
Patrick Schwarz, BSc

Privacy Preserving Machine Learning
An implementation using fully homomorphic encryption in

HElib

Master’s Thesis

to achieve the university degree of

Diplomingenieur

Master’s degree programme: Computer Science

submitted to

Graz University of Technology

Supervisor

Univ.-Prof. Dipl-Ing. Dr.techn. Christian Rechberger,
Dipl.-Ing. BSc Lukas Helminger,
Dipl.-Ing. BSc Roman Walch

Institute of Applied Information Processing and Communications

Graz, 2020

Affidavit

I declare that I have authored this thesis independently, that I have not
used other than the declared sources/resources, and that I have explicitly
indicated all material which has been quoted either literally or by content
from the sources used. The text document uploaded to tugrazonline is
identical to the present master‘s thesis.

Date Signature

Eidesstattliche Erklärung

Ich erkläre an Eides statt, dass ich die vorliegende Arbeit selbstständig
verfasst, andere als die angegebenen Quellen/Hilfsmittel nicht benutzt, und
die den benutzten Quellen wörtlich und inhaltlich entnommenen Stellen
als solche kenntlich gemacht habe. Das in tugrazonline hochgeladene
Textdokument ist mit der vorliegenden Masterarbeit identisch.

Datum Unterschrift

ii

Abstract

Today Big Data and Machine Learning enable us to find new information
within data collected over the years. Many try to collect as much private
information of users as possible to make even more precise predictions.
Correct anticipation of customer behaviour or any future event can be a
great advantage. But even with a lot of data, a company might not have
the computational power or knowledge to create an accurate model for
predictions. In this case, a second party, like a cloud service, may provide
the missing components, required for training such a model.
However, a cloud service customer might not want to share valuable in-
formation with the service provider to keep a potential advantage in the
industry. In many cases, the General Data Protection Regulation (GDPR)
even prohibits the propagation of personal data.
In this thesis, we developed a solution to this problem. We provide an
implementation of a Random Forest classifier that uses fully homomorphic
encryption (FHE) to train on encrypted data, protecting confidentiality.
Therefore, the customer profits from the knowledge and performance of the
cloud service without revealing any information.
Contrary to the state-of-the-art, the entire generation of models requires
only one initial transmission of parameters and encrypted training data.
Afterward, the whole process requires no participation of the customer at
all, which also reduces the required infrastructure. In all schemes developed
up until now, the customer must stay on-line during the whole procedure.
In summary, we may say that our scheme allows customers to train a model
on a cloud service without the necessity of sharing the private information
with anyone.

iii

Kurzfassung

Heutzutage erlauben uns große Datenmengen und Machine Learning neue
Informationen zu finden. Deshalb versuchen Firmen immer mehr priva-
te Informationen über User zu sammeln, um deren Voraussagen in die
Zukunft zu verbessern. Die Möglichkeit zukünftige Events präzise voraus-
zusagen ist zweifelsohne ein gewaltiger Vorteil. Jedoch reicht eine Vielzahl
an Daten oft nicht aus. Um neue Information extrahieren zu können werden
Hintergrundwissen bezüglich Lernalgorithmen als auch Rechenleistung
benötigt. In diesem Fall wird oft auf Cloud-Dienste zurückgegriffen, welche
die benötigten Komponenten liefern.
Nichts desto trotz möchte ein Kunde des Dienstes verhindern, Daten mit
diesem zu teilen, um sich einen bestehenden Vorteil am Markt zu erhal-
ten. In vielen Fällen verbietet die Datenschutzgrundverordnung (DSGVO)
[1] sogar die Weitergabe von benutzerbezogenen Daten. Mit dieser Arbeit
wollen wir eine von uns entwickelte Lösung vorstellen. Wir präsentieren
einen Random Forest Lernalgorithmus, der mittels Fully Homomorphic
Encryption (FHE) ein Modell anhand verschlüsselter Daten erstellt. Die
Verschlüsselung sorgt dafür, dass der Dienst keine relevanten Informationen
erhält, solange er nicht den geheimen Schlüssel besitzt. Somit profitiert der
Kunde von dem Service, ohne seine Daten offenzulegen.
Im Gegensatz zum neuesten Stand der Technik benötigt das Erzeugen eines
Models nur eine einzige Interkation zwischen Kunde und Anbieter. Nach
dem initialen Austausch der Daten benötigt es also keine weitere Kom-
munikation zwischen beiden Partnern. Dies führt zu einer Reduktion der
benötigten Infrastruktur am Kunden. In allen zuvor entwickelten Verfah-
ren war es bisher nicht möglich das Anlernen, ohne die Hilfe des Kunden
durchzuführen.
Abschließend bleibt festzuhalten, dass unser Verfahren dem Kunden ermöglicht
ein Modell mit dem Wissen und der Performance des Cloudservices zu
erstellen, ohne private Informationen mit dem Anbieter zu teilen.

iv

Contents

Abstract iii

Kurzfassung iv

1 Introduction 1
1.0.1 Related Work . 3

2 Fully Homomorphic Encryption 4
2.1 Partially Homomorphic Encryption 4

2.2 Somewhat Homomorphic Encryption 5

2.3 Fully Homomorphic Encryption 6

2.4 Notation Homomorphic Encryption 7

2.5 Learning With Errors . 7

2.5.1 Ring Learning With Errors 9

2.5.2 General Learning With Errors 12

2.6 Bootstrapping . 13

2.7 BGV . 14

2.7.1 Key Switching . 15

2.7.2 Modulo Switching . 17

2.7.3 Batching . 19

2.8 HElib . 20

2.8.1 Operation Costs . 20

2.8.2 Binary Operation Costs 21

3 Decision Tree 22
3.1 Notation . 23

3.2 ID3, C4.5, Cart . 24

3.3 Splitting Criteria . 29

3.3.1 Division . 30

v

Contents

3.3.2 Gini Index . 30

3.4 One-Hot Encoding . 34

3.5 Random Forest . 35

4 Implementation 38
4.1 Preprocessing . 39

4.2 Model . 41

4.3 Measuring . 42

4.4 Packing . 42

4.4.1 General Consideration 42

4.4.2 Further Optimization 44

4.5 Split Values . 45

4.6 Training . 46

4.6.1 Generate Splits . 48

4.6.2 Calculate Gini Index . 49

4.6.3 Compare Gini Indices 51

4.7 Bootstrapping . 56

4.8 Benchmarks . 57

4.8.1 Impact of Bits per Feature 58

4.8.2 Impact of Packing Approaches 58

4.8.3 Impact of Split Values Approaches 59

4.8.4 Multi-threading . 60

4.8.5 Timings for Random Forest 64

4.9 Correctness . 64

5 Conclusion 66

Bibliography 68

vi

1 Introduction

With Machine Learning, we can discover hidden information within data
collected over the years. The possibility to anticipate user behavior or to
predict any future event turns out to be a great advantage.
To perform learning algorithms on immense amounts of data, we require a
lot of computational power. Nowadays, many companies turn away from
the idea to harvest a lot of processing capabilities within their organization.
Cloud services enable us to request computational power on demand and
just for the time needed. One big problem with this idea is the confidential-
ity of our data. Most of the data we produce will get collected by different
entities, who try to keep it for themselves to exploit its value. In many
cases, the General Data Protection Regulation (GDPR) [1] even prohibits the
sharing of personal data with third parties.
While the infrastructure in companies is shrinking, their efforts in develop-
ing new and even more precise learning algorithms grows. Therefore, in
this thesis we aim to protect not only the data but also the algorithms used
to extract further information. Our training algorithm allows two parties
to build a model on encrypted data without the necessity of leaking any
knowledge or information to the other party.
Figure 1.1 describes a simple communication model between our two parties.
The customer, owning the data, wants to train a model to predict future
events. The other party, a cloud service, consists of a server cluster with
high computational power. Furthermore, the cloud service knows how to
create a model suited for the data provided by the client.

1

1 Introduction

Figure 1.1: Communication model between customer and cloud.

The customer sends his encrypted training set to the cloud service. Since
the cloud trains on encrypted data, the resulting model is encrypted as well.
Now we can decide if we want the model placed at the cloud or sent back to
the customer. If it stays at the cloud, the customer can evaluate new samples
by encrypting and sending them to the cloud. Then the computational rich
entity evaluates and sends the encrypted result back to the customer, who
then decrypts it. In the other case, the customer receives the whole model,
which he than decrypts for further use.
In both cases, the training data is kept confidential from the cloud. If the
model remains in the hand of the cloud service, we can also ensure that
the client will not learn anything about the training procedure used by the
service.
In this thesis, we use fully homomorphic encryption (FHE) [2] to create
a learning algorithm that trains on encrypted data. Our C++ implemen-
tation is based on a Random Forest Classifier [3] and uses the HElib [4]
framework for FHE support. The scheme is highly parallelizable due to the
multi-threading capabilities of HElib as well as some custom optimizations.
A Random Forest consists of a variety of Decision Trees [5]. We train each

2

1 Introduction

tree with a randomly sampled subset of the original data. Therefore, we
decided to concentrate on the implementation of a Decision Tree training
algorithm, which can then be extended to a Random Forest classifier.

1.0.1 Related Work

For the construction of a Decision Tree on encrypted data, not much prior
work can be found, except for a work by Akavia et al. [6]. They present a
procedure which uses the CKKS [7] fully homomorphic encryption scheme
to homomorphically train a Decision Tree.
Their setting also consists of two parties, the customer owning the training
data and high performant cloud service. While in our contribution, the com-
munication ends after the initial transmission of parameters and training
data, their procedure requires that the client stays on-line. In their scheme,
the client needs to decrypt intermediate values, multiply them together,
and return the encrypted results. For each node of the Decision Tree, server
and client exchange and compute values, which leads to an intensive data
transfer. However, the calculations in plain as well as the fresh encryption
of intermediate results, lead to a significant performance speedup.

3

2 Fully Homomorphic Encryption

This chapter explains the principles of homomorphic encryption. Further-
more, we will explain the BGV [8] scheme which we use in the implementa-
tion of the learning algorithm in this thesis.
The idea of homomorphic encryption is to allow computations on encrypted
data without knowing the private key. An encryption is homomorphic if we
are able to compute f (Enc(A), Enc(B)) = Enc(f (A, B)) without using the
private key. The function f can be composed of multiple operations, most
notably, addition and multiplication. Most of the schemes support addition,
multiplication, or both.
First of all, we want to explain the differences between partially, somewhat,
and fully homomorphic encryption schemes.

2.1 Partially Homomorphic Encryption

Partially homomorphic encryptions allow us to perform only one homo-
morphic operation. For additive homomorphic encryptions it holds that
Enc(A) + Enc(B) = Enc(A + B), for multiplicative homomorphic encryp-
tions Enc(A)× Enc(B) = Enc(A× B).
As an example, we demonstrate an additive, and an multiplicative homo-
morphic encryption scheme, both based on ElGamal [9]. The encryption
scheme consists of a cyclic group G of order q with generator g. The secret
key of the scheme is x. The public key would be (G, q, g, h), where h = gx,
which is called shared secret. To perform an encryption of a message m we
do

s = hr

c = {c1, c2} = {gr, s ·m},

4

2 Fully Homomorphic Encryption

where r is chosen uniformly at random from the set {1, ..., q− 1}. To decrypt
the ciphertext, we compute

c−x
1 · c2 = (gr)−x · gxr ·m = g−xr+xr ·m = g0 ·m = 1 ·m = m.

Now, consider two messages m1, m2 encrypted under the same secret key
x. Under this encryption it is possible to multiply two cihpertext like this

E(m1) · E(m2) = (gr1 , m1 · hr1)(gr2 , m2 · hr2)

= (gr1+r2 , (m1 ·m2)hr1+r2)

= (gr3 , (m1 ·m2)hr3)

= E(m1 ·m2),

where r3 is the substitution of r1 + r2.
Now, in order to make an additive homomorphic encryption scheme, we
change the encryption in the following way

s = hr

c = {c1, c2} = {gr, gm · s}.

We now get

E(m1) · E(m2) = (gr1 , gm1 · hr1)(gr2 , gm2 · hr2)

= (gr1+r2 , gm1+m2 hr1+r2)

= (gr3 , gm1+m2 hr3)

= E(m1 + m2).

2.2 Somewhat Homomorphic Encryption

To create an even more powerful homomorphism we talk about somewhat
homomorphic encryption (SHE). This scheme supports both addition and
multiplication, but the number of operations we can chain together is lim-
ited. In order to use a somewhat homomorphic encryption scheme we
have to know the number of consecutive operations beforehand to choose a
suitable parameter set.

5

2 Fully Homomorphic Encryption

2.3 Fully Homomorphic Encryption

An even more powerful HE variant is fully homomorphic encryption
(FHE), presented first by Gentry in 2009 [2]. Fully homomorphic encryption
schemes can perform addition and multiplication arbitrary times. Therefore
we can construct a combination of operations of arbitrary length without
knowing the depth of the so called circuit beforehand.
All of the different types have advantages and disadvantages. While the
support of two operations within one scheme is rather complex, it opens
up new paths. In the field Z2 an addition is equivalent to an XOR and
a multiplication is realized by the AND operation. Thus, an FHE scheme
supporting the field Z2 as plaintext space allows us to perform logical
operations homomorphically. By combining these two operations with the
rules provided by [10], we can generate a punch of different logic gates, as
we describe in Table 2.1.

Gate Example Substitution
NOT NOT A A XOR 1
OR A OR B ((A XOR 1) AND (B XOR 1)) XOR 1
NOR A NOR B (A XOR 1) AND (B XOR 1)
XNOR A XNOR B A XOR B XOR 1
NAND A NAND B (A AND B) XOR 1

Table 2.1: All logic gates from {XOR, AND}.

Especially NAND-Gates are of great importance, because one may construct
any logic boolean-circuit (i.e. logical compositions of gates with one boolean
output) with just this one gate. NAND-Gates are also functionally complete
[11]. This means that any given program can be translated into a combination
of those gates. In summary, it is possible to evaluate any program of any
length on encrypted data in an FHE-scheme.

6

2 Fully Homomorphic Encryption

2.4 Notation Homomorphic Encryption

We write vectors in bold, e.g., v ∈ Rn. The notation vi refers to the i-th
element of v. Sometimes we will abuse this notation by saying vi,a ∈ V to
refer to the a-th element of the i-th row vector in the matrix V. Matrices will
be written in capital letters.
Furthermore, we use the polynomial ring R = Z[x]/(xd + 1) where d is
a power of two and Rq = R/qR reduces all coefficients of the polynomial
mod q.
The scalar product of two vectors a, b is written as 〈a, b〉.

2.5 Learning With Errors

Today’s FHE schemes are based on the hardness assumption of the Learning
with Errors problem, short LWE-problem. The LWE-hardness assumption is
the claim that the LWE search problem is hard to solve. As stated in [12], the
LWE search problem is to find an unknown s ∈ Zn

2 given a list of arbitrary
noisy equations like

〈a1, s〉+ ε1 = b1 ∈ Z2

〈a2, s〉+ ε2 = b2 ∈ Z2
...

where n ≥ 1, εi ≥ 0 and ai is chosen uniformly at random from Zn
2 for all i.

Each equation is correct independently with probability 1− εi. Notice, that
if εi = 0 the solution to the problem can be found efficiently by Gaussian
elimination. This requires O(n) equations to be a determined system and
can be solved in polynomial time.
The solving of the problem becomes significantly harder if we add a small
error ε of the Gaussian distribution X = DZ,σ as described in [13] with σ
denoting the standard deviation and Z result space. The best known algo-
rithm to solve this problem was presented by Blum, Kalai, and Wasserman
[14]. The algorithm requires 2O(n/ log n) equations and time.
A natural extension to the problem is the definition of higher moduli. By

7

2 Fully Homomorphic Encryption

choosing q = q(n) ≤ poly(n) as a prime the problem becomes finding
s ∈ Zn

q from a arbitrary list of equations

〈a1, s〉+ ε1 = b1 ∈ Zq

〈a2, s〉+ ε2 = b2 ∈ Zq
...

where the ai’s are chosen independently from Zn
q and the errors εi are

sampled from X . In this scenario the algorithm from Blum et al. requires
2O(n) equations and time.
In Figure 2.1 we can see an example of the LWE search problem with
sampled data. In this example we consider q = 13, n = 4 and m = 7. The
matrix A contains all ai’s, vector b all bi’s and vector ε all εi’s.

Figure 2.1: LWE-problem example.

In addition, we want to demonstrate how we can build an encryption
scheme based on the LWE hardness assumption, as described in [12]. First
we choose s ∈ Zn

q uniformly at random as the private key. Afterwards, we
sample m vectors a1, ..., am ∈ Zn

q and m errors ε1, ..., εm sampled from X .

8

2 Fully Homomorphic Encryption

The public key consists of the matrix A = {ai, ..., am} ∈ Zn×m
q and a vector

b = {b1, ..., bm} ∈ Zm
q where bi = 〈ai, s〉 + ei ∈ Zq. To encrypt a one bit

message M ∈ {0, 1} we generate a random vector r ∈ Zm
2 and calculate

u =
m

∑
i=1

ri · ai ∈ Zn
q

v =
q
2
·M +

m

∑
i=1

ri · bi ∈ Zq,

where {u, v} is our encrypted ciphertext. In order to decrypt our ciphertext,
we calculate

c = v− 〈u, s〉 ∈ Zq.

If the intermediate result c is greater q
2 then the message was 0, otherwise it

was 1. The downside of this scheme is that we require a lot of equations to
encrypt just one bit of information.
Now, that we have explained the basics of the hardness assumption we
must refer to the disadvantage for schemes based on it. When we start to
use the homomorphic properties of the scheme, by adding and multiplying
ciphertexts, we will notice that the error ε in the ciphertexts grow with each
operation. At some point the error will make a decryption of the ciphertext
impossible. This is true for all types of LWE based encryption schemes.

2.5.1 Ring Learning With Errors

Next we will explain Ring-LWE [13], short RLWE, which extends LWE by
sampling the variables of the ring R. Let R = Z[x]/ f (x) be the ring of
integer polynomials modulo f (x) = xn + 1, with n as a power of 2 to make
it irreducible over the rationals. An irreducible polynomial is a polynomial
that cannot be factored into the product of two sub-polynomials. Let q be
a prime modulus fulfilling q = 1 mod 2n. Then Rq = R/qR = Zq[x]/ f (x)

9

2 Fully Homomorphic Encryption

describes the the ring of integer polynomials modulo f (x) with coefficients
in Zq. This ensures, that each coefficient cannot be greater than q and
the highest degree of the polynomials would be n− 1. The RLWE search
problem is to find the coefficients of the ring polynomial s ∈ Rq given the
scalar product

s · a + ε = b ∈ Rq

where the a is chosen independently from Rq. Each coefficient is inflicted
with an error ε from the Gaussian distribution X = DZn,σ as described in
[13], where σ denotes the standard deviation and Zn describes the result
space.
Figure 2.2 shows an example of the RLWE search problem with sampled
data. In this example the ring is defined as R13 = Z13[x]/

〈
x4 + 1

〉
.

Figure 2.2: RLWE-problem example.

Cryptographic schemes based on the RLWE perform much better than the
ones based on LWE. In [12] they state, that the reason for this performance
increase is the smaller key size. The size of public and private keys under
RLWE is roughly the square root compared to LWE with the same security
level. Furthermore, the difference in size influences the performance of the

10

2 Fully Homomorphic Encryption

schemes drastically.
Finally, we want to give an example of an RLWE-Scheme as described in
[15] and [16]. Lets assume we have Ring Rq = Zq[x]/Φm(x) and elements
sampled from X are polynomials with small coefficients because σ << q.
The positive parameter m ∈ Z defines Φm(x), where Φm(x) is the m-th
polynomial with degree n = φ(m) with phi describing the Euler’s totient
function. First, we sample the secret key s uniformly from the distribution
X denoted by s ← X . Next we sample the error e ← X , the polynomial
a ∈ Rq and set the polynomial b to b = −(a · s + e · p) ∈ Rq, where p defines
our plaintext space Rp. Then we can use (a, b) as the public key. In order to
encrypt a message m ∈ Rp, where q� p, we do

u, f , g← X , i.e. u, f , g ∈ Rq

ct = (c0, c1) = (b · u + g · p + m, a · u + f · p) ∈ R2
q.

A freshly encrypted ciphertext consists of two polynomials c0 , c1. However,
the size of the ciphertext may increase due to multiplication, which we
describe later in this section. We decrypt the ciphertext ct = (c0, ..., ck) of
variable length k as

m =
[[〈

c, s′
〉]

q

]
p
∈ Rp

where the secret key vector s′ is constructed as s′ = (1, s, s2, ..., sk).
Next we talk about addition. Lets consider the two ciphertexts ct = (c0, c1, ..., cδ)
and ct′ = (c′0, c′1, ..., c′λ). If δ 6= λ then the shorter cihpertext is padded with
zeroes. Addition can be performed elementwise:

ctadd = (c0 + c′0, c1 + c′1, ..., cmax(δ,λ) + c′max(δ,λ)) ∈ Rmax(δ,λ)
q .

For multiplication it is a little bit more complicated. At first we consider
the simple example of two freshly encrypted ciphertexts ct = (c0, c1) and
ct′ = (c′0, c′1) for which multiplication is executed as

ctmul = (c0 · c′0, c0 · c′1 + c1 · c′0, c1 · c′1) ∈ R3
q.

To multiply arbitrary sized ciphertexts ct = (c0, c1, ..., cδ) and ct′ = (c′0, c′1, ..., c′λ)
we do (

δ

∑
i=0

ci · vi

)
·
(

λ

∑
i=0

c′i · vi

)
≡

δ+λ

∑
i=0

ĉi · vi.

11

2 Fully Homomorphic Encryption

where v is treated as an unknown variable. Note that we do not pad the
ciphertexts with zeros here. The output ciphertext is ctmlt = (ĉ0, ..., ĉδ+λ). If
both ciphertexts have the same size we can reduce it to the tensored product
lenght (n+1

2).
There are several ways to control the size of the ciphertext which we explain
later in Subsection 2.7.1.

2.5.2 General Learning With Errors

Since the LWE and RLWE are syntactically the same, there is a more gen-
eral approach to describe both hardness assumptions. In the general-LWE
(GLWE), as stated in [8], f (x) is chosen to be a polynomial for some m
coprime with q. For security parameter λ, let n = n(λ) be an integer dimen-
sion, let f (x) = xd + 1 where d = d(λ) is a power of 2, let q = q(λ) ≥ 2 be
a prime integer, let R = Z[x]/(f (x)) and Rq = R/qR, and let X = X (λ) be
a distribution sampling polynomials with small coefficients limited by λ.
The GLWE search problem is to find the coefficients of the ring polynomials
s ∈ Rq given the scalar products

s · a1 + ε1 = b1 ∈ Rq
...

s · an + εn = bn ∈ Rq

where the ai’s are chosen independently from Rq and the εi’s are sampled
from X .
The definition makes it possible to describe both cases in which R describes
either Z or a polynomial ring and different vector dimensions over those
rings. Instantiating GLWE with d = 1 is equal to LWE while GLWE with
n = 1 is equal to RLWE. In the first case, the polynomial would consist of
only one coefficient, while the number of equations n must be n > 1. In the
second case, we define a polynomial with a higher degree and define only
one equation n = 1.

12

2 Fully Homomorphic Encryption

2.6 Bootstrapping

In 2009 Gentry succeeded in constructing the first fully homomorphic en-
cryption scheme [2] by introducing his novel bootstrapping method, also
called recryption in the literature.
In GLWE based homomorphic encryption schemes, the error introduced
during encryption grows with each operation. At some point, the error
becomes too large, and the decryption of the ciphertext fails. With boot-
strapping it is possible to reset the noise to its freshly encrypted state as
often as needed.
In order to bootstrap a ciphertext encrypted under public key pk1, we en-
crypt it a second time under pk2. Next, we use a homomorphic circuit that
uses the secret key sk1 encrypted under pk2. The circuit decrypts the first
encryption under pk1, which results in a ciphertext encrypted under pk2.
For better understanding, the formula below describes the basic steps:

cpk1 = Epk1(m)

cpk1,pk2 = Epk2(cpk1)

spk2 = Epk2(sk1)

cpk2 = Evaluatepk2(Dpk2 , cpk1,pk2 , spk2),

where Dpk2 is the decryption circuit under pk2. Therefore Dpk2 requires
spk2 which holds parts of the secret key sk1 encrypted under pk2. After
bootstrapping, the error of the original encryption vanishes completely, and
the final noise is composed of a fresh encryption under pk2 and the noise
added by evaluation of the decryption circuit of pk1.
If we replace pk2 with pk1 in all formulas above, we will use the same key
for bootstrapping and encryption. In this scenario, we encrypt the secret
key with its public key. Schemes doing so require circular security, which is
not proven secure until today. However, many schemes, like the one used
in HElib [4] still assume circular security to avoid dealing with multiple
public/secret key pairs.

13

2 Fully Homomorphic Encryption

2.7 BGV

The BGV [8] scheme is one of the successors of the first FHE scheme from
Gentry in 2009 [2]. This fully homomorphic scheme bases its security on the
GLWE hardness assumption, which we describe in section 2.5. Brakerski,
Gentry, and Vaikuntanathan published the scheme in 2011. To manage the
noise more efficiently, they invented a new feature called modulus switch-
ing, where they switch the ciphertext to a smaller modulus. The reduction of
the modulus also reduces the relative noise in the ciphertext, even without
evaluating the costly bootstrapping procedure.
Next, we want to explain the basic components of the scheme. All com-
ponents used for the scheme belong to a ring Rq = Zq/ f (x), which we
explain in section 2.5. In Figure 2.3, one can see a basic encryption scheme
using the GLWE hardness assumption, which is essentially the original
procedure from Gentry 2009 and serves as an example for the differences to
the BGV-encryption.

• E.Setup(1λ, 1µ, b): Use the bit b ∈ {0, 1} to determine whether we
are setting parameters for a LWEbased scheme (where d = 1) or
a RLWE-based scheme (where n = 1). Choose a µ-bit modulus
q and choose the other parameters (d = d(λ, µ, b), n = n(λ, µ, b),
N = d(2n + 1) log qe, X = X (λ, µ, b)) appropriately to ensure that
the scheme is based on a GLWE instance that achieves 2λ security
against known attacks. Let R = Z[x]/(xd + 1) and let params =
(q, d, n, N,X).

• E.SecretKeyGen(params): Draw s′ ← X n. Set sk = s ←
(1, s′[1], ..., s′[n]) ∈ Rn+1

q .
• E.PublicKeyGen(params, sk): Takes as input a secret key sk = s =

(1, s′) with s[0] = 1 and s′ ∈ Rn
q and the params. Generate matrix

A′ ← RN×n
q uniformly and a vector e← X N and set b← A′s′ + 2e.

Set A to be the (n + 1)-column matrix consisting of b followed
by the n columns of -A′. (Observe: A · s = 2e.) Set the public key
pk = A.

• E.Enc(params, pk, m): To encrypt a message m ∈ R2, set m ←
(m, 0, ..., 0) ∈ Rn+1

q , sample r ← RN
2 and output the ciphertext

14

2 Fully Homomorphic Encryption

c← m + ATr ∈ Rn+1
q .

• E.Dec(params, sk, c): Output m← [[〈c, s〉]q]2.

Figure 2.3: Basic GLWE-Based Encryption Scheme [8].
Lets consider the LWE hardness assumption for simplification. Assume the
ring Zq, the ring over the integers modulo an odd integer q and a ciphertext
c ∈ Rn, which encrypts the message m under the secret key s, then

m = [[〈c, s〉]q]2 ∈ R2,

holds. The expression [·]q denotes the modular reduction in the interval
(−q/2, q/2). As long as the error/noise e, calculated as

e = [〈c, s〉]q = 〈c, s〉 − kq ∈ Rq,

does not exceed the bound |e| < q/2, we are able to decrypt the message.
The error grows with each operation. For two ciphertexts with noises
at most B, addition results into a magnitude of the noise at most 2B.
Multiplication increases the magnitude of the noise at most B2.
It is obvious to see that if we continue to multiply our ciphertext we will
end up growing exponential.
Now suppose that our modulus q is such that q ≈ xL. By multiplying
two ciphertexts, with a noise magnitude of x, the error increases to x2. If
we continue multiplication the noise reaches the ceiling after only log L
multiplications.

2.7.1 Key Switching

In [17] Brakerski and Vaikuntanathan introduced procedures for relineariza-
tion (i.e. dimension reduction) which allow us to reduce the ciphertext
growth after multiplication.
After the multiplication of two freshly encrypted ciphertexts c1, c2 ∈ R2

q
which encrypt m1, m2 ∈ Rp under key s1 = (1, s) ∈ R2

q we end up with a
new ciphertext c3 = c1 ⊗ c2 ∈ R3

q which encrypts the product m1 ·m2 under
s′1 = s1 ⊗ s1 ∈ R3

q. With each multiplication the ciphertext would grow

15

2 Fully Homomorphic Encryption

exponentially. Therefore we have to reduce the size with the key switching
method. As the name implies key switching transforms a ciphertext c3 ∈ R3

q
into c′ ∈ R2

q under s2 ∈ R2
q while maintaining the following equality:〈
c3, s′1

〉
≡
〈
c′, s2

〉
mod q

Before we start we will explain some subroutines that are used within the
key switching technique as described in [17]:

• BitDecomp(x ∈ Rn
q , q) decomposes x into its bit representation.

Namely, write x = ∑
blog qc
j=0 2j · uj , where all of the vectors uj are

in Rn
2 , and output {u0, u1, ..., ublog qc} ∈ Rn·dlog qe

2 .
• Powerso f 2(x ∈ Rn

q , q) outputs the vector {x, 2 · x, ..., 2blog qc · x} ∈
Rn·dlog qe

q .

It is important to notice that for vectors c, s of equal length we have
〈BitDecomp(c, q), Powerso f 2(s, q)〉 ≡ 〈c, s〉 mod q.
Key switching consists of two procedures. In the first step we generate a
key switching key which represents the encryption of parts of s1 under s2
as described in [17] but with our exemplary sizes:

SwitchKeyGen((s1 ⊗ s1) ∈ R3
q, s2 ∈ R2

q):

1. Run A← E.PublicKeyGen(s2, N) for N = 3 · dlog qe.
2. Set B ← A + Powerso f 2(s1) (Add Powerso f 2(s1) ∈ RN

q to A’s first
column.) Output τs1→s2 = B ∈ RN×2

q .

SwitchKey(τs1→s2 , c1): Output c2 = BitDecomp(c1)
T · B ∈ R2

q

It would be possible to do a key switch without the subroutines
BitDecomp and Powerso f 2. But the error in the ciphertext would increase
rapidly. The following formula shows how the error behaves during key
switching:

〈c2, s2〉 = 2 〈BitDecomp(c1), e2〉+ 〈c1, s1〉 mod q.

Because the dot product 〈BitDecomp(c1), e2〉 is very small the error increases
by a small additive factor.

16

2 Fully Homomorphic Encryption

2.7.2 Modulo Switching

Modulus switching helps to reduce the noise magnitude in ciphertexts. It
allows us to keep the noise level constant by decreasing the size of the
modulus q. However, making q smaller reduces the homomorphic capacity
(i.e., multiplicative depth) of the scheme.
Lets consider an odd number p and a ciphertext c modulus another odd
number q. After a modulus switch, the new ciphertext c′ modulus p can be
decrypted to the same message, i.e., the following equation holds:

[〈c, s〉]q ≡ [
〈
c′, s
〉
]p mod 2.

More importantly we can say if q > p > 1 than the magnitude of the error
decreases

[
〈
c′, s
〉
]p ≈ (p/q) · [〈c, s〉]q.

Lets assume q ≈ p · x and the magnitude of the error of the ciphertext c
under modulo q is x2 than the magnitude of the error in ciphertext c′ under
modulo p would be x.
To achieve multiple reductions of the modulus, we take a ladder of decreas-
ing moduli qL > ... > q1 > q0 such that qi ≈ qi+1/x|∀i ∈ {0, 1, ..., L}. After
each multiplication, we switch the modulus and accomplish the ability to
multiply ciphertexts up to a depth of L. After reaching the last modulo, it
is obvious that we cannot switch moduli any more. However, we can use
bootstrapping to reset the ciphertext’s noise level again.
We illustrate the full BGV scheme in Figure 2.4, including the refreshing of
the ciphertext using the modulo switch operation.

• FHE.Setup(1λ, 1L, b): Takes as input the security parameter λ, a
number of levels L, and a bit b. Use the bit b ∈ 0, 1 to determine
whether we are setting parameters for a LWE-based scheme (where
d = 1) or a RLWE-based scheme (where n = 1). Let µ = µ(λ, L, b) =
θ(log λ + log L) be a parameter that we will specify in detail later.
For j = L (input level of circuit) to 0 (output level), run paramsj ←
E.Setup(1λ, 1(j+1)·µ, b) to obtain a ladder of decreasing moduli from
qL((L + 1) · µ bits) down to q′(µ bits). For j = L− 1 to 0, replace
the value of dj ∈ paramsj with d = dL and the distribution Xj with

17

2 Fully Homomorphic Encryption

X = XL. (That is, the ring dimension and noise distribution do not
depend on the circuit level, but the vector dimension nj still might.)

• FHE.KeyGen({paramsj}): For j = L down to 0, do the following:

1. Run sj ← E.SecretKeyGen(paramsj) and Aj ←
E.PublicKeyGen(paramsj, sj).

2. Set s′j ← sj ⊕ sj ∈ R

[nj + 1
2

]
qj . That is, s′j is a tensoring of sj with

itself whose coefficients are each the product of two coefficients
of sj in Rqj .

3. Set s′′j ← BitDecomp(s′j, qj).
4. Run Ts′′j+1⇒sj

← SwitchKeyGen(s′′j , sj−1). (Omit this step when
j = L.)

The secret key sk consists of the sj’s and the public key pk consists
of the Aj’s and T s′′j+1 ⇒ sj’s.

• FHE.Enc(params, pk, m): Take a message in R2. Run E.Enc(AL, m).
• FHE.Dec(params, sk, c): Suppose the ciphertext c is under key sj .

Run E.Dec(sj, c). (The ciphertext could be augmented with an index
indicating which level it belongs to.)

• FHE.Add(pk, c1, c2): Takes two ciphertexts encrypted under the
same sj . (If they are not initially, use FHE.Refresh (below) to make
it so.) Set c3 ← c1 + c2 mod qj . Interpret c3 as a ciphertext under s′j
(s′j’s coefficients include all of s′j’s since s′j = sj ⊕ sj and sj ’s first co-
efficient is 1) and output: c4← FHE.Refresh(c3, T s′′j ⇒ sj−1, qj, qj−1)

• FHE.Mult(pk, c1, c2): Takes two ciphertexts encrypted under the
same sj . If they are not initially, use FHE.Refresh (below) to make
it so.) First, multiply: the new ciphertext, under the secret key s′j =

sj⊕ sj , is the coefficient vector c3 of the linear equation Llong
c1,c2(x⊕ x).

Then, output: c4← FHE.Refresh(c3, T s′′j ⇒ sj−1, qj, qj−1)
• FHE.Refresh(c, T s′′j ⇒ sj−1, qj, qj−1): Takes a ciphertext encrypted

under s′j , the auxiliary information T s′′j ⇒ sj−1 to facilitate key
switching, and the current and next moduli qj and qj−1. Do the
following:

18

2 Fully Homomorphic Encryption

1. Expand: Set c1 ← Powersof2(c, qj). (Observe:
〈

c1, s′′j
〉
≡
〈

c, s′j
〉

mod qj by Lemma 2.)
2. Switch Moduli: Set c2 ←Scale(c1, qj, qj−1, 2), a ciphertext under

the key s′′j for modulus qj−1.
3. Switch Keys: Output c3 ← SwitchKey(Ts′′j⇒sj−1

, c2, qj−1), a ci-
phertext under the key sj−1 for modulus qj−1.

Figure 2.4: BGV FHE Scheme without Bootstrapping [8].

2.7.3 Batching

In this section, we want to talk about batching, which is another improve-
ment in performance for many FHE schemes, including BGV. We cannot
profit from the full potential of the BGV-scheme by encrypting only a single
integer per ciphertext.
The concept of batching is based on the Chinese Remainder Theorem, and
applicable in the RLWE version of the BGV with the ring R = Z/Φm(x).
The Chinese Remainder Theorem makes it possible to encode multiple ele-
ments of Zp within one polynomial Rp. Performing an operation in Rp also
performs the operation on all encoded integers in Zp without influencing
each other.
In BGV, the number of plaintexts pslots depends on the plaintext modulus p
and the polynomial Φm(x) like

pslots =
φ(m)

ordm(p)

where φ(·) describes the Euler totient function and ordm(p) is the multi-
plicative order of p modulo m. The variable m ∈ Z+ defines Φm(x), where
Φm(x) is the m-th polynomial which has degree n = φ(m) and is monic and
irreducible.
In the literature, batching is often compared to SIMD instructions of modern
CPUs, which allow executing code in parallel on multiple data points. Using
batching allows us to drastically speed up the evaluation of parallelizable
circuits.

19

2 Fully Homomorphic Encryption

2.8 HElib

In this chapter, we will discuss the different computational aspects of the
HElib [4] library, an open-source implementation of FHE schemes. The
primary developers Shai Halevi and Victor Shoup released it first in 2013

right after Craig Gentry, the person responsible for the breakthrough in
FHE in 2009, switched to IBM.
The library implements two of the most promising FHE schemes, namely
the Brakerski-Gentry-Vaikuntanathan (BGV) [8] and he Approximate
Number scheme of Cheon-Kim-Kim-Song (CKKS) [7]. HElib is written
in C++ and uses the NTL library to support big integer operations and
multi-threading. It implements all described optimizations, including
modulus switching, relienarization (key-switching), bootstrapping and
ciphertext packing (batching).

2.8.1 Operation Costs

Besides the described operations, HElib supports the addition and multi-
plication with plaintext constants as well. These constant operations are
usually cheaper then ciphertext-ciphertext operations and have less impact
on the noise level.
Furthermore, several operations modifying the packing of the ciphertexts
are supported, like slot shifting and slot rotation. These operations allow us
to operate on the original plaintexts encoded in one ciphertext.

Operation Time Noise Comments
Addition cheap cheap entry-wise addition of vectors
Constant-add cheap cheap entry-wise addition of a constant vector
Multiplication expensive expensive entry-wise multiplication of vectors
Constant multiply cheap moderate entry-wise multiplication by constant vector
Rotation expensive cheap cyclic rotation of vector by any amount

Table 2.2: Homomorphic operations and their costs [18].

20

2 Fully Homomorphic Encryption

2.8.2 Binary Operation Costs

In our implementation, we use the binary plaintext space Z2, which means
our encrypted data consists of bits only. To support operations like addition,
multiplication, or division on multi-bit input, we have to implement a
binary-circuit.
HElib [4] already implements addition, multiplication, and comparison of
multi-bit ciphertexts. We want to mention that these implementations focus
on reducing the depth of the circuit and are, therefore, not optimized for
runtime.
In Table 2.3 we list the cost of different binary circuits in HElib.

Operation Lvl Complexity Comments
AddTwoNumbers dlog2(t + 2)e O(tlog2(t)) Addition of two t-bit values
AddManyNumbers dlog3/2(n)e+

dlog2(t + log3/2(n) + 2)e Addition of n t-bit values
MultTwoNumbers 1 + dlog3/2(t)e+

dlog2(t + log3/2(t) + 2)e Multiply two t-bit values
CompareTwoNumbers dlog2(t + 2)e O(t) Comparison of two t-bit values

Table 2.3: Homomorphic operations and their costs [19].

21

3 Decision Tree

In this chapter, we want to explain how a Decision Tree training algorithm
works and how we transformed it into a boolean circuit, which we can
evaluate through FHE on encrypted training data. Different problems arise,
translating the learning algorithm into a homomorphic process. We will
discuss each of these problems and their solutions.
A Decision Tree is a flowchart-like structure in the form of a tree. Each node
on the path illustrates a decision, which leads to a leaf node or terminal
node representing a class-label.
Tree-based learning is known to be one of the most straightforward learning
procedures, even though it handles a large variety of learning problems.
The only limitation to its applicability is the necessity of labeled training
data. Since we use supervised learning, the algorithm needs training data
with class-labels assigned to it to produce a model. In addition to linear
problems, they also allow us to solve non-linear problems as well.
In Figure 3.1, we see how a Decision Tree is constructed from the example
dataset in Table 3.1 taken from [20]. The first step in training a Decision
Tree is to split the current set of data by a splitting criterion. The criterion
yields a decision for our path through the tree representing the best attribute
for splitting. Then we separate the data into all the unique values of this
attribute. The attribute serves as our decisions, which splits our dataset into
smaller and smaller subtrees.
If a split or subset contains only one class-label, it is called a pure set and
does not need any further splitting. Therefore, these nodes turn into leaf
nodes representing the remaining class-label. Repeating the process leads to
a tree, which consists of decisions and class-labels.
To evaluate a new data sample, we simply follow each decision until we
reach a leaf node that holds the classification result.

22

3 Decision Tree

Day Outlook Humidity Wind Play
1 sunny high weak no
2 sunny high strong no
3 overcast high weak yes
4 rainy high weak yes
5 rainy normal weak yes
6 rainy normal strong no
7 overcast normal strong yes
8 sunny high weak no
9 sunny normal weak yes
10 rainy normal weak yes
11 sunny normal strong yes
12 overcast high strong yes
13 overcast normal weak yes
14 rainy high strong no

Table 3.1: Decision Tree example dataset [20].

Outlook

Humidity

No

hi
gh

Yes

norm
al

sunny

Yes

overcast

Wind

Yes

w
ea

k

No

strong

rain

Figure 3.1: Decision Tree example.

3.1 Notation

Table 3.2 illustrates the used notation, all variables and their dimensions.

23

3 Decision Tree

Symbol Description
y ∈ Zn Vector of target values
y ∈ Z Target value
A ∈ Zn×m Matrix of attributes/features
a ∈ Zn Vector of attributes/features
L ∈ Zj Set of labels
l ∈ Z Label
D ∈ Zn×(m+1) Matrix of attributes/features and target values
d ∈ Z(m+1) Vector of attributes/features and target value

Table 3.2: Notation Decision Tree.

Each row of the training data consists of a label y ∈ Z and a feature vector
d ∈ Zm with m denoting the number of features. Consider the vector y ∈ Zn

representing the target values and matrix A ∈ Zn×m containing all features
of our training data. Combining both into one matrix D ∈ Zn×(m+1) with
elements d ∈ D where d0 = y and {d1, ..., dm} = a holds.
In the upcoming sections we will use the indicator function which is defined
as:

1A(z) :=

{
1 if z ∈ A,
0 if z /∈ A.

.

The next definition selects all elements d ∈ D which fulfil the condition
dx � v, with � ∈ {=,<,≤,>,≥}, the element’s index x ∈ {1, ..., |d|}, and v
as the comparative value:

σx,�,v(D) = {d ∈ D|dx � v}

3.2 ID3, C4.5, Cart

There are many different implementations and definitions on how to train a
Decision Tree. This section will explain the three most popular procedures.
First, we will talk about the ”Iterative Dichotomiser 3” (ID3) training algo-
rithm [5], which is one of the simplest Decision Tree algorithms. There are
multiple implementations of ID3, depending on the definition of the learning

24

3 Decision Tree

problem. It uses the Information Gain, which we describe in Equation 3.1,
as its splitting criterion. The criterion is an impurity based measure, which
tries to reduce the entropy of the dataset by splitting it with the attribute
decreasing the entropy the most. In [21] the formula for the Information
Gain is:

In f ormationGain(x, D) = Entropy(D)−
1
|D| ∑

v∈unique(x,D)

|σx,=,v(D)| · Entropy(σx,=,v(D)), (3.1)

where unique(x, D) are the unique feature values dx of the elements d ∈ D
on index x ∈ {1, ..., m}. The Entropy is defined in [21] as

Entropy(D) = ∑
l∈L

|σ0,=,v(D)|
|D| · log2

σ0,=,v(D)

|D| (3.2)

where di,0 is the target values of row i.
The data is split by the attribute’s distinct values, each representing a new
subset. In [21], the algorithm has the following stopping conditions:

• All instances in the training set belong to a single target value of y.
• The maximum tree depth has been reached.
• The number of cases in the terminal node is less than the minimum

number of cases for parent nodes.
• While splitting a node, the number of cases in one or more child nodes

would be less than the minimum number of cases for child nodes.
• The best splitting criterion is smaller than a certain threshold.

The algorithm itself has some drawbacks, but it stands out for its simplicity.
In [21], they describe a list of drawbacks:

• ID3 does not guarantee an optimal solution, and it can get stuck in
local optimums because it uses a greedy strategy. During a search, we
can use backtracking to avoid local optimum.

• ID3 can overfit to the training data. Smaller Decision Trees should be
preferred over larger ones to avoid overfitting. This algorithm usually
produces small trees, but it does not always produce the smallest tree.

25

3 Decision Tree

• ID3 is designed for nominal attributes. Therefore, continuous data can
be used only after converting them to nominal bins.

The C4.5 [22] is an evolution of the ID3 algorithm. The algorithm uses the
gain ratio, described in [22], as its splitting criterion:

GainRatio(x, D) =
In f ormationGain(x, D)

Entropy(D)
(3.3)

C4.5 stops splitting when the number of instances to split is below a certain
threshold. The improvements of the new algorithms, as stated in [21], are:

• C4.5 uses a pruning procedure that removes branches that do not
contribute to the accuracy and replace them with leaf nodes.

• C4.5 allows attribute values to be missing (marked as ?).
• C4.5 handles continuous attributes by splitting the attribute’s value

range into two subsets (binary split). Specifically, it searches for the
best threshold that maximizes the gain ratio criterion. All values above
the threshold constitute the first subset, and all other values constitute
the second subset.

Another algorithm we want to introduce is called Cart, which stands
for ”Classification And Regression Tree”, which is implemented in the
well-known Decision Tree classifier in the scikit-learn [23] library for python.
The Cart algorithm utilizes the Gini Index, which will be explained later
in subsection 3.3.2, as its splitting criteria. Like in C4.5, the tree consists
of binary splits. Therefore, it can handle numerical and continuous data
because the split depends on a specific value of an attribute and not on the
attribute itself. The algorithm can be used for classification and regression
as well.
The implementation in this thesis favors the Cart algorithm because of the
simple to implement splitting criterion. Since the Cart algorithm does not
guarantee an optimal solution, the homomorphic implementation does not
guarantee one as well. The stopping criteria for Cart and the ID3 algorithm
are the same. To support continuous data, we multiply the values with
the precision needed for the current data set. After we scaled the values
appropriately, we convert them to integer values. To make use of nominal
values, we apply a special encoding called One-Hot Encoding (Section 3.4).

26

3 Decision Tree

TreeGrowing(D, SplitCriterion, StoppingCriterion)
Where:

D - Features + Target Values
SplitCriterion — the method for evaluating a certain split
StoppingCriterion — the criteria to stop the growing process

Create a new tree T with a single root node.
IF StoppingCriterion(D) THEN

Mark T as a leaf with the most
common value d0 of the elements d inD as a label.

ELSE
∀x ∈ {1, ..., m} find x that obtains the best SplitCriterion(x, D).
Label T with x
FOR each distinct outcome v = dx of all elements d ∈ D:

Set Subtreei = TreeGrowing((d ∈ D|dx = v)).
Connect the root node of T to Subtreei with

an edge that is labeled as v
END FOR

END IF
RETURN TreePruning(T, D)

TreePruning (T, D)
Where:

T - The tree to be pruned
D - Features + Target Values

DO
Select a node t ∈ T such that pruning it
maximally improves some evaluation criteria
IF t 6= ∅ THEN T = pruned(T, t)

UNTIL t = ∅
RETURN T

Figure 3.2: Top-down algorithmic framework for Decision Tree induction [21].

Figure 3.2 explains the steps of a general Decision Tree learning algorithm.
After we finish learning the Decision Tree, we start pruning each node.
Pruning removes branches of the tree that provide little estimation power by

27

3 Decision Tree

checking each edge in the finished tree. We estimated that the recommended
pruning procedures for the Cart algorithm would make a large impact on
the performance of the homomorphic version. However, to evaluate the
nodes, we would have to decrypt them by including the party with the secret
key into the procedure. Otherwise, we must pursue all possible outcomes,
which makes pruning obsolete. Since this was not the goal of our approach,
we decided to leave the implementation of pruning procedures for future
work.
There are two different stopping criteria used in our solution. The first
bounds the tree to a certain depth to keep the tree small and to prevent
overfitting. By reducing the depth of the tree, we can stop before all the
binary splits are just representations of the training data itself.
The second stopping condition considers the size of the node to split. If
a node contains fewer training examples than a given threshold, we stop
splitting. Splitting a node with only a view training examples will hardly
represent the whole training set. Moreover, a certain amount of training
examples must conclude the resulting class in a leaf node otherwise the
classification would also lead to overfitting.
Now we want to show a more precise description of the Cart procedure
since the first algorithm shows a more general approach and omits the
binary-splitting. The algorithm in 3.3 does not represent all definitions of
the Cart algorithm, but it resembles our approach.

TreeGrowing(D, Depth, Min)
Where:

D - Features + Target values
Depth - The remaining depth to calculate
Min - The minimal number of rows to split

Create a new tree T with a single root node.
IF Depth = 0 OR Min >= |D| THEN

Mark T as a leaf with the most
common value d0 of the elements d inD as a label.

ELSE
find v and x for ∀i ∈ {0, n− 1}, ∀x ∈ {1, m} with best

Gini((d ∈ D|dx > v), (d ∈ D|dx ≤ v)).

28

3 Decision Tree

Label T with v and x
Set T.le f t = TreeGrowing((d ∈ D|dx > v), Depth− 1, Min).
Set T.right = TreeGrowing((d ∈ D|dx ≤ v), Depth− 1, Min).

END IF
RETURN T

Figure 3.3: Top-down algorithmic framework for Cart algorithm [21].

We can see how the algorithm splits the data into two subsets with the
best value out of all attributes of all data rows in the set. We stop if the
depth reaches zero or the subset of the current node becomes smaller than
a certain threshold.
At last, we have to talk about the differences of our algorithm to the imple-
mentation of scikit-learn [24]. Scikit-learn uses no maximal depth as default,
and they do include a threshold for the impurity reduction, which repre-
sents an additional stopping criterion. Additionally, scikit-learn allows most
of the inputs to be weighted, but in the default configuration all weights are
equal and do not influence the outcome.

3.3 Splitting Criteria

In this section, we explain how we chose the splitting criterion for our
learning algorithm. There is a large variety of criteria concerning the classi-
fication and regression using Decision Trees. Most splitting functions are
univariate. Therefore, they need only one attribute for splitting. The function
provides us with a criterion to find the best attribute for splitting. In terms
of homomorphic encryption, it is essential to find a rather simple function
that can be calculated by addition and multiplication.
For our successor, we chose the so-called Gini Impurity or Gini Index, which
is an impurity-based criterion. Impurity-based criteria state the reduction in
the impurity of the training set D according to a value v = di,x ∈ D.

29

3 Decision Tree

3.3.1 Division

One of the most expensive operations to create a Decision Tree based on
binary circuits is division. For a n-bit value the division circuit stated in [25]
has a multiplicative depth of n2. For comparison adding two n-bit numbers
costs approximately log2 n multiplications, see Table 2.3, which shows us
the tremendous costs of division. Another problem of division concerns
the fact that we cannot use continuous values in the BGV-scheme. This
limitation leads to a loss of precision after each division.
Most of the splitting criteria used for training Decision Trees require di-
visions. Nevertheless, we can overcome this problem by multiplying the
training data before we encrypt. Another solution is the modification of our
algorithm to avoid division.
In Section 3.3.2, we will explain how we can rewrite the selected splitting
criteria to eliminate divisions.

3.3.2 Gini Index

This section explains the general formula of the Gini Index. Afterward, we
will show how to change it to comply with our needs and why the original
version did not.
The definition for the Gini Index is

Gini(D) = 1−∑
l∈L

∣∣∣∣{d0 ∈ D | d0 = l}

∣∣∣∣
|S|

2

(3.4)

with L denoting the set of labels.
The Gini Index describes the probability of classifying a randomly picked
data point incorrectly. Therefore, the best Gini Index would be 0. However,
this is only possible if all the resulting splits are pure sets. As a reminder, a
pure set describes a subset which consists exclusively of one target label.
Figure 3.4 illustrates an example of a perfect split in which each of the two
subsets is pure and has a Gini Index of 0.

30

3 Decision Tree

x

y
split

•
•

•
•

•

◦ ◦
◦

◦

◦

Figure 3.4: Perfect split example.

Formulated into an optimization problem, this means that we search for the
attribute that splits our dataset so that the Gini Index becomes minimal.
Normally the data would be split into all different values of each attribute.
This solution causes problems if the domain of the target attribute is
relatively wide. Therefore, we use a different approach. We do not only
search for the best attribute to split but also for the best value v = si,a,
where i ∈ {0, ..., N} describes the row index and a ∈ A the attribute index.
The value splits the dataset into two different subsets

Sle f t(θ) = (si,a ∈ S | si,a > v)

Sright(θ) = (si,a ∈ S | si,a ≤ v), (3.5)

where i ∈ {0, ..., N} describes the row index and θ = {a, v} is the attribute
index and the value to split. The Gini Index calculation for a binary split
is weighted by the total number of instances in the parent node. The Gini
Score for a chosen split point in a binary classification problem is therefore
calculated as

Giniscore(S, θ) = Gini(Sle f t(θ))

∣∣Sle f t(θ)
∣∣

|S| + Gini(Sright(θ))

∣∣Sright(θ)
∣∣

|S| . (3.6)

31

3 Decision Tree

Both results are weighted with the number of elements in each split. The
minimization problem resulting from this is given by

min
θ

Giniscore(S, θ) (3.7)

Now, in order to make the formula usable for our homomorphic circuit, we
ensure that we do not use any computations that are expensive in the sense
of circuit depth. Therefore, we must eliminate divisions.
The following transformation of the formula shows the solution to this prob-
lem. We start by inserting the formula for the Giniscore into the optimization
problem

min
θ

Gini(Sle f t(θ))

∣∣Sle f t(θ)
∣∣

|S| + Gini(Sright(θ))

∣∣Sright(θ)
∣∣

|S| .

By inserting the formula for the Gini Index we get

min
θ

1−∑
l∈L

(∣∣{si,0 ∈ Sle f t(θ) | si,0 = l}
∣∣∣∣Sle f t(θ)

∣∣
)2 ∣∣Sle f t(θ)

∣∣
|S|

+ 1−∑
l∈L

(∣∣{si,0 ∈ Sright(θ) | si,0 = l}
∣∣∣∣Sright(θ)

∣∣
)2 ∣∣Sright(θ)

∣∣
|S| .

Next we get rid of the constant values and the variable S, which are equal
for all splits. We subtract 2 and multiply by |S|

min
θ

−∑
l∈L

(∣∣{si,0 ∈ Sle f t(θ) | si,0 = l}
∣∣∣∣Sle f t(θ)

∣∣
)2 ∣∣Sle f t(θ)

∣∣
−∑

l∈L

(∣∣{si,0 ∈ Sright(θ) | si,0 = l}
∣∣∣∣Sright(θ)

∣∣
)2 ∣∣Sright(θ)

∣∣
Now we want to rearrange the formula so it contains only one common

32

3 Decision Tree

divisor

max
θ

∑l∈L(
∣∣{si,0 ∈ Sle f t(θ) | si,0 = l}

∣∣)2∣∣Sle f t(θ)
∣∣

+
∑l∈L(

∣∣{si,0 ∈ Sright(θ) | si,0 = l}
∣∣)2∣∣Sright(θ)

∣∣
= max

θ

∑l∈L(
∣∣{si,0 ∈ Sle f t(θ) | si,0 = l}

∣∣)2
∣∣Sle f t(θ)

∣∣∣∣Sle f t(θ)
∣∣ ∣∣Sright(θ)

∣∣
+

∑l∈L(
∣∣{si,0 ∈ Sright(θ) | si,0 = l}

∣∣)2
∣∣Sright(θ)

∣∣∣∣Sle f t(θ)
∣∣ ∣∣Sright(θ)

∣∣
Last but not least, we rewrite the Gini Score so we end up with two terms,
Ginivalue for Gini Value and Ginicoe f f for Gini Coefficient, which divide each
other and can be compared to different splits of the current subset S.
By substituting the terms above and below the division we get

max
θ

Ginivalue(S, θ)

Ginicoe f f (S, θ)
. (3.8)

In order to perform comparisons without any division we rewrite the
comparison of two different splits. We consider the two different values
θ1, θ2 ∈ S which each respectively create a split. The modifications to
compare two possible splits with each other are:

Giniscore(S, θ1) > Giniscore(S, θ2)

⇔ Ginivalue(S, θ1)

Ginicoe f f (S, θ1)
>

Ginivalue(S, θ2)

Ginicoe f f (S, θ2)

⇔ Ginivalue(S, θ1) · Ginicoe f f (S, θ2) > Ginivalue(S, θ2) · Ginicoe f f (S, θ1)

(3.9)

By using Equation 3.9 to determine the highest Giniscore, we can prevent
division throughout the whole process. There are a few more aspects in the
sense of optimizing the algorithm, which we discuss later in Chapter 4 of
this thesis.

33

3 Decision Tree

3.4 One-Hot Encoding

There are two different types of data used in statistics. First of all, numerical
data, for example, the length of a car or a person’s height. Secondly, cate-
gorical data which represents characteristics like gender or color.

Data Types

Numerical data

Discrete data Continuous data

Categorical data

Figure 3.5: Statistical data types.
Discrete and continuous data are subgroups of numerical data, as shown by
Figure 3.5. The set of integers describes discrete values, while continuous
data consists of real values.
Since the BGV scheme supports only the set of integers, we introduce some
methods to extend the range of data types.
To handle continuous data, we must figure out the required precision for
the training data in question. The precision may vary between different
datasets, and it requires testing for each model. Before converting all values
to integers, we enlarge them to meet the tolerances.
Next, we show how we handle categorical inputs. Normally, one would split
categorical information into all possible outcomes, but our Decision Tree
algorithm uses binary-splitting, which supports only two possible outcomes.
For this purpose, we use so-called indicator variables or dummy variables
[26]. In the scikit-learn environment, they use the term One-Hot Encoding
[27] for the procedure generating those variables.
The encoding takes all categorical values of an attribute and transforms
them into attributes, represented as yes-no questions.
In Figure 3.6, we encode the attribute ”Outlook” with the One-Hot Encod-
ing.

34

3 Decision Tree

Original Encoded
Day Outlook
1 sunny
2 sunny
3 overcast
4 rainy
5 rainy
6 rainy
7 overcast
8 sunny
9 sunny
10 rainy
11 sunny
12 overcast
13 overcast
14 rainy

Day isOvercast isRainy isSunny
1 No No Yes
2 No No Yes
3 Yes No No
4 No Yes No
5 No Yes No
6 No Yes No
7 Yes No No
8 No No Yes
9 No No Yes
10 No Yes No
11 No No Yes
12 Yes No No
13 Yes No No
14 No Yes No

Figure 3.6: One-Hot Encoding example [20].
In summary, we can say that our implementation supports all the different
data types used in learning problems. However, we must keep in mind
that for continuous data, we may lose accuracy if we do not choose precise
bounds.

3.5 Random Forest

In this section, we explain how to use the Decision Tree training algorithm
to create a Random Forest classifier[28]. As the name might suggest, Ran-
dom Forests consist of a collection of Decision Trees. The algorithm enables
us to solve classification and regression problems. Every tree represents a
classification/regression result, which contributes in the form of a majority
vote, to the overall prediction.
The basic principle behind a Random Forest is the wisdom of crowds. The
trees protect each other from their errors as long as they are independent
of each other. Therefore, the correlation has to be low between each model
to produce an ensemble prediction that outperforms any of the individual

35

3 Decision Tree

ones.
The question is, how does a random forest ensure that the models diver-
sify each other? One method to prevent correlation is bagging, also called
bootstrapping, not to confuse with bootstrapping of the BGV-scheme. To
remind us again, Decision Trees are susceptible to changes in the training
data. Small changes in the composition of the data will change the model
drastically. Random Forests use this property to create a variety of com-
pletely different Decision Trees by simply batching random chunks of the
training data together. This procedure is known as bagging.
It is important to notice that with bagging, we are not creating random
subsets of smaller sizes, but we sample the set with replacements. Consider
the example set (1, 2, 3, 4, 5) ∈ Z5 which may create two random samples
(1, 2, 2, 3, 4) and (1, 2, 3, 3, 5). Both samples have the same length but com-
pletely different elements.
Another important aspect is the random selection of features. By excluding
random features, we create a greater variety of trees to predict new informa-
tion. As stated in [3], in the case of classification we require

√
m randomly

selected features of the total amount of features m. Figure 3.7 visualizes all
steps of the procedure.

36

3 Decision Tree

Figure 3.7: Random Forest general overview.

Most learning algorithms require to tune the parameters to fit the current
training data. In our implementation, only the party owning the data can
evaluate the model. Therefore we have to make sure no tuning is required.
The Random Forest learning algorithm overcomes this issue by selecting
random samples and features, which makes tuning obsolete.

37

4 Implementation

In this chapter, we want to talk about the transformation of the Random
Forest learning procedure into a homomorphic boolean circuit. We imple-
mented the algorithm in both C++ using the HElib, and Python using the
NumPy [29] and scikit-learn [23] libraries. To gain even more insight, we
will compare certain parts of the code in both implementations.
Lets remember the real-world scenario for our solution from section 1.1. We
have two parties, the customer and the cloud. The customer wants to create
a model on which he can predict new data in the future. The cloud provides
a service which constructs a model without seeing the data in plain at any
point.
In the first phase, represented by figure 4.1, we show the communication
between the customer and the cloud during the learning phase.

Training

customer Cloud
params← FHE.Setup(λ, L)
pk, sk← FHE.KeyGen(params)

pk

Apacked ← packing(Aplain)

Yencoded ← encode(yplain)

Ypacked ← packing(Yencoded)

Apk ← FHE.Enc(params, pk, Apacked)

Ypk ← FHE.Enc(params, pk, Ypacked)

Apk,Ypk

cModel ← train(Apk, Ypk, pk)

38

4 Implementation

Figure 4.1: Training communication between customer and cloud.

The client starts by generating the parameters for encryption. Afterward,
we encrypt the features A and target values y separately.
In the second phase, illustrated by figure 4.2, the customer wants to make a
prediction on new data. The customer encrypts and sends the data into the
cloud which then responds with a prediction. At last the customer decrypts
the result.

Evaluating

customer Cloud
Apacked ← packing(aplain)

Apk ← FHE.Enc(params, pk, Apacked)

Apk

predpk ← predict(Apk, Modelpk, pk)

predpk

pred← FHE.Dec(params, sk, predpk)

Figure 4.2: Prediction communication between customer and cloud.

In the prediction phase, we could do the packing as well, but for simplicity,
we constructed the model as well as the prediction for one sample at a
time.

4.1 Preprocessing

For testing we use three different datasets, which we selected to represent
different situations and scenarios. We chose different sizes of data to show
the performance of the scheme. Since the HElib supports integers only, we
must convert all non-integer features of the training data before training.

39

4 Implementation

Name Samples Features Classes Strings Continuous Categorical
Tennis [20] 14 4 2 x x
Iris [30] 150 4 3 x x
Balance [31] 625 4 3 x

Table 4.1: Data Types included except integers in the different dataset.

Table 4.1 illustrates the required preprocessing steps for each of the datasets.
For string-based features, we list all possible values and associate each
distinct value with an integer.
Next, we encode categorical-based features with the One-Hot Encoding, as
described in subsection 3.4. As a reminder, the One-Hot Encoding translates
categorical data into numerical data. The downside of this method is that
we end up with more features than we started with.
To handle continuous data, we multiply all values by the precision needed
and cut the remaining decimals. In our case, we only scale the iris dataset.
The data will be encrypted bitwise, which means that a n-bit number
consists of n ciphertexts. To keep the explanations and dimensions of all
variables more straightforward, we write Z instead of Zn

2 even though the
second one would be more accurate.
In Table 4.2 we can see how the data changes with preprocessing. By
encoding the categorical data in the tennis dataset the amount of features
increases while the bits per feature (bp f) decrease. In the Iris dataset ,we
multiply the whole set with 10, because all values have just one decimal
place. This increases the bits needed to represent one feature of one row by
3 bits.

Name Indexing Upscaling Encoding Before After
Features Bits/Feature Features Bits/Feature

Tennis [20] x x 4 2 8 1
Iris [30] x x 4 3 4 7
Balance [31] x 4 3 4 3

Table 4.2: Dimensions and preprocessing steps for each dataset.

Our tests have shown that preprocessing does not influence the performance
of the scheme. Only the overall amount of samples changes how the learning
algorithm performs. The increase of bp f from upscaling as well as the
increase of features from the One-Hot-Encoding have a negligible impact

40

4 Implementation

on the runtime.
In summary, we may say that our scheme supports every kind of data,
without influencing the performance, as long as we preprocess it before
encryption.

4.2 Model

This section describes the structure or the final model. The model represents
a forest containing multiple Decision Trees. Those trees harbor multiple
levels of decisions that classify new data. The two parameters:

• tree depth - the level at which we stop splitting
• tree count - the amount of Decision Trees

decide the size of the model from the start. Normally multiple stopping
criteria influence the construction of each tree. Since we have no way of
validating the criteria on encrypted data, we omit most of them. Therefore
each Decision Tree will be a complete binary tree limited only by the tree
depth n, resulting in 2n− 1 nodes. In Figure 4.3, we can see the general data
structure with all elements and attributes.

Figure 4.3: Model data structure.

41

4 Implementation

4.3 Measuring

This section will explain how we measure the performance of the scheme
and all its variations. Our scheme produces a forest of Decision Trees. Each
of these trees has multiple levels of binary splits. To get a good comparison
between long and short tree depths, we decided to take the timing of the
generation of an average split splitmean. Therefore, we calculate the average
time of all splits of all trees within one forest.

4.4 Packing

As a reminder, batching allows us to pack multiple plaintext values in
so-called slots. In this section, we explain the different packing approaches
as well as some encoding needed for computation later on. The number of
slots nslots one ciphertext holds depends on the parameters used to initialize
the BGV scheme as we explained in Section 2.7.3.
Our training data consists of the feature matrix A ∈ Zn×m and a target value
vector y ∈ Zn, where n denotes the number of samples and m the number of
features. Features and target values will be packed and encrypted separately.

4.4.1 General Consideration

The easiest idea to pack our data would be sample wise. As long as m ≤
nslots we can pack all features of a sample into one ciphertext. It is important
to notice that our construction does not work if m > nslots. The next step, as
we implemented it in this thesis, packs multiple samples into one ciphertext.
The maximum samples per ciphertext spcmax is given by

spcmax = bnslots/mc ,

which reduces the number of ciphertexts, produced by the feature matrix, to
d n

spcmax
e. If (nslots mod m) 6= 0 or (n mod spcmax) 6= 0 then the remaining

slots are filled with zeros.
Before we start packing the target values y, we must encode them. This
intermediate step is necessary to simplify the operations between target

42

4 Implementation

values and all other variables in the later procedure.
The vector y′

l = (y′l,1, ..., y′l,n) ∈ Zn
2 is computed as follows

y′l,i = 1{l}(yi) ∈ Z2,

for all i ∈ {0, ..., n− 1}. This holds for all labels l ∈ L.
Next we generate a matrix Yl ∈ Zn×m

2 for each label l like

Yl = [y′
l , ..., y′

l] ∈ Zn×m
2 .

Now the feature matrix A and all Yl matrices have the same dimensions.
This makes it easier after encryption to perform operations between those
matrices.
To give an example we consider the matrix A ∈ Z4×3, the vector y ∈ Z4

and s = 14. The values of A and y are given below:

a0 a1 a2 y
1 2 3 0
4 5 6 1
7 8 9 0

10 11 12 2
13 14 15 2

.

Now we pack all the features into two ciphertext vectors c0, c1, which is the
maximum samples per ciphertext spcmax = bnslots/mc = b14/5c = 2, and
pad the remaining slots with zeros like

Slot 0 1 2 3 4 5 6 7 8 9 10 11 12 13
c0 1 2 3 4 5 6 7 8 9 10 11 12 0 0
c1 13 14 15 0 0 0 0 0 0 0 0 0 0 0

.

For the target values we do the same for each label l ∈ L. The resulting
vectors look like

43

4 Implementation

Slot 0 1 2 3 4 5 6 7 8 9 10 11 12 13

l = 0 c0 1 1 1 0 0 0 1 1 1 0 0 0 0 0
c1 0 0 0 0 0 0 0 0 0 0 0 0 0 0

l = 1 c0 0 0 0 1 1 1 0 0 0 0 0 0 0 0
c1 0 0 0 0 0 0 0 0 0 0 0 0 0 0

l = 2 c0 0 0 0 0 0 0 0 0 0 1 1 1 0 0
c1 1 1 1 0 0 0 0 0 0 0 0 0 0 0

,

while the last two slots are padded again.

4.4.2 Further Optimization

Packing as many samples as possible into one ciphertext is not always bene-
ficial. Therefore we created different approaches by adjusting the samples
per ciphertext spc to compare the performance of varying packing schemes.
To introduce a more general definition for packing, we consider the dataset
A and the resulting packed dataset A′ ∈ Z

n
spc×nslots , with its elements a′i ∈ A′

constructed like

a′i = (ai·spc, ai·spc+1, ..., ai·spc+spc) ∈ Znslots .

with i ∈ {0, ..., d n
spce}. If (n mod spc) 6= 0 as well if (nslots mod m) 6= 0 the

remaining slots are filled with zeros. Using this general definition we want
to introduce 4 different ways of packing by changing the packing rate spc.
The first approach serves as a reference and encrypts every sample on
its own. This results into spc = 1. This approach should be the worst-
case scenario because we can barely profit from the parallelism of the
homomorphic SIMD operations.
In the second approach, we pack the same amount of values into one
row as we pack rows. While we create overhead by shifting the samples
within the ciphertext in the learning process, we also increase the amount
of parallelism. We calculate the packing rate spc for this scenario like

spc =
⌊

2

√
n
m

⌋
.

The third method packs the training data A in a way that the length of
the packed dataset C roughly equals spc. In this scenario, we pack even

44

4 Implementation

more ciphertexts into one row. While the overhead from packing grows, the
overall amount of ciphertexts decreases. For this scenario the spc equals

spc =
⌊

2
√

n
⌋

.

The final approach serves as a comparative value as well and packs as many
values as possible into one ciphertext spc = spcmax. Even if the packing rate
spc outgrows its maximum, we limit it with spcmax.

4.5 Split Values

In this section, we want to discuss an important optimization in the learning
algorithm. We remember that in the Decision Tree learning procedure, we
must find the best value to split the dataset. To achieve that, we try every
value of any feature for all rows in our dataset. For example, a dataset with
625 samples and 4 features requires 2500 runs of the Gini Index to find the
best value/feature combination to split. In our case, the problem reduces to
625 runs because we can calculate all 4 features in parallel using SIMD.
Now we consider two possible optimizations. The bpf-approach reduces the
number of runs to the minimum number of bits per feature bp f needed
to encrypt the dataset. Since we encrypt the data bitwise, we can perform
this optimization even on encrypted data without any further effort. Each
possible value in the set {0, . . . , 2bp f − 1} has to be tested, which poses a
significant improvement for specific datasets. For example, the highest value
used in the balance dataset is 5. Therefore we need 3 bp f to encrypt the
dataset. Consequently, we must test 23 values to find the best split.
The distinct-values-approach requires preprocessing before encryption. We
generate a list of distinct values for each feature in the dataset. We notice
an enormous improvement in attributes with categorical information. For
example, we reduce the number of runs for the Balance dataset from 625
to 5. In the case, where the amount of possible split values outgrows the
number of samples, the optimization becomes useless.
To utilize the compressed state of the data, we must pack the split values as
well. If the length of split values varies between each feature, we must fill
the missing values with zeros. Each of these vectors represents a column
in the split value matrix S ∈ Zn′×m where n′ represents the number of
split values per feature. If we pack multiple samples per ciphertext with

45

4 Implementation

spc > 1 we must duplicate each row vector s ∈ S, which results into
S′ = [s, ..., s] ∈ Zn′×(m·spc). In this case, we compare and calculate not only
one but all features simultaneously.
Table 4.3 below shows an example of this procedure, with the feature matrix
A ∈ Z5×3 and a packing rate spc = 2.

A Distinct Packed
spc = 2

a1 a2 a3 a1 a2 a3 a1 a2 a3 a1 a2 a3
1 0 2 0 0 2 0 0 2 0 0 2
0 1 2 1 1 1 1 0 1 1 0
0 2 2 2 0 2 0 0 2 0
0 3 1 3 0 3 0 0 3 0
1 3 2

Table 4.3: Encoding of split values.

Both approaches have their advantages and disadvantages, which is why
we investigated both.

4.6 Training

Next, we want to talk about the training of the model. In chapter 3.5, we
explained how the Random Forest classifier uses multiple Decision Trees to
predict upon new data and combines the result via a majority vote. Since
the implementation of the majority vote is straight forward, we want to
focus on the construction of a Decision Tree.
For the HElib, it is vital to know the maximum amount of consecutive multi-
plications to estimate the size of the parameters. Therefore, each subsection
analyses their required multiplicative depth, and in the end, we will merge
all results to give an overall estimate for the whole procedure.
In our implementation, a Decision Tree will always be a binary tree because
we cannot evaluate most of the stopping criteria as long as the data is en-
crypted. We limit the growth of the tree with the maximal depth criteria. If
we reach a certain depth, the algorithm stops. The minimum size criterium
contains the algorithm if a node has fewer elements than the threshold. In

46

4 Implementation

this case, the node inherits the classification result of the parent. These two
criteria reduce the complexity of the resulting trees which generalize the
data well.
Our tree starts with a node called root, which splits up into a left and right
node. For every node, we have to find the best feature and the best feature
value to split the samples into sub-nodes. Finding the parameters includes
the three following steps:

• Generate splits
• Calculate the Gini Indices
• Compare Gini Indices

To generate all possible splits, we use one of the two approaches from
Section 4.5. For each split vector s ∈ Z

m·spc
bp f , with m representing the

number of features, spc the packing rate, and bp f the bits per feature,
we separate the data rows into two subsets. Then we calculate the Gini
Index and compare the results. We repeat this procedure for each subgroup
created until we reach the maximum depth of the tree.

Consider the packed feature matrix A ∈ Z
d n

spc e×(m·spc)
bp f with n denoting the

number of samples and the packed target value matrices Yi ∈ Z
d n

spc e×(m·spc)
2

with i denoting the label index for each label L ∈ Zj. The code below
illustrates the general training procedure for splitting one node in python:

1 i f depth > max depth :
2 return t o t e r m i n a l (group , L)
3 s p l i t s = []
4 for s in S :
5 s p l i t = copy . deepcopy (node)
6 s p l i t [’ value ’] = s [0 :m]
7 s p l i t [’ l e f t ’] , s p l i t [’ r i g h t ’] = s p l i t b y v a l u e (node , D, s)
8 s p l i t = g i n i i n d e x (s p l i t , Y , L , min size , m, spc)
9 s p l i t s . append (s p l i t)

10

11 node = maxRow(s p l i t s)
12 node = maxFeature (node , featureCount)

Figure 4.4: Splitting one node in python.
Table 4.4 illustrates the input and output node generated by the code
above.

47

4 Implementation

Input Output

Node

group ∈ Z
d n

spc e×(m·spc)
2

label ∈ Zm

Node

group ∈ Z
d n

spc e×(m·spc)
2

label ∈ Zm

gini value ∈ Zm

gini coe f f ∈ Zm

value ∈ Zm

index ∈ Zm
2

le f t :

group ∈ Z
d n

spc e×(m·spc)
2

label ∈ Zm

right :

group ∈ Z
d n

spc e×(m·spc)
2

label ∈ Zm

Table 4.4: Input and output of splitting one node.

4.6.1 Generate Splits

We want to show, in more detail, how packing, explained in 4.4, improves
the performance of the overall scheme. We start with the first part, which

splits our current samples into two subsets le f t, right ∈ Z
d n

spc e×(m·spc)
2 using

the split vector s. Those subsets, as well as its parent, represent the boolean
information if a feature value belongs to the set. The code below illustrates
the procedure with our packed variables:

1 def s p l i t b y v a l u e (node , A, s , spc) :
2 l e f t = numpy . copy (node [’ group ’])
3 r i g h t = numpy . copy (node [’ group ’])
4 for row in range (len (A)) :
5 ni = A[row] < s
6 l e f t [row] &= ni
7 r i g h t [row] &= ˜ ni
8 return { ’ group ’ : l e f t } ,{ ’ group ’ : r i g h t }

Figure 4.5: Splitting a set into two subsets with a comparative value.

48

4 Implementation

With packing we can reduce the original runtime of O(m · n · bp f) to O(n
spc ·

bp f), while the multiplicative depth remains unchanged as illustrated in
Table 4.5.

Name Multiplicative depth
lvl(split by value()) dlog2(bp f + 2)e+ 1

Table 4.5: Multiplicative depth of Gini Index.

4.6.2 Calculate Gini Index

Now we want to talk about the calculation of the Gini Index. Most of the
encoding steps we have explained before come in handy right now. We split
the calculation of the Gini Index into smaller parts. Figure 4.6 shows the
whole calculation of the Gini Index.

1 for g in [’ l e f t ’ , ’ r i g h t ’] :
2 g Y l = []
3 for l in L :
4 g Y = node [g] [’ group ’] & Y[l]
5 g Y = numpy . sum(g Y , a x i s =0)
6 g Y = numpy . sum(g Y . reshape (spc , m) , a x i s =0)
7 g Y l . append (g Y)
8

9 g count . append (numpy . sum(g Y l , a x i s =0))
10 g count [−1] = numpy . maximum(g count [g] , 1)
11

12 node [g] [’ l a b e l ’] = numpy . argmax (g Y l , a x i s =0)
13 mu = min size > g count [−1]
14 node [g] [’ l a b e l ’] = mux(node [’ l a b e l ’] , node [g] [’ l a b e l ’] ,mu)
15

16 g Y l 2 = numpy . power (g Y l , 2)
17 g Y l sum . append (numpy . sum(g Y l 2 , a x i s =0))
18

19 g i n i p a r t s = []
20 g i n i p a r t s . append (g Y l sum [0] * g count [1])
21 g i n i p a r t s . append (g Y l sum [1] * g count [0])
22 node [’ g i n i v a l u e ’] = numpy . sum(g i n i p a r t s , a x i s =0)
23 node [’ g i n i c o e f f ’] = g count [0] * g count [1]

Figure 4.6: Calculating the Gini Index in python.

49

4 Implementation

In Line 10 we make sure that the number of elements does not include zero
which would lead to errors.
Lines 12 to 14 evaluate the minimum size criteria by using the intermediate
results. Since we cannot evaluate the stopping criteria in plain, we use a
multiplexer (Mux) to overcome this issue. If the dataset is big enough, the
multiplexer selects the maximum of our label sums, while in the second
case we select the result passed down from the parent. If one dataset is too
small all of its children are as well. In this case the label propagates into
each child until the maximum depth is reached.
Finally, we get the Ginivalue and Ginicoe f f which will be used for comparison
with the other splits.
To make the analysis of the multiplicative depth easier we must first talk
about the amount of bits needed to represent each intermediate result. With
each bit the multiplicative depth increases accordingly, therefore Table 4.6
displays the maximum value of each of the intermediate results.

variable maximum value
g Y l n
g count n
g Y l 2 n2

g Y l sum n2

gini parts max{n2,
⌊2n

3

⌉2 ·
⌊n

3

⌉
}

Table 4.6: Maximum value for each intermediate result.

Next define Bits(x), which returns the bits required to represent each of
those values:

Bits(x) = blog2(x)c+ 1

Table 2.3 shows the multiplicative depth for each of our four binary opera-
tions addTwoNumbers (atn), addManyNumbers (amn), multTwoNum-
bers (mtn) and compareTwoNumbers (ctn). The multiplicative depth of

50

4 Implementation

each of those operations are:

atn(t) =O(dlog2(t + 2)e)
amn(n′, t) =O(dlog3/2(n

′)e+ mtn(t + log3/2(n
′)))

mtn(t) =O(1 + amn(t, t))
ctn(t) =O(dlog2(t + 2)e)

with t denoting the number of bits and n′ the amount of values.
Next we analyse each part of the Gini Index calculation. Table 4.7 represents
the multiplicative depth of each step. We split the multiplicative depth into
two columns. While the first column represents the multiplicative depth
inherited by intermediate results, the second one shows the multiplicative
depth required by the calculation itself.

Name Multiplicative depth
Intermediate New

lvl(g Y l) lvl(split by value())+ 4 + amn(n
spc·15 , 4) + amn(spc, Bits(n

spc))

lvl(g count) lvl(g Y l)+ amn(|Y| , Bits(n)) + ctn(Bits(n)) + 1
lvl(g Y l 2) lvl(g Y l)+ mtn(Bits(n))
lvl(g Y l sum) lvl(g Y l 2)+ amn(|Y| , Bits(n2))
lvl(gini parts) lvl(g Y l sum)+ mtn(Bits(n2))

lvl(node[′gini value′]) lvl(gini parts)+ mtn(Bits(max{n2,
⌊2n

3

⌉2 ·
⌊n

3

⌉
}))

lvl(node[′gini coe f f ′]) lvl(g count)+ mtn(Bits(n))
lvl(gini index()) lvl(node[′gini value′])

Table 4.7: Multiplicative depth of Gini Index calculation.

4.6.3 Compare Gini Indices

First, we have created all possible splits for the current node. Then we
have calculated the Gini Indices for all of those splits, and now we want to
compare all of them to find the best separation possible.
We represent each split as a node, containing the two groups of the split,
Ginivalue ∈ Z and Ginicoe f f ∈ Z. Ginivalue and Ginicoe f f hold m results, one
for each feature, because we packed and calculated all features simultane-
ously. To compare two splits A, B we do

max(A, B) = mux(A, B, A.Ginivalue · B.Ginicoe f f > B.Ginivalue · A.Ginivalue)

51

4 Implementation

, where mux is a multiplexer selecting A if the comparison is true and
B otherwise. If we compare all splits with each other we receive a node
containing the maxima for all features. To reduce the multiplicative depth
from |s| to log2(|s|) we use a hierarchical approach for comparing. Figure
4.9 shows the comparison of all splits with each other.

1 def maxRow(nodes , spc) :
2 q = Queue ()
3 [q . put (node) for node in nodes]
4 while q . qs ize () > 1 :
5 a , b = q . get () , q . get ()
6 giniIndexA = a [’ g i n i v a l u e ’] * b [’ g i n i c o e f f ’]
7 giniIndexB = b [’ g i n i v a l u e ’] * a [’ g i n i c o e f f ’]
8 mu = giniIndexA > giniIndexB
9 q . put (muxNode(a , b ,mu, spc))

10 return q . get ()

Figure 4.7: Comparing the splits and selecting the maxima.

To analyse the multiplicative depth, we start by finding the maximum value
for each of the different variables, listed in 4.8.

variable max value
node[′gini value′] max{n2, dn

2 e2 ·
⌊n

2

⌋
}

node[′gini coe f f ′] dn
2 e ·

⌊n
2

⌋
giniIndex max{n2 · dn

2 e ·
⌊n

2

⌋
, dn

2 e3 ·
⌊n

2

⌋2}

Table 4.8: Maximum values of the Gini Index calculation.

Now, that we have our maxima, we calculate the multiplicative depth
required for the comparison of all splits:

dlog2(n)e · (mtn(Bits(node[′gini value′])) + ctn(Bits(giniIndex))).

Afterward, we compare the maxima of each feature with each other. In the
code below we show how we compare the features in one split and select
the maximum:

52

4 Implementation

1 node [’ index ’] = numpy . i d e n t i t y (m)
2 for i in range (c e i l (log2 (m))) :
3 valueA = node [’ g i n i v a l u e ’]
4 valueB = s h i f t (node [’ g i n i v a l u e ’] ,−pow(2 , i))
5

6 coeffA = node [’ g i n i c o e f f ’]
7 coef fB = s h i f t (node [’ g i n i c o e f f ’] ,−pow(2 , i))
8

9 indexA = node [’ index ’]
10 indexB = s h i f t (node [’ index ’] ,−pow(2 , i))
11

12 giniIndexA = valueA * coef fB
13 giniIndexB = valueB * coeffA
14

15 mu = giniIndexA > giniIndexB
16

17 node [’ g i n i v a l u e ’] = mux(valueA , valueB ,mu)
18 node [’ g i n i c o e f f ’] = mux(coeffA , coeffB ,mu)
19 node [’ index ’] = mux(indexA , indexB ,mu)
20

21 node [’ index ’] &= selectMask (0 ,m)
22 for i in range (len (node [’ index ’])) :
23 node [’ index ’] [i] = s h i f t (node [’ index ’] [i] , i)
24 node [’ index ’] = numpy . sum(node [’ index ’] , a x i s =1)

Figure 4.8: Comparing the features in one split and selecting the maximum.

To find the best split amongst our features, we shift and mask our ciphertexts.
We give an example on how we process Ginivalue ∈ Z and Ginicoe f f ∈ Z to
compare features a0 and a1 as well as a2 and a3:

Operation Variable a0 a1 a2 a3

Original Ginivalue 12 22 17 5
Ginicoe f f 4 7 4 5
Ginivalue 12 0 17 0Masked Ginicoe f f 4 0 4 0

Shifted Ginivalue 22 17 5 0
Ginicoe f f 7 4 5 0
Ginivalue 22 0 5 0Shifted and Masked Ginicoe f f 7 0 5 0

.

53

4 Implementation

Now, we compare the highlighted rows as we did before with the first as
node A and the second as node B:

Operation 0 1 2 3
A.Ginivalue · B.Ginicoe f f > B.Ginivalue · A.Ginivalue 0 0 1 0

.

Next we take the result of the comparison and use the multiplexer to select
either node A or node B resulting into

Operation Variable 0 1 2 3

max(A, B) Ginivalue 22 0 17 0
Ginicoe f f 7 0 4 0

.

Afterward, we repeat the comparison dlog2(m)e times, until only one feature
is left.
Up until now, we found the highest Gini Index of all feature, but we lost
the information, which feature index it was. To find out the index of the
feature we have to remember which feature is bigger than the other. First we
generate an identity matrix which represents each feature index. To give an
example we consider the values from before were we have m = 4 features f
to create the indentity matrix IA and its shifted version IB:

IA IB

f 0 1 2 3
0 1 0 0 0
1 0 1 0 0
2 0 0 1 0
3 0 0 0 1

f 0 1 2 3
0 0 0 0 0
1 1 0 0 0
2 0 1 0 0
3 0 0 1 0

Next, we perform mux(IA, IB, A.Ginivalue · B.Ginicoe f f > B.Ginivalue ·
A.Ginivalue) resulting into:

f 0 1 2 3
0 0 0 0 0
1 1 0 0 0
2 0 0 1 0
3 0 0 0 0

54

4 Implementation

, which shows us that feature a1 is bigger than a0 as well as a2 is bigger
than a3. After we repeat the comparison dlog2(m)e times, we end up with a
single one in the most left column:

f 0 1 2 3
0 0 0 0 0
1 1 0 0 0
2 0 0 0 0
3 0 0 0 0

, indicating that feature 1 is the one with the highest Gini Index. To convert
it back to a single ciphertext we shift each row by f :

f 0 1 2 3
0 0 0 0 0
1 0 1 0 0
2 0 0 0 0
3 0 0 0 0

.

Then we perform an XOR-Operation over all of the rows, to get the feature
index ciphertext (0, 1, 0, 0). Since we do know all the maximum values of all
included variables, we give the estimate for the multiplicative depth right
away:

dlog2(m)e · (1 + mtn(Bits(node[′gini value′])) + ctn(Bits(giniIndex)))

Now, our split contains two subsets le f t, right ∈ Z
d n

spc e×(m·spc)
2 , which both

hold m different possible splits. The biggest feature index allows us to select
the split belonging to the index.
First, we perform an AND-operation between the biggest feature index and
each row of both subsets. Afterward, we copy this result to all other feature
indices. The code below illustrates the procedure in python:

1 for g in [’ l e f t ’ , ’ r i g h t ’] :
2 node [g] [’ group ’] &= numpy . concatenate ([node [’ index ’]] * spc)
3 for i in range (c e i l (log2 (m))) :
4 groupA = node [g] [’ group ’]

55

4 Implementation

5 groupB = s h i f t (node [g] [’ group ’] ,−pow(2 , i))
6 groupA &= shiftMask (i ,m, spc)
7 groupB &= shiftMask (i ,m, spc)
8

9 node [g] [’ group ’] = groupA ˆ groupB
10

11 groupA = node [g] [’ group ’]
12 groupB = s h i f t (node [g] [’ group ’] ,pow(2 , i))
13

14 node [g] [’ group ’] = groupA ˆ groupB

Figure 4.9: Propagating the biggest feature index onto the split.
This step takes dlog2 me · 2 + 1 multiplications. Table 4.9 illustrates the sum
of all consecutive multiplications.

Name Multiplicative depth

lvl(compare())
dlog2 ne · (mtn(Bits(node[′gini value′])) + ctn(Bits(giniIndex)))+
dlog2 me · (mtn(Bits(node[′gini value′])) + ctn(Bits(giniIndex)) + 1)+
dlog2 me · 2 + 1

Table 4.9: Multiplicative depth of Gini Index calculation.

4.7 Bootstrapping

In the BGV scheme bootstrapping allows us to refresh the multiplicative
depth of a ciphertext. Therefore, we bootstrap our data occasionally to
reduce the overall amount of consecutive multiplications needed. The re-
duction of multiplications requires a smaller parameter set which increases
the overall performance. If we bootstrap too often the performance gain is
lost, due to the intensive cost of the operation itself.
First we want to give an example, where bootstrapping decreases the amount
of multiplications drastically. The function c = max{a, b}, with a, b, c ∈ Rn

q
and n denoting the number of bits, will be used in our scheme quite often
and has the multiplicative depth of ctn(Bits(n)) + 1.

1 Ctxt mu(pubKey) , ni (pubKey) ;
2 compareTwoNumbers (mu, ni , CtPtrs VecCt (a) , CtPtrs VecCt (b)) ;
3 pubKey . thinReCrypt (mu) ;
4

5 HE : :NMUX(c , CtPtrs VecCt (a) , CtPtrs VecCt (b) , mu) ;

56

4 Implementation

While the function itself needs a multiplicative depth of ctn(Bits(n)), the
resulting ciphertext c looses only one. It is worth mentioning that this
approach only works if we assume circular security. Otherwise, the boot-
strapped ciphertext mu ∈ Rq and a, b would be encrypted under different
keys. The amount of bits n does not influence the cost of bootstrapping,
because we bootstrap mu which consists of only one bit.
Before we proceed to split the children of the current node, we want to
bootstrap them. By doing so, we reduce the overall multiplicative depth
required to the amount that one split needs. To accomplish this goal, we
look at the input and output of one split, illustrated in Table 4.4. Here we
can see that we have to re-crypt node[′group′] and node[′lable′] for each of
the two sub-nodes le f t, right.
At last, we bootstrap some intermediate results of all functions to align the
number of multiplications needed for all of them. In Table 4.10, we can see
the result of this optimization.

Name LVL needed
lvl(split by value()) dlog2(bp f + 2)e
lvl(gini index()()) mtn(Bits(max{n2,

⌊2n
3

⌉2 ·
⌊n

3

⌉
}))

lvl(compare()) mtn(Bits(max{n2, dn
2 e2 ·

⌊n
2

⌋
}))

Table 4.10: Reduction of the required multiplicative depth through bootstrapping.

Therefore we need at most a multiplicative depth of lvl(compare()) to
perform a whole split. Since we bootstrap after each split as well, we can
calculate the required multiplications before training. It is vital to know the
multiplicative depth beforehand because it defines the size of the parameter
set.

4.8 Benchmarks

In this section we give benchmarks to all of our proposed improvements.
All of this calculations are performed on a server with 2 Xeon E5-2699v4

processors with 22 times 2.2 GHz cores each. We used 22 of these cores with
200 GB DDR4 for each run.

57

4 Implementation

We listed the parameter sets used for the different dataset and security levels
in Table 4.11.

Security Dataset m nBits

20
Tennis 21845 527

Iris 18631 578
Balance 18631 578

80
Tennis 28679 527

Iris 27311 578
Balance 27311 578

Table 4.11: Parameters for HElib to perform training in 20 and 80-bit security for all datasets.

The integer m defines the ring Rm with the irreducible polynomial Φm(x)
and the nbits variable describes our multiplicative depth in form of bits.

4.8.1 Impact of Bits per Feature

Here we look at the tests where we increased the bp f . We made the statement
that there is no performance loss from preprocessing. We exchange some
values within all three datasets to increase the bp f to 16 and 32 bits.

Bits Tennis Iris Balance
Original 1.71 16.72 12.81

16 1.71 19.12 13.06
32 1.72 20.21 13.73

Table 4.12: Timings for different bits per feature with 20-bit security in hours.

Table 4.12 shows that even though we increase the amount of bits per feature
drastically the time for a split does not. Therefore, we determined that the
bp f do not play a big role in the performance.

4.8.2 Impact of Packing Approaches

Now, we show how the different packing scenarios impact the mean time to
find the best split for one node in a Decision Tree.

58

4 Implementation

Security
Packing

Type
Tennis Iris Balance

|C| spc splitmean [h] |C| spc splitmean [h] |C| spc splitmean [h]

spc = 1 14 1 1.75 150 1 13.06 625 1 26.60

spc =
⌊

2
√ n

m
⌋

14 1 1.74 25 6 8.83 53 12 8.67

spc =
⌊

2
√

n
⌋

5 3 1.52 13 12 8.64 25 25 8.07
20

spc = spcmax 1 14 1.41 1 150 10.18 3 256 10.77

spc = 1 14 1 2.36 150 1 20.95 625 1 42.55

spc =
⌊

2
√ n

m
⌋

14 1 2.46 25 6 15.20 53 12 13.41

spc =
⌊

2
√

n
⌋

5 3 2.06 13 12 15.39 25 25 12.31
80

spc = spcmax 1 14 1.93 1 150 21.47 3 300 15.45

Table 4.13: Timings for packing approaches in hours with |C| determining the number of
ciphertexts.

In the Table 4.13 we can see that packing gives us indeed a boost in
performance even though the density shouldn’t be maxed out. The
highlighted rows indicate the best result with spc =

⌊
2
√

n
⌋
. In the tests we

used the distinct-values-approach.

4.8.3 Impact of Split Values Approaches

Next we look at the impact of the the two optimization methods.

Security Type Tennis Iris Balance

|S| splitmean [h] |S| splitmean [h] |S| splitmean [h]

20 bpf-approach 2 1.53 128 19.77 8 9.49

distinct-values-approach 2 1.52 43 8.64 5 8.07

80 bpf-approach 2 2.07 128 39.75 8 13.62

distinct-values-approach 2 2.06 43 15.39 5 12.31

Table 4.14: Timings for optimization methods in hours with |S| denoting the amount of
split values.

In Table 4.14 we can see how the different approaches perform. The tests
used the packing scenario in which spc =

⌊
2
√

n
⌋

holds. As long as the
dataset does not include many different values, the distinct-values-approach

59

4 Implementation

will increase the performance drastically. Even though the bpf-approach
does not increase the performance as well, it can be applied even without
preprocessing, which reduces the amount of work on the client side.
In summary we can say that the bpf-approach is more general and can be
applied to any encrypted data while the distinct-values-approach performs
better in some scenarios even though we have to preprocess our data.

4.8.4 Multi-threading

First, we want to look at the multi-threading support of HElib. The library
uses the multi-threading features implemented in NTL [32] to parallelize
the code. The binary operations, provided by HElib, make use of multi-
threading by calculating multiple bits in parallel. In Table 4.15, we tested
with different amounts of bits and threads. Next we show the gain in speed
with multi threading provided by the HElib out of the box.

60

4 Implementation

Bits Threads 20 80
atn mtn ctn amn atn mtn ctn amn

4

1 1.6 6.4 1.5 3.3 2.1 8.4 1.9 4.5
2 1.3 4.4 0.8 2.5 1.8 6.0 1.0 3.4
4 1.1 3.0 0.5 2.2 1.6 4.1 0.8 3.0
8 0.8 1.8 0.5 1.7 1.1 2.4 0.7 2.1

8

1 5.1 28.6 3.0 9.4 7.4 40.4 4.3 12.8
2 4.6 22.4 1.8 7.4 6.6 32.1 2.6 9.7
4 3.4 14.3 1.3 5.5 4.8 20.4 1.9 7.6
8 2.9 9.4 1.2 3.6 4.3 13.5 1.7 4.8

16 1.8 6.1 1.2 2.5 2.5 9.0 1.7 3.4
32 1.7 5.5 1.2 2.5 2.5 8.3 1.8 3.5

16

1 21.5 138.7 7.8 28.2 29.5 195.7 10.5 38.8
2 18.5 104.1 4.7 22.1 29.6 172.4 7.4 36.2
4 12.8 66.1 3.3 19.6 16.9 91.4 4.4 28.1
8 8.1 39.1 2.7 12.7 10.6 54.6 3.7 17.9

16 6.2 25.5 2.5 8.4 8.0 37.6 3.5 11.8
32 4.0 16.5 2.5 5.7 5.2 23.1 3.6 8.6
64 3.9 15.7 2.5 5.8 5.1 21.7 3.7 7.9

Table 4.15: Testing HElibs multi-threading capabilities with increasing threads and bits per
feature.

Table 4.15 shows the four binary operations addTwoNumbers(atn),
multTwoNumbers(mtn), addManyNumbers(amn) and compareTwoN-
umbers(ctn). We tested 4, 8 and 16-bit values and increased the number of
threads until there was no further improvement.
The results show that more bits per value indicate more performance gain
through multi-threading. Unfortunately, we had to resign on that approach
because the HElib kept failing with a segmentation fault [33]. We isolated
the Helib error from our implementation and found that the failure occurs
within the operation AddManyNumbers. Also, the rate of errors increases
with the number of threads used.
From this point on, we present our multi-threading approach. The Random
Forest learning algorithm generates a large variety of Decision Trees by
sampling random sub-samples, as shown in Figure 4.10. Each Decision Tree
consists of independent parameters and datasets which allow us to run

61

4 Implementation

each construction simultaneously.

D

D0

Samplin
g(D

)

... Dn

Sampling(D)

Figure 4.10: Opportunity for multi-threading while sampling new datasets for the Decision
Trees in a Random Forest.

Table 4.10 illustrates how we split our dataset into multiple datasets, which
can be used to train multiple Decision Trees in parallel.
Another opportunity for multi-threading lies within training of a Decision
Trees. For each split we calculate multiple Gini Indices. Since those calcula-
tions are independent of each other, we can execute them simultaneously.
We generate one Gini Index for each split value si contained within the
current dataset Di as shown in Figure 4.11.

Di,(s0, sn)← SplitValues(Di)

Di,s0 ... Di,sn

Figure 4.11: Opportunity for multi-threading while generating possible splits for a node.

After finishing two Gini Indices, we can compare them within another
thread. We compare all results hirarchically until we end up with the
biggest Gini Index.

62

4 Implementation

Giniindexmax

...

Giniindexn−1,n

GiniindexnGiniindexn−1

...

...

...

...

...

Giniindex0,1

Giniindex1Giniindex0

Figure 4.12: Multi threading in hierarchical comparing.

Figure 4.12 shows that in the first level of comparisons we can use n
2 threads,

while the last level only allows one.
We also tried to combine the multi threading capabilities of HElib and our
approach. Even though the process keeps failing a lot we where able to
gather benchmarks which show the combined performance. This shows the
potential of the scheme if the library is fixed. In our tests we could only
test up to 4 threads because the errors increase with the number of threads
used. Also 80 bit security produced too much errors, therefore we tested
this approach with 20 bit security only.

63

4 Implementation

Security Threads Tennis Iris Balance

20
1 1.52 8.64 8.07
2 1.14 7.75 6.30
4 0.97 6.80 4.86

80
1 2.06 15.39 12.31
2 1.55 13.80 9.60
4 1.32 12.11 7.40

Table 4.16: Mean time of a split with increasing number of threads in hours.

All in all, 4.16 shows that fixing the error within the library would make
our scheme much more performant. Still, we can say that our approach is
highly parallelizable.

4.8.5 Timings for Random Forest

Now, we estimate how long it would take us to train a whole Random
Forest. In the scikit-learn Random Forest Classifier they use 100 trees as
default for their estimator. If we assume 80-bit security and take the balance
dataset, with 625 rows and 4 features, the splitmean takes us around 12 hours.
Therefore, a Decision Tree of maximal depth 4 would take us 3.5 days. For a
Random Forest with 100 trees it would take us 350 days.
If we assumed the HElib to be fixed we can reduce to 8 hours for a mean
split, 2.3 days for a Decision Tree and 234 days for the whole Random
Forest.

4.9 Correctness

We decided to check the accuracy of our learning algorithm with an equiva-
lent implementation in Python on unencrypted data, because the learning
on encrypted data takes far too long. First, we checked if both implemen-
tations, the encrypted and the plain, produced the same output for all
datasets with a maximum depth up to 3. Normally we could generate the
same result every time, but with multi-threading we can not predict the
outcome since the order of elements may change. Therefore, we created a
python implementation that produces all optimal Decision Trees. Afterward

64

4 Implementation

we checked if the model from the encrypted version is equal to one of the
optimal solutions. Our tests indicate that both algorithms produce the same
output, since we tested all datasets with many different parameters.
Next we compared the results of our reference [34] and the Scikit-learn [24]
implementation to our implementation in python. We performed a cross-
validation with randomly generated training and test sets and repeated each
constellation of parameters multiple times to form a mean value.

Depth Dataset
Minimum Sample Size

2 3 4
[34] ours [24] [34] ours [24] [34] ours [24]

2
balance 57.5 57.5 57.5 63.5 62.6 62.6 76.9 76.3 76.3

iris 91.0 91.7 91.7 91.7 95.3 95.3 91.8 95.8 93.9
tennis 63.3 63.3 63.3 63.3 73.3 69.0 63.3 73.3 68.3

3
balance 57.5 57.5 57.5 63.5 62.6 62.6 76.9 76.3 76.3

iris 91.0 91.7 91.7 91.7 95.3 95.3 91.1 96.6 95.5
tennis 63.3 63.3 63.3 63.3 63.3 61.3 63.3 63.3 62.6

4
balance 57.5 57.5 57.5 63.5 62.6 62.6 76.9 76.3 76.3

iris 91.0 91.7 91.7 91.7 95.3 95.3 91.1 96.6 95.2
tennis 50.0 56.6 56.6 50.0 56.6 56.6 50.0 56.6 56.6

Table 4.17: Evaluation scores in %.

The results in 4.17 show that all three implementations perform the same
which indicates the correctness of our scheme.

65

5 Conclusion

Today, enormous amounts of data and Machine Learning allow us to predict
future events even more accurately. To extract this information one needs
the knowledge as well as the computational power to process all that data.
Our scheme allows two parties to train a model privately. The customer,
owning the training data, acquires a model while keeping its data confiden-
tial. The other party possesses the knowledge to create a model, suited for
the customer’s data, and owns the infrastructure required for the computa-
tion.
For this purpose, we implemented a Random Forest classifier, which uses a
variety of Decision Trees to predict events through a majority vote. Our C++
algorithm constructs Decision Trees on encrypted data, which keeps the
customer’s data confidential. The prediction power of our scheme is equal
to the newest implementation of scikit-learn.
Even though the fully homomorphic scheme BGV, supported by the HElib,
allows only integers, we found a way to support a variety of data types
through preprocessing.
The results show that the average time to generate one node of a Decision
Tree on a server cluster, for a dataset of 625 samples and 4 features, takes
around 12 hours. We estimate that a Random Forest with 100 trees needs
about 350 days to construct.
In future work, we would like to improve the distribution on multiple
servers in a cluster. The idea is to train one Decision Tree on separate
servers, which would improve the overall amount of time drastically.
Another thought concerns the encoding of the data, where we split features
with a larger value space into smaller ones to reduce the number of bits
needed to encrypt the message.
Also, multikey support in a Fully Homomorphic Encryption scheme, like in
[35], could allow us to learn a model in a multi-party computation fashion,
where multiple parties contribute data while keeping it secret from the
others.

66

5 Conclusion

All in all, the computational power required to train our private classifier
in a respectable amount of time is relatively high. Still, future work might
improve the performance of encrypted learning algorithms to the point
where it becomes feasible for usage in practice.

67

Bibliography

[1] EU. (2016). Regulation (eu) 2016/679 of the european parliament and
of the council of 27 april 2016 on the protection of natural persons with
regard to the processing of personal data and on the free movement of
such data, and repealing directive 95/46/ec (general data protection
regulation) (text with eea relevance), [Online]. Available: https://eur-
lex.europa.eu/eli/reg/2016/679/oj (visited on 09/03/2020) (cit.
on pp. iv, 1).

[2] C. Gentry, “A fully homomorphic encryption scheme”, crypto .

stanford.edu/craig, PhD thesis, Stanford University, 2009 (cit. on
pp. 2, 6, 13, 14).

[3] L. Breiman, “Random forests”, Mach. Learn., vol. 45, no. 1, pp. 5–32,
2001 (cit. on pp. 2, 36).

[4] S. Halevi and V. Shoup, An implementation of homomorphic encryption,
https://github.com/homenc/HElib, Accessed Dezember 2019 (cit. on
pp. 2, 13, 20, 21).

[5] J. R. Quinlan, “Induction of decision trees”, Mach. Learn., vol. 1, no. 1,
pp. 81–106, 1986 (cit. on pp. 2, 24).

[6] A. Akavia, M. Leibovich, Y. S. Resheff, R. Ron, M. Shahar, and M.
Vald, “Privacy-preserving decision tree training and prediction against
malicious server”, IACR Cryptology ePrint Archive, vol. 2019, p. 1282,
2019 (cit. on p. 3).

[7] J. H. Cheon, A. Kim, M. Kim, and Y. S. Song, “Homomorphic en-
cryption for arithmetic of approximate numbers”, in ASIACRYPT (1),
ser. Lecture Notes in Computer Science, vol. 10624, Springer, 2017,
pp. 409–437 (cit. on pp. 3, 20).

[8] Z. Brakerski, C. Gentry, and V. Vaikuntanathan, “(leveled) fully ho-
momorphic encryption without bootstrapping”, in ITCS, ACM, 2012,
pp. 309–325 (cit. on pp. 4, 12, 14, 15, 19, 20).

68

https://eur-lex.europa.eu/eli/reg/2016/679/oj
https://eur-lex.europa.eu/eli/reg/2016/679/oj
crypto.stanford.edu/craig
crypto.stanford.edu/craig
https://github.com/homenc/HElib

Bibliography

[9] T. E. Gamal, “A public key cryptosystem and a signature scheme
based on discrete logarithms”, in CRYPTO, ser. Lecture Notes in
Computer Science, vol. 196, Springer, 1984, pp. 10–18 (cit. on p. 4).

[10] D. E. Lancaster, TTL Cookbook. USA: Sams, 1974, isbn: 0672210355

(cit. on p. 6).

[11] G. J. Massey, “Concerning an alleged sheffer function”, Notre Dame
Journal of Formal Logic, vol. 16, no. 4, pp. 549–550, 1975 (cit. on p. 6).

[12] O. Regev, “On lattices, learning with errors, random linear codes, and
cryptography”, in STOC, ACM, 2005, pp. 84–93 (cit. on pp. 7, 8, 10).

[13] V. Lyubashevsky, C. Peikert, and O. Regev, “On ideal lattices and
learning with errors over rings”, in EUROCRYPT, ser. Lecture Notes
in Computer Science, vol. 6110, Springer, 2010, pp. 1–23 (cit. on pp. 7,
9, 10).

[14] A. Blum, A. Kalai, and H. Wasserman, “Noise-tolerant learning, the
parity problem, and the statistical query model”, in STOC, ACM, 2000,
pp. 435–440 (cit. on p. 7).

[15] M. Naehrig, K. E. Lauter, and V. Vaikuntanathan, “Can homomorphic
encryption be practical?”, in CCSW, ACM, 2011, pp. 113–124 (cit. on
p. 11).

[16] Z. Brakerski and V. Vaikuntanathan, “Fully homomorphic encryption
from ring-lwe and security for key dependent messages”, in CRYPTO,
ser. Lecture Notes in Computer Science, vol. 6841, Springer, 2011,
pp. 505–524 (cit. on p. 11).

[17] Z. Brakerski and V. Vaikuntanathan, “Efficient fully homomorphic
encryption from (standard) LWE”, in FOCS, IEEE Computer Society,
2011, pp. 97–106 (cit. on pp. 15, 16).

[18] S. Halevi and V. Shoup, “Algorithms in helib”, in CRYPTO (1), ser. Lec-
ture Notes in Computer Science, vol. 8616, Springer, 2014, pp. 554–571

(cit. on p. 20).

[19] J. L. H. Crawford, C. Gentry, S. Halevi, D. Platt, and V. Shoup, “Doing
real work with FHE: the case of logistic regression”, in WAHC@CCS,
ACM, 2018, pp. 1–12 (cit. on p. 21).

69

Bibliography

[20] R. Townsend. (2020). Tennis dataset, [Online]. Available: https :

/ / github . com / sjwhitworth / golearn / blob / master / examples /

datasets/tennis.csv (visited on 01/15/2020) (cit. on pp. 22, 23,
35, 40).

[21] L. Rokach and O. Maimon, Data Mining with Decision Trees - Theory
and Applications. 2nd Edition, ser. Series in Machine Perception and
Artificial Intelligence. WorldScientific, 2014, vol. 81 (cit. on pp. 25–27,
29).

[22] J. R. Quinlan, C4.5: Programs for Machine Learning. Morgan Kaufmann,
1993 (cit. on p. 26).

[23] L. Buitinck, G. Louppe, M. Blondel, F. Pedregosa, A. Mueller, O.
Grisel, V. Niculae, P. Prettenhofer, A. Gramfort, J. Grobler, R. Layton,
J. VanderPlas, A. Joly, B. Holt, and G. Varoquaux, “API design for
machine learning software: Experiences from the scikit-learn project”,
CoRR, vol. abs/1309.0238, 2013 (cit. on pp. 26, 38).

[24] scikit-learn 0.22.1 documentation. (2020).
Sklearn.tree.decisiontreeclassifier, [Online]. Available: https :

//scikit-learn.org/stable/modules/generated/sklearn.tree.

DecisionTreeClassifier . html (visited on 01/20/2020) (cit. on
pp. 29, 65).

[25] Y. Chen and G. Gong, “Integer arithmetic over ciphertext and homo-
morphic data aggregation”, in CNS, IEEE, 2015, pp. 628–632 (cit. on
p. 30).

[26] M. Douglas C., P. Elizabeth A., and V. G. Geoffrey, “Introduction to
linear regression analysis”, Biometrics, vol. 69, no. 4, pp. 1087–1087,
2013 (cit. on p. 34).

[27] scikit-learn 0.22.1 documentation. (2020).
Sklearn.preprocessing.onehotencoder, [Online]. Available: https :

/ / scikit - learn . org / stable / modules / generated / sklearn .

preprocessing.OneHotEncoder.html (visited on 02/10/2020) (cit. on
p. 34).

[28] A. Cutler, D. Cutler, and J. Stevens, “Random forests”, in. Jan. 2011,
vol. 45, pp. 157–176. doi: 10.1007/978-1-4419-9326-7_5 (cit. on
p. 35).

70

https://github.com/sjwhitworth/golearn/blob/master/examples/datasets/tennis.csv
https://github.com/sjwhitworth/golearn/blob/master/examples/datasets/tennis.csv
https://github.com/sjwhitworth/golearn/blob/master/examples/datasets/tennis.csv
https://scikit-learn.org/stable/modules/generated/sklearn.tree.DecisionTreeClassifier.html
https://scikit-learn.org/stable/modules/generated/sklearn.tree.DecisionTreeClassifier.html
https://scikit-learn.org/stable/modules/generated/sklearn.tree.DecisionTreeClassifier.html
https://scikit-learn.org/stable/modules/generated/sklearn.preprocessing.OneHotEncoder.html
https://scikit-learn.org/stable/modules/generated/sklearn.preprocessing.OneHotEncoder.html
https://scikit-learn.org/stable/modules/generated/sklearn.preprocessing.OneHotEncoder.html
https://doi.org/10.1007/978-1-4419-9326-7_5

Bibliography

[29] S. van der Walt, S. C. Colbert, and G. Varoquaux, “The numpy array:
A structure for efficient numerical computation”, Comput. Sci. Eng.,
vol. 13, no. 2, pp. 22–30, 2011 (cit. on p. 38).

[30] R. Fisher. (1988). Iris dataset, [Online]. Available: http://archive.
ics.uci.edu/ml/datasets/Iris (visited on 03/15/2020) (cit. on
p. 40).

[31] R. S. Siegler. (1976). Balance scale dataset, [Online]. Available: https:
//archive.ics.uci.edu/ml/datasets/Balance+Scale (visited on
03/15/2020) (cit. on p. 40).

[32] V. Shoup. (2020). Ntl: A library for doing number theory, [Online].
Available: https://www.shoup.net/ntl/ (visited on 09/02/2020)
(cit. on p. 60).

[33] P. Schwarz. (2020). Binaryarithmetic: Segmentation fault, [Online].
Available: https://github.com/homenc/HElib/issues/354 (visited
on 05/19/2020) (cit. on p. 61).

[34] J. Brownlee. (2020). How to implement the decision tree al-
gorithm from scratch in python, [Online]. Available: https :

/ / machinelearningmastery . com / implement - decision - tree -

algorithm-scratch-python/ (visited on 02/05/2020) (cit. on p. 65).

[35] A. López-Alt, E. Tromer, and V. Vaikuntanathan, “On-the-fly mul-
tiparty computation on the cloud via multikey fully homomorphic
encryption”, in STOC, ACM, 2012, pp. 1219–1234 (cit. on p. 66).

71

http://archive.ics.uci.edu/ml/datasets/Iris
http://archive.ics.uci.edu/ml/datasets/Iris
https://archive.ics.uci.edu/ml/datasets/Balance+Scale
https://archive.ics.uci.edu/ml/datasets/Balance+Scale
https://www.shoup.net/ntl/
https://github.com/homenc/HElib/issues/354
https://machinelearningmastery.com/implement-decision-tree-algorithm-scratch-python/
https://machinelearningmastery.com/implement-decision-tree-algorithm-scratch-python/
https://machinelearningmastery.com/implement-decision-tree-algorithm-scratch-python/

	Abstract
	Kurzfassung
	Introduction
	Related Work

	Fully Homomorphic Encryption
	Partially Homomorphic Encryption
	Somewhat Homomorphic Encryption
	Fully Homomorphic Encryption
	Notation Homomorphic Encryption
	Learning With Errors
	Ring Learning With Errors
	General Learning With Errors

	Bootstrapping
	BGV
	Key Switching
	Modulo Switching
	Batching

	HElib
	Operation Costs
	Binary Operation Costs

	Decision Tree
	Notation
	ID3, C4.5, Cart
	Splitting Criteria
	Division
	Gini Index

	One-Hot Encoding
	Random Forest

	Implementation
	Preprocessing
	Model
	Measuring
	Packing
	General Consideration
	Further Optimization

	Split Values
	Training
	Generate Splits
	Calculate Gini Index
	Compare Gini Indices

	Bootstrapping
	Benchmarks
	Impact of Bits per Feature
	Impact of Packing Approaches
	Impact of Split Values Approaches
	Multi-threading
	Timings for Random Forest

	Correctness

	Conclusion
	Bibliography

