulate the theory and to calculate the

observables, we use the Metropolis algorithm described in more detail in Section 2.3.

48
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In the following we present the structure of our main program in the form of pseudo-

code.

set nmeas = 106

set nequi = 105

set nskip = 20

β0 = 0.0

∆β = 0.05

initialise neighbour field

set all gauge links to 2-dim. unit matrix

for i:0 → 80

β = β0 + i ·∆β

sweeps(nequi)

for j:0 → nmeas-1

sweeps(nskip)

calculate-plaquette( j )

end for

plaquette-expectation-value = calculate-mean()

chi = calculate-chi()

end for

In the beginning we set some parameters that determine the statistics of our simula-

tion. as well as the equilibration and decorrelation. The number of the ”measurements”

we perform1 per observable is set to 106. The number of equilibrating updates nequi, we

chose to be 105. This is to make sure the algorithms equilibrated and provides a good

basis for the computation of the observables. The next pre-set parameter is nskip, which

is the number of gauge link updates performed in between the measurements. This pro-

cess is necessary to reduce the autocorrelation between two consecutive measurements.

The last two steps that need to be done before we start the simulation procedure are

the initialisation of the neighbour field and then setting the gauge links to their starting

value. The neighbour field is a multidimensional array, that contains the addresses of

nearest neighbour lattice sites in each direction, i.e., µ ∈ {±1,±2,±3,±4}, for every

lattice site x. Regarding the starting value for our gauge fields, a suitable choice here is

the 2-dimensional unit matrix: I =

[
1 0

0 1

]
.

1Note that the parameter values suggested here are only typical numbers and the actually chosen
values may depend on the specific goal of the simulation.
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Figure 5.1: Illustration of the different cases of two neighbouring plaquettes which
contain the gauge link Ux,µ we want to update.

When performing the simulation we are interested in how the theory behaves at dif-

ferent values of the inverse gauge coupling β. Thus we start with β0 = 0.0 and increase

it stepwise in a loop which in the example shown here runs over 80 steps of ∆β = 0.05.

We stress that the choice of the number 80 and ∆β = 0.05 here is only for illustration

and will be different depending on the task. Before we start calculating the observables

for each of these iterations we perform nequi equilibrating updates of the gauge link

configurations using the sweeps function which implements the Monte Carlo updates.

The program then loops over the number of measurements, where it first performs nskip

updates, using the sweeps function, to decorrelate the measurements. Then it calcu-

lates observables such as the value of the plaquette for the current measurement. The

output of this measurement-loop is a set of nmeas values of the observables. We later

use this set, which is a so-called sample, to calculate the observables we are interested

in according to the formulas in Equations (3.26) and (3.27).

The updates of the gauge links are contained in the sweeps function, and we will

shortly outline in the following how the gauge links are updated. For a more detailed

description of how to generate new link candidates for the Metropolis update, see [7].

Consider the gauge link Ux,µ. In d dimensions this link is contained in 2(d − 1) pla-

quettes, which are illustrated in Figure 5.1. As described in Section 2.3, the Metropolis

algorithm needs to offer a new link candidate Ũx,µ in the vicinity of the old value Ux,µ.

To obtain this new candidate we perform a matrix multiplication of the following form:

Ũx,µ = XUx,µ , (5.1)
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where X is a random element of SU(2) close to the unit element. Here we make use of

the fact, that we can write an SU(2) matrix element X in the form

X = x0I + i~x · ~σ , ~x =


x1

x2

x3

 , (5.2)

with x0, x1, x2, x3 denoting 4 real coefficients and ~σ is the vector of the three Pauli

matrices. We generate the coefficients by

~x = ε
~r

|~r|
x0 = sign(r0)

√
1− ε2 . (5.3)

The ri, with i = 0, 1, 2, 3, denote random numbers which are uniformly distributed in

(−1
2 ,

1
2) and ε is a parameter that controls the spread of X around I. We stress that the

parameter ε can be tuned to optimize the acceptance rate.

Once we have generated the new candidate link variable, the program has to determine

the Metropolis ratio ρ. This is obtained by dividing the weights of the new configuration

by the weights of the old configuration, as is stated in Section 2.3. For our theory, the

weight factors are Boltzmann factors of the form:

WB[U ] = e
β
2

∑
p Tr[Up] . (5.4)

The quantity Up = Ux,µUx+µ̂,νU
†
x+ν̂,µU

†
x,ν denotes the product over the 4 link variables

that make up a plaquette and the sum index p indicates that all the plaquettes are

summed over. Using these weights the Metropolis ratio ρ = WB [Ũ ]
WB [U ] becomes

ρ = e
β
2

∑
p[Tr[Ũp]−Tr[Up]] . (5.5)

As an example we show how to calculate the Metropolis ratio for the update of the link

Ux,µ. For the computation we need to take into account only the plaquettes shown in

Figure 5.1. If we now insert the definition for Up in (5.5), the Metropolis ratio reads:

ρ =e
β
2

∑
x,µ<ν

[
Tr[(Ũx,µ−Ux,µ)Ux+µ̂,νU

†
x+ν̂,µU

†
x,ν ]+Tr[Ux−ν̂,µUx−ν̂+µ̂,ν(Ũ†x,µ−U†x,µ)U†x−ν̂,ν ]

]
×

e
β
2

∑
x,ρ<µ

[
Tr[Ũx,ρUx+ρ̂,µU

†
x+µ̂,ρ(Ũ†x,µ−U†x,µ)]+Tr[Ux−ρ̂,ρ(Ũx,µ−Ux,µ)U†x−ρ̂+m̂u,ρU

†
x−ρ̂,µ]

]
.
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For convenience we introduce the notation ∆x,µ = Ũx,µ − Ux,µ and write

ρ =e
β
2

∑
x,µ<ν

[
Tr[∆x,µUx+µ̂,νU

†
x+ν̂,µU

†
x,ν ]+Tr[Ux−ν̂,µUx−ν̂+µ̂,ν∆†x,µU

†
x−ν̂,ν ]

]
×

e
β
2

∑
x,ρ<µ

[
Tr[Ux,ρUx+ρ̂,µU

†
x+µ̂,ρ∆†x,µ]+Tr[Ux−ρ̂,ρ∆x,µU

†
x−ρ̂+m̂u,ρU

†
x−ρ̂,µ]

]
.

We now can use the cyclic permutation property of the trace and after performing some

rearrangements of the gauge links we get the following

ρ =e
β
2

∑
x,µ<ν

[
Tr
[
∆x,µ(Ux+µ̂,νU

†
x+ν̂,µU

†
x,ν+U†x−ν̂+µ̂,νU

†
x−ν̂,µUx−ν̂,ν)

]]
×

e
β
2

∑
x,ρ<µ

[
Tr
[
∆x,µ(Ux+µ̂,ρU

†
x+ρ̂,µU

†
x,ρ+Ux−ρ̂+m̂u,ρU

†
x−ρ̂,µU

†
x−ρ̂,ρ)

]]
. (5.6)

This is then how we implemented the calculation of the Metropolis ratio in our program.

Finally, after the Metropolis ratio is calculated, the algorithm then generates a uni-

formly distributed random number in the interval [0, 1] and checks whether ρ is larger

or smaller than that number. If ρ is larger, the new configuration gets accepted, if it is

smaller the old configuration is kept.

In the function sweeps this whole process is then carried out for all lattice sites and

for all directions in a loop that allows one to update all degrees of freedom nsweep times.

This then is again included in a loop over how many updates we want to carry out. In

the following we show a pseudo-code version of the function sweeps.

sweeps(nsweep)

for i: 0 → nsweep-1

for site: 0 → (number of sites)-1

for d: 0 → dimensions - 1

generate update matrix X + compute new link configuration Ũ

calculate Metropolis ratio ρ

generate uniformly distributed random number r ∈ [0, 1]

if: r < ρ → accept new configuration

end for

end for

end for

end sweeps
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5.1.2 Results

Here we are going to show the results obtained by the simulation of the theory using

the conventional formulation on different lattice sizes. This will serve as reference data

for the results obtained by the simulation with the truncated dual variables. We chose

the following values for the pre-set parameters in the simulation:

• nmeas = 105,

• nequi = 104,

• ∆β = 0.1,

• we perform 40 steps of ∆β .

In using the conventional matrix formulation of the theory we expect the simulation

to represent the theory correctly in the strong and the weak coupling regime. The

correctness of our simulation data can be easily checked, by comparing it to the strong

and the weak coupling expansion expression for the plaquette expectation value 〈Up〉
and the susceptibility χ.

To shortly state how these expansions come about, the strong coupling expansion is a

Taylor expansion of the plaquette expectation value and the partition function in powers

of β2 . In contrast to this, the weak coupling approximation comes about when we expand

the same quantities in powers of
(
β
2

)−1
. The following formulae for the average plaquette

value are taken from [12] and slighlty adjusted to match the overall normalisation factor

chosen in this work. The strong coupling expansion for the plaquette expectation value

reads:

〈Up〉s =
β + β3

12 + 7 β5

1536

2 + β2

4 + β4

96

, (5.7)

and for the weak coupling regime, the expansion reads:

〈Up〉w = 2− 3

2β
− 0.26

β2
− 0.58

β3
. (5.8)

Applying Equation (3.25) to Eq. (5.7) and (5.8), we obtain the analytical results for

the susceptibility in the strong as well as in the weak coupling regime. Performing this

computation is straightforward and gives

χs =
7 β8 + 472 β6 + 6336 β4 + 9216 β2 + 73728

2 (β4 + 24 β2 + 192)2 , (5.9)

for the strong coupling susceptibility and for the approximation in the weak coupling

regime we get

χw =
3

β2
+

1.04

β3
+

3.48

β4
. (5.10)
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Figure 5.2: Results for the plaquette expectation value 〈Up〉 of the conventional
simulation as a function of the inverse gauge coupling β, calulcated for lattice sizes 44,
84, 104 and 124. As a comparison for our obtained data we have plotted the strong
coupling expansion (purple) and the weak coupling expansion (green) of SU(2) lattice
gauge theory. Notice that the simulation data forms a smooth bridge between these
two expansion curves and approaches the graphs asymptotically in the very strong and
the very weak coupling regime. The errorbars here are too small to be seen, but in
the middle region they are slightly bigger than in the strong and in the weak coupling

region.

The subscript s and w in the above equations indicate the results for the strong and the

weak coupling expansion respectively.

We are now ready to present and discuss our results. In Figure 5.2 we show the results

for the plaquette expectation value obtained by the simulation using the conventional

formulation of SU(2) lattice gauge theory for lattice sizes 44, 84, 104 and 124. As

a comparison and to prove the validity of our simulations we have also plotted the

respective analytic curve obtained from Equation (5.7). One immediately observes,

regardless of the lattice size, that the simulation results are in very good agreement with

the analytic curves and form a kind of bridge between the strong and the weak coupling

expansion results. In the transition region, i.e., 2 < β < 2.5 we observe a maximum

of slope around β = 2.2 in our simulated data. This could in principle be taken as a

hint for a phase transition. During our analysis of the data we also found, that for the

bigger lattice size, the slope becomes less steep. But this deviation of the datapoints

is extremely tiny and is known to be a (valid) finite volume effect. We will discuss the

meaning of the maximum slope in a little more detail below. In the strong and the weak
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Figure 5.3: Results for the susceptibility χ obtained from the conventional simulation,
plotted as a function of the inverse gauge coupling β. Shown here are the results for
lattice sizes 44, 84, 104 and 124. As a reference we have plotted the strong and weak
coupling expansion results of the susceptibility for SU(2) lattice gauge theory. The data
approaches the expansion curves asymptotically in the ultrastrong and the ultraweak
coupling regime, while in the intermediate region it again forms a bridge between the
two curves. Note that the peak gets smoother with bigger lattice sizes. In the strong
and weak coupling regime, the errorbars are again too small to be seen, whereas they

can sometimes be spotted in the middle region.

region, the simulation data approaches the curve asymptotically. A slightly stronger

deviation happens can be seen in the region 1.3 < β < 3.1, which we will further refere

to as intermediate region. When comparing the datapoints for the different lattice sizes

one finds that they agree fairly well. We must stress here, that the errorbars are too

small to be seen with the naked eye, but we assure that even zoomed in the data is in

good agreement.

Figure 5.3 shows the results from our simulations for the susceptibility in comparison

to the analytical strong and weak coupling expression from Equation (5.9) and (5.10).

Also here one sees clearly that the data is in good agreement with the analytic results in

the strong and the weak coupling regions, as it again approaches the expansion curves

asymptotically. As stated before, also in this plot the simulation data is deviating from

the analytic curve in the intermediate region. In this plot the deviation can be seen more

clearly. Otherwise the data for the different lattice sizes shown in Figure 5.3 compare

very well indicating that finite volume effects are small. Again we notice that also in

this figure the datapoints for the bigger lattices are slightly lower in the intermediate
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region than the data from the 44 lattice. The reason for this is the same as stated above.

A very interesting detail we observe is that there appears to be a peak of the suscep-

tibility in the region where the plaquette expectation value graph showed the steepest

slope. This peak together with the maximum slope could, because our lattice sizes are

quite small, be taken as a hint for a phase transition in the continuum limit. However,

as stated in [7] this is not a phase transition, but rather a singularity in the multi-

dimensional coupling space of actions.

To elaborate a little further on this matter: SU(2) lattice gauge theory has a finite

temperature phase transition of first order. This phase transition can be obtained in

two ways, either by varying the temporal extent of the lattice, e.g., Nt = 8, 6, 4, 2 or

by keeping the temporal extent fixed and varying the gauge coupling β. In any case,

the spatial directions of the lattice have to be much larger than the temporal extent.

However, the study of this phase transition is not relevant for the work at hand and will

not be discussed further. We also note, that this peak in the susceptibility gets slightly

smoother with bigger lattice sizes. For the most part the errorbars are again too small

to be seen.

5.2 Simulation using cycle occupation numbers (ACC’s)

After dualising the theory (cf. Chapter 3) the cycle occupation numbers pabcdx,µν (ACC)

replace the gauge link variables as our degrees of freedom for the simulation. Therefore

we have to use different update schemes, as we update completely different degrees of

freedom that sit on plaquettes and obey constraints. Considering the constraints for

the plaquette fluxes shown in Figure 3.3 we find that we can construct 3 valid update

schemes for the dual theory that fulfill these constraints.

The first and simplest update is to change all plaquettes on the whole lattice in the

form of a closed sheet winding around the periodic boundary conditions, making it a

”global” update: We recall that the graphical representation of the ACC’s winding in

colour space is given in Figure 3.1. To generate these sheets the algorithm randomly

chooses a colour value for each site of the lattice, thus constructing closed surfaces in each

plane. This update trivially keeps the flux constraints in Equation (3.16) intact, with the

requirement that all ACC’s in a specific plane have the same orientation. These updates

are performed for each plane individually. For the computation of the Metropolis ratio,

each plaquette contributes a factor of β2 plus combinatorial factors. Thus for small values

of β these updates are not likely to get accepted, since the corresponding configurations

here only contribute a small weight. A graphical representation of an example for this

kind of updates is shown in Figure 5.2a.

The second update the algorithm performs is called ”double plaquette update”. Here

the program offers to locally place an ACC and its anti-ACC at a specific site x. As
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explained in Chapter 3, each corner of the ACC carries colour. To determine which ACC

the algorithm offers to place, it randomly chooses the colour values for each corner of

the plaquette it wants to update and then inverts the colour to build the anti-ACC. It

can be easily shown that these configurations fulfill the constraints locally, such that we

leave the plaquettes at the other sites unchanged and simply calculate the Metropolis

ratio for this local contribution. Here each double plaquette contributes a factor of
(
β
2

)2

as well as the two combinatorial factors. The first of these factors reads

1

(pabcdx,µν + 1) · (pāb̄c̄d̄x,µν + 1)
, (5.11)

which comes from the Wβ[p] weight factor. The other combinatorial factor contributing

to the computation of the Metropolis ratio stems from the weight factor WH [p] given in

Equation (3.21) and reads (
Sabx,µ+Sāb̄x,µ

2 + 1

)
·
(
Sab̄x,µ+Sābx,µ

2

)
(
Sabx,µ+Sāb̄x,µ+Sab̄x,µ+Sābx,µ

2 + 2

) . (5.12)

The expressions shown in Equations (5.7) and (5.8) are for the case that we updated the

2 plaquettes pabcdx,µν and pāb̄c̄d̄x,µν . All this makes these updates more likely to be accepted

compared to the sheets in the small β region. This whole update procedure is then

carried out in a loop over all sites of the lattice and in each direction. A graphical

example of such an update is shown in the Figure 5.2b.

The two update schemes mentioned above are the only ones that exist in 2 dimensions.

However if we go to 3 or 4 dimensions, one finds that there is another possible update

for plaquette configurations, which we refere to as cube update. The idea here is to

generate new configurations by locally placing a cube of closed colour flux at a site x.

The cubes can in 4 dimensions be placed in 4 different ways when considering directions

µ < ν < ρ, i.e., (1̂ − 2̂ − 3̂), (1̂ − 2̂ − 4̂), (1̂ − 3̂ − 4̂) or (2̂ − 3̂ − 4̂). Each face of the

cube contains an ACC sitting in the corresponding plane µ < ν: (1̂− 2̂), (1̂− 3̂), (2̂− 3̂),

(1̂−4̂), (2̂−4̂), (3̂−4̂). The 6 ACC’s on the cube, i.e., pabcdx,µν , pāb̄f̄ ēx,µρ , padhex,νρ , pēf̄ ḡh̄x+ρ̂,µν , pdcghx+ν̂,µρ,

pb̄c̄ḡf̄x+µ̂,νρ, have to be arranged in such a way that they obey the constraints of the theory.

Here the colours are denoted by the letters a− h and letters with a bar ā− h̄ represent

the respective anti-colours. The reason why some of the cycle occupation number are

labeled with anti-colours comes from the structure of the constraints of the dual colour

space representation. But before we explain this property, we have to elaborate further

on the features of the cube update.

As a simple example, consider the cubic updates without having 2 layers for each
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Figure 5.4: Graphical illustration of the update schemes for the dual simulation. In
Subfigure (a) we show an example for the sheet updates winding around the periodic
boundary conditions of a 5×5 lattice. Subfigure (b) shows the double plaquette update.
Subfigure (c) illustrates the cube update with a specific example of ACC’s on a cube.
Here the inner cube is the 0 colour layer and the outer cube represents the colour layer
1. All of these update schemes keep the flux constraints intact. Note that (a) is a global

update, whereas (b) and (c) are local updates.

plaquette available, e.g., U(1) dual gauge theory in d > 2 dimensions. There the ori-

entations of all plaquettes on the cube are uniquely determined after choosing the ori-

entation of one of the plaquettes. If we choose the bottom plaquette to be positively

oriented, the front plaquette needs to be negatively oriented to compensate the flux at

the bottom-front edge. The left one then needs to be positively oriented, the top in

negative direction, the back one is then again positively oriented and last but not least

the right plaquette has to be oriented in negative direction. This choice of orientations is

depicted in Figure 5.3. Then raising or lowering one of the plaquettes uniquely fixes how

the other plaquettes around the cube need to be updated. This means for example, that

if we choose the positively oriented ACC’s to be raised by a value ∆ then the negatively

oriented plaquettes get lowered by ∆ to compensate the flux.
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Figure 5.5: Illustration of a cube update in the U(1) gauge theory. Note that here
we need negatively oriented loops to cancel the flux at all edges. This is because here

we do not have a second layer available at each site.

We are now ready to discuss the previously mentioned feature of the colour space dual

representation of the SU(2) theory. Here the ACC’s that would be negatively oriented

in the theory without 2 layers at each site can be replaced by their positively oriented

anti-ACC. Repeating this for all the negatively oriented plaquettes of the cube shown in

Figure 5.3 leaves us with a cube where the plaquettes are all positively oriented. It turns

out that given a colour configuration for all sites of the cube, there exists only one way to

arrange the ACC’s such that their fluxes cancel out for each edge of the cube, such that

we can construct a valid local update. An example configuration is shown in Figure 5.2c,

where the ACC’s contributing to the cube are: p0110
x,µν , p

1011
x,µρ, p

0010
x,νρ , p

1110
x+ρ̂,µν , p

0101
x+ν̂,µρ, p

0011
x+µ̂,νρ.

Notice that the ACC’s are now all oriented in a mathematically positive sense. The way

the algorithm generates a cube configuration is by randomly choosing 8 colour values

for the 8 corners of the cube. It then constructs the ACC’s and anti-ACC’s for each

site accordingly such that the flux at the edges of the cube is canceled out. Each cube

contributes a factor of
(
β
2

)6
to the Metropolis ratio as well as combinatorial factors

from the weights. We omit the full expressions of the combinatorial factors as they

are rather long and do not provide any new insights. Note that in principle they look

analogous to the ones given in Equations (5.7) and (5.8), but the construction here

is more complicated due to the structure of the cube plaquettes. Considering all the

contributions form the weight factors makes the cube updates very likely to get accepted

at small β, which is also confirmed by our simulation.

Also the formulas how to compute the observables of interest have to be adapted

to the new degrees of freedom for the simulation. The according formulas have been

derived in Chapter 3.2.
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5.3 Simulation using the truncated theory

5.3.1 The algorithm

In Chapter 3 we already explained the problem which arises from the dualised SU(2)

theory, i.e., the configurations depicted in Figure 3.5 which give rise to negative contri-

butions. Thus to try simulating the theory we used the truncated version of the dual

theory, described in Chapter 4.3.

The method and the updates to simulate this theory is identical to the one mentioned

in the section above, but now we have again changed the degrees of freedom of our

simulation. The algorithm now uses the dual variables which arise from the truncated

cycle occupation numbers pabcdx,µν , i.e., V abcd
x,µν and Dabcd

x,µν .

Given below is a pseudo-code version of the program we wrote to simulate the trun-

cated theory.

set nmeas = 106

set nequi = 105

set nskip = 20

β0 = 0.0

∆β = 0.05

initialise neighbour field

for i: 0 → 80

β = β0 + i ·∆β

sheet(nequi)

double(nequi)

cube(nequi)

for j:0 → nmeas-1

sheet(nskip)

double(nskip)

cube(nskip)

calculate-plaquette( j )

end for

plaquette-expectation-value = calculate-mean()

chi = calculate-chi()

end for
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Again, as in the conventional simulation, we first initialise our number of measure-

ments, the number of equilibrating updates and the number of skip updates between

the measurements. The numbers were chosen to be the same as in the pseudo-code for

the conventional simulation, but of course can be different, depending on the task of the

actual run. Also the initialisation of the neighbour field is the same as in the original

simulation.

As one can clearly see from the pseudo-code example, once we enter the loop over

the β values, the code looks different compared to the pseudo-code example from the

previous section. Here the algorithm needs to perform nequi equilibrating updates for

the sheets, the double plaquettes and the cubes. Also in between the measurements the

program performs nskip updates with the 3 mentioned functions. After performing the

updates the program needs to compute the observables according to Equations (3.29)

and (3.30), of course with pabcdx,µν replaced by the definition given in (4.23).

In order to properly simulate the theory at small β, we need to apply reweighting. To

shortly elaborate on how the reweighting technique works, we consider a Monte Carlo

simulation at coupling β and the measurement of some observable O[φ], where the φ’s

are the configuration of the fields. The standard way to compute expectation values in

Monte Carlo simulations is

〈O〉β =
1

Zβ

∫
D[φ]Wβ[φ]O(φ) , Zβ =

∫
D[φ]Wβ[φ] , (5.13)

where the subindex β of the expectation value denotes at which coupling the configura-

tions are sampled for this computation or rather which coupling is taken into account

by the weight factor Wβ[φ]. If we now consider the partition function of the theory at

coupling β′, i.e., Zβ′ =
∫
D[φ]Wβ′ [φ], we can rewrite the expectation value from (5.7) in

the following form

〈O〉β =

1
Zβ′

∫
D[φ]Wβ′ [φ]O[φ]

Wβ [φ]
Wβ′ [φ]

1
Zβ′

∫
D[φ]Wβ′ [φ]

Wβ [φ]
Wβ′ [φ]

. (5.14)

Notice how the terms in the numerator as well as in the denominator have the form of

expectation values themselves, thus we can write:

〈O〉β =

〈
O[φ]

Wβ [φ]
Wβ′ [φ]

〉
β′〈

Wβ [φ]
Wβ′ [φ]

〉
β′

. (5.15)

We conclude that we can compute the observable at coupling β by calculating the ex-

pectation value of the observable multiplied with the ratio of the weights at the different
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couplings β′ divided by the expectation value of this ratio. To compute the expectation

values on the right hand side, we sample the configurations at coupling β′ during the

simulation. Reweighting allows us to work at couplings β′ > β where the acceptance

rate for updates is much better than at the target coupling β. We have implemented

this technique in the computation of our observables. This made a comparison of the

results obtained by the two simulation schemes possible.

We will now shortly explain how each of the update functions work. This again will

mainly be done by discussing a pseudo-code formulation of the algorithm.

First we describe the function that updates the closed sheets of plaquettes. The

following pseudo-code illustrates the general steps.

sheet(nsweep)

for j: 0 → nsweep-1

set Metropolis ratio ρ = 1.0

generate colour from set {0, 1} for each site

for i: 0 → planes

choose ∆ either −1 or +1

for x: 0 → sites

check whether V = 0 at site x, given direction i and given colour combination

if V = 0 → V + ∆ and multiply ρ with corresponding weight factor

if V 6= 0 → set V = 0 and multiply ρ with corresponding weight factor

end for

generate random number r ∈ [0, 1] and check r < ρ

if true → accept the sheet

check if the value of the anti-plaquette is 0 or 1

if 1 → set variables V abcd
x,µν = 0 and V āb̄c̄d̄

x,µν = 0 and set variable Dabcd
x,µν = 1

end for

end for

end sheet

Here we first set the Metropolis ratio to 1. This is justified as it is a multiplicative

quantity in the individual weight contributions. Then the algorithm randomly chooses

the colour indices for all the sites of the lattice. The algorithm then loops over all the

planes, as the sheet updates can only be carried out in one plane at a time. The pro-

gram then chooses a variable ∆ to be −1 or +1, whereby it determines whether the dual
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variables V abcd
x,µν are raised or lowered for all sites on this plane. Then the algorithm loops

over all the sites, where it checks whether the plaquette on the current site is already

occupied. Using this information, the program adjusts the V variable correspondingly

and chooses the fitting weight factor for this case. This is then repeated for all the sites

in the current plane. After completing this loop, it generates a random number between

0 and 1 and checks whether ρ is larger than the random number. If this is the case, the

sheet gets accepted for the current plane and the algorithm moves on to the next plane.

Next we explain how the double plaquette update works. First we again show the

pseudo-code version of the function.

double(nsweep)

for j: 0 → nsweep-1

for x: 0 → sites

for d: 0 → planes

set ρ = 1.0

randomly choose the 4 colour indices of the current plaquette

check if (V and anti-V variable) = 0

check if D = 0

if D = 0 → set D = 1

if D = 1 → set D = 0

multiply ρ with corresponding weight factor

check condition r ∈ [0, 1] < ρ, where r is random number

if true, place double plaquette

end for

end for

end for

end double

As the double plaquette update is a local update, we immediately update the degrees

of freedom in all steps of the loop over all the lattice sites. The loop over the planes

is included in the lattice site loop, simply for practical reasons. Inside these two loops

we first set the Metropolis ratio to 1 for reasons explained before. Then the algorithm

generates a plaquette update candidate by randomly choosing a colour index for the 4

corners of the plaquette. According to Table 4.1 the double plaquettes can only occur if

the variable V abcd
x,µν and its counter part V āb̄c̄d̄

x,µν are zero. Thus the program has to check
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if this condition is true. If it is true, the algorithm then needs to determine whether to

put a double plaquette or to remove it. It does that by simply checking if the variable

Dabcd
x,µν is zero or not. If it is zero, the algorithm offers to put a double plaquette at

the current site. Otherwise it offers to remove the double plaquette. The rest of the

steps are then just the usual Metropolis steps. We stress here that in the case of the

double plaquette update and the sheet updates, the weight factors from the S-fluxes are

updated immediately in each Metropolis acceptance step.

Finally, we need to explain the cube update. Again the pseudo-code helps to illustrate

the general structure of this update.

cube(nsweep)

for j: 0 → nsweep-1

for x: 0 → sites

for d: 0 → set of planes

set ρ = 1.0

choose ∆ from set {−1,+1}

randomly choose the 8 colour indices of the cube

check if V and D variables are zero for all faces of the cube

if true: increase and decrease the variables V by ±∆ accordingly

compute weights and Metropolis ratio ρ for current configuration

check if random number r ∈ [0, 1] < ρ

if true: accept new configuration of the V ’s

check whether the anti-V variables are occupied

if yes: set all V = 0 and increase D variables for all faces

if V ’s and D’s 6= 0: remove the cube with generated configuration

end for

end for

end for

end cube

Also the cube update is a local update, but it combines elements of both, the blanket

and the double update scheme. In this update we propose a cube which has only a single

ACC on each face, thus we need to choose a variable ∆. The value of ∆ determines

whether the plaquettes get increased or decreased. Then the algorithm needs to generate

a colour configuration to offer, which is done by randomly choosing a colour index for the
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8 sites contained in the cube. To determine whether the generated cube needs to be put

on the lattice or taken away, the program checks if the links contained in the current

offer cube configuration are already occupied or not. If they are all empty, it offers

to put the cube onto the site in the given combination of planes. Next the algorithm

computes the weight factors contributing to the cubes, which is here done according to

Equations (4.28) and (4.30). Then it performs the usual Metropolis acceptance check,

setting the corresponding V variables to their offered values if the configuration gets

accepted. However it might be the case, that the anti-plaquettes are already occupied

for all the plaquettes on the newly updated cube. This is a condition the algorithm

needs to check. If this is the case, the program sets all the V and anti-V variables to

zero and increases the D variables, making it effectively a double cube update in this

particular case. If the initial check of whether all the plaquettes are empty fails, the

program offers to remove the generated cube, computing again the weight factors and

performing the usual Metropolis steps.

5.3.2 Results

In this section we will display the results obtained by simulating the theory using the

truncated dual variables and compare to the results we achieved by using the conven-

tional formulation of the theory. As a reference for both data sets, we have again plotted

the analytic strong and weak coupling expansion curves, which are obtained from Equa-

tions (5.7) - (5.10). The results are obtained by setting the following starting parameters

in the simulation:

• nmeas = 105,

• nequi = 104,

• ∆β = 0.1,

• we perform 40 steps of ∆β,

• reweighting factor 0.006.

We have performed a careful analysis of the reweighting factor and found, that using the

value of 0.006 gives the best results. The value is chosen this small, because otherwise

one runs into trouble when simulating using bigger lattices. There when calculating

the reweighted results, some quantity exceeds the numerical boundary of the computer

resulting in the output: ”not a number” (nan).

In Figure 5.6 we compare the results for the plaquette expectation value obtained by

the two different simulation schemes. The results shown here were computed for lattice

sizes 44, 84, 104 and 124.
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Figure 5.6: Comparison of the results for the plaquette expectation value 〈Up〉 ob-
tained by the conventional and the truncated simulation. We show the results for
lattice sizes 44, 84, 104 and 124 and plot the analytic strong and weak coupling ex-
pansion curves as a reference. In the strong coupling regime the data from the two
different simulations are almost identical as both approach the strong coupling curve
asymptotically. The data only start to deviate more strongly above β ≈ 1.2. Errorbars

are too small to be seen for the most part.

The most important feature that one immediately notices is that the data from the

truncated simulation fit the data of the conventional simulation very well in the strong

coupling region. Both results approach the strong coupling expansion curve asymptoti-

cally. In this region the datapoints for the different simulation schemes agree well within

error for all lattice sizes. As we have seen and discussed before, the data of the con-

ventional simulation follows the expansion curves very closely and forms a connection

between the two analytic curves. The results obtained by the truncated simulation start

out linearly with the same slope as the conventional results up to β = 1.2. Beyond this

value the data deviates from the conventional data and follows a slightly curved line

going towards the weak coupling regime. This however can be explained as a direct

effect of the truncation of the dual variables. Hence the truncated results do not form

a smooth connection between the two expansion curves in the transition region. The

data from the truncated simulation does not show any signs of a maximum slope, which

obviously is in contrast to the results obtained by the conventional simulation.

Figure 5.7 compares the results we obtained for the susceptibility χ. As a reference

we again plotted the expansion curves as well. One can clearly see, that the data from

the truncated simulation matches the data obtained from the conventional simulation
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Figure 5.7: Comparison of the results for the susceptibility χ obtained by the trun-
cated and the conventional simulation. Again as a reference we show the expansion
curves. In the strong coupling region the data from the two simulations compares well,
for any lattice size. The results start to deviate more strongly starting from β = 1.2

and beyond.

rather well in the strong coupling regime. The truncated results do not follow the strong

coupling expansion curve beyond β > 1.2 after which the datapoints decrease almost

linearly with increasing β. In contrast the data from the conventional simulation follows

and connects the two expansion curves more closely.

We notice that in both graphs the data for the 44 lattice sizes starts to rise massively

in the end. This deviation can be explained by the fact that in this region the sheet

updates kick in. These sheet updates are suppressed in the bigger lattices and only play

a role on the smaller lattices for rather large values of β. Finally we need to stress, that

the errorbars are of the order 10−5 − 10−6 in both plots and thus are too small to be

seen here. But the data for the different lattice sizes agree to a good degree.

Comparing the data of the two simulations we draw the conclusion, that our naive

version of a qubit truncation is a valid formulation of SU(2) lattice gauge theory in the

strong coupling regime. Thus one can use the truncated version to accurately describe

the physics in the strong coupling region. We also stress, that we performed a careful

analysis of the relative sign from Equation (3.20) and find, that using our truncated

version there appear no negative contributions in the simulation, at least in the region

we looked at. Thus we have managed to circumvent the sign problem in a way, which
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was the overall goal of this master thesis.

5.4 Error calculation

A short comment is in order regarding the error calculation in our simulations. This was

done via the jackknife method, which we will shortly outline in the following. Consider

a data set of N measurements. The first step is to divide this data set into NB blocks

of length B = N
NB

. This is just to make the blocks statistically independent. The next

step is to go through the individual blocks and for each block b of size B we delete this

block from the full set of data and compute the expectation value

〈O〉bβ =

〈
O[φ]

Wβ [φ]
Wβc [φ]

〉
β′〈

Wβ [φ]
Wβc [φ]

〉
β′

. (5.16)

Here the superindex b ∈ {1, 2, · · · , NB} denotes the block that is omitted from the data

and the expectation values on the right hand side of the equation considers only the

N − B measurements which are not contained in block b. We display the expressions

for the reweighting strategy, and β′ here denotes the coupling we work with.

The last step is to compute the error according to the following formula:

δ〈O〉β =
1

NB

√√√√NB∑
b=1

(
〈O〉bβ − 〈O〉β

)2
. (5.17)

The sum runs over all the blocks and the average 〈O〉bβ is used as a bias correction. The

factor 〈O〉β is the reweighted value of the full dataset. To further improve the determi-

nation of the statistical error one may study the error as a function of the blocksize. The

error first grows with increasing blocksize until the blocksize becomes of the order of the

autocorrelation, where the error values form a plateau. The values in the plateau then

provide a good estimate of the true statistical error, taking into account autocorrelation

effects.

The following plots provide some examples for more or less ideal versions of the error

curve as a function of blocksize described in the previous paragraph. Here the forming

of the plateau can be seen clearly in most figures and the value of the error can be

readily determined from the plot. We must stress however, that these kind of plots

do not always look like this, and more often than not, the plateau cannot be seen this

clearly. Very often the reason for ”blurry” plateaus are strong fluctuations in the error.

Sometimes it can happen, that another plateau forms for bigger blocksizes. Here then

one often chooses one of the plateaus consistently for all the datapoints. In these cases

larger statistics would be needed for a reliable error estimation. One short comment is
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in order regarding the blocksizes. These should idealy be chosen to be proper divisors

of the number of measurements N , otherwise one can potentially find discontinuities in

the error-blocksize-plots.
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Figure 5.8: The value of the error (y-axis) plotted versus and the blocksizes (x-axis).
Subfigure (a) shows an example of a rather ideal curve with almost no fluctuations
in the error. Here the error increases with increasing blocksize until it saturates. In
this example the error can be easily read of to be ±510−6. Subfigure (b) illustrates
a less good example. It shows the formation of a kind of ”blurry” plateau. One can
nevertheless observe the saturation of the error. Note that the data starts to oscillate
wildly after the plateau. Subfigure (c) shows the mentioned jumps in the plot, that can
happen, when we use blocksizes that are not proper divisors. The plateau can still be
made out. Subfigures (d)-(f) show ideal curves where only the proper divisor blocksizes

were taken into account.
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To shortly comment on the figures above. For Figures 5.8 (a)-(c) we have increased

the blocksize by a factor 1000 in our analysis. Thus most of the blocksizes are not proper

divisors. The effect these non-proper divisor blocksizes can have is clearly illustrated

in Figure 5.8(c), where one can see the discontinuities in the datapoints. Figures 5.8

(d)-(f) used specific blocksizes which are indeed proper divisors.

In all of the figures the plateau can be more or less clearly seen. A lot of the plots we

analysed for the error looked like Figure 5.8 (a). Despite the small fluctuations in the

error plot, the plateau and thus the error can be very clearly determined.



Chapter 6

Summary

In this thesis we explored three main approaches to solving the sign problem of the

dualised SU(2) pure lattice gauge theory. As stated in Chapter 3, the sign arises because

we need to choose an explicit representation of the SU(2) matrices to carry out the

dualisation procedure.

The first method we tried was to factor out the center of the group SU(2), i.e.,

Z2 and see whether we manage to achieve some new constraints of the theory. The

approach indeed produced constraints, however they could be identified with another

set of constraints already contained in the dual theory. Thus we did not gain any new

insights with this ansatz.

In the second approach we assigned a (site and direction-dependent) index to the

colour degrees of freedom and performed the dualisation procedure. In doing so we

managed to represent the partition sum in terms of colour micro fluxes sitting on the

links of the lattice. This index formulation has a rather nice geometrical representation.

The hope of this approach was to resum the negative contributions coming from the

relative sign to obtain positive overall weights. Analysing the possible contributions

in terms of the micro fluxes, we found that resummation might be possible. However,

further analysis is needed to make a definite statement about this matter. We decided

to abandon this approach in favour of the truncation approach.

The third and final ansatz in this thesis was the truncation approach. Here we trun-

cated the dual variables of the original dual theory, such that they can only take values

−1, 0,+1. We then introduced new dual variables such that our dual theory resembles

the representation of a qubit regularised theory. Using the new variables we obtained a

singlet-triplet representation of our theory, meaning that we get states which obey the

spin algebra. Furthermore this approach has a nice geometrical representation. The

hope of this ansatz was, that in truncating the theory the negative contributions would

not be present anymore.

Once we developed the formalism of the approach we performed simulations for the

71
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truncated theory and the conventional SU(2) matrix theory. Comparing the results of

these two simulations we found, that the data agrees very well in the strong coupling

regime. This was one of the goals of the truncation approach. The second and of

course the main goal of this thesis was to analyse whether the sign problem is solved by

this approach. During the simulation we analysed the sign for the valid configurations

and found, that the relative sign was always positive. Thus with this approach we have

managed to find a dual formulation of the theory, which works well in the strong coupling

regime and circumvents the sign problem successfully.

It will be interesting to see if in the future this truncation approach can also be applied

to the dual formulation of SU(3), as this is the next higher non-abelian Lie group.



Appendix A

Reordering of the U(1) gauge links

Here we show the steps of the calculation done in Chapter 2.4.1.

∏
x,ν<ρ

(Ux,νρ)
mx,νρ =

∏
x,ν<ρ

(Ux,νUx+ν̂,ρU
∗
x+ρ̂,νU

∗
x,ρ)

mx,νρ =

=
∏
x,ν<ρ

(Ux,ν)mx,νρ
∏
x,ν<ρ

(Ux+ν̂,ρ)
mx,νρ

∏
x,ν<ρ

(U∗x+ρ̂,ν)mx,νρ
∏
x,ν<ρ

(U∗x,ρ)
mx,νρ =

=
∏
x,ν

∏
ρ:ν<ρ

(Ux,ν)mx,νρ
∏
x,ρ

∏
ν:ν<ρ

(Ux+ν̂,ρ)
mx,νρ

∏
x,ν

∏
ν:ν<ρ

(U∗x+ρ̂,ν)mx,νρ
∏
x,ρ

∏
ρ:ν<ρ

(U∗x,ρ)
mx,νρ .

In the first term one can simply convert the product over the index ρ into a sum in the

exponent ∏
x,ν

(Ux,ν)
∑
ρ:ν<ρmx,νρ , (A.1)

and the term is in the form we want. To rewrite the second term to the form of only a

product over Ux,ν instead of Ux+ν̂,ρ, we first convert the product over ν into a sum in

the exponent as before and find

∏
x,ρ

(Ux+ν̂,ρ)
∑
ν:ν<ρmx,νρ .

After that we shift the product index x to x′ = x+ ν̂ and obtain

∏
x′,ρ

(Ux′,ρ)
∑
ρ:ν<ρmx′−ν̂,νρ ,

which gives rise to the same product over all sites since we use periodic boundary con-

ditions. All that is left to do now is to relabel the directional indices ρ→ ν and ν → ρ

and we can relabel the product index x′ back to x, with which the term then reads

∏
x′,ν

(Ux′,ν)
∑
ρ:ρ<ν mx′−ρ̂,ρν . (A.2)
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The third term works analogously: we convert the product into a sum in the exponent

and shift the product index x to x′ = x + ρ̂ after which we can simply rename the

product index back to x ∏
x,ν

(U∗x′,ν)
∑
ν:ν<ρmx−ρ̂,νρ . (A.3)

Now for the last term, we repeat the same steps as before, converting the product again

into a sum in the exponent and then relabeling the indices as done for the second term.

We finally arrive at ∏
x,ν

(U∗x,ν)
∑
ρ:ρ<ν mx,ρν . (A.4)

If we now insert the Equations (A.1) - (A.4) back into the starting equation, we get

∏
x,ν

(Ux,ν)
∑
ρ:ν<ρ[mx,νρ−mx′−ρ̂,ρν ]+

∑
ρ:ρ<ν [mx′−ρ̂,ρν−mx,ρν ] . (A.5)



Appendix B

Reordering for the gauge links of

SU(2) lattice gauge theory

Here we show the steps necessary to bring Equation (3.7) into the more convenient form

of Equation (3.8). For the rewriting we start with recollecting the term in the integral

of Equation (3.7)

∏
x,µ<ν

∏
a,b,c,d

(Uabx,µ U
bc
x+ν̂,µ U

dc ∗
x+ν̂,µ U

ad ∗
x,ν )p

abcd
x,µν .

We now factorise the term into individual products

∏
x,µ<ν

∏
a,b,c,d

(Uabx,µ)p
abcd
x,µν

∏
x,µ<ν

∏
a,b,c,d

(U bcx+µ̂,ν)p
abcd
x,µν

∏
x,µ<ν

∏
a,b,c,d

(Udc ∗x+ν̂,µ)p
abcd
x,µν

∏
x,µ<ν

∏
a,b,c,d

(Uad ∗x,ν )p
abcd
x,µν .

(B.1)

We start with the first term of this expression and write the products more explicitly

∏
x,µ<ν

∏
a,b,c,d

(Uabx,µ)p
abcd
x,µν =

∏
x

∏
µ

∏
ν:µ<ν

∏
a,b,c,d

(Uabx,µ)p
abcd
x,µν =

∏
x,µ

∏
a,b

(Uabx,µ)
∑
ν:µ<ν

∑
c,d p

abcd
x,µν ,

(B.2)

where the products over ν, c and d have been converted into sums in the exponent since

the Uabx,µ term does not depend on them. With this we have brought the first term into

the desired form.

In the second term of (B.1) we again first consider those products the gauge link does

not depend on and convert them into sums in the exponent

∏
x

∏
ν

∏
µ:µ<ν

∏
a,b,c,d

(U bcx+µ̂,ν)p
abcd
x,µν =

∏
x

∏
ν

∏
µ:µ<ν

∏
b,c

(U bcx+µ̂,ν)
∑
a,d p

abcd
x,µν .
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Now we can start with the relabeling of indices, we first shift x to x′ = x+ µ̂, and find

∏
x′

∏
ν

∏
µ:µ<ν

∏
b,c

(U bcx′,ν)
∑
a,d p

abcd
x′−µ̂,µν ,

by which we achieved that the gauge link U does not depend on µ any more such that

we can convert the product into a sum in the exponent and write

∏
x′

∏
ν

∏
b,c

(U bcx′,ν)
∑
µ:µ<ν

∑
a,d p

abcd
x′−µ̂,µν .

We can relabel the product indices in the following way: ν → µ and µ → ρ, where we

have introduced a new index ρ. With this the term becomes

∏
x′

∏
µ

∏
b,c

(U bcx′,µ)
∑
ρ:ρ<µ

∑
a,d p

abcd
x′−ρ̂,ρµ .

The final step is to interchange the colour indices b ↔ a, c ↔ b, thereby changing the

order in which they appear in the expansion variable pabcdx−ρ̂,ρµ to pcabdx−ρ̂,ρµ. If we now

change the index x′ back to x the final form of the term reads

∏
x

∏
µ

∏
a,b

(Uabx,µ)
∑
ρ:ρ<µ

∑
c,d p

cabd
x−ρ̂,ρµ . (B.3)

The rewriting of the last two terms work analogously and we arrive at

∏
x

∏
µ

∏
a,b

(Uab ∗x,µ )
∑
ν:µ<ν

∑
c,d p

dcba
x−ν̂,µν , (B.4)

for the third term of Equation (B.1), and at

∏
x

∏
µ

∏
a,b

(Uab ∗x,µ )
∑
ρ:ρ<µ

∑
c,d p

adcb
x,ρµ , (B.5)

for the fourth term. Putting all of the terms together yields

∏
x,µ

∏
a,b

(Uabx,µ)
∑
ν:µ<ν

∑
c,d p

abcd
x,µν+

∑
ρ:ρ<µ

∑
c,d p

cabd
x−ρ̂,ρµ (Uab ∗x,µ )

∑
ν:µ<ν

∑
c,d p

dcba
x−ν̂,µν+

∑
ρ:ρ<µ

∑
c,d p

adcb
x,ρµ .

(B.6)

One notices that in each term the colour indices c, d that are summed in the exponents,

but note that they appear in different positions in the ordered list of colour indices

of the plaquette occupation numbers. For notational convenience we can introduce a

summation index s to indicate the summation over the two indices c, d. Equation (B.6)
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then reduces to

∏
x,µ

∏
a,b

(Uabx,µ)
∑
ν:µ<ν p

abss
x,µν+

∑
ρ:ρ<µ p

sabs
x−ρ̂,ρµ (Uab ∗x,µ )

∑
ν:µ<ν p

ssba
x−ν̂,µν+

∑
ρ:ρ<µ p

assb
x,ρµ , (B.7)

which is now the form that is given in Equation (3.8).



Appendix C

Differential forms on the lattice

In this appendix we discuss differential forms on the lattice since they were used quite

often in our work. This section is only a summary of the most important properties of

differential forms and follows closely the discussion of this topic of [13].

Here we consider a d-dimensional lattice with periodic boundary conditions with sites

denoted as x = (x1, x2, · · · , xd). We have imposed periodic boundary conditions there-

fore the elements of a site xi can take the value 1, 2, · · · , Ni and xi = Ni+1 ≡ xi = 1.

The next step in is to introduce a general quantity called r-cells which is defined as the

set of sites

c(r)(x)µ1µ2···µr = {x} ∪ {x+ µ̂i|1 < i < r} ∪ · · · ∪ {x+ µ̂1 + · · ·+ µ̂r} , (C.1)

where µ̂i denotes the unit vector in direction µ. Note that we require canonically ordered

directions µ1 < µ2 < · · · < µr. More conventionally we can also introduce a general

labeling of direction as c(r)(x)µ1µ2···µi···µj ···µr = −c(r)(x)µ1µ2···µj ···µi···µr , where the sign

refers to the orientation of the cell. To give some examples, if we take r = 0 we have

0-cells which correspond to sites. The next higher differential structure is r = 1 namely

1-forms which can be interpreted as links. Continuing this, 2-forms are plaquettes and

so on.

The paper [13] then introduces an operator which acts on the r-cells called boundary

operator ∂ and gives the oriented sum of the c(r−1)-cells contained in the c(r)-cell

∂c(r)(x)µ1µ2···µr =

r∑
k=1

(−1)k+1
[
c(r−1)(x+ µ̂k)µ1µ2···̊µk···µr − c

(r−1)(x)µ1µ2···̊µk···µr

]
.

(C.2)

The µ̊k here indicates that the index µk is omitted. Also we define the co-boundary

operator ∂̂ which gives the oriented sum of the r + 1 cells that contain the cell c(r) in

78



79

their boundaries,

∂̂c(r)(x)µ1µ2···µr =
∑

ν 6=µ1···µr

c(r+1)(x)µ1µ2···µr,ν − c(r+1)(x− ν̂)µ1µ2···µr,ν , (C.3)

These two operators obey two conventions, namely ∂c(0) = 0, which is the derivative

of 0-forms, i.e., sites, and introduce the convention ∂̂c(d) = 0, which says that the co-

boundary of the d-cell vanishes. Furthermore they are both nilpotent, i.e., ∂2 = 0 and

∂̂2 = 0, which is straightforward to show.

Next [13] introduces the concept of the dual lattice Λ̃, where the sites are located at

the centers of the d-cells of Λ, i.e., x̃ = x+ 1
2

(
1̂ + 2̂ + · · ·+ d̂

)
. It is straightforward to

relate the r-cells to their dual d− r-cells, but as we do not explicitly use this we refrain

from writing this out here.

To describe the fields r-forms Ac(r) are introduced, which are objects living on an

r-cell. If a specific r-cell c(r)(x)µ1···µr with µ1 < µ2 < · · · < µr is considered, they

use the notation A(x)µ1···µr . Also for the r-forms the convention A(x)µ1µ2···µi···µj ···µr =

−A(x)µ1µ2···µj ···µi···µr is used as it inherits the orientation of the r-cells.

The final quantities which are important to us are the exterior derivative operator d

and the boundary operator δ. The exterior derivative is defined as

(dA)(x)µ1···µr =

r∑
k=1

(−1)k+1 [A(x+ µ̂k)µ1···̊µk···µr −A(x)µ1···̊µk···µr ] , (C.4)

which maps an (r − 1)-form Ac(r−1) to an r-form Ac(r) . Again we denote the index that

is omitted from the sum with a circle above. Written in the more general formulation

Equation (C.4) reads

(dA)(x)c(r) =
∑

c(r−1)∈∂c(r)
Ac(r−1) . (C.5)

It is straightforward to show that the operator d is nilpotent, i.e., d2 = 0 and furthermore

there is the convention that dAc(d) = 0.

The boundary operator δ in turn is defined to map an (r+1)-form Ac(r+1) to an r-form

Ac(r) in the following way:

(δA)(x)µ1···µr =
∑
ν

[A(x)µ1···µr,ν −A(x− ν̂)µ1···µr,ν ] . (C.6)

Also here there exists a convention namely δAc(0) = 0 and the nilpotency of the operator

is straightforward to show, i.e., δ2 = 0. Again using the more general formulation (C.6)
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reads

(δA)(x)c(r) =
∑

c(r+1)∈∂̂c(r)
Ac(r+1) . (C.7)



Appendix D

Dualisation of Z2 gauge theory

In Chapter 4.1 we factorised out the center of group SU(2), which is Z2 to try and achieve

new constraints. As shown there, we were able to solve the Z2 part in closed form and

get a new constraint. Unfortunately, this newly obtained constraint corresponded to a

constraint that the dual theory had already implemented. However, it is still interesting

to dualise the Z2 theory and use it as a model theory to explore new ideas. Z2 is

particularly suited for this, since it features only two elements {−1, 1}.
We start out with the partition function

Z =
∏
x,µ

1

2

∑
Uµ(x)=±1

∏
x,µ<ν

eβ Uµ(x) Uν(x+µ̂) U∗µ(x+ν̂) U∗ν (x) , (D.1)

with Uµ(x) ∈ Z2. We now expand the exponential in a Taylor-series which yields:

Z =
∏
x,µ

1

2

∑
Uµ(x)=±1

∏
x,µ<ν

∞∑
nµν(x)=0

βnµν(x)

nµν(x)!

(
Uµ(x) Uν(x+ µ̂) U∗µ(x+ ν̂) U∗ν (x)

)nµν(x)
.

(D.2)

The idea now is to split the expansion index in the following way

nµν(x) = sµν(x) + 2kµν(x) , (D.3)

with sµν(x) ∈ {0, 1} and kµν(x) ∈ N0. This can be done because of the property that all

elements of N0 can be written as a combination of an even and an odd part. We stress

that the product Uµ(x) Uν(x+ µ̂) U∗µ(x+ ν̂) U∗ν (x) ∈ {−1,+1}. Raising this product to

the power of an even number always yields 1, which is then just a multiplicative factor.

Inserting the splitting into (D.2) we get

Z =
∑
{U}

∏
x,µ

∑
{s}

∑
{k}

∏
x,µ<ν

βsµν(x)+2kµν(x)

(sµν(x) + 2kµν(x))!

(
Uµ(x)Uν(x+ µ̂)U∗µ(x+ ν̂)U∗ν (x)

)sµν(x)
,
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where we introduced the sum over all configurations of the gauge links∑
{U} =

∏
x,µ

1
2

∑
Uµ(x)=±1 and the sums over all configurations of the expansion indices

sµν(x) and kµν(x) as
∑
{s} =

∏
x,µ<ν

∑1
sµν(x)=0 and

∑
{k} =

∏
x,µ<ν

∑
sµν(x)∈N0

. Note

that we have already omitted the product to the power of the even number, since it is

not relevant.

We then perform the reordering steps shown in Appendix A and Appendix B and

arrive at the following expression for the partition function

Z =
∑
{s}

∑
{k}

∏
x,µ<ν

βsµν(x)+2kµν(x)

(sµν(x) + 2kµν(x))!
×

∏
x,µ

1

2

∑
Uµ(x)=±1

(Uµ(x))
∑
ν:µ<ν [sµν(x)−sµν(x−ν̂)]−

∑
ρ:ρ<µ[sρµ(x)−sρµ(x−ρ̂)] . (D.4)

The sum over the gauge link variables can be evaluated to be in {0, 2}. Using the

normalisation factor in front of the sum over the link variables, we can then represent

this term using the evenness function E(x). With this the partition function reads

Z =
∑
{s}

∑
{k}

∏
x,µ<ν

βsµν(x)+2kµν(x)

(sµν(x) + 2kµν(x))!

∏
x,µ

E

( ∑
ν:µ<ν

[sµν(x)− sµν(x− ν̂)]−
∑
ρ:ρ<µ

[sρµ(x)− sρµ(x− ρ̂)]

)
. (D.5)

The argument of the evenness function is given in terms of differential forms (cf. Ap-

pendix C) and can be denoted as (δS)x,µ.

To obtain the fully dualised form, we finally need to consider the term

∑
k∈N0

βsµν(x)+2kµν(x)

(sµν(x) + 2kµν(x))!
.

We note that for sµν(x) = 0 this is the series representation of cosh(β) and for sµν(x) = 1

this corresponds to the series representation of sinh(β). We write

∑
k∈N0

βsµν(x)+2kµν(x)

(sµν(x) + 2kµν(x))!
= cosh(β) (tanh(β))sµν(x) ,
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which gives the correct result, depending on the choice of sµν(x) ∈ {0, 1}. Putting this

expression back into (D.5) we find the full dual representation of the Z2 gauge theory:

Z =
∑
{s}

∏
x,µ<ν

cosh(β) (tanh(β))sµν(x)
∏
x,µ

E ((δS)x,µ) . (D.6)

Z = (cosh(β))V
d(d−1)

2

∏
x,µ<ν

1∑
sµν(x)=0

(tanh(β))sµν(x)
∏
x,µ

E ((δS)x,µ) . (D.7)

Here V denotes the volume of the lattice and the factor d(d−1)
2 gives the adjacent surfaces

in the respective dimension.

We notice that the partition sum now only features one dual variable: sµν(x). If we

compare the splitting to the SU(2) model, the variable sµν(x) would correspond to a

single ACC winding around a specific configuration at plaquette (x, µν). However, in

the SU(2) theory we also have configurations where an ACC and its anti-ACC winding

around the same plaquette (x, µν) simultaneously. We refer to this contributions as

double plaquettes. We have shown, that in this simple model, the ”double plaquettes”,

do not contribute. This finding lead us to consider the possibility that this might also

be the case in the dual SU(2) theory.
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