TU

Grazm

Oskar Bechtold, B.Sc.

Al Cruciverbadilist - Arfificial Intelligence
(Machine Learning and Constraint
Satisfaction Programming) for Grid

Based Word Puzzle Generation

Master’s Thesis
tfo achieve the university degree of
Diplom-Ingenieur

Master’s degree programme: Software Engineering and
Management

submitted to

Graz University of Technology

Supervisor

Roman Kern, Dipl.-Ing. Dr.techn.

Institute for Interactive Systems and Data Science
Head: Stefanie Lindstaedt, Univ.-Prof. Dipl.-Inf. Dr.

Graz, August 2020

Affidavit

I declare that I have authored this thesis independently, that I have
not used other than the declared sources/resources, and that I have
explicitly indicated all material which has been quoted either literally
or by content from the sources used. The text document uploaded to
TUGRAZzonline is identical to the present master's thesis.

Date Signature

To all my friends all over the world
Thank you for the love!

mT st mAa's m
me o1 AN E/U L C A B
SWEDI SHPURZz2LESIU

GRI D@R T I FI CI ALYT G LT

E/D E/CONUVOL UTI ONEREE

R/TOSTNEMERI UQERARSP

E/S AQ0F SDRO WSS ORC MAEC
mc/R v cT U/e RB/ALI §T)I
NBHGRAERNHPRAREGTCIEH
RIEENLSADRNRAPEL,.E
R/6G D DI I MADRARNZRP

me D unTETC2ARA
S LI L/RY EUET
UPYNERPSTGE
RIR T/GREER
2 0/S RRAL
P N

Special thanks to Stefan Kruiger for introducing me to the puzzle
world, Manuel Pistner for being a great mentor and to Roman Kern
for supporting me in exploring the exciting and challenging field of

data science.

Solution in chapter C

Abstract

This thesis presents a novel way of creating grid-based word puzzles,
named the AI Cruciverbalist. These word puzzles have a large fan
base of recreational players and are widespread in education. The
puzzle creation process, an NP-hard problem, is not an effortless
task, and even though some algorithms exist, manual puzzle creation
achieved the best results so far. Since new technologies arose, es-
pecially in the field of data science and machine learning, the time
had come to evaluate new possibilities, replace existing algorithms
and improve the quality and performance of puzzle generation. In
particular neural networks and constraint programming were evalu-
ated towards feasibility, and the results were compared. The black
box of a trained model makes it hard to ensure positive results, and
due to the impossibility of modelling some requirements and con-
straints, neural networks are rated unsuitable for puzzle generation.
The significance of correct values in puzzle fields, the approximative
nature of neural networks, and the need for an extensive training set
additionally make neural networks impractical. On the other hand,
precisely modelling requirements for a constraint satisfaction prob-
lem has shown to create excellent results, finding an exact solution, if
a solution exists. The presented results achieved with the constraint
programming approach are rated as successful by domain experts,
and the algorithm has been successfully integrated into an existing
puzzle generator software for use in production.

Contents

Abstract \';
1. Introduction 1
1.1. Introduction 0. 1
1.1.1. WhatisaPuzzle?. 2

1.1.2. Puzzle Creation Stages 2

1.1.3. Considered Technologies 4

1.1.4. Available Data 5

1.2. Puzzle Types i 6
1.2.1. Letter Desert 7

1.2.2. Word Search 7

1.2.3. Crossword 0. 8

1.2.4. Swedish Puzzle 8

1.3. Vocabulary Types 11

2. Background 13
2.1. Related Work, 14
2.1.1. Teaching 15

2.1.2. Psychological Experiments 20

2.1.3. Patents L Lol 21
2.14.Software Lo e 21

2.2. Stateofthe Art 22
2.2.1. Creating Puzzles 23

2.2.2. Vocabulary Creation 25

2.2.3. Solving Puzzles 26
2.24.0ther. e 27

2.2.5. Other Puzzle Types 27
2.2.6.Benchmarks 30

Vii

Contents

3. Problem Statement 31
3.1.UseCase 31
3.2. Requirements o000 32

3.2.1. Requirements for Grids 33
3.2.2. Requirements for Puzzles 36
3.2.3. Requirements for Vocabularies 38
3.2.4. Requirements for Puzzle Algorithm 40
3.3. Expectations 000 e .. 42

4. Method 45

4.1. Constraint Satisfaction Programming 45
4.1.1. General Data Structure 46
4.1.2. Initial Intuition00 L. 52
4.1.3. Generating Grids 52
4.1.4. Filling Grids 55
4.1.5. Word Search Puzzle 58

4.2. Neural Networks 60
4.2.1. Data Representation 61
4.2.2. TrainingData 62
4.2.3. Network Architecture 62

4.3. Preliminary Work / By-Product 64
4.3.1. Blacklist Creator 66
4.3.2. Synonym Creator. 66
4.3.3. Vocabulary Management 66
4.3.4. Death Row Analysis 66
4.3.5. Vocabulary Analysis 67
4.3.6. Horoscope Neural Network 68
4.3.7. Data Augmentation by Rotation and Flipping Puz-

zZles . ..o L e 68
4.3.8. Timing Experiments 68

5. Evaluation 71

5.1.Results o0 s 71
5.1.1.CSP e 72
5.1.2. Neural Networks 78

5.2. Discussiono s e 82

5.3. Research Roadmap 83

Vil

Contents

6. Conclusions

6.1. FutureWork

A. Additional Requirements

A.0.1. Requirements for Grids
A.0.2. Requirements for Vocabularies

B. Neural Net Architectures

B.1. Deep Neural Autoencoder for Puzzle Space
B.2. Convolutional Autoencoder for Puzzle Space . . .

B.3. Convolutional Autoencoder for Context Space

B.4. Ideas to Generate Vocabularies

C. Solution for Thank You Puzzle

Bibliography

List of Figures

1.1.
1.2.
1.38.

3.1.
3.2.

4.1.
4.2.
4.3.
4.4
4.5.

5.1.
5.2.
5.3.
5.4.
5.5.
5.6.
5.7.
5.8.
5.9.
5.10.

B.1.
B.2.
B.3.
B.4.
B.5.

Examples of Puzzle Types
Examples of Raw Puzzles
Examples of Vocabularies

Empty and Filled Grid
Puzzle with Restricted Fields

Puzzle Before and After Filling
Two Puzzles with Different Settings
Swedish Puzzle With Questions and Arrows
Best Performing DCAE Architecture
Example for Vocabulary Analysis: Word Length Distri-
bution BoxPlot0 0.

Good and Bad Puzzles from the Generator
Word Length Distribution Comparison
Box and violin plots of Word Length Distribution .

Character Frequency Comparison
Bigram Distribution Comparison
Generated Puzzle Examples.
Generated Puzzle with Shape and Preassigned Word .
Autoencoded Puzzle from Best DCAE Architecture

Evaluation of Puzzle DCAE Training
Example for Bad Training With Dropping Accuracy . .

Xi

List of Figures

B6. CAEO e 106
B.7. CAEOD e 107
B.8 CAE1 e 108
B9. CAE2 e 109
B.1I0. CAE 3 e 110
B.11. CAE4 e 111
B.12.CAE DS e 112
B.13.CAE G e 113
B.14. CAE 7 e e 114
B.15.CAE 8 e 115
B.16. CAE 8.5 e e 116
B.17.CAE8.6 e 117
B.18.CAE 9 e 118
B.19. CAE 10 e 119
B.20. CAE 11 e 120
B21.CAE 12 e e 121

Xii

1. Infroduction

“A good puzzle makes the solver feel smart.

- David Kwong

1.1. Infroduction

"Crosswords are the shit" as Schreiber-Stainthorp [151] says in his
analysis of the history of crosswords. The field of puzzles, sweep-
stakes, and horoscopes, as commonly used in newspapers, maga-
zines, and mobile apps, has a large fan base of regular and occasional
players. Not only recreationally for pure entertainment, but also in ed-
ucation to study languages and concepts. The business opportunities
around these fields generate significant revenues and create many
jobs. However, it is a very challenging business. Creation of crossword
puzzles and word games, for example, is not an effortless task: it is
often done manually or semi-automatically. The semi-automatically
created puzzles then need manual improvement by an expert editor.
This process is time-consuming and expensive. As stated in How
to Make a Crossword Puzzle: Detailed Instructions for Beginners [86]
"The first thing you should know about making a newspaper-quality
crossword puzzle is that it’s tough! Creating a good puzzle can be
more challenging, and more fulfilling, than solving one." The puzzle
generation process is an NP-hard problem, and even though some
algorithms that automatically generate word-based puzzles do exist,
the quality is often considered worse than manually created puzzles.
Also, not all puzzle types can be generated automatically yet, at least

1. Infroduction

not efficiently. With new technologies arising, especially in the field of
data science and machine learning, the time has come to replace ex-
isting algorithms and improve the quality and performance of puzzle
generation, with new algorithms. In this master thesis, the different
stages during the puzzle creation process are examined with a view to
improving them with artificial intelligence, deep learning, constraint
satisfaction programming, and other data science methods.

1.1.1. What is a Puzzie?

To use Chris Crawford’s words in Game Design Workshop: "Puzzles
are rule-based systems, like games, but the goal is to find a solution,
not to beat an opponent. Unlike games, puzzles have little replay
value." [74]. This thesis focuses on grid-based word puzzles, especially
word search puzzles, explained in more detail in Section 1.2 "Puzzle

Types".

1.1.2. Puzzle Creation Stages

There are multiple stages in the process of creating puzzles. As
explained in the New York Times, there are two steps. The first is
creating a theme and selecting words for the theme, as described by
Tausig and Vigeland [170]. Then in step two, Steinberg and Last [166]
use the themed entries to set them in a blank crossword grid and
place the black squares using the software tool CrossFire [40]. All
stages can be researched, implemented and evaluated individually
and are thus split into the following, more detailed, steps for this
research.

1. Texts and Vocabularies

a) Maintaining (themed) word lists

b) Maintaining (themed) clue and answer lists

¢) Maintaining blacklists of words and clues that should not
be used together

1.1. Introduction

d) Writing content like horoscopes
2. Generating Puzzles

a) Generating grids with empty word positions
b) Filling empty grid positions with words
c) Assigning clues to question fields and corresponding words

3. Quality assurance

a) Quality of chosen questions/clues/words used in a puzzle
b) Degree of fun and difficulty concerning

e Vocabularies
e Puzzle grids

c) Is a puzzle solvable at all

d) Is a puzzle solution deterministic
e) Word Arrangement

Blacklists

e Orientations

¢ Field population

e Word intersections

Each stage mentioned has its challenges that can be handled with
different algorithms, heuristics, and approaches. For this thesis, an
extensive data set of horoscopes, puzzles, and vocabularies in the
German language is available to be examined. With different data
science and deep learning methods, the hidden knowledge will be
extracted, and techniques to reuse this knowledge are researched
while the overall goal is to generate and compile puzzles.

Initially targeted outcome:

1. A neural network to generate and suggest horoscope texts
2. A puzzle algorithm

a) A meta-algorithm that checks quality between sub-algorithms
and backtracks to redo steps if intermediate quality goals
are not met.

i. A neural net to create puzzles or puzzle grids.
ii. A constraint satisfaction programming based approach
to fill puzzle grids with a given vocabulary.

1. Infroduction

iii. A constraint satisfaction programming (CSP) based ap-
proach to fill puzzle grids with questions and clues.

iv. An algorithm to check the quality of the generated puz-
zles.

3. An algorithm to create (themed) word lists, clue, and answer
lists.

4. An algorithm to create blacklists.

5. An easy-to-use microservice architecture to integrate the above
algorithms into the workflow of puzzle agencies.

The focus is set on puzzle generation, especially on creating and filling
grids. While less emphasis is placed on maintaining vocabularies,
the vocabulary process might need improvement to increase the
overall puzzle quality. Also, while not the focus of attention, quality
assurance cannot be skipped, as the whole generation process should
spawn high-quality puzzles. Thus the quality of generated puzzles
needs to be checked. Wrapping the entire algorithm into an API that
is available via a REST will be done to integrate the new algorithms
into existing front-end software. In this thesis, two puzzle types, word
search (with solution word) and Swedish crossword puzzles are used
as a starting point to develop the algorithms and model the data.
Once the algorithms can generate these two puzzle types, adaptations
to the algorithms for other puzzle types will be made in future work.

1.1.3. Considered Technologies

The technologies listed in this chapter initially gave a frame to limit
the field of research. During an early brainstorming session, these
technologies seemed to be possible candidates for solving the chal-
lenges in the problem space, but not all of them have been used or
evaluated.

1. Machine Learning (ML)

a) Deep Learning (DL)
b) Reinforcement Learning (RL)

1.1. Introduction

2. Neural Networks

a) Recurrent neural network (RNN)

b) Long short-term memory (LSTM)

c) Gated recurrent unit (GRU)

d) Variational autoencoder (VAE)

e) Generative adversarial network (GAN)
f) ProGAN and StyleGAN

3. Recommender Systems

a) Content-based filtering to suggest words while filling puzzle
grids

4. Constraint Programming (CP)

a) Constraint Satisfaction Problem (CSP)
b) Constraint Optimisation Problem (COP)

5. Word Embeddings and Text Classification

e word2vec and GloVe (context-independent, just a simple
vector per word, therefore susceptible to word ambiguities)

e ELMo and BERT (multiple embeddings per word by respect-
ing words context)

e Support Vector Machine (SVM)

6. Tools and Libraries

e Solr / Lucene
e Tensorflow / Keras
e Google Optimization Tools (OR-Tools)

1.1.4. Available Data

An extensive puzzle database is available for examination, for training
models, and for evaluating the structure of existing puzzles, courtesy
of Krupion GmbH.

e One million PDFs containing multiple puzzles and horoscopes
full text searchable via Solr.
e At least 2000 regular, high-quality puzzles in XML format.

1. Infroduction

e Vocabularies, including different levels of difficulty, with 70000
words.

e 32000 Blacklists, with about 100 excluded words each. Parts of
these are automatically created, so they are not always of the
highest quality.

1.2. Puzzle Types
“Variety’s the very spice of life, that gives it all its _flavor. *
- William Cowper

A vast amount of dedicated word puzzles to study or test language
levels, logical thinking or question-answer tests do exist. This study
focuses on grid-based puzzles. While only a few examples are listed
here, more than 50 grid-based word puzzle types exist. With the
methods and technologies evaluated, it is expected to be possible
to create the following puzzle types in a very efficient way and to
the highest quality, as the data structure of the puzzle types is very
similar and adapting the algorithms is a small transfer task.

Swedish puzzle as seen in Figures 1.1a and 1.2b

Swedish puzzle without vowels (some vowels are prefilled)
Swedish puzzles with words wrapping around its edges
Swedish puzzles with unusual shapes (for example hearts) as
seen in Figure 5.7

Classical crossword puzzles as seen in Figure 1.1c

Grid puzzles as seen in Figure 1.1d

French, Swiss, and Norwegian puzzles

Tricky combination: words placed horizontally to form a diagonal
solution

Word search as seen in Figure 1.1b

e Word search with solution word

e Syllable based crossword as seen in Figure 1.2a

1.2. Puzzle Types

Bridge puzzle

Puzzle quartet

Honeycomb puzzle as seen in Figure 1.1e

Snail puzzle as seen in Figure 1.1f

With small adaptions any puzzle type presented in the Ratsel
Kriiger GmbH catalogue' is possible to be generated with the
proposed sets of algorithms.

The following two puzzle types, letter desert / word search (with
solution word) and Swedish crossword puzzles are the focus while
developing the algorithms. The other grid-based puzzle types are only
considered as inspiration for developing a universal data model but
are left out for future work.

1.2.1. Letter Desert

In letter desert puzzles - often also called "word search puzzles" -
terms are hidden in an array of letters. The words can run in any
direction, vertical, horizontal, diagonal, and backward. Words can
intersect in shared letters and can relate to a specific theme to create
a thematic puzzle. The goal is to find all the hidden words. Optionally,
a list of the words hidden in the puzzle grid is provided. This gives
the player a clue as to which words to search for. An example can be
seen in Figure 1.1b.

1.2.2. Word Search

A word search puzzle is a specialization of the classic letter desert
puzzle. The same rules apply as for the letter desert, but the puzzles
are enriched with a solution word. In this puzzle type, when all words
are found, the leftover fields reveal a solution word. The goal is to
find all hidden words to reveal the solution word letters. The solution

Ihttps://www.krupion.de/krupion_frontpage/files/kataloge/Krupio
n_Raetselkatalog_Klassisch.pdf (Accessed on 2020-07-13)

https://www.krupion.de/krupion_frontpage/files/kataloge/Krupion_Raetselkatalog_Klassisch.pdf
https://www.krupion.de/krupion_frontpage/files/kataloge/Krupion_Raetselkatalog_Klassisch.pdf

1. Infroduction

word letters can be in order or be randomised to create the additional
task of solving the solution word. This thesis focuses on word search
puzzles as defined here to limit the research area. An example can be
seen in Figure 1.1b.

1.2.3. Crossword

A crossword puzzle is a word search game usually in the form of
a rectangular or square grid of white and black squares. The goal
of crossword puzzles is to fill the empty white squares with letters,
forming words, by solving clues. Answering these clues reveals the
words to be filled into the grid. Black squares separate the words
or phrases from each other. Clues listed beside the puzzle grid are
numbered to indicate where the answer needs to be placed in the
grid. Often the clues are split into horizontal and vertical word lists to
give the player an indication of the direction of answers. Crossword
puzzles are usually rotationally symmetrical. Vocabularies can be
made up of generic words from arts, history, science, and others, and
can be specialized and themed with words from a specific topic. An
example of a crossword puzzle can be seen in Figure 1.1c.

1.2.4. Swedish Puzzie

The Swedish puzzles grid does not have clue numbers, as the clues
are contained in the black cells within the grid. In addition to the
clue fields, arrows indicate in which position and in which direction
answers have to be filled in: vertical or horizontal. This puzzle style is
the most favoured puzzle type in magazines and daily newspapers in
German-speaking regions. Usually, the Swedish puzzles do not have
a symmetrical grid. An example of a Swedish puzzle can be seen in
Figure 1.1a.

1.2. Puzzle Types

Et B[]

(a) Swedish Puzzle

Z|/E|T|/H|C|E|P|(S|I|T|I|F

T|K|(I|R|P|T|R|A|P|P|E|A

A|N|O|S|P|E|N|E|H|C|U|K

P|/R|O|L|V|F|S|T|O|R|C|H ~5 Kreuzwortritsel fiir Profis
S|N(O|I |[K|O|O|I |O|A[S|C j)xmgmen -
K|L|G|L|S|R|G|R|E|M|U|U

N|J|(E|T|F|S|A|E|T|M|K|A

E|N|S|G|G|Y|A|B|L|E|O|R

Z|E|LIL|IA|T|S|P|/E|R|R|B

N|B(E|E|T|H|Z|U|E|R|K|G

E|L|E|P(M|I|G|I |[M|K|E|R

R|L|E(P|L|E(O|T|S|N|U|K

G|/H|A|R|K|/E|N|E|H|C|E|R

Wortersuchen

Wir haben 31 Begriffe in diesem Buchsta-
ben-Wirrwarr versteckt. Die Worter kénnen
in jede Ri laufen, auch di

rickwarts oder von unten nach oben.

AMMER - AURORA — BEET - BRAUCH —
EISVOGEL - FITIS — FLORA — FORSYTHIE —
GIMPEL — GRENZEN - HAGEL - HARKE —
IMKER — KNOSPE — KOLKRABE — KREUZ —
KROKUS — KUCHEN — KUNST — LENZ —
MEISE — NEST — PASSION — PFORTE —
RECHEN — SPATZ — SPECHT - STALL —
STORCH — TOELPEL — TRAPPE

(b) Word Search Puzzle

Waagerecht:
ager, mager » e, unbeschmtzt + Regitstur+ 1 salopp: ungaublich, 2 alnorische ErzEhkng in
Prosa, 3 i, 4 5 Stadt und

voraut + Untrkunft, Wohnung + unverdintes Glick s in Bonmen, 6 susgenommen, s von, 7 Him-
098) * 2001, Kernig; crgnel « manniches Bors. malsrichtung, 8 landwirtschaftichas Gordt, Fahi:
tonter + Lasten bewegen + Hoter von Hausteren kel zur Wahmehmung, 10 e Planet, 11 Kunstwerk
beim Wekdegang « heftger Schiag » st flache Ser- (Malerl), 12 Hauptsirom Vorderindians, 13 fanzssi
scher Komporist 14 Ta
Durchiar, Durchgang + Sz,
Jargon + Sammiung altnodischer Dcntung + oin lsches Binenwerk, 16 Labensbund, 17 Stadt an
suapaziortiges Gowebe + Gastspiekoise + Fekd- dor Murg, in Baden-Wirttemberg, 18 Stat n Nah-

und Wiesante +Truthahn s Vogeflanggert + ost, Persen, 19 brelartge Spoise, 20 Sadttel von
Enspruch, Ensprucharecht Haushalspln « Was. Beri, 21 Keies Krsbstier, 22 Unglick, Missge-
servogel, Nutzter + Sorn Isasks « poatisch: Adler + schick, 23 BRAgelsh, 24 Aufged, 25 groer Beute,
ek, orgina englch) Benater aus tof, 26 Aingat, Saugwrm

(c) Crossword Puzzle

Stiick fiir Stiick durchs Gitter

LT T T T T« T T T T
ST T o I
] [] o I \
T T o] [T
s[S[P[E[E[R] | ["\ \z
[T T { \
o1 1 11 J
Em] 1 \] [
o[) T T [
o[1] o [T

(d) Grid Puzzle

Bilden Sie um die Textfelder sechsbuchstabige
Woarter, die im Pfeilfeld beginnen und sich
in Pfeilrichtung drehen. Viel SpaB beim Raten!

? Wabenritsel

Kirchen- (T

Ober- b
‘ahnliche teil am
aletie .mnu Qs«w
Iang-
Q s . . Q
| arier
Wil Tasse
ind
Ibrmev. Sild-

Dachs- el
n

% geringem
’ . .Gmm.

.“
Mensch
. -

(e) Honeycomb Puzzle

2ur Schnecke gemacht
Die Warter beginnen bei einer Zahl und enden bei der
néachsten Zahl, sodass jeweils der Endbuchstabe gleich-
zeitig der Anfangsbuchstabe des folgenden Wortes ist.
Das letzte Wort endet am Schneckenkern. Die unterleg-
ten Felder ergeben - von auBen nach innen gelesen —
die Schlusslésung.
1 Kurs, Seminar (englisch) 2 geistiger Diebstahl 3 indiani-
sche Streitaxt 4 Freund, Gefahrte 5 Schustergerat; Art des.
Schemels 6 Linie 7 Gliicksspiel (Kurzwort) 8 Stimschmuck
9 tbellaunig, brummig 10 hessische Stadt 11 umhllen, ein-
schlieBen 12 Ubervorteilung im Preis 13 Spahtrupp; Streife

(f) Snail Puzzle

Figure 1.1.: Puzzle Type Examples (Source: Krupion GmbH, illustration with
friendly permission, 2020)

Intfroduction

1.

WMKNETEMGR|EBEMNEONMTHE

S

lFINNEﬁSI“DEAN“EFFET.AR

oo |[S - 1 1

rEMuloBs < - zuMBAcRly z - wfloR - ww
owuww>se<zxuwfforoweszofgoruwro
oo - <osflocl-Be -+ ulRwo-ovozl
TRl woow Eow - offl--socufol-F
3.LI. .LEITEREOP“ERINNERN

ZKOMPETENT-HOERSD.|EL.ESD.E

- [Ei > KN = K - K - E - QE o QE - BEE - BE o
<

o NOTWwor o9
TAN®O T WON®O SO e - PN SR

NO
o
MI

DI

15| KEI

11

1o v R T
A
RI
KA
NER
16| FEN [se

(a) Raw Syllable Puzzle

(b) Raw Swedish Puzzle

Figure 1.2.: Puzzle Examples of Raw Puzzles (Source: Krupion GmbH, illustration

with friendly permission, 2020)

10

1.3. Vocabulary Types

1.3. Vocabulary Types

Vocabularies consist of words and questions which are passed to
the algorithm to create puzzles. Different types of vocabularies serve
various tasks in the generation process. These types are described
here.

e Standard word vocabulary, as seen in Figure 1.3a, with general
terms.

e Themed vocabulary, as seen in Figure 1.3b, with words that
fit together thematically.

e Word-question vocabulary for Swedish puzzles, as seen in Fig-
ure 1.3d. It maps questions and clues to words (can be multiple
clues per word). For example, the questions "Software on your
phone" and "Short for application" could be assigned to the word
"APP".

e Synonyms, as seen in Figure 1.3c.

¢ Blacklists that exclude words from being used together.

11

1. Infroduction

Different Types of Vocabularies.

A
AA
AAL
G
B ALPHAVILLE
ABO BACKSTREETBOYS
ABRAUM BEASTIEBOYS

BEEGEES
AD BLONDIE
ADE CHICAGO
ADEL COLDPLAY
AESTHET DURANDURAN
AFFE ERASURE
AG KARAT
AHA KRAFTWERK
AL MADSEN
AKT NAZARETH AASEN:verschwenden\verfﬁschwer\fxden
ALE NSYNC e A
ALI 0ASIS iy
ALLESKLEBER PUHDYS Ao=tipe
ALOE QUEEN ALo-Reroceioe oErouei-sue
ALPEN ROXETTE AMETONE i aschen vindras-#chen
ALT SCORPIONS ANKLMGovorgeschmack | vatae—gachmack 0"
ALTE THEBEACHBOYS et i e g
AM THEDOORS e e
AMADEUS T0TO ANREDENadresssoren |adres-daseren
AMOEBE URTAHHEEP NG TIES=unhe " nspre-fchen

ZZTUP ANSTIEG=Zuwachs

ANSTIEG=Mehrung

(a) Standard Vocabulary (b) Band Themed Vocabulary (c) Synonyms vocabulary

Other Types of Vocabularies.

AASEN=verschwenden|ver—#schwen—#den
AASEN=vergeuden|vergeu-#den
AASEN=verprassen|verpras—#sen
ALB=Alm

ALB=A1lp

ALB=Alpe

ALB=Matte

ALB=Alpweide |Alpwei-#de
ALB=Bergweide |Bergwei-#de
ALB=Bergwiese|Bergwie-#se
ANEMONE=Windréschen |Windrds—#chen
ANGINA=Mandelentziindung|Mandel-#entziin-#dung
ANKLANG=Vorgeschmack|Vorge-#schmack
ANKLANG=Vorzeichen|Vorzei-#chen
ANKLANG=Sympathie|Sympa-#thie
ANKLANG=Zustimmung|Zustim—#mung
ANKLANG=Affinitat |Affi-#nitat
ANKLANG=Reminiszenz |Remi-#niszenz
ANREDEN=adressieren|adres—#sieren
ANREDEN=ansprechen|anspre-#chen
ANSTIEG=Zunahme

ANSTIEG=Zuwachs

ANSTIEG=Mehrung

(d) Word-question vocabulary including line breaks

Figure 1.3.: Examples of basic and themed word vocabularies, synonym vocabu-
laries and word-question vocabulary used for the puzzle generation

process. (Source: Krupion GmbH, 2020)

2. Background

“I am just a child who has never grown up. I still keep
asking these ‘how* and ‘why‘ questions. Occasionally, I find
an answer. “

- Stephen Hawking

Why do we need crossword puzzles? What makes them unique?
Moreover, what keeps thousands of people playing these puzzles?
Already in the roaring 1920 "young people also spent their free time
working crossword puzzles" as stated by Edge [61, p. 27]. The first
crossword puzzle, created by Arthur Wynn appeared in The New York
World on December 21, 1913 [50]. A lot has changed since then.
Many new puzzle types were invented, critical voices questioned the
community [101], the use of puzzles extended beyond pure leisure
and puzzle creation supported by computers was researched.

This chapter takes a look at related work, applications of word puzzles,
and existing research concerning the generation of puzzles. First the
use cases of puzzles are examined and a wide distribution in teaching
and a strong recommendation for language learning will be seen.
Solving puzzles as tasks during experiments has also been used to do
research on cognition and human behaviour. While some proprietary
software and some patents exist only few requirements introduced in
Chapter 3.2 could be fulfilled. A deeper look is taken into scientific
research focusing on the puzzle creation process and the process
of solving puzzles. Most research found used genetic algorithms or
constraint programming focusing on American style puzzles and
Sudoku puzzles. Many research papers show a separation of tasks

13

2. Background

like creating vocabularies, generating a grid and filling it. The results
of the separation can be summarized to improve the performance of
the introduced algorithms. While data mining and natural language
processing was used sometimes to create puzzle vocabularies or to
solve crosswords, no research using neural networks for the puzzle
generation process was published so far.

2.1. Related Work

“We cannot solve our problems with the same thinking we
used when we created them. *

- Albert Einstein

Higashida [84] argues that computers changed the puzzle world by
improving the creation process of, for example, arithmetical puzzles,
cryptic puzzles, mechanical puzzles and paper puzzles like Sudoku.
Puzzles nowadays, created with the support of computers, are "more
beautiful".

Only a few tutorials on the puzzle creation process aimed at non-
scientists [87] exist and usually describe the creation of American
style puzzles. Mike Vuolo [117] explains the rotational symmetry,
often called crossword symmetry, used in New York Times puzzles.
A bit more detail is explained by Kwong [99] a New York Times
puzzle constructor. The complexity of the creation process makes the
description vulnerable to errors that need clarification, for example,
by Matt Gaffney [110] who explains "How Crossword Puzzles Are
Really Made". Focusing on the versatile creation of cryptic crossword
clues, a very detailed introduction is given by Michael Callaghan
[116].

14

2.1. Related Work

2.1.1. Teaching

Angel C. de Dios [8] has a sceptical view on using word search puzzles
in education as they do not teach being friendly people but only some
basic concepts. He claims that no scientific work proving the thesis
that using word puzzles do relate to the students’ knowledge and that
the usage of these puzzles is an "utter waste of time and resources".

On the other hand, Little [105] is quite optimistic and says "Crossword
puzzles offer many possibilities for language learning. They can be
used to practice and review vocabulary, orthography, morphology,
grammatical structures, abbreviations and culturally-specific facts,
as well as to develop communicative skills. Given their versatility
and adaptability for many different purposes and levels, crossword
puzzles have a legitimate place in second language teaching and
learning." Also, as stated on Benefits of Active Recall [16] quizzes and
word puzzles are among the best ways to practice as they make use
of active recall. And although Childers [32] can not draw scientific
conclusions, he found that solving grid-based crossword puzzles
helped students in pulling together information and understanding
concepts. This is argued to be happening due to students thinking
more about what they were learning.

Davis, Shepherd, and Zwiefelhofer [52] show that it depends on
the classes if using crossword puzzles as a ’fun’ review technique
positively affects successful learning. So a closer look into the dif-
ferent fields of education is taken in the following. Lin and Dunphy
[104] proposed using crossword puzzles for business students learn-
ing economics. To test their thesis, they developed an experiment
with students using crossword puzzles. "The findings revealed that
working crossword puzzles can help students build and maintain
an introductory microeconomics vocabulary. Test results show that
crossword puzzles do in fact aid student learning of microeconomics
terms and do improve their grades on quizzes." American style puz-
zles that follow the rules of connectivity, symmetry and three+ were
used by Ferland [71]. He argues that for a 15 x 15 grid, following
these three rules, a maximum number of 96 clues is possible. While

15

2. Background

students rated the fun of solving crossword puzzles higher than their
usefulness, they also explained that the puzzles were helpful in ar-
eas of terminology, spelling and definitions. Students who rated the
puzzles as not useful found them too hard, too meaningless, or they
were not interested in doing them. A comparison of a card game and
a crossword puzzle as a teaching aid was made by Franklin, Peat,
and Lewis [72]. They found a more robust positive response to the
use of crossword puzzles while card games still showed a positive
result. Berry and Miller [21, 20] suggest that athletic training edu-
cators should use crossword puzzles to improve students’ studies
as they not only are fun, but they also increase confidence in test-
taking and comprehension of the study material. Wise [179, 178]
used web-based word puzzles and web-based crossword puzzles as
"self-assessment material for student revision" and has shown that
"Students’ attitudes after using the program were generally positive
and students agreed with the proposition that lecturers should be
encouraged to use crossword puzzles to support learning." Shah,
Lynch, and Macias-Moriarity [155] conclude that "Students perceived
that crossword puzzles enhanced their learning of anti-ulcer agents"
(drugs and medication). "The use of crossword puzzles provides a
simple and creative way to incorporate active learning into pharmacy
classroom instruction." Serna [154] let her students solve crossword
puzzles, and additionally made them create puzzles as an exercise.
While not only "Most students considered this activity as enjoyable
and useful for learning." they also found in their study of 84 students
that "students’ perceived value of crosswords for their learning is pos-
itively correlated with both their perceived learning in the course and
their attitude toward the course." Also, Weisskirch [176] has shown
that students rate the use of crossword puzzles generally favourably
as an exercise method. While looking at crossword puzzles solved in
class and used at home he found that students "described learning
more and finding the exercise more helpful for learning concepts and
preparing for the exam when completing the crossword puzzle collab-
oratively in class rather than individually outside of class. Students
also rated the exercise higher as a review technique and as more
enjoyable when completed in class." Crossman and Crossman [41]
explain that in some classes, for example, the History of Psychology,

16

2.1. Related Work

relationships, events and sequences need to be learned to pair up
some concepts. While they recommend not to draw conclusions or
generalise the result, their study participants enjoyed the grid puz-
zles used and their motivation to study increased. Also, they were
able to retain the learned material for longer. They conclude that
crossword puzzles seem to be a useful tool for pairing concepts with
other information, like names and ideas, for example.

Studying Languages

Using word-based puzzles seems to help to study concepts and to
learn words. One of the most significant fields of research is the
learning of foreign languages. The most crucial task when studying
new languages is memorising vocabularies. As seen before, active
recall, which is one of the main activities of studying vocabularies,
has positive effects when using word puzzles. Awareness for the
pedagogical need is necessary to modify the puzzles accordingly
and choosing the right method and puzzles is important says Kunz
[98]. This can also be seen in the findings by Sukstrienwong and
Vongsumedh [169] who have shown that using word search games
in English language learning of students at Bangkok University,
Thailand, had improved their studies. Students needed additional
sources, however. For example, they used an English Dictionary to
learn the pronunciation of the words additionally. Already in 1925,
Broome [26] used crossword puzzles for elementary Spanish classes
where given clues were English terms and the translated Spanish
words needed to be filled into the grid. Also, Buttner [27] suggests
using vocabulary puzzles to recall vocabulary by matching words
from one to the other language. Improved students’ achievements
in vocabulary in fifth grade in an Indonesian school were found
by Ria Damayanti H. [142] who also evaluated using word search
puzzle games to learn English vocabulary. They concluded that these
puzzles make a suitable technique. Chesy, Susilawati, and Bunau
[31] have shown that word search puzzles had improved students’
mastery of vocabulary and rate that word search puzzles are a highly
effective method in teaching vocabulary to tenth-grade students.

17

2. Background

Educational resources for people learning the Hawaiian language was
published by Frayer-Luna [73]. They feature 40 crossword puzzles
and eight word search puzzles with some word lists and a Hawaiian
language puzzle dictionary with 12000 words. Garba [75] researched
using interactive crossword puzzles to teach the English language
to speakers of Arabic distinguishing in morphological and syntactic
meaning. His results show a positive effect. Another study in Thailand
by Orawiwatnakul [128] found that using crosswords in teaching the
English language to Thai students improved the vocabulary of the
students. Also, the motivation to learn English was increased by
providing this fun teaching method. Schafer and Behymer [150] claim
that crosswords can help vocational students learning computer
skills while increasing technical vocabulary, reinforce spelling and
using reference material. Hung and Young [89] built a handheld
device for Taiwanese students to learn English vocabulary, hoping to
increase students’ learning in an interactive environment.

Merkel [115] evaluated using crosswords for English language learn-
ers. He found that participants were frustrated by cultural compo-
nents and context-less nature of regular daily crossword puzzles.
They felt more positive and made better progress when working col-
laboratively. This supports the thesis that puzzles and methods need
to be adapted to the teaching goals. McElroy and Samaniego [112] of-
fer crossword puzzles for language learning as an innovative method.
They give clear directions for developing puzzles specifically designed
to teach grammar, vocabulary, and culture. Different from the oth-
ers Jones [93] does not use the active recall component of solving
puzzles to train vocabulary like many others. He says that "cross-
words have considerable potential for the provision of alternative
assessment/self-assessment activities".

Many of the studies listed here rate the improved education based
on perceived improvements, asking students with questionnaires
how they felt. Only a few take the actual test scores into account.
Collins [37] describes the need for stimulating students’ learning
and the importance of teachers searching for new tools. He uses
crossword puzzles to activate the quest for knowledge. He had shown
that a control group (B) that got crossword puzzles two weeks before

18

2.1. Related Work

a test outperformed the control group (A) that did not study with
the crossword puzzles. While all students in group B have gained
better results, only 37% claimed that it stimulated interest is the
topic, but 87% agreed that these puzzles are a helpful tool that
should be used more often. Mshayisa [122] found that students
in food science and technology found crossword puzzles required
them to think critically. Also, a positive relationship between student
collaborative learning and crossword puzzle implementation scores
was seen. Using tests before and after using crossword puzzles in
eight sessions, Hossein and Marzieh [85] researched the vocabulary
learning of Iranian women. They carefully selected 60 homogenous
students, split them into two groups and "It was concluded that
the subjects who received word-search-puzzle game on vocabulary,
outperformed the control group."

Not only solving puzzles in class was found helpful, but creating
crossword puzzles as a teaching method found its way to classrooms
as well. Nicol [126] found that assigning students with the task of
creating a crossword puzzle generated more discussion and pleasure
then when solving a given puzzle. While developing the clues to
describe words, students seemed to gain more knowledge about a
topic and a deeper understanding of concepts. This also promoted
discussions, as students are well-versed in a topic after completing
the task. Similarly, Jaramillo, Losada, and Fekula [91] examined the
creation and solving of crossword puzzles by undergraduate students
and conclude that the students found themselves better equipped to
handle concepts.

To summarise the mainly positive results, it can be concluded that
students using crossword and word search puzzles as teaching aids
perform better in their studies. The selection of puzzle type and
the pedagogical method need to be aligned to gain the desired ben-
efits successfully. A variety of tasks like finding answers to clues,
translating words and creating puzzles exist that can raise students
interactivity and fun, as well as encourage active recall to memorise
vocabularies and concepts.

19

2. Background

2.1.2. Psychological Experiments

Puzzles also found their way into other fields of research, for exam-
ple as psychological tests researching human behaviour. Opposite
conclusions, for example, how to create puzzles for a specific target
group, can be drawn from the results. Ghinea and Ademoye [77]
have shown that olfactory media (odours, smells, and scents) has
a positive impact on solving word search puzzles. During the tests,
scents relating to the searched word were given as olfactory clues.
Smells grouped the associated words; for example, the strawberry
scent was used to give a clue for the words "Fruity", "Strawberry", and
"Sweet". The results show positive impacts on solving puzzles when
presented with olfactory clues. Alghani, Sutarsyah, and Nurweni [6]
and Alghani [5] have used crosswords in their research on trying to
find differences in extroverts and introverts vocabulary size using
different learning techniques. Similarly, the differences in puzzles
types, searching given words vs answering clues, can be seen in
the work by Postman, Jenkins, and Postman [136]. Their research
focused on active recall and recognition by comparing them. This also
indicates which puzzle type to select for the teaching goal. Jessie Chin
et al. [92] used word search puzzles of varying difficulty to examine
age differences in information foraging. They evaluated how quickly
and how often people would switch puzzles. Switching, in general,
was more likely under challenging conditions. Especially younger
participants switched more often than older ones. Younger people
also showed faster uptake, which was less predictive, however. "Older
people persevered longer, especially in more difficult condition." Day
[53] made an experiment researching the different perceiving of lan-
guage. They found that "stimulus-bound" (SB) subjects consistently
found more words in word search puzzles than "language-bound"
(LB) subjects. This might be due to the thesis that SBs have better
spatial abilities which help in scanning the grid in eight directions.
Another possible explanation could be that LBs are preoccupied with
linguistic operations. Clayton, Leshner, and Almond [35] used word
search puzzles as a cognitive task to examine cognition, emotion and
physiology. Zentall, Hall, and Lee [188] used word search puzzles to

20

2.1. Related Work

investigate if mirrors focus the attention of students with hyperactiv-
ity. When seen as a text genre, Barbe [14] has shown that word-based
puzzles have been used for political propaganda and as "instrument
for powerful manipulation".

2.1.3. Patents

Seeing prices of $110 to $260 [51] encourages to keep economic
goals in mind while dealing with puzzles. The financial interest can
also be concluded by seeing that people invested in filing patents on
their puzzle inventions. The first patent appeared in 1936 by Robert
[145]. These patents usually focus on searching words that need to
be filled into a grid. They are thus called "word search puzzles", for
example, by Jr [94], Chan [29], Seaberg [153], Schroeder [152], and
Nichols [125], but they always have some sort of variation to the
classic crossword puzzle by providing a particular grid and often give
a list of clues. Leonard Joseph Kemp [103] does call his invention an
"Educational Puzzle" but it is not different from a regular grid puzzle.
Some patents are issued to the combination of different puzzle types
like Breeler [25] who combined an integrated crossword and circle-a-
word puzzle, or Graybill [79] who mixed word-search, word-link, trivia
and word-scramble puzzles. Nevertheless, also utterly new puzzle
types like the three-dimensional word-search puzzles by Ditter [59]
were issued a patent. Only a few patents focused on electronic devices
to play puzzles like Walker and Jorasch [174] and Ghaly [76] and only
two patents focus on the generation of puzzles with backtracking:
Rehm [140] and Rehm and Rehm [141].

2.1.4. Software

Some software to create puzzles exists. None of these explain their
algorithm, though, and the creation process is not transparent or in-
fluenceable. These softwares only create American style puzzles, grid
puzzles and word search puzzles (without solution words). None of

21

2. Background

them create Swedish style puzzles with fully connected grids or word
search puzzles with solution words. Being available as desktop soft-
ware or as web app without an API, they are not easy to integrate into
existing micro-architectures. The full set of requirements, described
in Section 3.2, is not met by any of these proprietary solutions.

1-2-3 Word Search Maker [1]

Armored Penguin [10]

CMFC APP [36]

CPT Crosswords [39]

CrossFire [40]

Crossword Compiler [42]

Crossword Express [43]

Crossword Express Pro [44]

Crossword Hobbyist [45]

Crossword Labs [46]

Crossword Solver [47]

Crossword Weaver [48]

Discovery Education’s Puzzlemalker! [58]
Education.Com Crossword Puzzle Maker [62]
My Worksheet Maker [124]

Phil [132]

Puzzle Malker [138]

Suchsel-Generator [167]

Die Suchsel-Maschine [57]

Teacher’s Corner Crossword Puzzle Maker [171]
Wolfram Demonstrations Project [180]
Word Search Generator [181]

Word Search Maker | Education.Com [183]
Word Search Malker [182]

XWords [184]

2.2. State of the Art

“I think, in history, everything is about the remix. “

22

2.2. State of the Art

- Jonathan Anderson

As Keiran King [97] states "The New York Times crossword, first pub-
lished in 1942, is the gold standard of American puzzles, attempted
by an estimated 500,000 solvers daily." Looking into existing research
mainly work on American-style crossword puzzles and Sudoku puz-
zles can be found.

2.2.1. Creating Puzzles

Smith and Steen [160] describe a system which compiles partial
crossword puzzles by selecting words from a dictionary. Meehan and
Gray [113] compare a word-by-word approach using different heuris-
tics in placing words and a constraint approach with a word-by-word
and a letter-by-letter basis for filling dense blank grids with letters to
create valid crossword puzzles. Mazlack [111] first failed at placing
whole words and found a letter-by-letter basis to be successful. Gins-
berg et al. [78] researched some puzzle construction mechanisms
for American style crosswords. They conclude that lookahead and
cheapest-first heuristics are necessary in some form. Also, it is more
efficient to use exact information available during runtime instead
of using statistical information during compile time, and that the
connectivity heuristic is best used while backtracking. Harris, Forster,
and Rankin [80] introduced the concept of basic blocks for uncon-
strained crossword puzzle solutions, the Crozzle, and an algorithm
to generate the complete set of basic blocks from a lexicon. They
observed a correlation between the number of basic blocks present
in a lexicon and the occurrence of basic blocks in a humane solu-
tion. They also gave an overview of the up to date research on word
games [81] and introduced a backtracking algorithm called the ripple
effect in 1994. Smith [159] created a suite of programs called XENO
to assist in the creation of crossword puzzles. Emrah Aydemir and
Zulfu Genc [64] created an online dynamic cross-puzzle generation
algorithm for Turkish puzzles.

23

2. Background

While the positive effects of puzzles in education have been shown,
some researchers focused on specifically creating puzzles for teaching.
One of the four educational tools developed by Bailey, Hsu, and
DiCarlo [13] is, in fact, a basic crossword puzzle. Arora and Kumar
[11] used the motivation to use crossword as teaching aids and thus
extend the creation of crossword puzzles in a tool called SEEKH.
Astutik [12] focused her study "on implementation of Word Search
Game to develop students’ mastery of vocabulary".

Genetic Algorithms

Bonomo, Lauf, and Yampolskiy [23] describe generating crossword
puzzles as NP-hard problems that are candidates for genetic algo-
rithms (GA) which they combine with a Wisdom of Artificial Crowds
(WoAC). They focused on American crossword puzzles. Kyle Williams
[100] used a genetic algorithm and shows that the values for the
variables have a significant effect on the performance of his genetic
algorithm. The algorithm converges quickly to a sub-optimal solution
but finds an optimal solution over time through mutations. Engel
et al. [65] use a two-step process to generate Swedish crossword puz-
zles. In the first step, they use a memetic algorithm to create puzzle
masks, and in the second step, they fill the mask with words from a
given dictionary. They also show that this process is NP-complete.

Steepest Ascent Hill Climbing Algorithm

Sazaki et al. [149] use the steepest ascent hill climbing algorithm to
create crossword puzzle boards. They also prove that the larger the
grid, the fewer black boxes are in the board. Then, in [148], they also
compare it to a genetic algorithm concluding, that the fitness value of
the genetic algorithm has a higher value. However, the boards formed
by the steepest ascend hill climbing algorithm are more optimal.

24

2.2. State of the Art

CSP Algorithms

Beacham et al. [15] used constraint satisfaction programming to gen-
erate crossword puzzles. Tomozov [172] combines constraint satisfac-
tion with simulated annealing for his crossword construction. Wilson
[177] has used an integer programming approach for crossword com-
pilation which he then discarded in favour of a more straightforward
approach. He concludes that while integer programming is a good
alternative for solving logical problems, it showed not to be successful
in crossword compilation. Botea [24] uses a hierarchical CSP encod-
ing with word slots as variables at the high level and grid cells as
variables for letters on the low level. Samaras and Stergiou [147]
use crossword puzzle generation as a structured problem to empiri-
cally compare the performance of non-binary and binary constraint
satisfaction problems.

Predicate Logic

Berghel [17] shows a way of expressing the puzzle generation problem
as first-order predicate logic. Berghel and Yi [19] also complement
their earlier results on crossword compilation by describing a cross-
word compiler-compilation.

2.2.2. Vocabulary Creation

Rigutini et al. [143] present a system that automatically generates
crosswords, with web extraction and natural language processing for
definitions. Later they presented a crossword generator [144] that
crawls the web to extract a vocabulary with associated definitions
using natural language processing and compiles a crossword using
constraint satisfaction programming. Ranaivo-Malancon et al. [139]
present a clue answer building algorithm to be used as a separate
component in automatically building crossword. They rate 53% of
the fill-in clues generated by their algorithm to be correct. Aherne

25

2. Background

and Vogel [3, 4] use WordNet as a lexical source to generate "themed"
crosswords. Ali, Black, and Spiro [7] investigate the efficiency of
using databases or text files as word banks for generating crossword
puzzles. Pintér et al. [134] developed a general automated word puzzle
generation method from unstructured documents, from a topic model
and semantic similarity measure of word pairs. Espinosa-Anke et
al. [67] introduce DefExt, a semi-supervised Definition Extraction
Tool that uses text corpi to learn terms and their core features and
definitions. Esteche et al. [68] introduce a similar system that uses
Spanish texts to create crossword puzzle boards and definitions. They
use pattern matching for definition extraction and a greedy strategy
for the crossword generation. Smith and du Boulay [157] describe a
program to generate certain classes of cryptic clues that can be used
in conjunction with other crossword compiling software.

2.2.3. Solving Puzzles

Littman, Keim, and Shazeer [107] solve crossword puzzles by giving a
set of clues and a crossword grid. Their probabilistic cruciverbalist
PROVERB separates the problem into two steps, candidate genera-
tion and grid filling. First, they find all candidate answers to clues
from a knowledge base. These candidate words are then fit into the
puzzle grid. In their second attempt at PROVERB Littman, Keim, and
Shazeer [106] and Keim et al. [96] split the program architecture
into expert modules that generate the candidate words from different
sources. The lists of candidate words are merged before the grid filling
is executed. Ernandes, Angelini, and Gori [66] introduce WebCrow,
a system to solve crossword puzzles by searching the web without
having ledge or a database. It utilises machine learning, information
retrievle as well as natural language processing and is thus designed
to support multiple languages. Pinter et al. [133] introduce an au-
tomated word puzzle generation via topic dictionaries. The puzzles
generated are the odd one out, choose the related word, and separate
the topics. Manzini, Ellis, and Hendler [109] developed a pipeline for
IBM’s Watson to solve clues of word puzzles. Their system has been

26

2.2. State of the Art

developed to solve syllacrostics, but also discuss how the approach
can be used for other word-based puzzle types.

2.2.4. Other

Not all work is focused on creating or solving puzzles. C and Thorpe
[28] introduce a methodology to count the number of crosswords
possible in a language. December and Andreasen [55] show that
there is a strong connection between the complexity of a language
and the possibility to create crosswords which directly leads to en-
tropy the most critical measure in information theory. Pershits and
Stansifer [131] compared two strategies to build crossword puzzles.
One approach systematically tries the possibilities, throwing away
partially completed puzzles, the other builds up the diagram word by
word. Efron [63] modelled crossword puzzle difficulty in a probabilis-
tic way, where the puzzle difficulty P is dependent on the probability
of solving a clue/answer set that has a probability of P(A|C) based
on the probability of the answer and clue appearing together in a
language. While the model performed well, some issues appeared that
were not addressed, for example, that solving all horizontal words,
reveals the answers for vertical words without needing to solve them
manually. In future work, the question of "How much information is
in a particular puzzle?" should be examined.

2.2.5. Other Puzzle Types
jigsaw

Toyama et al. [173] use a genetic algorithm to solve jigsaw puzzles
with rectangular fields by looking at the pixel values on the borders
of the pieces. Sugiyama, Osawa, and Hong [168] define two abstract
puzzle models, permutation puzzles like Rubik’s cubes and cyclic
puzzles like the Rubik’s clock, which can be modelled as a graph.

27

2. Background

They then introduce puzzle generators and use graph drawing as a
method to layout the puzzles.

Word Search

Stanovich and West [165] found that the surroundings of searched
words influence the speed at which terms are found. Order of speed,
increasing: non-word fields, pseudoword fields, word fields.

Sudoku

Sudokus are among the most popular puzzles. Its numeric nature
and the NP-completeness rose the interest of researchers while not
only generating and solving is interesting, but Sudokus can also
be used as benchmark tests for newly created algorithms. Quite
often, genetic algorithms have been used, for example, by Milton
and Ortega-Sanchez [118] to generate sudoku puzzles modelled as a
constraint optimisation problem. Contrary to that, Dr. John M. Weiss
[60] shows that while genetic algorithms usually are effecting in
attacking NP-complete problems, they are quite ineffective in solving
Sudokus because of slow convergence, inability to escape from local
minima and a variety of other problems. He concludes that solving
Sudoku puzzles is a GA-hard problem. More focusing on algorithmic
details, Cox, Lucci, and Pay [38] show which effects dynamic variable
and value ordering heuristics have on searching for Sudokus.

A huministic approach to solve Sudokus, which does not guarantee a
result but achieves an overall good time combined with a slow brute
force approach, which ensures a solution, is presented by Sruthi
Sankar [164]. Genetic algorithms also found their way to solving
Sudokus [161] and multistage genetic algorithms have been used
so solve hard Sudokus, that have fewer clues but require a unique
solution [30]. Solving Every Sudoku Puzzle [162] uses two ideas to
solve a Sudoku: constraint propagation and search. Christensen and
Emerson [34] use CSP instead of brute-forcing to search for sudoku

28

2.2. State of the Art

solutions in an efficient way that is close to the intuitive solution
methods used by humans. Rohit Iyer, Amrish Jhaveri, and Krutika
Parab [146] review Sudoku solving with the following patterns: The
Naked Singles Pattern, The Hidden Singles Pattern, The Locked Can-
didates Pattern, and The Naked and Hidden Pairs Pattern. They
conclude that using patterns lowers the execution time when solving
a massive number of Sudokus. Murphree [123] solve Sudoku as a
constraint satisfaction problem and compare the heuristics Back-
tracking with forward checking and minimum remaining value, arc
consistency and arc consistency pre-processing. Lynce and Ouaknine
[108] code the Sudoku problem in conjunctive normal form to solve
the puzzle using polynomial-time satisfiability inference techniques.
Their inference method does not perform well or not at all on very
hard puzzles which would require more sophisticated inference tech-
niques. Hughes and Yampolskiy [88] describe a genetic algorithm
with a wisdom of crowds heuristic to solve sudoku puzzles.

Yong-zhuo [185] defines how to decide on the difficulty of Sudoku
puzzles by looking at four aspects: "total given cells, distribution of
given cells, applicable techniques of logic deduction and complexity of
enumerating search." They then create puzzles in a two-step process:
"to create a valid grid by Las Vegas algorithm, and then to generating
puzzles by erasing some digits using five operators". Simonis [156]
as constraint problems reached the masses a view on Sudokus from
a constraint point of view to solve, generate, and measure difficulty.
Felgenhauer and Frazer Jarvis* [69] calculates how many sudoku
puzzles can be created and come to the result of ~ 10?'. However, he
already knows that this number cannot be correct as some factors
need to be removed due to relabelling, which leaves 27 x 27704267971. A
year before Felgenhauer and Jarvis [70] came to the same result while
starting from knowing that ~ 10%" latin square puzzles exist. Zambon
[187] another calculation on how many sudokus exist and can be
created. Moraglio, Togelius, and Lucas [121] introduce geometric
crossover with the example of sudoku puzzles. Milton and Ortega-
Sanchez [118] discuss the design and analysis of a configurable
genetic algorithm. They use for solving sudoku puzzles as test-bed
since it is a constrained optimisation problem belonging to the NP-

29

2. Background

complete class of computational problems.

Others

De Kegel and Haahr [54] researched procedural content generation,
such as puzzles. Smith et al. [158] created a puzzle type, the Cross-
Song, which combines the pattern-learning and pattern-seeking in
music and puzzles. Port and Yampolskiy [135] created a hybrid al-
gorithm that is made up of a genetic algorithm and the wisdom of
artificial crowds effect to improve the GA results. It is used to solve
solitaire battleship puzzles. Ntoa et al. [127] presented A-Cross, an
accessible crossword game for blind and visually impaired users.
While still having some future work todo, the implemented prototype
already enhances usability and accessibility by suggesting the next
clue to be answered. This is done by selecting a clue that is related
to the current word and has the fewest missing letters. Purdin and
Harris [137] attempt to solve the go-words crossword variant, known
to be NP-complete, using a genetic algorithm. The New Yorker Hen-
riquez and Maynes-Aminzade [83] introduces a cryptic crossword
puzzle where the clues are cryptic. These cryptic clues are made of
two parts, the definition (straight) and a wordplay (cryptic) element.

2.2.6. Benchmarks

Berghel and Rankin [18] provide a dataset for measuring the relative
efficiency of different crossword compilation methods which they later
refined [163].

30

3. Problem Statement

“It always seems impossible until it’s done. “
- Nelson Mandela

In this chapter, the field, this thesis is trying to research, is de-
scribed. It is split into use cases, specifying who will use the created
algorithms, as well as how it is going to be used. Additionally, the
requirements for a high-quality puzzle as well as the goals for this
thesis, are stated.

3.1. Use Case

“Knowing is not enough; we must apply. Willing is not
enough; we must do. “

- Johann Wolfgang von Goethe

How should the user interact with the software? What is exposed,
and how can the puzzle compilation process be started?

The editorial staff creating a puzzle should be able to use the soft-
ware without thinking about the algorithm. The workflow consists of
selecting or creating a vocabulary, which might be themed, setting
a solution word, choosing the dimensions of the puzzle, and mark-
ing restricted areas, that are left blank for images, advertisements,
or text. This puzzle data is then submitted to the algorithm which

31

3. Problem Statement

compiles the data into a puzzle grid. After assembling the puzzle,
automatic quality assurance tests (QA), as well as manual quality
control, are done to check the puzzle and feasibility of publication.
The process of preparing the data and manual quality control is done
in a graphical user interface, also called the front-end, which is not
part of this work. The focus of this thesis is the algorithm itself that
accepts the raw data and compiles it into a playable puzzle grid. To
easily integrate the algorithm into an existing software stack within
a micro-service architecture, already consisting of the front-end, a
REST API is available to interact with the algorithm. The data is sent
to the algorithm with an HTTP POST request containing the data
to start a compilation process. The connection is held open until
the puzzle compilation process is finished and the HTTP response
includes the compiled puzzle or error codes.

In later steps, it makes sense to introduce a job queue so that the
HTTP connection can be closed earlier during long-running compi-
lation processes. The initial request would then contain a callback
address, which is called after the compilation process, and to which
the created puzzle is sent. This is not part of the requirements of this
thesis.

3.2. Requirements

“Gamers are some of the toughest people to please. They
have extreme requirements. They want everything. “

- Lisa Su

There are multiple levels of requirements concerning the process of
creating puzzles, containing quality measurements for vocabularies,
puzzles, and the algorithm itself. This section introduces these specifi-
cations. Even if the necessity of some requirements is not immediately
apparent or not directly relevant to the developed algorithm, they
are listed here to understand the whole picture and the decisions

32

3.2. Requirements

made. While the extensive set of requirements is listed in full detail
in Chapter A, this section only covers the relevant requirements for
this work and focuses on word search puzzles with solution words
as described in Section 1.2. Some requirements are weak or "nice
to have" and do not count into the feasibility study of the examined
technologies but will be covered in future work.

The following requirements are not consecutively numbered, are
never re-numbered, and are not arranged hierarchically as this might
conflict with already used references'. To reference requirements the
scheme used is RQ.G.01 where the numbers are incrementing over
time.

Dechter and Meiri [56] state that experiments using crossword puz-
zles for constraint programming '"reveal the crucial parameters of
a problem domain". As with all agile processes, the requirements
change over time when gaining new insights, during development and
while testing intermediate results, but also due to evolving precondi-
tions. This section describes the latest state and does not necessarily
reflect the initial set of requirements.

When describing fields in images, (x,y)-coordinates are used. They
are in the fourth quadrant in a two-dimensional cartesian coordinate
system with the origin in the top left, starting to index fields from O.
For example, (4, 3) describes field five from the left and four from the
top.

3.2.1. Requirements for Grids

RQ.G.00 Word Directions

Words can be forward in a top-to-bottom and left-to-right manner
and backwards in a bottom-to-top and right-to-left manner as well
as diagonal.

lnttp://www.smartmatix.com/Resources/RQMTipsTraps/NumberingTra
ps.aspx (Accessed on: 2020-05-24)

33

http://www.smartmatix.com/Resources/RQMTipsTraps/NumberingTraps.aspx
http://www.smartmatix.com/Resources/RQMTipsTraps/NumberingTraps.aspx

3. Problem Statement

2 .
/
’
¥ A y 7
f / / ;/ n
L/ /’ /’f/ /fl A T ’/
V
7 '\\ e e
N , 1 W\ T
g N CEmnsiy.,
Z S \\N N\ 2SI NN N
(@) Empty Grid (b) Filled Grid

Figure 3.1.: A grid with restricted fields (dark red fields) and solution word (green
fields), with empty positions on the left (red lines) and filled with words
and solution word on the right.

RQ.G.01 Line Patterns

A line pattern, as seen in Figure 3.1a, describes the positions where
words can be placed without considering the words’ directions. That
means each position has two field coordinates that connect a line
where a word can be placed. A grid extends a line pattern by explicitly
specifying word directions by stating which field is the start and
which is the end of the word.

RQ.G.02 Intersection

Words can overlap each other as seen in Figure 3.1a and Figure 3.1a,
for example, in field (4, 3).

e Two words may overlap with a maximum of one letter.

e Each word may be overlapped in a maximum of one-third of its
letters (for example a word with six letters may only overlap two
times).

e Words can not contain other words.

34

3.2. Requirements

- "Physiotherapist" is only one word, "[OT", "other", "the", and
"rapist" would not be allowed as words.
- "Startup" excludes the words "start" and "art".

RQ.G.03 Word Length Variability

The grids need alternating word lengths because a puzzle is not very
interesting and fun to play if only 2,3,4 letter words are used.

RQ.G.04 Solution Word

When the player has found all words:

e Some fields might be leftover and contain random letters to
create a letter desert puzzle.

e If the puzzle has a solution word the leftover fields spell the
solution word from top left to bottom right

e If the solution word length cannot be met, a puzzle with a
solution word length deviation of up to 50% can be returned.
The solution word can then be manually adapted.

The solution fields in Figure 3.1a are filled with the solution word
"01234567890123456789" in Figure 3.1b.

RQ.G.05 Restricted Fields

The puzzles might leave out some fields to place text or ads into the
puzzle. The editor specifies these restricted fields. An example can be
seen in Figure 3.1a, where the restricted area is coloured in red.

35

3. Problem Statement

RQ.G.06 Even Orientation Distribution

The distribution of word orientations needs to be well-balanced,
preferably in a uniform distribution. Since the uniform distribu-
tion was hard to achieve this requirement was adapted, that each
orientation must occur at least 10% of the time. Words can go in all
directions:

e Left-to-right and right-to-left (HORIZONTAL).

e Top-to-bottom and bottom-to-top (VERTICAL).

e Top-left-to-bottom-right and bottom-right-to-top-left (DIAGO-
NAL).

e Top-right-to-bottom-left and bottom-left-to-top-right (ANTIDIAG-
ONAL).

e It should be possible to dis-/enable directions.

RQ.G.07 Maximum Field Population

In each field, a maximum of two words is allowed to overlap each
other. For example, if two words overlap in one field, the population
counter is two if three positions overlap in one field, the population
of that field is three.

RQ.G.08 Shaped Puzzles

By providing fields that restrict the outside shape of the grid, specially
shaped puzzles should be possible.

3.2.2. Requirements for Puzzles
RQ.P.O1 No New Words

Words next to each other must not create compound words together.
For example "basket", "ball", and "basketball" are three valid words,

36

3.2. Requirements

|
|

Aﬂﬂ D CeeEe—me——n
o= DM € Y
@@= M £ N *

D OerD=rQuepuofyue==caM "M ll

'I' O O™ oo e MmN = """ mMm oD 3D I‘l

F

€ B E"

~§==0~H

e==R=—f--1——2 B

“T A R E A

== 0H W T &§ H U 0O K

B= e H n H C H 28 P —fi=—F=
Y= -n--l--meu--n--n{-r-n--u--r-l-

Figure 3.2.: A letter desert puzzle with restricted fields (dark red fields) which were
given and needed to be left out by the algorithm.

but "basket" and "ball" might not be placed in one row next to each
other.

RQ.P02 No Random Words

Words should not be created by coincidence by a lucky placement of
the letters on the grid. An example can be seen in Figure 3.2 where
the horizontal word "zwei" starting in the field (14, 2) is not listed
in the list of words to search for and in this case, it was not even
contained in the given vocabulary.

37

3. Problem Statement

3.2.3. Requirements for Vocabularies
RQ.V.01 Vocabulary Priority

The puzzles can be created from two or more vocabularies (lists of
words)

e A primarily used themed vocabulary (e.g. medical puzzle, soccer,
Christmas)

e A backup vocabulary to fill in blanks when the themed vocabu-
lary is not enough to create a puzzle

e Multiple different puzzles should be possible to generate from
the same two vocabularies

e Only one vocabulary is required, if both are provided one has a
higher priority for use

Some words need to be prioritized

e Themed vocabulary that needs to be prioritized, the rest of the
puzzle is filled with words from a second vocabulary

e Prioritized vocabulary with for example 5 words that have to be
used

Example: a puzzle with a medical focus for an Austrian customer,
who provided a few customer-specific terms

1. Customer-specific words have to be used

2. "Theme medical" words should be preferred

3. "Theme German Austrian" words should be used randomly at
third-highest priority

4. "Theme German general" words should be used randomly

RQ.V.02 Randomized Words

If, for example, five puzzles are created in one run, they should
not contain the same words. This could be achieved by dynami-
cally shrinking the vocabulary on interim solutions or by creating
blacklists.

38

3.2. Requirements

RQ.V.03 Blacklists

Some words need to exclude each other.

For example, if a German chancellor is used in the puzzle, no
other chancellor should be used.

Example for a softer requirement: if the puzzle is big enough,
two German chancellors might be used, but they need to be
placed far away from each other.

Could be implemented as a constraint or as QA to discard
puzzles that do not meet requirements.

Blacklists prevent words from being used together

Blacklists have high priority as they directly affect the quality of
the puzzles.

They prevent the usage of near-duplicates (synonyms, thematic
similarities, and others).

If no puzzle can be generated, exclusion criteria can be disabled
to give the algorithm more options.

e Words must not appear twice in a puzzle.
e Small puzzles must not have near-duplicates at all.
e Larger puzzles might have near-duplicates but not in the same

corner.
Words can also exclude clues. For example, if a clue "Name
of North America" with the answer "USA" is used, other clues
including "USA", for example, "State in the USA" should be
excluded.

Worst case: two crossing words where one clue holds the answer
to the other word.

Opa and Mutti should not be in the same puzzle (soft require-
ments/nice to have) (e.g. word embeddings)

Mama and Mutti must not be in the same puzzle (hard require-
ment/exclusion) (e.g. synonyms)

Prevent conceptual aggregations in a corner of a puzzle (e.g. Ital-
ian poet, Italian city, Italian river might create an Italy themed
puzzle by accident).

39

3. Problem Statement

While blacklists prevent from using similar words together in one
general puzzle, this effect might be at a disadvantage for themed
puzzles. By providing a themed vocabulary, a themed puzzle should
be possible. While global, general blacklists would prevent for example
the words "Rome", "Italy", and "Latin" to be used together in one
puzzle, they would be necessary to be used in combination to create
an Italy themed puzzle. Another example, most monkey names end
on "-affe" in German, so these words usually exclude each other
because they are too similar. However, a monkey themed puzzle might
contain multiple monkey names. This might need disabling parts of
blacklists or the use of multiple blacklists. For example, a word-in-
word blacklist should always be active, while a blacklist based on
words similarity or semantic closeness could be disadvantageous for
themed puzzles.

RQ.V.04 Vocabulary Size

Vocabularies of differing sizes need to be usable. Vocabulary sizes
can range from small themed vocabularies with 30 words to full
vocabularies with 70,000 terms. While the small vocabularies should
produce usable results, the large vocabularies should still generate
results in a few minutes.

RQ.V.05 Words Only Once

Each word may only be used once per puzzle.

3.2.4. Requirements for Puzzle Algorithm
RQ.A.01 Quality

Instead of returning no result, the algorithm should return the best
it can achieve for manual completion. Accepted loss of quality:

40

3.2. Requirements

Not matching the desired number of solution letters.
Low overlap factor.

Not including a solution word at all.

Returning a boring line pattern.

No uniform distribution of orientations.

RQ.A.02 Pre Assignment

It should be possible to pre-populate letters and words to positions
and fields.

e Preassign a puzzle (grid) with some letters
e Preassign a puzzle (grid) with some words

RG.A.03 Output

The algorithms returns:

e A list/array of fields containing the letters.
e A list of words used.
e The solution.

RG.A.04 Input

The generated puzzle should be configurable:

e Width in number of fields in integer.

e Height in number of fields in integer.

e Which areas should not be used (to place description text or
advertisements), as a list of restricted fields.

e Which directions for words are allowed as boolean switches.

e The vocabularies that should be used, as comma-separated
strings.

e The number of words to be used in letter desert puzzles as
integer.

41

3. Problem Statement

o If fields are permitted to be left out.
e If a solution word is needed.

- And if, the word itself as a string.

RG.A.05 Maximum Runtime

The algorithm needs to stop if no puzzle was successfully created
within 30 minutes. It will run on an Intel Xeon E5-2603 with 1,7 GHz
and four cores in a virtual machine. The timing needs to be evaluated
on that machine.

3.3. Expectations

“Setting goals is the first step in turning the invisible into
the visible. “

- Tony Robbins

The goal of this thesis is to evaluate if word search puzzles can be
generated with constraint satisfaction programming or with neural
networks and to develop a functional and usable (see 3.1) algorithm
to create puzzles. While it serves as a feasibility study for multiple
puzzle types, the focus is set on generating only one type, word search
puzzles, while using Swedish puzzles to evaluate the transfer of cho-
sen methods to other puzzle types. While starting with fundamental
requirements, only a few features and low (artificial) intelligence the
algorithms created are to improve iteratively becoming smarter, more
versatile, and produce higher quality results. Furthermore, methods
of artificial intelligence are evaluated for usability. By-products of the
evaluation are strengths and weaknesses of the investigated methods
as well as insights into the difficulty of puzzle generation.

Finally, a functional algorithm is presented to be used by puzzle
agencies. Each algorithm is running individually as a web service

42

3.3. Expectations

that is accessible via an API (REST or GraphQ@QL) to be integrated as
separate services in a microservice architecture. As mentioned above,
the focus is not set on handling or maintaining vocabularies but on
the creation process of puzzles only. In the end, editorial staff should
be supported in the puzzle process by allowing the editor to focus on
editorial work like curating themed vocabularies instead of manually
placing words in a grid.

43

4. Method

“Take a method and try it. If it fails, admit it frankly, and
try another. But by all means, try something. “

- Franklin D. Roosevelt

In this chapter, the two evaluated methods, constraint satisfaction
programming (CSP) and deep learning (DL) with neural networks
(NN), and the procedures are explained. Due to the original idea to
compare these two methods, the chapter is divided into two parts. As
the method in detail and the evaluation in chapter 5 will show, this
division has no advantages in the future but reflects the procedure of
these investigations.

4.1. Constraint Satisfaction Programming

“In nonfiction, you have that limitation, that constraint, of
telling the truth. “*

- Peter Matthiessen

Before going into the implementation, some definitions need to be
made, to understand the functionality of the algorithms

45

4. Method

4.1.1. General Data Structure

The presented data structure abstracts the information from the
puzzles. Ideally, the structure does not know about the puzzle type
and thus can be used for different puzzle types with minimal adapta-
tion. The presented grid-based puzzles can be seen as a matrix with
origin in the top left corner with one letter per field and words that
can cross in these fields. The general abstraction is kept universal,
but the constraint problem is implemented with Google OR-Tools
by Perron and Furnon [130], so some definitions are specific to the
implementation.

Grid

A puzzle grid is a container holding multiple positions arranged in
a line pattern. These positions specify the orientation, length and
direction of the words to be placed. The Grid object can be created
in multiple ways, either by parsing an XML file, as the output of
the GridGenerator algorithm or as the result of the GridExtractor
algorithm. Positions in the grid are extended with OR-Tools variables
which are used while trying to find words that fit into the puzzle. An
example of an empty grid can be seen in Figure 4.1a.

Puzzle

The result of the GridFiller algorithm, a filled grid representing Word
Search and Swedish puzzles. After finding a solution, the GridFiller
returns the puzzle created from the given vocabulary and a puzzle
grid. The empty grid seen in Figure 4.1a with filled word positions to
create a puzzle can be seen in Figure 4.1b.

46

4.1. Constraint Satisfaction Programming

. /, . . ns{o--n—n--n—a--e/)np v
NN\ ANOTETer e ! i

. |- 1 9 n o]

‘| B s b

./ BE IL s N\ Fa]l;

/ \.. hlln/ , \\ nnl

7/ . 0 n \I'

.b’@ =1 N\ \\ . ce s y n--:en‘—:--n--u\\\\ :
7105 o 6§ /N s G Pe—p—r—t—p—% D L

(a) Empty Grid (b) Filled Grid

Figure 4.1.: A Grid generated by the GridGenerator, before (left) and after filling
(right)with the GridFiller. This letter desert puzzle does not contain a
solution word.

Field

A field on the grid is the container that can be assigned one letter of
a word, a solution word letter (word search puzzles), a random letter
(letter desert puzzle), a clue (Swedish puzzles), or be empty.

Restricted Field

A field that is not allowed to contain a letter or question. These fields
will be left empty by the algorithm, as seen in the red square in
Figure 4.2a from (0,7) to (8,13). Restricted fields can be filled with an
image, text, or advertisement after the puzzle is generated.

Solution Field

A field containing one single letter of the solution word. These letters
can be ordered to read the solution word from top left to bottom right.
Alternatively, they can be shuffled to create another puzzle where the
randomised letters have to be ordered to find the solution word. An

47

4. Method

PR EtTRTRTTTRTE
F=U-=M=A-=R-=0-~t=€
,\ o erre
o | =~ AN 1 AVAN) Wi e
ANa 0 € ‘w B (Y A € =€ M
n\ |nl E 0t m=A .
\nu\ L s A B y-o
S EEREEE A
NN "R ////
H D hd f
¢ catnn /////
K " 5 B 1
(“z anW;-n—n—e‘a"l /,i
v,/ n ~R A
i e B P
B o e | | l
—g-pp=-sr—m E JuEpE—R————T——t
(a) Puzzle with restricted fields (b) Puzzle with solution word

Figure 4.2.: Two Puzzles, one with Restricted Fields (dark red fields) on the left
and one with Solution Word on the right (green fields).

example can be seen in Figure 4.2b field (2,0) for the solution word
"testtesttesttest".

Empty Field

A field that contains a random letter that is not part of a position/word
or a solution word. These are empty as they are not filled by the
algorithm, but by another step where random letters are distributed.
These empty fields are only relevant for letter desert puzzles without
a solution word. The orange fields in Figure 4.2a are an example of
randomly filled empty fields.

Question Field

A field containing a question to serve as a clue while filling a Swedish
puzzle. Each question field is connected to a position. An arrow
links these question fields with their corresponding answer positions

48

4.1. Constraint Satisfaction Programming

Unnach- | radio- . |an TV-,
atder fGobET (Sies | ¥ gsam Jauter |vemueh |G | W R
Freiheits- Kett Schwer- und ordent- | gung des cocht sender
strafe Sturheit | metall wendig |lich Baumes |7 1) (Abk.)
v v v Abk. fir
L r Zentraler
Omnibus-
bahnhof
eine Wirz-
Euro- > mitte! fir
paerin Speisen
Titel-
asia-
Eg:;“*:e‘ - tischer
Emllla? Halbesel
engl. v
Popstar derb, rau P
John
P Tie- | Y
wor heldin)y, Wasser- Fecht-
(4. Fal) bei Jane vogel hieb
) Austen
Begrifl v v
maRig |aus Jazz
wam | und Pop-
musik
Zu- schma-
fluchts- ler Berg-
ort ein- o
riech.) schnitt
Summe
der
Lebens- [~
jahre
Auskunft metall-
(Kurz- unge- halliges P
worl) braicht Mineral

Figure 4.3.: Swedish puzzle with question fields and arrows pointing to the posi-
tion the Questions answer belongs to.

indicating where to place the answer to the question. An example can
be seen in Figure 4.3.

Position

A position is a container in a grid that can hold a word. It has start
and end coordinates, an orientation, and a length. For example, the
grid position (0, 3) to (0, 8) in Figure 4.1a has a horizontal orientation
and a length of six letters.

Orientation

Orientation describes the directionality of a position. Four base orien-
tations are available, that, when rotated by 180° make a total of eight
possible orientations. The four base orientations are:

e HORIZONTAL
e VERTICAL

49

4. Method

e DIAGONAL
e ANTIDIAGONAL

Solution Word

A solution word is made up of a term and a list of solution fields that
can be assigned the individual letters. The GridGenerator algorithm
is passed a solution word and places positions for the solution word
letters on the grid. The algorithm then returns these fields for the
GridFiller to insert the solution word.

Word

Vocabulary item, consisting of a string of letters. It is assigned a
UID that can be assigned to a vacant position by the GridFiller
algorithm.

Vocabulary

Contains a list of words. These words can be shuffled to be fed into the
fill algorithm in random order preventing a deterministic result and
creating a new puzzle on every run even if the grid and vocabularies
given are the same.

Vocabularies

A list of multiple vocabularies that are fed to the GridFiller algorithm.
Even if the individual vocabularies are shuffled, these lists keep the
order to maintain the priority of the given vocabularies.

50

4.1. Constraint Satisfaction Programming

Blacklist

Holds information about words excluding each other as described in
requirement 3.2.3.

Distribution

A function to sample position lengths when the GridFiller creates a
new position. While the samples are drawn from a normal distribu-
tion, the length can be limited by giving max and min lengths that
can be derived from the width and height of the grid. Usually, this
distribution is initialised with mu, sigma from a given vocabulary and
size of the grid. The grid size limits the word lengths.

Vocab Distribution

A different approach to distribution, sampling from the probability
distributions of word lengths based on a given vocabulary. While
the simple distribution can create lengths that are not contained in
the vocabulary, this distribution is limited to available lengths with
higher probabilities for word lengths that appear more often in the
given vocabulary.

Vocab Lengths Generator Function

The third approach is replacing the distribution function. While it
is technically not a distribution, it has a sample function to act as
a drop-in replacement for the other two distributions. This "distri-
bution" keeps track of the available word lengths. Once a length is
used in the grid, it is removed from the list. This way, a precise set of
position lengths perfectly matching a given vocabulary can be created.
If the list is empty and the grid needs more, it automatically resets
to its initial state. The distribution has three sample modes: random
lengths, decreasing order, increasing order. In the first mode, the

o1

4. Method

lengths are randomly sampled, giving an even distribution. In the
latter two modes, the lengths are sampled by decreasing or increasing
order. For example, with descending order, long position lengths are
sampled first before returning shorter lengths.

4.1.2. Initial Intuition

The initial implementation considered each word as a variable and
calculated each possible placement on the grid as the domain for
the variables, calculating allowed overlaps to create "allowed assign-
ments". This approach did produce acceptable results for small puz-
zles but showed to be very inefficient for large vocabularies and large
grids as the number of intermediate variables grows exponentially.
This prototype had to sample the vocabulary to limit the number of
intermediate variables which limited the algorithms possible word
arrangements leading to multiple runs with newly sampled vocabu-
laries before being able to generate a puzzle. As this sampling was not
suitable, and the need for large vocabularies (Requirement 3.2.3) was
given, this idea was not pursued further. The following approach is
based on the architecture of splitting grid generation (or line patterns)
from filling these grids. By defining a grid data model, a GridExtractor
algorithm is introduced to extract the grid from existing, handmade
puzzles. This way it possible to develop a GridFiller algorithm be-
fore/while developing the GridGenerator separately.

4.1.3. Generating Grids

The GridGenerator algorithm is split into three phases, that can
individually be enabled: placing new positions, extending positions
to adopt empty fields, and covering up empty fields. Additionally,
different quality assurance checks are integrated to discard grids
that do not meet the requirements immediately.

52

4.1. Constraint Satisfaction Programming

Phase One: Placing Positions

In step one, the algorithm tries to place as many positions as possi-
ble in a backtracking manner by incrementally building on partial
solutions. Each partial solution is improved step by step. When in a
dead-end, where no final solution is found, and no improvements can
be made, the algorithm discards the current intermediate solution
and tries to improve the previous intermediate solution with another
step.

First, a position length is sampled by the given word length dis-
tribution. Then an orientation of the four base orientations and a
position from all possible starting fields are randomly selected. When
a position was successfully placed on the grid, a new position is
tried in the same manner. The decision if a position can be added
depends on the overlap counters of possibly intersecting positions
determining if a position is not overlapped more than the overlap
factor allows (Requirement 3.2.1). For each placed position, a conflict
group is calculated, preventing other positions from being placed in
the same conflict group. These conflict groups prevent words from
containing other words or from overlapping with more than one letter
(Requirement 3.2.1). Placing positions on restricted fields is avoided
(Requirement 3.2.1). If a position cannot be added, other starting
points and orientations are tried in a backtracking style. If no po-
sition with the given length can be placed and resizing positions is
allowed the position length is shortened by one letter, respecting the
minimum word length, starting a new trial. Once no new positions
can be placed, phase one is finished.

QA: Orientations Amount

Before going into phase two, a quality assurance check is performed
to ensure that enough orientations are available. If not enough orien-
tations have been used, the grid is immediately discarded, and a new
trial has to be made. While an even distribution would be desirable,
this has rarely been achieved. Therefore, the distribution of positions

53

4. Method

is calculated based on the number of occurrences per cent. If at least
one running direction falls below the given threshold value, the grid
is discarded.

Phase Two: Extend Positions

In phase two, if resizing is allowed, the placed positions are extended
to adopt empty fields. Adopting empty fields is done by iterating
through all vacant positions and checking if a position ending in a
surrounded field can be extended to take up the empty field. This is
done as long as the grid contains more empty fields than the solution
word has letters (Requirement 3.2.1). Once enough fields have been
adopted, or no more positions can be extended, phase two ends. This
phase currently does not respect the overlap factor or field population
resulting in overpopulated fields or positions in some rare cases.

Phase Three: Cover Up Empty Fields

If phase three is enabled, the algorithm iterates through all columns
and rows collecting all empty fields. Then a position with starting and
endpoints placed on the first and last empty field in a column/row is
created and added. This phase currently does not respect the overlap
factor or field population resulting in overpopulated fields or positions
with too many intersections and thus discarded grids quite often.
It also only places horizontal and vertical positions in the current
state.

QA: Max Field Population

Each fields’ population count is calculated and compared to contain
a maximum number of overlapping positions. While this threshold is
dynamic and can be changed, the default setting is set to a maximum
of two overlapping positions in one field (Requirement 3.2.1).

94

4.1. Constraint Satisfaction Programming

QA: Solution Length

The solution length may deviate by a given factor, grids with solution
words differing too much are discarded (Requirement 3.2.1). This is a
dynamic setting. Matching the targeted solution word length heavily
depends on the given vocabulary. By default, the threshold is set to
allow a deviation of 50% because an almost finished puzzle, which
can be improved manually, is preferred over long waiting times or no
results at all.

Flip Position Directions

In the end, positions can be rotated to make puzzles more exciting
and challenging. By default, 50% of all positions are turned around
to create a grid with alternating directions.

4.1.4. Filling Grids

Filling grids is handled as a constraint problem that is modelled as
an assignment problem with Google OR-Tools by Perron and Furnon
[130], the CP-SAT Solver is used to solve the optimisation problem as
an integer programming problem. Unless mentioned otherwise, the
OR tools specific modelling challenges are not mentioned as they are
not relevant for the logical answer to the research question.

Initialisation

The algorithm is provided with a grid, containing empty positions,
and vocabularies as well as other parameters like shuffling words
or using blacklists. If required by the puzzle type, a solution word is
provided additionally.

55

4. Method

Positions as Variables

Each position is assigned a variable that can contain a word after
the solver has successfully finished. Also, each field that contains
overlapping words is modelled as a variable that can contain letters.
These overlap variables are assigned to all positions that intersect
with each other. This way, it can be ensured that assignments of
words to a position can only be valid if all overlapping words have a
valid assignment with a matching letter in the intersecting field.

Domain

The domain for variable values consists of words identified by unique
IDs. It is created by calculating allowed assignment constraints,
which take the length of the words into account to allow only words
that match the length of the positions. While calculating a possible
assignment, it consists of two constraints: the word that can be
assigned to the position, as well as the letter that can be assigned to
the overlapping field.

Each Word Only Once

To ensure that each word is only used once in a puzzle, an "all
different constraint" is used. This is a global constraint that prevents
a value from the domain to be used multiple times in the result. This
implements requirement 3.2.3.

Blacklists

Blacklists contain words that are not allowed to be used together.
While a global constraint like the "all different constraint” excluding
the use of two values together would be preferable, this is not possible
to be implemented with OR-Tools. So these excluding words are

956

4.1. Constraint Satisfaction Programming

modelled as forbidden assignment constraints that act as a pair of
excluded values for two variables.

Reversing Words

With smaller vocabularies, the algorithm has a hard time placing
words. Thus, the directions given by the grid can be ignored. The
GridFiller is then allowed to place words for- and backwards. To
achieve this, words are reversed and added to the vocabularies before
starting the solver. Blacklists to prevent the words from being used
in both directions are created automatically.

Decision Strategy

OR-Tools have different decision strategies and is configured to use
the following settings. Variables are chosen first; the values are se-
lected by minimum first. This means that words on the top of the
vocabulary are tried first during the backtracking phase of the con-
straint solver.

Randomised Order of Words

As described in the last section, the first words in a row are used
first. This means that a copious vocabulary with hundreds of words
starting with "A" could result in a puzzle that contains only words
starting with that first letter. The Domain is shuffled before running
the solver to prevent this behaviour. To keep vocabulary priorities,
each vocabulary is shuffled separately.

57

4. Method

Prioritised Vocabularies

To establish priority in vocabularies (Requirement 3.2.3), without
being able to pass multiple domains, the selection strategy of trying
words in a given order is used. This means that words with higher pri-
ority need to be further ahead in the list. Thus, if multiple prioritised
vocabularies are given, the vocabulary with the highest priority needs
to be at the top of the domain. When shuffling, not the whole list may
be shuffled, but each vocabulary individually while maintaining the
order of the vocabularies.

Complexity

The process starts by iterating all position combinations (O(p?))) before
iterating each pair of possible word combinations O(w?))) and finally
checking if the combination is possible by comparing the possibly
overlapping letters of both words. This results in the overall complex-
ity of O(p?*w?)) for creating allowed assignments. The vocabularies are
grouped by word length, to reduce the lookup of words that match the
compared positions and improve runtime, which results in a lower
runtime than the actual calculated worst-case complexity. Also, only
overlapping positions are compared, reducing the complexity further.
The method mentioned above of creating forbidden assignments has
a much higher complexity. Each excluding assignment has to be
added for each pair of variables. This approach has a complexity
of O(#positions® x #words® x #blacklistentries®) which unfortunately is
quite inefficient for large puzzles with large vocabularies and exten-
sive blacklists.

4.1.5. Word Search Puzzle

A meta-algorithm, called WordSearchAlgorithm, combines the Grid-
Generator and the GridFiller algorithm to create word search and
letter desert puzzles. Different vocabularies have shown to require

58

4.1. Constraint Satisfaction Programming

differing settings for the sub-algorithms. This meta-algorithm first
guesses the best settings and then iteratively tries other settings,
while also reducing the strictness of some requirements.

Initialisation

The WordSearchAlgorithm initially calculates the required word length
distribution based on the given vocabulary and sets default parame-
ters. The "needed words vocab ratio" is calculated by multiplying the
width and height of the grid and subtracting the solution word length.
It is then divided by the average word length and by the number of
words in the given vocabulary. This ratio is used in deciding for the
initial parameters used with the algorithms. It is necessary to do so
because differently sized vocabularies need different settings for the
GridGenerator and GridFiller. For example, smaller vocabularies need
the GridGenerator to use the word length distribution in descending
order; otherwise, it cannot create grids. In comparison, this behaves
quite differently in larger vocabularies where the word length distri-
bution needs to sample word lengths randomly to not only place long
positions in the beginning.

Backtracking Different Settings

The meta-algorithm then iteratively tries different parameter settings
in two nested loops. Some vocabularies, mainly smaller ones, do not
allow for many overlaps in the positions, while for larger vocabularies
more word intersections are preferred. Thus, the overlap factor is
dynamically decreased in the inner loop, trying to find a puzzle with
the highest overlap factor. For all generated grids, in a dynamic
parameter step, the grids are immediately tried to be filled with the
GridFiller. When a puzzle was successfully created, the algorithm
returns this result immediately. In case no grid could be filled another
round with decreased overlap factor is started. Once the overlap factor
is down to zero, and still, no puzzle was successfully generated, other
parameters are changed in the outer loop, trying with the initial

59

4. Method

maximum overlap factor. The whole process is aborted if no puzzle
was found within 30 minutes.

4.2. Neural Networks

“Deep neural networks are responsible for some of the
greatest advances in modern computer science. “

- Jeff Dean

In this section, an approach for generating puzzles with a neural net-
work is examined. Puzzles have variable size, and input vocabularies
have different lengths. However, neural networks have fixed input
and output dimensions, so for the first evaluation, some parameters
are set to fixed values. Also, to prevent unforeseen influence zero-
padding, necessary to bring a smaller puzzle to the input dimensions
of the neural network, might introduce only puzzles of one size are
evaluated. This neural network focuses on word search and letter
desert puzzles with a size of 15 by 12 fields and an input vocabu-
lary of a maximum of 100 words. To further reduce complexity, the
solution word is left out for initial experiments.

The goal is to train a neural network to learn the structure of puzzles
and the arrangements of words and letters, not the words themselves.
The semantic meaning of words does not matter either in this case
and thus no (pre-trained) embedding layers are used. Another advan-
tage is that it is possible to create puzzles from words that are not
known at training time. This is an essential requirement as vocab-
ularies and words are edited and extended regularly to create new
and interestingly themed puzzles with words never seen in a puzzle
before.

The neural network has been implemented with Tensorflow [2] with
the Keras API [33]. For processing data, like splitting data into train
and test sets scikit-learn [129] was used. All training was done on
Google Colaboratory [22] on a Tesla T4 GPU.

60

4.2. Neural Networks

4.2.1. Data Representation

As the Lazy Programmer [102] says "All Data is the Same (in Machine
Learning)", one of the main challenges for using neural networks is
about finding a representation to feed into the neural network. The
most promising representation is to treat a puzzle similar to an image
with each puzzle field corresponding to one image pixel.

The Grid can be modelled with numbers, where each number cor-
responds to one field type. This is not necessary for word search
puzzles and is thus left out for now, but would be necessary for
other puzzle types. Also, the arrows (~20 variants) showing which
clue corresponds to which position on the grid, as seen in Swedish
puzzles, is left out for word search puzzles.

The width and height of the grid are the pixel values for neural
networks that have to be flattened for dense networks but can directly
be used for 2-dimensional convolutional networks. Each field has
multiple features, limited to three for word search puzzles: word index,
second-word index, and letter index. To represent words and letters
as numbers, vocabulary and alphabet indices have to be calculated.
To allow the full vocabulary to be modelled, all letters of the basic
Latin alphabet are indexed from O to 25. To allow for umlauts or
other special characters, which are usually not used in crossword
puzzles, the alphabet, and the corresponding index would need to be
extended with these values before training the network. Each field
can then be mapped to a letter of the alphabet and to one or two
words that are overlapping the field. To extend the puzzle to allow for
more than two-word intersections (excluded by Requirement 3.2.1),
more features would need to be added before training the networks.
With this numeric representation, the network can be asked: "What is
the probability for each value in the features (field type, letter, word)
on each puzzle field?"

On the one hand, the vocabulary index needs to be calculated for
each puzzle and vocabulary individually to prevent the network from
learning specific words but encourage extracting information on the
structure of the puzzle depending on the given vocabulary. On the

o}

4. Method

other hand, the same alphabet representation can be used through-
out the whole data set as it does not change from puzzle to puzzle.

4.2.2. Training Data

For training and as a benchmark 424 handmade, high-quality puz-
zles with dimensions 15x12 fields were available. Since this does not
seem to be enough for training a network, the data is augmented
as described in Section 4.3.7. Flipping and rotating a puzzle creates
seven new puzzles, to keep the dimensions of non-square grids only
three new puzzles are possible though. Since quadrupling the train-
ing set showed a significant increase in validation accuracy, it was
concluded that a more extensive training set is necessary. The CSP
algorithm from section 4.1 was then used to generate ~10.000 puzzles
without solution words to create a larger data set. With the above
method of rotating and flipping and thus four-folding the data set,
training was conducted with ~40.000 puzzles. This needs to be kept
in mind when comparing the results of both algorithms as the neural
network is not expected to perform better than the CSP algorithm if
it is trained with a data set created by the latter.

4.2.3. Network Architecture

This section focuses on the best performing architecture, while all
evaluated architectures can be seen in chapter B of the appendix.

Initial experiments with generative adversarial networks (GANs) have
shown that generating puzzles is quite a complex task. Also, the net-
work input is not an arbitrary latent space made up of random values
as seen with most generative networks, but a vocabulary which is
called the context space from now on. The approach was thus to find
an autoencoder (AE) that can en- and decode puzzles and a second
AE that can en- and decode vocabularies. In the following steps, it
would then be possible to use the encoder parts of a vocabulary AE
and the decoder part of a puzzle AE. These separate en- and decoders

62

4.2. Neural Networks

could then be used in a new AE going directly from vocabulary to
puzzle or be used in other architectures, for example, GANs or condi-
tional GANs (cGAN) where the vocabulary encoder could be used as
the conditional input. Other architectures than AEs and GANs are
possible to evaluate as well but are not considered in this thesis.

Optimiser, Learning Rate, Loss Function, and Accuracy

After evaluating several loss functions and optimisers, all following
experiments were conducted with the optimiser Adam, with a starting
learning rate of 0.001 and binary cross-entropy loss function. Other
settings for training chosen are early stopping with the patience of 25
epochs to allow the automatic learning rate adaptation to adequately
reduce the learning rate when the validation loss stopped improving
for ten epochs. The accuracy is the ratio of correctly predicted values
and is calculated by dividing the number of correct predictions by the
total number of predictions. The average prediction of a network over
the test data gives the accuracy of a trained model. This model accu-
racy is used to compare the performance of different architectures
and models.

Hyperparameters

Some different architectures and hyperparameter settings have been
tried and evaluated to find the best hyperparameters. After flattening
the data and experimenting with deep neural networks, the focus was
quickly set on deep convolutional networks using the 2-dimensional
data as described in section 4.2.1 which produced much greater re-
sults than the conventional dense networks. The convolution size has
shown not to make an enormous difference in results. However, it is
important not to introduce any pooling layers as often used in image
processing since combining fields with maximum, or average values
does remove too much information necessary for puzzle generation.
This was experienced when comparing two neural network architec-
tures that only differed in MaxPooling layers, as seen in Figure B.7.

63

4. Method

Pooling with standard image data is effective since pixel values of
neighbouring pixels often have the same value, and thus not too
much information is lost when combining them. However, with the
puzzles, where each field contains a separate letter, no information
should be left out on while encoding.

Autoencoder for Puzzles

Splitting horizontal and vertical convolutions and training them in
parallel branches shows the best results. The architecture for en-
and decoding puzzles with the best results is seen in Figure 4.4.
This architecture has shown to average its validation accuracy for
autoencoding puzzles at around ~99.43%.

Autoencoder for Vocabularies

While starting with the gained insights for autoencoding puzzles, no
architecture suitable to autoencode was found. Experiments and
the search for a neural network have thus been stopped. All tried
architectures (seen in chapter B.3) have shown the best performance
after training for one epoch, with decreasing accuracy on further
training. With this result, no architecture can be considered to be
usable, resulting in no proposed architecture here.

4.3. Preliminary Work / By-Product

“Perfection is not attainable, but if we chase perfection we
can catch excellence. “

- Vince Lombardi

64

4.3. Preliminary Work / By-Product

input: | [(?, 12, 15, 3)]
output: | [(?, 12, 15, 3)]

input_3: InputLayer

/

input: | (2,12, 15, 3) input: | (2,12, 15, 3)
conv2d_18: Conv2D conv2d_21: Conv2D
output: | (?, 12, 15, 32) output: | (?, 12, 15, 32)
Y X
nput: | (?, 12,15, 32) input: | (?, 12, 15, 32)
conv2d_19: Conv2D conv2d_22: Conv2D
output: | (?, 12, 15, 64) output: | (?, 12, 15, 64)
l A
input: | (?,12, 15, 64) input: (7,12, 15, 64)
conv2d_20: Conv2D conv2d_23: Conv2D
output: | (?, 12, 15, 128) output: | (?, 12, 15, 128)
input: ?,12,15,128), (7,12, 15, 128
add_2: Add P IC) ()
output: (7,12, 15, 128)
input: | (?, 12, 15, 128) input: | (?, 12, 15, 128)
conv2d_24: Conv2D conv2d_27: Conv2D
output: | (?, 12, 15, 128) output: | (?, 12, 15, 128)
input: | (?, 12, 15, 128) input: | (7, 12, 15, 128)
conv2d_25: Conv2D conv2d_28: Conv2D
output: | (?, 12, 15, 64) output: | (?, 12, 15, 64)
l y
input: | (?, 12, 15, 64) input: | (2, 12, 15, 64)
conv2d_26: Conv2D conv2d_29: Conv2D
output: | (?, 12, 15, 32) output: | (?, 12, 15, 32)

~,

input: 2,12, 15, 32), (?, 12, 15, 32
add_3: Add P I 2)
output: (7, 12, 15, 32)

input: | (?,12, 15, 32)
output: | (?, 12, 15, 3)

conv2d_30: Conv2D

Figure 4.4.: Best performing architecture for a deep convolutional autoencoder
with separate horizontal and vertical convolutions that are added in
the latent space

65

4. Method

Some topics, though not part of the goal of this thesis, were never-
theless taken up and worked on, on the way. These are described in
this section. Vocabulary management, for example, is an essential
part of the puzzle creation workflow. While some requirements can
be fulfilled directly by the algorithm itself, others can be outsourced
to the vocabulary management to prepare the vocabularies before
they are passed to the algorithm.

4.3.1. Blacklist Creator

A simple word in word blacklist creator was implemented to create
blacklists from a given vocabulary.

4.3.2. Synonym Creator

A synonym creator was implemented to fetch synonyms from OpenThe-
saurus' to create a clue list for words used in Swedish puzzles.

4.3.3. Vocabulary Management

An entity-relationship diagram for a possible vocabulary manage-
ment software was created considering all the different requirements
necessary to manage words, clues, and blacklists.

4.3.4. Death Row Analysis

To practice gaining information from available data, a data visualising
project analysing death row information from the Texas Department
of Criminal Justice®. It showed the importance of interpreting the
insights correctly. The analysis, for example, revealed that people

Ihttps://www.openthesaurus.de/ (Accessed on: 2020-06-29)
2https://www.tdci.texas.gov/death_row/ (Accessed on: 2020-07-20)

66

https://www.openthesaurus.de/
https://www.tdcj.texas.gov/death_row/

4.3. Preliminary Work / By-Product

Word Length Distribution of defferent Vocabularies Boxplot
25

L] L]

20
+
+

15

.

lengths

10

Ostseebéder Vulkane Stadtetour ParaderclléPromis mit B Skat wi24 Bewerbun@ewerbung +
some short

vocab

Figure 4.5.: Example for Vocabulary Analysis: Word Length Distribution Box Plot

with the name "Robert" are executed more often in absolute numbers.
A conclusion like "I am lucky my name is not Robert" would be
dangerous and should not be drawn while ignoring the context. An
analysis of all inhabitants of Texas would be necessarily revealing the
number of people named "Robert" in the population. Both numbers
would need to be put in relation before concluding.

4.3.5. Vocabulary Analysis

A script to analyse and visualise the statistics of vocabularies was
implemented to gain insights on the letter and bigram distribution,
as well as word length distribution. These statistics were used to
improve the settings for the CSP algorithms. The graphs used for
evaluation in Section 5.1.1 are created with this script, an example
of a word length distribution plot can be seen in Figure 4.5. The
visualisations are created with Seaborn [175] and Matplotlib [90].

67

4. Method

4.3.6. Horoscope Neural Network

A simple long short-term memory (LSTM) neural network was imple-
mented to train on horoscope data. While this gave insights on using
LSTMs, it was concluded that these types of neural networks are prob-
ably not suitable for the generation of puzzles. The power of LSTMs
is the possibility to process sequences of data, but no sequence was
identified in the puzzles. The network hyperparameters were not
sufficiently optimised, and the generated horoscope texts could only
serve as inspiration for an editor while writing horoscopes.

4.3.7. Data Augmentation by Rotation and Flipping
Puzzles

To evaluate how the available puzzle data can be augmented ex-
periments with flipping and rotating puzzles were conducted. Using
square puzzles can generate seven new grids from an existing grid,
while from rectangular puzzles, only three new grids could be gen-
erated. These findings match the results found by Helser [82] who
inverts and reverses letter matrices of word search puzzles to create
four puzzles out of one.

4.3.8. Timing Experiments

Extensive research has been placed on performance to decrease the
runtime of the algorithms. Not surprising it is highly recommended
to use Python native functions like list comprehensions, generator
Junctions or Python’s itertools instead of custom (nested) loops. Con-
trary to expectations, a combination of list comprehensions with the
max function is performing better than supplying a key function to
the max function though. One of the most valuable insights gained
was the use of caching of deterministic values. For example, calcu-
lating the length of a word when necessary creates many thousand
calculations as the length is needed often. Calculating the length

68

4.3. Preliminary Work / By-Product

once during object creation and saving it in singleton word objects
for later access was evaluated and found to be useful. Additionally,
accessing the stored length of words via direct attribute access proved
to be up to 56% faster than using the magic __len__() function. Also
sorting words by length and storing them in dictionaries proved to
be very efficient. As the algorithm often needs words with a length
matching the length of a position, lookup performance was increased
dramatically by having words accessible sorted by length. The use of
lru_cache and cached_property offered by Python'’s_functools does im-
prove performance but is only usable for deterministic, non-changing
values. Due to the dynamic behaviour of vocabularies, a custom
caching solution using hashes over datasets that invalidate cached
values was implemented and proved to be useful.

In general, it showed that some optimisations with test data sets could
increase performance by up to 55% in testing environments. These
high results were not achieved in production with the whole data set
though, also because the algorithm does many tasks, and only some
of them can really be optimised. Implementing these optimisation
strategies throughout the whole project did improve performance a
lot though generating puzzles in less time.

The algorithms presented here are CPU-bound, not I/O-bound, so
concurrency with multithreading was not considered. However, Python’s
multiprocessing seemed to be the right candidate for performance
gain. Multiprocessing only allows improvement of data manipulation,
thus not the whole algorithm can be parallelised. With multiprocess-
ing being able to improve performance by a factor of n-1 cores, the
performance gain is quite high for specific tasks when implemented
correctly. To use multiprocessing, the whole data structure of the vo-
cabularies had to be refactored to be able to copy the data to multiple
cores. No recursive data is allowed, and implementing the single-
ton pattern proved to be necessary. The different and unforeseeable
behaviours observed in multiprocessing between operating systems
and the complexity of finding, proving and removing bugs lead to dis-
carding all multiprocessing efforts. Other concurrency libraries like
AsynclO, joblib or Ray haven been considered but not been evaluated
as the refactoring seemed too elaborate.

69

5. Evaluation

“True genius resides in the capacity for evaluation of un-
certain, hazardous, and conflicting information. “

- Winston Churchill

In this chapter, the results that were achieved in the work described
in Chapter 4 are evaluated and discussed. While a conclusion which
method to prefer is drawn in the next chapter, both approaches are
evaluated individually first. Also, a discussion of the gained insights
and a research roadmap for potential future work is presented.

5.1. Results
“Realists do not fear the results of their study. *
- Fyodor Dostoevsky

This chapter evaluates the results of the scientific research trying to
generate crossword puzzles with constraint programming and neural
network. Since both approaches are unique in the methods used and
the data structure, they are individually assessed first.

71

5. Evaluation

AN Snanaaamionang)/
ananinestindly \Gypasdin nesini, N e A
Lan LA A & | R MmpAB P N] V.
\n:xn : > \\\\ S
sl S\\\. A
A% e NN]
FEIN] NN
| N\l
R DR W S Bl \\ 53 8
AN JL UL
(a) Good Result of the Puzzle Algorithm (b) Manually Rejected Puzzle

Figure 5.1.: Examples of Generated Puzzles. A good one on the left. The right one
is manually rejected due to too many parallel lines and no nice spread
between the solution word letters.

5.1.1. CSP

Some hardship cases do exist when using the algorithms in produc-
tion. Analysing the vocabularies used in the generation process gives
some useful insights. Initially, the average word length was expected
to correlate with the complexity for the algorithm. However, it showed
that the difficulty for the algorithm correlates more with a word length
distribution. This means the more long words are available in a vo-
cabulary, the harder it is for the algorithm to place enough words for
a complete puzzle. On the other hand, it is easier to place the right
amount of positions onto the grid with a vocabulary that contains
more short words. Figure 5.2 shows three vocabularies in comparison,
"Vulkane" which builds in an acceptable time, "OstseeBader" which
takes many more trials and "Bewerbung" which does not produce any
usable results. It can be seen, that vocabularies with a skew towards
longer words are increasing the runtime. Figures 5.3a and 5.3b show
some more vocabularies in comparison to each other. Next to the
vocabulary that did not produce any results, "Bewerbung", a vocabu-

72

5.1. Results

lary with 86 words with an average word length of 11.76 letters, is
an extension. Extending the vocabulary "Bewerbung" with 25 words
with an average length of 5.8 letters created a new vocabulary with
an average word length of 10.5 letters. With this extended vocabulary,
it is possible to generate good puzzle results within seconds. This
result contradicts with the initial thesis that vocabularies with an
average word length of 8 or higher are hard to compile into puzzles.

The shown vocabulary v424 consists of all words extracted from the
424 manually created benchmark puzzles. While examining the char-
acter frequencies, as shown in Figure 5.4, no significant differences
can be identified. There are two outliers, however. The first is the
vocabulary "Tour". It consists of Japanese city names, containing the
letter "A" very frequently and more than average letters "I" and "K"
while containing very few letters "B" and "E". The second outlier is
"Promi", which includes a list of celebrities names beginning with
"B". These outliers do not correlate with the algorithms ability to
compile a puzzle though since both vocabularies compile to high-
quality puzzles within a short time. Comparing letter bigrams does
not lead to any conclusions either, as no correlation to the puzzle
results can be seen. Comparing bigrams of vocabularies is difficult
as well because different vocabularies contain different bigrams and
varying amounts of bigrams as seen when comparing "Staedtetour"
(52 words, 117 bigrams) in Figure 5.5a with "Skat" (55 words, 173
bigrams) in Figure 5.5b. Only a correlation of the total amount of
bigrams and overall size of the vocabulary can be assumed as seen
in vocabulary "424" in Figure 5.5d.

Result

The following puzzle types can be generated with the introduced algo-
rithm. A combination of the introduced GridGenerator and the Grid-
Filler in the meta-algorithm "Word Search" can create word search
puzzles with and without a solution word, as seen in figures 5.6a
and 5.6b. Using the GridFiller stand-alone while providing it with a
Swedish puzzle grid a Swedish puzzle can be generated as seen in

73

5. Evaluation

OstseeBader
Vulkane
Werd Length Distributions of Vecabularies Bewerbung

0.6
05
0.4
0.3

02

0.0
01 23456 78 9510111215141516171819

Figure 5.2.: Word length distribution to compare three vocabularies. The skew to-
wards the left in the "Vulkane" vocabulary makes it easier for the
algorithm to create usable results.

Figure 5.6¢c, although for a meta-algorithm "Swedish Puzzle" a spe-
cialized SwedishGridGenerator and an algorithm for clue assignment
would need to be added, which was not part of this research.

A combination of the GridExtractor and the GridFiller can be used
to check for a single deterministic solution. This combination is not
as crucial for the evaluated puzzle types but has shown to be usable
as a quality measurement for puzzle types requiring a deterministic
solution.

The introduced algorithms GridGenerator and GridFiller can respect
given words or letters (Requirement 3.2.4) as well as restricted fields
(Requirement 3.2.1). The GridGenerator can also respect free fields
and thus create a shaped puzzle (Requirement 3.2.1). An example of
a shaped puzzle with a given word can be seen in Figure 5.7.

It has shown that the vocab lengths distribution introduced in sec-
tion 4.1.1 is best suitable. The mode "random" is creating better and

74

5.1. Results

Word Length Distribution of defferent Vocabularies Boxplot
25

L L
20
L
+
w 15 ’
g _ '
= L]
a]
10
5
Ostseebéder Vulkane Stadtetour ParaderclléPromis mit B Skat wi24 Bewerbun@ewerbung +
some short

vocab

(a) Word Length Distribution Box Plot
Word Length Distribution of defferent Vocabularies Violinplot

s MNH

Ostseebader Vulkane Stadtetour ParaderclléPromis mit B Skat wi2d4 Bewerbun@ewerbung +
some short

=

lengths
e

=
[=]

vocab

(b) Word Length Distribution Violin Plot

Figure 5.3.: Word length distribution of multiple different vocabularies to evaluate
the algorithm settings. The more short words a vocabulary contains,
the better the algorithm performed, it created better results quicker.

75

5. Evaluation

Comparing of Character Frequencies in Vocabularies

vocab.
= promi
- sat

— o
= rolle
-4

= wikane
= bewerbung

15

count

o

s
" ||‘||I| I.Illl Hitr W.at |U|“ il ||||I|| I||||II ||||I|| I||||n || |||| |I|I||| ||I|||| I|||||| Ll ||.|||| ||||||| ||||||| ||||||| R R [
a e e o e el e e S T TR T g T e T e e

index

Figure 5.4.: Comparing character frequencies does not reveal any helpful insights
either. The outliers did not show any different performance than the

others.
one
H
o
nnu'PffFFra‘;fFrr‘;;?ﬁ,g BT EERE AN FE LG8 8L TEEBOBBE Bt O DS e X o N N G 0 R EREE T85O 5RRCCAKFAOLENLSEITNESSUNFERRAA
(a) Bigrams Staedtetour
000
omss
§ om0
om0
0w
paRamARn : LIS .
(b) Bigrams Skat
oo
S omo
o010 | | | | | | |
o00s
0000 |..II||||||..||..|||..I.I.|||| | I | |' 1M} I|I.| |I |II| lal.a I||I.I..||I.I.I|"I||| ..|I.|.|I.|||| M.t I | I || Ll | .. || |||I....I.I|| I | ||| " |' I Leeathilll |
PR = e c = = g
(c) Bigrams Bewerbung
8 o010
o | PN

TR

(d) Bigrams 424

Figure 5.5.: Comparing the distribution of bigrams in different vocabularies does
not reveal any helpful insights. No relevant connection between bi-
gram distribution and algorithm performance could be detected.

76

5.1. Results

R 10 M€ H A€ RG Lanan. wan.snimanan.anp Ml an.an =
NG N ']
N KA :
u l " > N
:f P m N\ H \
'Y rerrr :\ 6 C B \\1 1
ﬁe—n—n—-o—t—|—s T 6 n L n d =
/ \\ ly, DS Y L \ R t
N Fe ¥ nli . e
(a) Word Search with Solution (b) Letter Desert without Solu- (c) Swedish Puzzle
Word tion Word

Figure 5.6.: Puzzles created by the introduced algorithms, a word search puzzle, a
letter desert puzzle, and a Swedish puzzle.

mT S|t mAa s m
mEe D1 AN E/lUL CAB
S WE DI S HPURZ2LESI|U
G RI D@QRTI[FI €I ALIT|G/L T
E/DECONUVOLUTI ONEREE
R TOSTNEMERTI UOERARAREP
E/S A0 F SDROWSSORC MATCE
mc R UCT U €ERBALLI ST)I
N BHGAENHPRARSGEGECI EH
A/EENL SADNRAPETL.E
RIGDDI I MADRARNMNSRZRTP
ME D UNTETC22AR
S L1 LRY E|UET
UP YNERPSTE
RR T GREER
2 0/S RAL
PN

Figure 5.7.: A puzzle created by the introduced algorithms with a given shape and
preassigned words (circled in blue).

77

5. Evaluation

faster results with large vocabularies, while the mode "decreasing" is
necessary for smaller vocabularies to generate results at all. Phase
three of the GridGenerator is currently not very helpful, as it creates
too many overlapping issues, but has also shown not to be necessary
and is thus not in use. It could be improved in future though, to
respect overlap counters of positions and field population.

To give the GridFiller more opportunities for smaller vocabularies,
each word in the vocabulary is initially reversed and added to the
vocabulary while maintaining a blacklist forbidding reversed words.
The algorithm then ignores the predefined direction of the positions in
generated grids and tries to create a puzzle by placing words in both
directions. This approach was chosen as it was easiest to implement
and allowed to quickly prove the theory that giving the GridFiller
the choice of word direction would improve performance. Allowing
the algorithm to try words in both directions not only decreased the
runtime from start to good result, but it also enabled the algorithm to
deliver results where strictly given word directions prevented it from
generating puzzles at all.

Overall the algorithm can produce usable results and is already used
in a production environment by Krupion GmbH.

5.1.2. Neural Networks

“There are neural networks that can build whole apps
Jrom scratch - so why are we teaching high school kids to
code? *

- Vivienne Ming

All evaluations are based on calculating the model accuracy as de-
scribed in Section 4.2.3. Different experiments have shown that very
high validation accuracy is necessary to create usable results. (Vali-
dation accuracy is rounded to two decimal points in this text, but is

/8

5.1. Results

TTEFTIROTKETORP STEFTISPTLETORQ
T A RU DEHEURF| T A RU | CFIEUSE
RRL UFURHCAN K RSM UFURGCAO K
O A FPOKLAKOLRA 0O A FPPMMALPMRA
B OFFLONROTS I HN]| BL PHGMPORPTSJ IO
B KGA EB LE E B LFB DB ME E
ERA UL TL LG G| FRAl UM TM MG G
N ARTZGEAMERANA O ARTYGFAMESANA
DEWNAHNORANT EFVOAIOPRANT
ARESIMURRFARMER ARESJNVSRGASNEOQ
APERCUOSELTSAMA AQFSDUPSFLTTANA
EKCAMMGTF MARC FLCAMNGTG MARD

Figure 5.8.: The original puzzle (left) that is en- and decoded (right) with the in-
troduced network architecture and a model trained to a validation
accuracy of 97.84%. Already in the top row, four letters are wrong,
not even considering the other two features. At least the empty fields
are correctly assigned.

available with four decimal points as seen in Table 5.1 and the ap-
pendix.) As seen in Figure 5.8, a validation accuracy of 97.84% is not
sufficient to auto encode a puzzle with good result. Too many fields
are calculated wrong to recreate the original puzzle. Therefore, much
higher accuracies are necessary to start with the puzzle generation
through networks at all.

Contrary to expectations, deconvolutions on the decoder lead to
weaker results than using convolutional layers. Also using concate-
nation instead of adding the output of previous layers to create the
encoder did not improve performance. The architecture introduced in
detail in section 4.2.3 is the best performing combination of hyper-
parameters for a convolutional puzzle autoencoder. It creates results
with a validation accuracy between 98.85% and 99.88%. Figure 5.9a
shows how training performed and that automatically adapting the
learning rate does improve the results. Figure 5.9b showing the
original puzzle on the left and the auto-encoded result on the right
lets us conclude that the autoencoder architecture introduced is
capable of en- and decoding puzzles. Table 5.1 shows the average
validation accuracy of all tried convolutional architectures. Plots of
the architectures, as well as the comparison of the other architec-

79

5. Evaluation

AAAAAAA e —— - -=- Taining Accuracy | |- 100000

st Accurac
03 ! '
; Y Chosen Accuracy

- Leaming Aate

53 'w‘ . —=-- TFaining Loss

03 e PN S0 N S SR e et e et e o e e+ . Chosen Loss |

(a) Training history showing loss, accuracy, and learning rate over epochs trained.

TTEFTIROTKETORP TTEFTIROTKETORP
T A RU DEHEURF T A RU DEHEURF
RRL UFURHCAN K RRL UFURHCAN K
0O A FPOKLAKOLRA 0O A FPOKLAKOLRA
B OFFLONROTS I HN B OFFLONROTSIHN
B KGA EB LE [E B KGA EB LE |E
ERA UL TL LG G| EIRA UL TL LG G
N ARTZGEAMERANA N ARTZGEAMERANA

DEWNAHNORANT DEWNAHNORANT
ARESIMURRFARMER ARESIMURRFARMER
APERCUOSELTSAMA APERCUOSELTSAMA
EKCAMMGTF MARC EKC/AMMGTF MARC

(b) Original puzzle on the left and autoencoded puzzle on the right.

Figure 5.9.: The evaluation of the introduced deep convolutional puzzle autoen-
coder with training history and autoencoded results. It can be seen
how the accuracy increases with more training epochs and with adapt-
ing the learning rate. The autoencoded puzzle has all letters correctly
decoded.

tures, can be found in Chapter B. Sometimes, high validation results
were achieved. However, it is necessary to account the number of
epochs when the highest validation accuracy was achieved. A high
validation after one epoch that continually dropped after proceeding
training epochs should receive less attention. An example of dropping
validation accuracy can be seen in Figure 5.10.

Seeing a decrease in accuracy when using pooling layers or when
having lower dimensionality latent spaces in autoencoders (Table 5.1)
can be interpreted in the following: The puzzle fields have a much

80

5.1. Results

Architecture	Speciality	Val. Acc.	Epochs	
CAE O (B.6)	Initial intuition	0.9577	63	
CAE 0.5 (B.7)	MaxPooling	0.7998	40	
CAE 1 (B.8)	Less depth	0.9473	10	
CAE 2 (B.9)	Conv. instead of Dense	0.9684	4.5	
CAE 3 (B.10)	Dropout	0.9410	17	
CAE 4 (B.11)	Bigger Filters	0.9507	53	
CAE 5 (B.12)	Smaller Filters	0.8450	6	
CAE 6 (B.13)	No Batchnorm	0.9390	70	
CAE 7 (B.14)	- and	Filters	0.9031	19
CAE 8 (B.15)	-	Filters Added	0.9943	34
CAE 8.5 (B.16)	-	Filters w. DeConv	0.9229	1
CAE 8.6 (B.17)	-	Filters no Adding	0.8297	12
CAE 9 (B.18) -	Filters w. Concat	0.8177	3	

Table 5.1.: Evaluation of the compared convolutional neural network architec-
tures. The validation accuracy is an average over multiple trainings.
Epochs is an average of the number of epochs after which the highest
accuracy was reached.

higher information content compared to the pixels in images that
have higher entropy. Pixels in images can have one of 16,777,216
different values where values close to each other do not necessarily
make a visible difference allowing for some variation and inaccuracy.
Pixels next to each other also often have similar values which means
that a single pixel that is not 100% accurate does not render the
whole image as wrong. For puzzles, this is different as each field can
only have one of 26 values and neighbouring fields usually do not
have the same value. A small change in the value of the field can
leave a whole word, and thus the whole puzzle as invalid.

In the conducted experiments, it was not possible to find an architec-

81

5. Evaluation
0083
,,,,,,,,,,,,,,,,,, == Taining Accuracy |- 100000
1] st Accuracy
080 L Chosen Accuracy
0181 i] 20000
075 B
Zeasa 1
= y Leamning Rate
“ 0.65
0179
060 | — 20000
Voo T S S “rawing Loss
0328 } e, e e e e st Loss
S -=mees=— ey P .- Chosen Loss |
Figure 5.10.: An example for neural network training where the highest valida-
tion accuracy was achieved after the first training epoch. After epoch
one the validation accuracy continually dropped. This result should

therefore be given less attention.
ture that can autoencode vocabularies with high enough accuracy.
Thus the overall goal of creating a neural network capable of learning
puzzle structures to generate puzzles from given vocabularies was

not achieved.

5.2. Discussion
The aim of argument, or of discussion, should not be
- Joseph Joubert

0z

victory, but progress.“

While the CSP approach creates valid and usable results, the neural
network architectures evaluated here do not. Many of the require-

ments can easily be implemented as constraints but cannot be cre-
ated for neural networks. While the neural network remains a black
box, maybe learning the constraints, it cannot be proven that the
requirements are correctly learned. The CSP can consider blacklists
as constraints; the neural networks would have no chance to do so
While the blacklists could be implemented as QA checks discarding
puzzles with mutually excluding words, this would lead to high reject

82

5.3. Research Roadmap

rates. Also, the necessity to have an extensive training set for each
puzzle type and dimension makes neural networks rather impractical
compared to the CSP approach that does not need any initial training
data, but only the rules to be modelled. Another observation is that
the results of the CSP algorithm are precisely calculated, if a solution
exists, while the results of a neural network remain a statistical ap-
proximation [9]. This approximated result needs to be handled with
care as faulty results can have serious implications depending on
the domain of the problem. Noteworthy is that the CSP algorithm
created the training set for the neural networks in this research.
Hence, it is expected that the results of the former algorithm can be
at most as good as those of the latter. Thus, the comparison does
not make sense. Especially the question "Which approach generates
better puzzles" is not answered as the results could be misleading
and possible conclusions could be wrong. Hence, both approaches
were evaluated individually concerning the quality of their results
but were not compared to each other. In general, it can be concluded,
that modelling puzzle generation as a constraint satisfaction prob-
lem delivers good results while training neural networks is rather
impractical.

5.3. Research Roadmap

“A good plan violently executed now is better than a per-
fect plan executed next weelk. “

- George S. Patton

The machine learning method evaluated in this thesis is not able to
produce acceptable results. There are many more fields of research
that could not be taken into account in this work. While not every-
thing could be examined, there are other methods worth looking at.
For example, deeper and wider networks should be evaluated. If a way
can be found that allows for successful decoding of vocabularies other

83

5. Evaluation

neural network architectures like generative adversarial networks,
especially conditional GANs, variational autoencoders or neural style
transfer should be taken into account. Also, text-to-image systems
like StyleGAN [95] or StackGAN [189] should be taken into account.
Another machine learning method that could be evaluated is rein-
forcement learning where rewards could be given for correctly placing
words. Other, completely different approaches like attentive neural
processes or Neural Turing machines, especially differentiable neural
computers, could also be tested, where the given vocabulary is stored
in the memory used by the neural network. With the current state-of-
the-art, it is expected that all machine learning approaches will still
have the problem of being a black box making some requirements,
like word blacklists, hard to implement. Although modelling black-
lists for conditional generative adversarial networks [119] should be
evaluated as well.

Another approach could be to simplify the problem. Already seen in
the CSP approach, splitting the generation of grids and filling them
reduced the complexity of each step dramatically. A similar approach
could be tried with neural networks as well. For example, a generative
network could be used to generate line patterns that are usable as
grids. Another possible approach would be reducing the complexity of
the data: instead of trying to place words to create a puzzle, the focus
could be set on only placing letters. This could reduce the number
of features from one to three. However, it must be remembered that
this approach will probably decrease the entropy of the puzzles and
thus increase the significance of the puzzle field values.

Since the puzzle fields have shown to have high information content,
very high accuracy is necessary to decode puzzles. Neural networks
return the probability of a letter, so there is always the chance of a
field being wrong. A single wrong letter would leave a puzzle invalid.
If many letters are correct, but only a few are wrong, a correction
algorithm could be implemented as an information-theoretical error
correction scheme. It could scan through the letters and compare
letter combinations to the words in the vocabulary to repair broken
words by fixing single out-of-the-line letters. Which word to use

84

5.3. Research Roadmap

could be decided with the Levenstein’s distance [186] between letter
combinations and vocabulary words.

Also, other existing algorithmic areas like genetic or memetic algo-
rithms [114, 120] could be focused on. While a custom backtracking
algorithm was used in the CSP approach for generating grids, this
could be adapted to place words immediately instead of lines only.
Maybe maze generation algorithms could be used, or grids could be
modelled as graphs, where letters are modelled as nodes and paths
throughout the graphs model words. Then a minimal path algorithm
or similar could find a graph that can be placed on the given grid.

In case of a custom word placing algorithm, utilizing a recommender
system could be evaluated. A properly trained or calculated recom-
mender system could suggest words that can be placed next. The
recommender system could take semantic features as well as letter
positions as features or a combination of both into account. A similar
approach could be to train a word embedding that takes letters into
account, placing words that can intersect with each other closer in
the space. However, any approach where words have to be learned
could make it difficult to use new words that were not present during
training.

Extending the constraint satisfaction problem (CSP) with an associ-
ated objective function and solving it as a constraint optimisation
problem (COP) could lead to better results. The objective could take
the overlap factor of words, the deviation of the solution word length,
the use of blacklisted words and the distribution of word orientations
into account. While the current CSP creates a result, if one exists,
the COP could return the best solution of all existing solutions. If
the search for the optimal solution meets the timing requirements
(Requirement 3.2.4) needs to be evaluated.

85

6. Conclusions

“Three things cannot be long hidden: the sun, the moon,
and the truth. “

- Buddha

The results achieved with the CSP approach is rated as successful by
the domain experts Stefan Kriiger and his team at Krupion GmbH. A
puzzle generator service has been implemented and integrated into
the existing puzzle frontend software, as described in Chapter 3.3
"Expectations".

The objective of creating a puzzle algorithm, the "Artificial Cruviverbal-
ist", was achieved in the form of a modular system that offers multiple
algorithms via a REST API. Contrary to the initial assumption, neural
networks currently do not seem to be feasible for puzzle generation.
For neural networks an extensive set of training data is needed and
the difficulty of implementing some requirements, like blacklists or
flexible puzzle sizes, make neural networks unsuitable. Most require-
ments, for example crossing words and valid assignments for filling
grids, can be defined as constraints for a constraint satisfaction prob-
lem. Some other requirements have shown to be more suitable for
implementation in a custom backtracking algorithm to create puzzle
grids. Splitting the generation of grids and filling them in a separate
step has shown to produce excellent results. Combining backtracking
in custom algorithms and in constraint satisfaction programming
ensures that a solution is found, if one exists. Another vital insight
gained is the importance of word length distribution in vocabular-
ies. The more short words a vocabulary contains, the better are the
results of the puzzle generating process. Contrary to initial beliefs,

87

6. Conclusions

letter and bigram frequencies of the used words do not seem to have
a significant impact on the generation process.

When comparing the introduced methods for puzzle creation, the
following can be concluded: Training requirements implicitly with
machine learning (black box) is not as suitable as specifying them ex-
plicitly as constraints for constraint programming with current state-
of-the-art tools. Also, the high information content of the separate
chunks of information and the necessity of exact results makes neu-
ral networks too inaccurate. The general rule that can be concluded:
it is critically important to select the right model for the approached
task. Depending on the domain and the necessary accuracy, choosing
the right method can have a high impact on the results and appli-
cability of the implemented system. A puzzle neural network only
approximates the probability of a letter placed in each field. Even if
the result has an accuracy of 99.8%, an error with the probability
of 0.2% can occur invalidating the whole result. This need not be a
problem for many applications, but can lead to severe implications
that are hard or impossible to detect. While quality checks and auto-
matic error correction in the puzzle creation process can discard or
repair invalid results, other problems do not forgive such errors so
easily. An example of adverse outcomes of very unlikely inaccuracies
with dramatic consequences is the bug in Xerox scanners that alters
numbers while photocopying documents, as revealed by David Kriesel
[49]. A change of a single number in a copied document could have
severe implications like wrong invoices, construction plans with inac-
curate measurements or even incorrect dosage of medicine. Also, the
impact of possibly faulty results needs to be taken into account when
selecting a model and method. While a broken puzzle might ruin
someone’s leisure time, the wrong medication could lead to fatalities,
and thus exact results are much more critical. When exact results are
needed, explicit calculations with constraint programming are highly
recommended over statistical approximation with neural networks
when possible.

88

6.1. Future Work

6.1. Future Work

“Success is not final, failure is not fatal: it is the courage
to continue that counts. “

- Winston Churchill

Further scientific research which can be done, especially with neural
networks, is described in detail in the research roadmap in Sec-
tion 5.3. Directly following this work, some improvements to the
constraint satisfaction programming (CSP) algorithm will be made. Ad-
ditional constraints will be implemented, for example, improving the
blacklist constraint generation that breaks the timing requirement
(Requirement 3.2.4) for large blacklists in its current implementa-
tion. It will be evaluated if extending the CSP with an optimization
function and solving it as a constraint optimisation problem (COP) can
create better results. Adaptations to the introduced algorithms to
create further puzzle types will be made: One of the first steps aims
at switching letters for syllables or bigrams to enable the GridFiller
algorithm to create syllable puzzles. However, also an adaptation
of the GridGenerator to create Swedish puzzles is planned. To fully
generate Swedish puzzles, additional sub-algorithms are needed to
create and fill in question fields.

The current implementation offers a REST API that keeps the connec-
tion between client and server open. It makes sense to introduce a
job queue so that the HTTP connection can be closed earlier during
long-running compilation processes. The initial request will then con-
tain a callback address, which is called after the compilation process,
to return the created puzzle.

An eye will be kept on the developments in deep learning, but in the
near future, constraint satisfaction programming will be the choice
for generating puzzles.

89

Appendix

91

Appendix A.

Additional Requirements

“The written word is the greatest sacred documentation. *

- Lailah Gifty Akita, Pearls of Wisdom: Great mind

A.0.1. Requirements for Grids

e Swedish

— Clue field: the field that contains the question

- Blind field: Answer letter field that is only crossed / used
by one word

- Regular field: Answer letter field that is crossed / used by
two words

- If grid gives enough space, no words with one or two letters
must be used

— Minimum 50% of the letters of a word has to be crossed
twice (Regular fields) (Examples: 3 letters: 2 crossings, 4
letters: 2 crossings, 5 letters: 3 crossings, 6 letters: 3 cross-
ings, 7 letters: 4 crossings)

- Divider (clue) fields (question fields with arrows) must not
divide a grid in closed segments (graph) jedes feld von jedem
erreichbar, muss durchgangiges system sein, graph knoten
= buchstabenfeld

93

Appendix A. Additional Requirements

- Not more than four question-fields in a chain (mostly only
one or two field groups, three or four field groups used
rarely)

-~ No double blind fields (that are only crossed once) next to
each other

- "good grid"-statistics:

* 25% question fields
* 12% blind fields
+x The rest are double crossed fields

Blindfelder: buchstabenfeld das nur einmal gekreuzt zwei
blindfelder nebeneinander verboten, wie ein undefiniertes

- Depending on grid and vocabulary these optimal values can
differ

- Verknotungsfaktor

— mehr verknotung weniger fragenfelder -> schwerer

- Gitter abhéngig vom Vokabular

- Gitter fuir leichten Wortschatz zugewiesen

- Gitter Wortlangen abhéngig vom Vokabular

A.0.2. Requirements for Vocabularies

e Clue vocab

— Currently manually created

— One answer could have multiple different clues to choose
from (e.g. answer "N", possible clues "North", "Stickstoff").

- Use Wikipedia dumps (intro might be enough) to generate
clues to words

e when the algorithm is asked to generate 500 puzzles the puzzles
should not repeat words, so the available vocabulary needs to
be updated dynamically during the creation process

e Language profiles

- Each word is assigned to one or more topics.
- A language profile can be seen as a group of words that has
a linguistic and thematic weighting.

94

- Language profiles are used to create thematic puzzles.
Grids

- Need to be uniquely identifiable

- Should be comparable for example with a calculated edit
distance

— Prevent to be used multiple times in one run

— In one run they should be fairly different

- A grid can be rotated and transposed to create a new grid
as seen in Section 4.3.7.

Some puzzles types require a unique/deterministic solution

- QA: Extract grid and vocabulary and feed both into the
GridFiller, only one solution is allowed

Puzzles need to be comparable by content (e.g. similarity based
on used vocabulary)
Use a constraint solver to check if puzzles are solvable

95

Appendix B.

Neural Net Architectures

This chapter gives an overview of the evaluated architectures and sets
of hyperparameters for the neural networks. While tests have shown
that a very high validation accuracy is necessary, focus was set on
finding the best configuration of hyberparameters. All models were
trained with the augmented data set described in section 4.2.2. After
evaluating different optimizers and loss functions these architectures
where trained with Adam optimizer, with an initial learning rate of
0.001, and binary cross-entropy loss function, as these have shown
the best results. The tables show validation accuracy and the epoch
with the highest accuracy selected by early stopping. Since random
creation of batches which leads to varying results, both values are
averages over multiple experiments.

B.1. Deep Neural Autoencoder for Puzzle Space

Deep neural autoencoders constructed of only dense layers. To feed
the data into these, the data is flattened first. A comparison of the
results can be seen in Table B.1.

Q7

Appendix B. Neural Net Architectures

Arch.	Speciality	Val. Acc.	Epochs
DAE O (B.1)	Initial intuition	0.839	139
DAE 1 (B.2)	Deeper	0.7431	207
DAE 2 (B.3)	Even Deeper 0.6617	1	

|
| DAE 3 (B.4) | Wider | 0.8223 | 3|
| DAE 4 (B.5) | Dropout | 0.8949 | 82 |

Table B.1.: Evaluation of the compared neural network architectures. The valida-
tion accuracy is an average over multiple trainings. The epoches is an
average of the number of epoches after which the highest accuracy was
reached

B.2. Convolutional Autoencoder for Puzzie
Space

Deep convolutional autoencoders where the main focus was set on
convolutional layers but to try different architectures also dense,
dropout, batchnorm and deconvolutional layers have been consid-
ered. These autoencoders try to en- and decode the puzzle space. A
comparison of the results can be seen in Table B.2.

B.3. Convolutional Autoencoder for Context
Space

These autoencoders try to en- and decode the context space.

98

B.4. |Ideas to Generate Vocabularies

Arch.	Speciality	Val. Acc.	Epochs	
CAE O (B.6)	Initial intuition	0.9577	63	
CAE 0.5 (B.7)	MaxPooling	0.7998	40	
CAE 1 (B.8)	Less depth	0.9473	10	
CAE 2 (B.9)	Conv. instead of Dense	0.9684	4.5	
CAE 3 (B.10)	Dropout	0.9410	17	
CAE 4 (B.11)	Bigger Filters	0.9507	53	
CAE 5 (B.12)	Smaller Filters	0.8450	6	
CAE 6 (B.13)	No Batchnorm	0.9390	70	
CAE 7 (B.14)	- and	Filters	0.9031	19
CAE 8 (B.15)	-	Filters Added	0.9943	34
CAE 8.5 (B.16)	-	Filters w. DeConv	0.9229	1
CAE 8.6 (B.17)	-	Filters no Adding	0.8297	12
CAE 9 (B.18) -	Filters w. Concat	0.8177	3	

Table B.2.: Evaluation of the compared convolutional neural network architec-
tures. The validation accuracy is an average over multiple trainings.
The epoches is an average of the number of epoches after which the
highest accuracy was reached

B.4. Ideas to Generate Vocabularies

Even though the focus was not set on generating vocabularies, these
ideas to create these arose.

Analytic-synthetic distinction
Elegant variation

Synonym ring

Antonyms

Lexeme

Morphemes / Monems

Q9

Appendix B. Neural Net Architectures

Arch.	Speciality	Val. Acc.	Epochs
CAE 10 (B.19)	Initial intuition	0.68	28
CAE 11 (B.20)	MaxPooling	0.65	1

| CAE 12 (B.21) | Less depth 0.8035 | 1|

Table B.3.: Evaluation of the compared convolutional neural network architec-
tures for autoencoding the context space. The validation accuracy is
an average over multiple trainings. The epoches is an average of the
number of epoches after which the highest accuracy was reached

Lemma

Word embeddings

Homophones

Homographs

Homonyms

Rhymes

Acronyms

More -onyms can be found on Wikipedia'

Maybe use WordNet? for english puzzles

ConceptNet?®

Natural Language Toolkit*

GraphWords®

To build vocabularies maybe use Wikimedia Downloads® as
source

e Automatically generate blacklists with word2vec, ELMo or BERT,
word embeddings (e.g. family members: Mutti, Mama, Mutter,
Vater, Opa)’

Ihttps://en.wikipedia.org/wiki/—onym (Accessed on: 2020-05-24)
2https://wordnet.princeton.edu/ (Accessed on: 2020-05-24)
Shttp://conceptnet.io/ (Accessed on: 2020-05-24)
ttp://www.nltk.org/ (Accessed on: 2020-05-24)
Shttps://graphwords.com (Accessed on: 2020-05-24)
Snttps://dumps.wikimedia.org/ (Accessed on: 2020-05-24)
7https://towardsdatascience.com/beyondfwordfembeddingsfpartf2
-word-vectors—-nlp-modeling-from-bow-to-bert—-4ebd4711d0ec (Accessed
on:2019-09-27)

100

https://en.wikipedia.org/wiki/-onym
https://wordnet.princeton.edu/
http://conceptnet.io/
http://www.nltk.org/
https://graphwords.com
https://dumps.wikimedia.org/
https://towardsdatascience.com/beyond-word-embeddings-part-2-word-vectors-nlp-modeling-from-bow-to-bert-4ebd4711d0ec
https://towardsdatascience.com/beyond-word-embeddings-part-2-word-vectors-nlp-modeling-from-bow-to-bert-4ebd4711d0ec

B.4. |Ideas to Generate Vocabularies

mmput: | [(?, 12, 15, 3)]
input_34: InputLayer
output: | [(?, 12, 15, 3)]
mput: | (7, 12, 15, 3)
flatten_14: Flatten
output: (7, 540)
input: ?, 540
dense 14: Dense P ()
output: | (?, 540)
input: ?, 540
dense 15: Dense P ()
output: | (7, 270)
input: 2,270
dense 16: Dense P ()
output: | (?, 540)
input: (7, 540)
reshape_14: Reshape
output: | (?, 12, 15, 3)

Figure B.1.: DAE O

101

Appendix B. Neural Net Architectures

input: | [(?, 12, 15, 3)]
input_35: InputLayer
output: | [(7, 12, 15, 3)]
input: | (7, 12, 15, 3)
flatten 15: Flatten
output: (7, 540)
input: ?, 540
dense 17: Dense P ()
output: | (7, 540)
input: ?, 540
dense 18: Dense P ()
output: | (?, 270)
input: ?, 270
dense_19: Dense P ()
output: | (?, 135)
input: ?, 135
dense 20: Dense P ()
output: | (7, 270)
input: ?, 270
dense 21: Dense P ()
output: | (?, 540)
input: (?, 540)
reshape 15: Reshape
output: | (7, 12, 15, 3)

Figure B.2.: DAE 1

102

B.4. |Ideas to Generate Vocabularies

input: | [(?, 12, 15, 3)]
input_36: InputLayer
output: | [(?, 12, 15, 3)]
A
input: | (7, 12, 15, 3)
flatten_16: Flatten
output: (?, 540)
input: ?, 540
dense_22: Dense P ()
output: | (?, 540)
input: ?, 540
dense_23: Dense P ()
output: | (?, 270)
A
input: | (?, 270)
dense_24: Dense
output: | (?, 135)
input: 7,135
dense 25: Dense P ()
output: | (?, 67)
input: ?, 67
dense_26: Dense P ()
output: | (7, 270)
A
input: ?,270
dense_27: Dense P ()
output: | (?, 135)
input: ?, 135
dense_28: Dense P ()
output: | (?, 540)
input: (?, 540)
reshape_16: Reshape
output: | (?, 12, 15, 3)

Figure B.3.: DAE 2

103

Appendix B. Neural Net Architectures

input: | [(?, 12, 15, 3)]
input_37: InputLayer
output: | [(?, 12, 15, 3)]
mput: | (7,12, 15, 3)
flatten_17: Flatten
output: (7, 540)
input: ?, 540
dense 29: Dense P ()
output: | (?, 540)
input: ?, 540
dense 30: Dense P ()
output: | (?, 1080)
input: 7, 1080
dense 31: Dense P ()
output: | (?, 540)
input: (7, 540)
reshape_17: Reshape
output: | (?, 12, 15, 3)

Figure B.4.: DAE 3

104

B.4. |Ideas to Generate Vocabularies

input: | [(?, 12, 15, 3)]
mput 38: InputLayer
output: | [(?, 12, 15, 3)]
input: | (?, 12, 15, 3)
flatten 18: Flatten
output: (?, 540)
input: ?, 540
dense 32: Dense P ()
output: | (?, 540)
input: | (?, 540)
dropout_4: Dropout
output: | (?, 540)
input: ?, 540
dense_33: Dense P ()
output: | (?, 1080)
Y
input: | (?, 1080)
dense 34: Dense
output: | (?, 540)
mput: (?, 540)
reshape_18: Reshape
output: | (?, 12, 15, 3)

Figure B.5.: DAE 4

105

Appendix B. Neural Net Architectures

input: | [(?, 12, 15, 3)]
output: | [(?, 12, 15, 3)]

input_1: InputLayer

input: | (7,12, 15, 3)
output: | (?, 10, 13, 32)

conv2d: Conv2D

input: | (?, 10, 13, 32)
output: | (?, 8, 11, 64)

conv2d_1: Conv2ZD

input: | (?, 8, 11, 64)
flatten: Flatten
output: (?,5632)
A

input: | (?, 5632)
output: | (?, 540)

dense: Dense

input: (2, 540)
output: | (2, 12, 15, 3)

reshape: Reshape

input: | (?, 12, 15, 3)
conv2d_transpose: ConvZDTranspose
output: | (?, 12, 15, 64)

L

input: | (?, 12, 15, 64)

batch_normalization: BatchNormalization
output: | (?, 12, 15, 64)

input: | (?, 12, 15, 64)

conv2d_transpose_1: Conv2DTranspose

output: | (?, 12, 15, 32)

input: | (2, 12, 15, 32)
output: | (?,12, 15, 3)

conv2d_2: ConvZD

Figure B.6.: CAE O

106

B.4. |Ideas to Generate Vocabularies

input: | [(2, 12, 15, 3)]

input_61: InputLayer

output: | [(?, 12, 15, 3)]

conv2d_368: Conv2D

input: (7,12, 15,3)

output: | (?, 10, 13, 32)

max_pooling2d_5: MaxPooling2D

input: | (2, 10, 13, 32)

output: (?,5,6,32)

input: | (2,5, 6, 32)

conv2d_369: Conv2D

output: | (?, 3, 4, 64)

y

flatten_28: Flatten

input: | (2, 3, 4, 64)

output: (?, 768)

input: | (?, 768)

dense_28: Dense

output: | (?, 540)

input: (?, 540)

reshape_28: Reshape

output: | (?, 12, 15, 3)

y
input: (7,12, 15, 3)
conv2d_transpose_85: Conv2DTranspose
output: | (7, 12, 15, 64)
input: | (?, 12, 15, 64)
conv2d_transpose_86: Conv2DTranspose
output: | (7, 12, 15, 64)
input: | (?, 12, 15, 64)
batch_normalization 23: BatchNormalization
output: | (7, 12, 15, 64)
y
input: | (?, 12, 15, 64)
conv2d_transpose_87: Conv2DTranspose
output: | (7, 12, 15, 32)

conv2d_370: Conv2D

input: | (?, 12, 15, 32)

output: | (?, 12, 15, 3)

Figure B.7.: CAE 0.5

107

Appendix B. Neural Net Architectures

mput: | [(?, 12, 15, 3)]

input_5: InputLayer
output: | [(?, 12, 15, 3)]
input: | (7, 12, 15, 3)

conv2d 12: ConvZ2D
output: | (7, 12, 15, 32)

'

conv2d 13: ConvZ2D

mput:

(2, 12, 15, 32)

output:

(2, 12, 15, 64)

'

conv2d 14: ConvZ2D

input:

(2, 12, 15, 64)

output:

(2, 12, 15, 32)

'

conv2d_15: Conv2D

input:

(2, 12, 15, 32)

output:

(2, 12, 15, 3)

Figure B.8.: CAE 1

108

B.4. |Ideas to Generate Vocabularies

input: | [(?, 12, 15, 3)]
mput_6: InputLayer
output: | [(?, 12, 15, 3)]
imput: | (?, 12, 15, 3)
convZ2d_16: Conv2D
output: | (?, 12, 15, 32)
imput: | (?, 12, 15, 32)
conv2d_17: Conv2D
output: | (?, 12, 15, 64)
input: | (?, 12, 15, 64)
convZ2d_18: Conv2D
output: | (?, 12, 15, 128)
input: | (?, 12, 15, 128)
conv2d_19: Conv2D
output: | (?, 12, 15, 64)
Y
imput: | (?, 12, 15, 64)
conv2d 20: Conv2ZD
output: | (?, 12, 15, 32)
mput: | (7, 12, 15, 32)
conv2d_21: Conv2D
output: | (7, 12, 15, 3)

Figure B.9.: CAE 2

109

Appendix B.

Neural Net Architectures

input: | [(?, 12, 15, 3)]
input_7: InputLayer
output: | [(?, 12, 15, 3)]
\
input: | (?, 12, 15, 3)
conv2d_22: Conv2D
output: | (?, 12, 15, 32)
input: | (?, 12, 15, 32)
dropout: Dropout
output: | (?, 12, 15, 32)
input: | (?, 12, 15, 32)
conv2d_23: Conv2D
output: | (?, 12, 15, 64)
\
input: (?, 12, 15, 64)
conv2d_24: Conv2D
output: | (?, 12, 15, 128)
input: | (?, 12, 15, 128)
conv2d_25: Conv2D
output: | (?, 12, 15, 64)
input: | (?, 12, 15, 64)
dropout_1: Dropout
output: | (?, 12, 15, 64)
\
input: | (?, 12, 15, 64)
conv2d_26: Conv2D
output: | (?, 12, 15, 32)
input: | (?, 12, 15, 32)
conv2d_27: Conv2D
output: | (7,12, 15, 3)
Figure B.10.: CAE 3

B.4. |Ideas to Generate Vocabularies

input: | [(?, 12, 15, 3)]
output: | [(?, 12, 15, 3)]

input_3: InputLayer

input: | (?, 12, 15, 3)
output: | (7, 8, 11, 32)

conv2d_6: Conv2ZD

input: | (?, 8, 11, 32)
output: | (?, 4,7, 64)

conv2d_7: Conv2ZD

input: | (7, 4,7, 64)
output: | (?,1792)

flatten_2: Flatten

input: | (7, 1792)
output: | (?, 540)

dense_2: Dense

input: (?, 540)

reshape_2: Reshape
output: | (7, 12, 15, 3)

input: | (?, 12, 15, 3)
output: | (?, 12, 15, 64)

conv2d_transpose_4: Conv2DTranspose

Y

input: | (7, 12, 15, 64)
output: | (?, 12, 15, 64)

batch_normalization_1: BatchNormalization

input: | (?, 12, 15, 64)

conv2d_transpose_5: Conv2DTranspose
output: | (7, 12, 15, 32)

input: | (?, 12, 15, 32)
output: | (?, 12, 15, 3)

conv2d_8: Conv2D

Figure B.11.: CAE 4

Appendix B. Neural Net Architectures

input: | [(?, 12, 15, 3)]
input_4: InputLayer
output: | [(?, 12, 15, 3)]
L
input: | (?, 12,15, 3)
conv2d_9: Conv2ZD
output: | (7, 11, 14, 32)
input: | (?, 11, 14, 32)
conv2d_10: Conv2D
output: | (?, 10, 13, 64)
input: | (?, 10, 13, 64)
flatten_3: Flatten
output: (?, 8320)
L
input: ?, 8320
dense_3: Dense P ()
output: | (?, 540)
input: (7, 540)
reshape 3: Reshape
output: | (7, 12, 15, 3)
input: | (7,12, 15, 3)
conv2d_transpose_6: Conv2DTranspose
output: | (7, 12, 15, 64)
L
input: | (?, 12, 15, 64)
batch_normalization_2: BatchNormalization
output: | (?, 12, 15, 64)
input: | (?, 12, 15, 64)
conv2d_transpose_7: Conv2DTranspose
output: | (?, 12, 15, 32)
input: | (?, 12, 15, 32)
conv2d_11: Conv2D
output: | (?, 12, 15, 3)

Figure B.12.: CAE 5

B.4. |Ideas to Generate Vocabularies

input: | [(?, 12, 15, 3)]
output: | [(?, 12, 15, 3)]

input_2: InputLayer

input: | (?, 12, 15, 3)

conv2d_3: Conv2D
output: | (?, 10, 13, 32)

input: | (?, 10, 13, 32)
output: | (?, 8, 11, 64)

conv2d_4: Conv2D

input: | (7, 8, 11, 64)
output: (?, 5632)

flatten_1: Flatten

input: | (?, 5632)

dense_1: Dense
output: | (?, 540)

input: (?, 540)
output: | (?, 12, 15, 3)

l

reshape 1: Reshape

input: (7, 12,15, 3)
output: | (?, 12, 15, 64)

conv2d_transpose_2: Conv2DTranspose

l

input: | (7,12, 15, 64)
output: | (?, 12, 15, 32)

conv2d_transpose_3: Conv2DTranspose

input: | (?, 12, 15, 32)

conv2d_5: Conv2D
output: | (7,12, 15, 3)

Figure B.13.: CAE 6

Appendix B. Neural Net Architectures

input_8: InputLayer

input:

[(?, 12,15, 3)]

output:

[, 12,15, 3)]

/

input: | (?, 12, 15, 3) input: | (?, 12, 15, 3)
conv2d_28: Conv2D conv2d_31: Conv2D
output: | (?, 12, 15, 32) output: | (?, 12, 15, 32)
Y A
input: | (?, 12, 15, 32) input: | (?, 12, 15, 32)
conv2d_29: Conv2D conv2d_32: Conv2D
output: | (?,12, 15, 64) output: | (?, 12, 15, 64)
l \
input: | (?, 12, 15, 64) input: | (?,12, 15, 64)
conv2d_30: Conv2D conv2d_33: Conv2D
output: | (7, 12, 15, 128) output: | (?, 12, 15, 128)
input: 7,12, 15, 128), (7, 12, 15, 128
2dd: Add P [() ()]
output: (7,12, 15, 128)

input: | (?, 12, 15, 128)
conv2d_34: Conv2D
output: | (?, 12, 15, 64)
input: | (?, 12, 15, 64)
conv2d_35: Conv2ZD
output: | (7, 12, 15, 32)
y
input: | (?, 12, 15, 32)
conv2d_36: Conv2D
output: | (?, 12, 15, 3)
Figure B.14.: CAE 7

B.4. |Ideas to Generate Vocabularies

input_9: InputLayer

input: | [(3, 12, 15, 3)]

output: | [(?, 12, 15, 3)]

o

input: | (7,12, 15, 3) input: | (7,12, 15, 3)
conv2d_37: ConvZD conv2d_40: Conv2D
output: | (7, 12, 15, 32) output: | (?, 12, 15, 32)
Y 3
input: | (7, 12, 15, 32) input: | (?, 12, 15, 32)
conv2d_38: ConvZD conv2d_41: Conv2D
output: | (?, 12, 15, 64) output: | (?, 12, 15, 64)
l A
input: | (?, 12, 15, 64) input: | (?, 12, 15, 64)
conv2d_39: Conv2D conv2d_42: Conv2D
output: | (?, 12, 15, 128) output: | (?, 12, 15, 128)
input: 2,12, 15, 128), (?, 12, 15, 128
add_1: Add |20t | 2 (L
output: (?,12, 15, 128)
input: | (?, 12, 15, 128) input: | (?, 12, 15, 128)
conv2d 43: ConvZD conv2d 46: ConvZD
output: | (7, 12, 15, 128) output: | (?, 12, 15, 128)
input: | (?, 12, 15, 128) input: | (?, 12, 15, 128)
conv2d_44: Conv2D conv2d_47: Conv2D
output: | (?, 12, 15, 64) output: | (?, 12, 15, 64)
l r
input: | (?, 12, 15, 64) input: | (?, 12, 15, 64)
conv2d_45: ConvZD conv2d_48: Conv2D
output: | (?, 12, 15, 32) output: | (?, 12, 15, 32)
input: 2,12, 15, 32), (7, 12, 15, 32
add_2: Add P I« : ()
output: (7,12, 15, 32)

conv2d_49: ConvZD

input: | (?, 12, 15, 32)

output: | (7,12, 15, 3)

Figure B.15.: CAE 8

Appendix B. Neural Net Architectures

input_10: InputLayer

input: | [(?, 12, 15, 3)]

output: | [(?, 12, 15, 3)]

.

input: | (?, 12,15, 3) input: | (?, 12, 15, 3)
conv2d_50: Conv2D conv2d_53: Conv2D
output: | (?, 12, 15, 32) output: | (?, 12, 15, 32)
input: | (2, 12, 15, 32) input: | (2, 12, 15, 32)
conv2d_51: Conv2D conv2d_54: Conv2D
output: | (?, 12, 15, 64) output: | (?, 12, 15, 64)
input: (7,12, 15, 64) input: (?, 12, 15, 64)
conv2d_52: Conv2D conv2d_55: Conv2D
output: | (?, 12, 15, 128) output: | (?, 12, 15, 128)

/

input: | [(2, 12, 15, 128), (2, 12, 15, 128)]

add_3: Add

output:

(@ 12, 15, 128)

T

input: | (2,12, 15, 128) input: | (2,12, 15, 128)

conv2d_transpose_8: Conv2DTranspose conv2d_transpose_11: Conv2DTranspose
output: | (2, 12, 15, 128) output: | (?, 12, 15, 128)
input: | (?, 12, 15, 128) input: | (2,12, 15, 128)

conv2d_transpose_9: Conv2DTranspose conv2d_transpose_12: Conv2DTranspose
output: | (?, 12, 15, 64) output: | (?, 12, 15, 64)
input: | (?, 12, 15, 64) input: | (?, 12, 15, 64)

conv2d_transpose_10: Conv2DTranspose conv2d_transpose_13: Conv2DTranspose
output: | (?, 12, 15, 32) output: | (7, 12, 15, 32)

T~

/

add_4: Add

input: | [(2, 12, 15, 32), (2, 12, 15, 32)]

output:

(2,12, 15, 32)

l

conv2d_56: Conv2D

input: | (?, 12, 15, 32)

output: | (?, 12, 15, 3)

Figure B.16.: CAE 8.5

B.4. |Ideas to Generate Vocabularies

input: | [(?, 12, 15, 3)]
input_11: InputLayer
output: | [(?, 12, 15, 3)]
input: | (?, 12, 15, 3) input: | (?, 12, 15, 3)
conv2d_57: Conv2D conv2d_60: Conv2D
output: | (?, 12, 15, 32) output: | (?, 12, 15, 32)
A J Y
input: | (?, 12, 15, 32) input: | (?, 12, 15, 32)
conv2d_58: Conv2D conv2d_61: Conv2D
output: | (?, 12, 15, 64) output: | (?, 12, 15, 64)
! ‘
input: | (?,12, 15, 64) input: (7,12, 15, 64)
conv2d_59: Conv2D conv2d_62: Conv2D
output: | (?, 12, 15, 128) output: | (?, 12, 15, 128)
Y /
input: | (?, 12, 15, 128) input: | (?, 12, 15, 128)
conv2d_63: Conv2D conv2d_66: Conv2D
output: | (7, 12, 15, 128) output: | (?, 12, 15, 128)
input: | (?, 12, 15, 128) input: | (7, 12, 15, 128)
conv2d_64: Conv2D conv2d_67: Conv2D
output: | (?, 12, 15, 64) output: | (?, 12, 15, 64)
' |
input: | (?, 12, 15, 64) input: | (?, 12, 15, 64)
conv2d 65: Conv2D conv2d 68: Conv2D
output: | (?, 12, 15, 32) output: | (?, 12, 15, 32)

~. /

input: ?, 12, 15, 32), (?, 12, 15, 32
add_5: Add P I :)
output: (7, 12, 15, 32)

input: | (7,12, 15, 32)
output: | (?, 12, 15, 3)

conv2d_69: Conv2D

Figure B.17.: CAE 8.6

Appendix B. Neural Net Architectures

input: | [(3, 12, 15, 3)]

input 12: InputLayer

output: | [(?, 12, 15, 3)]

—

.

input: | (7, 12, 15, 3) input: | (7,12, 15, 3)
conv2d_70: Conv2D conv2d_73: Conv2D
output: | (?, 12, 15, 32) output: | (7, 12, 15, 32)
A A Y
input: | (?, 12, 15, 32) input: | (?, 12, 15, 32)
conv2d_71: Conv2D conv2d_74: ConvZD
output: | (?, 12, 15, 64) output: | (7, 12, 15, 64)
l A
input: | (?, 12, 15, 64) input: | (?, 12, 15, 64)
conv2d_72: ConvZD conv2d_75: Conv2D
output: | (?, 12, 15, 128) output: | (?, 12, 15, 128)

/

concatenate: Concatenate

input:

[, 12, 15, 128), (2, 12, 15, 128)]

output:

(2, 12, 15, 256)

.

input: | (?, 12, 15, 256) input: | (?, 12, 15, 256)
conv2d 76: Conv2ZD conv2d 79: Conv2D
output: | (7, 12, 15, 128) output: | (?, 12, 15, 128)
input: | (?, 12, 15, 128) input: | (?, 12, 15, 128)
conv2d_77: Conv2ZD conv2d_80: Conv2D
output: | (?, 12, 15, 64) output: | (?, 12, 15, 64)
l |
input: | (?, 12, 15, 64) input: | (?, 12, 15, 64)
conv2d_78: Conv2D conv2d_81: ConvZD
output: | (?, 12, 15, 32) output: | (7, 12, 15, 32)
input: 2,12, 15, 32), (?, 12, 15, 32
add_6: Add P I) ()
output: (7,12, 15, 32)
input: | (?, 12, 15, 32)
conv2d_82: Conv2D
output: | (?, 12, 15, 3)

Figure B.18.: CAE 9

B.4. |Ideas to Generate Vocabularies

input_13: InputLayer

input: | [(2, 35, 16, 3)]

output: | [(?, 35, 16, 3)]

o

.

nput: | (?, 35, 16, 3) nput: | (?, 35, 16, 3)
conv2d_83: Conv2D conv2d_86: Conv2D
output: | (?, 35, 16, 32) output: | (?, 35, 16, 32)
Y X
input: | (?, 35, 16, 32) input: | (?, 35, 16, 32)
conv2d_84: Conv2D conv2d_87: Conv2D
output: | (?, 35, 16, 64) output: | (?, 35, 16, 64)
l Y
input: | (?, 35, 16, 64) input: | (?, 35, 16, 64)
conv2d_85: Conv2D conv2d_88: Conv2D
output: | (?, 35, 16, 128) output: | (?, 35, 16, 128)
input: ?, 35, 16, 128), (?, 35, 16, 128
add_7: Add P IC) ()
output: (7, 35, 16, 128)
input: | (?, 35, 16, 128) input: | (?, 35, 16, 128)
conv2d_89: Conv2D conv2d_92: Conv2D
output: | (?, 35, 16, 128) output: | (?, 35, 16, 128)
input: | (?, 35, 16, 128) input: | (?, 35, 16, 128)
conv2d_90: Conv2D conv2d_93: Conv2D
output: | (?, 35, 16, 64) output: | (?, 35, 16, 64)
l J
input: | (?, 35, 16, 64) input: | (?, 35, 16, 64)
conv2d_91: Conv2D conv2d_94: Conv2D
output: | (?, 35, 16, 32) output: | (?, 35, 16, 32)

o,

/

add_8: Add

input:

[, 35, 16, 32), (2, 35, 16, 32)]

output:

(2, 35, 16, 32)

conv2d_95: Conv2D

input: | (?, 35, 16, 32)

output: | (?, 35, 16, 3)

Figure B.19.: CAE 10

Appendix B. Neural Net Architectures

input_14: InputLayer

input: | [(?, 35, 16, 3)]

output: | [(?, 35, 16, 3]]

-

.,

input: (?, 35, 16, 3) input: (?, 35, 16, 3)
conv2d_96: Conv2D conv2d_99: Conv2D
output: | (?, 35, 16, 32) output: | (?, 35, 16, 32)
input: | (?, 35, 16, 32) input: | (?, 35, 16, 32)
conv2d_97: Conv2D conv2d_100: Conv2D
output: | (?, 35, 16, 64) output: | (?, 35, 16, 64)
i X
input: | (?, 35, 16, 64) input: (7, 35, 16, 64)
conv2d_98: ConvZD conv2d_101: Conv2D
output: | (?, 35, 16, 128) output: | (?, 35, 16, 128)
input: ?, 35, 16, 128), (?, 35, 16, 128
add_9: Add P I) ()
output: (?, 35, 16, 128)
input: | (?, 35, 16, 128) input: | (?, 35, 16, 128)
conv2d_102: Conv2D conv2d_105: Conv2D
output: | (?, 35, 16, 128) output: | (?, 35, 16, 128)
Y
input: | (?, 35, 16, 128) input: | (?, 35, 16, 128)
conv2d_103: Conv2D conv2d_106: Conv2D
output: | (?, 35, 16, 64) output: | (?, 35, 16, 64)
l y
input: | (?, 35, 16, 64) input: | (?, 35, 16, 64)
conv2d_104: Conv2D conv2d_107: Conv2D
output: | (7, 35, 16, 32) output: | (?, 35, 16, 32)

S

/

input:

[(?, 35, 16, 32), (2, 35, 16, 32)]

add_10: Add

output:

(2, 35, 16, 32)

 J

conv2d_108: Conv2D

input: | (?, 35, 16, 32)

output: | (?, 35, 16, 3)

Figure B.20.: CAE 11

120

B.4. |Ideas to Generate Vocabularies

input_15: InputLayer

input: | [(?, 35, 16, 3)]

output: | [(?, 35, 16, 3)]

/

.

input: (?, 35, 16, 3) input: (?, 35, 16, 3)
conv2d_109: Conv2D conv2d_112: Conv2D
output: | (?, 35, 16, 64) output: | (?, 35, 16, 64)
/ ¥
input: (?, 35, 16, 64) input: (?, 35, 16, 64)
conv2d_110: ConvZD conv2d_113: Conv2D
output: | (?, 35, 16, 128) output: | (7, 35, 16, 128)
input: | (?, 35, 16, 128) input: | (?, 35, 16, 128)
conv2d_111: ConvZD conv2d_114: Conv2D
output: | (?, 35, 16, 256) output: | (7, 35, 16, 256)
input: ?, 35, 16, 256), (?, 35, 16, 256
add_11: Add P I) ()
output: (?, 35, 16, 256)
input: | (?, 35, 16, 256) input: | (?, 35, 16, 256)
conv2d_115: Conv2D conv2d_118: Conv2D
output: | (?, 35, 16, 256) output: | (7, 35, 16, 256)
input: | (?, 35, 16, 256) input: | (?, 35, 16, 256)
conv2d_116: ConvZD conv2d_119: Conv2D
output: | (?, 35, 16, 128) output: | (7, 35, 16, 128)
y Y
input: | (?, 35, 16, 128) input: | (?, 35, 16, 128)
conv2d_117: Conv2ZD conv2d_120: Conv2D
output: | (?, 35, 16, 64) output: | (?, 35, 16, 64)
input: ?, 35, 16, 64), (?, 35, 16, 64
add_12: Add P I) ()
output: (?, 35, 16, 64)
A A
input: | (?, 35, 16, 64)
conv2d_121: Conv2D
output: | (?, 35, 16, 3)

Figure B.21.: CAE 12

121

Appendix C.

Solution for Thank You Puzzle

“The nice thing about doing a crossword puzzle is, you
know there is a solution. “

- Stephen Sondheim

123

Appendix C. Solution for Thank You Puzzle

124

Bibliography

[1]

[2]

[3]

[4]

[5]

[6]

[7]

[8]

1-2-3 Word Search Maker. URL: https://www.wordsearchma
ker.com/ (visited on 03/22/2020) (cit. on p. 22).

Martin Abadi et al. “TensorFlow: Large-Scale Machine Learn-
ing on Heterogeneous Systems”. In: (2015) (cit. on p. 60).

Aoife Aherne and Carl Vogel. “Crossing Wordnet with Cross-
words, Netting Enhanced Automatic Crossword Generation”.
In: (Mar. 22, 2020) (cit. on p. 25).

Aoife Aherne and Carl Vogel. “Wordnet Enhanced Automatic
Crossword Generation”. In: (2006) (cit. on pp. 25, 26).

Bagus Alghani. “THE USE OF CROSSWORD PUZZLE GAME
AND CLUSTERINGTECHNIQUE ON EXTROVERT AND IN-
TROVERT STUDENTS'VOCABULARY SIZE”. In: 2017 (cit. on
p. 20).

Bagus Alghani, Cucu Sutarsyah, and Ari Nurweni. “THE USE
OF CROSSWORD PUZZLE GAME AND CLUSTERING TECH-
NIQUE ON VOCABULARY SIZE”. In: 2017 (cit. on p. 20).

Rashid Ali, Brian Black, and Jeffrey Spiro. Investigation of
Dynamically Generated Crossword Puzzles. May 1, 2003 (cit.
on p. 26).

Angel C. de Dios. A Word Search in DepEd’s K to 12 Learning
Module. URL: https://www.philippinesbasiceducation
.us/2015/12/a-word-search-in-depeds—-k-to-12.html
(visited on 03/22/2020) (cit. on p. 15).

125

https://www.wordsearchmaker.com/
https://www.wordsearchmaker.com/
https://www.philippinesbasiceducation.us/2015/12/a-word-search-in-depeds-k-to-12.html
https://www.philippinesbasiceducation.us/2015/12/a-word-search-in-depeds-k-to-12.html

Bibliography

[9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

Gerhard Arminger and Daniel Enache. “Statistical Models and
Artificial Neural Networks”. In: Data Analysis and Information
Systems. Ed. by Hans-Hermann Bock and Wolfgang Polasek.
Studies in Classification, Data Analysis, and Knowledge Or-
ganization. Berlin, Heidelberg: Springer, 1996, pp. 243-260
(cit. on p. 83).

Armored Penguin. URL: https://www.armoredpenguin.com
/wordsearch/ (visited on 03/22/2020) (cit. on p. 22).

Bhavna Arora and NS Kumar. “Automatic Keyword Extrac-
tion and Crossword Generation Tool for Indian Languages:
SEEKH”. In: 2019 IEEE Tenth International Conference on
Technology for Education (T4E). 2019 IEEE Tenth Interna-
tional Conference on Technology for Education (T4E). Dec.
2019, pp. 272-273 (cit. on p. 24).

Ika Fitria Astutik. “THE USE OF WORD SEARCH GAME
TO DEVELOP STUDENTS’ MASTERY OF VOCABULARY OF
THE SEVENTH YEAR STUDENTS OF MTS TARQIYATUL
HIMMAH IN THE ACADEMIC YEAR OF 2013/2014”. other.
IAIN Salatiga, Oct. 2014. 65 pp. (cit. on p. 24).

C M Bailey, C T Hsu, and S E DiCarlo. “Educational Puzzles for
Understanding Gastrointestinal Physiology.” In: Advances in
Physiology Education 276.6 (June 1, 1999), S1 (cit. on p. 24).

Katharina Barbe. “Propaganda in the Trivial: Puzzles in the
Women’s Section of the Vélkischer Beobachter”. In: Discourse
& Communication 2.2 (May 1, 2008), pp. 115-141 (cit. on
p- 21).

Adam Beacham et al. “Constraint Programming Lessons
Learned from Crossword Puzzles”. In: Advances in Artificial
Intelligence. Ed. by Eleni Stroulia and Stan Matwin. Lecture
Notes in Computer Science. Berlin, Heidelberg: Springer,
2001, pp. 78-87 (cit. on p. 25).

Benefits of Active Recall. URL: https://www.educationquiz
zes.com/us/tutors/ (visited on 03/22/2020) (cit. on p. 15).

126

https://www.armoredpenguin.com/wordsearch/
https://www.armoredpenguin.com/wordsearch/
https://www.educationquizzes.com/us/tutors/
https://www.educationquizzes.com/us/tutors/

Bibliography

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

H. Berghel. “Crossword Compilation with Horn Clauses”. In:
The Computer Journal 30.2 (Jan. 1, 1987), pp. 183-188 (cit.
on p. 25).

H. Berghel and R. Rankin. “A Proposed Standard for Mea-
suring Crossword Compilation Efficiency”. In: The Computer
Journal 33.2 (Jan. 1, 1990), pp. 181-184 (cit. on p. 30).

H. Berghel and C. Yi. “Crossword Compiler-Compilation”. In:
The Computer Journal 32.3 (Jan. 1, 1989), pp. 276-280 (cit.
on p. 25).

David C. Berry and Michael G. Miller. “Crossword Puzzles as
a Tool to Enhance Athletic Training Student Learning: Part
2”. In: International Journal of Athletic Therapy and Training
13.1 Jan. 1, 2008), pp. 32-34 (cit. on p. 16).

David C. Berry and Michael G. Miller. “Crossword Puzzles as
a Tool to Enhance Athletic Training Student Learning: Part
I”. In: Athletic Therapy Today 13.1 (2008), pp. 29-31 (cit. on
p. 16).

Ekaba Bisong. “Google Colaboratory”. In: Building Machine
Learning and Deep Learning Models on Google Cloud Platform:
A Comprehensive Guide for Beginners. Ed. by Ekaba Bisong.
Berkeley, CA: Apress, 2019, pp. 59-64 (cit. on p. 60).

Douglas Bonomo, Adrian Lauf, and Roman Yampolskiy. “A
Crossword Puzzle Generator Using Genetic Algorithms with
Wisdom of Artificial Crowds”. In: July 1, 2015, pp. 44-49 (cit.
on p. 24).

Adi Botea. “Crossword Grid Composition with a Hierarchical
CSP Encoding”. In: Sept. 1, 2007 (cit. on p. 25).

George L. Breeler. “Integrated Crossword and Circle-a-Word
Puzzle”. U.S. pat. 6308954B1. George L Breeler. Oct. 30, 2001
(cit. on p. 21).

Christine Broome. “Cross-Word Puzzles for Spanish Classes”.

In: The Modern Language Journal 9.7 (1925), pp. 431-436
(cit. on p. 17).

127

Bibliography

[27]

[28]

[29]

[30]

[31]

[32]

[33]
[34]

[35]

[36]

[37]

Amy Buttner. Activities, Games, Assessment Strategies, and
Rubrics For The Foreign Language Classroom. Routledge,
Oct. 11, 2013. 206 pp. (cit. on p. 17).

David J. C and Mackay Jeremy Thorpe. Counting Crosswords.
2006 (cit. on p. 27).

Kai Kin Michael Chan. “Word Clue Puzzle Game”. U.S. pat.
20110084446A1. Kai Kin Michael Chan. Apr. 14, 2011 (cit. on
p- 21).

Haradhan Chel, Deepak Mylavarapu, and Deepak Sharma.
“A Novel Multistage Genetic Algorithm Approach for Solving
Sudoku Puzzle”. In: Mar. 1, 2016, pp. 808-813 (cit. on p. 28).

Laura Chesy, Endang Susilawati, and Eusabinus Bunau.
“THE USE OF WORD SEARCH PUZZLES TO TEACH STU-
DENTS VOCABULARY MASTERY”. In: Jurnal Pendidikan dan
Pembelajaran Khatulistiwa 7.9 (Sept. 13, 2018) (cit. on p. 17).

Cheryl D. Childers. “Using Crossword Puzzles as an Aid to
Studying Sociological Concepts”. In: Teaching Sociology 24.2
(1996), pp. 231-235 (cit. on p. 15).

Francois Chollet et al. “Keras”. In: (2015) (cit. on p. 60).

Aaron Christensen and Gabe Emerson. “Sudoku Puzzles as a
Constraint Satisfaction Problem”. In: 2007 (cit. on p. 28).

Russell B. Clayton, Glenn Leshner, and Anthony Almond.
“The Extended iSelf: The Impact of iPhone Separation on Cog-
nition, Emotion, and Physiology”. In: Journal of Computer-
Mediated Communication 20.2 (Mar. 1, 2015), pp. 119-135
(cit. on p. 20).

CMFC APP. URL: http: / /www . cmfcapp . com/ (visited on
03/22/2020) (cit. on p. 22).

Galen Collins. “Crossword Puzzles: Playing To Win or Learn?:”
in: Hospitality Education and Research Journal (Sept. 15,
2016) (cit. on p. 18).

128

http://www.cmfcapp.com/

Bibliography

[38]

[39]

[40]

[41]

[42]

[43]

[44]

[45]

[46]

[47]

[48]

[49]

James L. Cox, Stephen Lucci, and Tayfun Pay. “Effects of
Dynamic Variable - Value Ordering Heuristics on the Search
Space of Sudoku Modeled as a Constraint Satisfaction Prob-
lem”. In: Inteligencia Artificial 22.63 (Jan. 10, 2019), pp. 1-15
(cit. on p. 28).

CPT Crosswords. URL: https://www.softpedia.com/get
/Others/Home-Education/CPT-Crosswords.shtml (visited
on 04/08/2020) (cit. on p. 22).

CrossFire. URL: http: //beekeeperlabs.com/crossfire/
(visited on 03/22/2020) (cit. on pp. 2, 22).

Edward K. Crossman and Sharyn M. Crossman. “The Cross-
word Puzzle as a Teaching Tool”. In: Teaching of Psychology
10.2 (Apr. 1, 1983), pp. 98-99 (cit. on p. 16).

Crossword Compiler. URL: https://www.crossword—-compil
er.com/de/ (visited on 03/22/2020) (cit. on p. 22).

Crossword Express. URL: https://www.softpedia.com/get
/Others/Home-Education/Crossword-Express—Compiler

.shtml (visited on 04/08/2020) (cit. on p. 22).

Crossword Express Pro. URL: http://www.puzzledepot.co
m/cwe/cwe_man.pdf (visited on 03/22/2020) (cit. on p. 22).

Crossword Hobbyist. URL: https://CrosswordHobbyist.co
m (visited on 03/22/2020) (cit. on p. 22).

Crossword Labs. URL: https://crosswordlabs.com/ (vis-
ited on 03/22/2020) (cit. on p. 22).

Crossword Solver. URL: https://www.crosswordsolver.or
g/ (visited on 03/22/2020) (cit. on p. 22).

Crossword Weaver. URL: https://www.crosswordweaver.c
om/index.html (visited on 03/22/2020) (cit. on p. 22).

David Kriesel. Xerox Scanners/Photocopiers Randomly Alter
Numbers in Scanned Documents. Sept. 5, 2017. URL: http:
//www.dkriesel.com/en/blog/2013/0802_xerox—-workce
ntres_are_switching_written_numbers_when_scanning

(visited on 07/19/2020) (cit. on p. 88).

129

https://www.softpedia.com/get/Others/Home-Education/CPT-Crosswords.shtml
https://www.softpedia.com/get/Others/Home-Education/CPT-Crosswords.shtml
http://beekeeperlabs.com/crossfire/
https://www.crossword-compiler.com/de/
https://www.crossword-compiler.com/de/
https://www.softpedia.com/get/Others/Home-Education/Crossword-Express-Compiler.shtml
https://www.softpedia.com/get/Others/Home-Education/Crossword-Express-Compiler.shtml
https://www.softpedia.com/get/Others/Home-Education/Crossword-Express-Compiler.shtml
http://www.puzzledepot.com/cwe/cwe_man.pdf
http://www.puzzledepot.com/cwe/cwe_man.pdf
https://CrosswordHobbyist.com
https://CrosswordHobbyist.com
https://crosswordlabs.com/
https://www.crosswordsolver.org/
https://www.crosswordsolver.org/
https://www.crosswordweaver.com/index.html
https://www.crosswordweaver.com/index.html
http://www.dkriesel.com/en/blog/2013/0802_xerox-workcentres_are_switching_written_numbers_when_scanning
http://www.dkriesel.com/en/blog/2013/0802_xerox-workcentres_are_switching_written_numbers_when_scanning
http://www.dkriesel.com/en/blog/2013/0802_xerox-workcentres_are_switching_written_numbers_when_scanning

Bibliography

[50]
[51]

[52]

[53]

[54]

[55]

[56]

[57]

[58]

[59]

[60]

David Shulman. “How It Began”. In: () (cit. on p. 13).

David Steinberg. David Steinberg on Twitter: "For Those of You
Who Are New to the Universal Crossword, Pay Is $110 for a
15x15 and $260 for a 21x21, and My Email Address for Sub-
missions Is Amsxwords@gmail.Com.” / Twitter. URL: https :
//twitter.com/dsteinbergd49/status/123939467223521
6899 (visited on 03/22/2020) (cit. on p. 21).

Tricia M Davis, Brooke Shepherd, and Tara Zwiefelhofer. “Re-
viewing for Exams: Do Crossword Puzzles Help in the Success
of Student Learning?” In: 9.3 (2009), p. 7 (cit. on p. 15).

Ruth S. Day. “Differences between Language-Bound and
Stimulus-Bound Subjects in Solving Word Search Puzzles”. In:
The Journal of the Acoustical Society of America 55.2 (Feb. 1,
1974), pp. 412-412 (cit. on p. 20).

Barbara De Kegel and Mads Haahr. “Procedural Puzzle Gener-
ation: A Survey”. In: IEEE Transactions on Games 12.1 (Mar.
2020), pp- 21-40 (cit. on p. 30).

Peter Andreasen December and Peter Andreasen. Crosswords
and Information Theory (cit. on p. 27).

Rina Dechter and Itay Meiri. “Experimental Evaluation of Pre-
processing Algorithms for Constraint Satisfaction Problems”.
In: Artificial Intelligence 68.2 (Aug. 1, 1994), pp. 211-241 (cit.
on p. 33).

Die Suchsel-Maschine. URL: http://suchsel .bastelmaschi
ne.de (visited on 05/24/2020) (cit. on p. 22).

Discovery Education’s Puzzlemalker! URL: http://puzzlemak
er.discoveryeducation.com/WordSearchSetupForm. asp

(visited on 04/08/2020) (cit. on p. 22).

Charles Ditter. “Three-Dimensional Word-Search Puzzle and
Methods for Making and Playing the Three-Dimensional Word-
Search Puzzle”. U.S. pat. 20050253335A1. Ditter Charles W.
Nov. 17, 2005 (cit. on p. 21).

Dr. John M. Weiss. “Genetic Algorithms and Sudoku”. In: ()
(cit. on p. 28).

130

https://twitter.com/dsteinberg49/status/1239394672235216899
https://twitter.com/dsteinberg49/status/1239394672235216899
https://twitter.com/dsteinberg49/status/1239394672235216899
http://suchsel.bastelmaschine.de
http://suchsel.bastelmaschine.de
http://puzzlemaker.discoveryeducation.com/WordSearchSetupForm.asp
http://puzzlemaker.discoveryeducation.com/WordSearchSetupForm.asp

Bibliography

[61]

[62]

[63]

[64]

[65]

[66]

[67]

[68]

[69]

[70]

[71]

Laura B. Edge. From Jazz Babies to Generation Next: The His-
tory of the American Teenager. Twenty-First Century Books,
Mar. 1, 2011. 116 pp. (cit. on p. 13).

Education.Com Crossword Puzzle Maker. URL: https://www
.education.com/worksheet-generator/reading/crossw

ord-puzzle/ (visited on 03/22/2020) (cit. on p. 22).

Miles Efron. Shannon Meets Shortz: A Probabilistic Model of
Crossword Puzzle Difficulty. Apr. 1, 2008 (cit. on p. 27).

Emrah Aydemir and Zulfu Genc. “An Online Dynamic Cross-
Puzzle Generation Algorithm and Its Performance”. In: () (cit.
on p. 23).

Jakob Engel et al. “On Computer Integrated Rationalized
Crossword Puzzle Manufacturing”. In: June 4, 2012, pp. 131-
141 (cit. on p. 24).

Marco Ernandes, Giovanni Angelini, and Marco Gori. “We-
bCrow: A Web-Based System for Crossword Solving”. In: AAAL
2005 (cit. on p. 26).

Luis Espinosa-Anke et al. “DefExt: A Semi Supervised Defini-
tion Extraction Tool”. In: Language Resources and Evaluation
(May 24, 2016) (cit. on p. 26).

Jennifer Esteche et al. “Automatic Definition Extraction and
Crossword Generation From Spanish News Text”. In: CLEI
Electronic Journal 20 (Aug. 1, 2017), p. 6 (cit. on p. 26).

Bertram Felgenhauer and Frazer Jarvis*. Mathematics of Su-
doku I. URL: https://docplayer.net /21086991 -Mathema
tics—of—-sudoku—-1.html (visited on 03/22/2020) (cit. on
pP- 29).

Bertram Felgenhauer and Frazer Jarvis. “Enumerating Possi-
ble Sudoku Grids”. In: (July 20, 2005) (cit. on p. 29).

Kevin K. Ferland. “Record Crossword Puzzles”. In: The Ameri-
can Mathematical Monthly 121.6 (June 1, 2014), pp. 534-536
(cit. on p. 15).

131

https://www.education.com/worksheet-generator/reading/crossword-puzzle/
https://www.education.com/worksheet-generator/reading/crossword-puzzle/
https://www.education.com/worksheet-generator/reading/crossword-puzzle/
https://docplayer.net/21086991-Mathematics-of-sudoku-i.html
https://docplayer.net/21086991-Mathematics-of-sudoku-i.html

Bibliography

[72]

[73]

[74]

[75]

[76]

[77]

[78]

[79]

[80]

Sue Franklin, Mary Peat, and Alison Lewis. “Non-Traditional
Interventions to Stimulate Discussion: The Use of Games
and Puzzles”. In: Journal of Biological Education 37.2 (Mar. 1,
2003), pp. 79-84 (cit. on p. 16).

Georgiana R. Frayer-Luna. Ho’opilipili ‘Olelo: Hawaiian Lan-
guage Crossword Puzzles, Word Search Puzzles, and Cross-
word Dictionary. University of Hawaii Press, 2000. 151 pp.
(cit. on p. 18).

Tracy Fullerton. Game Design Workshop: A Playcentric Ap-
proach to Creating Innovative Games, Third Edition. CRC
Press, Mar. 5, 2014. 528 pp. (cit. on p. 2).

Ibrahim Musa Garba. “Morphological and Syntactic Meaning:
An Interactive Crossword Puzzle Approach”. In: 2016 (cit. on
p- 18).

Nabil N. Ghaly. “Electronic Word Puzzle”. U.S. pat. 7618313B2.
Ghaly Nabil N. Nov. 17, 2009 (cit. on p. 21).

Gheorghita Ghinea and Oluwakemi Ademoye. “Olfactory Me-
dia Impact on Task Performance: The Case of a Word Search
Game”. In: 2015 International Conference on Interactive Mo-
bile Communication Technologies and Learning (IMCL). 2015
International Conference on Interactive Mobile Communica-
tion Technologies and Learning (IMCL). Nov. 2015, pp. 296-
300 (cit. on p. 20).

Matthew L. Ginsberg et al. “Search Lessons Learned from
Crossword Puzzles”. In: AAAIL 1990 (cit. on p. 23).

Jeremy Lee Graybill. “Integrated Word-Search, Word-Link,
Trivia Puzzle and Word-Scramble”. U.S. pat. 20070267815A1.
Jeremy Lee Graybill. Nov. 22, 2007 (cit. on p. 21).

Geoff Harris, John Forster, and Richard Rankin. “Basic Blocks
in Unconstrained Crossword Puzzles”. In: Proceedings of the
1993 ACM/SIGAPP Symposium on Applied Computing: States
of the Art and Practice. SAC ’93. Indianapolis, Indiana, USA:
Association for Computing Machinery, Mar. 1, 1993, pp. 257-
262 (cit. on p. 23).

132

Bibliography

[81]

[82]

[83]

[84]

[85]

(861

[87]

[88]

[89]

Geoff Harris, John Forster, and Richard Rankin. The Ripple
Effect. Feb. 1, 1994 (cit. on p. 23).

Terry L. Helser. “Terminology: Four Puzzles from One Word-
search”. In: Journal of Chemical Education 80.4 (Apr. 1, 2003),
p. 414 (cit. on p. 68).

Nicholas Henriquez and Liz Maynes-Aminzade. “Reintroducing
The New Yorker’s Cryptic Crossword”. In: (Nov. 26, 2019) (cit.
on p. 30).

Hiroshi Higashida. “The Role of Computers in Puzzle World”.
In: Proceedings of the 2011 Second International Conference
on Culture and Computing. CULTURE-COMPUTING ’'11. USA:
IEEE Computer Society, Oct. 20, 2011, pp. 141-142 (cit. on
p. 14).

Vossoughi Hossein and Zargar Marzieh. “USING WORD-
SEARCH-PUZZLE GAMES FOR IMPROVING VOCABULARY
KNOWLEDGE OF IRANIAN EFL LEARNERS”. In: 1.1 (Jan. 1,
2009), pp. 79-85 (cit. on p. 19).

How to Make a Crossword Puzzle: Detailed Instructions for Be-
ginners. URL: https://crosswordhobbyist.com/how-to-m
ake—a-crossword-puzzle (visited on 03/25/2020) (cit. on
p- 1).

How to Make Crossword Puzzles. URL: https://www.wikiho
w.com/Make—Crossword—Puzzles (visited on 03/24/2020)
(cit. on p. 14).

Ryan Hughes and Roman Yampolskiy. “Solving Sudoku Puz-
zles with Wisdom of Artificial Crowds”. In: International Jour-
nal of Intelligent Games & Simulation 7 (Jan. 1, 2013), p. 6
(cit. on p. 29).

Hui-Chun Hung and Shelley Shwu-Ching Young. “Construct-
ing the Game-Based Learning Environment on Handheld
Devices to Facilitate English Vocabulary Building”. In: Seventh
IEEE International Conference on Advanced Learning Tech-
nologies (ICALT 2007). Seventh IEEE International Conference

133

https://crosswordhobbyist.com/how-to-make-a-crossword-puzzle
https://crosswordhobbyist.com/how-to-make-a-crossword-puzzle
https://www.wikihow.com/Make-Crossword-Puzzles
https://www.wikihow.com/Make-Crossword-Puzzles

Bibliography

[90]

[91]

[92]

[93]

[94]

[95]

[96]

[97]

[98]

on Advanced Learning Technologies (ICALT 2007). July 2007,
pp- 348-350 (cit. on p. 18).

J. D. Hunter. “Matplotlib: A 2D Graphics Environment”. In:
Computing in Science & Engineering 9.3 (2007), pp. 90-95 (cit.
on p. 67).

Carlos Mario Zapata Jaramillo, Bell Manrique Losada, and
Michael J. Fekula. “Designing and Solving Crossword Puzzles:
Examining Efficacy in a Classroom Exercise”. In: 2012 (cit. on
p- 19).

Jessie Chin et al. Age Differences in Information Foraging:
Search and Switch in Word Search Puzzles (cit. on p. 20).

Allan Jones. “Let’s Make Learning Fun Too. Using Crossword
Compiler Version 6.0”. In: Bioscience Education 1.1 (Jan. 1,
2003), pp. 1-7 (cit. on p. 18).

Jewel O. Loud Jr. “Word Puzzle and Game”. U.S. pat.
5813672A. Loud, Jr.; Jewel O. Sept. 29, 1998 (cit. on p. 21).

Tero Karras, Samuli Laine, and Timo Aila. “A Style-Based
Generator Architecture for Generative Adversarial Networks”.
In: (Mar. 29, 2019) (cit. on p. 84).

Greg A. Keim et al. “Proverb: The Probabilistic Cruciverbalist”.
In: Proceedings of the Sixteenth National Conference on Arti-
Sficial Intelligence and the Eleventh Innovative Applications of
Artificial Intelligence Conference Innovative Applications of Ar-
tificial Intelligence. AAAI '99/1IAAI '99. Orlando, Florida, USA:
American Association for Artificial Intelligence, July 18, 1999,
pp. 710-717 (cit. on p. 26).

Keiran King. The New York Times Crossword - Keirank-
ing.Com. URL: http://www.keiranking.com/blog/2018/ny
t-crossword-debut/ (visited on 03/22/2020) (cit. on p. 23).

Jay P. Kunz. “Creating Word Search Puzzles with a Pedagogical
Purpose”. In: Die Unterrichtspraxis / Teaching German 35.2
(2002), pp. 148-153 (cit. on p. 17).

134

http://www.keiranking.com/blog/2018/nyt-crossword-debut/
http://www.keiranking.com/blog/2018/nyt-crossword-debut/

Bibliography

[99]

[100]

[101]

[102]

[103]

[104]

[105]

[106]

[107]

[108]

[109]

David Kwong. How to Create a Crossword Puzzle | WIRED.
URL: https://www.youtube.com/watch?v=aAqOnXHd7gk
(visited on 03/24/2020) (cit. on p. 14).

Kyle Williams. Using a Genetic Algorithm to Solve Crossword
Puzzles. (Cit. on p. 24).

Natan Last. “The Hidden Bigotry of Crosswords”. In: The At-
lantic. Culture (Mar. 18, 2020) (cit. on p. 13).

Lazy Programmer. All Data Is the Same (in Machine Learning).
URL: https://www.youtube.com/watch?v=GJWNyRpvU-M
(visited on 05/25/2020) (cit. on p. 61).

Leonard Joseph Kemp. “Educational Puzzle”. U.S. pat.
2544961A. Kemp Leonard Joseph. Mar. 13, 1951 (cit. on
p- 21).

Tin-Chun Lin and Steven M. Dunphy. “Using the Crossword
Puzzle Exercise in Introductory Microeconomics to Acceler-
ate Business Student Learning”. In: Journal of Education for
Business 88.2 (Jan. 1, 2013), pp. 88-93 (cit. on p. 15).

James Little. WHAT’'S A NINE LEITER WORD FOR "A TYPE OF
WORD PUZZLE,?L (cit. on p. 15).

Michael L. Littman, Greg A. Keim, and Noam Shazeer. “A Prob-
abilistic Approach to Solving Crossword Puzzles”. In: Artificial
Intelligence 134.1 (Jan. 1, 2002), pp. 23-55 (cit. on p. 26).

Michael L. Littman, Greg A. Keim, and Noam M. Shazeer.
“Solving Crosswords with PROVERB”. In: AAAI/IAAI. 1999
(cit. on p. 26).

Inés Lynce and Joél Ouaknine. “Sudoku as a SAT Problem”.
In: ISAIM. 2006 (cit. on p. 29).

Thomas Manzini, Simon Ellis, and James Hendler. “A Play on
Words: Using Cognitive Computing as a Basis for Al Solvers
in Word Puzzles”. In: Journal of Artificial General Intelligence
6 (May 31, 2015) (cit. on p. 26).

135

https://www.youtube.com/watch?v=aAqQnXHd7qk
https://www.youtube.com/watch?v=GJWNyRpvU-M

Bibliography

[110]

[111]

[112]

[113]

[114]

[115]

[116]

[117]

[118]

[119]

[120]

Matt Gaffney. How Crossword Puzzles Are Really Made.
Sept. 10, 2014. URL: https://www.mentalfloss.com/arti
cle/58828/how-crossword-puzzles—are—made (visited on
03/24/2020) (cit. on p. 14).

Lawrence J. Mazlack. “Computer Construction of Crossword
Puzzles Using Precedence Relationships”. In: Artificial Intelli-
gence 7.1 (Mar. 1, 1976), pp. 1-19 (cit. on p. 23).

Mary E. McElroy and Fabian A. Samaniego. “Package Them
In Puzzles: Vocabulary, Culture, Conjugations”. In: Foreign
Language Annals 14.3 (1981), pp. 217-220 (cit. on p. 18).

Gary Meehan and Peter Gray. “Constructing Crossword Grids:
Use of Heuristics vs Constraints”. In: In: Proceedings of Ex-
pert Systems 97: Research and Development in Expert Sys-
tems XIV, SGES. Publications, 1997, pp. 159-174 (cit. on
pP- 23).

Mitchell Melanie. “An Introduction to Genetic Algorithms”. In:
0, p. 162 (cit. on p. 85).

Warren Merkel. “The Potential of Crossword Puzzles in Aiding
English Language Learners”. In: TESOL Journal 7.4 (2016),
pPp. 898-920 (cit. on p. 18).

Michael Callaghan. A Brief Guide to the Construction of Cryptic
Crossword Clues (cit. on p. 14).

Mike Vuolo. How a Crossword Puzzle Gets Made. URL: http
s://www.youtube.com/watch?v=UVcypLJiKSI (visited on
03/24/2020) (cit. on p. 14).

Anthony Milton and Cesar Ortega-Sanchez. “Development
and Analysis of Genetic Algorithms: Sudoku Case Study”.
In: TENCON 2012 IEEE Region 10 Conference. TENCON 2012
IEEE Region 10 Conference. Nov. 2012, pp. 1-6 (cit. on pp. 28,
29).

Mehdi Mirza and Simon Osindero. “Conditional Generative
Adversarial Nets”. In: (Nov. 6, 2014) (cit. on p. 84).

Melanie Mitchell. An Introduction to Genetic Algorithms. Cam-
bridge, MA, USA: MIT Press, 1996 (cit. on p. 85).

136

https://www.mentalfloss.com/article/58828/how-crossword-puzzles-are-made
https://www.mentalfloss.com/article/58828/how-crossword-puzzles-are-made
https://www.youtube.com/watch?v=UVcypLJiKSI
https://www.youtube.com/watch?v=UVcypLJiKSI

Bibliography

[121]

[122]

[123]

[124]

[125]

[126]

[127]

[128]

[129]

[130]

[131]

Alberto Moraglio, Julian Togelius, and Simon Lucas. “Product
Geometric Crossover for the Sudoku Puzzle”. In: Jan. 1, 2006,
pp- 470-476 (cit. on p. 29).

Vusi Vincent Mshayisa. “Students’ Perceptions of Plickers and
Crossword Puzzles in Undergraduate Studies”. In: Journal of
Food Science Education n/a.n/a () (cit. on p. 19).

S. Shaun Murphree. “Sudoku as a Constraint Satisfaction
Problem”. In: 2012 (cit. on p. 29).

My Worksheet Maker. URL: https://myworksheetmaker.com
(visited on 03/22/2020) (cit. on p. 22).

David L. Nichols. “Word Puzzle Game”. U.S. pat. 4215864A.
Nichols David L. Aug. 5, 1980 (cit. on p. 21).

Adelheid A. M. Nicol. “A Highly Interactive Application of Self-
Generated Crosswords in the Classroom”. In: College Teaching
68.1 (Jan. 2, 2020), pp. 3—4 (cit. on p. 19).

Stavroula Ntoa et al. “A-Cross: An Accessible Crossword
Puzzle for Visually Impaired Users”. In: Universal Access in
Human-Computer Interaction. Users Diversity. Ed. by Con-
stantine Stephanidis. Lecture Notes in Computer Science.
Berlin, Heidelberg: Springer, 2011, pp. 342-351 (cit. on p. 30).

Wiwat Orawiwatnakul. “Crossword Puzzles as a Learning Tool
for Vocabulary Development.” In: 2013 (cit. on p. 18).

F. Pedregosa et al. “Scikit-Learn: Machine Learning in Python”.
In: Journal of Machine Learning Research 12 (2011), pp. 2825-
2830 (cit. on p. 60).

Laurent Perron and Vincent Furnon. OR-Tools. Version 7.2.
Google. July 19, 2019. URL: https://developers.google.c
om/optimization/ (cit. on pp. 46, 55).

E. Pershits and R. Stansifer. “Solving Diagramless Cross-
word Puzzles”. In: Proceedings Sixth International Conference
on Tools with Artificial Intelligence. TAI 94. Proceedings Sixth
International Conference on Tools with Artificial Intelligence.
TAI 94. Nov. 1994, pp. 4-10 (cit. on p. 27).

137

https://myworksheetmaker.com
https://developers.google.com/optimization/
https://developers.google.com/optimization/

Bibliography

[132]

[133]

[134]

[135]

[136]

[137]

[138]

[139]

[140]

[141]

Phil. URL: http://www.keiranking.com/blog/2017/phil/
(visited on 03/22/2020) (cit. on p. 22).

Balazs Pinter et al. “Automated Word Puzzle Generation via
Topic Dictionaries”. In: (June 2, 2012) (cit. on p. 26).

Balazs Pintér et al. 2 Automated Word Puzzle Generation via
Topic Dictionaries (cit. on p. 26).

Aaron Port and Roman Yampolskiy. “Using a GA and Wisdom
of Artificial Crowds to Solve Solitaire Battleship Puzzles”. In:
July 1, 2012, pp. 25-29 (cit. on p. 30).

Leo Postman, William O. Jenkins, and Dorothy L. Postman.
“An Experimental Comparison of Active Recall and Recog-
nition”. In: The American Journal of Psychology 61.4 (1948),
pp- 511-519 (cit. on p. 20).

Titus D. M. Purdin and Geoff Harris. “A Genetic-Algorithm
Approach to Solving Crossword Puzzles”. In: Proceedings of the
1993 ACM/SIGAPP Symposium on Applied Computing: States
of the Art and Practice. SAC '93. Indianapolis, Indiana, USA:
Association for Computing Machinery, Mar. 1, 1993, pp. 263-
270 (cit. on p. 30).

Puzzle Maker. URL: https://www.puzzle—-maker .com/CW
(visited on 03/22/2020) (cit. on p. 22).

Bali Ranaivo-Malancon et al. “Automatic Generation of Fill-
in Clues and Answers from Raw Texts for Crosswords”. In:
July 1, 2013, pp. 1-5 (cit. on p. 25).

Peter H. Rehm. “Method of Constructing Crossword Puzzles
by Computer”. U.S. pat. 5667438A. Rehm; Peter H. Sept. 16,
1997 (cit. on p. 21).

Peter H. Rehm and Rachel Rehm. “Questionnaire Method
of Making Topic-Specific Word Puzzle Documents”. U.S. pat.
7210996B2. Peter H Rehm, Rachel Rehm. May 1, 2007 (cit. on
p- 21).

138

http://www.keiranking.com/blog/2017/phil/
https://www.puzzle-maker.com/CW

Bibliography

[142]

[143]

[144]

[145]

[146]

[147]

[148]

[149]

[150]

Ria Damayanti H. “Teaching Vocabulary Trough Word Search
Puzzle to The Fifth Grade Students of SDN 01 NgaglikBlitarIn
The Academic Year 2013/2014 - Institutional Repository of
IAIN Tulungagung” (cit. on p. 17).

Leonardo Rigutini et al. “A Fully Automatic Crossword Gener-
ator”. In: 2008 Seventh International Conference on Machine
Learning and Applications. 2008 Seventh International Con-
ference on Machine Learning and Applications. Dec. 2008,
pp- 362-367 (cit. on p. 25).

Leonardo Rigutini et al. “Automatic Generation of Crossword
Puzzles”. In: International Journal on Artificial Intelligence
Tools (IJAIT) 21 (June 1, 2012), p. 22 (cit. on p. 25).

Mitchell Robert. “Cross-Word Puzzle”. U.S. pat. 2050498A.
Mitchell Robert. Aug. 11, 1936 (cit. on p. 21).

Rohit Iyer, Amrish Jhaveri, and Krutika Parab. “A Review of
Sudoku Solving Using Patterns”. In: () (cit. on p. 29).

N. Samaras and K. Stergiou. “Binary Encodings of Non-Binary
Constraint Satisfaction Problems: Algorithms and Experimen-
tal Results”. In: Journal of Artificial Intelligence Research 24
(Nov. 2, 2005), pp. 641-684 (cit. on p. 25).

Yoppy Sazaki et al. “A Comparison Application of the Genetic
and Steepest Ascent Hill Climbing Algorithm in the Prepa-
ration of the Crossword Puzzle Board”. In: 2018 12th Inter-
national Conference on Telecommunication Systems, Services,
and Applications (TSSA). 2018 12th International Conference
on Telecommunication Systems, Services, and Applications
(TSSA). Oct. 2018, pp. 1-5 (cit. on p. 24).

Yoppy Sazaki et al. “Application of the Steepest Ascent Hill
Climbing Algorithm in the Preparation of the Crossword Puzzle
Board”. In: July 1, 2018, pp. 1-6 (cit. on p. 24).

John C. Schafer and Jo Behymer. “Cross Purposes: Computer-
Generated Crossword Puzzles Link Popular Pastime with Tech-
nical Learning”. In: Vocational Education Journal 67.5 (1992),
p.- 36 (cit. on p. 18).

139

Bibliography

[151]

[152]

[153]

[154]

[155]

[156]

[157]

[158]

[159]

[160]

[161]

William Schreiber-Stainthorp. “Crosswords”. In: The Trinity
Papers (2011 - present) (Jan. 1, 2013) (cit. on p. 1).

Jimmy Dale Schroeder. “Word Search Based Board Game
with Directional Tiles”. U.S. pat. 6422561B1. Jimmy Dale
Schroeder. July 23, 2002 (cit. on p. 21).

Gordon Seaberg. “CrossWordSearch Puzzle Game”. U.S. pat.
20020117802A1. Seaberg Gordon Eric. Aug. 29, 2002 (cit. on
p- 21).

M? Isabel Martinez Serna. “ACTIVE LEARNING: CREATING
INTERACTIVE CROSSWORD PUZZLES”. In: (), p. 8 (cit. on
p. 16).

Samit Shah, Launa M. J. Lynch, and Lilia Z. Macias-Moriarity.
“Crossword Puzzles as a Tool to Enhance Learning About
Anti-Ulcer Agents”. In: American Journal of Pharmaceutical
Education 74.7 (Sept. 1, 2010) (cit. on p. 16).

Helmut Simonis. “Sudoku as a Constraint Problem”. In: 2005
(cit. on p. 29).

G. W. Smith and J. B. H. du Boulay. “The Generational of Cryp-
tic Crossword Clues”. In: The Computer Journal 29.3 (Jan. 1,
1986), pp. 282-284 (cit. on p. 26).

Jordan B. L. Smith et al. “The CrossSong Puzzle: Developing a
Logic Puzzle for Musical Thinking”. In: Journal of New Music
Research 46.3 (July 3, 2017), pp. 213-228 (cit. on p. 30).

P. D. Smith. “XENO: Computer-Assisted Compilation of Cross-
word Puzzles”. In: The Computer Journal 26.4 (Nov. 1, 1983),
PpP. 296-302 (cit. on p. 23).

P. D. Smith and S. Y. Steen. “A Prototype Crossword Compiler”.
In: The Computer Journal 24.2 (Jan. 1, 1981), pp. 107-111
(cit. on p. 23).

Solving a Sudoku with a Genetic Algorithm — Studio Houthaal.
URL: https://studiohouthaak.nl/solving—a—-sudoku-wi
th—-a-genetic-algorithm/ (visited on 03/24/2020) (cit. on
pP- 28).

140

https://studiohouthaak.nl/solving-a-sudoku-with-a-genetic-algorithm/
https://studiohouthaak.nl/solving-a-sudoku-with-a-genetic-algorithm/

Bibliography

[162]

[163]

[164]

[165]

[166]

[167]

[168]

[169]

[170]

[171]

Solving Every Sudoku Puzzle. URL: http://norvig.com/sud
oku.html (visited on 05/24/2020) (cit. on p. 28).

L. J. Spring et al. “A Proposed Benchmark for Testing Imple-
mentations of Crossword Puzzle Algorithms”. In: Proceedings
of the 1992 ACM/SIGAPP Symposium on Applied Computing:
Technological Challenges of the 1990’s. SAC '92. Kansas City,
Missouri, USA: Association for Computing Machinery, Apr. 1,
1992, pp. 99-101 (cit. on p. 30).

Sruthi Sankar. “PARALLELIZED SUDOKU SOLVING ALGO-
RITHM USING OpenMP” (cit. on p. 28).

Keith E. Stanovich and Richard F. West. “The Effect of Ortho-
graphic Structure on the Word Search Performance of Good
and Poor Readers”. In: Journal of Experimental Child Psychol-
ogy 28.2 (Oct. 1, 1979), pp. 258-267 (cit. on p. 28).

David Steinberg and Natan Last. “How to Make a Crossword
Puzzle Part 2”. In: The New York Times. Crosswords & Games
(May 11, 2018) (cit. on p. 2).

Suchsel-Generator. URL: https://www. suchsel . net/ (vis-
ited on 05/24/2020) (cit. on p. 22).

Kozo Sugiyama, Ryo Osawa, and Seok-Hee Hong. “Puzzle
Generators and Symmetric Puzzle Layout”. In: Proceedings of
the 2005 Asia-Pacific Symposium on Information Visualisation
- Volume 45. APVis '05. Sydney, Australia: Australian Com-
puter Society, Inc., Jan. 1, 2005, pp. 97-105 (cit. on p. 27).

Anon Sukstrienwong and Patravadee Vongsumedh. “Software
Development of Word Search Game on Smart Phones in En-
glish Vocabulary Learning”. In: (2013), p. 6 (cit. on p. 17).

Ben Tausig and Finn Vigeland. “How to Make a Crossword
Puzzle Part 1”. In: The New York Times. Crosswords & Games
(Apr. 11, 2018) (cit. on p. 2).

Teacher’s Corner Crossword Puzzle Maker. URL: https://wo
rksheets.theteacherscorner.net/make-your—-own/cros

sword/ (visited on 03/22/2020) (cit. on p. 22).

141

http://norvig.com/sudoku.html
http://norvig.com/sudoku.html
https://www.suchsel.net/
https://worksheets.theteacherscorner.net/make-your-own/crossword/
https://worksheets.theteacherscorner.net/make-your-own/crossword/
https://worksheets.theteacherscorner.net/make-your-own/crossword/

Bibliography

[172]

[173]

[174]

[175]

[176]

[177]

[178]

[179]

[180]

[181]

[182]

[183]

Pavel Tomozov. Crossword Construction Using Constraint (cit.
on p. 25).

F. Toyama et al. “Assembly of Puzzles Using a Genetic Algo-
rithm”. In: vol. 4. Feb. 1, 2002, 389-392 vol.4 (cit. on p. 27).

Jay S. Walker and James Jorasch. “Electronic Word Puzzle
Game”. U.S. pat. 5921864A. Walker Asset Management LP.
July 13, 1999 (cit. on p. 21).

Michael Waskom et al. Mwaskom/Seaborn: V0.10.1 (April
2020). Zenodo. Apr. 26, 2020. URL: https://zenodo.org/re
cord/3767070 (visited on 07/19/2020) (cit. on p. 67).

Robert S. Weisskirch. “An Analysis of Instructorcreated Cross-
word Puzzles for Student Review”. In: College Teaching 54.1
(Jan. 1, 2006), pp. 198-201 (cit. on p. 16).

J. M. Wilson. “Crossword Compilation Using Integer Program-
ming”. In: The Computer Journal 32.3 (Jan. 1, 1989), pp. 273-
275 (cit. on p. 25).

Alan Wise. “Web-Based Crossword Puzzles Support Revision:”
in: Active Learning in Higher Education (2001) (cit. on p. 16).

Alan Wise. “Web-Based Puzzle Program to Assist Students’
Understanding of Research Methods:” in: Active Learning in
Higher Education (2003) (cit. on p. 16).

Wolfram Demonstrations Project. URL: http : / / demonstra
tions . wolfram . com/ CrosswordGridMaker/ (visited on
03/22/2020) (cit. on p. 22).

Word Search Generator. URL: https://tools.atozteacher
stuff.com/word-search—-maker/wordsearch.php (visited

on 04/08/2020) (cit. on p. 22).

Word Search Maker. URL: https://thewordsearch.com/ma
ker/ (visited on 04/08/2020) (cit. on p. 22).

Word Search Maker | Education.Com. URL: https://www.ed
ucation.com/worksheet—-generator/reading/word—-sear

ch/ (visited on 03/22/2020) (cit. on p. 22).

142

https://zenodo.org/record/3767070
https://zenodo.org/record/3767070
http://demonstrations.wolfram.com/CrosswordGridMaker/
http://demonstrations.wolfram.com/CrosswordGridMaker/
https://tools.atozteacherstuff.com/word-search-maker/wordsearch.php
https://tools.atozteacherstuff.com/word-search-maker/wordsearch.php
https://thewordsearch.com/maker/
https://thewordsearch.com/maker/
https://www.education.com/worksheet-generator/reading/word-search/
https://www.education.com/worksheet-generator/reading/word-search/
https://www.education.com/worksheet-generator/reading/word-search/

Bibliography

[184]

[185]

[186]

[187]

[188]

[189]

XWords. URL: https://www.xwords—generator.de/en (vis-
ited on 03/22/2020) (cit. on p. 22).

Li Yong-zhuo. “Sudoku Puzzles Generating: From Easy to Evil”.
In: 2009 (cit. on p. 29).

Li Yujian and Liu Bo. “A Normalized Levenshtein Distance Met-
ric’. In: IEEE Transactions on Pattern Analysis and Machine
Intelligence 29.6 (June 2007), pp. 1091-1095 (cit. on p. 85).

Giulio Zambon. “Puzzle Statistics and More Puzzles”. In: Su-
doku Programming with C. Ed. by Giulio Zambon. Berkeley,
CA: Apress, 2015, pp. 211-226 (cit. on p. 29).

Sydney S. Zentall, Arlene M. Hall, and David L. Lee. “Atten-
tional Focus of Students with Hyperactivity During a Word-
Search Task”. In: Journal of Abnormal Child Psychology 26.5
(Oct. 1, 1998), pp. 335-343 (cit. on p. 20).

Han Zhang et al. “StackGAN: Text to Photo-Realistic Image
Synthesis with Stacked Generative Adversarial Networks”. In:
(Aug. 4, 2017) (cit. on p. 84).

143

https://www.xwords-generator.de/en

	Abstract
	Introduction
	Introduction
	What is a Puzzle?
	Puzzle Creation Stages
	Considered Technologies
	Available Data

	Puzzle Types
	Letter Desert
	Word Search
	Crossword
	Swedish Puzzle

	Vocabulary Types

	Background
	Related Work
	Teaching
	Psychological Experiments
	Patents
	Software

	State of the Art
	Creating Puzzles
	Vocabulary Creation
	Solving Puzzles
	Other
	Other Puzzle Types
	Benchmarks

	Problem Statement
	Use Case
	Requirements
	Requirements for Grids
	Requirements for Puzzles
	Requirements for Vocabularies
	Requirements for Puzzle Algorithm

	Expectations

	Method
	Constraint Satisfaction Programming
	General Data Structure
	Initial Intuition
	Generating Grids
	Filling Grids
	Word Search Puzzle

	Neural Networks
	Data Representation
	Training Data
	Network Architecture

	Preliminary Work / By-Product
	Blacklist Creator
	Synonym Creator
	Vocabulary Management
	Death Row Analysis
	Vocabulary Analysis
	Horoscope Neural Network
	Data Augmentation by Rotation and Flipping Puzzles
	Timing Experiments

	Evaluation
	Results
	CSP
	Neural Networks

	Discussion
	Research Roadmap

	Conclusions
	Future Work

	Additional Requirements
	Requirements for Grids
	Requirements for Vocabularies

	Neural Net Architectures
	Deep Neural Autoencoder for Puzzle Space
	Convolutional Autoencoder for Puzzle Space
	Convolutional Autoencoder for Context Space
	Ideas to Generate Vocabularies

	Solution for Thank You Puzzle
	Bibliography

