
Michael Stefan Maierhofer, BSc

Automated generation of a Module Protection Unit for
RISC-V based SoCs following the Model-driven Architecture

principle

MASTER’S THESIS
to achieve the university degree of

Diplom-Ingenieur

Master’s degree programme: Information and Computer Engineering

submitted to

Graz University of Technology

Supervisor

Univ.-Prof. Dipl.-Inf. Dr.rer.nat. Marcel Carsten Baunach
Institute of Technical Informatics

Dipl.-Ing. Heimo Hartlieb
Infineon Technologies Austria AG

Graz, October 2020

This document is set in Palatino, compiled with pdfLATEX 2ε and Biber.

The LATEX template from Karl Voit is based on KOMA script and can be found
online: https://github.com/novoid/LaTeX-KOMA-template

http://LaTeX.TUGraz.at
http://en.wikipedia.org/wiki/Biber_(LaTeX)
http://www.komascript.de/
https://github.com/novoid/LaTeX-KOMA-template

AFFIDAVIT

I declare that I have authored this thesis independently, that I have
not used other than the declared sources/resources, and that I
have explicitly indicated all material which has been quoted either
literally or by content from the sources used. The text document
uploaded to TUGRAZonline is identical to the present master’s
thesis.

Date, Signature

Abstract

The number of transistors in ICs is still steadily growing despite Moore’s law
being declared dying numerous times. The productivity is trailing behind with
an increase by factor 20, leading to an ever-expanding ‘design-productivity
gap’. The closing of this gap has led to the introduction of a novel hardware
generation flow based on a model-driven architecture (MDA) principle.
Prior to this thesis, a CPU core generator for the hardware MDA flow had
been developed, based on the RISC-V ISA. Said core had support for interrupts
and exceptions but was missing means to restrict accesses to memory and
peripherals. Such restrictions are crucial to ensure freedom from interference
between subsystems in functional safety systems. This work looks into the
generation of a memory protection unit (MPU) as an extension to the MDA
flow for RISC-V based SoCs.
The MPU presented in this work is fully incorporated into the core and en-
ables effective memory protection and isolation with a minimal performance
overhead.

iv

Kurzfassung

Die Anzahl an Transistoren in ICs steigt trotz dem mehrfach erklärten Ende
des Mooreschen Gesetz stetig weiter. Gleichzeitig fällt die Produktivität immer
weiter zurück. Bereits jetzt ist das Produktivitätsdefizit um mehr als das 20-
fache gestiegen, und es wird immer größer. Um diesen „Design-Productivity
Gap“ zu schließen wurde ein neuartiger Ansatz für die Generierung von Hard-
ware basierend auf dem Prinzip einer Modell-getriebenen Architektur (MDA)
entwickelt.
Vor dieser Masterarbeit wurde bereits ein Generator für eine CPU mit dem
RISC-V Instruktionssatz für den Hardware MDA-Flow entwickelt. Diese CPU
unterstützte Interrupts und Exceptions, eine Möglichkeit Zugriffe auf Speicher
sowie Peripherie zu beschränken waren allerdings nicht gegeben. Derartige
Zugriffsbeschränkungen sind allerdings notwendig um die Rückwirkungsfrei-
heit (engl. „freedom from interference“) zwischen Subsystemen in Systemen
mit Anforderungen an Funktionaler Sicherheit zu garantieren. Weswegen sich
diese Arbeit nun damit beschäftigt eine Memory Protection Unit (MPU) als
Erweiterung des MDA-Flow für RISC-V basierte SoCs zu realisieren.
Die im Zuge dieser Arbeit entworfene MPU ist vollständig in die CPU in-
tegriert, und ermöglicht einen effektiven Speicherschutz und Isolation mit
minimalen Leistungseinbußen.

v

Acknowledgements

I want to thank both Univ.-Prof. Dipl.-Inf. Dr.rer.nat. Marcel Carsten Baunach
and Dipl.-Ing. Heimo Hartlieb for the supervision and the opportunity to write
this Master’s Thesis in cooperation with Infineon Technologies AG. Thank you
for sharing your expertise and experience in the field as well as the guidance
during the creation of this work.

I also want to thank all my friends and colleagues I met during my studies
or that accompanied me during this time. Studying would not have been the
same without you and your support.
Furthermore, I especially want to thank Paul and Dominic. You helped me
stay positive and sane over the emotional rollercoaster that was finding and
creating a Master’s Thesis.

Last but not least, I want to thank my family and parents. Thank you for your
continuous support and for always letting me pursue my dreams.

vi

Contents

1. Introduction 1
1.1. Background . 1
1.2. Objective and Motivation . 2
1.3. Related Work . 4
1.4. Outline . 6

2. Model Driven Architecture 7
2.1. Model Driven Architecture Concept 7
2.2. Metagen and MetaRTL . 11

3. Hard- and Software Assumptions and Constraints 13
3.1. Software Assumptions . 13
3.2. Hardware Assumptions and Constraints 14
3.3. Memory Partitioning and MPU Registers 15

4. Extension to the CSR model 22
4.1. CSR Template and Model of Design 23
4.2. MPU Extension . 29

5. MDA based MPU generation 33
5.1. MPU Placement in the RISC-V Model of Things 33
5.2. MPU Template and Model of Design 35
5.3. MPU Placement within the CPU Pipeline 48

6. Evaluation and Results 50
6.1. Behavioural Tests . 50
6.2. Resource Requirements . 55
6.3. MPU Application Evaluation . 59

6.3.1. Application Architecture 59
6.3.2. Application Example . 61

vii

Contents

6.3.3. Results . 64

7. Summary and Future Work 68

Bibliography 70

A. Behavioural Test Source Code 75
A.1. Kernel and Exception Handler 75
A.2. Exception Handling Test . 78
A.3. Configuration Change Test . 80

B. Application Performance Test Source Code 83
B.1. Dhrystone Source Code . 83
B.2. Kernel and Exception Handler 100
B.3. MPU Management . 104

viii

List of Figures

1.1. SoC architecture overview of the ‘RiVal’ test chip 3

2.1. MDA as Y-Chart . 8
2.2. MDA for hardware generation 10
2.3. Metamodel of Metapad . 11

3.1. MPU configuration CSR layout 16
3.2. MPU address register format . 17
3.3. MPU configuration entry (c f g) layout 17
3.4. MPU control register format . 21
3.5. MPU status CSR layout . 21

4.1. Extended UML diagram of the CSR classes 24
4.2. CSR RegisterFile Structure . 26
4.3. CSR Structure with no Bitfields 27
4.4. CSR Structure with Bitfields . 28
4.5. Address Register Structure . 30
4.6. Configuration Register Bitfield Structure 31

5.1. Schematic metamodel of RISC-V core (MetaRISC) expanded
with MPU . 34

5.2. UML diagram of the MPU classes 35
5.3. MPU toplevel Structure . 38
5.4. MPU Status Structure . 39
5.5. MPU Decoder Structure . 40
5.6. MPU TOR Structure . 41
5.7. MPU NAPOT Structure . 42
5.8. MPU Access Check Structure . 44
5.9. MPU Execute Access Structure 45
5.10. MPU Read/Write Access Structure 46

ix

List of Figures

5.11. MPU Fault Logic Structure . 47

6.1. Decoder test . 50
6.2. Waveform of the exception handling test 52
6.3. Waveform of the configuration change test 54
6.4. Dhrystone Benchmark runtimes 66

x

List of Tables

3.1. ‘A’ field encoding of configuration registers of MPU 18
3.2. NAPOT range encoding in address and configuration registers

of MPU . 19
3.3. ‘B’ field encoding of configuration registers of MPU 20

6.1. Timing report of MPU . 55
6.2. Cell report of MPU . 57
6.3. Area report of MPU . 57
6.4. Cell report of ‘RiVal’ w/wo MPU 58
6.5. Area report of ‘RiVal’ w/wo MPU 58
6.6. Dhrystone Benchmark Results . 64

xi

List of Listings

2.1. MetaRTL example of a half adder structure 12

6.1. MPU region structure . 59
6.2. MPU configuration structure . 60
6.3. MPU configuration load function 62
6.4. MPU address write function . 63

A.1. kernel.c for behavioural tests . 76
A.2. kernel.S . 78
A.3. exception_test.c . 80
A.4. change_test.c . 82

B.1. dhry_1.c . 94
B.2. dhry_2.c . 100
B.3. kernel.c for Dhrystone . 101
B.4. kernel.S for Dhrystone . 103
B.5. mpu.h . 104
B.6. mpu.c . 111

xii

Terms and Abbreviations

AHB Advanced High-performance Bus
API application programming interface
ASIC application specific integrated circuit
ASIL automotive safety integrity level
AST abstract syntax tree
CIM computation independent model
CISC complex instruction set computer
CPU central processing unit
CSR control status register
ECU electronic control unit
FPGA field programmable gate array
HDL hardware description language
HGL hardware generation language
HW hardware
IC integrated circuit
IDE integrated development environment
IO input/output
IoT Internet-of-Things
IP Intellectual Property
ISA instruction set architecture
ISO International Organization for Standardization
LSB least significant bit
LuT lookup table
MDA model-driven architecture
MMU memory management unit
MoC Model of Computation
MoD Model of Design
MoT Model of Things
MoV Model of View

xiii

Terms and Abbreviations

MPU memory protection unit
MSB most significant bit
NoC network-on-chip
OMG Object Management Group
OS operating system
PC program counter
PIM platform independent model
PM platform model
PMA physical memory attribute
PMP physical memory protection
PSM platform specific model
PTS powertrain and safety
RAM random access memory
RISC reduced instruction set computer
ROM read only memory
RTL register transfer level
RTOS real time operating system
SoC system-on-chip
SW software
TLB translation lookaside buffer
ToD Template of Design
ULP ultra-low power
UML unified modelling language
UUT unit under test
XML extended modelling language

xiv

1. Introduction

1.1. Background

The number of transistors in integrated circuit (IC) is still steadily growing
despite Moore’s law being declared dying numerous times. According to a
study by McKinsey in 2013, the number of transistors that can be manufactured
increased by factor 100 per decade, while productivity is trailing behind with
an increase by factor 20, leading to an ever-expanding ‘design-productivity
gap’ [CP13]. Closing this gap is essential for all leading companies in the
industry.

An approach commonly used in practice is ‘IP-reuse’. Rather than a (re-)devel-
opment from scratch, pre-existing blocks or whole systems are adapted or used
without further modifications in the new system. Typical examples are RAM
or ROM modules. This leads to an increase in productivity as well as possible
lower development costs.
The evolution to the aforementioned method is complete system or code gen-
eration from abstract descriptions. This hardware generation approach was
named as the next disruptive productivity improvement after IP-reuse by
leading research groups in the industry [ES16]. This code and system gen-
eration approach is continuously evolving. At the same time, it was shown
that a 20x increase in productivity in particular design tasks and 3x higher
productivity during implementation from specification freeze to tape-out can
be achieved [Eck+14]. A well-known example of the usage of code generation
was the development of a hardware generation language (HGL) called Chisel
by Bachrach et al. [Bac+12]. The approach taken by Chisel demonstrated a
10-fold code reduction compared to Verilog code.

This development has led to the creation of Infineon’s hardware generation
flow, replacing the manual hardware description language (HDL) generation

1

1. Introduction

with a high-level generator [Zap18] (see Chapter 2 for details).
With Infineon’s approach to hardware generation, a wide variety of compon-
ents and peripherals (e.g., RAM, ROM, interrupt controller, timer, etc.) have
been implemented. The newest addition to this list is a fully verified RISC-V
core [Sch16], enabling the creation of a fully customisable embedded system-
on-chip (SoC). Logically, the next step for Infineon as a company is to evaluate
if it is possible and feasible to develop chips using only its in-house generation
methodology and have them manufactured in silicone.
This has lead to the creation of a test chip (i.e. a ISO 26262 compliant (as
defined by the International Organization for Standardization (ISO) [ISO18])
SoC for the powertrain and safety (PTS) automotive market) featuring an open-
source RISC-V ISA core called ‘RiVal’ (RISC-V test chip for ASIL compliant
applications).

A study conducted prior to the creation of this thesis revealed that in order
to allow for functional safety compliant software development the test chip is
missing means to restrict accesses to memory and peripherals.

1.2. Objective and Motivation

Functional safety certification standards such as IEC 61508 and domain-specific
derivatives such as ISO 26262 require that a failure in one application cannot
influence the behaviour of another. This freedom of influence is especially
important for safety-critical systems. Such systems often use shared-memory
architectures, while convenient to use, resource sharing constitutes a prob-
lem when separation is required. For example, in such architectures without
protection, each application can access and manipulate the data of other ap-
plications [HRK12].

To prevent processes or applications from interfering with each other, a com-
mon approach is to have a memory protection unit (MPU) or memory man-
agement unit (MMU) included in the central processing unit (CPU). MPUs
are used to restrict access to predefined memory regions, which are usually
configured by an operating system (OS). This region partitioning also parti-
tions the software stack (e.g., in safety-related software and non-safety-related
software) as required by functional safety standards [YN14]. The MPU then

2

1. Introduction

verifies that the currently running process only accesses the address space
it is eligible to access. Upon the context switch to another process, the OS
updates the MPU configuration for the new process. Instead of the necessary
configuration changes when using MPUs, MMUs can be used. In MMU based
systems each process has its own virtual address space. When a process tries to
access a virtual address, the MMU looks it up in the page table and translates
it to a physical address. During context switches the OS only needs to write
the page address of the next process to the MMU [HRK12].

 generated with metaRTL support

RISC-V CPU
(RV32I)

Instruction RAM
(ROM Emulator)

Instruction ROMAHB Master

AHB Matrix

GPIO

 MEM

AHB

Data RAM

Timer/CCUInterrupt Controller
 AHB-Light

APB

SPI Pre-Decoder

AHB MasterAHB Slave

SPI Bridge HV SAR-ADC

APB Fabric

Figure 1.1.: SoC architecture overview of the ‘RiVal’ test chip

To allow process separation on the ‘RiVal’ platform, the objective of this thesis
is to create a memory protection module (either an MMU or MPU) with the
help of Infineon’s hardware generation flow. A depiction of this platform can
be seen in Figure 1.1. Each of the blocks depicted in this figure was created
with metaRTL support (details regarding metaRTL can be found in Section 2.2).
These blocks are called modules in Infineon’s terminology. Therefore, the

3

1. Introduction

proposed unit in this thesis to protect these modules from illegal accesses is
named module protection unit (MPU). In the context of this thesis, the terms
memory protection unit and module protection unit are both abbreviated with
MPU and used interchangeably.

MMUs offer greater flexibility and more access control features compared to
MPUs. This increase in performance and flexibility, however, comes at the
cost of an increase in area size. They require for their address translation
a translation lookaside buffer (TLB) to cache table entries as well as MMU
translation tables. To keep the increase in area size and therefore the cost of
the future SoC at a minimum it was consequently decided to go with an MPU
instead.

1.3. Related Work

Various authors leverage pre-existing protection units such as the MPU con-
tained in ARM Cortex-M and Cortex-A [19a], or Infineon AURIX [19b] pro-
cessors, to isolate and/or protect memory.
Pan and Parmer [PP19] propose an MxU to provide memory protection and
allocation abstraction. This MxU enables both tightly-bounded execution and
dynamic memory management of portable code on Internet-of-Things (IoT)
devices. Lopriore [Lop16] presented a model of a protection system based on
passwords for embedded systems. To reduce the overhead, the model lever-
ages an MPU interposed between the processor and memory. The proposed
system’s focus is on system security and less on system safety. The authors of
[FDM19] and [YN14] focus on memory protection mechanisms in real time
operating systems (RTOSs) using the MMU in ARM processors. The presented
approaches try to minimise the overhead imposed by context switches between
tasks and to provide a hardware abstraction interface to the operating system.
Rivera [Riv18] describes how an MPU can be used to provide runtime data
protection and isolation within a single address space of an embedded system
using bare-metal software written in Ada.
IO and peripheral virtualisation is another approach commonly used to en-
capsulate each device into its own address space. This virtualisation is used
by the operating system to protect itself against buggy drivers or malicious
devices. Malka et al. [Mal+15] showed an approach aimed at high-performance

4

1. Introduction

IO devices such as 1000 Gbps network controllers. The described IOMMU only
makes sense to be included in desktop computers or powerful ECUs since
low-power embedded systems usually do not have such powerful peripheral
devices. A lightweight IO virtualisation which leverages the MPU of ARM
Cortex-M MCUs was described by Paci, Brunelli and Benini [PBB18]. Their
virtualisation layer integrates with FreeRTOS and supports dynamic linking of
new user code.

Ultra-low power (ULP) processors have special requirements when it comes
to memory management and protection. Such ULP systems (e.g., sensor node
networks) are often distributed heterogeneous multiprocessor systems with
shared memory. The stringent low-power constraint often means that the pro-
cessor design cannot be changed. For such networks an MMU or MPU can be
used that is embedded in a network-on-chip (NoC). Multiple systems which
use this approach have been proposed, most notably by Jang et al. [Jan+19], Por-
quet, Greiner and Schwarz [PGS11] and Hattendorf, Raabe and Knoll [HRK12].
For other devices that do not share memory (e.g., IoT devices, microcontrollers,
etc.) a more classical approach of integrating an MPU or MMU into the pro-
cessor can be taken. Stecklina, Langendoerfer and Menzel [SLM13] propose
an MPU design for a low power 16-bit microcontroller (IHP430x) with only a
7% increase in total chip area. The small size, however, comes at the cost that
it only supports up to 16 protection regions with limited flexibility in terms
of usage of those regions and no execution protection. A similar approach
was also taken by Lopriore [Lop14]. Shamani et al. [Sha+16] described a 64
region MMU that was integrated into the COFFEE core (i.e., a RISC processor
developed by a group at Tampere University of Technology, Finland).

MMUs and MPUs have been of interest for both academia and industry for
many years. As expected, a lot of architectures and implementations were
proposed for different use cases and applications. Nevertheless, no publication
was found on model-driven architecture (MDA) driven automated MPU gen-
eration during the creation of this work. Therefore, the proposed approach of
this thesis is a novelty.

5

1. Introduction

1.4. Outline

The remainder of this work is structured as follows: Chapter 2 describes the
principles of model-driven architecture (MDA) and the metamodelling ap-
proach for hardware generation. In Chapter 3, the set constraints and assump-
tions made to the framework, hardware platform, and expected software usage
are looked into.
The required changes to models, characteristics, and detailed descriptions of
the implementations are discussed in Chapters 4 and 5. The former covers the
extension to the control status register (CSR) model for the configuring of the
new module, while the latter addresses the generation of the MPU.
The tests and evaluations of the implementation are discussed in Chapter 6.
And finally, current limitations and possible enhancements as future work are
looked into in Chapter 7.

6

2. Model Driven Architecture

2.1. Model Driven Architecture Concept

Model-driven architecture (MDA) is a vision coined by the Object Manage-
ment Group (OMG), an international industrial consortium that creates and
maintains specifications for software interoperability [MCF03]. The OMG also
addresses future software design aiming to reduce the growing productivity
gap (i.e., the available workforce versus the required workforce). In an MDA
development flow, the primary artefacts throughout the development cycle are
models [KM05]. By capturing these artefacts in a formalised way, automated
processing, starting from very abstract specification all the way to the actual
implementation, is enabled. This formalisation is called Metamodelling and is,
therefore, an integral part of MDA. Doing so a way is provided to automatic-
ally transform and refine models into more specific and fine-grained models.
Eventually, the most granular model is used to generate the intended target.

Figure 2.1 shows the three abstraction layers originally introduced in MDA,
as well as a forth, PM, containing details of the target platform. These layers
are defined in such a way that the target code is generated starting from a
high-level human-elaborated definition (diagrams, models, etc.). The models
on each of these layers are formalised by a metamodel they are an instance of.
It should be noted that the metamodel is a model as well and is formalised by a
so-called meta-metamodel. Metametamodels are used, for example, to generate
metamodels. It is used to generate parts of the metamodelling approach applied
to this thesis. Discussion and further details go beyond the scope of this work,
as such, the interested reader is referred to [ES16].
The aforementioned layers are:

• Computation independent model (CIM) is very abstract and close to the

7

2. Model Driven Architecture

specification. Neither details about algorithm implementation nor archi-
tecture are considered.

• Platform independent model (PIM) avoids platform details, but already
defines the architecture and therefore sets constraints for the implemen-
tation at a high level of abstraction.

• Platform model (PM) contains details of the target platform and the tech-
nology being used.

• Platform specific model (PSM) adds the utilised platform to the PIM and
therefore, is platform-dependent and closest to the target code (also
referred to as view). From this model, the view (i.e., e.g. target code) is
generated.

Figure 2.1.: MDA as Y-Chart (reprinted from [ES16])

The vanilla MDA approach itself does not map that well to hardware design,
which is why an adaptation for digital hardware generation was necessary. The
adoption done by Ecker and Schreiner [ES16] follows the conceptual three-layer
model of the already described MDA but enhances it to support hardware
design. This is achieved by introducing new terms that describe the involved
hardware related models, as seen in Figure 2.2. Again, every model on each
layer is formalised by its corresponding metamodel.

• Model of Things (MoT) corresponds to the level of the CIM as it is in-
tended to formally capture requirements and specifications. It describes

8

2. Model Driven Architecture

the functionality an implementation provides while leaving out imple-
mentation details such as system architecture. One example of an MoT is
an instruction set architecture (ISA) of a CPU.

• Model of Design (MoD) corresponds to the level of the PIM and could be
described as the core model of this methodology. Its goal is to define
the architecture using the designer’s terms. It models the intended func-
tionality in the MoT. It should be noted that the MoD does not include
information on how individual components are provided on a particu-
lar target platform. Doing so avoids the introduction of artefacts from
simulation or synthesis. For example, the MoD of a memory subsystem
will describe its components and characteristics of read and write ports;
it will not, however, describe how those are implemented [Sch16].

• Model of View (MoV) corresponds to the level of the PSM since it is the
least abstract model. It has a straight forward mapping to the target
view. Implementation details such as target hardware dependencies or
technologies from FPGAs or ASICs are added during the transformation
from MoD to MoV. The MoV corresponds to a language-specific abstract
syntax tree (AST), from which RTL files can be generated. Furthermore,
it also implicitly determines the Model of Computation (MoC) as this is
inherently defined by the target view.

9

2. Model Driven Architecture

Figure 2.2.: MDA for hardware generation (reprinted from [Sch16])

10

2. Model Driven Architecture

2.2. Metagen and MetaRTL

Metagen is Infineon’s framework, implementing the three modelling layers of
Metamodelling and code generation described in Section 2.1. The framework
uses a UML subset to specify metamodels. These class diagrams are extended
utilising XML-like specifications of alternatives, subsequently allowing for
the specification of objects, attributes, and their relations between them. Meta-
metamodels are used to relate and combine known metamodels. They are also
used to generate metamodels from other formalisms such as XML schemata.

Figure 2.3.: Metamodel of Metapad (reprinted from [Pau18])

Metamodels can be captured both graphically and textual. The infrastructure
generated by the Metagen framework supports the generation of extensible
application programming interfaces (APIs), code generation for persistent stor-
age, etc. As the framework is written entirely in Python, it takes advantage
of numerous Python libraries and tools, including the Mako template engine
for MoV generation [ES16]. An example MoT metamodel can be seen in Fig-
ure 2.3. This model shows the UML representation of Metapad (i.e., a model
representing a pad).

MetaRTL is the metamodel developed to formalise the model of the MoD layer.

11

2. Model Driven Architecture

It provides a set of components (e.g., multiplexer, register, etc.), as well as
methods of various types needed to generate RTL structures (the output can be
either VHDL or Verilog), thus building a Template of Design (ToD). This ToD is
part of MoD layer (as seen in Figure 2.2) consisting of a set of constructors for
the MoD, where each constructor instantiates a specific component depending
on the data and information contained in the MoT. It describes a blueprint on
how the MoD can be built.

Infineon’s implementation of the ToD is pure Python code, using a set of
predefined packages and classes. Python environments give the ability to use
numerous libraries, modern programming concepts, and to utilise Python IDEs.
An example of a half adder structure written as part of a ToD can be seen in
Listing 2.1.

1 class halfAdder(Structure):
2 def __init__(self, parent=None):
3 super(halfAdder, self).__init__(
4 Ports=[{'Name': 'in0', 'Direction': 'IN'},
5 {'Name': 'in1', 'Direction': 'IN'},
6 {'Name': 'sum', 'Direction': 'OUT'},
7 {'Name': 'carry', 'Direction': 'OUT'}], parent=parent)
8 self['sum'].connect(LXOR(self['in0'], self['in1']))
9 self['carry'].connect(LAND(self['in0'], self['in1']))

Listing 2.1.: MetaRTL example of a half adder structure

12

3. Hard- and Software Assumptions
and Constraints

Before any implementation can be written, constraints and assumptions to
hardware as well as software need to be examined. These constraints and
assumptions are analysed in this chapter.

3.1. Software Assumptions

The first assumption in regards to software is that all code is generally trusted,
immutable, and not self-modifying. This also implies that there will be no
possibility of binary changes during runtime. Those assumptions are easily
justified when writing software in accordance with functional safety standard
ISO 26262, as those requirements ease certification [ISO18]. The trusted code
requirement can be achieved through code review, which is also commonly
used as a best practice in software development.

The next assumption regards the platform (i.e., the hardware that software is
run on) the software is created for. It is assumed that the platform is a bare-
metal embedded system. Effectively meaning that the software stack will be
as slim as possible with no, or minimal, support of an operating system (OS)
or real time operating system (RTOS). This assumption is made as during the
creation of this thesis the SoCs developed at the respective Infineon department
were mainly used as a hardware controller with a communication interface to
a more powerful (automotive) electronic control unit (ECU).

Often, controllers in such systems only support a single privilege or execution
mode, meaning that all software is run at the same (highest) privilege level.
For security and safety reasons, however, it is assumed that multiple privilege

13

3. Hard- and Software Assumptions and Constraints

levels are available, e.g., machine and user mode. The official RISC-V defini-
tion can be found in [WA19a] and [WA19b]. Having multiple modes available
allows the software flow to be split into multiple tasks or modes (e.g., boot, test,
mission mode, etc.) all running at the same low privilege level (i.e., user-level),
with only one task as central trusted entity running at a higher privilege level
(i.e., machine level). Such a trusted entity could, for example, be the kernel of
an (RT)OS. The kernel task’s responsibility is to load the corresponding MPU
configuration of a task during the task dispatching. These configurations are
stored in a read-only memory section (e.g., read only memory (ROM)), thus
being not modifiable. The other tasks (i.e., user-mode tasks) do not modify the
currently loaded MPU themselves. This behaviour can be further enforced us-
ing hardware locking the currently loaded configuration. Once a configuration
is locked in place only a task running at a higher privilege level (i.e., machine
mode task) or a system reboot can unlock it. See Section 3.3 for details.

3.2. Hardware Assumptions and Constraints

In regards to hardware constraints, the most important one is that the MPU will
be integrated seamlessly into the MetaRISC metamodel (as seen in Figure 5.1)
and will be generated on demand with Infineon’s MDA flow described in
Chapter 2. This results in several implications. Most importantly, the MPU will
be part of the CPU, and not connected as an external module via a bus interface
such as Advanced High-performance Bus (AHB). The CPU design during the
time of writing this thesis is a 5-stage pipelined CPU design that only supports
the RV32I instruction set (version 2.1). Therefore, the CPU pipeline needs to be
considered for the MPU placement. Furthermore, an exception unit has been
built for the used RISC-V core by Zappia [Zap18], and thus the MPU should
work with this exception unit. Finally, the number of possible MPU registers is
constrained by the fact that they have to be mapped into the custom control
status register (CSR) address space according to the RISC-V ISA (see [WA19b]
for details).

The next assumptions effect the number of potential protection regions. Given
the dynamic potential of the MDA flow, it is assumed that it would be beneficial
to have a flexible number of possible MPU protection regions. Just as many
as required for a specific application. When choosing the number of required

14

3. Hard- and Software Assumptions and Constraints

regions it should be kept in mind that if an access control granularity of 1 byte
is necessary, each 1 byte region needs its MPU region. The modules to and
from which the access shall be controlled are assumed to be memory-mapped
into the databus address space.

The MPU usage and specification should follow the physical memory pro-
tection (PMP) and physical memory attribute (PMA) specifications from the
privileged RISC-V ISA specification (Version 1.11) (see [WA19b] for details)
as closely as possible. Therefore, allowing for Intellectual Property (IP) reuse
in case an MMU in accordance to the RISC-V ISA is needed in future. The
MMU described by the RISC-V specification is powerful indeed. However, its
complete implementation would result in an excessive overhead in terms of
features and more important area size. This is because the implementation or
usage of a single PMP or PMA register requires the implementation of all other
registers as well. The inclusion of these registers is not generally necessary, but
rather it is an explicit requirement from the RISC-V specification. The MMU
described in the RISC-V specification also supports advanced features such
as virtual memory, which is something that is hardly ever seen and used in
bare-metal embedded systems and as such would waste precious chip area.

Lastly, at the time of writing this thesis, no other privilege modes other than
machine mode of the core was available. The lack of privilege modes directly
contradicts the software assumptions made in Section 3.1, leading to a restric-
tion in possible use cases. Nevertheless, it was decided to go forward with the
system at hand.

3.3. Memory Partitioning and MPU Registers

With the help of the MPU, the accessible memory range can be partitioned.
Those partitions are called regions in the context of this thesis. To control the
size and access permissions of those regions, there are two registers required:
configuration and address registers.

A single MPU configuration entry has a width of 8-bit, which is densely packed
together with other configuration entries into single word-sized (32-bit) config-
uration registers (c f g0–c f gN). This minimises the required number of registers

15

3. Hard- and Software Assumptions and Constraints

and the required context-switch time. Each entry together with its correspond-
ing address register forms a configuration tuple, which describes the size and
access permission of a region. As described in Section 3.2, the number of regis-
ters is not fixed.1 Instead, the number of possible and available configuration
CSRs depends on the required granularity of the address space partitioning
and use case for which the MPU shall be used for. Configuration and address
registers are modelled in the MoT and the number of registers can be changed
freely to accommodate the needs of the target application (see Chapter 4 for
details regarding this process). A larger number of registers allows for smaller
granularity, flexibility, and more flexible configuration. The layout (i.e., the
placement within the CSR address space) of the configuration registers can be
seen in Figure 3.1.

The reason to have a flexible number of regions is to accommodate for as many
use cases as possible. Some applications might just want to prohibit a single
address region from accessing input/output (IO) at all, while others need an
elaborate access control scheme.

31 24 23 16 15 8 7 0

c f g3
0 c f g2

0 c f g1
0 c f g0

0 c f g0

8 8 8 8

...

31 24 23 16 15 8 7 0

c f g3
N c f g2

N c f g1
N c f g0

N c f gN

8 8 8 8

Figure 3.1.: MPU configuration CSR layout (adapted from [WA19b])

The address CSRs hold the base addresses of regions (i.e., the addresses where
regions start). The address encoding used for those registers can be seen in
Figure 3.2. This format is used for all address registers (addr0–addrN).

1The number of registers may only change during the design phase. The number of register
cannot be modified after synthesis.

16

3. Hard- and Software Assumptions and Constraints

31 0

address[31:0]
32

Figure 3.2.: MPU address register format (adapted from [WA19b])

The layout of each configuration entry (c f g) from Figure 3.1 is shown in Fig-
ure 3.3. The ‘R’ and ‘W’ bits indicate, when set, whether read (i.e., load instruc-
tions) or writes (i.e., store instructions) are permitted respectively. Logically
this also implies that a cleared bit denies the corresponding access type. A set
‘X’ bit indicates that an instruction fetch is allowed from the corresponding
memory region.
The other fields, ‘A’, ‘B’, and ‘L’ are described in the following sections.

7 6 5 4 3 2 1 0

L B A X W R

1 2 2 1 1 1

Figure 3.3.: MPU configuration entry (c f g) layout (adapted from [WA19b])

Address and Byte Ranges

As described in the paragraphs before, a region is determined by a config-
uration entry and its associated address register. The ‘A’ field in the MPU
configuration entries encodes the address-matching mode of a region. This
means that this field determines how the address register is interpreted (i.e.,
the start- and end address of a region and whether it is active). As shown in
Table 3.1, there are five matching modes available in total.
The simplest case is A = 0. For this case, the entry is disabled, and no matching
occurs (i.e., all accesses to this region are forbidden). The four other access
modes are:

1. naturally aligned power-of-2 (NAPOT) region;
2. naturally aligned word (4 byte) region (NA4);

17

3. Hard- and Software Assumptions and Constraints

3. top boundary of an arbitrary range (TOR) (available only for execution
control); and

4. Byte Mode, which replaces the TOR mode for read and write accesses.

A Name Description
0 OFF Disabled region
1 BM/TOR Byte Mode (for R/W)/Top of Range (for X)
2 NA4 Naturally aligned word (4 byte) region
3 NAPOT Naturally aligned 2n byte region, n >= 3

Table 3.1.: ‘A’ field encoding of configuration registers of MPU (adapted from [WA19b])

A more detailed description of each mode is given in the following paragraphs.

These modes support a granularity down to four bytes for instruction memory
regions, and down to 1 byte for data memory regions. It should be noted that
the assumed four-byte granularity of instruction memory regions is inconsist-
ent with the compressed instruction set specification, which supports 16 bit
granularity [WA19a]. However, as mentioned in Section 3.2, the instruction
format this work is based on is the RV32I format. In this format, each instruction
is exactly 32 bit wide, therefore fulfilling the assumption.

The size of a naturally aligned power-of-2 (NAPOT) region is encoded in the
low-order bits (i.e., the least significant bits (LSBs)) of the associated address
register. By fixing the LSBs, all possible address variations fall into the specified
range. Which means that the address stored in the address register is the en-
coded start address (i.e., the lowest possible address) of a region. The encoding
can be seen in Table 3.2.
It should be pointed out, that this is only possible because the address encoded
in the address registers corresponds to bits 33 to 2 of an address. Meaning that
the effective address (i.e., the resulting address) will be obtained by logically
left-shifting the encoded address by two. The value to store in the address
register for a specific region can be calculated: given the start address of the
region a, and the supposed size of the region s, the value v to store is

v = (a +
s
2
) ≫ 2

where ≫ denotes a logical right shift.

18

3. Hard- and Software Assumptions and Constraints

For regions that use the top of range (TOR) mode, the address range is de-
termined with the associated address register which contains the top of an
address range (i.e., the highest address), and the preceding address register
which contains the bottom of an address range (i.e., the lowest address). If the
‘A’ field of a configuration entry i is set to TOR, an address x will fall within
the determined range when addri−1 ≤ x < addri. In case there is no preceding
register available, 0 will be used for the lower bound, thus, an address x will
fall into the region when x < addr0.

addr cfg.A Match type and size
xxxx...xxxx NA4 4-byte NAPOT range
xxxx...xxx0 NAPOT 8-byte NAPOT range
xxxx...xx01 NAPOT 16-byte NAPOT range
xxxx...x011 NAPOT 32-byte NAPOT range
xx01...1111 NAPOT 232-byte NAPOT range

Table 3.2.: NAPOT range encoding in address and configuration registers of MPU (adapted
from [WA19b])

The easiest mode to understand is the naturally aligned word (4 byte) (NA4)
mode. When the ‘A’ field of a configuration entry i is set up to use this mode an
address x falls within the range, if and only if, the address matches the value of
the associated address register. Formally fulfilling the following requirement

x !
= addri.

For regions on which load and store instructions could be executed (i.e., data
memory), TOR mode is replaced by Byte Mode (BM). In this mode, the address
is matched as an NA4 region; however, the granularity is lowered to byte ac-
curacy. This lower granularity is achieved with the ‘B’ field in the configuration
entries. The encoding of the ‘B’ field can be seen in Table 3.3.

When the ‘A’ field of a configuration entry i is set to Byte Mode then the
entry matches any address x with the value b from the ‘B’ field such that
x = addri + b. This approach requires unaligned data memory access support,
which was available during the creation of this thesis. Furthermore, it should
be pointed out that separate configuration tuples are required for each region
to be controlled in BM.

19

3. Hard- and Software Assumptions and Constraints

B Field Description
0 [7:0] Access to bit 7 down to 0
1 [15:8] Access to bit 15 down to 8
2 [23:16] Access to bit 23 down to 16
3 [31:24] Access to bit 31 down to 24

Table 3.3.: ‘B’ field encoding of configuration registers of MPU

Register locking

The ‘L’ bit indicates whether the configuration entry is locked, and thus writes
to the configuration (e.g., c f g0) and to the associated address register (e.g.,
addr0) are ignored. When entries are locked, they can only be unlocked through
a system reset or reboot.

Priority and Matching Logic

All configuration tuples are not prioritised meaning that all tuples contribute
to whether an access succeeds or fails. For an access to succeed, the access
address must entirely fall within the range of at least one configured region.
Otherwise, the access will fail, regardless of the ‘L’, ‘R’, etc. bits. This behaviour
can be observed, for example, in case of operations that exceed the protected
region, e.g., a half-word (16 bit) read from a Byte Mode protected region which
only allows single byte accesses.

If a region is successfully matched, then the ‘L’, ‘R’, ‘W’, and ‘X’ bits determine
whether the access is granted (success) or denied (fail). In case no entry is
matched, but at least one region is implemented, the access will always result
in a fail. However, in case there are two conflicting matching regions (e.g., one
allowing stores and the other one does not) the access will succeed.
Failed accesses generate the respective exception (load, store, or instruction
access fault) which must be handled in software through, e.g., an exception
handler.

20

3. Hard- and Software Assumptions and Constraints

MPU Operation and Status

The MPU operation can be controlled by setting or clearing the ‘E’ bit of
the mpuctrl register (the layout can be seen in Figure 3.4). No fault will be
generated as long as this bit is not set. It should be noted that this bit should be
cleared before attempting to change the currently loaded configuration.

31 1 0

reserved E
31 1

Figure 3.4.: MPU control register format

Figure 3.5 shows the layout of the mpustatus register. In this register, the num-
ber of currently unconfigured and overall available regions (i.e., the number
of configuration tuples) is encoded. This information could be used to ease
configuration changes during a context switch.

31 16 15 0

availregions totalregions
16 16

Figure 3.5.: MPU status CSR layout

21

4. Extension to the CSR model

In the previous chapters, hard- and software assumptions of a module protec-
tion unit and the concept of Infineon’s HDL generator ‘metaRTL’ was presented.
This chapter focuses on the extension of the CSR model and implementation.
Previous work already created a metamodel of CSRs, which made these reg-
isters visible in the MoT of the CPU core itself. Prior to the work of Zappia
[Zap18] the CSRs were not modelled and directly specified in the implementa-
tion, i.e., the MoD layer of the core. While this contribution was sufficient for
exception handling, it does not provide the flexibility required by the concept
described in Chapter 3. To accommodate the dynamic nature during the cre-
ation of the protection unit, several changes and additions where necessary.
The focus of this chapter is the implementation of these changes.

To make use of the metaRTL HDL generation flow, the specification (i.e., the
metamodel) has to be changed. As described in Section 2.1, the ToD consists of
multiple Python scripts which transform the MoT into the MoD. Starting from
the MoD, the remaining generation flow is executed automatically, and HDL
code is subsequently output, for example, VHDL or Verilog code. This code
can then, in turn, be synthesised, and either run on a simulation testbench or a
field programmable gate array (FPGA).
For the sake of clarity, the actual Python code in this chapter will largely be
omitted, focusing on the structure, while still giving an overview of the CSR
implementation and highlighting the changes made.
The remainder of this chapter is split into two parts: 1. in Section 4.1 an over-
view to the CSR metamodel, the ToD, and thus the implemented classes, is
given. Their corresponding hardware architecture is given as well, and; 2. the
MPU specific changes are discussed in Section 4.2.

22

4. Extension to the CSR model

4.1. CSR Template and Model of Design

The CSRs are defined in the MoT of the CPU. They were modelled using
the ‘StateObject’ reference to the ‘ObjectProperties’ class of the CPU core
metamodel. See Figure 5.1 [p. 34] in the following chapter for a depiction.

The actual implementation of the CSRs is specified as discussed above in the
Template of Design (ToD). The in the generation involved classes of the MoD
in the form of a unified modelling language (UML) diagram is illustrated in
Figure 4.1. This section gives an overview of the ToD and a description of each
class involved.

CSRBase

This class serves, as the name suggests, the purpose of having a default tem-
plate for CSR related classes. By inheriting the class attributes, code duplication
is reduced.
All CSR related information from the MoT and a reference to the specific MoT
instance are stored in variables. Furthermore, an abstract function getCSR
provides a standardised interface of accessing the underlying CSR structures.

This base class behaviour could not be achieved with the ‘CSR’ class described
later in this section, because of the extended functionality (e.g., the generation
of hardware structures) of the aforementioned class.

CSR_RegisterFile

The ‘CSR_RegisterFile’ class is a structural class (i.e., a class that generates
hardware). It reads the MoT and generates CSR instances accordingly. Each
CSR object is saved into a dictionary and accessible through the methods
provided:

• autoCSRswiring() hardwires all unconnected hardware ports of all CSRs
to ‘0’.

23

4. Extension to the CSR model

Con�gurationRegister

+ add_bf(BF_MoT : StateObject, start_pos : int) : void

MPUBit�eld

- MoT : StateObject

- Name : string

- Position : int

- Size : int

- getDatafromMoT() : void

CSRBase

- BF_MoT : StateObject

- forward_all_sw_ports : bool

- HardwareProperties : HardwareProperties

- MoT : StateObject

- Name : string

- NumOfElements : int

- Position : int

- Size : int

+ getCSR(Name : string) : void

ControlRegister

HardwareProperties

- HWReadable : bool

- HWWritable : bool

- SWReadable : bool

- SWWritable : bool

- SWInvertedRead : bool

- Implementation : CSRImplementation

<<enum>>

CSRImplementation

- Single : CSRImplementation

- Virtual : CSRImplementation

- Double : CSRImplementation

CSR

- Bit�elds : Dictionary

- hasBF : bool

+ add_bf(BF_MoT : StateObject, start_pos : int) : void

+ add_WIRI(start_pos : int, �nal_pos : int) : void

+ BFConnEnable() : void

+ genHWrdPort(BFname : string) : Connection

- createBFReg() : void

- createNoBFReg() : void

- getDatafromMoT()

- get_maxpos(bit�elds : StateObject, start_pos : int) : Bit�eld

Bit�eld

- MoT : StateObject

- Name : string

- Position : int

- Size : int

- getDatafromMoT() : void

StatusRegisterAddressRegister

- createNoBFReg() : void

CSR_RegisterFile

- CSRs : Dictionary

+ autoCSRswiring() : void

+ CSRportsConn(CallingClass : Object, Name : string, wrAccess : bool, rdAccess : bool) : Object

+ genHWrdPort(CSRname : string, BFname : string) : Connection

+ getCSR(Name : string) : CSR

+ setHWwrAccess(CSRname : string, BFname : string, hasAccess : bool) : Connection

+ wireHWCSRports(csrlist : List) : void

- new_hwswregister(new_reg : CSR) : void

MPURegister

Figure 4.1.: Extended UML diagram of the CSR classes (adapted from [Zap18])

• CSRportsConn() generates external ports connected to the hardware ports
of the CSR, as they are not generated by default (only the software ac-
cess ports are). This method generates the hardware read, write, and
enable ports for both specified CSR or Bitfield. The generated ports are

24

4. Extension to the CSR model

subsequently also connected with the ports of the CSR or Bitfield.
By specifying the ‘CallingClass’ argument, this method’s behaviour is the
same as just described, but the ports are generated in the ‘CallingClass’.

• genHWrdPort() helper function of CSRportsConn() which creates the hard-
ware read ports.

• getCSR() overrides the method from the base class and returns the specific
CSR associated to its name.

• setHWwrAccess() helper function of wireHWCSRports() which creates the
hardware write and enable ports or connects the underlying ports of the
CSR to ‘0’ in case ‘hasAccess’ is not specified.

• wireHWCSRports() this function creates and connects the required hard-
ware ports to connect them to an external unit (e.g., the exception unit).

• new_hwswregister: internally connects the instantiated registers depending
on the in the MoT specified access permissions [Zap18].

Figure 4.2 shows the main components of the CSR register file structure (i.e., the
equivalent digital logic circuit).1 The focus of this particular figure lies on the
visualisation of the components and ports required to accommodate software
(SW) accesses; therefore, the hardware (HW) access ports were omitted.

The main component of this structure is the decoder which takes the write
mode (wr_mode) and write address (wr_addr) to set the enable signal of the
specified CSR to HIGH. When the enable signal is set, the data from the write
data (wr_data) port is written to the CSR. Similarly, data can be read from a
particular CSR by setting the read address (rd_addr) to a valid value. Both read
and write addresses are checked for validity in the lookup table (LuT) of the
decoder during the ‘decode’ stage of the pipeline. The CSR’s content can then
be read from the read data (rd_data) port [Zap18].

The connections between instantiated registers, decoder, and read multiplexer
are created if the access permissions were granted in the MoT. Currently,
violations of these permissions will not cause any fault that is forwarded to the
error port (omitted in Figure 4.2 as it is unused), because the CSRs implemented
as ‘Single’ are registers specified in the privileged RISC-V ISA specification by
Waterman and Asanović [WA19b], and as such defined as ‘write any, read legal
(WARL)’. Meaning that all write operations are allowed, although they may

1All registers are implemented as clocked and rising edge sensitive; the clock signal input,
however, was omitted in all depictions following to improve readability.

25

4. Extension to the CSR model

EN

CSR1

EN

CSR2

CSR3

EN

CSRN-2

EN

CSRN-1

EN

CSRN

EN

D
ec

o
d

er

C
SR

3_
rd

_d
at

a

rd_data

C
SR

3_
en

C
SR

3_
w

r_
d

at
a

wr_mode

wr_addr

wr_data

rd_addr

Figure 4.2.: CSR RegisterFile Structure

not necessarily modify any content, and any read operation will return a legal
value. Similarly, illegal instructions that occur on ‘Virtual’ CSRs of the MPU
follow the same behaviour.

CSR

In this class, all hardware components are generated during instantiation, and
it holds all CSR specific information defined in the MoT.
The hardware components are generated with two methods:

• createNoBFReg() is called when there are no bitfields defined in the MoT
generating the structure visualised in Figure 4.3.

• createBFReg() is called when there are bitfields defined in the MoT. It calls
the addBF() and addWIRI() (‘write ignored, read ignored (WIRI)’) methods

26

4. Extension to the CSR model

to instantiate and generate a new Bitfield class or a permanently disabled
register respectively. Thus, the overall register structure will consist of
multiple smaller internal registers. This can be seen in Figure 4.4 [Zap18].

EN

CSR

wr_data

SW_wr_data

wr_en

SW_wr_en

0

1

SW_rd_data

rd_data

Figure 4.3.: CSR Structure with no Bitfields (adapted from [Zap18])

If there are no bitfields defined in the MoT the createNoBFReg() method is called,
which generates the structure shown in Figure 4.3.
The structure is quite simple as it consists only of a few components. The input
multiplexer selects between the write signal (wr_data) of the CPU internal
logic and the write signal of the software (SW_wr_data) (i.e., access through
CSR instructions defined in the ISA). The register is written to if either the
hardware enable signal (wr_en) or the software enable signal (SW_wr_en) is
HIGH. However, as the selector signal of the multiplexer is connected to wr_en
the HW access is prioritised over the SW access in case both enable signals are
active [Zap18].

If there are bitfields defined in the MoT the createBFRef() method is called.
Internally, this method calls the addBF() and addWIRI() methods respectively,
dependent on the order the bitfields were specified in the MoT. The overall
register structure will consist of multiple smaller internal registers which can
be accessed individually.
An example of a resulting structure is shown in Figure 4.4. For each bitfield,
one write and read data port (*_wr_data and *_rd_data) as well as an enable port
(*_wr_en) is created for HW accesses. The hardware data ports are concatenated
and passed to the input multiplexer, similarly to the CSR without bitfields.
The output from the input multiplexer is split so that only the corresponding
input data is passed the underlying bitfield register. To facilitate a SW read of

27

4. Extension to the CSR model

EN

WIRI
BF2_wr_data

SW_wr_data

SW_wr_en

0

1

SW_rd_data

BF1_wr_data
CONCAT

SLICE

EN

BF1

EN

BF2

0

BF1_wr_en

BF2_wr_en
CONCAT

BF1_rd_data

BF2_rd_data

Figure 4.4.: CSR Structure with Bitfields (adapted from [Zap18])

all bitfields at once, the output of all bitfields is concatenated, and its output
connected to the SW read port (SW_rd_data).
The hardware write priority is achieved with an ‘OR’ reduction of all HW
enable signals that are connected to a negated port of an ‘AND’ gate. The other
port of said gate is connected to the software enable port. This connection
makes sure that software access will only happen if there is currently no
ongoing hardware access. The signal selection also uses the output of the ‘OR’
gate. The underlying bitfields are either enabled all simultaneously through a
SW access, or individually with a HW access.
In case some bitfields are left undefined in the MoT a WIRI register is generated
automatically. Such a register has its enable port hardwired to ‘0’, therefore
disabling it permanently [Zap18].

HardwareProperties

This class holds the hardware properties for each CSR.
As seen in the UML diagram in Figure 4.1 these are: access permissions
(HW/SW read and write permissions), and implementation mode (‘Single’,
‘Virtual’, and ‘Double’).

‘Single’ is the default implementation mode, in which case the CSR is instanti-
ated in place as part of the register file structure. This implementation mode is
visualised with solid line borders of the CSRs in Figure 4.2. When this mode is
used, accesses to the CSR can be made as described previously. All registers of

28

4. Extension to the CSR model

the exception unit are implemented using this mode (as seen in [Zap18]).
‘Virtual’ is functionally identical to ‘Single’ in terms of accesses; however, the
actual instantiation of the CSR is done externally (i.e., the register is part of
some other structure). When this mode is used, the read, write, and enable
ports are created on the top level of the register file structure. The ports will
be automatically connected externally during the pipeline creation. For this to
happen, the ports at the register file top level must have the same name as the
corresponding ports on the external structure. Internally, these ports are con-
nected to decoder and read de-multiplexer the same way ‘Single’ registers are.
This extension to implementation modes allows having various CSR instances
(of multiple CSR classes), which, for example, could be structured differently
internally than the default implementation. This way, a backwards-compatible
interface is providing allowing accesses to happen as if they were ‘Single’ CSRs.
This implementation mode was used for all MPU registers and can be seen in
Figure 4.2 of CSR3 (the register with a slotted line).
In ‘Double’ mode, a CSR bus interface is added to the register file top level.
All accesses to and from an address range specified in the MoT are routed to
this interface. This approach has similar benefits as the ‘Virtual’ mode. One
advantage of this mode is that the number of ports is reduced because access
ports are only added for address ranges instead of individual registers. How-
ever, the structure with the counterpart bus interface and CSR instances needs
to implement a decoder, because the outgoing bus interface at the register
file structure is connected directly to all in-ports (wr_mode, wr_addr, etc.). This
implementation mode is not shown in Figure 4.2, as it was not used for this
thesis. It was, nevertheless, created for possible future work.

The importance of the access permissions was already explained previously
in the CSR register file class description; as such, it will be left out from this
section.

4.2. MPU Extension

This section is about the required extensions to the CSR ToD to ease the hard-
ware implementation of the requirements described in Chapter 3.
As in the previous section, this section gives an overview of the ToD and a
description of each class involved.

29

4. Extension to the CSR model

MPURegister

The ‘MPURegister’ class is used as a parent class for all inheriting classes
(‘ConfigurationRegister’, ‘AddressRegister’, etc.). It has the same functions and
attributes as its parent. The only difference being the initialization routine, as
this class does not differentiate between various implementation modes. This
can be left out because it assumed that all registers are instantiated as ‘Virtual’.

AddressRegister

This class implements, as the name implies, a register that holds a 32-bit address.
It uses the same structure and layout as regular CSRs without bitfields but has
an extra port for a lock signal. This signal is input from the lock field (‘L’ field)
from the corresponding configuration, as explained in Section 3.3.

EN

CSR
SW_wr_data

SW_wr_en

SW_rd_data

rd_data

Lock_in

data_avail

Figure 4.5.: Address Register Structure

As seen in Figure 4.5, this locking mechanism is implemented by connecting
the lock signal to a negated in-port of an ‘AND’ gate. The other input of this
gate is connected to the ‘OR’ reduction of both enable ports, and the gate’s
output is connected to the enable port of the register. That way, the register will
be permanently disabled when the lock signal is set to HIGH. This locked state
stays active until the lock signal goes back to LOW.

Furthermore, a port which shows whether data will be written to or is already
available was added as well (data_avail). This port is used as input for the MPU
status register, allowing atomic updates.

30

4. Extension to the CSR model

ConfigurationRegister

The in Section 3.3 described configuration entries are encoded in the class
‘ConfigurationRegister’. This class is a variation of a CSR with bifields, as
visualised in Figure 4.6. It should be noted that said figure only shows the
structure of a single underlying bitfield, a fully filled register can hold up to
four of such configurations in parallel.

wr_data

R_rd_data SLICEEN

BF
rd_data

L_rd_data

wr_en

data_avail

Figure 4.6.: Configuration Register Bitfield Structure

One modification to the configuration entry register (‘Bitfield’ class) was ne-
cessary to implement the locking mechanism. As soon as the ‘L’ bit is set, the
register will lock itself automatically. This is done by permanently disabling
the enable port of the register with the help of an ‘AND’ gate. A negated port
is connected to the lock bit, and the other port connected to write enable signal
(wr_en). The class that implements this change is called ‘MPUBitfield’. This
class is not a generalisation of the ‘Bitfield’ class, because it would have caused
errors during the instantiation, because of an inheritance problem.

Similarly, to the ‘AddressRegister’, a data_avail port was added as well, for the
same reason already described.

StatusRegister

This class is used to store the current and total available number of configurable
MPU regions. No specific changes were made in terms of structure, as such a

31

4. Extension to the CSR model

figure was omitted from this thesis.

ControlRegister

This class is used to control the MPU operation, i.e., whether it is enabled or
not. The underlying structure uses a default CSR with bitfields layout.

32

5. MDA based MPU generation

In the previous chapters, the model-driven architecture (MDA) and the re-
quired extension to the CSR model were presented. This chapter focuses on
the generation of an MPU within Infineon’s MDA framework (see Section 2.2
for details).

5.1. MPU Placement in the RISC-V Model of Things

In this section, an overview of the core metamodel used for this work is given.
The original metamodel by Schreiner [Sch16] was extended with a new node
(‘MPU’) to allow for the modelling of an MPU. This extension is the centrepiece
of the subsequent sections and will be described thoroughly. All other parts
of the model will be described just briefly, as they are out of the scope of this
thesis. A very detailed description and discussion of these parts can be found
in [Sch16].

Figure 5.1 shows a UML class diagram of the CPU metamodel. This model can
be split into five component groups. The added node ‘MPU’ will be discussed in
more detail in the paragraphs following. The other aforementioned component
groups are:

• Architectural State contains all stateful elements of the CPU that a compiler
needs to be aware of (e.g., registers, memories, and flags).

• Encoding Tree ‘describes how individual instructions are encoded in the
instruction words the CPU can execute. This also includes the description
of how parameters such as register addresses and immediate operands
are encoded in the instruction word.’ [Sch16, p. 46]

• Instruction models the instructions and the instruction behaviour, i.e.,
how the architectural state of the CPU is influenced by instructions.

33

5. MDA based MPU generation

• Exception Node models which exceptions can occur and how those influ-
ence the architectural state of the CPU [Zap18].

MPU

mpucfg : ObjectProperties [1..*]

mpuaddr : ObjectProperties [1..*]

mpuctrl : ObjectProperties [1]

mpustatus : ObjectProperties [1]

Exception

Extension

Con�g

Metartl_riscv

Instruction

Encoding

HardwareProperties

SWReadable : bool = True

SWWritable : bool = True

HWReadable : bool = False

HWWritable : bool = False

Implementation : CSRimplementatation = Single

SWInvertedRead : bool = False

ObjectProperties

HardwareExtension
<<enum>>

CSRimplementatation

Single : CSRimplementatation

Virtual : CSRimplementatation

Double : CSRimplementatation

Parameter

0..1

*

1

1

*

0..1

1..*

*

0..1

CSR *

0..1
*

*

1..*

*

Figure 5.1.: Schematic metamodel of RISC-V core (MetaRISC) expanded with MPU

As depicted in Figure 5.1 the ‘MPU’ node was modelled as part of a ‘Hard-
wareExtension’ in such a way that the system may, or may not, have exactly
one MPU. The MPU model itself only consists of the registers described in
Section 3.3. As these registers are implemented as CSRs, a reference between
the MPU and the ‘ObjectProperties’ class is necessary to keep the resulting
metamodel (the MoT) consistent.

34

5. MDA based MPU generation

5.2. MPU Template and Model of Design

The MPU implementation is specified, similarly to the CSRs described in Sec-
tion 4.1, in the Template of Design (ToD). A UML diagram of the MPU related
classes of the MoD is shown in Figure 5.2. The implementation is specified in
the ToD that is part of the MoD layer, as described in Section 2.1. This section
gives an overview of how the ToD of the MPU is constructed and a description
of each class involved.
For the sake of clarity, in this section the actual Python code (i.e., the code
describing the ToD) will be omitted, focusing on the resulting hardware struc-
tures.

MPU

- <<list>> addr_registers : AddressRegister

- <<list>> cfg_registers : Con�gurationRegister

- ctrl_register : ControlRegister

- <<set>> cfg_addr_tuples

- <<list>> registers : MPURegister

- status_register : StatusRegister

- CSRs_SO : StateObject

- add_CSRs_to_MoT(MoT : StateObject) : void

- add_BF_to_CSR(csr_parent : StateObject, Name : string, Position : int, Size : int, NumOfElements : int) : StateObject

- add_CSR_to_StateObject(Name : string, Address : int, Size : int, NumOfElements : int, ..., Implementation : CSRImplementation) : StateObject

- add_register(csr : StateObject) : void

- checkAddrAvail(addr : int, name : string) : bool

- connect_registers() : void

- create_con�guration_tuples() : void

+ get_next_free_CSR_addr(CSRs_SO : StateObject, read_only : bool) : int

+ getCSR(name : string) : MPURegister

Access_Check

+ <<list>> a_port_list

+ <<list>> b_port_list

+ <<list>> x_port_list

+ <<list>> r_port_list

+ <<list>> w_port_list

+ <<list>> addr_port_list

+ <<list>> x_fault_list

+ <<list>> x_match_list

+ <<list>> r_fault_list

+ <<list>> w_fault_list

+ <<list>> rw_match_list

DecoderRead_Write_Access

Execute_Access

TOR_range NAPOT_range

Fault_Logic

+ <<list>> x_fault_list

+ <<list>> x_match_list

+ <<list>> r_fault_list

+ <<list>> rw_match_list

+ <<list>> w_fault_list

1 1

1

1..*

1

1..*

1

1 1

Status

Figure 5.2.: UML diagram of the MPU classes

35

5. MDA based MPU generation

MPU

The ‘MPU’ class is a structural class (i.e., a class that generates hardware) which
reads the MoT and generates the MPU instance accordingly. The resulting
structure is the MPU toplevel, whose ports are connected to the exception unit
and placed within the CPU pipeline (see Section 5.3 for details). A depiction of
the MPU toplevel structure is shown in Figure 5.3.

The responsibility of this class is, apart from serving as MPU toplevel, to
instantiate the required (sub-)structures as well as to modify the core MoT.
With this modification, the MPU registers are added as CSRs. Finally, the MPU
has to function as a CSR manager. A number of lists, tuples, and dictionaries
are used to keep track of the instantiated structures and their ports. These
objects are then used by both the MPU class itself and its child components to,
for example, create connections between said ports. This is achieved with the
following methods:

• getCSR() overrides the method from the CSR base class (see Section 4.1
for details), and returns the specific MPU-CSR associated to its name.

• add_CSRs_to_MoT() adds, as the name implies, the specified CSRs from
the MPU to the MoT instance. This function does this by reading the
register information from the MoT. The register data from the MoT in-
cludes the register name and size. The CSRs are then added depending
on the data read. For example, a configuration register in the MoT with
size 3 and the name ‘mpucfg0’, will be added as CSR with the specified
name and its three configuration entries are added as bitfields.

• add_BF_to_CSR() is a helper function of add_CSRs_to_MoT(). It adds the
required bitfields to a CSR. For example, the bitfields of a configuration
entry (‘A’, ‘B’, ‘R’, ‘W’, etc.).

• get_next_free_CSR_addr() another helper function of add_CSRs_to_MoT().
This function returns the next available address (i.e., an address where
no other CSR has been placed) from the custom CSR address range as
specified in the privileged RISC-V ISA specification by Waterman and
Asanović [WA19b].

• add_CSR_to_StateObject() this function is used by add_CSRs_to_MoT() to
add a specified CSR to the MoT. As described in Section 4.1 the CSRs are
modelled as StateObjects, therefore the MPU registers have to be added

36

5. MDA based MPU generation

to the CSR StateObject.
• add_register() instantiates the register structures. The reference to each

register instance is saved to the corresponding list. For example, an
address register instance is saved to the addr_registers list.

• checkAddrAvail() this function is used by add_CSR_to_StateObject() to
verify that there is no address collision (i.e., multiple CSRs at the same
address).

• create_configuration_tuples() generates a list of tuples in the form
<c f g0, addr0>, ..., <c f gN , addrN> to easily find the corresponding ad-
dress register to a configuration entry (and vice versa). This list is used
extensively throughout the generation process of the MPU.

• connect_registers() this function has multiple responsibilities. Most im-
portantly it sets up the required connection between the registers, e.g.,
the ‘L’-bit of a configuration entry to the lock port of the corresponding
address registers.
Furthermore, it connects the unused hardware ports of the CSR instances
to ‘0’ in order to permanently disabling them. This is necessary because
some hardware ports (e.g., hw_wr) are a byproduct of the CSR instanti-
ation. These ports are unused but need to be connected because uncon-
nected ports would generate errors during synthesis.
Lastly, this function also is in charge to make the connections between
the other instantiated components, e.g. the connection between the fault
logic and access check component.

Figure 5.3 shows an overview of all instantiated components that are generated
by the MPU. Each of these components will be described in detail in the
sections following. It should be noted that the registers (the block with the
dashed line) are not single entities (as shown in Figure 5.3), but rather multiple
individual structures. They are depicted that way because it helps to clean up
the figure, and they do not add any necessary additional information to the
overall picture.

As depicted in Figure 5.3, several external ports are added during the gen-
eration of the MPU. The most important ports are the register source data
(rs1_data), the instruction currently being executed (instruction), and the ad-
dress of the instruction currently being fetched from (PC, i.e., the program
counter (PC)). The data from those ports is taken in and evaluated by the
underlying instantiated components. These components then generate fault

37

5. MDA based MPU generation

rs1_data

Decoder

Status

Registers

A
cc

es
s

C
he

ck

Fa
u

lt
 L

og
icinstruction

rd_sig

wr_sig

acc_size

rd_wr_addr

PC

cfg_data

addr_data

mpu_enable

rd_data

d
at

a_
av

ai
l

av
ai

l_
re

gi
on

s

to
ta

l_
re

gi
on

s

load_store_match

store_fault

load_fault

execute_match

execute_fault

wr_data

wr_en

iaf

laf

saf

rd_data

Figure 5.3.: MPU Top Structure

signals in case unallowed accesses occur. The resulting fault signals are connec-
ted to the respective fault ports (instruction access fault: iaf, load access fault:
laf, and store access fault: saf).
The remaining ports are necessary to allow accesses to and from the registers.
Each register has its own read data (rd_data), write data (wr_data), and enable
(wr_en) port. Those ports are then connected to the CSR_RegisterFile structure
described in Section 4.1.

Status

This class encodes the number of possible protection regions as well as how
many of those are currently available (i.e., unset regions). The output ports of
the corresponding structure (regions_avail and regions_total) are connected to the
write data ports of the equally named bitfields that are part of the ‘mpustatus’
register. A depiction of the resulting structure can be seen in Figure 5.4.

The total number possible protection regions (regions_total) is set to a literal
(i.e., a constant) during the generation of the MPU. The currently unset regions

38

5. MDA based MPU generation

addr0_data_avail

addrN_data_avail

regions_avail

cfg0_data_avail

cfgN_data_avail

+

regions_total<set during generation>

Figure 5.4.: MPU Status Structure

(regions_avail) are updated every clock cycle. The available data ports from
the address and configuration registers (addr*_data_avail and cfg*_data_avail)
are used as input to ‘NAND’ gates. Each configuration tuple (address and
configuration) has its gate. A region is only used when both configuration and
address register are set to a value greater zero. Which means, in turn, that a
region is unset if the opposite is true. Therefore, a negated ‘AND’ or ‘NAND’
gate has to be used. The output of these gates is then added. The sum is the
number of regions that are currently unset.

Decoder

The decoder is used to decode the current instruction and register data to out-
put whether relevant access (read or write) is occurring and its effective address.
A depiction of the generated structure to do this can be seen in Figure 5.5.

The main component of the decoder is the slicer which separates the instruction
applied to its port (inst) into individual signals.
The load and store ports (rd and wr) are set to HIGH in case the opcode is
set to the corresponding value. This is done with the help of a LuT. The load
and store signals are used to determine whether the access size (acc_size) is
output or set to zero. Similarly to the read and write signals a LuT is used to
get the current access size encoded in the instruction ‘funct3’ (as defined in the
unprivileged RISC-V ISA specification by Waterman and Asanović [WA19a]).
The access size is only yielded when either a load or store occurs. As such,
those two signals are used as input to an ‘OR’ gate. The output of this gate is
used as a select signal of the multiplexer which switches between the value of

39

5. MDA based MPU generation

inst

SL
IC

E CONCAT
offset_STORE_0

offset_STORE_1

offset_LOAD

funct3

opcode

LUT

LUT
'00'

Sign-
ext.

+ rs1_data rd_wr_addr

acc_size

wr

rd

Figure 5.5.: MPU Decoder Structure

the LuT and a default value (i.e., ‘0’).
The write signal is also used as a select signal of the offset multiplexer to select
the correct offset. The address offset in case of a store instruction needs to be
concatenated first since it is not encoded continuously within the instruction.
After the selection process, a sign extension in accordance with the unprivileged
RISC-V ISA specification is required in case bit 11 of the offset is set to ‘1’. In
any case, the 12-bit offset is extended to a 32-bit value which is added to the
value applied to the register data port (rs1_data). The output of this operation
is the effective access address. This output is directly connected to the output
port (rd_wr_addr).

The previously described structure is only required for the decoding of load
or store (i.e., read or write) instructions, and not for the address of the current
instruction. The effective access address of execute accesses is kept track with
the PC and as such does not need further processing.

TOR_range

The ‘TOR_range’ class generates the structure for the top boundary of an
arbitrary range (TOR) address matching mode described in Section 3.3. As seen
in the UML class diagram in Figure 5.2, this class is instantiated only as part
of the ‘Execute_Access’ class, since this mode is only supported for execution
control. A depiction of the TOR structure can be seen in Figure 5.6.

40

5. MDA based MPU generation

addr_data_preceding

addr_maxaddr_data

> �0�

�0�

addr_min

Figure 5.6.: MPU TOR Structure

The structure to accommodate the behaviour described in Section 3.3 is straight
forward. The maximum address port of a range (addr_max) corresponds to the
address data input (addr_data). The minimum address should correspond to
either the address data from the preceding address register addr_data_preceding
or ‘0’ in case no preceding address register exists. This behaviour is modelled
with a multiplexer and ‘GREATER-THAN’ comparison. The output of the
comparator – which checks whether the preceding address is greater than zero
– is used as a select signal of the multiplexer. This multiplexer switches between
the preceding address and ‘0’. The output of this multiplexer is the minimum
address port of a range (addr_min).

Using this structure, an address x is valid (i.e., it falls within the specified
range) if it fulfils addr_min ≥ x < addr_max.

NAPOT_range

The ‘NAPOT_range’ class generates the structure for the naturally aligned
power-of-2 (NAPOT) address regions described in Section 3.3. As seen in
the UML class diagram in Figure 5.2, this class is instantiated by both ‘Ex-
ecute_Access’ and ‘Read_Write_Access’ class. A depiction of the NAPOT struc-
ture can be seen in Figure 5.7.

As described in Section 3.3, the size of a NAPOT range is encoded in the LSBs
of the address register data. The structure shown in Figure 5.7 is the hardware
equivalent of an ‘IF-THEN-ELSE’ structure found in software. The LSBs of

41

5. MDA based MPU generation

addr_maxaddr_data

=

addr_min

TA
IL

addr[29:0]

�0111...1111�

=
�11...100...0�

addr[0]

�0�

H
E

A
D �1...1�

�0...0�

addr[31:30]
CONCAT

addr[31:1]

+

SLICE

�1�

LS

LS

�10�

CONCAT

CONCAT

CONCAT

CONCAT

CONCAT

CONCAT�1�

�0�

Figure 5.7.: MPU NAPOT Structure

address data are checked with a greedy algorithm. Meaning, the first match
found is also the final output.
To do so, the data applied to address data port (addr_data) is first split into
two sections: head and tail section. The tail section corresponds to the LSB to
be checked, while the head section encodes the base address of the NAPOT
address range.1 The head section is concatenated with both ‘0’’s and ‘1’, to get
both the minimum and maximum address of a range respectively. The output
of those two concatenations is then also concatenated for further processing.
A chain of multiplexers is used to determine the correct LSB match. Each
multiplexer has two inputs: the first input is connected to the output of the
previous multiplexer, and the second input is the output of the aforementioned
concatenation. This chain is continued until all 30 possibilities are exhausted.2

The last multiplexer (i.e., the leftmost multiplexer in Figure 5.7) has its default
input port connected to the theoretical maximum range (232-byte range) and the
other the corresponding concatenation. To select the correct multiplexer input
the tail sections are compared to predefined LSB masks. Each of the results of
these comparisons is used by a matching multiplexer as a select signal. Once

1It should be noted that all possible head and tail sections are created in parallel to allow for
parallel checking in hardware. This also means that the size of these sections is not constant (a
greater tail section means a smaller head section, and vice versa).

2The in- and outputs of the multiplexers form a chain; however, the selection ports are
activated simultaneously (i.e., in parallel). Therefore, a parallel lookup is performed.

42

5. MDA based MPU generation

the matching bitmask was determined further processing is applied to the
output of the final multiplexer (i.e., the rightmost multiplexer in Figure 5.7) to
get the resulting address range from the address data input.
First, the multiplexer output is split in half; the lower 32 bit corresponding to the
lower bound of the range, and the other 32 bits corresponding upper bound.
The upper bound is further incremented by 1 for easier address checking.
Finally, both bounds need to be logically left-shifted (i.e., the most significant
bit (MSB) is shifted off, and the LSB set to ‘0’) by 2 to correct the boundaries.
The left-shift is necessary, as described in Section 3.3, because the address
encoded in the address registers corresponds to bits 33–2 of a physical address.
The outputs of those shift operations are connected to the maximum address
port (addr_max) and the minimum address port (addr_min) respectively.

Using this structure, an address x is valid (i.e., it falls within the specified
range) if it fulfils addr_min ≥ x ≤ addr_max.

Access_Check

The ‘Access_Check’ class is used as a top module to instantiate the check struc-
tures for both read/write (‘Read_Write_Access’) and execute (‘Execute_Access’)
accesses. Both ‘Read_Write_Access’ and ‘Execute_Access’ are described in more
detail in the sections following. This class instantiates and connects each of the
structures as mentioned earlier for every possible MPU protection region. The
outputs of those structures will be forwarded to the ‘Fault_Logic’ structure,
which is also described in a later section. A depiction of the resulting structure
can be seen in Figure 5.8.

As seen in Figure 5.8, ports for each region (configuration entries (cfg*_data)
and address (addr*_data) data) are added to the toplevel. These ports are used
by both ‘Execute_Access’ and ‘Read_Write_Write’ structure, to generate the
respective fault (EXECUTE_fault, STORE_fault, and LOAD_fault) and match
(EXECUTE_match and LOAD_STORE_match). The former speaks for itself and
does not need further explanation. The latter signals whether the current access
address (PC or rd_wr_addr) falls within the validity range of the underlying
structure.
The ‘Execute_Access’ structures do not require any additional signals to func-
tion, the ‘Read_Write_Write’ structures, however, require also the memory

43

5. MDA based MPU generation

Execute_Access
PC

cfg0_data

Execute_Access
addrN_data

cfgN_data

addr0_data

addr_data_preceding �0�

RW_Access

acc_size

rd_sig

wr_sig

rd_wr_addr

RW_Access

EXECUTE_match

EXECUTE_fault

EXECUTE_match

EXECUTE_fault

LOAD_STORE_match

LOAD_fault

LOAD_STORE_match

LOAD_fault

STORE_fault

STORE_fault

Figure 5.8.: MPU Access Check Structure

access size (acc_size) and the information on if a load or store is currently
being executed (rd_sig and wr_sig). These signals are not necessary for the
‘Execute_Access’ structures because of the assumptions made in Section 3.2. As
described in Section 3.2 all instructions are assumed to be word-aligned and
4-byte wide, and as such no access size information is required. Furthermore,
an execute access happens on every PC change. Therefore, an execution signal
can be left out.

Execute_Access

The ‘Execute_Access’ class generates the structure to check whether the exe-
cution of an address causes an instruction access fault. As seen in the UML

44

5. MDA based MPU generation

diagram in Figure 5.2 this class is instantiated as part of the ‘Access_Check’
class previously described.

addr_data

PC

�0�

=

�

�

�

NAPOT

TOR
addr_min

addr_max

addr_min

addr_max

addr_data_preceeding

cfg_A

cfg_X

EXECUTE_match

EXECUTE_fault<

Figure 5.9.: MPU Execute Access Structure

The centrepiece of this checking structure, as seen in the depiction of the result-
ing structure in Figure 5.9, is a multiplexer. This multiplexer switches between
its inputs depending on the matching mode field (‘A’ field, as described in Sec-
tion 3.3) from a configuration entry (cfg_A). To these inputs, the corresponding
matching structure (NAPOT, NA4, and TOR) is connected. The default input
port is connected to ‘0’. The current access address (PC) is checked to fall within
the range determined by the output the matching structures (i.e., minimum
and maximum address). If it falls within the range, the output of the ‘AND’
gate will be HIGH. The output multiplexer is directly connected to the match
port (EXECUTE_match), but also to an ‘NAND’ gate which verifies whether
this operation is permitted. The execution fault port (EXECUTION_fault) will
be set to HIGH in all but one cases. Namely, in case the execution bit (‘X’ field,
as described in Section 3.3) from the configuration entry (cfg_X) is set and the
execution address (PC) was matched successfully. In all other cases (no match,
no execution permission, or both) for a given address the fault signal will be
set.

Read_Write_Access

The ‘Read_Write_Access’ class generates the structure to check whether a
load or store to or from an address causes a load or store access fault. As

45

5. MDA based MPU generation

seen in the UML diagram in Figure 5.2 this class is instantiated as part of the
‘Access_Check’ class previously described.

addr_data

rd_wr_addr

�0�

=

NAPOT
addr_min

addr_max

cfg_B

cfg_A

cfg_R

LOAD_STORE_match

LOAD_fault

+acc_size

�

<

�

�

+ =

=�1�

rd_sig

cfg_W

wr_sig

STORE_fault

Figure 5.10.: MPU Read/Write Access Structure

The structure utilises the same idea as the ‘Execute_Access’ structure. The only
notable difference is the inclusion of the Byte Matching (BM) mode described
in Section 3.3. In this mode the access address (rd_wr_data) must match the
address encoded in the address register (addr_data) plus the byte offset field (‘B’
field, as described in Section 3.3) from a configuration entry (cfg_B)).
Another difference lies in how the NAPOT range is checked. Load and store
instruction can access unaligned memory. Therefore, the case of an access
‘crossing’ a word boundary needs to be caught. For example: given an address
region with the range 0x1000–0x2000, a word-sized load occurs on address
0x1FFD. Such an operation would load 3-byte from the specified region, but
also 1-byte from the adjacent region. Given this case, a fault has to be generated
since the access does not fit completely inside the specified region. The same is
true for the same sized load on, e.g., address 0xFFE. In which case, the same
behaviour can be observed. To do this, the access size (acc_size) is added to the
address to be accessed (rd_wr_addr). The result of this addition is then checked
if fully falls with the NAPOT range.
The fault signal generation is also similar to the ‘Execute_Access’ structure. The

46

5. MDA based MPU generation

difference being that load and store instructions (indicated by their respective
signal rd_sig and wr_sig) need to happen for the fault signal (LOAD_fault or
STORE_fault) to be set to HIGH. The matching signal (LOAD_STORE_match)
will be set regardless of the current regions load or store permission (‘R’ and
‘W’ fields, as described in Section 3.3) set in configuration entry (cfg_R and
cfg_W).

Fault_Logic

This class generates the structure that is ultimately responsible for checking
whether an access fault occurred.

EXECUTE_fault0

EXECUTE_faultN

EXECUTE_match0

EXECUTE_matchN

LOAD_STORE_match0

LOAD_STORE_matchN

L
O
A
D
_f
au

lt
0

L
O
A
D
_f
au

lt
N

ST
O
R
E
_f
au

lt
0

ST
O
R
E
_f
au

lt
N

en
ab
le

w
r_
si
g

rd
_s
ig

EXECUTE_fault

STORE_fault

LOAD_fault

Figure 5.11.: MPU Fault Logic Structure

As seen in Figure 5.11, the toplevel has connections for each match and fault
signal (*_match* and *_fault*) from the ‘Access_Check’ structure. A fault occurs
in two cases: 1. no match was found (inputs to ‘NAND’ gates); or 2. all access
structures found a permission violation (inputs to ‘AND’ gates).
The output of the three ‘OR’ gates (one for each fault type) is used as input
for the final ‘AND’ gates. The other input is the MPU enable port (enable).

47

5. MDA based MPU generation

Which, when HIGH, means that the respective fault will be routed to the out-
port (EXECUTE_fault, STORE_fault, and LOAD_fault). In order for load or
store faults to happen, the respective instructions need to happen which are
indicated by the signals rd_sig and wr_sig.

5.3. MPU Placement within the CPU Pipeline

The MPU structure described in Section 5.2 has several ports that need to be
connected within the 5-stage CPU pipeline. This section discusses the MPU
placement and connection to other components within the CPU pipeline.

The pipeline design used for the core this work is based on is a classical 5-stage
reduced instruction set computer (RISC) design with the following stages:

1. Instruction Fetch (IF) loads the instruction from the instruction memory
pointed to by the program counter (PC).

2. Instruction Decode (ID) decodes the fetched instruction.
3. Execute (EX) executes the decoded instruction.
4. Memory (MEM) accesses data memory if required.
5. Write Back (WB) in this stage the results are written into the register file.

To catch possible illegal accesses as early as possible, the MPU needs to be
placed as early as possible in the pipeline. The first stage that the PC is not
modified is the ID stage. It should be noted that it would be possible to place
the MPU also in the IF stage; however, this would lead to a pipeline flush in
case of an execution fault. This is due to the behaviour of the exception unit
when an exception is raised during an instruction fetch. The way the exception
unit was designed an instruction access fault (i.e., an execution fault) is only
supposed to occur during the ID stage. If such an exception is raised during
the IF stage, this leads to a pipeline flush. Details regarding this behaviour can
be found in the work of Zappia [Zap18]. Keeping this behaviour in mind, it
was decided to place the MPU in the ID stage to reduce the number of pipeline
flushes and therefore increase the system performance.

The MPU port connection is straight forward: the PC is connected coming from
the exception unit in the IF stage (i.e., the to the ID stage forwarded PC port);
the fault ports are connected to the pre-allocated fault ports of the exception

48

5. MDA based MPU generation

unit; the register read and write ports are connected to corresponding ports of
the CSR_RegisterFile placed in the EX stage; and finally, the register data port
(rs1_data) and the instruction port are connected to their respective counterpart
in the EX stage as well.
The last two mentioned connections need to come from the execute stage
because the register file content can change between the ID and EX stage. This
change of data can lead to wrong offsets and spurious faults when checking
for illegal addresses in the ID stage, therefore a delay until the next pipeline
stage is required.

49

6. Evaluation and Results

6.1. Behavioural Tests

The behaviour of the generated view (i.e., HDL source code) of the MPU
described in Chapter 5 was tested with XSim included in Xilinx Vivado v2018.2.
The behaviour of individual logic circuits (e.g., the resulting structure of the
decoder) was checked with manually implemented VHDL testbenches. The
resulting waveform of the decoder testbench can be seen in Figure 6.1. In these
testbenches, the input ports of the unit under test (UUT) were connected to
signals with predefined values at a specific time. To check whether the unit
behaves as expected, the output ports of the unit were asserted against the
expected values.

Figure 6.1.: Decoder test

Small test programs were written to test the overall MPU behaviour as part of
the RISC-V core. The source code of those programs was compiled to binaries
with the GCC 7.1.1 for RISC-V. The binaries were then loaded into the instruc-
tion memory of a simulated SoC. In the following sections, the results of the
two most significant simulations are presented.

50

6. Evaluation and Results

Exception Handling

Figure 6.2 shows the waveform of the signals involved in the interaction
between MPU and exception unit. For this test, a small kernel with an exception
handler was written. The source code for this test can be found in Appendix A.
The task of the kernel and exception handler is to check whether an exception
occurred because of illegal access, and, if so, to return from the current function
that made an illegal access to the caller. This behaviour simulates the aborting
of a task or function (e.g., in an RTOS).

To test the aforementioned behaviour, the MPU is configured to throw excep-
tions when certain functions try to access specific memory regions. After the
configuration of MPU and exception unit, these functions are called one after
the other by the main() function.
The first function causes an instruction access fault (blue iaf signal in Figure 6.2).
The fault signal is received by the exception unit (SEU_rq), which then saves
the address of the offending instruction – i.e., the PC – to the machine program
counter exception registers (mepc). Next, the exception unit jumps to the kernel
entry by overwriting the PC with the address saved in the trap-handler base
address register (mtvec). The kernel entry flips an unused bit on the stack (769)
to mark the kernel entry and exit. After the kernel entry has saved the current
task context – i.e., register values, stack pointer, etc. – the exception handler is
called. This handler then sets a region on the stack (770) to predefined values
depending on which fault caused the exception. In case of an instruction access
fault said region is set to 0xF. Finally, the task context is restored1, and the
machine program counter exception registers is loaded with the return address
to the original calling function (e.g., the main() function). Doing so simulates
the aborting of a function call.

The other fault types are tested in a similar fashion; therefore, a closer discus-
sion is omitted from this thesis.

1It should be noted that instead of restoring the current task context a task switch could
occur at this point by restoring a different task context.

51

6. Evaluation and Results

Figure 6.2.: Waveform of the exception handling test

52

6. Evaluation and Results

Configuration Change

This test aims to verify the atomic behaviour of an MPU configuration change.
This test is crucial to verify the correct interaction between multiple pipeline
stages. Especially important are the interactions between the instruction decode
(ID) and execute (EX) stage. The control signals for the MPU CSRs originate
from the ‘CSR_RegisterFile’ that is placed in the EX stage of the pipeline. A
description of this design can be found in Section 4.1. The MPU registers,
however, are as discussed in Section 5.3, instantiated directly as part of the
MPU that is placed in the ID stage of the pipeline. In order to not miss any
potential illegal access – e.g., after a configuration change – it is necessary
that all operations on the CSRs are atomic. Atomic in this context means an
uninterruptible operation that only takes one clock cycle to complete.

Figure 6.3 shows the resulting waveform of the test to verify the behaviour
described above. For this test, the kernel and exception handler setup of the
previous tests was reused. The MPU was configured to allow stores to a region
on the stack (512). The main() function then calls a subroutine that successfully
writes 0x7 to this region. This time is marked by the first blue cursor in Fig-
ure 6.3. The next blue cursor marks the time where the MPU configuration is
changed to disallow stores to the previously allowed stack region. This opera-
tion takes exactly one clock cycle. On the next rising edge of the clock, a write
to the aforementioned stack region is performed. This results in a store access
fault (red saf signal in Figure 6.3). The test is, therefore passed.

53

6. Evaluation and Results

Figure 6.3.: Waveform of the configuration change test

54

6. Evaluation and Results

6.2. Resource Requirements

In this section, the results from the design synthesis of the MPU are discussed.
Those results are then evaluated in comparison to the core of the ‘RiVal’ SoC.
The MPU was generated with a varying number of supported regions (4, 8, 16,
and 32 regions) to see the impact of additional regions.
The synthesis was done with Synopsis Design Compiler (DC), which used the
STARLIB_10 technology library (130 µm2 technology) for cell modelling. To
have comparable design reports the synthesis constraints of the RiVal SoC were
used for the MPU synthesis as well.

Table 6.1 shows the timing report of the MPU for different configurations. This
report is the most important one, as it shows the critical path length of the clock
signal. The critical path is the slowest logic path between any two registers,
and therefore it is the limiting factor when increasing the clock speed.
It can be observed that an increase in regions does add to the critical path
length, but only in a negligible amount. Similarly, the critical path slack – i.e.,
the greatest difference between the expected and the actual clock arrival time
at a gate – increases as well. The slack should be 0. However, since the design
is unoptimised and the timing report is generated from a static worst-case
timing analysis (i.e., the report is independent of the actual signals which are
active when the processor is running), one should not worry too much about
reducing negative values [Loc16]. The total negative slack is the sum of all
negative critical path slacks. Both total negative slack and critical path slack
have the same root cause that could be fixed. Details about the possible fix can
be found in Chapter 7.

Timing path in ns MPU regions

4 8 16 32

Critical Path Length 16.978 20.114 21.35 22.461

Critical Path Slack −17.578 −20.714 −21.95 −23.061

Critical Path Period 23.8 23.8 23.8 23.8

Total Negative Slack −44.292 −50.21 −54.059 −57.522

Table 6.1.: Timing report of MPU

55

6. Evaluation and Results

In Table 6.2 and Table 6.3 the different cell counts and corresponding area can
be seen respectively. As expected, the number of hierarchical ports is quite
large. This number can be explained because of the of how MPU design is
generated. Every gate, function, etc. is placed in a separate source file with the
respective in- and out-ports during the ToD transformation. The way the ToD
transformation is designed, this step not only leads to a large number of files
but also to a great number of ports.
As seen in Table 6.2, there are various cell types. These types are:

• Hierarchical Cells are the resulting cells when looking at the design from
top-down. Each cell corresponds to a module which is then further di-
vided up into other modules. The result is a hierarchical structure that
can be represented as a tree.

• Leaf Cells are the lowest level of the hierarchy tree. These cells are all
the registers the clock tree is connected to. In a flat design (i.e., a design
where all modules are at the same level) every cell is a leaf cell. They
perform simple logical operations and consist only of a few transistors.
Leaf cells can be either of the four types:

– Combinational Cells are cells whose output depend on the current
input. They do not hold any information (i.e., they do not have
memory), and the output is time-independent. Examples for such
cells are multiplexers, decoders, adders, etc.

– Sequential Cells are cells whose output depend on the current and
past input. Therefore, these cells hold information and the output is
time depended. An example of such cells is a flip-flop.

– Buffer and Inverter Cells are cells that are inserted into the data path.
Such cells are required to keep the design synchronised. Otherwise,
the delay caused by the clock signal propagation will cause asyn-
chronous behaviour.

The area values seen in Table 6.3 and Table 6.5 are the corresponding area
equivalent of the cell type. Their size depends on the technology library used.

56

6. Evaluation and Results

Count MPU regions

4 8 16 32

Hierarchical Cell 2102 4137 8207 16 347

Hierarchical Port 159 356 316 290 630 158 1 257 894

Leaf Cell 37 843 76 401 159 616 215 231

Buf/Inv Cell 11 017 23 226 53 904 15 473

Buffer Cell 2540 5392 10 805 1719

Inverter Cell 8477 17 834 43 099 13 754

Combinational Cell 37 619 76 017 158 912 213 887

Sequential Cell 224 384 704 1344

Table 6.2.: Cell report of MPU

Area MPU regions

4 8 16 32

Combinational 514 739.192 1 125 399.996 2 400 406.394 4 869 745.685

Noncombinational 10 752 18 635.2 34 713.599 66 782.398

Buf/Inv 89 379.201 208 464.001 476 649.604 857 969.275

Total Buffer 41 510.4 91 275.199 186 436.798 335 586.235

Total Inverter 47 868.801 117 188.802 290 212.806 522 383.04

Cell 52 491.197 1 144 035.195 2 435 119.993 4 936 528.083

Design 52 491.197 1 144 035.195 2 435 119.993 4 936 528.083

Table 6.3.: Area report of MPU

It can be observed that both cell count and therefore, the area increases linearly
the more MPU regions are introduced. The linear increase is also expected, as
the more regions have to be supported the more access control blocks have to
be generated. Details about the access control blocks implemented in the ToD
can be found in Section 5.2.

Table 6.4 and Table 6.5 show the same metrics as before, but this time from the
‘RiVal’ core with and without an included 32-region MPU.

57

6. Evaluation and Results

Count RiVal
RiVal w/

32 MPU
Difference

Hierarchical Cell 1928 18 275 +847.9 %

Hierarchical Port 61 981 1 319 875 +2029 %

Leaf Cell 25 103 240 334 +857.4 %

Buf/Inv Cell 8965 24 438 +172.6 %

Buffer Cell 4185 5904 +41.08 %

Inverter Cell 4780 18 534 +287.7 %

Combinational Cell 20 889 234 776 +1023.91 %

Sequential Cell 4209 5553 +31.93 %

Table 6.4.: Cell report of ‘RiVal’ w/wo MPU

Area RiVal
RiVal w/

32 MPU
Difference

Combinational 205 419.201 5 075 164.886 +2371 %

Noncombinational 154 388.797 221 171.195 +43.26 %

Buf/Inv 59 344.001 917 313.276 +1445.76 %

Total Buffer 34 828.8 370 415.035 +963.52 %

Total Inverter 24 515.201 546 898.241 +2130.84 %

Macro/Black Box 803 426.801 803 426.801 0 %

Cell 1 163 234.799 6 099 762.882 +424.4 %

Design 1 163 234.799 6 099 762.882 +424.4 %

Table 6.5.: Area report of ‘RiVal’ w/wo MPU

When comparing the two variants (with and without MPU), one should not
jump to conclusions too early. The increase of 424.4 % in cell area is drastic
indeed, however, the design of the ‘RiVal’ was optimised before and during
synthesis, in contrast to the MPU design and synthesis which is unoptimised.
Moreover, the ‘RiVal’ was never synthesised with an integrated MPU. The
results presented in Table 6.4 and Table 6.5 were obtained by adding the values
from the corresponding MPU table together. It can be assumed that in case of a
combined synthesis, the area increase would not be as drastic. This shortcoming

58

6. Evaluation and Results

in comparability had to be accepted, as no more time or resources could be
spent on the implementation of this work. Further analysis and optimisation
are therefore required, which will be left as future work.

6.3. MPU Application Evaluation

This section describes an approach to use the MPU for bare-metal software
written in C to enforce data protection and isolation at runtime.

6.3.1. Application Architecture

As described in Section 3.1, it is assumed that the application is comprised of
multiple tasks. Each task has its separate MPU configuration, which is stored
in a read-only memory section. This section could either be in ROM or in
read- and writeable memory marked as read-only through an MPU protection
region. As described in Section 3.3, an MPU configuration consists of multiple
protection regions.
To describe these regions, the C structure seen in Listing 6.1 can be used. In this
structure, four regions are packed together to reduce the memory footprint.

1 typedef uint32_t MPU_addr_t;
2 typedef struct MPU_region
3 {
4 MPU_cfg_t cfg;
5 uint32_t num_of_addresses;
6 MPU_addr_t addr[];
7 } MPU_region_t;

Listing 6.1.: MPU region structure

This region structure contains a sub-structure for the corresponding configur-
ation entries. As seen in Listing 6.2, the configuration structure is a union of
four configuration entries. Using a union saves space, allows convenient access

59

6. Evaluation and Results

to individual entries, and makes it easier to write a full configuration register
with a single operation.

1 typedef union MPU_cfg
2 {
3 uint32_t cfg;
4 struct
5 {
6 uint8_t cfg0;
7 uint8_t cfg1;
8 uint8_t cfg2;
9 uint8_t cfg3;

10 };
11 } MPU_cfg_t;

Listing 6.2.: MPU configuration structure

The address array stores the values of the MPU address registers. Said array is
not fixed in size to reduce the memory overhead in case there are not a multiple
of 4 regions available in total. For example, in case there are only 7 regions
available, one region structure would contain 4 addresses and another other
only 3. This necessitates the inclusion of a variable in the region structure to
store the size of the address array. Nevertheless, it should be clear that the
address array shall not be larger than 4. Using these two structures, a total of
24 bytes of memory are required to store the configuration for every 4 MPU
regions. Each task needs its configuration, so the overall memory footprint
increases with every task. For example, given a fully filled region structure and
two tasks, 48 bytes are required.

Per default, the MPU should be programmed that all data in the random access
memory (RAM) area is read-only. Only the stack of a task and the memory-
mapped IO regions it needs to access are writeable. It should be kept in mind
that the size of the task stack needs to be a multiple of power-of-two bytes. Since,
as described in Section 3.3, only a NAPOT range can be used to specify a range
larger than 4 bytes for read/writeable regions. Furthermore, the executable
region of a task needs to be specified as well. This also includes the interrupt
service routines. By assuming that a dedicated exception handler handles all

60

6. Evaluation and Results

interrupts in the kernel, the executable region of a task could be simplified.
Upon kernel entry, the MPU will be disabled and only enabled when the kernel
is exited again. This approach requires that at least the kernel entry and exit are
in an executable region. This region should have its own MPU configuration
entry that is locked into place to circumvent unintentional modification of the
kernel region configuration. Arguably, the whole kernel region could be made
executable and readable for all tasks. However, this would lead the idea to have
a single trusted central authority ad absurdum. Since this would allow every
task to access kernel functions without the need for a prior context switch,
this approach is strongly discouraged. Overall, the recommended approach
requires 4 MPU regions for a minimal working example (read-only RAM, stack,
the executable region of the task, and kernel entry/exit).

The MPU configuration change from one task to another has to happen during
a period when the MPU is disabled. The obvious choice for this is during
the task context switch in the kernel. During this context switch, the tasks
register values and stack are loaded, so it only needs to be extended to load
the configuration of the MPU for the new task. If all MPU configurations are
in consecutive memory, such is the case with an array, the task ID can be used
to get the correct configuration. An example of such a function can be seen in
Listing 6.3.

For the function shown in Listing 6.3 it is assumed that the MPU configurations
are stored in a specific memory segment. The start of this memory segment is
exposed by a linker variable MPU_cfgs during the linking process. Furthermore,
another variable is required. The variable MPU_cfgs_size, initialised during the
creation of all configurations, stores the size of the configuration array.

In Listing 6.3 specific functions to write to the MPU address and configuration
registers are used. The function to write to the address registers is presented in
Listing 6.4. To write to the configuration registers a similar function could be
used.

6.3.2. Application Example

This section introduces the application to test the performance penalty when
using the MPU with the MPU usage example presented in Section 6.3.1.

61

6. Evaluation and Results

1 extern MPU_region_t** MPU_cfgs; // region exposed by linker
2 extern uint32_t MPU_cfgs_size; // defined somewhere else
3

4 void MPU_load_cfg(const uint32_t ID)
5 {
6 if (MPU_cfgs && MPU_cfgs[ID])
7 {
8 MPU_region_t* new_cfg = MPU_cfgs[ID];
9 uint32_t address_counter = 0;

10 for (uint32_t i = 0; i < MPU_cfgs_size; i++)
11 {
12 /* write MPU configuration registers
13 MPU_write_cfg_reg(uint32_t number, uint32_t value) */
14 MPU_write_cfg_reg(i, new_cfg[i].cfg.cfg);
15 for (uint32_t j = 0; j < new_cfg[i].num_of_addresses; j++)
16 {
17 /* write MPU address registers
18 MPU_write_addr_reg(uint32_t number, uint32_t value) */
19 MPU_write_addr_reg(address_counter++, new_cfg[i].addr[j]);
20 }
21 }
22 }
23 return;
24 }

Listing 6.3.: MPU configuration load function

To test the system performance and increase in context switch time, a modified
version of the Dhrystone benchmark was used. Dhrystone is a synthetic bench-
mark program developed by Weicker [Wei84] in 1984 to test the performance of
general-purpose CPUs. This benchmark was widely adopted and modified to
run on various systems and architectures. Because it is lightweight and offers
excellent portability, it was chosen to test the application overhead when using
the proposed application usage example.

By default, the Dhrystone benchmark is comprised of 8 routines out of which
7 are called directly by the main routine. The benchmark was modified to

62

6. Evaluation and Results

1 #define MPU_ADDR0 0x7C9
2 #define MPU_ADDR1 0x7CA
3 /* ... */
4

5 void MPU_write_addr_reg(const uint32_t number, const uint32_t value)
6 {
7 switch (number)
8 {
9 case 0:

10 __asm__ volatile("csrw %0, %1" : : "i"(MPU_ADDR0), "r"(value));
11 break;
12 case 1:
13 __asm__ volatile("csrw %0, %1" : : "i"(MPU_ADDR1), "r"(value));
14 break;
15 /* ... */
16 default:
17 break;
18 }
19 return;
20 }

Listing 6.4.: MPU address write function

perform a context switch with the help of the ecall instruction right before each
call of those routines. The exception handler then loads the MPU with the to
the routine associated configuration. Doing so simulates the task switching
described in Section 6.3.1. Therefore, the overhead imposed when using the
MPU can be measured for a varying number of protection regions. It should
be noted that for the benchmarking dummy values were used to load into the
registers, and the MPU was kept deactivated. Doing so further reduced the
complexity of the test without impacting the benchmark results.
The listings of the source code used can be found in Appendix B.

63

6. Evaluation and Results

6.3.3. Results

The application example introduced in Section 6.3.2 was run with the same
setup as the behavioural tests described in Section 6.1. To measure the impact
of the MPU on the system performance, 6 Dhrystone variations were used.
Those variations were:

1. the vanilla Dhrystone benchmark without any context switching.
2. the Dhrystone benchmark with a context switch before each Dhrystone

routine call.
3. the context switch benchmark with a complete MPU configuration

change on each context switch for an MPU supporting 4, 8, 16, and 32
regions.

Each benchmark variation was run 10 000 times at a clock rate of 50 MHz.

The resulting runtime and benchmarking results can be seen in Table 6.6.

Test Runs Clk Runtime DPS DMIPS DMIPS/MHz

MHz µs

Dhrystone 10 000 50 166 200.04 60 168.46 34.24 0.68

Context Switch 10 000 50 257 200.04 38 880.24 22.13 0.44

4 region MPU 10 000 50 549 200.10 18 208.30 10.36 0.21

8 region MPU 10 000 50 736 400.10 13 579.56 7.73 0.15

16 region MPU 10 000 50 1 115 600.10 8963.79 5.10 0.10

32 region MPU 10 000 50 1 955 600.10 5113.52 2.91 0.06

Table 6.6.: Dhrystone Benchmark Results

Given the runtime T and the number of runs N, the following formula can be
used to calculate the benchmark results in Dhrystones per second (DPS).

DPS =
N
T

To make this number more comparable, the VAX 11/780 was selected as the
reference 1 ‘million of instructions per second’ (MIPS) machine by the industry.

64

6. Evaluation and Results

This is necessary since the literal comparison of DPS and therefore MIPS is
not meaningful when comparing, for example, RISC and CISC based pro-
cessors [11]. Said processor achieves 1757 DPS, so the resulting DMIPS are
calculated using:

DMIPS =
DPS
1757

The DMIPS/MHz rating normalises the result further, by including the clock
rate a processor is run at. Given a clock rate clk in MHz the DMIPS/MHz is
calculated with the following formula:

DMIPS
MHz

=
DMIPS

clk

The most important metric to compare for this thesis, however, remains the
total runtime. This metric allows measuring the impact on context switch
times when using an MPU. The runtimes from the Dhrystone benchmark are
depicted in Figure 6.4.

As expected, the DMIPS go down when a context switch is introduced in the
benchmark. This reduction is because the inclusion of a context switch in-
creases the total runtime. A depiction of this increase can be seen in Figure 6.4.
In this figure, it can be seen that the runtime is increased by 55 %. When an
MPU reconfiguration is part of every context switch the runtime is more than
doubled once more. Naturally, the more regions there are to configure, the
longer the reconfiguration takes. A closer look at Figure 6.4 shows a nearly
linear relationship between the number of regions and the required reconfig-
uration time, which is expected behaviour. Overall, one cannot help to notice
that the reconfiguration consumes the most time. So much in fact, that the total
runtime is increased by factor 11.5 when using a 32 region MPU compared to
the vanilla benchmark runtime.
However, the presented results should be taken with a grain of salt. The test
presented in Section 6.3.2 could be interpreted as the worst-case application
example. One reason for this is because the sub-routines used to emulate task
behaviour are often no longer than a few lines of code. Moreover, since a con-
text switch with subsequent MPU reconfiguration is forced before every call,

65

6. Evaluation and Results

0 0.5 1 1.5 2

Dhrystone

Context Switch

4 region MPU

8 region MPU

16 region MPU

32 region MPU

0.17

0.26

0.55

0.74

1.12

1.96

Runtime in s

Benchmark Runtimes

benchmark runtime context sw. runtime MPU re-configuration

Figure 6.4.: Dhrystone Benchmark runtimes

it is obvious why so much time is spent on not running the task. Doing an
excessive amount of context switches in such a short period is something that
not usually observed in real-world applications.
Nevertheless, the runtime results clearly show that the number of MPU re-
configurations should be kept at a minimum. This could be achieved by only
changing the MPU entries that need to be changed instead of reloading a
possible unchanged configuration. For example, in case a kernel service is
requested by a task, the MPU should not be re-configured every time.

To truly determine the performance impact of the MPU, a more thorough study
is required. More specifically, the performance degradation of a ‘real-world’
application needs to be examined. Said evaluation could not be done as part of
this thesis for multiple reasons. First and foremost, the deadline for hand-in
could not be moved any further. And second, with the limited resources of
the simulated SoC, no actual application could be run. The resource constraint
with the greatest impact was the memory with only 4 kB of RAM and ROM.

66

6. Evaluation and Results

This amount of memory should be sufficient for an application; however, the
Harvard architecture of the CPU makes it impossible to read data from the
ROM. Therefore, all data needed for computation has to be loaded in the RAM
first. This also includes the MPU configurations. As mentioned in Section 6.3.1,
24 bytes of memory are required to store the configuration of 4 MPU regions
per task. Given these constraints, this means that for 8 tasks and a 32 region
MPU a total of 1536 bytes of memory are required. Those constraints make it
very challenging to develop an application. Further performance analysis will
be therefore left as future work.

67

7. Summary and Future Work

In the previous chapters, it was shown how an MPU for a RISC-V architecture
can be generated based on the model-driven architecture (MDA) principle for
hardware generation.
The described approach is a novel technique to generate an MPU that was
left unexplored by both academia and industry. The described MPU was not
only shown to be fully functional but also highly adaptable for various use
cases. Similar specifications and design ideas of the presented MPU and the
MMU described in the RISC-V ISA specification, make it possible to transform
the MPU into a full-fledged RISC-V compliant MMU with minimal additional
work.
The described approach, however, is not fully mature and has room for im-
provement.

First and foremost, the MPU design needs to be reworked to be ‘clock clean’,
which means that the total negative slack in the clock path is no more than 0.
The slack of the current design can be seen in Section 6.2. Fortunately, most of
the slack has the same root cause that could be fixed. According to the longest
path analysis during synthesis, the culprit is the addition of the register data
and the address offset in the decoder structure. A depiction of this structure
can be seen in Figure 5.5. The addition itself cannot be removed; however, the
impact on the longest path can be mitigated with the introduction of a stall
signal. This stall signal will be set to HIGH on every load and store instruction
until the addition operation is complete. By connecting this signal to the other
pipeline stall signals, there will be enough time for the MPU to complete
necessary access control checks.
Second, the introduction of another stall signal to the pipeline will have a
negative performance impact. This impact should be evaluated with a variety
of applications. This application study is also required to measure the real
impact on context switch times, as discussed in Section 6.3.3. Many applications

68

7. Summary and Future Work

that could be used for performance evaluations require the MPU to be included
in a more powerful and bigger CPU. Especially the memory is a limiting factor,
as mentioned in Section 6.3.3.
Third, the resource requirements need to be re-evaluated after possible design
optimisations. The synthesis should also be done with optimisations enabled.
At the time of writing this thesis, no optimisations were activated, as described
in Section 6.2.
Finally, as described in Section 3.1, it was assumed that there are multiple
privilege modes available. Currently, only one privilege mode is available. The
other modes are yet to be implemented.

69

Bibliography

[11] Dhrystone Benchmarking for ARM Cortex Processors. AN273. 20th July
2011. URL: https://developer.arm.com/documentation/dai027
3/a/ (visited on 16/09/2020).

[17] ARMv8-M Fault handling and detection. en. 100690. Version 2.0.
28th Feb. 2017. URL: https://developer.arm.com/docs/100691/
0200 (visited on 26/03/2020).

[19a] ARMv8-M Memory Protection Unit. en. Version 2.1. 9th Apr. 2019.
URL: https://static.docs.arm.com/100699/0201/armv8m_mem
ory_protection_unit_100699_0201_en.pdf?_ga=2.214628055.
1991967102.1591687898-1399787952.1585051259.

[19b] Microcontroller pocket guide. Munich: Infineon Technologies AG,
2019. URL: https://www.infineon.com/dgdl/Infineon- Mic
rocontroller_Pocket_Guide__2019- ProductSelectionGuide-
v01_01- EN.pdf?fileId=5546d46259d9a4bf015a282ef33c3e46
(visited on 17/08/2020).

[Bac+12] Jonathan Bachrach et al. ‘Chisel: Constructing hardware in a Scala
embedded language’. In: DAC Design Automation Conference 2012.
2012, pp. 1212–1221. ISBN: 978-1-4503-1199-1. DOI: 10.1145/22283
60.2228584.

[CP13] Ron Collett and Dorian Pyle. What happens when chip-design complex-
ity outpaces development productivity? McKinsey & Company. 2013.
URL: https://www.mckinsey.com/~/media/McKinsey/dotcom/c
lient_service/Semiconductors/Issue%203%20Autumn%202013/
PDFs/4_ChipDesign.ashx (visited on 08/01/2020).

70

https://developer.arm.com/documentation/dai0273/a/
https://developer.arm.com/documentation/dai0273/a/
https://developer.arm.com/docs/100691/0200
https://developer.arm.com/docs/100691/0200
https://static.docs.arm.com/100699/0201/armv8m_memory_protection_unit_100699_0201_en.pdf?_ga=2.214628055.1991967102.1591687898-1399787952.1585051259
https://static.docs.arm.com/100699/0201/armv8m_memory_protection_unit_100699_0201_en.pdf?_ga=2.214628055.1991967102.1591687898-1399787952.1585051259
https://static.docs.arm.com/100699/0201/armv8m_memory_protection_unit_100699_0201_en.pdf?_ga=2.214628055.1991967102.1591687898-1399787952.1585051259
https://www.infineon.com/dgdl/Infineon-Microcontroller_Pocket_Guide__2019-ProductSelectionGuide-v01_01-EN.pdf?fileId=5546d46259d9a4bf015a282ef33c3e46
https://www.infineon.com/dgdl/Infineon-Microcontroller_Pocket_Guide__2019-ProductSelectionGuide-v01_01-EN.pdf?fileId=5546d46259d9a4bf015a282ef33c3e46
https://www.infineon.com/dgdl/Infineon-Microcontroller_Pocket_Guide__2019-ProductSelectionGuide-v01_01-EN.pdf?fileId=5546d46259d9a4bf015a282ef33c3e46
https://doi.org/10.1145/2228360.2228584
https://doi.org/10.1145/2228360.2228584
https://www.mckinsey.com/~/media/McKinsey/dotcom/client_service/Semiconductors/Issue%203%20Autumn%202013/PDFs/4_ChipDesign.ashx
https://www.mckinsey.com/~/media/McKinsey/dotcom/client_service/Semiconductors/Issue%203%20Autumn%202013/PDFs/4_ChipDesign.ashx
https://www.mckinsey.com/~/media/McKinsey/dotcom/client_service/Semiconductors/Issue%203%20Autumn%202013/PDFs/4_ChipDesign.ashx

Bibliography

[Eck+14] Wolfgang Ecker et al. ‘The Metamodeling Approach to System
Level Synthesis’. In: Proceedings of the Conference on Design, Auto-
mation & Test in Europe. DATE ’14. Dresden, Germany: European
Design and Automation Association, 2014. ISBN: 9783981537024.

[ES16] Wolfgang Ecker and Johannes Schreiner. ‘Introducing Model-of-
Things (MoT) and Model-of-Design (MoD) for simpler and more
efficient hardware generators’. In: 2016 IFIP/IEEE International Con-
ference on Very Large Scale Integration (VLSI-SoC) (26th Sept. 2016).
Tallinn, Estonia: IEEE, Sept. 2016, pp. 1–6. ISBN: 978-1-5090-3561-8.
DOI: 10.1109/VLSI-SoC.2016.7753576.

[FDM19] Muhammad Faisal, Erik Dilger and Sergio Montenegro. ‘A Unified
Approach for Memory Protection in a Bare-Metal and a Real Time
Operating System’. In: Proceedings of the 23rd Pan-Hellenic Conference
on Informatics. PCI ’19. Nicosia, Cyprus: Association for Computing
Machinery, 2019, pp. 149–152. ISBN: 9781450372923. DOI: 10.1145/
3368640.3368667.

[HRK12] Anton Hattendorf, Andreas Raabe and Alois Knoll. ‘Shared
memory protection for spatial separation in multicore architec-
tures’. In: 7th IEEE International Symposium on Industrial Embedded
Systems (SIES’12). IEEE, 2012, pp. 299–302. ISBN: 978-1-4673-2684-1.
DOI: 10.1109/SIES.2012.6356601.

[ISO18] ISO/TC 22/SC 32. ISO 26262:2018 - Road Vehicles–Functional Safety.
en. Standard. Geneva, CH, 2018.

[Jan+19] Hyeonguk Jang et al. ‘MMNoC: Embedding Memory Management
Units into Network-on-Chip for Lightweight Embedded Systems’.
In: IEEE Access 7 (2019), pp. 80011–80019. DOI: 10.1109/access.
2019.2923219.

[KM05] Martin Kempa and Zoltán Adám Mann. ‘Model Driven Architec-
ture’. In: Informatik-Spektrum 28.4 (2005), pp. 298–302. DOI: 10.1007/
s00287-005-0505-2.

[Loc16] Derek Lockhart. RTL-to-Gates Synthesis using Synopsys Design Com-
piler. ECE5745 Tutorial 2. Version 606ee8a. 30th Jan. 2016. URL: https:
//www.csl.cornell.edu/courses/ece5745/handouts/ece5745-
tut2-dc.pdf (visited on 01/10/2020).

71

https://doi.org/10.1109/VLSI-SoC.2016.7753576
https://doi.org/10.1145/3368640.3368667
https://doi.org/10.1145/3368640.3368667
https://doi.org/10.1109/SIES.2012.6356601
https://doi.org/10.1109/access.2019.2923219
https://doi.org/10.1109/access.2019.2923219
https://doi.org/10.1007/s00287-005-0505-2
https://doi.org/10.1007/s00287-005-0505-2
https://www.csl.cornell.edu/courses/ece5745/handouts/ece5745-tut2-dc.pdf
https://www.csl.cornell.edu/courses/ece5745/handouts/ece5745-tut2-dc.pdf
https://www.csl.cornell.edu/courses/ece5745/handouts/ece5745-tut2-dc.pdf

Bibliography

[Lop14] Lanfranco Lopriore. ‘Hardware support for memory protection in
sensor nodes’. In: Microprocessors and Microsystems 38.3 (May 2014),
pp. 226–232. DOI: 10.1016/j.micpro.2014.01.004.

[Lop16] Lanfranco Lopriore. ‘Memory protection in embedded systems’.
In: Journal of Systems Architecture 63 (Feb. 2016), pp. 61–69. DOI:
10.1016/j.sysarc.2016.01.006.

[Mal+15] Moshe Malka et al. ‘rIOMMU: Efficient IOMMU for I/O Devices
That Employ Ring Buffers’. In: Proceedings of the Twentieth Interna-
tional Conference on Architectural Support for Programming Languages
and Operating Systems. ASPLOS ’15. Istanbul, Turkey: Association
for Computing Machinery, 2015, pp. 355–368. ISBN: 9781450328357.
DOI: 10.1145/2694344.2694355.

[MB19] Maja Malenko and Marcel Baunach. ‘Device Driver and System
Call Isolation in Embedded Devices’. English. In: Proceedings - Eur-
omicro Conference on Digital System Design, DSD 2019. Ed. by Nikos
Konofaos and Paris Kitsos. Proceedings - Euromicro Conference
on Digital System Design, DSD 2019. United States: Institute of
Electrical and Electronics Engineers, Aug. 2019, pp. 283–290. DOI:
10.1109/DSD.2019.00049.

[MCF03] Stephen J. Mellor, Anthony N. Clark and Takao Futagami. ‘Guest
Editors’ Introduction: Model-Driven Development’. In: IEEE Softw.
20.5 (Sept. 2003), pp. 14–18. ISSN: 0740-7459. DOI: 10.1109/MS.2003.
1231145.

[Pau18] Sebastian Paulus. ‘Implementing IO Pads in HW/SW using the
Model-Driven Architecture Vision’. Bachelor’s Thesis. Technical
University of Munich, 2018.

[PBB18] Francesco Paci, Davide Brunelli and Luca Benini. ‘Lightweight IO
Virtualization on MPU Enabled Microcontrollers’. In: SIGBED Rev.
15.1 (Mar. 2018), pp. 50–56. DOI: 10.1145/3199610.3199617.

[PGS11] Joel Porquet, Alain Greiner and Christian Schwarz. ‘NoC-MPU:
A secure architecture for flexible co-hosting on shared memory
MPSoCs’. In: 2011 Design, Automation & Test in Europe (2011), pp. 1–
4. ISSN: 1558-1101. DOI: 10.1109/DATE.2011.5763291.

72

https://doi.org/10.1016/j.micpro.2014.01.004
https://doi.org/10.1016/j.sysarc.2016.01.006
https://doi.org/10.1145/2694344.2694355
https://doi.org/10.1109/DSD.2019.00049
https://doi.org/10.1109/MS.2003.1231145
https://doi.org/10.1109/MS.2003.1231145
https://doi.org/10.1145/3199610.3199617
https://doi.org/10.1109/DATE.2011.5763291

Bibliography

[PP19] Runyu Pan and Gabriel Parmer. ‘MxU: Towards Predictable, Flex-
ible, and Efficient Memory Access Control for the Secure IoT’. In:
ACM Trans. Embed. Comput. Syst. 18.5s (Oct. 2019). ISSN: 1539-9087.
DOI: 10.1145/3358224.

[PW17] David Patterson and Andrew Waterman. The RISC-V Reader. An
Open Architecture Atlas. The RISC-V Reader: An Open Architecture
Atlas. First edition. Strawberry Canyon LLC, 7th Nov. 2017. ISBN:
9780999249116.

[Riv18] J. Germán Rivera. ‘Hardware-Based Data Protection/Isolation at
Runtime in Ada Code for Microcontrollers’. In: Ada Lett. 37.2 (June
2018), pp. 43–50. ISSN: 1094-3641. DOI: 10.1145/3232693.3232705.

[SB20] Tobias Scheipel and Marcel Baunach. ‘papagenoX: Generation of
Electronics and Logic for Embedded Systems from Application Soft-
ware’. English. In: Proceedings of the 9th International Conference on
Sensor Networks. INSTICC. SCITEPRESS - Science and Technology
Publications, Feb. 2020, pp. 136–141. ISBN: 978-989-758-403-9. DOI:
10.5220/0009159701360141.

[Sch16] Johannes Schreiner. ‘Automated generation of pipelined RISC
CPUs following the Model-driven Architecture principle’. MA
thesis. Technical University of Munich, 2016.

[Sha+16] Farid Shamani et al. ‘Integration issues of a run-time configur-
able memory management unit to a RISC processor on FPGA’. In:
Microprocessors and Microsystems 49 (Mar. 2016), pp. 179–191. DOI:
10.1016/j.micpro.2016.12.001.

[SLM13] Oliver Stecklina, Peter Langendoerfer and Hannes Menzel. ‘Design
of a tailor-made memory protection unit for low power microcon-
trollers’. In: 2013 8th IEEE International Symposium on Industrial
Embedded Systems (SIES). 2013, pp. 225–231. ISBN: 978-1-4799-0658-1.
DOI: 10.1109/SIES.2013.6601495.

[Sti12] Michael Stilkerich. ‘Memory protection at option: application-
tailored memory safety in safety-critical embedded systems’. PhD
thesis. University of Erlangen-Nuremberg, 2012. URL: http://www4.
cs.fau.de/~mike/pdf/MichaelStilkerichDissertation.pdf
(visited on 17/08/2020).

73

https://doi.org/10.1145/3358224
https://doi.org/10.1145/3232693.3232705
https://doi.org/10.5220/0009159701360141
https://doi.org/10.1016/j.micpro.2016.12.001
https://doi.org/10.1109/SIES.2013.6601495
http://www4.cs.fau.de/~mike/pdf/MichaelStilkerichDissertation.pdf
http://www4.cs.fau.de/~mike/pdf/MichaelStilkerichDissertation.pdf

Bibliography

[WA19a] Andrew Waterman and Krste Asanović, eds. The RISC-V Instruction
Set Manual, Volume I: User-Level ISA. Version 20191213. RISC-V
Foundation. RISC-V Foundation, 13th Dec. 2019. URL: https://
riscv.org/specifications/ (visited on 02/04/2020).

[WA19b] Andrew Waterman and Krste Asanović, eds. The RISC-V Instruction
Set Manual, Volume II: Privileged Architecture. Version 20190608-Priv-
MSU-Ratified. RISC-V Foundation. RISC-V Foundation, 8th June
2019. URL: https://riscv.org/specifications/privileged-
isa (visited on 01/07/2019).

[Wei84] Reinhold P Weicker. ‘Dhrystone: a synthetic systems programming
benchmark’. In: Communications of the ACM 27.10 (1984), pp. 1013–
1030.

[YN14] Shimpei Yamada and Yukikazu Nakamoto. ‘Protection Mechanism
in Privileged Memory Space for Embedded Systems, Real-Time OS’.
In: 2014 IEEE 34th International Conference on Distributed Computing
Systems Workshops. IEEE, June 2014. DOI: 10.1109/icdcsw.2014.
17.

[Zap18] Matteo Zappia. ‘Modeling of RISC-V Exceptions for Hardware
Code Generation’. MA thesis. Technical University of Munich,
28th Nov. 2018.

74

https://riscv.org/specifications/
https://riscv.org/specifications/
https://riscv.org/specifications/privileged-isa
https://riscv.org/specifications/privileged-isa
https://doi.org/10.1109/icdcsw.2014.17
https://doi.org/10.1109/icdcsw.2014.17

Appendix A.

Behavioural Test Source Code

A.1. Kernel and Exception Handler

1 #include "common.h"
2 #include "kernel.h"
3

4 volatile uint32_t* enabled_interrupts;
5

6 extern void kernel_entry(void);
7

8 #define MTVEC_ADDR 0x305U
9

10 void exception_handler(uint32_t cause, uint32_t pc, uint32_t value)
11 {
12 switch (cause)
13 {
14 case 1U: // iaf
15 *((uint32_t*)0xC08) = 0xF;
16 break;
17 case 5U: // laf
18 *((uint32_t*)0xC08) = 0xD;
19 break;
20 case 7U: // saf
21 *((uint32_t*)0xC08) = 0xB;
22 break;
23 case 11U: // mecall
24 *((uint32_t*)0xC08) = 0x9;
25 default:

75

Appendix A. Behavioural Test Source Code

26 break;
27 }
28 return;
29 }
30

31 void setup_exceptions(void)
32 {
33 enabled_interrupts = (uint32_t*)0xC50;
34 CSR_WRITE((uint16_t*)MTVEC_ADDR, ((uint32_t)&kernel_entry) << 2U);
35 }

A.1.: kernel.c for behavioural tests

1 #define cause t0
2 #define handler t2
3

4 .extern exception_handler
5

6 .global kernel_entry
7 kernel_entry:
8 li t6, 1
9 li t5, 0xC04

10 sb t6, 0(t5)
11 /* save current context */
12 addi sp,sp,-68
13 sw sp,64(sp)
14 sw ra,60(sp)
15 sw t0,56(sp)
16 sw t1,52(sp)
17 sw t2,48(sp)
18 sw a0,44(sp)
19 sw a1,40(sp)
20 sw a2,36(sp)
21 sw a3,32(sp)
22 sw a4,28(sp)
23 sw a5,24(sp)
24 sw a6,20(sp)
25 sw a7,16(sp)
26 sw t3,12(sp)
27 sw t4,8(sp)

76

Appendix A. Behavioural Test Source Code

28 sw t5,4(sp)
29 sw t6,0(sp)
30 get_cause:
31 csrrw cause, mcause, zero
32 li t1, 0x7FFFFFFF
33 bleu cause, t1, exc_handler
34 j dispatch
35 exc_handler:
36 la handler, exception_handler
37 /* prepare for function call */
38 addi sp, sp, -4
39 sw ra, 0(sp)
40 mv a0, cause
41 csrrw a1, mepc, zero /* pass offending PC as function parameter */
42 mv a2, a7
43 jalr handler /* call the handler */
44 lw ra, 0(sp)
45 addi sp, sp, 4
46 dispatch:
47 /* restore context */
48 lw sp,64(sp)
49 lw ra,60(sp)
50 csrw mepc, ra /* setup address to return to */
51 lw t0,56(sp)
52 lw t1,52(sp)
53 lw t2,48(sp)
54 lw a0,44(sp)
55 lw a1,40(sp)
56 lw a2,36(sp)
57 lw a3,32(sp)
58 lw a4,28(sp)
59 lw a5,24(sp)
60 lw a6,20(sp)
61 lw a7,16(sp)
62 lw t3,12(sp)
63 lw t4,8(sp)
64 lw t5,4(sp)
65 lw t6,0(sp)
66 addi sp,sp,68
67 li t6, 0
68 li t5, 0xC04

77

Appendix A. Behavioural Test Source Code

69 sb t6, 0(t5)
70 mret

A.2.: kernel.S

A.2. Exception Handling Test

1 #include "common.h"
2 #include "kernel.h"
3

4 #define STATUS_ADDR 0xFC0
5 #define CTRL_ADDR 0x7C0
6 #define CFG0_ADDR 0x7C1
7 #define ADDR0_ADDR 0x7C3
8 #define ADDR1_ADDR 0x7C4
9 #define ADDR2_ADDR 0x7C5

10 #define MSEE_ADDR 0x307
11

12 void exec_fault(void);
13 void store_fault_wrong_size(const uint16_t value);
14 void store_fault_wrong_byte(const uint8_t value);
15 void store_fault_store_not_allowed(const uint8_t value);
16 uint16_t load_fault_wrong_size(void);
17 uint8_t load_fault_wrong_byte(void);
18 void configure_mpu(void);
19

20 // put function outside of allowed IM region
21 void __attribute__((section(".locked"))) exec_fault(void)
22 {
23 store_fault_wrong_size(0xFF);
24 return;
25 }
26

27 void store_fault_wrong_size(const uint16_t value)
28 {
29 __asm__ volatile("sh %0, 0(%1)" : : "r" (value), "r" (0x801));
30 return;
31 }

78

Appendix A. Behavioural Test Source Code

32

33 void store_fault_store_not_allowed(const uint8_t value)
34 {
35 __asm__ volatile("sb %0, 0(%1)" : : "r" (value), "r" (0x801));
36 return;
37 }
38

39 uint16_t load_fault_wrong_size(void)
40 {
41 uint16_t value;
42 __asm__ volatile("lhu %0, 0(%1)" : "=r" (value) : "r" (0x801));
43 return value;
44 }
45

46 uint8_t load_fault_wrong_byte(void)
47 {
48 uint8_t value;
49 __asm__ volatile("lbu %0, 0(%1)" : "=r" (value) : "r" (0x800));
50 return value;
51 }
52

53 void configure_mpu(void)
54 {
55 // disable MPU
56 CSR_WRITE((uint16_t*)CTRL_ADDR, 0U);
57 // configure MPU for operation tests
58 // L=0, B=0, A=TOR, X=1, W=0, R=0 (IM)
59 uint8_t cfg0 = 0b00001100;
60 // L=0, B=0, A=NAPOT, X=0, W=1, R=1 (stack region)
61 uint8_t cfg1 = 0b00011011;
62 // L=0, B=0, A=BM, X=0, W=1, R=1 (some input)
63 uint8_t cfg2 = 0b00101001;
64 // TOR range 0x0 - 0x900 (instruction memory)
65 uint32_t addr0 = 0x900;
66 // NAPOT range 0xC00 - 0x1000 (stack region)
67 uint32_t addr1 = (0xC00 + (0x400 >> 1U) - 1) >> 2U;
68 // BM 0x800
69 uint32_t addr2 = 0x800;
70 CSR_WRITE((uint16_t*)CFG0_ADDR,
71 (uint32_t)((cfg2 << 16) | (cfg1 << 8) | cfg0));
72 CSR_WRITE((uint16_t*)ADDR0_ADDR, addr0);

79

Appendix A. Behavioural Test Source Code

73 CSR_WRITE((uint16_t*)ADDR1_ADDR, addr1);
74 CSR_WRITE((uint16_t*)ADDR2_ADDR, addr2);
75 // enable mecall, saf, laf, iaf exceptions
76 CSR_WRITE((uint16_t*)MSEE_ADDR, 0x8A2);
77 // enable MPU
78 CSR_WRITE((uint16_t*)CTRL_ADDR, 1U);
79 return;
80 }
81

82 void __attribute__((noreturn, optimize("O0"))) main(void)
83 {
84 setup_exceptions();
85 configure_mpu();
86 uint8_t tmp = 27U;
87 while (1)
88 {
89 exec_fault();
90 *((volatile uint32_t*)0xC00) = 1; // for debugging
91 store_fault_store_not_allowed(tmp);
92 *((volatile uint32_t*)0xC00) = 2; // for debugging
93 tmp = load_fault_wrong_byte();
94 *((volatile uint32_t*)0xC00) = 3; // for debugging
95 }
96 }

A.3.: exception_test.c

A.3. Configuration Change Test

1 #include "common.h"
2 #include "kernel.h"
3

4 #define STATUS_ADDR 0xFC0
5 #define CTRL_ADDR 0x7C0
6 #define CFG0_ADDR 0x7C1
7 #define ADDR0_ADDR 0x7C3
8 #define ADDR1_ADDR 0x7C4
9 #define ADDR2_ADDR 0x7C5

80

Appendix A. Behavioural Test Source Code

10 #define MSEE_ADDR 0x307
11

12 void configure_mpu(void);
13

14 void change_test(void)
15 {
16 register uint8_t value_1 asm("t3") = 0x7;
17 register uint8_t value_2 asm("t4") = 0x8;
18 // for debugging
19 *((volatile uint32_t*)0xC00) = 2;
20 // success
21 __asm__ volatile("sb %0, 0(%1)" : : "r" (value_1), "r" (0x800));
22 // for debugging
23 *((volatile uint32_t*)0xC00) = 3;
24 // change config
25 CSR_WRITE((uint16_t*)CFG0_ADDR, 0b000010010001101100001100);
26 // fail
27 __asm__ volatile("sb %0, 0(%1)" : : "r" (value_2), "r" (0x800));
28 // for debugging
29 *((volatile uint32_t*)0xC00) = 4;
30 return;
31 }
32

33 void configure_mpu(void)
34 {
35 // disable MPU
36 CSR_WRITE((uint16_t*)CTRL_ADDR, 0U);
37 // configure MPU for operation tests
38 // L=0, B=0, A=TOR, X=1, W=0, R=0 (IM)
39 uint8_t cfg0 = 0b00001100;
40 // L=0, B=0, A=NAPOT, X=0, W=1, R=1 (stack region)
41 uint8_t cfg1 = 0b00011011;
42 // L=0, B=0, A=BM, X=0, W=1, R=1 (some input)
43 uint8_t cfg2 = 0b00001011;
44 // TOR range 0x0 - 0x900 (instruction memory)
45 uint32_t addr0 = 0x900;
46 // NAPOT range 0xC00 - 0x1000 (stack region)
47 uint32_t addr1 = (0xC00 + (0x400 >> 1U) - 1) >> 2U;
48 // BM 0x800
49 uint32_t addr2 = 0x800;
50 CSR_WRITE((uint16_t*)CFG0_ADDR,

81

Appendix A. Behavioural Test Source Code

51 (uint32_t)((cfg2 << 16) | (cfg1 << 8) | cfg0));
52 CSR_WRITE((uint16_t*)ADDR0_ADDR, addr0);
53 CSR_WRITE((uint16_t*)ADDR1_ADDR, addr1);
54 CSR_WRITE((uint16_t*)ADDR2_ADDR, addr2);
55 // enable mecall, saf, laf, iaf exceptions
56 CSR_WRITE((uint16_t*)MSEE_ADDR, 0x8A2);
57 // enable MPU
58 CSR_WRITE((uint16_t*)CTRL_ADDR, 1U);
59 return;
60 }
61

62 void __attribute__((noreturn, optimize("O0"))) main(void)
63 {
64 setup_exceptions();
65 configure_mpu();
66 // for debugging
67 *((volatile uint32_t*)0xC00) = 1;
68 change_test();
69 // for debugging
70 *((volatile uint32_t*)0xC00) = 5;
71 while (1)
72 ;
73 }

A.4.: change_test.c

82

Appendix B.

Application Performance Test Source
Code

B.1. Dhrystone Source Code

1 #include "common.h"
2 #include "kernel.h"
3 #include "dhry.h"
4 #include "mpu.h"
5

6 #define NUMBER_OF_RUNS ((uint32_t)10000U)
7 #define NUMBER_OF_REGIONS 8
8 #define NUMBER_OF_CFGS 8
9

10 #define NOSTRUCTASSIGN 1
11

12 uint32_t dhrystone_benchmark(void);
13

14 /* Global Variables: */
15

16 Rec_Pointer Ptr_Glob, Next_Ptr_Glob;
17 int Int_Glob;
18 Boolean Bool_Glob;
19 char Ch_1_Glob;
20 char Ch_2_Glob;
21 int Arr_1_Glob[20];
22 int Arr_2_Glob[20][20];
23

83

Appendix B. Application Performance Test Source Code

24 #ifndef REG
25 Boolean Reg = false;
26 #define REG
27 /* REG becomes defined as empty */
28 /* i.e. no register variables */
29 #else
30 Boolean Reg = true;
31 #endif
32

33 void Proc_1(REG Rec_Pointer);
34 void Proc_2(One_Fifty*);
35 void Proc_3(Rec_Pointer*);
36 void Proc_4();
37 void Proc_5();
38

39 void Proc_6(Enumeration, Enumeration*);
40 void Proc_7(One_Fifty, One_Fifty, One_Fifty*);
41 void Proc_8(Arr_1_Dim, Arr_2_Dim, int, int);
42 Enumeration Func_1(Capital_Letter, Capital_Letter);
43 Boolean Func_2(Str_30, Str_30);
44 char* m_strcpy(char* destination, const char* source);
45 void memcpy(register char*, register char*, register int);
46

47 void* m_malloc_1(int nbytes);
48 void* m_malloc_2(int nbytes);
49

50 void init_string_some(void);
51 void init_string_1(void);
52 void init_string_2(void);
53 void init_string_3(void);
54

55 static char string_some[31];
56 static char string_1[31];
57 static char string_2[31];
58 static char string_3[31];
59

60 Str_30 Str_1_Loc;
61 Str_30 Str_2_Loc;
62

63 void __attribute__((noreturn)) main(void)
64 {

84

Appendix B. Application Performance Test Source Code

65 #ifdef CONTEXT_SWITCH
66 setup_exceptions();
67 #ifdef MPU_ACTIVE
68 setup_MPU_regions(NUMBER_OF_REGIONS, NUMBER_OF_CFGS);
69 #endif
70 #endif
71 dhrystone_benchmark();
72 while (1)
73 ;
74 __builtin_unreachable();
75 }
76

77 uint32_t dhrystone_benchmark(void)
78 /*****/
79 /* main program, corresponds to procedures */
80 /* Main and Proc_0 in the Ada version */
81 {
82 One_Fifty Int_1_Loc;
83 REG One_Fifty Int_2_Loc;
84 One_Fifty Int_3_Loc;
85 REG char Ch_Index;
86 Enumeration Enum_Loc;
87 REG uint32_t Run_Index;
88

89 /* Initializations */
90 init_string_some();
91 init_string_1();
92 init_string_2();
93 init_string_3();
94 Next_Ptr_Glob = (Rec_Pointer)m_malloc_1(
95 sizeof(Rec_Type)); // change Malloc to malloc
96 Ptr_Glob = (Rec_Pointer)m_malloc_2(
97 sizeof(Rec_Type)); // change Malloc to malloc
98

99 Ptr_Glob->Ptr_Comp = Next_Ptr_Glob;
100 Ptr_Glob->Discr = Ident_1;
101 Ptr_Glob->variant.var_1.Enum_Comp = Ident_3;
102 Ptr_Glob->variant.var_1.Int_Comp = 40;
103 m_strcpy(Ptr_Glob->variant.var_1.Str_Comp, string_some);
104 m_strcpy(Str_1_Loc, string_1);
105 Arr_2_Glob[8][7] = 10;

85

Appendix B. Application Performance Test Source Code

106

107 __asm__ volatile("li t4, 0x0F0F");
108 for (Run_Index = 1; Run_Index <= NUMBER_OF_RUNS; ++Run_Index)
109 {
110 #ifdef CONTEXT_SWITCH
111 mecall(4U);
112 #endif
113 Proc_5();
114 #ifdef CONTEXT_SWITCH
115 mecall(3U);
116 #endif
117 Proc_4();
118 /* Ch_1_Glob == 'A', Ch_2_Glob == 'B', Bool_Glob == true */
119 Int_1_Loc = 2;
120 Int_2_Loc = 3;
121 m_strcpy(Str_2_Loc, string_2);
122 // m_strcpy (Str_2_Loc, "DHRYSTONE PROGRAM, 2'ND STRING");
123 Enum_Loc = Ident_2;
124 Bool_Glob = !Func_2(Str_1_Loc, Str_2_Loc);
125 /* Bool_Glob == 1 */
126 while (Int_1_Loc < Int_2_Loc) /* loop body executed once */
127 {
128 Int_3_Loc = 5 * Int_1_Loc - Int_2_Loc;
129 /* Int_3_Loc == 7 */
130 #ifdef CONTEXT_SWITCH
131 mecall(6U);
132 #endif
133 Proc_7(Int_1_Loc, Int_2_Loc, &Int_3_Loc);
134 /* Int_3_Loc == 7 */
135 Int_1_Loc += 1;
136 } /* while */
137 /* Int_1_Loc == 3, Int_2_Loc == 3, Int_3_Loc == 7 */
138 #ifdef CONTEXT_SWITCH
139 mecall(7U);
140 #endif
141 Proc_8(Arr_1_Glob, Arr_2_Glob, Int_1_Loc, Int_3_Loc);
142 /* Int_Glob == 5 */
143 #ifdef CONTEXT_SWITCH
144 mecall(0U);
145 #endif
146 Proc_1(Ptr_Glob);

86

Appendix B. Application Performance Test Source Code

147

148 for (Ch_Index = 'A' ; Ch_Index <= Ch_2_Glob; ++Ch_Index)
149 /* loop body executed twice */
150 {
151 if (Enum_Loc == Func_1(Ch_Index, 'C'))
152 /* then, not executed */
153 {
154 #ifdef CONTEXT_SWITCH
155 mecall(5U);
156 #endif
157 Proc_6(Ident_1, &Enum_Loc);
158 m_strcpy(Str_2_Loc, string_3);
159 // m_strcpy (Str_2_Loc, "DHRYSTONE PROGRAM, 3'RD STRING");
160 Int_2_Loc = Run_Index;
161 Int_Glob = Run_Index;
162 }
163 }
164 /* Int_1_Loc == 3, Int_2_Loc == 3, Int_3_Loc == 7 */
165 Int_2_Loc = Int_2_Loc * Int_1_Loc;
166 Int_1_Loc = Int_2_Loc / Int_3_Loc;
167 Int_2_Loc = 7 * (Int_2_Loc - Int_3_Loc) - Int_1_Loc;
168 /* Int_1_Loc == 1, Int_2_Loc == 13, Int_3_Loc == 7 */
169 #ifdef CONTEXT_SWITCH
170 mecall(1U);
171 #endif
172 Proc_2(&Int_1_Loc);
173 /* Int_1_Loc == 5 */
174 } /* loop "for Run_Index" */
175 __asm__ volatile("li t4, 0xF0F0");
176 }
177

178 void Proc_1(REG Rec_Pointer Ptr_Val_Par)
179 {
180 REG Rec_Pointer Next_Record = Ptr_Val_Par->Ptr_Comp;
181 /* == Ptr_Glob_Next */
182 /* Local variable, initialized with Ptr_Val_Par->Ptr_Comp, */
183 /* corresponds to "rename" in Ada, "with" in Pascal */
184

185 structassign(*Ptr_Val_Par->Ptr_Comp, *Ptr_Glob);
186 Ptr_Val_Par->variant.var_1.Int_Comp = 5;
187 Next_Record->variant.var_1.Int_Comp =

87

Appendix B. Application Performance Test Source Code

188 Ptr_Val_Par->variant.var_1.Int_Comp;
189 Next_Record->Ptr_Comp = Ptr_Val_Par->Ptr_Comp;
190 Proc_3(&Next_Record->Ptr_Comp);
191 /* Ptr_Val_Par->Ptr_Comp->Ptr_Comp
192 == Ptr_Glob->Ptr_Comp */
193 if (Next_Record->Discr == Ident_1)
194 /* then, executed */
195 {
196 Next_Record->variant.var_1.Int_Comp = 6;
197 Proc_6(Ptr_Val_Par->variant.var_1.Enum_Comp,
198 &Next_Record->variant.var_1.Enum_Comp);
199 Next_Record->Ptr_Comp = Ptr_Glob->Ptr_Comp;
200 Proc_7(Next_Record->variant.var_1.Int_Comp, 10,
201 &Next_Record->variant.var_1.Int_Comp);
202 }
203 else /* not executed */
204 structassign(*Ptr_Val_Par, *Ptr_Val_Par->Ptr_Comp);
205 } /* Proc_1 */
206

207 void Proc_2(One_Fifty* Int_Par_Ref)
208 /******************/
209 /* executed once */
210 /* *Int_Par_Ref == 1, becomes 4 */
211 {
212 One_Fifty Int_Loc;
213 Enumeration Enum_Loc;
214

215 Int_Loc = *Int_Par_Ref + 10;
216 do /* executed once */
217 if (Ch_1_Glob == 'A')
218 /* then, executed */
219 {
220 Int_Loc -= 1;
221 *Int_Par_Ref = Int_Loc - Int_Glob;
222 Enum_Loc = Ident_1;
223 } /* if */
224 while (Enum_Loc != Ident_1); /* true */
225 } /* Proc_2 */
226

227 void Proc_3(Rec_Pointer* Ptr_Ref_Par)
228 /******************/

88

Appendix B. Application Performance Test Source Code

229 /* executed once */
230 /* Ptr_Ref_Par becomes Ptr_Glob */
231 {
232 if (Ptr_Glob != Null)
233 /* then, executed */
234 *Ptr_Ref_Par = Ptr_Glob->Ptr_Comp;
235 Proc_7(10, Int_Glob, &Ptr_Glob->variant.var_1.Int_Comp);
236 } /* Proc_3 */
237

238 void Proc_4() /* without parameters */
239 /*******/
240 /* executed once */
241 {
242 Boolean Bool_Loc;
243

244 Bool_Loc = Ch_1_Glob == 'A' ;
245 Bool_Glob = Bool_Loc | Bool_Glob;
246 Ch_2_Glob = 'B' ;
247 } /* Proc_4 */
248

249 void Proc_5() /* without parameters */
250 /*******/
251 /* executed once */
252 {
253 Ch_1_Glob = 'A' ;
254 Bool_Glob = false;
255 } /* Proc_5 */
256

257 // copy word by word
258 char* m_strcpy(char* destination, const char* source)
259 {
260 int fast = 31 / sizeof(uint32_t) + 1;
261 int offset = (fast - 1) * sizeof(uint32_t);
262 int current_block = 0;
263

264 uint32_t* lptr0 = (uint32_t*)destination;
265 uint32_t* lptr1 = (uint32_t*)source;
266

267 while (current_block < fast - 1)
268 {
269 lptr0[current_block] = lptr1[current_block];

89

Appendix B. Application Performance Test Source Code

270 ++current_block;
271 }
272 while (offset < 31)
273 {
274 destination[offset] = source[offset];
275 ++offset;
276 }
277 return destination;
278 }
279

280 /**
281 * Function m_malloc() - provides a dynamic memory allocation service
282 * sufficient for two allocations of 50 bytes each or less.
283 */
284 void* m_malloc_1(int nbytes)
285 {
286 static char space_1[100];
287 static char* ptr_1;
288 static char* result;
289 ptr_1 = &space_1[0];
290 result = ptr_1;
291 nbytes = (nbytes & 0xFFFC) + 4;
292 ptr_1 += nbytes;
293

294 return (result);
295 }
296

297 void* m_malloc_2(int nbytes)
298 {
299 static char space_2[100];
300 static char* ptr_2;
301 static char* result_2;
302 ptr_2 = &space_2[0];
303 result_2 = ptr_2;
304 nbytes = (nbytes & 0xFFFC) + 4;
305 ptr_2 += nbytes;
306

307 return (result_2);
308 }
309

310 #ifdef NOSTRUCTASSIGN

90

Appendix B. Application Performance Test Source Code

311 void memcpy(register char* d, register char* s, register int l)
312 {
313 int fast = l / sizeof(uint32_t) + 1;
314 int offset = (fast - 1) * sizeof(uint32_t);
315 int current_block = 0;
316 uint32_t* lptr0 = (uint32_t*)d;
317 uint32_t* lptr1 = (uint32_t*)s;
318

319 while (current_block < fast - 1)
320 {
321 lptr0[current_block] = lptr1[current_block];
322 ++current_block;
323 }
324

325 while (offset < 31)
326 {
327 d[offset] = s[offset];
328 ++offset;
329 }
330 }
331 #endif
332

333 void init_string_some(void)
334 {
335 string_some[0] = 'D' ;
336 string_some[1] = 'H' ;
337 string_some[2] = 'R' ;
338 string_some[3] = 'Y' ;
339 string_some[4] = 'S' ;
340 string_some[5] = 'T' ;
341 string_some[6] = 'O' ;
342 string_some[7] = 'N' ;
343 string_some[8] = 'E' ;
344 string_some[9] = ' ' ;
345 string_some[10] = 'P' ;
346 string_some[11] = 'R' ;
347 string_some[12] = 'O' ;
348 string_some[13] = 'G' ;
349 string_some[14] = 'R' ;
350 string_some[15] = 'A' ;
351 string_some[16] = 'M' ;

91

Appendix B. Application Performance Test Source Code

352 string_some[17] = ',' ;
353 string_some[18] = ' ' ;
354 string_some[19] = 'S' ;
355 string_some[20] = 'O' ;
356 string_some[21] = 'M' ;
357 string_some[22] = 'E' ;
358 string_some[23] = ' ' ;
359 string_some[24] = 'S' ;
360 string_some[25] = 'T' ;
361 string_some[26] = 'R' ;
362 string_some[27] = 'I' ;
363 string_some[28] = 'N' ;
364 string_some[29] = 'G' ;
365 string_some[30] = '\0' ;
366 }
367

368 void init_string_1(void)
369 {
370 string_1[0] = 'D' ;
371 string_1[1] = 'H' ;
372 string_1[2] = 'R' ;
373 string_1[3] = 'Y' ;
374 string_1[4] = 'S' ;
375 string_1[5] = 'T' ;
376 string_1[6] = 'O' ;
377 string_1[7] = 'N' ;
378 string_1[8] = 'E' ;
379 string_1[9] = ' ' ;
380 string_1[10] = 'P' ;
381 string_1[11] = 'R' ;
382 string_1[12] = 'O' ;
383 string_1[13] = 'G' ;
384 string_1[14] = 'R' ;
385 string_1[15] = 'A' ;
386 string_1[16] = 'M' ;
387 string_1[17] = ',' ;
388 string_1[18] = ' ' ;
389 string_1[19] = '1' ;
390 string_1[20] = '\'' ;
391 string_1[21] = 'S' ;
392 string_1[22] = 'T' ;

92

Appendix B. Application Performance Test Source Code

393 string_1[23] = ' ' ;
394 string_1[24] = 'S' ;
395 string_1[25] = 'T' ;
396 string_1[26] = 'R' ;
397 string_1[27] = 'I' ;
398 string_1[28] = 'N' ;
399 string_1[29] = 'G' ;
400 string_1[30] = '\0' ;
401 }
402 void init_string_2(void)
403 {
404 string_2[0] = 'D' ;
405 string_2[1] = 'H' ;
406 string_2[2] = 'R' ;
407 string_2[3] = 'Y' ;
408 string_2[4] = 'S' ;
409 string_2[5] = 'T' ;
410 string_2[6] = 'O' ;
411 string_2[7] = 'N' ;
412 string_2[8] = 'E' ;
413 string_2[9] = ' ' ;
414 string_2[10] = 'P' ;
415 string_2[11] = 'R' ;
416 string_2[12] = 'O' ;
417 string_2[13] = 'G' ;
418 string_2[14] = 'R' ;
419 string_2[15] = 'A' ;
420 string_2[16] = 'M' ;
421 string_2[17] = ',' ;
422 string_2[18] = ' ' ;
423 string_2[19] = '2' ;
424 string_2[20] = '\'' ;
425 string_2[21] = 'N' ;
426 string_2[22] = 'D' ;
427 string_2[23] = ' ' ;
428 string_2[24] = 'S' ;
429 string_2[25] = 'T' ;
430 string_2[26] = 'R' ;
431 string_2[27] = 'I' ;
432 string_2[28] = 'N' ;
433 string_2[29] = 'G' ;

93

Appendix B. Application Performance Test Source Code

434 string_2[30] = '\0' ;
435 }
436 void init_string_3(void)
437 {
438 string_3[0] = 'D' ;
439 string_3[1] = 'H' ;
440 string_3[2] = 'R' ;
441 string_3[3] = 'Y' ;
442 string_3[4] = 'S' ;
443 string_3[5] = 'T' ;
444 string_3[6] = 'O' ;
445 string_3[7] = 'N' ;
446 string_3[8] = 'E' ;
447 string_3[9] = ' ' ;
448 string_3[10] = 'P' ;
449 string_3[11] = 'R' ;
450 string_3[12] = 'O' ;
451 string_3[13] = 'G' ;
452 string_3[14] = 'R' ;
453 string_3[15] = 'A' ;
454 string_3[16] = 'M' ;
455 string_3[17] = ',' ;
456 string_3[18] = ' ' ;
457 string_3[19] = '3' ;
458 string_3[20] = '\'' ;
459 string_3[21] = 'R' ;
460 string_3[22] = 'D' ;
461 string_3[23] = ' ' ;
462 string_3[24] = 'S' ;
463 string_3[25] = 'T' ;
464 string_3[26] = 'R' ;
465 string_3[27] = 'I' ;
466 string_3[28] = 'N' ;
467 string_3[29] = 'G' ;
468 string_3[30] = '\0' ;
469 }

B.1.: dhry_1.c

1 /*

94

Appendix B. Application Performance Test Source Code

2 **
3 *
4 * "DHRYSTONE" Benchmark Program
5 * -----------------------------
6 *
7 * Version: C, Version 2.1
8 *
9 * File: dhry_2.c (part 3 of 3)

10 *
11 * Date: May 25, 1988
12 *
13 * Author: Reinhold P. Weicker
14 *
15 **
16 */
17

18 #include "dhry.h"
19 #include "../common.h"
20

21 #ifndef REG
22 #define REG
23 /* REG becomes defined as empty */
24 /* i.e. no register variables */
25 #endif
26

27 Boolean Func_3(Enumeration);
28 int m_strcmp(const char* X, const char* Y);
29

30 extern int Int_Glob;
31 extern char Ch_1_Glob;
32

33 void Proc_6(Enumeration Enum_Val_Par, Enumeration* Enum_Ref_Par)
34 /*********************************/
35 /* executed once */
36 /* Enum_Val_Par == Ident_3, Enum_Ref_Par becomes Ident_2 */
37 {
38 *Enum_Ref_Par = Enum_Val_Par;
39 if (!Func_3(Enum_Val_Par))
40 /* then, not executed */
41 *Enum_Ref_Par = Ident_4;
42 switch (Enum_Val_Par)

95

Appendix B. Application Performance Test Source Code

43 {
44 case Ident_1:
45 *Enum_Ref_Par = Ident_1;
46 break;
47 case Ident_2:
48 if (Int_Glob > 100)
49 /* then */
50 *Enum_Ref_Par = Ident_1;
51 else
52 *Enum_Ref_Par = Ident_4;
53 break;
54 case Ident_3: /* executed */
55 *Enum_Ref_Par = Ident_2;
56 break;
57 case Ident_4:
58 break;
59 case Ident_5:
60 *Enum_Ref_Par = Ident_3;
61 break;
62 } /* switch */
63 } /* Proc_6 */
64

65 void Proc_7(One_Fifty Int_1_Par_Val, One_Fifty Int_2_Par_Val,
66 One_Fifty* Int_Par_Ref)
67 /**/
68 /* executed three times */
69 /* first call: Int_1_Par_Val == 2, Int_2_Par_Val == 3, */
70 /* Int_Par_Ref becomes 7 */
71 /* second call: Int_1_Par_Val == 10, Int_2_Par_Val == 5, */
72 /* Int_Par_Ref becomes 17 */
73 /* third call: Int_1_Par_Val == 6, Int_2_Par_Val == 10, */
74 /* Int_Par_Ref becomes 18 */
75 {
76 One_Fifty Int_Loc;
77

78 Int_Loc = Int_1_Par_Val + 2;
79 *Int_Par_Ref = Int_2_Par_Val + Int_Loc;
80 } /* Proc_7 */
81

82 void Proc_8(Arr_1_Dim Arr_1_Par_Ref, Arr_2_Dim Arr_2_Par_Ref,
83 int Int_1_Par_Val, int Int_2_Par_Val)

96

Appendix B. Application Performance Test Source Code

84 /***/
85 /* executed once */
86 /* Int_Par_Val_1 == 3 */
87 /* Int_Par_Val_2 == 7 */
88 {
89 REG One_Fifty Int_Index;
90 REG One_Fifty Int_Loc;
91

92 Int_Loc = Int_1_Par_Val + 5;
93 Arr_1_Par_Ref[Int_Loc] = Int_2_Par_Val;
94 Arr_1_Par_Ref[Int_Loc + 1] = Arr_1_Par_Ref[Int_Loc];
95 Arr_1_Par_Ref[Int_Loc + 10] = Int_Loc;
96 for (Int_Index = Int_Loc; Int_Index <= Int_Loc + 1; ++Int_Index)
97 Arr_2_Par_Ref[Int_Loc][Int_Index] = Int_Loc;
98 Arr_2_Par_Ref[Int_Loc][Int_Loc - 1] += 1;
99 Arr_2_Par_Ref[Int_Loc + 10][Int_Loc] = Arr_1_Par_Ref[Int_Loc];

100 Int_Glob = 5;
101 } /* Proc_8 */
102

103 // mark
104 Enumeration Func_1(Capital_Letter Ch_1_Par_Val,
105 Capital_Letter Ch_2_Par_Val)
106 /***/
107 /* executed three times */
108 /* first call: Ch_1_Par_Val == 'H', Ch_2_Par_Val == 'R' */
109 /* second call: Ch_1_Par_Val == 'A', Ch_2_Par_Val == 'C' */
110 /* third call: Ch_1_Par_Val == 'B', Ch_2_Par_Val == 'C' */
111

112 {
113 Capital_Letter Ch_1_Loc;
114 Capital_Letter Ch_2_Loc;
115

116 Ch_1_Loc = Ch_1_Par_Val;
117 Ch_2_Loc = Ch_1_Loc;
118 if (Ch_2_Loc != Ch_2_Par_Val)
119 /* then, executed */
120 return (Ident_1);
121 else /* not executed */
122 {
123 Ch_1_Glob = Ch_1_Loc;
124 return (Ident_2);

97

Appendix B. Application Performance Test Source Code

125 }
126 } /* Func_1 */
127

128 Boolean Func_2(Str_30 Str_1_Par_Ref, Str_30 Str_2_Par_Ref)
129 /***/
130 /* executed once */
131 /* Str_1_Par_Ref == "DHRYSTONE PROGRAM, 1'ST STRING" */
132 /* Str_2_Par_Ref == "DHRYSTONE PROGRAM, 2'ND STRING" */
133

134 {
135 REG One_Thirty Int_Loc;
136 Capital_Letter Ch_Loc;
137

138 Int_Loc = 2;
139 while (Int_Loc <= 2) /* loop body executed once */
140 if (Func_1(Str_1_Par_Ref[Int_Loc], Str_2_Par_Ref[Int_Loc + 1]) ==
141 Ident_1)
142 /* then, executed */
143 {
144 Ch_Loc = 'A' ;
145 Int_Loc += 1;
146 } /* if, while */
147 if (Ch_Loc >= 'W' && Ch_Loc < 'Z')
148 /* then, not executed */
149 Int_Loc = 7;
150 if (Ch_Loc == 'R')
151 /* then, not executed */
152 return (true);
153 else /* executed */
154 {
155 if (m_strcmp(Str_1_Par_Ref, Str_2_Par_Ref) > 0)
156 /* then, not executed */
157 // if(0)
158 {
159 Int_Loc += 7;
160 Int_Glob = Int_Loc;
161 return (true);
162 }
163 else /* executed */
164 return (false);
165 } /* if Ch_Loc */

98

Appendix B. Application Performance Test Source Code

166 } /* Func_2 */
167

168 Boolean Func_3(Enumeration Enum_Par_Val)
169 /***************************/
170 /* executed once */
171 /* Enum_Par_Val == Ident_3 */
172 {
173 Enumeration Enum_Loc;
174

175 Enum_Loc = Enum_Par_Val;
176 if (Enum_Loc == Ident_3)
177 /* then, executed */
178 return (true);
179 else /* not executed */
180 return (false);
181 } /* Func_3 */
182

183 int m_strcmp(const char* X, const char* Y)
184 {
185 int fast = 31 / sizeof(uint32_t) + 1;
186 int offset = (fast - 1) * sizeof(uint32_t);
187 int current_block = 0;
188

189 if (31 <= sizeof(uint32_t))
190 {
191 fast = 0;
192 }
193

194 uint32_t* lptr0 = (uint32_t*)X;
195 uint32_t* lptr1 = (uint32_t*)Y;
196

197 while (current_block < fast)
198 {
199 if ((lptr0[current_block] ^ lptr1[current_block]))
200 {
201 return (int)(lptr0[current_block] - lptr1[current_block]);
202 }
203 ++current_block;
204 }
205

206 while (31 > offset)

99

Appendix B. Application Performance Test Source Code

207 {
208 if ((X[offset] ^ Y[offset]))
209 {
210 return (int)((unsigned char)X[offset] - (unsigned char)Y[offset]);
211 }
212

213 ++offset;
214 }
215 return 0;
216 }

B.2.: dhry_2.c

B.2. Kernel and Exception Handler

1 #include "kernel.h"
2 #include "mpu.h"
3

4 extern void kernel_entry(void);
5

6 #ifdef MPU_ACTIVE
7 uint32_t mpu_enabled;
8 #endif
9

10 void exception_handler(uint32_t cause, uint32_t pc, uint32_t value)
11 {
12 switch (cause)
13 {
14 case 1U: // iaf
15 break;
16 case 5U: // laf
17 break;
18 case 7U: // saf
19 break;
20 case 11U: // mecall
21 #ifdef MPU_ACTIVE
22 MPU_load_cfg(value);
23 #endif

100

Appendix B. Application Performance Test Source Code

24 break;
25 default:
26 break;
27 }
28 return;
29 }
30

31 void mecall(const uint32_t number)
32 {
33 __asm__ volatile("mv a7, %0" : : "r" (number) : "t4");
34 __asm__ volatile("ecall");
35 return;
36 }
37

38 #define MTVEC_ADDR 0x305
39 #define MSEE_ADDR 0x307
40 #define CTRL_ADDR 0x7C0
41

42 void setup_exceptions(void)
43 {
44 CSR_WRITE((uint16_t*)MTVEC_ADDR, ((uint32_t)&kernel_entry) << 2U);
45 // enable mecall, saf, laf, iaf exceptions
46 CSR_WRITE((uint16_t*)MSEE_ADDR, 0x8A2);
47 return;
48 }

B.3.: kernel.c for Dhrystone

1 #define cause t0
2 #define handler t2
3 #define mpu_enabled_reg t3
4

5 .extern exception_handler
6

7 #ifdef MPU_ACTIVE
8 .equ MPU_CTRL, 0x7C0
9 .extern mpu_enabled

10 #endif
11 .section .kernel
12 .global kernel_entry

101

Appendix B. Application Performance Test Source Code

13 kernel_entry:
14 /* save current context */
15 addi sp,sp,-68
16 sw sp,64(sp)
17 sw ra,60(sp)
18 sw t0,56(sp)
19 sw t1,52(sp)
20 sw t2,48(sp)
21 sw a0,44(sp)
22 sw a1,40(sp)
23 sw a2,36(sp)
24 sw a3,32(sp)
25 sw a4,28(sp)
26 sw a5,24(sp)
27 sw a6,20(sp)
28 sw a7,16(sp)
29 sw t3,12(sp)
30 sw t4,8(sp)
31 sw t5,4(sp)
32 sw t6,0(sp)
33 #ifdef MPU_ACTIVE
34 lui mpu_enabled_reg, %hi(mpu_enabled)
35 addi mpu_enabled_reg, mpu_enabled_reg, %lo(mpu_enabled)
36 csrrci t1, MPU_CTRL, 1
37 sw t1, 0(mpu_enabled_reg)
38 #endif
39 j get_cause
40 .section .text
41 get_cause:
42 csrrw cause, mcause, zero
43 li t1, 0x7FFFFFFF
44 bleu cause, t1, exc_handler
45 j dispatch
46 exc_handler:
47 la handler, exception_handler
48 /* prepare for function call */
49 addi sp, sp, -4
50 sw ra, 0(sp)
51 mv a0, cause
52 csrrw a1, mepc, zero /* pass offending PC as function parameter */
53 mv a2, a7

102

Appendix B. Application Performance Test Source Code

54 jalr handler /* call the handler */
55 lw ra, 0(sp)
56 addi sp, sp, 4
57 j dispatch
58 .section .kernel
59 dispatch:
60 #ifdef MPU_ACTIVE
61 lui mpu_enabled_reg, %hi(mpu_enabled)
62 addi mpu_enabled_reg, mpu_enabled_reg, %lo(mpu_enabled)
63 lw t1, 0(mpu_enabled_reg)
64 csrw MPU_CTRL, t1
65 #endif
66 /* restore context */
67 lw sp,64(sp)
68 lw ra,60(sp)
69 csrw mepc, ra /* setup address to return to */
70 lw t0,56(sp)
71 lw t1,52(sp)
72 lw t2,48(sp)
73 lw a0,44(sp)
74 lw a1,40(sp)
75 lw a2,36(sp)
76 lw a3,32(sp)
77 lw a4,28(sp)
78 lw a5,24(sp)
79 lw a6,20(sp)
80 lw a7,16(sp)
81 lw t3,12(sp)
82 lw t4,8(sp)
83 lw t5,4(sp)
84 lw t6,0(sp)
85 addi sp,sp,68
86 mret

B.4.: kernel.S for Dhrystone

103

Appendix B. Application Performance Test Source Code

B.3. MPU Management

1 #ifndef _MPU_H_
2 #define _MPU_H_
3

4 #include "common.h"
5

6 typedef uint32_t MPU_addr_t;
7

8 typedef union MPU_cfg
9 {

10 uint32_t cfg;
11 struct
12 {
13 uint8_t cfg0;
14 uint8_t cfg1;
15 uint8_t cfg2;
16 uint8_t cfg3;
17 };
18 } MPU_cfg_t;
19

20 typedef struct MPU_region
21 {
22 MPU_cfg_t cfg;
23 uint32_t num_of_addresses;
24 MPU_addr_t addr[4];
25 } MPU_region_t;
26

27 void setup_MPU_regions(const uint32_t num_of_regions,
28 const uint32_t num_of_cfgs);
29 void MPU_load_cfg(const uint32_t ID);
30

31 #endif /* _MPU_H_ */

B.5.: mpu.h

1 #include "mpu.h"
2

3 #define MPU_STATUS 0xFC0

104

Appendix B. Application Performance Test Source Code

4 #define MPU_CTRL 0x7C0
5 #define MPU_CFG0 0x7C1
6 #define MPU_CFG1 0x7C2
7 #define MPU_CFG2 0x7C3
8 #define MPU_CFG3 0x7C4
9 #define MPU_CFG4 0x7C5

10 #define MPU_CFG5 0x7C6
11 #define MPU_CFG6 0x7C7
12 #define MPU_CFG7 0x7C8
13 #define MPU_ADDR0 0x7C9
14 #define MPU_ADDR1 0x7CA
15 #define MPU_ADDR2 0x7CB
16 #define MPU_ADDR3 0x7CC
17 #define MPU_ADDR4 0x7CD
18 #define MPU_ADDR5 0x7CE
19 #define MPU_ADDR6 0x7CF
20 #define MPU_ADDR7 0x7D0
21 #define MPU_ADDR8 0x7D1
22 #define MPU_ADDR9 0x7D2
23 #define MPU_ADDR10 0x7D3
24 #define MPU_ADDR11 0x7D4
25 #define MPU_ADDR12 0x7D5
26 #define MPU_ADDR13 0x7D6
27 #define MPU_ADDR14 0x7D7
28 #define MPU_ADDR15 0x7D8
29 #define MPU_ADDR16 0x7D9
30 #define MPU_ADDR17 0x7DA
31 #define MPU_ADDR18 0x7DB
32 #define MPU_ADDR19 0x7DC
33 #define MPU_ADDR20 0x7DD
34 #define MPU_ADDR21 0x7DE
35 #define MPU_ADDR22 0x7DF
36 #define MPU_ADDR23 0x7E0
37 #define MPU_ADDR24 0x7E1
38 #define MPU_ADDR25 0x7E2
39 #define MPU_ADDR26 0x7E3
40 #define MPU_ADDR27 0x7E4
41 #define MPU_ADDR28 0x7E5
42 #define MPU_ADDR29 0x7E6
43 #define MPU_ADDR30 0x7E7
44 #define MPU_ADDR31 0x7E8

105

Appendix B. Application Performance Test Source Code

45

46 #define CSR_WRITE(addr, value) \
47 __asm__ volatile("csrw %0, %1" : : "i"(addr), "r"(value))
48

49 static MPU_region_t MPU_cfgs[8][8]
50 __attribute__((section(".MPU_CFGS")));
51 static uint32_t MPU_cfgs_size;
52

53 void MPU_write_cfg_reg(const uint32_t number, const uint32_t value);
54 void MPU_write_addr_reg(const uint32_t number, const uint32_t value);
55

56 void MPU_write_addr_reg(const uint32_t number, const uint32_t value)
57 {
58 switch (number)
59 {
60 case 0:
61 __asm__ volatile("csrw %0, %1" : : "i" (MPU_ADDR0), "r" (value));
62 break;
63 case 1:
64 __asm__ volatile("csrw %0, %1" : : "i" (MPU_ADDR1), "r" (value));
65 break;
66 case 2:
67 __asm__ volatile("csrw %0, %1" : : "i" (MPU_ADDR2), "r" (value));
68 break;
69 case 3:
70 __asm__ volatile("csrw %0, %1" : : "i" (MPU_ADDR3), "r" (value));
71 break;
72 case 4:
73 __asm__ volatile("csrw %0, %1" : : "i" (MPU_ADDR4), "r" (value));
74 break;
75 case 5:
76 __asm__ volatile("csrw %0, %1" : : "i" (MPU_ADDR5), "r" (value));
77 break;
78 case 6:
79 __asm__ volatile("csrw %0, %1" : : "i" (MPU_ADDR6), "r" (value));
80 break;
81 case 7:
82 __asm__ volatile("csrw %0, %1" : : "i" (MPU_ADDR7), "r" (value));
83 break;
84 case 8:
85 __asm__ volatile("csrw %0, %1" : : "i" (MPU_ADDR8), "r" (value));

106

Appendix B. Application Performance Test Source Code

86 break;
87 case 9:
88 __asm__ volatile("csrw %0, %1" : : "i" (MPU_ADDR9), "r" (value));
89 break;
90 case 10:
91 __asm__ volatile("csrw %0, %1" : : "i" (MPU_ADDR10), "r" (value));
92 break;
93 case 11:
94 __asm__ volatile("csrw %0, %1" : : "i" (MPU_ADDR11), "r" (value));
95 break;
96 case 12:
97 __asm__ volatile("csrw %0, %1" : : "i" (MPU_ADDR12), "r" (value));
98 break;
99 case 13:

100 __asm__ volatile("csrw %0, %1" : : "i" (MPU_ADDR13), "r" (value));
101 break;
102 case 14:
103 __asm__ volatile("csrw %0, %1" : : "i" (MPU_ADDR14), "r" (value));
104 break;
105 case 15:
106 __asm__ volatile("csrw %0, %1" : : "i" (MPU_ADDR15), "r" (value));
107 break;
108 case 16:
109 __asm__ volatile("csrw %0, %1" : : "i" (MPU_ADDR16), "r" (value));
110 break;
111 case 17:
112 __asm__ volatile("csrw %0, %1" : : "i" (MPU_ADDR17), "r" (value));
113 break;
114 case 18:
115 __asm__ volatile("csrw %0, %1" : : "i" (MPU_ADDR18), "r" (value));
116 break;
117 case 19:
118 __asm__ volatile("csrw %0, %1" : : "i" (MPU_ADDR19), "r" (value));
119 break;
120 case 20:
121 __asm__ volatile("csrw %0, %1" : : "i" (MPU_ADDR20), "r" (value));
122 break;
123 case 21:
124 __asm__ volatile("csrw %0, %1" : : "i" (MPU_ADDR21), "r" (value));
125 break;
126 case 22:

107

Appendix B. Application Performance Test Source Code

127 __asm__ volatile("csrw %0, %1" : : "i" (MPU_ADDR22), "r" (value));
128 break;
129 case 23:
130 __asm__ volatile("csrw %0, %1" : : "i" (MPU_ADDR23), "r" (value));
131 break;
132 case 24:
133 __asm__ volatile("csrw %0, %1" : : "i" (MPU_ADDR24), "r" (value));
134 break;
135 case 25:
136 __asm__ volatile("csrw %0, %1" : : "i" (MPU_ADDR25), "r" (value));
137 break;
138 case 26:
139 __asm__ volatile("csrw %0, %1" : : "i" (MPU_ADDR26), "r" (value));
140 break;
141 case 27:
142 __asm__ volatile("csrw %0, %1" : : "i" (MPU_ADDR27), "r" (value));
143 break;
144 case 28:
145 __asm__ volatile("csrw %0, %1" : : "i" (MPU_ADDR28), "r" (value));
146 break;
147 case 29:
148 __asm__ volatile("csrw %0, %1" : : "i" (MPU_ADDR29), "r" (value));
149 break;
150 case 30:
151 __asm__ volatile("csrw %0, %1" : : "i" (MPU_ADDR30), "r" (value));
152 break;
153 case 31:
154 __asm__ volatile("csrw %0, %1" : : "i" (MPU_ADDR31), "r" (value));
155 break;
156 default:
157 break;
158 }
159 }
160

161 void MPU_write_cfg_reg(const uint32_t number, const uint32_t value)
162 {
163 switch (number)
164 {
165 case 0:
166 __asm__ volatile("csrw %0, %1" : : "i" (MPU_CFG0), "r" (value));
167 break;

108

Appendix B. Application Performance Test Source Code

168 case 1:
169 __asm__ volatile("csrw %0, %1" : : "i" (MPU_CFG1), "r" (value));
170 break;
171 case 2:
172 __asm__ volatile("csrw %0, %1" : : "i" (MPU_CFG2), "r" (value));
173 break;
174 case 3:
175 __asm__ volatile("csrw %0, %1" : : "i" (MPU_CFG3), "r" (value));
176 break;
177 case 4:
178 __asm__ volatile("csrw %0, %1" : : "i" (MPU_CFG4), "r" (value));
179 break;
180 case 5:
181 __asm__ volatile("csrw %0, %1" : : "i" (MPU_CFG5), "r" (value));
182 break;
183 case 6:
184 __asm__ volatile("csrw %0, %1" : : "i" (MPU_CFG6), "r" (value));
185 break;
186 case 7:
187 __asm__ volatile("csrw %0, %1" : : "i" (MPU_CFG7), "r" (value));
188 break;
189 default:
190 break;
191 }
192 }
193

194 void MPU_load_cfg(const uint32_t ID)
195 {
196 if (MPU_cfgs && MPU_cfgs[ID])
197 {
198 MPU_region_t* new_cfg = MPU_cfgs[ID];
199 uint32_t address_counter = 0;
200 for (uint32_t i = 0; i < MPU_cfgs_size; i++)
201 {
202 /* write MPU configuration registers
203 MPU_write_cfg_reg(uint32_t number, uint32_t value) */
204 MPU_write_cfg_reg(i, new_cfg[i].cfg.cfg);
205 for (uint32_t j = 0; j < new_cfg[i].num_of_addresses; j++)
206 {
207 /* write MPU address registers
208 MPU_write_addr_reg(uint32_t number, uint32_t value) */

109

Appendix B. Application Performance Test Source Code

209 MPU_write_addr_reg(address_counter++, new_cfg[i].addr[j]);
210 }
211 }
212 }
213 return;
214 }
215

216 /* fill MPU_cfgs with dummy values */
217 void setup_MPU_regions(const uint32_t num_of_regions,
218 const uint32_t num_of_cfgs)
219 {
220 if (num_of_regions > 0 && num_of_cfgs > 0)
221 {
222 MPU_cfgs_size = 0U;
223 uint32_t non_multiple_of_4 = num_of_regions % 4U;
224 uint32_t fully_filled_regions = num_of_regions / 4U;
225 for (uint32_t cfg_counter = 0U; cfg_counter < num_of_cfgs;
226 cfg_counter++)
227 {
228 if (non_multiple_of_4 > 0)
229 {
230 switch (non_multiple_of_4)
231 {
232 case 1U:
233 MPU_cfgs[cfg_counter][num_of_regions - 1U].cfg.cfg0 =
234 cfg_counter;
235 MPU_cfgs[cfg_counter][num_of_regions - 1U].num_of_addresses =
236 non_multiple_of_4;
237 MPU_cfgs[cfg_counter][num_of_regions - 1U].addr[0U] =
238 cfg_counter;
239 break;
240 case 2U:
241 MPU_cfgs[cfg_counter][num_of_regions - 1U].cfg.cfg0 =
242 cfg_counter;
243 MPU_cfgs[cfg_counter][num_of_regions - 1U].cfg.cfg1 =
244 cfg_counter;
245 MPU_cfgs[cfg_counter][num_of_regions - 1U].num_of_addresses =
246 non_multiple_of_4;
247 MPU_cfgs[cfg_counter][num_of_regions - 1U].addr[0U] =
248 cfg_counter;
249 MPU_cfgs[cfg_counter][num_of_regions - 1U].addr[1U] =

110

Appendix B. Application Performance Test Source Code

250 cfg_counter;
251 break;
252 case 3U:
253 MPU_cfgs[cfg_counter][num_of_regions - 1U].cfg.cfg0 =
254 cfg_counter;
255 MPU_cfgs[cfg_counter][num_of_regions - 1U].cfg.cfg1 =
256 cfg_counter;
257 MPU_cfgs[cfg_counter][num_of_regions - 1U].cfg.cfg2 =
258 cfg_counter;
259 MPU_cfgs[cfg_counter][num_of_regions - 1U].num_of_addresses =
260 non_multiple_of_4;
261 MPU_cfgs[cfg_counter][num_of_regions - 1U].addr[0U] =
262 cfg_counter;
263 MPU_cfgs[cfg_counter][num_of_regions - 1U].addr[1U] =
264 cfg_counter;
265 MPU_cfgs[cfg_counter][num_of_regions - 1U].addr[2U] =
266 cfg_counter;
267 break;
268 default:
269 break;
270 };
271 MPU_cfgs_size = 1U;
272 }
273 for (uint32_t i = 0; i < fully_filled_regions; i++)
274 {
275 MPU_cfgs[cfg_counter][i].cfg.cfg = cfg_counter;
276 MPU_cfgs[cfg_counter][i].num_of_addresses = 4U;
277 MPU_cfgs[cfg_counter][i].addr[0U] = 0xDEADBEEF + cfg_counter;
278 MPU_cfgs[cfg_counter][i].addr[1U] = 0xBEEFDEAD + cfg_counter;
279 MPU_cfgs[cfg_counter][i].addr[2U] = 0xBAADBEEF + cfg_counter;
280 MPU_cfgs[cfg_counter][i].addr[3U] = 0xBEEFBAAD + cfg_counter;
281 }
282 }
283 MPU_cfgs_size += fully_filled_regions;
284 }
285 }

B.6.: mpu.c

111

	1 Introduction
	1.1 Background
	1.2 Objective and Motivation
	1.3 Related Work
	1.4 Outline

	2 Model Driven Architecture
	2.1 Model Driven Architecture Concept
	2.2 Metagen and MetaRTL

	3 Hard- and Software Assumptions and Constraints
	3.1 Software Assumptions
	3.2 Hardware Assumptions and Constraints
	3.3 Memory Partitioning and MPU Registers

	4 Extension to the CSR model
	4.1 CSR Template and Model of Design
	4.2 MPU Extension

	5 MDA based MPU generation
	5.1 MPU Placement in the RISC-V Model of Things
	5.2 MPU Template and Model of Design
	5.3 MPU Placement within the CPU Pipeline

	6 Evaluation and Results
	6.1 Behavioural Tests
	6.2 Resource Requirements
	6.3 MPU Application Evaluation
	6.3.1 Application Architecture
	6.3.2 Application Example
	6.3.3 Results

	7 Summary and Future Work
	Bibliography
	A Behavioural Test Source Code
	A.1 Kernel and Exception Handler
	A.2 Exception Handling Test
	A.3 Configuration Change Test

	B Application Performance Test Source Code
	B.1 Dhrystone Source Code
	B.2 Kernel and Exception Handler
	B.3 MPU Management

