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Abstract

Historically, adding color to monochrome recorded photographs or movies was done manu-

ally in a tedious process. Nowadays, different algorithms have been developed to automate

this problem, where most of the recent colorization approaches are based on deep learning.

In this work we investigate learning based methods to persistently colorize monochro-

matic video sequences. We begin our considerations on single image colorization, where

we color grayscale images based on a color reference image. For this first approach we use

the concept of optimal transport. Based on the initial results, we devote to grayscale video

colorization using convolutional neural networks. Given an initial colored first frame and

a colored last frame of a video sequence, we colorize the rest of the scene using a combina-

tion of global and local color transfer stages. All combination techniques are numerically

evaluated and various colorization results highlight the quality of our approach.
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Kurzfassung

Noch vor einigen Jahrzehnten wurde das Einfärben von monochrom aufgenommenen

Bildern und Filmen in mühevoller Handarbeit erledigt. Heute gibt es unterschiedliche

Algorithmen, die diesen Prozess unterstützen, wobei die meisten dieser Algorithmen auf

Deep-Learning Ansätzen basieren.

In dieser Arbeit beschäftigen wir uns mit Methoden des Einfärbens von

Schwarz-Weiß-Videosequenzen, die auf maschinellem Lernen beruhen. Wir befassen

uns zunächst mit dem Einfärben einzelner Schwarz-Weiß-Bilder. Mit Hilfe eines

farbigen Referenzbildes werden dessen Farben auf das monochrome Bild übertragen.

Als Grundlage dieser Methode verwenden wir das Konzept des optimalen Transports.

Ausgehend von den erzielten Ergebnissen verwenden wir für das Einfärben ganzer

Schwarz-Weiß-Videosequenzen Ansätze, die mittels “faltenden neuronalen Netzwerken”

funktionieren. Schwarz-Weiß-Videosequenzen mit farbigem erstem und letztem Bild

werden mittels Kombination von globalen und lokalen Farbtransfer-Algorithmen

eingefärbt. Um die Qualität unseres Ansatzes zu zeigen, werden die unterschiedlichen

Kombinationstechniken numerisch evaluiert und diverse Einfärbungsresultate

präsentiert.
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und inhaltlich entnommene Stellen als solche kenntlich gemacht habe.

Das in TUGRAZonline hochgeladene Textdokument ist mit der vorliegenden Master-

arbeit identisch.

Ort Datum Unterschrift





Acknowledgments

First and foremost, I would like to express my sincere gratitude to my advisor Erich Kobler.

He continuously supported me during this thesis and helped me when I was lost. In those

times he encouraged me to keep going and rekindled my motivation. The meetings with

him helped me to gain lots of knowledge in the field of computer vision and machine

learning. A big thank you for all of this.

Besides that, I would like thank my fellow study colleges, especially Thomas Schrotter,

for their support and helpful discussions.

A special thanks goes out to my family. Without their support, it wouldn’t have been

possible for me to come this far. I thank my sister and brother and particularly my mother

for their patience and support, whenever I needed them in my life. Also the time that I

spent at my brothers house construction site and partying with my friends were a welcome

alternation when my head was too full.

Finally, I would like to thank Helga for her support and love.

ix





Contents

1 Introduction 1

1.1 Image Colorization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.2 Video Colorization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

2 Related Work 3

2.1 Image Colorization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

2.2 Video Colorization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

3 Theoretical Background 7

3.1 Notation and Conventions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

3.2 Digital Images . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

3.3 Grayscale Images . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

3.4 Color Images . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

3.5 Color Spaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

3.5.1 RGB . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

3.5.2 LAB . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

3.5.3 HSV . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

3.5.4 YCbCr . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

3.6 Colorization Problem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

4 Colorization using Optimal Transport (OT) 17

4.1 Approach . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

4.1.1 Pre-processing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

4.1.2 Statistical and Textural Features . . . . . . . . . . . . . . . . . . . . 19

4.1.3 Feature Descriptors . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

4.1.3.1 SURF . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

4.1.3.2 Gabor Filters . . . . . . . . . . . . . . . . . . . . . . . . . . 20

xi



xii

4.1.4 Superpixels . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

4.1.5 Feature Matching via Optimal Transport . . . . . . . . . . . . . . . 21

4.1.5.1 Primal-Dual Algorithm . . . . . . . . . . . . . . . . . . . . 22

4.1.5.2 Sinkhorn-Knopp Algorithm . . . . . . . . . . . . . . . . . . 24

4.1.6 Colorization Using Optimization . . . . . . . . . . . . . . . . . . . . 24

4.1.7 Spatial Consistency . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

4.1.8 Video Colorization with Bijective Assignment . . . . . . . . . . . . . 25

4.2 Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

4.2.1 Implementation Details . . . . . . . . . . . . . . . . . . . . . . . . . 25

4.2.2 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

4.2.2.1 Image Colorization . . . . . . . . . . . . . . . . . . . . . . . 26

4.2.2.2 Video Colorization . . . . . . . . . . . . . . . . . . . . . . . 26

4.3 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

5 Colorization using Convolutional Neural Networks (CNNs) 33

5.1 Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

5.1.1 Global Color Transfer . . . . . . . . . . . . . . . . . . . . . . . . . . 36

5.1.1.1 Feature Extraction . . . . . . . . . . . . . . . . . . . . . . . 37

5.1.1.2 Coarse Matching . . . . . . . . . . . . . . . . . . . . . . . . 39

5.1.1.3 Fine Matching . . . . . . . . . . . . . . . . . . . . . . . . . 41

5.1.1.4 Confidence . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

5.1.2 Local Color Transfer . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

5.1.2.1 Flow Estimation . . . . . . . . . . . . . . . . . . . . . . . . 44

5.1.2.2 Fine Matching and Confidence . . . . . . . . . . . . . . . . 45

5.1.3 Combination of forward and backward Paths . . . . . . . . . . . . . 45

5.1.4 Fusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

5.1.4.1 Initial Fusion . . . . . . . . . . . . . . . . . . . . . . . . . . 46

5.1.4.2 Learned Fusion . . . . . . . . . . . . . . . . . . . . . . . . . 48

5.1.4.3 Estimation Methods . . . . . . . . . . . . . . . . . . . . . . 50

5.1.5 Training . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

5.2 Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

5.2.1 Dataset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

5.2.2 Implementation Details . . . . . . . . . . . . . . . . . . . . . . . . . 52

5.2.3 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

5.2.3.1 Comparison CNNs and Estimation Methods . . . . . . . . 52

5.2.3.2 U-Net-Residual: Multiple Runs . . . . . . . . . . . . . . . . 54

5.3 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

6 Conclusion and Outlook 69

6.1 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

6.2 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70



xiii

A List of Acronyms 71

B Derivations for Primal-Dual Algorithm 73

B.1 Proximal Mappings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

Bibliography 75





List of Figures

1.1 Image colorization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

2.1 Scribble-based image colorization . . . . . . . . . . . . . . . . . . . . . . . . 4

2.2 Example-based image colorization . . . . . . . . . . . . . . . . . . . . . . . 5

2.3 Fully-automatic image colorization . . . . . . . . . . . . . . . . . . . . . . . 5

3.1 Black-and-white image . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

3.2 Grayscale image . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

3.3 Color image . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

3.4 RGB channels . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

3.5 LAB channels . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

3.6 HSV channels . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

3.7 YCbCr channels . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

3.8 Colorization problem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

4.1 Concept of image colorization using a color reference image . . . . . . . . . 18

4.2 Colorization examples for various images . . . . . . . . . . . . . . . . . . . . 27

4.3 Colorization example for sequence castle . . . . . . . . . . . . . . . . . . . . 28

4.4 Colorization example for sequence lion . . . . . . . . . . . . . . . . . . . . . 29

4.5 Colorization example for sequence toddler . . . . . . . . . . . . . . . . . . . 30

5.1 Concept of video colorization . . . . . . . . . . . . . . . . . . . . . . . . . . 34

5.2 Approach of video colorization . . . . . . . . . . . . . . . . . . . . . . . . . 36

5.3 Concept of global color transfer . . . . . . . . . . . . . . . . . . . . . . . . . 38

5.4 Feature extraction using a pre-trained CNN . . . . . . . . . . . . . . . . . . 38

5.5 Architecture of ResNet . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

5.6 Coarse matching . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

xv



xvi LIST OF FIGURES

5.7 Unfiltered coarse flow . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

5.8 Filtered coarse flow . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

5.9 Fine matching . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

5.10 Flow confidence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

5.11 Color difference confidence . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

5.12 Combined confidence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

5.13 Concept of local color transfer . . . . . . . . . . . . . . . . . . . . . . . . . . 44

5.14 Architecture of PWC-Net . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

5.15 Combination of forward and backward path . . . . . . . . . . . . . . . . . . 47

5.16 Concept of learned fusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

5.17 Simple network . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

5.18 DenseNet . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

5.19 U-net . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

5.20 Comparison of different CNNs and estimation methods regarding the aver-

age Peak Signal-To-Noise Ratio (PSNR) over first N frames . . . . . . . . . 53

5.21 Comparison of the average PSNR per frame for different CNNs and esti-

mation methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

5.22 PSNR value per frame for individual sequences for different CNNs and

estimation methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

5.23 Colorization example for sequence car-race . . . . . . . . . . . . . . . . . . . 56

5.24 Colorization example for sequence demolition . . . . . . . . . . . . . . . . . 57

5.25 Colorization example for sequence lions . . . . . . . . . . . . . . . . . . . . 58

5.26 Colorization example for sequence orchid . . . . . . . . . . . . . . . . . . . . 59

5.27 Comparison of different runs for the U-net residual model regarding the

average PSNR over first N frames . . . . . . . . . . . . . . . . . . . . . . . . 60

5.28 Comparison of the average PSNR per frame for the U-net residual model

for different runs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

5.29 PSNR value per frame for individual sequences for the U-net residual model

for different runs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

5.30 Colorization example for sequence chamaleon . . . . . . . . . . . . . . . . . 63

5.31 Colorization example for sequence golf . . . . . . . . . . . . . . . . . . . . . 64

5.32 Colorization example for sequence gym . . . . . . . . . . . . . . . . . . . . . 65

5.33 Colorization example for sequence ocean-birds . . . . . . . . . . . . . . . . . 66

5.34 Run variation examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67



List of Tables

5.1 Comparison of different CNNs regarding the average PSNR over all frames 53

5.2 Comparison of the U-net residual model for different runs regarding the

average PSNR over all frames . . . . . . . . . . . . . . . . . . . . . . . . . . 60

xvii





1
Introduction

Contents

1.1 Image Colorization . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.2 Video Colorization . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

For a long time, the colorization of monochrome images and videos was a laborious

problem. The development of algorithms automated and improved this process. Since

most of the time the real color of the scene is not known, the colorization of a single color

medium depends on either the artist who is recoloring manually or reference images where

colors can be extracted.

In this work, we start by studying the problem of single image colorization. Later

we focus our considerations on video colorization. As the title of this thesis suggests,

”Learning to consistently recolor video scenes”, we want to establish a process to persis-

tently transfer color to grayscale video sequences with the help of modern learning based

methods.

1.1 Image Colorization

Today, almost everyone is able to record images anytime. People take out their smart-

phones, open their camera app and in a blink of an eye, an image is taken. Retouch some

parts, add fancy filters - Et voilà! Ready to share!

Historically, the recording of images was more complicated. The first cameras had

exposure times of multiple hours and the first photographs were limited to monochrome.

There are still many monochromatic images left from previous times. In order to re-

imagine this historic events, people started to colorize them. In the beginning this col-

orization was done by hand using conventional painting techniques, as can be seen in

Figure 1.1. Here, a historical image (Fig. 1.1a) was colorized (Fig. 1.1b) by hand. This

1



2 Chapter 1. Introduction

colorization was done between 1875 and 1885. Later, with the development of digital com-

puting this process has become much easier. Old single color images are scanned and color

gets added with the help of an image processing software. In recent years, new methods

have been developed that make the colorization even more convenient.

(a) (b)

Figure 1.1: Image colorization. A historical image colorization. (a) is the monochromatic original
recording, (b) the colorized version. Images are taken from Wikimedia Commons1.

1.2 Video Colorization

The extension of image colorization is video colorization. As one can imagine, historically,

this process of colorizing multiple single image by hand must have been very laborious.

Nowadays, algorithms have been proposed that propagate colors through frames, where

the assigned color should be coherent throughout the sequence.

The colorization of movies is sometimes used for historical documentations, e.g. footage

from the First and Second World War or for old movies. There is often no definite solution

when recoloring grayscale source material. For some objects in the scene the main color

may be obvious, but for color gradients and unknown objects, different colorizations can be

possible. Especially for historical film material, people investigate and search in museums

to get the real color of objects, e.g. the color of the tunics of the French soldiers in the

First World War. This may be important to achieve a historical correct recoloring.

1https://commons.wikimedia.org/wiki/File:Takaboko_Island_bw.jpg resp.
https://commons.wikimedia.org/wiki/File:Takaboko_Island_hc.jpg, Accessed: 4th May 2020

https://commons.wikimedia.org/wiki/File:Takaboko_Island_bw.jpg
https://commons.wikimedia.org/wiki/File:Takaboko_Island_hc.jpg
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Related Work

Contents

2.1 Image Colorization . . . . . . . . . . . . . . . . . . . . . . . . . . 3

2.2 Video Colorization . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

In this chapter, we describe modern, state-of-the-art colorization approaches. The

colorization of grayscale images and videos has become a fundamental part in image

restoration. Many different approaches have been developed from the computer vision

community. As a starting point we give an overview of different methods to colorize single

grayscale images (Section 2.1). We then present different methods to colorize grayscale

videos (Section 2.2).

2.1 Image Colorization

Image colorization methods can be divided into methods that require human interaction

and fully automated methods. Furthermore, we categorize into the following colorization

methods:

1. Scribble-based colorization: where the user has to make colorful scribbles on the

grayscale images to specify the target color for regions,

2. Example-based methods: where the user has to provide a reference image from which

the colors are transferred to the target grayscale images, and

3. Fully-automatic colorization methods: here no human interaction is needed. They

are mostly based on Convolutional Neural Networks (CNNs). A huge database of all

kinds of objects are used to train these networks. Input grayscale images are then

colorized with the help of these pre-trained CNNs.

3



4 Chapter 2. Related Work

In the category of using scribbles to colorize grayscale images, Levin et al. [22] proposed

an optimization based approach to propagate the colors onto the entire image. Huang et

al. [14] improved this idea by adding an adaptive edge detection to avoid bleeding at object

boundaries. The work of Yatziv and Sapiro [42] proposed a computationally more efficient

method, which is based on chrominance blending. An example for scribble-based image

colorization can be seen in Figure 2.1. The grayscale image in Fig. 2.1a is provided with

scribbles as in Fig. 2.1b. The final colorized image can be seen in Fig. 2.1c.

(a) (b) (c)

Figure 2.1: Scribble-based image colorization. Given a grayscale image (a) the user has to make
scribbles to specify colors (b). Based on the scribbles the algorithm achieves a final colorization
(c). Images are taken from [22].

In the field of example-based image colorization Welsh et al. [40] proposed a colorization

method based on matching rectangular swatches between the grayscale and the reference

image. Based on this work, many new, improved versions were introduced [9], [17], [20].

Another version, the work of Liu et al. [24], uses multiple reference images to colorize im-

ages. Different color transfer algorithms have been developed, that use Optimal Transport

(OT), such as [8] and [31]. This approaches can be adapted to the colorization of grayscale

images. Figure 2.2 illustrates a sample for example-based image colorization. To colorize

the grayscale image in Fig. 2.2a a colorful reference image as in Fig. 2.2b is needed. The

final colorization can be seen in Fig. 2.2c.

Fully automatic methods using CNNs pre-trained on a huge image database, are e.g.

the work of Cheng et al. [6], Iizuka et al. [15] or Zhang et al. [44]. Zhang et al. [45]

proposed a method, that combines sribble-based and fully automatic methods. To achieve

a colorization of a grayscale image, the user has to make sparse color splashes. A pre-

trained CNN then colors the whole image based on the user input. In Figure 2.3 an

example for a fully-automatic colorization method is shown. The grayscale image in

Fig. 2.3a is colorized without any additional input (Fig. 2.3b).



2.2. Video Colorization 5

(a) (b) (c)

Figure 2.2: Example-based image colorization. Given a grayscale image (a) the user has to
provide a colorize reference image (b) to specify colors. Based on the reference image the algorithm
transfers color to the grayscale image, to find a final colorization (c). Images are taken from [9].

(a) (b)

Figure 2.3: Fully-automatic image colorization. Given a grayscale image (a), no additional input
is required to achieve a final colorization (b). Images are taken from [44].

2.2 Video Colorization

The colorization of videos can be seen as an extension of image colorization. Many image

colorization approaches can be adapted for videos, e.g. make colorful scribbles on many

different frames and incorporate the temporal neighborhood to generate a colored video.

Another technique is to colorize each image individually.

Aside from these approaches other methods have been developed. In their work Von-

drick et al. [39] introduced a method to colorize videos by the use of a colorful reference

image. They use this approach for self-supervised tracking. Xia et al. [41] use a set of color

reference frames from a sequence, to transfer color to grayscale frames based on the optical

flow calculated between them. Jampani et al. [18] proposed video propagation networks.

These networks can be used to propagate the colors of a reference image to subsequent,

grayscale frames. Video propagation networks consist of a temporal, bilateral network

for dense and video adaptive filtering, as well as a spatial network that refines features.

Schaub et al. [33] proposed a video colorization scheme that utilizes a local and global
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method to consistently propagate color throughout a grayscale sequence. In their work

Iizuka et al. [16] proposed a colorization and restoration approach for old video sequences,

that removes impurities and colors the sequence based on a set of reference images.
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In this section we discuss the relevant theoretical prerequisites. We do not consider

the processes of image formation and acquisition, but rather focus on the colorization of

already pre-processed digital grayscale images. The following descriptions are partially

build on the work of Burger and Burge [3] and Szeliski [37].

3.1 Notation and Conventions

Before we start with the theoretical background, we introduce the mathematical notations

used for images and image sequences throughout the thesis. We define images with binary

pixel values in the space

B = {0, 1}M×N , (3.1)

e.g. b ∈ B is a binary image of size M × N . A grayscale image, e.g. g, is defined in the

space

G = [0, 1]M×N , (3.2)

7
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therefore g ∈ G. We index binary respectively grayscale image at the position (i, j) via

bij resp. gij . For color images we need additional channels, so we expand the space,

C = G3. (3.3)

A color image c ∈ C is in the space [0, 1]3×M×N . We have three color channels and we

index color channels first, ckij is the k-th channel at the location (i, j). ck gives the k-th

color channel of the image c such that ck ∈ G. A sequence of grayscale images with length

T e.g. G ∈ GT is defined by

G = {gt}Tt=1, (3.4)

where a grayscale sequence is then indexed via Gtij , which gives the t-th frame at location

(i, j). A sequence of color images, e.g. C ∈ CT is defined by

C = {ct}Tt=1, (3.5)

where Ctkij corresponds to the t-th element in the sequence, the k-th channel at location

(i, j). Ct denotes the t-th element of C.

3.2 Digital Images

A digital image on our computer, smartphone, etc., is a regular arranged, rectangular grid

made up of uniform pixels. A pixel, picture element, is the smallest entity of a digital

image. Depending on the information the pixels of an image hold, we distinguish between

binary or black-and-white images b ∈ B, monochromatic or grayscale images g ∈ G and

color images c ∈ C. Each of the different images has a spatial size of M × N , meaning

an image spans a two-dimensional, regular rectangle with M rows and N columns. The

simplest form of images are black-and-white images b, or binary images. Here, each pixel

of the image is just able to hold 1 bit of information, resp. two different numeric intensity

values. This is used to distinguish between white (1) and black (0). Figure 3.1 visualizes

a black-and-white image (Fig. 3.1a) and a zoom (Fig. 3.1b), where individual pixels can

be seen.

3.3 Grayscale Images

When we use more bits of information for the pixels, we can represent e.g. different

shades of gray. Grayscale images g use typically 8 bits of information, which leads to 256

different intensity values. In this thesis we define a grayscal images g ∈ G. This implies

that we normalize the grayscale images to get values in the interval [0, 1], in order to have

floating point images. A grayscale image consists of a single channel, which represents the

brightness or intensity of the image. In Figure 3.2 we can see a grayscale variant of the

images in Figure 3.1.
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(a) (b)

Figure 3.1: Black-and-white image. (a) shows a blackswan in binary form. (b) gives a zoomed-in
look of the black-and-white image, where single pixels can be seen.

(a) (b)

Figure 3.2: Grayscale image. (a) shows a blackswan in grayscale. (b) gives a zoomed-in look of
the grayscale image, where single pixels can be seen.

3.4 Color Images

The next extension for images is to use multiple channels. Color images, for example,

use three or even more channels. We define a color image c with three channels, each

consisting of 8 bits of information, c ∈ C. Again, all channels are normalized in the range

of [0, 1]. Each of the channels now represents a color, a color difference, etc. The definition

depends on the used color space (Section 3.5). Figure 3.3 shows the color variant of the

images in Figure 3.1 and Figure 3.2.

3.5 Color Spaces

As already mentioned there are various color spaces. Each defines the individual channels

of color images in a different way. Some color spaces define the separate channels based on

the human perception, others use a definition based on display hardware. It depends on
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(a) (b)

Figure 3.3: Color image. (a) shows a blackswan in color. (b) gives a zoomed-in look of the color
image, where single pixels can be seen.

the scientific field to decide which color space to use. In Sections 3.5.1 - 3.5.4, we describe

some of the the most commonly used color spaces and specify the conversion rules between

them. We use the superscript for a color image c ∈ C to indicate the various color spaces.

cRGB means that the color image is in RGB color space.

3.5.1 RGB

Probably the most known color space is RGB. RGB uses the colors red, green and blue

(R,G,B) to encode all other colors. This color space is used for computer displays.

Displays utilize red, green and blue Light-Emitting Diodes (LEDs) to produce a huge

variety of colors. Also many image processing programs and Application Programming

Interfaces (APIs) use RGB as their standard definition of color images. RGB is an additive

color scheme. We consider a single pixel, when all color channels have no intensity, i.e.

(0, 0, 0), the resulting color is black. If the red channel has full intensity but the others

none (1, 0, 0), the color is red, whereas (1, 1, 1) defines white. Figure 3.4 illustrates the

color image from Fig. 3.3a in its individual channels in the RGB color space. One can see,

that the red beak of the blackswan has high intensity values (brighter) in the R-channel

(3.4a), whereas the intensity in G- and B-channel is low (darker).

Now follows the conversion from the RGB color space to grayscale images and vice

versa. Since we convert from a color space with three channels (RGB) to grayscale with

one channel, we loose information. Therefore, the inverse conversion does not result in

the original image (see Colorization Problem, Section 3.6). Given a color image in RGB

color space cRGB ∈ C, and the R-channel with index k = 1, G-channel with k = 2 and

B-channel with index k = 3, the conversion to a grayscale image g ∈ G for the location
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(a) (b) (c)

Figure 3.4: RGB channels. Illustration of the color image (Fig. 3.3a) in the individual RGB-
channels. (a) is the R-channel, (b) the G-channel and (c) is the B-channel.

(i, j) is the following:

RGB to Grayscale: gij = 0.299cRGB
1ij + 0.587cRGB

2ij + 0.114cRGB
3ij (3.6)

Grayscale to RGB: cRGB
1ij = cRGB

2ij = cRGB
3ij = gij . (3.7)

3.5.2 LAB

The LAB color space is more linear with respect to the human color perception. This

means that a change in a color value should result in about the same change in the

visual presentation. The LAB color space is widely used in professional photographic

applications. The L-channel specifies the luminosity, the A-channel measures the color

hue and saturation along the green-red axes and the B-channel specifies the color hue and

saturation along the blue-yellow axes. The channels contain relative values and refer to a

specified white point reference. Figure 3.5 visualizes the color image from Fig. 3.3a in the

LAB color space.

(a) (b) (c)

Figure 3.5: LAB channels. Illustration of the color image (Fig. 3.3a) in the individual LAB-
channels. (a) is the L-channel, (b) the A-channel and (c) is the B-channel.

The conversion from the RGB color space to the LAB color space requires a pre-

conversion into the XYZ color space. The XYZ color space is based on imaginary primary

colors, which are chosen such that all colors can be defined as a positive summation of
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them. The conversion of RGB to LAB is stated below. The inverse process, the conversion

from LAB to RGB, can be found in Burger et al. [3]. Given a color image in RGB color

space cRGB ∈ C, we define the intermediate conversion to cXYZ ∈ C and to cLAB ∈ C. For

all color spaces the first color channel stands for the first capitalized letter of the color

space, same as in Section 3.5.1. The conversions at location (i, j) are the following:

RGB to XYZ:

ĉXYZ
1ij

cXYZ
2ij

ĉXYZ
3ij

 =

0.412453 0.357580 0.180423

0.212671 0.715160 0.072169

0.019334 0.119193 0.950227

 ·
cRGB

1ij

cRGB
2ij

cRGB
3ij


cXYZ

1ij =
ĉXYZ

1ij

Xn
,where Xn = 0.950456

cXYZ
3ij =

ĉXYZ
3ij

Zn
,where Zn = 1.088754

(3.8)

XYZ to LAB:

ĉLAB
1ij =

116 · cXYZ
2ij

1
3 − 16, for cXYZ

2ij > 0.008856

903.3 · cXYZ
2ij , for cXYZ

2ij ≤ 0.008856

cLAB
1ij =

ĉLAB
1ij

100

cLAB
2ij =

500 · (f(cXYZ
1ij )− f(cXYZ

2ij )) + 128

255

cLAB
3ij =

200 · (f(cXYZ
2ij )− f(cXYZ

3ij )) + 128

255

f(t) =

{
t
1
3 , for > 0.008856

7.787 · t+ 16
116 , for t ≤ 0.008856.

(3.9)

This outputs 0 ≤ cLAB
1ij ≤ 1, 0 ≤ cLAB

2ij ≤ 1 and 0 ≤ 1. Hence, all channels again fit

within the interval [0, 1].

3.5.3 HSV

The initials in HSV stand for hue, saturation and value. This color space has a more

natural aspect regarding colors. Colors are not produced by addition or subtraction, but

in terms of hue and saturation. Hue is measured in an angular dimension. In Figure 3.6

the color image (Fig. 3.3a) is visualized in the HSV color space.

Now follows the conversion from RGB to HSV. The conversion from HSV to RGB,

can be found in Burger et al. [3]. Given a color image in RGB color space CRGB ∈ C we

convert to a color image in HSV, CHSV ∈ C at the location (i, j) by
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(a) (b) (c)

Figure 3.6: HSV channels. Illustration of the color image (Fig. 3.3a) in the individual HSV-
channels. (a) is the H-channel, (b) the S-channel and (c) is the V-channel.

RGB to HSV:

cHSV
3ij = max(cRGB

1ij , cRGB
2ij , cRGB

3ij )

cHSV
2ij =

{
cHSV

3ij −min(cRGB
1ij , cRGB

2ij , cRGB
3ij ), if cHSV

3ij 6= 0

cHSV
3ij , else

ĉHSV
1ij =


60(cRGB

2ij −cRGB
3ij )

cHSV
3ij −min(cRGB

1ij ,cRGB
2ij ,cRGB

3ij )
, if cHSV

3ij = cRGB
1ij

120 +
60(cRGB

3ij −cRGB
1ij )

cHSV
3ij −min(cRGB

1ij ,cRGB
2ij ,cRGB

3ij )
, if cHSV

3ij = cRGB
2ij ,

240 +
60(cRGB

1ij −cRGB
2ij )

cHSV
3ij −min(cRGB

1ij ,cRGB
2ij ,cRGB

3ij )
, if cHSV

3ij = cRGB
3ij

cHSV
1ij =


ĉHSV
1ij +360

360 , if ĉHSV
1ij < 0

ĉHSV
1ij

360 , else.

(3.10)

We achieve final output ranges: 0 ≤ cHSV
3ij ≤ 1, 0 ≤ cHSV

2ij ≤ 1, 0 ≤ cHSV
1ij ≤ 1. All three

color channels fit in the interval [0, 1].

3.5.4 YCbCr

YCbCr is a color space that is used for TV applications. YCbCr can be seen as a newer

version of the YUV color space, which was originally developed for television services.

The idea of the YCbCr color space is to have a separate brightness channel Y and two

independent color channels Cb and Cr, which carry the blue and red color difference

signals. All channels of the YCbCr JPEG standard, which we are using, fit in the interval

[0, 1]. Since this color space is used for JPEG files, it carries a high importance in digital

image processing. Its layout conveniently allows to apply image compression without being

noticed by the human visual system. Figure 3.7 visualizes the color image from Fig. 3.3a

in the YCbCr color space.

The conversion between RGB and YCbCr and vice versa is shown as follows. Given

a color image in RGB color space CRGB ∈ C we convert to a color image in YCbCr
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(a) (b) (c)

Figure 3.7: YCbCr channels. Illustration of the color image (Fig. 3.3a) in the individual YCbCr-
channels. (a) is the Y-channel, (b) the Cb-channel and (c) is the Cr-channel.

CYCbCr ∈ C at the location (i, j). It can be seen in Equation (3.6) that the formula

of the Y-channel is exactly the same as when converting from RGB to grayscale, see

Equation (3.11).

RGB to YCbCr:

cYCbCr
1ij = 0.299cRGB

1ij + 0.587cRGB
2ij + 0.114cRGB

3ij

cYCbCr
3ij = (cRGB

1ij − cYCbCr
1ij ) · 0.713 + 0.5

cYCbCr
2ij = (cRGB

3ij − cYCbCr
1ij ) · 0.564 + 0.5

(3.11)

YCbCr to RGB:

cRGB
1ij = cYCbCr

1ij + 1.402 · (cYCbCr
3ij − 0.5)

cRGB
2ij = cRGB

1ij − 0.714 · (cYCbCr
3ij − 0.5)− 0.344 · (cYCbCr

2ij − 0.5)

cRGB
3ij = cYCbCr

1ij + 1.772 · (cYCbCr
2ij − 0.5)

(3.12)

3.6 Colorization Problem

As already briefly mentioned in Section 3.5.1, there is an information loss when converting

from RGB (or any other multi channel color space) to grayscale. The reason for this is

that we convert from a space with three or more channels to a space with a single channel.

Therefore, the inverse conversion from grayscale to color does not result in the original

image. This problem is now defined as the colorization problem. The colorization problem

is an inverse and ill-posed problem. Most inverse problems in practice are ill-posed. An

ill-posed problem is a problem that doesn’t meet one of the three Hadamard criteria [10]

for being well-posed. These criteria are:

1. existence of a solution,

2. having an unique solution, and

3. having a solution that depends continuously on the parameters or input data.

For the colorization problem, we can see that there is no unique solution for recoloring

grayscale images. It can be seen in Figure 3.8, that two different color images, Fig. 3.8a
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and Fig. 3.8b, converted to grayscale, yield the same grayscale image Fig. 3.8c. Without

further knowledge (e.g. blackswan is black, leaves are green, etc.), both color images would

be appropriate solutions to the inverse problem of colorizing the grayscale image.

(a) (b) (c)

Figure 3.8: Colorization problem. When converting two color images, (a) and (b), into grayscale,
they achieve the same gray image (c). Therefore, the inverse problem of finding a colorization of
(3.8c) is ill-posed, since there is no unique solution.

We can see from the example in Figure 3.8 that we need additional information of the

image or scene to find a well-suited colorization. For image and video colorization, these

information can come from reference images, colored scribbles or the usage of trained Con-

volutional Neural Networks (CNNs), that recognize objects and have a color memorized

for these objects.

In the following chapters we propose methods to colorize grayscale images and se-

quences based on reference images.
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As a starting point, we decided to begin with the colorization of grayscale images. We

use a similar looking color reference image to colorize a grayscale image, so we work with

an example-based colorization method. The used reference image may need to contain all

objects that are in the grayscale image to perform a visual appealing colorization. We

decided to follow the approach of Gupta et al. [9] and incorporate the concept of OT into

this baseline.

The concept that Gupta et al. [9] are using in their work, is to generate a set of

features for each pixel of the grayscale image and a set of features for each pixel of the

reference color image. They use superpixels to achieve a semantic correct colorization.

For each superpixel they calculate a set of mean-features for all pixels located in the

superpixel. Given those two sets, a matching between each superpixel of the first set with

the superpixels of the second set is computed. Based on this matching, a color transfer

between the images, and therefore a recoloring of the grayscale image, is performed.

Given a target grayscale image gt ∈ G and a colored source frame cs ∈ C, we want to

find a colored version ct of gt. Here we use the superscript to differentiate between target,

gt and ct, and source cs. We write the colorization as a mapping TOT

TOT : (G,C)→ C,
(gt, cs) 7→ ct.

(4.1)

Figure 4.1 visualizes the concept we are following. After a pre-processing step we

extract and match features to achieve a colorization.

17
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Figure 4.1: Concept of image colorization using a color reference image. Given a grayscale image
gt and a color reference image cs, we extract for each image a feature set. We then match both
feature sets and perform a colorization ct of gt.

4.1 Approach

The following sections give an explanation of each individual block visualized in Figure 4.1.

4.1.1 Pre-processing

As a first step we convert both images gt and cs into the LAB color space (see Section 3.5.2).

First we convert the grayscale image gt to the LAB color space ĉt ∈ C. We do not write

the superscript LAB, since we define the color images to be in this space. The L-channel

of cs is comparable to the intensity of the grayscale image gt, resp. the L-channel of ĉt.

From now on we work with the L-channel of both images. We perform a linear mapping

of the color image cs in order to minimize differences in the L-channel via

cs1ij =
σt

σs
(cs1ij − µs) + µt, (4.2)

with cs1ij being the L-channel at position (i, j). µs is the mean and σs the standard

deviation of the L-channel of cs. µt is the mean and σt the standard deviation of the

L-channel of ĉt. For the L-channel of an image c ∈ C, µ and σ are given by

µ =
1

MN

M∑
i=1

N∑
j=1

c1ij , (4.3)
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and

σ =

√∑M
i=1

∑N
j=1(c1ij − µ)2

MN
. (4.4)

This linear mapping was introduced by Hertzman et al. [12]. It is a luminance transfor-

mation that brings the histograms of ĉt and cs into correspondence, without having the

side affects of a non-smooth mapping.

4.1.2 Statistical and Textural Features

We use different kinds of features for the matching. For statistical features we use the

luminance (L-channel), mean deviation in a local neighborhood, as well as the standard

deviation in a local neighborhood around a pixel. We additionally use simple textural

features, as introduced by Law [21]. We calculate all features for the L-channel of cs and

ĉt.

The mean deviation for a pixel is calculated within an n × n window around a pixel

using the L-channel. We introduce a kernel Kn×n ∈ Rn×n+ to calculate the mean and

standard deviation:

Kn×n =
1

n2

1 . . . 1
...

. . .
...

1 . . . 1

 . (4.5)

The mean deviation Iµn×n ∈ RM×N for all pixels in the L-channel of an image c ∈ C is

calculated via:

Iµn×n = |c1 − (c1 ∗Kn×n)|. (4.6)

For the standard deviation Iσn×n ∈ RM×N we again use a n × n window around a pixel.

The calculation for all pixels of the L-channel in c gives:

Iσn×n =
√
|(c1

2 ∗Kn×n)− (c1 ∗Kn×n)2| . (4.7)

For the final calculation we use a window of size 5× 5 pixels.

As already mentioned, the textural features are based on the work of Law [21]. They

give different responses based on the “structure” of the image. There are different filters

to detect edges (E), spots (S), levels (L) and ripples (R) of size 5:

E5 =
[
−1 −2 0 2 1

]
(4.8)

S5 =
[
−1 0 2 0 −1

]
(4.9)

L5 =
[
1 4 6 4 1

]
(4.10)

R5 =
[
1 4 6 −4 1

]
. (4.11)
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We apply a combination of these filters in a horizontal and vertical orientation to construct

a final filter of size 5 × 5. To get the corresponding filter responses, we convolve the L-

channel of our images with the combination of filters from (4.8) - (4.11), e.g. for a color

image c ∈ C we yield c1 ∗ E5
TS5, c1 ∗ L5

TS5, c1 ∗ E5
TL5 and c1 ∗ R5

TR5. We calculate

these responses for the images ĉt and cs.

4.1.3 Feature Descriptors

For even more features we use feature descriptors. There are many different types, e.g.

Scale-Invariant Feature Transform (SIFT), Speeded Up Robust Features (SURF), Oxford-

Visual Geometry Group (VGG), Gabor filters, etc. We decided to use SURF and Gabor

filters. These feature descriptors resp. filter banks are shortly described in the following

sections. We calculate the descriptors and responses for each pixel of the image, and not

just for salient points.

4.1.3.1 SURF

SURF was introduced by Bay et al. [2]. It represents a scale- and rotation-invariant feature

descriptor and its computation is fast compared to other descriptors. SURF is based on

the same principles as SIFT but simpler in terms of complexity. The definition of SURF

for an interest point is the following. The first step is the calculation of an orientation

in the circular neighborhood around the interest point. Then, a square region around

the interest point and oriented the same as the circular neighborhood is constructed.

This square region is described by extracting smaller sub-squares. For each sub-region a

weighted Gaussian wavelet response is calculated. These sub-region-wavelet responses are

used as the descriptor for the interest point. We calculate SURF for the L-channel of the

images ĉt and cs.

4.1.3.2 Gabor Filters

We additionally calculate the response of the L-channel of the images ĉt and cs to Gabor

filters ([25] and [27]). The Gabor filter has a real and an imaginary component and can

be defined in the complex space. We calculate responses with eight orientations, varying

in increments of iπ8 , with i ∈ {0, 1, . . . , 6, 7}. Additionally, we use five exponential scales

exp(i · π), with i ∈ {1, 2, 3, 4, 5}.

4.1.4 Superpixels

We use Simple Linear Iterative Clustering (SLIC)-superpixels as proposed by Achanta et

al. [1] to incorporate semantic information into our colorization procedure. Based on the

segmentation given by the superpixels, we combine the features of pixels that belong to

the same superpixel and calculate mean-features for that corresponding superpixel. We

calculate this mean-feature superpixel for ĉt and cs based on the individual L-channels.
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To increase the number of features for a mean-feature superpixel, we calculate the mean

luminance and the mean statistical features for its neighboring superpixels. This again

helps to add semantic information.

4.1.5 Feature Matching via Optimal Transport

Now that we have a set of features for the color reference image cs and the grayscale image

gt via ĉt, we are able to generate a matching between each individual superpixel of the

grayscale image and the superpixels of the color image. We can say that we want to match

the center of each superpixel from ĉt1 with a center of a superpixel of cs1.

We decided to use a matching approach based on OT . The problem of OT has originally

been proposed by Monge [26] in 1781 and deals with the optimal transportation and

allocation of resources. Later, Kantorovich [19] in 1942 proceeded with the initial concept

and refined Monge’s ideas.

We work with the discrete version of OT . OT deals with the problem of finding

an optimal transport plan Π ∈ RN×N+ from a source set X = {Xi}Ni=1 to a target set

Y = {Yi}Ni=1. We limit both sets to have N elements. The i-th row of the transport plan,

Πi, contains for all j the probability that Xi maps to Yj . To find the best assignment we

want to minimize

min
Π∈RN×N+

〈C,Π〉F s.t.

N∑
i=0

Πij = pj ,

N∑
j=0

Πij = qi, (4.12)

which is known as the Kantorovich relaxation of the optimal transport problem. In Equa-

tion (4.12), C ∈ RN×N+ is a cost matrix, where the cost between two samples Xi and Yj is

calculated via Cij = ||Xi−Yj ||2, and p,q ∈ RN are the marginal probability distributions

of Π. It holds that
∑N

i=0 pi = 1 and
∑N

i=0 qi = 1. 〈·, ·〉F is the Frobenius dot product and

it is defined as

〈C,Π〉F =
N∑
i=1

N∑
j=1

CijΠij . (4.13)

The solution of Equation (4.12) yields the bijective assignment

Π : X → Y, (4.14)

Xi 7→
N∑
j=1

ΠijYj . (4.15)

This means that a target point is a linear combination of source points. There are different

algorithms that solve this problem. In the following sections we present such methods,

like the Primal-Dual algorithm (Section 4.1.5.1) as well as the Sinkhorn-Knopp algorithm

(Section 4.1.5.2).
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4.1.5.1 Primal-Dual Algorithm

With the Primal-Dual algorithm we can solve problems of the form

min
x
f(Kx) + g(x), (4.16)

where f , g are convex lower-semicontinuous (l.s.c.) and ’simple’ functions, and K ∈ RM×N

is a bounded linear operator. We can rewrite the primal problem Equation (4.16) to a

saddle-point problem using the Fenchel conjugate function

min
x

max
y
〈Kx,y〉 − f∗(y) + g(x). (4.17)

Problems of the form Equation (4.17) can be solved with the Primal-Dual Hybrid Gradient

(PDHG) algorithm, as proposed by Chambolle and Pock [4],{
xk+1 = proxτg(x

k − τKT yk)

yk+1 = proxσf∗(y
k + σK(2xk+1 − xk))

, (4.18)

given an initial pair of primal and dual points (x0, y0) and step sizes τ, σ > 0. The

requirement στ ||K||2 < 1 guarantees convergence of the algorithm. Now we would like

to re-write the optimization problem in Equation (4.12) to a saddle-point problem, as in

Equation (4.17).

min
Π∈RN×N+

〈C,Π〉F s.t.

N∑
i=1

Πij = pj ,

N∑
j=1

Πij = qi

min
Π∈RN×N+

〈C,Π〉F s.t.
N∑
i=1

Πij = pj ,
N∑
j=1

Πij = qi, ∀ij : Πij ≥ 0

min
Π∈RN×N+

〈C,Π〉F s.t. Π1 = p, ΠT1 = q, ∀ij : Πij ≥ 0

(4.19)

with 1 as the one vector with size N . Here, we introduce the following variables x ∈ RN
2×1

+

which is Π flattened, and c ∈ RN
2×1

+ which is C flattened. This then leads to

min
Π∈RN×N+

〈C,Π〉F s.t. Π1 = p, ΠT1 = q, ∀ij : Πij ≥ 0

min
x∈RN2×1

+

cTx s.t. Ax = p Bx = q, ∀i : xi ≥ 0
, (4.20)
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with A =


1 0 · · · · · · 0

0 1 0 · · · 0
...

. . .
...

0 · · · 0 1 0

0 · · · · · · 0 1

 and B =
[
diag(1) diag(1) · · · diag(1)

]
,

with A,B ∈ RN×N
2

+ . We now introduce Lagrange multipliers λ, µ ∈ RN+ to express the

constraints.

min
x∈RN2×1

+

cTx s.t. Ax = p Bx = q, ∀i : xi ≥ 0

max
λ,µ

min
x∈RN2×1

+

cTx + 〈Ax− p, λ〉+ 〈Bx− q, µ〉+ δ≥0(x),
(4.21)

with

δ≥0(x) element-wise as δ≥0(xi) =

{
0, if xi ≥ 0

∞, else.
(4.22)

Now, we define y =

(
λ

µ

)
, y ∈ R2N×1

+ as the Lagrange multipliers, K =

(
A

B

)
, K ∈

R2N×N2

+ and w =

(
p

q

)
, w ∈ R2N×1

+ as the constraints, that gives us

max
λ,µ

min
x∈RN2×1

+

cTx + 〈Ax− p, λ〉F + 〈Bx− q, µ〉+ δ≥0(x)

max
y∈R2N×1

min
x∈RN2×1

+

cTx + 〈Kx−w,y〉+ δ≥0(x)

max
y∈R2N×1

min
x∈RN2×1

+

〈Kx,y〉 − 〈w,y〉+ cTx + δ≥0(x).

(4.23)

The comparison of the final result with the definition of the saddle-point problem

max
y∈R2N×1

min
x∈RN2×1

+

〈Kx,y〉 − 〈w,y〉+ cTx + δ≥0(x)

comp. min
x∈RN2×1

+

max
y∈R2N×1

〈Kx,y〉 − f∗(y) + g(x)
(4.24)

leads to:

f∗(y) = 〈w,y〉
g(x) = cTx + δ≥0(x).

(4.25)

The steps σ and τ are both set to the value 1
||K|| . This arises from the Lipschitz

constant. The initial primal point x0 is set to ∀i : x0
i = 1

N2 and the inital dual point y0 is
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set to ∀i : y0
i = 0. The proximal mappings of the Primal-Dual algorithm, Equation (4.18),

are listed in Appendix B.

4.1.5.2 Sinkhorn-Knopp Algorithm

The Sinkhorn-Knopp algorithm [34] arises from an entropic, regularized optimal transport

problem:

min
Π∈RN×N+

〈C,Π〉F + ε
N∑
i=1

N∑
j=1

Πij log Πij s.t.
N∑
i=1

Πij = pj ,
N∑
j=1

Πij = qi. (4.26)

Iterations of the Sinkhorn-Knopp algorithm are given by{
uk+1 = p

Mvk

vk+1 = q
MTuk+1 ,

(4.27)

with v0 = 1 as the one vector with size N and M = exp(−C
ε ), where the division is

element-wise. The transport plan Π can be computed for each iteration with

Πk = diag(uk) M diag(vk). (4.28)

Having a solution of Equation (4.26) we can still use Equation (4.15) to compute the

transport. Because of the entropic regularization we do not have a bijective mapping, but

it is possible that a new point is a combination of several source points. We choose to use

a winner-takes-it-all solution by using the mapping

Π : X → Y, (4.29)

Xi 7→ Yj∗ with j∗ ∈ arg max
j

Πij , (4.30)

which means that we use the match with the highest probability.

4.1.6 Colorization Using Optimization

We use the algorithm proposed by Levin et al. [22] to achieve a final coloration. Based on

the results of the matching from Section 4.1.5, we just color the centers of the superpixels

of gt. The colorization of the whole superpixels would achieve visually unpleasing results.

With the centers colored, we use Levin et al.’s algorithm [22] to color the whole image.

This algorithm was designed to perform the colorization of grayscale images by predefined

color scribbles, and we use the colored center of the superpixels as such. The principle of

this algorithm is that neighboring, similar bright or dark pixels should also have similar

color.
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4.1.7 Spatial Consistency

To improve the results of the image colorization from Section 4.1.6, especially around

object borders, we utilize spatial consistency. We perform image segmentation of ĉt1 based

on Felzenszwalb and Huttenlocher [7]. With the segmentation we sort out all segments

which contain less than three superpixels (from Section 4.1.4). For each of the segments

with more or equal than three superpixels in it, we perform a k-means (k = 2) clustering

of the color channels. If the count of the cluster is less than 25% of the overall count, then

we reassign the center of this clusters with the average color of the other cluster and again

perform the algorithm from Section 4.1.6. This spatial consistency optimization is done

only once to improve the final colorization ct.

4.1.8 Video Colorization with Bijective Assignment

The previously described method can be used to colorize a grayscale image sequence

G ∈ GT as well. With a given grayscale sequence G and a colored image cr, we want to

find a sequence of color images C ∈ CT where Ct corresponds to Gt. The extension of the

single image colorization to video sequences is done via Algorithm 1.

Algorithm 1: Video Colorization with Bijective Assignment

Input: G ∈ GT , cr ∈ C
Output: C ∈ CT , where Ct corresponds to Gt

1 Perform the steps from Section 4.1.1 - 4.1.4 for the whole sequence G as well as the
color image cr.

2 Generate the bijective assignment Π from Section 4.1.5 between cr and the first
grayscale frame G1.

3 Colorize frame G1 using Section 4.1.6 and Section 4.1.7 to achieve C1.
4 for t = 2→ T do
5 Use the previously calculated bijective assignment Π as a basis, look-up table

and then apply Section 4.1.6 and Section 4.1.7 to Gt.

4.2 Evaluation

We evaluate our approach visually. The used images are extracted from [9]. The imple-

mentation details are listed in Section 4.2.1 and the results are presented in Section 4.2.2.

4.2.1 Implementation Details

This approach was realized in Python and as additional packages we used OpenCV and

skimage. We use n segments = 2000 for the skimage implementation of the SLIC super-

pixels. For the Felzenswalz segmentation, also already implemented in skimage, we use

the following parameters: scale = 200, sigma = 0.4, min size = 10. The parameter ε for the
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Sinkhorn-Knopp algorithms is set to 0.17, p and q are chosen to be an uniform distribu-

tion, i.e. ∀i : pi = qi = 1
N . All following results were calculated with the Sinkhorn-Knopp

algorithm and the whole procedure was calculated on the Central Processing Unit (CPU).

4.2.2 Results

In the following sections we present the results of single image colorization (Section 4.2.2.1)

and video colorization (Section 4.2.2.2). The quality of the colorization is evaluated visu-

ally.

4.2.2.1 Image Colorization

Figure 4.2 visualizes the result of our described method for single image colorization. The

results for a variety of images are shown. It can be seen that there is a problem with the

colorization around object borders. This may be due to visually wrong matches between

the grayscale and the reference image. Also, the colorization of objects is not always

continuous, this can be seen in the first colorization example. Here, the color of the castle

is not white everywhere. There are blue areas, which lead to visually unpleasing results.

A reason for this may be the calculated segmentation with SLIC -superpixels. Another

factor, especially for this colorization example, may be the used reference image. The color

of the reference castle is darker than the grayscale input castle. The proposed method

may not be able to transfer this color to the grayscale image because of this difference.

This example showcases the importance of a proper color reference image to result in a

visual pleasing colorization.

4.2.2.2 Video Colorization

Figures 4.3 - 4.5 show results for the video colorization using our proposed method. For

the first two sequences we chose reference images that are not part of the sequence. The

reference image for the last image is an already colored frame of the sequence. Again, we

observe that the colorization for objects in a single frame is not always continuous and the

border problem is also present. By analyzing successive frames we notice flickering. This

may be due to the fact that we do not use any information from one frame to another. The

results for the sequence toddler, see Figure 4.5, suggests that when the reference image is

an already colored frame of the sequence, the colorization is visually more pleasing. The

other two sequences may achieve better results with other color reference images.

4.3 Conclusion

We proposed a novel image and video colorization approach motivated by the work of

Gupta et al. [9]. We adapted the original idea by introducing the method of OT into

the matching routine. Following the first initial results and comparing the run-time of



4.3. Conclusion 27

Input Colorization Result Reference

Figure 4.2: Colorization examples for various images. In every row a single colorization example
is shown. The images in the first column are target grayscale images gt. The right column shows
colored source images cs that are used as the color reference. In the middle column the colorization
result for each individual example is shown. The results were computed with the proposed method
and the Sinkhorn-Knopp algorithm. Implementation details can be found in Section 4.2.1. Images
are taken from [9].
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Figure 4.3: Colorization example for sequence castle. This figure visualizes the colorization of
a grayscale video sequence G (Input) with the help of a color reference image cr (Reference).
With the proposed method from Section 4.1.8, a color sequence C (Result) is calculated. The
results were achieved with the Sinkhorn-Knopp algorithm. Implementation details can be found
in Section 4.2.1. Sequence is taken from Giphy2.

2https://giphy.com/gifs/historyuk-history-riverhunters-river-hunters-1yMfsnXPwZptM2buUU,
Accessed: 4th May 2020

https://giphy.com/gifs/historyuk-history-riverhunters-river-hunters-1yMfsnXPwZptM2buUU
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Figure 4.4: Colorization example for sequence lion. This figure visualizes the colorization of
selected frames of a grayscale video sequence G (Input) with the help of a color reference image
cr (Reference). With the proposed method from Section 4.1.8, a color sequence C (Result) is
calculated. The results were achieved with the Sinkhorn-Knopp algorithm. Implementation details
can be found in Section 4.2.1. Sequence is taken from Giphy3.

3https://giphy.com/gifs/funny-lion-qPYcMv3bduwEg, Accessed: 4th May 2020

https://giphy.com/gifs/funny-lion-qPYcMv3bduwEg
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Figure 4.5: Colorization example for sequence toddler. This figure visualizes the colorization of
selected frames of a grayscale video sequence G (Input) with the help of a color reference image
cr (Reference) from the same sequence. With the proposed method from Section 4.1.8, a color
sequence C (Result) is calculated. The results were achieved with the Sinkhorn-Knopp algorithm.
Implementation details can be found in Section 4.2.1. Sequence is taken from [22].
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the different algorithms, we decided to just evaluate the Sinkhorn-Knopp algorithm. The

Primal-dual algorithm needs many iterations to converge. Also, we decided to calculate the

method on the CPU . Some of the procedures are computational expensive and a parallel

implementation on a Graphics Processing Unit (GPU) would increase the performance.

Aside from the high run-time, the results are quite promising and visually pleasing.

The problem of a non-continuous colorization and the object borders may be because of

a wrong segmentation from the SLIC -superpixels. Additionally, the used reference image

has to include all colors and correctly colored objects to obtain a sufficient colorization. To

achieve a flicker-free colorization of video sequences, additional information for subsequent

frames is needed.
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The approach with Optimal Transport (OT) was an appropriate entry in the field of

image colorization. In the following chapter we exploit the modern approach of CNNs

to overcome the problem of a long run-time. Additionally, we need to make sure that

the colorization of video sequences is coherent in subsequent frames and contentious for

objects.

The usage of CNNs is currently state-of-the-art for colorizing grayscale images and

videos. Based on our results from Chapter 4, we decided to switch our considerations to

the more modern approach of using CNNs. As Nielsen [28] mentions, CNNs are Artificial

Neural Networks (ANNs) with one or more convolutional layers. A convolutional layer

takes an image and a parametric kernel as input and convolves the whole image with

the kernel. Additionally, many different methods and techniques have been developed to

improve these networks. The Central Processing Unit (CPU) based implementation of

the described method from Chapter 4 has the downside of being slow. With the help of

different frameworks like TensorFlow or PyTorch we can efficiently generate CNNs on the

Graphics Processing Unit (GPU) and use its massive parallelism to speed up computations.

Our considerations are based on Schaub et al.’s [33] work. They split the task of video

colorization into a global and a local method. The local color transfer, coloring subsequent

frames, has the drawback of worsening through time, whereas the global color transfer,

coloring frames based on a common source image, lacks coloring details. The fusion of

both strategies overcomes the downside of each individual strategy.

We extend the approach of [33] and we introduce a colorization technique based on

33
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a forward and a backward path, see Figure 5.1. For this we use two colored frames per

scene, one at the beginning of the sequence and one at the end. Instead of one global

and one local color transfer (starting from the beginning) we utilize two global and two

local (starting from the beginning resp. starting from the end) color transfers. We choose

this concept to prevent the color fading over time as described in [33]. If there appear

new objects during the scene that are not part of the colored first frame, we would not be

able to achieve appropriate colorizations. But if these objects are contained in the newly

introduced last colored frame, we are now able to color these objects adequately. Since

we have two colored image frames from the sequence, we can categorize our task into an

example-based method, where we want to distribute the colors of the reference frames

onto the whole sequence. We also establish a consistency map for each individual color

transfer. This consistency map is a pixel-wise measure and it defines the certainty of the

image colorization. The combination of the different color transfer stages is done via the

help of a CNN . We test different CNN architectures and evaluate the models based on

ground-truth images.

... ...

Figure 5.1: Concept of video colorization. We use two color reference images at frame t = 1 and
t = T to colorize the whole grayscale video sequence of length T . Our method combines a forward
and a backward path, each consisting of a global and local color transfer. For the local stages, we
continuously propagate color onward.

5.1 Method

Our goal is to colorize a grayscale image sequence by transferring the colors of the first

and last frame throughout the sequence. With the introduced backward path we have five

CNN based parts to achieve the colorization: a global color transfer forward, a local color

transfer forward, a global color transfer backward, a local color transfer backward, and

the fusion of the previous segments, see Figure 5.2.

With a given grayscale image sequence with length T and G ∈ GT , we want to find a
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sequence of color images C ∈ CT using the already colored first frame C1 (corresponds to

G1) and last frame CT (corresponds to GT ), where Ct corresponds to Gt. We introduce a

mapping T , which maps from a grayscale sequence G and colored frames C1 and CT to a

colored sequence C:

T : (GT ,C,C)→ CT ,
(G,C1, CT ) 7→ C.

(5.1)

The colorization of e.g. grayscale frame Gt, using the colored reference frames C1 and CT
yields: Tt(Gt, C1, CT ) = Ct. T is the combination resp. fusion of different sub-mappings

via a CNN . A sub-mapping is also a mapping that produces intermediate results. We

also introduce a confidence sequence D ∈ GT , that measures the certainty of each sub-

mapping. A confidence sequence Dm of the sub-mapping m consists of Dm = {dmt }Tt=1,

where dmt is a pixel-wise measure of how certain we are, that the colorization Cmt of the

grayscale frame Gt from the sub-mapping m is correct. This confidence map ranges from

0 to 1, where 1 indicates that the colorization is accurate and 0 means the colorization is

inaccurate. We use these confidence maps as an additional input for our fusion routine to

improve the final colorization.

T can be written as the combination of its sub-mappings:

Tt(Gt, C1, CT ) = F(Tglobal(Gt, C1), Tlocal(Gt, Ct−1), Tglobal(Gt, CT ), Tlocal(Gt, Ct+1), Gt),

(5.2)

with Tglobal and Tlocal being sub-mappings. All sub-mappings and mappings T can be seen

as warping operators.

As seen in Equation (5.2), we can split this task into five subtasks, see also Figure 5.2:

1. Global color transfer forward: Starting from the initial colored frame C1 we transfer

its colors to the grayscale frame: Tglobal(Gt, C1) = (Ct, Dt)
G,f ,

2. Local color transfer forward: Starting from initial colored frame C1 we transfer

the colors frame-by-frame throughout the entire video (C1 → C2 → · · · → Ct−1):

Tlocal(Gt, Ct−1) = (Ct, Dt)
L,f ,

3. Global color transfer backward: Starting from the initial colored frame CT we trans-

fer its colors to the grayscale frame: Tglobal(Gt, CT ) = (Ct, Dt)
G,b,

4. Local color transfer backward: Starting from initial colored frame CT we transfer

the colors frame-by-frame throughout the entire video (CT → CT−1 → · · · → Ct+1):

Tlocal(Gt, Ct+1) = (Ct, Dt)
L,b

5. Fusion: combination of all previous subtasks: F(·).

Each individual subtask is explained in the following sections. We use superscripts to

define the sub-mappings that provides the intermediate results. E.g. CG,b ∈ CT defines a
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sequence of color images which was calculated with G, b, indicating the “global backward”

color transfer.

By analyzing the different color spaces (Section 3.5) and the problem we are facing,

we decided to work in the YCbCr color space. In this color space, grayscale images

can simply be encoded as Y-channel data. The formula for calculating the Y-channel in

YCbCr color space is the same as for converting images in RGB color space to grayscale

images. Furthermore, the conversion between RGB and YCbCr is much simpler than e.g.

LAB, and the task of colorizing grayscale images is more canonical when we use the given

grayscale images as the L-channel. With this knowledge we just need to estimate the Cb

and Cr channels.

Figure 5.2: Approach of video colorization. We split the colorization of the grayscale frame Gt

into four parts: the global color transfer in forward direction between the color image C1 and Gt,
the local color transfer in forward direction between Ct−1 and G1, as well as the global and local
color transfer in backward direction with CT and Gt, resp. Ct+1 and Gt. We then combine these
four parts and the grayscale image Gt in a separate fusion stage to achieve a final colorization Ct

of the grayscale frame Gt.

5.1.1 Global Color Transfer

We want to colorize objects in the grayscale video sequence coherently throughout the

video. In order to achieve this aim we use a global method. This global method extracts
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semantic information of the scene to transfer color in space (where are objects in a frame)

and time (where move objects during frames). This global, semantic color transfer is

essential for coloring dis- and reappearing objects. Subsequent-frame based methods would

loose the localization.

In Figure 5.3 the concept of the global color transfer can be seen. The basis for the

global color transfer is an already colorized reference image C1, from which we transfer

the color onto the grayscale images. We utilize a two-stage feature matching between

the grayscale variant G1 of our reference color image C1 and the grayscale target image

we want to color, e.g. Gt. We use a pre-trained CNN , a ResNet-101, that was trained

for image segmentation to extract coarse and fine image features. Based on the coarse

features we perform a coarse matching. We refine this initial matching using finer features

in a local neighborhood.

Following the previous notation, the global color transfer Tglobal, between a reference

color image C1 and a grayscale target image Gt, can be written as:

Tglobal : (G,C)→ (C,G)G,

(Gt, C1) 7→ (Ct, Dt)
G,f .

(5.3)

The resulting global color transfer from C1 to Gt, with t > 1 indicating forward

direction, gives: e.g. (Ct, Dt)
G,f = Tglobal(Gt, C1). Here we introduce the superscript G, f

to indicate forward global colorization.

We define a global optical flow in backward direction ŵG = (û, v̂). The optical flow

is the apparent motion in a sequence of images. It can be described by a vector field

that transforms one frame in a sequence into the next frame. For each pixel the optical

flow gives an estimate of motion [37]. û and v̂ are the components of the optical flow in

horizontal and vertical direction. ŵG is the optical flow from the target grayscale frame

Gt to the reference grayscale image G1:

G̃G,ft =W(G1, ŵ
G), (5.4)

where G̃G,ft should ideally be equal to Gt. Due to occlusions or strong motion the optical

flow can be wrong in some regions and therefore G̃G,ft may not be equal to Gt. W(p,w)

is defined as an operator that warps input p based on the optical flow w. The outcome

of this operator has the same dimensionality as the input p. The optical flow ŵG gets

calculated in the two matching stages. With this flow we are able to define our global

color transfer also as:

CG,ft =W(C1, ŵ
G). (5.5)

5.1.1.1 Feature Extraction

As already mentioned, the basis for the global color transfer is a CNN trained for image

segmentation. In our case we use a network trained for image segmentation and fine-tuned



38 Chapter 5. Colorization using CNNs

Figure 5.3: Concept of global color transfer. Given a grayscale image Gt and a reference color
image C1, we estimate the forward colorization CG,f

t of Gt via a two-stage feature matching. We
extract features of each grayscale variant of the input images. Then we perform a global, coarse
matching and a refinement in a local neighborhood to achieve the final colorization.

for semantic image segmentation, a ResNet-101 ([5] and [11]). ResNets rely on residual

functions (Figure 5.5) that increase accuracy without increasing the networks complexity.

We use this network to extract image features. We define a feature extraction function

E(g, l) 7→ Φg
l , that extracts features from a grayscale image g ∈ G at the layer l. With that

we extract coarse ΦGτ
lc

and fine features ΦGτ
lf

for both grayscale images, with τ = {1, t},
see Figure 5.4. The coarse features are extracted from a deep layer (lc) of the network,

whereas the finer features are extracted from a shallower layer (lf ). The CNN used for

feature extraction can be replaced with any other network trained for image segmentation.

... ...

Figure 5.4: Feature extraction using a pre-trained CNN . To extract the features ΦGt

lc
and ΦGt

lf
for the grayscale image Gt, which are needed for our two-stage feature matching, we use a pre-
trainied CNN trained for semantic image classification (here ResNet). The coarse features ΦGt

lc
are

extracted from a deep layer lc from the network, the fine features ΦGt

lf
from a shallower layer lf .
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Figure 5.5: Architecture of ResNet. ResNets rely on residual functions. Skip-connections are
used to jump over layers. Image is taken from [11].

5.1.1.2 Coarse Matching

Given the coarse features ΦG1
lc

of the reference grayscale image G1 and the coarse features

ΦGt
lc

of the target grayscale image Gt, we calculate a similarity SGt,G1((i, j), (i′, j′)) (Equa-

tion (5.6) with l = lc) for each location over the whole space. We calculate the matching

via Equation (5.7) to obtain the initial coarse matching C̃Gt and the initial coarse flow ŵG
c ,

see Figure 5.6.

SGt,G1((i, j), (i′, j′)) = ‖ΦGt
l (i, j)− ΦG1

l (i′, j′)‖22 (5.6)

C̃G,ftkij = C1kîĵ∀k ∈ {1, 2, 3} with (̂i, ĵ) = arg min
(i′∈[1. .M ], j′∈[1. .N ])

SGt,G1((i, j), (i′, j′)) (5.7)

We also obtain C̃G,ft via:

C̃G,ft =W(C1, ŵ
G
c ). (5.8)

Figure 5.6: Coarse matching. Given the coarse features ΦG1

lc
and ΦGt

lc
of G1 and Gt, we calculate

a matching based on finding the most similar feature. The initial, coarse matching C̃G,f
t is patchy.

After the coarse matching we notice outliers in the coarse flow ŵG
c , see Figure 5.7.

These outliers have the properties of salt-and-pepper noise. Therefore, we choose a median
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filter M3x3 to smoothen these outliers and to get a better initial matching. This median

filter M3x3 extracts for a pixel location (i, j) a patch of size 3 × 3, flattens the patch,

orders its values ascending and writes the central element to the location (i, j):

ŵG
c,f =M3x3(ŵG

c ). (5.9)

This operation is applied for each channel individually. Figure 5.8 shows the coarse flow,

filtered with the median filter. It can be seen that outliers are removed and that the flow

becomes smoother.

Figure 5.7: Unfiltered coarse flow. The calculated coarse flow ŵG
c has outliers due to the initial

matching. The optical flow is resized for illustrative purposes, left: horizontal component of ŵG
c ,

right: vertical component of ŵG
c .

Figure 5.8: Filtered coarse flow. We apply a median filter to the coarse flow (Figure 5.7) to
smooth out any outliers, we obtain ŵG

c,f . The optical flow is resized for illustrative purposes, left:

horizontal component of ŵG
c,f , right: vertical component of ŵG

c,f .
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5.1.1.3 Fine Matching

Based on the initial matching and the extracted, fine features ΦG1
lf

for G1 and ΦGt
lf

for Gt,

we warp ΦG1
lf

via ŵG
c,f to align both feature maps:

Φ̃G1
lf

=W(ΦG1
lf
, ŵG

c,f ). (5.10)

We then calculate another similarity SGt,G1((i, j), (i′, j′)) as in Equation (5.6), but with

l = lf , ΦGt
lf

and the warped feature map Φ̃G1
lf

. This time we compute the similarity just

for the local neighborhood, where we use a 25 × 25 neighborhood, i.e. i′ ∈ [i − 12 . .

i+ 12] with i ≥ 1 and i ≤ N resp. j′ ∈ [j − 12 . . j + 12] with j ≥ 1 and j ≤M . The final

matching is again calculated via Equation (5.7), which yields the final flow ŵG and the

final image CG,ft . This procedure can be seen in Figure 5.9.

Figure 5.9: Fine matching. Given the fine features Φ̃G1

lf
and ΦGt

lf
corresponding to G1 resp. Gt,

we calculate a matching based on finding the most similar feature in a local neighborhood, Region
Of Interest (ROI). After the refinement we achieve a smoother image CG,f

t .

5.1.1.4 Confidence

As already mentioned, we also introduce a confidence map. The confidence map is calcu-

lated by combining a confidence calculated via the optical flow and a confidence based on

the difference of single color channels.

For the optical flow confidence DG,f
t,flow we calculate a confidence based on the forward

and backward optical flow between two frames (via forward-backward consistency check).

Aside from the final global optical flow in backward direction ŵG from the target grayscale

frame Gt to reference grayscale image G1, we also calculated the global optical flow in

forward direction wG, from G1 to Gt. By warping the optical flow in forward direction
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wG using the optical flow in backward direction ŵG we obtain the flow w̃G,

w̃G =W(wG, ŵG), (5.11)

which should ideally be equal to the opposite optical flow in backward direction ŵG. Now

we estimate the confidence DG,f
t,flow via:

DG,f
t,flow = min(1,max(0, 1− |w̃G + ŵG|)). (5.12)

We clip DG,f
t,flow to fit within the range [0, 1] and for dis-occluded regions we set the confi-

dence to 0. For dis-occluded regions, it holds that:

|w̃G + ŵG| > 0.01(|w̃G|2 + |ŵG|2) + 0.5. (5.13)

The coefficients for Equation (5.13) were taken from [36]. An example optical flow confi-

dence can be seen in Figure 5.10. The confidence measure based on the difference of color

Figure 5.10: Flow confidence. Based on a forward-backward consistency check between the
optical flows ŵG and wG we calculate a flow consistency DG,f

t,flow. Higher values indicate a high
certainty that the color transfer is correct.

channels DG,f
t,color is defined by:

DG,f
t,color = exp(−100|C̃G,ft1 −Gt|), (5.14)

and an example can be seen in Figure 5.11. We calculated the final confidence map DG,f
t

for the colorization CG,ft with

DG,f
t = DG,f

t,flow ·D
G,f
t,color. (5.15)

The combined confidence from the optical flow (Figure 5.10) and the difference of color

channels (Figure 5.11) can be seen in Figure 5.12.
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Figure 5.11: Color difference confidence. As an additional confidence DG,f
t,color we calculate the

difference between the Y-channel of our estimation CG,f
t1 and Gt. We also apply an exponential

function to scale this confidence.

Figure 5.12: Combined confidence. We multiply the optical flow confidence (Figure 5.10) with
the color channel confidence (Figure 5.11) to achieve a combined confidence.

5.1.2 Local Color Transfer

We utilize the assumption that for subsequent frames, the intensity values for given pixels

do not change, but their location, to propagate colors from an already colored image to

following grayscale images. This baseline is true as long the illumination of the scene

does not change. We follow the concept shown in Figure 5.13. The colorization of the

grayscale frame Gt relies on the already established colorization Ct−1 of the previous

grayscale frame Gt−1. We obtain the optical flow between this two consecutive frames via

a pre-trained network, the PWC-Net, and estimate an initial warping of Ct−1. We then

use a feature matching routine to refine our warping in a local neighborhood to achieve a

final colorization CL,ft .

We can write the local color transfer Tlocal, between an already colored image Ct−1 and
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Figure 5.13: Concept of local color transfer. Given a grayscale image Gt and a previous reference
color image Ct−1 we estimate the colorization CL,f

t of Gt via a local optical flow estimation and a
local refinement.

its following grayscale target image Gt as:

Tlocal : (G,C)→ (C,D)L,

(Gt, Ct−1) 7→ (Ct, Dt)
L,f .

(5.16)

We define the colorization as a forward direction when we colorize from index t − 1 to t

and indicate this with the superscript L, f , e.g. Tlocal(Gt, Ct−1) = (Ct, Dt)
L,f .

As in Section 5.1.1, we define a local optical flow in backward direction ŵL = (û, v̂)

from the target grayscale frame Gt to reference grayscale image Gt−1:

G̃L,ft =W(Gt−1, ŵ
L). (5.17)

Ideally G̃L,ft should be equal to Gt. This optical flow gets calculated in two stages, via

the estimation of the already trained network and with the feature matching refinement.

With the final flow we are able to define our global color transfer also as:

CL,ft =W(Ct−1, ŵ
L). (5.18)

5.1.2.1 Flow Estimation

We use the PWC-Net, proposed by Sun et al. [35], to estimate the backward optical

flow ŵL
c from Gt to Gt−1 as well as the forward optical flow wL

c from Gt−1 to Gt. The

networks architecture can be seen in Figure 5.14. PWC-Net uses many different optical

flow estimation techniques, such as image pyramid, warping and cost volume in a deep

neural network to calculate the optical flow. The used PWC-Net can be replaced with any

other optical flow estimation method or network. Using ŵc we obtain an initial colorization

C̃L,ft

C̃L,ft =W(Ct−1, ŵ
L
c ), (5.19)
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and the warped grayscale image G̃Lt

G̃L,ft,c =W(Gt−1, ŵ
L
c ). (5.20)

Figure 5.14: Architecture of PWC-Net. Many different optical flow estimation techniques are
combined to calculate the optical flow. Image is taken from [35].

5.1.2.2 Fine Matching and Confidence

To refine our initial results we extract and match fine features for the images Gt and as in

Section 5.1.1.1 and Section 5.1.1.3. We end up with the final backward flow ŵL, the final

image CL,ft and the final forward flow wL. The calculation of the local confidence DL,f
t

follows Section 5.1.1.4.

5.1.3 Combination of forward and backward Paths

As previously mentioned, we do not just use a forward path but also a backward path.

Therefore, we calculate the global color transfer Tglobal(·, ·) (Section 5.1.1) in backward

direction: for the reference color image CT and grayscale images Gt for t < T , as well as

the local color transfer Tlocal(·, ·) (Section 5.1.2) for pairs of images (Gt, Ct+1). Each of the

color transfers Ti with i ∈ {global, local}, in forward and backward direction, estimates

now a color image Ct, as well as a confidence map Dt.

We also introduce an initial fusion Finit (Section 5.1.4.1), such that we have a defined

previous (t − 1) resp. next (t + 1) colorized image for every local color transfer. We also

use this initial fusion as an additional input for the fusion procedure. The final fusion for

a grayscale image Gt, given two initial color images C1 and CT , can now be written as:

Tt(Gt, C1, CT ) = F(Tglobal(Gt, C1), Tlocal(Gt, Ct−1),

Tglobal(Gt, CT ), Tlocal(Gt, Ct+1), Gt,Finit,t).
(5.21)



46 Chapter 5. Colorization using CNNs

Since we just work with the color channels (Cb, Cr) of our sub-mappings and not with

the Y-channel we adapt the fusion

Tt(Gt, C1, CT ) = F(S(CG,ft ), DG,f
t ,S(CL,ft ), DL,f

t ,

S(CG,bt ), DG,b
t ,S(CL,bt ), DL,b

t , Gt,S(CMt )),

Ct = Tt(Gt, C1, CT ),

(5.22)

with S(c) extracting the two color channels k = {2, 3} of c ∈ C and

CMt = Finit,t(C
G,f
t , DG,f

t , CG,bt , DG,b
t , CL,ft , DL,f

t ). If the color frame Ct−1 resp. Ct+1 is

not known, we use the result from the initial fusion for it:

Finit,t−1(CG,ft−1 , D
G,f
t−1, C

G,b
t−1, D

G,b
t−1, C

L,f
t−1, D

L,f
t−1) = CMt−1,

Finit,t+1(CG,ft+1 , D
G,f
t+1, C

G,b
t+1, D

G,b
t+1, C

L,f
t+1, D

L,f
t+1) = CMt+1.

(5.23)

The concept of the previously described fusion can be seen in Figure 5.15. We start by

calculating step 1 and recurrently propagate these calculations onward. When we reach the

last frame of our sequence, we start from behind and propagate backwards. A propagation

from frame 1 to frame T is defined as one run. Two runs mean that we propagate from

the frames in the sequence: 1→ T → 1.

5.1.4 Fusion

In this section we describe the methods to combine each individual local and global, for-

ward and backward intermediate result. We also define the initial fusion and the different

CNNs that we use for the final fusion. We also analyse different estimation methods.

5.1.4.1 Initial Fusion

We calculate an initial fusion in order to acquire a first result, which is then used for

later local color transfers. We calculate the fusion in a recurrent way and just for one

run. The calculation of the initial fusion Finit,t depends on the results of Tglobal(Gt, C1),

Tglobal(Gt, CT ) and Tlocal(Gt, Ct−1). These three transformations give three color estimates

CG,ft , CG,bt and CL,ft , as well as three corresponding confidence maps DG,f
t , DG,b

t and DL,f
t .

The initial fusion image CMt is calculated via the maximizing element of the confidence

maps at the location (i, j):

Finit,t(C
G,f
t , DG,f

t , CG,bt , DG,b
t , CL,ft , DL,f

t ) = CMt

CMtkij = Cm̂tkij∀k ∈ {1, 2, 3}, with

m̂ = arg max
m

Dm
ij

(5.24)

for m ∈ {(G, f), (G, b), (L, f)}. This means that we use the sub-mapping with the highest

confidence.
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..
.

Figure 5.15: Combination of forward and backward path. This example shows the combination
of the forward and backward path. We achieve the colorization C of the grayscale sequence G
(T = 4) by consecutively running the fusion procedure, starting with colorizing frame t = 2, G2,
(Step 1). Here, frame t = 1 is already colorized (C1) and it is used as the reference for the global
and local forward color transfer. The initial fusion of frame t = 3, CM

3 , is the reference for the
local color transfer in backward direction and the last color frame t = T , CT , is the reference for
the global color transfer backward. Based on these sub-results and the initial fusion of frame t = 2,
CM

2 , we get a new colorization for frame t = 2, C2, which is now the reference for the local forward
color transfer for frame t = 3 (Step 2), and so on.
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5.1.4.2 Learned Fusion

In this section we evaluate the different CNNs that we use to combine our results as

described in Section 5.1.3. The goal of the fusion can be seen in Figure 5.16. The input

consists of the previous results of the local and global color transfers, their color channels

plus confidences, and the initial fusion. The used CNNs just estimate the color channels.

For the Y-channel we simply copy the grayscale frame.

...

...

Figure 5.16: Concept of learned fusion. Given the sub-colorizations, their associating confidences,
the initial fusion and the grayscale variant for the frame Gt, we use a fusion network to estimate
the final colorization Ct.

As an initial network we decided to use a simple feed forward CNN (Figure 5.17). This

network consists of convolutions and Rectified Linear Unit (ReLU) activation functions.

To enlarge its receptive field, we progressively increase the dilation of the convolution, as

proposed by Yu and Koltun [43].

Figure 5.17: Simple network. This network uses convolutions and ReLU activation functions.
To increase the receptive field we use a statically increasing dilation.

The next tested network is a DenseNet proposed by Huang et al. [13]. In their work

they introduce a dense convolutional network, one block can be seen in Figure 5.18, in

which each layer is connected to every other layer in a feed-forward fashion. DenseNets are
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a combination of various blocks. For a single block, feature-maps of preceding layers are

used as input for the current layer. An advantage of this architecture is that the number

of parameter gets reduced compared to simpler CNNs that achieve similar results. We

use a DenseNet consisting of four blocks, each block having five convolution and ReLU

combinations and 20 output channels. As a transition layer between two blocks we also

use a convolution and ReLU combination and 60 output channels. The final prediction

layer is chosen to achieve an output of the same spatial dimension as the input, but with

2 channels for the color.

Figure 5.18: DenseNet. This figure visualizes a single DenseNet block. This block uses connec-
tions from each layer to every other in a feed-forward fashion. Feature-maps of preceding layers
are used as input for the current layer. Image is taken from [13].

In Figure 5.19 the proposed network of Ronneberger et al. [32] is illustrated. This CNN

architecture for image segmentation consists of a contracting path to capture context, and

a symmetric expanding path that enables precise localization. This U-net architecture

achieves good performance on different biomedical segmentation tasks and is also used

in various areas. We use a contracting and expanding path of depth 5 and 64 channels

for the output of the first contracting block. For the expanding block, we use bilinear

upsampling. As for the DenseNet model, the final prediction layer parameters are set to

achieve 2 channels. To get an output of the same spatial dimension as the input, we utilize

padding.

For all of the networks we use a joint instance normalization Equation (5.25) for the

inputs, introduced by Ulyanov et al. [38], to improve training and the prediction. We

use this method to normalize all e.g. Cb-channels together, and then use the computed

statistics to de-normalize the output later on.
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Figure 5.19: U-net. This network consists of a contracting and expanding path. Image is taken
from [32].

Let T ∈ Rm×n×o×p be an input tensor containing m batches, each with n channels

of size o × p. Ttijk denotes the tijk-th element of T . To calculate the joint instance

normalization T̃ we extract for each batch the common channels nY , nCb, nCr and nC ,

where nY , nCb, nCr correspond to the separate color channels of the YCbCr color space

and nC to the used confidences (#nY + #nCb + #nCr + #nC = n). The joint instance

normalization for a common channel ni is then calculated via:

µtni =
1

niop

∑
i∈ni

o∑
j=1

p∑
k=1

Ttijk

σ2
tni =

1

niop

∑
i∈ni

o∑
j=1

p∑
k=1

(Ttijk − µtni)2

T̃tijk =
Ttijk − µtni√
σ2
tni

+ ε
, with i ∈ ni,

(5.25)

were ε denotes a constant to prevent division by zero.

5.1.4.3 Estimation Methods

We try out two different estimation methods for the final fusion. The first method is that

we use the output of the CNN just as the new colors. Let T̂ ∈ Rm×2×o×p be the output of
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the CNN . We de-normalize the output using the computed statistics for the color channels

Cb and Cr from (5.25) and obtain T̂ ′:

T̂ ′t1jk = (T̂t1jk · σtnCb) + µtnCb

T̂ ′t2jk = (T̂t2jk · σtnCr) + µtnCr .
(5.26)

The final colorization (for one batch m = 1 and o = M , p = N) becomes Ct = C(Gt, T̂ ′),
with C being an operator that combines the grayscale image Gt and the two color channels

of T̂ ′ into an image Ct ∈ C.

The second method is that we use the output of the CNN as the change of color. This

residual estimation needs another de-normalization:

T̂ ′t1jk = T̂t1jk · σtnCb
T̂ ′t2jk = T̂t2jk · σtnCr .

(5.27)

In this case the final colorization, also for one batch (m = 1, o = M and p = N), is

Ct = C(Gt,S(CMt ) + T̂ ′).

5.1.5 Training

Hence we use already pre-trained networks in Section 5.1.1 and Section 5.1.2, we just need

to train our fusion CNN . We use the `1-norm evaluated on the difference of our estimation

Ct and the ground-truth color image Ĉt as a loss:

`1 = ‖S(Ct)− S(Ĉt)‖1. (5.28)

We compute the loss just on the color channels Cb and Cr. The Y-channel just gets copied.

5.2 Evaluation

We evaluate our approach with ground-truth colorized videos. A description of this dataset

follows in Section 5.2.1. The implementation details for the evaluation are stated in

Section 5.2.2. In Section 5.2.3 our results are presented.

5.2.1 Dataset

Our dataset consists of a total of 286 image sequences. The sequences were obtained from

the DAVIS2017 video dataset ([29] and [30]) and the rotoscoping data set Roto++ [23]. All

sequences are already colored and we perform the conversion to grayscale by ourselves. The

sequences have a different number of frames, reaching from about 20 frames to 150 frames.

Each image has a resolution of 480p (854× 480 pixels). For training and evaluation of the

different CNNs we split the sequences into 250 training sequences and 36 test sequences.
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The training is done using patches of size 128× 128 pixels, and we decrease the sequence

length for training to 20 frames.

5.2.2 Implementation Details

The different parameters used for the CNNs are listed in the corresponding model defini-

tions in Section 5.1.4.2. Additionally, we use the Adaptive Moment Estimation (ADAM)-

optimizer with a learning rate of 10−4 to train our models. For the coarse layer of the

feature extraction network, ResNet-101 ([5] and [11]), we use the output of the conv3-block

as lc. The fine layer lf is chosen as the output of the first conv1-block. For the fine layer

we set the stride of the first conv1-block to 1. This is done such the fine features have

the same spatial dimension as the input images. The project was realized in Python and

we used the PyTorch Application Programming Interface (API) to implement our CNN

based approach. The training and testing was done on a Nvidia R© GeForce Titan X.

5.2.3 Results

In the following sections we list the results of the different CNNs and estimation methods

for one run (Section 5.2.3.1) and the results of running several runs for the U-net model

with the residual estimation (Section 5.2.3.2).

As a quantitative measure we calculate the Peak Signal-To-Noise Ratio (PSNR)-

value (5.29) in dB, between ground-truth color image ĉ ∈ C and the estimation c ∈ C
in the YCbCr color space. To calculate the PSNR-value, we need to define the Mean

Squared Error (MSE) for color images,

MSE =
1

3MN

3∑
k=1

M∑
i=1

N∑
j=1

(ckij − ĉkij)2

PSNR = 10 · log10(
vmax

2

MSE
),

(5.29)

with vmax being the maximum possible pixel value for ĉ. It holds that higher PSNR-values

indicate a quantitatively better colorization.

5.2.3.1 Comparison CNNs and Estimation Methods

Table 5.1 gives a quantitative evaluation of the different fusion networks and estimation

methods, each trained for one run, as well as the initial fusion (Section 5.1.4). We calculate

the average PSNR value over all frames of each test sequence. The results show that the

U-net residual model achieves the highest PSNR number, closely followed by the normal

U-net estimation method. Compared to the initial fusion all CNN models boost this initial

results. As for the learning based fusion procedures, the simple feed forward CNN , with

both estimation methods, performs worst.
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Model
initial
fusion

U-net DenseNet Simple
U-net

residual
DenseNet
residual

Simple
residual

Average
PSNR

37.55 39.28 39.20 38.93 39.30 39.10 38.57

Table 5.1: Comparison of different CNNs regarding the average PSNR over all frames. The
PSNR-values (dB) of the different CNNs and estimation methods calculated on the test set are
listed.

The overall best architecture, U-net residual, also performs the best by evaluating

average PSNR value over the first N frames, see Figure 5.20. The U-net and DenseNet

networks, both without residual estimation, perform slightly worse. Again, it can be seen

that the initial fusion performs worst.
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Figure 5.20: Comparison of different CNNs and estimation methods regarding the average PSNR
over first N frames. The average PSNR (dB) over the first N frames is calculated for the different
networks and estimation methods.

The average PSNR value per frame (Figure 5.21) is also in line with the previous

results. It can also be seen, that there is a slight increase at the end of the curve. This

may be due the fact, that we reach the end of the sequences, where we can transfer colors

from the reference image. The results in Fig. 5.20 and 5.21 are just estimated over the

first 50 frames. With many test sequences longer than 50 frames, these results can not

indicate the impact of our proposed method regarding the use of second reference image

at the end of the sequence. Figure 5.22 gives an overview of the calculated PSNR per

frames for various example sequences. For these sequences we can see an improvement of
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Figure 5.21: Comparison of the average PSNR per frame for different CNNs and estimation
methods. The average PSNR (dB) is calculated per frame for different CNNs and estimation
methods on the test set.

the PSNR when reaching the end of the sequence. The corresponding colorization results,

achieved with the U-net residual estimation method, can be seen in Figure 5.23 - 5.26. We

can see an improvement of the learned fusion compared to the initial fusion. The learned

fusion is able to remove artifacts that are part of the initial fusion results.

5.2.3.2 U-Net-Residual: Multiple Runs

Following prior results, we decided to evaluate the U-net residual estimation model by

training this method for two successive runs. We train the model from frame 1→ T and

then train from frame T → 1, this means we train for one forward run and one backward

run. Due to memory and time restrictions, we estimated temporary results after the first

training run and based the training of the second run on them. We then recurrently

estimate the colorization for a total of four runs and compare the results after each run.

As can be seen in Table 5.2, we achieve the best results after 2 runs. From run 1 to run 2

there is an improvement, from run 2 onward, the average PSNR value over all frames and

all sequences decreases.

By inspecting the average PSNR over the first N frames in Figure 5.27, we can see

that for the first 10 and 20 frames the best results are achieved with 3 runs. For all other

intervals of frames the best results are achieved with 2 runs.

Figure 5.28 visualizes the average PSNR value per frame for the U-net residual ap-

proach trained for multiple runs. Again, we can see that with 2 runs we achieve the overall

highest PSNR values. With a higher run number there is a static decrease in the perfor-

mance. The evaluation after 1 run shows the worst results for the first 20 frames. For
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(a) (b)

(c) (d)

Figure 5.22: PSNR value per frame for individual sequences for different CNNs and estimation
methods. (a): car-race, (b): demolition, (c): lions, (d): orchid. PSNR in dB.

later frames, the evaluation after 1 run starts to achieve better results than the evaluation

after 3 and 4 runs. As in Section 5.2.3.1, the results in Figure 5.27 and 5.28 are just

estimated over the first 50 frames. Therefore, these results can not indicate the impact

of our proposed method regarding the use of second reference image at the end of the

sequence, for sequences longer than 50 frames.

Figure 5.29 gives an overview of the calculated PSNR per frames for various example

sequences. Again, we can seen an increasing PSNR value when reaching the end of the

sequence. The corresponding colorization results, achieved with the U-net residual esti-

mation method evaluated with 2 runs, can be seen in Figure 5.30 - 5.33. Figure 5.34

illustrates the colorization results for one frame of various sequences after different num-

ber of runs. The sequence chamaleon experiences an improvement for the colorization of
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Input
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Colorization
Result

Ground-truth

Reference
(t = 0)

Grayscale Initial Fusion Result Ground-truth
(t = 7) (t = 7) (t = 7) (t = 7)

Grayscale Initial Fusion Result Ground-truth
(t = 15) (t = 15) (t = 15) (t = 15)

Grayscale Initial Fusion Result Ground-truth
(t = 23) (t = 23) (t = 23) (t = 23)

Reference
(t = 30)

Figure 5.23: Colorization example for sequence car-race. The first column shows the input data.
Here, the first (t = 0) and last (t = 30) frames are already colorized. The second column illustrates
the results from the initial fusion. Our proposed method, with the U-net residual model, achieves
the results in the third column. The last column visualizes the ground-truth color images. Sequence
is taken from the test dataset.
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Reference
(t = 0)

Grayscale Initial Fusion Result Ground-truth
(t = 25) (t = 25) (t = 25) (t = 25)

Grayscale Initial Fusion Result Ground-truth
(t = 50) (t = 50) (t = 50) (t = 50)

Grayscale Initial Fusion Result Ground-truth
(t = 75) (t = 75) (t = 75) (t = 75)

Reference
(t = 91)

Figure 5.24: Colorization example for sequence demolition. The first column shows the input
data. Here, the first (t = 0) and last (t = 91) frames are already colorized. The second column
illustrates the results from the initial fusion. Our proposed method, with the U-net residual model,
achieves the results in the third column. The last column visualizes the ground-truth color images.
Sequence is taken from the test dataset.



58 Chapter 5. Colorization using CNNs

Input
Initial
Fusion

Colorization
Result

Ground-truth

Reference
(t = 0)

Grayscale Initial Fusion Result Ground-truth
(t = 25) (t = 25) (t = 25) (t = 25)
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(t = 75) (t = 75) (t = 75) (t = 75)

Reference
(t = 95)

Figure 5.25: Colorization example for sequence lions. The first column shows the input data.
Here, the first (t = 0) and last (t = 95) frames are already colorized. The second column illustrates
the results from the initial fusion. Our proposed method, with the U-net residual model, achieves
the results in the third column. The last column visualizes the ground-truth color images. Sequence
is taken from the test dataset.
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(t = 0)

Grayscale Initial Fusion Result Ground-truth
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(t = 41) (t = 41) (t = 41) (t = 41)
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Figure 5.26: Colorization example for sequence orchid. The first column shows the input data.
Here, the first (t = 0) and last (t = 56) frames are already colorized. The second column illustrates
the results from the initial fusion. Our proposed method, with the U-net residual model, achieves
the results in the third column. The last column visualizes the ground-truth color images. Sequence
is taken from the test dataset.
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Runs 1 2 3 4

Average
PSNR

39.00 39.14 39.05 38.91

Table 5.2: Comparison of the U-net residual model for different runs regarding the average PSNR
over all frames. The PSNR-values (dB) of the U-net residual model for different runs calculated
on the test set are listed.
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Figure 5.27: Comparison of different runs for the U-net residual model regarding the average
PSNR over first N frames. The average PSNR (dB) over the first N frames is calculated.

the branches with higher runs, but artifacts appear on various leaves. The results show

that for the sequence golf the colorization is getting worse with an increasing run number.

Wrong colorizations from the initial fusion get worse with higher run numbers. For the

sequence gym, it can be seen that the color of the training bag is getting more intense

with higher runs and artifacts from the initial fusion start to disappear. The sequence

ocean-birds undergoes smaller alterations. The color of the water changes to a slightly

more blue hue with increasing runs.

5.3 Conclusion

In this chapter we introduced a novel approach for colorizing grayscale sequences. Our

considerations are based on the work of Schaub et al. [33]. We modified the global and

local color transfer and added an additional backward path to the colorization routine.

To improve the final colorization we introduced a confidence map for each individual
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Figure 5.28: Comparison of the average PSNR per frame for different the U-net residual model
for different runs. The average PSNR (dB) is calculated per frame for the U-net residual model
over different runs on the test set.

sub-colorization. We added and tried different fusion CNNs to combine the separate col-

orization results and their associated confidence. In terms of PSNR measures between

ground-truth and estimated colorization, the proposed method with the U-net fusion net-

work and the residual estimation method achieved the best results. On our test set this

network achieves 39.30dB. From the results in Table 5.1 we can see that each individual

fusion network boosts the results of the initial fusion. As can be seen in the colorization

results for the U-net residual model, Figure 5.23 - 5.26, the learned fusion is able to remove

artifacts that are part of the initial fusion. The training of the U-net fusion network and

the residual estimation method for two successive runs (one forward run and one back-

ward runs) achieves best results with an estimation of the colorization after 2 runs. Here

we achieve a PSNR measure of 39.14dB. After the second run we steadily achieve worse

results. The achieved PSNR values for the run variation are all lower than the PSNR mea-

sures attained with the U-net and U-net residual method trained for 1 run, see Table 5.1.

This may be due to the repeated residual estimation method that occurs after each run.

The results in Figure 5.34 affirm the worsening of the colorization after each run. It can be

seen that artifacts start to appear for some sequences and with each run they get worse.

In each run, the fusion from the previous run is changing and the network may not be able

to sufficiently learn this input variation. Also, the subsequent local color transfers rely on

the previous fusion results, which may lead to an error propagation. The introduction of

a confidence for the initial and learned fusion may help to overcome this behavior. Also a

training without the need of computing intermediate results may improve these recurrent

method. By comparing the PSNR measure for single sequences we can see that we achieve

high numbers at the beginning and the end of sequences. This is due to the fact that the
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(a) (b)

(c) (d)

Figure 5.29: PSNR value per frame for individual sequences for the U-net residual model for
different runs. (a): chamaleon, (b): golf, (c): gym, (d): ocean-birds. PSNR in dB.

first and last image of the sequence are already colorized and the color propagation around

these images is more correct. The additional reference image at the end of the sequence

improves the color fading. This behavior can be seen in the “bathtub”-like looking curves

in Figure 5.22 and Figure 5.29. More complex fusion networks may achieve better results,

but we were limited by the memory size of our GPU . During training the memory for two

versions of our CNN was allocated. The use of GPUs with larger memory, and therefore

more complex CNNs, may achieve better results. For all sequences we can say that the

colorization achieves better results regarding the PSNR, the less motion there is. Addi-

tionally, if new objects appear and disappear during the sequence, the proposed method

is not able to colorize these objects in the right way. The method uses color from similar

semantic looking objects. To sum up, our proposed method achieves visually appealing
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Figure 5.30: Colorization example for sequence chamaleon. The first column shows the input
data. Here, the first (t = 0) and last (t = 84) frames are already colorized. The second column
illustrates the results from the initial fusion. Our proposed method, with the U-net residual model
and 2 runs, achieves the results in the third column. The last column visualizes the ground-truth
color images. Sequence is taken from the test dataset.
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Figure 5.31: Colorization example for sequence golf. The first column shows the input data. Here,
the first (t = 0) and last (t = 78) frames are already colorized. The second column illustrates the
results from the initial fusion. Our proposed method, with the U-net residual model and 2 runs,
achieves the results in the third column. The last column visualizes the ground-truth color images.
Sequence is taken from the test dataset.



5.3. Conclusion 65

Input
Initial
Fusion

Colorization
Result

Ground-truth

Reference
(t = 0)

Grayscale Initial Fusion Result Ground-truth
(t = 15) (t = 15) (t = 15) (t = 15)

Grayscale Initial Fusion Result Ground-truth
(t = 30) (t = 30) (t = 30) (t = 30)

Grayscale Initial Fusion Result Ground-truth
(t = 45) (t = 45) (t = 45) (t = 45)

Reference
(t = 59)

Figure 5.32: Colorization example for sequence gym. The first column shows the input data.
Here, the first (t = 0) and last (t = 59) frames are already colorized. The second column illustrates
the results from the initial fusion. Our proposed method, with the U-net residual model and 2
runs, achieves the results in the third column. The last column visualizes the ground-truth color
images. Sequence is taken from the test dataset.
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Result
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(t = 0)

Grayscale Initial Fusion Result Ground-truth
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Figure 5.33: Colorization example for sequence ocean-birds. The first column shows the input
data. Here, the first (t = 0) and last (t = 34) frames are already colorized. The second column
illustrates the results from the initial fusion. Our proposed method, with the U-net residual model
and 2 runs, achieves the results in the third column. The last column visualizes the ground-truth
color images. Sequence is taken from the test dataset.
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Figure 5.34: Run variation examples. This figure visualizes the colorization of selected frames of
various sequences after a certain number of runs. The first row shows the groundt-truth coloriza-
tions and the second row the initial fusion. The other rows illustrate the colorization results after
different numbers of runs. Each column represents a frame from a different sequence. Sequences:
chamaleon, golf, gym, ocean-birds (from left to right). The results were achieved with the U-net
residual model trained for 2 runs. Sequences are taken from the test set.

results.





6
Conclusion and Outlook

6.1 Conclusion

In this thesis we defined the problem of image colorization. We analyzed how the loss

of information leads to an ill-posed inverse problem. Without additional information the

solution of the colorization problem is ambiguous. We stated different methods and gave

an literate review of developed approaches to tackle this issue.

We started our considerations for image colorization based on the work of Gupta et

al. [9] and added the concept of Optimal Transport (OT). We used OT to estimate a

bijective assignment to transfer the colors of a reference image to the grayscale image.

Based on the initial results we extended this approach to the colorization of grayscale

sequences. Here we used the pre-calculated bijective assignment from the first frame

of the sequence as a look-up-table to color all of the other images. Due to the high

computational effort on the Central Processing Unit (CPU) and not satisfactory results,

we decided to switch to a Graphics Processing Unit (GPU) based approach with the use

of Convolutional Neural Networks (CNNs).

We used the work of Schaub et al. [33] as a starting point. They used a combination of

local and global procedures to achieve a final colorization of a grayscale sequence, given an

initial colored first frame. We adapted both sub-strategies. We calculated the local color

transfer with the help of an optical flow estimation method and refined the colorization

in a local neighborhood. The global color transfer was improved by smoothing the initial

coarse colorization with a median filter. We introduced a second reference image as the

last frame of the sequence to the colorization pipeline. With this additional color image,

we have the opportunity to calculate the colorization in two directions, from the first frame

to the last and vice versa. The final colorization is now based on four intermediate results.

For each of these sub-results we introduce a confidence map, which is a per-pixel measure

that counts for the certainty of the individual colorization. We decided to test various

CNNs to combine the intermediate results. We improved the final colorization by using

a residual estimation method. The fusion CNN is trained to compute a change of color.
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For this estimation method we introduced an initial fusion, that calculates a colorization

based on the sub-results and the confidence maps. The achieved results suggests, that

the proposed method is not able to colorize appearing and disappearing objects that are

not included in the reference images but apart from that, the results are promising. A

recurrent estimation of the colorization with the U-net residual model adds artifacts. The

introduction of a confidence for the initial fusion as well as for the results of the learned

fusion would probably help to overcome this behavior. Altogether, we introduced a novel

approach for coloring grayscale sequences. The proposed method achieves visual pleasing

results.

6.2 Future Work

The lack of computational efficiency of the colorization approach with OT computed on

the CPU could be enhanced with a GPU implementation. A parallel computation would

drastically reduce the run-time of this method. An improvement of the final results may

only be achieved by adding extra information from other reference images or using a

frame-to-frame colorization.

Additionally, the approach of using CNNs may also be improved by using extra color

reference images. A recurrent estimation over multiple runs can be enhanced with the

introduction of a confidence for the initial and learned fusion. Also, training the model

for multiple runs, without the need of computing intermediate results due to memory or

time limitations, could enhance the recurrent method. A single network that calculates

the whole colorization pipeline would probably reduce computational time. The usage of

colorized non-sequence frames would help to colorize objects in the sequence that are not

part of the reference images. The colors of newly appearing and disappearing objects can

then be transferred from these color images. Another possibility is the direct assignment

of color to these objects. Here, the user would have to colorize the objects or make colorful

scribbles. The network then should propagate these colors throughout all frames where

these objects are included.



A
List of Acronyms

ADAM Adaptive Moment Estimation

ANN Artificial Neural Network

API Application Programming Interface

CNN Convolutional Neural Network

CPU Central Processing Unit

GPU Graphics Processing Unit

l.s.c. lower-semicontinuous

LED Light-Emitting Diode

MSE Mean Squared Error

OT Optimal Transport

PDHG Primal-Dual Hybrid Gradient

PSNR Peak Signal-To-Noise Ratio

ReLU Rectified Linear Unit

ROI Region Of Interest

SIFT Scale-Invariant Feature Transform

SLIC Simple Linear Iterative Clustering

SURF Speeded Up Robust Features

VGG Visual Geometry Group
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B
Derivations for Primal-Dual Algorithm

B.1 Proximal Mappings

This section shows the calculation of the proximal mappings, that are needed to calcu-

late the Primal-Dual Hybrid Gradient (PDHG) algorithm Equation (4.18). The needed

functions are given in Equation (4.25).

proxτg(z) = arg min
u

g(u) +
1

2τ
||u− z||22

= arg min
u

cTu + δ≥0(u) +
1

2τ
||u− z||22

(B.1)

Now we make a distinction of cases and evaluate the arg min element-wise:

• for ui > 0:

arg min
ui

ciui + 0 +
1

2τ
||ui − zi||22

ci +
1

τ
(ui − z1) = 0

ui = zi − τci > 0⇒ zi > τci

(B.2)

• for ui = 0:

⇒ci + [−∞, 0] +
1

τ
(ui − zi) = 0

ui = zi − τci + τ [0,∞] = 0⇒ zi = τci + τ [−∞, 0]

⇒zi > −∞
⇒zi < τci

(B.3)
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• for ui < 0:

⇒∞⇒ n.def. (B.4)

Combining the previous results, we get:

proxτg(zi) =

{
0 if zi > −∞ and zi < τci

zi − τci otherwise
, (B.5)

which is calculated element-wise.

The deviation of the other proximal mapping gives:

proxσf∗(z) = arg min
u

f∗(u) +
1

2σ
||u− z||22

= arg min
u
〈w,u〉+

1

2σ
||u− z||22

= arg min
u

wTu +
1

2σ
||u− z||22

= w +
1

σ
(u− z) = 0

⇒u = z− σw.

(B.6)

As the final result we get:

proxσf∗(z) = z− σw. (B.7)
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