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Abstract

The aim of this dissertation is to identify suitable objective metrics to describe the driving
style of racing drivers. The motivation for this research results from the problem of the
individual adaptation of the dynamic driving behaviour of the race car to the driving
style of the respective driver. Since only the combination of vehicle and driver is able
to win races, this is an important aspect in racing. In turn, this means that focusing
on an optimal combination of both is more effective than concentrating exclusively on
each component individually. Currently, the individual tuning of race cars for the driver
is achieved primarily through empirical knowledge about the respective driver. Since it
is time-consuming to gather the required experience on each combination of driver and
vehicle, an objective approach can accelerate this process.

The presented methodology uses pattern recognition to find characteristic points during
cornering in motorsports. These are used to calculate the defined metrics from recorded
time series data. The selection of the metrics is based on the Relief algorithm as well as
Recursive Feature Elimination in combination with a Random Forest classifier, which is
also used to prove the significance of the developed method.

The result of the present work is a set of objective metrics calculated from data typically
available from race cars with data acquisition systems or driving simulators. As proof
of the concept, 23 different metrics, selected from the 104 evaluated metrics, are used as
features to identify the driver of a particular dataset by machine learning. The average
accuracy is 77%.
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Kurzfassung

Das Ziel der Dissertation ist die Identifikation geeigneter objektiver Metriken zur Be-
schreibung des Fahrstils von Rennfahrern. Die Motivation für diese Untersuchung ergibt
sich aus der Problematik der individuellen Anpassung des dynamischen Fahrverhaltens
des Rennfahrzeugs auf den Fahrstil des jeweiligen Fahrers. Da nur die Kombination aus
Fahrzeug und Fahrer in der Lage ist Rennen zu gewinnen, ist dies ein wichtiger Aspekt
im Rennsport. Das bedeutet wiederum, dass der Fokus auf eine optimale Kombination
von beiden zielführender ist, als sich ausschließlich auf jede Komponente einzeln zu
konzentrieren. Derzeit wird die individuelle Abstimmung der Rennfahrzeuge auf den
Fahrer vor allem durch empirisches Wissen über den jeweiligen Fahrer erreicht. Da es
zeitaufwendig ist die erforderliche Erfahrung über jede Kombination aus Fahrer und
Fahrzeug zu sammeln kann ein objektiver Ansatz den Prozess beschleunigen.

Die vorgestellte Methodik nutzt Mustererkennung, um charakteristische Punkte bei Kur-
venfahrten im Motorsport zu finden. Diese werden für die Berechnung der definierten
Metriken aus den aufgezeichneten Zeitreihendaten verwendet. Die Auswahl der Merk-
male beruht auf dem Relief Algorithmus sowie der Recursive Feature Elimination in
Verbindung mit einem Random Forest Klassifizierer, welcher auch für einen Nachweis
der Signifikanz der Methode genutzt wird.

Das Ergebnis der vorliegenden Arbeit ist ein Satz objektiver Metriken, die aus Daten
berechnet werden, welche üblicherweise von Rennfahrzeugen mit Datenerfassungssys-
tem oder Fahrsimulatoren zur Verfügung stehen. Als Nachweis der Funktionalität des
Konzeptes werden 23 verschiedene Metriken, ausgewählt aus den insgesamt 104 evalu-
ierten Metriken, als Merkmale verwendet, um den Fahrer eines bestimmtes Datensatzes
mittels maschinellem Lernen zu erkennen. Die durchschnittliche Genauigkeit beträgt
dabei 77%.
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1 Introduction

The driver is a vital part of any motor racing activity, since he/she is a key component
contributing to success when the car is out on track, together with the pit crew and
the engineering team which have important roles nevertheless. Individual drivers show
different approaches to achieve the ultimate goal of winning races while they all depend
on the machinery at their disposal. This implies a close relationship of driving style
and driveability in motorsport. Race cars can be tuned by many different adjustments,
which add up to a complex system with a non-trivial amount of possible setups. The
imposed engineering problem is finding the optimum setup for the car to achieve maximal
performance. However, the car must remain controllable by the driver. As drivers differ
in the way they drive a car they also prefer different setups for their cars. Subsequently,
a specific vehicle behaviour may seem driveable to one driver but not necessarily to the
other.

This section introduces the topic of subjective driving style in more detail, outlines the
motivation as well as conditions that apply, and presents the hypotheses that will be
investigated by this work as well as the structure of the document.

1.1 Motivation

The main goal in professional motorsport is to drive around a given race track within
minimal time per lap, concluding in the desire for minimal race time or maximum race
distance within given time. The motivation for this is similar to other sports, where
athletes compete against each other. However, since motor racing is largely dependent
on the vehicles, there is also a substantial interest of the Original Equipment Manufac-
turers (OEMs), not only for marketing purposes, but also as a proving ground for high
performance technology. With the used vehicles becoming more and more complex, the
possible changes in mechanical and software setup of the car increase as well and create
systems with magnitudes of variables that are not trivial to understand. This involves
three major components, the driver, the vehicle and the race track, as illustrated in Fig.
1.1. In this system the track includes all environmental conditions such as track grip,
wind speed and direction, temperature and more. The vehicle is directly interacting with
the track via the tyres as it supports all forces that occur while the car moves around
the course. This also includes aerodynamic forces because air is part of this system.
Furthermore, the driver uses the car’s control inputs, thus is interacting with the vehicle
as he/she guides it around the racetrack. The driver also interacts with the track, for
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1.1 Motivation
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Figure 1.1: Dynamic system overview

example by using visual reference points on the lap, however this factor is not within
the scope of this work, as illustrated by the dashed arrow in Fig. 1.1.

The three dynamic components of the systems, as just introduced, can be modified to
affect the achieved lap time, which is to be minimised. While the race track can be
influenced, for example, by changing its surface, it is not a parameter manipulated by
competitors, which allows the assumption that it is equal for all participants. This con-
tains a simplification as it is possible to gain an advantage by making use of changing
track conditions, exemplary through careful timing of a qualifying lap within the permit-
ted time slot. The vehicle generally offers various options to affect lap time performance
by changing or adjusting mechanical parts and software on Electronic Control Units
(ECUs). A good overview of the components that make up a race car and their adjust-
ment possibilities is provided by Trzesniowski [56][57][58]. These influence the behaviour
of the car directly. Additionally, the driver is a dynamic system itself and can change the
way he/she drives the race car. In this model of the overall dynamic system the drivers
dynamic behaviour can be interpreted as his/her driving style, which is an individual
attribute of each driver. This leads to different driving styles, or in other words, ways of
how to interact with a vehicle, and therefore demands considering this influence when
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1.1 Motivation

setting up a race car. With the overall goal of minimal lap time in mind, the setup
process’s main goal is finding the most performing race car for a given combination of
track and driver. This leads to sometimes very different results depending on the individ-
ual driver. The dynamic behaviour of the car can also be understood as its driveability,
meaning the vehicle is controllable and can be kept on the desired trajectory by the
driver. Due to individual driving styles and also varying abilities to control the car, a
measure for driveability is subjective to the respective driver doing the assessment.

The overall trend to use computer simulations in the automotive industry, which is mainly
fuelled by cost saving, is also present in motorsport. It is a consequence of restrictions for
physical component and vehicle tests as well as on data acquisition systems. A second
factor is the number of possible setups, which can not be assessed efficiently without
virtual development. Lap time simulation is an established way to objectively judge
the combination of track and vehicle and allows finding a theoretical optimum. Völkl
describes an optimal control based approach in his work on lap time simulation [61]. The
simulated optimum is theoretical, because it does not incorporate the driver in a way that
is sufficient to replicate the complete system of track, vehicle and driver. The challenge
to find the right dynamic behaviour of the car for an individual driver is currently solved
by an empiric approach that incorporates test driving, where the driver and associated
engineers can assess different setups. The engineers must understand each driver and
his/her needs to allow finding a good solution, with a key factor being the ability to adjust
in response to changes of conditions while keeping the specific characteristics needed by
the driver. This requires experience, which in turn demands time and is contrary to the
aforementioned target of cost saving. The latter is usually employed through limitation
of test days, leading to the need for an objective approach that allows making use of
virtual development to adjust a race car for individual drivers. The work of Goy aims
to provide a measure for the amount of vehicle performance that the driver is actually
able to use, which targets to help the explained process of finding a balance between
driveability and performance [18].

A methodical and objective approach to set up a race car for an individual driver re-
quires knowledge about all involved systems’ dynamic behaviours in order to assess their
combination. An important step is finding objective criteria that describe each system.
Consequently, objective criteria are needed to describe the driver, or driving style, and
the vehicle, or driveability, to study their interaction in detail. In addition to the pur-
pose of setting up the car for race weekends, this approach can also be used in initial
car design. Through simulations, the car behaviour can already be evaluated in early
design stages, enabling to consider the drivers’ needs. Accordingly, a target corridor for
dynamic properties can be set to positively influence car development. The scope of this
work is to provide a set of objective metrics that allow differentiation of individual driving
styles, that is to distinguish differences between drivers as well as show similarities.

3



1.2 Limitations

1.2 Limitations

In this study the track, or environment respectively, is treated as a static component that
does not affect the overall system of vehicle and driver. This assumption is made because
the track is not meant to be changed by competitors in motorsport. Although conditions
can change, which will affect car performance and setup choices, this simplification is
chosen to be adequate as environmental changes within short time ranges are negligible
in most cases. This shortcoming can be compensated by running multiple simulations
with different track conditions to account for changes on a larger time scale.

The presented method requires a vehicle driven to its limit in order to obtain the desired
results. The method is making use of the specific sequence of control inputs to the car
that is shown in racing by professional drivers. This pattern as well as deviations from
it are discussed in detail in chapter 3. The analysis relies solely on the main pattern
to reduce the complexity of the problem. Some alternative patterns are detected in the
process, but it must be stated that the approach is not suited to classify road car users.
This topic is subject of current and past research and will be outlined in chapter 2.

Since motorsport involves many different categories and usable vehicles, it needs to be
pointed out that this study is based entirely on car racing. More specifically only on-road
racing activities are analysed. This limitation does not necessarily prohibit any use of
the proposed method for other categories. It could be well suited for application with
on-road motorcycle racing for example, however this would require a separate evaluation
of the method for a specific area.

As previously discussed, the main goal in motorsport is the reduction of race time. As
this is represented by the addition of all single lap times, lap time is used synonymously
throughout this thesis. While the presented approach ultimately serves this purpose, it
is not intended to assess driver or vehicle performance. The main idea is to accumu-
late knowledge about the interaction of driver and vehicle while focusing purely on the
objective description. Subsequently, the derived metrics are also suitable for evaluation
purposes that can be based on the presented approach. This is however outside the
scope of this work.
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1.3 Hypotheses and Outline

The discussed goal of describing the driving style for individual race car drivers relies on
hypotheses that are presented in this section. Furthermore an outline of this thesis is
provided.

Hypothesis 1: Race car drivers show individual differences in driving style.
This hypothesis is based on empirical observations by many experts working
in the field of motor racing. However, it remains to be proven that drivers
show characteristic properties in a consistent way.

Hypothesis 2: The driving style of race car drivers can be described by
objective criteria.
Building on the first hypothesis it is further assumed that it is possible to
describe a drivers dynamic behaviour by objective metrics. This approach
should ultimately lead to significant differentiation among sampled drivers
through their respective set of metrics.

The presented research is organised into five chapters, following a typical approach to
scientific reporting. The current chapter summarises the motivation of the study, its lim-
itations, and the proposed hypotheses. Subsequently, chapter two presents a commonly
used model of the driving task and aggregates approaches used for similar problems,
although mostly related to road car users. Following the definition of the problem and
available strategies, chapter three elaborates the new method tailored to the specific
purpose of describing the driving style of race car drivers. This includes an initial pre-
processing step of available data, the definition and calculation of various metrics, and a
presentation of methods to reduce the derived set of measures to contain only significant
metrics. The process is then outlined in chapter four in the form of presentation and
evaluation of the results in three steps. The final results after the selection process are
illustrated in detail for selected examples. Finally, the last chapter provides a summary
of this work as well as an outlook to further research possibilities and applications of the
method.
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2 State of the Art

The following chapter summarises existing work on driving style, outlines the used meth-
ods and explains the respective focus of application, which essentially implies limits of
the solution as well. A commonly used model of the driving task is presented together
with selected current uses. Aspects of driver modelling are elaborated building on the
model of the driving task. These incorporate also driver behaviour imitation. Further-
more, the field of driving style and driver skill recognition and classification is discussed
with the main outcome that a new approach is needed for the specific problem addressed
by this work, which is the objective description of the driving style of race car drivers.

2.1 The Driving Task

An often cited model for the driving task is mentioned by Donges and McRuer et al. Early
works of both authors focus on modelling driver steering behaviour on two levels by a
combination of open-loop and closed-loop control. This approach is due to the duality
of the human steering behaviour and results in the definition of two levels. First the
guidance level, where the driver perceives the current and estimated future driving path.
This results in anticipatory, open-loop reactions. The second level is the stabilisation
level, where deviations from the intended course are compensated. [9][11] Additionally,
three control modes are proposed, which are compensatory control, pursuit control and
precognitive control. While compensatory control relies purely on closed-loop reactions
to lateral and heading errors, pursuit control permits the driver to anticipate the desired
path. Precognitive control conversely relies on patterns often executed and leads to a
combination of open-loop execution of a well known driving manoeuvre with closed-loop
correction of any deviations to the effective driving situation. [36]

Following this early model, Donges enhanced the approach with a third level, resulting
in the navigation-, guidance- and stabilisation layers. The latter two levels are actively
conscious while driving. His work identifies potential to enhance road safety regarding
communication with other road users and their visibility on the guidance level, as well as
allowing the driver to use more of the available vehicle potential in critical situations on
the stabilisation level. [10] Additionally, Michon links facets of risk to the three levels of
the driving task which are referred to as the strategic, tactical and operational level in his
work. The respective facets of risk are risk acceptance, risk taking and coping with thread.
Michon states that each kind of dealing with a risk can affect each level of the driving
task, however main interactions exist between risk acceptance and the strategic level, risk
taking and the tactical level as well as coping with risk and the operational level. [38]
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2.1 The Driving Task
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Figure 2.1: Three-level model of the driving task [10]

Figure 2.1 illustrates the model as proposed by Donges. The driving task is split in the
aforementioned three levels. The navigation task, which is on the highest level, consists of
selecting an appropriate route based on the available roads and estimating the temporal
sequence of the trip. On the guidance level, the driver is using knowledge of the intended
route and information about the environmental conditions around the vehicle to derive
a nominal track as well as a nominal velocity. Literature uses the terms trajectory-,
motion- and path-planning as equivalent synonyms. Usually objective conditions such
as lane markings, signage and other road users do not explicitly define nominal track
and velocity, but specify a range of vehicle movement from which the driver subjectively
chooses the control targets. Finally, the actual lateral and longitudinal movement of the
vehicle is controlled to follow the derived nominal values on the stabilisation level. [10]

Apart from the mentioned publications that are closely related to the automotive sector,
Rasmussen proposed that human actions can be divided into categories, which show
strong ties to the discussed model of the driving task. While skill-based behaviour, as
the lowest level of control, yields actions directly from the sensory system such as fast
limb movements, rule-based behaviour relies on empirically learned rules and leads to
conscious actions that can be explained. Skill-based behaviour in turn happens uncon-
sciously. Particularly in unknown situations where no rules have been learned, knowledge-
based behaviour is used. On this level, a plan to achieve a certain goal is derived and
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2.2 Driver Modelling

weighed against other options, based on individual knowledge. [48] This description
matches well with the definition of open-loop and closed-loop control as seen for the
different levels of the driving task.

Although the original publications on this model are from the late 1970s and early 1980s,
the derived model of the driving task still serves as a baseline for current research and
engineering work. A recent study of Lappi targeted deliberate practice (DP) procedures
in professional motorsport. It states that true expertise in any domain is not the result of
just exceptional cognitive ability or superior sensorimotor skills. It is rather the result of
extraordinary amounts of specific practice to obtain said abilities. DP means designing
special tasks that give immediate and unambiguous feedback, which are then repeated
with the goal of improving a specific skill. A review of the available literature reveals DP
procedures that are used in the motorsport context. These are then classified into groups.
Following the presented definition of the driving tasks, practice routines are grouped into
control, guidance and navigation categories. While the details of the respective practice
procedure are of less importance in the scope of this thesis, their organisation shows
that the three-level model of the driving task is used in recent studies, as well as its
interdisciplinary relevance. An example for a DP routine on the control level is to target
improvement of the sense for the available tyre grip. Training visual skills, as in guiding
the focus of the eyes specifically, on the other hand falls into the guidance category. [28]

2.2 Driver Modelling

Another achievement of the previously discussed model of the driving task is the archi-
tecture it provides for driver modelling, which is becoming more and more important
with regards to driver assistance systems and autonomous vehicles [68]. This subsection
summarises the different approaches to this task and provides more detailed explanations
for some exemplary works.

Plöchl and Edelman gathered articles on driver modelling for different purposes. De-
pending on the objective, driver models can be specifically designed for different aspects
of the driving task. [43] A focus on the vehicle is generally used if a virtual test driver is
needed for tasks such as vehicle component design and validation or analysis of a vehicles
dynamic behaviour [2][23]. Contrary there are models which specifically target driver
behaviour and aim to improve the understanding of this topic [32][51]. Furthermore, the
investigation of the interaction of driver and vehicle is analysed, exemplary in the field of
Advanced Driver Assistance Systems (ADAS) [40][16]. Finally, studies with more than
one car focus on topics such as car following or traffic flow and employ driver models
suited for this purpose [8][31]. Overall, this shows that there is no single driver model
capable of solving the different tasks associated with vehicle simulation.

The concept of Prokop’s work includes the description of a human driver as a dynamic
controller with the following abilities: The use and coordination of sensory perception,
the ability to learn a dynamic systems behaviour as well as the capacity to optimise this
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2.2 Driver Modelling

behaviour. This leads to using a model predictive control approach, which consists of
a prediction model and an inner control loop to compensate deviations. The prediction
model can be varied regarding its complexity, resembling driver experience according to
the author. Essentially, this means that a model containing yaw dynamics will result
in a driver model that is more capable of handling situations with non-linear vehicle
behaviour, contrary to a point mass model that will rely mostly on the compensatory
control in such situations. Additionally, the behaviour of the modelled driver can be
adjusted by the cost function used for optimisation of the inputs to the vehicle (longi-
tudinal, steering and gear), which consists of multiple objectives. The weights applied
to each of the objectives dictate the outcome of the optimisation. Exemplary objectives
are time-optimal, meaning to cover a given distance in the shortest possible time, and
acceleration-optimal, which implies minimising accelerations that are felt by the passen-
gers as a means to improve comfort. Constraints are used to force the driver to stay
on the road, limit possible accelerations due to tyre potential, limit the engine speed,
and impose the ability to stop the vehicle in half sight distance. The driver model is
verified against human drivers with different objectives defined as the most important
and shows good correlation with the participants’ control inputs. Finally, a double lane-
change manoeuvre is simulated at different speeds to assess the driver models capability
of controlling the vehicle. While it is able to handle the manoeuvre at lower speeds, it
shows difficulties to keep the car on track at higher speeds. This is explained by the
used linear prediction model, which is exemplary for a driver that has no experience with
highly dynamic driving. [45]

Wegscheider aims to provide a method to evaluate ADAS. The hypothesis is that gen-
erally a support system that behaves similar to the current driver is expected to get a
good subjective rating, given it does what the driver would do. Based on this assumption
a reference driver behaviour is extracted from experimental data for four driver types
which are rated by aggressiveness. The aforementioned reference behaviour is based on
lateral and longitudinal accelerations of the vehicle as well as cornering radius and lateral
deviation from the driving lane. A driver model is then used to generate the reference
behaviour for simulations using ADAS. The author is using the previously discussed
model of Prokop [45] for this purpose, with two additional cost function objectives. The
experimentally acquired reference behaviour is implemented through a map of lateral
and longitudinal accelerations, which are depending on the current car speed. This is
essentially a modification of the existing envelope of the vehicle’s capabilities under the
assumption that the driver does not use all of the available potential. Second to that,
the lateral and longitudinal jerk is evaluated against a target value. The hypothesis
is subsequently evaluated in an experiment. Trajectories that were generated with the
driver model are driven by a real vehicle that is capable of following given path and accel-
eration target values using a method developed by Waldmann [62]. This allows to drive
test persons around a test track autonomously, using their own driving behaviour and
evaluate it regarding comfort. The original hypothesis is proven by the experiment. [64]

Prettenthaler investigates existing driver models and identifies the need for a path plan-
ning method specific to motor racing. The motivation for this results in the dependence
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of the fastest trajectory to the given car setup, which means a generic racing line will
not capture these differences. The main optimisation criteria in this case is minimising
time, or as used in this implementation, maximising the travelled distance for a given
time. A mathematical model of the vehicle is derived from the simulation model that is
to be used with the generated trajectory, however in a form that is usable for optimisa-
tion algorithms. Additionally, an objective function containing the optimisation goals is
defined. It consists of the main target of maximising the travelled distance, as well as
other conditions such as the available vehicle performance, track limits, and maximum
gradients for driver inputs. The optimisation is then carried out for multiple segments
due to limitations of the polynomial description of the track. Since the optimal path
through a single corner is dependent on the track characteristic ahead of it, these opti-
mised segments are overlapped. This induces some redundancy but provides reasonable
starting points for each following segment. Finally, the author compares the results for
two different vehicles and illustrates the subsequently different optimal paths around the
same race track. [44]

Togelius investigates computational intelligence in the domain of video games, where car
racing games are exemplarily discussed. Besides ways of controlling simulated vehicles,
means to imitate driving styles are presented. Modelling such human behaviour can be
achieved by either direct or indirect methods. Direct modelling incorporates training a
driver model on specific car states and the resulting control inputs of the driver. Con-
trary the indirect method means tuning an existing driver model to match the desired
behaviour, which is found to produce a more stable solution. [55]

The research of Wang and Liaw aims to imitate driving styles with non-person players in
a computer game based on the indirect modelling principle. This is achieved by tuning
a driver controller that incorporates fuzzy logic to determine acceleration and steering
targets. The parameters of this controller are then optimised with a multi-objective
approach, that targets lap time and driving style similarity to a target record. The
latter is defined by a vector of driver control actions as well as curvature of the track
ahead of the car in 10 m intervals and a range sensor. The defined similarity function
compares the instantaneous vector with a range of samples around the current position
from previously recorded data. Overall, the approach seems to be capable to quantify
driving style similarities between a driver and a record for the respective track. [63]

2.3 Driving Style

Driving style or driver behaviour recognition is a broadly followed research topic in the
road car domain. Some of the main applications are driver modelling, advanced driver
assistance systems and safety assessment as well as economic rating and assistance with
driving in a sustainable way. Some concepts are outlined in this section, although none
deals with the problem of individual nuances of driving style in a high-performance
motorsports environment.

10



2.3 Driving Style

A good overview of recent research is provided by Martinez et al., which summarises
available literature concerning driver recognition. The general motivation is summarised
as the progression from vehicle software tailored for a standard driver to adaptive sys-
tems. Additionally, driving style is differentiated from driver behaviour, where the former
includes all external influences while the latter is solely focused on driver decisions. Fur-
thermore, both terms should not be mistaken with driver skill, the ability of a driver to
control the vehicle to his/her desire. The reported methods cover influences from driving
events up to human factors such as character traits and are implemented through rules,
through models or through machine learning. [33] Meiring et al. provide another review
of current literature with a focus on machine learning and artificial intelligence [37]. The
work of Martinez et al. provides a definition of driving style as follows:

Hereby driver driving style is understood as the way the driver operates the
vehicle controls in the context of the driving scene and external conditions
such as time in the day, day of the week, weather and mood, between other
factors. This definition agrees with previous descriptions and contemplates
detecting more than one style for the same driver. That is to say that the
same driver could exhibit disparate styles under different conditions . . . [33]

An often seen approach is to assess drivers into general categories with different methods.
A classification into the categories comfortable, normal and sporty is used by Dörr et
al., who judge driving style by commonly available signals in road cars, such as inertial
accelerations and vehicle speed. Furthermore, information from the navigation system
is used to employ different subsystems for varying road types, for example urban streets,
rural roads or motorways. Each subsystem uses event detection with following fuzzy
logic to output an overall driving style coefficient. [12] Lei et al. propose the quite
similar economical, moderate and sporty types and establish a connection between those
classes and the dynamic driver demand, which is calculated from vehicle speed and
acceleration. Additionally, a different method for online calculation and prediction is
presented. [29] Constantinescu et al. use statistical data obtained from time-series, such
as the mean velocity or relative amount of time spent at velocities exceeding 60km/h,
together with data mining techniques. The results of cluster analysis as well as principal
component analysis lead to a classification of drivers into five levels of aggressiveness.
[7] Similarly, Qi et al. propose three levels of aggressiveness, although the classification
is using latent Dirichlet allocation, which is originally intended for text mining. Their
study contains recorded data and additional correlation analysis with questionnaires
completed by participants of the study. [46]

Driving skill is commonly rated into novice and expert categories. You et al. employ
a two-point visual driver model to derive information about the driving skill regarding
steering inputs from the model parameters. Kalman filtering is used for state and param-
eter estimation. The study contains a field test for data gathering and shows separability
of skilled and novice drivers using the employed model. Furthermore, wavelet transfor-
mation is used to rate steering smoothness. [71] Zhang et al. use a different approach to
classify steering behaviour into the same skill levels. Data is sampled from two driving
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manoeuvres and discriminant features are obtained by the coefficients of discrete fourier
transformation. These are then classified using artificial neural networks, support vector
machines, and decision trees. [72]

A different approach is detailed by Taubman et al. for driving style assessment from
a more psychological point of view. The multidimensional driving style inventory is
introduced, which contains 44 items that are organised into eight categories derived from
factor analysis. Exemplary categories are risky or high-velocity driving styles, as opposed
to patient or careful driving styles. The data was gathered by questionnaires where each
participant noted his/her agreement with the 44 items. Additionally, the results were
correlated with personality traits obtained from further questionnaires completed by
each participant, employing existing testing methods for the respective personality trait,
such as global self-esteem or desire for control. [53]

Chen et al. approached the subject of driving style recognition from a big data point of
view with the aim to provide measures for fleet management and individual insurance
policies based on detected driving style. Commonly available vehicle data is logged
and stored in a cloud computing solution, with further analysis to select discriminant
features by feature selection methods. The selected signal, car velocity, is then analysed
by statistical means to derive the skewness of its distribution for individual trips from
the original time-series data, which forms the basis for a rule-based classification into
four driving styles: novice, cautious, aggressive and expert. [6] While this approach
uses methods of unsupervised learning, contrary to the supervised learning approach
presented in this work, the general idea of gathering a large data set for further processing
with feature selection methods forms a part of the presented methodology.

Deviating from the discussed aims for driving style recognition, Schöggl et al. present
a method to adopt road car characteristics based on individual driving style. The vehi-
cle is rated based on categories, exemplary sportiness and comfort. These ratings are
derived from a driving mode detection using Fuzzy Logic and following evaluation of
data by a neural network which was trained with subjective ratings. The driving style is
then assessed from seven commonly available signals on road cars, such as clutch pedal
position or engine torque. Consequently, characteristic objective measures are obtained
from these signals, exemplary the engine speed before de-clutching. These criteria are
then used to calculate the factor levels of eight defined driver criteria with sporty or
economical being two of them. The combination of both sets of metrics allows analysis
of mutual influence and ultimately the online adoption of drive train characteristics to
a specific driver. [52] The general idea of adjusting the vehicle’s dynamic behaviour to
the driver is very similar to the problem stated in chapter 1, although the main goal is
to provide the customer with a vehicle tuned to his/her specific preference, as opposed
to maximising the performance of the combination of driver and vehicle at the limits of
driving dynamics. The approach is interesting nevertheless, because the derived metrics
are focused on detailed examination rather than statistical evaluation, which is a con-
cept that is used in this work as well. Unfortunately, the method is not published to a
level of detail that allows examination of the approach. Above all the objective metrics

12



2.3 Driving Style

necessary to distinguish race car drivers achieving similar high levels of performance
from each other requires significantly different metrics, which are defined, assessed and
reduced to a usable amount in the following chapters.

Trzesniowski proposes Key Performance Indicators (KPIs) in the context of data analysis
and driver rating within the motorsport environment. Suggested metrics include, for
example, derivatives of the driver’s control inputs to the car which are then averaged over
a lap. Further calculations propose limiting such signals to specific scenarios, exemplary
when the driver is on full throttle, before averaging or relating control inputs to the
achieved accelerations of the vehicle. [59] This approach relies on absolute values which
incorporate all three dynamic systems outlined in the motivation of this thesis. For
this reason the obtained measures are only relevant to compare different drivers if all
other boundary conditions remain unchanged, which essentially means the same car as
well as identical track conditions are mandatory. The proposed method of data analysis
allows general performance indications, however the presented data does compare an
inexperienced with an expert driver where larger differences can be expected, contrary
to comparing drivers on similar performance levels.

In summary, a detailed objective description of race car driver’s driving styles requires
a new approach, which is elaborated and evaluated in the following. The main goal
is to find objective metrics showing significant differences between drivers who are all
competing on a similar high level and achieve comparable performance, yet with different
car setups tailored to their individual driving style.
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3 Methodology

The following chapter provides a detailed description of the methods used to accomplish
the goal of characterising driving style for individual drivers. This includes the necessary
data, the approach to processing this data and the calculation of the derived metrics in
detail. Additionally, it presents methods to evaluate the newly defined metrics and their
significance for race car driving style recognition.

To evaluate the driving style of race car drivers, the three-level model of the driving task,
as explained in section 2.1, is used in compliance with the fact that race car driving is a
driving task as well. While the purpose of the stabilisation task is the same for driving
on public roads and race car drivers, there are fewer similarities on the guidance level.
The target to derive a corridor for nominal vehicle movement is comparable, although
the objective is shifted towards finding the fastest possible path around a race track.
Overtaking manoeuvres are also related to this level, yet they are not within the scope
of this thesis. The navigation level is of least importance for this study, as the course
is given and no routing decisions have to be taken, except for pit-stops which are not
considered in this thesis. While an overtaking manoeuvre falls in the guidance level, the
overall overtaking strategy, for instance, by studying opponents mistakes over multiple
laps to find the right time and location for an attempt to pass, shares similarities with the
tasks on the navigational level. Due to relevance for the driving style of race car drivers
only the stabilisation and guidance levels are considered for analysis. As suggested by
the model of the driving task, the evaluation of driving style is split into the control
inputs of the driver to the car and the trajectory of the vehicle.

The methodology used to define new metrics and evaluate their meaningfulness is similar
for the control inputs and the trajectory. While this is originally a problem of finding ob-
jective metrics to describe dynamic behaviour, the process is inspired by a classification
problem that can be solved with machine learning. This typically involves feature extrac-
tion and feature selection. The term feature is commonly used in the machine learning
domain, and within the scope of this work the defined objective metrics to describe the
driver behaviour are features of the dataset used for the classification task. Additionally,
a set of features describing the same instance, or sample, is commonly referred to as an ob-
servation. The approach is split into the feature or metric extraction using domain knowl-
edge about vehicle dynamics of race cars as well as the empiric knowledge of differences in
driving style among race car drivers, and the feature selection part relying on data mining
and machine learning methods. The aim is to gather a large set of metrics without fur-
ther assumptions about significance or redundancies. Consequently, an assessment of the
criteria is necessary. This is accomplished by defining a classification problem of identify-
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ing the driver from the given set of metrics. As the driver is known for each observation,
this can be solved using supervised learning. The feature selection methods, which are
described in more detail in section 3.3, result in a set of features or objective metrics, that
are most useful to classify the driver. In other words these metrics capture the individual
differences among the drivers, which is their driving style. An important notice is that
classifying the driver is used to evaluate the defined metrics for the driving style of race
car drivers. The absolute classification accuracy is therefore an indication but not linked
to the main goal of this thesis, which is providing numeric metrics instead of categories.

3.1 Stabilisation Level

The stabilisation level of the driving task focuses on correcting lateral and heading errors
to the nominal track, as well as maintaining the nominal speed profile. This is achieved
by using the control inputs of the car which are mainly throttle pedal, brake pedal
and steering wheel in the context of this work. Secondary controls include the gear
shifter, Drag Reduction System (DRS) activation, if available, and the clutch pedal or
lever for example. The three main control inputs and their respective representation in
logged vehicle data are selected to be used for the following approach. The methodology
elaborated in this subsection is partially published by Wörle et al. in [69].

The mentioned data is usually recorded over the entire outing1 of the car and split into
laps. Consequently, the data contained in a single lap needs to be split into relevant parts.
As illustrated in Fig. 3.1, an ideal lap allows the classification of the vehicle state into
few categories. With the assumption of an ideal lap, meaning the car is always driven
at the maximum possible accelerations, it will either be limited by power available from
the drive train, hence ”power limited”, or by the forces the tyres can transmit, thus ”grip
limited”. A power limited state can occur on straights and corners that are driven with
full throttle. Grip limited states however imply that the driver is not on full throttle,
but either limited by lateral or longitudinal acceleration. This can happen either in a
typical corner where the driver lifts the throttle, applies the brakes and then steers into
the corner or in corners where the driver only lifts the throttle before turning the steering
wheel. Due to the majority of corners falling in the former category and all available
primary control inputs to the car being used, this pattern is decided to be taken into
account for driving style characterisation, as highlighted in Fig 3.1.

3.1.1 Detection of Characteristic Points

Due to the focus on cornering states of the car for further analysis, the available data,
which is usually split into single laps, needs further segmentation into single cornering
events. As defined, these need to have a braking phase to be considered. Within this

1The term outing means the car is leaving the pits and can be used to enumerate those runs of the car
over a day
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Complete lap

Power limited Grip limited

Straight
Full-throttle

corner
Lift-Off Braking

Figure 3.1: Classification of vehicle states

scope the throttle signal rT and brake signal pB follow a very distinct pattern for each
corner, except for any irregularities which cause a lap to be not representative. These
patterns are exploited to detect cornering and segment data for further analysis on a
single corner basis.

Exemplary signals for one corner over lap time tL are plotted in Fig. 3.2. A clear pattern
can be seen in rT and pB, as the driver arrives to the corner with full throttle and no
brake pressure applied, then lifts the throttle and increases brake pressure, which is
followed by a fade out of the brake pressure and transition to full throttle again. This
leaves two static reference values for rT and one for pB respectively, that allow detection
of cornering events from the signals. However, the steering wheel angle aS does not allow
such a clear distinction because the signal in this example is positive before the braking
phase starts and then turns negative, meaning the driver is steering to the left until he
turns the steering wheel right for the following corner. Additionally, the driver turns the
steering wheel about −20◦ until the braking phase is finished, followed by a decrease to
reach the desired value. Although this is just one exemplary corner, it illustrates why
aS is not suitable for robust cornering detection. Therefore, the signal is analysed with
respect to the events found in rT and pB.

Static signal values for rT are usually 0 % and 100 %, while pB should remain static at
0 bar respectively. However, data logging is prone to measurement errors, for example
due to misconfiguration or electrical interference. For this reason, the static signal values
are calculated for each lap to allow robust analysis of data from various sources. In the
first step the extreme values of the signal are calculated as the fifth and 95th percentile
of the signal range, rT,p5 and rT,p95 exemplary for the throttle signal, to exclude outliers.
The static intervals are then found as the areas where the signal remains within five
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Minimum Maximum

Minimum signal value: 0.00 % Maximum signal value: 104.95 %

Fifth quantile: 3.03 % 95th quantile: 100.06 %

Static minimum value: 3.11 % Static maximum value: 100.00 %

Table 3.1: Exemplary values for static throttle signal calculation

percent of the extreme signal values. To remove spikes and gradients, these intervals are
cut by 0.5 s on each end, which also eliminates static intervals shorter than one second.
The resulting intervals are indicated in Fig. 3.2 by dashed and dotted lines. The lines
marking the intervals are scaled to 110 % or 30 bar respectively for better illustration.
Finally, the static signal values are calculated as the median of all values within either
the maximum or minimum intervals, resulting in rT,min,s and rT,max,s for the throttle
signal. The approach to consider all values within a range around the extreme values is
chosen for robustness, since the signal does not stay ideally static. Therefore, a range
that can be considered as static has to be defined. Depending on data quality, this range
can be adjusted. Errors due to this range are compensated by the mentioned cutting of
intervals and the usage of the median value. Exemplary numbers for the calculation are
listed in table 3.1, clearly showing the advantage of the method as the maximum signal
value is an outlier.

With defined static signal levels, the desired patterns can now be detected by comparing
the data with these static signal values. The throttle signal is chosen to be described by
four specific points, the brake signal features three characteristic points respectively, and
the steering signal features one such point. These are introduced and further described
in table 3.2. Additionally, plots of the signals with marked characteristic points are
illustrated in Fig. 3.3.
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Figure 3.2: Throttle, brake pressure and steer wheel angle signals with detected extreme
value intervals
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Throttle signal

Off-throttle Where the driver starts to lift the throttle pedal, de-
fined by a deviation from the maximum static value.

No-throttle When the driver has released the throttle pedal com-
pletely, defined by a value within range of the mini-
mum static value.

On-throttle When the driver starts to apply the throttle, defined
by a deviation from the minimum static value.

Full-throttle When the driver reaches full throttle again, defined by
a value within range of the maximum static value.

Brake signal

On-brake When the driver starts to press the brake pedal, de-
fined by a deviation from the minimum static value.

Max-brake When the brake pressure reaches a maximum, defined
by the first maximum in the signal.

Off-brake When the driver releases the brake pedal completely,
defined by a value within range of the minimum static
value.

Steering signal

Turn-in An artificial point where the driver turns the steer-
ing wheel for the upcoming corner, defined by reach-
ing a percentage of the integrated steering angle used
throughout the corner.

Table 3.2: Description of characteristic points for detecting cornering of a race car

The first characteristic point occurring in the throttle signal is the off-throttle point,
however the no-throttle point is detected first and serves as a reference for detection
of the remaining points of the pattern. This approach enhances robustness as only
occasions where the driver fully lifts the throttle are detected and further analysed. A
partial lift, as could be seen for a corner where no braking is needed or after going on
full throttle to correct a driving mistake, is ignored and not considered a cornering event.
A percentage of rT,max,s is considered for detection of all points. It is chosen to be one
percent, however this value can be varied depending on the data to analyse in accordance
with the previously explained method to calculate the static signal values. As mentioned,
the no-throttle point is found first by comparing rT to rT,min,s. The sample where rT

is first within an interval of one percent around rT,min,s is considered the no-throttle
point, as shown in (3.1). From this reference the off-throttle point is found as the last
sample within the defined range of rT,max,s in compliance to (3.2). As illustrated in the
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throttle signal plot in Fig. 3.3 there might be throttle blips2 in the signal, therefore the
full-throttle point detection is next in the sequence. It is defined as the first data sample
within the defined range around rT,max,s, with the condition shown in (3.2), similar to
the off-throttle point. From this point the on-throttle point is found as the last point
within the interval around rT,min,s, analogue to the no-throttle point and as per (3.1).

rT ≤ rT,min,s + 0.01 ∗ rT,max,s (3.1)

rT ≥ rT,max,s − 0.01 ∗ rT,max,s (3.2)

Similar to the process of finding characteristic points for rT, the defined points for pB are
found by comparing the signal to pB,min,s. Since there is no maximum static value, the
99th percentile pB,p99 is used as maximum brake pressure for the respective lap. This
value is needed to define the one percent interval around pB,min,s. It cannot be calculated
for each corner individually, because this would require knowledge of the specific points
for the calculation of which the value is intended originally. An alternative approach by
using the extreme value in between detected throttle points would be possible but was
neglected to keep the pattern recognition independent for each signal. With the now
defined boundary values, the on-brake point can be found as the first sample exceeding
the one percent interval around pB,min,s, as indicated in (3.3). The max-brake point is
then found as the first peak following this point, indicating the first maximum in pB. For
many datasets this coincides with the absolute maximum during the corner. However,
as Fig. 3.3 shows the driver might increase the brake pressure after shortly releasing
the pedal. This is already an example for driver specific behaviour, as discussed in the
following section 3.1.2. Finally, the off-brake point is found from the max-brake point as
the first sample to be within the defined interval around pB,min,s, similar to the condition
for the on-brake point, again with reference to (3.3).

pB ≤ pB,min,s + 0.01 ∗ pB,p99 (3.3)

As previously explained and illustrated in Fig. 3.2, aS does not show patterns of similar
distinction compared to rT and pB. Therefore, a different approach is used to characterise
the turn-in point. The turn-in point can be idealised as the instant where the driver turns
the steering wheel for the upcoming corner, however it is not necessarily remaining at a
static value before due to constant use for stabilisation of the car. The off-throttle point
is chosen as a reference point for turn-in point detection for this reason. Furthermore,
the integral of aS is used to ignore short steering intervals for the detection. Such short
steering events can be seen, for example, when the driver has to correct a car that
is unstable under braking, where considerable amplitudes in aS can be noticed. The
reference value for the turn-in point is defined as the integral of aS from the time at the
off-throttle point toft to the time tS,max where the maximum steering angle within the

2Automatic opening of the throttle body by the ECU to control and match the engine revolutions
during down shifting.

20



3.1 Stabilisation Level

detected throttle event occurs. The turn-in point is then found as the sample where the
integral of aS reaches five percent of the reference value, as shown in (3.4). This method
defines an artificial point to characterise the steering behaviour which can be used in
relative comparison between datasets, however its absolute value has to be treated with
care. This definition is used for the approach presented in this work but does not claim
to be the right description for the turn-in point as this would be a debatable assertion.

∫ ttui

toft

aS dt ≥ 0.05 ∗
∫ tS,max

toft

aS dt (3.4)

Following the identification of cornering patterns for both rT and pB, a further plausi-
bility check is necessary with a possible fault being a mismatch in the total number of
throttle and braking events. This is solved by an algorithm that puts together each pair
of throttle and brake events which share the minimum distance among all combinations
and dismisses any superfluous events. Firstly, the matrix D containing the distance in
samples between any two detected events is calculated, as presented in (3.5), by sub-
tracting each brake event index Nonb from each throttle event index Noft. An exemplary
result is displayed in (3.6). Because seven throttle events and eight braking events were
detected for this lap, D is a 8x7 matrix. The brake events are represented by rows and
throttle events are gathered by the columns of D respectively. In this case it is evident
that brake event six needs to be removed to come to the desired solution of matching
all close by throttle and brake events. This requires the minima of each row and each
column to be on the diagonal of the matrix which needs to have the same size in both
dimensions. In other words this means that there is a similar number of throttle and
brake events which share the same order.

Dk,l = Noft,k −Nonb,l (3.5)

D =



9 −918 −3280 −5054 −6527 −7145 −8119
933 6 −2356 −4130 −5603 −6221 −7195
3298 2371 9 −1765 −3228 −3856 −4830
5069 4142 1780 6 −1467 −2085 −3059
6557 5630 3268 1494 21 −597 −1571
6846 5919 3557 1783 310 −308 −1282
7157 6230 3868 2094 621 3 −971
8139 7212 4850 3076 1603 985 11


(3.6)

In detail the example for D shown in (3.6) illustrates that the first detected throttle event
is closest to the first detected braking event. The first column indicates the distances
for all braking events to the first throttle event. Similarly, the first row indicates the
distances for all throttle events to the first braking event. The minimum absolute value
for both the first row and the first column is nine and has the same index in both. This
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Figure 3.3: Throttle, brake pressure and steering wheel angle signals with detected char-
acteristic points
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means the first braking event is located closest to the first throttle event and the other
way round. The same pattern can be seen for rows and columns two to five, which
is the desired end result. As already outlined, throttle event six, noted in column six,
has a minimum absolute distance of three samples to braking event seven. Braking
event six, noted in row six, has its minimal absolute distance of 308 samples relative
to throttle event six as well. This leaves two possible braking events for one throttle
event. According to 3 < 308, braking event seven is chosen to match with throttle
event six because it is located closer to it, while braking event six is removed. Following
this practical example, the algorithm for the plausibility check compares the minimum
absolute values for each row and column. If they coincide no further action is necessary.
If there is a difference, the combination with the lower absolute distance is kept while
the remaining events are removed. The resulting matrix D in the desired form, with the
minima on the diagonal, is shown in (3.7).

D =



9 −918 −3280 −5054 −6527 −7145 −8119
933 6 −2356 −4130 −5603 −6221 −7195
3298 2371 9 −1765 −3228 −3856 −4830
5069 4142 1780 6 −1467 −2085 −3059
6557 5630 3268 1494 21 −597 −1571
7157 6230 3868 2094 621 3 −971
8139 7212 4850 3076 1603 985 11


(3.7)

3.1.2 Objective Criteria

After the detection of characteristic points for each corner, objective metrics can be
calculated based on these points. The main goal is to derive scalar values that describe
the content of a time-series signal, more accurately any driver specific features concerning
the inputs of the driver to the car on the stabilisation level. As this topic is barely
examined and little information is available, the approach is to generate a wide range of
metrics which are potentially insignificant or redundant. Thereupon the defined metrics
are to be evaluated further in the following feature selection process to select a range of
significant objective metrics, which describe the driving style on the stabilisation level,
hence the control inputs of the driver.

The simplest set of metrics consists of gradients as well as distances and times between
detected corner points. These can be calculated directly from the respective signal
value at the characteristic points. A list of those metrics is provided in table 3.3 with
an explanatory plot for each metric. In these graphs the lap time is denoted as tL,
whereas sL is the current distance along the lap. The off-throttle gradient drThrOff ,
for example, is calculated as the quotient of the throttle difference between the off-throttle
and no-throttle point and the time difference between those points, as indicated in (3.8).
Similar gradients can be calculated for the off-throttle, on-throttle, on-brake and off-brake
phases as a linear approximation of the driver’s behaviour when applying those controls.
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3.1 Stabilisation Level

Furthermore, distances and time intervals between corner points are considered. The
rolling phase, for example, is the time where the driver does neither engage throttle or
brake, hence the car is rolling. This phase is defined by the off-brake and on-throttle
points. The absolute distance covered between those, referred to as absolute rolling
distance sRollAbs, can be calculated by subtracting the respective lap distance values
s as shown in (3.9). The distance covered in the rolling phase relative to the length of
the corner sRollRel is then obtained through dividing sRollAbs by the distance between
off-throttle and full-throttle point in accordance to (3.10). Additionally, the time t passed
during this phase is calculated in the same form as absolute and relative metric. Another
example is the trail braking phase, which is characterised in a similar way to the rolling
phase. Trail braking is a common term in motor racing for steering into a corner and
braking at the same time. Consequently, the points of interest for these metrics are the
turn-in point and the off-brake point to detect their overlap. Three additional metrics
have been defined to describe the corner of the observation instead of the driver’s inputs,
as the latter will probably be different for different corner types. To add some information
about the corner, the maximum and minimum velocity of the car within the detected
corner points, as well as their difference are added to the feature set. While the minimum
velocity gives an indication of the cornering speed at approximately maximum lateral
load, the combination of both, hence the difference, is a measure for the severity of the
braking phase before the corner.

drThrOff =
rT,oft − rT,not

toft − tnot
(3.8)

sRollAbs = sont − sofb (3.9)

sRollRel =
sRollAbs

sfut − soft
(3.10)

Nr. Metric Name Illustration Description

1 drThrOff Gradient of rT respective to
time between off-throttle
and no-throttle point

Table 3.3: List of gradient, time and distance based metrics on the stabilisation level
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Nr. Metric Name Illustration Description

2 drThrOn Gradient of rT respective to
time between on-throttle
and full-throttle point

3 dpBrkOn Gradient of pB respective to
time between on-brake and
max-brake point

4 dpBrkOff Gradient of pB respective to
time between max-brake
and off-brake point

5 tBrkDlyAbs Absolute time passed
between off-throttle and
on-brake point

6 sThrOffAbs Absolute distance covered
between no-throttle and
on-throttle point

7 sThrOffRel Distance covered between
no-throttle and on-throttle
point relative to the
distance between off-throttle
and full-throttle point

Table 3.3: List of gradient, time and distance based metrics on the stabilisation level
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Nr. Metric Name Illustration Description

8 tThrOffAbs Absolute time passed
between no-throttle and
on-throttle point

9 tThrOffRel Time between no-throttle
and on-throttle point
relative to the time interval
between off-throttle and
full-throttle point

10 sThrOnAbs Absolute distance covered
between on-throttle and
full-throttle point

11 sThrOnRel Distance covered between
on-throttle and full-throttle
point relative to the
distance between off-throttle
and full-throttle point

12 tThrOnAbs Absolute time passed
between on-throttle and
full-throttle point

13 tThrOnRel Time between on-throttle
and full-throttle point
relative to the time interval
between off-throttle and
full-throttle point

Table 3.3: List of gradient, time and distance based metrics on the stabilisation level

26



3.1 Stabilisation Level

Nr. Metric Name Illustration Description

14 sBrkAbs Absolute distance covered
between on-brake and
off-brake point

15 sBrkRel Distance covered between
on-brake and off-brake point
relative to the distance
between off-throttle and
full-throttle point

16 tBrkAbs Absolute time passed
between on-brake and
off-brake point

17 tBrkRel Time passed between
on-brake and off-brake point
relative to the time interval
between off-throttle and
full-throttle point

18 sRollAbs Absolute distance covered
between off-brake and
on-throttle point

19 sRollRel Distance covered between
off-brake and on-throttle
point relative to the
distance between off-throttle
and full-throttle point

Table 3.3: List of gradient, time and distance based metrics on the stabilisation level
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Nr. Metric Name Illustration Description

20 tRollAbs Absolute time passed
between off-brake and
on-throttle point

21 tRollRel Time between off-brake and
on-throttle point relative to
the time interval between
off-throttle and full-throttle
point

22 sTurnInAbs Absolute distance covered
between off-throttle and
turn-in point

23 sTurnInRel Distance covered between
off-throttle and turn-in
point relative to the
distance between off-throttle
and full-throttle point

24 tTurnInAbs Absolute time passed
between off-throttle and
turn-in point

25 tTurnInRel Time between off-throttle
and turn-in point relative to
the time interval between
off-throttle and full-throttle
point

Table 3.3: List of gradient, time and distance based metrics on the stabilisation level
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Nr. Metric Name Illustration Description

26 sTrailAbs Absolute distance covered
between turn-in point and
off-brake point

27 sTrailRel Distance covered between
turn-in point and off-brake
point relative to the
distance between off-throttle
and full-throttle point

28 tT railAbs Absolute time passed
between turn-in point and
off-brake point

29 tT railRel Time covered between
turn-in point and off-brake
point relative to the time
between off-throttle and
full-throttle point

30 vCarMax Maximum velocity within
the corner interval

31 vCarMin Minimum velocity within
the corner interval

Table 3.3: List of gradient, time and distance based metrics on the stabilisation level
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Nr. Metric Name Illustration Description

32 vCarDiff Difference between
maximum and minimum
velocity within the corner
interval

Table 3.3: List of gradient, time and distance based metrics on the stabilisation level

Because the introduced metrics only capture linear aspects of the driver’s control inputs,
further measures are defined to describe the non-linearity of the signal. The on-throttle
and off-brake phases have been characterised by a linear gradient so far, which is extended
by computing the Root Mean Square Error (RMSE) of the actual signal to its linear
approximation for a measure of the linearity of the driver’s inputs. This is however only
possible for rT and pB, because aS does not have similar distinct patterns, for example,
when the driver applies the throttle from 0 % to 100 %. Exemplary graphs are shown in
Fig. 3.4, where the topmost graph displays pB, the detected corner points and the linear
approximation for the off-brake phase. The two additional graphs in Fig. 3.4 illustrate
the first and second derivative of pB. The derivatives are calculated from the respective
signal with a low-pass filter applied to smooth it before differentiation. Within this work
a finite impulse response (FIR)-filter with a passband of 2 Hz has been used. Each zero
crossing in the first derivative p′B represents either a local maximum or minimum in pB.
The zero crossings in the second derivative p′′B correlate with extreme values of the first
derivative, which in turn are inflection points of pB. A set of metrics is defined using
pB, p′B and p′′B to describe the number of peaks in pB, as well as the number of zero
crossings, the variance and the RMSE to zero for both derivatives. Those are applied
in a similar way to rT and aS. A threshold of two is used for the detection of peaks,
which means the respective signal needs to drop by this value on each side of the peak
to be considered. These metrics are again expected to be correlated, however it is not
clear which ones contain the most information about the driver, thus the definition of
potentially redundant features to be evaluated at a later stage. These additional metrics
are listed in table 3.4.
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3.1 Stabilisation Level

Figure 3.4: Exemplary brake signal with linear approximation for the off-brake phase,
first and second derivative
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Nr. Metric Name Illustration Description

33 rThrRmseLin RMSE of rT respective to a
linear approximation
between on-throttle and
full-throttle point

34 pBrkRmseLin RMSE of pB respective to a
linear approximation
between off-brake and
no-brake point

35 NThrPeaks Number of local maxima in
rT during the on-throttle
phase

36 NdThrZero Number of zero crossings in
r′T during the on-throttle
phase

37 rdThrV ar Variance of r′T during the
on-throttle phase

38 rdThrRmse RMSE of r′T to zero during
the on-throttle phase

Table 3.4: List of additional metrics on the stabilisation level
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Nr. Metric Name Illustration Description

39 Nd2ThrZero Number of zero crossings in
r′′T during the on-throttle
phase

40 rd2ThrV ar Variance of r′′T during the
on-throttle phase

41 rd2ThrRmse RMSE of r′′T to zero during
the on-throttle phase

42 NBrkPeaks Number of local maxima in
pB during the off-brake
phase

43 NdBrkZero Number of zero crossings in
p′B during the off-brake
phase

44 rdBrkV ar Variance of p′B during the
off-brake phase

Table 3.4: List of additional metrics on the stabilisation level
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Nr. Metric Name Illustration Description

45 rdBrkRmse RMSE of p′B to zero during
the off-brake phase

46 Nd2BrkZero Number of zero crossings in
p′′B during the off-brake
phase

47 rd2BrkV ar Variance of p′′B during the
off-brake phase

48 rd2BrkRmse RMSE of p′′B to zero during
the off-brake phase

49 NStrPeaks Number of local maxima in
aS after the turn-in point

50 NdStrZero Number of zero crossings in
a′S after the turn-in point

Table 3.4: List of additional metrics on the stabilisation level
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Nr. Metric Name Illustration Description

51 rdStrV ar Variance of a′S after the
turn-in point

52 rdStrRmse RMSE of a′S to zero after
the turn-in point

53 Nd2StrZero Number of zero crossings in
a′′S after the turn-in point

54 rd2StrV ar Variance of a′′S after the
turn-in point

55 rd2StrRmse RMSE of a′′S to zero after
the turn-in point

Table 3.4: List of additional metrics on the stabilisation level

Additional to the direct evaluation of time-series signals, the frequency spectrum of rT,
pB and aS was assessed for any driver specific characteristics. Two approaches to describe
the spectrum have been implemented to determine their significance in the following
feature selection process. The signal needs to be converted from the time domain to the
frequency domain in the first step. This is achieved by calculating the discrete Fourier
transform using a Fast Fourier Transform (FFT) algorithm based on the fftw library
published by Frigo and Johnson [15].
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3.1 Stabilisation Level

Figure 3.5 shows an exemplary rT signal in the distance domain over sL as well as in
the frequency domain over fT. The time-series data has been cut to the on-throttle
phase before applying the FFT algorithm. One approach to characterise the shown
spectrum is to find the first local maximum after the zero frequency component. This
allows to get four metrics to describe this peak further. In addition to the magnitude
and frequency of the maximum, a measure for the peak width and prominence can also
be calculated. The peak prominence is indicated with the dotted line in the frequency
spectrum graph in Fig. 3.5 and shows the height of the local maximum compared to
the surrounding minima. The peak width is measured at half-prominence, as shown by
the dashed line. The second approach to describe the frequency spectrum of the control
input signals is to sample the magnitude at specific frequencies, thus generating a metric
for each frequency. In accordance to the general method of generating metrics that are
evaluated and selected in a second step, six metrics capturing the range from 0 Hz up to
2.5 Hz have been chosen based on the gradient of the frequency spectrum, alongside to
the four metrics describing the first peak. All metrics derived from the aforementioned
approaches using the rT, pB, and aS signals are listed in table 3.5.

Figure 3.5: Exemplary throttle signal in time and frequency domain
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Nr. Metric Name Illustration Description

56 rThrFftPeak Magnitude of the first peak
in the frequency spectrum
of rT during the on-throttle
phase

57 fThrFftPeak Frequency of the first peak
in the frequency spectrum
of rT during the on-throttle
phase

58 rThrFftPeakProm Magnitude of the first peak
in the frequency spectrum
of rT during the on-throttle
phase relative to
neighbouring minima

59 rThrFftPeakWidth Width of the first peak in
the frequency spectrum of
rT during the on-throttle
phase at half-prominence

60 pBrkFftPeak Magnitude of the first peak
in the frequency spectrum
of pB during the off-brake
phase

61 fBrkFftPeak Frequency of the first peak
in the frequency spectrum
of pB during the off-brake
phase

Table 3.5: List of frequency based objective metrics on the stabilisation level
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Nr. Metric Name Illustration Description

62 rBrkFftPeakProm Magnitude of the first peak
in the frequency spectrum
of pB during the off-brake
phase relative to
neighbouring minima

63 rBrkFftPeakWidth Width of the first peak in
the frequency spectrum of
pB during the off-brake
phase at half-prominence

64 aStrFftPeak Magnitude of the first peak
in the frequency spectrum
of aS after the turn-in point

65 fStrFftPeak Frequency of the first peak
in the frequency spectrum
of aS after the turn-in point

66 rStrFftPeakProm Magnitude of the first peak
in the frequency spectrum
of aS after the turn-in point
relative to neighbouring
minima

67 rStrFftPeakWidth Width of the first peak in
the frequency spectrum of
aS after the turn-in point at
half-prominence

Table 3.5: List of frequency based objective metrics on the stabilisation level

38



3.1 Stabilisation Level

Nr. Metric Name Illustration Description

68 rThrFft00 Magnitude of rT frequency
spectrum during the
on-throttle phase at 0 Hz

69 rThrFft05 Magnitude of rT frequency
spectrum during the
on-throttle phase at 0.5 Hz

70 rThrFft10 Magnitude of rT frequency
spectrum during the
on-throttle phase at 1.0 Hz

71 rThrFft15 Magnitude of rT frequency
spectrum during the
on-throttle phase at 1.5 Hz

72 rThrFft20 Magnitude of rT frequency
spectrum during the
on-throttle phase at 2.0 Hz

73 rThrFft25 Magnitude of rT frequency
spectrum during the
on-throttle phase at 2.5 Hz

Table 3.5: List of frequency based objective metrics on the stabilisation level
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Nr. Metric Name Illustration Description

74 pBrkFft00 Magnitude of the pB

frequency spectrum during
the off-brake phase at 0 Hz

75 pBrkFft05 Magnitude of the pB

frequency spectrum during
the off-brake phase at
0.5 Hz

76 pBrkFft10 Magnitude of the pB

frequency spectrum during
the off-brake phase at
1.0 Hz

77 pBrkFft15 Magnitude of the pB

frequency spectrum during
the off-brake phase at
1.5 Hz

78 pBrkFft20 Magnitude of the pB

frequency spectrum during
the off-brake phase at
2.0 Hz

79 pBrkFft25 Magnitude of the pB

frequency spectrum during
the off-brake phase at
2.5 Hz

Table 3.5: List of frequency based objective metrics on the stabilisation level
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Nr. Metric Name Illustration Description

80 aStrFft00 Magnitude of the aS

frequency spectrum after
the turn-in point at 0 Hz

81 aStrFft05 Magnitude of the aS

frequency spectrum after
the turn-in point at 0.5 Hz

82 aStrFft10 Magnitude of the aS

frequency spectrum after
the turn-in point at 1.0 Hz

83 aStrFft15 Magnitude of the aS

frequency spectrum after
the turn-in point at 1.5 Hz

84 aStrFft20 Magnitude of the aS

frequency spectrum after
the turn-in point at 2.0 Hz

85 aStrFft25 Magnitude of the aS

frequency spectrum after
the turn-in point at 2.5 Hz

Table 3.5: List of frequency based objective metrics on the stabilisation level
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3.2 Guidance Level

3.2 Guidance Level

According to the three-level-model of the driving task, the previously discussed objective
metrics describe the driving style on the stabilisation level where the driver controls the
car to stay on a desired trajectory. This section covers objective metrics to describe the
guidance level of the driving task where the driver comes up with the desired trajectory to
navigate the track as quickly as possible. While a trajectory can be seen as a combination
of velocity and direction of the vehicle movement, the latter plays an important role in
the form of the driving line through a corner.

3.2.1 Curvature of the Vehicle Trajectory

As shortly mentioned in the introduction to this section, the driving line plays a major
role in analysing the driving style on the guidance level. A good description of the driving
line is possible using the coordinates of the vehicle in its surrounding space, xc and yc,
giving the position of the car on a surface. Since the height of the car is depending on
track position due to a given altitude profile and is not a degree of freedom under the
driver’s influence, the zc coordinate is neglected. Despite the accurate information of the
car’s position these variables can be improved to describe the approach a driver is using
to negotiate a turn. The instantaneous radius of the driving line r, or its inverse, the
instantaneous curvature of the path κ, κ = 1/r, allows the reduction of the information
of xc and yc into one variable. Figure 3.6 shows two line segments p12 and p23, which
serve as examples for discrete driving line data. The calculation of both r and κ require
approximation by a circle, while the discrete samples and consequently line segments are
an approximation to the actual driving line itself. The circumscribing circle of the three
points P1, P2 and P3 is used to approximate the two linear segments as it contains the
discrete points. Contrary the inscribed circle would not contain the points, therefore the
circumscribed circle approximates closer to the original continuous driving line. In this
example the curvature is calculated at P2. The derived circle’s curvature κ is defined as
shown in (3.11). In other words, the curvature is the change of inclination, or heading
angle, for the vehicle reference, over the path length to do so. The approximation of s by
P1P2 and P2P3 now allows calculation of κ as shown in (3.12), while ϕ can be calculated
directly from the angle between p12 and p23 using the commonly known equation shown
in (3.13). The relation of the angles ϕ between p01 and p03 and in this case ϕ̃ between
p12 and p23 can be proven using the angle α and the isosceles triangle spanned by P0,
P2 and P3. As shown in (3.14), ϕ

2 is defined by the sum of angles in a triangle, while ϕ̃
2

is the angle between p23 and the tangent of the circumscribing circle in P2.

κ := lim
∆s→0

∆ϕ

∆s
=

dϕ

ds
(3.11)

κ ∼ ϕ

‖p12‖+ ‖p23‖
(3.12)
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Figure 3.6: Exemplary circle for curvature calculation

ϕ

2
= arccos

p12 · p23

‖p12‖ ‖p23‖
(3.13)

ϕ

2
= π − 2α

ϕ̃

2
=
π

2
− α (3.14)

ϕ̃ =
ϕ

2

An important difference between r and κ is the behaviour for driving lines that approach
straight lines. In this case ϕ will approximate to zero, resulting in the two line segments
considered before and after a point becoming collinear. The radius will lead to compu-
tational problems in this extreme case of collinear segments, due to lim

ϕ→0
r = ∞. The

curvature in contrary follows lim
ϕ→0

κ = 0, leading to a more stable solution in the context

of running calculations automatically over various data sets and is therefore the preferred
metric in this work.
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3.2.2 Reference Trajectory

If data of the vehicle’s Center of Gravity (CoG) coordinates are available, differences in
driving line can easily be visualised as illustrated in Fig. 3.7. The driving lines of three
drivers are shown, with a clear difference in their respective approach to the corner. The
specific turn is number six in Hockenheim, the hairpin after the ”Parabolica” which is a
very long corner. This is a right-hand turn, thus the braking zone is in the lower part
of the shown track segment. It is clearly visible that driver one, shown by the line with
circle markers, turns in earlier compared to the other two drivers. Driver three, marked
with triangles, on the other hand keeps the car on a straight line longer with a later turn-
in. Regarding the corner exit, driver one is on a wider line which in turn means drivers
two and three exit the corner on a more straight trajectory. While these differences are
clearly visible, it is not trivial to describe the aforementioned characteristics without
a second driving line for reference. This however would imply only relative measures
between different driving lines, which is why an absolute reference is necessary to ensure
comparability between data that has been gathered and analysed on different occasions.
This leaves three possible approaches:

1. A reference racing line

2. The track centre line

3. The track outlines

A racing line, either artificially created or from an exemplary dataset, is always biased.
This could result from a specific driving style if it is sourced from recorded car data, a
specific car setup when defined by lap simulation, or by personal opinion if drawn by an
engineer. From this point, centre and outlines seem to be better alternatives as they are
based on the available track layout and can be measured accurately. Furthermore, these
lines are the same for each driver and car, given a specific track layout.

A considerable fact about absolute coordinates is that they need to be in the same
coordinate system to be comparable. Within the scope of this work this fact plays a
role for the aforementioned absolute references, as they are not supplied in the same
coordinate space where the vehicle data is recorded in. In this specific case, the centre
line is not available in the vehicle coordinate system, but track outlines are stored in
both the vehicle and the alternative coordinate space. However, the track outline in the
vehicle space is of minor quality compared to the alternative source, for example because
of sharp edges where multiple roads meet to allow different track layouts. An example
is shown in Fig. 3.8. For the reason of sufficient data being available within the vehicle
coordinate space to match it with any other sources, such as drawings3, an optimisation
approach was chosen to derive the transformation rules between the coordinate systems.
Generally such a transformation consists of a rotation of coordinates by a rotational
matrix T1 2 and a positional offset vector o21 following (3.15). The optimisation problem

3Usually from Computer Aided Design (CAD) systems
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Figure 3.7: Exemplary driving lines and track definition

is formulated to minimise a cost function that measures the distance between one path
and the transformed second path. The distance metric needed for this approach is
discussed in more detail in the following paragraph. Its output is a vector of distances
for each point of the transformed path to its nearest point on the reference path. The
cost function then calculates the Root Mean Square (RMS) of this distance vector, which
is essentially the RMSE of the transformed path to the reference path. The Inner-Points
algorithm [5] is used in order to minimise the defined cost function. The result is a set of
T and o to transform the alternative data source into the reference sources coordinate
system.

x1 = T1 2x2 + o21 (3.15)

A more detailed explanation of the metric used to measure the distance between driving
lines and track paths is provided in this paragraph. The function is iterated over each
discrete point of the input path, which is then compared to the reference path. The
shortest distance between those two paths is a perpendicular line from the analysed
point to the closest section of the reference path. First, the euclidean distance of the
current point to all points on the reference path is calculated to find the nearest point
on the reference. Together with its preceding and succeeding point two lines are defined.
The closest distance between the analysed point on the input path and the reference path
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Figure 3.8: Track outlines for the Lausitzring in DTM configuration

must be an element of those two lines. Figure 3.9 shows an exemplary path illustrated
by a solid line and a reference path shown by a dashed line. The selected point P0 and
its closest point P2 on the reference path are marked by circles. The normals of both
p12 and p23 through P2 are drawn with dotted lines. It is now evident that P0 can be
located on either side of both normals or in between them which leaves three choices to
calculate the distance between P0 and the reference path:

1. Orthogonal distance between P0 and p12

2. Orthogonal distance between P0 and p23

3. Distance between P0 and P2, P0P2

The third option is introduced to prevent measuring perpendicular from P0 to an extrap-
olation of either p12 or p23, which could be of smaller magnitude compared to P0P2 and
distort the measure. The decision between those options is made by using the angle α1

between p20 and p21 or α2 between p20 and p23 respectively. The conditions for each
aforementioned option are in the same order:

1. α1 <= π
2 ∩ α2 >

π
2

2. α1 >
π
2 ∩ α2 <= π

2

3. α1 >
π
2 ∩ α2 >

π
2

Finally, the distance of P0 to PS, indicated by a triangle marker in Fig. 3.9, can be
calculated by exploiting the orthogonality of p0S and p23 using their trigonometric
relation as shown in (3.16). In case of a direct measurement from P0 to P2 the distance
is calculated as the norm of the vector between them.
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Figure 3.9: Exemplary paths and distance metric illustration

P0PS = P0P2 ∗ sinα2 (3.16)

In addition to the absolute distance value, the metric is also directional to allow distin-
guishing on which side of the reference path a point is located. It is defined that the
sequence of points indicates the direction of a path and a point that is left of the refer-
ence path with respect to its direction has a positive distance measure. Consequently, a
point on the right of the reference path has a negative distance measure. The sign of the
distance metric is obtained by using the cross product of p20 and p21 or p23 respectively.
All coordinates are extended by a z-component equal to zero. The cross product of those
vectors will then be directed along the z-axis and change sign depending on the position
of the vectors to each other. The sign of the z-component of the cross product is used
to define the sign of the distance measure.

3.2.3 Objective Criteria

The approach to define objective criteria for the driving style on the guidance level follows
the previously outlined method for the stabilisation level, as discussed in subsection
3.1.2. The mainly used signals are the already introduced curvature κP and distances
to the reference lines as a representation of the essential information contained in the
coordinates of the vehicle xc and yc.
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The general idea is to capture the different approaches to a corner, as exemplarily shown
in Fig. 3.7. One approach is to analyse the point with the maximum curvature. Because
the curvature is signed for left- and right-hand corners, this could either be a minimum
or a maximum. Common to the previous definition of metrics the value itself, as well
as the time and distance of the instance both in absolute means from the off-throttle
point and relative to the corner are calculated. The magnitude of the extreme point is
simplified to its absolute value allowing only positive measures. All metrics defined for
driving style on the guidance level are noted in table 3.6.

As already introduced, also the track limits are considered as an absolute reference. The
point where the vehicle path reaches the minimum distance to the inner track edge dE is
commonly referred to as the apex in motor racing. The derived metrics follow the same
approach of absolute value and relative position in time and lap distance domain once
again. The distance between the driving line and the inner track limit is calculated using
the previously explained distance metric and makes use of the introduced sign to allow
detecting a driver cutting the corner which will lead to a change of sign in the result.
The magnitude of the distance at the apex would have different signs for left- and right-
hand corners with this approach. Since a change of sign is wanted to indicate crossing
the reference line independently of the corner, a different approach is used. Instead of
analysing the absolute value, the sign of the distance measure throughout the corner is
manipulated by the sign of its value at the off-throttle point. This leads to a positive mea-
sure that will turn negative if the reference line is crossed. The exact same approach is
used for another set of metrics using the distance to the track centre line dC instead. The
main difference is that the distance to the centre line usually features two zero crossings,
except for very few corners where drivers tend to stay on one side of the centre line.

Exemplary driving lines are shown together with the track limits and track centre line
in Fig. 3.7, as discussed in section 3.2.2. The elaborated approach to a corner using the
example in Fig. 3.7 is commonly referred to as ”V-ing”a corner which is due to the shape
of the car velocity and driving path. Longer straight line braking with a more sharp turn
of the car and the consequently straighter trajectory on corner exit, as well with usually
a late apex will result in a clearer edge visible in time-series data, which will in turn
lead to the impression of the letter ”V”. This is contrary to a more rounded approach
to a corner, essentially employing more trail braking that usually results in smoother
time-series signals. Three metrics are defined to capture this aspect to examine which
is suited best as an objective metric for the driving style. All three metrics measure
an angle, the ”V-angle”, to describe the behaviour of the signals. The analysed signals
are the curvature of the path, the distance to the inner track limits and the distance to
the track centre line. The ”V-angle” is then calculated as the angle between the vectors
from the respective signal’s minimum to the turn-in point as well as to the full-throttle
point. Exemplary signals are shown in Fig. 3.10 to illustrate the metrics. The graphs
show curvature, distance to inner track limit and distance to track centre line from top
to bottom, with the turn-in point marked by a diamond, the minimum of the signal
marked by a triangle and the full-throttle point marked by a circle.
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Figure 3.10: Exemplary signals for curvature, distance to inner track limit, and track
centre line with points for ”V-angle” calculation
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Nr. Metric Name Illustration Description

86 sCurvAbs Absolute distance covered
between off-throttle point
and the maximum of κP

87 sCurvRel Distance covered between
off-throttle point and the
maximum of κP relative to
the distance between the
off-throttle and full-throttle
point

88 tCurvAbs Absolute time passed
between off-throttle point
and the maximum of κP

89 tCurvRel Time passed between
off-throttle point and the
maximum of κP relative to
the time between the
off-throttle and full-throttle
point

90 sApexAbs Absolute distance covered
between off-throttle point
and the apex of the corner

91 sApexRel Distance covered between
off-throttle point and corner
apex relative to the distance
between the off-throttle and
full-throttle point

Table 3.6: List of objective metrics for the guidance level
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Nr. Metric Name Illustration Description

92 tApexAbs Absolute time passed
between off-throttle point
and the apex of the corner

93 tApexRel Time passed between the
off-throttle point and the
corner apex relative to the
time between the off-throttle
and full-throttle point

94 sCenAbs Absolute distance covered
between off-throttle point
and the minimum distance
measured to the centre line
of the corner

95 sCenRel Distance covered between
off-throttle point and the
minimum distance measured
to the centre line of the
corner relative to the
distance between the
off-throttle and full-throttle
point

96 tCenAbs Absolute time passed
between off-throttle point
and the minimum distance
measured to the centre line
of the corner

Table 3.6: List of objective metrics for the guidance level
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3.2 Guidance Level

Nr. Metric Name Illustration Description

97 tCenRel Time passed between the
off-throttle point and the
minimum distance measured
to the centre line of the
corner relative to the time
between the off-throttle and
full-throttle point

98 cMax Maximum of the absolute
value of κP

99 cInt Integral of κP between
off-throttle and full-throttle
point

100 xApex Minimum distance
measured from the driving
path to the inner track
limits between the
off-throttle and full-throttle
point

101 xCen Minimum distance
measured from the driving
path and the centre line of
the track between the
off-throttle and full-throttle
point

102 aV Curv Angle between the slopes of
κP from turn-in point to the
maximum of κP and back to
the full-throttle point

Table 3.6: List of objective metrics for the guidance level
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Nr. Metric Name Illustration Description

103 aV Apex Angle between the slopes of
the distance measure to the
inner track limits from
turn-in point to its
minimum and back to the
full-throttle point

104 aV Cen Angle between the slopes of
the distance measure to the
track centre line from
turn-in point to its
minimum and back to the
full-throttle point

Table 3.6: List of objective metrics for the guidance level
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3.3 Metric Evaluation

3.3 Metric Evaluation

The previous sections described in depth the calculation of objective criteria, or features
as referred to in the machine learning domain. The general method applied throughout
this work leads to a large set of available features to describe the driver. Those are likely
of varying significance and are assumed to contain redundancies as well. Therefore,
a classification problem is formulated, in which the driver should be identified from
a given observation, meaning all available features for one detected corner. Feature
selection methods are presented and applied to the dataset to reduce the amount of
metrics to a number that can be interpreted yet still contains the wanted information
about the driving style, represented as the information needed to identify the driver in
this formulation. This classification problem additionally provides a proof of concept, as
the identification of a driver from the available metrics implies that enough information
is contained within those to differentiate individual drivers.

Guyon et al. present a broad overview of feature selection methods. These can be split
into three general categories: filter methods, wrapper methods, and embedded methods.
Filter methods are a preprocessing step that is independent of the chosen predictor
for the classification problem. Feature ranking falls into this category, with the goal to
compute a score for each feature that indicates its value to the predictor. For a dataset of
m observations xk, yk (k = 1..m) consisting of n features xk,i (i = 1..n) and one output
target yk, a scoring function S(i) is computed from the values xk,i and yk, k = 1..m.
The method relies on the assumption, that a high score indicates a useful feature which
allows sorting all features in decreasing order of S(i). Feature ranking is computationally
efficient, because for the given example dataset only n scores have to be computed and
sorted. [20]

Contrary to filter methods, wrapper methods rely on the chosen predictor to find an
optimal subset of features. The wrapper methodology evaluates the quality of predictions
using different subsets of features and the chosen predictor. This generally needs three
prerequisites, namely the choice of the predictor to solve the classification problem, the
metric used to asses the prediction performance, and a method to navigate through the
space of all possible feature subset combinations. Consequently, the exploration has to
be defined carefully to avoid unnecessary computational effort or even running into a
NP-hard4 problem [1]. The main difference between filter and wrapper methods is that
the latter incorporates the prediction method while filter methods are independent from
it. [20]

An example for a filter method is using correlation criteria to rank features according to
their correlation with the target, or to detect correlated features that might be redun-
dant. Unfortunately, the calculation of correlations with the target is not possible for
classification problems, since the target is non-ordinal. A common measure for correla-
tion is the Pearson coefficient, which gives a measure of linear relationship between two

4A measure used for assessment of calculation complexity, NP means non-deterministic polynomial
time.
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variables. The Pearson product-moment coefficient ρ is defined as shown in (3.17) [17].
It is generally computed using the mean values xi, xj of xi and xj , in form of the sample
correlation coefficient ρ according to (3.18). A correlation matrix R can be calculated
where Ri,j = ρ(xi, xj). The diagonal of this matrix is 1 as it represents the linear cor-
relation of each feature with itself. The other entries show a measure for correlation of
each feature with each other feature. This allows to inspect individual correlations as
well as calculating a mean correlation value ρi for all metrics. While correlations among
features and generally highly correlated features can be identified with this method, it
does not allow assumptions about which of two correlated features is better suited to
solve the classification problem.

ρxi,xj =
cov(xi, xj)√

var(xi)var(xj)
(3.17)

ρxi,xj =

∑m
k=1(xk,i − xi)(xk,j − xj)√∑m

k=1(xk,i − xi)2
∑m

k=1(xk,j − xj)2
(3.18)

Another filter method is the Relief algorithm first proposed by Kira et al. Relief basically
uses the Euclidean Distance to weigh features, but overcomes the general limitations of
distance metrics for high-dimensional spaces by making use of the target class, which is
available for supervised learning approaches. The original algorithm is limited to two-
class problems. It picks samples as triplets of an observation xk, its near-hit observation
and its near-miss observation. Near-hit describes observations, which are close to xk in
terms of the n-dimensional Euclidean Distance and in the same class as xk. Contrary
near-miss means, that an observation is close to xk but with a different class compared
to xk. A difference measure diff(xi, yi) is used to calculate feature weights, where xi and
yi are the values of the same feature for two samples. For numerical features diff(xi, yi)
is calculated according to (3.19). The difference of the features is normalised to the
interval [0, 1] with the normalisation unit NUi. Feature weights Wi are then updated
iteratively for each sample according to (3.20), using the triplet of sample, near-hit and
near-miss instance. Kira et al. tested the relevance of the feature weights assigned
by Relief using known datasets, which have been manipulated to contain irrelevant
features and noise. The feature weights assigned by Relief are in the interval [−1, 1],
where negative weights indicate irrelevant features and positive weights show relevance
and allow ranking features as well. [24]

diff(xi, yi) = (xi − yi)/NUi (3.19)

Wi = Wi − diff(xi,near-missi)
2 + diff(xi,near-hiti)

2 (3.20)
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The Relief algorithm has been evolved further by Kononenko [26], resulting in the vari-
ants Relief-A to Relief-F. The first evolution is Relief-A, which averages the contributions
of more than one nearest-hit and nearest-miss per sample to increase the reliability of
the probability approximation. Relief-B to Relief-D are variants seeking to solve the
problem of missing values, where Relief-D performs significantly better compared to the
other options. In this approach unknown values are handled by calculating the prob-
ability that two instances have different values instead of the difference measure. The
conditional probabilities are approximated with relative frequencies from the training
set. The inability of Relief to solve multi-class problems is addressed by Relief-E and
Relief-F. Where Relief-E simply takes the nearest neighbour with a different class as
a near-miss instance, Relief-F finds a near-miss for each other class and averages their
contributions to the feature weights. Relief-F outperforms Relief-E and, incorporating
the advantages of Relief-A and Relief-D, became the most commonly used Relief algo-
rithm. Relief has been presented as being non-myopic, i.e. it estimates the quality of
a given feature in the context of other features, and non-parametric, i.e. it makes no
assumptions regarding the population distribution or sample size [60].

Wrapper methods, as briefly mentioned before, use a predictor together with a perfor-
mance metric to asses feature subsets. Since it is computationally extensive to evaluate
the whole feature subset space, two general approaches are used independently of the
predictor. Forward selection starts with an empty feature set and increases the feature
subset size on each iteration, trains the predictor and rates its performance. Contro-
versially backward selection starts with the full feature set, decreasing the subset size
on each iteration. Both approaches can also add or remove multiple features at once
to reduce calculation time. While forward selection is generally computationally more
efficient than backward selection, it tends to find weaker subsets as features are assessed
individually rather than in context with other features. Backward selection on the other
hand might eliminate a feature that is better suited to split data by itself in favour
of other features that provide higher performance when combined [20]. An example of
possible feature subsets for a dataset with four features is illustrated in Fig. 3.11. While
a forward selecting algorithm would work through the combinations from left to right,
the backward selection method works the other way round from right to left.

The metric used to evaluate prediction performance throughout this work is accuracy,
which is defined as the probability of a correct classification for a random observation.
Other metrics, for example precision and recall, place higher emphasis on false positive
or false negative classification. Such metrics are useful for applications where the cost for
misclassification is high. Coming back to the accuracy of a classifier, there are different
ways to estimate this probability measure. Kohavi provides a study comparing different
methods and gives a recommendation based on tests with various datasets. The Holdout
method is described as a global split of the available data, which is often referred to as
a training and a testing set. The purpose of the test set is to evaluate the prediction
performance on observations that have not been used for training. Such a dataset with
unseen data helps with detecting over fitting, as in a classifier that simply memorises the
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Figure 3.11: Exemplary feature subsets for four features

training set (a perfect learner). This approach significantly reduces the available train-
ing data, which is commonly around two-thirds of the available data. One approach to
avoid this reduction of data is k-Fold Cross-Validation. This approach divides available
data in k mutually exclusive folds. The classifier is trained k times with k − 1 folds,
using the remaining fold for testing. The accuracy is then averaged over the folds, which
provides an additional measure of its variance. While complete k-Fold Cross-Validation
would require to draw all ( m

m/k ) possible combinations of m/k samples out of m available
observations, usually only one split into k folds is considered, approximating the com-
plete Cross-Validation. A second approach contrary to the k-Fold method is Bootstrap
Sampling. This means to draw m instances from a dataset of size m with replacement.
Subsequently the sampled dataset contains the same number m of instances, however due
to drawing with replacement some observations of the original dataset are never chosen.
These form the test set. Similar to k-Fold Cross-Validation, this process is repeated to
obtain multiple combinations of training and test data. Finally, Stratifying is a method
to preserve the original class distribution within the test and training sets. Kohavi sug-
gests that Stratified 10-Fold Cross-Validation is best for model selection regarding bias
to specific classification problems and variance of the estimation [25].

The classifier used within the scope of this thesis is Random Forests, which is based on
Decision Trees. These were introduced as Classification And Regression Trees (CART)
by Breiman et al. Classification Trees are a machine learning method to predict the
class of an observation from several features by splitting the data at nodes, which each
use one of the available features to split data. The final nodes are called leafs and have
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Figure 3.12: Data points of the iris dataset [14]

a class value assigned. For better illustration, Fisher’s iris dataset5 [14] is used as an
example. The dataset consists of 150 observations of iris plants and five features. The
feature species contains labels for the three different plants and is chosen as the class.
Features petallength and petalwidth allow a good separation of the available data, as
demonstrated in Fig. 3.12, while sepallength and sepalwidth are of minor importance
to the Decision Tree. Figure 3.13 shows an exemplary Classification Tree trained from
the iris dataset. The top most node splits the data by the feature petallength, and
all observations where Petal.Length < 2.5 is true are labelled Setosa according to the
following leaf. The observations with Petal.Length >= 2.5 are split at a following node
using the feature petalwidth on the condition Petal.Width < 1.8. The presented tree
structure represents what is also visible to the viewer in Fig. 3.12, however this is only
possible in such a simple example. Decision Trees allow using the same feature more
than once, which caters for complex interdependencies between features. Furthermore,
Decision Trees are robust against outliers. [3]

The Random Forest method used in this work is based on the discussed Decision Trees.
It was proposed by Breiman and is an ensemble of Decision Trees that vote for the most
popular class. The individual trees use independent, identically distributed random
vectors together with the training set. Each vector contains information about the
observations to use, and the features considered for each split. Breiman states that
Random Forests are of similar or better accuracy compared to Adaboost, while being
relatively robust against outliers and noise as well as faster than bagging or boosting
algorithms. Furthermore, Random Forests give internal estimates of error, as well as
feature importance and are easy to implement on parallel computing platforms. Bagging
is used to enhance accuracy, but also to provide the Out-of-Bag (OOB) error as an
estimate for the generalisation error, which is proven to be of similar value than a test
set. The OOB error is calculated by testing on the observations left out in each Bootstrap

5Available from the UCI Machine Learning Repository [13]
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Figure 3.13: Classification Tree for the iris dataset [14]

Model Accuracy estimation Error rate

Classification tree Test set 6.67 %

Random forest OOB 5.71 %

Random forest Test set 4.44 %

Table 3.7: Accuracy estimations for Classification Tree and Random Forest

training set for the individual trees. Exploration of the forest is possible by permuting
features to see the effect on the prediction accuracy. After each tree is constructed the
values for a feature in the OOB observations are randomly permuted and the tree is
tested with the OOB data. At the end of the run all class votes with the permuted
feature are compared to the true class, which gives a misclassification rate for each
feature. The output is a percentage increase in misclassification rate compared to the
OOB rate with intact features. [4]

Using the iris dataset [14] again allows to illustrate a comparison of Classification Trees
and Random Forests. A test set containing 30 % of the data is used to estimate the accu-
racy for both models. Table 3.7 reports the achieved accuracies. Random Forest is able
to further improve the error rate of the Decision Tree. The feature importance for the
Random Forest, in terms of decrease in accuracy using permutation, is shown in Fig. 3.14.

Another method used for feature selection in this work is Recursive Feature Elimination
(RFE), a backward searching wrapper method. The general approach for each iteration,
starting from the full feature set, is:

1. Train and rate the classifier

2. Compute the ranking criterion for all used features

3. Eliminate the feature with smallest ranking criterion
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Figure 3.14: Feature importances for Random Forest trained on the iris dataset [14]

The main difference to a complete backwards search, as illustrated in Fig. 3.11, is that
features evaluation is based on a ranking metric which is loss of accuracy in this work,
for each feature subset. Subsequently, the least important feature(s) will be removed and
not all possible combinations have to be evaluated. When only one feature is removed at
each iteration, a corresponding feature ranking can be drawn from the classifier rating
for decreasing subset size, where the rating results in the loss of accuracy by removing a
specific feature. The top-ranked features are individually not necessarily the most rele-
vant but provide the best performance in conjunction with other highly ranked features
[21]. Because this method relies on a feature ranking that is of relevance to the chosen
classifier, it is most commonly used with Support Vector Machines (SVM) and Random
Forests. Both provide built in ranking metrics.

The following feature evaluation process is based on the methods presented in this sec-
tion. Generally, the overall prediction accuracy is chosen as performance criteria for all
classifications. It is used in combination with k-Fold Cross Validation following Kohavi’s
findings on classification accuracy estimation [25]. The feature selection process employs
a combination of Pearson coefficients, the Relief algorithm, and Random Forests’s built
in loss of accuracy metric for specific subsets of features. This combination of algorithms
is extended with RFE for rating all features at once, since it does only provide a rank-
ing metric for features that were selected during the process. This means in turn that
specific subsets of features cannot always be compared if some features are not selected
by RFE and thus have no ranking value assigned. Finally, the Random Forest classifier
is chosen for the aforementioned robustness [4], built in loss of accuracy metric, as well
as good implementation for parallel computing, which saves calculation time.
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The following chapter focuses on applying the defined methodology to different data sets
and evaluating the results as well as the significance of the metrics. The available data
including the respective sources and used software are discussed in the following section.
Thereafter the feature selection methods, which were explained in detail in chapter 3.3,
are applied and conclude in the presentation of results regarding the finally selected
metrics for the given data sets.

4.1 Simulation Environment and Available Data

Two main data sources are used in this work. These are data logged on real race cars dur-
ing race weekends, as well as logged data from the Driver-in-the-Loop Simulator (DiLS).
According to the previous chapter a small selection of signals is needed to calculate the
defined metrics. This corresponds with the aim of the method to allow application in as
many racing environments as possible. The five needed signals are:

• rT, throttle pedal position

• pB, brake pressure

• aS, steering wheel angle

• xc, yc, position of the car in a world coordinate system

The first three signals are usually available on any vehicle with a Data Acquisition (DAQ)
system, since they represent the smallest set of sensor data to know how the driver is
using the car. The latter two are more difficult to acquire with sufficient accuracy. One
possibility is the Global Positioning System (GPS), a global satellite based navigation
system, which is able to provide lateral and longitudinal coordinates on the earth’s
surface. These can be transformed to two-dimensional coordinates. However, GPS for
common applications is limited in accuracy. Especially the environment reduces relative
comparability of data obtained from different locations and in different atmospheric
conditions. These errors are estimated to deteriorate the measurement by a magnitude
of up to five meters [54]. As this value is greater than the expected differences in driving
lines, the common GPS is not used for driving style analysis within the scope of this work.
Alternative systems such as differential GPS are available and capable of providing the
needed accuracy, but those systems are not suited to be fitted on race cars during normal
use due to their cost, weight, and packaging requirements. Overall this leads to the choice
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of the DiLS to gather data regarding the driving line because the simulation environment
allows recording the vehicles coordinates. This simulation environment is explained in
the following subsection and the available data from both sources is detailed afterwards.

4.1.1 Simulation Environment

The used simulation environment consists of a transient vehicle model, which forms the
DiLS together with a chassis mock-up and actuation hardware. The parametrisation is
carried out by a database application that is storing the necessary information for all
currently used vehicles and their respective setup options. The mentioned parts are all
implemented into an overall simulation framework to control the interactions between
different subsystems. As these are multiple complex topics by themselves, only a short
description to outline the used simulation environment is supplied.

The used vehicle model is a transient 14+ Degree of Freedom (DoF) model with four
input signals. The inputs to the model are rT, pB, aS and finally the selected gear
NG. From these the DoF of the model are excited, which consist of three rotational
as well as three translational DoF for the vehicle, four rotational DoF for the wheels
and one additional DoF for each wheel. The latter can be interpreted as suspension
movement and defines the remaining dependant translations and rotations of the wheels.
For example, this leads to the wheel’s rotation respective to the x and z axis, commonly
referred to as camber and toe, and depends on the suspension kinematic and its current
position. The engine is modelled to a sufficient degree by a combination of maps and can
be de-clutched, which essentially adds one more DoF that however is of minor relevance
as the clutch is usually engaged once the car is moving. Since the aerodynamic forces
affect car performance and handling substantially, their representation in the model is
crucial. Among other parameters, the aerodynamic coefficients are derived from the
front and rear ride height, which are a measure for ground clearance under the front or
rear axle, thus defining the frontal aerodynamic angle of attack as well as the ground
clearance of the underbody. One of the most important parts of the vehicle model is
the representation of the tyre. Within the scope of this work a tyre model based on
Pacejka’s Magic Formula is used [41][42]. This approach allows a detailed simulation of
longitudinal, lateral, and combined tyre dynamics. The necessary parameters for such
a detailed vehicle model are obtained through various rig measurements, together with
CAD methods for some parts. These include Kinematics and Compliance (KnC) rig,
tyre test bench, engine test bench, wind tunnel, and Finite Element Method (FEM) as
well as Computational Fluid Dynamics (CFD) calculations. The usage of simulation
within the scope of this work implies that the car behaves similar to reality, especially
in context of the aspects that influence the driver’s behaviour, which are essentially the
handling characteristics. Even though the validation of the model and parameters is
not discussed in this thesis, it is an imperative step before applying the derived method.
Detailed descriptions of vehicle modelling and the used concepts can be found in [19][39]
and more specifically on the suspension system in [34][22].
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The discussed vehicle model is compiled for a suitable real-time target to be used for the
DiLS. The demands specified for real-time execution, which are timeliness, simultaneity
and determinacy, apply to driving in a simulator as there is a Driver-, Hardware-, or both
in-the-Loop. While the vehicle model is run on one real-time system, the surrounding
framework, including all hardware control tasks, runs on a separate machine. This is
mainly to prevent extreme set-points for any actuators in the system should the vehicle
model reach an unstable state and crash the machine it is hosted on. Regarding actuation,
the DiLS consists of various systems to supply cues to the driver. Most importantly an
electric motor applies torque to the steering column, which is essential feedback for the
driver. Additional cues include some DoF of platform movement that excite the whole
chassis, as well as tactile transducers to represent more detailed vibrations. Figure
4.1 shows a picture of the DiLS with a formula style chassis mounted. Some other
characteristics can also be seen, such as the cylindrical screen featuring a 210◦ Field-of-
View (FoV) and the rendered image that the driver is seeing. The projection achieves an
update rate of 120 Hz to ensure a flicker free impression to the driver. The chassis mock-
up is designed to mimic the real car as good as possible while keeping a low weight to
maximise the motion platform’s capabilities. Any ergonomic aspects are kept from the
real car, including the original seat per driver, as well as other padding and other parts.
The platform also allows changing the chassis to a GT-style mock-up, since those cars
require a completely different ergonomic approach. Finally, the vehicle model is run at
rates above 1 kHz due to the high stiffness of the modelled system, but supports logging
all available states and calculated signals with lower rates and additionally provides
real-time telemetry to the engineers in the control room. Overall, this allows to have
all surrounding processes similar to those when running a real car on track to create
sufficient immersion for the driver and usability of the DiLS for the engineers.

4.1.2 Database

As previously mentioned, data logged on various race cars is used to test the derived
method and metrics. While the signals xc and yc are generated using the DiLS, the
metrics for driving style analysis on the stabilisation level rely only on rT, pB and aS,
which are available in almost any race car data log. A typical application, which is
employed in this case as well, is a set of sensors that is wired to the ECU of the car. The
ECU controls the engine and various other available systems, if available, and also takes
care of logging the sensor inputs. As any DAQ system, this requires calibrating sensors
and is prone to faults in either the system configuration, the sensors, or to errors induced
over the wiring loom. Subsequently, this leads to the measures discussed in section 3.1.1
to ensure robust detection of the specified cornering patterns.

Regarding available data, three race seasons are analysed. This includes 28 race week-
ends, each consisting of different sessions. A session is a specified time interval in which
the race cars are allowed to enter the track, for example ”Free Practice 1”, ”Qualifying
3” or ”Race 2”. The amount of sessions per weekend depends on the racing series, and
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Figure 4.1: Driver-in-the-Loop Simulator c©BMW AG

each session is following a scheme with regulations in place, such as a specified qualifying
format to derive the starting positions for the race. Within a session every outing of
the car is called a run and essentially means the interval between the car leaving the
pit lane and the car entering the pit lane again after driving a certain amount of laps
around the track. The first lap of a run is called Out-Lap, the last last is called In-Lap.
The analysed dataset features seven sessions per race weekend. The amount of runs and
laps per session is not defined and depends on the session itself, as well as on boundary
conditions. For example, a race with one pit stop will have two runs but far more laps
than a qualifying session that might have two runs as well, but only contain three laps
each. Overall, the dataset consists of 27690 laps and comprises 10 different drivers. The
additionally used DiLS data consists of four events which are not race weekends and con-
sequently do not feature different sessions. Each event was run with a different driver
which leads to the data consisting of four drivers and 747 laps in total.

Not all laps are suited for the proposed analysis, therefore a selection process is used to
detect significant laps. It is assumed, that if a lap contains errors or is not driven at the
limit which is an imperative condition for the method, this will result in an increase of lap
time tL. Consequently, laps are selected by a reference lap time tL,ref , together with an
additional margin around it. As tL,ref needs to represent any changes of the environment
that occur, as well as cater for drivers not being able to achieve the same performance,
it represents the average best tL per session. This means the best laps for each driver
in a specific session are averaged to the reference time for this session. Subsequently,
each session has its own tL,ref . The boundaries to this reference were chosen empirically
by inspecting the available data to select laps with tL > 0.95 ∗ tL,ref ∩ tL 6 1.05 ∗ tL,ref .
The limit of 95% of tL,ref assures to reject laps with faulty data logging resulting in a
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Source Total laps Selected laps Observations Features

Car data 27690 17132 119563 109

DiLS data 747 602 4093 128

Table 4.1: Summary of available data
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Figure 4.2: Distribution of car data

time significantly faster compared to the best laps. Additionally, a lap marker is used
for selection. It is set by the engineers in charge of the car. Out- and In-Laps have their
own marker and are excluded accordingly. Another marker is available for compromised
laps, allowing automatic exclusion of those as well. Running the explained lap selection
process and the method for feature extraction defined in this work on both datasets
results in the total amount of available data, as summarised in table 4.1, where the
number of observations is the number of detected corners from the specified amount of
selected laps. The distribution of drivers over the observations is shown in Fig. 4.2 for
car data and Fig. 4.3 for DiLS data.

Because the distribution is not equal among drivers, the influence of this distribution
is further assessed. Additionally, the distribution among the used tracks is taken into
account, as displayed in Fig. 4.4. Some tracks have more observations than others in gen-
eral, and also specific drivers are not equally spread across the tracks as well. The influ-
ence of this on the feature importances, as introduced in section 3.3, is analysed by using
the loss of accuracy metric for a Random Forest classifier trained on different datasets.
For this purpose, two subsets are sampled from the complete dataset. One subset consists
of equally distributed samples across the drivers for each track. The distribution of this
set is shown in Fig. 4.5 and illustrates the different sample sizes per track. The second
dataset is sampled in a way that it is equally distributed over all drivers and tracks, it is
illustrated in Fig. 4.6. Both approaches reduce the available data significantly, as listed
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Figure 4.3: Distribution of DiLS data

Dataset Observations

Complete 114728

Equal Drivers 44840

Equal Tracks & Drivers 27650

Table 4.2: Number of observations in reduced datasets

in table 4.2. The number of observations for the complete dataset is reduced because
those containing Not-a-Number (NaN) values have been removed. Finally, a Random
Forest classifier is trained for each of the sets with the intention to compare feature im-
portances as per loss in accuracy. The resulting graph is displayed in Fig. 4.7 and only
shows the 50 top ranked features for better visibility. The main shape of the importance
metric over all features is clearly visible. Changes in importance of features between the
datasets can be noticed but do not change the general distribution. Consequently, the
complete dataset is used for further analysis to exploit all available observations.
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Figure 4.5: Distribution of car data sampled equally per track
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Figure 4.6: Distribution of car data sampled equally per track and driver
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4.1.3 Used Software

This section gives a short overview of the software used to obtain the results discussed
in the following sections. All measured data is stored in a format compatible with
Magneti Marelli WinTAX4, a data analysis software commonly used in motorsports.
It provides an Application Programming Interface (API) to access data structures, values,
and properties through other applications. This functionality is used together with
The MathWorks R© MATLAB for pattern recognition and metric calculation. The
resulting dataset is then further analysed with the open-source statistical computing
language R [47] and the R Studio Integrated Development Environment (IDE) [50].
This involves the following packages, which are all accessible as open-source projects:

• tidyverse [66], specifically the included packages dplyr [67] for data restructuring
and ggplot2 [65] for plotting data

• randomForest [30], for the implementation of Breiman’s Random Forest algo-
rithm [4]

• ranger [70], for the efficient and parallel implementation of Random Forest

• caret [27], for splitting test and train data as well as Recursive Feature Elimination

• CORElearn [49], for the efficient implementation of the Relief algorithm

4.2 Selection of Objective Criteria

The following section describes the results of applying the feature selection methods
introduces in section 3.3 to the generated metrics. In the first step, the amount of
NaN values per feature is assessed and those with a significant amount compared to
the number of observations are dismissed. All features that are expected to have strong
correlations are evaluated with the aim to select the most significant ones. This step is
then followed by an analysis of the remaining features regarding unintended correlations
between features, as well as their scores from feature selection methods. While machine
learning techniques, especially for classification problems, are widely used to pick a set
of features from all proposed candidates, the overall aim of this work is not to provide
the features suited best for classifying drivers. The scope of identifying a driver’s driving
style is closely related to a classification problem, but in some instances a consistent
selection of features is favourable for further engineering work over the best performing
ones.

4.2.1 Stabilisation Level

As mentioned, the percentage of NaN values per feature is examined first. This step
eliminates the features resulting from the FFT analysis of the throttle signal with respect
to the first peak in the frequency spectrum. The metric calculation algorithm sets the
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Metric Number of NaNs NaN Percentage

rThrFftPeak 31857 26.74 %

fThrFftPeak 31857 26.74 %

nThrFftPeakWidth 31857 26.74 %

nThrFftPeakProm 31857 26.74 %

pBrkFftPeak 2989 2.51 %

fBrkFftPeak 0989 2.51 %

nBrkFftPeakWidth 2989 2.51 %

nBrkFftPeakProm 2989 2.51 %

pBrkFft00 36 0.03 %

pBrkFft05 36 0.03 %

Table 4.3: Number of NaN observations for control metrics

values for peak magnitude, peak frequency, peak width and peak prominence to NaN
if no peak is found at all, which is usually caused by a monotonic decreasing frequency
spectrum. The same metrics respective to the brake signal do also contain significantly
more NaN values compared to the remainder of the metrics, however, as listed in table
4.3, the relative amount is only 2.51 % of the dataset. The list in table 4.3 is in descending
order and shows the subsequent metrics pBrkFft00 and pBrkFft05 as well for better
comparison.

A complete correlation matrix of all metrics for the driving style on the stabilisation
level is shown in Fig. 4.8. The Pearson correlation coefficient is illustrated for each
combination of metrics by its value multiplied by 100 for easier reading, as well as a
colour gradient from blue to red indicating strong negative or strong positive correlations.
While the scale does not allow detailed analysis, blocks of correlated metrics can easily be
identified. The metrics based on relative and absolute time or distance covered between
corner points, such as the relative distance travelled in the on-throttle phase sThrOnRel,
were defined with the expectation that they share the same information thus are strongly
correlated. This can be confirmed as the most distinct blocks of correlated features in Fig.
4.8 are located at the diagonal and contain sets of four features each. A more detailed
correlation matrix of those 24 features is shown in Fig. 4.9 in the same formatting to
display the Pearson correlation coefficients as explained.
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Figure 4.8: Correlation matrix for objective metrics describing the stabilisation level of
the driving task
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Figure 4.9: Correlation matrix for correlated time and distance based metrics

Those features shall be reduced to a set of six independent features using the feature
selection techniques detailed in section 3.3. This is achieved mostly by using the Relief
weights for each set of correlated features, as shown in Fig. 4.10. Additionally, the loss
of accuracy derived from a Random Forest classifier trained on the whole feature set
is analysed and displayed in Fig. 4.11. The mean Pearson correlation coefficient per
set of metrics allows to judge how much each four metrics are correlated. These values
are listed in table 4.4 and indicate that the metrics describing the on-throttle phase are
significantly less correlated with an average Pearson coefficient of 0.40, while the metrics
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describing the rolling and turn-in phase show the highest average correlation coefficients
of 0.90 and 0.94. These observations are also visible in Fig. 4.9 from the shade of the
colour fill.

The Relief weights shown in Fig. 4.10 indicate a significant differentiation of abso-
lute metrics and those measured relative to the corner length, with the only excep-
tion of the braking metric shown in Fig. 4.10 (c). The comparison between time and
distance based metrics is not as significant, however the distance based relative met-
ric is favoured in all cases except for the aforementioned braking phase. Notably the
on-throttle metrics shown in 4.10 (b), which are clearly less correlated among them-
selves, have the highest weight on the distance based relative metric but do not fol-
low the pattern for the other three. A comparison to the ranking of the metrics in
each set derived from the loss of accuracy for a Random Forest classifier, as shown
in Fig. 4.11, does not provide the same clear picture. The braking metrics shown in
Fig. 4.11 (c) indicate the same anomaly as seen in 4.10 (c) for the Relief weights,
although in slightly different order. The rolling metrics shown in 4.11 (d) have a com-
pletely different pattern with both time based metrics ranked higher compared to the
distance based metrics and the distance based relative metrics ranked last. Contro-
versially the ranking of the turn-in metrics displayed in 4.11 (e) rates both distance
based metrics higher. Both sets of metrics have the highest average correlation coeffi-
cients, which is an indication to the usefulness of the importance derived from a Ran-
dom Forest classifier. Since the loss of accuracy for removing one of a set of highly
correlated metrics is similar for each of them due to the fact that three redundant fea-
tures are still available, this importance ranking is to be used with care. The clear
picture of the Relief weights, which is partly supported by the importance assigned
from the trained model, leads to the decision to select distance based relative met-
rics. This type is selected from all six feature sets for consistency of the final metric
set.

Metric Mean Pearson coefficient

Off-throttle phase 0.81

On-throttle phase 0.40

Braking phase 0.66

Rolling phase 0.90

Turn-in point 0.94

Trail-braking phase 0.77

Table 4.4: Average correlation of distance and time based metrics

73



4.2 Selection of Objective Criteria

tThrOffAbs

sThrOffAbs

tThrOffRel

sThrOffRel

0.00 0.05 0.10

Relief weight

(a) Off-throttle

tThrOnRel

sThrOnAbs

tThrOnAbs

sThrOnRel

0.00 0.05

Relief weight

(b) On-throttle

sBrkAbs

tBrkRel

sBrkRel

tBrkAbs

0.00 0.05

Relief weight

(c) Brake

tRollAbs

sRollAbs

tRollRel

sRollRel

0.00 0.02 0.04

Relief weight

(d) Rolling

tTurnInAbs

sTurnInAbs

tTurnInRel

sTurnInRel

0.00 0.05

Relief weight

(e) Turn-in

sTrailAbs

tTrailAbs

tTrailRel

sTrailRel

0.00 0.02

Relief weight

(f) Trail-braking

Figure 4.10: Relief weights for correlated time and distance based metrics
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Figure 4.11: Loss of accuracy for correlated time and distance based metrics

A similar approach is used to select relevant metrics from the sets describing the RMSE,
variance and zero crossings of rT, pB and aS concerning their first and second deriva-
tives. The correlation matrix of the analysed features is shown in Fig. 4.13 in the
same format as used before. The correlation coefficients show the highest absolute val-
ues around the diagonal, which allows separation into three blocks of features each
related to one of the analysed driver control signals. The average absolute correla-
tion coefficients are lower than the previously assessed time and distance based met-
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rics, yet high enough to consider reducing those feature sets significantly. The metrics
calculated from rT have an average absolute correlation coefficient that is 0.1 lower
compared to the other two feature sets, however there is no clear difference as seen be-
fore with time and distance based metrics. The respective values for derivative based
metrics are listed in table 4.5. The Relief weights are used as a means of ranking
the available features again, in accordance to the previously discussed outcomes. Fig-
ure 4.12 shows these weights in descending order for each of the currently discussed
metrics separated into one sub-figure per signal. For all three sets the metrics us-
ing the RMSE are ranked the highest compared to the variance and zero crossing
based metrics. The ranking is not as clear for both RMSE based metrics for pB, how-
ever rd2BrkRmse has a significantly higher weight compared within its feature set,
as well as compared to any other derivative based metric. Interestingly, the metrics
analysing the peaks of the non-derived signals are rated similar to other metrics for
rT and pB, while it is ranked highest for aS. This leads to keeping the number of
peaks, as well as the RMSE to zero of the first and second derivative for further evalua-
tion.

Metric Mean Pearson coefficient

rT 0.44

pB 0.53

aS 0.55

Table 4.5: Average correlation of derivative based metrics
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Figure 4.12: Relief weights for correlated derivative based metrics
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Figure 4.13: Correlation matrix for correlated derivative based metrics

In accordance to the discussed steps, all metrics based on FFT analysis are assessed and
selected as well. The correlation matrix reduced to the relevant features is shown in Fig.
4.15. While the metrics derived from the signal magnitude at discrete frequencies are
available for rT, pB, and aS, the analysis of a peak in the frequency spectrum is only
looked at for the latter two, because the calculation of the rT based metrics produced too
many NaNs and those were dropped consequently as discussed. The average absolute
correlation coefficients per set of metrics are listed in table 4.6. The feature sets related
to the peak analysis are significantly less correlated among themselves compared to the
features queried at specific frequencies, however aS does not follow this pattern. Figure
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4.15 suggests that the aS metric for 0 Hz is not significantly correlated with the remaining
features of this set, however the other five metrics show the same pattern as seen for
rT and pB. For this reason, the metrics concerning aS are reduced similar to the others
while the peak analysis metrics are kept for further analysis. The Relief weights are
illustrated in Fig. 4.14 in the same way as before. The ranking shows a clear tendency
to assign the feature weights decreasing with increasing frequency value of the metrics.
The values queried at 0 Hz and 0.5 Hz have a significant difference while the metrics
ranging from 1.0 Hz down to 2.5 Hz are not clearly differentiable. Based on these results
the FFT based metrics for discrete frequencies from 1.0 Hz to 2.5 Hz are eliminated from
the overall feature set for all three control signals.

Metric Mean Pearson coefficient

rT 0.58

pB 0.60

aS 0.38

pB Peak 0.33

aS Peak 0.27

Table 4.6: Average correlation of FFT based metrics
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Figure 4.14: Relief weights for correlated FFT based metrics
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Figure 4.15: Correlation matrix for correlated FFT based metrics

The first step of reducing metrics that contain the same information in different variants
leads to a reduction of metrics for the stabilisation level from 81 to 39 features. Conse-
quently, further reduction is done on basis of ranking features. This includes reducing
accidentally correlated features after the expected redundancies have been removed in
the previous step. Additionally, uncorrelated features are ranked against each other as
well to evaluate their significance. As outlined before, this is done with an engineering
application in mind, as opposed to pure improvement of the driver classification. The
correlation matrix for the remaining features is displayed in Fig. 4.16, together with the
Relief weights in Fig. 4.17 and the loss of accuracy from the Random Forest model as
well as from RFE in Fig. 4.18. The latter results are only shown for features selected by
the RFE algorithm. All others can be identified by the missing RFE score.
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Figure 4.16: Correlation matrix for reduced feature set regarding stabilisation level

79



4.2 Selection of Objective Criteria

rStrFftPeakWidth

fStrFftPeak

rBrkFftPeakWidth

tBrkDlyAbs

rBrkFftPeakProm

NThrPeaks

rStrFftPeakProm

aStrFftPeak

rd2ThrRmse

NBrkPeaks

rdStrRmse

drThrOn

rd2StrRmse

rdThrRmse

NStrPeaks

fBrkFftPeak

sTrailRel

sRollRel

rdBrkRmse

pBrkFftPeak

aStrFft05

sBrkRel

rThrRmseLin

dpBrkOff

rThrFft05

sThrOnRel

aStrFft00

pBrkRmseLin

vCarDiff

pBrkFft05

sTurnInRel

sThrOffRel

vCarMin

rd2BrkRmse

rThrFft00

vCarMax

pBrkFft00

dpBrkOn

drThrOff

0.0 0.1 0.2

Relief weight

Figure 4.17: Relief weights for reduced feature set regarding stabilisation level
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Figure 4.18: Loss of accuracy for reduced feature set regarding stabilisation level
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Figure 4.16 immediately reveals that there are still strong correlations between the num-
ber of peaks and the RMSE to zero of the first and second derivative for all three analysed
signals. These were chosen to be kept because the previously examined graphs did not
imply a clear selection since they were focused only on the respective metrics. However,
the now reduced feature set allows a better comparison in the overall context, which
shows that rd2BrkRmse is clearly ranked higher regarding Relief weights as well as loss
of accuracy than any other of the currently discussed features. While rdThrRmse is
ranked slightly higher than the metric obtained from the first derivative, the peak count
is favoured over the second derivative for aS. Due to all peak counts not being selected
by the RFE algorithm and ranked low by Relief as well, together with the significant
difference in ranking for rd2BrkRmse, the metrics obtained from the second derivative
are kept while the six remaining metrics are eliminated.

The previous results led to the decision for distance based metrics measured relative to
the individual corner length. The six selected metrics are now evaluated further. A
correlation matrix for those is shown in Fig. 4.19, while the Relief weights and loss
of accuracy graphs can be seen in Figs. 4.20 and 4.21. A significant correlation is
noticeable between sThrOffRel and sThrOnRel , which is easily explainable by the
fact that these two phases almost make up the entire cornering phase, with only the
very short transition from full throttle to idle being left out. The Relief rating prefers
the metric concerning the off-throttle phase, whereas loss of accuracy shows only a slight
tendency to support this with both metrics being rated almost equally low. As the
remainder of the discussed metrics is ranked with strong disagreements between Relief
weights and loss of accuracy all five except sThrOnRel are kept.

Regarding the metrics calculated from FFT results, there are some correlations among
them, as well as a clear picture from the feature rankings. First, the metrics used to anal-
yse the major peak in the FFT of rT were removed due to robustness issues leading to
many NaN values. The feature selection derived with RFE suggests removing the peak
width and prominence features for pB also, as well as all four similar metrics related to aS.
The Relief weights support this selection and due to the rather low ranking of the two
remaining features pBrkFftPeak and fBrkFftPeak those are eliminated all together.
A more detailed correlation matrix for the remaining FFT based metrics and their cor-
related features is shown in Fig. 4.24. This reveals significant correlations between the
aforementioned metrics and the gradient based metrics for rT and pB. Reduced graphs
for Relief weights and loss of accuracy in the usual format are provided in Figs. 4.22
and 4.23. Both methods agree in a higher ranking of drThrOff and dpBrkOn in com-
parison to the other metrics evaluated in this context. There are no particularily strong
correlations for drThrOff , but the high importance of dpBrkOn implies removing the
correlated FFT based metrics for pB. While dpBrkOff is not preferred by the rankings,
it is correlated to the aforementioned metrics. The remaining strong correlation between
drThrOn and rThrFft05 does not provide such a clear image and especially the related
but not correlated rThrFft00 shows high scores for both feature rankings. Due to the
overall difference in favour for gradient based metrics, as well as the noticeable difference
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4.2 Selection of Objective Criteria

in computational effort between FFT and gradient analysis, the gradient based features
are decided to be kept. The remaining FFT based features are removed, which leads to
the elimination of all FFT based features.

The remaining features rThrRmseLin and pBrkRmseLin do not show significant cor-
relations to other metrics with Pearson correlation coefficients of up to 0.56. While
they are both dropped by RFE, the Relief weights imply that they are not completely
irrelevant. The metric tBrkDlyAbs shows very little correlation to all other features. It
is ranked high by loss of accuracy but almost least regarding Relief weights. Due to this
discrepancy but two scores in favour of the metric it is kept as well.

Finally, the three metrics describing the corner, vCarMin, vCarMax and vCarDiff
are evaluated. The overall correlation matrix shown in Fig. 4.16 reveals that vCarDiff
is strongly correlated to the other two for obvious reasons, however the metrics for mini-
mum and maximum car velocity throughout the cornering phase do not show correlations
amongst each other. The overall rankings shown in Figs. 4.17 and 4.18 indicate that all
three metrics provide use to the classification, but are inconsistent regarding the order
of aforementioned three features. Based on the correlation coefficients it is decided to
keep two of the three metrics which leads to eliminating vCarDiff , because it seems
this metric can not provide the entire information contained in both remaining metrics.
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Figure 4.19: Correlation matrix for distance relative features of the reduced set
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Figure 4.20: Relief weights for distance relative features of the reduced set
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Figure 4.21: Loss of accuracy for distance relative features of the reduced set
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Figure 4.22: Relief weights for FFT related features of the reduced set
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Figure 4.23: Loss of accuracy for FFT related features of the reduced set
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Figure 4.24: Correlation matrix for FFT related features of the reduced set
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4.2.2 Guidance Level

The analysis of features to describe the driving style on the guidance level follows the
same approach as described for the stabilisation level. The examination of the NaN
values per metric shows that the highest percentage is 9.06 %, followed by 7.65 %, and a
decrease to 1.05 % for the metric ranked third. These are listed in table 4.7. While no
features are eliminated at this stage, it is noticeable that all three metrics with the most
NaN values are related to a ”V-angle” derived from a time-series signal. This indicates
that the calculation based on trigonometric functions is suffering robustness issues for
certain observations.

Time and distance based metrics in absolute and relative variants have been defined for
the point of maximum path curvature, the point with minimal distance to the inner
track limits and the point with minimal distance to the track centre line in a similar
way to the discussed metrics on the stabilisation level. Accordingly, those are analysed
for correlations first, which is displayed in Fig. 4.25. Additionally, the average absolute
correlation coefficients among the features of each set are listed in table 4.8. As Fig. 4.25
shows, the distinction of the three main blocks of correlated features is not as clear from
the color gradient as with for example Fig. 4.9, which shows the correlations among the
previously discussed time and distance based metrics. While the individual correlation
numbers per set imply that there are redundant metrics, the overall correlation value
suggests that also the three defined categories of metrics share common information and
can be possibly reduced.

Metric Number of NaNs NaN Percentage

aVCen 371 9.06 %

aVApex 313 7.65 %

aVCurv 43 1.05 %

Table 4.7: Number of NaN observations for control metrics on the guidance level

Metric Mean Pearson coefficient

All 0.39

Curvature 0.58

Apex distance 0.68

Centerline distance 0.61

Table 4.8: Average correlation of distance and time based metrics

87



4.2 Selection of Objective Criteria

48

91

42

25

−12

24

−22

53

7

49

−5

48

43

97

−20

21

−16

9

−7

37

−5

21

91

43

37

18

−17

30

−28

48

4

59

−9

42

97

37

−24

19

−21

11

−11

36

−10

24

25

−20

18

−24

63

89

61

69

33

54

32

−12

21

−17

19

63

54

97

24

68

14

65

24

−16

30

−21

89

54

53

61

29

65

28

−22

9

−28

11

61

97

53

23

65

13

69

53

−7

48

−11

69

24

61

23

52

88

50

7

37

4

36

33

68

29

65

52

45

96

49

−5

59

−10

54

14

65

13

88

45

45

−5

21

−9

24

32

65

28

69

50

96

45

sCurvAbs

sCurvRel

tCurvAbs

tCurvRel

sApexAbs

sApexRel

tApexAbs

tApexRel

sCenAbs

sCenRel

tCenAbs

tCenRel

s
C

u
rv

A
b
s

s
C

u
rv

R
e
l

tC
u
rv

A
b
s

tC
u
rv

R
e
l

s
A

p
e
x
A

b
s

s
A

p
e
x
R

e
l

tA
p
e
x
A

b
s

tA
p
e
x
R

e
l

s
C

e
n
A

b
s

s
C

e
n
R

e
l

tC
e
n
A

b
s

tC
e
n
R

e
l

−100 −50 0 50 100

Pearson Coefficient x100

Figure 4.25: Correlation matrix for objective metrics describing the guidance level of the
driving task
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The analysis of Relief weights does not entirely follow the previous results. A sub-plot
for each set of metrics showing the Relief weights of the respective features is displayed
in Fig. 4.26. While for the metrics concerning the maximum path curvature the distance
based relative metric is ranked highest and both relative metrics have significantly higher
weights compared to the absolute variants, the other feature sets do not show such a clear
picture, except from ranking the time based absolute metric last. For this reason also the
ranking derived from a Random Forest classifier, which was trained on the trajectory
metrics, is taken into account and shown in Fig. 4.27. The three sub-figures follow
the same pattern of ranking the distance based absolute metric highest, followed by the
time based absolute metric and both relative metrics ranked last and less differentiable.
While this implies to use distance based metrics also for the guidance level, it also
suggests using their absolute variants. Based on the scope of this work, a consistent
approach is favoured over classification accuracy leading to the decision to keep distance
based relative metrics for the guidance level, similar to the stabilisation level. This is
supported by the Relief weights, which either favour this variant or rank it insignificantly
lower compared to other available options.

Like for the stabilisation level, the elimination of correlated features reduced the metrics
to describe the driving style on the guidance level from 19 to 10 metrics. The next
step is again to further reduce the remaining features. Following the previous approach
a correlation matrix, Relief weights, and loss of accuracy derived from the Random
Forest model, as well as the RFE algorithm are shown in Figs. 4.28, 4.29 and 4.30.
The correlation matrix reveals a strong correlation between the maximum curvature
and the integral of the curvature throughout a corner and implies to eliminate either
metrics respective to the centre line or related to the inner track limit. The Relief
weights of the aforementioned metrics regarding path curvature suggest that they are
both irrelevant. Contrary, the integral of curvature is ranked first according to loss of
accuracy, whereas the maximum curvature is ranked third. Opposing to these results
cMax is kept while cInt is removed from the feature set, following the idea to keep
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Figure 4.26: Relief weights for correlated distance and time based metrics
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Figure 4.27: Loss of accuracy for correlated distance and time based metrics

consistent sets of metrics. This is because the related metrics for the relative distance
of the maximum absolute curvature and the ”V-angle” derived from it show only minor
correlation to other metrics but seem important from the rankings except for the Relief
weight for aV Curv. Therefore, both metrics are kept in the feature set together with
the actual value of the maximum of the absolute path curvature. When comparing
metrics based on the centre line with those related to the inner track limits, there is
a disagreement between both rankings as well. Regarding Relief weights, both metrics
describing the relative distance of the minimum clearance to the respective reference line
are ranked similar and most important. The value for this clearance is ranked higher in
the apex variant, while the ”V-angle” is ranked higher for the centre line, although not as
significant. Concerning loss of accuracy, the relative distance of each variants minimum
clearance is ranked almost least with a slight preference for the apex variant. The actual
clearance value is ranked equally low, while the centre line variant is ranked higher. Both
”V-angles” imply medium importance to the classification accuracy, the Apex variant is
again ranked higher. This overall picture leads to keeping all three metrics for the apex
variant.
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Figure 4.28: Correlation matrix for the reduced set of guidance level features

91



4.2 Selection of Objective Criteria

cMax

cInt

aVCurv

xCen

aVApex

aVCen

xApex

sCurvRel

sApexRel

sCenRel

0.00 0.02 0.04

Relief weight

Figure 4.29: Relief weights for the reduced set of guidance level features

xApex

sCenRel

xCen

aVApex

aVCen

sApexRel

sCurvRel

cMax

aVCurv

cInt

0.00 0.05 0.10

Loss of accuracy

Random Forest Recursive Feature Elimination

Figure 4.30: Loss of accuracy for the reduced set of guidance level features

92



4.3 Results

4.3 Results

Following the detailed feature selection process, the final feature set is evaluated in this
section. The selection process started with a total of 104 available metrics, which are
used as features for the defined classification problem. These comprise 85 metrics focused
on the control inputs of the driver, thus the stabilisation level of the driving task, and
19 calculated from the vehicle trajectory which is a description of the driving line and
resembles the guidance level of the driving task. These were reduced to a total amount of
23 metrics, split into 17 and six metric for the respective levels of the driving task. The
following section provides an overall comparison of classification accuracies. Detailed
outcomes for selected metrics are presented afterwards. The finally selected metrics are
listed below for a better overview.

Stabilisation level: Guidance level:

• drThrOff

• drThrOn

• dpBrkOff

• dpBrkOn

• tBrkDlyAbs

• sThrOffRel

• sBrkRel

• sRollRel

• sTurnInRel

• sTrailRel

• vCarMax

• vCarMin

• rThrRmseLin

• pBrkRmseLin

• rd2ThrRmse

• rd2BrkRmse

• rd2StrRmse

• sCurvRel

• sApexRel

• cMax

• xApex

• aV Curv

• aV Apex
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Data set OOB accuracy Test set accuracy

Control inputs (car) 75.5 % 76.5 %

Control inputs (DiLS) 75.1 % 76.4 %

Trajectory (DiLS) 66.0 % 65.8 %

All (DiLS) 76.7 % 76.9 %

Table 4.9: Classification accuracies for available data sets

As previously introduced, the data set comprises data logged during race weekends and
laps from the DiLS, which allows comparing the vehicle path with sufficient precision.
Unfortunately, this does not allow a comparison of control input specific metrics with
vehicle trajectory based ones for the majority of the data set, although possible for the
smaller amount of data obtained from the simulator. Each data set is split into 70 %
training data and 30 % test data, which allows to evaluate the classification performance
on unknown data. This approach would reveal an over fitting classifier that is essentially
just remembering the training data. The classification accuracies for all three aforemen-
tioned data sets are listed in table 4.9. The values between training and test data are
compliant for all data sets. The comparison indicates that the control inputs alone allow
better classification than the trajectory with only a small bias by the significant difference
in amount of observations used to train the classifier for car and DiLS data, respectively.
The trajectory metrics alone show a significantly decreased accuracy. The lower perfor-
mance when compared to control input metrics may result from the analysis of only one
channel of information, namely the vehicle’s position, as opposed to three control input
signals, which also results in a lower number of features to describe the guidance level.
Finally, the combination of all selected features increases the classification accuracy to
77 % on the test set, which is the best overall value.

Table 4.10 lists the classification accuracies achieved during the feature selection process.
Test set accuracies are not specifically listed but comply with differences between training
and test sets shown in table 4.9. An interesting difference can be noticed for control input
and trajectory related metrics. While the accuracy increases with the first reduction of
features for the former, the accuracies of the latter decrease with eliminating features.
The final step decreases the accuracy seen for a classifier trained with control input
specific metrics by 2 %, which implies too many features have been eliminated to achieve
the best classifier performance. This decrease is accepted in favour of a smaller amount
of features.

The classification accuracy per driver can be read from the confusion matrix, which is
displayed in Fig. 4.32. The confusion matrix shows the amount of observations predicted
for each class over the respective true class. The values are percentages of the available
data per true class. The main information is located on the diagonal, which is the
amount of correct predictions per driver. Interestingly, the value is particularly high for
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Feature set Control inputs (car) Trajectory (DiLS)

Full set OOB accuracy 76.1 % 69.7 %

Intermediate set OOB accuracy 77.2 % 66.6 %

Final set OOB accuracy 75.5 % 66.0 %

Table 4.10: Classification accuracies for feature selection steps

drivers five and ten. This result is in line with empiric knowledge about both drivers,
which have a very distinguishable driving style. Additionally, the remaining values show
false classifications, whereas higher numbers indicate similar driving styles. Particularly
drivers one and six are the only combination with a significant misclassification rate in
both ways. For example, while 14 % of data from driver six is predicted to be driver
eight, driver eight’s data is only classified as driver six by a share of 5 %.

As RFE was used throughout the feature selection process, there is also a curve of
classification accuracy over number of features used for the final set of metrics. Figure
4.31 illustrates these for all previously mentioned subsets of available data. Interestingly,
the control metrics for the DiLS data indicate a steeper initial rise in accuracy when
compared to car data. The same can be seen for trajectory related metrics, although
the gradient decreases earlier because the achieved accuracy is lower compared to the
other subsets. The shapes of the curves also indicate that the best accuracy is achieved
using all available features of the final set, with the exception of a classifier which is only
trained on control metrics for DiLS data. In this case a higher prediction accuracy can
be achieved by leaving out pBrkRmseLin and rd2BrkRmse. This indicates a subtle
difference in the braking phase between DiLS and real car, which will be analysed further
in this section.
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Figure 4.31: Classification accuracy over number of features used for final feature set
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Figure 4.33: Box plots for vC metrics

Some exemplary metrics are discussed in detail in the following. The results of the
metric calculation are displayed in box plots [35]. The following box plots feature all
drivers along the x axis with individual boxes per driver. The box itself is defined by the
first and third quartile of the data, the bar inside the box marks the second quartile or
median. Additionally, the range of data is shown with whiskers. Those extend up to 1.5
times the interquartile range. Data points out of this range are subsequently considered
as outliers and marked by individual dots.

The first two metrics, vCarMin and vCarMax, as displayed in Fig. 4.33, are defined
mainly to preserve information about the individual corners. According to the box plots
no significant differentiation between drivers is possible using these two metrics, yet the
used feature selection methods suggested. This indicates that the information becomes
relevant to improve other metrics.
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The aforementioned dependency between metrics and corner type is detailed by two
exemplary metrics. Both sBrkRel and sTurnInRel are expected to be affected by the
corner type. For easier visualisation vCarDiff is used although it was eliminated from
the feature set due to redundancy with the minimum and maximum velocity. Figure
4.34 (a) shows the length spent under braking relative to the corner length over car
velocity difference for two different drivers. As expected, there is a linear trend showing
that the relative amount of braking rises with increasing speed difference. Additionally,
a similar trend is shown in Fig. 4.34 (b) for the turn-in point relative to the corner
length. Since the braking phase takes longer with higher velocity difference, also the
turn-in point is expected to happen later. Figure 4.34 (c) illustrates the relation of both
discussed metrics and reveals that later turn-in points go in line with a longer braking
phase, however the reverse is not true. According to the data points, a long braking
phase can coincide with a broad range of turn-in points, however a short braking phase
also implies an early turn-in point. All three graphs show some outliers which are of
minor importance given the large amount of observations.

Some of the defined metrics describe the driver’s driving style and also have a direct con-
nection to the driver’s performance. Figures 4.35 and 4.36 show box plots of drThrOff
and dpBrkOn respectively, with outliers removed for better visibility. Both the throttle
lift-off and the application of brake pressure happen at the beginning of the corner, and
share the characteristic that a steeper gradient usually results in better performance,
because the desired value is reached quicker. Attention needs to be paid to the differ-
ence in sign, where drThrOff should be as low as possible and dpBrkOn the opposite.
Driver ten, who showed outstanding classification accuracy, has the best median values
respective to both metrics. Opposing to this, driver five with almost equally good clas-
sification results, is slowest to release the throttle apparent both from the median and
the first quartile as well. This is in line with a shallow gradient on braking relative to
other drivers. Overall, both metrics show significant differences among the drivers re-
garding median value and interquartile range, which can be interpreted as the precision
of executing a repeated task.

The aforementioned difference in the braking phase is also visible in the delay between
throttle lift-off and brake application, as captured by the metric tBrkDlyAbs. A box
plot for observations obtained from real cars is shown in Fig. 4.37. Driver ten features
the smallest interquartile range, which complies again with the higher classification ac-
curacy. Overall, there is a significant spread of median values as well as interquartile
ranges among the drivers. Noticeable as well is the fact that the majority of obser-
vations is negative for each driver, with only values above the third quartile reaching
positive numbers. This implies that the drivers press the brake pedal before lifting off
the throttle pedal. A possible explanation for this is compliance in the brake system
of the real car. The throttle lift-off results in almost immediate negative acceleration
caused by engine drag. Contrary, the brake pressure builds up gradually before the car
is decelerated. Two exemplary reasons for this behaviour are deflection of brake lines,
and the brake pads that need to cover some clearance before making contact with the
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Figure 4.36: Box plot for nOnBrk metric

brake disc, which both reduce the brake system’s stiffness. Opposing this behaviour,
the simulation model does not contain any brake compliance and also the used hard-
ware is significantly less compliant. This can be seen immediately in a similar box plot
for DiLS data in Fig. 4.38. This plot shows only positive values for all four drivers
and captures the adjustment of brake pedal application, which is only 0.05 s for driver
eight and up to 0.075 s for driver five. The characteristics seen for the real car in Fig.
4.37 however are also present in DiLS data. Drivers eight and seven have smaller in-
terquartile ranges indicating better precision with brake pedal application. Driver five
has a significantly larger range in both data sets. The individual differences are seen
in both data sets, as well as the slight difference in driving style by all drivers on the
DiLS.
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Figure 4.38: Box plot for tBrkDlyAbs metric with DiLS data

Another example of relation between metrics can be observed in Fig. 4.39, which shows
box plots for sTurnInRel in subfigure (a) and sApexRel in subfigure (b). A scatter plot
of both metrics is displayed in subfigure (c). Before analysing the results, a dependency
of both metrics is assumed. This is due to the idea that a later turn-in will lead to a later
apex as well. The box plots indicate a similar comparison of median values with both met-
rics for drivers three and five, however especially driver eight generally shows a later turn-
in point in combination with a comparatively early apex. This does not comply with the
assumption and is further illustrated by subfigure (c). The points form a triangular cloud,
which means additional to the assumed proportionality also a late apex with early turn-
in is employed by drivers. A stronger tendency for driver eight to use this driving style
is apparent from the box plots. The opposite, meaning an early apex with late turn-in is
not of importance, judged from the data and from an engineering point of view as well.
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The final example of the results for the data analysed within the scope of this work
is the relative length of the braking phase sBrkRel. Figure 4.40 shows a box plot for
this metric including outliers, since they are of importance in this graph. It is apparent
that driver five has the biggest share of outliers, which range out of the desired scope of
values between zero and one. A value above one requires a detected braking phase that
is longer than the interval from throttle lift-off to coming back at full throttle. While
generally a few data points with wrongly detected corner points and resulting outliers
are expected, driver five seems to particularly not comply with the used strict pattern
detection algorithm. Overall, this is also treated as a driver characteristic. This result
needs careful observation though, as the metric will gain importance for the classifier
used for feature selection, although this is caused mostly by a single driver. This can
also be seen in the high rating for loss of accuracy in Fig. 4.21. The metric does however
allow differentiation of the remaining drivers as well, which is supported by the Relief
weights shown in Fig. 4.20. The ranking from Relief weights is not as high as for loss
of accuracy, although it still implies significant feature importance.
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4.4 Discussion

The main scope of this work is the driving style of race car drivers. With reference to
chapter 1 this research originates from the problem of driver specific vehicle setups in
motorsports. Since both the driver and the car show dynamic behaviour that is also
mutually influenced, tuning the overall system proves difficult. The main idea to solve
this problem is an objective description of each subsystem that may subsequently allow
evaluation of the interaction of those with each other. This calls for an objective measure
for driving style, which is specifically suited to the application for race car drivers.

Hypothesis 1: Race car drivers show individual differences in driving style.

The first hypothesis claims that race car drivers show distinct driving styles. This as-
sumption is based on empirical observations by many experts in the field, but has not
been scientifically proven yet. The review of the state of the art revealed many promising
concepts about characterising driving styles and mostly classifying drivers into certain
predefined categories. Due to the variety of driver behaviours found, it seems reasonable
to assume that these differences also exist for racing drivers. The main limitation though
is the general setting in which a driver finds himself. Normal usage of road cars in cities
and on rural roads or highways allows a variety of approaches. This is also resembled
in the found driver categories, such as cautious or aggressive. Contrary, the purpose of
race car driving is solely focused on achieving minimal lap time, which imposes a certain
approach to the driving task. This subsequently leads to the need of a more detailed
description to elaborate if distinct driving styles can be found for race car drivers. An
example for a metric used in the literature to classify driver behaviour is the average
vehicle velocity. In the car racing domain the average speed is similar to the achieved
lap time, since the track length is a boundary condition. This in turn means that the
average car speed is a performance metric in motorsports. If it were suited to differenti-
ate driving style in this context, that would impose all drivers capable of accomplishing
the same lap time, which includes all drivers considered in this work, would share the
same driving style. The examination of the first hypothesis is inherently linked to the
second hypothesis because metrics are needed to analyse possible differences between
drivers. While these metrics are discussed in context of the second hypothesis, the first
hypothesis can already be confirmed from the shown results. The presented data clearly
shows differences in driving style among the participating drivers.

Hypothesis 2: The driving style of race car drivers can be described by
objective criteria.

Based on the assumption that driving style is differentiable among race car drivers, and
the available literature on respective methods for road car users, this hypothesis reflects
the main goal of this work. As previously mentioned, the goal differs from the presented
existing solutions, which are capable of classifying drivers into certain groups and even
distinguish racing drivers, though into beginner and expert categories. For this reason,
the presented approach was evaluated. The analysis of the available data on a corner
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by corner basis proved to make the required level of detail available and increase the
amount of usable data points compared to a lap or outing basis. The verification of the
hypothesis that the driving style of race car drivers can be described by objective metrics
was accomplished through a driver detection algorithm that is using the aforementioned
objective metrics as inputs to detect the driver for a certain corner. While the goal is
not to detect the driver in the end, the ability to do so proves both that the defined
criteria contain information which allows differentiation of race car drivers, as well as
the implicit presence of different driving styles. The detection could be achieved with
reasonable accuracy. It must be noted though, that the level of correct predictions can
be significantly increased. An exemplary method to do so is to set the limitation of
allowing only one driver class for a set of corners on the same lap. This approach is in
accordance with the condition that the driver does not change over a lap, however is
examined in future work and not further presented here.

The employed machine learning techniques also contributed to evaluate the significance
of the aforementioned metrics. Multiple ranking mechanisms have been employed, which
proved to be useful given the sometimes ambiguous results of the evaluation. The com-
bination of different methods allowed to build an overview, as well as an estimate of how
useful these indications are to evaluate each of the defined driving style characteristics.
Finally, engineering know how helped to select metrics in a consistent way, which aids any
future application of the method. An example for this process is the selection of distance
based metrics measured relative to the respective corner. These were ranked highest for
classification accuracy in most cases, however few would need to be replaced with their
correlated variants to optimise the prediction accuracy. As elaborated, this was not the
main scope of this work. Furthermore, this example emphasises that results must be
considered with care when employing undeniably powerful machine learning methods.

The finally selected 23 metrics show promising results, not only because the driver can be
detected from them but also for the distinct distribution of results for individual drivers.
The ability to classify race car drivers based on the elaborated metrics proves that they
show different driving styles and that these can be described objectively. This means
that both hypotheses are proven by the present work. Since the evaluation was carried
out with data from three race seasons, this also means that the approach works with
changing conditions. With reference to Fig. 1.1, especially changing dynamic behaviour
of the vehicle and different tracks are the key components besides the driver. This was
also verified for the Driver-in-the-Loop Simulator (DiLS). Of course this application is
highly dependent on the used vehicle model as well as simulator hard- and software.
However, if the simulation comprises the required level of detail, the obtained results
show that the drivers display similar differentiation as in the real car. This is illustrated
by the brake delay metric, which is the delay between throttle lift-off and the application
of the brake pedal. Despite the change of absolute values, which even changed sign, the
relative differences among the drivers can be seen data from the car and from the DiLS
alike. In summary, the presented results show that the developed method to objectively
describe the driving style of race car drivers is robust and provides significant results.
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The following chapter summarises the present thesis regarding its motivation, the derived
methodology, and the achieved results. Additionally, it aims to indicate some possibilities
for further research and application possibilities building on the presented outcomes.

The scope of this work was entirely in the motorsport context, which is built around the
main goal to achieve minimal lap time or maximal distance for a combination of driver,
vehicle, and track. The aforementioned three components are closely linked and interact
with each other during the process. In fact they form a dynamic system which needs
to be understood if further optimisation is required. The presented work focuses on the
interaction of the driver with the vehicle while the track was simplified to a constant
boundary condition. The resulting engineering problem is consequently about setting
up a race car specifically for a given circuit, and equally important, in a way that suits
the driver’s individual driving style. As the vehicle offers a non-trivial amount of param-
eters for adjustment the mainly used empiric process to understand a driver’s needs and
consequently the requirements concerning the car, as well as the corresponding setup
characteristics, is time consuming. Therefore, the aim of this research was to provide
a detailed description of a race driver’s driving style, which can be understood as the
driver’s dynamic behaviour. This is the first step towards a comprehensive, objective
understanding of the aforementioned dynamic system involved in motor racing compris-
ing driver, car, and track. The initial hypotheses, which were proven in this work, state
that individual driving styles exist between professional race car drivers, as well as that
they can be described by objective metrics.

Following the introduction to the topic, a review of available literature concerning the
driving task itself, driver modelling, and driving style was presented. The commonly used
three-level model of the driving task was summarised, since especially the stabilisation
and guidance level are used by the derived method. Driver modelling was described by
exemplary works, including the principal concept of a virtual driver as well as methods
to incorporate driver behaviour to a certain extent. This part is mainly about setting
the general goal of a driver which would be time-optimal in the case of race car driving.
Subtle details as expected for different driving styles in the scope of this work are however
not yet considered in the literature. Additionally, selected works about driving style were
presented mainly for road car users. These include different methods of evaluation, for
example by analysing recorded vehicle data or psychological questionnaires. A tendency
for classification of drivers into several categories was found. This can be used for various
topics, for Advanced Driver Assistance Systems (ADAS) or for insurance policies, just to
name two. The characterisation with general terms, such as cautious or aggressive, does
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conversely not allow differentiation of race car drivers. This led to the development of a
new method to provide an objective description of the driving style of race car drivers.

The proposed method relies on specific patterns of the driver’s control inputs to the
vehicle which are especially present in motorsports. If the car is driven on the limit, the
usual approach to a corner shows distinct characteristics in the recorded signals. For
example, the throttle is lifted from full throttle to idle and carefully applied again up
to full throttle after the braking phase and turn-in. The detection of these patterns, or
corner points, was implemented through rules defined by a margin around the static
signal values. With the detected characteristics objective metrics can be calculated such
as the on-throttle or turn-in point. The approach was split into the stabilisation and
guidance level, according to the aforementioned three-level model of the driving task.
Metrics to describe the driving style on the stabilisation level are calculated from the
main control inputs which are throttle, brake, and steering. These include gradients of
signals between the detected points, relative positions of points, and lengths of intervals
between those points in context of the analysed corner. Furthermore, a description of
the signals in the frequency spectrum as well as analysis of the derivatives of each signal
is included. The characterisation of the driving style on the guidance level employs the
vehicle’s position as a representation of the driving line. It is described by metrics based
on the path curvature, the distance to absolute reference lines along the corner, and
”V-angles” as an objective implementation of a term commonly used by engineers to
describe the approach to a corner. The aforementioned reference lines are either the
track centre line or the inner track edge of the corner.

The definition of objective metrics resulted in 104 characteristics, 85 for the driver’s con-
trol inputs and 19 for the description of the chosen driving line. These were evaluated
regarding correlations and significance with the goal to reduce the set to an amount
that allows practical usage but still contains the necessary information. Machine learn-
ing techniques and feature selection methods were used for this purpose. The proposed
problem of driver detection served for this selection and also to generally proof the exis-
tence and differentiability of driving style in the motorsport context. Supervised learning
was applied to detect the driver from the metrics that have been calculated for a specific
corner. The used Random Forest classifier is combined with feature selection methods,
such as Recursive Feature Elimination (RFE), and ranking criteria like the Pearson cor-
relation coefficient and the Relief algorithm. The defined metrics were reduced to 49 in
a first step, 39 for control inputs and 10 for the driving line. This was done on the basis
of removing those with too many erroneous values, as well as reducing the intentionally
redundant features. In a second step the remaining features were compared not only
respective to correlated ones but also regarding their absolute significance. This led to
a feature set with 23 metrics, 19 for the stabilisation and six for the guidance level.

The classification algorithm trained on these 23 selected features achieves a detection
rate of 77% proving that substantial information about individual drivers is contained
in the objective metrics. Detailed analysis of the results showed distinctive patterns
for different drivers and allowed further investigations regarding their interactions. An
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exemplary comparison of the same metric for real car and simulator data revealed that
the same driver specific patterns can be seen even though the absolute values change
with the different environment. The results confirmed the original hypotheses. Different
driving styles can be seen among race car drivers competing on the same level and in
the same category. These can be characterised by objective metrics.

While rating drivers with the derived approach is outside the scope of this thesis, some
of the objective metrics are directly linked to driver performance. The gradient of the
throttle release, as discussed in section 4.3, is an example for such a metric. Despite the
mentioned link to driver performance, a more detailed analysis using the gathered data
could potentially reveal more information about this topic. Further studies could lead
to recommendations for specific driving styles depending on track, car type, and other
conditions. An adoption of the approach to a corner by the driver possibly improves
performance more than adjustments to the car.

Apart from describing the drivers the next step to achieve the overall goal is to describe
the dynamic vehicle behaviour by a similar objective approach. There are various exam-
ples available in the literature for road cars, but an adoption to the different conditions
in racing is not yet published. The main difference is that the state of the vehicle is
mainly close to the driving limits of a car, as opposed to the evaluation of road cars
which is typically focused on the linear region. Following such a description of the vehi-
cle, the understanding of both systems allows investigation of the interactions between
them. This could provide information about the driver individual subjective perception
of driveability if objective methods are combined with the driver’s feedback.

The presented research is an important step towards a systematic understanding of the
complex interactions between driver, vehicle, and environment in motor racing. It will
significantly contribute to the future goal of replacing empirical tuning of the vehicle
setups in training sessions by virtual methods for time- and cost effective development
in motorsports.
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enkraftwagen”. In: Automobil Industrie 27.2 (1982), pp. 183–190. issn: 0005-1306.

[11] Edmund Donges. “Ein regelungstechnisches Zwei-Ebenen-Modell des menschlichen
Lenkverhaltens im Kraftfahrzeug”. In: Zeitschrift für Verkehrssicherheit 24.3 (1978).
issn: 0044-3654.
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