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Abstract

Lane detection and tracking as well as ego-lane estimation and relative ego-vehicle local-

ization in multi lane scenarios is a crucial task for current Advanced Driver Assitstance

Systems (ADAS) and Automated Driving (AD) applications. This thesis is devoted to de-

velop and evaluate different concepts for vision-based lane detection and tracking. Based

on in-depth literature research three different algorithms have been implemented. The

algorithms specifically differ in the method for lane segmentation but follow a common

processing pipeline. A special focus was put on the evaluation of traditional and machine

learning based methods. One of the algorithms uses conventional techniques for region

based lane feature extraction, whereas the remaining algorithms use deep learning archi-

tectures for segmentation. Hough transform in combination with RANSAC model fitting

is used in the detection stage of all algorithms. To increase the performance, tracking

with the help of a Kalman filter was implemented. In addition, a LiDAR sensor is used

to improve the lane detection by utilizing the 3D point cloud for road plane fitting, road

boundary extraction and outlier removal in the segmentation masks. In a final step, an

evaluation of the performance and accuracy based on labeled ground truth data was done.

To have an estimate if and how well the incorporation of LiDAR point clouds improves the

overall performance and accuracy, the algorithms are separated again into a basic version

and an advanced version for evaluation. In comparison with each other, the basic ver-

sions do not use LiDAR point clouds for outlier detection or frame-wise road plane fitting

and only have a static Region Of Interest (ROI). The results show, that all algorithms

are able to perform well under normal as well as challenging conditions. The Advanced

Conventional Algorithm and the deep-learning based algorithms show close results, but

the Advanced DeepLab Algorithm performs best. Due to its high Precision and Recall as

well as its low standard deviation of the detection error, the algorithm achieves an overall

high detection rate combined with a high accuracy.

iii



iv

Keywords. vision-based lane detection, lane tracking, ego-lane estimation, deep learn-

ing, segmentation



Affidavit

I declare that I have authored this thesis independently, that I have not used other than

the declared sources/resources, and that I have explicitly indicated all material which has

been quoted either literally or by content from the sources used.

The text document uploaded to TUGRAZonline is identical to the present master’s

thesis dissertation.

Date Signature





Acknowledgments

First and foremost I would like to thank those who supported me in the course of this

work and made it possible at all. I would like express my gratitude to my supervisor Prof.

Bischof who gave me the opportunity to write the thesis at the Institute of Computer

Vision and Graphics and supported me in all kinds of questions during this thesis.

I would also like to thank David Schinagl who guided me through the whole thesis. I

would like to thank him for being open to questions at any time and providing constructive

suggestions in so many areas of this thesis. Because of his in depth knowledge in any area

of computer vision we had very productive discussions what drove the development for

this thesis forward.

Furthermore, I would like to thank my supervisor Orasche Gerbert who gave me the

opportunity to write this thesis in collaboration with the AVL List GmbH and supported

me in all matters. Last but not least, I would like to thank my colleagues Steffen Metzner,

Julian Filwarny, Mansuet Gaisbauer and Pankit Shah who laid the foundation for the

thesis by bringing in the idea of the core theme to be dealt with and who were on my side

whenever I had questions.

vii





Contents

1 Introduction 1

1.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.2 Proposed Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.3 Structure of the Thesis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

2 Background 5

2.1 Notations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2.2 Image Formation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2.3 Random Sample Consensus . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2.4 Artificial Neural Networks . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.5 Gradient Descent and Backpropagation . . . . . . . . . . . . . . . . . . . . 11

2.5.1 Convolutional Neural Networks . . . . . . . . . . . . . . . . . . . . . 11

2.6 Hough Transfrom . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

2.7 Kalman Filter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

3 State-of-the-Art in Lane Detection and Tracking 17

3.1 Lane Detection and Tracking in General . . . . . . . . . . . . . . . . . . . . 17

3.2 State-of-the-Art Pipeline for Lane Detection and Tracking . . . . . . . . . . 18

3.3 Pre-Processing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

3.3.1 Image Smoothing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

3.3.2 Region of Interest (ROI) . . . . . . . . . . . . . . . . . . . . . . . . . 19

3.3.3 Inverse Perspective Mapping (IPM) . . . . . . . . . . . . . . . . . . 20

3.4 Segmentation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

3.4.1 Conventional Segmentation . . . . . . . . . . . . . . . . . . . . . . . 21

3.4.2 Segmentation with Neural Networks . . . . . . . . . . . . . . . . . . 24

3.4.3 Point Cloud based Segmentation . . . . . . . . . . . . . . . . . . . . 28

ix



x

3.5 Lane Detection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

3.5.1 Hough Transform . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

3.5.2 RANSAC Model Fitting . . . . . . . . . . . . . . . . . . . . . . . . . 29

3.6 Tracking . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

3.6.1 Kalman Filter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

3.6.2 Particle Filter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

3.7 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

4 Concepts 33

4.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

4.2 Image Formation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

4.3 Pre-Processing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

4.3.1 RANSAC Plane Fitting . . . . . . . . . . . . . . . . . . . . . . . . . 36

4.3.2 Region of Interest (ROI) . . . . . . . . . . . . . . . . . . . . . . . . . 38

4.3.3 Inverse Perspective Mapping . . . . . . . . . . . . . . . . . . . . . . 40

4.4 Segmentation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

4.4.1 Conventional Segmentation . . . . . . . . . . . . . . . . . . . . . . . 42

4.4.2 Segmentation using DeepLabv3+ . . . . . . . . . . . . . . . . . . . . 46

4.4.3 Instance Segmentation using SCNN . . . . . . . . . . . . . . . . . . 49

4.5 Lane Detection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

4.5.1 Line Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

4.5.2 Hough Transform . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

4.5.3 RANSAC Model Fitting . . . . . . . . . . . . . . . . . . . . . . . . . 51

4.6 Line Tracking . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

4.6.1 Line Classification . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

4.6.2 Kalman Filter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

4.7 Post-Processing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

4.7.1 Lane Estimation and Ego-Vehicle Position . . . . . . . . . . . . . . . 55

4.7.2 Data Recording . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

4.8 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

5 Evaluation 59

5.1 Overview of the Algorithms . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

5.2 Datasets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

5.3 Evaluation Criteria . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

5.3.1 Processing Speed . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

5.3.2 Performance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

5.3.3 Accuracy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

5.4 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

5.4.1 Processing Speed . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

5.4.2 Performance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66



xi

5.4.3 Accuracy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

5.5 Experimental Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

5.6 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

6 Conclusion and Future Work 77

6.1 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

6.2 Application and Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . 78

A List of Acronyms 81

Bibliography 83





List of Figures

2.1 Pinhole camera model. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2.2 Example of line model parameter estimation based on RANSAC algorithm 8

2.3 Model of a neuron in a Neural Network (NN) . . . . . . . . . . . . . . . . . 10

2.4 Basic architecture of a neural network with two hidden layers . . . . . . . . 10

2.5 Potential architecture of a Convolutional Neural Network (CNN). . . . . . . 12

2.6 Architectures to cope with the loss of spatial information . . . . . . . . . . 13

2.7 Architecture of SegNet . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

2.8 Hough Transform . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

2.9 Operation of Kalman Filter. . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

3.1 Basic pipeline for lane detection and tracking. . . . . . . . . . . . . . . . . . 19

3.2 Traditional region of interest and trapezoidal region of interest . . . . . . . 20

3.3 Inverse perspective mapping . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

3.4 Result of canny edge detection . . . . . . . . . . . . . . . . . . . . . . . . . 22

3.5 Result of color segmentation . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

3.6 Lane detection results under variable conditions. . . . . . . . . . . . . . . . 23

3.7 System overview of LaneNet . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

3.8 Atrous convolutions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

3.9 Deeplabv3+ encoder-decoder architecture as an extension of DeepLab3 . . . 27

3.10 Architecture of SCNN . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

3.11 Comparison of SCNN with results of other networks . . . . . . . . . . . . . 28

3.12 Lane marking detection based on LiDAR intensity thresholding . . . . . . . 28

3.13 Candidate points sampled based on line parameterized with θ and ρ found

with Hough transform . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

3.14 Lane detection and tracking result based on particle filter in combination

with cubic spline modeling . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

xiii



xiv LIST OF FIGURES

4.1 Processing pipeline of the algorithms . . . . . . . . . . . . . . . . . . . . . . 35

4.2 Camera-LiDAR Formation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

4.3 Definition of Static Region of Interest . . . . . . . . . . . . . . . . . . . . . 38

4.4 Visualization of adaptive ROI . . . . . . . . . . . . . . . . . . . . . . . . . . 40

4.5 Result of inverse perspective mapping . . . . . . . . . . . . . . . . . . . . . 41

4.6 Example of gray scaled image. . . . . . . . . . . . . . . . . . . . . . . . . . . 41

4.7 Conventional Segmentation Pipeline ROI . . . . . . . . . . . . . . . . . . . . 42

4.8 Illustration a second derivative of Gaussian kernel and a filtered image . . . 43

4.9 Otsu threshholding . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

4.10 HSL colour space . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

4.11 Conventional Segmentation result . . . . . . . . . . . . . . . . . . . . . . . . 45

4.12 Example of outlier detection . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

4.13 Segmentation pipeline using Deeplabv3+ . . . . . . . . . . . . . . . . . . . . 46

4.14 Grund truth image for training the Deeplab model . . . . . . . . . . . . . . 48

4.15 Semantic Segmentation with DeepLab . . . . . . . . . . . . . . . . . . . . . 48

4.16 Instance Segmentation with SCNN . . . . . . . . . . . . . . . . . . . . . . . 50

4.17 Example of lane detection . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

4.18 Architecture for lane tracking . . . . . . . . . . . . . . . . . . . . . . . . . . 53

4.19 Result of lane detection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

4.20 Snippet of a shape file . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

5.1 Some images used for evaluation . . . . . . . . . . . . . . . . . . . . . . . . 63

5.2 Example of Ground Truth (GT) points and detected lanes in bird eye per-

spective . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

5.3 Comparison of performance with state-of-the-art algorithms . . . . . . . . . 69

5.4 Comparison of lane detection accuracy with state-of-the-art algorithms . . . 70

5.5 Results of normal driving scenarios . . . . . . . . . . . . . . . . . . . . . . . 71

5.6 Results of hard driving scenarios . . . . . . . . . . . . . . . . . . . . . . . . 71

5.7 Results of special driving scenarios . . . . . . . . . . . . . . . . . . . . . . . 72

5.8 Influence of Outlier Detection and Tracking . . . . . . . . . . . . . . . . . . 73

5.9 Influence of Adaptive ROI . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

5.10 Limitations of the algorithms . . . . . . . . . . . . . . . . . . . . . . . . . . 75



List of Tables

2.1 List of notations used in this thesis . . . . . . . . . . . . . . . . . . . . . . . 6

4.1 Split of ApolloScape data set . . . . . . . . . . . . . . . . . . . . . . . . . . 47

4.2 Split of TU data set . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

4.3 Training parameters for DeepLab model . . . . . . . . . . . . . . . . . . . . 48

4.4 Split of CULane data set . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

4.5 Training parameters for SCNN model . . . . . . . . . . . . . . . . . . . . . 49

4.6 Classification of lines . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

5.1 Datasets used for evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

5.2 Processing speed of the algorithms . . . . . . . . . . . . . . . . . . . . . . . 66

5.3 Performance on data set with normal scenarios . . . . . . . . . . . . . . . . 67

5.4 Performance on data set with hard scenarios . . . . . . . . . . . . . . . . . 68

5.5 Accuracy under various conditions . . . . . . . . . . . . . . . . . . . . . . . 69

xv





1
Introduction

Contents

1.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.2 Proposed Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.3 Structure of the Thesis . . . . . . . . . . . . . . . . . . . . . . . . 2

1.1 Motivation

Over the years Advanced Driver Assitstance Systems (ADAS) and Automated Driving

(AD) applications became more and more mature and complex. In the beginning, the

systems had to work on the basis of minimal resources. Nowadays, such systems consist

of a large number of sensors and control units, which characterize the surroundings of the

vehicle in order to derive actions from it. Such systems can be used to intervene in the

driving process, such as, parking assistants, lane change assistants or collision warning

systems.

In order to guarantee and increase the safety of ADAS and AD applications, the vali-

dation and testing of such systems is of high importance. The aim of the Dynamic Ground

Truth (DGT) team from AVL List GmbH is to develop a reference measurement system,

that reliably acquires ground truth data for the evaluation of ADAS applications and

scenario generation/extraction using a combination of high-resolution measuring systems.

As for most current advanced driver assistance systems lane detection and tracking is one

of the fundamental aspects for the DGT system. Furthermore, it is crucial to determine

a high-quality ego-vehicle localization within the lane to improve the global positioning

and the general quality of the estimated lanes and structural correspondences in virtual

scenarios, especially in multi lane scenarios of highways.

Many researches focus on the study of vision-based lane detection methods. In order

1



2 Chapter 1. Introduction

to improve the development of future vision-based lane detection and tracking, it is

important to gain know-how about several computer-vision based approaches for lane

detection, ego-vehicle localization and ego lane estimation. In addition, one would like

to gain knowledge about the differences, limitations and drawbacks of conventional and

deep learning-based approaches for lane detection and tracking.

1.2 Proposed Methods

In the course of this thesis three different algorithms have been implemented and compared

among each other. Furthermore the algorithms have been compared with state-of-the-art

algorithms of other research outcomes. As already mentioned, a special focus is kept on

the comparison of conventional techniques and deep-learning based techniques for lane

segmentation. In the course of this thesis following questions should be answered:

1. Is there a significant difference in accuracy and performance between conventional

image processing techniques compared to deep learning based approaches?

2. Do deep learning based approaches overcome instabilities and failures in complex

situations such as tunnel drives or dynamic illumination?

3. Does the use of an additional LiDAR improve the overall performance of lane detec-

tion?

4. Is it possible to estimate the vehicles lateral position in the ego-lane with an accuracy

of 5 cm?

To answer this hypothesis, first, in-depth literature research is done. Based on this

research a general processing pipeline is derived and three different solutions for lane

detection and tracking are implemented. One solution is based on conventional image

processing techniques, one algorithms is based on semantic segmentation and the third

algorithm is based on instance segmentation using deep learning. The algorithms follow

the same processing pipeline and exclusively differ in the lane segmentation task. To test

and evaluate the algorithms, a set of performance metrics is defined which can be deployed

to evaluate different kinds of lane detection algorithms. Additionally, some experimental

results are done to find out the advantages and disadvantages as well as the operational

limits of the algorithms. Based on the results the best algorithm for the DGT system is

proposed.

1.3 Structure of the Thesis

The thesis is structured as follows:
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1. Chapter 2: Background

In this chapter a general overview of the methods and the fundamentals of image pro-

cessing techniques and deep learning is given to better understand the core concepts

of the algorithms implemented in this thesis.

2. Chapter 3: Literature Review

This chapter is devoted to discuss the outcome of in-depth literature research in the

field of lane detection and tracking.

3. Chapter 4: Concepts

In this chapter the three solutions and all its methods implemented in this thesis are

discussed in detail. The algorithms follow the same processing pipeline and mainly

differ in the image segmentation stage. Based on the pipeline of the respective

algorithms the sections are structured accordingly starting with pre-processing and

ending up with the detected lanes and position estimation of the vehicle.

4. Chapter 5: Evaluation

This chapter describes the used data sets, the testing criteria, some experimental

results and the evaluation results of each individual algorithm. To have an estimate if

and how well the LiDAR point clouds improve the result, the algorithms are divided

into a basic version and an advanced version for evaluation. The basic version does

not utilize LiDAR point clouds for lane detection whereas the advanced version does.

5. Chapter 6: Conclusion

In this chapter a conclusion is made and the ideal solution for individual use cases

is proposed. Furthermore, a proposal for future development is done.





2
Background

Contents

2.1 Notations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2.2 Image Formation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2.3 Random Sample Consensus . . . . . . . . . . . . . . . . . . . . . 8

2.4 Artificial Neural Networks . . . . . . . . . . . . . . . . . . . . . . 9

2.5 Gradient Descent and Backpropagation . . . . . . . . . . . . . . 11

2.6 Hough Transfrom . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

2.7 Kalman Filter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

This chapter is devoted to give a general overview about the concepts of image pro-

cessing techniques. It will give an overview about image formation and will explain the

fundamentals of neural networks and other core methods required to better understand

the algorithms implemented in this thesis.

2.1 Notations

Before we start to discuss the core concepts in detail it is necessary to introduce the math-

ematical notations used in this thesis. The notations are summarized in Table 2.1. Scalars

are depicted with italic fonts(e.g., a or b) whereas vectors and matrices are represented

in bold(e.g., v or M). Note that, vectors are written in lower case and matrices are rep-

resented in upper case letters. Mapping functions from one space to another are depicted

as calligraphic letters in upper case format (e.g., M). Vector spaces are represented in

upper case double lined format(e.g., Z).

5



6 Chapter 2. Background

Entity Notation

Scalars a, ci
Vectors v
Matrices M
Vector norm ||v||
Vector Spaces Rn

Mapping Function P : R3 → R2

Table 2.1: List of notations used in this thesis.

2.2 Image Formation

To describe the projection of the real world scene to the camera scene a projection model

must be defined. For this thesis the projective camera model is used for 3D to 2D image

projections. This camera model is based on the pin hole camera model and is most widely

used in computer vision. The pin hole camera model is based on the assumption that the

relation between image coordinates and world coordinates is projective, meaning that the

projection of straight lines from world space also leads to straight lines in camera space.

Due to the dimensional extension from camera perspective in R2 to world coordinates in

R3, each image point can be described as the intersection point of the image plane and

the ray spanned by the 3D projection center and 3D world point, as depicted in Fig. 2.1.

Image Plane

Y
X

Z
f

Figure 2.1: Pinhole camera model.

From a mathematical perspective the projection of an world point Xi to the corre-

sponding point xi in the image plane can be computed with the camera matrix P which

is defined as

P = K [R| −RC] . (2.1)

The matrix K is the calibration matrix embedding the camera`s intrinsic parameters and

enables the transformation of points from a relative world coordinate system to the camera
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coordinate system and visa versa. The matrix is defined as

K =

fx 0 px
0 fy py
0 0 1

 , (2.2)

with fx and fy describing the focal length f and px and py describing the pixel coordinates

of the principle point p. The focal length f is the distance from the center of projection

to the camera plane and the principle point p is the point of intersection of the optical

axis with the image plane. Since the calibration matrix just describes the transformation

to a relative coordinate system in R3, the matrices R and C describe the rotation and

translation to a world coordinate system. The perspective transformation from a homoge-

neous world point Xi to its corresponding homogeneous image point xi can be computed

as follows:

xi =

fx 0 px
0 fy py
0 0 1

[R −RC

0T 1

]
X

Y

Z

1

 (2.3)

or in a more compact form

xi = PXw . (2.4)

The get the final pixel coordinates the homogeneous image point has to be normalized

to x = (x/z, y/z, 1)T. The discussed projective transformation model describes the trans-

formation of real world points to image points under ideal conditions. Other effects like

distortions are not considered till now. The most common distortion types are introduced

by camera lenses and can be classified in radial and tangential distortion. The radial

distortion effect leads to straight lines represented as curved lines in image space, what

means points are not projected to the point of the ideal pinhole camera model, but to

another position. Tangential distortion can occur due to a misaligned lens what leads to

the effect that regions with the same distance to the camera seem to differ in distance and

appear to be closer or farther away. This effects can be compensated by choosing a proper

lens distortion model. For this thesis the widely used Brown-Conrady model introduced

by Brown [7] was chosen. With this model radial distortion is solved by

xcorrected = x
(
1 + k1r

2 + k2r
4 + k3r

6
)

ycorrected = x
(
1 + k1r

2 + k2r
4 + k3r

6
)

and tangential distortion is solved by

xcorrected = x+ 2p1xy + p2(r
2 + 2x2)

ycorrected = y + p1(r
2 + 2y2) + 2p2xy .
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with the five distortion coefficients k1, k2, k3, p1, p2.

The intrinsic and extrinsic calibration parameters as well as the distortion coefficients are

determined in a camera calibration procedure. The most common procedure for camera

calibration is Zhangs Method [61]. For this thesis the parameters are given and the camera

calibration is not part of it, therefore it will not be discussed further.

2.3 Random Sample Consensus

Random Sample Consensus (RANSAC) is the most popular robust estimator in computer

vision and was first introduced by Fischler and Bolles [18] in 1980. It is a non-deterministic

algorithm to estimate the parameters of a global model from a set of data points containing

outliers in an iterative way. The algorithms is non-deterministic and returns different

solutions on different computations. Furthermore, it relies on the assumption, that there

exist a sufficient amount of inliers in the given data set. Fig. 2.2 shows an example of line

model parameter estimation based on RANSAC.

(a) (b)

Figure 2.2: Example of line model parameter estimation based on RANSAC algorithm with a) a
bad estimate containing sparse amount of inliers and b) a good estimate with maximum number
of inliers. Picture taken from [37].

The principle of the algorithm is summarized in Algorithm 1. The goal is to find the

parameters θ of a given model M0 that optimize a cost function J∗ in a given data set

D. At first a set of data points sεD is randomly selected. Afterwards, the corresponding

model or respectively its parameters based on this samples are computed. Based on the

estimated model parameters, the error to each data point in D is computed and the inliers

within a given thresh hold are selected. After a maximum number of iterations the model

with the most amount of inliers is selected.
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Algorithm 1 RANSAC Algorithm

1: i← 0
2: while i < N do
3: i = i+ 1
4: Randomly select a set of data points sεD
5: Compute model parameters θi based on samples s
6: Compute cost Ji of the model
7: if Ji < J∗ then
8: J∗ ← Ji
9: θ∗ ← θi

10: end if
11: end while
12: Compute model parameters θ∗ considering all inliers
13: θ ← θ∗

2.4 Artificial Neural Networks

Artificial Neural Networks (NNs) are designed to cope with complex problems such as

classification, regression or pattern recognition. The principle design of neural networks is

inspired by the human brain. In the human brain neurons are connected with each other

spanning a complex network, where each neuron is triggered if its inputs meet a specific

hypothesis. Fig. 2.3 shows the simplest model of a neuron used in a NN . In a neuron,

an arbitrary number of weighted inputs xi with some bias b is summed. If the result

meets some hypothesis, such as exceeding a threshold, an output is created according

to a specific activation function. The most common activation functions are the sigmoid

function, the hyperbolic tangent function and the rectified linear activation function. More

details about activation functions can be found in [40]. From a mathematical perspective

a neuron is defined as

y = f

(∑
i

xiwi + b

)
, (2.5)

with y as output, xi as the inputs, wi as the weights, b as bias and f as the non-linear

activation function.
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Figure 2.3: Model of a neuron in a NN with x as the input array, w as the weights, b as bias and
f as the activation function.

In a NN an arbitrary amount of neurons is individually connected, that the output of

some neurons forms the input of neurons in another layer. Fig. 2.4 represents a potential

architecture of a NN consisting of several neurons. Depending on the amount of layers,

NNs are often referred as Deep Neural Network (DNN).

Generally speaking, Neural Networks are trained by feeding the network with examples

and comparing the output with some ground truth based on a loss-function. According

to the comparison the weights and biases of the individual neurons are adjusted. After

several iterations the network starts to differentiate between several classes. This process

is called gradient descent and will be discussed in Section 2.5. If a models output shows a

high accuracy with trained data, but performs poor with unseen data of same context, the

model is over fit. This can be avoided based on several techniques such as regularization,

early stopping or data augmentation that will not be discussed in this thesis. For more

details see [40].

Figure 2.4: Basic architecture of a neural network with two hidden layers. Image taken from
[28].
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2.5 Gradient Descent and Backpropagation

Gradient descent is a common technique used in supervised learning to find the local

minimum of a differentiable function by making steps in the negative direction of the

gradient. For a better understanding, one can think about finding the lowest point on a

landscape. Starting from an arbitrary point someone makes steps in the direction of the

steepest descend until a minimum is reached.

In more detail, the output y of a NN is compared with a reference value based on a

loss function L. The goal is to find the weights and biases, denoted as W which minimize

the error of the loss function

min
W

1

N

∑
Ni

L (gti, yi|W) . (2.6)

To do so, the models parameters W are updated iteratively with backpropagation, a

technique to adjust the weights and biases by propagating the gradients from output to

input using the chain rule. The goal is to find the solution which minimizes Eq. (2.6).

This can be described as

Wt+1 = Wt − α
∑
i

∂L (gti, yi|W)

∂W
, (2.7)

with α as the learning rate and t as the number of iteration.

In NN , a more common implementation of gradient descent is stochastic gradient

descent. With stochastic gradient descent an approximation of the gradient is done by

considering just a random subset of the data often called ”mini batch”, where the size of

the mini batch correlates with the goodness of the approximation of the gradient. This

approach is computational less expensive and is therefore an optimization of gradient

descent, what is a special advantage in applications with big data sets.

2.5.1 Convolutional Neural Networks

A Convolutional Neural Network (CNN) is a form of Neural Networks specially designed

to extract features by introducing convolutions and was first introduced by Kunihiko et

al. in [31]. CNNs are able to process multi-dimensional input data and are capable to

consider spatial and temporal dependencies. Therefore, CNNs have a particular advantage

in image processing or audio processing tasks. A CNN typically consists of three layers,

each with another functionality: a convolutional layers, pooling layers and one or more

fully connected layers [40].

The layers can be arranged, one behind the other in an arbitrary manner and as often

as required, as can be seen in Fig. 2.5.
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Figure 2.5: Potential architecture of a CNN .

Convolutional Layer

In convolutional layers the input is convoluted with a kernel of a given size. Taking

multi-dimensional data as input, the kernel usually has the same number of dimensions

as the input. In the case of a 3-channel RGB image the kernel has 3 dimensions as well.

However, the size of the kernel, more specific the width and height of the kernel, can vary.

The main objective in a convolutional layer is to extract features where the number of

layers influences the granularity of the feature extraction. Starting with low-level features

like edges, gradients or intensities, the architecture adapts to high-level features with the

increase of the number of layers.

Pooling Layer

Due to the fact that computing convolutions, weights and parameter optimization of a

network can be computational expensive, pooling layers are primary used to reduce the

dimension. Furthermore, a pooling layer can be used to make the network more invariant

to small displacements of the input by slightly shifting the input. Pooling does not effect

the depth of the input, only the area. The reduction of the dimensions is mainly done

with max-pooling or average pooling that returns the maximum value or respectively the

average of a region covered by a kernel of a given size. Pooling is done for each layer

separately and leads to more in-variance in terms of small translations and distortions

[33].

However, there are some drawbacks in reducing the dimension, such as the loss of

spatial information during each pooling step. There exist several pooling structures to

address this problem [12]. Fig. 2.6, shows four different architectures. A image pyramid

architecture introduces several parallel convolutions pipelines that get combined. The

Encoder-Decoder architecture enables the transition of spatial information between pooling

and unpooling layers. With atrous convolution the spatial information is retained by

increasing the Field of View (FoV) instead of lowering the resolution. Spatial pyramid

pooling is similar to the image pyramid, but with different pooling stages instead of different

inputs.
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Figure 2.6: Four different architectures including a image pyramid structure, encoder-decoder
structure, atrous convolution structure and spatial pyramid pooling(from left to right) to cope
with the loss of spatial information. Image taken from [12].

Fully Connected Layer

Fully connected layers are mainly used in classification tasks. To learn the non-linear

combination of the features extracted in the earlier layers, fully connected layers are used as

a termination of the structure. The multidimensional layer containing features is flattened

to a 1-D vector and is fed into a feed-forward NN that learns a non-linear function that

is normalized with a function such as soft-max.

Fully Convolutional Network (FCN)

Fully Connvolutional Networks (FCNs) are an extension of CNNs. Beside many other

fields of application they are often used for semantic segmentation tasks. Long et al. [36]

show that an FCNs trained end-to-end and pixel-to-pixel, exceeds the State-of-the-Art

(SotA) in semantic segmentation. By replacing the fully connected layer of a CNN with

convolutional layers, a class probability map is generated enabling pixel-wise classification.

Because pixel-wise classification needs an output with the same size as the input, the coarse

probability map is up-sampled back to the given input size. Due to upsampling and

deconvolutions the segmentation results at the structures boundaries often are inaccurate.

This leads to unclear edges of the objects and makes the objects look blobby or smudgy.

There are several methods to improve the accuracy such as a special architecture for

pooling or conditional random fields [32]. For detailed information see [40]. FCN are often

extended to an encoder-decoder structure. Badrinarayanan et al. [2] proposed an FCN

with encoder-decoder structure consisting of 13 encoding layers followed by 13 decoding

layers, as can be seen in Fig. 2.7.

2.6 Hough Transfrom

Hough-Transform was invented by Hough. [24] in 1962 and is a popular technique to

estimate simple shapes such as lines or circles in an image. The idea behind the Hough

transform is, that points connected by a line can be found by transforming the individual

points to a specific space called Hough space. In the Cartesian coordinate system, a line
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Figure 2.7: Architecture of SegNet consisting of an encoder stage and a decoder sage that
upsamples its input based on the transferred pooling indices. Image taken from [2].

can be described as

y = ax+ b . (2.8)

However, this line can also be represented as a single point in Hough space by plotting a

against b. Consequently, the Hough transfrom of lines is a mapping from a line to a point

in another space. A point in Cartesian coordinates can also be mapped to Hough space

which is represented as line. With that, a point is mapped to all possible lines that pass

through it.

There is one problem with the presentation in Eq. (2.9). When the line is vertical, the

gradient is infinitely large and cannot be represented in Hough space. Therefore, lines are

represented in polar coordinates instead and defined as

r = x cosφ+ y sinφ . (2.9)

Whenever a series of points in a Cartesian coordinate system is connected by a line, the

equation of that line can be found by first plotting each point in the Cartesian coordinate

system to the corresponding line in Hough space, and then finding the point of intersection

in Hough space. The point of intersection in Hough space represents the r and φ values

describing the line that passes consistently through all of the points in the series. Fig. 2.8

shows visualizes the estimation of the parameters of the line passing through three points.

2.7 Kalman Filter

The Kalman Filter is a popular algorithm in signal processing introduced by Kalman [26]

in 1960. It provides a framework for state estimation and prediction of dynamic systems

which are described as mathematical model over time. The Kalman Filter is working

under the assumption that the system is linear and the noise in the filter is based on a

Gaussian distribution. The Kalman Filter can be split in two processes called prediction

step and correction as can be seen in Fig. 2.9.
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(a) (b)

Figure 2.8: Hough Transform with a showing a line passing through three points. b sows the
parameters of the potential lines which pass through each point. The point of intersection provides
the line equation. Image taken from [54].

Time Update
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Initial State
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Figure 2.9: Operation of Kalman Filter.

Prediction Step

In a prediction step the Filter produces a prediction of the current state xk, also called a

priori state, of the model considering the previous state xk−1 with its uncertainty in the

previous period. The state x is a n-dimensional vector containing the necessary parameters

to mathematically describe the model. The predicted state at a given time stamp is defined

as

x̂k = Axk−1 + Bak + wk (2.10)

with x̂k as thepredicted a priori state, xk−1 as the previous state, A as the state transition

matrix associating the a priori state to the previous state, ak as the control input, B

the control matrix associating the control input to the state and a random variable wk

representing the noise of the state transition.

Furthermore, the error covariance also called a priori covariance estimate is predicted

as follows

P̂k = APk−1A
T + Q (2.11)

with P̂k as predicted a priori covariance matrix, Pk−1 as the previous error covariance
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and Q as the covariance of the process noise.

Correction Step

In a correction step the estimates are updated to an improved state estimation(a posteriori

state) by incorporating current observations or measurements with its uncertainties.

The observation or measurement is given by

zk = Hxk + vk (2.12)

with zk as the measurement vector, H as measurement matrix associating the measure-

ment vector to the state and vk as measurement error.

To find the weight of the new information a Kalman gain Kk is computed as follows

Kk = P̂kH
T
(
HP̂kH

T + R
)−1

, (2.13)

with R as observation covariance noise.

Afterwards the state is updated using the Kalman gain Kk and the measurement vector

zk with following equation:

xk = x̂k + Kk (zk −Hx̂k) (2.14)

In a final step the error covariance estimate is updated as follows:

Pk = (I−KkH) P̂k (2.15)

where I is the identity matrix.
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The aim of this thesis is to implement and evaluate methods for vision-based lane

estimation and the ego-vehicle localization relative to the lane markings. Therefore, it is

necessary to properly detect all lane markings in a given image. This chapter will introduce

methods developed in related work and will give an overview of the key methods of image

processing in the field of lane detection and tracking.

3.1 Lane Detection and Tracking in General

Lane detection and tracking is a well researched area in the field of computer vision and

plays an important role in the field of Automated Driving (AD) and Advanced Driver

Assitstance Systems (ADAS). A detailed awareness of the lanes position and shape is not

only important to keep the vehicle on track or to compute the lateral vehicles position, it

also enables the estimation of roads geometry. Numerous methods have been developed

and proposed in an attempt to reliably detect lanes. Ali G Ulso et al. [8] group lane

detection methods into:

� Sensing of magnetic wires embedded into the lanes

17
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� Distance measurement to reference points based on Ground Truth (GT) maps

� Measurement of reflection markers on the lane

� Vision-Based systems

The first three methods usually provide more accurate and reliable results in difficult

situations like high speed or bad weather conditions. However, those methods require

a road infrastructure in place what is expensive and often not available. Consequently,

vision-based systems have the highest potential in the field of ADAS and AD . Thus, the

focus of this thesis and the next chapters focus on vision-based systems.

3.2 State-of-the-Art Pipeline for Lane Detection and Track-

ing

The traditional vision-based lane detection and tracking is based on the computation of

either handcrafted or machine learned features and the estimation of lane markings based

on conventional techniques like vanishing point estimation, Hough transform or RANSAC

model fitting. As an outcome of Section 3.1, one can generalize the steps for lane detection

as follows:

1. Starting with the input stream in form of images or LiDAR point clouds, a pre-

processing step is done. The State-of-the-Art (SotA) incorporates the selection of

a Region Of Interest (ROI) and Inverse Perspective Mapping (IPM). Both can ei-

ther be computed in a static or an adaptive way. Furthermore, conventional image

processinglike color transformations, blurring and noise reduction is done.

2. The feature segmentation stage incorporates methods to compute features for the

lane detection and tracking step. The most common methods in this stage are outlier

removal and features extraction. This results in a filtered image, commonly in form

of a binary segmentation mask, which segments the frame into background and lane

markings. The segmentation task can either be done based on heuristic techniques

for image filtering or it can be computed based on machine learning approaches,

most commonly by the use of Convolutional Neural Networks (CNNs).

3. After pre-processing the image lanes can be detected based on various techniques

such as Hough transform, RANSAC model fitting or vanishing point estimation.

4. By taking advantage of temporal relationships, correct estimated lanes are tracked

to improve the overall quality of detection. This is commonly done by the use of a

Kalman filter or a particle filter.

5. After the estimation of the necessary information of the lane markings, further pro-

cessing, like the computation of the vehicles lateral offset, can be done.
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Based on this knowledge one can generalize the process of detecting lanes into a pipeline

consisting of the four stages Pre-Processing, Segmentation, Lane Detection and Tracking,

as shown in Fig. 3.1. The steps will be discussed in detail in the upcoming chapters.

Segmentation

Detection

Tracking

Input Stream Pre-Processing Lanes

Figure 3.1: Basic pipeline for lane detection and tracking.

3.3 Pre-Processing

Pre-Processing is an important step in lane detection. The goal of this step is to extract

only the necessary information of an image for further processing stages. The quality of

the pre-processing stage directly correlates with the accuracy of the lane detection. The

pre-processing stage again can be split into image smoothing, computation of ROI and

IPM .

3.3.1 Image Smoothing

Image smoothing is a common approach to reduce noise in images by applying special

filters. In [50], [5] and [49] a 2D Gaussian Filter is used to blur the image. Foda and

Dawoud in [19] use a Median filter for salt and pepper noise reduction. Morphological

operations like dilation and erosion or opening and closing respectively for noise reduction

are used in [23] and [60].

3.3.2 Region of Interest (ROI)

Images used for lane detection often do not only cover the road plane, but also the horizon

or other irrelevant objects. By defining a suitable region of interest, the computational cost

and the error-proneness of lane detection can be reduced drastically. The computations

should consider regions which only contain necessary information. There are several ways

of finding a suitable ROI . The ROI either can be defined in a static way or can be

computed in an adaptive way. In [42] and [41] vanishing point extraction is used to

define the best possible ROI . The ROI is simply defined as the area below the computed

vanishing point.
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Due to the perspective effect of image projection, parallel lanes in world coordinates

lead to intersections in image plane at the vanishing point. As a result, the form of

the lanes is trapezoidal. Pomerleau in [45] extend the solution of [42] and [41] with a

perspective model. This leads to a trapezoidal ROI which fits the road surface better and

contains less irrelevant information.

ROI

Vanishing Point

(a) Normal ROI

Vanishing Point

(b) Trapeziodal ROI

Figure 3.2: Definition of the ROI with a) showing normal ROI based on vanishing point and b)
showing a trapezoidal ROI considering the perspective effect.

3.3.3 Inverse Perspective Mapping (IPM)

In numerous researches IPM is done after the definition of the ROI . IPM is utilized in [5],

[53] and many other studies. With IPM the image is transformed from camera perspective

to a perspective as if the scenario is seen from top, often called bird-eye perspective. As

can be seen in Section 3.3.3, the transformation removes the perspective effect what leads

to a change of cross shaped lanes into parallel lanes in the bird-eye view. This enables the

consideration of structural correspondences and leads to a better feature extraction and

outlier removal.

From a mathematical perspective IPM is the transformation of points in 3D Euclidean

space (x, y, z) ∈ R3 to a 2D space (u, v) ∈ R2 described by the Homography H. In [5]

the transformation H is estimated based on simple trigonometry under the assumption

that the intrinsic and extrinsic camera parameters are known. A more robust solution

is proposed by [43]. They take use of multi modal sensor fusion of the camera with a

LiDAR. The results show that their approach is more robust in scenarios with obstacles

in the scene. Another approach is shown by Neven et al. [39]. Here Neural Network (NN)

is used to predict the parameters of the Homography.
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(a) (b)

Figure 3.3: Inverse perspetive mapping with a) as input image and b) as the bird-eye image.
The yellow line indicates the area of the image that was used for IPM . Image taken from [43].

3.4 Segmentation

This stage is about extracting the necessary features for lane detention in the following

stage. Further outlier removal based on spatial correspondences and other special tech-

niques is commonly done in this stage. The result of this stage commonly is a mask that

segments lane markings and background. The feature extraction can either be done based

on basic image processing techniques like edge detection, color segmentation or adaptive

thresholding. Many researches use a combination of those techniques. Furthermore, seg-

mentation can be treated as a semantic segmentation by using deep learning architectures.

3.4.1 Conventional Segmentation

Conventional methods for image segmentation use the raw image as input and utilize

the characteristics of lane markings in images space such as edges, colors or textures for

detection.

Edge-Based Segmentation

Because of the sharp transition in contrast and, as a result, the strong gradient from

lane markings to road surface, edge-based segmentation is a popular technique for

conventional feature extraction of lane markings, especially in the case of solid or dashed

lane markings. There exist several edge filtering techniques like Roberts [47], Sobel [52],

Prewitt [46] and Canny Edge detection [9], whereby Canny Edge detection leads to a

more accurate result because of its non-maxima suppression and hysteresis thresholding.

In the early days of vision-based lane detection Schneiderman and Nashman [49] used

edge extraction in combination with model fitting to consecutively update the road

model. This is done under the assumption that the lane markings are present and well

visible. The computations are done in the image plane only without the use of vehicle

motion information.
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Doshi et al. [17] investigated in several edge detection techniques, such as Canny, Sobel

and Roberts. Their evaluation focuses on the accuracy and performance in the context

of lane detection. Their results show, that Canny Edge detection and Sobel lead to a

better performance than the others. Considering the combination of execution time and

accuracy, the Sobel operator is the overall winner.

(a) (b)

Figure 3.4: Result of canny edge detection with a) as original image and b) as resulting segmen-
tation mask. Image taken from [59].

However, edge based segmentation works well under fairly good conditions, but still leads

to bad results in more complex situations such as images with a in-homogeneous rod

structure as can be seen in Section 3.4.1

Color-Based Segmentation

Color-based segmentation helps to segment the lane markings from road surface and other

objects with the help of color information. Color thresholding can be done in several color

spaces such RGB, HSV, or gray scale. Nieto et al. [41] use gray scale information with

Expectation-Maximization to estimate a multi class likelihood model of the road. In [57]

the RGB image is converted to HSI color space what enables color thresholding based

on saturation and intensity. Tran et al. [56] improved the HSI color model by changing

the computation of the intensity value of the RGB image. Their results can be seen in

Section 3.4.1.

However, color-based methods potentially lead to bad results in scenarios with complex

illumination. Therefore, those methods commonly are combined with other methods such

as edge-based segmentation.
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(a) (b) (c)

Figure 3.5: Result of color segmentation proposed in [56] with a) as original image and b) as
result based on normal HSI conversion and c) as result based on their approach. Image taken from
[56].

Adaptive Thresholding

Similar to color-based segmentation, adaptive threshholding helps to segment the lane

markings from road surface and other objects with the help of intensity information.

Borkar et al. [5] used a combination of adaptive thresholding and IPM to generate a

binary segmentation image which is split into multiple regions - one for each lane. Line

centers for sampling are detected based on Hough transform. As can be seen in Fig. 3.6,

the results show that their algorithm is reliable, even in difficult conditions like busy

streets under low illumination.

Figure 3.6: Lane detection results of [5] under variable conditions.
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Another approach using adaptive thresholding is proposed by Son et al. [53]. After

extracting strong features via thresholding, they use IPM to transform the image to a

bird eye view. The region below the vanishing point, obtained by a projective model, is

selected as a preassigned ROI . After the feature extraction, noise is removed and outliers

are limited to a minimum in a clustering step. An improved Random Sample Consensus

(RANSAC) (Feedback RANSAC) algorithm preventing wrong detections was used to fit

a polynomial lane model. To improve the performance, lanes are classified as temporary,

extinct or valid. Tracking is only done for lanes classified as valid by the use of a Kalman

filter.

3.4.2 Segmentation with Neural Networks

Because conventional methods are unreliable in more complex situations (e.g., dynamic

illumination, scenes with many occlusions, etc.) the current state-of-the-art is to use deep

learning architectures for image segmentation based on either semantic segmentation or

instance segmentation.

Semantic segmentation is the task of assigning a class label to each pixel, whereas

multiple objects are treated as one entity. Instance segmentation, on the other hand, is

similar to semantic segmentation. Instead of treating multiple objects of the same class

as one entity, instance segmentation treats those objects as individual ones.

The current state-of-the-art is to use networks that build up on a CNN and train it

with pixel-wise annotated images. Various types of CNNs can be used for the segmentation

task, whereby the architecture of the networks is quite similar.

LaneNet

Neven et al. [39] proposed LaneNet, a modification of the encoder-decoder network ENet

for end-to-end instance segmentation, where each lane is handled and labeled as its own

instance. Fig. 3.7 gives a general overview of the system. Two branches using the same

encoder stage of the network were developed. A segmentation network outputs a binary

segmentation map which separates background and lane markings. Furthermore, an in-

stance segmentation branch is used to separate the lanes by using a special clustering loss

function proposed by Brabandere et al. [6]. Afterwards, clustering is done to generate a

binary with each lane labeled as an own instance. Since LaneNet outputs a binary seg-

mentation mask, curve fitting in combination with IPM is done. By using an additional

neural network (H-Net) which predicts the parameters of a perspective transform with

6 Degrees of Freedom (DOF), the transformation matrix for IPM is computed for each

frame.



3.4. Segmentation 25

Figure 3.7: System overview of [6]. Lane markings are labelled as an output of LaneNet. The
lane pixels are transformed to bird eye view by the transformation matrix outputted by H-Net. In
a final step lane fitting is done.

DeepLabv3+

Upsampling and deconvolutions lead to a spatial loss in the decoder stage of a network.

As a result, inaccurate object boundaries can be seen. Furthermore, scaling is of high

importance. If a network was only trained with small objects, it might performs bad

dealing with big objects and via versa. Consequently, the front-end network in encoder-

decoder structures is of great importance.

To address this, Deeplab, an open source semantic segmentation network from Google

developed by Chen et al. [11], was developed. The architecture is based on an encoder-

decoder structure, with several available networks for feature extraction such as MobileNet

[48], ResNet [22] or Exception [14].

As already mentioned, due to the loss of spatial information in pooling layers, seg-

mentation networks lack in accuracy at object boundaries. There exist several methods

to minimize this problem, as shown in Fig. 2.6. To cope with scale in-variance and the

loss of spatial information, Atrous Spatial Pyramid Pooling (ASPP), a combination of

atrous convolutions and spatial pyramid pooling, was introduced with DeepLab. With

the concept of atrous convolution, the kernels Field of View (FoV) is adjusted to gather

large scale features, while using the same number of parameters and retaining the original

input resolution. From a mathematical perspective the atrous convolution is defined as

y[i] =
∑
k

x[i+ rk]w[k] . (3.1)
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with the atrous rate r defining the spacing of the filter kernel, x as the input and w as the

kernel. Fig. 3.8 shows atrous convolutions with a 3x3 kernel and different rates, whereas

a rate r = 1 corresponds to a normal convolution.

Figure 3.8: Comparison of atrous convolutions with a 3x3 kernel size and different rates. Image
taken from [12].

The combination of atrous convolution with different rates enables feature extraction

on different scales without the loss of spatial information and is referred as Atrous Spa-

tial Pyramid Pooling (ASPP). Furthermore, DeepLab uses a convolution technique called

atrous depth-wise convolution. With that, the computational demands are significantly re-

duced while the performance is not effected. This is done by breaking the convolution down

to an atrous depth-wise convolution followed by a point-wise convolution. DeepLabv3 is

based on a modified model of ResNet-101 [22] with atrous convolutions, ASPP and bilinear

upsampling in the encoder module.

Deeplabv3+ extends Deeplabv3 by a encoder-decoder structure and atrous depth-wise

convolution in the ASPP and decoder stage. The architecture of DeepLabv3+ is shown

in Fig. 3.9. For detailed information see [13].

Spatial Convolutional Neural Network (SCNN)

Because lane markings cover only a small part of an image and often are occluded or

partly not painted, the optimization for semantic lane segmentation is a challenge. Typi-

cally CNNs are based on a convolutional layer-by-layer stacked structure. Pan et al. [44]

developed Spatial Convolutional Neural Network (SCNN), a CNN that exploits spatial

information in one layer by performing sequential message passing. With SCNN they

replaced the typical layer-by-layer convolutions with slice-by-slice convolutions which en-

ables row-wise and column-wise message passing between pixels in one layer. In Fig. 3.10

you can see an illustration of the architecture of SCNN . The forward computation of an

input X with the Kernel K is defined as

X′i,j,k = Xi,j,k + f
∑
m

∑
n

Xm,j−1,k+n−1 ×Km,i,n (3.2)
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Figure 3.9: Deeplabv3+ encoder-decoder architecture as an extension of DeepLab3. Image taken
from [13].

with f as an activation function. Xi,j,k is the value of the input at channel i, row j, column

k and Xi,j,k is the weight between the element in channel j of the current slice and the

element in channel i with an offset of k columns of the last slice. Note that with SCNN

the computation is done in four different directions(up, down, left, right) and the kernel

weights are transmitted across all slices.

Figure 3.10: Architecture of SCNN with convolutions in the four different directions. Image
taken from [44].

Instead of performing a pixel-wise semantic segmentation, SCNN outputs a

probability mask, indicating the probability of the center of the lane marking at the

corresponding pixel. The results of SCNN were tested on CityScapes dataset1 [15] and

show, that SCNN better learns spatial relationships. In comparison with ReNet [58],

MRFNet[30] and ResNet-101 [22], it better captures long continuous structures leading

to less unconnected parts in the segmentation mask, as you can see in Fig. 3.11.

1Freely available data set for academic research: https://www.cityscapes-dataset.com/

https://www.cityscapes-dataset.com/
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Figure 3.11: Comparison of SCNN with results of other networks. Image taken from [44]

3.4.3 Point Cloud based Segmentation

There is research in which 3D sensors such as LiDARs are used to segment the ROI

[21, 27, 35]. Lane marker detection is done based thresholding the intensity information

of the whole LiDAR scan to segment lane markings and road surface. E.g. in [27] they

used Otsu`s thresholding method. Due to the lack of intensity, often GPS data is used to

overlay or combine multiple subsequent LiDAR scans. In Fig. 3.12 one can see the output

of road marking detection proposed in [27]. They show that their system is capable of

detecting any kind of road marking. For evaluation they used the Monte Carlo Localisa-

tion algorithm to treat the road marking detection as vehicle localisation problem. The

drawback of using LiDAR only is the lack in density and reliability especially in situations

with occlusions.

(a) continuous line (b) dashed line (c) double line

Figure 3.12: Lane marking detection based on LiDAR intensity thresholding. Yellow points
indicate lane markings whereas blue lines correspond to curbs. Image taken from [27].
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3.5 Lane Detection

In the lane detection stage, the necessary information like position, curvature or radius of

the lane are computed based on the lane features extracted in the previous step. The most

common lane detection methods found in research are the Hough transform and RANSAC

model fitting.

3.5.1 Hough Transform

As discussed in Section 2.6, Hough transform is a well known and popular technique to

detect primitive shapes that are describable in a mathematical form. Since, lane markings

can be approximated as straight lines for short distances, Hough transform can be used

to detect lines in a image. Many researches utilize this technique to detect the position

of lane markings. Borkar et al. [5] use the Hough transform to find the line base position

for further detailed lane sampling, as can be seen in Fig. 3.13. One of the drawbacks of

Hough transform is, that the performance is bad for curved lanes. Therefore, it is often

combined with other techniques. Wang et al. [59] e.g., subdivide their image into multiple

regions and apply Hough transform for each region to obtain an initial estimate for model

fitting.

Figure 3.13: Candidate points sampled based on line parameterized with θ and ρ found with
Hough transform. Image taken from [5].

3.5.2 RANSAC Model Fitting

Another popular approach for lane detetion is RANSAC lane fitting. The theory of

RANSAC is discussed in Section 2.3. With RANSAC model fitting a sample of feature

points extracted in the segmentation step is taken to form the hypothesis of a lane or lane

marking based on a specific model such as a spline or a quadratic model. The different

hypothesis are tested against the other samples and the hypothesis with the highest num-

ber of inliers is selected. A huge advantage of RANSAC model fitting is, that the line

detection is not restricted to straight lines. It can cope with variable shapes based on the

choice of the model.
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Borkar et al. [5] extend their low resolution Hough with RANSAC line fitting of a

straight line based on the parameters ρ and θ extracted by the Hough. In [53] an improved

RANSAC algorithm is used to fit a quadratic line model to the feature points. They use

a second scoring function for RANSAC based on the feedback of the previous curvature

and lane edges.

3.6 Tracking

Many researches use a tracking stage to cope with outliers and to predict the parameters

of a lane marking. Due to the utilization of temporal relationships, tracking shows a

significant improvement in accuracy and in case of a lane not being detected in short-

term, the prediction of the tracking stage can be used for processing. The most common

tracking algorithms used in researches are Kalman Filter and Participle Filter.

3.6.1 Kalman Filter

Due to the computational advantages and its easiness in implementation, Kalman filter is a

widely used method for tracking. The theory of Kalman filter is dicussed in Section 2.7. A

common approach is to directly track the parameters computed by the Hough transform,

as can be seen in [5]. The state transition matrix and observation vector are composed

of the parameters ρ and θ and their derivatives. Son et al. [53] use the parameters of

the quadratic model and their derivatives for the state transition matrix and the current

parameters of the quadratic model for measurement update. Due to its linearity, the

output of the Kalman Filter can be vulnerable to complex situations such as outliers or

missing feature points. Therefore, Tian et al. [55] use an extended Kalman Filter (EKF),

which is specially designed to cope with non-linear dynamic systems. Their results show,

that their algorithm adopts to many driving scenarios even in complex environments.

3.6.2 Particle Filter

Particle Filter belong to the sequential Monte Carlo methods and generalize the methods

of the Kalman Filter. With this filter a set of samples, referred as particles, is propagated

over time to describe the probability density distribution of any state-space model. In

comparison with Kalman Filter, Particle filters are less vulnerable to noise and outliers.

There is still a trade off between computation costs and accuracy since the number of

particles directly influences the number of calculations.

Many researches apply Particle filter in their lane detection approach. Berriel et al.

[3] use the Particle Filter in combination with cubic spline modeling. The result can be

seen in Fig. 3.14. The yellow points indicate all the particles and the red line represent

the output based on the best particles.
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Figure 3.14: Lane detection and tracking result based on particle filter in combination with cubic
spline modeling. The red lines represent the splines and the yellow dots represent the particles.
Image taken from [3].

3.7 Discussion

In this chapter the current state-of-the-art for lane detection and tracking was discussed.

It was shown that there are numerous approaches for vision based lane detection.

Due to in depth research, a general flow chart for lane detection and tracking could

be exposed. As illustrated in Fig. 3.1, the general flow includes the four main processing

steps: Pre-Processing, Segmentation, Detection and Tracking. In many researches the

image is transformed to a bird eye perspective called IPM . Due to te removal of the

perspective effect lane markings appear parallel. There are conventional techniques using

traditional image filtering techniques like edge-based extraction, adaptive thresholding

or color based segmentation to segment the lane markings from background. In complex

situations the conventional techniques often are unreliable. Therefore, many researches use

machine learning-based approaches. There are solutions which take over the segmentation

task only, whereas other methods also treat the detection task as a machine learning

problem and directly output the necessary lane parameters. For tracking most commonly

Kalman filters or particle filters are used, but the number of researches using Kalman filter

dominates, due to its easiness in implementation and its better computing performance.

Based on this in-depth research, three different algorithms following a common pro-

cessing pipeline for lane detection have been implemented. The algorithms primary differ

in the segmentation stage. One algorithms is based on a combination of conventional seg-

mentation techniques such as color thresholding and adaptive thresholding and the other

two algorithms use deep learning models for semantic segmentation. Furthermore, LiDAR

point clouds are used to improve the computation of the ROI and to remove potential

outliers in the segmentation mask.

Due to the promising results of Borkar et al. [5], Hough transform in combination

with RANSAC line fitting is used for lane detection. A quadratic model was chosen to

describe the individual lane markings. A Kalman filter taking the parameters of the
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quadratic model as input is used for tracking. The concepts will be discussed in detail in

the following chapter.
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In the previous chapter an in depth-research on related work and state-of-the-art con-

cepts in lane detection and tracking was done. Based on that, three different algorithms

following the same processing pipeline for lane detection have been implemented. The

algorithms primary differ in the segmentation stage. One algorithm is based on a combi-

nation of conventional segmentation techniques, such as color thresholding and adaptive

thresholding, and the other two algorithms use deep learning models for lane segmentation.

Furthermore, LiDAR point clouds are used to improve the computation of the Region Of

Interest (ROI) and to remove potential outliers in the segmentation mask.

Due to the promising results of Borkar et al. [5], Hough transform in combination with

RANSAC line fitting is used for lane detection. A quadratic model was chosen to describe

the individual lane markings and a Kalman filter is used for tracking. The concepts will

be discussed in detail in the following sections.

33
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4.1 Overview

In order to compare conventional lane detection algorithms with machine learning-based

lane detection algorithms and to evaluate the advantages and disadvantages of those, three

different lane detection and tracking algorithms have been implemented and tested. Those

algorithms include two deep learning based approaches and one conventional approach.

The lane detection, tracking and post-processing is the same for all three algorithms. this

gives an ideal base for the comparison of the different segmentation concepts. Furthermore,

LiDAR point clouds are used to improve the overall detection rate and accuracy.

Fig. 4.1 illustrates the general processing pipeline (highlighted in blue) including all the

methods(yellow) that will be discussed in this chapter. In this thesis the traditional

pipeline is extend by a Post-Processing stage, in which the data recording and the vehicles

ego-position is estimated. Therefore, the pipeline of the algorithms can be split into the

five main stages Pre-Processing, Segmentation, Detection, Tracking and Post-Processing.

Again, the three algorithms follow the same processing pipeline and use the same

concepts for lane detection, tracking and post-processing. The main difference of the al-

gorithms is in the segmentation stage and the corresponding pre-processing stage, marked

as red. As can be seen in Fig. 4.1 the different stages are:

1. Pre-Processing : The pre-processing stage consists of up to four sub tasks:

RANSAC Plane Fitting, Inverse Perspective Mapping (IPM), ROI extraction and

Image Smoothing. The different algorithms either implement all the sub-tasks or

only utilize individual sub-tasks.

2. Segmentation: The segmentation stage is the key stage where the algorithms differ.

The different concepts for segmentation are:

(a) Conventional Segmentation utilizing a combination of conventional image fil-

tering techniques.

(b) Semantic Segmentation using DeepLabv3+

(c) Instance Segmentation using Spatial Convolutional Neural Network (SCNN)

3. Lane Detection and Tracking : For lane marking detection and tracking Hough Trans-

form and RANSAC Line Fitting in combination with an Extended Kalman Filter

for tracking have been implemented.

4. Post-Processing : Based on the estimated position of the lane markings, the ego-lane

and the vehicles relative position within the ego-lane can be estimated and recorded

in a post-processing stage.

The next sections are devoted to discuss the individual stages in detail. To keep a clear

structure, this chapter describes one pipeline. The sections are arranged in a way that they

start with Pre-Processing and end up with the Post-Processing stage. Since the algorithms
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Figure 4.1: Processing pipeline of the proposed algorithms.

mainly differ in the segmentation stage, the section discussing the segmentation is split into

three subsections in which the different concepts of the individual algorithms are described

in detail. During the implementation several variations with different parameters and

different combinations were implemented and tested, but in this chapter only the best

results are discussed.

4.2 Image Formation

Before we start to discuss the concepts in detail, some important remarks about image

formation have to be done. First of all, even tough camera calibration is an important

step in computer vision, it will not be discussed in detail. The images used in this thesis

either are already undistorted or the parameters for the undistortion of the images are

known. Therefore, it is expected that the internal calibration matrix K is available. Some

concepts implemented in this thesis utilize LiDAR data. Therefore, the point clouds for

the corresponding frames have to be available and the external calibration containing the

rotation matrix R, the camera position C and the translation t have to be known.
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4.3 Pre-Processing

As stated in Section 3.3 the pre-processing step is to extract only necessary information

of the input for further processing. That commonly includes the three sub tasks ROI

selection, IPM and gray scaling. Additionally, RANSAC Plane Fitting (RPF), a pre-

requirement for further concepts used in this thesi, is introduced in this thesis. Depending

on the concepts for further processing, the proposed methods for lane detection utilize a

combination of the tasks.

4.3.1 RANSAC Plane Fitting

Before discussing the individual pre-processing concepts of the algorithms, RANSAC road

plane fitting must be addressed. The process of lane detection can be improved by de-

termining the position and orientation of the road with respect to the camera or LiDAR.

Among others, it enables road boundary extraction and the computation of the Homog-

raphy H for IPM . For this purpose, RANSAC plane fitting based on LiDAR point clouds

is used. Depending on the use case, RANSAC Road Plane Fitting is done frame-wise or

only once during a calibration procedure to estimate the parameters for IPM . The theory

of RANSAC was already discussed in Section 2.3, therefore only the steps of finding the

equation of the plane and the transformation of the LiDAR points is discussed detail.

Camera-LiDAR Projection

In a first step, the 3D LiDAR points have to be transformed to camera coordinate system

by using the rotation matrix R and the translation t. The theory about image formation

was discussed in Section 2.2. Fig. 4.2 illustrates the relations between a 3D LiDAR point

X in world coordinates and the point xi in image plane or the 3D point XC in camera

coordinate system. First, the 3D LiDAR points have to be transformed to 3D points in the

local camera coordinate system. Afterwards the 3D point XC is projected to the image

plane using the internal calibration matrix K. The LiDAR points, the external calibration

parameters R and t to transform those points to a local camera coordinate system and

the calibration matrix K to project those points to the image plane are provided by the

Institute of Computer Graphics and Vision (ICG) of the TU Graz.

To make this algorithm work, one can assume that close LiDAR points, directly in front of

the car, belong to the road. Therefore, only a small ROI in front of the car for RANSAC

plane fitting was selected. Furthermore, one can assume that the road covered by this

ROI is flat. As a consequence, the point cloud can be cropped in lateral and longitudinal

direction to reduce its complexity and the computational costs. The residual points are

used for RANSAC plane fitting.
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Figure 4.2: Camer-LiDAR Formation.

Plane Fitting

Assuming one has a set of 3D points and wants to fit a plane to them, one can estimate the

plane parameters as described in this section. Mathematically a plane can be described

with a distance d and the planes normal vector n = [a, b, c]T that for a point p = [x, y, z]T

on this plane np + d = 0 is valid. This can be rewritten as

ax+ by + cz + d = 0 . (4.1)

The equation above using four values is over-determined for points in 3D space. Therefore,

one can eliminate one component by assigning c = 1. One can rewrite the equation to

ax+ by + d = −z . (4.2)

Incorporating the LiDAR points one can solve the least squares solution of Ax = B or in

a more detailed form


x0 y0 1

x1 y1 1

· · ·
xn yn 1


ab
d

 =


−z0
−z1
· · ·
−zn

 . (4.3)

Since there are only three unknowns and there are usually more than three 3D points in

a LiDAR scan, the system is over-determined. The equation can be solved by using the
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left pseudo inverse
(
ATA

)−1
AT and is defined asab

d

 =
(
ATA

)−1
ATB . (4.4)

The plane can be described by its normal vector n = [a, b,−1]T and the distance d.

4.3.2 Region of Interest (ROI)

As discussed in Section 3.3.2, the selection of a suitable ROI reduces the computational

costs and improves the reliability of further lane detection steps in terms of outliers. In

the course of this thesis a static as well as an adaptive ROI is used. For both methods

the LiDAR point clouds are used.

Static Region of Interest

With the static method a ROI in front of the car in 3D world coordinates is selected. For

this purpose, the result of road plane fitting described in Section 4.3.1 is used. This leads

to a trapezoidal form in image plane what enhances the common approach of a rectangular

ROI . illustrates the computation of the ROI .

ZcXc

Yc

ROI

Figure 4.3: Definition of Static Region of Interest.

The static ROI is selected by, first, defining the longitudinal offset to the center of the

ROI on the z-axis of the camera coordinate system. Based on this offset, the coordinates

of a 3D point denoted as r0 can be estimated. Starting from that point, a ray is defined

in the direction along the Y-axis in camera coordinate system. The ray can be described
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by the vector equation

xc = r0 + rt t ∈ R , (4.5)

with r0 as starting point on this ray, r as direction and t as scalar. The 3D center Xc ∈ R3

of the ROI in camera coordinates can be computed based on the ray-plane intersection

between the previously defined ray and the road plane estimated in Section 4.3.1. Since

the dot product of two perpendicular vectors is 0, one can write

(xc − xp) · n = 0 (4.6)

with xc as point of intersection, xp as arbitrary point on the plane and n as plane normal.

The point of intersection can be computed by first substituting the ray equation into

Eq. (4.6):

n · (r0 + rt− xp) = 0 . (4.7)

Solving for t gives

t =
n · (xp − r0)

n · r
. (4.8)

The point of intersection xc is computed by inserting t into Eq. (4.5).

Knowing the plane parameters and the point of intersection, the area spanned by the ROI

can be defined and the corresponding image coordinates can be computed. This is done

by specifying four 3D points around the center point xc and projecting those points to 2D

image points using the calibration matrix K as described in Section 2.2.

Adaptive Region of Interest

Even if a static ROI is specified, it often includes unnecessary information such as highway

guardrails or crash barriers. Especially in scenarios driving on an outer lane, the ROI often

just partly covers the road. Some approaches are vulnerable in terms of feature extraction

and segmentation of such objects. Therefore an adaptive ROI on top of the static one is

used in this thesis.

The computation of the adaptive ROI uses the given LiDAR point clouds to addi-

tionally extract the road boundary out of it. Therefore, again the road plane parameters

computed in Section 4.3.1 and the estimated static ROI are used. At first, the LiDAR

points are cropped in order to remove the points not belonging to the static ROI . After-

wards, 3D points not belonging to the road plane are removed. This is done by removing

points with a L2 norm higher than a given threshold to the plane. Based on that result the

convex hull spanned by the remaining points is computed. Finally, the width of the larger

static ROI is reduced to fit the width of the convex hull previously computed. Fig. 4.4

shows the result after the computation of the adaptive ROI . The width of the initial static

ROI was reduced to fit the road boundary.
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Figure 4.4: Visualization of adaptive ROI . The dashed line represents the large static ROI and
the continuous line represents the adaptive ROI . The green points represent the projected LiDAR
points.

4.3.3 Inverse Perspective Mapping

As already discussed, IPM is a common technique to transform the image to a perspective

as if seen from top, called bird eye-perspective. Because the perspective effect was removed,

lanes appear parallel and have a constant lane width. IPM drastically improves further

steps like lane detection and outlier removal.

IPM is a mapping of the original image points I(u, v) to the corresponding point in

the bird-eye view I(x, y). The transformation can be described asλxλy
λ

 = H

uv
1

 , (4.9)

with H as homography or transformation matrix that describes the relation of two images

visualizing the same surface.

The homography is obtained by solving Eq. (4.9) for four known point correspondences.

Therefore, the points of the static roi are selected in Section 4.3.2 and projected to the

image plane. The real world relations of those points are known, so one can choose the

corresponding points in the bird eye image to compute the homography. The geometric

relations of the corresponding points have to be preserved to get a valid result. The result

of IPM is shown in Fig. 4.5.

Gray Scale Conversion

With gray scaling the image is converted from RGB color format to a gray scale format,

where each pixel is represented by only one value - its intensity. This means bright pixels
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(a) Original Image (b) Result of IPM

Figure 4.5: Example of IPM

receive a high intensity value, whereas dark pixels receive a low value, as can be seen in

Fig. 4.6.

(a) Original image (b) Gray scaled image

Figure 4.6: Example of gray scaled image.

By considering the fact that lane markings are brighter than the road, one can take

advantage out of that in terms of lane segmentation in further steps. With gray scaling

the complexity of differentiating white or yellow lane markings from the background is

reduced. Instead of considering all three color channels in RGB color format the problem

is reduced to only one channel or value. The conversion of a RGB pixel to its gray value

is described by

Y = 0.299R+ 0.587G+ 0.114B . (4.10)
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4.4 Segmentation

This is the key stage in which the algorithms for lane detection and tracking differ. As

discussed in Chapter 3 the segmentation step is about extracting the road markings from

the scene. This section describes in detail the three different segmentation concepts that

are were implemented this thesis.

4.4.1 Conventional Segmentation

As the name indicates, the Conventional Segmentation is built up on traditional image

filtering techniques. Because lane markings often are worn out, what can lead to unclear

edges, the conventional segmentation in this thesis is not based on edge based techniques

like Sobel or Canny Edge. Instead, region based filtering techniques, which are based on

the assumption that pixels on lane markings are brighter and different in color than the

road, are used. Therefore, a combination of Color threshholding, adaptive threshholding

based on the method of Otsu and a second derivative Gaussian filter is used to extract the

lanes from the image. Fig. 4.7 shows the pipeline for segmentation. Starting with either

the IPM image or the grayscaled IPM image computed in Section 4.3, the corresponding

filters are applied and the results are combined. After an outlier detection step the final

segmentation mask, which is used as input for the lane detection stage, is generated.

Grayscale IPM 
Image

Color Threshholding

Otsu  ThreshholdingSecond Derivative
Gaussian Filter

Outlier Detection

IPM  Image

Segmentation Mask

Figure 4.7: Conventional Segmentation Pipeline.

Second Derivative Gaussian Filter

Because of the top view perspective of the IPM image, lanes are parallel and show the

same width over distance. Assuming that lane markings have a high intensity surrounded

by dark regions a second derivative Gaussian filter in y-axis is applied to the gray scaled

IPM image. The second derivative of the Gaussian function is described as

∂2G (x, y, σ)

∂2y
=

(
−1 +

y2

σ2

)
e
x2+y2

2σ2

2πσ4
. (4.11)

In the filtered image, bright pixels, such as pixels on lane markings, show a high negative

intensity value. To reduce the number of outliers and to get the best possible response of
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lane markings, the variance σ is set to the average width of highway lane markings. The

brighter the pixel, the higher the negative value or response. The values of the filtered

image are normalized to a range from 0 to 255 and the lanes can then be extracted by

applying a suitable threshold. Fig. 4.8 shows an illustration of the Gaussian kernel and

the resulting image after convolution.

x

40 30 20 10 0 10 20 30 40 y40 30 20 10 0 10 20 30 40
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(a) Second Derivative Gaussian Kernel (b) Filtered image

Figure 4.8: Second derivative Gaussian kernel and the filtered image.

Otsu Threshholding

In case of worn-out lanes, the values after filtering could be similar to the responses of

other obstacles such as guardrails. Therefore an adaptive threshold is used to exclude

outliers while still being able to detect worn-out lanes. Otsu `s method is used to perform

automatic treshholding of gray scaled images. With the algorithm a threshold value is

found that minimizes the weighted class variance to split up a gray scaled image into

two classes. This is done by iterating through all possible threshold values within a give

range and finding the value leading to a minimum of the sum of the two classes. Fig. 4.9

shows the result after thresholding the filtered image with Otsu `s method including the

histogram and the estimated threshold value.

Color Thresholding

Guardrails sometimes lead to outliers in segmentation methods based on intensity values

only. Therefore, another popular filtering approach based on the color values is introduced

in this thesis. Since lane markings primary are white, the color information of the RGB

image can be used to improve the performance of segmentation. For that, the RGB values

of the image are converted to HSL colour space. As can be seen in Fig. 4.10, a color in

HSL space can be described based on the three values hue, saturation and lightness and

white values can be separated based on the lightness value.
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(a) Filtered image with
second derivative gaus-
sian kernel

(b) Thresholded image
with Otsu `s method

(c) Histogram

Figure 4.9: Otsu threshholding with input image, resulting image and histogram (from left to
right). The dashed line in the histogram represents the estimated threshold value.

Figure 4.10: HSL colour space. Image taken from [10].

The results of the specific filtering steps and the final segmentation mask after con-

ventional image segmentation can be see in Fig. 4.11.

Outlier Detection

After the traditional segmentation steps, the segmentation mask may still contains outliers,

e.g. caused by other cars or bad road structures. For this reason a concept for outlier

detection was introduced in this thesis. The outlier detection consists of two consecutive

steps. First, a structural analysis is done. By taking a segmentation mask as shown in

Fig. 4.11 as input, the connected components in the segmentation mask are computed and

the width and area of those components is estimated. Assuming that lane markings must

have a specific width and must cover a minimum area, small outliers can be filtered by

comparing the area and the width of the components with a specific threshold.

In the second step, the LiDAR point cloud is used to evaluate the residual components.

Therefore, the road plane estimated in Section 4.3.1 and the points belonging to that plane

are used. First, the points on the road plane have to be projected to the image plane and

in a second step projected to the IPM image. To classify the individual components

as outliers or not, the amount of LiDAR points in the area covered by the individual
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(a) Input image (b) Filtered image
with second deriva-
tive gaussian kernel

(c) Thresholded
image with Otsu `s
method

(d) Color thresh-
holding

(e) Segmentation
Mask

Figure 4.11: Results of conventional image segmentation of lane markings.

components is examined. Components not belonging to the road will be filtered out as

can be seen in Fig. 4.12.

(a) Initial Segmentation
Maks

(b) Filtered Result

Figure 4.12: Example of outlier detection. The individual components are highlighted in green
borders and the corresponding LiDAR points are represented as green points.
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4.4.2 Segmentation using DeepLabv3+

Another segmentation method used in this thesis is based on semantic segmentation by the

use of Deeplabv3+. As already mentioned Deeplabv3+ is an open source image segmenta-

tion network incorporating an encoder-decoder structure and has several freely available

network backbones. Atrous Spatial Pyramid Pooling (ASPP) enables feature extraction

without the loss of spatial information and by using atrous depth-wise convolution the

computational demands are significantly reduced. For simplicity we will refer DeepLab in

the further course.

Fig. 4.15 b) shows an example of the segmentation mask using the finally trained

DeepLab model. Although DeepLab is optimized to produce clear edges at class bound-

aries, there are still minimal deviations. Therefore, the predicted segmentation mask is

combined with the result of the second derivative Gaussian filter and Otsu`s threshold-

ing, which was discussed in Section 4.4.1. DeepLab is trained on the original image,

consequently the segmentation mask is in camera perspective. Therefore, the mask is

transformed with IPM after the prediction step. In a last step the same outlier detection

as discussed in Section 4.4 is used to generate a final segmentation mask. The result can

be seen in Fig. 4.12 b). The pipeline for image segmentation using Deeplab is shown in

Fig. 4.13.

Grayscale IPM 
Image

Semantic
Segmentation

Otsu  ThreshholdingSecond Derivative
Gaussian Filter

Outlier Detection

Original Image

Segmentation Mask

IPM

Figure 4.13: Segmentation pipeline using DeepLabv3+.

Data Sets

For training and evaluation two data sets were used. In a first step, the ApolloScape

data set [25] for lane segmentation was used. The ApolloScape data set consists of over

110.000 frames of different street scenarios in different cities. For training several subsets

containing different scenarios such as tunnel drives or highway drives were selected. The

images scenarios and difficulties are uniformly distributed. Therefore, a simple holdout

cross validation was used in this thesis. This means the data set was split into a training

set, which is used for training, and a test set, which is used for the performance evaluation.

The data is split as shown in Table 4.1.

However, the quality of the ground truth images from the ApolloScape data set is

insufficient for a highly accurate segmentation of lane markings. Therefore, in a second

step the model was fine tuned on a data set provided by the TU Graz. The data set
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Data Sets Number of Images

Training Set 21763
Test Set 4200

Table 4.1: Split of ApolloScape data set

Data Sets Number of Images

Training Set 1289
Test Set 328

Table 4.2: Split of TU data set

includes annotated images of a part of the ALP.Lab test region1 and consists of highway

scenarios in Central Styria. Compared to the ApolloScapes data set, the data set has a

reduced amount of available frames but has highly accurate annotations. For fine tuning

again hold out cross validation was used and the data set is split as shown in Table 4.2.

Transfer Learning

Training the Deeplab model can be done in two different ways. One could train the model

from scratch. Another approach is to reuse a pre-trained model for a specific task and

update the classifier weights to make the model work on another related task. This is

called transfer learning. In comparison, the use of a pre-trained model takes significantly

less time to achieve good results. Therefore, transfer learning with a model which was

already trained on CityScapes [15] and ImageNet [16] was used. The networks backbone

is the Xception architecture proposed by Chollet [14] using the atrous rates [6, 12, 18] for

an output stride2 os = 16 and the atrous rates [12, 24, 36] for os = 8.

The pre-trained network is able classify 19 different classes such as cars, passengers

or bicycles. However, lane marking detection is only about distinguishing between lane

marking and background. Therefore, the classifier was tweaked to only distinguish between

two classes.

For this purpose, the ground truth data must be available as color indexed images

where each index represents a unique class. The image is available as 1-channel grayscale

image containing values between 0 and 255. Some areas in the image are undefined

or should not be considered for learning. Therefore, an additional label called ignore

label is used. Pixels marked as ignore label are excluded in the learning process. The

CityScapes data set consist of 19 different classes whereas lane segmentation is a two-class

segmentation problem. The goal is to separate a lane marking from the rest of the image

denoted as background. Therefore, the ground truth data consists of three different index

values consisting of background, lane marking and an ignore area. Fig. 4.14 represents an

1For more information about ALP.Lab follow https://www.alp-lab.at/
2Ratio of input image size to size of output feature map

https://www.alp-lab.at/
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Parameter Value

Number of Iterations 10000
Atrous Rates [6, 12, 18]
Batch Size 2
Output Stride 16
Decoder Output Stride 4
Fine Tune Batch Normalization False
Label Weight Background 5
Label Weight Lane Marking 95

Table 4.3: Training parameters for DeepLab model

example of an ground truth image used training.

Figure 4.14: Grund truth image for training the Deeplab model with white areas representing
ignore areas, black areas representing background and grey areas representing lane markings.

The model was fine tuned with the parameters shown in Table 4.3. For both sets

10.000 iterations were used. Due to limited memory on the hardware, the batch size could

only be set to 2. Taking into account that the number of pixels belonging to lane markings

is comparably low to the overall amount of background pixels, the weights for calculating

the loss during training were set accordingly.

(a) Input image (b) Result

Figure 4.15: Semantic Segmentation with DeepLab
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4.4.3 Instance Segmentation using SCNN

As already discussed, the task of optimizing semantic lane segmentation is a challenge

for typical SCNNs. Because the slice-by-slice convolutions of SCNN enable row-wise

and column-wise message passing between pixels in one layer and therefore lead to a

better learning of spatial relationships, a pretrained model of SCNN is used for instance

segmentation.

Instead of performing a pixel-wise semantic segmentation, SCNN outputs a probability

mask for each lane, indicating the probability of the center of the lane marking at the

corresponding pixel.

Datasets

The model used in this thesis is trained with the CULane data set [44] and the TU Graz

data set. The CULane data set consists of 133.235 frames from different drives in Beijing.

The annotations were done manually with cubic splines. The data set was split as shown

in Table 4.4.

Data Sets Number of Images

Training Set 88880
Test Set 34680

Table 4.4: Split of CULane data set

Again, the model was fine tuned using holdout cross validation on the data set provided

by the ICG , which was already introduced in Section 4.4.2.

Fine Tuning

The annotation of the ground truth pixels has to be available in a .text file in which the

center of each line is represented by key points in x and y coordinates. Therefore, the

ground truth data of the TU Graz data set was converted to the correct data format first.

The annotated images of the TU Graz data set were created by sampling the center of

each lane from the ground truth images from Section 4.4.2. Afterwards, the training was

done with the parameters shown in Table 4.5.

Parameter Value

Number of Iterations 10000
Initial Learning Rate 0.01
Batch Size 4
Learning Decay Rate 0.1

Table 4.5: Training parameters for SCNN model
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As already mentioned, instead of performing a pixel-wise semantic segmentation, SCNN

outputs a 1-channel probability mask indicating the probability of the center of the lane

marking at the corresponding pixel for each lane. Fig. 4.16 shows the result of a scene from

the data set provided by the TU Graz. It must be mentioned, that the SCNN outputs a

mask for each lane, but for visualization those images were combined to one mask.

(a) Input image (b) Result

Figure 4.16: Semantic Segmentation with SCNN. Note: For visualization the different probability
masks were combined to one mask.

4.5 Lane Detection

In the course of this thesis a combination of Hough transform and RANSAC lane fitting

for lane detection was implemented. Hough transform is used to detect the base position

of the lines in the image whereas RANSAC line fitting is used to fit a mathematical model

to the lane marking. Since the curvature of highways is constrained and vehicles drive at

high speed a quadratic model is sufficient to mathematically describe a lane marking.

It must be mentioned that the algorithm using SCNN for segmentation does estimate

the lane base position based on Hough transform. The SCNN incorporates instance

segmentation and outputs a probability map for each lane separately, which means, that

no distinction has to be made between the different lanes. Therefore, only RANSAC model

fitting is done for lane detection in the algorithm based on SCNN .

4.5.1 Line Model

As discussed in Section 3.5, researchers use different models to describe the properties

of the lines. Depending on the use case an appropriate model is used. Sometimes it is

sufficient to describe a lane as straight line, whereas other cases require a more descriptive

model such as splines or polynomials. This thesis aims on multi lane detection on highway

scenarios. The curvature of highway lanes is restricted, due to the high vehicle speed of

the road participants. Therefore, a quadratic model was chosen to represent a lane. The
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quadratic model is described as

y = ax2 + bx+ c , (4.12)

with a, b and c as model parameters and x, y as coordinates. The lane parameters can

be used to calculate the slope µ, the curvature k and the lateral offset ∆y as shown as

follows:

∆y = −c (4.13)

µ = − arctan(b) (4.14)

k =
2a

(b2 + 1)3/2
(4.15)

4.5.2 Hough Transform

The theory of Hough transform is represented in Section 2.6. The segmentation mask as

shown in Fig. 4.11 or Fig. 4.15 is taken as input to the Hough transform algorithm. The

algorithm tries to detect lines in an binary image and outputs detected lines in the image.

The detected lines are expressed as

ρ = x cos θ + y sin θ (4.16)

with ρ as the distance on the X-axis and θ as the angle.

Depending on the lane width, the Hough transform outputs multiple lines for each lane

marking. The line with the highest score or the line with the largest number of votes within

a given lateral distance is selected for further processing. Some further refinements have

been implemented by making use of simple lane marking characteristics. Since the input

is an IPM image, one can assume that the angle of lane markings is within a given region.

As a result, a minimum and a maximum angle θ is defined to filter out unreasonable

detections. Furthermore, only lines with a given lateral distance between are considered

for further processing.

4.5.3 RANSAC Model Fitting

The residual lines are sampled vertically along its length with a given vertical step size.

To find the lane center for each point a one-dimensional Gaussian filter with a variance of

the average lane marking width was used. In a refinement step RANSAC algorithm using

a least mean square estimation is used to fit a quadratic model to each line estimated by

the Hough transform. In this case RANSAC estimates the model parameters a, b and c of

Eq. (4.12). The parameters with the highest score are used to refit a new quadratic model

considering all sample points. The lane detection stage is summarized in Algorithm 2.

Fig. 4.17 shows an example of lane marking detection. Fig. 4.17 b illustrates the highest

scoring lines described with ρ and θ after Hough transform. In c the lines are represented
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Algorithm 2 Lane Detection

1: procedure LineBaseDetectionHoughTransform(segmentationMask)
2: Detect lines with Hough transform
3: Outlier removal . Considering simple lane marking characteristics
4: Estimate highest scoring lines
5: end procedure

6: procedure RANSACModelFitting(lines, segmentationMask)
7: for all lines do
8: Sample line
9: for m← 0 to MaxIterations do

10: Randomly select a subset of the sample points of the lane
11: Fit a quadratic model to the subset using least mean square estimation
12: Compute a scoring function Ji
13: if Ji ¡ threshold then
14: Save the parameters
15: Update the threshold
16: end if
17: end for
18: Re-fit the highest scoring model considering all sample points
19: end for
20: end procedure

with the quadratic model estimated with RANSAC line fitting. The corresponding sample

points are represented as blue circles.

(a) Lines detected by Hough
transform

(b) Highest Scoring Lines (c) Lane Detection Result

Figure 4.17: Example of lane detection with a showing the detected lines and b showing the
highest scoring lines. c shows the result after RANSAC model fitting.
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4.6 Line Tracking

After lane detection the individual lanes are classified and tracked. The two most com-

mon techniques used for lane tracking are Kalman filter and particle filter. A particle

filter would require a high number of particles for each lane, what would lead to higher

computational costs. Therefore, a Kalman filter was chosen for lane tracking. Fig. 4.18

shows the overall architecture used to track and classify the detected lanes.

Prediction Correction

Lane Classification

Temp Lane

Kalman Filter

DeleteExtinct Lane

Confirmed Lane

Update

Figure 4.18: Architecture for lane tracking including classification

4.6.1 Line Classification

The lane classification implemented in this thesis is based on the concept proposed by

Borkar et al. [5]. After a lane lines is detected, it either has to be associated to a line

from the previous frame or has to be classified as a new line. The association is done by

determining the lateral distance between the lanes. If the distance between a lane from

the previous frame and a lane of the current frame is below a certain threshold, the lane

is assigned to the specific lane.

As stated in Table 4.6, three different types of lanes have been defined for classification:

Temp Line, Confirmed Line and Extinct Line. A new lane is classified as Temp Lane. If the

lane marking was detected more than n times it becomes a Confirmed Line. Furthermore,

Confirmed Line and Temp Line become Extinct Line if they were not detected m times.

In the implementation we set the values of m and n to 3. As can be seen in Fig. 4.18 only

Confirmed Lines are tracked by the Kalman Filter.

4.6.2 Kalman Filter

As already mentioned, Kalman Filter is the preferred technique for lane tracking. The

theory of Kalman Filter was discussed in Section 2.7. For each Confirmed Line a separate
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Temp Line
Confirmed Line Extinct Line

A line is detected less than
n times

A Temp Line is detected
more than n times

A Confirmed Line was
not detected more than m
times

Table 4.6: Classification of lines

Kalman Filter is used. The measurements used for the correction step are the line model

parameters [a, b, c]T of the Confirmed Lines. The state vector x(t) consist of the model

parameters and their derivative approximated by the difference of the values between the

current frame and the previous frame. The state vector x(t) and the measurement vector

z(t) are defined as

x(t) =
[
a ȧ b ḃ c ċ

]T
(4.17)

and

z(t) = [a b c]T . (4.18)

The matrix H which is used to associate the two vectors is defined as

H =

1 0 0 0 0 0

0 0 1 0 0 0

0 0 0 0 1 0

 . (4.19)

The state transition matrix A is a 6x6 matrix and defined as

A =



1 dt 0 0 0 0

0 1 0 0 0 0

0 0 1 dt 0 0

0 0 0 1 0 0

0 0 0 0 1 dt

0 0 0 0 0 1


(4.20)

with dt representing the time interval between two consecutive frames.

The covariance matrices Q nd R were defined as diagonal matrices with a white Gaus-

sian probability distribution with fixed values.

4.7 Post-Processing

In the last stage the detected lane markings are used to estimate the different lanes in

an image and the lateral offset of the vehicle to the center of its ego-lane. Furthermore,

the detected lanes including meta information and the vehicles position are recorded in a

specific format.
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4.7.1 Lane Estimation and Ego-Vehicle Position

As discussed in Section 4.6, lanes are classified into three different types. To estimate

the individual lanes and to compute the vehicles lateral position within the ego-lane,

only Confirmed Lines are used. The detected lines are examined pairwise to obtain the

individual lanes and the ego-lane respectively. For the computation the base position

of the vehicle in pixels is set to the middle of the image. The two closest lines to the

vehicles base position are classified as ego-lane markings. The ego-lane lines are used to

estimate the lateral vehicles position to the center of the lane and the curvature of the

lane. The curvature is computed with Eq. (4.15). The computations are done in bird-eye

perspective, therefore the corresponding points and parameters are transformed to camera

perspective in a final step. The final result of lane detection showing the estimation of

ego-lane, curvature and lateral vehicle position can be seen in Fig. 4.19.

(a) Result of lane detection and track-
ing in bird-eye view

(b) Final result of lane detection

Figure 4.19: Result of lane detection with a showing the classified lines and b showing the final
result including estimation of ego-lane, curvature and lateral vehicle position.

4.7.2 Data Recording

The output of the lane detection consists of two files with different data formats. Each

file contains different information.

A .csv file is used to store basic information related to each frame. The file contains

the lateral vehicles position and curvature of the ego-lane. Furthermore, the information

about the road such as number of lanes and the ego-lane as well as the base position and

the model parameters in image coordinates for each lane marking are stored in this file.

In addition, the sample points computed in Section 4.5 including meta information

such as lane number and lane type are stored in a .shp file. The shape file format is a
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specific vector storage format to store the geographic location of geometric features such

as points, lines and polygons. Each lane marking is stored as polygon which is created

by the corresponding sample points. The data is stored in the WGS84 coordinate system.

Fig. 4.20 shows a cutout of a shape file containing lane marking of the A2 highway near

Graz.

To store the sample points, they have to be transformed back from image coordinates

to global coordinates. The procedure of transforming 3D lidar points to the image plane

was already discussed in Section 4.2 and Section 4.3.2. The steps now have to be done in

reverse order. First, the sample points are transformed from bird-eye-view back to camera

perspective using the homography H computed in Section 4.3.3. Since the camera position

C in the WGS84 coordinate system is known, a ray spanned by the 3D camera position

and the 2D image point can be defined. The point of intersection of this ray and the road

plane estimated in Section 4.3.1 can be computed as done in Section 4.3.2. An illustration

of the ray and the point of intersection can be found din Fig. 4.2. The resulting point of

intersection is the sample point in 3D world coordinates.

Figure 4.20: Snippet of a shapefile representing a part of the A2 highway near Graz. The blue
lines represent the polynomial lane markings.

4.8 Conclusion

In this chapter the concepts of the three different algorithms for lane detection in multi-lane

scenarios have been discussed. The choice of the concepts is based on in-depth literature

research which was discussed in Chapter 3. The algorithms aim is to extract the lane

markings, detect the lanes and compute the vehicle`s lateral position within the ego-lane

with high precision.

All three algorithms follow the processing pipeline consisting of the 5 main stages

Pre-Processing, Segmentation, Detection, Tracking and Post-Processing as discussed in

Section 4.1. Two of the three algorithms are based on semantic segmentation using deep

learning whereas one algorithm uses conventional techniques to segment the lane markings.

For the sake of simplicity, the algorithms are named as follows:
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1. Conventional Algorithm

2. DeepLab Algorithm

3. SCNN Algorithm

In the Pre-Processing stage advanced techniques utilizing LiDAR point clouds, which

highly improve the lane detection of the algorithms, have been implemented. For each

frame RANSAC plane fitting is used to estimate the road planes parameters with respect

to the principle point of the camera. The plane parameters are used to extract the road

boundaries and to generate an adaptive ROI which only covers the road area. Further-

more, the road plane parameters are used to estimate the homography H for IPM . In

an image smoothing step, noise is removed and the image is converted to gray scale for

further processing.

As already mentioned, the three algorithms primarily differ in the concept of image seg-

mentation. In the Conventional Algorithm a combination of conventional image filtering

techniques is utilized to compute the segmentation mask for further lane detection. The

DeepLab Algorithm uses a well known deep learning model called DeepLab for image seg-

mentation. The segmentation mask is furthermore combined with the segmentation mask

of feature extraction based on a second derivative Gaussian filter and Otsu thresholding.

The SCNN Algorithm uses a special designed Convolutional Neural Network (CNN) for

instance segmentation.

The segmentation masks estimated by the different algorithms are taken as input for

the line detection stage. The line detection stage uses a combination of Hough transform

and RANSAC model fitting. The Hough transform is used to estimate the base position

of the individual lines, whereas RANSAC model fitting is used to estimate the parameters

of the lines described by a quadratic model. Compared to the other two algorithms,

the SCNN outputs a probability mask for each lane. This means that the lines are

already differentiated. Therefore, the line detection in SCNN Algorithm consists of lane

sampling only. The RANSAC model fitting does not need the estimation of the position

and distinction between the individual lines.

In the tracking stage the detected lines are classified as Temp Line, Confirmed Line

and Extinct Line. A Kalman Filter is used to track Confirmed Lines only. The Kalman

filter is designed to take the model parameters of the quadratic lane model as input.

In a final post-processing stage the different lanes, the lateral offset of the vehicle to

the center of its ego-lane and the curvature of the ego-lane are computed and recorded.

Therefore, the lane sample points are transformed to 3D points in a global coordinate

system and written to shape files whereas the remaining parameters are written to a .csv

file.

In the upcoming chapter the results of the different algorithms are evaluated in terms

of accuracy and reliability.
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This chapter is devoted to present the results of the testing and the evaluation of all

three algorithms discussed in the previous chapter. For the evaluation different scenarios

have been defined to test the algorithms under different conditions. The results will be

discussed in the upcoming sections.

5.1 Overview of the Algorithms

This section gives an overview of the different algorithms which will be evaluated. As

discussed in Chapter 4, three different algorithms have been developed which follow the

same processing pipeline. Two of the algorithms use deep learning architectures whereas

one algorithm uses conventional image processing methods for image segmentation. In

addition, LiDAR point clouds are used to improve the lane detection with road plane

fitting, road boundary extraction and outlier detection.

Additionally, to get an estimate if or how well the incorporation of LiDAR points

improve the results, the three algorithms are also evaluated without the use of the LiDAR

points. Therefore, for evaluation the three implemented algorithms discussed in Chapter 4

are separated again into a basic version, which does not use LiDAR point clouds, and an

advanced version, which utilizes LiDAR point clouds.

59
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For the sake of simplicity the algorithms are named as follows and consist of the

following steps:

1. Basic Conventional Algorithm

� Pre-Processing: Gray scale conversion + Static Region Of Interest (ROI) +

Inverse Perspective Mapping (IPM)

� Segmentation: Conventional segmentation

� Detection and Tracking: Hough transform and RANSAC line fitting + Kalman

filter

2. Advanced Conventional Algorithm

� Pre-Processing: Gray scale conversion + RANSAC plane fitting + Adaptive

ROI + IPM

� Segmentation: Conventional segmentation + Outlier Detection

� Detection and Tracking: Hough transform and RANSAC line fitting + Kalman

filter

3. Basic DeepLab Algorithm

� Pre-Processing: Gray scale conversion + Static ROI + IPM

� Segmentation: Semantic segmentation

� Detection and Tracking: Hough transform and RANSAC line fitting + Kalman

filter

4. Advanced DeepLab Algorithm

� Pre-Processing: Gray scale conversion + RANSAC plane fitting + Adaptive

ROI + IPM

� Segmentation: Semantic segmentation

� Detection and Tracking: Hough transform and RANSAC line fitting + Kalman

filter

5. Basic SCNN Algorithm

� Pre-Processing: Gray scale conversion + Static ROI + IPM

� Segmentation: Instance segmentation

� Detection and Tracking: RANSAC line fitting + Kalman filter

6. Advanced SCNN Algorithm

� Pre-Processing: Gray scale conversion + RANSAC plane fitting + Adaptive

ROI + IPM
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� Segmentation: Instance segmentation

� Detection and Tracking: RANSAC line fitting + Kalman filter

Each algorithms follows the processing pipeline as shown in Fig. 4.1. The Advanced

algorithms utilize all concepts discussed in Chapter 4 with each algorithm using the corre-

sponding segmentation method. The pre-processing of the algorithms includes RANSAC

road plane fitting, the computation of an adaptive ROI and IPM . The segmentation is

individual for each algorithm as discussed Section 4.4. The lane detection and tracking as

well as the post-processing is the same for all algorithms and is discussed in Section 4.5,

Section 4.6 and Section 4.7.

The Basic algorithms differ in pre-processing and in the segmentation stage. Since

there are no LiDAR point clouds available a static ROI and IPM with a fixed homography

is computed. Gray scale conversion is not effected by the absence of the LiDAR points and

is still done. The individual segmentation steps follows the same pipeline as discussed in

Section 4.4.1, but the final outlier detection is not done. The lane detection and tracking

as well as the post-processing stays the same.

Summarized, the main difference is that in the basic version neither frame-wise road

plane fitting or an adaptive ROI is computed, nor LiDAR based outlier detection is done.

The algorithms exclusively use a static ROI and a fixed Homography H for IPM .

5.2 Datasets

The advance versions of the algorithms expect LiDAR points clouds including the external

calibration parameters as input. Therefore, the algorithms have to be evaluated on a data

set which provides images as well as LiDAR point clouds and the calibration parameters.

Due to the lack of free data sets that include images, ground truth data for lanes and

point clouds with the calibration parameters, the algorithms have been evaluated based

on the ALP.Lab data set.

To collect this data set, more than 400 km of the ALP.Lab test region have been

recorded with a Leica Pegasus 2 - Ultimate Dual Head camera by the Joanneum Research.

The hardware setup comprises six 12 MP cameras, a 24 MP panorama camera and two

LiDAR sensors. Based on that data, a HD map of the ALP.Lab test region was created

in cooperation with the Institute of Computer Graphics and Vision (ICG) from the Graz

University of Technology. The map includes road markings which are used for evaluation

of the lane detection of the algorithms. The HD map was purchased by the AVL List

GmbH, but the images for evaluation have been provided by the ICG from the Graz

University of Technology.

As discussed in Section 4.4, the models for semantic segmentation have been trained

on images showing parts of the ALP.Lab test track. However, for training only of some

parts of the ALP.Lab test region have been used. For the evaluation different parts and

situations of the whole data set, which were not used for training, have been chosen. In
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addition, the data set was split into two different categories with various difficulties for

general lane detection and tracking algorithms:

1. Normal Scenarios:

Normal conditions are defined as scenarios with good lighting conditions, an ideal ho-

mogeneous road structure with clear lane markings and a limited amount of shadows

cased by other objects.

2. Hard Scenarios:

Hard conditions are defined as scenarios with complex illumination, many road par-

ticipants, tunnel drives or worn out lane markings.

Scenario Nr. of Images Type Image Dimensions

Normal 2000 Highway 2000x2000
Hard 400 Highway, Tunnel 2000x2000

Table 5.1: Datasets used for evaluation

The details of the data sets are shown in Table 5.1. In Fig. 5.1 some images of the

defined scenarios are shown.

5.3 Evaluation Criteria

As already mentioned, there is a large number of researches in lane detection and tracking.

However, a comparison of the results between the different researches is difficult because of

the variation of the techniques and different data sets used. For example, the algorithms

implemented in this thesis additionally expect LiDAR point clouds as input. Nevertheless,

there criteria have been defined which enable the comparison of different algorithms even

if the concepts and data sets differ: Processing Speed, Performance and Accuracy.

The computation of the performance and the accuracy is done in image space, more

precisely in the bird-eye view of each frame. The result of the lane detection algorithms

are poly lines including the sample points estimated in the lane detection stage. Since the

Ground Truth (GT) lanes are available in the .shp file format, the data global 3D data

points of the GT lane markings have to be transformed to the image plane and afterwards

to the bird eye perspective. This is done in the same way as discussed in Section 4.3.

There the 3D LiDAR points are transformed to the image plane and then to the bird

eye view by using the homography H. Fig. 5.2 shows an example of a bird-eye image

used as base for the evaluation. Afterwards each lane marking is assigned to a GT lane

marking with the smallest Hausdorff distance as proposed in [34]. It must be mentioned

that multiple detected lane markings can be assigned to the same GT lane marking, but

not visa versa.
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(a) (b)

(c) (d)

Figure 5.1: Some images used for evaluation with a and b showing images under normal condi-
tions and c and d showing images under hard conditions.

Figure 5.2: Example of GT points and detected lanes in bird eye perspective with the green lines
representing the predicted poly lines, the blue circles representing the sample points and the red
circles representing the GT sample points.
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5.3.1 Processing Speed

The processing speed is considered as the time of processing one frame and heavily relies

on different factors such as the used hardware, the used programming language and the

dimensions of the input image. Nevertheless, considering all factors one can get a good

estimate of the capabilities and potentials of the algorithms.

5.3.2 Performance

To evaluate the performance of the algorithms the harmonic mean(F1-score) of Precision

and Recall is computed by the number of True Positives (TP), False Positives (FP) and

False Negatives (FN).

Therefore, lanes have to be compared with its assigned detected lanes for each frame. If

the detected lanes distance to the GT lane is within a given threshold the lane is considered

as TP . A lane is marked as FP if the distance exceeds the threshold. Furthermore, if

there is no lane assigned to a GT lane, it is marked as a FN . There are no false GT lanes,

therefore, the value of True Negatives (TN) is unknown.

Precision and Recall or the f1-score respectively is a popular evaluation metric in

computer vision and machine learning. Precision is referred as the quantity of the right

predictions that the algorithm made and is defined as

Precision =
TP

TP + FP
(5.1)

Recall is defined as the quantity of the right predictions the model made concerning

the total positive values present and is defined as

Recall =
TP

TP + FN
(5.2)

Based on precision and recall the harmonic mean or the F1-Score can be computed

which is defined as

F1-Score = 2
Precision · Recall

Precision + Recall
. (5.3)

In addition, the True Positive Rate (TPR) and the False Detection Rate (FDR) is used

for to evaluate the performance. The TPR is the recall value and the FDR is defined as

the rate of false predictions with respect to the overall lanes. The FDR should be as low

as possible.

5.3.3 Accuracy

In addition to the performance or reliability of the algorithms, one also wants to know how

accurate the detection of the estimated lanes is. To get an estimate about the accuracy

of the individual algorithms, the standard deviation and the absolute mean of the error

is computed. In this regard, the lines are not considered as a whole, but the individual
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sample points and the corresponding GT points. As can be seen in Fig. 5.2, the sample

points of the GT lane markings have a low resolution and the samples only indicate the

beginning and the end of dashed lane markings. To compute the results, the individual

errors between the GT sample and the closest sample point of the estimated lane marking

is determined. The results are shown in Section 5.4.

5.4 Results

In this section the results of the metrics applied to the data sets specified in Section 5.2

are discussed and compared with the results of other researches.

5.4.1 Processing Speed

As mentioned in Section 5.3 the processing speed depends on several factors such as

the hardware, the programming language and the dimensions of the input image. The

proposed algorithms are a Proof of Principle to demonstrate the potential in terms of

accuracy and reliability. TNevertheless, the evaluation of the processing speed can give

an good estimate of the potentials of the algorithms.

The algorithms have been tested on a desktop with an Intel(R) Core(TM) i5-6300U

CPU at 2.4 GHz and 8 GB RAM. The used graphics card is a NVIDIA GeForce RTX 2080

with 8GB memory. It must be mentioned, that the GPU was just used for the inference

step in the segmentation stage of the deep learning based algorithms. The algorithms have

been implemented in Python3 with OpenCV 4.1.0 and Tensorflow 1.15.

Table 5.2 shows the average processing speed of the implemented algorithms and

those of other researches[4] [5] [29]. Comparing the implemented algorithms with each

other, one can see that among the basic algorithms, the basic SCNN Algorithm is the

fastest one with 3.9 FPS and the advanced DeepLab Algorithm is the slowest one with

0.65 FPS. This is due to the fact that, the segmentation Conventional Algorithm was

implemented in Python only using the CPU. The segmentation of the deep learning

based algorithms was done by using the GPU for the inference step what results in a

slightly faster segmentation. Compared to the basic versions, the processing speed of the

advanced algorithms is significantly slower. This is due to the combination of handling

a huge amount of LiDAR points and the frame-wise RANSAC road plane fitting to

compute the adaptive ROI and remove outliers, see Chapter 4 and Section 4.4.1.

Comparison with state-of-the-art algorithms

In comparison with other researches, Borkar et al. [5] implemented their algorithms in

a scripting language as well. They were able to achieve 1.25 FPS. Bertozzi and Broggi

[4] and Kim [29] were able to reach 10 FPS in average and both algorithms have been

implemented in C++. As can be seen in Table 5.2, the image dimensions of 512 x 256
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Algorithm
Frame

Dimensions

Frames per
Second
(FPS)

Setup
Programming

Language

Basic
Conventional

2000 x 2000 3.1
Intel(R) Core(TM) i5-6300U

with 8GB RAM
Python3

Advanced
Conventional

2000 x 2000 1.4
Intel(R) Core(TM) i5-6300U

with 8GB RAM
Python3

Basic
DeepLab

2000 x 2000 1.9
Intel(R) Core(TM) i5-6300U
with 8GB RAM and NVIDIA

GeForce RTX 2080
Python3

Advanced
DeepLab

2000 x 2000 0.65
Intel(R) Core(TM) i5-6300U
with 8GB RAM and NVIDIA

GeForce RTX 2080
Python3

Basic SCNN 2000 x 2000 3.9
Intel(R) Core(TM) i5-6300U
with 8GB RAM and NVIDIA

GeForce RTX 2080
Python3

Advanced
SCNN

2000 x 2000 2.1
Intel(R) Core(TM) i5-6300U
with 8GB RAM and NVIDIA

GeForce RTX 2080
Python3

Bertozzi
et.al. [4]

512 x 256 10.0
Full-custom massively parallel

hardware.
C++

Bokar et.al.
[5]

640 x 480 1.25
Intel(R) Core(TM) i7-4770

CPU at 3.40 GHz and 8.00GB
RAM

MATLAB
R2015b

Kim et.al
[29]

176 x 120 10.0 Intel Pentium 4 at 3 GHz C++

Table 5.2: Processing speed of the algorithms

and 176 x 120 are significantly lower than the 2000 x 2000 pixels of our data set. Even

if Python as scripting language is comparatively slow in relation to a compiler language

such as C++, the overall performance of the implemented algorithms is comparably good,

by taking the input dimensions into account.

5.4.2 Performance

In this section the performance is evaluated based on the F1-Score of Precision and Recall.

In the case of a lane detection algorithm, the precision indicates if the ground truth lanes

have been detected considering wrong detentions. The value of the recall corresponds with

the amount of right detections of GT lanes. Both values should be as high as possible.

Consequently, the higher the F1-Score, the better the overall performance and reliability.

As mentioned in Section 5.2 the data set was split into two sub sets containing images

of normal conditions and hard conditions respectively. For the evaluation the F1-Score of

Precision and Recall is computed for both sub-sets separately.
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Normal Scenarios

The normal scenarios include a total of 3822 GT lanes, which are used to estimate the

TP , FP and FN of the lane detection algorithms. As can be seen in Table 5.3, all

algorithms show a low amount of FP and FN and a resulting high F1-Score in scenarios

with normal conditions. The Basic Conventional Algorithm algorithm achieved the lowest

score of 0.9759 whereas the Advanced SCNN Algorithm shows the best result of 0.9888.

It can be seen that the advanced algorithms show slightly better results than the basic

versions. It is noticeable that the algorithms primarily differ in the detection of FP with

the Basic Conventional Algorithm reaching an outstanding amount of 116 FP detections.

The results of the algorithms are comparably good and only show minimal differences

among each other. The high Precision and Recall of the algorithms shows, that almost all

lanes are detected and the rate of false detected lanes is quite low.

Algorithm
# of
TP

# of
FP

# of
FN

Precision Recall F1-Score

Basic Conventional 3753 116 85 0.9700 0.9819 0.9759
Advanced Conventional 3737 10 69 0.9973 0.9778 0.9874

Basic DeepLab 3723 12 99 0.9968 0.9741 0.9853
Advanced DeepLab 3754 5 68 0.9987 0.9822 0.9904

Basic SCNN 3740 6 82 0.9984 0.9785 0.9884
Advanced SCNN 3747 3 75 0.9992 0.9804 0.9897

Table 5.3: Performance on data set with normal scenarios

Hard Scenarios

The hard scenarios include a total of 1851 GT lanes. Table 5.4 shows the results of the

algorithms performing under challenging conditions. As expected, the Precision and Recall

and the F1-Score of all algorithms is generally lower than under normal scenarios . It can

clearly be seen that the basic Conventional Algorithm algorithms shows the worst results

with an outstanding high amount of not detected lanes and, as a result, a low Recall

of 0.75 and a F1-Score of 0.78. It can be seen that the deep-learning based algorithms

outperform the conventional algorithms in challenging scenarios. Even if the conventional

algorithms show good results under normal conditions, the amount of FP and FN is

outstanding higher, especially of the basic Conventional Algorithm. The deep-learning

based algorithms show better and more stable results. This might be due to the fact that

the deep-learning models were also trained on some challenging scenarios and therefore,

better cope with such scenarios in the segmentation stage. Furthermore, it is noticeable

the advanced algorithms show better results than the basic one.
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Algorithm
# of
TP

# of
FP

# of
FN

Precision Recall F1-Score

Basic Conventional 1381 270 470 0.8139 0.7461 0.7785
Advanced Conventional 1559 260 292 0.8571 0.8422 0.8496

Basic DeepLab 1609 100 242 0.9415 0.8693 0.9039
Advanced DeepLab 1694 108 157 0.9401 0.9152 0.9275

Basic SCNN 1602 28 249 0.9828 0.8655 0.9204
Advanced SCNN 1646 28 205 0.9833 0.8892 0.9339

Table 5.4: Performance on data set with hard scenarios

Comparison with state-of-the-art algorithms

Fig. 5.3 shows the total TPR and the FDR of the implemented algorithms performing on

both data sets and the results from other researches. As discussed in Section 5.3, the TPR

is the value of the Recall and the FDR is the rate of wrongly detected lanes. Since there

was no freely available data set including point clouds and images, the results of researches

working on different data sets had to be compared. In this section the TPR and the FDR

are compared with the averaged results of Son et al. [53], Aly [1] and Guo et al. [20]

working on the Caltech Lane Datasets [1]. To compare the implemented algorithms with

other state-of-the-art algorithms, the total TPR and the FDR of both data sets were

computed. Nevertheless, even if the data sets differ, the comparison still gives an estimate

about the potential and robustness of the algorithms implemented in this thesis.

As can be seen in Fig. 5.3 the reference algorithms achieved an average FDR in the

range of 8.88% and 12.01% and a high TPR up to 99.0% with [20] having the lowest value

of 94.2%.

The results show that the performance of the implemented algorithms is comparably

good. Among them, the basic Conventional Algorithm shows the worst results with a

False Positive Rate (FPR) of only 0.9 % and a FDR of 17.05%. It is noticeable that the

deep-learning-based approaches outperform the reference researches in terms of FDR, but

none of the implemented algorithms was able to achieve a TPR of 99.0 %. Nevertheless,

except the basic Conventional Algorithm, the results still represent a high detection rate

and the TPR just slightly differs among the algorithms.

5.4.3 Accuracy

In this section the standard deviation and the absolute mean error of the individual sample

points of the detected lanes are evaluated. Table 5.5 shows the individual as well as the

total results of the implemented algorithms for normal and hard conditions. It must be

mentioned that IPM leads to a reduction in the accuracy. However, the difference in

accuracy was minimal and therefore, was neglected. The Mean Absolute Error (MAE)

and the Standard Deviaton of the Error (SDE) were computed after IPM in birds eye

perspective. As can be seen, under normal conditions all algorithms are able to achieve
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Figure 5.3: Comparison of performance with state-of-the-art algorithms

Algorithm Normal Conditions Hard Conditions Total

MAE (cm) SDE (cm) MAE (cm) SDE (cm) MAE (cm) SDE (cm)

Basic Conventional 3.29625 2.2115 13.0979 9.2591 8.1971 5.7353
Advanced Conventional 3.0869 2.1037 9.8982 6.9687 6.4925 4.5362

Basic Deeplab 3.4066 2.2433 11.0116 7.1157 7.2091 4.6795
Advanced Deeplab 3.0770 2.1553 9.8217 6.9165 6.4494 4.5359

Basic SCNN 4.1606 2.4614 13.2997 9.4437 8.7301 5.9526
Advanced SCNN 4.0896 2.3344 11.9907 8.5040 8.0402 5.4192

∗ SDE = Standard Deviation of Error, MAE = Mean Absolute Error

Table 5.5: Accuracy under various conditions

reasonable results with a std. deviation of around 2.2 cm. The Advanced Conventional

Algorithm was able to achieve an std. deviation of 2.1 cm what is the best result of all

algorithms. As already mentioned, hard conditions, inter alia, include lanes which are

partly covered, worn out or only partly recognizable due to challenging illumination or

an in-homogeneous road surface. Furthermore, in-homogeneous road structures also lead

to higher errors in lane sampling. Nevertheless, considering that, the algorithms are still

able to achieve quite reasonable results.

The total results show that the Basic SCNN Algorithm achieves the worst results in

terms of accuracy. This is due to the fact, that the lane sampling is just about sampling the

max value of the individual probability map. Even if the reliability of the deep-learning

based algorithms is quite good, the predicted lanes or the lane centers of the Spatial

Convolutional Neural Network (SCNN) model seem to come with a certain deviation.

Furthermore, it can clearly be seen, that the Advanced Conventional Algorithm, as well

the Advanced DeepLab Algorithm stand out with a std. deviation of 4.54 cm each.
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Comparison with state-of-the-art algorithms

The results are compared with the work of McCall and Trivedi [38] and Sivaraman and

Trivedi [51] which evaluated their accuracy of the sample points on the ego-lanes. As can

be seen in Fig. 5.4, the implemented algorithms show comparably very good results and

outperform the reference algorithms in terms of accuracy. Even the algorithm with the

worst results shows a significantly lower standard deviation and mean absolute error.
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Figure 5.4: Comparison of lane detection accuracy with state-of-the-art algorithms

5.5 Experimental Results

Beside the general evaluation of the algorithms some experiments with the algorithms

performing under various conditions have been made. In this section the experimental

results and the limitations of the algorithms are presented.

Normal Scenarios

Fig. 5.5 shows some results of the algorithms working under various normal driving con-

ditions. Even the basic algorithms work well and output correct positions of the lane

markings. The advanced algorithms show similar results. Therefore, Fig. 5.5 only rep-

resents the results of individual algorithms. It is noticeable that, even if there are other

objects on the road or shadows covering lanes, the lanes are well detected.

Hard Scenarios

Fig. 5.6 shows some results of the algorithms working under hard conditions. Here again

scenarios are shown where all algorithms performed similar. Therefore, the results of

individual algorithms are shown. Fig. 5.6a shows a scene with a bad road structure that

could lead to miss classified lanes. Fig. 5.6b shows a tunnel driving scenario and Fig. 5.6c

shows a scenario with many road participants. Due to the huge area covered by the truck

in Fig. 5.6c, none of the algorithms was able to detect the left outer lane.
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(a) Basic Conventional Al-
gorithm

(b) Basic DeepLab Algo-
rithm

(c) Advanced Conventional
Algorithm

Figure 5.5: Results of normal driving scenarios

(a) Advanced Conventional
Algorithm

(b) Advanced SCNN Algo-
rithm

(c) Advanced DeepLab Algo-
rithm

Figure 5.6: Results of hard driving scenarios

Special Cases

The algorithms were also tested in some special scenarios and the results are shown in

Fig. 5.7. All algorithms are able to handle situations where the lane markings are com-

plicated as shown in Fig. 5.7a, b and c. As can be seen in Fig. 5.7d, a sudden change of

exposure such as driving in a tunnel is handled well by all of the algorithms.

Influence of Advanced Processing

There are special cases where the algorithms are prone to errors. For example white road

participants lead to failures in the detection of the Basic Conventional Algorithm as can

be seen in Fig. 5.8c. This is due some false lane evidences in the segmentation mask

produced by the car. The advanced algorithm is able to handle this situation as can

be seen in Fig. 5.8b and d. In relation to the conventional algorithm, one can see that
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(a) Advanced Conventional
Algorithm

(b) Advanced DeepLab Algo-
rithm

(c) Basic DeepLab Algorithm

(d) Advanced DeepLab Algo-
rithm

Figure 5.7: Results of special driving scenarios

the outlier detection of the advanced algorithms significantly improves the quality of the

segmentation mask and the stability of the algorithms.

Furthermore, this is a good example to also illustrate the advantage of the tracking

stage. Even if there is no third lane in the segmentation mask, it is still tracked, as can

be seen in Fig. 5.8b and d. However, due to the huge area covered by the bus for multiple

frames, none of the algorithms was able to track the outer left lane.

As can be seen in Fig. 5.9, the adaptive ROI significantly improves the lane detection.

Without the road plane fitting and the resulting adaptive ROI , objects, which do no

belong to the road, might be potentially detected as lane markings. This is illustrated in

Fig. 5.9a, c.

Limitations

During the process of testing, several limitations of the systems were found. Situations

with a critical illumination or reflections potentially lead to failures. In scenarios with

multiple lane markings such as can be seen on construction places, none of the algorithm
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(a) Basic Conventional Algorithm (b) Advanced Conventional Algo-
rithm

(c) Basic Conventional Algorithm (d) Advanced Conventional Algo-
rithm

Figure 5.8: Influence of Outlier Detection and Tracking

is able to distinguish between the different lanes and achieve reasonable results (Fig. 5.10a,

b). If the exposure becomes too low, none of the algorithms is able to detect a lane at all.

An example can be seen in Fig. 5.10c. Due to reflections, the algorithms potentially miss

some lanes, as can be seen Fig. 5.10d.

5.6 Conclusion

In the course of this thesis three different algorithms have been implemented. To have an

estimate if and how well the incorporation of LiDAR point clouds improves the overall

performance and accuracy, each algorithm was separated again into an advanced version

which uses LiDAR point clouds and a basic version which does not. As a result, six

algorithms have been evaluated.

Data from the ALP.Lab data set was used for the evaluation. Furthermore, the images
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(a) Basic Conventional Algorithm (b) Advanced Conventional Algo-
rithm

(c) Basic Conventional Algorithm (d) Advanced Conventional Algo-
rithm

Figure 5.9: Influence of Adaptive ROI

have been separated into different categories with various difficulties.

In the course of the evaluation, the processing speed, the performance and the accuracy

have been analyzed and compared with the results of other researches. As mentioned

several times, the main focus was on accuracy and performance. The algorithms are Proof

of Concepts and have been implemented in Python. However, the processing speed could

give an good estimate about the potentials of the algorithms. Obviously the advanced

implementations of the algorithms are quite slower than the basic versions. The fastest

algorithm is the Basic SCNN Algorithm followed by the Basic Conventional Algorithm.

Comparing only the advanced implementations, again the Advanced SCNN Algorithm is

the fastest followed by the Advanced Conventional Algorithm.

In terms of performance and accuracy, the Advanced Conventional Algorithm and

the deep-learning based algorithms show close results. However, the Advanced DeepLab

Algorithm is the overall winner. Due to its high Precision and Recall as well as its
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(a) Advanced DeepLab Algo-
rithm

(b) Advanced SCNN Algo-
rithm

(c) Advanced Conventional
Algorithm

(d) Advanced DeepLab Algo-
rithm

Figure 5.10: Limitations of the algorithms

low standard deviation of the error, the algorithm shows an overall high detection rate

combined with a high accuracy.

Furthermore, it is noticeable that the incorporation of LiDAR point clouds significantly

improves the detection rate of the algorithms. Nevertheless, the algorithms accuracy is

just slightly influenced.

By doing some experimental tests, it was shown that the Basic Conventional Algo-

rithm is prone to errors in situations with white road participants. White road partic-

ipants potentially corrupt the segmentation image what could lead to wrongly detected

lanes. The advanced Conventional Algorithm is able to filter that by the use of LiDAR

points. Furthermore, the algorithms tend to fail in challenging scenarios which incorpo-

rate low exposure, light reflections or constructions places. Nevertheless, in general it was

shown that the algorithms mainly perform well and are able to handle several complicated

situations such as tunnel drives, situations with many road participants, roads with an

inhomogeneous surface or complicated lane markings.
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Conclusion and Future Work

6.1 Conclusion

In the course of this thesis in-depth research in state-of-the-art methods for lane detection

and tracking in multi lane scenarios was done. A special focus was on the analysis of

the differences, limitations and draw backs in using conventional techniques as well as

deep-learning based techniques for image segmentation.

The development took place gradually. Initially some literature research in terms of

current research outcomes in the field of lane detection as well as ego-lane estimation

and its current limitations and challenges in highway scenarios was done. Furthermore, a

general processing pipeline for lane detection and tracking consisting of five stages was de-

rived. In a first step a conventional solution for lane detection and ego-vehicle positioning

was implemented. In a next step, an investigation in image segmentation based on deep

learning was done. As a result, three algorithms have been implemented. Each algorithm

follow the processing pipeline consisting of the five stages: Pre-Processing, Segmentation,

Detection, Tracking and Post-Processing. The algorithms primary vary in the segmenta-

tion stage of the general processing pipeline. That means that the algorithms differ in the

generation of the segmentation mask which is taken as input for the further processing

stages. In addition, a LiDAR sensor is used to improve the lane detection by utilizing the

3D point cloud for road plane fitting, road boundary extraction and outlier removal in the

segmentation masks.

In a final step, an evaluation of the performance and accuracy based on labeled ground

truth data was done. The ALP.Lab data set was used to compare the lane detection output

with the ground truth. To have an estimate if and how well the incorporation of LiDAR

point clouds improves the overall performance and accuracy, the algorithms are separated

again into a basic version and an advanced version. In comparison with each other, the

basic versions do not use LiDAR point clouds for outlier detection or frame-wise road

plane fitting and only have a static Region Of Interest (ROI). Ultimately, it came down

to six algorithms for evaluation - two for each each implemented algorithm. The different
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approaches and metrics were analyzed to represent the most accurate and reliable solution

for lane detection, ego-vehicle localization and ego-lane estimation for highway scenarios.

As discussed in Chapter 5, all algorithms are able to perform well under normal as well

as challenging conditions. The Advanced Conventional Algorithm and the deep-learning

based algorithms show close results, but the Advanced DeepLab Algorithm shows the best.

Due to its high Precision and Recall as well as its low standard deviation of the detection

error, the algorithm achieves an overall high detection rate combined with a high accuracy.

In Chapter 1 some hypotheses in terms of lane detection have been made, which can be

answered here. First of all, the use of an additional LiDAR does improve the stability

or reliability of the lane detection algorithms. There is a significant difference in perfor-

mance between heuristically image processing techniques compared to deep learning based

approaches. In fact deep learning based approaches overcome instabilities and failures in

complex situations such as tunnel drives or dynamic illumination. As can be seen in Sec-

tion 5.4, the deep learning based approaches show a higher quality in segmenting the lanes

under challenging conditions, what leads to an better overall detection rate. Taking a look

at the results of the accuracy, the Advanced DeepLab Algorithm shows the best result

going head to head with the Advanced Conventional Algorithm. The SCNN Algorithm

is stable and reliable in detecting the evidence of a lane, but comes with an inaccuracy.

It must be mentioned again, that the accuracy was computed for True Positivess (TPs),

therefore, a missed lane was not considered in the computation of the deviations. The

results of the Conventional Algorithm are good, but one has to consider the stability or

reliability.

To estimate the lateral vehicles position within the ego-lane, the position of two lanes

is needed. As can be seen in Section 5.4.3 the standard deviation of the error in lane

detection is around 5 cm in total. Therefore, the the algorithms are able to to estimate

the vehicles position with a std. deviation of around 5 cm as well.

6.2 Application and Future Work

The results show that the Advanced DeepLab Algorithm comes with the best compromise

of performance and accuracy. Consequently, is the best solution for lane detection in

multi lane scenarios. Nevertheless, considering the processing speed, the algorithm is the

slowest and the algorithm is not real-time capable. Specifying the best algorithm is a

matter of the use case and the dedicated requirements. Some systems do not have real-

time requirements. Here it is sufficient to detect the lanes in an offline processing step and

accuracy and stability are the main criteria. Here it is definitely recommended to use the

Advanced DeepLab Algorithm.

In case real-time capability in combination with a high performance and accuracy is

required, it is recommended to improve the Advanced Conventional Algorithm. Even if

the Advanced DeepLab Algorithm shows the overall best accuracy and performance, the

deep-learning model is a bottleneck. It would be complicated to optimize the models archi-
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tecture in terms of processing speed. A re-implementation of the Advanced Conventional

Algorithm in C++ and the introduction of parallel computing would be a more efficient

and less complicated way to improve the processing speed.

Beside the improvement of the processing speed, there are further options to improve

the performance and the accuracy of lane detection. The overall estimation of the ego-

lane and the vehicles position could be improved by incorporating GPS information and

a HD map of the track. Furthermore, one could investigate in the optimization of the

deep-learning based approaches. The current architectures for image segmentation could

be optimized in terms of processing speed and accuracy or one could investigate in the

development of a specially optimized deep-learning architecture for image segmentation.
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