
Andreas Krenn, BSc

Energy-Limited Hydrodynamic Escape:

An Investigation Of The Range of Applicability

MASTER’S THESIS

to achieve the university degree of

Master of Science

Master’s degree programme: Physics

submitted to

Graz University of Technology

Supervisor

Helmut Lammer, Priv.-Doz. Mag. Dr.

Institute of Physics, University of Graz

in cooperation with the Space Research Institute of the Austrian Academy of Sciences

Graz, September 2020



AFFIDAVIT

I declare that I have authored this thesis independently, that I have not
used other than the declared sources/resources, and that I have explicitly
indicated all material which has been quoted either literally or by content
from the sources used. The text document uploaded to TUGRAZonline
is identical to the present master’s thesis.

Date, Signature



Nobody ever figures out what life is all about. And it doesn’t matter. Explore the
world. Nearly everything is really interesting if you go into it deeply enough.

Richard P. Feynman
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Abstract

Energy-limited hydrodynamic escape: an investigation of the range
of applicability

A protoplanet can catch a significant envelope of hydrogen gas while forming within
the protoplanetary disc. Once the disc has disappeared, this envelope will start to
interact with the incident extreme ultraviolet and X-ray (XUV) radiation of the host
star. The XUV radiation is absorbed in the upper atmosphere. If the incident XUV
energy is high enough this can drive hydrodynamic escape, leading to the loss of
particles. An upper limit to the maximum particle escape driven by XUV radiation
can be found, when looking at the amount of available XUV energy. Watson et al.
[1981] did such an investigation of the energy-limited escape rate for the first time.
They provided a set of equations to calculate the height of the XUV absorption in
the atmosphere and the maximum particle escape rate. However, they used a variety
of assumptions that limit the scope of applicability of the equations, like a thin XUV
absorption layer in the upper atmosphere and an absorption of all the XUV energy
below the sonic level of the system. This thesis provides an thorough investigation
of these assumptions and compares the solution of the energy-limited equations with
results from hydrodynamic simulations. It argues why the energy-limited escape
formalism is not a reliable estimator of atmospheric mass-loss rates when studying
planetary evolution. Finally, it offers explanations for the failure of the energy-limited
approach, which potentially may be used to improve the approximation to estimate
atmospheric escape rates better.
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1 Introduction

Back in 1981 planetary science and the study of atmospheric evolution was limited
to a very small sample size. Only 8 (counting in Pluto 9) planets were known and
only from three of them, Venus, Earth and Mars, significant atmospheric data had
been acquired by space missions. It therefore seems obvious that the description of
the evolution of a planetary atmosphere was a difficult task, since any predictions
a theoretical model would produce were hard to compare with real experimental
evidence. Nevertheless, the question of the origin and evolution of the solar system
was still a burning one and one many scientists from a variety of different scientific
fields (astrophysics, geophysics, geology,...) tried to answer.

To do so a number of theoretical models that tried to simulate the formation and
subsequent evolution of the solar system like Dermott [1978] and Atreya et al. [1989]
were published. However, researchers soon realized that when starting with any
reasonable initial conditions within the stellar nebula, it was basically impossible to
arrive at the today known properties of the planetary bodies, without adding a variety
of additional processes that would further drive the evolution after their formation.

One of this formation theories is the so called ”fast growth model”, which will be
discussed in section 2.1. This theory, which is still highly favoured by many scientists
today, is able to explain the masses and positions of the planets in the solar system
very well. However, because of the fast accretion of mass within the solar nebula, this
formation theory also allows for the planets to acquire an extensive hydrogen envelope
(see Figure 1). This hydrogen envelope can not be observed today at any terrestrial
planet. In addition recent research such as Cubillos et al. [2017] indicates the im-
portance of hydrogen escape in the evolution of planetary atmospheres by explaining
abundances of observed planetary systems. Mechanisms that remove hydrogen en-
velopes over the course of the evolution of a planet must therefore be investigated
[Lammer, 2013; Erkaev et al., 2013].

Figure 1: Illustration of the formation and accretion of dense hydrogen-gas envelopes
around the rocky cores of young terrestrial planets within the protoplanetary nebula
[Erkaev et al., 2013].
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The removal of this envelope is usually attributed to hydrodynamic escape driven
by solar extreme ultraviolet and X-ray (XUV) radiation. In the above mentioned
year 1981, when planetary science was still in its early phases, Andrew J. Watson,
Thomas M. Donahue and James C. G. Walker came up with a theoretical concept to
estimate the maximum particle loss rate this interaction of solar XUV radiation and
the planetary hydrogen atmospheres could produce [Watson et al., 1981].

They therefore allowed to quantify how fast an acquired hydrogen envelope could be
removed by hydrodynamic escape over the course of the evolution of a planet. This
theoretical model was called energy-limited escape and ought to provide an upper
limit for the particle loss rate.

However, because of the lack of different systems to apply their formalism to, their
work initially was confined to the planets of the solar system, where the formalism
was used to estimate the atmospheric escape rates from Venus, Earth and Mars. With
the discovery of the first exoplanets by Mayor and Queloz [1995] and space telescopes
like CoRoT (e.g. Moutou et al. [2013]) and Kepler (e.g. Borucki et al. [2010]) as well
as ground-based observations (for example microlensing detection e.g. Gaudi [2012])
it has found a much broader field of application. Figure 2 shows the relation of radius
to orbital period for all exoplanets confirmed before December 2017. As can be seen
a variety of peculiar systems unlike any in our solar system were observed.

Figure 2: Overview of radius to orbital period relation of all exoplanets confirmed
before December 2017 [NASA, 2017].
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Simultaneous developments in the field of solar physics implied by observations of
near Sun-like stars that the early Sun had much higher XUV fluxes than previously
considered. This let to the energy-limited escape formalism being used by many
researchers to estimate the impact of XUV radiation on atmospheric evolution at
different planetary systems. Valencia et al. [2010], Owen and Wu [2013] and Luger and
Barnes [2015] are all examples for recent research using an energy-limited approach
to approximate hydrodynamic escape.

However, the theoretical model proposed by Watson et al. [1981] includes a variety of
assumptions and limitations that limit the use of the the energy-limited formalism. It
is highly questionable, whether the model can describe exotic systems, with parame-
ters like high temperatures, high stellar energy inputs or low gravitational potential.
The aim of this investigation is to examine these assumptions and limitations in detail
and to provide boundaries for the applicability of the formalism.

To do so a detailed examination of the original paper Watson et al. [1981] including
a thorough investigation of all the assumptions and limitations used in the derivation
of the theoretical model is provided in the beginning. Chapter 6 compares different
methods of obtained energy-limited mass-loss rates and analyzes their dependence on
the planetary parameters. The results of the energy-limited escape formalism are com-
pared with results acquired in hydrodynamic simulations performed by Kubyshkina
et al. [2018a] in chapter 7. Finally a conclusion on the applicability of the energy-
limited escape formalism is drawn in chapter 8.
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2 The Introduction of the energy-limited escape theory
in 1981

In 1981 Andrew J. Watson, Thomas M. Donahue and James C. G. Walker published
their paper ”The Dynamics of a Rapidly Escaping Atmosphere: Applications to the
Evolution of Earth and Venus” [Watson et al., 1981], in which they introduced the
idea of energy-limited escape for the first time. This chapter will investigate the
different parts of this paper in detail, explain the energy-limited escape formalism
and highlight assumptions used in the publication.

2.1 Fast accretion and hydrogen envelopes

Watson et al. [1981] start by specifying the type of system they want to consider.
Their description reads:

”We consider the case of a planetary atmosphere after the solar nebula has
dissipated. We assume an extensive thermosphere of molecular or atomic
hydrogen that contains a negligible amount of dust.” [Watson et al., 1981]

The authors clearly assume already in the beginning of their investigation the presence
of a hydrogen envelope around a massive planetary body. To understand hydrody-
namic escape of hydrogen envelopes one must therefore first answer, how planetary
evolution looks in a system that forms such a massive hydrogen envelope. Plane-
tary systems form after the collapse of a molecular cloud gives rise to the birth of
a new star. The gas and dust in this cloud starts rotating around the host star as
it spirals inward, forming a disc like structure. In this disc planetary embryos can
be formed by gravitational instabilities and collisions [Jacobsen and Harper, 1996;
Jacobsen et al., 2008; Lammer et al., 2014; Stökl et al., 2016]. At the beginning of
the systems evolution this embryos are still embedded in a gas cloud that is pulled
in towards the host star. This gas cloud is usually referred to as protosolar nebula
and has the same abundances (mainly hydrogen and helium) as the host star itself.
It takes about 10 Myrs for this nebula to dissipate [Montmerle et al., 2006; Jacobsen
et al., 2008; Lammer et al., 2018]. In the case of the solar system, Bollard et al. [2017]
and Wang et al. [2017] estimate the nebula lifetime at around 3 to 5 Myrs.

Figure 3 shows the extend of the accreted hydrogen envelope for different core masses
and different nebula lifetimes. As can be seen here, planetary embryos with a mass
of only a few tenth of an Earth mass are able to capture a significant hydrogen
envelope within the nebula lifetime. If they are massive enough by the time the disc
dissipates, they are able to keep a significant envelope even after the thermal loss of
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the majority of the initially captured hydrogen. This means that in order to have
an extensive hydrogen thermosphere, the planet needs to accumulate a mass of few
tenth of an Earth mass within the first 10 Myrs of the evolution of the stellar system
[Stökl et al., 2016].

Figure 3: Total mass of accumulated hydrogen envelopes as a function of time. The
lines correspond to protoplanetary core masses of 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8,
0.9. 1.0, 2.0, 3.0, 4.0 and 5.0 Earth masses. The shaded area highlights the typical
lifetime of the protosolar nebula [Stökl et al., 2016].

Back in 1981, when Watson et al. published their original paper, the classical core-
accretion model (Bodenheimer and Pollack [1986]; Pollack et al. [1996]) was not even
introduced yet. However, first ideas that later led to this theory, were published in
1969 by Safronov and Zvjagina [1969] and in 1980 by Wetherill [1980]. This classical
core-accretion model expects planetary formation to take place over 100 - 200 Myrs,
starting very slowly with dust accumulation due to gravitational instabilities and
only picking up pace in the final stage of planetary formation when the gravitational
potential of the protoplanets becomes high.

However, the classical core-accretion model has significant problems explaining the
evolution of Mars as its mass is much lower than it should be according to classical
core-accretion model simulations. Much more recently suggested formation models of
the Solar System such as Walsh et al. [2011], the Grand Tack model of O’Brien et al.
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[2014] and the pebble accretion model by Izidoro et al. [2019] allow for much faster
planetary formation. They use a combination of planetesimal collision, accretion of
centimeter to meter sized particles (so called pebbles) aided by aerodynamic drag
in the gas disc and planetary migration. Using these models, proto-Earth can have
grown up to 0.75 Earth masses and proto-Venus even up to 1 Venus mass within the
first 10 Myrs [Lammer et al., 2020].

To summarize, the formation of planetary systems is still a highly debated problem.
But recent studies support fast growth models as opposed to the classical slow growth
core-accretion model. A fast growth model would allow a protoplanet to accumulate
an extensive hydrogen envelope setting the basis for the further investigation of pos-
sible hydrodynamic escape of this envelope and therefore justifies the starting point
of the investigation of Watson et al. [1981].

2.2 Escape processes

After establishing the possibility of an extended hydrogen envelope around a young
planetary body, the question arises how this hydrogen can be removed from the system
again. The main requirement is for a particle to gain enough energy to reach a velocity
that is higher than the local escape velocity vesc (the velocity needed to overcome the
gravitational potential of the planet). Two major categories must be distinguished
in the description of such atmospheric escape processes: Thermal and non-thermal
escape [Chamberlain, 1963; Catling and Zahnle, 2009; Coates, 2010; Lammer, 2013].

2.2.1 Thermal escape processes

The particles within a gas in thermodynamic equilibrium do not all have the same
thermal energy and therefore the same velocity. Due to collisions within the gas and
the surrounding medium the individual particles have velocities that are randomly
selected from a so called Maxwell-Boltzmann distribution. The most probable velocity
of a particle v0 in a gas with this distribution is given as [Chamberlain, 1963]:

v0 =

√
2kT

m
(1)

where k is the Boltzmann constant, T the temperature of the gas and m the weight
of the particle. In Figure 4 a typical velocity distribution of hydrogen and oxygen
molecules in Earth’s exosphere with a temperature of 1000 K is shown. The exo-
sphere is the outermost region of a planetary atmosphere. It is so thin that particles
can travel essentially collision less on ballistic trajectories. As can be seen here a
significant fraction of hydrogen molecules can have velocities higher than the escape
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velocity even though the most probable velocity is far below it. When the velocity
vector of these particles is directed away from the planet and no further collision stops
them, the particles can escape the gravitational potential of the planet and leave the
system [Bauer and Lammer, 2004; Coates, 2010].

Figure 4: Boltzmann distribution for hydrogen and oxygen molecules in Earths ex-
osphere with a temperature of 1000 K. The dark shaded area marks the part of
the distribution where the hydrogen atoms have reached velocities above the escape
velocity of Earth [Coates, 2010].

Jeans escape

This exact case was first treated by Sir James Jeans. He assumed a gas in thermo-
dynamic equilibrium in which the velocities of the particles are distributed according
to a Maxwellian velocity distribution. The gas is situated in the exosphere. He then
proceeded to calculate how many particles in this system would be able to escape
accounting for particle velocities from the distribution and the direction of the ve-
locity vectors. This calculation resulted in the Jeans formula for escape by thermal
evaporation [Chamberlain, 1963]:
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Φescape =
n(z)v0
2
√
π

(
v2esc
v20

+ 1

)
e
− v

2
esc
v20 (2)

where Φescape represents the particle escape flux and n(z) the number density as
a function of atmospheric height z. This so called Jeans escape is an important
loss process in many planetary systems and can be easily calculated with the above
mentioned formula. It is also the only escape process working on every body with an
gaseous envelope [Chamberlain, 1963; Bauer and Lammer, 2004].

Hydrodynamic escape

Below the above mentioned exosphere, where particles can essentially travel collision
less, lies the collision dominated regime of the atmosphere. Here the gas behaves
mostly like a fluid and can be described by hydrodynamic equations. The gas is
heated at the planetary surface as a result of the equilibrium condition of incident
stellar radiation and planetary infrared (or heat) radiation. From the surface on the
gas expands radially upwards. This expansion leads to a cooling of the gas and a drop
in particle density and pressure with increasing height. This results in an upward flow
motion of the gas, which is counteracted by the gravitational attraction of the planet.
As the particles flow upward their thermal energy is converted to kinetic energy, while
the force of gravity counteracts the resulting acceleration. If the thermal energy of
the gas is high enough, the upward flow of particles can overcome the gravitational
potential of the planet and the particles can reach escape velocity at a certain height
in the atmosphere. The particles then flow off the planet in a bulk an no longer merely
evaporate. This way a large amount of gas can escape and lighter molecules can even
drag heavier molecules along with them trough collisions [Catling and Zahnle, 2009;
Lammer, 2013].

There are two possible ways for the atmosphere to acquire thermal energies high
enough to cause hydrodynamic escape. The first one is thermal energy provided at
the surface by high equilibrium temperatures. It is possible for planets with low
gravitational potentials and high equilibrium temperatures to have atmospheres that
are flowing off the planet from the planetary surface. In this cases the thermal
energy of the gas at the surface is already high enough to overcome the gravitational
attraction of the planet and the particles reach escape velocities as they expand
upwards from the surface, transforming thermal energy to kinetic energy. This form
of hydrodynamic escape is called boil off and can lead to extremely high atmospheric
escape rates. It needs no additional heating source and is described for example in
Volkov and Johnson [2013], Erkaev et al. [2015], Lammer et al. [2016] and Owen and
Wu [2016].

The second possibility is the absorption of large amounts of thermal energy higher
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up in the atmosphere. Examples for such input sources are stellar XUV radiation
or catastrophic events like planetesimal collisions. The absorbed thermal energy
heats the particles in a certain layer of the gas. They again expand upwards, which
accelerates them further until they reach escape velocity. This form of hydrodynamic
escape is called blow off. Hydrodynamic escape due to external heating sources is
orders of magnitudes less effective as hydrodynamic escape driven by the planets
equilibrium temperature. This is mainly due to the fact that in the case of an external
heating source, the additional energy is provided much higher in the atmosphere,
where lower particle densities lead to smaller particle escape rates. Basically not the
whole atmosphere, but only the part at and above the absorption layer has a high
enough thermal energy to flow of the planet [Catling and Zahnle, 2009; Lammer,
2013].

2.2.2 Non-thermal escape processes

Particle escape can also occur due to non-thermal mechanisms that give single par-
ticles enough energy to reach escape velocity. The important difference to thermal
processes is that much smaller input energies are needed, as the additional energy is
not used to heat the whole gas but is focused on a single particle [Bauer and Lammer,
2004; Catling and Zahnle, 2009; Coates, 2010].

Charge exchange

There are two cases of the charge exchange process. In the first case a fast ion
of the stellar wind interacts with a neutral atmospheric particle by exchanging its
charge. The formerly neutral particle is ionized and accelerated and trapped within
the magnetosphere. It can then recombine with an electron, giving the now again
neutral particle enough energy to escape. In the second case a fast ion that is initially
trapped in the magnetic field of the planet, interacts with a slow neutral by exchanging
the charge. The previously magnetically trapped fast ion is now a fast neutral and
able to escape from the system. The resulting slow ion is trapped in the magnetic
field [Bauer and Lammer, 2004; Catling and Zahnle, 2009; Coates, 2010].

Sputtering

Fast ions impact on the atmosphere and can knock out atoms in a process called
sputtering. The sources of these fast particles for example can be a stellar wind
or particles trapped in a radiation belt. They collide with one of the atmospheric
particles, transferring enough kinetic energy for the particle to escape [Bauer and
Lammer, 2004; Catling and Zahnle, 2009; Coates, 2010].
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Figure 5: Illustration of the sputtering process. A fast ion collides with a slow
atmospheric particle energizing it enough to escape [Lammer, 2013]

.

Photochemical reactions

Photochemical reactions are reactions of atmospheric species with ultraviolet or X-
ray photons. The atmospheric particles absorb the photons and their energy. These
interactions lead to photoionization and -dissociation. In the case of photoionization
additional ions are produced, trapped in the magnetosphere and can then recombine
with electrons, giving the newly formed neutral particle enough energy to escape.
Photodissociation on the other hand breaks bigger molecules apart into smaller com-
ponents and provides them with additional energy [Bauer and Lammer, 2004; Catling
and Zahnle, 2009; Coates, 2010].

Ion escape

In the polar regions ions flow upwards along the field lines and then downwards
towards the magnetotail. Through plasma interactions between ions and electrons the
particles can gain additional energy. Since the electrons have a much higher thermal
velocity, they can easily escape, setting up an electric field by charge seperation that
moves the ions upwards after the electrons [Bauer and Lammer, 2004; Catling and
Zahnle, 2009; Coates, 2010].
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Ion pickup

At planets with no intrinsic magnetic field, like Mars and Venus, the exobase is above
the interaction region of the stellar wind with the planet. In case a particle in this
region becomes photoionized, it can be picked up by the stellar wind flow. The
additional energy needed to escape is hereby provided by the electric field of the
stellar wind [Bauer and Lammer, 2004; Catling and Zahnle, 2009; Coates, 2010].

Figure 6: Illustration of ion pickup process at an un- or weakly magnatized planet.
Ions are picked up above the planet because of stellar wind interactions and are
accelerated by electric fields throughout the tail [Lammer, 2013]

.

2.2.3 Dominant escape process

All of the above mentioned processes can lead to particle escape from a planetary
atmosphere and to calculate the exact escape rate one would need to account for all
these mechanisms. When trying to quantify the flux of particles lost, it is therefore
important to determine which process dominates the escape. This may vary from
planet to planet. One planet might be dominated by Jeans escape while a different
one, due to the lack of a magnetic field, is dominated by exosphere/solar-wind in-
teractions. Watson et al. [1981] specifically state in their paper that they want to
quantify the particle escape in a system that is dominated by hydrodynamic escape.
They even specify that the majority of the input energy is supposed to be supplied
by the absorption of XUV radiation in the atmosphere.
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It is therefore important to notice that all of their considerations, assumptions and
mathematical descriptions only apply to systems that are dominated by XUV driven
hydrodynamic escape. Planets where non-thermal processes become non-negligible,
where very high equilibrium temperatures are already sufficient to cause significant
hydrodynamic escape without an external heating source (boil off ) or where the
thermal energy input is low enough that hydrodynamic and Jean’s escape are of the
same magnitude can not be described with their energy-limited escape formalism
[Watson et al., 1981].

2.3 Derivation of the energy-limited escape formalism

2.3.1 The setup

After specifying the system they want to describe, Watson et al. [1981] continue to
derive a mathematical model to quantify the particle loss rate of such a system. To
set up their mathematical model, they make the following assumptions:

• The energy is supplied by XUV radiation at a rate S with [S] = J
m2s

, which has
already been suitably averaged over a sphere.

• The less-than-unity efficiency of XUV heating, which corresponds to the fact
that not all of the incident XUV radiation is used to thermally heat the gas, is
already accounted for in S. This means that S is the total energy input flux
that is used to drive hydrodynamic escape.

• The photospheric radius of the planet shall be r0.

• The XUV radiation is mostly absorbed in a narrow region near r1, the level
where the optical depth of the atmosphere to XUV is unity.

Using this setup one can equate the energy input to the energy of escape, which yields
[Watson et al., 1981]:

F =
Sr21r0
GMm

(3)

where F is the particle escape flux in particles per steradian and second, G is the
gravitational constant, M is the mass of the planet and m is the mass of the particle.
Watson et al. [1981] continue to outline the main difficulty of the model:

”An upper limit to the escape rate is thus immediately obtained, provided
the value of r1 can be specified. However fixing r1 is not such a simple
matter.” [Watson et al., 1981]

19



In order to quantify the escape rate, it is therefore important to determine r1. The
rest of the derivation is an attempt to derive a mathematical model that allows for
the simultaneous calculation of the escape flux and r1.

2.3.2 The model description and its assumptions

In order to mathematically describe the gas Watson et al. [1981] make the following
assumptions:

• The gas is dynamically expanding

• The gas is non-viscous

• The gas has a constant molecular weight

• The pressure in the gas is isotropic

This allows for the setup of the steady-state hydrodynamic equations of mass, mo-
mentum and energy conservation [Watson et al., 1981]:

~∇ · (n~u) = 0 (4)

mn(~u · ~∇)~u+ ~∇(nkT ) = nm~g (5)

~∇(κ~∇T ) = ~∇ ·
(

5

2
nkT~u+ n

mu2

2
~u

)
− nm~g · ~u− q (6)

where ~u is the bulk velocity of the gas, ~g is the gravitational acceleration, κ is the
thermal conductivity and q is the volume heating rate. Watson et al. [1981] continue
to introduce dimensionless variables for temperature, velocity and position by using
an arbitrary reference temperature T0:

τ =
T

T0
(7)

Ψ =
mu2

kT0
(8)

λ =
GMm

kT0r
(9)
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The dimensionless position variable λ corresponds to the Jeans parameter that gov-
erns Jeans escape (see section 2.2.2). Using the planetary radius as r and equilibrium
temperature as T0 λ corresponds to the restricted Jeans parameter introduced by
Fossati et al. [2017]. They also parameterize the thermal conductivity of a neutral
gas as [Watson et al., 1981]:

κ = κ0τ
0.7 (10)

Equations 4, 5 and 6 can be mathematically reduced to two differential equations
[Watson et al., 1981]:

(
1− τ

Ψ

) dΨ

dλ
= 2

(
1− 2τ

λ
− dτ

dλ

)
(11)

κ0GMm

k2T0F
τ0.7

dτ

dλ
= ε+ λ− 5τ

2
− Ψ

2
(12)

where ε is the energy each escaping particle carries away from the system and is
defined as [Watson et al., 1981]:

ε = ε∞ −
1

FkT0

∫ ∞
r

qr2dr (13)

where ε∞ denotes the energy flow at infinity. In the special case where ε∞ = 0, the
energy flowing outward is just enough to lift the gas from the gravitational field, but
does not leave any access energy at very large distances. Watson et al. [1981] argue
later that they always assume that this is the case for every escaping particle, since
any additional energy carried away would only decrease the maximum particle escape
flux. ε∞ is therefore neglected in the further derivation. To further simplify these
equations Watson et al. [1981] make a variety of additional assumptions at this point:

• They define a lower boundary λ0 somewhere above the homopause, where the
temperature is fixed at T0 (τ(λ0) = 1).

• Above the lower boundary the mixing ratios of heavier gases are much smaller
than that of hydrogen, making hydrogen the dominant gas everywhere above
it.

• The atmosphere at the lower boundary is treated as ”tightly bound”, meaning
that the gravitational attraction of the planet at this level is still sufficient
to keep an atmosphere with the corresponding temperature T0 from escaping
catastrophically. This implies that the thermal velocity at the lower boundary
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must be small compared to the gravitational escape velocity. The tightly bound
condition is met if λ0 & 10 [Parker, 1964].

• The optical depth to XUV radiation at the lower boundary is much greater than
one.

• All the XUV radiation is absorbed in a narrow region at r1. The optical depth
to XUV at this level is unity.

• The pressure at large distances declines toward zero.

Finally Watson et al. [1981] introduce their ”subsonic” assumption. The ”sonic level”
rs is defined as the level where the velocity passes smoothly from subsonic (Ψ < τ)
to supersonic (Ψ > τ) flow. The level of XUV absorption r1 is then assumed to be
below the sonic level:

r1 < rs (14)

In the appendix of Watson et al. [1981] the authors show that this assumption implies:

λ1
τ1

> 2 (15)

This condition in turn allows to place limits on the temperatures in the thermo-
sphere and greatly simplifies the mathematical treatment of the differential equations
[Watson et al., 1981].

2.3.3 The temperature profile and its limiting condition

To continue their derivation and use all these assumptions Watson et al. [1981] intro-
duce the following dimensionless variables for particle escape flux and XUV heating:

ζ = F · k2T0
κ0GMm

(16)

β = S · GMm

kT 2
0 κ0

(17)

While ζ simply denotes the particle escape flux, β is called the energy parameter and
contains system parameters like XUV flux, mass of the planet and lower boundary
temperature. Equation 12 for the region below r1 can then be rewritten as [Watson
et al., 1981]:
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τ0.7

ζ

dτ

dλ
= λ− β

ζλ21
− 5τ

2
− Ψ

2
(18)

The authors continue to argue:

”Well below the sonic level, the velocity term is negligible. Near the lower
boundary, λ >> τ from our first assumption, so the equation may be
further simplified:” [Watson et al., 1981]

τ0.7

ζ

dτ

dλ
= λ− β

ζλ21
(19)

This is an approximate differential equation of the temperature profile τ with regard to
change in height λ. In order to understand this equation, it is important to understand
what is physically happening in the thermosphere. At the lower boundary there is a
fixed temperature T0, which is also the reference temperature for the dimensionless
temperature profile τ . Let us start by imagining a system with no XUV heating.
In this case, the atmosphere, which is expanding outwards, cools adiabatically and
the temperature drops monotonically from the lower boundary to higher levels. It is
important to keep in mind that the atmosphere would strictly cool with height, due
to adiabatic cooling, in the absences of absorbed XUV energy. The atmosphere would
still expand driven by the thermal energy input from the planet, but the expansion
would be slow and the atmospheric escape would be limited to Jeans escape [Watson
et al., 1981].

When XUV energy is added to the system, the picture changes. The temperature
profile takes different shapes, depending on how the added XUV energy is used. Some
of the energy is used to drive escape, giving particles traveling in the right direction
the additional energy needed to escape. However, a portion of the absorbed energy
is also conducted downwards and heats the lower parts of the atmosphere. In case
the escape flux ζ is low, the majority of the energy is conducted towards the lower
boundary and is used to heat the lower part of the thermosphere. In this case the
temperature increases monotonically from the lower boundary on to the absorption
height λ1. Such a case is depicted in the curve denoted ”A” in Figure 7 [Watson
et al., 1981].

If the escape flux ζ however increases, most of the energy is used to drive particle
escape and there is not enough energy left to conduct downwards, to counteract
adiabatic cooling at the lower boundary. As can be seen in the temperature profile
denoted ”B” in Figure 7, the temperature in this case first starts to drop, until at

23



one point there is enough energy conducted from the absorption layer to counteract
adiabatic cooling and reheat the atmosphere [Watson et al., 1981].

It becomes obvious that the escape rate ζ may not increase infinitely. With increasing
ζ the minimum in the temperature profile increasingly steepens until at one point
so much energy would go into escape, and so less energy into heating of the lower
atmosphere that a negative temperature would be reached in the profile. A negative
temperature is of course physically unreasonable, therefore placing a limit on how
high ζ may get for any given system [Watson et al., 1981].

Figure 7: Temperature profiles τ of two thermospheres with the same fixed lower
boundary λ0 and which absorb XUV energy at λ1. The line denoted ”A” depicts a
scenario with a low escape rate, where most of the absorbed energy is used to heat
the lower parts of the atmosphere. The line denoted ”B” depicts a scenario with a
high escape rate, where not enough energy is conducted downwards to counteract
adiabatic cooling at the lower boundary [Watson et al., 1981].
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2.3.4 The solution

Watson et al. [1981] are interested in this special case, where the escape rate is just
low enough to still allow for positive temperatures in the temperature profile of the
thermosphere. They use the fact that in this special case both τ and dτ

dλ must be zero
to obtain a set of equations for the energy-limited flux and the height of the XUV
absorption level. The exact derivation is depicted in the appendix of Watson et al.
[1981].

ζm =
2

1.7


(
λ1
2

) 1.7
2

+ 1

λ0 − λ1


2

(20)

λ1 =

√
β

ζm

[
λ0 −

√
2

1.7ζm
+ ε∞

]−1
(21)

This system of equations is known as the energy-limited escape formalism and pro-
vides a solution for both the maximum escape flux ζm as well as the height of the
absorption level λ1 given a specific planetary system. The equations will yield a so-
lution no matter whether the system complies with all the assumptions used within
the derivation or not. That means every system, where this formalism is applied,
must first be thoroughly checked whether or not it fulfills all the parameters required
by the assumptions. Also note that the solution aims to overestimate the maximum
escape flux and therefore provides an upper limit for it.

2.4 Escape rates obtained with energy-limited approaches

When examining the derivation of the energy-limited escape formalism in Watson
et al. [1981] closely, one finds that there are actually two different mass-loss rates
that can be obtained with the energy-limited approach. Both equation 3 and 16
claim to state the particle escape flux F . However, the two equations do not equate:

SGMmr0
k2T 2

0 λ
2
1

6=

2
1.7

(
λ1
2

) 1.7
2 +1

λ0−λ1

2

κ0GMm

k2T0
(22)

Equation 3 is derived from the principal of energy conservation and does not use
any assumptions, however must be provided with an estimate of the XUV absorption
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height r1. Equation 16 on the other hand is a consequence of the simplifications and
approximations used in the derivation of the energy-limited equations. Therefore after
numerically solving the energy-limited equations one may choose how to calculate the
corresponding particle escape rate.

Escape rate based on the solution ζ

Using equation 16 one can obtain an energy-limited particle escape rate:

Fζ =
ζκ0GMm

k2T0
(23)

Particle escape rates and corresponding mass-loss rates obtained with this relation
will be denoted with the subscript ζ from here on.

Escape rate based on the solution λ1

Using equation 3 one can obtain an energy-limited particle escape rate:

Fλ1 =
SGMmr0
k2T 2

0 λ
2
1

(24)

Particle escape rates and corresponding mass-loss rates obtained with this relation
will be denoted with the subscript λ1 from here on.

Escape rate based on r1 = r0

There is actually a third way the energy-limited approach is sometimes used. To avoid
the problem of fixing r1 some studies simply set r1 = r0 and use equation 3 again
to obtain an energy-limited particle escape rate by setting r0 equal to the planetary
radius Rpl:

FRpl =
SR3

pl

GMm
(25)

Particle escape rates and corresponding mass-loss rates obtained with this relation
will be denoted with the subscript Rpl from here on.

All three methods of obtaining a particle escape rate including their differences will
be investigated more in detail in chapter 6.
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2.5 Application to the evolution of Earth and Venus

Equations 20 and 21 are the main result of Watson et al. [1981]. The rest of the
paper focuses on applying the formalism to the evolution of Earth and Venus. They
calculate possible escape rates and discuss the possibility of more massive volatiles
being dragged along with the escaping hydrogen particles. They conclude that the
calculated escape rates are not able to explain the observed isotope ratios of heavier
volatiles on the terrestrial planets of the solar system [Watson et al., 1981].

2.6 Roche lobe effect

Erkaev et al. [2007] have improved the energy-limited approach slightly in 2007, where
it otherwise has been mostly unaltered since its first introduction. Their formulation
includes a simple averaging constant for the incident XUV flux of 1

4 . They argue
that the total amount of energy supplied is only dependent on the cross-section of the
stellar radiation and the planetary atmosphere, which is πr21. The distribution of the
energy on the other hand is averaged over the whole surface of the sphere 4πr21. The
ratio of cross-section to surface area corresponds to the averaging factor 1

4 [Erkaev
et al., 2007].

The more important contribution to the energy-limited approach by Erkaev et al.
[2007] however, was the consideration of the Roche lobe effect. The Roche lobe is
the region around a planetary body in which the particles within this region are
gravitational bound to the planet. At the Roche lobe the gravitational attraction of
the planet is exactly equal to the gravitational attraction of the host star. In the case
of atmospheric escape this means that particles do not necessarily need to acquire
escape velocity, but its enough for them to reach the Roche radius in order to escape
the gravitational attraction of the planet. This results in an increase of the particle
escape rate, which is represented by a correction factor K [Erkaev et al., 2007].

K = 1−
3Rpl
RRl

+
R3
pl

2R3
Rl

(26)

with the Roche radius RRl and the planetary radius Rpl:

RRl ≈ d
(

Mpl

3Mstar

) 1
3

(27)

where d is the orbital separation of the star and the planet, Mpl is the planetary mass
and Mstar is the stellar mass.
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The Erkaev et al. [2007] formulation of the energy-limited approach is the nowadays

used formulation of the approach and usually is stated as the mass-loss rate Ṁ
[
kg
s

]
instead of the particle escape rate F

[
1
sr·s
]
:

Ṁ =
πΦXUVR

2
XUVRpl

GMK
(28)

where ΦXUV is the total incidend stellar XUV flux, RXUV = r1 is the effective radius
of XUV absorption and Rpl = r0 is the planetary radius.
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3 Investigation of the validity of the assumptions

In this chapter the different assumptions used in Watson et al. [1981] and mentioned
in the previous chapter are being investigated more in detail. Their validity is checked
and possible limitations on the applicability of the energy-limited escape formalism
in different systems are being pointed out.

3.1 The presence of a large hydrogen envelope

The authors first assumption is that the planetary body under investigation has accu-
mulated an extensive hydrogen envelope during its formation within the solar nebula.
This assumption has already been discussed in great detail in section 2.1. This dis-
cussion concluded that in order for this to happen the planet needs to follow a fast
accretion evolution track and accumulate a mass of a few tenth of an Earth mass
within the first 10 Myrs of its evolution. It was also already discussed in the same
section that there is significant evidence for the possibility of such an evolutionary
track, although until today it is still highly debated which planetary formation sce-
nario is the most likely.

3.2 Hydrodynamic escape as dominant escape process and stellar
XUV history

Watson et al. [1981] continue by specifying that in their system under considera-
tion, hydrodynamic escape must be the dominant escape process and all other escape
mechanisms must be negligible compared to it. A detailed discussion of the different
escape mechanisms was provided in section 2.2 and concludes that for hydrodynamic
escape to be dominant, the atmosphere must be strongly heated. The most common
source of such heating is the absorption of stellar XUV radiation in the atmosphere
[Yelle, 2004; Catling and Zahnle, 2009; Erkaev et al., 2013]. Present solar XUV fluxes
are at an order of magnitude of about 10−2 J

m2s
. Watson et al. [1981] have shown that

such values would be able to remove a significant amount of hydrogen over the course
of a planet’s evolution (for example about 5.5·10−5 Earth masses in the first 600 Myrs
of Earth’s history). However, they also showed that the escape would not be suffi-
cient to remove enough heavier elements to explain present day isotope ratios in the
atmospheres of the terrestrial planets of our solar system. Compared with planetary
evolution theories, like the ”modified homogeneous accretion theory”, which require
for a large amount of volatiles to be removed, hydrodynamic escape can only account
for about 10% of the loss rate. Therefore it is highly doubtful whether hydrodynamic
escape would really be significantly more dominant than other escape mechanisms
under such conditions [Watson et al., 1981]. A period of dominant hydrodynamic es-
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cape might only have existed in the early stages of the planets evolution, when it was
still accreting mass and therefore had a lower mass than present day earth. Lammer
et al. [2020] have shown that removing volatiles from a proto-Earth with a mass of
for example 0.55 Earth masses is much more efficient than from present-day earth.

Research in the almost 40 years since the publication of Watson et al. [1981] has
profoundly changed this picture. In order to gather clues on the possible evolution of
our own solar system astronomers have looked closely at a variety of Sun-like stars
in our cosmic neighborhood. They have found that the rotation rate of a star, hence
its magnetic activity, decays over time. A higher magnetic activity means also more
chromospheric emission, which in turn means a higher XUV luminosity. In detail the
studies have found the following results [Tu et al., 2015]:

• The rotation rate and the correlated XUV luminosity of a solar-like star decays
with time, resulting in younger stars having between 102 and 103 higher XUV
luminosities than our Sun today.

• There is a saturation threshold for the possible X-ray luminosity at about 0.001
of the bolometric luminosity of the star. This means that for all solar-like stars
with a rotation period of only a couple days or less, the XUV luminosity is
roughly the same.

• Depending on the original rotation period, the solar-like stars are being divided
into three groups: Fast rotators, intermediate rotators and slow rotators. The
observed rotation periods are continuous and the three categories merge at their
respective boundaries. As can be expected fast rotators stay much longer on the
saturated XUV luminosity level than moderate rotators, which in turn again
stay there longer than slow rotators.

• After about 3 Gyrs all three paths converge again, making it practically impos-
sible to determine the type of rotator from present day observations.

To illustrate the above mentioned points Figure 8 shows the different evolutionary
tracks of the XUV luminosity for all three types of rotators [Lammer et al., 2018].

A subsequent investigation of the isotope ratios in Earth’s and Venus’ atmosphere
and soil by Lammer et al. [2020] narrowed the possible rotation tracks of our Sun
down and was able to exclude the possibility of a fast rotator. They found that the
young Sun was somewhere between a slowly and moderatly rotating star.
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Figure 8: Expected ratio of XUV luminosity to the present day solar value for Sun-like
stars over the course of their evolution. The dotted line represents a slowly rotating
star, the solid line a moderately rotating star and the dashed line a fast rotating star.
The color shaded areas represent different archeological times on Earth and Mars.
The data was produced by Tu et al. [2015] and the Figure published in Lammer et al.
[2018].

In conclusion, the present day solar XUV luminosity is not high enough to make
hydrodynamic escape the dominant escape process in a hydrogen dominated young
atmosphere. It certainly would not be able to remove a significant amount of more
massive volatiles. However, studies of solar-like stars have shown that the XUV
luminosity of younger stars is much higher, even making values of 400 times the
present day value for a period of a few hundreds of Myrs possible. This greatly
increased XUV luminosity in the early days of the stellar systems evolution justifies
neglecting all other escape processes and assuming hydrodynamic escape to be the
dominant escape process.

Finally it is important to again emphasize the main limitation this assumption implies:
If one wants to accurately describe the order of magnitude of the overall particle
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escape on a planetary system, the energy-limited escape formalism may only be used,
if the systems particle escape is dominated by hydrodynamic escape. All other forms
of escape, especially non-thermal escape mechanisms, must be negligible.

3.3 Parameterization of energy supply by XUV heating

To supply XUV energy to the system, Watson et al. [1981] use the parameter S. They
also state that ”S is already suitably averaged over a sphere and corrected for the
less-than-unity efficiecy of XUV heating”. S denotes the energy that is absorbed per
second and square meter and which then is used to thermally heat the gas in order to
drive hydrodynamic escape. The fact that the amount of energy supplied by the host
star is not constant over time is irrelevant, as the energy-limited escape formalism
anyway only provides an escape flux value for a specific moment in which a specific
amount of energy is supplied. The averaging over a sphere is needed, as only those
parts of the atmosphere facing the host star can actually absorb XUV energy and their
absorption also differs depending on the incident angle. However, since the planet
spins and thermal conduction and convection to some extend transfer some of the
absorbed energy, the heating can be averaged over the whole sphere. To justify this
assumption, it is important to note that hydrodynamic escape is a continuous process.
Not one single absorption event leads to the escape of one particle, but the sum of all
the absorption events leads to a heating of the gas in the absorption region, which in
turn allows for the gas to flow upwards and escape. Therefore hydrodynamic escape
also happens on the night side as the atmosphere still retains some of its heat. Of
course in any given moment the dayside escape flux will be higher than the nightside
one, but it is reasonable to average the energy input over the whole system and
therefore also to aim for an averaged escape flux of the whole system, since only with
an averaged value an evolution over time can be investigated. The averaging can be
achieved by simply taking a quarter of the incident total stellar XUV flux ΦXUV at
the orbital distance of the planet as the ratio of the cross-section area of the planet
πr2 and its surface area 4πr2 is equal to 1

4 [Erkaev et al., 2007; Catling and Zahnle,
2009; Coates, 2010].

On the account of the less-than-unity efficiency of XUV heating, Watson et al. [1981]
have made their formalism really general. Most of the energy supplied by XUV radi-
ation is not used to heat the absorption region, but is used in different photochemical
reactions. However, it is not trivial to determine how much of the absorbed energy in
a given atmosphere is actually used to drive hydrodynamic escape. Numerical simu-
lations by Salz et al. [2016] have determined it to be roughly 20% for most planets,
but have found it to decrease by several orders of magnitude once the gravitational
potential of the system gets high. This phenomenon has to be accounted for in pos-
sible applications of the energy-limited escape formalism. Watson et al. [1981] were
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well aware of this less-than-unity efficiency of XUV heating but did not require any
assumptions about it in their derivation. They simply said it to be already accounted
for in the parameter S, making it equivalent to the total energy input to the whole
atmosphere that is actually used to drive hydrodynamic escape. Every user of the
formalism may then define for themselves how large S actually is.

To sum up, the definition of the energy-input parameter S does not pose any limi-
tations on the applicability of the formalism. However, it must be noted that it is
crucial to carefully consider the correct value of S, especially the efficiency of XUV
heating hidden within it.

3.4 Absorption in a narrow region

In order to supply the XUV energy to the atmosphere, Watson et al. [1981] assume
all of it to be absorbed in a narrow region near the level r1, which is defined as
the level, where the optical depth of the atmosphere to XUV is one. It is obvious
that not all of the energy is actually absorbed just at a level r1. However it seems
reasonable to assume that a majority of it is. The optical depth τod is defined as the
natural logarithm of the incident radiation flux Φi to the transmitted radiation flux
Φt [Kitchin, 1987]:

τod = ln

(
Φi

Φt

)
(29)

This definition states that at the level where τod = 1, the transmitted flux has been
reduced by a factor of 1

e compared to the incident flux. The law is logarithmic,
meaning that the value of the transmitted flux drops exponentially with increasing
optical depth. This implies that in regions with a very low optical depth, far below
1, practically no radiation is absorbed, while in regions with an optical depth above
1 the vast majority of radiation has already been absorbed [Kitchin, 1987].

While this assumption therefore seems reasonable and justified it is however not trivial
to determine the correct absorption profile of an arbitrary atmosphere. The optical
depth of the medium must not increase linearly, but could increase and decrease
several times on the way trough the atmosphere, depending on atmospheric conditions
like density and temperature. This could result in two different levels, where the
optical depth reaches close to 1 and the majority of radiation is absorbed. Tian
et al. [2005] in addition have shown in simulations that due to the dependence of the
optical depth to wavelength, the XUV absorption regions of planetary atmospheres
can be much broader. Thermal conduction will still to some extend distribute the
energy even if absorbed lower in the atmosphere. Also an averaging of the absorbed
energy in the region near r1 will still account for all the incident energy and give an
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approximate value, but it is difficult to quantify exactly how much the results are
changed by this simplification.

To summarize, while the assumption is certainly physically reasonable and may very
well be justified in a lot of systems, especially simple hydrogen atmospheres like
those under consideration, there may very well be systems with broader absorption
regions and several absorption peaks. It is not trivial to describe the effects this
would have on the distribution of the heating energy and the reproduction of real
absorption profiles for XUV in hydrogen atmospheres can not be easily generalized.
In order to validate this assumption, one therefore has to compare the results of the
energy-limited escape formalism with results obtained via a different method. This
will be conducted in chapter 7 by using results from one-dimensional hydrodynamic
simulations and will give a better insight on the range of applicability of the energy-
limited escape formalism.

3.5 Gas properties

In order to set up their mathematical model Watson et al. [1981] assume the gas to
be non-viscous, for it to have a constant molecular weight and for the pressure in
the gas to be isotropic. These assumptions are easily justifiable, if one considers the
low density in the thermosphere. The pressure, and therefore the particle density in
an atmosphere, drops exponentially with increasing height. Therefore the pressure is
already very low in its upper parts, where XUV absorption happens. To give some
context, while on present day Earth the local scale height, which indicates a decrease
of the atmospheric pressure by a value of 1

e , is of about 8 km, the absorption height in
these hydrogen atmospheres is usually of the order of few hundred to thousand kilo-
meters above the planets surface. The non-viscous assumption is therefore justified,
as the density is so low that the gas particles rarely interact with each other. The
constant molecular weight assumption is also justified, as we consider a region where
hydrogen is by far the dominant species in the atmosphere, therefore allowing to ne-
glect all other species. Finally, the pressure may also be assumed to be isotropic, as
it is already so low that significant disturbances within the region under investigation
do not change the absolute pressure value significantly.

3.6 Energy and pressure at infinity

The mathematical description by Watson et al. [1981] also allows for the consideration
of additional energy to be carried away by each escaping particle. It has already been
discussed in section 2.3.2 that this would only lead to a decrease of the escape flux.
Therefore neglecting it is justified as long as one aims to only provide an upper limit
to the escape flux as the authors did. A similar argument can be made for the
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assumption that the pressure at infinity declines towards zero. Watson et al. [1981]
justify this in the appendix of their paper:

”In reality the pressure at large distances is set by conditions in the in-
terplanetary medium. However, the effect of nonzero pressures at infinity
can only be to slow the escape of the gas. Since our purpose is to obtain
upper limits for the escape, the assumption does not affect the validity of
the results.” [Watson et al., 1981]

3.7 Lower boundary properties

The lower boundary, which provides a fixed reference value for the temperature profile,
must satisfy a variety of conditions. First hydrogen must be the dominant gas, which
is certainly justified in a hydrogen envelope at a level as described in the definition
of the lower boundary, well above the homopause [Watson et al., 1981].

The optical depth to XUV radiation at the lower boundary must be much greater
than one. This does not put any new constraints on the formalism as we have already
established that only systems with a narrow and clearly defined absorption region
justify the narrow absorption region assumption. Such an absorption region must be
well above the lower boundary per definition, justifying therefore also this assumption.

Finally and most importantly, the lower boundary is treated as ”tightly bound”. The
terminology of a ”tightly bound” atmosphere was first established by Parker [1964]
and originally defines the thermal velocity of the gas at a specific level in the solar
corona to be significantly below the gravitational escape velocity at this level. The
magneto-hydrodynamic approach used to describe the solar corona can also be used
to describe the gas in a planetary hydrogen atmosphere. The parameter λ0 describes
the gravitational potential and the thermal energy at the lower boundary level r0
[Chamberlain, 1963; Watson et al., 1981]:

λ0 =
GMm

kT0r0
(30)

Parker [1964] have shown that if this parameter is above a value of 10, the condition
of a ”tightly bound” atmosphere is met, the gas at the lower boundary is quasi-static
and expands from there out to space reaching supersonic velocities somewhere above
this level. If however λ0 . 10, the thermal velocity is similar to or above the escape
velocity, leading to a supersonic catastrophic escape at the lower boundary, which
therefore invalidates its role as a reference level for the escape. The tightly bound
condition therefore constraints the λ0 parameter at the lower boundary:

35



λ0 & 10 (31)

This is also in accordance with a much more recent study by Volkov et al. [2011]
that states that for values of λ0 < 6 escape rates start to differ sufficiently from
Jeans escape and reach catastrophic escape at values of λ0 < 2.4. The tightly-bound
condition used by Watson et al. [1981] is therefore more conservative than the Volkov
et al. [2011] results and validates the application of the energy-limited formalism in
systems that comply with condition equation 31.

3.8 Subsonic assumption

The last assumption used in the derivation of the energy-limited escape formalism is
the subsonic assumption, which states that the level of XUV absorption r1 must be
below the sonic level rs:

r1 < rs (32)

This assumption significantly simplifies the differential equations used in the deriva-
tion. Watson et al. [1981] tried to assess the validity of the assumption by limiting
the bulk velocity at the XUV absorption height. As a conclusion to their assessment
they find:

”We conclude that the assumption is justified over the range of parameters
utilized in the text, but that it may break down if the atmosphere is so
strongly heated as to allow very high escape rates simultaneously with
high temperatures in the thermosphere.” [Watson et al., 1981]

Because of its importance in the derivation it is obvious that a more thorough in-
vestigation of this subsonic assumption must be conducted in order to validate the
energy-limited escape formalism over a broader range of parameters, especially for
systems with strong heating. This investigation is performed in the upcoming chapter.
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4 Derivation of the limiting condition imposed by the
subsonic assumption

The importance of the subsonic assumption to the derivation of the energy-limited
escape formalism was pointed out in the previous section. This chapter aims to
develop a limiting condition that allows to check for each individual planetary system
whether or not it meets the assumption.

4.1 Derivation of the the temperature profile below the sonic level

To start with the derivation one needs a temperature profile, allowing to calculate the
previously introduced dimensionless temperature parameter τ at an arbitrary height
below the sonic level. Equation 15 in Watson et al. [1981] states:

τ s

ζ

dτ

dλ
= λ− β

ζλ21
+ ε∞ (33)

where s = 0.7 is the parametrization of the thermal conductivity of the gas and ε∞
is the amount of energy carried away to infinity. As previously discussed, setting
ε∞ = 0 can only lead to an overestimation of the escape flux ζ [Watson et al., 1981].
Therefore this term is neglected from now on.

τ s

ζ

dτ

dλ
= λ− β

ζλ21
(34)

To continue this differential equation must be solved by integration. The conditions
λ = λ0 and τ = 1 are used for the lower boundary.

τ sdτ =

(
λζ − β

λ21

)
dλ (35)

∫ τ ′

1
τ sdτ =

∫ λ′

λ0

(
λζ − β

λ21

)
dλ (36)

τ s+1

s+ 1

∣∣∣∣τ ′
1

=

(
λ2

2
ζ − β

λ21
λ

)∣∣∣∣λ′
λ0

(37)

τ ′s+1

s+ 1
− 1

s+ 1
=

(
λ′2

2
ζ − β

λ21
λ′
)
−
(
λ20
2
ζ − β

λ21
λ0

)
(38)
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τ ′s+1 − 1

s+ 1
=
ζ

2

(
λ′2 − λ20

)
− β

λ21

(
λ′ − λ0

)
(39)

Solving for τ ′ yields a function for the temperature depending on the height in the
atmosphere λ′. For simplicity all primed values are replaced with unprimed values:

τ =

{
1 + (s+ 1)

[
ζ

2
(λ2 − λ20)−

β

λ21
(λ− λ0)

]} 1
s+1

(40)

If the height of XUV absorption λ1 is known or fixed, this formula can be used to
investigate the escape rate dependence of the temperature profile. As long as the
escape flux is below a critical value, the temperature will monotonically rise between
λ0 and λ1. If the escape flux further increases, the remaining XUV energy, which
is conducted down to the lower atmosphere, is not sufficient to counteract adiabatic
cooling and a temperature minimum will appear [Watson et al., 1981].

Equation 40 analytically only describes a temperature profile, if the height of XUV
absorption is known. The parameter λ1 must be provided as input. It is also very
important to note at this point that this equation is dependent on the assumption
that the height of the XUV absorption is well below the sonic level. This temperature
profile only allows for the calculation of a temperature at a height below the sonic
level, but not above it.

4.2 Derivation of the limit of the temperature parameter

After enabling the calculation of the temperature profile, the further derivation aims
to find a limiting condition for the temperature parameter τ that allows for the
validation of the subsonic assumption. Watson et al. [1981] examine their subsonic
assumption further in the appendix, in the section ”Examination of Assumptions”,
sub-section a) ”r1 Lies below the Sonic Level”. In this section equation A11 provides
an upper limit of the dimensionless velocity parameter Ψ1 (defined in equation 6 in
Watson et al. [1981]), representing the bulk velocity at the XUV absorption height
r1:

Ψ1 <
m

k3T0
(κ0τ1ζσ)2 (41)

Calculating for all the known parameters the equation yields [Watson et al., 1981]:

Ψ1 < 1.2605
(ζκ0)

2

T0
τ21 (42)
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It is known from the definition of the sonic level that Ψ < τ everywhere below the
sonic height rs and Ψ > τ , everywhere above it. So if Ψ < τ , then r1 < rs. Since
the aim is to determine under which conditions the XUV absorption height lies below
the sonic level, a limit for the temperature at the XUV absorption height τ1 can be
found from equation 42 [Watson et al., 1981]:

τ1 <
T0

1.2605 · (ζκ0)2
(43)

With the previously derived temperature profile equation 40 the temperature at r1
can be calculated and compared with the derived limit equation 43, as long as the
subsonic assumption is valid. This means that if the assumption is valid, the above
written condition must apply. However, if it is not valid, the condition may still be
met, as the temperature at r1 can not be correctly calculated.

It is crucial to understand: If the calculated temperature is above the temperature
limit, the subsonic assumption is certainly violated. However, if it is below the limit,
no certain conclusion on the validity of the subsonic assumption can be drawn for the
particular case.
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5 Planetary grid

As discussed in detail in chapter 3, the energy-limited escape formalism introduced
by Watson et al. [1981] uses a large number of assumptions. The validity, at least in
certain parameter ranges, of a variety of these assumptions is not certain and must be
studied further. This can be performed by using numerical methods and comparing
the results with results from different models. However, to do so, first a grid of
theoretical planets must be defined. The grid limits determine the parameter limits
of the validity investigation and the individual grid points can be used to perform
numerical calculations and comparisons with other models. Therefore a grid of planets
for the further investigation of the energy-limited escape formalism is defined in this
chapter.

As described in chapter 7 a hydrodynamic upper atmosphere model developed by
Kubyshkina et al. [2018a] is used to compare the results of the energy-limited es-
cape formalism with the results of their model. The planetary grid defined in this
chapter will therefore from here on be called ”comparison-grid”. Its limits will be
determined mainly by the grid limits of the hydrodynamic upper atmosphere model
by Kubyshkina et al. [2018a]. Their grid is limited by five different parameters:

• Stellar Mass

• XUV flux

• Equilibrium temperature

• Planetary radius

• Planetary mass

Since the energy-limited escape formalism does not care for stellar parameters, the
stellar mass parameter is disregarded in the comparison-grid, using a stellar mass of
one solar mass for all planets.

Kubyshkina et al. [2018a] provide in Table 3 three different EUV and X-ray lumi-
nosities for a star with a stellar mass of one solar mass. One for an inactive, one for
a moderately active and one for an active star. The luminosities for an inactive and
an active star are chosen as lower and upper limits for the comparison-grid. The cor-
responding XUV flux ΦXUV is then calculated using the orbital separation d0 of the
planet. The orbital separation in turn is determined by the equilibrium temperature
of the planet. Equations 44 and 45 show how the lower and upper limit for the XUV
flux for a specific orbital separation d0 are calculated.
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Φmin
XUV

[
J

m2s

]
=

4.7519 · 1027[Js ]

4 · π · (d0[m])2
(44)

Φmax
XUV

[
J

m2s

]
=

1.6438 · 1030[Js ]

4 · π · (d0[m])2
(45)

For the comparison-grid, a set of 30 logarithmically spaced values between those limits
is used for each equilibrium temperature value (determining the orbital separation).
For the equilibrium temperature 18 evenly spaced values between 300 and 2000 K, for
the planetary radius 10 evenly spaced values between 1 and 10 R⊕ (Earth radii) and
for the planetary mass 39 evenly spaced values between 1 and 39 M⊕ (Earth masses)
are chosen.

The heating efficiency ν, which determines how much of the incoming XUV flux is
used to drive hydrodynamic escape, is set to be ν = 0.15 for all systems in accor-
dance with Kubyshkina et al. [2018a] and Shematovich et al. [2014]. This is also in
accordance with the results of Salz et al. [2016], which showed that for planets with a
very high gravitational potential ΦG, the heating efficiency ν drops several orders of
magnitude. For all planets below a certain threshold however, the heating efficiency
is roughly constant at a value of about ν = 0.2. The threshold is most likely due to
the sudden onset of radiative cooling in systems of high gravitational potential and
was determined by Salz et al. [2016] to be:

ν ∼= const. for v = −log10(−ΦG) ≤ 12.0 (46)

The planet with the highest gravitational potential in the comparison-grid, has a
value of v = 9.4, which is well below this threshold. It therefore is valid to assume
the heating efficiency to be a constant.

Finally limits for the restricted Jeans parameter (see Section 2.3.2 and Fossati et al.
[2017]) as well as the planetary density are introduced. As described in Kubyshkina
et al. [2018a] planets with average densities below 30.0 kg

m3 or above 20000 kg
m3 are

unlikely to exist and therefore excluded from the grid. Also planets with a value
of λ0 < 10.0 are excluded because of the lower boundary condition described in
Section 3.7. Planets with a value of λ0 > 80.0 are also excluded in accordance with
Kubyshkina et al. [2018a] as they are assumed to have stable atmospheres. Using all
this limits the comparison-grid contains 125208 theoretical planetary systems.
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6 Analysis of the energy-limited approach

This chapter focuses on comparing different methods of obtaining atmospheric mass-
loss rates with the energy-limited approach as well as how the resulting mass-loss
rates depend on planetary parameters.

6.1 Comparison of different energy-limited mass-loss rates

In Section 2.4 three different ways of obtaining a particle escape rate with an energy-
limited approach were introduced. The first two use the solutions of the energy-
limited equations 20 and 21, while the third one simplifies the approach even further,
by assuming the radius of XUV absorption to be equal to the planetary radius.
Converting the escape rates to mass-loss rates, accounting for the Roche lobe effect
by including the correction factor K and using the heating efficiency ν as well as the
averaging factor 1

4 on the total stellar XUV flux ΦXUV , the three mass-loss rates can
be computed with:

Ṁζ = 4π
ζκ0GMKm2

k2Teq
(47)

Ṁλ1 = π
νΦXUVGMKm2Rpl

k2Teqλ21
(48)

ṀRpl = π
νΦXUVR

3
pl

GMK
(49)

Figure 9 shows the ratio of Ṁζ and Ṁλ1 for all planets in the comparison-grid. The
two methods result in very similar mass-loss rates for all systems. The maximum
deviation can be observed for low values of the mass-loss rate with a maximum ratio
of 1.14. With increasing mass-loss rates the deviations get smaller and the results
are within 2% of each other for planets with high values of Ṁ . These results indicate
that in order to gain an order of magnitude estimate of Ṁ , Ṁζ and Ṁλ1 are equally
good estimators as the deviations between the two methods are well below one order
of magnitude for all planets in the comparison-grid.

Figure 10 compares Ṁζ with ṀRpl and therefore visualizes the effects of the simplified
energy-limited approach r1 = Rpl. Again the deviations are the highest for planets
with low Ṁ reaching up to an order of magnitude for planets with very low mass-loss
rates. For planets with high mass-loss rates however, the two results are equal. This
indicates that the r1 = Rpl simplification may be justified to be used as an order
of magnitude estimation of Ṁζ , although especially for very low values of Ṁζ an
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underestimation must be expected. For calculated values of ṀRpl of less than 106 kgs
a correction by a factor of 2 or more should be used to estimate Ṁζ .

Figure 9: Ratio of mass-loss rates Ṁζ and Ṁλ1 obtained with energy-limited ap-
proaches. The red lines marks a ratio of 1.0

Figure 10: Ratio of mass-loss rates Ṁζ and ṀRpl obtained with energy-limited ap-
proaches. The red lines marks a ratio of 1.0
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6.2 Estimated height of XUV absorption

Figure 11 compares the XUV absorption radius r1 obtained with the energy-limited
approach with the planetary radius Rpl. For high values of Ṁ the energy-limited
approach estimates the XUV absorption to be at the planetary surface, while for
low values it is estimated to be at up to 3 planetary radii. This does raise doubts
on the applicability of the energy-limited approach especially on planets with high
particle escape rates. While it does make sense that for more strongly heated planets
(higher values of ΦXUV ) the absorption radius moves closer to the planet as a higher
number density is needed to absorb all the incident stellar radiation, this would also
imply very steep temperature profiles. The energy-limited approach assumes the
temperature profile to have a T = 0K minimum somewhere between the planetary
radius and the XUV absorption layer (see Figure 7). A strongly heated absorption
layer however would also result in higher temperatures at the absorption height,
meaning the temperature in the atmosphere would first need to drastically cool by
adiabatic cooling and then be reheated to even higher temperature values within a
few hundred kilometers in the thermosphere.

Figure 12 shows that the XUV absorption radius is estimated especially close for
systems with high incident stellar XUV flux. This means that the increase of the
mass-loss rate with increasing ΦXUV is slowed down by a decreasing XUV absorption
height, which in turn means a smaller absorption cross-section πr21.

Figure 11: Ratio of XUV absorption radius r1 obtained with the energy-limited ap-
proach and planetary radius Rpl for all planets in the comparison-grid.
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Figure 12: Ratio of XUV absorption radius r1 obtained with the energy-limited ap-
proach and planetary radius Rpl over incident stellar XUV flux ΦXUV for all planets
in the comparison-grid.

The energy-limited formalism estimates smaller XUV absorption heights for increas-
ing stellar XUV fluxes. In case of small irradiation by the star an absorption in higher
regions is predicted, however the overall amount of energy input is small leading to
moderate escape rates. In the case of strong irradiation on the other hand the energy
is absorbed in the dense region near the planetary surface. The energy is there-
fore distributed to many individual particles and conduction is more efficient making
steep temperature profiles as predicted in Figure 7 increasingly unlikely and limiting
the temperature in the thermosphere. Figure 11 predicts that for strong irradiation
especially high escape rates may be expected. However the approach also predicts
especially close in absorption regions under these circumstances, which in turn make
a steep temperature profile unlikely as the energy can be more easily distributed to
the lower boundary.

6.3 Thermospheric temperatures

For hydrodynamic escape to happen, the absorbed XUV energy must only be dis-
tributed to so many particles that the energy gained per particle is high enough to
overcome the gravitational potential of the planet. As introduced in chapter 2 and
illustrated in Figure 7 the energy-limited approach assumes for the absorption layer
to be high enough so that the particle density n within this region is small enough
for this to happen. The higher the absorption layer, the smaller the particle density
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and with that the more insufficient is conduction and the more energy is used per
particle in the absorption layer to heat it to temperatures allowing for hydrodynamic
escape. As stated in chapter 2 hydrodynamic escape is a continuous process in which
the absorption of stellar energy is not used to accelerate one single particle but is
used to heat the whole gas trough collisions until it reaches thermal energies larger
than its potential energy and starts flowing upwards in a bulk.

To check the validity of the calculations Figure 13 compares the gravitational potential
of a particle at r1 with its thermal energy inferred by the temperature T1 at r1
estimated by the temperature profile equation 40. As in all of the considerations in
Watson et al. [1981] the kinetic energy of the gas at r1 is assumed to be negligible
compared to its thermal energy. For planets with low gravitational potential and high
irradiation the thermal energy at r1 actually exceeds the gravitational potential. For
the remaining systems the ratio is close to 1. This validates the calculations as the
assumed temperatures reached at the XUV absorption height would indeed be high
enough to overcome the gravitational energy of the planet.

Figure 13: Visualization of the ratio of gravitational potential energy at the XUV
absorption height to thermal energy at the absorption layer depending on the gravi-
tational potential of the planet and the incident XUV flux.

For context Figure 14 shows the temperatures T1 reached at r1 in order to allow
for hydrodynamic escape to happen. The temperature values at the XUV absorption
height are of the order of 103 to 104 K and reach maximum values up to 50.000 K. This
disfavours the energy-limited approach. For once the temperatures are especially high
in highly irradiated systems with high gravitational potential. As mentioned above
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these systems have especially low absorption heights close to the planetary surface.
This would imply a temperature drop from the lower boundary to 0 K and then a
sudden increase up to 50.000 K over a mere few hundred kilometers above the surface.
In addition hydrodynamic simulations like Tian et al. [2005] and Murray-Clay et al.
[2009] have found temperatures to remain significantly lower. The thermospheric
temperatures of planets with low equilibirum temperatures remain below 1.000 K
and those of Hot Jupiter type planets don’t exceed 20.000 K. This indicates that the
energy-limited approach most likely overestimates the thermospheric temperatures
especially in highly irradiated systems with high gravitational potential, which in
turn would imply an overestimation of the corresponding mass-loss rate.

Figure 14: Visualization of the temperature at the XUV absorption layer depending
on the lower boundary parameter λ0 of the planet and the incident XUV flux

6.4 Absorption at unit optical depth

The energy-limited approach also completely lacks information on the actual absorp-
tion behaviour of the atmosphere. Besides not considering absorption profiles the
energy-limited approach by Watson et al. [1981] does not at all consider the optical
depth to XUV of hydrogen. To further validate the calculations the condition of unit
optical depth to XUV should be compared with the resulting absorption heights and
temperatures. In a static and isothermal atmosphere the condition of the level of unit
optical depth to XUV would be [Watson et al., 1981]:

n1H1σXUV ≈ 1 (50)
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H1 =
kT1r

2
1

GMm
(51)

Where n1 is the particle density, H1 the scale height and σXUV ≈ 5 ·10−22m2 [Erkaev
et al., 2013] the absorption cross-section of atomic hydrogen to XUV. Because the
atmosphere is not static but accelerating upwards and because the temperature is
declining from r1 upwards the true scale height is less than the value defined in
equation 51 and the true condition would be [Watson et al., 1981]:

n1H1σXUV > 1 (52)

Equation 50 can be used anyway to find an estimate of the pressure at the estimated
XUV absorption height. Figure 15 illustrates the resulting pressure values. The
overall structure does seem physical as the energy-limited approach estimates higher
pressures for higher irradiation, which corresponds to an absorption deeper in the
atmosphere. The optical depth to XUV in hydrogen atmospheres is 1 at about 10−9

bar (Murray-Clay et al. [2009]). As can be seen such pressures are only reached in the
top right part of the plot. These are highly irradiated systems with high gravitational
potential, but also with very low absorption regions, which as mentioned above imply
overestimated thermospheric temperatures. In the remaining planetary systems the
estimated pressures at r1 are significantly lower.

Figure 15: Estimated pressure at the XUV absorption layer depending on the gravi-
tational potential of the planet and the incident XUV flux
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6.5 Summary

To summarize the two methods of calculating energy-limited mass-loss rates by solv-
ing the energy-limited equations (escape based Ṁζ and absorption height based Ṁλ1)
are equally good estimators as their deviations from another are well within an order
of magnitude. Simplifying the energy-limited approach by choosing r1 = Rpl does
seem to be justified within an order of magnitude, although an underestimation, espe-
cially in case of small mass-loss rates, should be expected. Figure 13 validates that the
thermal energy reached at the absorption height is sufficient to overcome the gravita-
tional potential of the planet. However, the estimated temperatures and pressures at
the absorption layer do raise doubts on the applicability of the approach. The temper-
ature profiles especially of highly irradiated planets would need to be very steep and
especially for planets with high gravitational potential unphysical high temperatures
would be needed. On the other hand for low irradiated planets the XUV absorption
height might be estimated significantly different than the condition of unit optical
depth to XUV would imply. All these consideration support the necessity of a more
detailed comparison of the energy-limited results with hydrodynamic simulations.
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7 Comparison of the energy-limited approach with hy-
drodynamic simulations

In 2018 Kubyshkina et al. [2018a] published a paper on a grid of upper atmosphere
models. By using a one-dimensional hydrodynamic model, they were able to compute
a grid of 7000 upper atmosphere models of hydrogen dominated atmospheres. From
this grid they generated an interpolation routine that allows for the calculation of a
variety of atmospheric parameters, including the mass-loss rate and the effective ra-
dius of XUV absorption, for planets within the grid limits. Their model does not only
account for XUV driven hydrodynamic escape but for a variety of escape processes
including Jeans escape and photochemical reactions within the upper atmosphere.
This allows for the calculation of atmospheric mass-loss rates in all non-magnetic
systems within the grid limits, no matter what escape process is dominant.

To investigate the validity of the energy-limited approach the mass-loss rates from
this interpolation routine can be compared with the results of the energy-limited
escape formalism. The aim is to find a limiting set of planetary parameters, within
which the results of the Watson et al. [1981] algorithm comply with the results of
the hydrodynamic model. Within this parameter range the energy-limited approach
would be able to be considered a good approximation to the real mass-loss rate.
Such a comparison is performed in this chapter. Since it was established in the
previous chapter 6 that the different methods of obtaining energy-limited mass-loss
rates all yield results within an order of magnitude of each other, Ṁζ will be used in
this comparison to represent results obtained with the energy-limited approach. The
mass-loss rates obtained by the Kubyshkina et al. [2018a] hydrodynamic simulations
are denoted as Ṁhc.

7.1 Dependence on mass-loss rates

Figures 16 and 17 illustrate that the ratio of the two escape rates is mainly determined
by the simulation results Ṁhc. The observed ratio range spawns from 10−5 to 103.
As Figure 16 points out there is no obvious relation between the calculated ratio and
Ṁζ , which already indicates that it is impossible to estimate the ratio of mass-loss
rates by only knowing Ṁζ . Kubyshkina et al. [2018a] and Kubyshkina et al. [2018b]
have also shown that Ṁhc can not be estimated with a simple function but has a
rather complex behaviour depending on the combination of planetary parameters as
different combinations yield different dominating processes. It is therefore not possible

to derive a general law that is able to estimate the observed ratio
Ṁζ

Ṁhc
. Therefore

this investigation will focus on describing the behaviour of the ratio within certain
regimes of combinations of planetary parameters.

50



Figure 16: Ratio of mass-loss rates obtained with an energy-limited approach Ṁζ and
hydrodynamic simulations Ṁhc compared to Ṁζ . The red lines mark the area where
the mass-loss rates are within a factor of 2 of each other. The blue lines mark the
area where the mass-loss rates are within a factor of 10 of each other.

Figure 17: Ratio of mass-loss rates obtained with an energy-limited approach Ṁζ and
hydrodynamic simulations Ṁhc compared to Ṁhc. The red lines mark the area where
the mass-loss rates are within a factor of 2 of each other. The blue lines mark the
area where the mass-loss rates are within a factor of 10 of each other.
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Figure 18: Ratio of mass-loss rates obtained with an energy-limited approach Ṁζ and
hydrodynamic simulations Ṁhc compared to the lower boundary parameter λ0. The
red lines mark the area where the mass-loss rates are within a factor of 2 of each
other. The blue lines mark the area where the mass-loss rates are within a factor of
10 of each other.

7.2 Dependence on λ0 and T0

The most important observation regarding the dependence of the ratio on planetary
parameters can be obtained when comparing it with the lower boundary parameter
λ0, which in this case is chosen at the planetary surface with r0 = Rpl and T0 = Teq.

Figure 18 displays the dependence of
Ṁζ

Ṁhc
on λ0. As can be observed for low values

of λ0, which correspond to low gravitational potentials of the planets, the energy-
limited approach usually underestimates the correct mass-loss rate. In this regime
drastic underestimation up to an order of 10−5 can be observed. This is probably
due to the fact that in such systems the additional energy provided by XUV heating
is sufficient to allow for boil off conditions in the lower parts of the atmosphere.
Instead of adiabatically cooling the atmosphere near the lower boundary as expected
by the energy-limited approach, all the absorbed XUV energy is used to heat the
whole atmosphere from the bottom up. This way the thermal energy provided by the
equilibrium temperature can be used in addition to the absorbed XUV energy to allow
for energies high enough to escape close to the lower boundary. Since the absorbed
energy is conducted downwards and is used to heat much denser regions, significantly
higher escape rates can be observed. The energy-limited approach fails in this regime
because it does not account for the fact that the gas already has almost reached
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escape energies at the lower boundary. It completely disregards the already present
thermal energy due to the equilibrium temperature of the planet and therefore tends
to underestimate the mass-loss rate. This explanation is also supported by Figure
19. In the top left corner planets with very low gravitational potential and high
temperatures are situated. This are the planets overestimated the most.

Figure 19: Ratio of mass-loss rates obtained with an energy-limited approach Ṁζ and
hydrodynamic simulations Ṁhc compared to the lower boundary parameter λ0 and
the lower boundary temperature T0.

With increasing values of λ0 the planets leave the boil off regime and their mass-loss
rates start to be dominated more by their gravitational potential. There is a transi-
tion region which roughly ends at a value of λ0 ≈ 25. From here on the behaviour

of
Ṁζ

Ṁhc
stays the same over the remaining range of λ0. Both overestimation up to

three orders of magnitude as well as underestimation up to 2 orders of magnitude
can be observed. Overestimation is most prominent on planets with large gravita-
tional potentials and high temperatures (see Figure 19). Figures 20 and 21 yield
an explanation. The hydrodynamic simulations show that for large values of λ0 the
absolute magnitude of escape is mainly determined by the gravitational potential of
the planet. For equal values of λ0, planets with higher gravitational potential also
have higher temperatures. The energy-limited approach does not account for this
but actually estimates lower escape rates for equal values of λ0 at hotter planets
with lower gravitational potential. The simulated results on the contrary increase
the mass-loss rate under the same circumstances as the gravitational potential is the
driving factor. The magnitude of hydrodynamic escape is determined by the particle
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density at the height were escaping energies are reached. For high mass planets this is
mainly dominated by the gravitational potential as escape energies are only reached
higher up in the atmosphere, where the number density is lower and therefore less
particles are able to escape. The energy-limited approach tries to compensate this
high gravitational potentials with very high thermospheric temperatures as seen in
Figure 14. It basically asks how dilute does the gas need to be to be able to heat
the absorption layer to escaping energies, while the simulations indicate that in fact
escape energies are not reached at the absorption layer but only higher up where the
gas is more dilute. The additional energy needed for escape is transported here by
conduction.

Underestimation for high values of λ0 can be explained similar. It can be mainly
observed for low values of T0. In this case for equal values of λ0 the gravitational
potential is lower which in turn allows for escape energies being reached in lower, more
denser atmospheric heights. Again Ṁhc is mainly dominated by the gravitational
potential in this regime which is not adequately accounted for by the energy-limited
approach.

There are of course also a large sample of planets where the energy-limited approach
does approximate the simulation results fairly reasonable. These can be found mainly
in the intermediate regimes as the lower boundary parameter λ0, which dominates
the energy-limited mass-loss rate, here depicts the temperature-gravity relation the
best and thermospheric temperatures are probably estimated quite well.

Figure 20: Visualization of the energy-limited mass-loss rate Ṁζ depending on the
lower boundary parameter λ0 and the lower boundary temperature T0.
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Figure 21: Visualization of the hydrodynamically simulated mass-loss rate Ṁhc de-
pending on the lower boundary parameter λ0 and the lower boundary temperature
T0.

Figure 22: Ratio of mass-loss rates obtained with an energy-limited approach Ṁζ and
hydrodynamic simulations Ṁhc compared to the lower boundary parameter λ0. Only
planets that comply with the subsonic condition are considered. The red lines mark
the area where the mass-loss rates are within a factor of 2 of each other. The blue
lines mark the area where the mass-loss rates are within a factor of 10 of each other.
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Figure 22 is similar to Figure 18 but only depicts systems that comply with the
subsonic condition equation 15. Complying with the condition does indeed remove
planets, where the energy-limited approach performs the worst, from consideration.
It mainly disregards strongly irradiated planets with low gravitational potential.

7.3 Dependence on ΦXUV

Figure 23 highlights the behaviour of
Ṁζ

Ṁhc
compared to the flux of stellar XUV ra-

diation ΦXUV . Again it can be observed that the ratio of mass-loss rates is mainly
determined by the lower boundary parameter λ0 and not by the magnitude of the
stellar XUV flux. Figures 24 and 25 in comparison show the dependence of the in-
dividual mass-loss rates on both parameters. For values of λ0 > 40 the simulated
mass-loss rates Ṁhc do not depend any more on the magnitude of irradiation, but
do seem to be only governed by the gravitational potential of the planet. Again the
energy-limited approach does not account for that behaviour but estimates higher
mass-loss rates for more strongly irradiated planets with equal values of λ0. This
results in overestimation for planets with high values of λ0 and ΦXUV . For values
of λ0 < 20 both mass-loss rates and therefore also their ratio is mainly determined
by the stellar XUV flux. The highest observable escape rates can be found in highly
irradiated systems with weak gravitational potentials. However, in the simulated case
the mass-loss rates in these regime are up to 5 orders of magnitude higher than in the
energy-limited case. This can be explained when considering that the temperature
of the atmosphere most likely increases from the lower boundary upwards and does
not first decrease and than increase steeply again. Especially in low gravity and high
temperature systems a strong irradiation leads to energies sufficient for escape very
close to the lower boundary, where the particle density is still very high. The energy-
limited approach is not able to adequately estimate such boil off regimes reached
because of the combination of low potential energy, high thermal energy and strong
irradiation close to the lower boundary.
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Figure 23: Ratio of mass-loss rates obtained with an energy-limited approach Ṁζ and
hydrodynamic simulations Ṁhc depending on the lower boundary parameter λ0 and
the incident stellar XUV flux Φ.

Figure 24: Visualization of the energy-limited mass-loss rate Ṁζ depending on the
lower boundary parameter λ0 and the incident stellar XUV flux Φ.
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Figure 25: Visualization of the hydrodynamically simulated mass-loss rate Ṁhc de-
pending on the lower boundary parameter λ0 and the incident stellar XUV flux Φ.

7.4 Limiting conditions for certain overestimation

Using the gathered information two limiting conditions where certain overestimation
as intended by Watson et al. [1981] is observed can be found. If either one of them
is satisfied overestimation can always be expected for planets within the limits of the
comparison-grid.

λ0 · ΦXUV ≥ 42858
J

m2s
(53)

− Φgrav =
GMpl

Rpl
≥ 6.26 · 108

J

kg
(54)

7.5 Correctly estimated planets

Figure 26 gives an overview of all planets where Ṁζ and Ṁhc are within a factor of 2
of each other. This set contains about 30.000 planets or 24% of the comparison-grid.
Figure 27 in comparison shows all planets where the two mass-loss rates are within
a factor of 10 of each other. This set contains about 78.000 planets or 62% of the
comparison-grid. It is important to remember the definition of the grid points when
analyzing these plots. Per definition planets with a high equilibrium temperature are
closer to their host star and therefore are also exposed to higher XUV fluxes. This
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results in a natural cold to hot gradient with increasing ΦXUV . Also planets which
presumably have stable atmospheres have been eliminated from the grid, which in
turn means the bottom right corner does not contain any grid points as these would
be planets with very high gravitational potential but low equilibrium temperatures.
Correctly estimated results can be found almost all over the parameter space except
for planets with very low gravitational potential. As already mentioned previously,
in this regime boil off conditions reached by a combination of thermal energy at the
surface and additional XUV energy lead to drastic underestimation by the energy-
limited approach.

Figure 28 shows all planets where the energy-limited estimation is off by more than one
order of magnitude. Using all three plots intermediate equilibrium temperatures seem
to result in fairly reliable estimations especially for planets with high gravitational
potential. Figure 29 displays more closely the regime of all planets in the comparison-
grid with equilibrium temperatures between 800 and 1300 K. Plotted are only planets
where the energy-limited approach over- or underestimates the simulated mass-loss
rates. Except for 6 planets, which most likely are an artefact of not exact simulation
results, a gap in which the energy-limited approach always does estimate the simulated
mass-lass rate up to an order of magnitude can be observed. For planets within the
grid-limits and with equilibrium temperatures between 800 and 1300 K, Figure 29
can be used to check whether the system parameters of that specific planet are within
this reliable estimation region.

Figure 26: Overview of the system parameters of all planets where the energy-limited
mass-loss rate and the mass-loss rate obtained by hydrodynamic simulations are
within a factor of 2 of each other.
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Figure 27: Overview of the system parameters of all planets where the energy-limited
mass-loss rate and the mass-loss rate obtained by hydrodynamic simulations are
within a factor of 10 of each other.

Figure 28: Overview of the system parameters of all planets where the energy-limited
mass-loss rate and the mass-loss rate obtained by hydrodynamic simulations are dif-
ferent to each other by factor of 10 or more.
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Figure 29: Overview of the system parameters of all planets with equilibrium tem-
peratures between 800 and 1300 K and where the energy-limited mass-loss rate and
the mass-loss rate obtained by hydrodynamic simulations are different to each other
by factor of 10 or more.

7.6 Summary

To summarize this investigation has found significant differences between mass-loss
rates obtained with the energy-limited approach and hydrodynamic simulations. The
magnitude of Ṁ is mainly determined by the gravitational potential of the planet and
is almost uneffected by large changes in the incident stellar XUV flux for values of
λ0 > 40. For planets with λ0 < 25 boil off conditions can be reached close to the lower
boundary as the absorbed additional energy is sufficient to heat the gas to escaping
energies in low, dense atmospheric layers. The energy-limited approach is not able
to account for both phenomena and is therefore unable to provide a reliable order of
magnitude estimation of the true mass-loss rate Ṁ . These results are in agreement
with Kubyshkina et al. [2018b] results which also find strong underestimation for low
values of λ0 and both over- and underestimation for intermediate and high values of
λ0 (see Figure 30).
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Figure 30: Comparison of an energy-limited mass-loss rate computed with XUV
absorption radii obtained by hydrodynamic simulations and the simulated mass-loss
rate Ṁhc. The red line marks a ratio of 1, the blue lines the are where the two
mass-loss rates are within a factor of 10 of each other. The figure was published in
Kubyshkina et al. [2018b].
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8 Conclusion

The investigation of the energy-limited atmospheric escape approach and its com-
parison with results of hydrodynamic simulations lead to the conclusion that the
energy-limited escape approach in general is not a reliable order of magnitude esti-
mator of the atmospheric mass-loss rate Ṁ . However, for planets within the limits
of the planetary grid defined in chapter 5 and with equilibrium temperatures of 800
to 1300 K, a reliable estimation of the mass-loss rate by the energy-limited approach
can be expected, if the remaining planetary parameters of gravitational potential and
incident XUV flux are within the region of the white gap in Figure 29. Above the
following limits a certain overestimation of the mass-loss rate as indented by Watson
et al. [1981] can be observed for all planets within the above mentioned planetary
grid:

λ0 · ΦXUV ≥ 42858
J

m2s
(55)

− Φgrav =
GMpl

Rpl
≥ 6.26 · 108

J

kg
(56)

Planets with λ0 > 40 are mainly dominated by their gravitational potential, have
low mass-loss rates and are mostly indifferent to the magnitude of incident stellar
XUV radiation. For values of λ0 < 25 the mass-loss rate is dominated by the incident
stellar XUV flux leading to boil off conditions close to the planetary surface and high
particle escape rates in strongly irradiated systems. In the intermediate regime of
25 < λ0 < 40 the two effects are of similar significance and the dominant process
depends on the specific planetary parameters.

Besides the high number of assumptions and simplifications used in the derivation of
the energy-limited formalism the main disadvantage of the approach is the assumed
temperature profiles in the thermosphere. The energy-limited approach always as-
sumes for the temperature to drop to a 0 K minimum before being reheated by XUV
absorption. However, this can result in very steep temperature profiles and estimated
absorption in regions not dense enough for the optical depth to XUV to have reached a
value close to 1. More shallow temperature profiles and more moderate thermospheric
temperatures in real atmospheres lead to an overestimation by the energy-limited ap-
proach. On the other hand if the planets thermal energy inferred from the equilibrium
temperature is already close the energy needed for escape, the absorbed XUV energy
can trigger boil off conditions near the lower boundary leading to very high particle
escape rates and significant underestimation by the energy-limited approach.
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