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Abstract

Applications for mobile devices constantly interact with a multitude of sensors,
communication networks, and personal user data. While this paves the way
for many innovative use-cases, mobile applications also bear the potential to
compromise the security and privacy of user passwords, encryption keys, and
other sensitive information. Due to the increasing integration of mobile devices
into our daily lives, it is crucial to thoroughly assess and measure the risks
associated with entrusting sensitive data to mobile applications.

Heterogeneous runtime environments, permission systems, and the absence of
firewalls and powerful anti-virus solutions do not only expose mobile applications
to new attack vectors but also require different assessment strategies. The rising
complexity and size of nowadays applications impede conclusive security analyses
and often limit inspections to single implementation aspects. If a flaw is found,
it still needs to be tracked down using manual verification. Some flaws may turn
out to be bad practice but not undermine the overall security level. Others could
have a serious impact. The distinction of these is not always trivial.

With this thesis, we contribute to a more sophisticated understanding of the
implementation and security-critical behavior of Android and iOS applications.
Rather than evaluating only the existence of problematic program statements, our
research meets the requirements to exactly pinpoint security-relevant weaknesses,
tackles code transformation techniques that impede effective fingerprinting and
similarity checks, and captures the semantics of source code and app metadata.
We present novel analysis solutions to disclose privacy-invasive leaks of passwords
and to precisely uncover improper usage of crypto APIs on Android and iOS.
To assess and measure the similarity of code, we elaborate technically astute
comparison strategies that successfully tackle code obfuscation. Finally, we
leverage advanced neural networks to describe the purpose of applications based
on their implementation and to understand privacy awareness in app descriptions.

The outcome of this work represents a notable contribution towards a holistic
analysis of mobile applications. It helps researchers and users to evaluate the
impact of personal data being supplied to mobile programs and to foster an
understanding of what is actually executed within mobile applications.
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Kurzfassung

Anwendungen für mobile Betriebssysteme interagieren ständig mit einer Vielzahl
von Gerätesensoren, Netzwerken und persönlichen Nutzerdaten. Während dies
den Weg für viele innovative Anwendungsfälle ebnet, können mobile Anwendungen
auch die Sicherheit und die Schutzfunktion von Passwörtern, kryptographischen
Schlüsseln und anderen vertraulichen Informationen gefährden. Angesichts der
zunehmenden Integration mobiler Geräte in unser tägliches Leben ist es essentiell,
die Risiken, die mit dem Anvertrauen sensibler Daten an mobile Anwendungen
verbunden sind, gründlich zu untersuchen und zu bewerten.

Heterogene Laufzeitumgebungen, Berechtigungssysteme, sowie das Fehlen von
Firewalls und leistungsfähigen Antiviren-Lösungen setzen Apps nicht nur neuen
Angriffsvektoren aus, sondern erfordern auch neu gedachte Bewertungsstrategien.
Die zunehmende Komplexität und Größe heutiger Anwendungen erschweren
schlüssige Sicherheitsanalysen und reduzieren sie häufig auf einzelne Aspekte in
Implementierungen. Wird ein Problem festgestellt, muss es nach wie vor manuell
verifiziert werden. Dabei kann es vorkommen, dass sich einzelne Mängel als
schlechte Praxis herausstellen, jedoch nicht das Sicherheitsniveau an sich unter-
minieren. Andere Schwächen wiederum können schwerwiegende Auswirkungen
haben. Eine genaue Einordnung ist dabei nicht immer einfach möglich.

Mit dieser Arbeit tragen wir zu einem differenzierteren Verständnis der
Implementierung und des sicherheitskritischen Verhaltens von Android- und iOS-
Apps bei. Anstatt nur die Existenz problematischer Programmteile zu überprüfen,
erfüllt unsere Forschung die Anforderungen, sicherheitsrelevante Schwachstellen
genau zu lokalisieren, befasst sich mit Code-Transformations-Techniken, welche
ein exaktes Erfassen und Ähnlichkeitsprüfungen erschweren, und erfasst die
Semantik von Quellcode und Metadaten von Anwendungen. Wir präsentieren
neuartige Analyselösungen, um Datenlecks von Passwörtern aufzudecken und
die unsachgemäße Verwendung von Krypto-APIs unter Android und iOS präzise
festzustellen. Um die Ähnlichkeit von Code zu bewerten, entwickeln wir technisch
ausgereifte Vergleichsstrategien, die Code-Verschleierungstechniken erfolgreich
umgehen. In weiterer Folge setzen wir hoch entwickelte neuronale Netze ein, um
den Zweck von Anwendungen anhand ihrer Implementierung zu beschreiben und
das Datenschutzbewusstsein in App-Beschreibungen zu verstehen.

Diese Arbeit trägt wesentlich zu einer ganzheitlichen Analyse mobiler Anwen-
dungen bei. Das Ergebnis dient Forschern und Anwendern, um die Auswirkungen
der Bekanntgabe persönlicher Daten an Apps zu bewerten und hilft dabei, besser
zu verstehen, was in mobilen Anwendungen tatsächlich ausgeführt wird.
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1
Introduction

Android and iOS have evolved as the two leading mobile operating systems for
smartphones, TVs, and many other devices. Designed to regularly interact with
user-supplied personal information, sensors, and sensitive input peripherals, such
as a camera or microphone, mobile platforms set out the conditions for innovative
use-cases. To leverage the extensive technological capabilities of modern devices,
platforms like Google Play or the Apple App Store distribute applications that
serve a variety of different purposes. Among them, we also find mobile apps
to manage passwords, track our health and fitness, organize bank transactions,
enable secure messaging, and others where security aspects play an integral role.

While applications for Android and iOS have to undergo an automated or
manual check before being published on the corresponding market platforms,
users decide upon the trustworthiness of an application primarily based on the
developer-provided description text and screenshots. Typically, this information
is marketing-oriented, rather than security-centered. To avoid using potentially
unknown technical terminology, even security-affine apps like password managers
or secure messengers are being advertised as using “military-grade encryption”,
to be “as beautiful as secure”, or with phrases like “your vault is encrypted with
bank-level encryption”. Evidently, these statements provide only a limited insight
into how responsibly critical information, such as passwords and encryption
keys, are really protected. Users can hardly be sure whether applications make
use of available security features to handle secrets. Developers, in contrast, are
constantly requested to align and update their implementations with regards to
existing and new security mechanisms offered by a variety of different mobile
hard- and software platforms. To protect confidentiality, integrity, and availability
of sensitive user data, a profound platform-provided security architecture and
correctly implemented applications are of vital importance.

1



2 Chapter 1. Introduction

1.1 Problem Statement
Researchers commonly apply techniques for program inspection to uncover
security-critical implementation weaknesses in mobile applications. Analyzing
a reverse-engineered representation of source code or monitoring the execution
behavior of apps reveals a targeted insight into how critical functionality has been
realized. On Android, supported by the openness of the platform, app archives
can easily be dissected and searched for the existence of vulnerabilities, common
attack vectors, and security-relevant implementation mistakes. iOS applications,
in contrast, are compiled down to machine code, requiring inspections to operate
on disassembled code. In combination with peculiarities of the iOS platform,
such as dynamic compile-time decisions and the use of a pointer-aware language,
this can be a challenging endeavor. Overall, for apps of both platforms, a steady
increase in terms of implementation complexity and code size can be observed.

Manually analyzing apps involves examining security-relevant code parts in
thousands of classes, being confronted with meaningless variable identifiers and
type signatures due to the widespread use of code transformation techniques,
and a non-distinguishable mix of code from third-party libraries and original
implementation. Automated alternatives are often tailored to check particular
security parameters but cannot conclusively highlight the exact origin of prob-
lematic program statements. The heterogeneity of Android and iOS aggravates
this issue and requires approaches to be developed individually for each platform.

Existing research in the field of mobile application analysis concentrates on low-
level implementation aspects. Tools for static and dynamic application analysis,
by design, can only reveal security deficiencies in particular program statements
that are specified in advance as being problematic, e.g., the use of a key derivation
function with too few iterations [Ege+13] or the implementation of a defective
trust manager for TLS connections that simply skips certificate validation [OC15].
The results typically fall into two categories: firstly, a classification into malevolent
or harmless or, secondly, execution traces of predefined criteria the inspection
has evaluated. While both types may be adequate with regards to the particular
objectives, they barely evolve to a superior level where the actual context of
problematic statements is considered. In practice, this leads to situations where
researchers disclose security flaws in execution traces produced by automated
analysis solutions but are unable to reason about the practical impact and
relevance of findings. Due to the high complexity of nowadays apps, it can be
difficult to verify whether problematic code statements are indeed actively used
within the execution of an app and for which functionality they are necessary.

To better estimate the risk that emerges from security problems in Android
and iOS applications, it is necessary to also analyze the context in which code
statements occur. For example, from an objective point of view, it is alarming if
a constant and hard-coded key is employed for encryption purposes. However, if
this finding is located within an advertisement library where encryption is only em-
ployed for code obfuscation, the impact needs to be assessed differently. Likewise,
it depends on the concrete purpose of an application whether requesting certain
dangerous system permissions is privacy-invasive or functionally reasonable.
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1.2 Motivation
In this thesis, we shift the analysis of mobile applications to a higher level
by applying concepts that form structures over disassembled source code. By
learning the semantics of code fragments, we cannot only draw conclusions
about the semantic relationships of coherent code parts but also set up against
obfuscation techniques. The overall goal is to elaborate solutions that do not
only allow to verify the presence of particular properties in mobile applications
but to deliver a generalized understanding of the main purpose and functionality
of an application. For this to achieve, this work comprises two parts.

Until a high-level picture of application behavior can emerge, the semantics
at a low level have to be understood. Precisely, in the first part of this thesis, we
elaborate approaches for a target-oriented reverse-engineering process that fills
missing gaps by revealing the exact origin of problematic statements. As pointed
out previously, the heterogeneity of currently used platforms in terms of available
security features and code formats imposes a significant challenge and demands
for individually-designed solutions. We tackle challenges that are still unresolved
in the analysis of Android and iOS applications and provide novel insights into
the prevalence of password leaks and the improper usage of cryptography APIs.

Having built an environment capable of interpreting the effects of low-level
instructions on Android and iOS applications, in the second part of this thesis, we
establish a platform that enables us to understand the semantics of applications.
Therefore, several challenges have to be tackled: (1) Developers often apply code
transformation techniques that alter the control and data flow. This makes it
difficult to identify code patterns that are known to be vulnerable or to verify
how vendors have patched security-critical issues. (2) In addition, the widespread
use of third-party libraries and applications with thousands of classes impede to
infer a semantic understanding about the purpose of individual code fragments
and the context they are embedded in. We elaborate solid strategies that tackle
these challenges and that enable a semantic comparison of code fragments, even
if a high degree of code obfuscation is used. We propose a practically usable
approach for code fingerprinting and recognition and develop a similar concept
to identify developer-induced changes in Android applications.

The variety of ways how developers can express semantically similar program
statements make it difficult to understand the relevance of individual parts in
source code. In addition, the widespread use of third-party libraries and code
from external sources do not only enrich apps with additional functionality but
also raise the risk to introduce vulnerabilities [Fis+17]. To better estimate the
main purpose and functionality of Android applications and to assess whether
it seems reasonable that an application requests potentially privacy-invasive
system permissions, we leverage advanced machine learning concepts that allow
to associate source code with contextual information. In our work, we envisage
the use of deep neural networks to correlate vendor-provided app metadata
with selected code features. Augmenting the inspection of mobile applications
with context-awareness paves the way for a more sophisticated insight into
security-critical implementation aspects.
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1.3 Contribution and Outline
Our research contributes to a more distinctive understanding of how mobile
applications access security- and privacy-sensitive resources. Organized in two
successive parts, we first inspect low-implementation aspects in Android and iOS
apps and then focus on bridging the semantic gap between the developer-described
functionality and the behavior that is actually realized in source code.

Part I: Security-Critical Analysis of Mobile Applications
Chapter 2 provides an introduction to the key aspects of mobile security testing
and outlines the analysis strategies that are commonly applied to Android and iOS
applications. We explain required preliminaries and summarize implementation
weaknesses when using cryptography in mobile applications.

Chapter 3 introduces a static analysis framework that excels in identifying
and tracking security-relevant code in Android applications. We develop a
strategy to precisely reveal how apps process passwords and show how flexibly
definable slicing criteria can be targeted to cover any inspection scenario that
involves program slicing in forward or backward direction. As also presented in a
paper [Fei18] at IFIP SEC 2018, in a case study, we investigate the prevalence
of password leaks in Android applications and find that 36% or 182 out of 509
tested apps expose sensitive user input to files or pass them to log output.

Chapter 4 contributes a solution to tackle the complicated and error-prone
analysis of iOS applications. This involves handling low-level machine code,
dynamic control-flow decisions, and data flows with pointers. Our multi-step
approach allows to generically decompile ARMv8 binaries to LLVM IR code, per-
forms static program slicing with pointer analysis, and checks for security-critical
implementation weaknesses. For this to achieve, our framework reconstructs data
types that were stripped during decompilation, can reliably model the control
and data flow of relevant code segments, and allows to verify whether execution
paths meet predefined inspection criteria. Together with David Missmann and
Raphael Spreitzer, our solution was published in a paper [FMS18] at WiSec’18
and has received the Best Paper Award.

Chapter 5 proposes a streamlined process to analyze the improper usage of
cryptography APIs in Android and iOS applications. In a case study with 417
iOS applications, also presented in [FMS18], we find that 82% or 343 tested apps
were subject to at least one major security issue. In a subsequent paper [Fei19]
at SECRYPT 2019, we compare another set of 775 applications that vendors
distribute for both mobile platforms and find that 604 apps for iOS (78%) and
538 apps for Android (69%) violate essential security rules. These results do not
only highlight the wide applicability of our static analysis frameworks but also
point out the high prevalence of security-critical implementation mistakes overall.
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Part II: Understanding Mobile Application Behavior
Chapter 6 introduces our approach towards understanding the semantics of
coherent code parts. We highlight the limitations of current approaches for
application analysis and elaborate a novel concept involving neural networks to
model the security-critical behavior of Android applications.

Chapter 7 presents a code recognition technique that excels in identifying
third-party libraries as well as code fragments in Android applications, even
if a very high degree of code obfuscation is applied. We thoroughly evaluate
our solution with obfuscated, shrunken, and optimized code in real-world apps
and demonstrate its practical ability to fingerprint and recognize code with
high precision and recall. Elaborated together with Christof Rabensteiner, we
presented this work in a paper [FR19] at ARES 2019.

Chapter 8 extends our goal to assess semantic relationships in code with a
solution to identify similarities and differences in the Dalvik bytecode of two given
Android apps. Together with Lukas Neugebauer, we developed a novel iterative
comparison approach based on Merkle trees and published it in a paper [FNZ19]
at SECRYPT 2019. Our solution enables to extract developer-induced code
changes and succeeds in matching pairs of semantically related code fragments.

Chapter 9 introduces a machine learning-based system that infers the main
purpose of apps based on their actual code. Having previously worked on ap-
proaches to assess and measure the similarity of code parts, this work focuses
on explaining the functionality of Android apps using natural language descrip-
tions. We capture semantic relationships of resource identifiers, string constants,
and API calls, and leverage a dense neural network to predict human-readable
keywords and short phrases that indicate the main use-cases apps are designed
for. We evaluate our solution on 67,040 real-world apps and find that with a
precision between 69% and 84% we can identify keywords that also occur in the
developer-provided description in Google Play. This work has been done together
with Stefan Gruber and is presented in a paper [FG20a] at IFIP SEC 2020.

Chapter 10 concentrates on the semantic relation between developer-provided
description texts and the use of dangerous permissions. On Android, permissions
play a crucial role in protecting users’ privacy and descriptions should imply
why certain permissions are necessary. To assess privacy awareness, we combine
state-of-the-art techniques in natural language processing and deep learning and
design a convolutional neural network for text classification. As also published
in a paper [FG20b] at CODASPY’20 together with Stefan Gruber, we apply
our solution on 77,000 app descriptions and find that we can identify individual
groups of dangerous permissions with a precision between 71% and 93%.
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2
Security Testing of Android and iOS

Applications

In this chapter, we provide an overview about key terminology and security
testing principles that are commonly applied to mobile applications. We start
with an introduction to security analysis in Section 2.1 and examine the structure
of Android and iOS applications in Section 2.2. We outline the basic techniques
that can be used to inspect mobile apps and highlight practical challenges of
code analysis in Section 2.3. Finally, we explain key aspects of cryptographic
APIs on mobile platforms and summarize typical implementation weaknesses in
Section 2.4. Parts of this chapter are taken verbatim from [Fei19; Fei18; FMS18].

Publication Data and Contribution

Johannes Feichtner. “A Comparative Study of Misapplied Crypto in An-
droid and iOS Applications.” In: Security and Cryptography – SECRYPT
2019. SciTePress, 2019, pp. 96–108. doi: 10.5220/0007915300960108

Johannes Feichtner. “Hunting Password Leaks in Android Applica-
tions.” In: ICT Systems Security and Privacy Protection – IFIP SEC
2018. Springer, 2018, pp. 278–292. doi: 10.1007/978-3-319-99828-2_20

Johannes Feichtner, David Missmann, and Raphael Spreitzer. “Auto-
mated Binary Analysis on iOS: A Case Study on Cryptographic Misuse
in iOS Applications.” In: Security & Privacy in Wireless and Mobile Net-
works – WiSec’18. Best Paper Award. ACM, 2018, pp. 236–247. doi:
10.1145/3212480.3212487

Contribution: Main author; Initial prototype implemented by David
Missmann. Raphael Spreitzer contributed to the paper introduction.

9

https://doi.org/10.5220/0007915300960108
https://doi.org/10.1007/978-3-319-99828-2_20
https://doi.org/10.1145/3212480.3212487


10 Chapter 2. Security Testing of Android and iOS Applications

2.1 Introduction
Android and iOS have emerged as the two leading operating systems for mobile
devices. Restricted runtime environments and granular permission models ensure
that applications cannot adversely impact other apps, the platform, or the user.
Nevertheless, problems can still arise if applications do not correctly address
security-relevant properties. To protect confidentiality, integrity, and availability
of data processed, e.g., by password managers, secure messengers, and other
applications that perform security-critical tasks, it is crucial that developers
use platform-provided APIs properly, as otherwise sensitive information might
unintentionally be leaked via network traffic, system logs, backups, or more
covert channels. In practice, it is often not obvious how thoroughly security
aspects have been considered during app development and can only be verified
by performing a targeted analysis of potential vulnerabilities.

In recent years, the research of implementation security on Android and
iOS has received a lot of attention. A majority of publications in this field
focus on the Android ecosystem where the openness of the platform promotes
program inspection. This process of reverse engineering is predominantly driven
by the motivation to check the existence and correct implementation of security
mechanisms. Manually verifying how critical functionality has been realized
can be challenging due to the rising complexity and size of today’s programs.
Automated solutions, on the other side, are often tailored to the inspection of
particular parameters but fail to perform a conclusive identification and analysis
of relevant program parts. This issue is aggravated by the heterogeneity of
Android and iOS, which does not only cause distinct attack vectors but also
prevents inspection tools from being re-used for both platforms.

The security-critical analysis of mobile applications is basically done by
performing static or dynamic analysis. Depending on the threat model and
platform specifics, one or even both approaches can be pursued for analysis
purposes. In the case of static analysis, a predefined set of inspection procedures
is applied to an application. Thereby, although the program is never executed
and regardless of the actual behavior, it is possible to draw conclusions based
on selected features. Dynamic analysis, in contrast, runs the application in a
protected environment and tries to recognize previously defined patterns by means
of interaction. A major advantage of static analysis involves the possible coverage
of application code. For example, when analyzing the data flow of password
inputs, dynamic analysis would only match those password fields that were
actually visited during execution. Static analysis, on the other hand, is instantly
applicable to the totality of password fields, contained within an application.

As mobile applications regularly interact with a multitude of sensors, networks,
and user-provided data, security testing has to consider a wide attack surface.
Key areas include the secure processing and storage of sensitive data, proper usage
of encryption and security mechanisms, communication with trusted network
endpoints, and resilience against injection attacks. By carefully following security
principles during application development, many of these challenges can be
tackled and help to lower the possible impact of successful attacks.



2.2. Reverse-Engineering Mobile Applications 11

2.2 Reverse-Engineering Mobile Applications

Applications for Android and iOS run on a multitude of devices, ranging from
smartphones, tablets, and wearables to TVs, cars and smart home components.
Tailored to a specific operating system, apps are executed in sandboxed runtime
environments that limit access to the underlying platform and define the bound-
aries how apps can interact with each other. The heterogeneity of Android and
iOS also extends to the file formats used by apps on the corresponding platform.
In the following, we point out individual characteristics and describe how apps
have to be transformed to enable perform program inspection.

2.2.1 Android

Android applications are mostly developed in Java or Kotlin and build on APIs
that are exposed by the platform framework. During compilation, stack-based
JVM bytecode is translated to register-based Dalvik bytecode that is later
interpreted by the Dalvik Virtual Machine (DVM). By reusing and eliminating
repetitive function signatures, code blocks, and string values, the Dalvik compiler
manages to effectively reduce the uncompressed bytecode size. As a result, all
parts are merged into a single executable file named classes.dex.

A classes.dex executable consists of multiple sections. Starting with a
header, specifying the file type using a magic number, and the format version
number, the subsequent sections reference all strings, type identifiers, class and
method signatures, fields, and method identifiers using unique IDs. The actual
program code is stored in a separate data section.

The process of reverse-engineering Android applications usually consists in
converting the Dalvik file to Java’s .class format. Tools, such as dex2jar1 and
enjarify2 include predefined rules and constraint solving mechanisms to translate
register-based Dalvik bytecode to stack-based JVM code. As this process is
non-deterministic, it often leads to spurious or wrong code translations.

Alternatively, instead of decompiling Dalvik bytecode to Java, it can be
represented as Smali code. Smali is a mnemonic language to represent Dalvik
bytecode in a human-readable and parseable format. As it keeps the semantics
of code very close to the original, it is often a preferable choice over more
intricate decompilation. The tool baksmali3 disassembles the classes.dex file
and replicates the structure of the original Java source code, the original directory
structure and outputs each class into its own .smali file. The same applies for
nested classes which are renamed and stored separately. Internally, the tool
pursues a recursive traversal approach [SDA02] to find instructions. Thereby, the
disassembler continuously follows the control flow of each branch and function
call, as encountered within the application.

1https://github.com/pxb1988/dex2jar
2https://github.com/Storyyeller/enjarify
3https://github.com/JesusFreke/smali
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2.2.2 iOS
Applications for the iOS operating system, developed in Swift and Objective-C,
are distributed in the Mach-O file format, which allows a single binary file to
contain multiple Mach-O executables for different CPU architectures. As all iOS
devices manufactured after 2013 are equipped with a 64-bit ARMv8 CPU, current
applications include at least a binary slice supporting this processor architecture.
Internally, each Mach-O executable consists of three regions:

• Header: Identifies the executable as Mach-O file and highlights information
about the target CPU architecture.

• Load Commands: Describes the remaining file layout and designated
memory location of segments.

• Data: Consists of different sections that are loaded into memory at runtime.
The section Dynamic Loader Info defines where dynamic symbols should
be stored during execution.

A Mach-O file can be processed by parsing all segments in the Data region that
are referenced within Load Commands. These segments contain all information
needed for execution, including machine instructions, pointers, strings, and data.

Method invocations are handled by a dynamic dispatch function in the
Objective-C runtime library, which requires the type of the object and the name
of the method to be called. This involves the following sections in the binary:

• __objc_classlist: List of pointers to description of classes in a binary.
The memory addresses refer to the section __objc_data.

• __objc_data: For each class, this section includes pointers to a super
class and references to __objc_const that involve class meta information,
such as initialized variables, strings, integers, and data arrays.

• __objc_const: Includes details about all classes, the name and vir-
tual memory location of all implemented methods, instance variables and
constants defined in the binary.

• Dynamic Loader Info: Includes pointers to classes that are not present in
the binary, e.g., references to the Objective-C runtime library. By traversing
this structure, it is possible to reconstruct a complete class hierarchy.

During execution, iOS applications can invoke externally defined library functions
using indirect symbols. Occurring as lazy or non-lazy symbols, any reverse-
engineering approach has to detect and handle these calls correctly as they may
create or modify data. Non-lazy symbols are resolved when the binary is loaded
using the binding information stored within the Dynamic Loader Info section. In
contrast, lazy symbols are followed when they are first accessed.

A Mach-O executable defines method signatures for all included Objective-
C and Swift methods. Type definitions of regular methods are stored in a
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compressed way, prefixing all objects with the identifier symbol ‘@’. Methods
that are to be implemented by classes via so-called protocols are denoted using
their full signature. For reverse-engineering iOS applications, this information
is essential in order to build accurate call graphs, since parameters, passed to
protocol methods, are potentially not allocated within the code of the binary
but included from system libraries. Without resolving these definitions, types of
externally allocated parameters cannot be determined and inferred call graphs
will inherently be incomplete.

2.3 Vulnerability Analysis
After transforming mobile applications into a representation enabling further
investigation, static and dynamic analysis techniques can be applied in order to
check specific security-critical properties. While dynamic approaches work by
monitoring the live execution of applications during runtime, static techniques
apply taint tracking on a reverse-engineered representation of a program’s source
code. Targeted at their individual use-case, the majority of analysis-related work
aim to disclose possible leaks of private data [CZ15; CHY12; Gib+12; YY12],
identify malware [Poe+14; Gas+13; Gra+12b; Fen+14], or to uncover security
deficiencies [Bia+15; Fah+12; Dav+10; Fel+11].

On Android, solutions for dynamic application analysis, such as Frida4,
TaintART [SWL16], or TaintDroid [Enc+10] enable live information-flow tracking
while a program is executed and can detect privacy leakage in the current
execution path. While the real-time monitoring of program behavior can provide
a valuable insight into how sensitive data is processed, dynamic security testing,
by design, misses code paths that are not visited at runtime.

Supported by the fact that Dalvik bytecode in Android applications can be
decompiled to Java code, existing tools for static analysis are easily applicable.
Having a source-code like representation, the primary challenge then is to follow
arbitrary execution traces as sound and precisely as possible. This objective
is tackled by frameworks, such as FlowDroid [Arz+14] and IccTA [Li+15] that
model the entire Android lifecycle, including callbacks, asynchronously executing
components, and multiple entry points. Nevertheless, the generation of accurate
call graphs remains challenging due the fact that many control flow transitions
are made implicitly, i.e., by using Reflection or event listeners. To also consider
such method calls, implicit data flows have to be resolved [Cao+15; Bar+15].

Although static application analysis is a well-established practice, only few
contributions target the iOS platform. In [Ege+11], the authors approach this
field by studying privacy threats in iOS applications using the disassembly of
binaries. They create a control flow graph and perform a reachability analysis to
identify possible privacy leaks. Other works [Zhe+15; Den+15; Li+14] survey
the usage of private APIs or pursue a source-to-sink analysis using a combination
of static and dynamic methods.

4https://frida.re
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2.3.1 Program Slicing
Static slicing can be used to determine all code statements of a program that may
affect a value at a specified point of execution (slicing criterion). The resulting
program slices cover all possible execution paths and allow conclusions to be
drawn about the functionality of a program.

Weiser [Wei81] introduced an intra-procedural method that enables to describe
dependencies between program statements using data flow equations. Relevant
variables and instructions are determined in an iterative manner. The presented
algorithm can be adopted to create slices of code and to find paths from the
origin of a parameter to its use, e.g., in cryptographic functions. As summarized
by Tip [Tip95], the workflow basically involves two steps:

1. Follow data dependencies: This step is executed iteratively, if control
dependencies are found.

2. Follow control dependencies: Includes relevant variables of control flow
statements. The first step is repeated for affected variables.

To create slices over multiple functions, the approach can be extended to inter-
procedural slicing in two steps: first an intra-procedural slice of a function P is
computed, followed by the generation of new slicing criteria for every function
that calls P or is called by P . In Weiser’s concept, the generation of new criteria
is described as DOWN(C) for the callers of P and as UP (C) for functions that
are called by P based on the slicing criterion C.

2.3.2 Pointer Analysis
When identifying variables with an impact on program statements, it is essential
to also know where they might point to during execution. Pointer analysis can
be used to support slicing with accurate information about pointer states.

Introduced by Andersen [And94], pointer analysis is described as a set-
constraint problem in which a constraint system C is created for a given program.
By solving the system, it is possible to determine the locations loc(v) a variable
v might point to during program execution. The resulting points-to set for v is
represented as pts(v). All constraints are of the type a ⊇ b, which means that
information flows uni-directional from b to a. As shown in Table 2.1, there are
four different types of constraints that may be added to C.

Table 2.1: Pointer constraints and their meaning [HL07b].

Program Code Constraint type Meaning
a = &b a ⊇ {b} loc(b) ∈ pts(a)
a = b a ⊇ b pts(a) ⊇ pts(b)
a = ∗b a ⊇ ∗b ∀v ∈ pts(b) : pts(a) ⊇ pts(v)
∗a = b ∗a ⊇ b ∀v ∈ pts(a) : pts(v) ⊇ pts(b)
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Andersen defined a context-sensitive and a context-insensitive version of his
algorithm. While the former leads to more precise results by separating informa-
tion originating from different paths, its time complexity is exponential [WL95;
EGH94]. Therefore, context-sensitive pointer analysis does not scale well for
larger programs with a large number of calling contexts. Considering the size of
today’s mobile applications, a context-insensitive method for the computation of
points-to sets yields better performance.

Flow-sensitive pointer analysis takes the control flow of a program into account
and computes an individual points-to set for each instruction. The flow-insensitive
pendant disregards branches and collects all information in a single points-to set.
Hind and Pioli [HP01] have shown that a flow-sensitive pointer analysis does not
improve the precision of the results if a context-insensitive algorithm is used.

2.4 Cryptography in Mobile Applications
A common method to protect sensitive information in Android and iOS apps is
the use of system-provided APIs that expose cryptographic functionality. While
these high-level interfaces reduce the burden of the developer to understand
how cryptographic primitives work internally, it is still vital to use APIs with
parameters that do not give a false sense of security. In the following, we introduce
platform-provided APIs for cryptography-related applications and provide an
outline of common implementation issues.

2.4.1 Android
By including the Java Cryptographic Architecture (JCA), Android supports a
well-established set of security APIs. The JCA is provider-based which means
that interfaces can be implemented by different cryptographic engines in the
background. This flexibility also causes distinct providers and algorithms to be
usable with each version of Android. To ensure that applications are compatible
over multiple releases, developers are advised to choose from a list of recommended
algorithms5 and to not explicitly specify provider names.

Symmetric and asymmetric encryption schemes are exposed to applications
through the Cipher class6. Developers can request a specific scheme by specifying
a transformation string as an argument to the Cipher.getInstance() method.
The parameter encloses the algorithm name, cipher mode, and padding scheme
to use within the returned Cipher instance object.

To derive cryptographic key material from a given secret while impeding
dictionary and brute-force attacks, Android provides the key derivation func-
tion PBKDF2 [MKR17] via the PBEKeySpec API. By iteratively transforming a
given password and salt value using the pseudo-random function HMAC-SHA1,
applications can obtain a cryptographic key of specified length.

5https://developer.android.com/guide/topics/security/cryptography
6https://developer.android.com/reference/javax/crypto/Cipher
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2.4.2 iOS
On the iOS operating system, the platform libraries CommonCrypto and Security
expose APIs to perform security-related operations. The first library provides
symmetric ciphers, hash functions, and the key derivation function PBKDF2.
The second library includes functionality for asymmetric ciphers, certificate and
key management, i.e. access to the system’s keychain.

In practice, cryptography-related operations in iOS applications that rely on
system-provided APIs will typically involve the following three functions provided
by the CommonCrypto library:

• CCCryptorCreate: Provides access to stream and block ciphers. Each
call to this function initializes a cryptographic handle, named CCCryptorRef,
that can subsequently be used for encryption and decryption operations.
CCCryptorCreate takes the following security-relevant parameters:

– op: Defines whether data should be encrypted or decrypted.
– options: Defines whether to use ECB or CBC mode.
– key: A pointer to the key material.
– iv: A pointer to the initialization vector (IV).

• CCCrypt: Similar to the CCCryptorCreate function, CCCrypt is a self-
contained alternative that expects all data and cipher-related options to be
passed immediately. The security-critical parameters are the same as for
the CCCryptorCreate function.

• CCKeyDerivationPBKDF: Derives a cryptographic key using PBKDF2.
The subsequent parameters are crucial for the security:

– password: Specifies the passphrase to derive a key from.
– salt: The salt byte values used as input to the derivation function.
– rounds: The number of iterations.

2.4.3 Common Implementation Weaknesses
Android and iOS support the protection of sensitive data by providing a variety
of algorithms for hashing, encryption, digital signatures, and key derivation.
Leveraging the corresponding high-level interfaces enables developers to access
security-related functionality. Irrespective of whether the underlying implemen-
tation of a cryptographic primitive is correct, it has be supplied with input
parameters that guarantee strong security.

Due to the open design of system-provided APIs for cryptography, developers
are able to configure integral cipher parameters deliberately. While this supports
flexibility in a multitude of different deployment scenarios, the selection of weak
parameters can significantly impair the targeted level of security. The following
non-exhaustive summary highlights platform-independent configuration issues
that are commonly [MBB18; Li+14] encountered with mobile applications.
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Symmetric Encryption

Block ciphers, such as AES or DES, split a given plaintext into blocks of a
fixed-size and perform encryption individually on each block. By choosing ECB
as a mode of operation, the result of encrypting previous blocks does not affect
subsequent blocks. In case multiple blocks contain identical plaintext, they will
be enciphered into identical ciphertext blocks. Consequently, patterns in data
are easier to identify and message confidentiality may be compromised.

Another frequently used mode of operation is CBC, in which the previously
encrypted block of ciphertext is XORed with the subsequent block of plaintext to
be encrypted. To ensure that data patterns are hidden, the first plaintext block
is XORed with an IV. Specifying a predictable or non-random IV renders the
encryption scheme deterministic and stateless. This, in turn, makes it susceptible
to a chosen-plaintext attack that allows an adversary to generate ciphertexts for
arbitrary plaintext messages without knowing the key.

As the security of symmetric encryption depends on the secrecy of the key, it
is paramount not to store keys in the source code as static, hard-coded values but
only within secure areas of a mobile device that are designated for this purpose.

Password-Based Encryption

Schemes for password-based encryption (PBE), such as PBKDF2, are intended
to derive cryptographically secure keys from potentially weak passwords. Con-
catenating a given password with a salt value and iteratively applying a pseudo-
random function should hinder table-based attacks. For this to be effective, the
used salt value must not be hard-coded, as otherwise the effect is equivalent to
not making use of a salt value at all. Also, specifying less than 1,000 iterations,
as recommended by RFC 8018 [MKR17] in 2017, facilitates password guessing
attacks. Analogous to the key with symmetric encryption, with PBE it is vital
to keep the password, that is used as an input for the KDF, secret.

Random Number Generation

Cryptographically secure pseudo-random number generators (PRNG) are de-
signed to generate non-deterministic output. If initialized with a constant seed
value, the result will be predictable and unsafe for use in cryptographic operations.

2.5 Conclusion
To assess the implementation security of Android and iOS applications, program
code has to be reverse-engineered, followed by a vulnerability analysis that
typically involves program slicing and, on iOS, pointer analysis. Despite significant
research in recent years to uncover security deficiencies in apps, problems, such as
insecure data storage or improper usage of cryptographic APIs can still appear,
if not considered during development.





3
Static Analysis on Android

Static analysis helps to review the correct implementation of security-critical
functionality in Android applications. Applied on reverse-engineered Java source
code, existing tools for automated program inspection typically do not consider
the characteristics of Android applications and, e.g., miss the opportunity to
trace sensitive user inputs, such as passwords and PINs. In this chapter, we
introduce a new approach to identify and follow the trace of user input right from
the point where it enters an application. By performing static program slicing in
forward and backward direction, we are able to reveal potential data leaks and
can pinpoint their exact origin. The open design of our solution also covers other
use-cases, such as the analysis of improper usage of cryptographic APIs.

In Section 3.1, we highlight challenges of static application analysis on Android.
To overcome limitations of existing solutions, in Section 3.2, we propose an
approach for program slicing on Smali code. In Section 3.3, we study password
fields in Android applications and elaborate slicing criteria to track the data flow
of secret inputs. We present a strategy to find potential leaks of sensitive user
inputs in Section 3.4 and evaluate its practical applicability within a case study.
Parts of this chapter are taken verbatim from [Fei18; Fei19].

Publication Data and Contribution

Johannes Feichtner. “Hunting Password Leaks in Android Applica-
tions.” In: ICT Systems Security and Privacy Protection – IFIP SEC
2018. Springer, 2018, pp. 278–292. doi: 10.1007/978-3-319-99828-2_20

Johannes Feichtner. “A Comparative Study of Misapplied Crypto in An-
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3.1 Introduction
Static vulnerability analysis of Android applications involves examining the code
of security-critical program parts. A manually conducted inspection typically
focuses on indicators for potential problems by searching for specific keywords or
API calls, such as TLS-related methods like setDefaultHostnameVerifier() or
checkServerTrust(). Code fragments surrounding these words likely implement
security-relevant functionality and might eventually be vulnerable.

The increasing complexity and size of Android applications impede a target-
oriented vulnerability analysis and often prevent manual security testing from
being practicable. Tools for automated code analysis, as an alternative, attempt
to uncover potential vulnerabilities by inspecting data flows or performing a taint
analysis. After applying program slicing to determine the control and data flows
of relevant code segments, it is possible to check whether implementations comply
with a set of predefined rules. The result is typically a summary of warnings,
potential flaws, and detected rule violations.

Ideally, tools for vulnerability analysis would automatically disclose security
weaknesses with high confidence and point out appendant code statements. While
this is feasible in other domains with, e.g., buffer overflows, SQL injections, and
cross-site scripting flaws, with mobile applications many types of vulnerabilities
are difficult to diagnose and often it is challenging to immediately assess the
impact of found flaws. For instance, when looking for hard-coded encryption
keys, automated solutions struggle to recognize byte arrays that are assembled
only during runtime. Likewise, if data flows exhibit that user-entered passwords
or GPS coordinates are sent to remote servers, it depends on the purpose of the
corresponding application whether this happens for a legitimate reason.

Solutions for automated code analysis of Android applications operate either
directly on Dalvik bytecode [Fan+20; Zha+18a; PS17] or use reverse-engineered
source code. As it is challenging to verify found anomalies or suspicious behavior
in low-level code, compiled applications are not convenient for vulnerability
analysis. Although it is viable to translate Dalvik bytecode to Java source code,
purposefully applied tricks against reverse-engineering, compiler-induced code
obfuscation, and heuristics during decompilation often tamper with data flows.
As a remedy, the code of Android applications can be disassembled to Smali code,
which preserves the semantics of Dalvik bytecode but provides an intermediate
representation in a human-readable and parseable format (see Section 2.2).

The ability to follow control and data flows is essential in order to identify
and analyze security-critical code in Android applications. For this to achieve,
we propose a solution to perform program slicing on Smali code. As presented in
Section 3.2, we adopt the algorithm of Weiser [Wei81] for Smali code and present a
flexible approach to produce data flow graphs for user-definable slicing criteria. By
implementing methods for program slicing in forward and backward direction, we
gain an insight into the prevalence of security-critical misconceptions in Android
applications. Applicable on arbitrary applications, our solution enables to track
the data flow of user-entered secrets, uncovers improper usage of cryptographic
APIs, and pinpoints problematic code statements.
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Privacy Leaks of Sensitive User Inputs

Many Android applications require users to input sensitive data, such as PINs
or passwords. Given the ubiquitous and security-critical role of credentials, it is
indispensable that programs process secrets responsibly and do not expose them
to unrelated parties. Typically, it is unknown whether an input undergoes a
cryptographic transformation and if it is safe for a user to enter secrets. To find
out how Android applications process sensitive user inputs, all possible execution
paths have to be determined in forward direction.

Resilient to dynamic code loading and code obfuscation, solutions, such as
TaintART [SWL16], TaintDroid [Enc+10], or Mobile Sandbox [Spr+13] can
analyze and detect privacy leakage in the current execution path. Nevertheless,
they inherently miss code paths that are not visited at runtime. Leaks of password
inputs would, thus, only be detectable for input fields where a password was
actively provided by the user. The solution of Cox et al. [Cox+14] mimics this
task and inspects the flow of sensitive data in a sandbox. Other works, also
based on TaintDroid, uncover privacy leaks based on used permissions [Gib+12]
or by enforcing previously elaborated policies [MS12]. More targeted solutions
for similar challenges [Bac+16; Ege+13] are tailored to their specific use case
and cannot handle the characteristics of both XML resources and dynamically
generated input fields. The same applies to the subsequently conducted analysis
of potential security-relevant problems where all possible execution paths have
to be checked individually. Self-contained implementations and specific output
formats make it difficult to extend existing tools with new capabilities. In
experiments, we also noticed that some solutions are powerful in general but each
present different drawbacks when it comes to aiming them at a specific purpose,
such as following the trace of user-entered secrets.

To bridge this gap, we present a framework that features static analysis on
definable slicing patterns in order to identify and highlight the improper usage
of security-relevant functionality. With the ability to automatically extract,
disassemble, and investigate programs, we focus on identifying and tracking user
input right from the point where it enters an application.

Starting at predefined lookup patterns, the automated process first aims to
derive concrete slicing criteria. Then, we follow the data flow throughout an
application and obtain all execution paths that influence an input field under
consideration. While applying static forward slicing to track all occurrences
of password fields, we simultaneously map visited code lines to a graph-based
representation. Subsequently, the results are examined involving predefined rules
in order to detect potential security problems. For this to achieve in a most
accurate way, backward slicing enables the discovery of influencing parameters.
Having determined all relevant variables, the mined context is inspected regarding
cryptography-related misconceptions and possible data leaks. To evaluate the
applicability of our solution, we conducted a manual and automated inspection
of security-related Android applications that process user-entered secrets. As
presented in Section 3.4, we found that 182 out of 509 (36%) applications
insecurely stored given credentials in files or passed them to a log output.
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3.2 Static Slicing of Smali Code
The ability to track data flows in forward and backward direction is crucial in
order to isolate those parts of an application that are relevant with regard to a
specific slicing criterion. In the following, we present the implemented techniques
for static slicing and highlight practical challenges.

3.2.1 Slicing Patterns
The slicing process naturally depends on a slicing criterion referencing a specific
line of program code. Considering our objective to track arbitrary data flows
matching predefined criteria, a more generic representation is needed. Therefore,
we propose so-called slicing patterns that conceptually describe a type of resource
or object to track in XML format.

Slicing patterns do not refer to individual program statements and, thus, do
not represent slicing criteria by themselves. Instead, they comprise all needed
information to dynamically build slicing criteria that coincide with the scheme
specified by a pattern. In case relevant statements occur repetitively within
applications, slicing criteria are also deduced multiple times and are tracked
individually. Depending on the intended focus and level of adaptation, a pattern
can be customized for only one specific application, or to be generally applicable
for a larger set of targets. To satisfy different requirements, slicing patterns
support the specification of method invocations and resource objects for tracking.

Method Invocations

To follow the trace of dynamically generated input fields, we need to be able
to address particular method invocations. Corresponding slicing criteria are
identified by looking for all invoke statements that match a given pattern.
Thereby, all instructions contained within an Android application are scanned and
compared with the indicated method signature. For each match, the appendant
program statement is considered as a starting point for slicing. Next, the name
of the register to track is identified by associating the index of each occurring
register with the given parameter of interest. As a result, a set of matching
slicing criteria is returned that complies with the initial pattern.

Resource Objects

Resources in Android applications, such as the user interface, layouts and strings,
are usually externalized from the program code. For every outsourced element,
the developer has to assign a unique resource ID which can later be referenced
in code. Tracking concrete IDs would require us to manually modify the slicing
pattern for every inspected application. As a remedy, we propose to address
specific resource objects by using generalized XPath queries.

As Android resources are typically stored in XML format, XPath is well
suited to select elements by means of their node type and a chosen predicates.
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Consequently, it is feasible to compile slicing patterns that focus on specified
resources that occur in many applications. Instead of tracking individual resource
IDs, the formulated XPath queries are intended to cover one or multiple resource
elements. By leveraging the flexibility of XPath, queries can be adapted to select
arbitrary resource elements that match given properties. In practice, this feature
enables slicing patterns to be generalizable to an extent that the characteristics
of individual applications become entirely extraneous.

3.2.2 Implementation
By performing program slicing on Smali code, our solution is able to determine
the control and data flow of relevant code segments in Android applications.
Based on a given slicing pattern, an analysis is conducted in forward or backward
direction, storing the results in an object-based graph representation.

Having derived one or multiple slicing criteria from a given pattern, they are
added to a queue for processing. This to-do list serves as input for both the
forward and backward slicer and collects all registers, fields, return values, and
arrays that are subject to tracking. Furthermore, it holds references to all objects
that have already been tracked and excludes them from being re-processed. Upon
request by the slicing algorithm, the queue delivers the subsequent object to
track, which describes the register to follow and the location of the corresponding
instruction. Using this iterative approach, we manage to acquire data flows and
prevent the repeated analysis of already inspected code branches.

Internally, backward and forward slicing are technically distinct components
that process the input from the to-do list and represent slicing results in a
dynamically built tree. On top, the slicing criterion is set as root node, followed
by all code statements that are contained in the slice. The generated graph serves
as an for further analysis, e.g., to evaluate security rules on password fields.

3.2.3 Graph-Based Output
At first, it appeared to be the obvious choice to combine all data flows emerging
from one slicing pattern in a single output graph. However, since a pattern can
result in multiple slicing criteria, this approach would cause incoherent flows
of various criteria to be mixed into a single representation. Besides reducing
the expressiveness of resulting graphs, it would also cause inconsistent results
as overlapping data flows might occur repetitively. As a remedy, one graph is
generated per slicing criterion.

The top node of the tree-like graph output is always the slicing criterion, as
it represents the root of all possible execution paths that can follow. Subjacent
nodes stand for all code lines which are contained in the slice. In case there are
multiple execution paths, e.g., an if-else statement, a slice node can have links
from multiple predecessor nodes. If code statements are executed repetitively,
e.g., via for or while instructions, loop cycles are denoted between vertices.
Each intermediate node refers to a set of all predecessor nodes, including the
originating registers as well as registers that occur in the current instruction.
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A slice tree can represent one or multiple leaf nodes, whereas each indicates
either a constant or shows an abruptly terminated slicing process. Assuming that
a constant value, such as an integer, an array, or a string, was copied into the
tracked register, slicing may stop as the register value is overwritten. For static
backtracking this implies that slicing has led to one or more values that affect the
slicing criterion. For forward slicing it means that the currently tracked register
will not affect any subsequent variable and, thus, the data flow has reached an
endpoint. Leaf nodes are also inserted in case slicing loses track. This happens,
for instance, when registers are set as parameters in calls to unresolvable methods,
such as calls to system APIs or native libraries.

As all found path endpoints are invariant, we can consider them as constant
values. Besides containing information about values that are assigned to registers,
constants also explain why paths end at certain points. This is achieved by
retaining metadata from slicing. For example, each constant is assigned a
category which clearly defines the type of the underlying value. Similarly, in case
tracking stops abruptly, constants are put in place to describe the reason.

3.2.4 Slicing Accuracy
The previously mentioned queue ensures accurate analysis results by filtering
registers that exceed a predefined threshold of fuzziness. Each tracked register is
assigned a fuzzy level that indicates its accuracy in accordance with the slicing
criterion. In practice, it expresses the likelihood that the value of a currently
tracked register still equals the value of the initially followed register. The fuzzy
level is also assigned to found constants and nodes within the slice tree in order
to highlight their relevance with respect to the slicing criterion. A value of zero
means that the result is absolutely precise and has not been modified on its way
to the slicing criterion. Higher values indicate less accurate results and a reduced
expressiveness of the results.

Although the fuzzy level enables to measure uncertainty in analysis results, it
does not draw conclusions about the quality of found constants. For instance, a
high value does not necessarily imply that a constant has only marginal impact
on a slicing criterion. Likewise, it is feasible that a register exhibits a low fuzzy
level but does not correlate with the initial register at all.

3.3 Passwords on Android
The analysis of data flows from input fields for passwords starts with the definition
of a suitable slicing pattern. Based on the provided parameters, concrete password
field usages are searched in program code, added to slicing criteria and can then
be tracked in forward direction. In view of our analysis objectives, the following
case study illustrates the derivation of an eligible pattern. With the intention
of tracking any password field occurring in practice, we also identify possible
shortcomings of elaborated slicing patterns.
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Basically, password fields in Android applications are either statically defined
as XML resources or generated from program code during runtime. Since
both options refer to the same implementation internally, their capabilities and
produced outputs are identical. As an initial trigger for slicing, however, it is not
feasible to cover both forms by a single slicing pattern. This also coincides with
our patterns’ types that focus either on method invocations or resource objects.
In the following, we will examine both cases and highlight their characteristics.

3.3.1 XML Resources
Password input fields in XML resources typically make use of the element class
EditText that enables editable input fields to be displayed. Depending on the
provided attributes, differently shaped fields and keyboards are presented to
the user during interaction. Concise XPath queries facilitate the selection of
corresponding input fields for analysis purposes.

Until the release of Android 1.6 (API level 4), the default way to declare
password input fields consisted in adding the property password=true to an
EditText element. Although considered deprecated now, the technique can still
be found in applications that maintain compatibility with the eldest versions
of Android. Referring to the previous section, an XPath statement is suited
to specifically match this password input field description. The first-mentioned
slicing pattern in Listing 3.1 illustrates the assembled XPath query.

On current versions of Android, password fields are declared by setting
a corresponding constant value to the EditText element property inputType.
Alongside with other input types, the change also introduced more fine-grained
descriptors for password input fields. For instance, developers can specify the type
numberPassword in order to restrict possible user input to numerical values only.
For the subsequent static slicing process, this implies that the initially tracked
value is also numeric and, hence, likely to be subject to integer transformations.
If the property maxLength is also set, conclusions about the achievable security
grade could be drawn even without slicing.

The most obvious descriptor for an arbitrary password combination is the in-
put type value textPassword. Considering the previously formulated pattern, the
same scheme is applicable to the input type property. The resulting adaptation is
depicted in Listing 3.1. In the current state the XPath statement is designed to
match exactly the given predicate and fail for any deviation. Although it is suited
for practical application, the precision is comparably low as other relevant and le-
gitimate input type values are not taken into account. In particular, this concerns
all other descriptors, designated for password input, such as textWebPassword,
textVisiblePassword, and numberPassword. A possible remedy is to add the
listed options to the XPath statement. The resulting query is then able to return
all elements with an exactly matching input type value.

Another possible application scenario is the combined use of multiple input
types. For example, the value textNoSuggestions|textPassword causes the user-
shown keyboard to omit the display of any dictionary-based suggestions. Without
adaptation to this circumstance our XPath query would not match input type



26 Chapter 3. Static Analysis on Android

combinations at all. A pragmatical approach to this issue consists in refining the
pattern in a way that it focuses on verifying the occurrence of a password type,
disregarding further options. This can be achieved by simply checking whether
the property contains a known value. In contrast to the previously stipulated
exact conformity, we weaken the statement to a containing match. The final
slicing pattern is denoted in Listing 3.1. It covers all relevant forms of password
types while refraining from matching unrelated values.

Listing 3.1: Forward slicing pattern for password fields.

1 <forwardtracking-pattern enabled="true" type="XPATH_QUERY"
2 pattern="//EditText[@password='true']"
3 description="EditText XML fields with attribute 'password'" />
4
5 <forwardtracking-pattern enabled="true" type="XPATH_QUERY"
6 pattern="//EditText[@inputType, 'textPassword']"
7 description="EditText fields with inputType textPassword" />
8
9 <forwardtracking-pattern enabled="true" type="XPATH_QUERY"

10 pattern="//EditText[contains(@inputType, 'textPassword')
11 or contains(@inputType, 'textWebPassword')
12 or contains(@inputType, 'textVisiblePassword')
13 or contains(@inputType, 'numberPassword')]"
14 description="EditText fields with password inputType" />

3.3.2 Generated Input Fields
Another possibility to display password fields is to generate them dynamically
during runtime. Rather than embedding monolithic EditText elements in XML
resources, editable fields can also be defined using program code. Accordingly,
a variety of properties and actions is assignable on each instance of the class
EditText. A slicing pattern should, hence, be suited to identify generated
password fields reliably and to convey slicing criteria for the subsequent tracking
process. In order to achieve this, we have to cope with three essential problems:

• How is it possible to distinguish between ordinary EditText elements and
those that are configured for password input?

• What are the implications of tracking the entire element instead of the
password value only?

• How to design a slicing pattern that adapts to the given constraints?

These questions were equally relevant for password fields in XML resources.
Nevertheless, in the former case it has shown to be fairly simple to derive a
pattern that matches particular properties of one corresponding XML element.
With generated input fields, more complex prerequisites apply since password
fields cannot be reduced to a single program statement, enclosing all relevant
attributes. In the following, we will gradually answer the previously listed
questions by examining the sample code provided in Listing 3.2.
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Password Field Identification

Initialized within the corresponding Android application context, a dynamically
created input field is an instance of the class EditText. In order to hide the
user-entered text by asterisks, an input field has to be assigned an appropri-
ate password transformation method. Similar to XML resources, an optionally
added input type property restricts the possible input value to a predefined set
of characters and advises the keyboard not to save the password for spelling
correction. Although not recommended from a security-aware perspective, speci-
fying the input type may be omitted. Consequently, we can conclude that the
only irrevocable indicator for a password field (with asterisks) is the assign-
ment of a PasswordTransformationMethod class instance. In order to identify
an employed transformation object and input type constant, the arguments of
setTransformationMethod() and setInputType() have to be tracked in back-
ward direction.

With visible (non-hidden) password input fields, an entered text undergoes
no transformation and, hence, in that case the value of the input type property
remains the sole indicator for a password input field. As illustrated in Listing 3.2,
the type is declared by a constant value which first points to the possible user-
entered values (e.g. text or number) and secondly specifies the particular type of
the input field. Accordingly, for visible passwords the second descriptor would be
TYPE_TEXT_VARIATION_VISIBLE_PASSWORD. The constant states whether an input
field is designed to handle passwords and indicates the processed type.

Being assembled at runtime, it might occur that the input type is not im-
mediately assigned to the EditText instance upon initialization. Similarly, it
is probable that the transformation method changes during execution. This is
likely the case with Android applications that offer users the option to toggle
the password visibility by clicking on a button. Internally, this is achieved by
switching the transformation method, e.g. from PasswordTransformationMethod
to HideReturnsTransformationMethod (or any other non-hiding option) and vice-
versa. Unless the password transformation is already registered upon initialization,
it is evident that all transformation method assignments to an EditText instance
need to be backtracked in order to determine whether the element acts as an
input for passwords at any point of execution. Of course, this process becomes
redundant and can be skipped if an input type is set, already referring to a
password or PIN code. Overall, the workflow to find generated password input
fields can be summarized as follows:

1. Find instances of EditText objects and, using forward slicing, verify whether
the methods setTransformationMethod and setInputType are invoked di-
rectly upon initialization.

2. Based on the obtained results, backtrack the arguments passed to the
found methods. An input field for passwords is found if at least one of the
following conditions is met:

(a) The tracked transformation method is an instance of the class
PasswordTransformationMethod.
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(b) The tracked input type constant value indicates a matching field type
for a visible, numeric, web, or general password.

3. If still undecided, track all transformation method or input type assignments
appendant to a particular EditText instance and perform the evaluation
as outlined in the previous step.

Listing 3.2: Kotlin example of a dynamically generated input field.

1 val alert = AlertDialog.Builder(this)
2
3 val input = EditText(this)
4 input.setTransformationMethod(PasswordTransformationMethod.getInstance())
5 input.setInputType(InputType.TYPE_CLASS_TEXT or InputType.TYPE_TEXT_VARIATION_PASSWORD)
6
7 input.addTextChangedListener(object: TextWatcher {
8 override fun onTextChanged(s: CharSequence?, start: Int, before: Int, count: Int) {
9 val password = s.toString()

10 }
11
12 override fun beforeTextChanged(s: CharSequence?, start: Int, count: Int, after: Int) {}
13
14 override fun afterTextChanged(s: Editable?) {
15 val password = s.toString()
16 }
17 })
18 alert.setView(input)
19
20 val submitButton = Button(this)
21 button.setText("Submit credentials")
22 button.setOnClickListener(object: View.OnClickListener {
23 override fun onClick(view : View?) {
24 val password = input.getText().toString()
25 }
26 })

Tracking Password Inputs

Having successfully identified an EditText element as a container for password
input, the subsequent task consists in tracking the data flow of a user-entered
password. Beforehand, a suitable slicing criterion is needed in order to trigger
this process. In the following, we highlight the available options and point out
possible implications on slicing results.

Basically, it is conceivable to compose a criterion from the previously found
EditText instance and track the object in forward direction. The resulting slice
would, in theory, comprise all code statements that refer to the input field or any
of its properties. Applied to the sample code provided in Listing 3.2, the result
should include the code lines 9, 15, 18, and 24 since they reference the input
field object or a derivative. However, as opposed to the directly visible data flow
from the EditText instance to the AlertDialog in line 18, the affiliation with the
other code lines is not immediately obvious. To resolve these traces, our slicer is
aware of implicit control flows, internally handled by the Android framework.

As depicted in Listing 3.2, EditText objects support the registration of event-
triggered methods. They enable a predefined callback to be invoked whenever
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the event is signaled. The sample code demonstrates this feature by means
of the addTextChangedListener listener. In practice, it causes the method
onTextChanged (line 8) to be called with the current input field text wrapped as
a CharSequence, as soon as the text of the input field changes. Another listener
method is attached to a button (line 22) and brings the method onClick to access
the value of the input field (line 24), once the button is clicked. The actual control
and data flow in these two examples is carried out internally and beyond the
scope of the underlying program code. For static slicing, this means that neither
a consecutive nor a coherent data flow is determinable due to missing links in
the execution chain. For instance, without being able to track into Android’s
TextWatcher class, a slicer cannot know that the CharSequence encloses the value
of the input field. More generally, the slicer will miss all information flows that
are handled within a listener-callback system, leading to considerable imprecision
and false negatives in the overall output.

One way to address the issue consists in statically linking callbacks and their
registrations. For instance, assuming that a call to addTextChangedListener
is encountered by the slicing process, a previously learned mapping could dis-
close that the actual input value is made available through a CharSequence or
Editable parameter. The downside of this approach, however, is that all probable
associations have to be known in advance. Considering the extensive amount of
possible listeners and callbacks on the Android ecosystem, a manually managed
database is likely to cover only a subset of all implicit control flows.

Instead of tracking EditText instances, another approach is to track methods
that are known to access the password value. E.g., by defining invocations
of EditText->getText() as slicing criterion for forward tracking, it can safely
be assumed that the initially sliced register holds the actual password value.
Employing the same criterion for backward slicing reveals whether the originating
EditText instance sets an appropriate transformation method or input type.
Compared to the formerly described method, this combination of slicing into
both directions enables the resulting slice to start with the password value itself
(instead of the input field) and ascertains that it is not influenced by unrelated
properties of the originating EditText object. However, the focus on specific
methods, such as getText(), also causes other accessors to be excluded a priori.

The following key points can be concluded from the described approaches:

• The slicing criterion has to be assigned an EditText element or an access
method, such as getText(), in order to track password input fields.

• Depending on the initial trigger, the slicing results may include code
statements that are not related to the input field value at all.

• User-entered passwords are typically passed to event-triggered callbacks.

• By implicitly referring to an EditText instance, password values are made
available via different data types and access descriptors. The slicing process
has to know these characteristics in advance.
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3.4 Finding Password Leaks
Evaluating the data flow of passwords regarding security aspects is challenging
since the severity of problems may depend on the context of an application. For
example, it might be inappropriate to flag an application insecure due to the fact
that a password does not undergo a cryptographic transformation. Of course,
the opposite can be true for applications where cryptography is inevitable in
order to protect sensitive data.

Considering passwords as sensitive information, our security rule focuses on
general misconceptions that substantially affect its secrecy. For instance, one
paradigm states that passwords must not be written to a logging function. This
emerges from the fact that the mandatory confidentiality is no longer given as
soon as an unintended party is able to learn secret credentials. By analyzing the
data flow between a password field and one or multiple endpoints, we aim to
answer the following questions:

• Is an entered password written to an output file?

• Is a password leaked to a logging function / logfile?

• Is a cryptographic transformation applied to an input?

If one of the first two conditions is satisfied, the security of an entered password
is clearly impaired. The latter question specifically depends on the investigated
application. For example, under normal circumstances there is no need for a
Mobile Banking application to transform a password in order to login to the
service behind. In contrast, a program intending to securely store data protected
by a user password undoubtedly should apply cryptography for key derivation
and data encipherment.

3.4.1 Detection Strategy
Using the following workflow, we intend to evaluate the questions listed before:

1. Identify available password fields by applying the patterns, elaborated
in Listing 3.1. For each occurrence, track all resource usages in forward
direction.

2. From each computed slicing graph, extract all feasible execution paths and
evaluate the following conditions:

(a) Raise an alert if the data flow includes calls to write(...) methods of
the (sub)classes of java.io.OutputStream and java.io.FileWriter.
Also detect when passwords are exposed using java.io.PrintWriter.

(b) Check if a password is sent to log output or leaked to a logfile using
methods of the android.util.Log API. Issue a warning if correspond-
ing calls have been found.
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(c) Verify if a password is processed by security-related APIs, exposed in
java.security.* and javax.crypto.*. If found, emit a notification.

The detection workflow starts by obtaining the slicing graphs for all password
fields. Initially containing the offset of the password resource, the data flow of
an execution path models all program statements that are affected by the input
field. Inspecting the graph enables us to search specific accessors that are known
to implement the questioned behavior.

3.4.2 Case Study
The goal of this study is twofold. First, we intend to assess the practical
feasibility of our analysis solution. Therefore, we manually contrast the output
of our framework with the actual source code of real-world applications. This
helps us to identify possible weaknesses in our approach and implicitly highlights
the framework’s reliability. Second, by applying our tool on a larger number of
current applications that include password inputs, we gain a valuable insight into
the prevalence of potential security problems.

For the case study, we conducted both a manual and an automated analysis
on the same dataset. In the following, we explain the applied methodology, the
individual goals, and what applications were analyzed. Lastly, we combine both
approaches into a single representation and point out notable findings.

Methodology

Before testing the automated analysis, we manually reverse-engineered and
examined the source code of 522 applications that use input fields for secrets.
All of them were downloaded from the official Google Play Store and had at
least 10,000 installations. 206 applications were “password managers”, intended
to protect user-entered credentials by means of cryptography. The remaining
applications served different purposes: mobile banking (145), cloud storage (68),
secure data container (12), messenger functionality (91).

The idea of the manual analysis was primarily to collect a ground truth about
what our approach should later find automatically. Meanwhile, we repetitively
refined the implementation where we recognized deficiencies and ensured all
components would interact well enough with each other. Besides identifying
opportunities for future improvement, we also benefited from seeing what our
security checks would be able to (not) cover in a real-world scenario.

In the second step, we applied our framework on the dataset. For each
automatically inspected application, we obtained a generated report that included
all found input fields for secrets, for each of them the possible execution paths
and the result of the performed security checks.

Results

In total, we applied our framework to 522 selected Android applications. As
listed in Table 3.1, among the investigated programs, 10 could not be analyzed
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Table 3.1: Case study on password leaks.

Count [%]

Downloaded from Google Play Store 522
Failure during static slicing 10 2%
Out of memory 3 1%
Analyzable with password inputs 509 97%

Input fields for secrets 2,874
Secrets passed to crypto-related functions 1,181 41%
Secrets leaked through android.util.Log 577 20%
Secrets written to a file output 346 12%

Input fields leaking secrets 923 32%
Apps with unsafe input fields 182 36%

automatically as the slicing process was either aborted after the defined threshold
of 25 minutes or it surpassed the limit of 80,000 tracked registers. The analysis of
another set of three applications failed due to limitations in the amount of usable
memory. Precisely, during the pre-processing step, the automated analysis ran out
of memory while parsing the Smali code into an object-oriented representation.
A manual review of the affected programs revealed that their Dalvik bytecode
contained tricks to hamper reverse-engineering. Apart from that, we could verify
that these apps process secrets safely. As a result, for 97% or 509 out of 522
applications the analysis workflow terminated successfully.

During our study, we disclosed a total of 2,874 input fields for passwords or
PINs. The manual review revealed that the amount of fields used correlates with
the program’s category. While, on average, mobile banking applications include
2, messengers provide up to 8 input fields for secrets.

Overall, we found that 41% or 1,181 entered secrets were processed by security-
related APIs. Clearly, it depends on the purpose of the individual input field
whether a cryptographic transformation is appropriate. However, of 206 inspected
password managers, we observed that in 38% or 78 applications none of the
available input fields for secrets was linked to security-related APIs. Although
this does not immediately imply security issues in all affected programs, a further
inspection seems advisable.

The secrecy of the user-entered data is only preserved if the associated data
flows do not allow an attacker to learn credentials. Unfortunately, we found that
in 20% or 577 input fields the secret was passed to a log output. Likewise, the
input to another 12% or 346 fields was written to files. Interestingly, as also
confirmed by the manual analysis, no credentials were leaked both to log output
and files. In summary, we observed that 32% or 923 out of 2,874 inspected input
fields leaked input data either to files or log output. With regard to the set of
509 investigated applications, it can be subsumed that 36% or 182 are subject to
an issue that substantially affects the secrecy of entered passwords.
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Evidently, the precision of our analysis results is strongly linked to the
accuracy of the inspected data flow graphs. The manual analysis step ensured
that there are neither false positives, nor false negatives with regard to our dataset.
Nevertheless, from the obtained results we conclude that our solution qualifies
for use with an arbitrary dataset. Conversely, this does not imply the security
checks are exhaustive and there is no more room left for improvement. In fact,
additional patterns and checks could be suited to reveal further misconceptions.

3.5 Conclusion
The analysis of security-critical execution paths in Android applications is crucial
in order to uncover leaks of sensitive data, improper usage of security APIs, and
vulnerable code fragments. In practice, many flaws are difficult to diagnose and
cannot easily be verified in reverse-engineered source code.

We presented a target-oriented approach to track the data flow of input fields
in Android applications by means of static analysis. Based on the proposed
concept of slicing patterns and a combination of program slicing on Smali code,
our framework excels in following user-provided input right from the point where
it enters an application. We assessed our approach by analyzing 509 applications
manually and automatically. We detected that 36% or 182 applications leak
sensitive user input either to files or log output. This result does not only highlight
the viability of our solution but also underlines that misconceived processing of
secrets is a common issue in Android applications.

In the context of this thesis, our contribution strives to make the semantics
of Android applications understandable at a low level. Our solution takes into
account the deficiencies of existing state-of-the-art tools for static analysis. By
performing slicing on Smali code in forward and backward direction, we disclose
potential data leaks and can exactly pinpoint their origin in code. Due to the
open design of our solution, an application is not limited to user inputs but
can, basically, cover any inspection scenario that involves an analysis of data
flows. Our results highlight the need for approaches to automatically uncover
implementation weaknesses and stress the need for further research that helps to
understand the logical context of code fragments in mobile applications.





4
Static Analysis on iOS

Static application analysis on iOS involves working with low-level machine code.
In this chapter, we introduce a multi-step approach to facilitate the security-
critical inspection of iOS binaries. First, we present a solution to decompile
machine code for 64-bit ARMv8 CPUs to a higher-level representation. Based on
the reverse-engineered code, we can perform program slicing and pointer analysis
to reconstruct the control and data flow of relevant code segments. As a result,
we are able to verify whether execution paths meet predefined inspection criteria.

We start by explaining the challenges of static analysis on iOS in Section 4.1
and outline how they can be tackled. In Section 4.2, we propose a workflow for the
static analysis of iOS binaries and highlight the involved steps. We describe the
decompilation process in Section 4.3 and examine how to recover type information
from the binary that was stripped during compilation. Having acquired code in a
higher-level representation, Section 4.4 describes our approach to resolve pointer
states and to obtain an accurate call graph. Section 4.5 elaborates on how we
can leverage this information for program slicing and parameter backtracking.
Parts of this chapter are taken verbatim from [FMS18].
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4.1 Introduction
Many applications for the iOS platform perform sensitive tasks and process user
data. An effective method to verify how thoroughly security-critical functionality
has been implemented is to perform static analysis on a reverse-engineered
representation of the application archive.

While Android applications are provided in a reversible bytecode format,
programs for iOS are compiled to machine code that is tailored to a particular
CPU architecture. Manually inspecting the disassembled code of an executable
can be a challenging endeavor as the increasing complexity and size of today’s
applications impede a conclusive analysis. Automated tools for binary inspection,
in contrast, are typically not aligned to the characteristics of the iOS platform and
fail to perform a thorough data flow analysis. Among these characteristics are, for
example, dynamic control-flow decisions and the use of a pointer-aware language
(see Section 2.3.2), where pointers may point to different memory locations and
memory locations may be referenced from different pointer variables (aliasing).
Especially the use of a pointer-aware language requires particular attention in
order to focus on code parts that are essential for a particular computation by
means of program slicing (see Section 2.3.1).

In the following, we introduce a solution that enables such an analysis on iOS
applications by addressing the following challenges.1

1. Decompiling and simplifying machine code: The analysis of 64-bit binaries
compiled for the ARMv8 architecture is error-prone and tedious. Therefore,
we transform the binary into higher-level LLVM intermediate representation
(IR)2, where all low-level CPU instructions have to be modeled appropriately.
This allows to re-use existing LLVM-based tools, such as KLEE [CDE08],
PAGAI [HMM12], and LLBMC [MFS12].

2. Language peculiarities: iOS applications are developed in runtime-oriented
languages such as Objective-C and Swift, and the majority of control-flow
decisions are made during runtime. Instead of calling methods of objects
directly or through virtual method tables (vtables), this task is delegated to
a dynamic dispatch function in the Objective-C runtime library. To recover
a semantically correct control flow from the binary, we reconstruct the
hierarchies of classes, methods, and types from binaries. This information
allows to resolve the target of a function call through the dispatch routine.

3. Pointer analysis: Computing control flow and data dependencies, as well
as the identification of instructions and variables that have an impact on a
particular program statement, requires information about where different
variables (and CPU registers) point to during execution. Since computing
points-to sets is an undecidable problem [And94], we propose a solution
addressing the trade-off between the accuracy of program slices and the
runtime overhead.

1The framework is available at: https://github.com/IAIK/ios-analysis
2https://llvm.org/docs/LangRef.html
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We propose and implement the necessary building blocks for a framework that
tackles these challenges and enables a static analysis of iOS executables. With
our approach, arbitrary ARM 64-bit binaries can be decompiled to LLVM IR
code. Instead of being constrained to a low-level inspection of machine code, our
solution simplifies reasoning about instructions using LLVM-based analysis tools.
Our contribution includes the following key components:

• Decompiler. As there are no decompilers available for iOS binaries yet, we
introduce a generic decompiler transforming ARMv8 binaries to LLVM IR
code. With applications developed in Objective-C or Swift, it is significantly
harder to obtain a meaningful program control flow on iOS compared to
Android. In addition, the need for pointer analysis and the reconstruction
of information from the binary are major differences that required new
approaches to be pursued.

• Static Slicing. We use static slicing to extract a subset of the program
affected by a specific variable. Introduced by Weiser [Wei81], the idea was
to describe dependencies between statements using data flow equations.
Subsequent works extended the concept to Program and System Dependency
Graphs (PDG, SDG) [OO84; HRB90], defined as a reachability problem.
Agrawal et al. [ADS91] proposed an approach to create program slices using
PDGs that handle pointers and arrays in intra-procedural programs. In
[BH04], the supportive impact of pointer analysis on program slicing has
been underlined.

• Pointer Analysis. For a reliable analysis of data flows, it is inevitable to
determine what values are referenced and modified by pointers. Shapiro
and Horwitz [SH97b] compared the precision of different techniques for
pointer analysis [And94; Ste96; SH97a]. Of the three tested approaches,
Andersen’s [And94] was the most precise but had a runtime of O(n3).
Steensgard’s algorithm [Ste96] runs in almost linear time having less precise
results. The third algorithm [SH97a] is a compromise between runtime and
precision. The main difference between Andersen’s and Steensgard’s algo-
rithms is that Andersen uses so-called inclusion relations, while Steensgard
builds on equality relations.
Since iOS applications usually consist of a very large code base, Andersen’s
initial algorithm would lead to a poor overall performance. However, various
improvements [HT01; PKH07; Ber+03; HL07b; HL07a] have been proposed
to tackle this issue. Hardekopf and Lin [HL07b] improved the approach to
an almost linear runtime while still providing results similar to Andersen’s
algorithm. In our solution, we use the constraint optimizations proposed
in [HL07a]. By merging the definitions of similar pointer variables, the
input size for constraint solving becomes smaller. In combination with
another approach [HL07b], we further optimize constraint solving as strongly
connected components in a graph are detected and collapsed to a single
node as they form cycles in which each node still points to the same location.
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4.2 System Design
In this section, we provide an overview about our analysis concept and describe
the individual steps. As depicted in Figure 4.1, analysis starts with a 64-bit
Mach-O binary executable for the ARMv8 platform. The overall workflow can
be summarized as follows:

1. Disassemble: After extracting a 64-bit ARMv8 binary from the Mach-O
file, we can leverage the disassembler of the LLVM framework to generate
assembly code.

2. Decompile: We translate the ARMv8 assembly code into LLVM IR code
by extending an existing decompiler framework with instruction semantics
for ARMv8.

3. Pointer Analysis: The points-to sets are computed for all pointers using
an enhanced context-insensitive approach that scales well for arbitrary iOS
applications of any size.

4. Static Slicing: Relevant segments are identified in LLVM IR code based
on the slicing criteria derived from the predefined security rules.

5. Parameter Backtracking: All execution paths a parameter can take
are backtracked to the slicing criterion. This enables us to verify whether
encountered statements meet predefined inspection criteria.

Except for the initial disassembly step that is pursued by LLVM, we contribute
new approaches and augment existing frameworks. In the subsequent sections of
this chapter, our solution is explained in detail.

iOS Binary Disassembler External Functions
Definitions

Decompiler

Andersen’s
Pointer Analysis

Static Slicer

Parameter
Backtracking

Machine Instructions

Function Addresses

Objective-C Runtime Information

ASM Instructions

LLVM Intermediate Representation

Figure 4.1: Analysis workflow of an iOS binary
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4.3 Decompilation to LLVM IR
In this step, we translate 64-bit ARMv8 binaries into LLVM IR code. The aim is
to obtain a simpler representation that still models a semantically correct control
flow and data flow of the application.

The LLVM compiler frontend takes source code as input. After the code
has been fully tokenized, parsed, and analyzed, LLVM IR code is emitted. The
compiler backend is then responsible to optimize it, assemble machine code
and link the resulting object. Within this process, LLVM tailors the output
to a specific CPU architecture using the corresponding register and instruction
descriptions. While the former specifies the processor’s register types and relations,
the latter includes pattern definitions used to select machine instructions in place
of IR instructions during code generation3.

In order to decompile binaries, we apply the patterns in the opposite direction.
Therefore, we build on the reverse-engineering framework Dagger4. In contrast
to similar approaches56, it extends LLVM and relies on instruction semantics7 to
translate machine instructions to LLVM IR code based on target descriptions of
registers and instructions. The semantics describe the different types of operands
a machine instruction can take and what operations have to be applied to get an
equivalent in LLVM IR code. For most machine instructions, semantics can be
generated from the descriptions. However, since not all instructions necessarily
have a counterpart in LLVM IR, we manually supplemented missing definitions
for the 64-bit ARM architecture.

The ARMv8 instruction set knows various control flow statements that all have
to define a target where the branch should link to. While for most instructions
the address is statically defined, the unconditional branch statements BR, BLR,
and RET read the destination from a register whose value cannot be resolved
during decompilation. As a remedy, we perform a pointer analysis on the register
and then update the branch targets in the control flow.

Function calls, i.e. the BL and BLR instruction on ARMv8 CPUs, are translated
to the call instruction in LLVM IR. Passing parameters to functions is done by
storing values in registers and/or on the stack8. Further steps are not required
since the called function retrieves the values from the registers and the stack
via the register set. This, however, means that we do not have information
about parameters or return values. As static analysis requires this information
to reconstruct the data flow between functions, we have to restore the missing
type information from the binary (see Section 4.5.1).

As shown in Algorithm 1, the decompilation itself consists of two steps. First,
all MachineInstructions are grouped into basic blocks that resemble the control
flow (lines 1 to 16). If an instruction is a control flow statement, its target

3https://llvm.org/docs/CodeGenerator.html
4https://github.com/repzret/dagger
5https://github.com/trailofbits/mcsema
6https://github.com/draperlaboratory/fracture
7https://llvm.org/docs/TableGen/
8http://infocenter.arm.com
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address is determined. The second step iterates over MachineFunctions and its
basic blocks of disassembled instructions and decompiles them to LLVM IR using
the semantics (lines 17 to 24). If the exit point of a basic block is reached, a
terminator instruction is added to the LLVM IR code that defines the subsequent
basic blocks or returns from the function.

Algorithm 1: Decompilation workflow
1 for MI in MachineInstruction do
2 if MI.address in FunctionStarts then
3 createMachineFunction(MI.address)
4 createMachineBasicBlock(MI.address)
5 end
6 DIS ← disassemble(MI)
7 if branchInstruction(DIS) then
8 if not callInstruction(DIS) then
9 if getTarget(DIS) then

10 createMachineBasicBlock(getTarget(DIS))
11 end
12 createMachineBasicBlock(MI.address + InstructionSize)
13 end
14 end
15 addToMachineBasicBlock(DIS)
16 end
17 for MF in MachineFunctions do
18 switchToFunction(MF)
19 createAllBasicBlocks(MF)
20 for MBB in MF.MachineBB do
21 switchToBasicBlock(MBB)
22 decompileInstruction(MBB)
23 end
24 end

4.3.1 Recovering Lost Information
During compilation, the LLVM backend strips function prototypes, local variables,
and other type information from the LLVM IR code. Without this knowledge, it
is non-trivial to generate a valid call graph for use with static analysis. In this
section, we describe how the needed information can be reconstructed.

Intraprocedural Control Flow

Grouping statements into basic blocks helps to understand the control flow in a
function. Branch instructions always indicate the exit point of one basic block
and point to succeeding statements. Since they are referenced by their instruction
offset in the binary, we can leverage this address to unambiguously find the entry
points of the subsequent basic blocks. The immediate predecessors of entry points
can be defined as exit instructions of basic blocks. As a result, we obtain an
accurate control flow graph from basic blocks. Without the binary addresses,
successors would not always be clearly visible.
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Function Parameters and Return Values

Knowing about these definitions is essential for the data flow analysis. Since
function prototypes are completely removed during compilation, we can only
make assumptions based on the ARMv8 calling convention. A function parameter
can be assumed if a value is read from a memory location where a parameter may
have been stored previously. To find such locations, we traverse the control flow
graph from the entry point of a function to the load instruction. A parameter is
also assumed if no instruction is found that stores a value to a location.

To identify return values, the control flow graph is not traversed from the
function entry point but from the call instruction to which the program counter
will return after executing the function.

External Symbols

iOS applications include placeholders for symbols that refer to external libraries.
At runtime, the placeholders are replaced with the correct associations from the
loaded libraries. For the purpose of static analysis, we can imitate this behavior
and store a reference to a symbol’s name and its library association within the
decompiled code.

4.3.2 Implementation
As the Dagger framework is only capable of translating x86 binaries to LLVM
IR, we have extended it with the definition of instruction semantics for 64-bit
ARMv8. By also considering specifics of iOS binaries, we succeeded in modeling
the correct control flow and can complement the subsequent data flow analysis
with accurate type information. In the following, we highlight some adaptations
that were made to optimize further analysis.

Registers

Dagger relies on the LLVM register description of a CPU to create a data structure
that simulates internal storage. However, in practice, registers of a 64-bit ARMv8
CPU overlap with the LLVM definitions and storing multiple sub registers in a
single super register will lead to ambiguities when computing data dependencies.
The largest super registers contained the values of four physical registers and
each of them was stored in four different super registers. Thus, we modified
Dagger’s model such that a single super register may represent only the value of
exactly one physical register. This means that three values of each of the largest
super registers can be removed and no data is lost.

In case an instruction touches multiple physical registers by accessing using
a super register, which now holds only the value of a single physical register,
multiple super registers need to be combined into a single value that can then be
used by translated instructions. Adapting Dagger’s strategy for this problem still
keeps the values stored in registers unchanged but facilitates to compute data
dependencies of super registers.



42 Chapter 4. Static Analysis on iOS

Non-Volatile Registers

According to the 64-bit ARMv8 calling convention, the content of non-volatile or
callee-saved registers must be preserved across function calls. Although the callee
accesses these values only for storing and loading them, this operation causes
data dependencies between the caller and callee. Since the values are not used
for anything else, we can optimize the code by cutting such data dependencies.

Tail Calls

In ARMv8, a branch-and-link (BL) instruction is replaced with branch (B) if call
is the last instruction of a function before returning to the caller. Since branch
cannot leave the scope of a function in LLVM IR, Dagger replicates the target’s
code to the current function. This leads to a wrong call graph as code inlining
prevents that an edge is added for the call. We resolve this issue by checking
whether the target address of a branch instruction is outside the function body.
In that case, we replace the tail call with a regular call and return statement.

4.4 Pointer Analysis
Pointer analysis is required to support the subsequent slicing step with information
about pointers and to compute an accurate call graph, needed for data flow
analysis. We rely on context- and flow-insensitive constraint generation with a
focus on LLVM IR and the characteristics of Objective-C (and implicitly Swift).

4.4.1 Iterative Constraint Generation
The algorithm presented by Andersen [And94] generates constraints once for
each instruction, which only works if all values are already provided within
an instruction. However, in case of function pointers and calls to Objective-C
methods, points-to knowledge is required before being able to process these
calls. Therefore, we adapted the constraint generation process to handle call
instructions with pointers in an iterative manner.

Focusing on the C language only, Andersen’s analysis does not consider an
important feature that occurs in decompiled code: All memory accesses are done
by converting an integer to a pointer using the inttoptr instruction. Without
considering these instructions, constraint generation would produce a points-to
set with all pointers referencing an unknown location. We modify the rules for
constraint generation to cover the inttoptr instruction. Based on the constraints
by Hardekopf and Lin [HL07b] (see Table 2.1), we identify patterns in the
decompiled code for all possible applications of inttoptr:

• Binary: offsets are accessed by inttoptr via static addresses. This is the
simplest memory access since the operand of inttoptr includes the source
address as a constant integer value.
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• Heap: memory addresses are created via allocation functions, such as
malloc() or calloc(). Since their return values describe an abstract
location, it can immediately be used for pointer analysis.

• Stack: memory is usually accessed by adding a static offset to the stack
or frame pointer. However, different instructions that access the same
location on the stack are not easily identifiable since a separate pointer is
created for each of them. Thus, we have to match stack locations with all
variables which might contain the same value during execution. This is
done by determining all operations that use the stack pointer in an add
or sub operation with a constant integer. As these operations are mainly
responsible to create the stack address for a subsequent use with inttoptr,
we can match different pointers to the same stack location.

As shown in Algorithm 2, we extend the original algorithm by Anderson [And94],
to distinguish between call instructions and others. After generating constraints
for all regular statements (line 5), the subsequent loop solves the constraints by
propagating points-to sets through the program. The gained knowledge is then
used to update the constraints for call statements. This step is repeated until
no more edges are added to the call graph.

Algorithm 2: Constraint generation
1 for I in Instructions do
2 if isCallInstruction(I) then
3 addInstruction(I, CallInstructions)
4 else
5 generateConstraints(I)
6 end
7 end
8 repeat
9 solveConstraints()

10 for I in CallInstructions do
11 updateConstraints(I)
12 end
13 until no new constraints added

4.4.2 Objective-C Peculiarities
As iOS applications are compiled from source code in the runtime-oriented
languages Objective-C and Swift, the LLVM frontend rewrites direct method
invocations to use a dynamic dispatcher function instead. objc_msgSend() is a
function in the Objective-C runtime library, responsible to decide at runtime
what method to call. Therefore, it takes two parameters that specify the class
or object, and the name of the method to call. Both arguments, X0 and X1 in
ARMv8, hold pointers to locations in the binary where the actual values are
retrieved from. This also affects the call graph generation which naturally fails
to add edges if neither type information nor selector names are defined in the
LLVM IR code. We, thus have to restore the correct call graph by adding edges
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for the methods referenced in calls to objc_msgSend(). Other language-specific
peculiarities that need special processing include the Objective-C features Blocks
and Fast Enumeration. For both cases, constraint generation has to be adapted
to identify instructions that access locations on the stack.

Algorithm 3 describes how the original call graph is restored using the points-
to sets of the class or object (PtsToa), and method name (PtsTob) parameters
passed to objc_msgSend(). The algorithm iterates over the possible values of the
X0 and X1 parameters and based on the locations they point to, it determines
the method that can be called. The X0 parameter has to point either at a location
where class infos are stored or to a dynamically allocated location. If its value
points to class infos, the corresponding class method will be called. Otherwise,
if it points to a dynamically allocated memory location and is annotated with
information about an object type, an instance method is invoked. The overall
result is a call graph that also models all calls that are performed at runtime via
objc_msgSend().

Algorithm 3: Call graph reconstruction using points-to sets
Input: CallInstruction, PtsToa, PtsTob

1 for loca in PtsToa do
2 ClassMethod ← false
3 if PointsToClassInfo(loca) then
4 ClassMethod ← true
5 end
6 Type ← GetTypeName(loca)
7 for locb in PtsTob do
8 if not PointsToClassInfo(loca) then
9 continue

10 end
11 Selector ← GetSelectorName(locb)
12 if not KnownMethod(Type, Selector, ClassMethod) then
13 continue
14 end
15 if HasEdge(CallInstruction, Type, Selector, ClassMethod) then
16 continue
17 end
18 AddEdge(CallInstruction, Type, Selector, ClassMethod)
19 end
20 end

4.5 Static Slicing
The purpose of static slicing is to compute all code segments that affect a slicing
criterion. We adopt the algorithm of Weiser [Wei81] to work with LLVM IR code
by considering characteristics of ARMv8.

As parameters can be passed using both the stack or registers on ARMv8,
Weiser’s approach does not immediately work for decompiled LLVM IR code:
Each function has exactly one formal parameter that represents the register set.
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Since this set is the same for all functions, no parameters could be substituted
to generate a new set of slicing criteria when a function is called. Our solution
for this issue is to extend the collection of all relevant variables ROUT (i) with
information about load and store operations that read or modify registers before
a function call.

Let S(v, r) be a store instruction that saves a variable v to the register r and
L(v, r) the corresponding load instruction. We now define STORE(i) to return
the set of preceding variables that were stored to a register before the instruction
i and LOAD(i) to return the set of first variables, loaded from a register after
the instruction i:

STORE(i) =
{

(v, r) | ∃ Si(v, r)→ ∗
CFG i,

@ Li(v, r)→ ∗
CFG i Sj(v′, r)→ ∗

CFG i
} (4.1)

LOAD(i) =
{

(v, r) | ∃ i→ ∗
CFG i Li(v, r),

@ i→ ∗
CFG Lj(v′, r′) ∗

CFG Li(v, r)
} (4.2)

Using these sets, parameter substitution from formal to actual parameters is
possible even if all functions use the same register set. If the stack is used for
parameter passing between functions, inter-procedural slicing is achieved using the
points-to analysis. If a stack parameter is a relevant variable, the corresponding
memory location will be the same in the caller and callee functions.

4.5.1 Restoring Missing Type Information
A conclusive data flow analysis requires knowledge about all object types. After
recovering function parameters and return values in the decompilation step,
type information is still missing for instance variables and protocol methods. If
available in the code of the binary, the type definitions can easily be resolved
(see Section 2.2.2). However, if instance variables are allocated by a function of
an external library, finding their type information can be a challenging task.

Instance variables are always accessed by loading an offset from an individual
static address in the binary. This enables us to find all instructions that refer
to a particular variable and a single abstract location [SH97a] can be specified.
Similarly, the binary has no precise type information for parameters of methods
that are declared by a protocol in Objective-C or Swift. Although creating
abstract locations for each parameter does not allow for a precise pointer analysis,
it is still possible to identify calls made using these objects.

4.5.2 Parameter Backtracking
Program slices summarize all relevant statements and variables that influence a
certain parameter. This information can now be split into single execution paths.
In the following, we explain our solution to find predecessors, isolate execution
paths, and how to avoid cycles while backtracking.



46 Chapter 4. Static Analysis on iOS

Finding Predecessors

The static single assignment form (SSA) of LLVM IR already represents a effective
way to backtrack program statements that do not use pointers for memory access.
However, so far if a value is read from a memory location referenced by a pointer,
it is not feasible to identify the preceding store instruction by inspecting only
the current statement. For program slicing, it is necessary to add the memory
location to the relevant set and traverse the control flow graph backwards to find
a modification of this location. Overall, for backtracking we need to specify more
parameters than just the relevant location, as explained in the following.

In case a memory location l is added to the set of relevant variables, we also add
the statement s, which induced this location, to a separate set RSources(i, l). It
includes all statements that were added by a relevant variable l at statement i and
allows to track value changes with according read instructions. In the following,
we show the formal definition of these sets that apply to each instruction and the
approach how sources of relevant variables are propagated through a program.
Analogous to the LOAD(i) and STORE(i) definitions that were used with slicing,
instruction j is an immediate successor of instruction i in the CFG (i→CFG j):

RSources(i,l) = {i | i ∈ SC , l ∈ REF (i)}
∪ {i | i ∈ RSources(j, l), i /∈ SC}

(4.3)

Leveraging this information, it is feasible to find the preceding changes of a
memory location, in case a value is accessed using a pointer. Assuming the state-
ment r reads a value from a memory location l, the according set of predecessors
Pred′(r) for backtracking this value is defined as:

Pred′(r) = {s | r ∈ RSources(s, l), l ∈ DEF (s)} (4.4)

The set of predecessors Pred(i) that contains all program statements modifying
a referenced variable can then be written as:

Pred(i) = {s | r ∈ RSources(s, l), l ∈ DEF (s), l ∈ Loc}
∪ {op | op ∈ Operators(i), op ∈ Instructions} (4.5)

Extracting Execution Paths

The set of predecessors Pred(i) comprises all statements before instruction
i. Any possible execution path of a value v back to its initial definition can
be formulated as a graph G = (V ,E). While V represents vertices with all
program statements, the edges E can be found by recursively adding all reachable
predecessor instructions:

E(0) = {(v, j) | j ∈ Pred(v)}
E(k) = {(i, j) | (j, k) ∈ E(k−1), i ∈ Pred(j)}

(4.6)
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Avoiding Cycles

If program statements are run within a loop, execution paths resemble cyclic
dependencies. To avoid infinite loops during analysis, we discard the branch of a
path immediately as soon as an instruction is found that is already included in
the path. Consequently, execution branches without cyclic dependencies remain
being tracked backwards and lead to the initial definition of a variable.

4.5.3 Implementation
We implemented a solution for program slicing and parameter backtracking on
LLVM IR code that considers language peculiarities of iOS applications. The
slicing step is required to integrate with points-to information, and the subsequent
backtracking step has to support the call graph restored during pointer analysis.

We build on LLVMSlicer9, an implementation of Weiser’s algorithm for static
slicing, which also includes Andersen’s algorithm for pointer analysis. While
this works fine for smaller programs, it leads to a poor performance for iOS
applications that usually consist of a very large code base. We tackle this
issue by replacing the implementation with constraint optimization techniques10

proposed by Hardekopf and Lin [HL07a]. Taking up this idea, we look for
pointers that have an equivalent points-to set and merge their representations.
Constraint solving is optimized by detecting and collapsing strongly connected
components in the constraint graph [HL07b]. We further augment the slicer with
a functionality for parameter backtracking in order to extract single execution
paths. As demonstrated in Section 5, this feature enables us to verify whether
data flows meet certain predefined inspection criteria.

4.6 Conclusion
Thoroughly analyzing data flows in applications for the iOS platform is challenging
due to low-level machine code, the use of a pointer-aware language, dynamic
control-flow decisions, and missing data types. To perform a conclusive inspection
of implementation security it is crucial to address these challenges.

We developed a multi-step approach to facilitate the static analysis of iOS
applications. Instead of inspecting the low-level representation of an executable,
we proposed a solution for a generically applicable decompiler that translates
64-bit ARMv8 binaries to LLVM IR code. By reconstructing data types from
the binary, resolving indirect method calls, and performing a pointer analysis, we
are able to precisely model control and data flow graphs for use with program
slicing and parameter backtracking. After extracting and evaluating individual
execution traces regarding predefined criteria, it is possible to draw conclusions
about security-related properties in iOS applications.

9https://github.com/jirislaby/LLVMSlicer
10https://github.com/grievejia/andersen





5
Misapplied Crypto in Android and iOS

Applications

In this chapter, we study the wrong application of platform-provided crypto APIs.
We motivate our analysis in Section 5.1 and present a concept for automatically
uncovering weak security parameters in Section 5.2. In Section 5.3, we formulate
low-level properties to find misapplied APIs and evaluate them in two case studies:
(1) We inspect the prevalence of crypto misuse on iOS in Section 5.4 and disclose
that 343 out of 417 apps (82%) are subject to at least one security misconception.
(2) In Section 5.5, we focus on differences between Android and iOS concerning
the proper usage of platform-specific APIs for cryptography. We find that out of
775 investigated applications that vendors distribute for both operating systems,
604 apps for iOS (78%) and 538 apps for Android (69%) violate at least one basic
security principle. Parts of this chapter are taken verbatim from [Fei19; FMS18].
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5.1 Introduction
Many applications for Android and iOS process sensitive and private user data.
A common method to protect this information is the use of security APIs and
cryptographic functionality, provided by the platform. For this to be effective,
essential rules need to be obeyed, as otherwise the attainable level of security
would be weakened or, in the worst case, entirely defeated. Among these integral
principles are, for example, the need to preserve confidentiality of encrypted data
by not using electronic code book (ECB) mode for block ciphers, the need to
prevent static keys or credentials, which are in the worst-case hard-coded into
the application, or the need to avoid static seeds for generating random numbers.

An evaluation of reports in Common Vulnerabilities and Exposures (CVE)
revealed that 83% of all findings related to cryptography in mobile applications
were due to the wrong usage of security-related system APIs [Laz+14]. Focusing
on the usability of different crypto libraries, other studies [Aca+17; Nad+16]
conclude that, aside from too complex interfaces and insecure defaults, typical
reasons for faulty implementations are often to be found in poor documentation,
missing code samples, and further features required by the library to work securely.
Irrespective of whether an erroneous implementation is a result of a developer’s
ignorance, lack of knowledge, or a too complex documentation of the crypto API,
the identification of misapplied crypto APIs is of utmost importance to protect
sensitive data and to provide the intended functionality, e.g., in case of password
managers or secure messengers. As developers usually do not provide detailed
information and the source code of mobile applications is not made available,
the correct implementation of cryptographic functionality can only be verified by
reverse-engineering the final application.

While analyzing 11,748 Android applications in 2013, Egele et al. specified six
common types of mistakes in using cryptographic APIs and confirmed that issues
were present in 88% of all inspected apps [Ege+13]. Based upon the reverse-
engineering framework Androguard1, the proposed analysis solution first derived
a control flow graph over all functions and subsequently performed static program
slicing on Dalvik bytecode to inspect the parameters passed to cryptographic
operations. Inspired by this approach, Shao et al. [Sha+14a] compiled a set of
cryptography-related Java APIs where implementation flaws would potentially
have a severe impact. Besides incorporating the rules of Egele et al., the authors
also suggested to consider further security-relevant rules targeting certificate
handling and key management. Since then, approaches have been elaborated to
better detect [MBB18] and mitigate [Ma+16a] the wrong use of crypto APIs on
Android. To inspect whether iOS applications are subject to similar weaknesses,
Li et al. [Li+14] proposed a concept for dynamic analysis, aimed at identifying
weak security properties in execution traces captured during runtime. As the
results of existing work suggest that the correct usage of system-provided APIs for
cryptography-related purposes is rather the exception than the norm, it stresses
the need for further research to reliably disclose vulnerable implementations.

1https://github.com/androguard/androguard
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Existing research focuses on highlighting the widespread of crypto misuse
rather than pinpointing the exact origin of problematic statements in code.
While there is undoubtedly a need for tools to warn about these kinds of security
problems, so far they are unable to give clear advice to developers and analysts
about the origin of rule-violating code. Being able to directly compare execution
traces of API invocations is important in order to see why methods are invoked
with cryptographically weak values. With regards to the platform, execution
traces can also provide a valuable insight into why some rules are significantly
more violated than others. To assess and compare the occurrence of misapplied
crypto APIs in Android and iOS applications, we pursue a three-stage process:

1. Streamline the security-critical application analysis for both platforms by
establishing a workflow and output format that ensures inspection results
on Android and iOS are comparable.

2. Based on a general set of basic cryptographic rules not to violate, we
specify concrete detection strategies that hold on both platforms. Due to
the heterogeneous APIs on Android and iOS, individual constraints apply
regarding parameters that cryptographic methods can take.

3. After incorporating the rules into our approaches for static analysis on
Android, as introduced in Chapter 3, and iOS, as presented in Chapter 4,
we perform two case studies on misapplied crypto APIs using two distinct
sets of mobile applications that rely on cryptography to fulfill their purpose.

Case Study on iOS Applications

Multiple studies have demonstrated that security-critical vulnerabilities due
to the wrong application of crypto APIs are a common problem on Android.
Although one would expect that the situation is similar on the iOS platform, an
equivalent analysis on iOS applications has not been performed so far. Low-level
machine code, dynamic control flow decisions during runtime, and the use of
a pointer-aware language complicate a security-critical inspection of binaries
for the iOS platform. By addressing these challenges in our concept for static
analysis on iOS (see Chapter 4), we pave the way for an automated inspection of
iOS applications regarding misapplied crypto APIs.

Based on the platform-provided CommonCrypto library (see Section 2.4),
we specify and implement security rules for the use of cryptographic APIs, and
automatically test several hundred closed-source apps regarding their compliance
to essential security principles. As a result, we are not only able to confirm the
existence of problematic statements in iOS applications but can also pinpoint
their origin in code. Overall, we make the the following key contributions:

1. We formulate the low-level properties required to identify misapplied crypto
APIs on iOS. When used within the slicing process, we can verify whether
execution paths meet or violate a certain conditions predefined by rules.
Besides this use case, the rules might also assist developers in identifying
security-critical code within their applications.
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2. Using open-source iOS applications, we iteratively refine the implementation
of our static analysis solution to reduce the number of false positives.

3. We apply our framework on more than 400 iOS applications that rely on
cryptographic APIs and identify security-critical misconceptions in the
majority of these applications.

We evaluated the practical viability of our solution by analyzing real-world
iOS applications. A manual security analysis confirmed the applicability of the
pursued approach and helped to identify possible limitations. With automated
testing, we detected that 82% or 343 out of 417 applications with cryptographic
functionality violate at least one security rule. This result shows that misconceived
usage of security-related APIs is a very prevalent issue in iOS applications. Among
the most common flaws are the usage of non-random initialization vectors and
constant encryption keys as input to cryptographic primitives.

Case Study on Applications for Both Platforms

Available research of misapplied crypto in mobile applications usually does not
cross the line between platforms and so it is still unclear whether apps that are
available for both Android and iOS suffer from similar implementation weaknesses.
Consequently, it is hard to argue whether API misuse is the result of a developer’s
lack of knowledge or ignorance, or more likely due to problematic design decisions
in the system-provided API and its too complex documentation. Our objectives
and key contributions are as follows:

1. We derive concrete detection strategies for general security rules and assess
how they can be violated on each platform. Used in combination with
analysis frameworks for Android and iOS, problems can reliably be identified
based on given data flows and the inspection results from both platforms
are made comparable.

2. We present the first comparative evaluation of misapplied crypto in Android
and iOS apps. Applied on a set of 775 apps for iOS and their counterparts
for Android, we assess the spread of common mistakes in apps for both
platforms. We ask if developers know how to use the system-provided APIs
correctly and check if apps that are considered to be secure on one platform,
typically fulfill the same expectations on the other.

We manually collected a set of 775 mobile applications that apparently originate
from vendors that distribute individual versions of the same apps in the official
stores of Android and iOS. All of them had at least 1,000 installations or ratings
on each platform, and their use of cryptography seemed obvious, such as with
password managers and secure messengers. We disclosed that 78% or 604 apps
for iOS and 69% or 538 apps for Android violated at least one basic security rule.
The analysis also showed strong indications that the prevalence of some issues is
almost solely based on design decisions of the system API.
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5.2 Analysis Workflow
In previous chapters, we presented static analysis approaches for a security-
critical program inspection of Android and iOS applications. For both platforms,
we designed and implemented modular frameworks that offer the ability to
automatically extract, disassemble and investigate programs. Our concepts also
integrate definable slicing patterns that can be applied to identify and highlight the
improper usage of security-relevant functionality. By applying static backtracking
techniques, the control and data flow of relevant code segments is opened up
and serves as input for further evaluation. Therefore, our solutions incorporate
essential rules aimed at disclosing common implementation weaknesses and to
make reliable assumptions about the degree of security, security-related code
fragments are able to provide. Besides analyzing these constructions, it is
determined whether they deviate from being employed correctly. In addition
to an automated inspection, our workflows for program inspection on both
platforms also support the manual analysis of mobile applications by delivering
well-arranged graphs, representing the static slices of user-definable patterns.

In contrast to approaches, such as CryptoLint [Ege+13] or CMA [Sha+14a],
we can give clear advice about the origin of rule-violating code, rather than
being only able to confirm its existence. In experiments, we also noticed that
existing work tend to flag all apps that violate any rules as insecure. While this
is true in the strict sense, it disregards the practical impact of rule violations:
mobile applications might use cryptography APIs also for other purposes than
encryption. Without looking at the actual execution paths, it might go unnoticed
if encryption is only employed for obfuscation. A similar case occurs if, e.g.,
libraries used in apps initialize variables holding encryption keys, salt values,
or IVs with insecure default values but overwrite them before actual usage.
As a consequence, we do not draw a binary conclusion on the (in)security of
applications but provide reports with potentially problematic execution paths, as
identified by the conditions in our security rules. The overall analysis strategy,
as pursued in the subsequent case studies, can be summarized as follows:

1. Preprocessing: We translate the Dalvik bytecode of Android applications
to Smali code and parse the resulting files to an object representation.
With iOS applications, we extract the ARMv8 64-bit binary executable,
disassemble machine code, and decompile it into LLVM IR code.

2. Static Slicing: Based on abstract slicing patterns that are defined within
our security rules, we derive concrete slicing criteria. We perform static
backtracking, follow all possible execution paths that affect a certain slicing
criterion, and organize the resulting data flows in a graph representation
that enables further analysis.

3. Security Rule Evaluation: Using a breadth-first search on slice trees,
we traverse individual execution paths and check whether they comply with
our predefined security rules.
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5.3 Evaluating Security Properties
Egele et al. [Ege+13] described six general rules in cryptography that have to be
considered by Android developers in order to avoid security issues, and they also
pointed out possible security implications. In our work, we conceptually adopt
these rules and elaborate platform-specific detection strategies for each of them.

We investigate whether applications for Android and iOS that use system-
provided APIs for cryptography achieve a cryptographic notion of IND-CPA
security. Indistinguishability under a chosen plaintext attack or IND-CPA states
that attackers are unable to extract even a single bit of plaintext from a ciphertext
within a certain amount of time. Encryption can be considered secure if it is
IND-CPA secure [KL14; Bel+97]. In practice, faulty implementations and
wrongly-chosen parameters, e.g., the use of AES in ECB mode, using CBC mode
with a non-random IV, or a hard-coded encryption key, thwart IND-CPA security.

To ensure that platform-provided crypto APIs are only used with parameters
that guarantee strong security and do not violate the IND-CPA property, we
formulate individual evaluation patterns for Android and iOS. For Android, we
rely on API methods exposed by the Java Cryptographic Architecture. For iOS, in
turn, we define analogous rules based on the anatomy of CommonCrypto methods.
We consider custom crypto implementations out of scope, as cryptography should
not be implemented by developers themselves anyways.

Rule 1: Do not use ECB mode for encryption. In ECB mode, data
blocks are enciphered independently from each other and cause identical message
blocks to be transformed into identical ciphertext blocks. Consequently, data
patterns are not hidden and confidentiality may be compromised.

On Android, applications can request an instance of a particular cipher by
passing a suitable transformation value as a parameter to Cipher->getInstance().
Typically, this value is composed of the algorithm, an operation mode, and the
padding scheme to use. E.g., to request an instance providing AES in ECB mode
with PKCS#5 padding, AES/ECB/PKCS5Padding has to be specified. While it is
indispensable to declare an algorithm, explicitly setting mode and padding may
be omitted. In that case, the underlying provider will implicitly assume ECB
mode. Besides AES, this affects all symmetric block ciphers.

1. Determine all invocations of the method Cipher->getInstance() and for
each occurrence, backtrack the first parameter, containing the cipher trans-
formation value.

2. Find all possible execution paths, where the endpoint resembles a transfor-
mation or specifies a symmetric block cipher, such as AES or DES.

3. For each selected path, verify whether it includes parts of a transformation
value, e.g. /OFB/NoPadding. If found, complete the algorithm name in the
path endpoint with the determined mode and padding descriptor.

4. Raise an alert if the transformation value either explicitly declares ECB
mode, or specifies only the algorithm name.
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On iOS, by default CBC is preferred over ECB mode. ECB mode is only used
when the developer explicitly specifies to use this mode of operation.

1. For each invocation of CCCryptorCreateWithMode(), CCCryptorCreate(),
or CCCrypt(), backtrack the third parameter, options, specifying whether
to use ECB or CBC mode.

2. Raise an alert if any of the possible execution paths ends with a constant
value of 2, i.e., kCCOptionECBMode, which would indicate ECB mode.

Rule 2: No non-random IVs for CBC encryption. Initialization vectors
(IVs) that are constant or predictable lead to a deterministic and stateless
encryption scheme susceptible to chosen-plaintext attacks. If CBC mode is
selected for encryption, developers should provide a cryptographically secure,
non-random IV. If no IV is specified at all, the cipher uses an all-zeros IV, which
is at least as bad as a constant value.

By analyzing byte arrays set as IVs, we learn if IVs are composed of static
values or deduced from constants, such as hard-coded strings or assembled arrays.
IVs can also be predictable when weak pseudo-random number generators (PRNG)
are employed. Besides probing for specific indicators, we are naturally unable to
make assumptions about the predictability of values. Similarly, non-static IVs
cannot implicitly be assumed unpredictable.

On Android, to specify an IV for encryption, an AlgorithmParameterSpec
object is typically passed as an argument to Cipher->init(). If it encapsulates an
object of the type IvParameterSpec, an initialization vector is manually defined
rather than being generated randomly.

1. For all invocations of Cipher->init() with an AlgorithmParameterSpec
object as second argument, backtrack the value of this parameter.

2. Using the found list of constants, verify whether an object of the type
IvParameterSpec is created by calling its constructor. Abort, if none is
found. This implies that no IV is set explicitly for this Cipher instance.

3. From each available slicing path, extract the subpath that begins at the iv
argument, passed to the constructor of the IvParameterSpec object.

4. Raise an alert if the iv parameter is derived from a statically defined byte
array, a string, e.g., via String->getBytes(), or by calling the cryptograph-
ically insecure Random API.

On iOS, we assert that an IV is indeed generated using a cryptographically secure
pseudorandom number generator (PRNG).

1. For each invocation of CCCryptorCreateWithMode(), CCCryptorCreate(),
or CCCrypt(), we backtrack the 6th parameter, specifying the IV.

2. Alert if a possible execution path does not call CCRandomGenerateBytes()
in CommonCrypto or SecRandomCopyBytes in the Security library.
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Rule 3: Do not use constant encryption keys. Keeping encryption keys
secret is a vital requirement to prevent unrelated parties from accessing confiden-
tial data. Statically defined keys clearly violate this basic principle and render
encryption useless. Therefore, the security rule aims to detect hard-coded keys
and raises an alert if a constant key is employed for symmetric encryption.

On Android, SecretKeySpec can be used to specify a key. If derived from a
constant, it must not be used for symmetric encryption. However, with public-
key crypto, the encryption key is not a secret and can also be wrapped as a
SecretKeySpec object. Thus, we distinguish between keys for symmetric and
asymmetric encryption and also check the second parameter of SecretKeySpec,
which specifies the algorithm to use.

1. For all invocations of the method SecretKeySpec->init(), backtrack the
first parameter, holding the key.

2. Verify for all contained constants if the key parameter is derived from a
statically defined byte array, or a string, e.g., using String->getBytes().

3. If at least one possible key has been found, also backtrack the 2nd parameter
of the corresponding SecretKeySpec object and extract all data flows.

4. For each execution path, verify whether one of the following asymmetric
encryption schemes is specified: DHIES, ECIES, ElGamal, RSA. If the
algorithm is not a known public-key algorithm, we conclude that the
statically defined key is used for symmetric encryption and raise an alert.

On iOS, we assure that any byte array specified as key does not exclusively
consist of constant values.

1. For each invocation of CCCryptorCreateWithMode(), CCCryptorCreate(),
or CCCrypt(), we backtrack the 4th parameter, holding the key.

2. For any path, we ensure that key elements do not originate from a constant
or hard-coded source.

Rule 4: Do not use constant salts for PBE. A randomly chosen salt value
ensures that a password-based key is unique and slows down brute-force and
dictionary attacks. Consequently, salts passed to key derivation functions (KDF)
must not exclusively depend on constant values.

On Android, using the PBEKeySpec API parameters to use with password-
based encryption (PBE) can be declared. A SecretKeyFactory instance then
transforms the password to an encryption key by invoking generateSecret().

1. Find all calls to PBEKeySpec->init() or PBEParameterSpec->init() and
backtrack the parameter with the salt value.

2. Raise an alert if any execution path providing the salt parameter, is derived
from a statically defined byte array, a string, e.g., via String->getBytes(),
or by calling the cryptographically insecure Random API.



5.3. Evaluating Security Properties 57

On iOS, CCKeyDerivationPBKDF() must not be provided with a salt from an
entirely constant source.

1. For all calls to CCKeyDerivationPBKDF(), backtrack the 4th parameter,
specifying the salt value.

2. For any execution path, we ensure that byte arrays with the salt originate
from a non-constant origin.

Rule 5: Do not use < 1,000 iterations for PBE. A low iteration count
significantly reduces the costs and computational complexity of table-based
attacks on password-derived keys. We expect applications to use ≥ 1,000 rounds
in KDFs, as recommended by RFC 8018 [MKR17].

On Android, the iteration count for PBE is declared by using the PBEKeySpec
or PBEParameterSpec API.

1. Find all calls to PBEKeySpec->init() or PBEParameterSpec->init() and
backtrack the parameter with the iteration count value.

2. Raise an alert if any execution path terminates at a constant integer whose
value is less than 1,000.

On iOS, the rounds parameter of the method CCKeyDerivationPBKDF() specifies
the amount of iterations to use for key derivation.

1. For all calls to CCKeyDerivationPBKDF(), backtrack the 7th parameter with
the iteration count.

2. For any execution path, we raise an alert if it does not end at a constant
integer value ≥ 1,000.

Rule 6: Do not use static seeds for random-number generation. If a
PRNG is seeded with a statically defined value, it will produce a deterministic
output that is not suited for use with security-critical applications.

With Android 4.2, API level 16, the default PRNG provider has been changed
from Apache Harmony to the native AndroidOpenSSL. Before that, it was possible
to override the internally designated seed with a custom value which, in case it
was constant, caused the generation of deterministic output values.

1. For all invocations of the method SecureRandom->init(), backtrack the
first parameter, holding a byte array with the seed. Likewise, for all calls
to SecureRandom->setSeed() compute slices for the seed argument, which
may consist of a byte array or eight bytes stored in a long integer value.

2. For all found execution paths, check if any of them supplies the seed
parameter with constant input values.

3. An alert is raised if the parameter is derived from a statically defined byte
array, a string, e.g. via String->getBytes(), or a 64-bits integer value.

On iOS, this rule cannot be violated as APIs do not support seeding the PRNG.
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5.3.1 Implementation

Each security rule is implemented individually for Android and iOS using JSON
definitions that allow for easy extensibility. In the following, we explain how the
previously presented rules can be formalized and provide two example definitions.

Each rule consists of a name, at least one criterion that serves as a starting
point for static slicing, and a set of conditions that define the requirements
each execution trace of a parameter has to fulfill. Each condition specifies either
the type OK – a positive test to ensure that some call occurs in the trace, e.g.,
a call to a secure PRNG, or NOK – a negative test to check for some value that
would violate the rule, e.g., the occurrence of a constant byte array or string
value. The condition value itself depends on what we expect: either we want an
execution path to end with a specific variable, e.g., a constant integer having a
certain value, or we evaluate whether the call graph includes some function call.

Each rule can consist of multiple subgroups that are organized in additional
JSON objects. Instead of listing a set of criteria, it is possible to reference another
group. This is useful if a criterion does not only depend on the presence of one
function call but a nested call hierarchy, which can then recursively be checked.

Listing 5.1 exemplifies a security rule implementation to check the number of
iterations for password-based encryption on Android. Multiple criteria serve as a
starting point for slicing. The name attribute indicates a class and method, with
<init> representing the constructor of methods in Smali code. The parameter
value refers to the index of the method argument, starting with zero. In this
example, we want to track the third parameter passed to the constructor of
PBEKeySpec, as it holds the iteration count. Besides considering PBE-related
methods, the Listing also demonstrates how rules can be extended with additional
criteria to cover further method signatures, such as the PBKDF2 implementation
of a third-party crypto library. The security rule is satisfied if each obtained
execution trace ends with a constant integer having a value greater than 1,000.
An alert will be raised if this condition is not fulfilled, including the according
execution trace as a reference for manual analysis.

Listing 5.1: JSON rule to evaluate the number of iterations for PBE on Android.

1 {
2 "name": "Rule 5: Minimum iteration count >= 1,000",
3 "criterion": [
4 { "name": "javax/crypto/spec/PBEKeySpec-><init>", "parameter": "2" },
5 { "name": "javax/crypto/spec/PBEParameterSpec-><init>", "parameter": "1" },
6 { "name": "org/spongycastle/crypto/generators/PKCS5S2ParametersGenerator->init",

"parameter": "2" },
7 { "name": "org/spongycastle/crypto/generators/PKCS5S1ParametersGenerator->init",

"parameter": "2" },
8 { "name": "org/spongycastle/crypto/generators/PKCS12ParametersGenerator->init", "parameter":

"2" }
9 ],

10 "conditions": [
11 { "type": "OK", "conditionType": "ConstInt", "greater": 1000 }
12 ]
13 }
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Listing 5.2 presents the JSON implementation of a security rule to evaluate the
use of non-random IVs for encryption on iOS. In contrast to the previously shown
example, the criterion is not specified directly but referenced via a subgroup.
The rule requires the IV to be random for all calls to functions defined in the
Cipher-IV group. It, furthermore, illustrates how to define multiple conditions
to be fulfilled within a single rule: (1) As a precondition, the main group requires
that a call is made to a function defined in Cipher-Operation, where parameter
X0 is set to the constant integer value 0. This implies a symmetric encryption
operation and can be verified by backtracking from a Cipher-IV criterion to
a Cipher-Operation call. (2) The rule also requires that execution traces for
any IV parameter, as identified by the functions and parameters listed in the
subgroup Cipher-IV, contain a call to a secure PRNG. This condition is satisfied
if an execution trace includes a call either to CCRandomGenerateBytes() from
the CommonCrypto library or SecRandomCopyBytes() from the Security library.
If no call is found to any of these methods, a rule violation will be reported,
including the output of execution traces not conforming to these conditions.

Listing 5.2: JSON rule to evaluate the IV used for encryption on iOS.

1 {
2 "name": "Rule 2: No non-random IV for encryption",
3 "criterion": "Cipher-IV",
4 "conditions": [
5 {
6 "type": "PRE",
7 "criterion": "Cipher-Operation",
8 "name": "Encrypt",
9 "conditions": [

10 { "type": "OK", "conditionType": "ConstInt", "equal": 0 }
11 ]
12 },
13 { "type": "OK", "calls": "SecureRandom" }
14 ]
15 },
16 {
17 "name": "Cipher-IV",
18 "calls" : [
19 { "name": "CCCryptorCreate", "parameter": "X5" },
20 { "name": "CCCryptorCreateWithMode", "parameter": "X4" },
21 { "name": "CCCrypt", "parameter": "X5" }
22 ]
23 },
24 {
25 "name": "Cipher-Operation",
26 "calls" : [
27 { "name": "CCCryptorCreate", "parameter": "X0" },
28 { "name": "CCCryptorCreateWithMode", "parameter": "X0" },
29 { "name": "CCCrypt", "parameter": "X0" }
30 ]
31 },
32 {
33 "name": "SecureRandom",
34 "calls" : [
35 { "name" : "CCRandomGenerateBytes", "parameter": "X0" }
36 { "name" : "SecRandomCopyBytes", "parameter": "X0" }
37 ]
38 }
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5.4 Case Study 1 - iOS Applications
The goal of this study is twofold. First, by manually investigating the output of
our solution for static analysis on iOS (see Chapter 4) with the source code of
real-world applications, we identify and fix possible weaknesses in our approach.
Second, applying our tool on a large number of closed-source applications, we
strive to uncover security-critical misconceptions.

5.4.1 Method and Dataset
We conducted both a manual and an automated analysis. In the following, we
introduce the methodology applied, point out the pursued goals, and explain
what applications were analyzed.

Manual Analysis

The objective of this step was primarily to test whether all components interact
appropriately with each other and to refine the implementation where needed.
Therefore, we applied the framework to open-source applications and checked
the obtained results against the source code. Besides identifying opportunities
for improvement, we also benefited from seeing what our security rules were able
to (not) cover in a real-world scenario.

For this analysis, we downloaded 15 open-source applications from GitHub
that use CommonCrypto for encryption. 8 of them were password managers,
intended to protect user-entered credentials by means of cryptography. The
remaining applications belonged to different categories, aimed at providing secure
e-mail, data container, cloud storage, or messenger functionality.

We supplied the applications to the framework and analyzed them with
respect to the defined security rules. We manually observed the analysis and
improved the framework, e.g., by supplementing new instruction semantics that
were not covered by the decompiler yet. After checking all security rules, the
framework generated a report including all paths to statements that modified
a specific parameter. We then verified and iteratively refined the accuracy of
the analysis by studying the applications’ source code. To facilitate this process,
we leveraged a utility in Apple’s IDE Xcode that enables the generation of call
hierarchies for selected functions. A hierarchy is basically a subgraph of the call
graph, containing only the nodes from which the targeted function was reached.

Automated Analysis

The primary goal of this step was to investigate whether iOS application devel-
opers know how to apply cryptographic APIs correctly. Inspired by the work of
Egele et al. [Ege+13], we performed a similar empirical study for iOS applications.

We downloaded 634 free applications from the official iOS App Store and
focused on programs where the use of cryptography seemed indispensable, e.g.,
password managers, (secure) messengers, cloud storage, and data containers, each
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with more than 10,000 installations. Due to the fact that most were closed-source,
we had to rely on the developer-provided descriptions to select those which might
employ cryptography. After fetching them via iTunes, we used the tool Clutch2

on a jail-broken iPhone to decrypt the applications. It turned out that 78% or
495 of the crawled applications included calls to the cryptographic API and were
relevant for further analysis. Interestingly, the remaining set of 139 applications
without CommonCrypto also included password managers and applications where
the use of cryptography seemed appropriate. Aside from a faulty or absent
implementation, this could be caused by the use of third-party libraries that
implement crypto routines themselves.

After extracting all downloaded applications, we checked whether their library
bindings indicate the usage of CommonCrypto. If this condition was fulfilled, we
sequentially supplied the ARMv8 binaries to our framework. By inspecting the
generated output reports, we ensured that any claimed security rule violation
was indeed the consequence of a problematic execution path.

False Positives and False Negatives. In general, all static analysis approach
suffer from a trade-off between minimizing false negatives and, worst-case, false
positive rates of 100%. We avoid false negatives as our tool cannot miss calls
to CommonCrypto API methods. We verified all identified problems found in
open-source applications and iteratively refined the framework to eliminate false
positives. In contrast, due to the nature of closed-source applications, we cannot
formally exclude the existence of false positives. Manually studying execution
traces of tested applications enabled us to also consider false positives that could
have occurred, e.g., if a backtracked value was used a parameter to a function
that had never been invoked (dead code).

5.4.2 Results
We evaluated 495 closed-source and 15 open-source applications that included
calls to CommonCrypto. Iteratively refining the components during manual
analysis ensured that all open-source applications could be decompiled and
inspected. Afterwards, for a total of 417 + 15 = 432 applications, the analysis
workflow terminated successfully. As summarized in Table 5.1, the inspection of
the remaining 78 closed-source applications failed due to one of three reasons.
First, 7 iOS applications contained only binaries for the ARMv7 platform, which
are considered as deprecated by Apple and are not supported by our decompiler.
Second, 9% or 46 applications could not be decompiled due to missing instruction
semantics. Third, for 25 applications constraint solving ran out of memory.

Automated Analysis

Of 417 successfully inspected closed-source applications, we found that 82% or
343 applications violate at least one rule. Table 5.2 summarizes our observations
of violated security rules. In the following, we discuss the findings in more detail.

2https://github.com/KJCracks/Clutch
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Table 5.1: Reliability for closed-source applications.

Count [%]
Downloaded from iOS App Store 634
No CommonCrypto calls 139 22%
With CommonCrypto calls 495 78%
Binary only for ARMv7 7 1%
Not decompilable 46 9%
Out of memory 25 5%
Analyzable with CommonCrypto calls 417 84%

Table 5.2: Violations of security rules.

Violated Rule # Applications [%]
Rule 2: Uses non-random IV 289 69%
Rule 3: Uses constant encryption key 268 64%
Rule 1: Uses ECB mode 112 27%
Rule 4: Uses constant salts for PBE 72 17%
Rule 5: Uses < 1,000 iterations (PBE) 49 12%
Applications with ≥ 1 rule violations 343 82%
No rule violation 74 18%

Rule 2: Do not use a non-random IV for CBC encryption. This was
the most commonly violated rule: 69% or 289 iOS applications used a crypto-
graphically insecure initialization vector with CBC encryption. Among them,
92% or 265 applications specified a constant or NULL IV. The remaining 24
applied the hash value of a constant string as IV.

Rule 3: Do not use constant encryption keys. 64% or 268 applications
used constant data as key material. Although not immediately applicable for
encryption, we also consider constant passwords passed to a key derivation
function as misuse. Table 5.3 highlights the provenience of key material. The
total number of violations is higher than the number of applications due to the
fact that some applications violated the rule multiple times. 193 keys were plain
C strings that did not undergo any form of key derivation.

Rule 1: Do not use ECB mode for encryption. Overall, we found that
27% or 112 applications explicitly declared to use this mode of operation for
symmetric encryption with AES or DES.

Rule 4: Do not use constant salts for PBE. We identified that 17% or 72
applications specified constant salt values as input to the key derivation function.
The use of constant salt values is problematic as it effectively undermines the
protection of password-based encryption against table-based attacks.
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Table 5.3: Origin of constant secrets.

# Violations
Constant string used as encryption key 193
Constant password for PBKDF2 84
Hash value of constant string 18
Secret retrieved from NSUserDefaults 14
Constant key data 6
Applications violating rule 3 268

Rule 5: Do not use fewer than 1,000 iterations for PBE. This was the
least violated rule with only 12% or 49 applications applying less than 1,000
rounds in key derivation functions. Among them, 59% or 29 applications used
exactly 1 round, 14% or 7 applications specified 100 iterations. The remaining
13 applications applied other values below the threshold of 1,000.

Manual Analysis

While most rule violations were found where expected, the analysis also pointed
out deficiencies in our concept. Relying on a context-insensitive pointer analysis
means that the points-to information of a pointer is independent of its calling
context and might also include wrong locations. This further results in spurious
paths being followed during parameter backtracking. Nevertheless, besides wrong
values (or values belonging to a different calling context), the output will also
always include an actually correct execution path.

In the following, we exemplify the analysis process based on one of the 15
open-source apps, namely the Damn Vulnerable iOS App (DVIA)3. We explain
the security-critical weaknesses and contrast the source code with the results of
our framework. DVIA is designed for penetration testing and includes common
mistakes on purpose. Among other issues, it contains the kind of cryptographic
misuse we are looking for. However, DVIA does not invoke functions of the
library CommonCrypto directly but relies on the wrapper framework RNCryptor4.
Nevertheless, violations should be detected by our framework.

Constant Password for PBE. The automated analysis of DVIA further
reported two different origins of a password used for key derivation. One path
ends up at a call to -[UITextField text], which indicates that the password
was retrieved from a text field. This signifies no rule violation and was also
not detected as such. At the end of the second path, a hard-coded string was
found. As highlighted in Listing 5.3, the constant Secret-Key was directly passed
to the encryptData() method in RNEncryptor where it was subsequently used
as a password input for CCKeyDerivationPBKDF(). Our framework correctly
uncovered this security rule violation.

3https://github.com/prateek147/DVIA
4https://github.com/RNCryptor/RNCryptor
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Listing 5.3: Constant password in DVIA.

1 NSData *encryptedData = [RNEncryptor encryptData:data
2 withSettings:kRNCryptorAES256Settings
3 password:@"Secret-Key"
4 error:&error];

As can also be seen in the listing, the argument used as a second parameter is an
object with the name kRNCryptorAES256Settings. If set, RNCryptor performs
the password-based key derivation with 10,000 rounds, using a salt value generated
by the previously described helper function +[RNCryptor randomDataOfLength:].
With regard to the corresponding rules, these settings do not represent a wrong
application, as has also been correctly determined by our framework.

Constant IV and Salt Value. Our framework identified multiple execution
paths that violate security rule 2, concerning the use of a non-random IV for
CBC encryption, and rule 4, targeting constant salt values with password-based
encryption. In both rules, the corresponding input parameter should have been
generated using a cryptographically secure random number generator. DVIA,
however, calls +[RNCryptor randomDataOfLength:], a function belonging to
RNCryptor. For all function calls using an IV or salt value, the report included
three separate paths, of which only the one using SecRandomCopyBytes() was
considered secure. Verifying these results manually revealed that RNCryptor
only relied on SecRandomCopyBytes() if this function was actually defined, which
is always the case on iOS devices. However, due to the nature of static analysis,
we also found two alternative execution paths that tried to read bytes from
/dev/random. This could fail due to two reasons: first, if the file descriptor was
not available, and second, if the number of bytes to read was zero. In both cases,
the IV or salt would have consisted of NULL values. Although this represents a
correctly identified rule violation, its security impact is negligible. Based on this
observation, we learned that reports generated during the automated process
should be manually inspected in order to confirm critical rule violations.

Dead Code. The automated analysis reported rule violations by a function
that was included in the binary but never invoked. Related to the generation of an
initialization vector for symmetric encryption, it applied the method +[RNCryptor
randomDataOfLength:] to generate random data and caused the same execution
paths to be emitted as found before with constant IVs and salt values.

5.4.3 Limitations
As a result of analyzing 15 open-source applications by manual and automated
means, we identified possible limitations that may affect the reverse-engineering
process. In the following, we summarize the most relevant drawbacks that could
prevent a successful analysis of iOS applications.
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User Interface Elements. Missing type information of objects can result in
an incomplete call graph. As a consequence, the data flow between functions
cannot entirely be modeled. This circumstance is primarily caused by calls to
external libraries that cannot be resolved, e.g., in case of user interface events.
Since we also cannot determine the function signatures and parameter types,
backtracking them becomes infeasible.

Defining event listeners and actions for UI elements works either by creating
the user interface directly in the code or using the Interface Builder in Xcode.
With the latter option, elements are stored in .nib files that are parsed during
application start. As we only consider information retrieved from the binary,
it is not aware of user interface actions declared elsewhere. In the context of
static slicing, this might lead to situations where, e.g., an input parameter to the
function CCKeyDerivationPBKDF() cannot be fully backtracked due to missing
declarations of the associated UITextField object. Nevertheless, user input
represents dynamic information and can never be captured by static analysis.

Polymorphism. Under certain program conditions, pointer analysis might
follow implausible function calls if classes apply polymorphism. As a result, the
call graph contains spurious edges that could have a negative influence on the
accuracy of parameter backtracking. As exemplified in Listing 5.4, depending
on someCondition, object has either type ClassA or ClassB. Determining the
actually used type can only be done inside the branches of the allocation statement.
Since our approach for pointer analysis is flow-insensitive, the points-to set of
the subsequent variable foo includes both locA and locB . Assuming an instance
method is now called using this variable, both types have to be considered.

To represent polymorphism more accurately in the call graph, we would have
to use a flow-sensitive pointer analysis. Practically, this is rarely an issue as
both allocations would have to be assigned to the same variable and parameter
backtracking only considers paths where a variable of interest is modified.

Listing 5.4: Pointer analysis with polymorphism.

1 @class BaseClass {
2 - (void) foo;
3 - (void) foobar;
4 }
5 @class ClassA : BaseClass {}
6 @class ClassB : BaseClass {
7 - (void) bar;
8 }
9

10 void someFunction() {
11 BaseClass *object = nil;
12 if (someCondition) {
13 object = [[ClassA alloc] init]; // { locA }
14 } else {
15 object = [[ClassB alloc] init]; // { locB }
16 }
17 [object foo]; // { locA, locB }
18 }
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C Arrays. By using Andersen’s field-insensitive solution [And94] for pointer
analysis, individual fields of an array or struct cannot be distinguished from each
other. Elements of these constructs are typically accessed via the stack pointer,
which is in fact a base pointer to which an offset is added. The distinction between
individual array entries is only possible based on this offset. If it is omitted,
the points-to set would include the entire stack frame of a function, rather than
building an individual set for each variable. Although, in general, this causes
less precise analysis results, it usually does not affect parameter backtracking as
arrays are always passed to functions using only their base pointer.

5.4.4 Discussion
In the manual study scenario, we focused on refining the framework to cope with
closed-source iOS applications. While most of the rule violations were found
where expected, we also discovered cases that could not be handled correctly due
to limitations in our static analysis approach. In a context-insensitive pointer
analysis, the points-to set of a variable is always independent of the underlying
calling context. Consequently, parameter backtracking might traverse and report
spurious execution paths. With regard to the overall analysis workflow, we
recognized that it is crucial to restore function signatures and types from the
binary during the decompilation step, as they facilitate further analysis.

The automated analysis of 417 closed-source applications revealed that 82%
were subject to at least one security-critical implementation flaw. Besides these
findings, inspecting the execution paths in all reports also showed that specific
rule violations often result from a similar misunderstanding of the intended API
usage, perhaps due to insecure default settings. For instance, regarding the use
of non-random IVs for encryption in CBC mode, the same API method is also
used with ECB mode. Therefore, setting the IV parameter is optional by design
and the fallback to an all-zeros IV, when applied with CBC mode, does not have
any immediately noticeable effect on application behavior.

As an alternative to specifying the number of iterations for key derivation
explicitly, we identified applications that rely on the system-provided method
CCCalibratePBKDF() to compute a suitable number of rounds with respect to
the current device. This implies that applications can omit defining the number
of iterations as a constant integer value. In its current form, our security rule
does not actively consider the use of this API as a positive test, although this
could easily be achieved by adding a JSON definition with this condition.

Related to constant encryption keys, we repeatedly noticed an execution path
that transformed a password to a key without using a genuine derivation function.
A password string of arbitrary length was either truncated to the block size of
the used cipher or if too short, filled up with zero bytes. This behavior did not
violate our rules and, thus, was also not reflected in the previously presented
results. Nonetheless, in practice, it significantly weakens security by facilitating
attacks on the encryption key. Although not possible automatically, uncovering
such configuration issues is still feasible by manually studying execution traces
of parameters passed to security-critical APIs.
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5.5 Case Study 2 - Platform Comparison
In the following study, we present the first comparative evaluation of misapplied
cryptography APIs in Android and iOS applications. Related research regarding
crypto misuse never crossed the line between platforms. As it has already been
demonstrated that security-critical implementation weaknesses are prevalent in
both Android or iOS, we focus our analysis specifically on mobile applications
that vendors distribute in separate versions for both platforms.

The goal of this case study is twofold. First, we ask if developers know how to
use system-provided crypto APIs correctly and give an impression of how often
security misconceptions occur in a representative set of applications. To prevent
false positives or out-of-context findings, we verify all report execution traces in
a manual study. Second, we ask how likely it is that applications which vendors
distribute for both platforms, also violate the same security rules. Therefore,
we compare the findings of security-critical mistakes in applications for Android
with those in their iOS counterparts.

5.5.1 Method and Dataset
For the automated study of Android apps, we employ our framework, as presented
in Chapter 3. For each inspected application, it outputs a report, lists found rule
violations and associated execution paths. For iOS, we rely on our solution for
binary analysis, as shown in Chapter 4, which pursues an equivalent approach
and emits a report with execution traces for all inspected security properties. To
establish comparable conditions for misapplied crypto APIs, we apply platform-
specific implementations of the security rules, described in Section 5.3.

Dataset

We manually compiled a set of mobile applications where the use of cryptography
seemed inevitable to provide specific functionality. Empirically, we found that
this requirement affects at least applications for password management, secure
messaging, encryption, sensitive data exchange, and secure cloud storage.

While Google Play uniquely identifies applications by their package name,
e.g., com.example, the iOS App Store features no comparable identifiers. We
were, thus, looking for other descriptors suited to match applications that were
provided for both platforms. We found that for the vast majority of multi-
platform offered applications, the title and/or description text used as metadata
was usually widely consistent over both platforms. Moreover, in both app stores,
the corresponding vendors were at least identifiable by their company name,
website, support details. To measure the similarity of an app title and description,
we organized all text elements of selected application metadata in a bag-of-words
approach and compared them by pairwise computing the Jaccard coefficient. By
empirically defining a reasonable threshold, we were able to automatically filter
applications that apparently had no matching counterpart.



68 Chapter 5. Misapplied Crypto in Android and iOS Applications

Table 5.4: Dataset of tested mobile applications.

Count [%]

Downloaded from iOS App Store 1,322
Matching Android apps in Google Play 976
iOS: No CommonCrypto calls 172 18%
Android / iOS: With crypto API calls 804 82%

iOS: App not decompilable 21 3%
Android: App archive corrupted 4 0.5%
Android / iOS: Out of memory 4 0.5%

Analyzable apps with crypto API usage 775 96%

We identified and downloaded 1,322 free applications from the iOS App Store,
where we assumed the use of cryptography. Using the textual metadata of each
app, we were searching Google Play for an Android pendant and were successful
for 976 apps. All of them had at least 1,000 installations or ratings as indicated
by Google Play and the iOS App Store. With a version for Android and iOS
each, in total, we have acquired 2× 976 = 1, 952 apps for analysis.

After fetching iOS apps via iTunes, we used Clutch on a jail-broken iPhone to
decrypt them. By inspecting their library bindings, it became evident that only
82% or 804 iOS apps included calls to CommonCrypto. As the remaining set of
172 apps without calls to system-offered crypto APIs also provided functionality
where the use of cryptography seemed reasonable, security might be missing or
provided via third-party libraries, which our rules are not designed to cover.

False Positives and False Negatives

As our analysis solutions for Android and iOS do not only warn about the existence
of problematic statements but can also pinpoint their origin, we leverage the
data flow seen in execution paths to assess the soundness of found issues. By
manually validating all obtained analysis reports, we prevent findings of false
positives and ensure that all rule violations indeed occur in reachable code that
has a real practical impact on the security of applications.

False positives or out-of-context results can occur, e.g., if encryption is only
used for obfuscation and not for actually enciphering secret messages. Likewise,
applications might include code where crypto routines are only initialized with
insecure default attributes but never used. By manually examining the execution
traces before acknowledging a rule violation, we minimize false positives that
could have occurred, e.g., if a backtracked value was a parameter to a function
that had never been invoked during runtime.

As our implementations of security rules evaluate the use of system-provided
crypto APIs based on their method signatures, we can be confident that these
calls are always found, even if applications obfuscate their program code. For
both platforms, this enables us to effectively avoid false negatives.
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5.5.2 Results
In total, we studied 976 applications where vendors provided a version for Android
and iOS via the official app stores. As summarized in Table 5.4, we did not find
references to CommonCrypto in 18% or 172 applications for iOS. Irrespective of
whether they actually contain cryptography-related code, we excluded these apps
from further analysis, since we knew a priori that our security rules would not
detect any violations in them. Interestingly, for all remaining 804 iOS apps that
use the CommonCrypto API, also all corresponding Android pendants included
calls to methods in java.security.* or java.crypto.*. This strongly indicates
that crypto is actually needed for the correct functionality of these applications,
rather than being just included incidentally, e.g., via used third-party libraries.

The inspection of 24 iOS and 5 Android applications failed due to errors
in processing the program archives. Of them, 21 apps for iOS could not be
decompiled from ARMv8 to LLVM IR code due to missing mappings of instruction
semantics. Also, our Android framework was unable to process four apps, where
the archive was damaged, despite repeated tries to re-download a functional
version from Google Play. For another four apps, out of memory errors occurred
during pointer analysis on iOS or register tracking on Android.

For 775 apps supplied to the iOS framework and our solution for Android,
the analysis workflow terminated successfully. For each inspected application, we
obtained a generated report that included the result of the performed security
checks and for all rule violations, listings with problematic execution paths.

Violations of Security Rules

We found that 78% or 604 apps for iOS and 69% or 538 apps for Android commit
at least one security-critical mistake. Among them, we identified 52% or 404
apps, where the Android and iOS versions of the same app commit at least one
mistake on both platforms. Table 5.5 lists our observations of violated security
rules. In the following, we discuss the findings in more detail.

Rule 1: Do not use ECB mode for encryption. On Android, we observed
that 77% or 587 apps use instances of symmetric ciphers where the underlying
mode of operation is ECB. Manually studying found execution path clarifies
that block ciphers are mostly declared without explicitly specifying the mode
and padding to use. This causes the underlying provider to apply ECB mode
implicitly. Although the use of AES is predominant, at times we also noticed
Cipher objects, specifying the nowadays weak DES algorithm.

CBC being the default mode on iOS, 25% or 192 applications explicitly
declared to use ECB. In 22% or 172 apps, this mode was specified in the iOS
version and also deployed in Android pendant of the same app.

Rule 2: No non-random IVs for CBC encryption. 35% or 271 applica-
tions on Android specified a static IV originating from hard-coded byte arrays or
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constant values. Manually verifying these results, we found that the majority de-
rived a cryptographically secure IV using the API SecureRandom. Some Android
applications relied on the Random API instead, which leads to predictable IVs.

On iOS, this was the most prominent problem: 64% or 494 apps used a
constant IV. Mostly, no IV was declared at all, implicitly causing an all zeros IV.

Rule 3: Do not use constant encryption keys. Constant or hard-coded
encryption keys were identified as an issue in 41% or 320 Android applications
and 59% or 455 iOS applications. Regarding the prevalence in apps for both
platforms, 31% or 243 apps used constant data as key material.

Table 5.6 highlights the provenience of key material. The according execution
traces show that most apps which employ constant keys do so by deriving them
from string values or by declaring byte arrays with constants. In practice, apps
typically create distinct instances of Cipher and CCCryptor objects on Android
and iOS respectively for encryption and decryption. However, as they usually
refer to the same constant key material, the total number of hard-coded secrets
exceeds the number of applications with this issue.

Besides being entirely variable or static, from studying the execution paths,
we learned that encryption keys can also be mixed, consisting of a statically
defined key concatenated with a non-constant value. Interpreting these keys as
constants would be inaccurate as we are unable to make assumptions about the
entropy provided by the non-constant part.

Rule 4: Do not use constant salts for PBE. We identified that 14% or
112 Android apps and 11% or 84 inspected iOS apps passed constant salt values
as input to key derivation functions. This effectively undermines the protection
of password-based encryption against table-based attacks. On both platforms,
most apps violating this rule declared a static byte array initialized with zero
values. In 6% or 49 apps, this issue occurred in both versions of the same app.

Rule 5: Do not use < 1,000 iterations for PBE. On Android, we found
that 15% or 119 apps employ less than the minimally advised amount of 1000
iterations for Password-Based Encryption (PBE). Likewise, 19% or 145 apps for
iOS and 13% or 104 apps on both platforms declared a too small value. Regarding
the distribution of the iterations, most rule-violating apps specified a count of
either 20, 50, 64, or 100. In execution traces of iOS apps without this issue, we
could observe a significant prevalence of apps using CCCalibratePBKDF() API to
dynamically derive an iteration count, rather than hard-coding a value.

Rule 6: Do not use static seeds for random-number generation. As the
platform APIs on iOS do not offer a seedable PRNG, this rule can only be violated
by Android applications. Changes in the underlying PRNG implementation have
globally fixed this vulnerability for systems running Android 4.2, API level 16,
or newer. Due to this and only 3% or 25 Android apps declaring a constant seed
for use with SecureRandom, the practical impact of this rule violation is limited.
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Table 5.6: Origin of constant secrets used as key material.

# Violations on Android iOS

Constant string used as encryption key 238 305
Constant byte array as key 96 164
Hash value of constant string 9 36
iOS: Secret retrieved from NSUserDefaults - 28

Applications violating rule 3 320 455

5.5.3 Discussion

The study of 775 applications that were distributed for both platforms revealed
that in 52% or 404 apps security-critical mistakes were present in both the Android
and iOS version. This suggests that the wrong application of cryptographic APIs
is caused by a developer’s lack of proficiency in handling cryptographic properties.
Although this implies that the likelihood for configuration issues is independent
of a particular API design, the distribution of rule violations per platform also
exhibits indicators that some misconceptions are specifically promoted by the
security architecture implemented in Android and iOS.

The most significant difference in rule violations across platforms was observed
in the first rule targeting the use of ECB mode for encryption. The high number
of 77% or 598 Android applications with this issue can be attributed to the fact
that, unless a mode is specified, an implicit fallback to ECB occurs. In contrast,
on iOS only 25% or 192 apps explicitly specified ECB instead of the default
mode CBC. This circumstance strongly indicates that the prevalence of this
problem on Android is related to the insecure default setting. Another notable
difference between the two platforms has shown regarding the use of non-random
IVs for CBC encryption. On Android, if no IV is specified, a Cipher instance will
automatically generate a strong IV that can be retrieved via Cipher->getIV().
As opposed to that, not declaring an initialization vector on iOS will trigger
a fallback that causes an all zeros IV to be used for encryption. This again
underlines the importance of secure default and fallback settings.

The most frequently violated security rule in applications for both platforms
affects constant encryption keys. Compared with other security violations, the
key parameter always has to be specified explicitly. According to the high
prevalence of this misconception, it seems that developers of both Android and
iOS applications, are not aware of the radical consequences of hard-coding secrets.

Summarizing, we have seen that the origins of mistakes fall into two categories:
firstly, those which are based on insecure default values in the corresponding API,
e.g., implicit ECB mode on Android, or a NULL IV on iOS, and secondly, security
problems that occur due to developers not carefully handling security-critical
parameters, such as encryption keys or salt values. Our study confirms that
neither Android nor iOS prevents developers from specifying weak parameters
and shows that the wrong application of crypto APIs is still a widespread issue.
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As a remedy, we propose the implementation of a two-fold strategy:

1. API Changes: Unsafe default values in APIs, such as ECB mode on
Android, should be replaced by secure alternatives. In occasions, where
omitting arguments impairs security, e.g., a NULL value as IV on iOS,
a cryptographically secure random value should be generated instead.
Although such profound changes might break compatibility with existing
code, they would require developers to improve their implementations and
implicitly minimize the widespread of problematic code.

2. Raising Awareness: Modern IDEs for application development, such
as Android Studio or Apple Xcode, feature sophisticated code inspection.
Following our detection strategies (see Section 5.3) to evaluate security-
critical properties, code analysis in IDEs should be extended to warn about
harmful practices, such as hard-coded encryption keys, the use of ECB
mode, or a too low number of iterations for password-based encryption.

5.6 Conclusion
Many security-critical implementation weaknesses in mobile applications emerge
from a wrong use of system-provided security APIs. While multiple studies
have pointed out that such problems are common with Android applications,
it was unclear whether similar configuration issues were also present with iOS
applications. Although it was known that insecure default settings or wrong
developer decisions can promote vulnerable implementations, existing research
did not address the role of platform API designs in a comparative context.

We proposed a streamlined process to inspect security-critical aspects in
Android and iOS applications. By performing a target-oriented analysis using our
approaches for static analysis, we were able to identify the exact origin of weak
or insecure parameters. To automatically evaluate execution traces, we presented
platform-tailored detection strategies for common cryptographic principles and
demonstrated concrete implementations using JSON definitions. We performed
two case studies with mobile applications that include cryptography and found
vulnerabilities in the majority of them. For the first time, we showed that the
wrong application of cryptographic APIs is also a widespread problem in iOS
applications. Focusing on applications that vendors distributed for Android
and iOS, we compared the prevalence of individual security rule violations on a
platform level. Our results indicate that a simplification of APIs, the replacement
of unsafe default values with secure alternatives, and increasing awareness could
substantially help to lower the widespread of vulnerable implementations.

In the context of this thesis, the study of misapplied crypto APIs in mobile
applications underlines the practical relevance of a low-level application analysis
and provides a valuable insight into the prevalence of implementations that rely
on weak security properties. Considering the increasing complexity and size of
nowadays applications, it is crucial to have automated solutions at hand that
can successfully identify and pinpoint problematic code statements.
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6
Learning Application Semantics

Having gained an understanding of low-level implementation aspects in reverse-
engineered source code, we now aspire to build a platform that enables us to reason
about the effects of coherent code parts in Android applications. Despite their
versatility in tracking and uncovering security-critical implementation weaknesses,
approaches for static and dynamic program analysis do not cover all use-cases
that are relevant for a holistic security analysis of mobile applications.

In this chapter, we describe an approach towards augmenting the inspection
of mobile applications with contextual information. We start in Section 6.1
by highlighting security-relevant analysis scenarios that require a broader view
on coherent code statements. Section 6.2 explains the challenges of modeling
semantic relations between words and introduces two modern NLP techniques to
capture the linguistic context of words in documents. To detect the relevance of
semantic features in large amount of input data, in Section 6.3, we summarize
key aspects of machine learning and point out the advantages of convolutional
neural networks for efficient text classification. In our research, we envisage to
apply these concepts to the source code and metadata of Android applications
in order to obtain a more sophisticated understanding of their purpose and
security-critical behavior. Parts of this chapter are taken verbatim from [FG20b].

Publication Data and Contribution

Johannes Feichtner and Stefan Gruber. “Understanding Privacy Aware-
ness in Android App Descriptions Using Deep Learning.” In: Conference on
Data and Application Security and Privacy – CODASPY’20. ACM, 2020,
pp. 203–214. doi: 10.1145/3374664.3375730

Contribution: Main author; Prototype implemented by Stefan Gruber.
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6.1 Introduction
By performing a target-oriented security-analysis with approaches for static and
dynamic program inspection, we succeed in identifying and tracking individual
code statements. Evaluating execution traces and parameters of appendant code
statements helps us to reliably uncover improper usage of crypto APIs and other
security-relevant functionality. At the same time, working only with excerpts of
application code also precludes certain inspection scenarios that would be relevant
for a more in-depth program understanding. For instance, to find anomalies or
problematic code patterns, a broader view on coherent code statements is needed.

For an efficient workflow and to boost productivity, many developers [Der+17]
of Android applications rely on functionality provided by third-party libraries and
code snippets from discussion platforms, such as Stack Overflow. Usually [SSE15],
the search starts with only a few keywords, e.g., “Android trusting all certificates”
and quickly leads developers to discussion posts that provide query-related code
snippets or public repositories with libraries that involve the desired functionality.
As highlighted by multiple studies [Yas+19; Fis+17; Li+16], code pieces from
external sources often contain serious vulnerabilities that compromise the security
of millions of apps. However, even if a specific code snippet or library is known
to be problematic, it remains difficult to reveal if a specific mobile application
is affected. If a flaw is not contained within a single program statement, e.g.,
a particular hard-coded encryption password or low iteration count used with
key derivation, it cannot be detected via static or dynamic program analysis.
In addition, when developers apply code transformation techniques, such as
obfuscation, inlining, or shrinking, control and data flows change and it becomes
infeasible to fingerprint and accurately recognize code fragments or libraries.

Whenever developers provide updates for their mobile applications, e.g., to
fix a security- or usability-related bug, it would also be interesting to see how
thoroughly changes have been implemented. For instance, in 2018, the disclosure
of a vulnerability named Efail [Pod+18] (CVE-2017-17689) required vendors of
email applications with S/MIME support to provide a patch for a critical flaw in
the S/MIME end-to-end encryption standard. Again, due to the widespread use of
code obfuscation and the inherent indistinguishability between program libraries
and developer code, it is very time-consuming to verify how security-relevant
fixes, such as for the Efail vulnerability, have been realized. Techniques for code
optimization and transformations, e.g., renaming all variables to meaningless
pseudo-identifiers, prevent to effectively identify the differences among Android
apps and, thereby, raise the costs and effort needed for a holistic security analysis.

In the case of Stack Overflow or code sharing platforms like GitHub, the
semantic understanding and classification of information is provided by users. For
a better categorization of posts or repositories, individual tags can be assigned
that summarize the core functionality in only a few keywords. This again creates
metadata, builds links to similar questions or projects, and supports developers
in efficiently finding code snippets that fulfill a particular purpose. While it is
trivial for developers to abstract their understanding of code into single keywords,
extracting and describing the purpose of code remains challenging for computers.
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In recent years, new architectures for neural networks have evolved to discover
relevant features in large amount of data. Supported by the computing power
of distributed cloud instances, novel concepts for deep learning make a manual,
time-intensive feature engineering obsolete and introduce new capabilities for
computers to derive a contextual understanding of information. E.g., to model
the context of individual words in text, solutions, such as word2vec [Mik+13] and
GloVe [PSM14] have been proposed. The common idea is to represent the meaning
of words as vectors (embeddings) in a multi-dimensional space. Vectors close
to each other indicate similar semantics. Technically, these approaches work by
transforming large amount of input, e.g., sentences, paragraphs, documents, into
a representation that can be further processed by machine learning algorithms.

As source code resembles regular text in many linguistic aspects, intuitively,
techniques for natural language processing should also be applicable to the reverse-
engineered code of Android applications. However, the underlying syntactical,
grammatical, and structural forms of text and code are different. E.g., in addition
to “word-like” tokens, such as strings and identifiers, the semantic expressiveness
of source code is made up of keywords, constants, special symbols, and operators.
In contrast to pages and chapters in a regular book, code methods can easily be
moved to other classes, and classes to different packages. In addition, embeddings
only map the context of individual entities, i.e., they cannot be used to reason
about the functionality of classes, packages, or libraries in mobile applications.

To build structures over coherent parts of code, infer their main purpose, and
find what characterizes an application, we propose to leverage the distinctive
abstraction capabilities of neural networks. State-of-the-art architectures for
recurrent neural networks (RNN) and convolutional neural networks (CNN) excel
in learning generalizations of local properties in input data. In combination
with meta information extracted from sources that surround a particular code of
interest, i.e., selected attributes that are invariant to transformation techniques
and compiler peculiarities, techniques for knowledge discovery in text should
also work well on source code. Ultimately, the use of advanced neural networks
could help to discover what code parts are significant, what distinguishes mobile
applications from each other, and to model the behavior of mobile applications.

In order to associate a semantic model with a concrete meaning, we need to
supplement it with information that describes code in the best way possible. In
practice, for all Android applications that are distributed via Google Play, vendors
indicate the category the app belongs to and provide a user-oriented functionality
description. The distribution platform, in addition, lists the system permissions
an app requests to be granted. In the course of machine learning, one or multiple of
these attributes could be linked with the source code of an application. Evidently,
rather than assigning a higher-level description to every individual line of code,
this approach could be employed to find a suitable program category based on
the implementation or measure the correlation between a developer-provided
functionality description and implemented app behavior. Likewise, deep learning
techniques could assist in correlating description texts with the use of dangerous
permissions to better understand the privacy awareness of Android applications.
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6.2 Natural Language Processing
Computers understand natural language if the underlying syntax and semantics
can be translated into mathematical models. Besides speech recognition, research
domains of NLP include information retrieval, text classification, and sequence-
to-sequence translation. Despite significant improvements throughout the last
years, it remains challenging for machines to correctly interpret the meaning
of text. Systems for language modeling enable computers to learn sequences of
words as discrete values, collect statistics about word frequencies, and, depending
on the purpose, can also be targeted to capture contextual information.

A trivial form of word representation for machine learning is one-hot-encoding.
Each word of a predefined vocabulary is represented as a vector, with the vector
dimension being the total number of words. All vector elements are zero, except
for one, whereas the corresponding index refers to a certain word. Encoding
each word as a discrete binary value in a dense vector allows us to transform
regular text to an input that can be processed by machine learning classifiers.
However, the sparse encoding also has some disadvantages. The memory needed
to represent full document samples increases with the size of the vocabulary and
the length of the words. If a neural network then processes one-hot vectors as
an input, all operations and internal parameters have to span over the entire
dictionary, although most vector elements are zero. In addition, there is no natural
notion of similarity modeled within these vectors, e.g., the words “cat” and “cats”
are considered unrelated to the same extent as “bird” and “truck”. To tackle
this issue, commonly referred to as curse of dimensionality, statistical models
have been proposed that map the probabilistic distribution of words [BDV00].
By arranging one-hot word vectors as data points (embeddings) in a continuous
vector space, the vocabulary can be processed much more memory-efficient and
arithmetic operations [GAM17] allow to assess semantic relations between words.

6.2.1 Word Embeddings
Vector space models, in particular word embedding models, support NLP tasks
with memory-efficient and arithmetically meaningful word representations. In
the following, we briefly introduce the idea behind embeddings and present the
approaches we rely upon in our work, namely word2vec and GloVe.

Word2vec

Mikolov et al. [Mik+13] proposed an embedding technique that calculates the
probabilistic distribution of words via skip-grams. The algorithm relies on a
shallow neural network to learn word vectors so that we can predict the context
in which a certain word occurs. For instance, as depicted in Figure 6.1, given a
document containing the sentence “I bought a red car today”, the embedding for
“red” is trained by providing the model with surrounding words. During learning,
the probability to predict “car” as a context word, is maximized by minimizing
the loss function. For this to achieve, word2vec is designed such that at a specific
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... I bought a red car today ...
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Figure 6.1: Skip-gram model to predict surrounding words via P (wt+j |wt).

point in the chain of calculations, all information needed to make a prediction is
represented as a small low-dimensional vector. We can store this dense vector as
the word embedding for a certain word. Typically, models are trained until the
average predictive accuracy of context words no longer improves. By supplying a
single term to a trained embedding model, we are able to predict the set of words
that frequently appear close-by. These surrounding words define the context of a
word within a certain neighborhood that is confined by a fixed-size window.

Word embeddings are trained using neural networks and require a significant
amount of training data. In practice, the use of words is not uniformly distributed
and contextual relations are constrained by the content of the documents used
for learning. To reduce the number of parameters neural networks have to learn,
numerous databases with pre-trained word embeddings are available and can be
employed as an alternative to generating them from scratch1.

GloVe

GloVe [PSM14] is an embedding model that combines a context-based skip-gram
model, such as seen with word2vec, with a count-based matrix factorization.
The overall idea is that words in the same contexts exhibit similar or related
semantic meanings. Therefore, the algorithm captures the ratios of co-occurrence
probabilities rather than the probabilities themselves. While word2vec traverses
a corpus word-by-word and records the co-occurrence of words one at a time,
GloVe directly counts them for a full document.

Assuming a large matrix M , each cell Mi,j refers to how often word i is used
in the local context of word j (n-gram). To map such count-based statistics
between neighboring words within small, dense word vectors, Pennington et al.
propose to use a simple weighted least squares regression model instead of a
predictive neural network. According to the authors of GloVe, the count-based
approach ensures fast training, a good performance even with small training
corpora, and in some cases outperforms purely context-based models, such as
word2vec. As it is difficult to say, in general, whether to employ a count-based or
a probability-based embedding model, the performance of both techniques has
to be evaluated with regard to a specific task.

1https://code.google.com/archive/p/word2vec/
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6.3 Neural Networks
Neural networks have been used with considerable success in solving complex
tasks like speech or image recognition. A strong increase in computational
power and the rapid development of advanced machine learning concepts have
introduced the era of so-called deep learning. Machine learning frameworks, such
as TensorFlow [Aba+16] or PyTorch [Pas+19] feature a variety of algorithms,
run them efficiently on GPU, and simplify building big computational graphs.

Traditional feed-forward neural networks are composed of a collection of
neurons that are organized in layers, whereas each has its own learnable weights
and biases. Given a single vector as an input, a network transforms it via a
sequence of hidden layers and ultimately passes it to an output layer, which
maps the result to a set of predefined classes. Each hidden layer is built upon a
structure of neurons that are connected to all neurons in the previous layer, i.e.,
a fully-connected or dense layer. The network learns by repeatedly updating the
weights that are assigned to these links between neurons. By back-propagating
the error, i.e., loss, a model tries to find weights that generalize the properties
seen in samples during training. For predictions, the network then leverages the
learned abstraction and can map a previously unseen input to a certain output.

Many algorithms that are used with neural networks need configurations,
i.e., hyperparameters, to control the learning process. Finding these values is
an empirical process that can sometimes be facilitated using grid or random
search [BB12]. The most relevant hyperparameters to adjust include:

• Activation function: Models the firing rate of a neuron.
Examples: Sigmoid, Softmax, tanh, Rectified Linear Unit (ReLU)

• Optimizer: Efficiently finds parameters that minimize the loss function.
Examples: Stochastic gradient descent, ADAM, RMSProp

• Regularization term: Penalizes the complexity of the model.
Examples: L1, L2, batch normalization, Dropout (typical for deep learning)

• Weight Initialization: Prevents vanishing or exploding activation output.
Examples: Xavier/Glorot, random (normal or uniform distribution)

6.3.1 Convolutional Neural Networks
Ordinary neural networks are inherently limited by their processing capability.
Within dense layers, each neuron is connected with all neurons in adjacent
layers. This connectivity implies that input data follows a persistent structure, in
which all features always occur at a fixed global position. It also means that all
features are considered equally relevant for processing. In practice, there are some
domains, such as speech, images, or text, where it seems reasonable to extract
only useful attributes, i.e., learn local properties of input features. Convolutional
neural networks (CNN) [LeC+89] correspond to this need by encoding selected
properties of input data directly into the architecture.
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Figure 6.2: General CNN architecture for classification tasks.

When processing images, CNN layers can be pre-arranged with neurons that
capture, e.g., the red, green, and blue values of pixels. In a regular neural network,
a single fully-connected neuron in the first hidden layer would be connected to all
color channels of all pixels. Assuming an image of size 250 × 250 × 3, it would,
thus, manage 187,500 weights, whereas back-propagating the error through the
network causes each weight to be adjusted in every epoch. Evidently, this does
not scale and the large number of parameters would quickly lead to overfitting.
The architectural transition from fully-connected neural networks to CNNs is
entailed to fulfill three properties [GBC16, p. 329–335]:

1. Sparse interactions: A filter with a kernel smaller than the whole input
is windowing the input data. This leads to fewer parameters being held in
memory, less computing operations, and higher training efficiency.

2. Parameter sharing: A learned pattern can be used for multiple inputs;
it is not tied to the value of a weight applied elsewhere.

3. Equivariant representations: While the detection of patterns is not
strictly limited to input regions, e.g., an image position, a translation is still
detectable in the output. Precisely, a convolution function is equivariant if
any changes to the input are likewise reflected in the output.

Figure 6.2 shows the general architecture of CNNs. One or multiple convolutional
layers include filters of a predefined pixel size (kernel size) that are applied to
input data in order to learn spatial properties. These filters will be activated by
the network when they see some type of visual feature, e.g., small edges within
an image. As the filters slide over the input data using a fixed-size window, they
each produce an individual 2-dimensional activation map. The results of all these
convolution operations are stored in feature maps.

A pooling layer then performs a downsampling operation on the feature
maps. It progressively reduces the number of parameters by taking the global
maximum (max pooling) or average value of several feature map entries. In many
state-of-the-art CNNs, different combinations of convolutional / pooling layers
are nested on top of each other, resulting in a deep convolutional architecture.

One or multiple fully-connected dense layers typically unroll (flatten) the
pooled values and compute the final classification or regression output.
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6.3.2 Text Classification

In regular neural networks, samples are learned independently from each other.
This implies that any structure in the original data, e.g., the position of pixels in
images or the order of words in sentences, is not preserved. With text, this issue
can be compensated to some extent by breaking down sentences into n-grams,
where n refers to the number of words to be combined. However, the fixed input
structure of ordinary neural networks prevents them from working with n-grams
of arbitrary size, i.e., they cannot adapt to the variable length of sentences.

To process variably-sized input, several architectures for recurrent neural
networks (RNN) have been proposed. The general idea is to process a sequence
of vectors by applying a recurrence formula at every time step. Whenever the
RNN processes a new input, it updates its internal hidden state and, thereby,
allows sharing features learned across different positions of text. Among the
most commonly used systems that incorporate this concept are long short-term
memory (LSTM) [HS96] and gated recurrent unit (GRU) [Cho+14] networks.
Results are often intuitively comprehensible, e.g., by simply reading a sequence
from left to right, making RNNs a preferable choice for language models [Mik+10],
sequence tagging [HXY15] and translation [SVL14]. However, due to the recursive
structure, training cannot be parallelized as efficiently as with CNNs.

Although originally invented for computer vision, CNNs have shown to also
perform well with NLP tasks, such as classification and search query retrieval.
By design, CNNs are efficient, easy to parallelize on GPU and excel in tasks
where positional features have to be extracted, which is also the case with source
code or text in natural language. CNN architectures for text classification have
been proposed both on character-level [ZZL15] and sentence-level [Kim14].

In our work (see Chapter 10), we extend the sentence classification network
by Kim et al. that is shown in Figure 6.3. First, words are transformed to low-
dimensional word embeddings, e.g., using word2vec or GloVe, and concatenated
to form a matrix. Each row of the matrix then corresponds to one embedding.
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Figure 6.3: CNN for text classification by Kim et al. [Kim14].
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A sentence with 9 words using 100-dimensional embeddings would result in a
9×100 input matrix. If the matrix would be an image, filter windows would slide
over local regions, trying to find specific information. With word embeddings,
filters typically slide over full rows, i.e., embeddings, of the matrix. Thus, the
width of filters usually corresponds to the width of the input matrix and the
height is set to the amount of words to be captured at once, similar to n-grams.

Word embeddings support the filter kernels in learning generalizations of
the input data. Every filter performs convolutional operations on the input
matrix and stores the 1-dimensional results in feature maps of variable length.
Performing the convolutions allows the model to disclose the impact of single
words as well as of word formations. In practice, there are often several filters of
a specific kernel size, such that multiple words or combinations can be captured.

A pooling layer subsequently identifies input features with a high relevance
by performing a global max pooling operation. Thereby, the largest number from
each feature map is retrieved and passed on to a fully-connected, dense layer.
Based on this feature vector, that is a combination of single word embeddings from
local contexts, the dense layer performs a multi-class classification. Therefore, a
softmax function is used, as it can determine the probability of multiple classes
at once. For each trained output state, the network yields a probability that
classifies the sentence previously provided as an input.

6.4 Conclusion
Static and dynamic approaches for program analysis enable researchers to verify
low-level implementation aspects in Android and iOS applications. Typically,
this involves a targeted vulnerability analysis that often succeeds in uncovering
security-critical mistakes. However, traditional program inspection suffers from a
lack of context-awareness and disregards the use-case applications are designed
for. While many issues can be tackled by identifying and tracking relevant code
statements, the complexity of modern applications prevents existing approaches
from revealing the context problematic statements occur in. Understanding the
behavior of mobile apps on a higher-level is challenging due to the widespread
use of code obfuscation, functionality that spreads over thousands of classes, and
the many ways how developers can express semantically similar code.

For computers to learn the semantics of mobile applications, they need to be
able to assess the relevance of individual parts in source code. Since program
statements remind of text in many aspects, in this chapter, we introduced modern
techniques in the fields of NLP and machine learning that excel in capturing the
context of natural language and might also perform well in a semantic analysis
of mobile apps. In the following chapters of this thesis, we explore different
approaches to gain a more sophisticated understanding of the behavior of Android
applications. This involves tackling code obfuscation, assessing the similarity of
program statements, and applying the building blocks, presented in this chapter,
on the metadata and source code of mobile applications.





7
Code Recognition on Android

Many developers take advantage of third-party libraries and code snippets from
public sources to add functionality to applications. Besides making development
more productive, external code can also be harmful, introduce vulnerabilities, or
raise critical privacy issues that threaten the security of sensitive user data and
amplify an app’s attack surface. Reliably recognizing such code fragments in apps
is challenging due to the widespread use of obfuscation techniques and a variety
of ways, how developers can express semantically similar program statements.

In this chapter, we propose a code recognition technique that is resilient against
common code transformations and that excels in identifying code fragments and
libraries in Android applications. In Section 7.1, we motivate our research and
explain how state-of-the-art solutions identify libraries. Section 7.2 introduces our
system design and highlights our selection of code features to overcome program
obfuscation. In Section 7.3, we elaborate how to generate well-characterizing
fingerprints by combining features from the Abstract Syntax Tree of methods
with invariant attributes from method signatures. We thoroughly evaluate how
well our solution tackles obfuscated, shrunken, and optimized code in Section 7.4
and demonstrate its practical ability to fingerprint and recognize code with high
precision and recall. Parts of this chapter are taken verbatim from [FR19].

Publication Data and Contribution

Johannes Feichtner and Christof Rabensteiner. “Obfuscation-Resilient
Code Recognition in Android Apps.” In: Availability, Reliability and Secu-
rity – ARES’19. ACM, 2019, pp. 1–10. doi: 10.1145/3339252.3339260

Contribution: Main author; Christof Rabensteiner elaborated the finger-
print inclusion check and significance score, and implemented a prototype.
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7.1 Introduction
Most Android applications are bundled with third-party libraries that potentially
include vulnerable or outdated code [Der+17]. The Apache Cordova library,
e.g., was affected by a vulnerability that enabled an attacker to interfere with
an application’s behavior by sending malicious intents1. Providing the building
blocks for a majority of cross-platform applications, this flaw immediately put
the security of all of them at risk. Likewise, adversaries can leverage advanced
reverse engineering techniques to tamper with popular libraries, add harmful
code, and republish compromised versions that preserve the original functionality.
The problem of uncovering such small differences is commonly referred to as
clone or plagiarism detection and conceptually exhibits requirements similar to
code recognition. Techniques for clone detection work on semantic and syntactic
features of programs and measure the similarity of code based on tokens [VHP16;
CGC12], parsing trees [AI13; Bax+98], or dependency graphs [CLZ14; Luo+14].

Although third-party libraries on Android undoubtedly introduce potential
security problems, insecure code snippets can also be located within app-specific
code. If developers copy ready-to-use code snippets, e.g., from programming
discussion platforms like Stack Overflow, they unknowingly might also introduce
weaknesses. In 2017, a study [Fis+17] has revealed that 15.4% of 1.3 million
inspected Android applications included security-related code snippets from
Stack Overflow, whereas 97.9% of them contained severe security problems. Apart
from introducing vulnerabilities, multiple studies [Seo+16; Li+16; Gra+12a] have
demonstrated that code from external sources can also leak private information,
exploit their privileges, or forward sensitive data to unauthorized parties.

Since the use of third-party libraries and the integration of code snippets from
external sources have evolved to common practices in app development, it is of
utmost importance to find vulnerable code fragments. Despite significant research
efforts to dissect apps and uncover such threats, a reliable identification of insecure
program parts remains challenging. Developers can express semantically similar
program statements in a variety of ways and very often, control and data flows
are altered when code transformation techniques, such as obfuscation, identifier
renaming, shrinking, or method inlining, are applied during compilation.

Existing approaches for code recognition in Android applications mostly target
third-party libraries and involve either whitelisting or a similarity-based strategy.
In the former case, a precompiled whitelist of directories or package names is used
as a reference to individual libraries. This concept is well suited to investigate
the security risks associated with using specific third-party components, e.g., for
advertising [Liu+15] or usage statistics [Liu+20]. However, an inherent problem
of whitelists is that they usually have to be gathered manually [BBD16] and need
active maintenance to stay up-to-date. Considering the constant intervention
and the fact that it is practically infeasible to cover all relevant libraries by their
vendor name and version number, this approach does not scale and is only suited
for analysis scenarios where it is viable to check for exact code matches.

1https://cordova.apache.org/announcements/2015/05/26/android-402.html
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The second approach consists in identifying Android libraries without prior
knowledge [Zha+18b; Che+16; Ma+16b]. Therefore, applications are decompiled
and split into sets of potential library candidates. A custom similarity metric
or hash-based comparison then measures the difference to candidates that have
previously been extracted from other applications. If the similarity score exceeds
a predefined threshold, candidates are considered to be the same libraries.

As such approaches are still prone to fail if code transformation techniques
are employed, more elaborate solutions based on machine learning and clustering
have been proposed. PEDAL [Liu+15] trains a support-vector machine model
to detect obfuscated advertisement libraries by extracting only selected features
from code. Evidently, possible classification outcomes are limited to the set of
labeled training samples due to the choice of a technique for supervised learning.
AdDetect [NCC14], AnDarwin [CGC13] and WuKong [Wan+15] build on the
assumption that a library consists of only one package and segregate package
hierarchies into distinct clusters. LibRadar [Ma+16b] augments the approach
by assigning each cluster a unique profile representing a library. However, the
lack of ground truth in all these solutions and the use of heuristics come at the
cost of precision and recall. None of the listed solutions is able to handle partial
library inclusions, e.g., as a consequence of shrinking or dead code elimination.

Although research has demonstrated the practical feasibility to identify code,
existing work still leaves room for improvement:

1. Current approaches for code recognition in Android applications focus on
detecting individual third-party libraries by name and version. They require
large amounts of ground truth for training and do not work effectively if the
reference codebase is small or a priori incomplete. Trained on Pinpointing
specific code snippets instead of full libraries is, thus, infeasible.

2. State-of-the-art methods strongly depend on Java package names, preserved
directory hierarchies, and unaltered method signatures. However, package
structures and names can be different in multiple versions of the same library.
Also, during compilation, code can mutate as it undergoes automated
performance-related code optimizations, such as constant propagation,
method inlining, duplicate code merging, and removal of unused method
parameters. Focusing too much on such auxiliary information can, thus,
give a false sense of a good classifier that is only reliable if trained libraries
and tested applications exhibit the required attributes and do not apply
code optimizations.

3. Android apps commonly apply code transformation techniques, including
obfuscation, identifier renaming, and shrinking not only to optimize code
but also to harden against various forms of abuse, such as tampering, reverse
engineering, and intellectual property theft. While existing classification
approaches based on similarity metrics might yield useful results despite
such modifications, the recognition rate with real-world applications could
significantly be improved if techniques were resilient to common types of
obfuscation and code mangling.
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We address shortcomings of existing approaches and introduce a solution that
is able to recognize arbitrary code fragments in Android applications, even if
code transformation techniques, like shrinking or obfuscation, are applied. We
overcome the aforementioned limitations by extracting and processing features
from the Abstract Syntax Tree (AST) of methods. Our approach does not rely on
identifiers of packages, classes, and methods and uses them only as supplementary
information. Instead of a hash-based comparison, we measure the similarity of
methods using vectorized fingerprints we derive from the AST of methods and
transformation-invariant representations of method signatures. This enables us
to recognize not only full libraries but also individual code snippets and library
parts. To compare code segments, we design a scoring metric that accurately
determines inclusion within other code parts and can express the similarity of
classes and packages based on an aggregation of fingerprints.

Compared to previous research, our solution excels in reliably recognizing
code fragments, even if a very high degree of code obfuscation is applied and
if the majority of originally trained code is no longer present, e.g., due to code
merging or inlining. Our approach is scalable and succeeds in accurately matching
individual small code snippets at method level as well as entire libraries. Aimed
at conditions that can be found with real-world apps, our solution is suited for
arbitrary tasks that involve code recognition in Android applications.

Our key contributions are as follows:
• We present a framework to reliably recognize arbitrary code fragments

in Android apps. Our solution can overcome various limitations present
in existing research and represents an effective method to identify used
libraries, recognize specific code snippets, or find semantically similar code.

• We study features in code that are invariant to widely used code transfor-
mation techniques and propose a novel feature matching process that is
resilient to code mangling, identifier renaming, shrinking, and optimizations,
such as inlining, code merging, or removal of unused method parameters.

• We evaluate the quality of our algorithm by testing it with a set of open-
source libraries. We compile all libraries multiple times with different forms
of code transformations enabled and assess the impact on classification.
Moreover, we ensure the soundness of our solution by thoroughly comparing
the expressiveness of chosen features and threshold values for matching
confidence and package significance.

In the context of this thesis, tackling the problem of code recognition in Android
apps is an integral step towards identifying semantically equivalent program parts.
To better understand the behavior of applications, it is crucial to distinguish
functional changes by developers from non-functional adaptations induced by
compile-time optimizations and obfuscation techniques. In a broader scope,
our work represents an effective solution for code fingerprinting and pattern
recognition. By extracting transformation-invariant features from Abstract
Syntax Trees and method signatures, we succeed not only in identifying individual
code snippets but can also measure their semantic similarity.
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7.2 System Design
We design a static analysis framework to recognize code in Android app archives.
The primary functionality can be split into two parts: In the learning phase,
our tool is trained with arbitrary code fragments. In the matching phase, we
automatically analyze an app and try to recognize code parts using previously
learned data. The objectives of our solution can be summarized as follows:

1. If an app includes a library or code fragment, the tool should identify it
using an unambiguous label, if known.

2. The tool should work equally with obfuscated code.

3. After analyzing an app, the tool should list packages that resemble previ-
ously learned packages or code fragments with a score indicating how much
code has been matched.

With these properties in mind, our fingerprinting approach, as detailed in Sec-
tion 7.3.1, is based on AST Vectors and Sanitized Signatures. AST vectors
are compact vector-style representations of attributes that are gathered from
interpreting structural dependencies in the AST of a method. Sanitized signatures
are built by removing all transformable or variable identifiers from a method
signature. Such elements include a method’s name, access modifiers, and all
references to class objects in parameter types and the return type. We combine
an AST vector and a sanitized signature to form a fingerprint that describes
an individual method. Consequently, an aggregated set of fingerprints can be
employed to represent a class or a full package hierarchy.

7.2.1 Overcoming Obfuscation
In regular Android applications, code fragments or libraries can be recognized with
reasonable certainty by matching the names of packages, classes, and methods.
However, if code transformation techniques, such as obfuscation, shrinking, or
inlining are applied, these identifiers become inconclusive.

In a survey from 2018, Wermke et al. [Wer+18] analyzed 1.7 million Android
apps regarding the use of obfuscation techniques. According to the authors,
24.92% of apps are obfuscated, whereas the most prevalent obfuscation system is
ProGuard. While the authors confirm that identifier renaming of classes, methods,
and fields is among the most popular features, they make no statements about
minified or shrunken apps. Most research of obfuscation in Android applications
concentrated on reversing [BPM17; Bic+16] and analyzing applications in spite
of obfuscation [Gla+17; Vás+14; Zha+14a]. More recent studies specifically
focus on obfuscated malware [HGM18] and address the impact of obfuscation
on Android anti-malware products by inspecting 7 obfuscation strategies and 29
techniques. Also in this context, the research of Park et al. [Par+19] and Garcia
et al. [GHM18] aims at identifying obfuscation-resilient properties as an input to
machine learning classifiers in order to uncover malware.
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In our work, we address obfuscation as well as common code transformation
techniques by focusing solely on invariant code attributes. This involves features
that (1) are suited to identify a code segment and remain the same for semantically
similar sections of code, and (2) cannot be tainted if multiple revisions of the
same app are compiled with different obfuscation settings. In the following, we
point out how our solution handles some widely used transformation techniques.

Identifier Renaming

If activated, the obfuscator replaces names of variables, methods, classes, and
packages with randomly-generated, meaningless characters. Fingerprints that
are based on such identifiers would fail to recognize semantically equivalent but
differently named code segments. As our solution does not rely on identifiers at
all, it cannot be affected by this modification.

Shrinking

Shrinking involves removing unused code. Our approach is to some extent resilient
to this operation as methods, classes, and packages are matched by similarity.

Optimizations

Optimizations are applied to reduce the size of the resulting Dalvik bytecode and
to increase performance. Among other operations, this involves forced inlining,
outlining, constant propagation, switch-case rewriting, etc. While some of these
features can taint our fingerprints, in our evaluation we show that for most of them
the practical impact is marginal. As we measure similarity among fingerprints
based on the distance in the vector space, it is still possible to recognize cases
where two slightly different fingerprints refer to a semantically equivalent code.

The obfuscator ProGuard provides developers with 29 possible optimizations2.
Some of them cause code to be transformed such that the control and data flow
is altered. In these cases, our solution loses track when matching code fragments:

• Inlining: If enabled, ProGuard substitutes a method invocation with the
body of the called method. This change of the control flows tampers with
the AST vector. However, as this operation is performed at method-level
only and typically only for short methods, it is still feasible to accurately
identify specific classes or packages using additional method fingerprints.

• Merging: With this optimization activated, ProGuard merges duplicated
blocks of code by modifying branch targets. This operation affects AST
vectors as it prunes nodes from a method’s AST.

• Method Parameter Removal: If unused parameters are eliminated,
methods exhibit different type signatures and this leads to different sanitized
signatures. This operation prevents us from matching methods, as matching
this feature type requires strict equality.

2https://www.guardsquare.com/en/products/proguard/manual/usage/optimizations
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7.3 Workflow
Our approach starts by converting code provided as a method, class, or package
into the .dex format. This task is delegated to the build tool d8, which is included
in the Android SDK. Based on the Dalvik bytecode obtained, for each available
method, we generate a fingerprint and arrange all of them within a package
hierarchy. When learning code, we stop here and store the results in a database.
When recognizing code, we compute a similarity score between zero and one,
indicating whether given code fragments can be matched fully, partially, or not
at all by comparing with learned fingerprints and known package hierarchies.

7.3.1 Fingerprinting Code
Potharaju et al. [Pot+12] proposed a technique to compute fingerprints based on
features extracted from the AST of methods. Therefore, the Android app archive
was first transformed into a custom assembly language, followed by pruning the
code of each method body, keeping only references to method calls and replacing
all variable identifiers with placeholders. Of all method signatures, only the
number of used arguments was preserved. The remaining instructions were then
arranged as AST and formed the basis to derive a fingerprint vector.

We adopt the algorithm of Potharaju et al. as it solves a problem that is close
to ours. However, as opposed to their work, we cannot create a fingerprint based
on the sum of all method fingerprints, since we have to assume that code parts
may be incomplete or could have been removed during compilation. We, thus,
design our own similarity metric that is resilient to common code transformations.

Algorithm 4: Building a minimal AST from a method body
Input :Method Body
Output :Abstract Syntax Tree (AST)

1 AST ← createRootNode();
2 foreach instruction ∈ method body do
3 Skip instruction unless opcode in {INVOKE_DIRECT, INVOKE_VIRTUAL};
4 instructionNode ← createNode(instruction.opcode);
5 foreach parameter ∈ instruction do
6 parameterNode ← createNode(parameter.type);
7 instructionNode.addChild(parameterNode);
8 end
9 AST.addChild(instructionNode);

10 end
11 return AST

AST Vectors

We derive an AST vector by first generating an AST and then transforming this
tree to a vector. One advantage of working with feature vectors instead of full
ASTs is the fact that comparing methods becomes substantially simpler than
detecting graph isomorphism or computing the tree edit distance [Ngu+09].
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Algorithm 5: Conversion of an AST to an AST vector
Input :Abstract Syntax Tree
Output :Abstract Syntax Tree Vector

1 vector ← createVector()
2 //count horizontal features
3 foreach invokeStmtNode ∈ AST.getChildren() do
4 #locals ← |{c ∈ invokeStmtNode.getChildren() | c.type = local}|
5 #params ← |{c ∈ invokeStmtNode.getChildren() | c.type = param}|
6 vector[local_local] ←

(#locals
2
)

7 vector[param_param] ←
(#params

2
)

8 end
9 //count vertical features

10 foreach lvl1Node ∈ AST.getChildren() do
11 increment(vector[lvl1Node])
12 foreach lvl2Node ∈ lvl1Node.getChildren() do
13 increment(vector[lvl2Node])
14 increment(vector[lvl1Node, lvl2Node])
15 end
16 end
17 return vector

As demonstrated in Algorithm 4, we start by building a minimal AST over
a method body. Starting at the top node of a tree (line 1), we iterate over all
program statements contained in the method (line 2) and filter instructions of the
type INVOKE_DIRECT and INVOKE_VIRTUAL (line 3). We focus on these two as they
are the most commonly used method invocation calls, according to Potharaju et
al. As a next step, we create an AST node for the current method call (line 4)
and attach a child node for each method parameter (lines 5-8). Finally, we add
the instruction node as a child to the tree root (line 9).

Having derived an AST, we transform it into an AST vector by counting
horizontal and vertical features, as introduced by Potharaju et al. [Pot+12]:
A horizontal feature is a pair of leaf nodes with the same parent node, whereas a
vertical feature is a directed path of arbitrary length, starting at the root node.

As shown in Algorithm 5, starting with an empty vector (line 1), we first
identify horizontal features by traversing all first-level nodes of the AST and
check the number of leaf pairs in each node (lines 3-8). For each invocation
call, we count the number of local registers and method parameters (lines 4-5),
and also store the number of pairs of types local-local and param-param in the
AST vector (lines 6-7). Hereby, we leverage the fact that finding the number of
possible pair combinations from a set of n local registers or method parameters
is equivalent to computing the binomial coefficient with k = 2. Subsequently, we
determine all vertical features by traversing all first-level nodes of the AST again
(lines 10-16) and for each, increment its the occurrence count. (line 11). Finally,
we also iterate over all child nodes of the current node and remember occurrences
of both paths, i.e., we separately increment and store second-level relations as
well as edges in the tree that connect first- with second-level nodes (line 12).
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Java code equivalent

public ClassA doSomething(float[] number, ClassB x) {
return new ClassA(x.field1, number);

}

DEX represented in Smali

.method public doSomething([FLat/a/ClassB;)Lat/a/ClassA;
new-instance v0, Lat/a/ClassA;
iget v1, p2, Lat/a/ClassB;->field1:I
invoke-direct {v0, v1, p1}, Lat/a/ClassA;-><init>(I[F)V
return-object v0

.end method
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Figure 7.1: Fingerprint generation example.

Sanitized Signature

Sanitized signatures are built from data in type signatures that cannot be altered
by code transformations. To obtain obfuscation-invariant signatures, we omit
access modifiers and method names, and prune identifiers of parameters and
return types. For primitive types, we keep the abbreviations as used in Smali3.
If non-primitive types, such as classes or interfaces, are used as parameters or
return types, we substitute the arbitrarily named object with a single character
code: If the type equals the local class, i.e., represents a reference to itself, we
assign the placeholder T. Likewise, if a class is affiliated with the same package as
the current class, we assign O and, otherwise, we set E to denote external origin.

Fingerprints in Package Hierarchies

Fingerprints are built by combining AST vectors and sanitized signatures. While
a single fingerprint can already be used to match individual methods, it does not
necessarily carry enough semantic information to unambiguously identify classes
and packages. E.g., due to their general design, getter and setter methods share
similar fingerprints, which makes it hard to associate them with a specific class.

Instead of matching a maximum of individual methods, we propose to identify
classes and packages by aggregations of fingerprints. Even in case that two
unrelated methods exhibit an identical fingerprint, it is unlikely that two unrelated
classes also share all method fingerprints. Likewise, we can assume that two
packages are similar or equal if the contained classes share the same fingerprints.

3https://github.com/JesusFreke/smali/wiki/TypesMethodsAndFields
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Example

Figure 7.1 shows a complete example of a fingerprint generation. Our objective is
to build a fingerprint for a method that is referred to as doSomething, located in
a class named ClassB that belongs to the package at.a. Therefore, we derive an
AST vector and a sanitized signature from a representation of Dalvik bytecode
in Smali format, as shown in the middle box. For a better understanding, the
top box highlights an equivalent code snippet in Java. As marked by arrows,
fingerprint generation involves the following steps:

1. Convert method body to minimal AST: We first create the top
node method and add a node inv-direct that represents the instruction
invoke-direct {v0,v1,p1}. The registers v0,v1 used in the invoke-direct
statement are local parameters. v0 holds an instance of ClassA and v1 an
Integer value that is read from the instance field ClassB.field1. For the
local registers v0,v1 and the parameter number in p1, we create two local
and one param node and assign them as children to the node inv-direct.

2. Convert AST to AST vector: Vertical features describe a sequence
of nodes that are connected by a directed edge in the AST. In the given
example code snippet, we count the following directed paths of length 1:
DRC:1, since there is only a single inv-direct node in tree; LOC:2, PAR:1
because of the child nodes for two local registers and one method parameter;
VRT:0 as there exists no invoke-virtual node in the AST. Vertical paths of
length 2 are DRC-LOC:2 and DRC-PAR:1. The features INV-LOC and INV-PAR
are set to zero, due to the lack of corresponding nodes. Finally, we determine
horizontal features by counting the pairs of local and param nodes. There
is one local pair that can be mapped as LOC-LOC:1 and no param pair.

3. Generate sanitized signature: The signature is derived from the method
parameters [F, describing an array of floating-point numbers, at/a/ClassB,
an instance ClassB, and an instance of ClassA, specified as a return type.
We keep [F as-is and substitute at/a/ClassB with character T, as the object
identifier refers to the local class. To distinguish method parameters from
the return type, we insert a colon and substitute at/a/ClassA with the
character code O, as the affected class is located within the at/a package.
As a result, we obtain the the sanitized signature [FT:O.

4. Form fingerprint from AST vector and sanitized signature

7.3.2 Recognizing Code
In the recognition phase, a given package hierarchy Pa, including an arbitrary
amount of classes and methods, should be matched with previously learned code.
We compute fingerprints for all packages pa ∈ Pa and pursue the following steps:

1. All fingerprints of classes and methods in pa are ordered by their significance.
This helps to quickly identify those code parts that carry most semantic
information. An explanation of significance is provided below.
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2. Each fingerprint, composed of an AST vector and a sanitized signature, is
looked up in the database of previously learned fingerprints. In case we
encounter package hierarchies that exhibit similar fingerprints, we assign
them to a candidate set PC .

3. For all potential matches found in the database, we test whether pa⊆PC ,
i.e., if the code package is included within the previously learned package.

4. If the package pa is indeed included within PC , we compute the extent of
similarity s(pa,PC). If AST vectors in pa and PC are related, they are
assigned a positive score, or zero otherwise.

5. Potential matches are ordered by their similarity score. The package that
yields the highest score and appears to be a confident match, is returned
as a recognition result.

Fingerprint Significance

As methods can be of arbitrary length and their signature may or may not include
parameters and non-primitive return types, AST vectors and sanitized signatures
sometimes cannot capture enough semantic information to form fingerprints that
are clearly distinguishable from each other. Especially shorter methods that take
no arguments and return void can lead to rather general fingerprints that are
more likely match with unrelated methods, resulting in false positives.

To approximately express the amount of semantic information a fingerprint
carries, we assign it a score that we derive from the length of both features.
Thereby, we make the simple assumption that longer features are also more
expressive. Let m = (v, s) be a method fingerprint formed from an AST vector v
and a sanitized signature s. The significance score of m can then be defined as:

score(m) := wv · ‖v‖1 + ws · strlen(s) (7.1)

We quantify v using its L1-norm ‖v‖1 representation and s by the number of
characters contained in the string, as retrieved via the function strlen(s). Both
values are weighed with regard to their frequency of occurrence.

Inclusion

We apply the inclusion relation ⊆ to denote when a code package p is a subset
of package p′. In contrast to checking for strict equality, this enables us to also
match packages where code fragments are missing, e.g., due to different versions
of particular library or compiler-driven elimination of dead code. Formally, this
means that a package p can only be contained within a package p′ if and only if
there exists an injective mapping fc for each class in p to a class in p′:

p⊆ p′ ⇔ ∃fc : p 7→ p′, fc... injective. (7.2)
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For all classes in fc, we add constraints regarding fingerprints of contained
methods. Assuming c ∈ p to be a class c in a package p and c′ ∈ p′, we have:

fc(c) = c′ ⇒ c⊆ c′. (7.3)

Analogous to packages, we can use the inclusion relation to express when a class
c is included within another class c′. This is the case, if and only if there exists
an injective mapping fm for all methods m in c to methods in c′:

c⊆ c′ ⇔ ∃fm : c 7→ c′, fm... injective. (7.4)

However, we require that a mapping fm for a method m ∈ c to fingerprint of a
method m′ ∈ c′ is only possible if their sanitized signatures match exactly:

fm(m) = m′ ⇒ Sanitized signatures of m and m′ are equal. (7.5)

By formally defining these inclusion relations, we have set the dependencies for
methods to be contained in classes, and classes to be included in packages. In the
following, we explain how to implement these relations for classes and packages.

Class Inclusion

Let c = {t1, ..., tn} be a class comprising tn fingerprints that are built from AST
vectors and sanitized signatures. We can evaluate whether c is contained within
class c′ by following a greedy lookup strategy, as outlined in Algorithm 6. The
overall idea is to match each fingerprint contained in c with its counterpart in c′,
unless a mismatch occurs. Upon a successful match, we remove ti from the set
of fingerprints in c′, as it is no longer a potential candidate. If all fingerprints
from c are found in c′, the relation c⊆ c′ is fulfilled.

Algorithm 6: Greedy check if class c is included in c′

Input :Class c, Class c′
Output : true if c⊆ c′

1 foreach ti ∈ c do
2 if ti ∈ c′ then
3 Remove ti from c′

4 else
5 return false
6 end
7 end
8 return true

Package Inclusion

To check whether package p is contained within a package p′, we need an injective
mapping fc for all classes in p to classes in p′. Due to the missing symmetry in
the class inclusion relation, i.e., p′ is not required to have a counterpart for each
class in p, a greedy inclusion check is not feasible in this case.
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Figure 7.2: Failing package inclusion using a greedy strategy.

Figure 7.2 illustrates an example mapping of classes, where a greedy inclusion
check, as shown in Algorithm 6, would fail. Assuming two packages p and p′, it
can be seen that p includes p′, as there is an injective mapping fc with fc(c1) = c′1
and fc(c2) = c′2. In this case, a greedy inclusion lookup would fail, since class c1
can also be matched with c′2, since c1⊆ c′2. However, if we would match c1 with
c′2, class c2 would not be assignable at all due to the fact that c2 is not in c′1.

For situations where an assignment is not unambiguously possible, we want
to find a mapping between packages such that a maximum of contained classes
is matched. To solve this combinatorial optimization problem, we can leverage
the Hungarian algorithm [Kuh10]. Therefore, we build a cost matrix M over all
possible combinations of classes in two packages and set the element, i.e., the
cost of assignment to 0, if a class is contained within another one, or 1 otherwise:

M ∈ {0, 1}|p|×|p′|, M [i, j] =
{

0 if ci⊆ c′j
1 otherwise

(7.6)

After applying the algorithm on matrix M , we obtain an assignment mapping fc.
As costs should be minimized, the algorithm prefers assignments that cost 0 to
those that cost 1. The total costs are, thus, the sum of non-matching classes:

cost(M , fc) :=
|p|∑

i=1
M [i, fc(i)] (7.7)

If assignment costs are 0, there exists an injective mapping from p to p′:

cost(M , fc) = 0⇔ ∃fc : p 7→ p′, fc... injective.⇔ p⊆ p′ (7.8)

7.3.3 Similarity Score
To recognize fingerprints of different code fragments, methods, classes, and
packages in a given Android app, we have to match them against the set of
previously learned candidates. As structural changes at, e.g., basic block-level
can affect fingerprints at method-, class-, and package-level, searching only for
exact matches is no viable option. To evaluate the extent of similarity between
two arbitrary packages hierarchies p and p′, we introduce a score that numerically
expresses the distance between two AST vectors. In the following, we explain
how to measure similarity for the different fingerprint entities.
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AST Vectors

We can describe the similarity between two AST vectors v and v′ by the distance
of their coordinates in the vector space. As a measure, we rely on the L1-norm
that is calculated from the sum of the absolute length values of two vectors.

s(v, v′) = max(‖v‖1 − ‖v − v′‖1, 0) (7.9)
Equation 7.9 satisfies the following requirements:

• We expect the similarity score to be zero if AST vectors are not close
to each other, i.e., the difference between them exceeds the length of the
vector.

• Similarity must not fall below zero. We ensure this condition by selecting
the maximum value among the absolute vector distance and zero.

• We expect similarity to be maximized when both AST vectors are equal. In
such a case ‖v − v′‖1 becomes zero, causing the score to be s(v, v′) = ‖v‖1.

Classes

We evaluate similarity between two classes s(c, c′) using the Hungarian algorithm,
as it allows us to find matches between AST vectors with maximum similarity.
Let c = {m1, ...,mn} be a class with a set of fingerprints of methods mi, whereas
each is formed from an AST vector vi and a sanitized signature si. We build a cost
matrix C that holds the similarity scores of all possible AST vector combinations:

C ∈ R|c|×|c
′|, C[i, j] =

{
s(vi, v′j) if si = s′j
0 otherwise

(7.10)

By design, the algorithm minimizes the cost of assignments. As our goal is to
find assignments that yield the maximum cost, i.e., the highest similarity scores
among AST vectors, we solve the problem by negating and shifting the matrix:

Cnegated = (max(C)− C[i, j])ij (7.11)
After applying the algorithm, we can use the resulting mapping fc to compute a
package similarity score using the cost(C, fc) function, as defined in 7.7.

Packages

Likewise, we can apply the Hungarian algorithm to assess similarity between
two code packages s(p, p′) and find pairs of classes with maximum similarity.
Therefore, we build a cost matrix P and fill it with the similarity scores s(c, c′)
of all classes c and c′ respectively, that are included in the two packages p and p′:

P ∈ R|p|×|p
′|, P [i, j] =

{
s(c, c′) if ci⊆ c′j
0 otherwise

(7.12)

We negate P analogous to Equation 7.11 and run the algorithm. To finally
compute the similarity score s(p, p′), we again use cost(P , fc) from Definition 7.7.
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7.4 Evaluation
The goal of this evaluation is twofold. First, we investigate how well AST vectors
and sanitized signatures fingerprint code and tackle obfuscation (see Section 7.4.2).
Second, by applying our solution on open-source Android applications, we assess
(1) how much code of a package is needed to reliably recognize it (see Section 7.4.3),
(2) how much confidence a match should have to be significant (see Section 7.4.4),
and (3) how well we can recognize individual packages when different obfuscation
techniques are applied (see Section 7.4.5).

7.4.1 Method and Dataset
In the learning phase, we seek to assign similar fingerprints to semantically
similar code fragments. Distinctive features should characterize unrelated code.
To better understand how well AST vectors and sanitized signatures identify code,
as a first step, we test our features using a home-made app that is obfuscated,
includes two libraries, and 150 packages. The results give an intuition on how
changes in the codebase or parameters impact accuracy in matching code.

To evaluate how our solution can recognize code in real-world applications,
we opted to crawl the F-Droid Repository4. Since this app repository offers only
Free and Open Source Software (FOSS), we can download the source codes of
apps including configuration files for the Gradle build system. From these files,
which are needed for compilation only but are not included in final Android
application archives, we are able to extract a list of used library packages. On
their basis, we split the code into different parts to derive fingerprints for each
of them. Moreover, we adapted the build files of all downloaded FOSS apps to
compile multiple versions with different code transformation techniques enabled:
shrunken, obfuscated, shrunken + obfuscated, shrunken + obfuscated + optimized.
Each version incorporates the same functionality but realizes it using code
fragments that vary in terms of control and data flows, variable names, and the
set of involves class methods. We leverage these builds to assess the extent to
which our code recognition strategy is resilient to obfuscation and optimization
measures. For this evaluation, we crawled source codes of 800 apps and compiled
one regular and four transformed versions, resulting in 4,000 app samples overall.

The collected dataset enables us to unambiguously verify how well learned
code can be recognized. Based on the assumption that FOSS apps exhibit the
same code structure and perform library inclusion analogous to other apps, our
results should also hold for arbitrary Android applications.

7.4.2 Fingerprint Quality
Our algorithm derives a summarized representation of methods, classes and
packages by combining AST vectors and sanitized signatures. For these objects
to be unambiguously recognizable by their fingerprints, it is essential that our
features focus only on code attributes that are invariant to code transformations.

4https://f-droid.org
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Question: How well can our features describe individual code fragments?

To assess the quality of fingerprints, we evaluate the degree of ambiguity that
emerges from applying our techniques to average code samples. As a reference,
we build a confusion matrix M = (mij) that depicts for how many distinct
packages of an average Android library, we are able to derive uniquely assignable
fingerprints. At the same time, it is suited to visualize incorrectly recognized
packages. Each row represents the label assigned to a package, each column
stands for a single package. The color of a cell mij highlights the confidence that
package i of an arbitrary app matches package j of the test package. We are able
to interpret the quality of fingerprints from the structure of M : Only if the main
diagonal is confident, we are able to identify code segments without ambiguity.

Setup

To build a confusion matrix, we use the sample set of 150 packages included in
our obfuscated test application. The set is large enough to feature a variety of
different packages and sufficient to visualize confusion. We compute the similarity
score between each app package with each reference package we learned before.

Results

As illustrated in Figure 7.3, we derived three matrices that reveal confusion when
only AST vectors or sanitized signatures are applied for code identification, and
when both features are used in combination. The x- and y-axes are ordered by
the significance of fingerprints that serves as a measure for expressiveness. This
means that packages with a small significance score are shown on the top-left,
whereas packages with high significance are to be found on the bottom-right.

With AST vectors, we see that code similarity is confident on the main
diagonal but, overall, shows a high degree of confusion. The top-right segment of
the matrix outlines many packages that were mislabeled with high confidence.
This results from the fact that the code of small packages often re-occurs in
multiple larger packages and, thereby, impedes an unambiguous attribution.
Conversely, we observe that larger packages are not confused with smaller ones.

The confusion matrix for sanitized signatures reveals that the similarity
measure is either confident that a code package is contained (see Section 7.3.2)
within another one, or not at all. In contrast to AST vectors, we observe only
little confusion in the top-right of the matrix, where code packages with a
lower significance score are compared with packages that exhibit higher scores.
Nonetheless, similar to AST vectors, the amount of confusion remains high for
small packages as their fingerprints are often also part of larger packages.

With both features combined, confusion is mostly eliminated aside from code
packages with low significance in rows at the top. Smaller clusters near the
main diagonal in the top-left area result from packages that implement similar
interfaces and are, thus, semantically closely related to each other. Overall, we see
that the combination of AST vectors and sanitized signatures can identify code
almost without confusion and, thereby, paves the way for accurate recognition.
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Figure 7.3: Confusion matrices based on AST vectors (top), sanitized signatures
(middle), and a combination of both features (bottom).
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7.4.3 Threshold for Package Significance
The confusion matrices for AST vectors and sanitized signatures combined showed
that the remaining confusion was caused by packages with a low significance
score. As a remedy for confusion and to increase accuracy, we want to define a
lower bound for the minimum package significance score tps. It decides whether a
particular package is sufficiently expressive to be used for learning and matching.

Before processing a code package, we verify its significance. If a package
carries only little semantic information, we can ignore it assuming that matching
would not be possible unambiguously. The higher we set tps, the more accurate
recognition becomes. However, a high threshold also leads to more packages
being ignored. In the best case this means that fingerprinting omits generic code
parts, such as getter and setter methods, as well as others that consist only of a
few lines of code. In the following, we define this impact on tps as the keep ratio:

keep ratio = |Packages learned from app|
|Total number of packages in app| (7.13)

Our objective is to determine a reasonable value for tps that represents a trade-off
between recognition accuracy and keep ratio.

Question: How much significance is necessary for precise recognition?

Setup

We use our set of 800 real-world applications and iteratively try recognition with
values between 0 and 200 for tps. After each round, we build a confusion matrix
and compute the impact on accuracy and keep ratio.

0 25 50 75 100 125 150 175 2000

0.2

0.4

0.6

0.8

1

Minimum Package Significance

Accuracy
Keep Ratio

Figure 7.4: Influence of tps on accuracy and keep ratio.
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Results

Figure 7.4 illustrates the effect of different tps values on accuracy and keep ratio.
If almost no minimum package significance is required, code packages are barely
dropped and the keep ratio remains close to 1. Recognition accuracy in the
top-left area reaches 0.7, which implies that 30% of matches are wrong. The
higher we set the threshold for the minimum package significance, the more code
packages with a low score are ignored and, at the same time, accuracy increases.
This observation reaffirms that it is inevitable to ignore insignificant packages,
as otherwise low quality packages would hamper a precise recognition overall.
At a package significance value of 75, accuracy attains 0.9 and remains steady,
whereas the keep ratio continues to decrease, as long as the threshold is elevated.

As also seen previously in Figure 7.3, confusion increases below a particular
package significance score but tends to decrease again if a certain upper bound
is exceeded. Consequently, we see that a tps value of 80 delivers the highest
accuracy without ignoring more packages than necessary. With tps ≤ 80, accuracy
is sacrificed for matching code with packages that are insignificant for recognition.

7.4.4 Threshold for Matching Confidence
As explained in Section 7.3.3, we describe the similarity between an arbitrary code
package pa and a comparison object pb with the similarity score s(pa, pb). These
scores are built upon the similarity of a set of fingerprints that are derived from
classes and methods contained within a corresponding package. As each set can
comprise fingerprints of varying significance, it is challenging to decide on what
makes a recognition result reliable. If we compare two packages that include only
classes that are highly individual by themselves, i.e., their fingerprints exhibit
high significance, but they match the reference object due to true similarity, then
s(pa, pb) indicates a high score when comparing these two packages. On the other
hand, if two packages contain mostly classes with low significance, they are more
easily matched with unrelated candidates, resulting in false positives.

This bias is problematic when it comes to recognizing semantically related
code. In practice, this issue occurs when matching differently obfuscated code
fragments with each other. Changed method signatures, inlining, shrinking, and
other transformation techniques can negatively affect fingerprint significance
and, in the worst case, cause a package to be ignored from matching overall.
By setting the required minimum package significance to a constant tps value,
we prefer packages with high scores but disregard others with low significance,
although they might be similar. As a countermeasure, we assign each recognition
match a confidence value that we derive from package similarity:

confidence(pa, pb) = s(pa, pb)
s(pa, pa) (7.14)

The resulting value is between zero and one because 0 ≤ s(pa, pb) < s(pa, pa).
Our objective is to determine a reasonable threshold tmc that can indicate whether
a recognition result is sufficiently robust to be considered as a plausible match.
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Question: How much confidence makes a recognition result reliable?

Setup

To determine the optimal value for tmc, we use our sample set of FOSS apps
and transform the multi-class problem into a binary classification problem by
following a one-vs.-all strategy [Bis07, p. 182–184]. We define our binary classifier
to output whether a given code package has been learned and is, thus, known
(positive, +) or unknown (negative, -) to the system. Each match is reduced into
the binary classification problem by expressing learned code packages as positive,
and all others, e.g., unlearned packages or code packages, as negative.

With our recognition matches transformed into binary classification results, we
can visualize the performance of our multi-class model using Receiver Operational
Characteristics (ROC) curves. This enables us to disclose how the matching
threshold for confidence impacts both true and false positive rate. ROC curves,
thereby, illustrate the separability of known and unknown code packages and
assist in identifying a reasonable threshold value tmc for matching confidence.
We repeat this transformation for all app samples to determine how well we can
distinguish known from unknown packages if code transformations are used.

Results

Figure 7.5 summarizes the ROC curves for different build configurations. As can
be seen, the classifier distinguishes known from unknown code packages with high
accuracy, even when code transformation techniques, such as obfuscation and
shrinking are enabled. For these app samples, the Area Under the Curve (AUC)
exceeds 99.5%. The only type where our binary classifier outputs less optimal
results is a configuration involving obfuscation, shrinking and code optimizations.
Nonetheless, the AUC for this type of apps is still sufficiently high at 87.7%.
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Figure 7.5: ROC curves of apps with different code transformations applied.
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Figure 7.6: Confidence histograms for known (green) and unknown (red) packages.

For each build type, Figure 7.6 presents how known and unknown recognition
results are distributed according to matching confidence. The red bar indicates
the frequency of unknown packages, the green bar shows confidence for known
packages. As confidence(pa, pb) tends to be zero or one, i.e., recognition results
are either very reliable or not at all, we use a logarithmic scale for the y axis.

We see that regular and shrunken code packages can be distinguished very
well at tmc = 0.8. With obfuscated builds, class separability is still ensured
as there is almost no intersection among the distributions. Similar conditions
apply to samples with a shrunken + obfuscated configuration. The histogram for
builds with all possible transformations enabled confirms that they are the most
challenging to separate. According to the ROC curve, a matching confidence
value near 0.5 works best for this configuration to optimize recognition accuracy.

7.4.5 Code Recognition
In Section 7.3.2, we elaborated a workflow to recognize learned code by computing
fingerprints of methods, aggregating them in package hierarchies and testing for
similarity with known packages.

Question: How well does our approach recognize app packages?

Setup

For this scenario, use our FOSS sample set and analyze all applications in all
build configurations. Aimed at highest recognition accuracy, we set the thresholds
for matching confidence tmc to 0.5 (see Section 7.4.4) and for package significance
tps to 80 (see Section 7.4.3). All matches are evaluated by applying multi-class
performance metrics [SL09] to all known packages, as shown in Figure 7.7.
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Figure 7.7: Multi-class classification measures [SL09] for l known code packages pi

and n recognition matches. tpi are true positives, fpi false positives, fni

false negatives and theM index indicates macro-averaging over all classes.

Based on a generalization of performance metrics that typically employed for
binary classifiers, we assess the number of correctly recognized code packages
(true positives), samples where packages were incorrectly matched with unrelated
candidates (false positives) and packages that were not recognized although
they were learned (false negatives). For each build type, we determine accuracy,
precision, recall and evaluate the quality of the classification using the Fβ-score.

• Accuracy. Determines how many code packages have been identified
correctly with regard to the total amount of recognition matches.

• Precision. Ability of our solution to not assign wrong labels to packages.

• Recall. Ability to determine all instances of a code package.

• Fβ-score. Harmonic mean of precision and recall.

Results

The recognition results are summarized in Table 7.1. As shown, all metrics
perform well in all build types except for the set of obfuscated, shrunken, and
optimized applications. By manually investigating classifications, we noticed that
the optimization technique Method Parameter Removal causes the weaker perfor-
mance with this build type (see Section 7.2.1). With this code transformation
enabled, ProGuard prunes method signatures from unused parameters, leading
to different sanitized signatures. Nonetheless, the use of AST vectors ensures
that recognition remains feasible for the majority of packages.

Table 7.1: Code recognition performance on real-world apps.

regular obfuscated shrunken obf.,shr. obf.,shr.,opt.

Accuracy 96.76% 96.61% 93.30% 93.40% 78.83%
Precision 98.03% 97.80% 94.81% 94.69% 70.64%
Recall 99.15% 98.92% 97.05% 96.80% 71.95%
F1 Score 98.17% 97.94% 94.94% 94.80% 70.32%
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7.4.6 Summary
We examined how AST vectors and sanitized signatures align with real-world
Android applications that apply code transformations. First, we assessed how
well our techniques can fingerprint obfuscated code fragments. Three confusion
matrices revealed that although each of our techniques is capable of identifying
obfuscated code by itself, the quality of fingeprints and matching results are
significantly improved when both features are used in combination.

We also noticed that most confusion occurs in code packages with a low
significance score. Therefore, we introduced a threshold tps value that indicated
how much code was relevant to keep high accuracy high while not ignoring too
many packages that carry only little semantic information. We also proposed a
matching confidence threshold tmc to decide on what makes a recognition result
reliable. To find a reasonable value for tmc, we reduced the problem of multi-class
classification to multiple binary classification problems. ROC curves underlined
the extent to which we could distinguish known from unknown packages despite
code transformation techniques being applied. In our final study, we tested
code recognition with a set of Android app samples and found that our solution
delivers high values for accuracy, precision, recall, and F-score in all scenarios.

7.5 Conclusion
The use of third-party libraries and the integration of code snippets from public
sources have become common practices in Android application development.
Security issues and vulnerabilities in such components reach a high number of
end-users and put sensitive data at risk. However, a precise recognition of such
program parts is challenging if code transformation techniques are applied.

We proposed a solution that can reliably recognize code packages comprising
individual snippets or entire libraries, even if obfuscation, shrinking, or similar
techniques are used. By extracting fingerprints from the Abstract Syntax Tree
of methods and combining them with obfuscation-resilient features of method
signatures, we succeed in accurately characterizing code. We thoroughly evaluated
the applicability of our technique and demonstrated that can we describe and
recognize arbitrary code fragments with high precision and recall.

The elaborated techniques help to obtain a representation of source code that
cannot be tainted by code transformation techniques. Usable in conjunction with
single methods, classes, as well as large-scale package hierarchies, we presented a
general purpose solution to reliably recognize code. Possible practical use-cases
range from fingerprinting and searching individual code snippets that are known
to be harmful, to the detection of entire libraries that potentially include outdated
or vulnerable code. In the context of this thesis, our work represents a notable
step towards distinguishing actual implementation behavior from low-level code
semantics. The ability to identify specific transformation-invariant patterns in
source code is crucial on our way to model the behavior of Android applications.





8
Identifying Differences Among Android

Applications

Android applications often receive updates that introduce new functionality or
tackle problems, ranging from critical security issues to usability-related bugs.
Although developers tend to briefly denote changes when releasing new versions, it
remains unclear what has actually been modified in the program code. Verifying
even subtle behavioral changes between two given applications is challenging due
to the widespread use of code transformations and obfuscation techniques.

In this chapter, we present a multi-level comparison strategy to distinguish
functional changes by developers from structural compiler modifications. We
start by motivating our research in Section 8.1 and discuss existing solutions for
code comparison. Followed by that, in Section 8.2, we introduce a new approach
to find similarities and differences in the code of two given Android applications.
In Section 8.3, we elaborate our matching process at class, method, and basic
block level in more detail. In a case study in Section 8.4, we demonstrate the
practical applicability by verifying how updates have been deployed to fix security
issues in real applications. Parts of this chapter are taken verbatim from [FNZ19].

Publication Data and Contribution

Johannes Feichtner, Lukas Neugebauer, and Dominik Ziegler. “Mind the
Gap: Finding What Updates Have (Really) Changed in Android Applica-
tions.” In: Security and Cryptography – SECRYPT 2019. SciTePress, 2019,
pp. 306–313. doi: 10.5220/0008119303060313
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8.1 Introduction
Developers regularly distribute and update their Android applications via Google
Play or third-party distribution channels. Featured by descriptions, screenshots,
and further promotional information, users can pick from a large pool of often
similar applications. Many vendors reuse their own code and offer multiple
revisions of the same app for different devices or with adjustments, e.g., for
learning various languages, local weather, and city travel guides. While these
applications are usually clearly distinguishable by their visual appearance, the
opposite is the case when third-party developers distribute repackaged versions of
existing apps with barely noticeable adaptations. These changes often introduce
malware [Tia+20; Lin+16] or code to hijack revenues for advertisements [ZZT19].

Upon the release of new app versions, developers can provide a changelog
that should include a list of modifications, fixed issues, and new functionality. In
practice, these descriptions are often kept rather generic, stating, e.g., “stability
improvements and bug fixes” instead of giving clear advice to marketplace
maintainers and users of what precisely has been improved. Even if provided,
release notes are not necessarily complete and accurate. For instance, if an author
mentions that a known security-critical privacy issue has been fixed, users are to
believe that all relevant program parts have carefully been reworked to mitigate
the problem. Besides not being able to check whether indicated changes have
indeed and thoroughly been implemented, additional code modifications that are
not disclosed in the release notes are impossible to reproduce.

Whenever updates are published for Android applications, or apps appear to
be repackaged versions or clones, it is crucial to see what has actually changed
in the program code. To obtain an insight, marketplaces, such as Google Play,
employ approaches for static and dynamic program analysis and check whether
all uploaded applications comply with predefined security and privacy policies
that are enforced by the distribution platform. Typically, this review process
also involves machine learning in order to evaluate a collection of attributes from
an app’s code, metadata, and user reviews for signs of anomalous behavior and
potentially harmful content [May+19]. While these measures are of significant
value to counteract malware spread as cloned or repackaged applications, they
inherently miss implementation weaknesses that do not infringe any protection
policy, security rule or cause security-critical bugs, such as a wrong application of
cryptography. The ability to isolate code differences between a previously tested
application and an update candidate would add another valuable perspective on
behavioral program changes with a possible impact on security aspects.

From a research perspective, there is a strong need for a solution that can
reliably highlight differences among various app versions while distinguishing
between functional changes by developers and structural adaptations by compilers.
This involves an interpretation of the underlying program syntax and semantics.
Especially, regarding the increasing complexity and size of today’s apps, as well
as the frequent use of code obfuscation techniques, a comprehensive comparison
could help to lower the costs and efforts needed for application analysis and
would allow for easier verification of security-critical bugfixes.
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When comparing Android applications, we aim to disclose changes in the im-
plemented program behavior, rather than finding stylistic or other non-functional
changes without influence on execution or visual appearance. Manually identify-
ing similarities and differences between two implementations is challenging due
to the widespread use of code transformation techniques, including obfuscation,
identifier renaming, and shrinking that are applied at compile time not only
to optimize code but also to harden against reverse engineering and tampering.
Automated solutions, on the other side, are usually targeted to return a binary
decision on whether an app appears to be a cloned or repackaged version of
another one [Che+15; Wan+15]. In very simple cases, such a conclusion can be
drawn by checking if the majority of files of one app sample are also contained in
the comparison object. However, if code transformation techniques are used, a
content or hash-based comparison will lead to spurious results. The outcome will
also be tainted if obfuscation and related techniques are not taken into account.

Comparing the code of Android apps involves finding a metric that assigns
scores to implementation differences. Relying on a static or dynamic analysis
approach, related work for similarity analysis extract features from metadata,
such as permissions or reviews, code, e.g., as call graphs or instruction subsets,
or obtain them during runtime from execution traces. Existing state-of-the-art
efforts concentrate on detecting repackaged or cloned apps based on heuristics but
are unable to highlight individual code parts that are similar or different between
two Android applications. Mostly operating on the Dalvik bytecode of apps, these
work derive a verdict based on a custom similarity metric that yields accurate but
often irreproducible results [ZZT19; Gua+16]. Other approaches for similarity-
based analysis, as implemented by DroidSD [Akr+20], FSquaDRA [Zha+14b],
and solutions for malware detection [Tah+20; HKC19], deliver a deterministic
score but give no explanation on how and where code relates to each other.

The reverse-engineering framework AndroGuard1 first included an algorithm
for pairwise comparison, entitled Normalized Compression Distance [Des12]. By
comparing hashing-based fingerprints of methods, a normalized value between 0
and 1 was derived to indicate the extent of similarity. Variants of this approach
focus on dependency graphs [CGC12], layout information [SLL15], or combine
different features [Sha+14b; Zha+14a] to also address code obfuscation. In order
to improve the scalability of pairwise comparisons, other approaches summarize
extracted features in vector representations. For example, instead of operating
on code, PiggyApp [Zho+13] fills vectors with semantic information and uses
them to compute the distance between apps. For faster comparisons, abstract
code parts can also be organized in graph-like representations [CLZ14; DNL14].

Among the various approaches for similarity analysis, the most significant
differences are the algorithm used as a distance metric, as well as the features
fingerprints are derived from. Although the detection of repackaged applications is
conceptually related, existing work does not (1) tackle the problem of uncovering
code differences instead of deriving a summarizing similarity score and (2) cannot
distinguish functional program changes from compile-time modifications.

1https://github.com/androguard/androguard
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The ability to highlight concrete code similarities and differences among Android
applications is essential in order to understand what has really been changed
by updates and in repackaged versions. In addition, a reliable comparison can
provide valuable insight for analysts and curious users into how developers have
handled security-critical implementation weaknesses.

For this to achieve, we design a framework that enables a pairwise comparison
of the code contained in two given Android applications. We implement similarity
checks at file, class, method, and basic block level and present code differences
in a format that is well-known from source code versioning systems, such as
Git or Subversion. As a comparison strategy, we propose an iterative solution
that takes compiler peculiarities and code transformation techniques, such as
shrinking and identifier obfuscation into account. Therefore, we extract different
representations of basic blocks from Dalvik bytecode using an adapted version
of the baksmali2 reverse-engineering tool. To make code elements comparable
despite obfuscation and dynamic compiler decisions, we derive segments where
registers, labels, and re-arrangements cannot influence similarity matching. With
this strategy, we excel in detecting matching pairs of code blocks and outperform
existing state-of-the-art solutions for similarity analysis. To demonstrate the
practical applicability, we perform case studies on real-world applications and
verify how updates have been deployed to fix security-critical issues.

To identify and extract semantic code differences between two given Android
applications, we propose a multi-level comparison strategy:

1. We model the hierarchy of packages with code and resources in Merkle
trees and prune parts that are identical among the two versions.

2. From the remaining code, we extract and process all classes, methods, and
basic blocks. While preserving the original code semantics and data flow,
we perform multiple rounds of comparison that accurately identify newly
added, changed, moved, and deleted code elements.

3. We tackle common code transformation techniques by comparing only
selected features that are invariant to obfuscation and arbitrary compiler
modifications.

We implement an analysis framework that can be used for various purposes
involving the direct comparison of two Android applications. Considering the fact
that nowadays applications comprise thousands of classes, the choice of a data
structure for an efficient pairwise comparison of files is crucial. By using Merkle
trees, we are able to precisely identify classes and packages that are identical
among two versions. In a case study, we highlight the practical applicability of our
solution by verifying the developer-provided changelog of real-world applications.
We also demonstrate that our tool cannot only help to identify repackaged apps
but also to precisely isolate code that might have been added or modified by
malware authors.

2https://github.com/JesusFreke/smali
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8.2 System Design
We design a framework to list differences and similarities between two given
Android app archives. As depicted in Figure 8.1, we first convert the extracted
Dalvik bytecode of both comparison objects into Smali code, derive a hash of each
object, and organize the resulting hierarchy of files and directories as Merkle trees.
Considering the large amount of code in today’s applications, we leverage this
data structure to quickly filter classes and packages that are equal among both
applications. For files without a matching candidate, we continue with a more
fine-grained comparison at class, method, and basic block level (see Section 8.3).

In a multi-round approach, we rewrite the Dalvik bytecode of both apps and
produce different code representations that mitigate possible compiler peculiarities
or effects of code obfuscation techniques in interfaces, classes, or methods. Due
to the wide range of possibilities how code can be transformed, we sequentially
elaborate semantically equivalent code fragments that address distinct aspects
of why files can differ. By iteratively comparing the various representations,
it is possible to describe how apps are different from each other and to finally
highlight precisely what code segments have been added, modified, or removed.
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Figure 8.1: Iterative comparison of two given Android applications.



116 Chapter 8. Identifying Differences Among Android Applications

8.3 Code Similarity in Android Apps
Our overall concept is based on comparing Smali code to detect differences and
similarities. The idea is to iteratively split parts that do not match between two
applications into smaller chunks. In each step, we gradually reduce the number of
identifiers, substitute them with placeholders, and look for matching candidates
in the comparison object. After an initial preprocessing (see Section 8.3.1),
we pursue a repeated comparison on class level (see Section 8.3.2) and filter
matching classes. Subsequent comparisons on method and basic block level (see
Section 8.3.3) highlight more and more fine-grained implementation differences.

8.3.1 Preprocessing
As a first step to reliably determine what code fragments are shared among two
applications, we filter semantically superfluous information that have no effect
on the control or data flow during execution. These preliminary operations also
ensure that the hashes of files generated in subsequent steps cannot be tainted
by trivial aspects, such as changed labels in goto instructions, debug information
or the order of fields and methods:

• Removing debug information: Debug information typically has no
impact on code execution. Still, it might differ for two identical versions of
a file, depending on the used compiler and build settings. In a preliminary
step, we strip debug information, such as line numbers and parameter names
from Smali code, derived from Dalvik bytecode using the tool baksmali.

• Implicit method and field references: When generating Smali code,
we rely on implicit method and field references for elements of a current class.
Instead of prepending the current class name as a prefix for method and
field names, we omit this reference. E.g., La/b;->a:Ljava/lang/Object;
will be rewritten as a:Ljava/lang/Object;. The reduction is important to
identify identical code snippets in differently named classes and packages.

• Sequential numbering of labels: Instead of relying on arbitrarily named
references that are typically used in Dalvik bytecode, we apply a sequential
numbering scheme for all labels, e.g., used as targets in goto instructions.
By redefining labels with deterministic substitutes, we prevent findings of
code differences without any effect on program semantics.

• Sorting fields and methods: To further avoid code diffs due to reordered
methods and fields, we sort them in an unambiguous sequence. We achieve
this by linking each field and method in a class with name-invariant values.
Therefore, we derive a unique deterministic value, depending on the access
flag, number of parameters and return type for methods, and access flag
and type of field for fields. To determine the order of elements, we also
leverage the method and field index stored in Dalvik bytecode. The resulting
name-invariant value is finally used as a key to sort methods and fields.
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While preprocessing operations are primarily aimed at obtaining consistent com-
parison results, further measures are needed to also handle dynamic compile-time
decisions. The following operations are designed to address these peculiarities:

• Deterministic register labels: Using an adapted version of baksmali, we
enforce the assignment of registers in a deterministic way instead of using
variable, compiler-chosen register labels. For this purpose, we incrementally
reassign all register names in ascending order, according to their first usage.
This auxiliary procedure helps to detect two semantically identical blocks
where only the register names were named differently during compilation.
However, without additional checks, a sequential labeling could still lead to
false results. E.g., assuming that a simple instruction would be inserted in
between two identical comparison objects, all registers might be shifted and
consequently, all remaining basic blocks would not be found as matches.

• Static register labels: As an alternative approach to replacing register
names with deterministic assignments, our solution also supports static
register placeholders. This enables hashes of basic blocks to be independent
of used register names. However, this measure can influence matching
accuracy. For instance, if a method changes the return value by referencing
another register, this change would be unnoticed by this approach. Thus, we
apply this step in conjunction with others to prevent possible mismatches.

• Resolve resource identifiers: Another measure to facilitate comparison
in spite of dynamic compiler decisions is to replace used resource identifiers
with the original type and content that is defined in /res/default.xml.
For example, the value const v0, 0x42cafe123 could be replaced by
const v0, **APKDIFF.<some_value>**. Due to arbitrary assignments of
resource identifiers during compilation, these replacements are inevitable
for a distinctive comparison of code with references to application resources.

• Excluding: To filter possibly irrelevant differences, we propose to exclude
classes of the android package from analysis. As these classes are typically
provided by the Android runtime and not changed by developers, they do
not contribute to showing functional differences between applications.

8.3.2 Matching Classes
Matching classes is based on the idea of gradually rewriting and trimming classes.
For each application under comparison, we build Merkle trees that store hashes
of all packages, classes, and methods. As depicted in Figure 8.2, this process is
repeated multiple times. In each iteration, already matched classes are pruned
and only those classes remain that exhibit differences after all comparison rounds.

1. Unmodified files: We first compare the hash value of unmodified .smali
files. Unmodified means that no measures, besides those necessary for a
coherent generation of classes, have been applied. Subsequently, we remove
all classes from the Merkle trees that are identical in both applications.
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Figure 8.2: Multi-round code comparison at class level.
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2. Files with replaced super class names: We strive to detect classes
that differ only in the names of the used superclasses. Hence, we generate
.smali files, where occurrences of superclasses have been substituted with
placeholders. Matching classes are again pruned from the Merkle trees.

3. Files with replaced class names: After comparing all classes with
changed super class names, we now substitute only the class name with a
placeholder. This approach enables us to find renamed classes. After this
step, our analysis set remains with classes that either implement a different
interface or that differ in their class signature.

4. Files with replaced interfaces names: We introduce a placeholder for
all used interface names in our class files. As in previous steps, we then
reduce our analysis set by all classes matching in both applications.

5. Files with replaced class signatures: For class definitions for which
no corresponding match could be found so far, we repeat the search with
a combination of all previous variants but also introduce placeholders for
class and super class names as well as implemented interfaces.

As illustrated in Figure 8.2, steps 1-5 can be repeated multiple times. Between
each iteration, the Dalvik bytecode of both apps is rewritten and additional
operations are applied to increase the chance for possible matches. These steps
can be repeated as long as new matches are found. However, so far the first
five steps did not affect classes where fields or methods have been renamed by
developers or obfuscation tools, such as ProGuard. As a remedy, we introduce
one final step where we also replace all remaining identifiers with placeholders:

6. Files with all identifiers replaced: With a focus on the sequence of
individual instructions, we remove all identifiers and substitute the names of
classes, methods, fields, and type names with placeholders. An example of
this operation is depicted in Figure 8.3. To prevent possible ambiguities, we
omit rewriting for some methods, such as <init>, packages, e.g., android/
or basic data types that, by design, cannot be affected by code obfuscation.

1 .method public final run()V
2 .registers 3
3
4 iget-object v0, p0, b:Lb/f;
5 iget-object v0, v0, Lb/f;->a:Lb/e;
6 iget-object v1, p0,

a:Lrenamed/by/apkdiff139;
7
8 invoke-static {v0, v1}, Lb/e;->

a(Lb/e;Lrenamed/by/apkdiff124;)V
9 return-void

10
11 .end method

.method public final _METHOD_()V

.registers 3

iget-object v0, p0, _FIELD_:L_TYPE_;
iget-object v0, v0, L_CLASS_;->_FIELD_:L_TYPE_;
iget-object v1, p0,
_FIELD_:Lrenamed/by/apkdiff139;

invoke-static {v0, v1}, L_CLASS_;->
_METHOD_(L_TYPE_;Lrenamed/by/apkdiff124;)V

return-void

.end method

Figure 8.3: Direct comparison of obfuscated Smali code before (left) and after (right)
replacing all identifier names with placeholders.
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8.3.3 Matching Methods and Basic Blocks
The previously described approach for a pairwise comparison of classes is able to
recognize identical classes, even if identifiers are obfuscated or differ from each
other due to dynamic compile-time decisions. However, it does not yet produce
positive matches if methods have been added, removed, or changed. Therefore,
for all code classes that did not match in the previous step, we pursue a more
fine-grained inspection that focuses on individual methods and basic blocks.

As a first step, we leverage baksmali to extract all methods from remaining
classes for which no match could be determined. For each method, we retrieve
two representations: (1) the original code with all identifiers and, (2) to overcome
code transformations, we rewrite the Dalvik bytecode and generate a semantically
equivalent version where identifiers are replaced with placeholders.

While the original code of a method has an unambiguous affiliation to a specific
class and package, this association is no longer present within the obfuscation-
invariant representation. This could be problematic when matching methods
that only consist of very few code lines. If the method to compare with is not
clearly distinguishable from others, mismatches can occur. To prevent possible
misclassifications, we consider a configurable lower bound of code lines that
methods should have to be used for comparison. Preliminary tests have shown
that methods with less than four instructions can no longer be matched accurately
if obfuscation-invariant features are used. In fact, this threshold particularly
affects so-called getter and setter methods as they usually exhibit the same
implementation pattern that is strictly tied to concrete identifiers. As can be
observed with Git, Subversion, and other tools that compare code, similar effects
occur. Due to the little amount of information in very small methods, the
practical impact of this issue is negligible. In our concept, we propose to highlight
corresponding methods and remark that they are exempted from comparison.

For all methods that exceed the lower bound of code lines needed for matching,
we derive a hash value of the method signature and the body with all basic
blocks. This implies that the order to basic blocks is also considered and causes
re-arranged, moved, added, or deleted code segments to thwart a successful match.
As a remedy, in cases where methods cannot be matched, we propose to extend
the matching process to the level of basic blocks for a more in-depth comparison.
Summarizing, the comparison procedure concerning methods and basic blocks
can be split into four consecutively executed steps:

1. Methods with identifiers: After extracting all methods of unmatched
classes from Dalvik bytecode in their original format with potentially
obfuscated identifiers, their hash representation is stored in a sorted list.
Methods that fall below the configured minimum threshold for needed code
lines are winnowed and not considered. Then, for all generated hash values
of the first Android application a match is looked up in the set of methods
in the second application, serving as a comparison object.
Purpose: In this step, we determine all methods that have not been altered
but were moved to another class.
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2. Methods without identifiers: For each remaining method for which
no corresponding match could be found in the first step, the search is
repeated with a semantically equivalent but obfuscation-invariant represen-
tation of the method body. We replace all method identifiers with generic
placeholders and, thereby, decouple methods from concrete labels.
Purpose: This step finds all methods that exhibit the same control and data
flow with differently named identifiers. In practice, this is the case, if one
version of an Android application is obfuscated and the comparison object
is not. Likewise, this comparison step matches method bodies that were
applied different code transformation techniques and were e.g., compiled
using different obfuscation settings.

3. Basic blocks with identifiers: If a method body has changed between
two application versions, a more fine-grained matching using the contained
basic blocks is inevitable. Similar to the first step, we derive the hash
value of all basic blocks in so far unmatched methods, collect them in
a sorted list, and compare them with the hash values of basic blocks of
a comparison object. If basic blocks are found in multiple methods, the
resulting candidates are sorted by the overall amount of matching basic
blocks in the same method. This decision logic resembles the matching
behavior of the Git source code versioning system.
Purpose: This step discloses basic blocks that were moved to other methods
without changing any identifiers.

4. Basic blocks without identifiers: Finally, the hash values of obfuscation-
invariant basic blocks are compared with the hash values of basic block
representations where identifiers have been replaced by placeholders.
Purpose: In this step, we find deleted and newly added basic blocks. Due to
the lookup without identifiers, we also discover basic blocks that have been
moved to other methods but where identifiers have been renamed, e.g., due
to different obfuscation settings or membership in a different code package.
This operation also covers typical obfuscation settings, such as code merging
and inlining. To preserve control flow integrity, code transformations are
usually applied on entire basic blocks, rather than single code lines. By
comparing representations without identifiers, our approach enables to
effectively keep track of affected basic blocks.

The described comparison strategy evolves from matching the body of entire
methods with unaltered identifiers to a fine-grained analysis on basic block level
with replaced identifiers. Considering that today’s Android applications often
include tens of thousands of methods, our approach reasonably reduces the set of
objects to compare in each step. Evidently, newly added or deleted basic blocks
always come at full analysis cost as they have to be compared with the hash
values of all other basic blocks, until we can conclude that they exist in only one
of the two given Android applications.
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8.4 Case Study
We study the practical feasibility of our concept for differential code analysis by
comparing the implementation of two subsequent versions of Android applications.
For demonstration purposes, we select two apps that work with a large code base:
the messenger app Skype3 and the password manager 1Password4. For both apps,
the source code is non-public, which means that only changelog information and
reverse-engineered Smali code can be used for analysis. Nonetheless, since the
vendors of these specific applications provide security-relevant release notes, we
can leverage our comparison strategy and verify if changes in code correlate with
statements made in changelogs. The subsequently shown Listings with code diffs
represent the output of our framework after comparing two given app samples.

8.4.1 1Password
1Password is a popular password manager application for Android. Besides
the brief changelog denoted in Google Play, full release notes are presented at
the developer website5. In version 6.4.1, the authors addressed several security
vulnerabilities that were present in previous versions. We apply our comparison
framework on versions 6.4 (build 58) and 6.4.1 (build 59) of 1Password and
validate how security issues were handled in code. According to the developer-
provided changelog, the security update introduced functional code changes:

• Improved domain matching
In versions 6.4 and earlier, 1Password did not consider subdomains when
parsing URLs due to a mismatching regular expression. The update to
version 6.4.1 replaced the check with a call to the newly added method
getLoginsForUrl, which was successfully located by our similarity analysis
in class Utils. As revealed by the code diff shown in Listing 8.1, the vendor
added new code fragments to fix the domain matching problem.

• New default scheme: HTTPS instead of HTTP
In earlier versions, the web browser functionality included in the application
applied HTTP as the default scheme, if no full URL was specified by the
user. As depicted in the lower part of Listing 8.1, the security update added
code to prepend URLs with the https:// prefix.

• Prevent access to non-web URLs
Previous versions of 1Password enabled users to read private data from
the app folder by calling URLs with the file:/// scheme in the built-in
web browser. As shown in Listing 8.2, the security update changed the
processing of user-entered URLs and added an alert dialog that presents
an error message for all non-conforming inputs.

3https://play.google.com/store/apps/details?id=com.skype.raider
4https://play.google.com/store/apps/details?id=com.agilebits.onepassword
5https://app-updates.agilebits.com/product_history/OPA4
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Listing 8.1: 1Password: Added method getLoginsForUrl.

1 @@ diff: com/agilebits/onepassword/support/Utils.java <->
2 @@ com/agilebits/onepassword/support/Utils.java
3 ...
4 + public static List<GenericItemBase> getLoginsForUrl(
5 + List<GenericItemBase> paramList, String paramString) {
6 + paramString = PublicSuffix.registrableDomainForUrl(paramString);
7 + ArrayList localArrayList = new ArrayList();
8 + if ((paramList != null) && (!TextUtils.isEmpty(paramString))) {
9 + paramList = paramList.iterator();

10 + while (paramList.hasNext()) {
11 + GenericItemBase localGenericItemBase = (GenericItemBase)paramList.next();
12 + if ((!TextUtils.isEmpty(mLocation)) &&
13 + (paramString.equals(PublicSuffix.registrableDomainForUrl(mLocation)))) {
14 + localArrayList.add(localGenericItemBase);
15 + }
16 + }
17 + }
18 + return localArrayList;
19 + }
20 ...
21 + public static URI parseURIFromUrl(String paramString) {
22 + ...
23 + return createURIFromUrlStr("https://" + paramString);
24 + }
25 ...

• Informative dialogs in the case of TLS errors
According to the release notes, the vendor-provided fixes also improved
messages that were displayed to users upon the event of SSL/TLS errors.
Inspecting the newly added class CommonWebViewClient enabled us to verify
how corresponding code improvements have been realized.

The changelog verification of 1Password in version 6.4.1 confirmed that all security-
relevant changes have indeed been carried out as described. The comparison also
pointed out that no further modifications were made apart from those indicated
in the release notes. As the app did not apply obfuscation, as can be seen by
the names of files and variables, replacements of identifiers by placeholders were
unnecessary in this case and would have had no effect on the comparison result.

Listing 8.2: 1Password: Changed URL input check.

1 @@ diff: com/agilebits/onepassword/activity/AutologinActivity.java <->
2 @@ com/agilebits/onepassword/activity/AutologinActivity.java
3 ...
4 public void loadUrl(String paramString) {
5 - paramString = Utils.uriFromUrl(paramString);
6 + paramString = Utils.parseURIFromUrl(paramString);
7 if (paramString != null) {
8 - mWebView.loadUrl(paramString.toString());
9 + mWebView.loadUrl(paramString.toASCIIString());

10 + return;
11 }
12 + ActivityHelper.getAlertDialog(this, 2131281548, 2131281547).show();
13 }
14 ...
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8.4.2 Skype
In 2011, the developers of the Skype messenger app distributed an update via
Google Play that raised the version from 1.0.0.831 to 1.0.0.983. The provided
changelog reported the fix of a severe security issue that caused sensitive profile
data, such as the account balance, date of birth, email address, etc. to be stored
unencrypted on the device. In addition, the formerly vulnerable version of the
messenger also chose wrong access permission for files, allowing other applications
to read and write them. An update resolved the vulnerability by securing the
permissions of existing files and setting safer access rights for newly created ones.

Listing 8.3: Skype: Added method getLoginsForUrl.

1 @@ diff: com/skype/ipc/SkypeKitRunner.smali <-> com/skype/ipc/SkypeKitRunner.smali
2 ...
3 .end method
4
5 + .method private fixPermissions([Ljava/io/File;)V
6 + .registers 7
7 +
8 + array-length v0, p1
9 + ...

10 +
11 + .end method
12 +
13 + .method private chmod(Ljava/io/File;Ljava/lang/String;)Z
14 + .registers 7
15 ...
16 const-string v6, "csf"
17 - const/4 v7, 0x3
18 + const/4 v7, 0x0
19
20 invoke-virtual {v4, v6, v7}, Landroid/content/Context;->
21 openFileOutput(Ljava/lang/String;I)Ljava/io/FileOutputStream;
22 ...
23
24 invoke-direct {v2}, Ljava/lang/StringBuilder;-><init>()V
25
26 - const-string v4, "chmod 777 "
27 + const-string v4, "chmod 750 "
28 ...
29
30 move-result-object v1
31 + move-object/from16 v3, p0
32 +
33 + iget-object v3, v3, mContext:Landroid/content/Context;
34 + move-object v2, v3
35 +
36 + invoke-virtual {v2}, Landroid/content/Context;->getFilesDir()Ljava/io/File;
37 + move-result-object v2
38 +
39 + invoke-virtual {v2}, Ljava/io/File;->listFiles()[Ljava/io/File;
40 + move-result-object v2
41 +
42 + move-object/from16 v3, p0
43 + move-object v18, v2
44 +
45 + invoke-direct {v3, v18}, fixPermissions([Ljava/io/File;)V
46
47 invoke-static {}, Ljava/lang/Runtime;->getRuntime()Ljava/lang/Runtime;
48 ...
49 .end method
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Although this implementation weakness has been resolved long time ago, we
specifically selected this sample for our case study, as it has previously been
inspected by Desnos et al. [Des12] pursuing a similar approach. We consider their
findings as a reference and can contrast them with the results of our framework.

By applying our comparison strategy on both versions of Skype, we disclose
that the update introduced changes to the class com.skype.ipc.SkypeKitRunner.
All vendor modifications that were found as code diff are depicted as Smali code in
Listing 8.3. As can be seen in the upper part of the Listing, the update added two
methods, named fixPermissions() and chmod(). Invoked from within existing
code, their purpose is to reset permissions for files that have been created with
previous versions of Skype and that were insecurely stored on the device. Another
change affects an integer variable that is stored in register v7 and gets passed to
the method openFileOutput() as a second argument. According to the Android
documentation6, this change indicates that the mode used to access files has
been changed from a combination of the modes MODE_WORLD_READABLE (1) and
MODE_WORLD_WRITEABLE (3) to the more secure choice MODE_PRIVATE (0). In the
second half of the listing, we see that a string value used to define the Unix access
permissions for files was reset from 777 (rwxrwxrwx) to the value 750 (rwxr-x—),
followed by an invocation of the newly added method fixPermissions().

Summarizing, the study of two versions of the Skype application demonstrated
that our solution is capable of highlighting all changes in code that were made
to fix a security issue. The practical impact of these results is twofold: first,
they show that the details provided in the release notes indeed correspond to the
changes as found in the source code of Skype and second, they implicitly confirm
that the changelog included all modifications that were made to the source code.

8.5 Conclusion
Android applications often receive updates that introduce new functionality and
bugfixes. Even if developers summarize their modifications in release notes, it
remains unclear how the underlying implementation has been altered. Compiler
peculiarities, obfuscation, and other code transformation techniques make it
challenging to filter only for changes with an effect on program execution and to
verify whether bugs or security issues have been addressed.
We presented a solution to accurately assess similarities and differences in the code
of two given Android applications. By using an iterative comparison approach, we
are able to extract developer-induced code changes and succeed in matching pairs
of semantically identical code fragments, even if they were moved or obfuscated.
In a case study, we exemplified the practical applicability and verified how updates
have been deployed to fix security-critical issues in real-world applications.

In the context of this thesis, our comparison strategy contributes to a semantic
understanding of code fragments and supports application analysis with a novel
solution to efficiently verify behavioral differences in two given app samples.

6https://developer.android.com/reference/android/content/Context.html
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Modeling the Behavior of Android

Applications

Static and dynamic program analysis are the key concepts researchers apply to
uncover security-critical implementation weaknesses in Android apps. As it is
often not obvious in which context problematic statements occur, it is challenging
to assess their practical impact. While some flaws may turn out to be bad
practice but not undermine the overall security level, others could have a serious
impact. Distinguishing them requires knowledge of the designated app purpose.

We introduce a machine learning-based system that is capable of generating
natural language text describing the core functionality of Android apps based on
their code. We start in Section 9.1 by highlighting limitations of existing analysis
approaches. To derive a high-level picture of implemented behavior, Section 9.2
elaborates the semantic relationships of resource identifiers, string constants, and
API calls contained in apps. In Section 9.3, we design a dense neural network
to predict precise, human-readable keywords and short phrases that indicate
the main use-cases apps are designed for. We evaluate our solution on 67,040
real-world apps in Section 9.4 and find that with a precision between 69% and 84%
we can identify keywords that also occur in the developer-provided description in
Google Play. Parts of this chapter are taken verbatim from [FG20a].
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mantic Analysis of Android Applications.” In: ICT Systems Security and
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9.1 Introduction
In recent years, researchers have elaborated various approaches to disclose possible
leaks of private data [Ren+18; Li+15], identify malware [Alf+19; Mir+19], or
to uncover security deficiencies [MBB18; Bia+15] in Android apps. Typically,
the results of these analyses fall into two categories: firstly, a classification
into malevolent or harmless or, secondly, concrete results of specific aspects
the inspection has been aiming for. While both types may be adequate with
regards to the intended objectives, they barely evolve to a superior level where
the implemented behavior and context of instructions is also taken into account.

By performing a target-oriented program inspection using static and dynamic
analysis techniques, we succeed in identifying and tracking relevant source code
statements. However, we still fail to understand what the underlying code is
actually executing and in what context particular code statements are employed.
In practice, missing context awareness leads to situations where researchers dis-
close security flaws in execution traces but are unable to reason about the impact
or relevance of the finding in terms of the actual purpose of an application. E.g.,
basically, it is problematic if a constant, hard-coded key is used for encryption.
However, if this happens within an advertisement library where encryption is only
used for obfuscation, the impact of the finding needs to be assessed differently.

Likewise, solutions aiming at uncovering leaks of sensitive data usually work
with generalized assumptions about data flows and disregard the specific use-
case applications are designed for. Most approaches are based on a source-sink
analysis where the information flow between a particular source, e.g. a system
API delivering a device’s GPS coordinates, and a sink, e.g. an API for HTTPS
requests, is examined [SKT17; RAB14]. Evidently, it depends on the designated
purpose of an application whether supplying GPS information via HTTPS to
an external entity, such as for assistance in traffic navigation or local weather
forecasts, is a legitimate action or the undesirable leakage of sensitive data.

Besides leading to findings of false positives, missing context-awareness can
also invoke the opposite effect. For example, under normal circumstances, there
is no need for a mobile banking application to transform a password in order to
login to an online service. In contrast, a program intending to securely store data
protected by a user password undoubtedly should apply cryptography for key
derivation and data encipherment. While, as shown in Chapter 5, it is possible
to evaluate the soundness of parameters passed to key derivation functions via
static or dynamic program analysis, existing solutions cannot highlight the need
for cryptographic transformations in cases where their absence has a fatal impact
on the attainable level of security.

In a broader sense, these examples highlight what analyses are currently
unable to cover: the semantic understanding of applications. Rather than gaining
a high-level picture of the functionality and security of a program, common
approaches for inspection focus on single instructions at the lowest possible level.
While this is undoubtedly a legitimate level to determine the immediate effects
on memory calls and registers, we are still missing a platform that enables us to
reason about the effects of coherent code parts on the overall program state.
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Augmenting app analysis by contextual information, such as the intended
purpose and designated functionality, is of utmost importance to obtain a holistic
picture of app behavior. However, currently no solutions exist that could relate
the metadata of an app with their actual implementation. This situation is
aggravated by the fact that developer-provided descriptions are often minimal,
inaccurate, and miss key information. Within this context, we formulate the
following problems: (1) Which attributes of an application describe its behavior?
(2) How to identify the main purpose of an app? (3) What keywords and phrases
should be included in a description text to represent an app’s functionality?

In this work, we introduce a solution that infers the main purpose of Android
apps based on their implementation. Leveraging the recent advances in neural
networks, our work attempts to capture and classify semantic relationships
between apps. Our system works unsupervised, involves no labeling of data sets,
and is trained with real-world app samples that are only coarsely pre-filtered,
e.g., regarding the language of descriptions. The output is not only a prediction
of what main functionality is implemented within an Android application. Using
a model explanation algorithm, we also obtain an insight into what is relevant
in apps, can explain the reasoning of predictions, and based on this knowledge,
derive meaningful keywords and short phrases in natural language.

In summary, we make the following key contributions:

• To infer the functionality from implementations, we propose a combination
of three dense neural networks that combine knowledge extracted from
resource identifiers, string constants, and API calls. Our system delivers
concise keywords and short phrases that describe the main purpose of apps.

• We train, validate, and test our models with 67,040 apps from Google Play.
In a case study, we demonstrate the practical relevance and plausibility of
predictions by contrasting them with the developer-provided description.

• To assess the quality of our system and to avoid incomprehensible black
box predictions, we apply the model explaining algorithm SHAP [LL17].
It enables us to understand the influence of network input features on the
derived output.

The outcome of this work represents a notable contribution towards a holistic
analysis of Android applications. It helps researchers and users to foster an
understanding of what functionality is actually implemented in Android apps.

9.2 Behavior Modeling of Android Apps
A naïve approach to identify functionality implemented in Android applications
would be to statically define rules for classifying source code. However, the
evolving nature of smartphone apps with constantly changing APIs and the usage
of third-party libraries would make it cumbersome to spot and label specific
behavior. As a remedy, our approach leverages modern methods of machine
learning that work unsupervised and involve no prior labeling of data sets.
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Before designing a neural network that predicts the main purpose of apps,
we need to tackle a basic question: Which attributes characterize the behavior of
an app? Users can answer this question intuitively by installing and testing an
application. Vendors would refer to the specification to derive similar conclusions.
Our approach is inspired by both perspectives and focuses on information sources
that are included within the code and resources of Android app archives.

We attempt to model Android app behavior from two different angles. On the
one hand, we consider static string resources that indicate what an app does from
a user’s and developer’s perspective. On the other hand, we describe a program
by the Android API calls it includes, e.g., to access sensitive information, draw UI
effects, or implement event listeners. Based on the presence and co-occurrence of
calls, we expect to see individual patterns that characterize different functionality.

In the following, we outline the features our neural network will use as an
input to infer a semantic understanding of the purpose of applications:

• App Resource Identifiers: Semantic information provided by developers.
In order to access resources, such as UI elements, graphics, or multilingual
definitions from program code, Android relies on alphanumeric identifiers
that unambiguously identify individual elements. Although these values
can be chosen arbitrarily during development, they usually correspond
semantically to the resource content.

• String Constants: UI text and functional descriptions, shown to users.
Static UI elements, language variables, and URLs are typically stored
within app resources. When shown to the user, these constants provide
valuable semantic information regarding the purpose of an app and actions
users can perform. E.g., if an app includes UI elements containing the
string values “new transaction”, “account balance”, and “money transfer”,
its implemented functionality most likely targets financial transactions.

• API Calls: Define how an app interacts with the Android OS environment.
The widespread use of third-party libraries, code obfuscation techniques,
and the multitude of possible usage scenarios make it challenging to identify
the individual semantics for every code block. We, thus, postulate that
the behavior of applications is not (only) determined by the interaction
of individual code fragments, but especially by their interaction with
the operating system and users. Consequently, to infer implementation
behavior, we focus on calls to APIs of the Android framework. By their
modus operandi, they control, for instance, access to sensitive user data,
device sensors, visual effects, media processing, and networks and, thus,
clearly define the functionality of applications.

As each of these three feature types is embedded within a different semantic
context, it is not viable to simply collect all occurrences and use them as a
combined input for a neural network. For a more accurate representation, we
propose to train three separate neural networks that take different input features
but share the same underlying architecture and produce the same type of output.
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9.3 Semantic App Analysis
We design a dense neural architecture to infer the implemented functionality from
real-world Android applications. Our goal is to develop a system that can process
an unknown app archive and delivers keywords and short phrases that describe
the main purpose. To remediate the “black box” character usually associated
with neural networks, we require that our solution provides an insight into which
input features are decisive for predictions.

In the training phase, we train three separate neural networks with Android
app archives and their developer-provided descriptions from Google Play. For
each app, we first extract all relevant semantic features, weigh their importance
using TF-IDF and use the resulting vector as input for the corresponding neural
network. In parallel, we build a TF-IDF model with app description texts that
will be used to derive a neural network output in natural language.

In the prediction phase, our system receives an app not seen during training.
After deriving and processing a TF-IDF vector representation of all features
included in a given archive, each neural network will return a list of key words
and short phrases that commonly occur in app descriptions when certain input
features are used. As shown in Figure 9.1, the output of the network for
predicting description words based on given string constants may, e.g., consist of
the words sms, messenger, and friends, with the adjacent decimal value expressing
the relevance of the predictions. An algorithm for explaining neural networks
called SHAP (see Section 9.3.4) is then applied to find out which input features
contribute most to the prediction of these output tokens. Summarizing the
outputs of all three models and sorting them regarding the shown relevance
provides us with a ranked list of description fragments that describe the core
functionality of an app as realized by the sum of included source code components.

Preprocess

Ò

Single APK

>�

Trained Network for
String Constants

Description:
sms
messenger
friends

0.31
0.10
0.09

Influences sms:
sms, receive,
send, notification,
provider, contacts,
. . .

String Constants

Resource IDs

API Methods SHAP

Figure 9.1: Prediction of implemented functionality using three dense neural networks.
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9.3.1 Feature Preprocessing

Before training a neural network, it is essential to prepare the data for efficient
learning. In the following, we cover the preprocessing steps that are applied to
all developer-provided descriptions used in the training phase and the semantic
input features processed by our networks after extracting them from app archives.

App Resource Identifiers

By parsing the XML files provided as resources in Android app archives, we
obtain a list of identifiers consisting of alphanumeric characters and underscores.
As opposed to variable or function names in source code, identifiers are typically
not obfuscated but stored in the way app vendors define them during development.
The name, or identifier, usually reflects its purpose to some extent and can also
give hints about the overall app. In practice, values are mostly made up of words
or word combinations that are linked either by underscores or formatted via camel-
case, e.g., select_photo_dialog, confirmDelete, pay_btn, or start_quiz_headline.
The challenge is therefore to decompose these values meaningfully in order to
capture semantic relations. Without tokenization, e.g., it would not be possible
to determine that the identifiers select_photo_dialog and select_video_dialog
imply similar actions that differ only in photo and video. For a semantically more
accurate representation, we split the words into smaller alphanumeric entities,
i.e., select, video, photo, dialog and link them as n-grams.

String Constants

Android, by design, allows apps to display UI elements in different languages.
Therefore, vendors have to provide translations for all UI-related string values
that are referenced by language-agnostic resource identifiers. In this work, we
aim to infer keywords and short phrases in English only. To achieve this, we
mimic the behavior of the Android operating system and try to match identifiers
with constants by primarily searching them in language files that are supposed to
include values in English, i.e., values-en.xml or values-en-us.xml. Only in the
case of mismatch, we fallback to default definitions in values.xml. This simple
resolution strategy ensures that the corpora of values subsequently trained in
TF-IDF models consist mainly of English words.

After extracting all relevant string constants from an app, we iteratively
decompose each value into substrings by splitting at non-alphanumeric characters,
e.g., whitespaces, HTML tag brackets, dots, etc. While most resulting tokens
are likely app-specific, others supposedly occur frequently across multiple apps.
To estimate the relevance of individual tokens in relation to all apps, we use
the tokens and their occurrence count to build a TF-IDF model. Thereby, we
leverage the property of TF-IDF that rarely occurring and very frequent tokens
are ignored to maintain a reasonable dictionary size. As a result, for each app,
we obtain a TF-IDF vector that can be used as input for a neural network.
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API Calls

Inspecting the call graph of Android apps enables us to identify and count
invocations of Android APIs. We process the reverse-engineered source code of
the app archive and build a call graph based on static, explicit code statements.
We enrich the graph with additional edges by resolving inheritance relations
and implicit data flows using EdgeMiner [Cao+15] by Cao et al. As Android
applications have no predefined entry points, Activities, Services, and Providers
defined in the AndroidManifest.xml of each app are used as the starting point
for modeling the call graph. This approach ensures that we capture only calls of
API methods that are actively used and implement an app’s main functionality.

After augmenting the call graph with implicit data flows, our objective is to
measure the prevalence of implemented execution paths, i.e., data flows between
app entry methods Ein,j and API call methods Eout,k. For this purpose, we apply
the Dijkstra algorithm to verify for each node Ein,j in the graph, whether there
exists a path to an API call in Eout,k. If this is the case, we increment a counter
that reflects how often invocations of API method k are found. To unambiguously
identify each call, we remember it by prepending the fully-qualified class identifier
to the method name. As a result, we obtain a map of actively used API methods
with numeric values that indicate their frequency of usage.

Similar to resource identifiers and string constants, we build a TF-IDF model
for API methods. Applied on the acquired map of API calls and invocation
counts, we use the TF-IDF measure to filter for relevant API calls based on
their frequency. In practice, this enables us to identify small sets of methods
that are descriptive for the functionality of individual app samples. TF-IDF
weighs the information in our feature map and for each app, returns a fixed-size
1-dimensional vector with decimal numbers that can be used as a network input.

App Descriptions

For an arbitrary Android application provided as input, we want our neural
networks to produce keywords and phrases that summarize the main functionality.
In contrast to features in string constants or resource identifiers, where coherent
tokens are enclosed within quotes or underscores, description texts include regular
sentences in which semantic information can be spread over multiple words or
word groups. If we would process descriptions in a bag-of-words approach,
i.e., each word individually and without positional constraints, a lot of relevant
connotation might be lost. For instance, assuming that the predicted functionality
is only described by the keyword recording, it remains ambiguous whether this
refers to capturing call, screen, video or any other possible type.

For a better understanding of the context in which words occur and to support
a more intuitive interpretability of predictions, we focus on functionality that is
expressed within word compositions. Therefore, we split the text into n-grams
with n = (1, 2, 3) representing phrases of one, two, and, three words. By applying
Porter stemming [Por80] and removing stop words, e.g., the, at, which, is, we
can quickly filter function words with comparably low importance for predictions.
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Word combinations, such as take a picture and take some picture both become
take picture. These techniques in combination with a sliding window approach
using three different sizes enable us to build meaningful groups of words.

Extracted description tokens, irrespective of whether the model identifies
single frequently occurring words or word formations, are stored in their stemmed
representation. By reducing words to their stem, we can represent different word
forms, e.g., play and playing, as a single token and, thereby, capture semantics of
otherwise independent terms. While this contributes to optimizing the quality of
predictions, stemming is not a bidirectional transformation and the result can
be difficult to interpret for humans. Stripping the suffix of words also involves a
loss of information and, thus, an accurate un-stemming method cannot exist.

As we want our models to infer expressive and human-readable description
fragments, we apply a greedy algorithm to recover original words from their
stemmed format. For this to achieve, we keep track of all stemming transforma-
tions, i.e., whenever a token T is processed and reduced to its stemmed version
T̂ = fstem(T ). Stripping the suffix of words results in T̂ having multiple potential
original tokens T . As some original tokens are by far more prevalent than others,
we also remember the occurrence count of T → T̂ . After preprocessing all
description texts, we obtain a mapping that reveals how often the stemmed form
T̂ originated from a particular T . For instance, assuming the stemmed form of
a token equals locat, our approach for greedy un-stemming will substitute it by
location, irrespective of whether the original token was location, located, locating,
or locate. In practice, this means that by counting how often an original token
was transformed to a particular stemmed form, we maximize the likelihood that
the un-stemmed form matches the most common original word.

The preprocessing of each description text results in a list of tokens that are
ready to be processed via TF-IDF. The input features comprise single tokens,
2-grams, and 3-grams. By finally applying the TF-IDF measure on all tokens of a
description, we retrieve a 1-dimensional vector with normalized decimal numbers
between zero and one that can be set as a target for our machine learning tasks.

9.3.2 Model Architecture
We propose a combination of three models of dense neural networks to predict
keywords and short phrases that characterize a given Android application. Each
model produces n-grams as output and receives TF-IDF vectors with either
resource identifiers, string constants, or method names as input. In this section,
we highlight the advantages of dense neural networks for our problem and present
our network architecture regarding the set of chosen layers and hyperparameters.
Figure 9.2 illustrates our network architecture that is equally applicable to all
input features. While resource identifiers and string constants are derived from
n-grams, API calls cannot be tokenized and only include a limited set of methods.
To make the results produced by these heterogeneous features comparable among
each other, we aimed for a common network design and decided for TF-IDF
vectors as the most suitable form of input representation. In contrast to other
possible input types, e.g., word embeddings or a bags-of-words representation,



9.3. Semantic App Analysis 135

TF
-ID

F
In

pu
t

N
H

1
Ne

ur
on

s

D
ro

po
ut

N
H

2
Ne

ur
on

s

D
ro

po
ut

TF
-ID

F
D

es
cr

ip
tio

n

Figure 9.2: Dense neural architecture to infer TF-IDF vectors with descriptive key-
words from resource identifiers, string constants, and API calls.

TF-IDF is less memory intensive, vectors can immediately be built from any
feature type, and it needs no external training data. In addition, TF-IDF relies
on a sparse matrix that features positional constraints, i.e., a single value is
always mapped to the same element. We leverage this property in our network
design to build a standard dense neural architecture instead of relying on a deep
convolutional or recurrent structure that would determine sequential or positional
information by itself. This simplifies our model and allows for efficient training.

Between the dense layers, we add dropout for regularization. Since the output
produced by each neuron is a continuous numerical value, we are solving a
regression task and use a linear activation function for the final output layer, as
well as mean-squared error as a loss function. To prevent overfitting, we apply
early stopping for 6 epochs and require the F0.5-score to change by at least 0.5%,
or otherwise training will be aborted as there is no more improvement.

The size of the input and output vectors corresponds to the length of the
token list that is passed to TF-IDF. As the amount of extracted string constants,
resource identifiers, and API calls is different for each app, the size of the
dictionaries to process also varies in terms of the minimum and the maximum
document frequency. This unequal distribution and, in particular, the minimum
document frequency have an influence on the training process. If the lower
boundary is too high, i.e., many apps make use of a large variety of features, we
miss information that would be needed to precisely correlate individual input
tokens, e.g., certain string constants or API calls, with description predictions. On
the other hand, if the minimum is too low, i.e., many apps are highly individual in
terms of the features they use, our models would learn too many rarely occurring
tokens, and the dictionary would become very large. Thus, the selection of
reasonable TF-IDF model parameters is crucial for the training process. To find
suitable network architectures, we used random search. For this non-exhaustive
search, we trained networks with one to three hidden layers and 1,000 to 15,000
hidden neurons. Dropout was randomly set between 0% and 40%.

We choose hyperparameters empirically by testing different setups and by
observing the resulting dictionary sizes and model performance. Thereby, we
set the minimum document frequency for each of the three input types to 2%
of the total number of documents (apps), and the maximum frequency to 20%.
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Table 9.1: Neural network configurations of the three models.

Input TF-IDF
# Features

Network Hidden
Layers

Description TF-IDF
# Features

Resource Identifiers 3315 2968, 3265, 1393 (3 Layers) 6140
String Constants 6391 2898, 3105 (2 Layers) 6140
API Methods 11735 5891 (1 Layer) 6140

This range means that if, e.g., we have a dataset of size N and a token occurs n
times, it only ends up in the dictionary if it occurs in 0.02N ≤ n ≤ 0.2N apps.
Table 9.1 lists our final network configurations and the TF-IDF dictionary sizes.

9.3.3 Model Training
We train our models using the mean-squared error (MSE) as a loss function. As
our underlying problem is a regression task, MSE is not suited as a performance
measure since it does not provide a meaningful insight into how well a model can
predict the expected outcome. In order to apply standard classification metrics,
such as precision, recall, and F -score, we need to model our regression task as a
binary classification problem. Therefore, we discretize predicted TF-IDF vectors
using a threshold θ, above which the element is set to one, or zero otherwise. We
empirically define the value for θ such that noise from the network is ignored,
i.e., values that are near but not exactly zero because of approximation errors.
By measuring the model performance based on binary vectors, we are able to
compare the TF-IDF vectors of actual app descriptions with those of predictions.

Our correlation-based learning approach aims to disclose real similarities
between apps and, therefore, neglects app-specific terms in descriptions. From a
performance point of view, this implies that we can expect a lower recall than
precision because we are not specifically trying to predict the same words that
are used in the original app description. For early stopping, we need to define
a decisive performance metric that accounts whether training should stop or
proceed. We, thus, apply a weighed F-measure of β = 0.5 that rates precision
twice as high as recall. Consequently, we apply the F0.5-score metric for early
stopping to find a good final training state.

9.3.4 Explaining Predictions
Based on resource identifiers, string constants, and API calls, we build three
semantic models that aim to infer the main functionality of Android applications
by learning patterns and correlating similarities. Due to the inner complexity
of neural networks, it is not always evident why certain description tokens are
predicted. Especially, when multiple layers are stacked upon each other, the
higher-level generalization of data precludes an insight into what features at the
first layer were significant for decisions. To find out which input items contribute
to the prediction of keywords and to remediate the black box character of network
decisions, we apply the model explainer SHAP [LL17].
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SHAP is an algorithm to explain the output of arbitrary machine learning
classifiers. The method builds upon Shapley values, a concept from coalitional
game theory: among n potential players, multiple combinations of k ≤ n players
are possible, i.e., can play together against another football team. Each player
formation leads to a different game score. Shapley values allow to interpret
the impact an individual player has on the final score in relation to all possible
player combinations. Lundberg et al., the authors of SHAP, proposed to combine
this approach with additive feature attribution. By masking parts of the input
features, the model yields different outputs per sample. Transforming SHAP
values that were computed for smaller components of the network into values that
hold for the whole model is computationally expensive. However, SHAP features
several approximation methods, e.g., one for neural networks called Deep SHAP.
By leveraging knowledge about the network’s hyperparameters and architecture,
rather than treating it as a black box, Deep SHAP creates an approximated,
non-heuristic model.

9.4 Evaluation
The goal of this evaluation is twofold. First, we investigate the performance of
our neural network with real-world Android apps. Second, applying our solution
on a hand-picked set of applications, we compare predictions about the presumed
functionality of apps with the actual description text from Google Play.

9.4.1 Dataset
We evaluate our approach using real-world applications from the PlayDrone
dataset [VGN14]. We opted for this repository of apps as it does not only feature
raw app archives but also makes the vendor-provided app description available.

After downloading 115,294 Android apps and their corresponding metadata,
we removed cross-platform apps as they implement their core functionality with
web technologies and lack the corresponding resource identifiers, string constants,
and API calls. From the remaining set of 85,915 apps, we filtered apps that
had no descriptions in English language and ensured that preprocessing each
description text resulted in at least 20 TF-IDF vectors. This boundary was set
to reduce the potential impact of insignificant samples on the training process.

Table 9.2: Subsets of Android apps used as neural network input.

# Apps
Android apps crawled 115,294
Cross-platform apps 29,379
English descriptions and ≥ 20 TF-IDF tokens 67,040
Training set 66,040
Validation set (20%) 13,208
Test set 1,000
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Table 9.3: Performance on the test set of the three neural network input types via
discretized TF-IDF vectors. Discretization threshold: θ = 0.05.

Resource Identifiers String Constants API Calls
Precision 79% 84% 69%
Recall 27% 19% 18%
F0.5-score 57% 50% 44%

Table 9.2 highlights the final set of Android applications we used to train, validate,
and test each network input feature. 20% of apps used for training are randomly
picked to be also part of the validation set. This partitioning scheme is required
to prevent overfitting of our machine learning model and to ensure meaningful
predictions. The test set includes 1,000 randomly chosen apps that are not
used during training. We build the set such that it only includes apps with
a comprehensive description text. Instead of manually selecting samples, we
make the simplifying assumption that applications with higher installation count
presumably also feature more qualitative descriptions. Therefore, we sort all
applications in the crawled dataset by their popularity in descending order and
select every third app until we reach 1,000 test samples.

9.4.2 Results
We trained neural networks for resource identifiers, string constants, and API
calls, each with a set of 66,040 apps. To ensure an unbiased evaluation, the three
models were validated using 20% of training data and tested individually with
1.5% of previously unseen data to confirm their final performance.

The evaluation results on the test set are summarized in Table 9.3. Comparing
the F0.5-scores, we observe that resource identifiers deliver the best results, while
API calls perform worse, and string constants in between. While precision values
range between 69% and 84%, the recall column presents low values for all models.
This issue can be explained by mainly two reasons. First, description texts often
include words that characterize the app purpose very specifically and only make
sense in the local context. To also capture such words that do not generalize
for a wider variety of samples, our models would have to memorize training
data (overfitting), which generally should be prevented whenever possible. While
app descriptions can be correct and sound nonetheless, reconstructing rarely
occurring words remains challenging. Second, the TF-IDF model used to generate
description output does not consider synonyms. For instance, if the original
text included the word picture, but the word photo is predicted, it counts as a
mismatch and lowers the recall performance despite the semantic correctness.

In practice, these results mean that our trained neural networks can well
predict keywords and short phrases that also occur in the developer-provided
description. High precision and low recall imply that the rate of false negatives is
higher than the rate of false positives. This is desirable in our setting because a
lower false positive rate also produces fewer false attributions of app functionality.
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9.4.3 Case Study
For a better understanding on the practical relevance of functionality predictions,
in the following, we take a closer look at each model’s output regarding two
music-related apps that were not used during training. We visualize the top 8
predictions and relevance values via word clouds. The font size of each token is
set with respect to the weight (relevance) the models assign to all outputs.

Figure 9.3 illustrates the top-ranked predictions of the three models for the
music video streaming app Vevo. Besides the word video being top-ranked, the
essence of a platform for video streaming and sharing is described by the phrases
tv show / tv channels, movies, subscription, music, live and content. By the
prediction of phrases that include the keyword tv, we notice that our semantic
models have not learned to differentiate between traditional television and online
video streaming. However, as the term occurs in many other trained samples, we
can assume that the neural networks understand the domain of the input and
learn to cluster video-related applications internally. It can also be observed that
tokens derived from API calls are less specific than those inferred via resource
identifiers or string constants. Although the general domain of the app is still
revealed by terms, such as tv, video, and watch, the top-predictions via API
calls do not exhibit n-grams, like tv channels or tv show. Overall, despite their
independent reasoning, the three models each yield descriptive information and
can correctly identify an application’s main purpose.

The app 4shared Music is a music player that accesses audio files stored on the
cloud storage provider 4shared. In Figure 9.4, we contrast the developer-provided
description with the summarized predictions of our three models. Our neural
networks correctly found that 4shared Music is a music player, interacting with
playlists and albums. They also correctly disclosed the secondary purpose of the
app, operating as an online storage platform, by the terms cloud, backup, and
files. While all these token predictions are comprehensible, not all of them appear
in the original description text. E.g., the tokens player, cloud, and backup were
not explicitly mentioned by the developer. As the description does not contain
these words literally, the measurable performance (see Section 9.4.2) decreases
despite the good generalization. These examples also point out that a precise
but abstracted word cloud is not always intuitively interpretable for humans.

(i) Resource Identifiers
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Figure 9.3: Word clouds with functionality predictions for the video streaming app
Vevo based on resource identifiers, string constants, and API calls.
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(i) Predicted Functionality
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(ii) Actual Description

4shared Music was created for those, who
can’t live without music and don’t want
their attention to be attracted with any-
thing else, but music while listening to it.
Using your ‘Search’ menu item you can
look for music files you like and add them
to your playlist at 4shared Music. More-
over, you can upload tracks from your
Android device to your 4shared Music.
With 4shared Music you can enjoy 15GB
of space for your music and nothing out
of place. Upload and add all music files
you like and make your life even more
enjoyable with 4shared!

Figure 9.4: Comparison of the actual description text of 4shared Music and our
models’ predictions.

9.4.4 Prediction Explanation

Each of our three machine learning models predicts a list of keywords and short
phrases based on a given Android app archive. Apart from seeing this result,
we also want to know which word predictions are caused by which input items.
Therefore, we apply Deep SHAP (see Section 9.3.4) to all model predictions.

If, e.g., our resource identifier model outputs the word dictionary, we want
to find what input data influences this prediction. A reasonable, for humans
understandable relation would be input tokens, such as search, word, or translate.
In case meaningless tokens were predicted instead, the model would have learned
this correlation as “noise” from similar apps but not from a particular app feature.

To determine correlations between model input and output, we take the
TF-IDF vector of an app sample as an input and infer the top prediction for it,
i.e., from all network outputs, we pick the description word or phrase that yields

Table 9.4: SHAP algorithm applied on two predictions for the app Slacker Radio.

(i) Resource Identifiers

Description
Token(s)

Input
Tokens SHAP

music player artist 0.0122
album 0.0107
playlist 0.0071
art 0.0034
lyrics 0.0032

(ii) String Constants

Description
Token(s)

Input
Tokens SHAP

music playlist 0.0321
song 0.0230
stations 0.0125
songs 0.0096
tracks 0.0039
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the highest probability. Then, we compute the Shapley values for all inputs and
sort the associated input features by their SHAP values in descending order.
Table 9.4 exemplifies this process for the app Slacker Radio. The description
tokens predicted with the highest probability were music player for resource
identifiers and music for the string constants model. Applying SHAP enables us
to disclose the input tokens that contribute most to these predictions. For both
prediction tokens, we see that the two network models make a decision based on
comprehensible inputs. The SHAP value assigned to each input feature expresses
its impact and responsibility for a change in the model output.

From applying SHAP to many samples, we noticed that for resource identifiers
and string constants, found correlations are mostly self-evident. Although we also
noticed many Android apps where the model based on API calls returned very
accurate keywords, the associated SHAP values were not intuitively traceable.
For example, for the Vevo app (see Figure 9.3), the term video is predicted with
the highest probability. Nonetheless, the corresponding SHAP values refer to
generic methods belonging to the Activity class from the Android API that, by
their design, are not specifically related to multimedia applications. We suppose
that in such cases, implementations leverage a characteristic set of methods that
only occur in combination with video-related applications and, thus, acts as a
sort of identifying fingerprint. With other samples, SHAP explanations for API
calls expose very evident correlations. For instance, we found the description
keyword shake to be very closely linked with the SensorManager class of the
Android API. Considering that this class is responsible for measuring device
sensor values, e.g., from the accelerometer or gyroscope, the association is also
intuitively understandable. Overall, our qualitative analysis using the SHAP
model explanation algorithm confirmed that all our models could very well outline
the main purpose of most real-world Android applications.

9.5 Conclusion
We presented a solution to describe the main purpose of Android applications
in natural language by analyzing resource identifiers, string constants, and API
calls contained in app archives. Based on a combination of three dense neural
networks, our approach accurately captures semantic relationships among apps.

In the context of this thesis, our work represents a significant contribution
towards a more holistic analysis of Android applications. If app archives are
subject to inspection for which no metadata is available, e.g., due to the fact that
the apps under test do not originate from official sources, the main functionality
can still be inferred and explained in natural language keywords.

We carefully evaluated our approach on 67,040 real-world Android apps and
showed that with a precision between 69% and 84% our neural networks could
predict keywords and short phrases that also occur in the developer-provided
description in Google Play. Our solution provides an effective method to describe
the behavior of unknown implementations.





10
Privacy Awareness in Android App

Descriptions

Permissions are a key factor in Android to protect users’ privacy. As it is often
not obvious why applications require certain permissions, developer-provided
descriptions in Google Play and third-party markets should explain to users how
sensitive data is processed. Reliably recognizing whether app descriptions cover
permission usage is challenging due to the lack of enforced quality standards and
a variety of ways developers can express privacy-related facts.

In this chapter, we introduce a deep learning approach to identify discrepancies
between developer-described app behavior and permission usage. We start by
highlighting the semantic gap between described functionality and access to
privacy-sensitive resources in Section 10.1. Followed by that, in Section 10.2, we
propose a convolutional neural network that captures the relevance of words and
phrases in app descriptions in relation to the usage of dangerous permissions.
Section 10.3 describes required preprocessing steps and Section 10.4 explains the
model architecture. In Section 10.5, we evaluate our solution on 77,000 real-world
applications and find that we can identify permission groups with a precision
between 71% and 93%. Parts of this chapter are taken verbatim from [FG20b].
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10.1 Introduction
Google Play and third-party markets enable Android users to choose from a vast
amount and diversity of apps. For a better overview, markets organize apps in
categories, outline their purpose in a one-sentence summary, and upon selection
provide a more extensive description, screenshots, and the set of permissions an
app requests to be granted. Based on this metadata, users make a decision on
whether an Android application seems trustworthy enough to install and use it.

To meet users’ expectations and to set adequate boundaries of behaviors,
Android protects security-critical device functionality. Whenever an app requires
access to the camera, microphone, or other sensitive features, users are requested
to explicitly grant or deny the according permission. To alleviate privacy concerns,
with Android 6 permissions have been reorganized into groups, whereas dangerous
permissions subsume all those that carry a higher risk for abuse by giving an
application access to sensitive data features and the user’s personal data.

Recent studies [PPK18; Sco+18] point out that many users cannot assess
the security risk associated with granting permissions. Although it may seem
intuitive that a messenger application requires access to a user’s contacts, it
may not be obvious why the same app also requests the permission to fetch the
current GPS position or to make phone calls. The situation is aggravated by
the fact that many malware and privacy-invasive applications also infamously
claim more permissions than their functionality warrants [AP18; PCJ18]. Despite
recurring attempts to improve how meaning and purpose of system permissions
are presented to users, permission requests often remain incomprehensible.

Making access to sensitive user data and device features transparent to
users is of utmost importance to prevent unknowing or unconscious leaks of
personal data. For this to achieve, descriptions of Android apps should imply
the usage of dangerous permissions and highlight how and why they are required.
Unfortunately, in practice, descriptions are often minimal, inaccurate, and lack
statements about security-related aspects overall. As descriptions mostly promote
functionality from a usability point of view rather than being security-centric,
there is also only little incentive for developers to point out security aspects.
We aim to build a system that can assess and improve privacy awareness in
descriptions of Android apps. This involves answering the following questions:
(1) How does an app description reflect privacy-related permission usage? and
(2) What is the relevance of individual words, word groups, and phrases?

The results of prior work in this direction confirm the existence of correlations
between permission usage and individual word combinations [Qu+14; Pan+13].
A viable approach to relate them would be to apply established NLP techniques
for sentence analysis. However, the arbitrariness of real-world app descriptions
and the lack of enforced quality standards impede a conclusive extraction of
semantic information. The constantly evolving nature of smartphone apps
with frequently changing descriptions also make it cumbersome to constrain
text-permission-relationships to a limited set of semantically similar vocabulary.
The key challenge, thus, is to find an approach that works reliably with noisy,
real-world app descriptions and can map privacy-related text to permission usage.
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We propose an innovative method to identify semantic correlations between
description text and permission usage within real-world Android applications.
Our incentive is to develop a system that can infer permission usage from the
functionality described in arbitrary text fragments. Therefore, we design a deep
neural network to reliably assess and grade the need for permissions by analyzing
noisy, potentially incomplete, and inaccurate descriptions. For each permission, a
score is delivered that indicates the likelihood that a certain permission is required
according to a given text. To remediate the black box character usually associated
with deep learning, we require that our solution provides an insight into which
words are decisive for different network outputs. Comparing obtained predictions
with the set of actually requested permissions enables users, developers, and
markets to draw conclusions about privacy-relevant aspects in app descriptions.
Our contribution includes the following key components:

• Correlating permission usage with app descriptions. We introduce
a deep learning-based approach to predict the likelihood that Android
applications needs certain permissions based on their description texts.
We extend the architecture of a convolutional neural network (CNN) for
text classification to identify sample-based correlations between parts of
the description and the permission groups an app requests. Our solution
overcomes various limitations present in existing research and can work
effectively with unlabeled, potentially flawed descriptions of real-world
Android applications.

• Extracting semantic knowledge from app descriptions. We study
the expressiveness of textual properties in app descriptions and employ an
embedding model to capture semantic links between words, word groups,
and phrases. Instead of linking individual permissions only with frequently
occurring words, we perform a contextual text analysis using the state-of-the-
art techniques word2vec [Mik+13] and GloVe [PSM14] and, as introduced
with Android 6, focus on groups of dangerous permissions. In our evaluation,
we compare the performance of the two NLP techniques in their role as an
input preprocessor for a deep neural network.

• Evaluation. We train our network with 77,000 descriptions and sets of
permission usage from Google Play. We validate the performance of our
model and evaluate the prediction quality for each group of dangerous
permissions. In a case study, we demonstrate that our system can success-
fully identify text fragments that point to individual permission, identify
missing permission explanations, and also reveal non-intuitive links between
permissions and text phrases.

• Explaining Predictions. To assess the quality of our neural network
and to avoid incomprehensible black box predictions, we employ the model
explaining algorithm LIME [RSG16]. We calculate a score for each word
that shows a significance for the output. Visualized as heatmaps, our
solution can highlight the influence of particular words in description texts
with regard to a predicted permission group.
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As Android permissions play a crucial role in protecting the users’ privacy,
aligning their usage with the alleged functionality of applications has become a
growing field of research. In the following, we present existing work on correlating
permission usage with app metadata and program code.

Android Permissions. To validate whether permissions are indeed used
within apps, Pandita et al. [Pan+13] parse descriptions using an NLP parser and
build semantic graphs of API calls associated with permissions. Based on the
names of classes and methods, keywords are identified and compared with tokens
in the semantic graph. A similar approach is presented by Qu et al. [Qu+14],
who perform a sentence analysis, identify textual patterns based on frequency
analysis, and correlate them with permissions. The output can finally be used
to annotate privacy-relevant sentences in the description text. As their system
may raise false alerts when patterns that are typically found with privacy-critical
permissions are not present, Yu et al. [Yu+18] propose to handle such cases by
cross-verifying an app’s privacy policy, description, permissions, and bytecode.

Code Analysis. Determining whether a permission request is necessary can
also be achieved via static and dynamic program analysis. In a combination of
static code inspection and text analysis, Watanabe et al. [Wat+15] present a
keyword-based technique to correlate access to privacy-relevant resources with
app descriptions. With a focus on potential abuse of sensitive APIs, Gorla et
al. [Gor+14] derive app clusters based on pre-labeled description topics. Related
to that, the approach of Gao et al. [Gao+19] infers expectable permissions by
applying statistical correlation coefficients after mining topics from descriptions
using NLP techniques and Latent Dirichlet Allocation (LDA). Similar to our
solution, the authors address the usage of dangerous permissions and derive a
score for each group to assess whether a declared permission has a close relevance
with the app’s presumed functionalities. As topics are derived from words that
frequently occur together, the absence of trigger keywords and the lack of further
contextual information may provoke false negatives.

Machine Learning. Kong et al. [KCJ15] and Wu et al. [WYL17] propose to
predict security-related app behavior by supplying the words of user reviews to
Support Vector Machines (SVM). To infer how specific permissions are used in
code, Wang et al. [WHG15] apply text analysis and different supervised classifiers
on a manually labeled set of 622 apps. McLaughlin et al. [McL+17] interpret
source code analysis as a form of textual processing and design a convolutional
neural network (CNN) that captures semantic information from opcodes in
Dalvik bytecode to detect malware. Also targeted at finding malware sequences
in Android apps, Huang et al. [HK18] propose to organize bytecode as images
and learn them in CNNs. Both approaches highlight the efficiency of CNNs
to detect contextual patterns in a large amount of training data. Our solution
confirms that this type of deep neural network is also very well-suited to infer
dangerous permissions from real-world app descriptions with high precision.
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10.2 System Overview
We design a deep neural network to find relationships between permissions and
text within a large dataset of real-world Android applications. Our goal is to
develop a system that can process a given description text in human language and
based on this text, deliver a score for each permission. A better score corresponds
to a higher likelihood that an app requests a certain permission. In order to
remediate the black box that is usually associated with deep learning, we require
that our solution provides an insight into which parts of description texts are
causative for individual scores. A comparison of obtained predictions with the
set of actually requested permissions enables users, developers, and markets to
draw conclusions about privacy-relevant aspects in app descriptions.

The primary functionality of our system can be split into two parts: In the
training phase, our network learns correlations between permissions used in
apps and parts of description texts. Using backpropagation, our convolutional
neural network iteratively adjusts its internal weight kernel to achieve correct
predictions of an app’s permissions. Training continues until the performance
decreases or plateaus, i.e., the quality of permission scores does not improve
any further. The model giving the best performance in training is then used for
testing. In the prediction phase, our system receives app descriptions not seen
during training. As depicted in Figure 10.1, the trained network outputs scores
indicating whether a given description reveals hints about particular permissions.
To estimate which words in descriptions have an impact on permission scores,
we leverage the model explanation algorithm LIME (see Section 10.4.3).
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10.3 Feature Preprocessing
Before training a neural network, it is essential to prepare the data for efficient
learning. In the following, we explain the preprocessing steps that are applied
to developer-provided app description texts and permission sets after extracting
them from Android applications.

10.3.1 Descriptions
For our network to model the relation of individual words in descriptions with used
permissions, we first have to find a strategy to transform the contained character
arrays into individual tokens. Since we strive to also capture co-occurrences of
words, a bag-of-words approach would not be feasible for this task as it does not
preserve the word order. To describe the different types of contexts words appear
in, it is necessary to parse a given text word-for-word and to represent extracted
tokens as vectors in a dense low-dimensional space.

For this translation, we can leverage a pre-trained model of word embeddings
that reduce the number of parameters our neural network has to learn from
scratch. Pre-trained word embedding models consist of key-value associations,
whereas a key represents a single or combined word formation and a value the
corresponding embedding vector. Typically, such dictionaries are built from alpha-
numeric tokens that are extracted from text corpora which presumably carry a
vast amount of semantic information, e.g., encyclopedias or news articles [Nor+17].
As an embedding model might not include all tokens contained in app descriptions,
we pursue a trial-and-error lookup strategy and gradually build dense matrices
of a fixed size for each description text. Alternatively, it would be possible to
extend the CNN with an embedding layer to learn embeddings on-the-fly. While
this would enable us to also process additional tokens with e.g., company brands
or web addresses, the extra step would significantly prolong training.
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Figure 10.2: Iterative tokenization and embedding lookup for each word contained in
the description of an Android application.
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Relying on a pre-trained word embedding model implies that any token which is
not present as a dictionary key, cannot be considered for training. In practice, this
constraint acts as a double-edged sword: if an embedding model was trained on
a sufficiently large corpus, it also serves as a filter to ignore potentially irrelevant
tokens, such as hyphenated expressions, trademarks, or email addresses. At the
same time, this means that we have to adapt the tokenizer such that it matches
a maximum amount of possible embeddings.

In Figure 10.2, we illustrate our approach to address this problem. From a
given description text, we first remove all contained HTML tags, as they are easily
detectable and would not have embedding counterparts anyway. Before dividing
the string into smaller entities, we inspect the character sets of all pre-trained
embeddings and build a set of distinct characters available in the dictionary. The
idea is to subsequently apply the inverse of this set as a delimiter for tokenization.
While individual words and word formations typically consist of alphanumeric
ASCII characters, they may also include non-alphanumeric or Unicode characters.
Instead of dividing descriptions into substrings by always splitting at predefined
delimiters, such as hyphens or colons, relying on the inverse character set of
pre-trained embeddings ensures that word compositions can be matched in full.

After deriving individual sub-strings, each token is looked up in the dictionary
of pre-trained embeddings: first, it is checked whether an embedding exists for
the entire token. If a match is found, the token is replaced by the dictionary
value. Otherwise, we attempt to strip surrounding characters that might hamper
a successful match but have no influence on semantic expressiveness. After
trimming leading and trailing non-alphanumeric characters, the pruned token
is searched again. Upon mismatch, the token is further divided into sub-strings
by splitting at remaining non-alphanumeric delimiters. Each sub-token is then
looked up separately and if found, the corresponding embedding value can be used
to substitute the sub-token. Overall, this approach ensures that a maximum of
tokens can be matched in full via pre-trained embeddings, while being conservative
enough to not taint semantic relationships by replacing tokens with potentially
unrelated vectors that might emerge from breaking word combinations.

As convolutional neural networks operate on feature maps with a fixed-size
input, it is necessary to define an upper bound for the possible maximum amount
of processable embedding vectors. In practice, application descriptions can be
of arbitrary length and, thus, a reasonable threshold can only be identified
with regard to a concrete set of texts. We determine this value empirically by
inspecting the dataset, described in Section 10.5.1, and require that it should
allow to process 95% of texts until the last token. For descriptions that exceed
this value, we discard vectors that go beyond. Conversely, for smaller descriptions,
padding tokens are inserted that carry no semantic information and do not taint
the network training process. At the end, we obtain a constant-sized matrix,
with the row indices referring to the corresponding description tokens, and each
row containing a vector from the pre-trained word embedding model. The final
matrix represents the contextualized description of an Android application, ready
to be passed as input to an arbitrary neural network.
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10.3.2 Permissions
Introduced with Android 6, the protection level1 of dangerous permissions com-
prises all API calls with access to private information and sensitive device features.
Considering their critical role and high impact on users’ privacy, we focus on
permissions included in this group and disregard other protection levels. As apps
declare requested permissions by means of listing predefined string identifiers, we
need to represent these values in a way that a neural network can process them.

Every Android application includes a AndroidManifest.xml file that denotes
requested permissions within <uses-permission> tags. We extract all permission
identifiers, filter for dangerous permissions and assign them into groups2. This
leaves us with nine permission groups: CALENDAR, CALL_LOG, CAMERA, CONTACTS,
LOCATION, MICROPHONE, PHONE, SMS, and STORAGE.

We can express these nine permission groups in a vector, whereas each column
represents a different group. For each app, we then verify whether it requests
one or multiple individual permissions pertaining to a group. If it does, the value
of the corresponding column is set to 1, or 0 otherwise. As a result, we obtain a
binary vector with 9 values that describe the privacy-critical permissions an app
makes use of. In the neural network, the vectors are set as learning targets.

10.4 Model Construction
We propose a convolutional neural network (CNN) to predict the likelihood
that an Android app requires a certain permission. By applying different filters,
we capture the local properties of individual words, word groups, and phrases
and apply them within a multi-label classification task, in which each label
corresponds to a permission group. In this section, we highlight the advantages
of CNNs for our problem and present the architecture of our network with regard
to the set of chosen filters, layers, and hyperparameters.

In contrast to recurrent networks, such as LSTMs or GRUs, convolutional
neural networks allow for faster training and can more intuitively be interpreted.
If we only wanted to correlate the use of permissions with the occurrence of
words in descriptions, a machine learning solution would not be necessary. The
architecture of CNNs, however, promotes to not only measure the impact of
individual words but also enables us to capture their co-occurrence. In our model,
we leverage this feature to determine whether certain words occur together and
assess how relevant each of them is regarding the use of individual permissions.

Moreover, the concept of CNN filters allows for generalization. As we use
word embeddings, the 1-D filters of our network do not immediately operate
on individual words in description texts. Instead, a particular filter captures
groups of words with similar properties in the word embedding subspace, e.g., the
semantically related words “photo”, “picture”, and their plurals. These properties
fostered our decision to use CNNs for this multi-label classification task.

1https://developer.android.com/guide/topics/permissions/overview
2https://developer.android.com/reference/android/Manifest.permission.html
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10.4.1 Architecture
As a basis, we employ a word-based CNN model for text classification, proposed
by Kim et al.[Kim14], and augment it for our task. Table 10.1 summarizes our
set of used hyperparameters. To find good parameters for the number of layers,
dense neurons, and dropout, we used grid search. Figure 10.3 depicts the adapted
architecture of our network and highlights all involved layers and operations.

The network input consists of a d×m matrix, where d denotes the size or
dimension of embeddings and m the maximum amount of embeddable tokens we
process for each description text. Based on the data retrieved from the input
layer, the network performs 1-D convolutions with kernels of size 1, 2, and 3, i.e.,
sliding windows that can process one to three words of input. For each kernel,
we allocate 1024 filters that learn the semantic context words appear in. After
feature extraction, the three filter bundles are reduced via global max pooling
operations. As a result, we obtain the 3× 1024 largest values of each kernel slice
and concatenate them into a one-dimensional vector to fit the input of a dense
layer. To prevent overfitting, we apply a dropout regularization of 0.2 after a
fully-connected layer with 5000 neurons and another one with 2500 neurons. This
means that in every training iteration, 20% of feature weights are randomly set
to zero. The output layer represents the 9 permissions groups by single neurons,
whereas each describes the usage probability with a score between 0 and 1.

Table 10.1: Hyperparameters used for CNN training.

Filters Kernels: 1x1, 1x2, 1x3 (1024 each)
Padding: Same
Stride: 1

Hidden Dense Layers 5000 Neurons, 2500 Neurons
Optimizer Adam, η = 0.0001
Batch Size 32
Weight Initialization Glorot (Uniform)
Loss Function Binary Cross-Entropy
Hidden Activations ReLU
Final Activations Sigmoid
Early Stopping Patience: 6 epochs

Delta: 2% Fβ-score (macro)
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10.4.2 Model Training
Designed to maximize accuracy and reduce error, our network performs best
when the number of samples in each class are about equal. However, in real-
world Android apps permission usage is not equally distributed. As there are in
practice, e.g., by far more apps that request access to a user’s location than to
the microphone, class imbalance occurs. As a countermeasure, we weigh the loss
function and, as subsequently described, scale individual performance metrics.
Moreover, we split our dataset into a training, validation, and test set. This
allows us to adopt early stopping and to find a good final training state that
prevents both over- and underfitting.

Class Imbalance

In many real-world training datasets, the distribution of samples across known
classes is biased or skewed. This difference is commonly referred to as class
imbalance, affects deep learning techniques to a similar extent [JK19] as traditional
classifiers [JS02], and can result in a poor predictive performance. In the case
of mobile applications, the need for particular permission groups as classes, as
well as their co-occurrence, is strongly influenced by the designated app purpose.
For instance, in practice, it can be observed that all Android applications with a
request to the CAMERA permission also require EXTERNAL_STORAGE, as they would
otherwise not be able to store captured photos. As our neural network produces an
individual output for each permission group in arbitrary co-occurrence formations,
the impact of class imbalance is inherently more significant than in other domains.

A common approach [BMM18] to counter class imbalance that also works
well with CNNs is oversampling. However, for this to effectively enlarge minority
classes, synthetic samples of app descriptions would have to be generated. As
we do not consider this a viable option for our task, we aim to mitigate class
imbalance by assigning individual weights to all permission groups. As shown in
Equation 10.1, therefore, we first have to evaluate their actual distribution. For
all samples in our dataset, we add up the 9 binary values pi of the permission
vector and store the sum in vector s. Then, we divide the inverse of s by the total
number of app samples. We also normalize the vector by dividing by 9, such that
the class-weighted loss and the non-weighted loss can immediately be compared.
As a result, we obtain a vector c with 9 elements that can be multiplied with
the actual error value (loss) that is back-propagated for every single permission
output. In practice, this means that for permission groups with only few samples
(low support), the error rate is increased, while it is decreased for those with high
support. This effectively reduces class-dependent overfitting in a trade-off with
the fact that particular samples are considered more important than others.

pi =
[
pi,0 pi,1 . . . pi,8

]
for 0 ≤ i < Nsamples

s =
∑

Nsamples

pi c = Nsamples
s

· 1
9

(10.1)
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As a fundamental prerequisite, our neural network has to be capable of working
with descriptions of real-world Android applications. This implies that parts of
texts may not provide enough semantic information to describe all used permission
groups. For cases where humans would not be able to intuitively link requested
permissions with text fragments, we demand that a machine learning algorithm
should also not attempt to identify insignificant correlations. In practice, it is
challenging to tackle this problem with an unfiltered dataset or without a metric
that indicates the quality of a description. We can mitigate the issue to some
extent by adjusting the β parameter of the F-score. With an F0.5-score, precision
is weighed twice as high as recall. This alleviates the influence of false negatives
and causes training to prefer models that produce more confident predictions.

Balancing individual classes alters the weight that each training sample carries
when computing the loss. In addition to adjusting the error value during back-
propagation, class imbalance also has to be considered with evaluation metrics.
While we can explain the performance for each class using precision, recall, and
Fβ-score, we need a single number with the classifier’s overall F-score to compare
different network architectures and training states independent from class support.
As the macro Fβ-measure factors in class imbalance analogous to Fβ-scores of
individual classes, we use it to identify the best-performing network architecture.

Overfitting

To prevent overfitting, we apply early stopping using a distinct set of training,
validation, and test data. The network attempts to learn the relationship on
a majority of samples in the training data by back-propagating the loss. To
determine how well the model generalizes, we measure the performance on the
validation set after each epoch. The test dataset finally provides an unbiased
evaluation of the model. All sets are compiled randomly and the order of elements
is permuted in each epoch. Instead of training a fixed number of epochs, we strive
to find a suitable count dynamically by continuously monitoring how the model
performs on training data. While the error rate decreases, learning continues for
at least 6 more epochs as long as new local minima are determined. If this is not
the case, weights are reset to the previously best-performing network state. The
final weight parameters also correspond to the last state of the trained model.

10.4.3 Explaining Predictions
Besides obtaining the likelihood that certain permission groups are represented
within app descriptions, we are interested in the individual words and word
formations that contribute to the prediction of a certain permission usage. To
better understand which observations our CNN deems relevant, we employ the
model explaining algorithm LIME [RSG16]. The overall idea is to assign each
word an individual score that expresses its relevance with regard to some output.

LIME works model-agnostic and interacts with an arbitrary black box classifier
by reflecting its behavior around an instance being predicted. Explanations are
shown as regular words, even if word embeddings were used as a network input.
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Unrelated to our feature preprocessing approach, LIME splits app descriptions
into individual tokens and uses them as a basis to generate variations with minor
alterations. For each sample, the algorithm removes features that contribute the
most to the predicted class until the output changes. The impact that each input
perturbation causes is accumulated per classification target, i.e., permission group.
The LIME algorithm relies on two configuration parameters: (1) the number
of features to vary and (2) the amount of input perturbations to generate. We
determined these values experimentally and found that 100 input combinations
represent a reasonable trade-off between computational effort and result accuracy.
Based on these settings, LIME builds sparse linear models around individual
words and computes their significance on the output. For a given app description,
the algorithm returns a list with impact scores per class and for each permission
group, sublists with words and scores that indicate their local relevance.

Weighing the Impacts of Words

LIME describes the impact on the model output for every single word in all
learned app descriptions using positive and negative decimal numbers. If the
removal of a token leads to a more confident prediction, it is penalized with a
score below zero. Conversely, if a word is found to contribute to a prediction, it
is assigned a positive score. As we intend to explain the relevance of words not
globally but individually per app description, we have to set a lower bound and
normalize all LIME values with respect the tokens of a given text. In addition,
we have to factor in the prediction of our model that a certain permission group
is actually being used. This usage probability is expressed with a value between
0 and 1. In practice, this means that if, e.g., the likelihood that an app needs a
particular permission is 30%, a word associated with this class has to be weighed
lower, even if its LIME score accounts to 90% of the global maximum score.

L̃p,t = Lp,t
maxk (Lp,k) for k ... 0 ≤ t < Ntokens

hp,t = L̃p,t · yp
(10.2)

Equation 10.2 shows the normalization and scaling formula we apply to Lp,t,
the raw LIME score produced for each predicted permission p and token t in a
description text with N words. First, we eliminate all negative values and divide
each impact score by the maximum value maxk for that sample and permission p.
The normalized score L̃p,t can then be scaled by the usage probability yp the
neural network predicted for this permission group. As a result, we obtain a heat
value hp,t for each token t between 0 and the prediction output for permission p.

Heat values hp,t quantify the relative impact a particular token has on a
predicted permission group and can be visualized as a heatmap over text. Since
LIME is only capable of operating on single words, we cannot use it to evaluate
our filter kernels that capture up to three tokens. However, in Section 10.5.3,
we demonstrate that the technique can still be employed to effectively illustrate
good and bad correlations learned by our convolutional neural network.
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10.5 Evaluation
The goal of this evaluation is twofold. First, we investigate the performance of
our neural network with real-world Android applications. Second, applying our
solution on a hand-picked set of apps, we underline the quality of permission
predictions and demonstrate how the impact of individual words can be assessed.

10.5.1 Dataset
For the training and evaluation of our network model, we require a pre-trained
word embedding model and sample applications.

Android Applications

We evaluate our approach using real-world applications from the PlayDrone
dataset [VGN14]. We opted for this repository of apps as it does not only feature
raw app archives but also provides metadata from Google Play, including the
app description text, category, and download count.

We downloaded 115,294 Android apps and corresponding metadata from the
PlayDrone dataset. Then, we filtered apps based on their text embeddability:
After preprocessing each description, it had to consist of at least 20 embeddings
from the pre-trained model to be used further on. This boundary was set to
reduce the potential impact of insignificant samples on the training process.

As highlighted in Table 10.2, we split the resulting set of 77,758 apps into
three subsets. The smallest one, the test set, includes 1,000 randomly chosen
apps that are not used during training. The remaining apps are added to the
training set, and 20% of them are randomly picked to be also part of the to the
validation set. This partitioning scheme is required to prevent overfitting of our
machine learning model and to ensure meaningful predictions.

Word Embeddings

As our approach requires descriptions to be provided as word embedding vectors,
for performance reasons we leverage a pre-trained model that covers a large set
of words in English language. Among the two most common architectures for
word embeddings are word2vec [Mik+13] and GloVe [PSM14]. The authors of

Table 10.2: Subsets of Android apps used as network input.

# Apps

Apps crawled 115,294
English descriptions 81,803
20+ embeddable tokens 77,758
Training and validation set 76,758
Test set 1,000
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Table 10.3: Properties of word embedding models and performance comparison when
applied on the descriptions of 81,803 Android applications. Scores are
macro-averaged over all labels and five folds.

Word2vec GloVe

Architecture Predictive Co-occurrence
Text corpora trained on Wikipedia, UMBC, Wikipedia

and statmt.org
Total words in corpus ≈ 16 billion ≈ 5 billion
Output embeddings 999,994 400,000
Characters Lowercase Lowercase

Precision 76% 81%
Recall 54% 55%
Fβ-score 70% 77%

both techniques provide pre-trained models34 that include the text corpora of
Wikipedia, news articles, and crawled websites. As summarized in Table 10.3,
both models exhibit substantial differences in terms of the underlying architecture
that might have an influence on the representation of words in our neural network.
Before employing word-vector pairs for tokenization and word representation, we
perform a qualitative comparison between word2vec and GloVe.

We assess the performance of both embeddings models by applying them
on all crawled app descriptions. After tokenization and repeated lookups in
the pre-trained models, we find that there is no noticeable difference between
word2vec and GloVe in terms of matching words with pre-trained embeddings.
As GloVe yields marginally better values for precision, recall, and Fβ-score, we
proceed with GloVe and do not consider word2vec embeddings any further.

10.5.2 Results
We evaluated the performance of our CNN with the descriptions and sets of
requested permissions for a total of 77,758 apps across training, validation and
test set. The test set results, comprising 1,000 apps, can be seen in Table 10.4,
whereby the particular values are averaged independently across the five folds.
The rightmost column shows the support, indicating the number of true positives
found by the model. The varying number for the individual permission groups is
mainly caused by their unequal usage in real-world applications. As described in
Section 10.4.2, we counter the effects of this imbalance by weighing the error value
of each class during training. Over all permission groups, recall shows significantly
lower values than precision. This emerges from the fact that our dataset includes
only unfiltered samples, of which many have low-quality descriptions or miss
permission-related keywords. In practice, low recall means that the words and
context we can rely on to identify a corresponding target class is more limited.

3https://code.google.com/archive/p/word2vec/
4https://nlp.stanford.edu/projects/glove/
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Table 10.4: Test set performance, 5-fold average.

Precision Recall Fβ-score Support

EXTERNAL_STORAGE 93% 76% 89% 699
CALENDAR 55% 24% 42% 36
CALL_LOG 70% 44% 62% 108
CAMERA 71% 56% 67% 199
CONTACTS 80% 65% 76% 369
LOCATION 82% 56% 74% 327
MICROPHONE 83% 64% 78% 125
PHONE 73% 68% 72% 440
SMS 83% 52% 73% 100

Macro Average 77% 56% 70%
Micro Average 81% 65% 77%

Table 10.5: Recurring words with high impact, according to their LIME score.

CALENDAR calendar
CALL_LOG contact(s), call(s), phone, sms
CAMERA qr, barcode, scanning, photo, flash(light)
CONTACTS contact(s), call(s), ringtone(s), friends, sync
EXTERNAL_STORAGE photo(s), files, sync, mp3, voicemail
LOCATION gps, map(s), near(est), location, weather
MICROPHONE microphone, walkie / talkie, record, voice, calls
PHONE call(s), ringtones, voice, personalized, phone
SMS sms, text, message, call

Precision varies between 71% and 93%. With the averaged macro precision
set at 77%, some permission groups significantly outperform this value, while
others are inferior. EXTERNAL_STORAGE has the highest precision, concurrently
with the highest support. While CAMERA, PHONE, and CALL_LOG are on the lower
end, CALENDAR is worst due to its rare usage. As the scores suggest that some
permissions are more clearly identifiable than others, our case study takes a closer
look at this assumption and the reasoning of our neural network.

Although the model makes predictions based on formations of up to three
words and their local contexts, it is plausible that the frequent occurrence of
particular words highly influences the decision process. To evaluate the impact of
repetitively used words on predictions, we apply the model explanation algorithm
LIME. Therefore, we extract all tokens from all app descriptions in our dataset,
sort them by their frequency and LIME score, and repeat this process for each
permission group. Table 10.5 presents the most frequently occurring words per
prediction class. All listed words are assigned a comparably high LIME score,
i.e., have a high impact on true positives, and occur in multiple description texts.
Some of these correlations are self-evident, e.g., the word calendar occurring when
the CALENDAR permission is used, map being used in combination with LOCATION
permission, and ringtones appearing in the context of the PHONE permission.
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Keyword overlaps between groups indicate that writers of description texts
obviously tend not to distinguish when describing some permission requests. At
the same time, it can imply that the implementation of particular functionality
typically involves a very precise combination of permissions. Considering the
underlying purpose of the CONTACTS, PHONE, and CALL_LOG permissions, such as
providing telephone numbers, calling, and storing the record in the call log, a
strong inter-relationship seems highly plausible.

The analysis of impact scores shows that the usage of permissions groups,
such as CAMERA and LOCATION, is often self-explaining by the use of corresponding
keywords. The good interpretability is supported by frequent textual reflections
within these groups. A similar situation can also be observed with the CALENDAR
and MICROPHONE groups, which tend to have a narrower spectrum of use cases
and a lower class support, leading to a semantically very unambiguously assigned
set of keywords. The EXTERNAL_STORAGE permission, in contrast, is located at
the other end of this spectrum, as it is the most frequently requested permission
and commonly lacks good reflections. Comparable effects exist for the CONTACTS,
PHONE, and CALL_LOG permissions that partially share the same trigger words.
Other correlations between words and permission usage may seem less obvious:

• Weather applications tend to request a user’s geographic location, which
promotes weather as a trigger word for the LOCATION permission group.

• The CONTACTS permission group is often employed for synchronizing a user’s
address book with online services. Another frequent use-case includes the
setting of specific ringtones for different contacts.

• The widest range of different tokens occur with EXTERNAL_STORAGE requests.
Keywords, such as screenshot, photos, or files, in particular, represent
meaningful correlations as read or write access to physical memory will
usually depend on that permission.

While these findings are evident for software vendors and experienced users, the
link of different keywords to the usage of specific permission groups might not be
immediately comprehensible for regular users. Certain relations between, e.g.,
weather and the LOCATION permission exhibit no natural semantic relationship
but are entirely the effect of correlation-based learning as is possible with CNNs.

10.5.3 Case Study
For a more in-depth understanding on how our deep neural network operates with
real-world descriptions and their qualitative shortcomings, we provide an insight
by comparing predicted permissions with actually requested permissions. To
obtain knowledge which correlations the model has learned and whether they are
meaningful or coincidental, we employ the model explanation algorithm LIME.

For demonstration purposes, we select three real-world apps and highlight
interesting findings: the video editing app AndroMedia, the messaging app
Snapchat, and the food delivery app Lieferheld. For better readability, we reduce
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AndroMedia
Actual vs. Inferred Permissions

Requested Prediction

EXTERNAL_STORAGE yes 90%
PHONE yes 27% "
MICROPHONE yes 17% "
LOCATION yes 1% "
CONTACTS no 10%
CAMERA no 1%
CALENDAR no 0%
CALL_LOG no 0%
SMS no 0%

" Prediction deviates strongly.

EXTERNAL_STORAGE

AndroMedia Video Editor Video Editing
App For Android Platform AndroMedia is
unique Video Editing App For Android Plat-
form Designed to be intuitive to use, Andro-
Media is fully featured video editing program
for creating professional looking videos in
minutes. Making movies has never been
easier. * Export movies in standard def-
inition or HD (320p 480p 720p) * Drag
and drop video clips for easy video edit-
ing * Trim and Combine both video and
audio files in two different editor. * Ap-
ply effects and transitions and more * Over-
lay title clips for captions and movie cred-
its * Apply Crop and Ken Burns effects
to your video tracks * Apply FadeIn and
FadeOut effect to your audio tracks * Sup-
ports MP4,MOV,JPG,PNG,MP3,WAV file
formats * Save login credentials to upload
videos directly to YouTube from AndroMe-
dia * Easy to use layout

Figure 10.4: AndroMedia: actual vs. inferred permission groups based on the
app description. Predictions are explained for the permission group
EXTERNAL_STORAGE using a LIME heatmap overlay.

the presented description texts and show only those sentences that have been
identified as relevant for the prediction of permissions.

We repeatedly apply the LIME algorithm for all predictions and words in
a description text and derive scores that indicate the individual relevance of
words with regard to a prediction outcome. For the text fragments shown in
Figures 10.4-10.6, we adjust the background color’s opacity of all words, such that
the values align with the LIME impact scores. A darker color implies a higher
impact on the prediction output. As a result, we can determine single words of
descriptions that our system deems to be significant, and see how accurate the
prediction is compared to the actual permission.

AndroMedia

Designed for the purpose of video editing, we present the evaluation of this
application in Figure 10.4 and highlight words associated with the prediction of
the EXTERNAL_STORAGE permission. We selected this app for our case study as it
underlines the capabilities of our system to identify privacy-critical discrepancies
between a described app purpose and actual permission usage.
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As pointed out in the description text, the keywords export, drop, audio,
files, movie, and save stress the need for the EXTERNAL_STORAGE permission. The
AndroMedia app also requires granting the LOCATION, MICROPHONE, and PHONE
permissions but omits explaining their usage within the description. In fact,
there is no obvious argument for a video editing app to need privacy-related
permissions. In case they are required from a functional perspective, developers
are encouraged to augment the text with an explanation on how they are used.

Snapchat

This app is designed as a social messenger that enables users to send photos, videos,
to share the current location and to make calls. In Figure 10.5, we summarize
the permissions the app requests and contrast them with the predictions our
system makes. To validate the reasoning of our neural network, we highlight the
three permission groups CAMERA, EXTERNAL_STORAGE, and MICROPHONE.

The words snap, photo, video, and capturing are assigned a high LIME score
with regard to the CAMERA permission. Analogous to that, for the prediction
of EXTERNAL_STORAGE, share and words with a semantic relationship to CAMERA
are dominant. This seems reasonable as file sharing typically requires access
to the phone’s storage. The heat values of the words are comparably strong,
which underlines their relevance for the prediction output and a high LIME score
overall. For MICROPHONE, the prediction confidence of 77% shows to be mainly
caused by the words chat, video, and capture. From the study of recurring words
and their affinity to permission usage in Table 10.5, it can be assumed that these
values would be higher if the text included words like voice or audio. Although
requested, the SMS and LOCATION permissions do not appear to be linked to the
text at all. A manual look at the text confirms this lack and the network outputs
of 8% and 1% for these groups. CONTACTS and PHONE are predicted with a score
lower than 50%, due to the obvious lack of textual reference. Summarizing, in the
description text of Snapchat, particular keywords confirm the need for the CAMERA,
MICROPHONE, and EXTERNAL_STORAGE permissions. At the same time, it misses
semantic indicators that could explain the remaining subset of permissions.

Lieferheld

Depicted in Figure 10.6, Lieferheld aims to connect users to a food delivery plat-
form. Our neural network predicts the likelihood that the LOCATION permission is
needed with a confidence of 90% and points out the words current and location.
As these two tokens occur adjacent to each other, it seems likely that the word
formation current location has been repeatedly captured by a 1x2 or 1x3 filter
kernel during training. However, since both terms may also appear in other con-
texts, they exhibit different heat values. The prediction of the CAMERA permission
is primarily influenced by the words barcode, camera, and QR. Again, we observe
that two words in direct vicinity, QR and barcode, are highlighted. Interestingly,
in the local context of the Lieferheld application, these two tokens contribute
more actively to the prediction of this permission than the word camera itself.
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Snapchat
Actual vs. Inferred Permissions

Requested Prediction

CAMERA yes 90%
EXTERNAL_STORAGE yes 90%
MICROPHONE yes 77%
CONTACTS yes 46%
PHONE yes 39%
LOCATION yes 8% "
SMS yes 1% "
CALL_LOG no 1%
CALENDAR no 0%

" Prediction deviates strongly.

CAMERA

Enjoy fast and fun mobile conversation!
Snap a photo or a video, add a caption,
and send it to a friend. They’ll view it,
laugh, and then the Snap disappears from
the screen – unless they take a screenshot!
You can also add a Snap to your Story with
one tap to share your day with all of your
friends. [...] if you’re both Here, simply
press and hold to share live video - and Chat
face-to-face! Happy Snapping! *** Please
note: even though Snaps, Chats, and Sto-
ries are deleted from our servers after they
expire, we cannot prevent recipient(s) from
capturing and saving the message by tak-
ing a screenshot or using an image capture
device.

EXTERNAL_STORAGE

Enjoy fast and fun mobile conversation!
Snap a photo or a video, add a caption,
and send it to a friend. They’ll view it,
laugh, and then the Snap disappears from
the screen – unless they take a screenshot!
You can also add a Snap to your Story with
one tap to share your day with all of your
friends . [...] if you’re both Here, simply
press and hold to share live video - and Chat
face-to-face! Happy Snapping! *** Please
note: even though Snaps, Chats, and Sto-
ries are deleted from our servers after they
expire, we cannot prevent recipient(s) from
capturing and saving the message by tak-
ing a screenshot or using an image capture
device.

MICROPHONE

Enjoy fast and fun mobile conversation!
Snap a photo or a video , add a caption,
and send it to a friend. They’ll view it,
laugh, and then the Snap disappears from
the screen – unless they take a screenshot!
You can also add a Snap to your Story with
one tap to share your day with all of your
friends. [...] if you’re both Here, simply press
and hold to share live video - and Chat
face-to-face! Happy Snapping! *** Please
note: even though Snaps, Chats, and Sto-
ries are deleted from our servers after they
expire, we cannot prevent recipient(s) from
capturing and saving the message by tak-
ing a screenshot or using an image capture
device.

Figure 10.5: Snapchat: actual vs. inferred permission groups based on the app
description. Predictions are explained for the permission groups CAMERA,
EXTERNAL_STORAGE, and MICROPHONE using LIME heatmap overlays.

For CONTACTS, our network correctly identified that permission usage was not
reflected within the text. Overall, the heat values generated for the description of
Lieferheld show that some permissions are sufficiently well explained. For others,
explanations are obviously missing, as also predicted correctly by our network,
and developers might be advised to address potential privacy concerns of users.
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Lieferheld
Actual vs. Inferred Permissions

Requested Prediction

LOCATION yes 90%
CAMERA yes 90%
EXTERNAL_STORAGE yes 71%
CONTACTS yes 14% "
PHONE no 49%
CALL_LOG no 1%
MICROPHONE no 0%
CALENDAR no 0%
SMS no 0%

" Prediction deviates strongly.

LOCATION

With Lieferheld you can conveniently order
food at over 7,000 food delivery services
throughout Germany – on your Android
smartphone! [...] - Fast and convenient food
ordering on your smartphone - Over 7,000
food delivery services throughout Germany -
Plenty of choice – pizza, pasta, sushi, burgers
and much more - Online payment by request
- Helpful restaurant reviews Ordering food
from a delivery service via app has never
been easier! [...] Enter your delivery address
or use your current location and Lieferheld
will display a clear list of the food delivery
services in your area. Reviews from other
customers can help you to find the right food
delivery service. Build your own menu in the
twinkling of an eye and Lieferheld forwards
your order to the food delivery service. [...]
New feature: When you see a Lieferheld
QR-voucher code somewhere, you can sim-
ply scan it with the integrated QR barcode
scanner and save the voucher to your ac-
count. The camera function is solely used
for the QR barcode scanner! [...]

CAMERA

With Lieferheld you can conveniently order
food at over 7,000 food delivery services
throughout Germany – on your Android
smartphone! [...] - Fast and convenient food
ordering on your smartphone - Over 7,000
food delivery services throughout Germany -
Plenty of choice – pizza, pasta, sushi, burgers
and much more - Online payment by request
- Helpful restaurant reviews Ordering food
from a delivery service via app has never
been easier! [...] Enter your delivery address
or use your current location and Lieferheld
will display a clear list of the food delivery
services in your area. Reviews from other
customers can help you to find the right food
delivery service. Build your own menu in the
twinkling of an eye and Lieferheld forwards
your order to the food delivery service. [...]
New feature: When you see a Lieferheld
QR-voucher code somewhere, you can sim-
ply scan it with the integrated QR barcode
scanner and save the voucher to your account.
The camera function is solely used for the
QR barcode scanner! [...]

Figure 10.6: Lieferheld: actual vs. inferred permission groups based on the app
description. Predictions are explained for the permission groups LOCATION
and CAMERA using LIME heatmap overlays.
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10.5.4 Summary
We studied the practical benefit of our neural network from three different angles.
First, we showed its metric-based performance. Second, we demonstrated the
plausibility of learned words for each permission group. Third, we highlighted
single description texts for which our system correctly predicted permission con-
figurations and found discrepancies between the text and the actual permissions.

Our approach for identifying permission-related phrases has stressed the
employment of a dynamic, self-learning model. Current approaches strongly rely
on static relations, e.g., the word camera has to appear in the description text if
an Android SDK method includes the exact same word, or the model training
process relies on a limited set of hand-picked description sentences. A quick
look at high-impact words for the camera permission group above illustrates
the superiority of our approach: The use of pre-trained word embeddings and a
large description dataset allow the system to learn a broad range of plausible
relations that are very specific, from words like capturing over QR/barcode and
snap. Manually labeling all these words and their combinations before training
is practically infeasible. Our deep learning approach especially addresses the
ever-changing nature of app use cases and their evolving peculiarities.

The aspect that sets our approach apart from current solutions arises from
the filter-based convolutional architecture, which finds local properties, i.e.,
words and word groups, and makes global decisions based on them. Selected
examples demonstrate that the way a CNN processes text is not only limited
to a sentence-based search but takes description-wide information into account.
For AndroMedia, trigger words are export, save, and files, but they are be spread
across multiple sentences. A system limiting the scope to one sentence cannot
interpret this context. Utilizing multiple filter sizes increases the effectiveness
by also training on word groups of two and three words. Our evaluation makes
clear that crucial information can span over multiple description sentences and
that we are capable of capturing these relations.

10.6 Conclusion
Android users often fall for apps with intriguing descriptions and grant them
permissions that could adversely impact their privacy. Cross-checking an app’s
description and its permission usage is challenging due to the lack of enforced
quality standards for descriptions and the nonexistent verification of their content.

We presented a solution to reliably assess and grade the need for dangerous
permissions by analyzing real-world description texts. Based on a convolutional
neural network, our approach accurately captures contextual properties in poten-
tially incomplete text and can reliably predict individual groups of semantically
related permissions. We carefully evaluated our approach on more than 77,000
real-world apps and uncovered discrepancies between the actual and predicted us-
age of permissions with a precision between 71% and 93%. Our solution provides
an effective method to assess privacy awareness in descriptions of Android apps.
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Conclusions

With more and more sensitive data being stored and processed by applications for
the Android and iOS mobile operating systems, inspecting the implementation
and behavior of apps is of vital importance to disclose security-critical problems.
The increasing complexity of nowadays applications raises the costs and efforts
needed for a thorough security analysis. While existing solutions allow for testing
of privacy leaks, implementation flaws, and common attack vectors at the level of
individual program statements, their results do not provide an insight into what
functionality apps realize and in which context problematic statements occur.

This thesis contributes to obtaining a more sophisticated view on problematic
code parts and augmenting the security analysis of mobile applications with a
semantic understanding. Rather than conducting a security-critical inspection
of applications only on the basis of commonly known vulnerabilities, our work
broadens the scope to pinpointing the exact origin of problematic statements and
to enriching privacy- and security-critical analyses with contextual information.

To understand semantics at a low-level, we filled missing gaps in the static
analysis of mobile applications and proposed new frameworks that excel in
identifying and tracking security-relevant code in Android and iOS applications.
In a case study of 509 Android apps, we disclosed that 36% or 182 out of 509
tested apps expose sensitive user input to files or pass them to log output. Two
additional case studies that focused on the improper usage of cryptographic
APIs in Android and iOS apps revealed blatant security-critical implementation
weaknesses in a majority of them. We also inspected the role of the underlying
platform and noticed that the design of APIs on Android and iOS promotes
certain mistakes. Our results underline the high relevance and practical benefit of
reliable solutions for low-level analysis and stress the need for further research that
helps to understand the logical context of code fragments in mobile applications.
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For a more holistic analysis of apps, we concentrated on elaborating a semantic
understanding of coherent code parts in Android applications. The goal was to
lift the analysis of apps from the level of individual program statements to a state
that would allow us to reason about the security of functional code dependencies.
We started by assessing and measuring the similarity of code and noticed that
obfuscation and similar transformation techniques impose a significant challenge
in reliably recognizing potentially vulnerable code parts. By fingerprinting code
based on transformation-invariant patterns, we accomplished to distinguish actual
implementation functionality from low-level code semantics. To efficiently verify
behavioral differences between apps, we elaborated a comparison strategy based
on Merkle trees. Our iterative comparison approach succeeded in identifying
semantically identical code fragments, even if they were moved or obfuscated.

Thousands of program classes, the widespread use of obfuscation, and a variety
of ways how developers can implement similar program functionality, make it
challenging to summarize the actual main purpose of applications. Augmenting
existing approaches for mobile security analysis with contextual information is
essential in order to better estimate the practical risks that emerge from found
vulnerabilities. In this thesis, we learned that modern techniques from the fields
of natural language processing and machine learning can significantly assist in
assessing the relevance of individual parts in source code. We leveraged dense
and convolutional neural networks to correlate the metadata of apps with the
underlying implementation. Our solutions excel in capturing the context of words
and phrases in description texts and can link them with features extracted from
source code and used system permissions. Our work provides valuable insights
into the privacy awareness of Android apps and succeeds in accurately identifying
the main purpose of arbitrary apps based on their actual implementation.

Our research provides a strong contribution towards augmenting the security
analysis of mobile applications with context-awareness. While our thesis was
able to show new perspectives on highly security-critical implementation aspects
of Android and iOS applications, further research is needed for a holistic analysis.
Considering the continuing hype that mobile devices are experiencing these days,
it is to be expected that the amount, complexity, and size of applications will
still increase. Accordingly, a rise in terms of monetary costs and time needed
for manual inspection can also be foreseen. Hence, there is an evident need to
assess the security of mobile programs in an automated way in order to impede
possible attack vectors, prevent personal data from being leaked, and to verify
that security features are applied in a correct manner. It will not suffice to
uncover only specific implementation aspects rather than gaining a more coherent
understanding of what applications are actually executing. Recent developments
in the field of deep learning also involve algorithms to summarize code, improve
code completion systems, predict code properties, and assist in disclosing critical
implementation faults. The security analysis of mobile apps can greatly benefit
from adopting these achievements to efficiently identify bugs, recognize insecure
programming practices, e.g., hard-coded keys, already during development, and
to finally better understand the semantic behavior of mobile applications.
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