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Abstract

Arterial spin labeling (ASL) is a very promising non-invasive magnetic resonance imaging

(MRI) method for determining perfusion in various organs. Because of its non-invasivity

and the possibility of absolute quantification of cerebral blood flow (CBF), the method

has been in the focus of research since its invention in 1992, but has not yet found

broad clinical application. Various studies show the great potential for ASL in the

detection of cerebrovascular diseases such as stroke, arteriovenous malformations, sickle

cell anemia, and in the diagnosis of tumors as well as in functional brain examinations.

However, there are still essential challenges for application in clinical routine. ASL has an

inherently low signal-to-noise ratio (SNR), which is accompanied by a low resolution and

partial volume effects (PVE) as well as long acquisition times. Hemodynamic variations

can affect the ASL-signal and the method is susceptible to motion artifacts.

The aim of this work is to address these major limitations and to bring ASL close to

clinical routine. For noise suppression, variational methods for static and dynamic ASL

data were developed, which consider the whole measurement data set at once. These

techniques improve the SNR, increase the reliability of the perfusion signal, and allow a

significant reduction of the acquisition time from 45 minutes to 5 minutes for high resolu-

tion 2D measurements. Subsequently, a pipeline for real-time imaging, signal monitoring,

artifact detection, and neurofeedback presentation was implemented. Finally, the prob-

lem of motion sensitivity in segmented 3D coding was addressed. For this purpose, a

single-shot acquisition method was developed, which combines parallel imaging and image

reconstruction with a novel spatio-temporal regularization function and hence needs only

a fraction of the normally required measurement data. With the developed technique,

high-resolution, motion-robust whole brain perfusion images can be acquired in a clini-

cally compatible acquisition time of less than 3 minutes. Furthermore, the efficient signal

encoding offers the possibility to investigate neuronal activation and to measure dynamic

ASL data.
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Kurzfassung

Arterial Spin Labeling (ASL) ist eine sehr vielversprechende nicht-invasive MR-Methode

zur Bestimmung der Perfusion in verschiedenen Organen. Wegen ihrer Nicht-Invasivität

und der Möglichkeit der absoluten Quantifizierung des zerebralen Blutflusses ist die

Methode seit ihrer Erfindung im Jahr 1992 im Fokus der Forschung, ist aber bisher

nicht in eine breite klinische Anwendung gekommen. Verschiedene Studien zeigen das

große Potenzial für ASL bei der Erkennung von zerebrovaskulären Erkrankungen wie

Schlaganfall, arteriovenöse Missbildungen, Sichelzellanämie und bei der Tumordiagnose

sowie bei der funktionellen Untersuchung des Gehirns. Es gibt jedoch noch essentielle

Herausforderungen für eine klinische Routineanwendung. ASL hat ein inhärent

niedriges Signal-Rausch-Verhältnis (SNR), begleitet von einer niedrigen Auflösung

und Partialvolumeneffekten (PVE) sowie langen Aufnahmezeiten. Hämodynamische

Variationen können das ASL-Signal beeinflussen und die Methode ist anfällig für

Bewegungsartefakte.

Das Ziel dieser Arbeit ist es die zuvor beschriebene wesentlichen Problem zu

adressieren und ASL in Richtung klinischen Alltag zu bringen. Dazu wurden

zur Rauschunterdrückung variationelle Verfahren für statische und dynamische

ASL-Daten entwickelt, die den gesamten Messdatensatz auf einmal betrachten. Diese

Techniken verbessern das SNR, erhöhen die Zuverlässigkeit des Perfusionssignals

und ermöglichen eine wesentliche Reduzierung der Aufnahmezeit von 45 Minuten

auf 5 Minuten für hochaufgelöste 2D Messungen. In weiter Folge wurde eine

Pipeline für Echtzeit-Bildgebung, Signalüberwachung, Artefakterkennung und

Neurofeedback-Präsentation implementiert. Abschließend wurde das Problem der

Bewegungssensitivität bei segmentierter 3D-Kodierung behandelt. Zu diesem Zweck

wurde eine single-shot Aufnahmemethode entwickelt, die durch Kombination von

paralleler Bildgebung und Bildrekonstruktion mit einem neuartigen räumlich-zeitlichen

v
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Regularisierungsfunktional mit einem Bruchteil der normalerweise notwendigen

Messdaten auskommt. Mit der hier entwickelten Technik können hochauflösende,

bewegungsstabile Perfusionsbilder vom gesamten Gehirn in einer klinisch vertretbaren

Aufnahmezeit von weniger als 3 Minuten aufgenommen werden. Darüber hinaus bietet

die effiziente Signalkodierung die Möglichkeit, die neuronale Aktivierung zu untersuchen

und dynamische ASL Daten zu messen.

Schlagwörter: Arterial Spin Labeling, Variationsmethoden, Magnetresonanz-

Bildgebung, Bildverbesserung
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1.1 Introduction

Perfusion delivers essential nutritions and oxygen to the tissue, assuring a proper function

of cells and for tissue growing. Even a short interruption can lead to permanent cell death

with irreversible tissue damage. For a long time, measurement of perfusion has been used

as an important physiological parameter for the assessment of organ health and function-

ality. [120, 143] In the daily clinical routine perfusion measurements are often used for the

diagnosis of various brain diseases, especially those associated with the cerebrovascular

system such as vascular stenosis or stroke. According to the World Health Organiza-

tion (WHO) 15 million people suffer from stroke every year worldwide and approximately

20.000 alone in Austria. Stroke is the second leading cause of death and the third leading

cause of immobility.

The current gold standard for measuring perfusion is Oxygen-15 positron emission to-

mography (PET). This technique uses a radioactive tracer with short half-live period.

Consequently, an on-site cyclotron is required for creating the tracer [301]. An alterna-

tive imaging modality for perfusion measurements is magnetic resonance imaging (MRI),

which uses typically gadolinium compounds as an exogenous tracer. The search for an

alternative to contrast agent based perfusion imaging methods is of great importance,

because contrast agents can generally lead to side effects and are contraindicated for

patients with renal insufficiency, pregnants, pediatric populations or for monitoring dis-

ease progression [128]. In addition, perfusion measurements are of major interest for

1



2 Chapter 1. Introduction and Outline

multiple applications in research which require a complete non-invasive and non-harmful

technique. Perfusion provides information of neuronal activity, functional connectivity,

neurodegenerative diseases and provides insights into changes of the brain system due to

drug administration [128, 151, 303].

A very promising technique for the non-invasive measurement of brain perfusion is

MRI-based arterial spin labeling (ASL) [66]. This method uses magnetically labeled arte-

rial blood instead of an exogenous contrast agent. ASL has distinct advantages compared

to other perfusion measurement techniques. It is non-invasive, non-harmful, provides the

possibility of absolute quantification and can be repeated multiple times. Therefore, ASL

opens a broad range of applications in the clinical routine and scientific research. Since its

original invention [66], ASL has gained increased popularity in the scientific community

leading to remarkably improvements in labeling techniques, data sampling strategies and

sophisticated post-processing methods. The great interest and potential of ASL in clinical

and scientific applications is underlined by the recently published consensus paper [8].

Beside all these advantages, several challenges remain for robust perfusion measurements

with ASL. The main drawback of this method is that the signal effect is very low and

typically in the range of noise. In order to obtain clinically usable images with sufficient

signal-to-noise ratio (SNR), repeated measurements have to be performed. This leads to

clinically unacceptable acquisition times with an increased risk of motion artifacts, which

can lead to clinically non interpretable perfusion images. The motion sensitivity is espe-

cially a problem for scanning patients with specific diseases like stroke which limits the

applicability of ASL for such important patient groups. To bring ASL imaging towards

clinical practice, robust methods which improves the SNR, motion-insensitivity, quantifi-

cation accuracy and reliability of the cerebral blood flow (CBF)-maps are very important.

This thesis describes the development and validation of modern variational models to

address some of these challenges in ASL imaging.

1.2 Outline of the Thesis

This PhD thesis compromises 8 chapters. Chapter 2 is a basic background chapter that

provides a general introduction to perfusion in the brain and the main principles of ASL

imaging. An overview of different labeling approaches, readout schemes and quantification

models are presented as well as a short overview of advanced ASL techniques is given. In

addition to the basic principles, the challenges and limitations are discussed as a motivation

for the subsequent chapters.

Chapter 3 deals with one of the major drawback of ASL imaging, the low SNR. This

chapter starts with a short introduction to variational image denoising. Subsequently,

a new denoising approach for 2D ASL data based on total generalized variation (TGV)

is presented. This denoising approach is matched to the control-label pairs and includes

spatial and temporal information of the whole available dataset in the denoising procedure.

The proposed technique is validated on synthetic and in-vivo 2D-ASL data and compared
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with state-of the art denoising methods.

In Chapter 4 the developed denoisig method is extended to 3D isotropic and anisotropic

data. In addition, a spatial adaptive regularization parameter is integrated in the denoising

procedure to take into account the spatial varying noise due to parallel imaging (PI) and

the physiological noise from the subject. This enables the automatic denoising of static

ASL measurements.

In chapter 5 we introduce the concept of variational denoising for dynamic ASL data

by using infimal convolution of total generalized variational functionals. We given a short

introduction to functional arterial spin labeling (fASL) and discuss and validate the influ-

ence of the proposed method on fASL and multi-post-labeling delay (PLD) data.

Chapter 6 presents a pipeline for processing, analyzing and monitoring fASL data in

real time. We validated the proposed pipeline on task basked fASL data with and without

neurofeedback (NF) presentation. The NF allowed the subjects to control their own brain

activation during a finger tapping experiment.

In chapter 7 a time-dependent acquisition scheme for accelerating 3D-gradient and

spin echo (GRASE) ASL acquisitions is introduced and combined with a spatio-temporal

variational reconstruction approach. The proposed method is validated on motion free

and motion-corrupted datasets.

A conclusion and outlook to future work is given in chapter 8.
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2.1 Brain Perfusion Imaging

Perfusion is one of the most fundamental physiological processes and delivers essential

nutrients such as oxygen and glucose to the tissue capillary bed and clears waste metabolic

products like carbon dioxide or lactic acid. A disruption or alteration in perfusion can

be dramatic, especially in the brain, which is a particularly highly perfused organ. The

human brain receives approximately 15% of the cardiac output at rest which corresponds

on average to 800 ml of blood per minute [220]. It accounts for approximately 20% of

the total body oxygen consumption and 25% of the daily energy intake [78]. Since the

brain is not able to store energy locally, a continuous supply of oxygenated blood and

glucose is necessary to assure proper functioning of the cells and for growth and repair

of brain tissue [182, 210]. Even a short interruption or decrease in perfusion can lead
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to cell death with irreversible tissue damage, and as a consequence to loss in cognitive

functions, physical impairment, or death [182]. The cerebral blood flow (CBF) provides

information of the amount or volume (ml) of arterial blood delivered to 100g of tissue per

minute (ml/100g/min). The amount of CBF varies from region to region and depends

on the metabolic demands of the brain region [19]. A typical value of CBF in a healthy

brain is 60 ml/100g/min in gray matter (GM) and 20 ml/100g/min in white matter

(WM) [155, 325]. The CBF is determined by the following relationship:

CBF =
CPP

CV R
, (2.1)

where CPP is the cerebral perfusion pressure and CVR is the cerebrovascular resis-

tance. The CBF in the brain is tightly coupled to brain metabolism and a local change

in perfusion can be an indicator of changes in neural activation [151]. Also drugs [289],

caffeine [2], alcohol [268] or nicotine [71] can change the CBF to a certain extent. To

compensate variations in the CBF, and to ensure an adequate constant nutritional blood

supply, the human organism has two complex regulation mechanism: first the dynamic

cerebral autoregulation [182, 275] and second the variation in oxygen extraction fraction

(OEF) [65, 188]. The process of autoregulation is shown in Figure 2.1 Stage 1. The

dynamic cerebral autoregulation keeps the CBF relatively constant despite moderate vari-

ations in perfusion pressure (60 - 120 mmHg) [182]. This constant CBF is achieved by

contracting or relaxing the smooth muscle cells in the vessel walls [182]. A decrease in CPP

leads to a relaxation of the smooth muscle cells and hence a dilatation of the arteries [182].

This reduces the CVR and thereby increases the cerebral blood volume (CBV) to keep

the CBF constant [182]. If the cerebral perfusion pressure drops below the autoregulation

range (< 60mmHg) the CBF starts to decrease and leads to a hypoperfusion in the brain

(Stage 2). In this stage the second compensatory mechanism take effect and starts to

increase the oxygen extraction fraction coefficient so that more oxygen can be extracted

from the blood to satisfy the metabolic demands of the brain tissue [182]. The increased

OEF leads to an increase in the cerebral metabolic rate of oxygen (CMRO2) [65, 182]. If

the CPP reduces further, both compensatory mechanism are exploited and the metabolic

demands of the brain tissue are no longer satisfied resulting in permanent cell tissue dam-

age [182].
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Figure 2.1: Relationship and change (in %) for different cerebral variables in dependence of
the cerebral perfusion pressure (CPP). In stage 1 (S1) the dynamic autoregulation process keeps
the CBF constant by modifying the cerebral vascular resistance (CVR) and hence the cerebral
blood volume (CBV). In stage 2 the CPP drops further which leads to an increase of the oxygen
extraction fraction to satisfy the metabolic demands of the brain tissue. A drop in CPP below 30
mmHg (stage 3) can not be compensated by those mechanisms resulting in a deficit in metabolic
substrates and hence to cell tissue damage. Figure modified from Nemoto et al. [188].
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2.1.1 Importance of Cerebral Blood Flow for Neuroimaging

Measurement of cerebral blood flow provides important information about brain

diseases [302], especially those associated with the cerebrovascular system such as

cerebral ischemia [38, 321], arterial stenosis and occlusion [302], sickle-cell disease [192],

epilepsy [128], or arteriovenous malformations [231]. The CBF provides useful information

in the tumor diagnostic and therapy, since the grade of the tumor correlates with the

vascular proliferation around the tumor [296]. Neurodegenerative disorders such as

Alzheimer are accomplished with local hypo-perfusion areas due to reduced metabolism,

which often precedes structural changes such as brain atrophy [324]. Hence, perfusion

measurements can serve as early biomarker for Alzheimer [333]. Beside the detection

of pathologies, CBF provides important information of metabolic changes, as brain

activity requires nutrients and oxygen, which is delivered with the blood. It can there-

fore be used for cognitive neuroscience and as a biomarker of pharmacological actions [303].

2.1.2 Measuring the Cerebral Blood Flow

For measuring perfusion various imaging techniques were developed, which are all based

on tracer kinetics. In general the methods can be divided into two categories: those

who use an exogenous agent as a tracer and those who use water protons in the arterial

blood as an endogenous tracer. The most commonly used techniques based on an exoge-

nous tracer are positron emission tomography (PET), single-photon emission computer to-

mography (SPECT), perfusion computed tomography (PCT), xenon-enhanced computed

tomography (XeCT), and typically dynamic susceptibility contrast (DSC)-magnetic reso-

nance imaging (MRI). The MRI technique based on an endogenous tracer is called arterial

spin labeling (ASL)-MRI and is used in this thesis for obtaining perfusion maps of the

brain. [182, 301]

2.2 Arterial Spin Labeling

ASL is a non-invasive MRI technique for measuring perfusion and was invented in 1992 [66].

In the first implementation Detre et al. [66] measured the CBF in a rat brain using water

as a freely diffusible tracer [66]. Two years later the same group performed the first

successful ASL perfusion measurement of a human brain [68]. A new research area was

born, which emerged rapidly over the last two decades and is still evolving. ASL offers

distinct advantages over current standard perfusion imaging methods. It is completely

non-invasive and highly suitable for studies in the healthy individual, for patients with

renal insufficiency, and pediatric or infants [128]. The possibility to quantify the CBF

in absolute units permits to trace disease progression and treatment effects and allows

the recognition of perfusion changes in pharmacogenetic or longitudinal studies [303]. In

addition, the determination of changes in physiological blood flow due to brain activity is
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of great interest and requires a complete non-invasive technique for repetitive applications

in research.

2.3 Main Principle of ASL Imaging

The main principle of ASL imaging compromises three parts (Figure 2.2). In the first

step, the arterial blood water is magnetically labeled, typically in a region proximal to

the tissue of interest. The blood water spins are inverted using a combination of radio

frequency (RF)-pulses and gradients [300]. The second part, called inversion time (TI) or

post-labeling delay (PLD), is a waiting period. During this time the labeled blood flows

from the labeling plane to the capillaries of interest. After the labeled blood has reached

the tissue of interest an image is acquired, the so-called label image. This image contains

positive signal contributions from the static tissue and negative signal contributions from

the inverted blood. In order to obtain a perfusion weighted image the whole experiment

is repeated but without altering the inflowing blood (control condition). This image is

known as control image. The perfusion contrast is then achieved by subtracting these

two images. The signal of the static tissue cancels out and the remaining signal reflects

the amount of labeled spins that have reached the tissue during the PLD. This perfusion

signal is in the order of 1-2% of the full tissue signal leading to a limited signal-to-noise

ratio (SNR) [204]. Thus, repeated measurements are necessary to gain sufficient image

quality, which are typically in the order of tens. A kinetic model based on tracer kinetics

is then applied to convert the perfusion weighted image into quantitative units [34, 66].

These steps will be described in more detail in the following sections.

2.4 Labeling Approaches

A crucial part of the ASL experiment is the labeling of the arterial blood water spins. In

the first ASL approach the blood spins were labeled using saturation pulses [66]. Shortly

thereafter, the saturation pulses were replaced by inversion pulses [300] because they

provide doubled signal strength. The amount of successfully inverted or labeled spins,

known as labeling efficiency, directly effects the acquired perfusion signal. Thus, a high

efficiency of nearly 100% is desirable. Typical values ranges from 70% up to 98% depending

on the used labeling scheme [8]. In this section the basic principle of the three major

labeling approaches continuous [66, 300], pulsed [77], and pseudo continuous labeling [56]

schemes are described. Recently two advanced labeling approaches, velocity selective ASL

[74, 189, 309] and acceleration ASL [224] were developed, which are described in section 2.9

”Advanced ASL methods”.
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Figure 2.2: Basic principle of the ASL experiment. (1) Labeling condition: Blood moving through
the labeling plane (red) gets inverted. During the waiting period the labeled blood flows into the
region of interest (yellow). After the labeled spins have reached the tissue an image is acquired, the
so called label image. (2) During the control condition a second image is acquired (control image)
without altering the inflowing blood. The perfusion contrast is achieved by subtraction the label
image from the control image thereby canceling out the signal from the static tissue. From the
perfusion weighted image (PWI) a quantitative CBF-map is calculated based on a kinetic model.

2.4.1 Continuous Arterial Spin Labeling (CASL)

The first implementation of ASL used a continuous labeling of the arterial blood known

as continous arterial spin labeling (CASL) [66]. Figure 2.3 shows schematically the basic

principle of this technique. The labeling of the arterial spins is achieved by applying a long

and continuous RF pulse, typically 2-4 s, in combination with a slice-selective gradient

proximal to the imaging volume [300]. In contrast to traditional adiabatic inversion,
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which uses frequency modulated RF pulses, CASL uses flow-driven adiabatic inversion for

labeling of the arterial blood spins. This means that the frequency modulation is achieved

by applying a constant magnetic field gradient along to the feeding arteries. Consequently,

as the blood spins move through the labeling plane the gradient changes the Lamor-

frequency from far below resonance to on-resonance, at the center of the labeling plane, to

far above resonance. In combination with the main magnetic field and the continuously

applied B1 field the blood water spins experience an rotating effective field Beff from

nearly aligned with the static magnetic field (+z axis) to nearly opposite to the static

magnetic field (-z axis). This is schematically illustrated in Figure 2.4. If the change

in the effective field is slow compared to the precession a spin-locked state is achieved.

In this state the spins precess around the effective field and any small offset or change

averages out, meaning that the spins follow the change in effective field. As Beff rotates

from upwards to downwards, the magnetization gets inverted as the spins move through

the labeling plane. [36, 100, 120]
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Figure 2.3: Basic principle of continuous ASL. The blood flowing through the labeling plane
(red) is continuously inverted by applying a constant RF and slice selective gradient along the
feeding arteries. This is known as flow driven adiabatic inversion.
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However, to achieve flow driven adiabatic inversion, the spins must obey the adiabatic

labeling condition [14, 100, 300]:

1

T1
,

1

T2
<<

G · v
B1

<< γB1, (2.2)

where T1 and T2 are the longitudinal and transversal relaxation times of blood, G is

the gradient amplitude, v is the blood flow velocity, B1 is the applied magnetic field, and

γ is the gyromagnetic ratio. From this condition follows that the labeling efficiency in

CASL is highly dependent on the blood flow velocity and hence the RF-amplitude and

the gradient strength has to be tuned accordingly [306].

Beff = B1 + �B0
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Figure 2.4: Principle of flow driven adiabatic inversion in the reference rotating frame. The
RF field B1 appears constant. The applied gradient along the feeding arteries produces a spatial
depended magnetic filed which appears as off-resonance field ∆B0. The magnetization precesses
around the effective field Beff , which is the vector sum of the B1 and the spatial dependent ∆B0

field. As the blood spins move along the applied gradient filed the effective field changes from
upstream to downstream inverting the blood magnetization.

The continuous labeling over a long period of time allows on the one hand to achieve
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a steady-state condition of labeled blood in the tissue, thereby increasing the ASL signal

but on the other hand produces magnetization transfer effects [66, 300]. Indeed, the long

off-resonance pulse saturates bounded protons on macromolecules in the tissue due to their

broad resonance frequency. These saturated protons will than exchange its magnetization

with that of ”free” water causing a reduction in the free proton magnetization [100]. If the

magnetization transfer (MT) effect is only present in the label image, the difference signal

would indicate a combination of perfusion and magnetization transfer contrast, leading to

an overestimation of CBF [68]. Hence, a control preparation is necessary which produces

the same amount of MT contrast but without labeling of the spins [271].

Figure 2.5: Labeling (A) and control (B, C) conditions for a CASL experiment. The control
condition 1 can be used for accounting MT effects in single slice acquisition. Control condition 2
uses a double inversion of the inflowing blood to account for MT effects and can therefore be used
for multi-slice acquisitions.
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Figure 2.5B illustrates the original approach of CASL to control MT effects [300]. To

achieve a symmetric off-resonance saturation in control and label image, the inversion

plane is shifted with -d outside the brain. This produces the same amount of MT effects

but do not alter the inflowing blood, because the inversion plane is located outside the

brain.

While this approach works well for single-slice acquisition it is not easy extendable to

multi-slice acquisitions, because the long RF pulse is applied concurrently with a gradient

and thus renders slice specific MT effects [36]. To mitigate this shortcoming Alsop et al.

proposed an amplitude modulated approach [7] (Figure 2.5C). During the control condition

the RF pulse with a carrier frequency f0 is modulated with a sine-wave with frequency

f1 producing two resonances. Thus, the amplitude modulated pulse has two frequency

components f0 − f1 and f0 + f1 with an offset of ±f1 from the frequency of the original

labeling pulse. Together with the magnetic field gradient the amplitude modulated pulse

performs two adiabatic inversions concurrently. Spins flowing through the first resonance

gets inverted and they got re-inverted as they flow through the second resonance. In

other words, the amplitude modulated RF pulse together with the magnetic field gradient

produces two labeling planes with an offset in position of z = −f1/(γG) and z = f1/(γG)

from the original labeling plane. [7, 271] Both, control and label condition use now the

same gradient and RF pulse, exhibiting the same amount of MT contrast and hence enables

multi-slice acquisitions. However, the double inversion in the control condition is not ideal

and reduces the labeling efficiency by approximately 32% [7]. A more intuitive approach

is to use a two-coil setup consisting of a small labeling coil placed in the neck region

near the carotid arteries and a second receiving head coil [124, 259, 326]. The spatial

range of the produced B1 field is limited to a localized region around the carotid arteries.

Consequently, blood spins in the neck region are successfully inverted but no MT effects

are produced in the brain, because the B1 field does not extend sufficiently far [36]. The

second coil is then used for imaging. This approach works well for single and multi-slice

acquisition as the control image does not need a MT preparation [236]. In theory this

approach is very simple but in practice it requires additional hardware (separate coil and

transmit channel) that has to be synchronized with the MRI pulse sequence and wearing

an additional neck coil reduces the comfort of subjects [120].

In general, the additional need of specific hardware, the high sensitivity to MT-effects,

and the high specific absorption rate (SAR) makes the implementation of CASL for mea-

suring perfusion in human quite challenging. Consequently, CASL has been replaced by

another technique called pulsed arterial spin labeling (PASL). [77, 151]

2.4.2 Pulsed Arterial Spin Labeling (PASL)

The basic principle of PASL is shown in Figure 2.6. Instead of applying a continuous

RF-pulse, PASL uses a short slab selective adiabatic pulse (typically 10-20 ms) to invert

the blood water spins in a broad range of the feeding arteries. The slab is typically 10-15
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cm thick resulting in a labeling duration of approximately 0.7 to 1.2 s for a healthy

subject [308]. However, the exact temporal width of the bolus is unknown and depends

on the blood flow velocity, which can be highly different in patients with cerebrovascular

disease, or even between different arteries leading to quantification errors in the original

approaches [308]. Wong et al. introduced a technique called quantitative imaging of

perfusion using a single subtraction (QUIPSS)/quantitative imaging of perfusion using a

single subtraction version II (QUIPSS II) [308] to define the temporal width of the bolus

in PASL. In QUIPSS II a saturation pulse is applied to the labeling slab at time point

TI1 to saturate the inflowing blood during both control and label condition. Thus, the

signal contribution after the time TI1 is equal in the control and label condition and

cancels out during subtraction. Thereby ”cutting” the bolus at a defined temporal width

of TI1 across subjects [308]. The principle of this technique is schematically illustrated

in Figure 2.6 in pink. An adaptation of QUIPSS II was proposed by the same group one

year later, which replaces the slab selective saturation pulse by a train of thin-sliced

saturation pulses applied at the distal end of the labeling slab, called QUIPSS II with

thin-slice TI1 periodic saturation (Q2TIPS). This smaller pulse is less sensitive to B1

variations and has a sharper slice profile resulting in an improved bolus width and

quantification accuracy [170].

Similar to CASL, the labeling RF pulse produces MT effects, which have to be considered

in the control condition. However, this effects are much smaller due to the short pulse

duration and can be easily accounted by applying for example an off-resonance RF pulse

with the same power during the control condition (Control Condition in Figure 2.6) [304].

Due to its easy implementation, low SAR, and high labeling efficiency (> 95%) [308],

many PASL techniques were developed with increasing success in perfusion imaging in-

cluding: flow-sensitive alternating inversion recovery (FAIR) [144, 152], signal targeting

with alternating radio frequency (STAR) [77], proximal inversion with a control for offres-

onance effects (PICORE) [304], un-inverted flow-sensitive alternating inversion recovery

(UNFAIR) [118], unprepared basis and selective inversion (BASE) [226], flow-sensitive al-

ternation inversion recovery excluding radiation damping (FAIRER1) [331], flow-sensitive

alternation inversion recovery with an extra radio frequency pulse (FAIRER2) [174], dou-

ble inversions with proximal labeling of both tag and control images (DIPLOMA) [136],

transfer insensitive labeling technique (TILT) [102], quantitative star labeling of arterial

regions (QUASAR) [200], and pulsed star labeling of arterial regions (PULSAR) [101].

To give an complete overview of all available techniques is out of scope of this thesis, but

the interested reader is referred to [14, 15]. In the following section the three major types

of PASL (STAR, PICORE, FAIR) [6] are presented. Their basic principles are shown in

Figure 2.7.
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Labeling Condition

PASL

Labeling Waiting

Image
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RF
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Control Condition

RF
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Figure 2.6: Basic principle of PASL with QUIPSS II (pink colour) to control the bolus width.
After a predefined time interval TI1, a slab selective saturation pulse is applied in the control and
label condition. Both, labeled and unlabeled blood spin are saturated producing the same amount
of signal in the images. Thus, the labeled bolus is ”cutted” at the time point TI1.
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2.4.2.1 Signal Targeting with Alternating Radio Frequency (STAR)

STAR was the first implementation of PASL [77] (Figure 2.7). It was originally combined

with an echoplanar imaging (EPI) readout and thus it is often referred as echoplanar

imaging and signal targeting with alternating radio frequency (EPISTAR) in the literature.

In STAR the arterial blood is inverted in an area proximal to the imaging region using a

short slab selective adiabatic inversion pulse [35, 77]. This RF pulse inverts the inflowing

blood but produces additional MT contrast in the label image. Similar to CASL in the

control condition the same RF pulse is applied but with negative gradient to account

for the MT effect. In case of symmetric MT effects on either side of the imaging region

the MT contrast cancels out during the subtraction. Indeed, the inversion labels the

spins above the imaging region leading to potential venous contamination if the inversion

slab lies within the brain. In addition, the MT effects are only minimized for a single

slice [14, 77]. Edelemann and Chen [76] proposed a modified version of STAR to account

for MT contrast in multi-slice imaging and potential contamination of inflowing blood

inferior to the imaging slice in the control condition. In this updated version, the control

condition consists of two slab-selective adiabatic inversion pulses, which are immediately

applied to the labeling region. This double inversion leads to no net labeling of the blood

spins. In practice, the double inversion is not perfect because some fast spins have already

left the labeling slab and spins on the boarder of the labeling slab do not experience

full inversion due to imperfect slab profiles [14, 76]. This effects results in quantification

errors of the CBF and consequently leads to the development of another technique called

PICORE [304].

2.4.2.2 Proximal Inversion with a Control for Offresonance Effects (PICORE)

PICORE is a modification of the original STAR technique (Figure 2.7). It uses the same la-

beling condition as STAR, inverting the blood in a slab proximal to the imaging slice [304].

In the control condition the RF pulse is applied without a field gradient and the frequency

of the RF pulse is additionally shifted so that the imagine plane experience the same

off-resonance as in the labeling condition. This ensures equal MT effects for control and

label images. Since the RF pulse is non-selective, this technique takes advantage that

no inversion of the spins occurs distal to the imaging plane avoiding potential venous

inflow. [35, 304]

2.4.2.3 Flow-Sensitive Alternating Inversion Recovery (FAIR)

FAIR was independently developed by Kwong et al. [152] and Kim et al. [144] shortly

after STAR (Figure 2.7). In contrast to STAR and PICORE, the labeling is applied

symmetrically with respect to the imaging volume and creates positive perfusion contrast

(label image has a higher signal than the control image). The symmetric nature of this

technique automatically corrects for the MT contrast in the PWI. In the labeling condition
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a slice, or slab selective inversion pulse is applied to the imaging region. This inverts the

blood and tissue spins within the imaging region but leaves the inflowing blood spins

unchanged. The control condition uses the same, but non-selective inversion pulse leading

to a global inversion of the tissue and blood spins within the range of the RF-transmit coil.

Consequently, inflowing blood from both sites of the imaging slice gets labeled. If both

RF pulses perfectly invert the spins in the imaging region, the signal from the static tissue

is equal and cancels out in the difference image. Hence, the difference image contains

only information from the inflowing labeled blood. Due to the positive perfusion contrast,

the PWI is achieved by subtraction the control image from the label image, which is

different to other PASL and CASL techniques. In practice, the slice selective inversion

pulse dose not produce a perfect inversion over the whole region, because the slice-profile

is not perfectly rectangular. Thus, in a typical FAIR experiment the spatial width of the

slice-selective pulse is twice the width of the imaging slab so that the uniform center of

the pulse covers the whole imaging slice. [35, 144]

2.4.3 Pseudo-Continous ASL (pCASL)

Pseudo continous arterial spin labeling (pCASL) is a hybrid labeling method combining

the advantages of PASL and CASL and therefore provides a better balance between SNR

and tagging efficiency [312]. PCASL was introduced by Dai et al. [56] and Wu et al.

[312] and mimics the flow driven adiabatic inversion effect of CASL in a piecewise manner

(Figure 2.8). A train of short and equally spaced RF pulses in combination with a gradient

field along the direction of blood flow inverts the blood spins. Compared to CASL, the RF

duty cycle and the SAR are reduced, and an application on standard MRI scanner without

the need of additional hardware is possible [6]. Splitting up the long constant rectangular

RF pulse in short successive rectangular pulses leads to additional periodic labeling planes

at locations z governed by the spacing of the RF pulses ∆t, and the gradient strength

G (z = n/γG∆t) [56]. To suppress the aliased labeling planes, typically a Hanning-

shaped pulse in combination with strong gradients during the RF pulse, typically 10 times

stronger than for CASL, are applied. This makes the RF pulse spatially more selective and

suppresses the aliased planes well, noting that the position of the aliased labeling planes

are dependent on the mean gradient Gaver (z = 1/γGaverδ). In general, aliased labeling

planes are well suppressed if the following condition is met: [56]

Gmax
Gaver

>>
∆t

δ
, (2.3)

where Gmax is the amplitude of the gradient during the RF pulse, Gaver is the average

gradient between the center of two successive RF pulses, ∆t is the time interval between

two RF pulses, and δ is the pulse duration (Figure 2.8). The train of RF pulses generates

a pulsed steady stead with an average B1 field comparable to CASL. During the RF gaps

gradient rewinders are used to keep the averaged gradient amplitude low and comparable

to CASL (approximately 1 mT/m), ensuring that the adiabatic conditions are met
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(Figure 2.8). The net average gradient leads to a phase accumulation of the flowing

spins between successive RF pulses. To match the phase evolution, a phase increment of

∆φ = γGaver∆z∆t has to be applied to each following pulse, where ∆z is the labeling

slice offset from the isocenter [8]. Once the label image has been acquired, a carefully

designed control condition is necessary to eliminate residual MT errors. The application

of the strong gradient during the RF-pulse train has the advantages that the MT effect is

much smaller compared to CASL, because the RF pulse becomes further off-resonant

relative to the imaging region [6]. The control condition can be implemented as balanced

pCASL [305, 312] or unbalanced pCASL [56] (Figure 2.8). In balanced pCASL the same

gradients as for labeling are used but every subsequent RF pulse maintains a 180◦ phase

shift. This is achieved by alternating the sign of subsequent RF-pulses leading to an

average B1 of zero and no effective labeling of the blood spins, while maintaining the

same averaged RF power as in the label condition. [56]

In unbalanced pCASL (Figure 2.8) the gradient waveforms are different between label

and control condition. Here the term unbalanced might be confusing since the gradients

and the RF in the control condition are fully balanced similar to a balanced steady state

free precession (bSSFP). The balanced gradients in the control condition eliminate the

labeling effect while keeping the same RF power as in the label condition. [312]

In general, the balanced gradients in the control and label condition better matches

possible eddy current related artifacts i.e. Wu et al. observed a shift in phase encoding di-

rection between control and label images [312] for the unbalanced case. This might results

in subtraction and quantification errors. On the other hand, the unbalanced approach is

less sensitivity to off-resonance effects resulting in higher labeling efficiencies [14, 312]. Due

to the lower sensitivity to off-resonance effects the unbalanced method is the recommended

approach for pCASL experiments [8, 312]. In contrast to CASL the well matched control

condition for multi-slice imaging lead to a higher labeling efficiency for pCASL [312].
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Figure 2.8: Basic principle of pCASL. The combination of short RF pulses with an average
gradient along the feeding arteries, leads to a flow driven adiabatic inversion of the blood spin.
During the control conditions the same RF power is applied to match MT contrast between control
and label condition.
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2.4.4 Comparison of pCASL and PASL

In PASL a single adiabatic pulse creates the entire bolus in a few milliseconds, which is

very robust to field inhomogeneities [8]. Additionally, it is relative insensitive to blood

velocity due to the short pulse duration. The labeling efficiency varies by less than 1% for a

velocity range of 0-100 cm/s [308]. It has a very low power deposition, which is especially

beneficial for higher field strength. In contrast, pCASL relies on the principle of flow-

driven adiabatic inversion and thus is more prone to B0 inhomogeneities in the labeling

plane. In addition, it is highly dependent on the blood velocity resulting typically in a

lower labeling efficiency of 85% compared with PASL with 98% [8]. Although the labeling

efficiency is higher in PASL, the overall SNR in much lower compared with pCASL. This

occurs for two reasons: First, pCASL continuously labels the inflowing blood resulting in

a much longer bolus duration with a higher SNR. In PASL the bolus duration is limited

by the spatial coverage of the RF-transmit coil leading to an overall reduced SNR [6].

Second, the T1-decay of the bolus is higher for PASL, because of the large labeling slab

some labeled blood is further away from the imaging region. Thus, the bolus is decaying

with T1 before it leaves the distal end of the labeling region leading to a reduced SNR. A

direct comparison of PASL and pCASL is shown in Figure 2.9. In summary, the high SNR

efficiency (50% improvement compared to PASL) [312], the improved repeatability [48],

the well defined bolus duration and the sharp bolus makes pCASL the recommended

labeling approach for ASL [8].
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Figure 2.9: Direct comparison of PASL and pCASL using the recommended parameters from
the International Society for Magnetic Resonance in Medicine (ISMRM) consortium and perfusion
study group [8].
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2.5 Labeling Duration and Waiting

After the arterial blood water has been labeled, the bolus needs some time to travel from

the labeling plane to the capillaries, where they exchange with the tissue water. Hence, a

waiting period called PLD is introduced between labeling and imaging acquisition. The

definition of the labeling duration and PLD is slightly different between ASL techniques.

Figure 2.10 shows the timing diagram for pCASL and PASL acquisitions. In PASL the

bolus is immediately created and the labeled spins travel to the tissue of interest during

the time period TI. As previously described, techniques such as QUIPSS II are necessary

to achieve a well-defined bolus width. The start of the QUIPSS II block defines the bolus

duration TI1, which is analogues to the labeling duration (LD) in CASL/pCASL. The

effective waiting period in PASL is then defined as (TI - TI1). This is equal to the definition

of PLD in CASL/pCASL. [8, 45]

Figure 2.10: Schematic timing diagram for the three major parts of an ASL experiment. The
blue block refers to the labeling period, the pink block in PASL refers to QUIPSS II, and the green
block to the readout.

The labeling duration depends on the used labeling technique. In general, a high

labeling duration is beneficial as this accumulates the tracer in the capillary bed of the

measured organ and translates directly in an increased SNR [45]. For pulsed ASL the

labeling duration is limited to the spatial coverage of the transmit RF coil and is typically

less than 1 s [8, 308]. Hence, the consensus paper recommends a LD of 0.8 s for PASL [8].

The CASL or pCASL approach provides the possibility to label the blood over seconds

to create a long sharp bolus. However, the T1-relaxation of blood, which is 1.65 s at

3T [169], limits the labeling time to a certain extend. For those approaches the consensus

paper recommends a labeling duration of 1.8 s, which provides a good trade of between

bolus duration and tracer decay [8]. Different studies suggest that an even longer labeling

duration of up to 3 seconds can be very beneficial and improves the reliability of the CBF-
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maps for patients with cerebrovascular disease such as moya-moya [81].

Similar to the labeling duration the post labeling delay is always a compromise. On

the one hand a long PLD gives the tracer sufficient time to travel to the capillary bed,

maximizing the ASL signal and avoid miss-quantification in CBF. On the other hand,

the tracer exponentially-decays during the waiting period with a time constant T1 of the

residing compartment (mostly in the arterial blood compartment with a T1 of 1.65 s at

3T [169]). The influence of the PLD on the ASL signal is illustrated in Figure 2.11. For a

too long waiting period the ASL signal is very small and dominated by noise. If the PLD

is too short an angiogram is obtained showing the major vessels in the brain. Therefore,

the optimal PLD would be equal or slightly higher than the expected arterial transit time

(ATT). The ATT refers to the time it takes for the labeled spins to go from the labeling

plane to the tissue of interest. For healthy subjects the ATT is typically in the rang of 1.5

s for young and 2.0 s for old subjects [8, 165]. This advises a PLD of 1.5 s for children,

1.8 s for subjects < 70 years, and 2 s for subjects > 70 years [8]. Especially for clinical

applications, where the presence of long ATT is very likely, a careful setting or combination

of LD and PLD [8, 320] is very important. For example Fan et al. compared ASL with

PET measurements for moya-moya patients. He found a higher correlation between those

techniques using a long LD of 3 s and a PLD of 4 s, than using the recommended settings

from the consensus paper [81].
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Figure 2.11: PWI at 16 different PLDs using pCASL labeling with a labeling duration of 1800
ms. PLD increases (200 ms) from left to right and top to bottom, starting with a PLD of 0 ms.

2.5.1 Single vs Multi Post Labeling Delay

The recommended clinical ASL protocol uses a single labeling duration and post label-

ing delay because it is easy to implement and allows to boost the SNR by repeating the

measurements [8, 45]. As previously mentioned, two main limitation of single PLD ac-

quisition exists: First the CBF is underestimated in areas where the ATT of the blood

is higher than the selected PLD; And second for a too short PLD, or for subjects with

prolonged ATT, hyper-perfusion areas are visible. These areas are related to the pres-

ence of labeled blood in the vessels, known as vascular artifacts. These vascular artifacts

complicate clinical diagnosis in patients with stroke, steno-occlusions of moya-mayo dis-

ease [320]. For such cases, the right choice of the PLD is very important to increase the

reliability of the CBF-map. In general, the PLD should be longer as the expected ATT

in the imaged tissue. In practice, the right choice of the PLD is difficult, because the

ATT is not known in advance and varies between healthy subjects and even in patients

with the same vascular disease. Alternatively, the ASL signal can be sampled over time,
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acquiring several images with different PLDs. Typically from a short PLD to a long PLD.

By applying a kinetic model to the time series the potential bias in CBF due to unknown

ATT can be reduced [8, 34]. In addition, the ATT, another important parameter can be

estimated simultaneously (see section 2.8). The ATT can reveal additionally clinical rele-

vant information i.e. distinguishing between a real hypoperfusion and an artificial created

hypoperfusion due to prolonged ATT, or identification of boarderzone sign and collateral

flow [320]. However, the higher number of PLDs leads to an increase acquisition time.

Furthermore, for longer PLDs the SNR decreases due to the T1-relaxation of blood and

the increased repetition time, allowing to acquire a lower number of averages in the same

acquisition time. In a time matched acquisition this can lead to a higher bias and error in

CBF compared with single-PLD acquisitions [311]. Woods et al. proposed a framework to

optimize the multi-PLD protocol for different readout schemes and expected ATT ranges

to improve the reliability of CBF and ATT maps [311]. Another approach uses a short

low resolution prescan to estimate the expected ATT and adapts the protocol specific to

the patients [58]. A smart way to boost the SNR of multi-PLD acquisitions was recently

proposed by Guenther et al. [108], called time-encoded ASL, and will be described in

section 2.9.3 ”Time Encoded ASL”.

2.6 Readout Approaches

The third and last block of an ASL experiment is the image acquisition. The first imple-

mentation of ASL used a simple two-dimensional spin echo sequence [66]. In this proof of

principle study only one single-slice were acquired. It soon became clear that fast imaging

techniques are necessary to achieve a good SNR in an acceptable acquisition time. The

first fast imaging technique used for ASL imaging in the human brain was EPI [77]. In

principle any developed readout technique for MRI is applicable for ASL imaging. The

following section describes three most widely used techniques for ASL imaging. These

readout approaches are also recommended in the consensus paper [8].

2.6.1 2D Readout Approaches

2.6.1.1 2D - Echo Planar Imaging (EPI)

Multi-slice EPI is one of the most common readout approaches in neuroimaging, in

particular for functional magnetic resonance imaging (fMRI), diffusion, and perfusion

imaging. It was originally developed by Peter Mansfield in the early eighties [181]. With

this snap-shot technique a complete two dimensional image can be acquired within 20-50

ms [20]. The sequence diagram is shown in Figure 2.12. A slice selective excitation

pulse (usually 90◦) is used to create a free induction decay (FID). The readout (Gread)

and phase-encoding gradient (Gphase) starts with a prephasing gradient causing a phase

dispersion of the transverse magnetization. Both prephasing gradients position the

k-space trajectory at kmin in x and y direction (red point in Figure 2.12). Immediately
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afterwards, a readout gradient (blue) with different polarity is applied. This causes the

spins to partially rephase producing a gradient echo. During this readout gradient the

kspace line traversing from -kx,min to kx,max is acquired. The vertical location of the

trajectory is modified by applying small phase-encoding gradients (green), known as

gradient blips, in between the readout gradients. The followed negative readout gradient

(pink) creates a second gradient echo which is acquired while traversing back through

the k-space. [20] This process is repeated until the full k-space is acquired. Typically EPI

is applied as a multi-slice acquisition and subsequent slices are acquired by repeating the

the whole procedure again. For multi-slice ASL imaging, an ascending slice order is

recommended as the blood flows from the neck to the brain leading to prolonged ATT for

superior slices. Note that this acquisition order prolongs the PLDs for subsequent slices. [8]

While EPI is a very effective imaging method, it does suffer from several artifacts. The

T ∗2 signal decay during acquisition results in an exponential filtering of the k-space along

the phase encoding direction causing blurring in the image space. However, the blurring is

not very significant if the acquisition time is small or comparable to the T ∗2 decay constant

of the tissue, because the windowing function is asymmetric around the k-space. Meaning

that high negative frequency components at location ky,min are enhanced compared with

the signal at the center k-space (k0), partially offsetting the diminished positive frequency

components at ky,max. [35]

In addition to blurring, the narrow bandwidth in the phase encoding direction causes

prominent chemical shift artifacts in EPI images. Fat signal arising from the skull marrow

or the scalp is shifted in the phase encoding direction [35]. Chemical shift artifacts can be

reduced using fat saturation pulses applied immediately before the readout.

One of the most prominent artifacts in EPI is Nyquist ghosting [20, 298]. Nyquist ghosts

appear as N/2 shifts of the image in the phase encoding direction and are caused by timing

differences between even and odd echos. The even and odd echos are formed by different

gradient polarity which are mostly not perfectly balanced due to eddy currents. The eddy

currents produces magnetic fields, which in turn delays or advances the time of refocus-

ing. [20, 35] Nyquist ghost are routinely minimized using the reference line approach [115].

Another typical artifacts in EPI are distortions and signal dropouts in the images due

to B0-field inhomogeneities. The field inhomogeneities causes an additional phase offset,

consequently leading to errors in the spatial encoding. This miss localization accompanies

a displacement in the reconstructed image [35]. The geometric distortions are propor-

tional to the field of view (FoV) in phase encoding direction, echo-spacing, and the B0

inhomogeneities [20]. Thus, a higher bandwidth, parallel imaging, or advanced shimming

techniques can help to reduce the amount of distortions. In addition, field maps can be

acquired and used in a post-processing step to minimize the distortions [322]. In addition

to distortions, areas of high susceptibility changes such as tissue-air interfaces (sinus cavi-

ties) can cause signal dropout in gradient-echo based EPI [35]. The signal dropout can be

eliminated by using a spin-echo based EPI sequence. However, this prolongs the readout
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time and is thus typically not recommended for ASL imaging [45].

Labeling Waiting
Image

acquisition
Pre-sat

1st BS 2nd BS

Gslice

Gread

Gphase

RF

Slice 1 Slice 7

Slice 7

Slice 1

kx,min kx,max
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Figure 2.12: Sequence diagram for a multi-slice 2D-EPI readout and corresponding k-space
trajectory. Consisting of a slice-selective excitation, followed by pre-phasing gradients (red) and
a train of bi-polar readout gradients (first blue, second pink) with small phase blips (first green)
during the readout gradient switching.
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2.6.2 3D Readout Approaches

2.6.2.1 3D - Gradient and Spin Echo (GRASE)

The gradient and spin echo (GRASE) sequence is a hybrid method combining a rapid

acquisition with relaxation enhancement (RARE) with an EPI readout. It was proposed

by Oshia and Feinberg [194] as a fast 2D readout alternative to EPI. In their original

work the full k-space was acquired by alternating refocusing pulses and short EPI-trains.

So, during each spin-echo a short number of gradient echos are created, minimizing the

off-resonance effects compared with EPI. Since ASL is a low SNR technique, the original

2D readout was extended to 3D, including a slab selective excitation in combination with

a second phase encoding direction. The larger slab contains a higher number of protons

which increases the SNR [109]. Figure 2.15 shows the pulse diagram for the 3D GRASE

readout. A slab selective excitation pulse (usually 90◦) is applied to create a transverse

magnetization. After TE/2 a refocusing pulse is applied to form a spin echo at time

point TE. Right before and after the refocusing pulse, additional crusher gradients (blue)

are used to spoil the FID. During the spin echo an EPI readout is applied, producing a

train of gradient echos thereby acquiring one kspace partition. Before the next refocusing

pulse is applied all gradients are fully balanced. The second partition is acquired by

applying again a refocusing pulse followed by an EPI readout. It becomes clear that the

total number of echos is given by the number of created spin-echos multiplied by the

number of gradient echos. Typically a center out acquisition ordering is used to achieve

higher SNR, meaning during the first spin echo the center partition (kz = 0) is acquired,

followed by a zig-zag acquisition of the subsequent partitions (+1/-1/+2/-2 etc.). [20, 194]

The 3D GRASE readout has inherently the same problems as the previous described

EPI acquisition. In addition, the longer echo train length leads to an exponential filtering

of the k-space along the second phase encoding direction leading to blurring in the image

space. The amount of blurring depends on the k-space acquisition order and echo train

length. This effect is illustrated in Figure 2.14 for 3 different echo train length. The

amount of blurring and the sensitivity to off-resonance effects can be reduced by using

segmented acquisitions as recommended by the consensus paper [8]. In addition, variable

flip angle approaches [162], parallel imaging techniques [73], or deblurring methods [94]

were proposed to account for this effect and will be discussed in more detail in chapter 7.
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Figure 2.13: Sequence diagram for a 3D-GRASE readout and corresponding k-space trajectory.
During each spin echo one kz plane is acquired using an EPI readout. Crusher gradients (blue) are
applied to spoil the FID and gradients are fully balanced between successive RF refocusing pulses.
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Figure 2.14: Influence of echo train length on the CBF-maps. Echo-train length (segments) from
left to right: 270 ms (3), 405 ms (2) and 810 ms (1). A longer echo train leads to a broader point
spread function (PSF) accompanied by a stronger blurring.

2.6.2.2 3D - Rapid Acquisition with Relaxation Enhancement Stack of Spirals

3D RARE-stack of spirals (SoSP) is another technique for acquiring a whole volume within

a single shot [133, 283]. It is based on the same principle as the GRASE acquisition but re-

places the EPI readout with a spiral readout in between the refocusing pulses. Figure 2.15

shows the pulse diagram of the RARE-SoSP acquisition. A slab selective excitation pulse

followed by a refocusing pulse is applied to generate a spin echo. Again, before and after

the refocusing pulse crusher gradients (blue) are used to spoil the FID. During the spin

echo a spiral trajectory is acquired. This is achieved by modulating the amplitude of the

sinusoid phase and readout gradient. At the beginning of the readout both gradients are

zero, hence the spiral trajectory starts at the k-space center. As the readout progresses,

the amplitude of the gradient increases until the maximum k-space radius is reached.

Then, rewinding gradients are used to bring the trajectory back to the k-space center. [20]

The missing phase encoding steps leads to a much faster readout compared with EPI,

thereby reducing the echo time and potentially signal dropout artifacts. However, B0

inhomogeneities leads to blurring in the images, which is difficult to correct in postpro-

cessing. [45] In addition, advanced reconstruction methods are necessary for obtaining

the image from the non-Cartesian trajectory [14]. A detailed comparison of 3D RARE-

SoSP with 3D GRASE is given in Vidorreta et al. [281]. The authors conclude that the

3D-RARE-SoSP outperforms 3D-GRASE due to higher spatial and temporal SNR and

reduced through plane blurring due to its shorter effective echo time. However, these
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Figure 2.15: Sequence diagram for a 3D-RARE-SoSP readout and corresponding k-space trajec-
tory. During each spin echo one kz plane is acquired using a spiral readout. Crusher gradients
(blue) are applied to spoil the FID and gradients are fully balanced between successive RF pulses.

advantages comes at the cost of slightly increased in-plane blurring due to off-resonances

and missing sampling of high frequency components [8, 281]. Note that we described an

equally spaced spiral readout. Modifications such as variable density spiral readout [43]

exists, which provides higher SNR and additionally allows to extract motion information

from the dense sampled k-space center between averages [257].
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2.6.3 2D vs 3D Readout

As previously mentioned 2D and 3D readouts have its own advantages and disadvan-

tages. The consensus paper recommends segmented 3D readouts, either GRASE or RARE-

SoSP [8]. The 3D readouts provides a higher SNR and allows efficient background suppres-

sion of the static tissue (see section 2.7) compared with 2D readouts. This increases the

spatial and temporal SNR, resulting in a higher image quality. However, segmented read-

outs are prone to motion-artifacts and if excessive motion is expected a fast 2D acquisition

is preferable [8]. Figure 2.16 shows the typically image quality of a CBF-map acquired

with a 2D-EPI and a 3D-GRASE readout. The acquisition time was kept constant with

5 minutes.

2D EPI 
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Figure 2.16: Comparison of CBF-maps obtained with a 2D-EPI and a 3D-GRASE readout. The
CBF-maps from the 3D-GRASE show a higher temporal signal to noise ratio (TSNR) and hence
a better image quality.

2.7 Background Suppression

In an ideal ASL experiment the signal intensity of static tissue is identical in the control

and label condition and cancels out in the subtraction process. The remaining signal

intensity in the difference image is proportional to the perfusion. Typically, the ASL

signal is in the order of 1% due to the low amount of blood volume (3-5%) in a given
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voxel [14]. Thus, even a small fluctuation of the tissue signal will swamp the effect of

perfusion. ASL measurements are therefore very sensitive to changes in the tissue signal.

In practice, these fluctuations are many times higher than the ASL signal and are caused

by physiological effects and subject motion. As the degree of variations scales with the

tissue signal, techniques eliminating the unwanted signal while retaining the ASL signal

are of high importance. [8, 14, 96, 283] This techniques are called background suppression

and leads to increased temporal stability and accompanied increased quality of the CBF-

maps [96, 179, 318].

The background suppression technique employes a carefully designed combination of pre-

saturation and inversion pulses to eliminate the contribution of static tissue signal at the

time of imaging. An example timing diagram using one pre-saturation and two background

suppression (BS) pulses is shown in Figure 2.17. The degree of signal attenuation is a

function of the longitudinal tissue relaxation time T1 and the number of used inversion

pulses i.e. with 2 inversion pulses the magnetization of two different tissue types can be

eliminated at imaging time. [8, 14, 96]

Figure 2.17: Timing diagram for BS in an ASL experiment with the corresponding signal evo-
lution of GM, WM, and CBF tissue magnetization. For the 3D acquisition the BS is optimal for
the whole volume, whereas in the multi-slice 2D readouts the signal evolution results in a poorer
BS for subsequent slices.
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As illustrated in Figure 2.17 the background suppression is only optimal at one point

of time. Thus, for multi-slice 2D-readouts the degree of BS decreases from slice to slice.

Usually the images are acquired in ascending order leading to a perfect background sup-

pression for the most caudal slice and the worst BS for the most rostal slice. Accompanied

with the imperfect BS is a reduced TSNR for upper slices and a contrast change in sub-

sequent acquired images. This cause several additional problems if through plane motion

occurs (see section 2.10.2 ”Background Suppression”). In contrast, 3D readouts provides

an optimal background-suppression for the whole acquisition volume.

ASL experiments conducted with BS have typically a much higher TSNR and are thus

highly recommended by the consensus paper in combination with 3D-readouts [8]. Fig-

ure 2.18 shows the benefit of background suppression using one pre-saturation and two

inversion pulses in combination with a 3D-GRASE readout. However, there are also quan-

tification issues accompanied by BS, which are discussed in section 2.10.2 ”Background

Suppression”.
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Figure 2.18: Effect of BS on an ASL experiment using a 3D-GRASE readout. BS increases the
TSNR and is accompanied with an improvement in image quality.

2.8 Quantification Models

One of the main advantages of ASL is the possibility of absolute quantification. This

feature has led to the rapid development of ASL over the past two decades. In ASL, the

difference signal between control and label image is proportional to the amount of blood

delivered to the tissue. To obtain quantitative values of perfusion from the difference

image a detailed model that combines kinetics and relaxation is necessary [35]. The

current standard approach for modeling the ASL signal is based on a single compartment

model [34, 66]. This basic model is recommended by the consensus paper and will be

discussed in more detail throughout this section [8].
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2.8.1 Bloch Equation Model

The first approach for modeling the ASL signal was introduced by Detre et al. in 1992 [66]

and is known as Bloch equation model or as T1-quantification model [51, 66]. In this

model, the Bloch equation for the longitudinal magnetization was modified by including

flow effects (equation 2.4). The delivery term fMa(t) describes the flow of magnetization

into the voxel and the clearance term fMv(t) the decrease of magnetization due to outflow

of the labeled blood.

dMt(t)

dt
=
M0 −Mt(t)

T1
+ f (Ma(t)−Mv(t)) , (2.4)

where Mt is the longitudinal magnetization of tissue, M0 is the equilibrium longitudinal

magnetization of tissue, T1 is the relaxation time constant of tissue, Ma and Mv are

the longitudinal magnetization of arterial and venous blood, and f is the cerebral blood

flow. This model assumes that labeled blood is provided by an uniform plug flow and

that the exchanges of tissue water and labeled blood water is instantaneously within the

voxel i.e. assuming a well mixed compartment [51, 66]. Thus, the venous outflow of the

magnetization is equal to the tissue concentration divided by the blood-tissue partition

coefficient λ (Mv(t) = Mt(t)/λ). The blood-tissue partition coefficient is necessary to

take into account the slightly different water content of blood and tissue and is derived

from the PET literature [14]. Plugging in the difference signal (∆Mt = Mt,C −Mt,L) in

equation 2.4 and by assuming equal longitudinal magnetization in both images we obtain

the following equation:

d∆Mt(t)

dt
= −∆Mt(t)

T1app
+ f∆Ma(t), (2.5)

where 1
T1app

= 1
T1

+ f
λ . From this follows that the perfusion signal decays with the

relaxation time constant T1app.

2.8.2 General Kinetic Model

The previous described model has several simplifications leading to potential quantifica-

tion errors. This includes variable transit time of the bolus, changes in T1 as labeled water

exchanges between blood and tissue, and incomplete water extraction [34]. Buxton et al.

formulated a general kinetic model to account for those systematic errors in ASL [34].

This general kinetic model is based on tracer kinetics theory. The tracer considered here,

are labeled blood spins traveling through the vascular system. Hence, the measured sig-

nal is a quantity of magnetization provided by the blood flow. The amount of labeled

blood spin in a voxel at timepoint t depends on the history of delivered magnetization

by arterial blood flow, the longitudinal relaxation, and the clearance of magnetization by

venous outflow. [34] To describes these processes Buxton formulated three functions: (1)

The arterial input function (AIF) c(t) describes the amount of labeled water molecules
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arriving in a voxel at time t. (2) The residue function r(t − t′) is the fraction of labeled

water molecules that were delivered to the voxel at time t′ and is still present at time

t [34]. (3) The magnetization relaxation function m(t − t′) describes the decrease in lon-

gitudinal magnetization due to the T1 relaxation between timepoints t and t′ [34]. With

the definition of these function the measured ASL signal at timepoint t is given by:

∆M(t) = 2M0bf

∫ t

0
c(t
′
)r(t− t′)m(t− t′)dt′

= 2M0bf {c(t)⊗ [r(t)m(t)]} ,
(2.6)

where M0b is the blood equilibrium magnetization and f is the CBF. This general

model provides a flexible quantification approach for ASL data. It takes into account

different arterial input functions for PASL, CASL, and pCASL, the transit delay of the

bolus, and additionally different exchange mechanism (single or multi-compartment) by

choosing appropriate forms of the delivery function, residue function, and magnetization

relaxation function [34]. From this general kinetic model the de facto standard ASL model

was derived by Buxton et al. [34] by making three major assumptions:

1. It is assumed that the labeled blood water arrives the voxel via uniform plug flow.

Thus, the bolus is well defined with a temporal width according to the labeling

duration τ and reaches the voxel after the arterial transit delay ∆t. This is described

by the AIF c(t) as follows [34]:

c(t) =


0 t < ∆t,

αe−t/T1,b (for PASL) ∆t ≤ t < ∆t+ τ,

αe−∆t/T1,b (for pCASL/CASL) ∆t ≤ t < ∆t+ τ,

0 ∆t+ τ ≤ t.

(2.7)

The labeling efficiency α accounts for imperfect inversion of the blood magnetization.

Note that for PASL the bolus is not uniform (box car-function) because some blood

has already been decayed with T1,b as it leaves the labeling plane. The time course of

the AIF is shown in Figure 2.19 for PASL and CASL/pCASL using the recommended

labeling parameters of 0.8 s and 1.8 s respectively [8].

2. The water exchange between tissue and blood is described by single compartment

kinetics. This means, that the labeled water exchanges instantaneously with tissue

leading to a constant tissue concentration within the voxel. Equal to the Bloch

equation model, the venous outflow is given by M(t)/λ to account for the different

water content in blood and tissue. With this assumption the residue function r(t) is

described by [34]:

r(t) = e−ft/λ. (2.8)
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3. The labeled blood water magnetization decays initially with the relaxation time

constant of blood (T1,b). As soon as the labeled water molecules have reached the

tissue, the magnetization decays with the relaxation time constant of tissue T1 [34].

The magnetization relaxation function m(t) is

m(t) = e−t/T1 , (2.9)

assuming a T1 of 1.33 s [34], and shown in Figure 2.19.

Figure 2.19: Time course of the arterial input function c(t) in a simulated GM voxel for PASL
and pCASL using the recommended labeling duration of 0.8 s and 1.8 s respectively. The residue
function r(t) and the magnetization relaxation function m(t) of arterial blood in dependence of
the time are plotted. The bottom right plot shows the perfusion signal evolution dM(t) using the
general kinetic model with the three shown functions for PASL and pCASL.

With these assumptions the signal evolution of the difference image measured with
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PASL is given by

∆M(t) =


0 t < ∆t,

2αM0/λf (t−∆t) e−t/T1,bqp(t) ∆t ≤ t < ∆t+ τ,

2αM0/λfτe
−t/T1,bqp(t) ∆t+ τ ≤ t,

(2.10)

with

qp(t) =


0 t < ∆t,
ekt(e−k∆t−e−kt)

k(t−∆t) ∆t ≤ t < ∆t+ τ,
ekt(e−k∆t−e−k(τ+∆t))

kτ ∆t+ τ ≤ t ,

(2.11)

k =
1

T1,b
− 1

T1app
, (2.12)

1

T1app
=

1

T1
+
f

λ
. (2.13)

In case of CASL/pCASL, the signal evolution of the difference image is described by

∆M(t) =


0 t < ∆t,

2αM0/λfT1appe
−∆t/T1,bqss(t) ∆t ≤ t < ∆t+ τ,

2αM0/λfT1appe
−∆t/T1,be−(t−τ−∆t)/T1appqss(t) ∆t+ τ ≤ t,

(2.14)

with

qss(t) =


0 t < ∆t,

1− e−(t−∆t)/T1app ∆t ≤ t < ∆t+ τ,

1− e−τ/T1app ∆t+ τ ≤ t .

(2.15)

Figure 2.19 shows the ASL signal evolution over time for PASL and pCASL using the

recommended labeling duration of 0.8 s and 1.8 s respectively [8]. The single compartment

model is currently standard for CBF quantification with ASL [8] and used throughout

this thesis. However, the assumption of a well mixed compartment does not hold in

practice. In reality, the labeled water will remain for some time in the vessels decaying

with T1,b before it exchanges with water from the extravascular space decaying with T1.

The difference in T1,b and T1 leads to quantification errors. In addition, the assumption

that all the labeled blood water exchanges with the tissue reaching an equilibrium is

incorrect [196]. Meaning that some of the labeled water will pass through the voxel

without exchanging with tissue [123, 196]. Parkes et al. proposed a two-compartment

model, to correct for this two assumptions [196, 198]. This model consists of an additional
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extravascular compartment within the voxel. The water exchange between the water and

blood compartment occurs through a semipermeable membrane [123, 196].

Both, the single and two compartment model assumes that the bolus is well defined and

at least for CASL/pCASL has a box car shape [123]. However, in reality the bolus gets

smoothed as it travels from the neck to the brain capillary. This smoothing is referred as

bolus dispersion and caused by the narrower vessels, branching, and cardiac pulsation [45].

Several approaches were proposed to account for this effect using a dispersions kernel [46,

95, 132]. The most accurate approximation of the bolus dispersion was achieved using a

gamma-variate function [46].

2.9 Advanced ASL Methods

ASL has gained increased popularity over the last years leading to the development of new

labeling, encoding, and quantification techniques. With these methods a great progress in

SNR, robustness, and acquisition speed has been made. The following section provides a

brief overview of four very promising approaches in ASL. For a general overview of recent

progresses in ASL the reader is referred to two recently published review papers from Van

Osch et al. [279] and Hernandez-Garcia et al. [123].

2.9.1 Velocity and Acceleration Selective ASL

In the current standard labeling approaches (PASL and pCASL) the labeling plane is lo-

cated proximal to the imaging region. This causes a transit delay for the labeled blood

to flow from the labeling plane to the tissue of interest. In cerebrovascular diseases this

transit delay is often much longer than the longitudinal relaxation rate of blood due to

slower blood flow, collateral flow, or stenosis [14]. This inhibits accurate measurement of

the perfusion. Velocity selective arterial spin labeling (VSASL) was introduced to address

this issue [189, 309]. In VSASL all spins flowing above a predefined velocity-threshold venc
are labeled independent of the position. In principle, this approach removes the gap be-

tween labeling plane and tissue. The basic principle is illustrated in Figure 2.20. The first

spatially non-selective 90◦ pulse tips the magnetization into the transverse plane, followed

by two adiabatic non selective inversion pulses surrounded by gradients. The gradients

have a net zero moment leaving stationary spin unaffected but leading to a dephasing of

moving spins above a defined threshold venc. The last spatially non-selective −90◦ pulse

returns the magnetization into the longitudinal plane. This four-pulse velocity encoding

scheme saturates moving spins above the velocity venc while leaving stationary spins largely

unaffected and additionally corrects for phase shifts due to B0 inhomogeneities. During

the control condition the same pulse scheme is applied but without velocity-sensitizing

gradients. [14, 123, 279, 309]

As for the standard approaches, the signal in the difference image is proportional to the

perfusion. The disadvantage of VSASL is that all spins flowing above the defined veloc-
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ity threshold are labeled, independent of the location in the vascular system. This leads

to a venous contamination in the perfusion maps. From the physiology it is well known

that blood flowing from large arteries to capillaries decelerates while blood flowing from

capillaries to veins accelerates. [14, 123, 279, 309] To minimize the venous contamination,

Wong et al. came up with the idea of applying a second velocity selective ASL module

short before the readout [309]. This module again saturates spins above venc short before

the label image is acquired. During the control condition only the second velocity selective

module is applied with velocity sensitizing gradients. This ensures that only spins that

had a velocity v > venc at time of labeling and v < venc at the time of imaging gives

contrast in the PWI. In addition, the time between the first and second velocity module

defines the temporal width of the bolus, similar to QUIPSS II. This approach is known

as dual VSASL and allows the quantification of CBF in absolute units. [309]

The great potential of this method lies in the spatial non-selective labeling. This al-

lows measurements in steno-occlusive or Moyamoya disease, where for traditional spatial-

selective methods the magnetization is already decayed due to the long ATT. For example,

Zaharchuk showed that the VSASL shows similar results to a pCASL approach with a very

long PLD (3000 ms) but with reduced acquisition time [320].
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Figure 2.20: Schematic overview of the velocity selective labeling module [309]. The velocity
sensitized gradients are embedded in a four pulse scheme to correct for B0 inhomogeneities. During
the control condition the same RF pulses are applied but without velocity encoding gradients.
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An alternative approach to distinguished between arterial and venous blood was pro-

posed by Schmid et al. [224]. This approach labels blood that accelerates or decelerates

in the vascular tree and is referred as acceleration selective arterial spin labeling (Ac-

cASL). A change in blood velocity occurs due to tortuosity of the vessels, differences in

cardiac cycle or changes in vessel diameter [224, 279]. This effects are most prominent

on the arterial side of the vascular system labeling mainly arterial blood. Figure 2.21

shows schematically the pulse sequence. The basic principle is similar to VSASL but the

gradients and pulses are designed so that their zeroth and first order gradient moments

are zero. Hence, stationary spin as well as spins with a constant velocity rephases during

the labeling module, whereas accelerated or decelerated blood above a certain threshold

Aenc gets saturated [224]. Both VSASL and AccASL are very promising techniques and

still under active research at the time of writing [123].
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Figure 2.21: Schematic overview of the acceleration selective labeling module [224]. The gradients
and RF pulses are designed so that static and moving spins rephase but accelerated or decelerated
spins accumulate a phase. During the control condition the same RF pulses are applied but without
acceleration-sensitizing gradients

2.9.2 Vessel Encoded ASL (VE-ASL)

Region selective ASL provides perfusion maps of flow territories (Figure 2.22) by selectively

labeling one of the major arteries [119]. The visualization of flow territories is important
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for many application in clinical routine. In embolic stroke the location of the blood clot

can be determined [14]. In tumors, or in arterio-venous malformation vessel encoded ar-

terial spin labeling (VE-ASL) has the potential of identifying the feeding artery. This

can provide important information for treatment monitoring, therapy decision, or surgical

intervention [163]. Studies in healthy subjects show that the territories supplied by the

internal carotid artery (ICA) or vertebral arteries strongly vary due to incomplete configu-

rations or differences in the circle of Willis [119, 163]. Such information may be important

for acute stroke where these modifications could impair the collateral blood supply [163].

The current gold standard in clinical routine is digital subtraction angiography (DSA),

which allows to image a single artery by injecting a contrast agent via a catheter [163].

This method is invasive, time-consuming, and requires x-ray for imaging [163]. In a study

comparing DSA with region selective ASL in Moyamoya patients a comparable diagnostic

value was found for VE-ASL. Beside the perfusion weighted flow territory maps, dynamic

angiographic images can be obtained with VE-ASL. This allows to study the inflow of

blood in a specific territory. Three different approaches exists for obtaining flow terri-

tory maps with ASL. The most common method is based on a PASL sequence. The

labeling slab is rotated and translated in such a way that only blood in a single artery

is labeled [119]. The second approach, known as super selective pCASL, uses additional

time-varying gradients to selectively label blood in one artery [57, 117]. In principle, this

approach is not limited to the major arteries, it can be applied to every artery but requires

a careful planning based on high resolution structural and angiographic images [14]. The

third approach is called vessel encoded ASL [305]. In this approach the vessels are labeled

in a spatial different manner following a Hadamard matrix and the corresponding maps

are obtained by decoding the images [279].

2.9.3 Time Encoded ASL (TE-ASL)

Time encoded ASL is a smart way to obtain perfusion weighted images at multiple time

points. Instead of acquiring sequentially control and label images at different PLDs, the

PLDs are directly encoded in the pCASL module. Figure 2.23 shows this time-encoding

process [108]. The basic idea of this method is to divide the labeling module into N sub-

blocks or sub-boli, and assign each block a labeling or control condition according to the

entries of a N th order Hadamard matrix. The positive entries of this matrix corresponds to

labeling and the negative entries to control condition. Each row of the Hadamard matrix

is independent and hence encodes the ASL image in an unique way. [108, 279, 286]

The principle of Hadamard encoding is illustrated in Figure 2.23 for a Hadamard 4 matrix:

H4 =


1 1 1 1

1 −1 1 −1

1 1 −1 −1

1 −1 −1 1

 . (2.16)
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Figure 2.22: Example perfusion maps of flow territories obtained by selectively labeling the left
ICA (green), right ICA (red) and the basilar artery (blue). Figure taken from [223].

For obtaining the PWI time series the N acquired encoded images are subtracted

or added according to the entries of the N columns in the Hadamard matrix (i.e. 1

corresponds to add and -1 to subtract). This step is known as decoding step (equation 2.17)

and can be described by a matrix-vector multiplication [286].

(PWI1, ..., PWIN ) = (IMG1, ..., IMGN ) ·HN . (2.17)

Since each column of the matrix represents one labeling-block or subbolus, the

decoding of the N th column leads to a perfusion weighted image that contains only the

contribution of the N th subbolus. The corresponding PLD is given by the end of the N th

subbolus until image acquisition i.e. for the Hadamard-4 example in Figure 2.23 all 3

PWIs have equal LD defined by the block-length but different effective PLDs. The first or

longest PLD for PWI1 ranges from the end of the first subbolus to the image acquisition.

The shortest and last PLD for PWI3 is given by the end of the last subbolus to the image

acquisition. The first column of the Hadamard matrix contains only control or label
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state. Thus, the first images is always an averaged control or label image (depending on

the state) and only N − 1 perfusion weighted images can be obtained. [286]

This special encoding is much more efficient than acquiring sequential multi-PLD images

where 2(N − 1) images are necessary to obtain the same number of temporal information.

In addition the decoding process inherently averages the images leading to an reduction

of
√

(N/2) in the noise standard-deviation. This makes TE-ASL a highly temporal and

SNR efficient method to sample the ASL signal [108, 279].

In the original implementation the k-blocks were equally spaced. This results in

a short LD in combination with a very long PLD for the first PWIs reducing the

quantification accuracy [59, 110]. Several variants of time-encoded ASL were proposed

to improve the parameter estimation including the free-lunch [262], T1-adjusted [262],

or hybrid time-encoded scheme [310]. In the free-lunch approach the first block or

subbolus is typically 1.8-2.0 s long while the remaining blocks are equally split up

during a time window of 1.8 s. Thus the first column delivers a perfusion weighted

image with a LD of 1.8-2.0 s and a PLD of 1.8 s which is equal to the recommended

single-PLD acquisition [8]. The addition N − 2 PWIs can be obtained for free

(without additional scan time) yielding an additional ATT map [262]. The T1-adjusted

approach divides the blocks in a sophisticated way, so that the signal contribution

of each block is equal at the time of imaging. Thus, the T1-decay of the tracer is

compensated and the SNR is preserved over all images [262]. The hybrid time-encoded

scheme uses one of the three previous defined time-encoding schemes as a basis

and combines this with sequential PLD acquisition i.e. repeating the T1-adjusted

approach three times with different PLDs between the encoding module and readout [310].

Compared with traditional-sequential ASL acquisitions time-encoding acquisitions are

much more sensitive to motion and artifacts. The decoding process involves the whole

number of time-encoded images. Thus, if only one acquired image is corrupted with

motion or artifacts all decoded images are affected. In contrast, in the sequential image

acquisition the affected image-pair can be discarded leading to a negligible loss in SNR

and information [279]. To reduce the sensitivity to motion-artifacts Samson-Himmelstjerna

et al. proposed a Walsh-ordered Hadamard matrix for encoding the ASL images [286].

This matrix rearranges the rows of a classical Hadamard matrix according to the number

of equal signs. In that case the Hadamard matrix can be divided into fully decodable

Hadamard submatrices, i.e. for a Hadamard 8 matrix a Hadarmad 2 matrix can be

obtained after two acquisitions by summing up the corresponding labeling blocks (see

Figure 2.24) [286]. In addition, a post-processing strategy have been proposed by modeling

the encoded signal in a Bayesian framework [285]. This technique allows the estimation

of CBF and ATT from a fewer number of encoded images i.e. if one or two images were

discarded due to motion or artifacts [285].
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Figure 2.23: Schematic representation of the time encoded ASL using a Hadamard 4 matrix.
The decoded images are obtained by adding or subtracting the encoded images according to the
column entries in the Hadamard matrix. Figure modified from [279]

Figure 2.24: Schematic representation of the Walsh-ordering of a Hadamard 8 matrix. After 2
encoding steps a Hadamard 2 matrix, after 4 encoding steps a Hadamard 4 matrix and after 8
encoding steps a Hadamard 8 matrix is obtained. Figure modified from [286]
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2.10 Challenges of ASL Imaging

At present, there are numerous challenges for perfusion measurements with ASL. This

section provides an overview of these challenges and presents recent developments in this

field.

2.10.1 Signal to Noise Ratio and Partial Volume Effects

The major drawback of ASL imaging is the low signal to noise ratio. In gray matter,

perfusion replaces approximately 1% of the water protons by labeled blood water in 1 s

(assuming an average CBF of 65m/100g/min) [14]. Thus, a bolus duration of 1 s leads

to a ASL signal strength of approximately 1%. In an ideal experiment, this small signal

strength would be enough for accurate perfusion measurement. In practice, the ASL signal

is affected by several sources of noise including thermal noise, hardware instability, physi-

ological noise, and subject motion. The most prominent source is physiological noise and

subject motion, which is several factors higher than the original ASL signal [14]. A detailed

explanation concerning the noise in ASL imaging will be given in chapter 4. Improvements

in SNR were achieved through the use of advanced hardware [263], sophisticated label-

ing [56] and readout schemes [109, 283], background suppression techniques [179, 318],

and post-processing methods such as motion-correction, outlier detection and denois-

ing [84, 293, 294, 299], which will be described in chapter 3. Beside this sophisticated

methods, a very effective way to improve the SNR in ASL images is to increase the voxel

size. A larger voxel contains more protons and thus increases the ASL signal. Figure 2.25

shows the impact of the voxel size on the SNR of ASL imaging.

To achieve a reasonable SNR in a feasibly time, ASL images are typically acquired with

a low spatial resolution. The consensus paper recommends a resolutions of 3-4mm in-plane

and 4-8 mm through-plane [8]. This coarse spatial resolution is prone to partial volume

effects (PVE) in the CBF images leading to blurring and significant quantification errors in

the gray and white matter [160, 276]. The cross-contamination leads to an underestimation

of GM and an overestimation of WM CBF [276]. This is problematic for applications

in different diseases and in case of group studies especially in age-related [12, 84] and

activation studies [29]. To reduce the influence of partial volume effects several methods

were proposed based on high resolution T1 weighted images [11, 160, 202]. Prerequisites of

these methods are accurate segmentation as well as subsequent registration with the ASL

image. However, these two steps are often prone for errors and the effect of PVE correction

comes at the cost of a bias and spatial smoothing [84]. For a detailed study of accuracy

and influence factors of PVE on ASL images the reader is referred to a recent systematic

study [203, 330]. A more direct way to avoid partial volume effects is to increase the

resolution in the ASL images, but this comes with the hurdle of a reduced SNR. Hence,

there is always a compromise between SNR and PVE in ASL imaging.
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Figure 2.25: Influence of voxel size on the SNR of ASL images. Top to bottom: 1.6 mm, 2.0
mm, 2.5 mm and 3 mm isotropic resolution

2.10.2 Background Suppression

Background suppression greatly improves the temporal stability of ASL images. However,

three important points have to be considered using background suppression for ASL. First,

a trade-off between the number of inversion pulses and suppression of static tissue has to

be chosen. More pulses allow a wider range of tissue types (wider range of T1-values)

to be suppressed. On the other hand each BS pulse reduces the labeling efficiency by

approximately 5% or more i.e. Shin et al. found that the inversion efficiency can vary

from 77 to 95% between subjects and is reciprocal related to the amount of CBF [232].

This reduces the SNR and leads to significant quantification errors in the quantification

process.

Second, the background suppression is only optimal at one point in time. Thus, 3D-
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readouts deliver the same effective BS over the whole imaging slab while for 2D-readouts

the BS is only optimal for the first acquired slice. The subsequent acquired slices experience

a lower effective BS due to the T1-relaxation of static tissue. Consequently, the contrast

between adjacent images changes and the temporal instability increases for ascending

slices. This could produce significant subtraction errors if through plane motion occurs.

Approaches were proposed to solve this issue to a certain extend [230, 258]. A combination

of background suppressed ASL imaging with prospective motion correction strategies using

navigator echos [228, 334] or an optical tracking system [5] could solve this issue.

Third, a too high BS would directly affect the motion correction as the change in contrast

is lost [45]. Again this point could potentially be solved by using prospective motion

correction approaches.

The current recommended BS strategy consists of one pre-saturation followed by 2 BS

pulses which shows a good trade off between suppression of ASL signal and loss in inversion

efficiency [8].

2.10.3 Motion

ASL is very sensitive to motion due to the pair-wise subtraction of label and control im-

ages. Even an small miss-registration between successive pairs can mask the perfusion

signal leading to severe artifacts. Background suppression techniques are typically used to

reduce the influence of motion to a certain extent [179, 318]. In addition, adequate fixation

of the subject during the acquisition is highly recommended to prevent motion. However,

even with appropriate head fixation an involuntary movement can occur. During the last

years, several techniques were proposed to correct the potentially subject motion.

In general, motion correction refers to a technique that realigns images to minimize the

effect of motion. Currently, motion-correction is a standard ASL preprocessing step. It

can be either applied by realigning all image to the first image of the ASL time series or

by using the mean image as reference [293, 294]. This retrospective method works well

for inter-scan motion, however, for current recommended segmented readout approaches

motion can occur in between the acquisition of segments. Inter-segment motion leads to

misalignments in k-space which directly affects the reconstruction quality of the images.

Unfortunately, this cannot be corrected using image-based motion-correction approaches

and is exemplary illustrated in Figure 2.26. Tan et al. proposed a hybrid acquisition

strategy to account for inter-segment motion by combining 3D-GRASE with periodically

rotated overlapping parallel lines with enhanced reconstruction (PROPELLER) [260]. Al-

ternatively prospective or real-time motion correction strategies can be used. Here, the

motion parameters are either estimated by motion sensitive navigator echoes [228, 334] or

by an optical tracking systems [5]. If motion occurs, the gradients are updated accordingly

so that the mismatch is corrected. Besides the advantage of improved motion robustness

the drawback of a lower temporal resolution still remains, which limits its applications to

perfusion based functional MRI or multi-PLD ASL [34]. An alternative approach would
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be to accelerated the acquisition and acquire whole brain images within a single shot to

avoid inter-segment motion. Several accelerated acquisitions were proposed, which are

discussed in more detail in chapter 7.

Control Label PWI

Figure 2.26: Effect of inter-segment motion on control, label and perfusion weighted image

2.10.4 Labeling Robustness and Labeling Efficiency

In general, a labeling method complying the following criteria is desirable: (1) high la-

beling efficiency close to 100%, (2) providing a long and sharp bolus, (3) being robust

against system imperfections, (4) providing consistent labeling efficiency across a reason-

able physiological range, (5) and has a minimal SAR [45]. In practice, this ideal labeling

technique is not feasible, but the current recommended labeling scheme pCASL provides

a good trade-off between these requirements. pCASL has a well defined bolus shape and

labeling duration leading to a 50% higher SNR compared with PASL and in contrast to

CASL a reduced SAR, RF duty-cycle, and higher labeling efficiency [8, 312]. The labeling

efficiency is an important parameter for the quantification of the CBF and is assumed to

be 85% for pCASL and 98% for PASL [8]. However, pCASL is based on the principle of

flow induced adiabatic inversion, which is highly dependent on the blood velocity [56]. A

too high blood velocity leads to a fast change of the effective field violating the adiabatic

condition. If the blood velocity is too low, T2-relaxation occurs during inversion compro-

mising the labeling efficiency [14, 56, 327]. Thus, the labeling efficiency is only optimal in

a certain range of velocities. Unfortunately, the blood velocity varies strongly across the

cardiac cycle, between arteries, healthy subjects, and cerebrovascular disease, which can

result in a bad labeling efficiency accomplished with a low SNR and an underestimation

of the CBF [91, 280, 313]. Several methods were proposed to account for this effect. First,

the pCASL sequence parameters can be adjusted according to the measured flow veloc-

ity [273]. Second, the robustness and efficiency can be increased by carefully optimizing

the labeling scheme. For example Zhao et al. showed that an unbalanced pCASL with a



2.10. Challenges of ASL Imaging 51

low average gradient (0.5 mT/m) in combination with a low slice-selective gradient and

highest feasible B1 improves the labeling efficiency [329]. Third, by dynamically varying

the RF amplitude according to the velocity change in the cardiac cycle (increasing the

amplitude as the velocity increases) [173]. In addition, the labeling efficiency can be esti-

mated from a separate scan [49, 279], directly from the ASL scan [50], or by using phase

contrast angiography in combination with a segmented T1 weighted image [10, 279]. The

estimated parameter can than be included in the quantification process to avoid potential

errors [279].

Another influence factor in pCASL is the position of the labeling plane. Several studies

suggest that the labeling plane should be perpendicular to the feeding arteries to ensure

that the z-gradient is in line with the flowing blood spins. In addition, positions close to

vessel crossings or tortuosities such as the bifurcation should be avoided [9, 10, 239, 282].

Indeed, the best way would be to acquire a short angiogram of the feeding arteries prior to

the ASL measurement, but this comes at the cost of additional scan time. In time critical

applications anatomical landmarks could be used such as positioning the labeling plane

85 mm below the anterior commissure posterior commissure (ACPC) line [10] or 40 mm

below the distal end of the cerebellum [282].

Another major issue of pCASL is the high sensitivity to off-resonance effects caused by

susceptibility variations. For example dental implants or air/tissue boundaries lead to B0

inhomogeneities in the labeling plane. Like in CASL, a B0 field variation will shift the

labeling plane depending on the strength of the B0 variation. This has a little effect on

the inversion efficiency for CASL because the bandwidth is typically in the order of kilo-

hertz satisfying the adiabatic conditions even with off-resonance [14]. However in pCASL,

during the time gaps of the RF pulses, off-resonance spins will experience phase shifts

depending on the strength of the B0 inhomogeneities. Consequently the spins lose phase

coherence with the RF pulse train. This can significantly reduce the labeling efficiency

i.e. an offset of 200Hz can reduce the labeling efficiency up to 40% [306, 329]. Several ap-

proaches have been proposed to reduce this effect: First, a multi-phase pCASL approach

[142] which increments the phase between each RF pulse over successive cycles in equal

steps (4 or 8) from 0 to 2π. The obtained images are then fitted to a model to retrieve the

CBF. [21, 142] Second, correcting phase offsets at the labeling plane using field maps and

adding additional phase and gradient terms accordingly [21, 135, 171]. Third, performing

shimming at the labeling plane [56, 262] and fourth, by performing prescans, including a

short multi-phase pCASL scan, to determine the phase offset for each vessel in the labeling

plane [233].

An example of a subject with a poor labeling efficiency in the left ICA using pCASL

is illustrated in Figure 2.27. The poor labeling efficiency causes reduced CBF values in

the flow territory of the ICA. In contrast, PASL provides a CBF-map with good quality

but shows a hyperperfusion in the occipital lobe. This hyperperfusion is caused by the

shorter PLD and often visible in PASL images [209]. PASL is more robust against field

inhomogeneities because the RF pulse is applied with a strong gradient and hence has



52 Chapter 2. Arterial Spin Labeling

typically a large RF bandwidth. In addition, it is relative insensitive to flow velocity due

to the short pulse duration [308]. Studies have demonstrated that PASL has a labeling

efficiency of 98%. The missing 2% are related to the T2 relaxation occurring during the

RF period of 10-20 ms [14, 308].
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Figure 2.27: Effect of reduced labeling efficiency in the left ICA using pCASL scanning. This
reduction is caused by a tortuous artery in the labeling plane. The PASL images show homogeneous
CBF but arterial artifacts in the occipital region, due to the shorter PLD.

In summary, a high labeling efficiency is not only important for improving the SNR

and image quality, it is also necessary to get an robust labeling over a wide range of

field inhomogeneities and blood velocities. Otherwise, it may affected the quantitative

CBF values potentially leading to significant differences in group studies or in disease

progression studies [324].

2.10.5 Quantification Issues

The quantification models rely on several assumptions and require calibration factors to

estimate the CBF from the ASL images. This includes the longitudinal relaxation time

of blood (T1,b) and tissue (T1,t), the blood-brain partition coefficient (λ), the labeling effi-

ciency (α), the amount of inversion efficiency if BS is applied, and the bolus length. These

parameters can be either measured during the experiment or values based on literature

can be chosen [14]. For simplicity, parameters from the literature are typically used and

assumed to be constant through the brain and even through the population. In practice

this assumption does not hold, leading to significant quantification errors in CBF. A recent

work of Bladt et al. [26] showed that within a 5 minute scan more accurate CBF-maps can

be acquired by reducing the number of averages and using the gained time to measure the

relaxation time of blood and the labeling efficiency. This chapter summarizes the main
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influence factors on CBF quantification using the single compartment model [8, 34]. Note

that the effect of background suppression, delayed arterial transit times, and the influ-

ence factors on the labeling efficiency with associated correction methods were already

discussed in the previous sections.

2.10.5.1 Calibration Image and Blood Brain Partition Coefficient

The key for absolute perfusion quantification in ASL is the knowledge of the tracer con-

centration. In other words, we need the magnetization of arterial blood water for the

estimation of CBF. In ASL literature, two different approaches exists for determining the

equilibrium magnetization of arterial blood water. [45] It can be either estimated voxelwise

from the tissue magnetization (equation 2.20), as recommended by the consenus paper [8],

or by using a global value estimated from an reference region (equation 2.19) [45]. For

both approaches the equilibrium magnetization of tissue is necessary, which is typically

obtained from an addition acquisition using a long repetition time (TR) and without BS or

labeling. This tissue magnetization M0t is then related to the arterial blood magnetization

M0b via the partition coefficient λ [45]:

M0b =
M0t

λ
. (2.18)

The parameter λ accounts for the difference in water content between blood and tissue.

The units are quoted as ml blood/ml water or as ml blood/g tissue. Typical values for λ are

0.98 for GM, 0.82 for WM, 1.15 for cerebrospinal fluid (CSF), and 0.9 for whole brain [45].

In case of the reference region approach, M0b is estimated by dividing the averaged tissue

magnetization in an homogenous regions (GM, WM or CSF) by the corresponding λ:

M0b =
〈M0t〉rt
λrt

. (2.19)

It should be noted that M0t has to be corrected for the receiver coil profile. For the

voxelwise approach the tissue magnetization is typically divided voxelwise by the partition

coefficient to obtain M0b:

M0b(x, y) =
〈M0t(x, y)〉rt

λrt
. (2.20)

For simplicity the whole brain partition coefficient is used in this approach [8]. How-

ever, as previously mentioned λ varies for different tissue types and more accurate values

can be obtained by weighting λ with the partial volume (PV) estimates [45, 208]. In a

recent work, the influence of different calibration methods on CBF quantification were

investigated [208]. The authors concluded that the voxelwise calibration method recom-

mended by the consensus paper [8] delivers the most accurate results with a high repro-

ducibility. The authors argued that this approach is simple to implement and corrects the

coil sensitivity variations intrinsically [208]. Therefore, this approach is used throughout
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this thesis.

2.10.5.2 T1 of blood (T1,b)

In ASL the labeled water molecules travel from the labeling plane through the arterial

vessels to the capillary bed, where they exchange with tissue. During this period the

longitudinal magnetization decays with the relaxation rate of blood T1,b. For robust quan-

tification, this relaxation effect has to be taken into account and the exact value of T1,b is

necessary. Current studies and also the consensus paper assume a T1,b of 1.65 s at 3T and

1.35 s at 1.5T [8]. However, it is well known that T1,b depends on the hematocrit, which is

slightly different between subjects i.e. female subjects have a lower hematocrit value than

men, leading to a higher T1,b [279]. Moreover, many diseases such as sickle-cell disease may

influence the T1,b [272]. This can results in a faster or slower tracer decay accompanied by

quantification errors [279]. To account for these potentially errors, an additional pre-scan

can be performed for measuring T1,b in the individuals [158]. This is especially impor-

tant in group studies where an assumed constant T1,b can lead to significant differences in

CBF [279].

2.10.5.3 T1 of tissue (T1,t)

Beside the relaxation time of blood, another important parameter for accurate quantifi-

cation is the relaxation time of tissue T1,t. The single compartment model assumes that

labeled water decays with T1,t as soon as it enters the imaging voxel. In ASL studies,

typically a single T1,t value is used for the whole brain, ranging from 1.33 s to 1.45 s for

3T [14]. In practice, T1,t varies strongly between different tissue types [14], subjects [288],

and diseases [288]. These variations can lead to large quantification errors in CBF. If pos-

sible, an additional T1-map should be acquired and considered in the quantification model

to reduce this potential source of error [14]. For multi-PLD acquisitions with different BS

timings the T1,t-map can be directly estimated from the control image time series [228].
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3.1 Introduction

The intrinsically low signal-to-noise ratio (SNR) is currently one of the most drawbacks

of arterial spin labeling (ASL) imaging preventing its application in the clinical diagno-

sis. During the last years improvements were achieved through advanced sequence and

labeling approaches for ASL such as pseudo-continuous labeling [56] or 3D imaging tech-

niques [109, 283]. In addition, the continued advancements of magnetic resonance imaging

(MRI) hardware provide one solution to the limited signal. Several studies indicated the

potential of higher field strength for ASL MRI due to the higher SNR and prolonged T1

of blood and tissue [16, 97, 205, 263, 291]. However, ASL at stronger fields presents sev-

eral challenges: stronger susceptibility artifacts, higher SAR, and compromised labeling

55
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efficiency due to inhomogeneities in B1 and B0 fields [263]. Beside sequence and hardware

improvements, data post-processing methods have become increasingly important for ad-

dressing some limitations in ASL. In particular, motion correction algorithm [293, 294],

temporal filtering methods, and outlier correction approaches [18, 83, 183, 234, 261, 293]

were successfully applied to ASL and provide increased SNR, improved perfusion quan-

tification, and increased reproducibility [84] by eliminating corruptions in the acquired

data. Additional improvements were achieved using non-linear denoising methods for the

images. Several groups have studied the performance of denoising techniques applied to

ASL images. Different denoising strategies were proposed, for example denoising in the

wavelet domain [22, 299], in the image domain using adaptive filtering [299], non-local

means filtering [202], combination of non-local means filtering with wavelet domain fil-

tering [161], or total variation denoising in combination with tissue partial volume effect

correction [202]. All denoising methods use the perfusion weighted image (control - label)

as input for denoising to improve the robustness of the cerebral blood flow (CBF) quan-

tification [84]. In this chapter different types of total generalized variation (TGV) [31]

denoising methods for ASL are developed and their performance are investigated. The

first method is a TGV-denoising applied on the averaged perfusion weighted image (PWI)

using L1 and L2 data-fidelity norms, similar to the previous published denoising methods.

Second, an extension including the PWI time series directly in the denoising procedure

and third, a denoising approach that is matched to the label/control image time series of

ASL MRI is investigated. The third TGV-based denoising approach combines temporal

and spatial information of the whole available dataset for improving the quality of ASL

images. The incorporation of temporal information in the denoising process may be ben-

eficial for detecting outliers. The performance of this novel technique and its influence

on the CBF quantification is evaluated on synthetic and experimental in-vivo high and

standard resolution pulsed arterial spin labeling (PASL) data with varying numbers of

control-label pairs. Additionally, the proposed method is compared to recently published

and well established denoising techniques.

3.2 Theory

3.2.1 Variational Methods for Image Denoising

Denoising is a fundamental image processing technique with the aim of recovering or

estimating the original image from a noisy observed image. The problem can be modeled

as follows

d(x, y) = u(x, y) + n(x, y) , (3.1)

where d(x, y) ∈ <Nx×Ny is the observed corrupted noisy image, u(x, y) ∈ <Nx×Ny is

the clean noise free image, and n(x, y) ∈ <Nx×Ny is the additive noise which represents the

unwanted information and degrades the image quality. We denote by x and y the pixel
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location and by Nx and Ny the image size. Over the last decades denoising approaches

have been extensively studied with the aim to remove noise while preserving small textures,

fine details, and edges. Especially in MRI this detail preservation is important for clinical

diagnostics. The estimation of the original image u from the noisy one d is an inverse

problem. The solution of this problem is not trivial because in practice only little is know

about the noise n in the image i.e. only a guess of the noise distribution or the mean and

variance. Since the noise n is random the problem can be solved using probability theory.

From a statistical point of view, the maximum likelihood (ML) estimate yields optimal

results for a given distribution [82]

u∗ ∈ arg max
u

P (d | u) , (3.2)

where u is the estimated image and d is the measured data or image. By assuming

independent identical distributed sample points, which is true for single-coil MRI mea-

surements, the maximum likelihood is given by

u∗ = arg max
u

P (d | u)

= arg max
u

1√
2πσ2

exp

− 1

2σ2

∑
i,j

u− d

 ,
(3.3)

where σ2 is the noise variance. By omitting constant terms and applying the log, the

solution of this problem leads to the well known least squares solution where the sum of

squared error between the estimated image and the denoised image is minimized. [82]

u∗ = arg min
u

||u− d||22 (3.4)

The simplest and fastest type of noise removal approach relying on the maximum

likelihood principle is the linear mean filter. In this filter the signal intensity is assumed

to be constant within a region and the single pixel values are statistically independent

observations [214]. By averaging all signal intensities within the region the noise is reduced,

however, edges are blurred and fine details can be lost. In a probabilistic setting, a way

to improve the detail preservation is using filtering approaches which incorporate prior

information of the images. These kind of algorithms are known as variational denoising

methods. The motivation for variational image denoising methods is based on Maximum-a-

Posteriori (MAP) probability estimation. By knowledge of the degradation model P (d | u)

and an adequate prior P (u) the most likely image given the observed data and prior can

be estimated by maximizing [82]
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u∗ ∈ arg max
u

P (u | d)

∈ arg max
u

P (d | u) P (u)

∈ arg min
u

− logP (d | u)− logP (u).

(3.5)

The term −logP (y | u) is often referred as data fidelity term D(u, d) that denotes the

difference between the original and noisy image and the term −logP (u) as regularization

term R(u), which contains the prior information or assumption on the likelihood of a

solution u. Hence, equation 3.5 can be generally written as

u∗ ∈ arg min
u

D(u, d) +R(u). (3.6)

For the data-fidelity term, the optimal solution from a statistical point of view is given

by the maximum likelihood estimation, which is for example the L2 norm for Gaussian

noise statistics (equation 3.3) or the L1 norm for Laplacian noise statistics. The choice of

the prior distribution of the image P (u) is a critical and challenging part because it defines

the appearance of the images. The major problem is that the prior knowledge is often

only qualitative in nature i.e. we can describe the images encountered in medical imaging

as smooth areas divided by jumps or cliffs. The idea is now to formalize mathematically

a function or prior, which produces low values for images belonging to the model, and

producing high values for images not belonging to the model. Many different priors have

been proposed over the past years i.e. Gaussian priors, Laplacian priors or impulse prior

densities, and Markov random fields (MRF) priors. In the following subsection three

prominent priors for image denoising are described.

3.2.1.1 Tikhonov-Phillips Regularization

Tikhonov and Phillips proposed to use a Gaussian or smoothing prior on the image u and

formalized a general regularization framework [206, 266]:

u∗ ∈ arg min
u

||Au− d||22 +
λ

2
||Γu||22 , (3.7)

where the first norm proposes a solution in the maximum likelihood sense (equation 3.3)

and for image denoising the linear operator A is the identity operator I. The second norm

is the regularization term with the linear regularization operator Γ and the regularization

parameter λ. [138] By assuming Γ being the identity operator I, the Tikhonov regulariza-

tion corresponds to a Gaussian prior with zero mean and 1
λ variance

P (u) = N

(
u; 0;

1

λ
I

)
=

(
λ

2π

)D
2

exp

(
−λ

2
||u||22

)
. (3.8)

By omitting the constant term the prior is
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P (u) ∝ exp
(
−λ

2
||u||22

)
, (3.9)

leading to the following regularization term

R(u) = −logP (u) =
λ

2
||u||22 . (3.10)

This regularization penalizes the L2 norm of the image u. While this is a good regular-

ization approach for parameter estimation it is not well suited for image denoising because

it is only performed on a voxel by voxel basis. Hence, it does not take into account neigh-

borhood information leading to no effective noise removal [39]. Since MRI images show a

high degree of spatial regularity [39], a useful prior should take into account the neighbor-

hood information of images. In this case, the regularization operator Γ can be defined as

a discrete 2D gradient operator (equation 3.12), which is also known as H1-regularization:

R(u) = −logP (u) =
λ

2
||∇u||22 , (3.11)

where ∇ is the discrete 2D gradient operator (∇ : <Nx×Ny 7→ <Nx×Ny×2) defined as

(∇u)i,j =

(
(∂+
x u)i,j(

∂+
y u
)
i,j
,

)
(3.12)

where ∂+
x and ∂+

y are the discrete forward differences as defined in the Appendix C.1.1.

The introduced gradient of the image takes now the spatial neighborhood into account

and leads to a superior noise removal compared to the Tikhonov-regularization [39]. How-

ever, the L2-norm penalizes the gradient belonging to edges very strong leading to an

oversmoothing in the images. A good prior for image denoising should ensure spatial reg-

ularity but should also preserve edges [39]. To ensure this the L2 norm can be replaced by

a sparsity promoting norm for example a L1 or L0 norm [13]. One of the first approaches

in this direction was done by Rudin et al. [218] by using a L1 norm and is known as total

variation (TV) [218].

3.2.1.2 Total Variation (TV)

The TV minimization for image denoising was introduced by Rudin, Osher, and Fatemi

and is also known as ROF-model [218]. It is based on the principle that noise corrupted

images or signals have a high total variation, which means in the discrete setting that the

sum of the absolute gradient is high. The TV allows for discontinuities between objects,

but eliminates oscillations. TV is the L1 norm of the image gradient and is defined in a

discrete setting as the following functional

R(u) = TV (u) = ||∇u||1 , (3.13)
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with the discrete 2D gradient operator∇ defined in equation 3.12. This L1-penalization

of the gradient leads to superior results compared to Tikhonov-regularization with a well

preservation of object boundaries while eliminating noise. However, the main and crucial

disadvantage of TV is that it tends to produce the so called stair-casing artifacts [70].

This means that the functional enforces piecewise constant regions and hence, smooth

regions in the original image are represented as piecewise constant areas. In order to

alleviate this disadvantage, several methods using higher order derivatives were proposed

such as infimal-convolution functional [40], gradient and laplacian operators [42], or the

total generalized variation functional [31].

3.2.1.3 Total Generalized Variation (TGV)

The TGV was introduced in 2010 by Bredies et al. [31]. It is a generalized version of

TV, which involves and balances higher order derivatives of the images up to a certain

order. This allows the reconstruction of piecewise affine or piecewise smooth solutions and

thereby avoids the stair-casing artifacts of TV leading to an enhanced image quality of

natural [31] and MRI [147] images. The dual version of the k-th order TGV functional is

given by

TGV k
α (u) = sup

{∫
Ω
u divk v dx | v ∈ Ckc

(
Ω,Symk

(
<d
))

,∣∣∣∣∣∣divlv
∣∣∣∣∣∣
∞
≤ αl, l = 0, . . . , k − 1

}
,

(3.14)

where Ckc
(
Ω,Symk

(
<d
))

denotes the space of compactly supported symmetric tensors

fields with Ω ⊂ <d, divk is the k-th order divergence operator of the tensor field (defined

for first and second order in Appendix C.1.7 and C.1.8) and αl are positive weights [31].

The higher order derivatives favor piecewise polynomial solutions with the degree of poly-

nomials less than or equal to k-1. For example a first order TGV corresponds to a TV

(TGV 1(u) = TV (u)) and enforces piecewise constant regions, a second-order TGV en-

forces piecewise affine regions, and a third order TGV enforces piecewise smooth regions

etc. [323]. However, a higher order comes at the cost of a higher computational burden.

Bredies et al. [31] showed that a TGV 2 faithfully restores smooth images and avoids the

stair-casing effect of TV. The third order TGV (TGV 3) reconstructs regions of high curva-

ture better but at the cost of more regularized transitions at edges. For many applications

the second order TGV is sufficient and delivers meaningful results while keep the compu-

tational burdened low [31]. Therefore, it is normally applied for image enhancement of

natural and MRI images and we focus on this definition.

R(u) = TGV 2
α1,α0

(u) = min
v
{α1 ||∇u− v||1 + α0 ||εv||1} , (3.15)

where ∇ is the 2D discrete gradient (equation 3.12) and ε is the symmetrized gradient

operator defined as follows:
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ε : v = (v1, v2) ∈ <Nx×Ny×2 7→ <Nx×Ny×3 (3.16)

(εv)i,j =


(
∂−x v

1
)
i,j

1
2

((
∂−x v

2
)
i,j

+
(
∂−y v

1
)
i,j

)
(
∂−y v

2
)
i,j

 =

w1

w2

w3

 (3.17)

From equation 3.15 it is evident that the TGV 2-functional automatically balances

between first order TV and second-order TV in the minimization problem i.e. if v is zero

the symmetrized gradient εv is zero and TGV 2(u) = α1 ||∇u||1, whereas if v = ∇u the first

part of the TGV functional becomes zero resulting in TGV 2(u) = ε(∇u)). In reality the

tensor v is somewhere between 0 and ∇u. The TGV 2 functional was successfully applied

in several MRI applications from reconstruction [147] to denoising [147] over diffusion

tensor imaging [274] and is used in the following section for ASL image denoising and in

chapter 7 for ASL image reconstruction.

3.2.2 Total Generalized Variation for ASL Denoising

3.2.2.1 TGV Denoising using L1/L2 Data Norm for ASL

In ASL imaging the aim is to enhance the SNR and image quality of the perfusion weighted

image. This can be achieved in two different ways: Either by denoising the control image c

and label image l and by calculating the PWI from those denoised images, or by applying

the denoising approach directly to the perfusion weighted image (C-L). Wells et al. studied

the influence of different denoising approaches for ASL images and they argued that the

PWI reveals many sharp boundaries between regions of contrasting CBF, which may not

be apparent in the base (C, L) images, limiting the benefit of edge-preserving filters [299].

Therefore, we focus on directly denoising the PWI by solving the following minimization

problem:

u∗ ∈ arg min
u

λ

2
||u− du||22 + TGV 2

α1,α0
(u) , (3.18)

where u ∈ RNxxNy is the denoised perfusion weighted image and du ∈ RNxxNy the

averaged noisy PWI. A numerical solution of the minimization problem can be found

in Appendix C.2. One notices that in ASL imaging always repeated measurements are

performed to achieve a reasonable SNR. Therefore, instead of prior averaging of the per-

fusion weighted images over the time, one could include this directly in the optimization

procedure to make use of this additional temporal information. In this case an additional

operator ς : RNxxNy 7→ RNxxNyxNt is introduced in the data-fidelity term which leads to

the following minimization problem:
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u∗ ∈ arg min
u

λ

2
||ςu− du||22 + TGV 2

α1,α0
(u) , (3.19)

where again u ∈ RNxxNy is the denoised perfusion weighted image and du ∈ RNxxNyxNt
is now the corresponding PWI time series (averages). The operator ς replicates the image

(u) Nt times over the temporal dimension so that ςu ∈ RNxxNyxNt . A minimization of the

defined data fidelity term leads now to the element-wise mean over the temporal dimension.

In the above algorithm, the L2 norm of the data fidelity term can be replaced by a L1

norm leading to the element-wise median with respect to the temporal dimension. Since

ASL images are often corrupted with outliers, this could be very beneficial for improving

the robustness leading to the following optimization problem:

u∗ ∈ arg min
u

λ ||ςu− du||1 + TGV 2
α1,α0

(u) . (3.20)

The defined minimization problems are non-smooth but convex and can be efficiently

solved with a first order primal dual algorithm as described in section 3.2.2.3 ”Numerical

Solution”. The numerical solution and corresponding algorithm are given in Appendix C.2.

3.2.2.2 Extension to C/L Denoising

Instead of denoising the perfusion weighted time series, equation 3.20 can be extended by

including the whole available ASL data. Mathematically, the aim is to recover an estimate

of the control data c and label data l from the given measured control data dc and label

data dl. In order for c and l to be a robust estimated of dc and dl, it should minimize

||ςc− dc||1 and ||ςl − dl||1 similar to the PWI denoising in equation 3.20. Next, l should

adhere to the image model proposed above. Therefore, it should minimize TGV 2
α1,α0

(l).

In a last step, one is tempted to propose that c should also adhere to the image model by

minimizing a related TGV functional. However, one observes that the images c and l have

a much higher dynamical range than the difference of the denoised images. Furthermore,

the difference of these images is the key quantity in ASL applications. Therefore, far

superior results are to be expected if one forces the difference to adhere to the image

model by minimizing TGV 2
α1,α0

(c − l). Altogether, c and l should be chosen so that the

functional

(c∗, l∗) ∈ arg min
c,l

λc
M
||ςc− dc||MM+

λl
M
||ςl − dl||MM+TGV 2

α1,α0
(l)+TGV 2

α1,α0
(c− l) (3.21)

is minimal, where M defines the norm for the data-fidelity term and is either 1 for

the L1 norm or 2 for the squared L2 norm. Note, that by a similar argument the term

TGV 2
α1,α0

(l) could also be replaced by TGV 2
α1,α0

(c). In our experience, the difference

between both cases is negligible. The regularization parameters λc and λl allow a weighting

between data fidelity versus regularization. This parameters are chosen according to the
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noise level of the datasets. Since the expected noise level in control and label image is

nearly the same, the same regularization parameters are used for both data terms. In

order to control the weighting between the two TGV functional an additional parameter

w ∈ (0, 1) is introduced leading finally to the following functional

(c∗, l∗) ∈ arg min
c,l

λ

M
||ςc− dc||MM +

λ

M
||ςl − dl||MM +

γ1(w)TGV 2
α1,α0

(l) + γ2(w)TGV 2
α1,α0

(c− l) .
(3.22)

The weights are chosen as described in [222] to ensure that the overall costs of the

functional does not reduce to zero:

γ1(w) =
w

min(w, 1− w)
, γ2(w) =

(1− w)

min(w, 1− w)
(3.23)

This minimization problem is non-smooth but convex and can be efficiently solved

with the primal-dual algorithm described in the following section. The reformulation and

numerical solution is given in Appendix C.2.

3.2.2.3 Numerical Solution

Any optimization method for non-smooth convex problems can be employed to solve the

minimization problem presented in the last section. A well suited algorithm, which ensures

global convergence, is the primal-dual algorithm [41]. With this general algorithm any kind

of convex minimization problems of the following form

min
x

F (Kx) +G (x) (3.24)

can be efficiently solved, where F andG are convex functions andK is a linear operator.

By using the convex conjugate (equation 3.28) the primal problem 3.24 can be transformed

into a saddle-point problem as follows:

F (Kx) = max
y
〈Kx, y〉 − F ∗(y) −→ min

x
max
y
〈Kx, y〉+G (x)− F ∗ (y) , (3.25)

with F ∗ being the convex conjugate of F. The solution of this convex-concave saddle

point problem is obtained with the primal-dual algorithm presented in [41], which alter-

nates a proximal gradient descent in the primal and a proximal gradient ascent step in

the dual direction (see Algorithm 1). The stepsizes in the primal and dual direction are

defined by τ and σ respectively.



64 Chapter 3. Variational Denoising for 2D Arterial Spin Labeling Perfusion Data

Algorithm 1 Primal Dual Algorithm

Initialization: Choose τ, σ > 0 so that τσ ||K||2 < 1,
(
x0, y0

)
∈ <Nx ×<Ny and set x̄0 = x0

For n ≥ 0, compute xn,yn,x̄n as follows:


yn+1 = (I + σ∂F ∗)−1 (yn + σKx̄n)

xn+1 = (I + τ∂G)−1 (xn − τK∗yn+1
)

x̄n+1 = 2xn+1 − xn
(3.26)

In the above algorithm the expressions (I + σ∂F ∗)−1 and (I + τ∂G)−1 are the proximal

maps of F ∗ and G, and K∗ is the adjoint operator to K. The algorithm ensures global

convergence if the stepsizes τ , σ satisfy τσ ||K||2 < 1 and it is well suited for our convex

but non-smooth problems [41]. All necessary steps in this algorithm reduce to simple

arithmetic operations, which can be implemented highly parallelized on a GPU for a fast

calculation. [130] For solving the problems defined in section 3.2.2, the primal problem

has to be reformulated into a saddle-point problem. This is exemplary carried out for

the full TGV problem formulated in equation 3.22 using the L1 norm. For the other

two problems, the numerical solution is given in Appendix C.2. With the definitions of

the gradient (equation 3.12), symmetrized gradient (equation 3.17) and the introduced

weighting function (equation 3.23) the full optimization problem of equation 3.22 is given

by

min
c,l

λ ||ςc− dc||1 + λ ||ςl − dl||1 +

min
q1

γ1(w)α1 ||∇l − q1||1 + γ1(w)α0 ||εq1||1 +

min
p1

γ2(w)α1 ||∇ (c− l)− p1||1 + γ2(w)α0 ||εp1||1 .

(3.27)

As previously mentioned this problem has to be reformulated into a saddle point

problem. This is achieved by calculating the convex conjugates of the functions. The

Fenchel conjugate or convex conjugate of a function f(x) is defined as

f∗(y) = sup
x
〈x, y〉 − f(x). (3.28)

Let f(x) be any kind of norm ||·||, then the Fenchel conjugate is given by

f∗(y) =

{
0 ||y||∗ ≤ 1

+∞ ||y||∗ > 1.
(3.29)

Here, ||y||∗ is the dual norm of a norm ||·|| defined as
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||y||∗ = max
||x||≤1

〈x, y〉 . (3.30)

In general, the dual of the Lp norm (||·||p) is the Lq norm (||·||q) with 1/p + 1/q = 1.

For example, the dual norm of the L1 norm is the infinity norm and the L2 norm is again

a L2 norm in the dual formalism. The Fenchel conjugate of the L1 norm is given by

f∗(y) = I||·||∞≤1 (y) =

{
0 ||y||∞ ≤ 1

+∞ ||y||∞ > 1,
(3.31)

where I||·||∞≤1 (y) is the indicator function. By using the defined Fenchel conjugate

(equation 3.28), the TGV functional can be transformed into a saddle point problem. The

first part of the functional yields

min
q1

γ1(w)α1 ||∇l − q1||1 −→ min
q1

max
q2
〈∇l − q1, q2〉 − I||·||∞≤α1γ1

(q2) , (3.32)

and the second part yields

min
q1

γ1(w)α0 ||εq1||1 −→ min
q1

max
q3
〈εq1, q3〉 − I||·||∞≤α0γ1

(q3) . (3.33)

Combining now equation 3.32 and 3.33, the primal-dual formulation of the whole TGV

functional can be obtained.

TGV (l) = min
q1

max
q2,q3
〈∇l − q1, q2〉+ 〈εq1, q3〉 − I||·||∞≤α1γ1

(q2)− I||·||∞≤α1γ1
(q3) (3.34)

Similar, the data-fidelity term can be reformulated as follows:

max
l

λ ||ςl − dl||1 −→ min
l

max
l2
〈ςl − dl, l2〉 − I||·||∞≤λ (l2) (3.35)

With the defined data-fidelity term and TGV functional the reformulation of the full

optimization problem is given by

min
c,l,p1,q1

max
c2,l2,p2,p3,q2,q3

〈ςc− dc, c2〉 − I||·||∞≤λ (c2) + 〈ςl − dl, l2〉 − I||·||∞≤λ (l2) +

〈∇ (c− l)− p1, p2〉 − I||·||∞≤α1γ2
(p2) +

〈εp1, p3〉 − I||·||∞≤α0γ2
(p3) +

〈∇ (l)− q1, q2〉 − I||·||∞≤α1γ1
(q2) +

〈εq1, q3〉 − I||·||∞≤α0γ1
(q3) .

(3.36)
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In the above saddle point problem the primal variables are given by x = (c, l, p1, p2),

the corresponding dual variables by y = (p2, p3, q2, q3, c2, l2) and the operator K by

K =



∇ −∇ −Id 0

0 0 ε 0

0 ∇ 0 −Id
0 0 0 ε

ς 0 0 0

0 ς 0 0


. (3.37)

The functional G(x) = 0 and the Fenchel conjugate F ∗(y) is

F ∗(y) = 〈dc, c2〉+ 〈dl, l2〉+ I||·||∞≤λ (c2) + I||·||∞≤λ (l2) + I||·||∞≤α1γ2
(p2) +

I||·||∞≤α0γ2
(p3) + I||·||∞≤α1γ1

(q2) + I||·||∞≤α0γ1
(q3) .

(3.38)

In the iterative primal dual scheme also the adjoint operators are required. The adjoint

operator of K is given by K∗.

K∗ =


∇∗ 0 0 0 ς∗ 0

−∇∗ 0 ∇∗ 0 0 ς∗

−Id ε∗ 0 0 0 0

0 0 −Id ε∗ 0 0

 , (3.39)

where ∇∗ is the negative divergence ∇∗ = −div1 (equation 3.40), ε∗ the negative

symmetrized divergence operator ε∗ = −div2 (equation 3.41), and ς∗ the collapse-operator

(equation 3.42).

div1 : <Nx×Ny×2 7→ <Nx×Ny(
div1v

)
i,j

=
((
∂∗+x v1

)
i,j

+
(
∂∗+y v2

)
i,j

) (3.40)

div2 : <Nx×Ny×3 7→ <Nx×Ny×2

(
div2w

)
i,j

=

(
(∂∗−x w1)i,j +

(
∂∗−y w3

)
i,j

(∂∗−x w3)i,j +
(
∂∗−y w2

)
i,j

)
(3.41)

ς∗ : <Nx×Ny×Nt 7→ <Nx×Ny

ς∗x =

Nt∑
t=1

x[t]
(3.42)

The final update scheme for the primal dual algorithm of the saddle point problem 3.36

is defined in Algorithm 2.
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Algorithm 2 Primal Dual Algorithm for L1 ASL-TGV denoising

Input: dc, dl
Output: c, l

Initialize: p0
1, p0

2, p0
3, q0

1, q0
2, q0

3, c0, c0
2, l0, l02, c0, l

0
, p0

1, q0
1, choose τ ,σ > 0

for n = 0 until maxIter

Dual Update:

pn+1
2 = Pα1,γ1

(
pn2 + σ

(
∇cn −∇ln − pn1

))
pn+1

3 = Pα0,γ1 (pn3 + σεpn1 )

qn+1
2 = Pα1,γ2

(
qn2 + σ

(
∇ln − qn1

))
qn+1

3 = Pα0,γ2 (qn3 + σεqn1 )
cn+1

2 = Pλ (cn2 + σ (ςcn − dc))
ln+1
2 = Pλ

(
ln2 + σ

(
ςl
n − dl

))
Primal Update:
cn+1 = cn − τ

(
∇∗pn+1

2 + ς∗cn+1
2

)
ln+1 = ln − τ

(
−∇∗pn+1

2 +∇∗qn+1
2 + ς∗ln+1

2

)
pn+1

1 = pn1 − τ
(
−pn+1

2 + ε∗pn+1
3

)
qn+1

1 = qn1 − τ
(
−qn+1

2 + ε∗qn+1
3

)
Extrapolation step:

cn+1 = 2cn+1 − cn
l
n+1

= 2ln+1 − ln
pn+1

1 = 2pn+1
1 − pn1

qn+1
1 = 2qn+1

1 − qn1

3.3 Methods

3.3.1 ASL Acquisition

The ASL experiments were carried out on a 3T magnetic resonance (MR) system (Mag-

netom Skyra, Siemens Healthcare, Germany). Pulsed ASL measurements were performed

on eight healthy subjects (25.5 ± 1.2 years old with a range of 24-28, 4 women) using PI-

CORE [304] - Q2TIPS [170] with a 32-channel head coil. Small wedge sponges were placed

between the patient's head and the coil to reduce motion during the acquisition. Caffeine

and tobacco ingestion were avoided before the MR acquisition to preclude alterations on

the global and regional CBF [2, 71, 284].

The following acquisition parameters were used: 12 slices, 3.6 mm thickness, distance

factor 25%, matrix 128 x 128, field of view (FoV) 230 x 230 mm2, in-plane resolution

1.8 x 1.8 mm2, 6/8 partial Fourier, generalized autocalibrating partial parallel acquisition
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(GRAPPA)-factor 2 and pre-scan normalization. Imaging was conducted with single-shot

echoplanar imaging (EPI) with repetition time (TR)/echo time (TE) = 2800/19 ms, flip

angle = 90◦, bolus or labeling duration (TI1) = 800 ms, labeling inversion time TI2 =

1800 ms, labeling slab thickness 100 mm, 2 cm gap between labeling slab and image

slice, ascending slice order and bandwidth = 1630 Hz/px. To compute an unfiltered

reference perfusion weighted image, 500 control/label-pairs (C/L-pairs) and one proton

density weighted (M0) image were acquired within a total scanning time of 45 min.

In addition, standard resolution ASL images from 2 subjects with the following param-

eters were acquired: 12 slices, 6 mm thickness, distance factor 25%, matrix = 64 x 64, FoV

= 192 x 192 mm2, in-plane resolution 3 x 3 mm2, 6/8 partial Fourier, bandwidth = 1630

Hz/px and pre-scan normalization. All other imaging parameters were the same as for

the high resolution ASL dataset. To compute an unfiltered reference perfusion weighted

image, 100 C/L-pairs and one proton density weighted image were acquired within a total

scanning time of 9 min 25 s.

3.3.2 Anatomical Data Acquisition

Additionally, anatomical T1 weighted images were acquired for each subject using a 3D

magnetization prepared - rapid gradient echo (MPRAGE) sequence with 1 x 1 x 1 mm3

resolution, FoV = 256 x 256 mm2, 144 slices, GRAPPA-factor = 4, TR/TE/inversion

time (TI) = 1910/1.81/1000 ms, flip angle = 8◦, acquisition time = 2 min 53 s.

3.3.3 Anatomical Data Processing

For each subject, the acquired T1 weighted image was segmented into white matter (WM),

gray matter (GM) and cerebrospinal fluid (CSF) regions using statistical parameter map-

ping v 12 (SPM12)1 (Wellcome Trust Centre for Neuroimaging, London, UK). The results

of the segmentation process were tissue partial volume (PV)-content maps defining the

amount or content of GM, WM, and CSF in each voxel. These tissue PV-content maps

and the T1 weighted images were coregistered to the ASL space using the first ASL-image

as a reference. Afterwards the resulting coregistered tissue PV-content maps were used

to create a brain mask. The CSF, WM, and GM PV-content maps were summarized

resulting in a single PV-content map. In this map all voxels with a tissue PV-content

greater than 0.1 were included in the brain mask, which delivers good results.

3.3.4 Numerical Phantom

High resolution synthetic image sets were generated from one subject (subject 8) based on

the acquired M0 image and the coregistered WM and GM PV-content maps [22]. In order

to create a noise free CBF-map, CBF values of 20 ml/100g/min and 65 ml/100g/min [155,

325], reported for the normal human brain, were assigned to the WM (fWM ) and GM

1www.fil.ion.ucl.ac.uk/spm
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(fGM ) voxel respectively. To incorporate realistic partial volume effects in the synthetic

images, the GM, and WM PV-content maps were multiplied using the following equation:

f(x, y, z) = fGMPGM (x, y, z) + fWMPWM (x, y, z), (3.43)

where PGM (x, y, z) is the PV-content map of GM defining the content of GM in the

voxel at location (x, y, z), PWM (x, y, z) is the PV-content map of WM defining the content

of WM in the voxel at location (x, y, z).

The control image C was assumed to be the M0 image and the label image L was

calculated in each voxel by using a general kinetic model [34]

L(x, y, z) = C(x, y, z)− 2 · α ·M0(x, y, z) · f(x, y, z) · TI1 · e
− TI2
T1,b

λ
, (3.44)

where α is the labeling efficiency and set to 0.98 [308], TI1 is the labeling duration

and set to 800 ms, TI2 is the labeling inversion time and set to 1800 ms [8]. M0 is the

acquired proton density image, λ is the blood-brain partition coefficient and set to 0.9

ml/g [125], T1,b is the longitudinal relaxation time of blood at 3T and set to 1650 ms [169]

and f(x, y, z) is the synthetic CBF-map generated as described in equation 3.43. The

computed synthetic CBF-map, the control, and label image are illustrated in Figure 3.1.

A B C D

Figure 3.1: Coregistered and resampled T1 weighted image in the ASL space (A) with voxel
dimensions of 1.8 x 1.8 x 3.6 mm3 of subject 8. Synthetic, noise free CBF-map (B) created from
the coregistered white and gray matter PV-content maps. Noise free synthetic control (C) and
label image (D).

To compute a synthetic dataset with a realistic noise level, the standard deviation over

the 500 repetitions was estimated from the acquired high-resolution C and L images for

each voxel. Subsequent Gaussian noise with a standard deviation previously estimated was

added to each voxel of the synthetic noise free C and L images. This step was repeated

500 times to generate a synthetic data pool containing 500 C/L-pairs. The benchmark for

the synthetic datasets consisted of 50 trials with 40, 50, 60, 80 and 100 randomly selected

image pairs out of a data pool of 500.
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3.3.5 ASL Data Processing

ASL image preprocessing was performed on the high and standard resolution in-vivo

datasets using SPM12, MATLAB 2015b (The MathWorks, Inc., Natick, Massachusetts,

USA), ASL-toolbox [293, 294], and in-house MATLAB scripts. Prior to spatial denoising,

ASL datasets were preprocessed using the steps and algorithm recommended by Fazlollahi

et al. [84]. First, the acquired ASL images were motion corrected using the ASL-toolbox.

This involves realigning of all ASL images, including all label and control images, to the

first ASL image (L) in the time series for estimating the rigid motion time course. Sub-

sequently, errors in realignment resulting from the control/label intensity difference were

regressed out from the motion time course as described by Wang et al. [293] and finally the

clean motion parameters were used for motion-correction. In a second step the whole ASL

time series was de-trended to remove baseline drifts. Therefore, a first order high-pass

Butterworth filter with a cutoff frequency of 0.01Hz was applied to the ASL-image time

series (L/C/L/C...) as described in [293, 295]. Third, residual motion artifacts and global

signal fluctuations were regressed out of the ASL image time series at each voxel [293].

Prior to spatial denoising outlier C/L-pairs were removed using Z-score thresholding [261].

3.3.6 In-Vivo Dataset

The motion corrected, de-trended and outlier removed C/L-pairs served as a basis for all

subsequently applied denoising methods. For the high resolution in-vivo dataset of subject

8, which was used to create the synthetic dataset, benchmarking was performed similar

to the synthetic dataset and consisted of 50 trials with 40, 50, 60, 80 and 100 randomly

selected image pairs out of a data pool of 500. For the best performing TGV approach

as well as for all reference denoising methods additional benchmarking was performed

using the remaining 7 high resolution in-vivo datasets. This consists of 50 trials with 50

randomly selected image pairs out of the acquired 500. In addition for the two standard

resolution datasets, benchmarking was performed using 50 trials with 5, 8, 12, 15, 20 and

25 randomly selected image pairs out of a data pool of 100.

3.3.7 Parameter Choice

Previous studies [30, 148, 222] have shown, that setting the ratio α1/α0 to 1/
√

2 yields

robust results and this ratio is used throughout this work. For the CL-approaches the

model parameter s, which controls the weighting between the first TGV and the second

TGV functional, was fixed for the high-resolution and low resolution in-vivo and synthetic

dataset by evaluating a range of parameters with respect to the structural similarity in-

dex [292]. The regularization parameter λ was optimized using a fixed s for different

numbers of C/L-pairs. For the training of the two parameters slice 6 of subject 8 was used

for the high-resolution in-vivo dataset and slice 6 was used for the synthetic dataset. Ex-

emplary results of the parameter tuning are shown for the CL-T-L1 approach in Figure 3.2
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using the in-vivo dataset. For all approaches the used model and regularization param-

eters for the high-resolution synthetic and in-vivo dataset are summarized in Table 3.1.

For all experiments the number of iterations was set to 1 000.

Table 3.1: Optimized model and regularization parameters for the different TGV approaches

N PWI L1 PWI L2 PWI-T-L1 PWI-T-L2 CL-T-L1 CL-T-L2
λ λ λ λ s λ s λ

Synthetic Data

40 1.375 3.050 1.90 0.155 0.475 2.15 0.5 0.200
50 1.475 3.325 1.90 0.135 0.475 2.25 0.5 0.200
60 1.525 3.675 1.85 0.125 0.475 2.45 0.5 0.200
80 1.525 4.050 1.85 0.100 0.475 2.75 0.5 0.175
100 1.575 4.075 1.85 0.100 0.475 3.00 0.5 0.150

In-Vivo Data

40 1.375 1.025 2.25 0.040 0.4 4.25 0.45 0.1250
50 1.500 1.325 2.55 0.050 0.4 4.50 0.45 0.0975
60 1.525 1.425 2.55 0.045 0.4 4.75 0.45 0.0975
80 1.625 1.750 3.00 0.040 0.4 5.75 0.45 0.0825
100 1.625 2.475 3.25 0.045 0.4 6.50 0.45 0.0900

3.3.8 Reference Denoising Methods

We chose state of the art denoising methods which were successfully applied to ASL

perfusion images in the past: Wavelet-based-Wiener (WbW) [22], iterative-soft thresh-

olding [60], adaptive Wiener (aWNR) [299], Anisotropic Diffusion (AD) [299], DT-CWT

ONLM [161], spatio-temporal low rank total variation (STLRTV) [83] and additional block

matching 3D (BM3D) [54]. Each of the denoising filters is parameter dependent and the

choice of the right parameter has a major impact on the denoising result. For the choice of

the parameters we decided to maximize the SSIM between the gold standard and denoised

image to evaluate the performance of each filter in a fair way, rather than using an empiric

optimization by visual inspection. Compared to the root mean squared error (RMSE),

the SSIM includes both the structure and the contrast of the image and therefore reflects

the visual interpretation of the human eye in a better way [292]. Some of the filters have

noise-dependent parameters, for which the noise was estimated for each voxel over the

number of repetitions. The mean standard deviation σ over all pixels within the brain

mask was computed and used as standard deviation [202].

3.3.8.1 Temporal Mean Filter

A perfusion weighted time series was calculated from the motion corrected, detrended and

outlier cleaned control/label series by pairwise subtraction of the C/L-pairs. The single
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N = 40 N = 50

N = 60

Figure 3.2: Results of the parameter learning for the CL-T-L1 approach on high resolution in-
vivo images using 40, 50 and 60 C/L-pairs for slice 6 of subject 8. The red point indicates the
maximum structural similarity index (SSIM)-value. The maximum value is achieved setting the
parameter s to 0.4. The parameter λ depends on the noise level.

perfusion weighted images are so noisy, that the benefit of applying one of the highly

sophisticated reference filters on these single images is very low. Furthermore, due to the

subtraction of control and label images a separate denoising of these images leads to flatter

edges compared to denoising the perfusion weighted image themselves [299]. Therefore, a

mean perfusion weighted image was generated by averaging the perfusion weighted time

series. This mean perfusion weighted image serves as basis for all following reference

denoising methods with the exception of the STLRTV-filter which uses the perfusion

weighted time series as input for denoising.

3.3.8.2 Anisotropic Diffusion (AD) Filter

The AD filter method was implemented in MATLAB [299]. For optimal performance of

the filter the diffusion step time was set to 0.25 and the conduction coefficient K and

the number of iterations were optimized as described above. Exemplary results of the
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parameter optimization process are shown in Figure 3.5.

3.3.8.3 Adaptive Wiener (aWNR) Filter

An adaptive Wiener filter based on the mean and variance in the local neighborhood of

each voxel was implemented in MATLAB [299]. The kernel size and the global noise

variance were optimized to ensure that the filter delivers best possible results.

3.3.8.4 Iterative Soft Thresholding (Wav(S))

The iterative soft thresholding algorithm [60] was implemented in MATLAB for the LeGall

5/3 wavelet [154]. The number of iterations was set to 5000 and the threshold factor was

optimized.

3.3.8.5 Wavelet based Wiener (WbW) Filter

The WbW filter [22] was implemented in MATLAB using the Wavelet Toolbox. For the

best possible performance the threshold factor was optimized.

3.3.8.6 Block Matching 3D (BM3D) Filter

The MATLAB implementation of the BM3D filter [54] was used for denoising2. The filter

profile was set to ”high” and the noise standard deviation σ was estimated as described

above and scaled by a factor c to ensure best possible results in case that the noise level

was not estimated sufficiently well.

3.3.8.7 Non-Local Means Combined Dual-Tree Complex Wavelet Transform

(DT-CWT ONLM) Filter

The MATLAB version of the DT-CWT ONLM filter [161] was used3. All 6 parameters

(M1, M2, α1, α2, β1 and β2) were optimized to ensure the best possible performance.

3.3.8.8 Spatio-Temporal Low Rank Total Variation (STLRTV) Filter

The STLRTV filter was implemented in MATLAB as described in [83]. For the best

possible performance of the filter the parameters λTV and λrank were optimized.

3.3.9 Quantification of CBF

For the quantification of the CBF a general kinetic model was applied [34]. According to

this model, the cerebral blood flow in ml/100g/min can be calculated in each voxel using

the following equation:

2http://www.cs.tut.fi/ foi/3D-DFT
3https://www.nitrc.org/projects/dt-cwt-nlm
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f(x, y, z) =
λ ·∆M(x, y, z)

2 · α ·M0(x, y, z) · TI1 · e
− TI2
T1,b

, (3.45)

where ∆M is the denoised difference image and M0 is the acquired proton density

image smoothed with a Gaussian filter (full width at half maximum (FWHM) = 3 mm)

as recommended by the consensus paper [8]. The total delay time TI2 was set to 1800

ms for the leading slice. Because of using a multi-slice EPI readout with ascending slice

order, an extra delay of 80 ms was added to TI2 for each further slice acquired. [8] All

other parameters were set to the same values as described in the section 3.3.4 ”Numerical

Phantom”.

3.3.10 Evaluation

Two common metrics were used as a measure of denoising quality, the SSIM [292] and

the peak signal-to-noise ratio (PSNR) [83, 161]. In case of the synthetic dataset the noise

free CBF-map served as gold standard. For the experimental dataset the gold standard

CBF-map was computed from the 500 C/L-pairs for the high resolution dataset and from

the 100 C/L-pairs for the standard resolution dataset. All evaluation steps were performed

on both, synthetic and experimental dataset.

3.3.10.1 Structural Similarity Index (SSIM)

Image structure degeneration and contrast difference between the gold standard CBF-

map and the denoised CBF-map were analyzed using the quantitative structural similarity

index [292].

3.3.10.2 Peak Signal-to-Noise Ratio (PSNR)

Peak signal-to-noise ratio, PSNR = 20log10(MAXi/RMSE), was used to evaluate the

denoising results within the brain mask [83, 161]. RMSE denotes the root mean square

error between the ground truth CBF-map and the denoised CBF-map and MAXi represent

the maximum intensity value in the ground truth CBF-map.

3.4 Results

3.4.1 TGV Performance

Figure 3.3 shows the performance comparison of the different TGV based denoising meth-

ods for the synthetic dataset in dependence of averages. For all methods the quality of

the CBF-maps can be improved compared to the standard mean filter. By including suc-

cessive more information of the acquired ASL dataset the visual quality as well as the
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quantitative metrics can be improved. The L1 norm performs better than the L2 norm if

additional temporal information is included.

Figure 3.7 shows typical high resolution CBF-maps from subject 8 before and after

denoising using 40, 50, 80 and 100 C/L-pairs together with the gold standard CBF-map

generated from all 500 C/L-pairs. Similar to the synthetic dataset the visual image qual-

ity and the quantitative metrics increases by incorporating additional information in the

denoising process. The best performance is achieved using the CL-T-L1 approach. This

method is compared with the reference denoising methods in the subsequent section.

3.4.2 Reference Denoising Methods

Figure 3.5 shows exemplary results of the optimization procedure for each reference de-

noising method. This figure clearly indicates that the parameters of each reference filter

vary between subjects and also among slices of the same subject. To ensure best possible

denoising results of the reference filters, the filter parameters were optimized for each sub-

ject and slice. It should be noted, that in contrast to the reference filtering methods our

proposed method used the same parameters for all in-vivo datasets listed in Table 3.1.

Figure 3.6 shows exemplary the noise free, the noisy, and denoised synthetic CBF-maps

using 40 (row A), 50 (row B), 80 (row C), and 100 (row D) C/L-pairs. Qualitative com-

parison of the CBF-maps shows a lower level of noise in all denoised CBF-maps compared

to a simple mean filter. Further, as expected the visual quality of each CBF-map increases

with increasing number of C/L-pairs. It can be seen that the various denoising techniques

result in different noise removal performance and varying degree of spatial smoothing.

In comparison to the reference denoising approaches the proposed TGV based method

(CL-T-L1) shows improved noise removal, especially in the WM, while small features are

still retained. Furthermore, the proposed method shows fewer overestimated CBF values,

especially for low SNR (40 and 50 C/L-pairs) datasets.

Figure 3.7 shows typical high resolution CBF-maps from subject 8 before and after

denoising using 40, 50, 80 and 100 C/L-pairs together with the gold standard CBF-map

generated from all 500 C/L-pairs. Similar to the results of the synthetic datasets, the visual

quality of the CBF-maps was improved in different ways. Furthermore, the proposed CL-

T-L1 approach removes local outliers in the difference image, which were neither detected

by the outlier algorithm nor by one of the seven reference denoising methods, as indicated

by a red arrow in Figure 3.7. Such artificial outliers could be misleadingly interpreted as

a hyper perfusion showing a clear benefit of the proposed method.

Additionally, Figure 3.8 shows a quantitative evaluation of all denoising approaches.

The mean SSIM and mean PSNR are given for a different number of C/L-pairs of the

high resolution synthetic and in-vivo dataset of subject 8. All denoising results are re-

ported within the generated brain mask. As expected, the PSNR and SSIM increase with

increasing numbers of control and label pairs. For low as well as high SNR the proposed

approach yields the largest improvement in PSNR and in SSIM. These quantitative results
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14,29 ± 0,06PSNR 16,56 ± 0,04 17,06 ± 0,07 17,88 ± 0,04 17,19 ± 0,07 18,12 ± 0,04 17,52 ± 0,06

15,07 ± 0,06PSNR 17,05 ± 0,04 17,66 ± 0,07 18,44 ± 0,04 17,86 ± 0,07 18,71 ± 0,04 18,14 ± 0,07

16,31 ± 0,06PSNR 17,91 ± 0,04 18,63 ± 0,07 19,32 ± 0,05 18,81 ± 0,07 19,61 ± 0,04 18,95 ± 0,07
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18.25
17,28 ± 0,07PSNR 18,56 ± 0,05 19,29 ± 0,08 20,03 ± 0,05 19,48 ± 0,08 20,32 ± 0,05 19,78 ± 0,08

90,76 ± 0,06 93,50 ± 0,12 94,35 ± 0,10 94,94 ± 0,10 94,45 ± 0,10 95,26 ± 0,10 94,85 ± 0,09

SSIM 91,98 ± 0,05 94,18 ± 0,08 95,09 ± 0,06 95,59 ± 0,06 95,15 ± 0,06 95,86 ± 0,06 95,55 ± 0,06

SSIM 92,89 ± 0,05 94,57 ± 0,08 95,55 ± 0,07 95,98 ± 0,07 95,62 ± 0,07 96,23 ± 0,07 95,88 ± 0,07

SSIM 94,16 ± 0,05 95.26 ± 0,08 96,28 ± 0,07 96,61 ± 0,07 96,37 ± 0,07 96,78 ± 0,06 96,53 ± 0,07

SSIM 95,03 ± 0,03 95,75 ± 0,07 96,76 ± 0,05 97,06 ± 0,05 96,83 ± 0,06 97,16 ± 0,06 96,99 ± 0,06

Figure 3.3: T1 weighted image, gold standard CBF-map, noisy CBF-map and CBF-map calcu-
lated from the denoised difference image using 40 C/L-pairs (row A), 50 C/L-pairs (row B), 60
C/L-pairs (row C), 80 C/L-pairs (row D) and 100 C/L-pairs (row E) for slice 3 of the synthetic
dataset. Additionally, the quantitative metrices SSIM and PSNR, averaged over all slices and runs
are given for each denoising method. A qualitative and quantitative improvement is clearly visible
going from the easiest methods performed on the difference image (PWI-L1 and PWI-L2) to the
methods including also temporal information of the difference image (PWI-T-L1 and PWI-T-L2)
to the methods using all available information simultaneously (CL-T-L1 and CL-T-L2).
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Figure 3.4: Top row shows the T1 weighted image and the gold standard CBF-map calculated
from 500 C/L-pairs from the in-vivo dataset of subject 8. Row A to E shows the noisy CBF-
map and the CBF-map calculated from the denoised difference image using 40 C/L-pairs (row
A), 50 C/L-pairs (row B), 60 C/L-pairs (row C), 80 C/L-pairs (row D) and 100 C/L-pairs (row
E). Additionally the quantitative metrices SSIM and PSNR, averaged over all slices and runs are
given for each denoising method. A qualitative and quantitative improvement is clearly visible
going from the easiest methods performed on the difference image (PWI-L1 and PWI-L2) to the
methods including also temporal information of the difference image (PWI-T-L1 and PWI-T-L2)
to the methods using all available information simultaneously (CL-T-L1 and CL-T-L2).
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Figure 3.5: Results for the reference denoising methods using 3 different slices from the high
resolution dataset. In the 3D plots, the maximum is indicated by a red point for a clearer visu-
alization. The optimal parameter for each filtering method varies between different slices of the
same subject and also between different subjects.
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Figure 3.6: T1 weighted image, gold standard CBF-map, noisy CBF-map and CBF-map calcu-
lated from the denoised difference image using 40 C/L-pairs (row A), 50 C/L-pairs (row B), 80
C/L-pairs (row C) and 100 C/L-pairs (row D) for slice 3 of the synthetic dataset. Areas were
the performance of the TGV denoising approach was superior compared to the reference denoising
methods are indicated with a red arrow.

are consistent with the qualitative results in Figure 3.6 and 3.7.

Figure 3.9 shows the mean SSIM and mean PSNR for a different number of C/L-pairs

of the high resolution synthetic and in-vivo dataset of subject 8. All denoising results are

reported within the segmented GM and WM mask.

Figure 3.10 shows a representative high resolution CBF-map of each of the remaining

seven subjects (subject 1 to subject 7) before and after denoising using 50 C/L-pairs. The

filtering results are similar to the denoising results of subject 8.

Figure 3.11 shows the mean SSIM and mean PSNR for the high-resolution in-vivo

dataset of the remaining 7 subjects using 50 C/L-pairs at optimal filter parameter settings.

The CL-T-L1 approach shows an averaged higher PSNR of 1.1 dB and an averaged higher
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Figure 3.7: Top row shows the T1 weighted image and the gold standard CBF-map calculated
from 500 C/L-pairs of the high resolution in-vivo dataset of subject 8. Row A to D show the noisy
CBF-map and the CBF-map calculated from the denoised difference image using 40 C/L-pairs
(row A), 50 C/L-pairs (row B), 80 C/L-pairs (row C) and 100 C/L-pairs (row D). The red arrows
indicate areas were the TGV (CL-T-L1) approach is more comparable with the gold standard
CBF-map than the CBF-maps from the reference denoising methods.

SSIM of 0.6% compared to the best performing reference denoising technique. It should

be noted that for the proposed method the same parameters were used for all subjects.

The subjects were sorted in ascending order by PSNR.

Figure 3.12 shows exemplary the standard resolution CBF-maps before and after de-

noising from subject 1 for a different number of C/L-pairs. The gold standard CBF-map

was calculated from the 100 C/L-pairs. The denoising results for the standard resolu-

tion dataset are similar to the results of the high-resolution datasets, with the greatest

improvement in visual quality using the proposed TGV based approach (CL-T-L1).

Figure 3.13 shows the mean SSIM and mean PSNR for the two standard-resolution

in-vivo datasets for different numbers of C/L-pairs. The SSIM and PSNR improvement
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Figure 3.8: Mean SSIM and PSNR for different numbers of C/L-pairs from high-resolution in-vivo
and synthetic data averaged over 50 trials. Error bars denote ±1 standard deviation.

for the different filters are in accordance with the results of the high-resolution datasets

and the greatest improvement in PSNR and SSIM can be observed for the TGV denoised

CBF-maps.

3.5 Discussion

3.5.1 TGV Denoising Methods

The inherently low SNR of ASL data makes spatial denoising essential for robust CBF

quantification. The results of this study demonstrate the potential of using a TGV

based denoising approach for ASL imaging. Synthetic and in-vivo images with different

SNR levels were considered. Both, synthetic and in-vivo datasets show improved noise

suppression for low as well as high SNR regime while retaining small details and edges in

the perfusion images. This qualitative improvement is confirmed by the two quantitative

metrics SSIM and PSNR.
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Figure 3.9: Mean SSIM and PSNR in the GM and WM for a different number of C/L-pairs from
high resolution in-vivo and synthetic data. The results are averaged over 50 trials and the error
bars denote ±1 standard deviation.
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Figure 3.10: Gold standard CBF-map, noisy CBF-map and CBF-map calculated from the de-
noised difference image using 50 C/L-pairs form subject 1 to 7 (row A to row G). The gold standard
CBF-map was calculated from the averaged 500 C/L-pairs. The red arrows indicate areas in the
CBF-maps were the proposed approach is more comparable with the gold standard CBF-map than
the CBF-maps of the reference denoising methods.

The extension of the simple TGV based approach by incooperating additional infor-

mation in the denoising procedure improves the results for both, L1 and L2 data fidelity

term approaches. The inclusion of temporal information is especially beneficial for the L1

norm approach which reduces outliers in the time series resulting in a significant improve-

ment in image quality. For the L2 norm approach (PWI-T-L2) the improvement is minor

compared to the PWI-L2 approach. Since per definition the used data-fidelity term is the
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Figure 3.11: Mean SSIM and PSNR using 50 C/L-pairs from the remaining 7 subjects averaged
over 50 trials. Error bars denote ±1 standard deviation.

element-wise mean the minor improvement gets clear. For both approaches a further im-

age enhancement is visible by incooperating the whole available dataset, suggesting that

the denoising approaches can benefit from the additional information. As expected, the

highest improvement in noise suppression is achieved with the CL-T-L1 norm. The L1

norm is more robust against outliers and takes into account the spatial varying noise in

the images, resulting in an improved noise suppression in regions of the capsula interna

while preserving sharp edges. In contrast, for the full L2 model (CL-T-L2) noise still re-

mains in regions of the capsula interna. The L2 norm penalizes large errors stronger than

the L1 norm. The increased noise level in this region could be reduced by using stronger

regularization but this will comes at the cost of blurred edges. Therefore, the L1 norm

is preferred over the L2 norm for ASL images. The visual impression is confirmed with

the qualitative metrices (SSIM and PSNR) showing the highest values for the CL-T-L1

approach.

3.5.2 Comparison to Reference Denoising Methods

The results of the best performing TGV based method (CL-T-L1) were compared with

those of seven published denoising approaches. For all denoising methods the filter

parameters were optimized with respect to the quantitative metric SSIM, rather than

relying on visual quality. This allows comparing the performance of the different filters in

a fair way. The utilized parameter optimization strategy might be interesting in general

for various denoising algorithms, since it accounts for both structural degradation and

differences in contrast. Further, a semi-automatic parameter approach based on the

noise variance within an image was implemented [299]. This approach provides moderate

results, but degraded visual quality as well as reduced SSIM and PSNR, compared to

the presented optimization approach (data not shown). This is due to the fact that the

noise variance is often inaccurately estimated or spatially dependent. In contrast to the

reference methods, the TGV filtering approach provides superior results by applying
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Figure 3.12: Top row shows the T1 weighted image and the gold standard CBF-map calculated
from 100 C/L-pairs of the standard resolution in-vivo dataset of subject 1. Row A to E show the
noisy CBF-map and the CBF-maps calculated from the denoised difference image using 8 C/L-
pairs (row A), 10 C/L-pairs (row B), 12 C/L-pairs (row C), 15 C/L-pairs (row D) and 20 C/L-pairs
(row E).
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Figure 3.13: Mean SSIM and PSNR for different numbers of C/L-pairs from the two standard
resolution in-vivo datasets averaged over 50 trials. Error bars denote ±1 standard deviation.

the same model parameter set for all subjects. The optimal model parameters are very

robust against varying numbers of averages. Nevertheless, the regularization parameter

λ has to be adapted according to the noise level. In contrast to other methods the

proposed method is very robust for a broad range of regularization parameter. Hence,

the denoising quality decreases only slightly, especially for datasets with sufficient SNR

(Figure 3.2). This property might be attributed to the fact that a general denoising

model was applied, which does not depend on self-similarity blocks within an image or on

a-priori information such as the noise variance, which is often not accurately estimated.

This leads also to the fact, that the same parameters can be used for all in-vivo datasets.

In contrast to other studies which added constant zero mean Gaussian noise to the

synthetic dataset spatial dependent noise was considered to generate a more realistic

synthetic ASL dataset. A comparison of the two Wavelet based filters (WbW and

Wav(S)) with the noise free synthetic CBF-map reveals that the structural degradation
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is minimal. However, noise is still present in the CBF-maps especially in the WM, where

the SNR is approximately 3 times smaller than in the GM. The denoising results using

AD or aWNR are superior to the two wavelet based filters but in both cases noise is still

present. This is also the case for the STLRTV denoised CBF-maps. It should be noted,

that our data is motion-corrected, de-trended and outlier cleared before denoising. This

may restrict the benefit of the STLRTV filter compared to non-preprocessed data. For

the two block matching filters (BM3D, DT-CW ONLM), based on self-similarity blocks

in the difference image, an improved denoising especially in the WM regions can be

observed in comparison to the previous filters but this comes at the cost of stronger

blurring at the GM/WM boundaries. However, noise is still present in the capsula

interna for all denoising methods except for the TGV method. The use of self-similarity

blocks within a difference image can be a disadvantage in case of blocks or structures

which have only a few similar blocks within the image. These blocks remain noisy, which

might be the case for the capsula interna (Figure 3.6). Further, in all reference denoised

CBF-maps a hyper perfusion can be observed in the left and right thalamus. In contrary

the TGV method resulted in maps which are more comparable to the ground truth. The

TGV method shows improved noise removal in the GM and WM as well as in the capsula

interna. At the same time edges especially in the frontal lobe are still preserved (red

arrow in Figure 3.6). The retaining of structure and of small details is crucial especially

for the application of denoising high resolution ASL data. Furthermore, it is essential

for the detection of small local CBF changes which might get vanished in situations

where denoising introduces a high degree of spatial smoothing. The oversmoothing

of the reference filters may restrict its sensitivity in detecting small changes in CBF.

Hence, the reference filters are prone to a limited sensitivity in the detection of small

lesions or minor changes in CBF. Furthermore, the inherent spatial oversmoothing of the

reference denoising methods could impair the sensitivity in group studies where only GM

structures or regions are analyzed.

An increased number of C/L-pairs improve the quality of all CBF-maps and leads

to a lower structural degradation, especially for the two block matching filters. This

indicates that the degree of spatial smoothing is coupled with the degree of noise

suppression and SNR. Moreover, the presented study demonstrates that at low SNR

level a trade-off between spatial smoothing and noise removal level has to be chosen for

all reference denoising approaches. These visual observations are confirmed by the two

quantitative metrics SSIM and PSNR, indicating a lower systematic error and minor

structural degradation for the TGV based method for all analysis. Both, the visual

quality and the quantitative metrics show that for all denoising techniques the benefit of

denoising decreases with increasing SNR.

The in-vivo dataset exhibits the same degree of spatial oversmoothing for the

reference denoising methods (Figure 3.7), especially for low SNR. An additional
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feature of the proposed method is its robustness against outliers. This is achieved

by applying the L1 norm together with the temporal dimension in the data term of

the functional (equation 3.27). This shows a clear benefit of the proposed method,

while all reference methods, except the STLRTV, use only the spatial dimension for

denoising. In terms of SSIM and PSNR similar results were obtained for the in-vivo

datasets of the remaining 7 subjects. The highest improvements are reported for the

proposed TGV method. The differences in PSNR and SSIM between subjects may

be due to differences in the CBF. Previous studies [168, 197] found a higher CBF

in women than in men. Subjects 1, 2, 3 and 5 are men and subjects 4, 6, 7 and 8

are women indicating a higher PSNR and consequently a higher SSIM for women than men.

Furthermore, we analyzed a principle component analysis (PCA) and independent

component analysis (ICA) denoising algorithm [299] for denoising of the perfusion

weighted time series. However, we only use a single TI time with no dynamic change in

our data. Denoising by reconstructing the image series using only the biggest components

of the PCA clearly reduced the temporal variation of the pixels, but leads, after averaging

to the same results as a simple mean filtering of the original data. We observed similar

results for the ICA denoised images with no additional improvements. Additionally, it is

very hard to choose the right independent components as it is not clear how much each

component contributes to the signal. Since we average the whole perfusion weighted time

series and got similar results as for simple mean filter, we decided not to include the ICA

and PCA results in our study.

We additionally evaluated the denoising algorithm for standard resolution ASL data of

two subjects. The performance of the evaluated denoising algorithm (Figure 3.12) is the

same as for high resolution data with the exception of the STLRTV, which performs better

than for the high resolution datasets. This can be due to the higher SNR in the single

perfusion weighted images, leading to a higher benefit of the spatial TV and therefore to

a better final outcome. However, the proposed TGV based denoising approach is still the

best in terms of PSNR and SSIM (Figure 3.13).

In summary the results of the presented study highlights, that the proposed TGV (CL-

T-L1) method enables an essential reduction of the acquisition time in the application of

high as well as standard resolution PASL. As a consequence, this reduces the risk of

motion artifacts and addresses clinical demands. A combination of the proposed TGV

denoising method with higher SNR labeling schemes such as pseudo continous arterial spin

labeling (pCASL) [56] or 3D readouts such as 3D-gradient and spin echo (GRASE) [109]

would lead to a further reduction in acquisition time or may further improve the spatial

resolution. The developed algorithm can be easily implemented as an additional pre-

processing step besides motion-correction, outlier-detection and temporal filtering and

should help increasing the robustness and reproducibility of CBF quantification in clinical

studies.
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3.6 Conclusion

This study demonstrated that the proposed total generalized variation denoising frame-

work with coupling of control and label pairs, outperforms state of the art denoising

techniques. In addition, the new method improved the quantification accuracy of the

CBF-maps, for both simulations and experiments. This general TGV model joins spatial

and temporal similarity of the label and difference image for robust signal estimation,

in case of low as well as high SNR. Consequently, this approach highly satisfies clinical

demands in terms of reducing the scan time, motion artifacts and local outliers and in-

creasing the spatial resolution. Compared to other state of the art denoising methods the

structural degradation is minimized and local outliers are removed. This makes the TGV

denoising approach highly attractive for group or functional ASL studies as well as for

detecting anomalies in perfusion.
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4.1 Introduction

In the previous chapter an overview and comparison of state-of the art denoising methods

with a new TGV based algorithm for 2D arterial spin labeling (ASL) data was consid-

ered. Filtering improves the quality of ASL images and allows a significant reduction

in acquisition time, which is important in the clinical routine. The investigated filtering

methods rely on the assumption that the noise variance is equal across the image i.e. the

value of noise variance is stationary and can be characterized by a single value. However,

this assumption is often violated in practice leading to suboptimal performance in noise

removal.

91
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In ASL noise contributions can be divided in thermal noise and physiological noise. Ther-

mal noise was described by Nyquist [190] and Johnson [140] and is caused by random ther-

mally driven motion of electrons within the radio frequency (RF)-coil and receiver electron-

ics [1, 52]. Thermal noise is stationary, additive and normally distributed with zero mean

and can be characterized by a single parameter σ2. The noise variance (σ2 ∝ 4kTBR)

depends on the temperature T, the readout bandwidth B, and the effective resistance R.

Both the imaginary and real signal in k-space are affected by thermal noise. In magnetic

resonance imaging (MRI) the complex image is obtained by applying a discrete inverse

fourier transform. Since the inverse discrete Fourier transformation (IDFT) is an orthogo-

nal linear transformation, the characteristics of stationary Gaussian noise is well preserved.

While this assumption is valid for single RF coil acquisitions [184], it is violated for images

obtained form multichannel-coils [114], which are nowadays standard in MRI. The noise

in the receiver coils is no longer independent due to electromagnetic coupling leading to

cross-correlations in the coils [4, 52]. Furthermore, the development of multi-coils form

the basis for parallel imaging (PI) methods to speed up the acquisition [104, 211, 238].

PI reduces the signal-to-noise ratio (SNR) by the square root of the acceleration factor

due to reduced data sampling and results in a spatial varying noise enhancement in the

image [211]. This effect is described by the g-factor [211] and depends on several factors

including the coil geometry, the imaged object, and the acceleration factor [211]. A de-

tailed summary of effects on the noise distributions using multi-coils and parallel imaging

is given by Santiago Aja-Fernandez et al. [3]. For ASL imaging a moderate acceleration

factor of 2-3 is recommended to reduce the echo train length for 3D-rapid acquisition with

relaxation enhancement (RARE)-readouts or the echo time for 2D gradient echo EPI [8].

Typically, phased array coils with 20, 32 or even 64 coils are used leading to non-stationary

noise in the images.

Beside thermal noise, physiological noise is the second and dominant source of noise in

ASL imaging. Physiological noise refers to all sources of signal variability that are related

to the subject physiological processes (being measured) i.e. signal fluctuation due to res-

piratory and cardiac effects [150], or metabolic effects of neural activity [24]. Breathing

can influence the baseline signal up to ± 25% [217] and differences in cardiac cycle lead to

changes up to ± 20% [217]. Cardiac related signal fluctuations are due to cerebrospinal

fluid (CSF) movement and vessel pulsation [55], which changes the diameter of blood ves-

sels and increases the number of fresh inflowing spins [159]. Li et al. showed that these

fluctuations are spatially correlated and changes the global signal intensity in ASL images

with the most influence in regions within or near large blood vessels [159].

The effect of breathing on MRI of the brain has been investigated by several groups [212,

213, 277]. Respiration induces B0 fluctuations in the human brain through changes in mag-

netic susceptibility associated with movement of the organs in the thorax and abdomen,

and due to changes in the oxygen concentrations [212, 213]. B0 fluctuations causes insta-

bilities in phase and frequency in the MRI signal which in turn leads to signal fluctuations,

ghosting, and image displacement [213, 277].
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The last source of noise is related to subject motion, which is a critical problem in ASL

imaging. The perfusion signal is only 1% of the static tissue signal and obtained by a sub-

traction of two successively acquired images. Even a small amount of motion, especially

at the boarder of two regions, can create substantial changes in the voxel intensity which

dominants the ASL signal. In contrast to thermal noise, physiological noise is dependent

on the signal intensity and fare away from random. [153]

Considering for those effects in the denoising procedure a spatially varying regularization

parameter would be more appropriate than a global. Therefore, we adapt the denoising

framework of chapter 3 by including a spatial dependent regularization parameter. The

nature of ASL acquisition allows an easy estimation of the spatially variant noise maps by

calculating the voxel wise standard deviation over the repeated measurements. The per-

formance of the proposed method is evaluated on synthetic and experimental in-vivo high

resolution pulsed arterial spin labeling (PASL) data with 2D-echoplanar imaging (EPI)

readout and pseudo continous arterial spin labeling (pCASL) data with 3D-gradient and

spin echo (GRASE) readout. The results are compared with the ASL-TGV denoising

approach presented in chapter 3.

4.2 Theory

4.2.1 Extension of the ASL-TGV Denoising Approach for 3D Data

In chapter 3 we proposed a variational denoising method for 2D isotropic ASL data. This

approach is now extended for 3D isotropic and anisotropic ASL data. Here, an additional

third dimension is introduced in the gradient and symmetrized gradient operator of the

total generalized variation (TGV) functional. In case of isotropic data the resolution

or grid size is equal in all dimension leading to a equally penalization of the discrete

gradient and symmetrized gradient operator respectively. However, for anisotropic data

an additional spatial weight for each gradient direction is necessary to relate the voxel size

to the physical grid leading to

TGV 2
α1,α0

(u) = min
v
{α1 ||∇u− v||1 + α0 ||εv||1} , (4.1)

∇ : <Nx×Ny×Nz 7→ <Nx×Ny×Nz×3
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where sx, sy, sz are the corresponding weights and Nx×Ny ×Nz is the size of the 3D

volume. Similar to the 2D case the full optimization problem includes data-fidelity terms

for control and label data as well as TGV-functionals for label and perfusion images.

(c∗, l∗) ∈ arg min
c,l

λ ||ςc− dc||1 + λ ||ςl − dl||1 + γ1 (w)TGV 2
α1,α0

(c) +

γ2 (w)TGV 2
α1,α0

(c− l)
(4.4)

The numerical solution of this convex but non-smooth problem is given by the primal

dual splitting algorithm and can be found in appendix C.2.

4.2.2 Extension to Spatial Adaptive Variational Denoising

For considering non-stationary noise in the ASL images the constant regularization pa-

rameter λ in the 3D denoising approach (equation 4.4) is replaced with a separate reg-

ularization map for control (λc ∈ <Nx×Ny×Nz×Nt) and label (λl ∈ <Nx×Ny×Nz×Nt) data.

This regularization maps penalizes deviations now voxel-wise according to the inverse of

the temporal standard deviation of the corresponding image. Hence, in voxels with low

standard deviation the faithfulness to the original data is high, whereas in voxels with high

standard deviation stronger regularization is used, relying more on the model assumption.

The full minimization problem reads as follows

(c∗, l∗) ∈ arg min
c,l

1

2
||λc (ςc− dc)||22 +

1

2
||λl (ςl − dl)||22 + γ1 (w)TGV 2

α1,α0
(c) +

γ2 (w)TGV 2
α1,α0

(c− l) .
(4.5)

The numerical solution of this problem is given by the primal dual splitting algorithm

in appendix C.2.
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4.3 Methods

4.3.1 ASL Data

For validation the numerical phantom and the corresponding acquired 2D dataset of sec-

tion 3.3.1 ”ASL Acquisition” were used. In addition, ASL data at 4 different resolutions

were acquired from one healthy subject at a 3T magnetic resonance (MR) system (VIDA,

Siemens Healthcare, Germany) using a 64 channel head coil. A prototype controlled

aliasing in parallel imaging results in higher acceleration (CAIPIRINHA) accelerated 3D-

GRASE sequence with pCASL labeling and background-suppression was used [134, 283].

The labeling plane was placed above the carotid bifurcation and below the V3 segment

using a short time of flight (ToF) scan for planning [282]. The following parameters were

equal for the four acquisitions: field of view (FoV) = 203 x 203 mm, CAIPIRINHA-

pattern 2× 2(1), phase-partial Fourier = 6/8, slice-partial Fourier = 6/8, two background

suppression pulses, refocusing flip angle = 180◦, labeling duration (LD) = 1800 ms, and

post-labeling delay (PLD) = 1800 ms. The additional parameters for each acquisition are

summarized in Table 4.1.

Table 4.1: Acquisition parameters for the four ASL datasets

Parameter Dataset 1 Dataset 2 Dataset 3 Dataset 4

Resolution in mm 1.3x1.3x1.3 1.6x1.6x1.6 2x2x2 2.5x2.5x2.5
TR in ms 3920 4120 4000 3870
TE in ms 26.4 37.1 23.6 16.9

Turbo-factor 10 8 13 13
EPI-factor 29 45 37 29

Slices 48 38 32 26
Segments 4 2 1 1

Repetitions 20 30 38 30
Acquisition time 10 min 36 s 8 min 22 s 5 min 12 s 4 min 4 s

To show the potential of the 3D spatial adaptive regularization approach, an additional

high resolution (2x2x2 mm3) synthetic ASL dataset with non-stationary noise was com-

puted. The generation of this dataset is based on a high resolution (1 mm isotropic) T1-

and proton density (PD)-map (M0) supplied by MRiLab [164] for MATLAB r2016b (The

Mathworks, Natick, MA, USA). Similar to the 2D dataset, cerebral blood flow (CBF)-

values of 65 ml/100g/min and 20 ml/100g/min were assigned to gray matter (GM) and

white matter (WM) tissues, respectively [72, 155, 201, 325]. In a subsequent step, the high

resolution images were downsampled to 2 mm isotropic resolution using tri-linear interpo-

lation, which introduces additional partial volume (PV) effects. From the downsampled

CBF-map the perfusion weighted images (PWIs) were calculated using the general kinetic

model for pCASL [34] described in section 4.3.4 ”Quantification of Cerebral Blood Flow”.

The control images are assigned to C = 0.1 ·M0, which models a background suppression
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of 90% applied to M0. The label images are simply given by L = C − PWI. Afterwards

spatial dependent Gaussian noise was added to each voxel in the C/L-images as shown in

Figure 4.1.

Figure 4.1: Example of generating the ASL dataset with spatial varying noise. Top row from
left to right: spatial varying noise map, noise free control image, noise free label image, and noise
free CBF-map. Bottom row from left to right: applied non-stationary noise, noisy control image,
noisy label image, and noisy CBF-map.

4.3.2 ASL Data Processing

The 2D and 3D datasets were processed using statistical parameter mapping v 12 (SPM12),

MATLAB 2015b (The MathWorks, Inc., Natick, Massachusetts, USA), ASL-toolbox [293,

294], and in-house written MATLAB scripts. The preprocessing was performed as previ-

ously described in chapter 3 section 3.3.5 ”ASL Data Processing” and includes: motion

correction [293, 294], de-trending [293, 295], and outlier correction [261]. Subsequently,

the ASL images were denoised using the proposed TGV based methods.

4.3.3 Parameter Choice

For the reference denoising method in 2D the parameters and results from the previous

chapter were taken. For the extended 3D version, as well as the proposed spatial adaptive

denoising method, the parameters were optimized by maximizing the structural similarity

index (SSIM) between the noise free synthetic CBF-map and the denoised CBF-map. The

spatial dependent regularization parameter-maps were calculated independently in each

voxel by estimating the temporal standard deviation. An additional parameter η ensures
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a correct weighting between the spatial dependent regularization and data faithfulness.

For all approaches the optimized parameters were summarized in Table 4.2.

Table 4.2: Optimized model (s) and regularization parameters (η and λ) for the 2D and 3D TGV
approaches.

N 2D CL-T-L1 3D CL-T-L1 2D SA-TGV 3D SA-TGV
s λ s λ s η s η

2D Synthetic Data

40 0.475 2.15 0.5 2.50 0.45 0.35 0.5 0.3
50 0.475 2.25 0.5 2.25 0.45 0.35 0.5 0.3
60 0.475 2.45 0.5 2.00 0.45 0.35 0.5 0.3
80 0.475 2.75 0.5 2.00 0.45 0.35 0.5 0.3
100 0.475 3.00 0.5 2.25 0.45 0.35 0.5 0.3

2D In-Vivo PASL Data

40 0.4 4.25 0.55 2.625 0.5 0.35 0.55 0.3
50 0.4 4.50 0.55 2.425 0.5 0.35 0.55 0.3
60 0.4 4.75 0.55 2.425 0.5 0.35 0.55 0.3
80 0.4 5.75 0.55 2.925 0.5 0.35 0.55 0.3
100 0.4 6.50 0.55 3.550 0.5 0.35 0.55 0.3

3D Synthetic Data

25 0.6 2.0 0.6 2.2 0.6 0.325 0.6 5.5
50 0.6 2.25 0.6 2.6 0.6 0.325 0.6 5.5
75 0.6 2.25 0.6 2.4 0.6 0.325 0.6 5.5

3D In-Vivo pCASL Data
Resolution s λ s λ s η s η

1.3 mm iso 0.55 3.5 0.55 3.25 0.6 0.45 0.6 2.0
1.6 mm iso 0.55 3.75 0.55 3.5 0.6 0.45 0.6 2.0
2.0 mm iso 0.55 4.0 0.55 3.75 0.6 0.45 0.6 2.0
2.5 mm iso 0.55 4.0 0.55 3.75 0.6 0.45 0.6 2.0

4.3.4 Quantification of Cerebral Blood Flow

For the quantification of the CBF a general kinetic model was applied [34]. According to

this model, the CBF in ml/100g/min can be calculated in each voxel for PASL-Q2TIPS

data using the following equation [8]

CBF (x, y, z) =
6000 · λ · PWI(x, y, z) · e

TI2
T1,b

2 · α ·M0(x, y, z) · TI1
, (4.6)

and for pCASL data using [8]

CBF (x, y, z) =
6000 · λ · PWI(x, y, z) · e

PLD
T1,b

2 · α ·M0(x, y, z) · T1,b ·
(

1− e
− τ
T1,b

) , (4.7)
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where λ is the blood-brain partition coefficient and set to 0.9 ml/g [125], T1,b is the

longitudinal relaxation time of blood at 3T and set to 1.65 s [169], α is the labeling

efficiency and set to 0.85 for pCASL [56] and 0.98 for PASL [308], τ/TI1 is the labeling

duration and set to 1.8/0.8 s, PLD/TI2 is the post labeling delay and set to 1.8 s [8],

PWI(x, y, z) is the denoised difference image, and M0 is the acquired proton density

image smoothed with a Gaussian filter (full width at half maximum (FWHM) = 3 mm)

as recommended [8]. The total delay time TI2 was set to 1.8 s for the leading slice. For

the PASL data an extra delay of 80 ms was added to TI2 for each further slice acquired

in ascending order [8], because of the used multi-slice EPI readout [8].

4.3.5 Evaluation

Two common metrics were used as a measure of denoising quality: the SSIM [292] and the

peak signal-to-noise ratio (PSNR) [83, 161]. In case of the synthetic dataset the noise free

CBF-map served as gold standard. For the 2D experimental dataset the gold standard

CBF-map was computed from the 500 C/L-pairs. Benchmarking consists of 50 trials with

40/50/60/80/100 randomly selected C/L-pairs out of the data pool of 500, for the 2D

synthetic and in-vivo dataset of subject 8. For the remaining 7 subjects benchmarking

was performed using 50 C/L-pairs. In case of the 3D synthetic dataset benchmarking was

performed using 25/50/75 randomly generated C/L-pairs.

SSIM

Image structure degradation and contrast difference between the gold standard CBF-map

and the denoised CBF-map were analyzed using the quantitative structural similarity

index [292].

PSNR

Peak signal-to-noise ratio, PSNR = 20 log10(MAXi/RMSE), was used to evaluate the

denoising results within the brain mask [83, 161]. RMSE denotes the root mean squared

error between the ground truth CBF-map and the denoised CBF-map, and MAXi repre-

sents the maximum intensity value in the ground truth CBF-map.

ROI Analysis

For the high resolution 3D datasets the denoising performance was evaluated by creating

box-plots of the GM- and WM-CBF.
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4.4 Results

4.4.1 2D Dataset

Figure 4.2 shows the estimated regularization maps and corresponding PWIs for 4 exem-

plary slices of the in-vivo data. The strength of the regularization parameter is reciprocal

related to the noise standard deviation. A clear variation is visible between slices and

also within one slice i.e at large vessel locations, at the boarder of the head, or due to the

different coil sensitivity.

Figure 4.2: PWIs of 4 exemplary slices and corresponding estimated spatial dependent regular-
ization parameter maps (λc and λl).

Figure 4.3 illustrates the noisy and denoised synthetic CBF-maps for a different number

of averages. Compared with the simple mean filter all denoising approaches improve the
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visual quality and quantitative values. The improvement of the denoising approaches get

smaller for higher SNR levels. The incorporation of a third dimension slightly increases

the image quality for both approaches. The highest image enhancement could be achieved

with the proposed spatial adaptive regularization method leading to continuously higher

quantitative values, but the improvement is only small compared to the robust CL-T-L1

method.

Figure 4.4 shows the performance of the different denoising approaches on in-vivo data

of subject 8. The gold standard CBF-map was generated from 500 C/L-pairs. Similar to

the results of the synthetic datasets, the performance of the 3D denoising approaches is

slightly better than the performance of the 2D approaches. The CBF-maps appear more

natural with a lower number of over smoothed structures leading to an improved visual

quality of the CBF-maps. This visual impression is confirmed by the two quantitative

metrics showing continuously higher values for the 3D approaches. However, the perfor-

mance gain of the spatial adaptive approach is minor and only visible in the quantitative

metrics.

Figure 4.5 shows a quantitative evaluation of the denoising approaches with the mean

SSIM and PSNR for the remaining 7 subjects. On average the 3D denoising approaches

(SA-TGV/CL-T-L1) improves the SSIM of about 0.45/0.39 % and the PSNR of about

0.55/0.4 dB compared with the 2D approaches. For each subject, the highest performance

increase is achieved with the 3D spatial adaptive approach.

4.4.2 3D Dataset

Figure 4.6 shows the performance of different denoising algorithms on the simulated syn-

thetic ASL-dataset with spatial varying noise. Three different SNR levels were considered.

An increase in SNR leads to a smaller performance difference between the individual ap-

proaches and a lower image enhancement compared with the simple mean. The isotropic

voxel size shows a clear performance improvement of the two 3D approaches. The highest

level of agreement with the noise free CBF-map is achieved with the proposed 3D-SA

approach. The visual impression is confirmed by the two quantitative metrics showing an

improvement of 0.88/0.87/0.67 % in SSIM and 0.4/0.23/0.13 dB in PSNR using 25/50/75

C/L-pairs compared with the second best method 3D CL-T-L1.

In Figure 4.7, 4.8, and 4.9 an exemplary CBF-map of the different high resolution in-

vivo datasets is shown. The results are in accordance with the results from the synthetic

dataset. A qualitative comparison of the different resolutions shows that the amount of

noise increases with the resolution. Especially the CBF-map with the highest resolution

is dominated by noise without no clear GM to WM contrast. The TGV based denoising

methods were able to enhance the image quality of the CBF-maps. The proposed 3D-SA

yields the highest image enhancement while preserving edges and structures very well.

A quantitative evaluation of all methods is shown in Figure 4.10. Boxplots of CBF-

values in GM and WM for different resolutions are given. As expected, an increase in voxel
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Figure 4.3: Synthetic simulated gold standard CBF-map, noisy CBF-map and denoised CBF-
maps for different number of C/L-pairs (40 (A), 50 (B), 60 (C), 80 (D) and 100 (E)). In addition,
the SSIM and PSNR averaged over 50 trials are given.
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Figure 4.4: Gold standard CBF-map, noisy CBF-map and denoised CBF-maps of subject 8 for
different number of C/L-pairs (40 (A), 50 (B), 60 (C), 80 (D) and 100 (E)). The gold standard
CBF-map was calculated from the 500 C/L-pairs. In addition the SSIM and PSNR averaged over
50 trials are given.
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Figure 4.5: Quantitative performance comparison of the proposed methods using 50 C/L-pairs.
The SSIM and PSNR averaged over 50 trials for the 7 subjctes are given. Error bars denote ±1
standard deviation.
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Figure 4.6: Synthetic simulated high resolution CBF-map, noisy CBF-map, and denoised CBF-
maps using 4 different denoising approaches. Top row 25 averages, middle row 50 averages and
bottom row 75 averages. In addition, the SSIM and PSNR are given.
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size decreases the inter-quartile range (IQR) and whiskers, indicating a higher SNR of the

data. This is in accordance with the visual impression in Figure 4.9. For all TGV based

denoising methods the median values for GM and WM are close to the mean CBF-maps,

while the IQR could be reduced by approximately 50% for the high, and 30% for the low

resolution data. The difference between the individual approaches is minor, however, the

proposed 3D-SA approach shows the smallest IQR and the closest median to the noisy

CBF-map.

4.5 Discussion

In this study we presented a TGV based denoising technique for ASL imaging, which

takes into account spatial variations in noise level. Simulated low and high resolution

as well as 2D and accelerated 3D in-vivo ASL datasets with different SNR-levels

were considered. For all datasets the proposed method enhances the image quality

and corresponding quantitative metrics compared with the robust CL-T-L1 approach

proposed in chapter 3.

In ASL imaging the spatial regularization map can be easily calculated due to the

nature of repeated measurements. The estimated maps (Figure 4.2) confirm previous

findings that ASL datasets are often corrupted with local outliers due to changes in

cardiac [159] or respiratory cycle [277], or due to the use of parallel imaging with

multi-coil arrays leading to spatial dependent noise. Higher standard deviations are

visible in regions of large vessels potentially leading to intravascular artifacts in the

CBF images (Figure 4.4). In addition, boarder regions show a higher variation primary

caused by motion as well as deep brain structures due to the reduced coil sensitivities.

These variations are directly exploited in the proposed denoising approach resulting in

improved image quality as well as higher quantitative metrics for the synthetic dataset.

However, the improvement is small indicating that the robust CL-T-L1 approach is able

to account for outliers and also to a certain extent for changes in noise level. The L2

norm for the data-fidelity term penalizes higher deviations stronger than the L1 norm.

As a results, regions with high contrast changes get blurred, while the L1 norm preserves

edges and features well. Therefore, if an accurate estimation of spatial adaptive maps is

not possible (e.g. the number of averages are too small) the CL-T-L1 approaches would

deliver meaningful results.

Comparing the performance of the 2D denoising approaches with the 3D algorithm the

improvement is only visible in quantitative metrics and is more or less negligible. This is

not very intuitive because the information gained by the additional dimension should

improve the results. However, the 2D datasets were simulated according to the in-vivo

acquisition. The ascending multi-slice acquisition leads to an increased PLD and hence

to a lower signal in the upper slices as illustrated in Figure 4.2. In case of 3D denoising

this change in intensity is suboptimal because a change in contrast in the third dimension
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leads to additional costs during the optimization process. In the 2D denoising approaches

this change in contrast is accounted by normalization of the corresponding 2D images.

Another reason could be the anisotropic voxel size. The slice thickness is 3.6 mm with an

additional slice gap of 0.9 mm resulting in 4.5 mm in total. Since the structures in the

GM are changing rapidly form slice to slice the low resolution hampers the performance

of 3D approaches.

For the 2D in-vivo datasets a similar behavior is observable. However, the

improvement for 3D approaches is higher as for the synthetic dataset. The 3D denoising

methods provide more natural CBF-maps and additionally higher quantitative SSIM and

PSNR values for all subjects. One reason could be the natural variation of the CBF in

the GM and WM of the in-vivo dataset. In contrast, the synthetic dataset has more or

less constant areas. In case of constant areas, a strong penalization can be used to remove

the noise and achieve a low cost of the penalization functional. However, if natural

variations exits this high penalization causes oversmoothing and thereby degrading the

image quality. A trade-off between noise removal and oversmoothing has to be chosen for

the 2D approaches. This may explain the weaker regularization parameter for the in-vivo

dataset. In such cases, the use of additional information in the third dimension could

help to remove noise.

The potential of the 3D denoising algorithms is reflected in the high resolution

3D synthetic datasets. Both approaches show a clear improvement in visual quality

and quantitative metrics compared with the 2D approaches. Again, the highest

improvement is achieved for the proposed 3D-SA-TGV approach, which directly exploits

the uncertainties in the data fidelity term. For the in-vivo dataset, the higher resolutions

clearly reduces the partial volume effects (PVE) leading to higher CBF values and

better localization of structures. However, this is accompanied by a significant higher

noise level. The denoising methods successfully suppress noise but introduce blurring,

especially in the CBF-maps with very high noise levels. The blurring is accompanied

with a loss in image quality and effective resolution. A good compromise between noise,

resolution, smoothing, and acquisition time is achieved by the 3D dataset with 2 mm

isotropic resolution.

The proposed spatial adaptive method has the advantages that the model and

regularization parameters are very robust for a specific dataset i.e. the same parameters

can be used for different SNR levels or subjects. In contrast, the robust L1 method uses a

different regularization parameter for a different number of averages. Nevertheless, if the

readout or labeling schemes is changed both parameters of the SA-TGV has to be tuned

accordingly. This can be explained by the high contrast change between non-background

suppressed 2D and background suppressed 3D ASL data. In addition, the blurring in the

3D images leads to a lower contrast to noise ratio.
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In summary, the results of this study highlights the potential of using a spatial adap-

tive regularization approach for image enhancement of ASL data. The regularization map

takes into account local variations of noise. As a consequence, this approach reduces out-

liers, improves the image quality and accompanied quantitative values. It provides high

resolution CBF-maps within a clinical acceptable measurement time. Further improve-

ments are expected by considering the SNR in the voxels instead of the uncertainties.

Thus, especially for 2D-multi slice imaging the signal change due to the longer PLDs can

be considered. In addition, the different SNR levels in WM and GM can be included.

4.6 Conclusion

The incorporation of a spatial varying regularization parameter in the TGV denoising

approach increases the SNR and image quality compared to a single regularization param-

eter. In addition the proposed method allows for automatic denoising of ASL data. The

regularization parameter can be easily calculated by estimating the temporal standard

deviation. This approach is capable of meeting highly clinical demands in terms of scan

time reduction, accounting for local outliers and enhancing image quality.



5
Variational Denoising for Dynamic Arterial Spin Labeling

Perfusion Data

This chapter is based on the following abstracts which were accepted for the ISMRM 2017

and 2018:

M. Schloegl, S. M. Spann, C. S. Aigner, M. Holler, K. Bredies, and R. Stoll-

berger. Improved Denoising of Dynamic Arterial Spin Labeling with Infimal

Convolution of Total Generalized Variation. In Proceedings of the 25th Annual

Meeting of ISMRM, Honolulu, 2017

S. M. Spann, M. Schloegl, C. S. Aigner, K. Koschutnig, M. Holler, K. Bredies,

and R. Stollberger. Improved functional Arterial Spin Labeling by spatio-

temporal ICTGV denoising. In Proceedings of the 26th Annual Meeting of

ISMRM, Paris, 2018

Contents

5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111

5.2 Theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112

5.3 Implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114

5.4 Application to Functional Arterial Spin Labeling . . . . . . . . 115

5.5 Application to Multi-PLD Data . . . . . . . . . . . . . . . . . . . 124

5.1 Introduction

So far we only considered static or steady state conditions in arterial spin labeling (ASL)

i.e. acquiring the ASL signal at one specific post-labeling delay (PLD) and by assuming
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that the cerebral blood flow (CBF) does not change during the acquisition. All denois-

ing methods proposed in chapter 3 and 4 are limited to these static ASL measurements.

However, for many applications it is important to consider and maintain the ASL signal

evolution through time. For example, in task based functional arterial spin labeling (fASL)

the activity of the human brain in response to a specified task is investigated in space and

time. This relies on the mechanism that increased neural activity is accomplished by an

increase in metabolism and CBF [99]. During the rest state spontaneous fluctuations in

CBF are observable over time due to time-varying neuronal activity. This fluctuations are

synchronized in certain brain regions and used to study resting-state functional connec-

tomics i.e. brain regions which shows a high correlation in fluctuations are likely connected

to each other. [25] Another important application is pharmacological functional magnetic

resonance imaging (phMRI). In these studies the change in CBF induced by medication

or recreational drugs is evaluated for understanding their effect on the brain systems i.e.

Gollub et al. [103] showed that cocain infusion decreases the CBF in gray matter (GM). A

study by Cemeron et al. [37] showed that an intake of 250mg caffeine leads to a vasocon-

striction of the cerebral vascular and hence reduces the whole brain CBF down to 30%.

Dynamic ASL measurements are especially important for patients with cerebrovascular

disease for whom the healthy and affected brain region might have a different arterial

transit time (ATT) which is not known in advance. In this case the right choice of the

PLD has a major impact on the quantification accuracy. The acquisition of the time evolu-

tion of ASL signal in each voxel can solve this transit time problem. However for all those

applications a high temporal resolution is necessary which dramatically reduces the SNR

compared to static measurements where tens of averages are acquired. This makes post-

processing techniques for gaining SNR even more important. In this chapter the concept

of infimal convolution of total generalized variation (ICTGV) denoising is presented which

was proposed by Holler et al. [131] and applied in the context of 2D dynamic magnetic

resonance imaging (MRI) data reconstruction [221]. The proposed method is validated on

two exemplary ASL applications; First in a task based fASL study where the perfusion

changes in local brain regions correlates with neural activation and second in a multi-PLD

experiment where the evolution of the ASL signal in each voxel is investigated.

5.2 Theory

5.2.1 Spatio-Temporal TGV

The basic theory for variational models with spatial regularization was described in chap-

ter 3.2.2 ”Total Generalized Variation for ASL Denoising”. Recapturing the definition of

the spatial TGV-functional (equation 4.1) it is straightforward to extend this to spatio-

temporal dimensions. Similar to the extension for the 3D anisotropic case, an additional

dimension and a corresponding weight is introduced in the gradient (∇ : U 7→ U4) and

symmetrized gradient (ε : U4 7→ U10) operator in the spatio-temporal domain (U ∈
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<Nx×Ny×Nz×Nt) leading to:

TGV 2
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where u ∈ U is the volume time series, v ∈ U4 is a tensor field, α0 and α1 are positive

weights, and ∂+
x : U 7→ U and ∂−x : U 7→ U are the discrete forward and backward differ-

ences defined in the Appendix C.1.1 and C.1.3. We denote by Nx×Ny×Nz the dimensions

of image space, and by Nt the number of time frames. The incorporation of an additional

temporal dimension allows to exploit spatial and temporal redundancy of the dataset. By

applying the proposed total generalized variation (TGV) functional (equation 5.1) we ob-

tain a dynamic image series which is smooth in space and time. A crucial part is the choice

of the right spatial and temporal weights. For the spatial dimensions the corresponding

weights sx, sy, sz are given by the voxel dimensions. However for the temporal dimension

the weight st is not known in advance as the relation of frames or time-steps to spatial

voxels is unclear. (Note that the weights in space and time can be reduced to a simple

parameter β = βt
βs

controlling the relation between time and space which is defined in

the Appendix C.1.6 and C.1.6 respectively.) By fixing this spatio-temporal ratio to one

value we have to decide if we prefer a higher temporal or a higher spatial regularization.

The first is favorable for regions where no or only slow signal changes occur over time

since it strongly penalizes temporal variations. For areas with high dynamic changes a
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higher spatial regularization is beneficial. Since dynamic ASL data have locally different

dynamic properties i.e. areas with no or slow dynamic changes as well as regions with high

dynamic changes, a trade off between those two situations has to be chosen. To address

this problem Holler et. al. [131] proposed the infimal convolution of two spatio-temporal

TGV functions with different spatial and temporal weights.

5.2.2 Infimal Convolution of TGV

The infimal convolution of two spatio-temporal TGV functionals is defines as

ICTGV 2
α1,α0,β1,β2

(u) = min
v

TGV 2
α1,α0,β1

(u− v) + TGV 2
α1,α0,β2

(v) . (5.4)

By using two different spatio-temporal ratios i.e. β1 < 1 and β2 > 1 we can account for

different dynamic properties. The first TGV 2
α1,α0,β1

functional enforces pice-wise smooth-

ness in space and time, but allows more model deviations in space. In contrast, the second

TGV 2
α1,α0,β2

functional allows more deviations in time. The infimal convolution of those

two functionals separates the original volume sequence u in two volume sequences u − v
and v and balances the contribution of those two volumes locally. The defined ICTGV

functional provides dynamic volumes, which are smooth in space and time and additionally

takes into account rapidly changing contrasts as well as slow or stable contrast. [131]

For denoising of a dynamic ASL dataset equation 5.4 has to be extended with a data-

fidelity term and a corresponding regularization parameter λ. This parameter balances

the strength of data faithfulness versus regularization. This leads to the following final

minimization problem:

u∗ ∈ arg min
u

λ

2
||u− du||22 + ICTGV 2

α1,α0,β1,β2
(u) . (5.5)

This minimization problem is non-smooth but convex and can be efficiently solved by

Chambolle-Pocks primal dual algorithm. Therefore, the problem has to be reformulated

as a saddle-point problem. This reformulation as well as the numerical solution is given

in Appendix C.2.8.

5.3 Implementation

All necessary steps in the iterative primal dual algorithm reduce to simple arithmetic op-

erations which can be highly parallelized on a graphics processing unit (GPU). Therefore,

the ICTGV denoising algorithm was implemented in C++ with compute unified device ar-

chitecture (CUDA) parallel processing using the AGILE [149] and accelerated variational

dynamic MRI reconstruction (AVIONIC) [222] library. For all denoising applications the

model parameters α1 and α0 for the TGV functionals were set to α1/α0 = 1/
√

3 , which

proved to be a reasonable choice for MRI images [148]. Further model parameters (β1,

β2, and s) were optimized for each applications individually as this parameters depend
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on the dynamic properties of the dataset. The regularization parameter λ adjusts the

balance between regularization and data consistency and depends on the signal-to-noise

ratio (SNR) of the dataset. Hence, it is adjusted for the experiments according to the

SNR. For all applications the number of iterations was set to 2000, which is enough to

ensure convergence.

5.4 Application to Functional Arterial Spin Labeling

5.4.1 Short Introduction to fMRI

Since its introduction in 1990 functional magnetic resonance imaging (fMRI) has become

the most widely used technique to study the activity of the living brain. Compared with

positron emission tomography (PET) it is non-invasive, does not require a radioactive

tracer, and is much cheaper. Furthermore, it has a much higher spatial resolution with

well defined anatomic landmarks and includes whole brain coverage compared to elec-

troencephalography (EEG). [67]

The basis for functional neuroimaging are complex physiological changes in the brain as

a result of increased neural activity. The exact mechanism linking the complex cellular,

metabolic, and vascular changes are still under investigation but can be summarized as

follows. During activation several cellular processes of neurons require energy in form of

adenosin triphosphate (ATP). Large amounts of ATP are produced by the oxidative glu-

cose metabolism, which require oxygen and glucose. Since the brain has no locale energy

storage, both substrates are continuously supplied by the CBF. Consequently, during

neuronal activity the increase in metabolic rate (glucose and oxygen consumption) is ac-

companied by an increase in CBF and blood velocity. In addition, it leads to a vasodilatory

response increasing the cerebral blood volume (CBV). [35, 199]

Fox and Raichle [89, 90] studied the relationship between neural activity and the physi-

ological changes. They implied a linear coupling between neural activation and cerebral

metabolic rate of oxygen (CMRO2) but a non-linear coupling, with a disproportional rise,

in case of CBF as well as cerebral metabolic rate of glucose (CMRGlc). The fractional

change in CBF and CMRGlc are similar [90, 99] and typically by a factor of 2-3 higher

compared to CMRO2 [61, 129, 145]. This disproportional increase in CBF compared with

CMRO2 results in a net increase in the amount of oxygenated blood. As consequence, the

deoxygenation of venous blood drops [35]. Deoxygenated hemoglobin (dHb) is paramag-

netic due to the unpaired electrons and produces a local susceptibility induced field shift

leading to a reduction in T ∗2 [265]. This measurable effect is known as blood oxygen level

dependent (BOLD) effect [191] and leads to a drop in the MRI signal. Since in neural

activity the ratio of oxygenated hemoglobin (oHb) to dHb increases an increase in T ∗2 is

observable. The typically BOLD response raises the baseline signal by a factor of 0.5-

5% [67]. However, the signal changes are not quantifiable in physiological units. Since the

BOLD response depends on the deoxygenation level of venous blood, the change in CBV
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in response to neural activity directly affects the oxygenation level and hence the BOLD

response. The BOLD signal is therefore only a indirect measure of neural activity without

quantitative, physiological interpretation as it depends on changes in CBF, CMRO2 and

CBV [120]. Other physiological variables such as heart rate variability [235], breathing

rate [69] or respiration volume [23] can change the BOLD signal i.e. breath holding can

change the BOLD signal up to 4% [264]. Furthermore, low-frequency drifts known as

baseline drifts are present in BOLD fMRI data. The source of this drifts are systematic

changes in the MRI hardware i.e. heating of shim as a result of gradient heating [80, 237].

An alternative fMRI method for studying the neural activity is ASL. In contrast to BOLD,

fASL provides quantitative information of perfusion changes over time. It provides, there-

fore, a direct measure of the CBF induced signal change due to either an external stimu-

lus (i.e. a flashing checkerboard) or due to spontaneous brain activity (i.e. resting-state

fMRI). [166] A task-based fASL experiment was first demonstrated by Kwong [151] and

the CBF increases 30-90% in the activation region depending on the performed task [316].

Whereas in BOLD the signal change is unit-less and always related in percentages to the

baseline, in ASL the change in CBF can be quantified in absolute units. The additional

insensitivity to baseline drifts in ASL, due to pair-wise subtraction of adjacent control

and label images, makes ASL perfectly suited for applications with a slowly varying signal

over time (long task block) and for longitudinal studies i.e. for studying long-term effects

of working memory training [255], for studying disease progressions or for studying the

effects of a given pharmacological agents on the baseline CBF [48].

Several studies reported that fASL has a higher spatial accuracy compared to BOLD

fMRI [172, 207, 267]. The ASL signal is more located to the brain parenchyma and shows

a better spatial correlation to anatomical landmarks since the measured CBF is primarily

from small arterioles and capillaries. In contrast, the BOLD signal stems from the change

in oxygenation of blood and shows a bias toward the venous side away from the activated

brain region [278]. Another interesting feature of fASL is the higher intra-individual repro-

ducibility [156, 216, 267] and the lower inter-subject variation [267] compared to BOLD.

However fASL has two major challenges which restrains its application in clinical and

research areas: first a low signal-to-noise ratio and second a low temporal resolution due

to the additional labeling time and PLD.

In this work ICTGV is used to address the limitation of low SNR. ICTGV incorporates

spatial and temporal information for denoising of the perfusion weighted image (PWI) time

series. The denoising method is evaluated on task-based finger tapping experiments and

compared to standard Gaussian denoising. The ICTGV denoising approach is validated

on in-vivo data as well as on a synthetic generated dataset.
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5.4.2 Methods

5.4.2.1 2D Data Acquisition

Four healthy volunteers were scanned at a 3T magnetic resonance (MR) system (Magne-

tom Skyra, Siemens Healthcare, Germany). Pulsed ASL measurements were performed

using PICORE/Q2TIPS single shot echoplanar imaging (EPI) with a 20-channel head coil.

The following imaging parameters were used: 15 slices with 6mm thickness, distance factor

25%, 3x3 mm2 in-plane resolution, 6/8 partial-Fourier, repetition time (TR)/echo time

(TE) = 2500/13 ms, bolus or labeling duration (TI1)/inversion time (TI) = 800/1800

ms and labeling slice thickness 10 cm. A block design paradigm with seven interleaved

30-second periods of rest and finger tapping (right hand) was conducted resulting in an

acquisition time of 7 min 10 s.

5.4.2.2 Anatomical Data Acquisition

For each subject an additionally T1 weighted image was acquired using a 3D magnetization

prepared - rapid gradient echo (MPRAGE) sequence with the following imaging parame-

ters: resolution of 1x1x1 mm3, 192 slices, phase oversampling = 15%, slice oversampling

= 33%, TR/TE/TI = 1910/1.81/1000 ms, Grappa-factor = 4, flip-angle = 8◦, acquisition

time = 2 min 55 s.

5.4.2.3 Anatomical Data Processing

For each subject the T1 weighted images were segmented into GM, white matter (WM), and

cerebrospinal fluid (CSF) using statistical parameter mapping v 12 (SPM12)1 (Wellcome

Trust Centre for Neuroimaging, University College London, UK) [92] and coregistered to

the native ASL image. From this coregisted tissue partial volume (PV) maps a brain mask

was generated by summing up the corresponding maps and including voxels with a tissue

content greater than 0.1.

5.4.2.4 Synthetic Dataset

In order to evaluate the proposed method, a synthetic CBF-map was generated based on

the segmented T1 weighted image of one subject as described in section 3.3.4 ”Numerical

Phantom”. In this synthetic CBF-map, voxels corresponding to activations due to motor

tasks (voxels in the primary sensorimotor area, supplementary motor area, and parietal

and parietal associative area) are superimposed with a BOLD effect and ASL activation

signal change (30s on/off, 7 runs) as shown in Figure 5.1 and described in [122]. Zero

mean Gaussian noise was added to this synthetic ASL image time series.

1https://www.fil.ion.ucl.ac.uk/spm/software/spm12/
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Figure 5.1: Simulated BOLD-effect and ASL signal change in one representative voxel. The time
course of the selected voxel is marked with a red arrow in the T1 weighted image. Gold standard
activation map (FWE, p < 0.05) overlayed on a coregisted T1 weighted image.

5.4.2.5 ASL Data Processing

ASL data processing and statistical analysis were conducted using MATLAB (Mathworks,

Natick, Massachusetts), SPM12, ASL-toolbox [293, 294] and in-house developed MATLAB

scripts. Prior to denoising the ASL time series were motion-corrected and global signal

fluctuations were regressed out of the ASL image time series at each voxel [293, 294]. To

eliminate the BOLD signal contamination in the ASL time series surround subtraction was

applied [167, 307]. Afterwards, the perfusion weighted time series was denoised using the

proposed spatio-temporal approach and for comparison using a conventional 3D-Gaussian

kernel with 6 mm full width at half maximum (FWHM). From the noisy and denoised

PWIs, the CBF-maps were quantified using a general kinetic model [34] for pulsed arterial

spin labeling (PASL) as defined in section 4.3.4 ”Quantification of CBF”. Subsequent

task-based fASL analysis was performed in SPM12 for each subject. A general linear

model (GLM) was fitted in the CBF time series. The model was specified using a box-car

function convolved with a canonical hemodynamic response function. The statistical maps

were thresholded at p < 0.05 after family wise error (FWE) correction and overlayed on

the coregistered T1 weighted images.

5.4.2.6 Parameter Choice

The regularization parameter λ as well as the ICTGV model parameters, β1, β2, and s were

optimized using the simulated dataset. A grid search was performed and the parameter

values which achieved the most true and the least false activation voxels were used. This
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parameters are β1 = 7, β2 = 1, s = 0.6 and λ = 0.1.

5.4.3 Results

Figure 5.2 shows the activation-maps (FWE, p < 0.05) overlayed on a T1 weighted image

for the simulated dataset using no denoising, Gaussian denoising, and the proposed denois-

ing method as preprocessing step. Compared with no denoising and Gaussian denoising,

the incorporation of temporal information in the proposed denoising method results in de-

tection of all activations for 4 as well as 7 runs. Since the time course of fASL data is highly

redundant, the inclusion of the temporal information is very effective. This improvement

in spatio-teporal denoising is illustrated in Figure 5.3, showing the acquired PWIs at 4

different time points for subject 4. During the finger tapping period (timepoint 14 and

17) a clear signal increase in the motor cortex (green arrow) of the perfusion weighted

images is visible. Figure 5.4 shows the activation maps (FWE, p < 0.05) of subject 4 and

the corresponding fitted CBF response in the voxel with the highest t-value. The ICTGV

denoised time-series exhibits substantial improvement in noise suppression compared with

standard spatial Gaussian denoising. This results in statistically significant activations in

the motor areas (bottom row). Figure 5.5 shows exemplary the activation maps (FWE,

p < 0.05) of the remaining three subjects.

Gold Standard

No Denoising

Gauß Denoising

ICTGV Denoising

4 runs 7 runs

Figure 5.2: Activation map (FWE, p < 0.05) overlayed on a coregisted T1 weighted image
generated from the gold standard (noise free), noisy, Gaussian denoised, and ICTGV denoised
CBF time series.
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Figure 5.3: Perfusion weighted images at 4 different time points of one slice from subject 4 without
denoising, using Gaussian denoising, and using the proposed method. The CBF-increase/neuronal
activity in the motor cortex due to finger tapping is clearly visible in the ICTGV-denoised PWIs
(green arrow). Timepoint 9 and 27 are PWIs acquired during rest and timepoint 14 and 17 are
PWIs acquired during finger tapping.
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Figure 5.4: Activation maps (FWE, p < 0.05) of one representative subject (4) overlayed on
a coregisted T1 weighted image using noisy data, Gaussian denoised, and ICTGV denoised data.
Fitted CBF response in one voxel of the motor cotex during the finger tapping experiment.
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     No 

Denoising

 Gaussian 

Denoising

   ICTGV 

Denoising

Subject 1
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Figure 5.5: Activation maps (FWE, p < 0.05) overlayed on a coregisted T1 weighted image of
the remaining 3 subjects conducted form the noisy, Gaussian denoised, and ICTGV denoised time
series.

5.4.4 Discussion

In this chapter the effect of spatio-temporal denoising based on infimal convolution

of TGV functionals was assessed for fASL data. The proposed method combines two

spatio-temporal weights, allowing for stronger temporal regularization in areas with

low dynamic change and weaker temporal regularization in areas with high dynamic

change. The incorporation of temporal information in the denoising procedure improves

the image quality and accomplished statistics for both, simulations and in-vivo data

compared with standard Gaussian denoising. This can be explained by exploiting the

high temporal redundancy of fASL images directly in the denoising process.
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For the synthetic dataset an increase in the number of runs from 4 to 7 improves the

SNR leading to a higher number of detected activation voxels for the noisy time-series.

A further improvement is visible in Figure 5.2 for the Gaussian denoising approach.

The incorporation of spatial information of the neighborhood reduces the noise and

improves the accompanied statistics. However, the spatial smoothing has a side-effect. It

leads to statistically significant false-positive activations e.g. several activations in the

white matter visible in Figure 5.2. In comparison the activation maps obtained from

the ICTGV denoised time series are very similar to the ground truth maps. All voxels

with activation were successfully detected for 4 as well as for 7 runs. Nevertheless, for

this approach some false positive activations are visible (Figure 5.2). One option to

reduce this false positive activation is by using spatial thresholding, which is commonly

used in fMRI and relies on the assumption that neuronal activity induces signal changes

over several voxels [88].

For the in-vivo dataset only subject 1 and 4 show an activation in the motor

cortex using the noisy-time series as input. Surprisingly, for the Gaussian denoised

time-series non of the 4 subjects shows an activation in the motor cortex. One reason

could be, that the spatial resolution is very low (3x3x6 mm3) compared to the cortical

gray matter thickness, which is typically between 1.5 and 4.5 mm, and 2.5 mm on

average [75, 87]. Spatial smoothing at this low resolution can increase the partial

volume effect and thereby reducing the activation related change in CBF and hence the

effect size. Furthermore, the Gaussian denoising is only effective in removing random

noise with equal variance. Thus, outliers or artifacts due to physiological noise can

not be effectively suppressed. In contrast to the simulated dataset, where only zero

mean Gaussian noise was added, the in-vivo datasets are additionally corrupted with

outliers and different artifacts due to physiological noise (clearly visible in the PWI

timeseries in Figure 5.3). The outliers and artifacts can further reduce the effect

size. An inclusion of a strong regularization along the time domain can suppress

these artifacts to a certain degree (Figure 5.3). This results in a well recovering

of the underlying signal and hence an improved detection of activation in the motor cortex.

For the proposed method several model parameters have to be set up correctly.

This was achieved by simulating a synthetic fASL dataset. Since the model

is very general the optimized model parameters can be directly transferred

to the in-vivo dataset. However, for different number of runs or datasets the

regularization parameter λ has to be adjusted to take into account different

noise levels. The proposed method was implemented in CUDA to accelerate the

computation time. The denoising of the whole 4D fASL dataset took approximately 4min.

In summary the presented study highlights the use of effective denoising methods for

fASL data. The proposed ICTGV method with two spatio-temporal weights is well suited
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for task-based fASL as it accounts for both, the high dynamic change in response to neural

activation as well as no dynamic change during the baseline condition. A further improve-

ment in SNR or spatial resolution can be achieved by combing the proposed method with

a background suppressed 3D readout. The use of background suppression in combination

with 3D readouts increases the SNR and temporal stability by approximately a factor of

3, and thereby the reliability of activation maps [283]. In addition, the proposed method

can be extended to a 4D reconstruction approach by including the MRI forward operator

in the minimization problem. In combination with an accelerated 3D acquisitions, using a

time-varying undersampling scheme, the spatial resolution or spatial coverage of the PWI

time series can be pushed further.

5.5 Application to Multi-PLD Data

5.5.1 Introduction

In ASL the images are typically acquired using a single-PLD because it is easy to im-

plement and allows boosting the SNR by repeating the measurements [8]. As discussed

previously in chapter 2, for single-PLD acquisitions the selected PLD must be higher than

the ATT of the blood to avoid miss-quantification of CBF. However, it is difficult to select

the right PLD prospective because the ATT varies between healthy subjects and patients

with vascular diseases i.e. patients with steno-occlusive disease [100]. One way to solve this

transit time problem is by using a very long PLD, ensuring that the blood has sufficient

time to reach the tissue. However, this leads to a longer acquisition time and additionally

to a lower SNR due to the T1-relaxation of the labeled blood. An alternative approach to

solve this problem is by measuring the ATT in addition to the CBF. This is achieved by

performing multiple ASL experiments at different PLD and fitting this measurements to

a kinetic model [34]. ATT is a valuable physiological parameter for the characterization

of collateral flow and hemodynamically impaired regions [27, 62].

However, for dynamic ASL data a trade-off between spatial and temporal resolution has to

be chosen. For whole brain coverage with the recommended segmented 3D-acquisition [8]

only a limited number of PLD can be acquired in a clinically acceptable time. To over-

come this drawback, accelerated single-shot 3D acquisition strategies were implemented

recently [28, 134, 253]. This acceleration comes at the cost of reduced SNR, making the

estimation of CBF and ATT with a non-linear least squares (NLLSQ) fitting approach

quite challenging. To improve the SNR and stabilize the fitting approach, we present

a denoising approach based on infimal convolution of total generalized variations. The

method is validated on a synthetic phantom dataset including simulated pathologies and

on a healthy subject for a different number of averages.
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5.5.2 Methods

5.5.2.1 Data Acquisition

One healthy subject was measured on a 3T Siemens Prisma (Siemens, Erlangen, Ger-

many) system after giving written informed consent. ASL data were acquired using a

pseudo continous arterial spin labeling (pCASL) sequence with a 2D controlled aliasing

in parallel imaging results in higher acceleration (CAIPIRINHA) accelerated single-shot

3-D gradient and spin echo (GRASE) readout [134] with background suppression. The

following imaging parameters were used: matrix size = 64x64x38, field of view (FoV)

= 192x192x114 mm3 resulting in 3 mm3 isotropic resolution, 10% phase- and 17.5%

slice oversampling, TR/TE = 5260/14.44 ms, 2x2(1) CAIPIRINHA pattern, phase-partial

Fourier 6/8, refocusing flip angle = 180◦, EPI-factor = 25, turbo factor (TF) = 22, seg-

ments = 1. In total 16 time-points with 4 averages were acquired using a labeling duration

of {1.05, 1.3, 1.55, 1.8, . . . , 1.8} s and a PLD of {0, 0, 0, 0 : 0.25 : 3} s within an acquisition

time of 11 min 29 s. The ASL labeling plane was placed according to a time of flight

(ToF) angiogram in the neck area above the bifurcation of the carotid artery and below

the V3 segment [282].

Additionally, a T1 weighted image was acquired using a 3D-MPRAGE sequence with

the following imaging parameters: 1 mm isotropic resolution, 176 slices, TR = 1900 ms,

TE = 2.7 ms, TI = 900 ms, flip angle = 9◦, acquisition time = 5 min 58 s.

5.5.2.2 Synthetic Dataset

In order to validate the proposed denoising approach, a synthetic ASL dataset was created

based on a high resolution (1 mm isotropic) T1- and proton density (PD)-map (M0)

supplied by MRiLab [164] for MATLAB r2016b (The Mathworks, Natick, MA, USA).

CBF-values of 65 ml/100g/min and 20 ml/100g/min with corresponding ATT values of

800 ms and 1500 ms were attributed to GM and WM tissue respectively [72, 155, 201, 325].

Additionally, a hyper perfusion area in frontal WM (40 ml/100g/min) and in the putamen

(114 ml/100g/min) with corresponding reduced ATT of 750 ms and 400 ms were added.

In a subsequent step, the high resolution images were downsampled to 3 mm isotropic

resolution using tri-linear interpolation. This introduces additional PV effects and matches

typical resolution of 3D-ASL acquisitions. From the downsampled CBF- and ATT-map

a time series of 16 PWIs, using the same labeling duration (LD) and PLD as for the

in-vivo acquisition, were simulated using the general kinetic model for pCASL [34] (see

section 5.5.2.5 ”Quantification of CBF and ATT”). The control images are assigned to

C = 0.1 ·M0, which models a background suppression of 90% applied to M0. The label

images are simply given by L = C − PWI. Afterwards, complex Gaussian noise was

added to each control and label images separately with a SNR level similar to in-vivo

measurements. An example of the ground truth and noisy PWI time series is given in

Figure 5.6.
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5.5.2.3 Anatomical Image Processing

The high resolution T1 weighted image was segmented into GM and WM using SPM12 and

computational anatomy toolbox v 12 (CAT12) [98] toolbox2 (C. Gaser, Structural Brain

Mapping Group, Jena University Hospital, Jena, Germany). The segmented GM and WM

partial volume maps as well as the high resolution T1 weighted image were coregistered

to the mean PWI as suggested by Mutsaerts et al. [187]. A brain mask was generated by

summing up the corresponding GM- and WM-PV-maps followed by a 3D dilation with a

kernel element of size 3.

5.5.2.4 ASL Data Processing

Motion correction of the ASL time series was performed using SPM12 and

ASL-Toolbox [294, 295]. In a subsequent step the perfusion weighted time series was

calculated and denoised using the proposed ICTGV approach.

5.5.2.5 Quantification of CBF and ATT

The quantification of CBF and ATT from the perfusion weighted time series is based on

the general kinetic model for pCASL [34]:

PWI(tn) =


0 tn < ∆t

2αM0λfT1appe
− ∆t
T1,b

(
1− e

−tn+∆t
T1app

)
∆t ≤ tn < ∆t+ τ

2αM0λfT1appe
− ∆t
T1,b
− tn−τ−∆t

T1app

(
1− e

−τ
T1app

)
∆t+ τ ≤ tn,

(5.6)

where f is the CBF in ml/100g/min, ∆t is the ATT in minutes, T1 is the longitudinal

relaxation decay constant of tissue, which is 1.33/60 min for 3T, M0 is the acquired

proton density weighted image, and T1,b the longitudinal relaxation decay constant of

blood, which is 1.65/60 min at 3T [169], α is the labeling efficiency and set to 0.85 [56] for

the synthetic dataset and to 0.7 [283] for the in-vivo data because of the used background

suppression. τ is the labeling duration and is set to {1.05, 1.3, 1.55, 1.8, . . . , 1.8} s with the

corresponding PLDs of {0, 0, 0, 0 : 0.25 : 3} s, tn is the acquisition time point, i.e. the sum

of post labeling delay and labeling duration. Further, the blood-brain partition coefficient

λ is assumed to be 90 ml/g [125], thus M0λ = M0/λ. The apparent longitudinal relaxation

decay of tissue is give by 1
T1app

= 1/T1 + f/λ.

5.5.2.6 Fitting Algorithm

The estimation of the CBF and ATT maps from the noisy and denoised perfusion weighted

time series is performed using a NLLSQ fitting algorithm. The NLLSQ function lsqnonlin

2http://www.neuro.uni-jena.de/cat/

http://www.neuro.uni-jena.de/cat/
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in MATLAB (The Mathworks, Natick, MA, USA) estimates the unknown (CBF and ATT)

from equation 5.6 by means of a trust-region reflective method. Additional box constraints

on CBF and ATT are used to limit their values to a physiologically meaningful range of

[0, 300] ml/100g/min for CBF and [0, 6] seconds for ATT, respectively.

5.5.2.7 Data Evaluation and Error Propagation

In order to show the benefit of the proposed method, we evaluated the stability and error

propagation by performing a pseudo replica analysis. Therefore a set of 100 perfusion

weighted time series with different noise realizations but equal standard deviation were

computed. For each time series the CBF and ATT were estimated from the denoised and

noisy perfusion weighted images. Afterwards, the voxel-wise median and inter-quartile

range between the 25th and 75th quartile were calculated for evaluation. Additionally, for

the simulated and in-vivo dataset median CBF and ATT values as well es inter-quartile

range (IQR)-values of GM and WM tissues were reported to study systematic errors. For

the simulated dataset tissue masks were created by assigning CBF values within [18, 22]

ml/100g/min to WM and CBF values within [60, 65] ml/100g/min to GM. For the in-

vivo dataset the co-registered GM- and WM-PV-maps were thresholded by a factor of 0.9

to generate the tissue masks.

5.5.3 Results

5.5.3.1 Synthetic ASL Data

Figure 5.6 shows the ground truth simulated, the noisy, and the denoised perfusion

weighted time series at 6 different timepoints. Qualitative comparison of the PWIs shows

a high noise suppression of the proposed method, especially at areas with low SNR while

maintaining the dynamic contrast change. This is illustrated in four representative voxels

in Figure 5.7. In the WM voxels the signal is dominated by noise and no clear signal change

can be observed for the noisy image (red). In contrast, the proposed method recovers the

signal change very well and shows a high correlation to the noise free ground truth time

course. This improvement in signal recovery results in more accurate CBF and ATT maps,

shown in Figure 5.8. Especially in the low SNR areas (WM), the nonlinear fitting leads

to many outliers for the noisy input. The voxel wise fitting stability, with and without

denoising, is presented in Figure 5.9. The median values are close to the ground truth

values. However, the prior denoising of the time series leads to a lower IQR for the ATT as

well as the CBF-map. This visual impression is confirmed by the box-plots in Figure 5.10

showing an IQR decrease in WM-ATT of 65% and WM-CBF of 48%, respectively for the

proposed method compared with the noisy input.
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Figure 5.6: Simulated perfusion weighted time series for 6 different PLDs. Top row (A) shows
the noise free, middle row (B) the noisy, and bottom row (C) the ICTGV denoised PWIs. The
proposed method is able to remove noise but maintains the image contrast and edges.

5.5.3.2 In-vivo Data

Figure 5.11 shows the estimated CBF- and ATT-maps of the in-vivo subject using a

different number of averages per PLD. For the highest number of averages both methods

perform well resulting in a good image quality. However, the proposed method shows

a lower number of outliers especially in the ATT-map. The effect of denoising is more

pronounced for a lower number of averages. While the NLLSQ fitting of the noisy data

results in an increased number of outliers and hence in a decreased image quality, the

fitting of the ICTGV denoised data provides reasonable quantitative maps even for the

lowest number of averages. This visual improvement is confirmed in the corresponding

box-plots in Figure 5.12 showing a lower IQR range for the proposed method.

5.5.4 Discussion

In this study we presented a spatio-temporal denoising approach based on infimal

convolution of TGV functionals for multi-PLD ASL data. The infimal convolution of two

TGV functionals with different spatio-temporal weights (β1 < β2) allows the automatic
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Figure 5.7: Comparison of the ground truth dynamic ASL signal (blue) with the noisy (red) and
ICTGV denoised (yellow) ASL signal in four different voxels. The ICTGV denoising recovers the
original signal time course very well for low (WM) as well as high (GM) SNR cases.

separation of the signal into two components: one with low signal change and a second

with high dynamic changes. Hence, local different dynamic characteristics of the ASL

signal are considered during the optimization approach. The proposed method was

validated on simulated synthetic and in-vivo ASL datasets with a different number of

averages per PLD. For all datasets a substantial improvement in noise suppression is

observable for the proposed method and edges as well as small structures (pathologies)

are well preserved. The improved noise suppression is especially visible in PWIs with a

low SNR (very short or very long PLD) and additionally in the exemplary ASL signal

time courses shown in Figure 5.7. For all four cases the proposed method reduces noise

and successfully recovers the original noise free ground truth time course. This stabilize

the non-linear fitting procedure resulting in more accurate quantitative maps. The visual

improvement is confirmed with the results of the pseudo-replica method, showing a lower

IQR range in WM for the ICTGV denoised (CBF 11% and ATT 9%) maps compared
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Figure 5.8: Comparison of two representative CBF- and ATT-maps estimated from the noisy
and denoised perfusion weighted time series. The proposed method (ICTGV + NLLSQ) shows
superior noise removal in CBF and ATT compared with the NLLSQ fitting approach.
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Figure 5.9: Fitting results for the pseudo replica method showing the voxel-wise median and IQR
in CBF and ATT over 100 different noise realizations. For both methods the median CBF- and
ATT-maps are visually close to the noise free maps showing no systematic error. The additional
denoising of the PWI time series stabilizes the fitting procedure resulting in a lower IQR than
without denoising.

to the standard NLLSQ approach (CBF 31% and ATT 21%). In general, the variation

(IQR) is higher in WM compared with GM. This is caused by the approximately three

times lower perfusion and additional longer ATT resulting in a lower SNR. However, the

reduction of uncertainties by including prior information comes at the cost of a bias in the

dynamic ASL signal leading to an overestimation of CBF in WM and an underestimation

of CBF in GM. The amount of bias can be controlled by the regularization parameter

and gets higher with stronger regularization. This bias can be accounted to a certain

extend by using a debiasing methods [33, 64], which could be included in a further step.

The synthetic high resolution images were downsampled to 3 mm isotropic resolution

matching the typical ASL resolution. This accounts for partial volume effects (PVE) and

leads to transient tissue boundaries. Therefore, the reference CBF and ATT values in

GM and WM shows a natural variation represented by the IQR in the box plots.

Similar to the synthetic dataset the proposed method reduces noise in the time series

of the in-vivo dataset. This improves the non-linear estimation of CBF and ATT leading

to a lower number of outliers especially in the WM. While for the NLLSQ approach, the

number of outliers increases with a reduced number of averages per PLD, the proposed
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Figure 5.10: Boxplots of the CBF and ATT in GM- and WM-tissue over 100 runs. The median
of the NLLSQ fitting approach shows a lower bias in GM- and WM-CBF compared to the denoised
images but comes at the cost of higher uncertainties (higher IQR).

method provides a good image quality with only a minor visible degradation. This visual

impression is confirmed by the quantitative boxplots in Figure 5.12 showing similar IQR-

and median-values in GM and WM tissue independent of the number of averages. In

contrast, and as expected, the IQR increases for the standard NLLSQ approach using a

lower number of averages.

The utilized CAIPIRINHA accelerated GRASE sequence improves the temporal

resolution of ASL data which is beneficial in two ways: First it reduces the sensitivity

to motion artifacts, which can lead to uninterpretable quantitative maps in segmented

acquisitions; And second it provides a more flexible approach for multi-PLD data,

allowing to sample a broader range of the ASL signal.

In summary, the proposed ICTGV approach allows an essential reduction in acquisition

time (from 11 min 29 s to 2 min 55 s) while maintaining the quality and quantification

accuracy of CBF- and ATT-maps. This improvement potentially helps to enable the
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Figure 5.11: One representative CBF- and ATT-map estimated from a different number of
averages (N). For the highest number of averages both methods produces meaningful CBF- and
ATT-maps. However, the proposed denoising method stabilizes the non-linear fitting approach and
leads to a lower number of outliers. Even for one average per PLD (tacq = 2 min 55 s) meaningful
CBF- and ATT-maps can be estimated from the ICTGV denoised time series.
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Figure 5.12: Boxplots of the CBF- and ATT-values in GM- and WM-tissue of the in-vivo data in
dependence of the number of averages. The NLLSQ fitting approach shows a higher IQR in GM-
and WM-tissue compared to the denoised images.

consolidation of clinical applicability and higher spatial resolutions. Further improvements

are expected by extending the denoising approach to a reconstruction approach including

coil-sensitivities and Fourier sampling. This provides additional information and matches

the assumption of Gaussian noise in the raw data. In addition, this approach could be

combined with a time-dependent CAIPIRINHA sampling pattern, allowing for higher

acceleration factors, thereby reducing the through-plane blurring or increasing the spatial

resolution.

5.5.5 Conclusion

The results of both studies (fASL and multi-PLD) demonstrate the potential of the pro-

posed regularization approach for dynamic ASL data. With this general TGV model a

substantial suppression of noise can be achieved and the signal can be successfully recov-

ered from the noisy data by taking into account correlations of the varying signal intensity

along the time series as well as inclusion of information of the spatial neighborhood. This
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stabilizes the fitting approach resulting in improved image quality and accomplished statis-

tics. Consequently, the proposed method highly satisfies clinical and research demands.
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6.1 Introduction

In chapter 5 the basic principles of functional magnetic resonance imaging (fMRI) to map

the neuronal activity were presented. The underlying contrast mechanism are the blood

oxygen level dependent (BOLD) contrast obtained with a T2∗ weighted sequence and the
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perfusion contrast obtained with arterial spin labeling (ASL). In conventional fMRI studies

the images are acquired during a task-based paradigm (several interleaved blocks of task

and rest) and the activation analysis is carried out in a subsequent step. Real time func-

tional magnetic resonance imaging (RT-fMRI) is an extension to traditional fMRI and was

first proposed by Cox et al. in 1995 [53]. In RT-fMRI the data acquisition keep pace with

the reconstruction, analysis and visualization of functional data. This provides several ad-

vantages compared to the traditional fMRI studies [53]. First, it allows online monitoring

of data quality. This improves the reliability of fMRI because of the possibility of detecting

strong head movement or other physiological artifacts [287]. Second, functional activity

maps are provided immediately, which allows the detection of poor task performance. In

both cases, the acquisition can be repeated immediately. The online analysis is particular

useful for pre-surgical functional localization and intra-operative guidance [126, 127, 185].

Third, new task and stimulus protocols can be easily developed [53]. And fourth, the fast

processing and visualization enables the opportunity of providing a neurofeedback (NF)

to the subject. This means that the individuals get acoustic or visual feedback how strong

the activity in a certain brain region is related to a specific task or behavior. Hence, the

subjects can learn to influence their own brain activation. This was first demonstrated

for BOLD fMRI by Weiskopf et al. [297]. In their study a healthy volunteer was able

to increase the BOLD signal of the anterior cingulate cortex (ACC) across feedback ses-

sions indicating a learning or self-regulation effect [297]. With this study a new research

area was born called RT-fMRI-NF, which has grown rapidly popularity. Several studies

demonstrated the potential of RT-fMRI-NF as an effective intervention tool for different

clinical domains i.e. depression [319], pain regulation [63, 79], tinnitus [112], Parkinson's
disease [256], schizophrenia [193, 219], and auditory hallucinations [193].

Until now all RT-fMRI-NF studies were carried out using the BOLD effect. Besides

BOLD-fMRI, functional arterial spin labeling (fASL) is a very promising approach for

studying the neural activation due to its sensitivity to blood flow alterations. It has im-

portant advantages compared to BOLD fMRI, which makes fASL perfectly suited for NF

studies: increased spatial accuracy [172, 207, 267], higher intra-individual reproducibil-

ity [156, 216, 267], a direct activation related absolute change in cerebral blood flow

(CBF) [151], and a stable baseline signal.

So far only one study investigated the real-time processing of fASL data [121]. However,

the study focused only on the online monitoring of the ASL signal without providing

feedback to the subject. In this study we implemented a real-time solution for ASL data

processing and feedback generation. This pipeline includes the acquisition of data, image

reconstruction, post-processing, and neurofeedback presentation during a task to guide

the subject's performance. The computation of all processing steps is done within the

repetition time and allows guiding the subject's activation intermediately. The real-time

pipeline is evaluated on 5 healthy subjects using a finger tapping paradigm with one

baseline and two feedback runs.
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6.2 Methods

6.2.1 Data Acquisition

5 subjects were measured on a 3T magnetic resonance (MR) system (Skyra, Siemens

Healthcare, Germany) after giving written informed consent. A prototype pseudo

continous arterial spin labeling (pCASL) sequence with 3D-gradient and spin echo

(GRASE) readout and background suppression [283] was used with the following

imaging parameters: FOV = 192x192x96 mm3, 3x3x6 mm3 resolution, 16 slices,

phase-/slice-oversampling = 10/15%, slice-partial Fourier = 6/8, phase-partial Fourier

= 6/8, echoplanar imaging (EPI)-factor = 51, turbo factor (TF) = 14, repetition time

(TR)/echo time (TE) = 4000/23 ms, labeling duration (LD)/post-labeling delay (PLD)

= 1800/1700 ms. A baseline (BL) finger tapping experiment was conducted using a

block-wise paradigm with 6 interleaved blocks (32 s rest/task). The experiment consists

of one BL run and two feedback (FB) runs (FB1 and FB2). The BL run was used to

locate the activation area in the motor cortex and to create the activation mask of the

motor cortex for each subject.

Additionally, from each subject a T1 weighted image was acquired using a

3D-magnetization prepared - rapid gradient echo (MPRAGE) sequence with the

following imaging parameters: resolution of 1x1x1 mm3, 192 slices, phase oversampling

= 15%, slice oversampling = 33%, TR/TE/inversion time (TI) = 1910/1.81/1000 ms,

Grappa-factor = 4, flip-angle = 8◦, acquisition time = 2 min 55 s.

6.2.2 Real Time Pipeline

Figure 6.1 provides an overview of the proposed real-time neurofeedback processing

pipeline. After acquisition and reconstruction on the scanner site the ASL DICOM

image is transferred to workstation (WS)1 . On WS1 the ASL preprocessing steps

were preformed in MATLAB (MathWorks, Natick, MA, USA) using statistical

parameter mapping v 12 (SPM12) and in-house developed MATLAB scripts. First

motion-correction was performed by realigning the acquired ASL image to the first image

of the time-series (control image). Afterwards, the perfusion weighted image (PWI) was

calculated using surround subtraction, which eliminates the BOLD contamination in the

perfusion weighted image [167, 307]. In a third step the PWI was spatial smoothed using

3D Gaussian filter with a full width at half maximum (FWHM) of 3 mm. From this

denoised perfusion weighed image the corresponding CBF values were calculated for each

voxel using a general kinetic model [34] for pCASL data [8]:

CBF (x, y, z) =
6000 · λ · PWI(x, y, z) · e

PLD
T1,b

2 · α ·M0(x, y, z) · T1,b ·
(

1− e
−τ
T1,b

) (6.1)

where λ is the blood-brain partition coefficient and set to 0.9 ml/g [125],
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T1,b is the longitudinal relaxation time of blood at 3T and set to 1.65 s [169],

α is the labeling efficiency and set to 0.75 for pCASL due to 2 background-

suppression pulses, τ is the labeling duration and set to 1.8 s, PLD is set to 1.7 s,

PWI(x, y, z) is the denoised difference image and M0 is the acquired proton density image.

The whole procedure (from image reconstruction to presenting feedback) lasts approx-

imately 2 s which is within the range of one TR (4 s). After each acquisition the calculated

CBF-maps were updated on WS1 as shown in Figure 6.2 to allow monitoring the image

quality and CBF-values during the experiment.

Data Acquisition 

Image 

Reconstruction

pCASL 3D GRASE

Scanner

Motion Correction

Surround Subtraction

Smoothing

CBF-Quantification

ROI Evaluation

Update Display

PC Workstation 1

PC Workstation 2

Present Feedback

Calculate Change

 in CBF in %

Figure 6.1: Processing pipeline for real time neurofeedback (RT-NF) fASL. After image ac-
quisition and reconstruction the ASL data is transferred to WS1 for post-processing and CBF
quantification. The blue rectangles were only performed in the FB runs because the region of
interest (ROI) in the activation area is defined after the baseline run. In the FB runs the mean
CBF is calculated in the activation region and transferred to WS2. In WS2 the change in CBF
between baseline and task is calculated and presented on a monitor.

After the baseline run a general linear model (GLM) was fitted in the CBF-time
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Figure 6.2: (A) Mean CBF-map during task, rest and the latest calculated CBF-map. The stem
plot shows the mean CBF values calculated in the activation area, which was defined from the
baseline run. This figure is updated after each acquisition and allows the user to online monitor
the ASL signal. Subfigure (B) shows the presented NF bar to guide the subject's neuronal activity.
The yellow line shows the baseline CBF and an increase or decrease of one rectangular corresponds
to a change of 15% in CBF.

series for localization of the activation area in the motor cortex. The model was specified

using a box-car function convolved with a canonical hemodynamic response function. The

statistical maps were thresholded at p < 0.05 after family wise error (FWE) correction.

The statistical maps (t-value maps) as well as the average CBF during baseline and task

were used to define the activation area in the motor cortex. The created mask (ROI)

serves as basis for FB1 and FB2. The mean CBF in the defined ROI was calculated at

each time point t:

CBFROI [t] =
1

N

∑
x∈ROI

CBF [x, t] (6.2)

where N is the number of CBF-values in the defined ROI. For each baseline condition

the mean CBF in the ROI (CBFROI [t]) was averaged over the whole duration of the

condition:
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CBFBL =
1

N

t=BLend∑
t=BLstart

CBFROI [t] (6.3)

This CBF was used as a reference for the feedback presentation. The relative change

of CBF during the task condition was calculated using equation 6.4 and presented to the

subject via a monitor to guide the subject's cognitive activation.

CBFchange[t] = 100× CBFROI [t]

CBFBL
(6.4)

With the provided feedback the subjects tried to modify the original finger tapping

experiment, which was a continuous alternating finger tapping, by changing the frequency,

using different finger wiggles etc. to increase the neural activity in the motor cortex. An

increase in neural activity increases the CBF and hence the feedback-bar (Figure 6.2(B)).

The feedback representation was implemented in PsychoPy software.

6.3 Results

Figure 6.4 lists the mean CBF-values in the defined activation region for all 3 runs. Except

for subject 3, we observe a slight increase in CBF of FB1 compared with BL. It should

be noted that different strategies such as changing the frequency or using different finger

wiggles can lead to higher as well as lower CBF values in the activation area. In contrast,

subject 3 was not able to find the right strategy in FB1. However, in the second feedback

run the mean CBF clearly increased for all subjects in the activation area. This indicates

that each subject was able to learn strategies to regulate their own neural activity. The

CBF increase is also visible in the CBF-maps of each subject shown in Figure 6.3 (red

arrows). Figure 6.5 shows the mean CBF time course of all subjects averaged over the 6

blocks. The same increase in CBF as for the individual subjects is observable with the

highest increase during FB2.

6.4 Discussion

In this chapter we present a pipeline for processing ASL data in real time. This

allows on the one hand to online monitor the ASL acquisition and on the other

hand to perform RT-NF studies. The online-monitoring of the ASL signal is

very helpful in identifying a low inversion-efficiency of pCASL data due to field

inhomogeneities, changes in blood-velocity, or due to turbulent flow and thereby

enables the operator the possibility to change the labeling parameters or to relocate

the labeling plane. Since ASL is a subtraction technique it is very sensitive to subject

motion. Head movement leads to strong artifacts, which can lead to poor activation

maps. This artifacts are clearly visible in the updated CBF-maps. In such a case the
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Figure 6.3: One representative CBF-map of each subject during rest and task in the BL, FB1
and FB2 run. Comparing the CBF-maps during BL and FB1 for all subjects except subject 3
an increase in the motor cortex is visible (red arrows). In FB2 an increase in the CBF is clearly
visible for all subjects.

Figure 6.4: Mean ± 1 STD of CBF values in the activation area of the motor cortex for each
subject
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Figure 6.5: Averaged CBF time course over all subjects in the activation area of the motor cortex
for baseline run (Base), FB run 1 and FB run 2. An increase in CBF during the task condition
(timepoint 8-16) is visible for both feedback runs, which indicates that the subjects were able to
learn to control their activation due to the provided neuro-feedback.

experiment can be repeated immediately and does not require a second session days apart.

The results of this study show that the subjects were able to learn to control their

own brain activation and the mean CBF in the activation area increased from 73.7± 18.8

ml/100g/min without feedback to 86.2 ± 18.9 ml/100g/min with feedback presentation.

Each subject was able to learn to influence their neural activations and successfully

increased the CBF in the activation region. However, the amount of increase in CBF is

different between subjects and runs, indicating that the learning progress was different

for the subjects. For example subject 2 and 4 increased the CBF in the first FB run but

the increase in the second feedback run was minor. One reason for this could be that

the subjects were able to found a good strategy very fast in the first run. During the

second run they used the same strategy or slight modifications leading to a similar strong

activation increase as during the first run. In contrast, subject 3 performed worse in the

first FB run compared to the BL run. This indicates that a change in the FB strategy
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could lead to a lower as well as to a higher CBF, depending on the way finger tapping is

performed. Nevertheless, in the second feedback run the subject was able to increase the

activation in the motor cortex, thereby indicating that the subject was able to learn from

the first feedback run which finger tapping strategies are worse than the original one. In

the second run the subject found some strategies which leads to a higher activation and

hence an increased CBF.

In Figure 6.5 a general perfusion increase during the baseline condition is observable

for both feedback runs compared with the baseline run. At the current time it is not

clear if the CBF generally increases during the feedback procedure due to complex

cognitive processes or if the increase in CBF is due to normal physiological variations.

Additional studies are necessary to find out the origin of this CBF increase, for example

several baseline and feedback runs could be performed on different sessions or days.

The baseline runs could than be compared among each other and additionally with the

feedback runs. This could provide insights into the root of the CBF change and provides

additional information about the reproducibility of RT-NF studies.

One limitation of RT-NF based on ASL is the low temporal resolution and

accompanied delay in feedback presentation. The whole feedback procedure takes at

least 4 s, which is limited by the long TR due to the labeling period and the PLD.

Additionally the hemodynamic response in fASL is a slow varying signal and has a delay

of approximately 4-6 seconds until the peak is reached [317]. Hence, the total time

until feedback is presented to the subject is approximately 8-10 s. This means that

each new finger tapping strategy should be performed at least 10 s to see an influence.

Hence, only two to three different strategies can be performed by the subject during

an activation period. In our study we informed the subjects about this effect and the

corresponding delay time. This delay in feedback presentation is suboptimal because the

subjects had to be aware of the feedback also in the first 10 s of the baseline condition

to see the behavior of their last used strategy which might be confusing. For example

subject 3 reported after the scan session that it was very hard to change the strategy

and at the same time keep in mind that the current presented change in CBF is from

a previous strategy. The subject also reported that the change in strategy was maybe

too fast which could explain the fact that for subject 3 no gain in feedback run 1 was found.

Since this was the first RT-NF experiment based on ASL many additional

optimization and evaluation steps are necessary to find the best study design. A better

block design may be preferable, e.g. a lower total number of interleaved blocks with an

increased duration of 64 s compared to the used of 32 s. This has a few advantages: First

the subjects can try several strategies within one run. Second, for every new block the

delay time due to the hemodynamic response affect the CBF quantification in the first 4

seconds. A lower number of blocks would reduced this effect. Third, a more accurate
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estimation of the baseline CBF during rest can be achieved with a longer baseline block.

Taking into account the provided feedback of subject 3 a better feedback design might

be helpful i.e a discrete feedback after 12 s would be more appropriate than a feedback

every 4 s. With this feedback change the subject would be informed how well the last

performance was and even when they can switch to a new strategy. This might avoid

confusing and a too fast change to a new strategy.

In this proof of principle study only 5 subjects were investigated. An evaluation on

more subjects with additional statistical analysis would be of high interest to validate this

first findings.

6.5 Conclusion

We proposed a real-time solution for fASL RT-NF studies where all necessary acquisition

and processing steps were executed within a single TR. This allows to monitor the ASL

signal and to guide the subjects' cognitive process. The results of this study demonstrate

that subjects can learn to regulate their brain activity during a finger tapping experiment

based on the provided neurofeedback. This can be used to promote rehabilitation of

different symptoms e.g. in stroke patients were motor and cognitive processes are often

impaired.
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7.1 Introduction

Since the introduction of arterial spin labeling (ASL) in 1992 [66], many different ac-

quisition and labeling approaches have been proposed to improve the signal-to-noise ratio

(SNR) and robustness of ASL images. This led to a recent consensus paper from the Inter-

national Society for Magnetic Resonance in Medicine (ISMRM) perfusion study group [8].

The recommended way to acquire ASL data in clinical settings is using a fast 3D acquisi-

tion technique such as turbo spin echo (TSE) stack of spirals (SoSP) [283, 318] or gradient

and spin echo (GRASE) [85, 86, 109] in combination with pseudo continous arterial spin

labeling (pCASL) [56]. Besides the advantage of higher SNR and the incorporation of

efficient background suppression [179, 318] to reduce physiological noise, 3D-acquisitions

suffer from the drawback that the echo train length is much longer than the T2-relaxation

of blood. This leads to a exponential filtering of the k-space along the second phase encod-

ing direction. This undesirable k-space filtering is described by the modulation transfer

function (MTF) and depends on the k-space acquisition order and echo train length. A

longer echo-train leads to a narrower MTF which results in a broadened point spread func-

tion (PSF) in the image space leading to strong blurring along the second phase encoding

direction. Accompanied by the blurring is a lower effective resolution in the phase encod-

ing direction which leads to partial volume effects and quantification errors. In addition,

detailed structures are degraded and the detection of small lesions is reduced. Different

strategies were proposed to reduce the amount of blurring to a certain extent. For exam-

ple Liang et al. [162] and Zhao et al. [328] proposed a variable flip angle approach to

broaden the MTF leading to sharper PSF and hence reduced blurring. Galazzo et al. [94]

proposed a retrospective deconvolution method in image space to deblure the acquired im-

ages. Another more intuitive approach is to reduce the echo train length by acquiring the

full 3D k-space in several shots or segments, as recommended by the consensus paper [8].

A shorter echo-train leads to a lower filtering effect of the k-space and and hence less

blurred images. However, this comes at the cost of a decreased temporal resolution and

therefore increased sensitivity to inter-segment motion, which is problematic for uncoop-

erative subjects and patients. Improvements in motion robustness were achieved by using

prospective motion correction strategies e.g. motion sensitive navigator echoes [228, 334]

or optical tracker systems [5]. Besides the advantage of improved motion robustness, the

drawback of a lower temporal resolution still remains, which limits its applications to per-

fusion based functional magnetic resonance imaging (fMRI) or multi-post-labeling delay

(PLD) ASL [34].

Another way to improve the temporal resolution is to undersample the k-space and use par-

allel imaging methods such as SENSE or GRAPPA to reconstruct the images [73, 282, 295].

However, only moderate acceleration factors of 2-3 are recommended by the consensus

paper, because the SNR of the perfusion weighted image (PWI) is inherently low and

decreases further with higher acceleration factors, due to the g-factor penalty. Recently,

a 2D-controlled aliasing in parallel imaging results in higher acceleration (CAIPIRINHA)
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accelerated 3D-GRASE readout [28] and a 3D-accelerated TSE-SoSP readout [43] were

employed for pCASL scanning with conventional reconstructions. These approaches al-

low the acquisition of whole brain ASL images with decent spatial and temporal reso-

lutions, and provide an improvement in SNR compared with standard parallel imaging

(e.g. GRAPPA) based reconstructions. This increase in temporal resolution improves

the robustness against motion. However, compared to the fully sampled acquisitions, the

temporal signal to noise ratio (TSNR) is still reduced for both (accelerated 3D GRASE

and TSE-SoSP) approaches due to the g-factor penalty. As an alternative approach, we

proposed a total generalized variation (TGV)-based reconstruction approach and showed

improved image quality using retrospective undersampled data [245]. This TGV-based

reconstruction incorporated the averaging of ASL signals directly in the reconstruction of

single PLD images by using all raw data in one reconstruction process.

This study combines now CAIPIRINHA accelerated 3D-GRASE acquisition and an en-

hanced ASL-TGV framework allowing the reconstruction of the whole 3D time series in one

compact procedure. Firstly, an accelerated 3D-GRASE sequence with a time-dependent

2D-CAIPIRINHA sampling pattern was implemented as a single-shot acquisition to im-

prove the temporal resolution and robustness against motion. The time-dependent sam-

pling pattern has the advantage that the temporal incoherence between control/label

(C/L)-pairs is increased, and additionally allows the estimation of the coil sensitivities

without an additional pre-scan. Secondly, the reconstruction algorithm was adapted to

incorporate additional temporal regularization on the whole C/L-time series. The result of

the reconstruction method is a 4D C/L-series, which allows performing motion correction

retrospectively in image space, and is capable of handling 4D ASL data. The purpose of

this study is to present and evaluate the proposed acquisition and reconstruction approach

by comparison with a standard segmented approach on numerical and in-vivo data.

7.2 Theory

7.2.1 Acceleration of 3D ASL Data Acquisition

A pCASL sequence with background suppressed 3D-GRASE readout was developed and

the pulse sequence diagram is shown in Figure 7.1A. Background suppression was achieved

by one pre-saturation pulse and two inversion pulses, and the timing for inversion pulses

was optimized by numerical simulations [230]. Parameters for the balanced pCASL scheme

were: Hanning window-shaped RF pulse with duration of 500 µs and spacing of 360 µs, flip

angle = 25◦, slice-selective labeling gradient = 6 mT/m and the average labeling gradient

amplitude was 0.6 mT/m [312]. To reduce the echo-train length of the 3D-GRASE readout

2D-CAIPIRINHA sampling [32] was implemented. More precisely, time-dependent 2D-

CAIPIRINHA acceleration with an acceleration factor from 1 to 3 is supported along phase

encoding (PE1) and partition encoding (PE2) directions respectively. For all acceleration

factors a center out acquisition is used (Figure 1B). The time-dependent 2D-CAIPIRINHA
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pattern is shifted between subsequent C/L-pairs in the phase encoding (PE)1 and PE2

direction as exemplary shown in Figure 1C. This shift in acquisition pattern increases

the temporal incoherence between subsequent acquisitions and over time each point in k-

space is sampled. Therefore, the coil sensitivity maps can be estimated directly from the

averaged k-space. For comparison of the proposed 2D-CAIPIRINHA acquisition scheme

the standard segmented 3D GRASE acquisition is shown in Figure 1D.
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Figure 7.1: (A) Sequence diagram for accelerated 3D-GRASE acquisition with variable 2D-
CAIPIRINHA pattern and balanced pCASL labeling (dotted lines are modification in control
condition). The background suppression consists of a pre-saturation and 2 non-selective inversion
pulses. The acquisition strategy is shown for a CAIPIRINHA 1x6(2) pattern. A center out acqui-
sition is used as illustrated in (B). For one C/L-pair the same 2D-CAIPIRINHA pattern is used.
Between subsequent C/L-pairs the pattern is shifted in PE1 or PE2 direction as exemplary shown
in (C). This variation increases the temporal incoherence between the C/L-pairs and additionally
allows the estimation of the coil sensitivity maps directly from the summed data. Subfigure (D)
shows for comparison the acquisition scheme of the fully sampled but segmented approach for the
used settings.

7.2.2 Reconstruction of ASL Data

7.2.2.1 Variational Reconstruction

In variational magnetic resonance imaging (MRI) reconstruction the unknown image u is

estimated from measured noisy data d by a regularized optimization procedure formulated

in a general way as
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u∗ ∈ arg min
u

D(u, d) +R(u), (7.1)

where D(u, d) represents the data-fidelity term and R(u) the regularization term. The

data-fidelity term connects the measured data d ∈ CNx×Ny×Nz×Ns×Nt with the estimated

image u ∈ CNx×Ny×Nz×Nt via a linear forward operator K. We denote by Nx ×Ny ×Nz

the dimensions of image space, Ns the number of coils and by Nt the number of time

frames. Here for the data-fidelity term, the L2-norm is an appropriate choice, due to the

theoretical expectation of Gaussian noise statistics of the complex data:

D(u, d) =
1

2
||K(u)− d||22 (7.2)

The forward operator K includes the coil sensitivity profiles, the Fourier operator

and the sampling pattern. For reconstruction of 3D-time dependent data with variable

sampling pattern in the time-domain, the operator K is defined as follows:

K : u = (ut){t=1...N} → (Ft {bsut}(s,t)), (7.3)

where Ft defines the Fourier operator for each time-frame including the varying under-

sampling pattern over time [222], bs ∈ CNx×Ny×Nz describes the coil sensitivities for each

coil s, and ut the 3D volume at each time frame t. The regularization term R(u) contains a-

priori information about the structure of the estimated volume. Different spatio-temporal

constraints exist like total variation [218] or wavelets [186]. The choice of the regulariza-

tion term is crucial and for MRI image it was shown that TGV [31] is well suited [149].

TGV enforces piece-wise smooth images and is defined for spatio-temporal data as follows:

R(u) = TGV 2
α1,α0,β(u), (7.4)

TGV 2
α1,α0,β(u) = min

v

{
α1 ||∇βu− v||1 + α0 ||εβv||1

}
, (7.5)

where ∇βu and εβv are the gradient and the symmetrized gradient respectively as

defined in equation C.15 and equation C.19 in the Appendix. In case of a spatio-temporal

regularization an additional parameter β = β2

β1
is necessary to define the relation between

spatial and temporal grid size as described in chapter 5.2 ”Theory”.

7.2.2.2 Reconstruction Setup

With the defined data-fidelity and regularization term in equation 7.2 and 7.5 respectively,

the control volume time series can be reconstructed as follows:

c∗ ∈ arg min
c

λc
2
||Kc− dc||22 + TGV 2

α1,α0,β (c) . (7.6)

Since in ASL imaging always two different types of images are acquired the control and
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the label, the reconstruction approach for the control images formulated in equation 7.6

can be extended by including the label image time-series:

(c∗, l∗) ∈ arg min
c,l

λc
2
||Kc− dc||22 +

λl
2
||Kl − dl||22 +TGV 2

α1,α0,β (l)+TGV 2
α1,α0,β (c) . (7.7)

However in ASL, the key quantity is the perfusion weighted image which is obtained

by subtracting the label from the control image. Therefore, the goal of our reconstruction

approach is to achieve a PWI with a good SNR and image quality. To this end an

additional spatio-temporal constraint on the perfusion weighted image [332] is set which

results in the final minimization problem:

(c∗, l∗) ∈ arg min
c,l

λc
2
||Kc− dc||22 +

λl
2
||Kl − dl||22 + γ1 (w)TGV 2

α1,α0,β (l) +

γ1 (w)TGV 2
α1,α0,β (c) + γ2 (w)TGV 2

α1,α0,β (c− l) .
(7.8)

Additionally a weight function γ(w) was introduced in the functional to balance be-

tween the TGV terms as suggested in [222, 247],

γ1(w) =
w

min(w, 1− w)
, γ2(w) =

(1− w)

min(w, 1− w)
, (7.9)

where w ∈ (0, 1).

The minimization problem defined in equation 7.8 is non-smooth but convex and can be

solved using a first-order primal-dual algorithm [41]. This algorithm needs to reformulate

the problem in equation 7.8 as a saddle point problem. Details of the implementation

can be found in the Appendix C.2. The proposed reconstruction method is from now on

referred as ”ASL-TGV” approach.

7.2.2.3 Implementation

The reconstruction algorithm was implemented in C++ with CUDA parallel processing

using the AGILE [149] and AVIONIC [222] library. The model parameters for the TGV

functional were set to α1/α0 = 1/
√

3 , which proved to be a reasonable choice for MRI

images. The number of iterations was set to 1000, and the following model parameters

were used: w = 0.9 and β = 7. Despite the set of fixed model parameters, the proposed

method requires the choice of the right regularization parameter λ. This parameter was set

to 7/8/9/10 for 12/18/24/30 C/L-pairs and was optimized as described in section 7.3.3.4

”Parameter Optimization”.
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7.3 Methods

7.3.1 Data Acquisition

Five healthy volunteers (four men and one woman, age range: 28 - 34 years) were scanned

on a 3T MR system (Prisma, Siemens Healthcare, Germany) using a 32 channel head

coil and pCASL with 3D-GRASE readout after informed consent was obtained. For the

standard fully sampled and segmented acquisition the following imaging parameters were

used: field of view (FoV) = 200 x 200 mm2, matrix = 64 x 64 x 38, 20% slice oversampling,

3.1 x 3.1 x 3 mm3 resolution, TE = 15 ms, TR = 4100 ms, refocusing FA = 180◦, EPI-

factor = 21, turbo factor (TF) = 23, 6 segments, labeling duration (LD) = 1800ms, PLD =

1800ms, resulting in an acquisition time of 4min 30 s for five C/L-pairs and oneM0 image.

Furthermore, a 2D-CAIPIRINHA accelerated single-shot 3D-GRASE pCASL acquisition

was performed with the same imaging parameters and LD/PLD as those for the segmented

acquisition, but with a 6-fold acceleration using an adapted time dependent CAIPIRINHA

1x6(2) pattern as shown in Figure 7.1. For the accelerated acquisition, the M0 image was

acquired with a two-shot acquisition using pattern 1 and 5 as illustrated in Figure 7.1. The

acquisition time for the C/L-pairs between the fully sampled with segmented acquisition

and the single-shot acquisition were matched to 4 min 6 s. Additionally, for the accelerated

and non-accelerated acquisitions, a repeated scan was performed in 2 subjects, during

which the subjects were asked to move the head in a consistent manner using acoustic

cues which were presented every 4 seconds. The movement pattern was as follows: right-

left-center followed by nodding up - nodding down - center. The movement pattern was

repeated until the acquisition was finished.

One multi-delay ASL dataset was acquired using the same imaging parameters used

for the single PLD data. Five PLDs were used: 500/1000/1500/2000/2500 ms. For the

fully sampled acquisition 1 average per PLD was acquired and for the proposed single-shot

method 6 averages per PLD were acquired within an acquisition time of 4 min 6 s.

Additionally from each subject, T1 weighted images were acquired using a

3D-magnetization prepared - rapid gradient echo (MPRAGE) sequence with the following

imaging parameters: 1 mm isotropic resolution, FoV = 256 x 224 mm2, 176 slices,

TR/TE/TI = 1900/2.7/900 ms, flip angle = 9◦, acquisition time = 5 min 58 s.

7.3.2 Synthetic Dataset

For validation of the proposed reconstruction method, a synthetic dataset was created in

MATLAB (MathWorks, Natick, MA, USA) based on a high resolution (1 mm isotropic)

T1-weighted and an acquired fully sampled ASL dataset. In a first step, the high-resolution

T1-weighted image was segmented into gray matter (GM) and white matter (WM) using

Statistical Parameter Mapping (SPM) 121 (Wellcome Trust Centre for Neuroimaging, Uni-

1https://www.fil.ion.ucl.ac.uk/spm/software/spm12/
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versity College London, UK) [92] and CAT12 [98] software2 (C. Gaser, Structural Brain

Mapping Group, Jena University Hospital, Jena, Germany). The results of the segmen-

tation process were tissue partial volume (PV)-maps. The high resolution T1 weighted

image and the GM- and WM-PV-maps were coregistered to the mean PWI as suggested

by Mutsaerts et al. [187]. Subsequently GM and WM values of 65 ml/100g/min and 20

ml/100g/min, reported for the normal human brain [155, 325] were assigned to the GM

and WM-PV-maps as described in [247]. This leads to a more realistic cerebral blood

flow (CBF)-map with partial volume effects and is illustrated in Figure 7.2. Additionally,

a hyperperfusion (120 ml/100g/min) and a hypoperfusion (0 ml/100g/min) area which

exactly match the ASL voxel space were added in the simulated CBF-map. These areas

are displayed in Figure 7.2. From the CBF-map a perfusion weighted image was calculated

using the ASL model recommended by the consensus paper [8]:

CBF (x, y, z) =
6000 · λ · PWI(x, y, z) · e

PLD
T1,b

2 · α ·M0(x, y, z) · T1,b ·
(

1− e
−τ
T1,b

) (7.10)

where α is the labeling efficiency and set to 0.85 [56], τ is the labeling duration and

set to 1.8 s, and the PLD is set to 1.8 s [8]. M0 is the acquired proton density weighted

image, λ is the blood-brain partition coefficient and set to 0.9 ml/g [125], T1,b is the

longitudinal relaxation time of blood at 3T and set to 1.65 s [169] and CBF(x,y,z) is the

generated synthetic CBF-map. Afterwards the PWI was blurred using a Lorentzian-PSF

by simulating the MTF as described in [282], assuming a TE of 15 ms and a T2 of blood

of 186 ms [47]. From the blurred PWI image, the label (L) image was calculated by simple

subtraction from the control (C) image.

A time-series of 30 C/L-images were simulated. 3-D coil sensitivity maps, consisting

of 32 coils equally spaced on a spherical surface, were computed using Biot-Savart's law.

The C/L-images were multiplied by the coil sensitivity profiles. Afterwards coil images

were transformed in k-space and complex Gaussian noise was added.

7.3.3 Data Processing

7.3.3.1 Structural Data

For each subject the T1 weighted images were segmented into GM and WM and coregis-

tered to the native ASL image as described in section 7.3.2 ”Synthetic Dataset”. A brain

mask was generated by summing up the corresponding GM- and WM-PV-maps followed

by a 3D dilation with a kernel element of size 3.

2http://www.neuro.uni-jena.de/cat/
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A B C

D E F

Figure 7.2: Simulated ASL dataset in ASL space. (A) Co-registered T1 weighted image, (B)
proton-density weighted image (M0), (C) synthetic simulated noise-free CBF-map with a hyper-
perfusion area (120 ml/100g/min) indicated with a red arrow and the hypoperfusion area (0
ml/100g/min) indicated with a blue arrow, (D) PWI after blurring using a simulated MTF, (E)
control image, and (F) label image.

7.3.3.2 Raw Data Processing of in-vivo Data

The raw k-space data files were loaded into Matlab using MapVBVD software3. Subse-

quent raw data preprocessing included: removing the readout-oversampling, echoplanar

imaging (EPI) phase correction using the 3 reference line approach [115], ramp sampling

correction, and coil compression.

7.3.3.3 Image Reconstruction and Processing

In addition to the proposed reconstruction algorithm, further data processing steps were

performed with statistical parameter mapping v 12 (SPM12), ASL-Toolbox [293, 294]

and Matlab. First, a coil compression was performed to reduce graphics processing unit

(GPU)-memory and reconstruction time using singular value decomposition (SVD) with a

cut-off of 0.1. Afterwards, the coil sensitivity profiles were estimated from the averaged k-

space data using eigenvector-based iterative self-consistent parallel imaging reconstruction

3https://github.com/CIC-methods/FID-A/tree/master/inputOutput/mapVBVD
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(ESPIRIT) from the BART toolbox [270]. For comparison of our proposed reconstruction

algorithm the ESPIRIT reconstruction with L2 regularization (ESP-L2) [269] from the

BART toolbox [270], and additionally a single TGV reconstruction [149] was used, which

has previously shown to outperform standard SENSE reconstruction. The single TGV

reconstruction (spatial total generalized variation (sTGV)) refers to an individual 3D re-

construction of the C and L images. The reconstructed images were motion-corrected

using SPM and ASL-toolbox. Afterwards, the averaged perfusion weighted image was

calculated from the motion corrected time series. From this temporal averaged perfu-

sion weighted image the CBF-maps were calculated using the recommended ASL model

(equation 7.10) with the parameters defined in section 7.3.2 ”Synthetic Dataset”. For

the multi-delay approach the CBF and arterial transit time (ATT) were estimated by

fitting the general kinetic model [34] to the perfusion weighted time series using Bayesian

inference for arterial spin labeling (BASIL)4 [44, 106] from the FSL [137] toolbox.

7.3.3.4 Parameter Optimization

The reconstruction parameters for the individual methods were optimized by maximiz-

ing the structural similarity index (SSIM) [292] between the ground-truth CBF-map and

the calculated CBF-map for the simulated dataset. For the in-vivo dataset the same

parameters employed for the simulated dataset were used due to the lack of noise free

ground-truth.

7.3.3.5 Data Evaluation

For the simulated dataset and in-vivo data a comparison between fully sampled but seg-

mented acquisition and the proposed single-shot acquisition with different reconstruction

algorithms was carried out. Additionally, for the proposed single-shot acquisition the cor-

responding C and L images were summed up to get a fully sampled k-space, e.g. control

acquisition 1 to 6 gives the first fully sampled control k-space, control acquisition 7 to 12

the second fully sampled k-space for the control image, et cetera. This is now referred to

as ”accelerated sum”. For the simulated dataset the mean SSIM and peak signal-to-noise

ratio (PSNR) were calculated between the noise free ground truth and the processed CBF-

map. Furthermore, mean GM and WM CBF-values were calculated. For the single-PLD

in-vivo data only mean GM and WM CBF as well as mean TSNR were reported due to

the lack of noise free ground-truth. The TSNR for the reconstructed PWIs was calcu-

lated in the gray-, white-matter and whole brain respectively using equation 7.11. For the

multi-PLD dataset mean GM and WM CBF as well as ATT were reported.

TSNRPWI =
Mean(PWI)

SD(PWI)
(7.11)

4https://github.com/ibme-qubic/oxford asl
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7.4 Results

7.4.1 Synthetic Dataset

The reconstruction results of the fully sampled and accelerated synthetic dataset for a

different number of C/L-pairs are shown in Figure 7.3. Qualitative comparison of the

CBF-maps shows a lower level of noise for the accelerated-dataset reconstructed with the

proposed ASL-TGV algorithm compared with the CBF-maps generated from the fully

sampled as well as from the sTGV and ESP-L2 reconstruction. Further, as expected the

quality of the CBF-maps decreases with decreasing number of C/L-pairs. The proposed

method yields high fidelity CBF-maps for the lowest number of 12 C/L-pairs, whereas for

the sTGV and ESP-L2 method the noise is still dominant. This leads to the result that

the hypoperfusion area, indicated with a blue arrow in Figure 7.3, is only visible in the

fully sampled as well as in the ASL-TGV images. However, the hyperperfusion area is

clearly visible for all approaches due to the high SNR signal. This improvement in image

quality is in accordance with the quantitative metrics of SSIM and PSNR, which were

calculated over the whole brain. For 30 C/L-pairs the improvement is about 1% in SSIM

and 1dB in PSNR for the proposed method compared to the fully sampled but segmented

approach, although the scan time for one PWI is reduced by a factor of 6. Furthermore,

for a lower number of C/L-pairs (12) and hence a lower SNR, the improvement of the

proposed method is about 4% (SSIM) and 3dB (PSNR) compared with the fully sampled

approach. In addition, the proposed method improves the SSIM by about 12% using 30

C/L-pairs and by 18% using 12 C/L-pairs, compared with the two separate reconstruction

approaches (ESP-L2 and sTGV).

The mean CBF values for GM, WM, hyper- and hypoperfusion area are shown in

Figure 7.4. For all 4 methods the estimated CBF-values are close to the noise free ground

truth (GT). The estimated CBF-values in the GM for fully sampled (Full), ASL-TGV,

sTGV, and ESP-L2 are 48.42 ± 6.9, 45.93 ± 6.2, 42.11 ± 8.9, 41.47 ± 8.6 ml/100g/min

respectively compared to the ground truth of 48.66 ± 5.4 ml/100g/min. The ASL-TGV

reconstruction approach shows a lower bias than the CBF-maps reconstructed using ESP-

L2 or sTGV. As expected reducing the number of C/L-pairs increases the standard

deviation due to the lower SNR but the mean values in GM and WM are still the same.

The ASL-TGV has the lowest standard deviation and the increase is only slightly, from

6.2 ml/100g/min using 30 C/L-pairs to 6.9 ml/100g/min using 12 C/L-pairs.

7.4.2 In-vivo Data

7.4.2.1 Single-Delay ASL Data

The mean TSNRPWI values for GM, WM, and whole brain averaged over all subjects

shows an improvement of roughly 20%, 25%, and 16% respectively for the accelerated ASL-

TGV reconstruction results compared with the fully sampled but segmented approach. In



158 Chapter 7. Variational Reconstruction for 4D Arterial Spin Labeling Perfusion Data

F
ig

u
re

7
.3

:
T

ran
sversa

l
an

d
sa

gittal
v
iew

of
on

e
rep

resen
ta

tive
slice

o
f

C
B

F
-m

a
p

fro
m

th
e

sim
u

lated
sy

n
th

etic
d

ataset.
P

erform
an

ce
com

p
ariso

n
of

th
e

fu
lly

sa
m

p
led

C
B

F
-m

ap
s

an
d

th
e

p
ro

p
o
sed

a
ccelera

ted
2
D

-tim
e

C
A

IP
IR

IN
H

A
acq

u
isition

u
sin

g
d

iff
eren

t
recon

stru
ction

ap
p

ro
a
ch

es
an

d
a

d
iff

eren
t

n
u

m
b

er
o
f

avera
g
es.

In
th

e
tra

n
sv

ersa
l

v
iew

s
th

e
h
y
p

erp
erfu

sio
n

(in
d

icated
w

ith
a

red
arrow

)
an

d
h
y
p

op
erfu

sion
area

(in
d

icated
w

ith
a

b
lu

e
a
rrow

)
are

clearly
v
isib

le
in

th
e

seg
m

en
ted

a
s

w
ell

a
s

in
th

e
C

B
F

-m
ap

s
u

sin
g

th
e

p
ro

p
osed

A
S

L
-T

G
V

m
eth

o
d

.
T

h
e

q
u

alita
tive

im
p

rovem
en

t
in

im
a
ge

q
u

ality
a
n

d
n

o
ise

su
p

p
ressio

n
is

in
co

n
co

rd
a
n

ce
w

ith
th

e
q
u

an
titative

m
etrics

S
S

IM
an

d
P

S
N

R
.

N
ote

th
at

th
e

S
S

IM
a
n

d
P

S
N

R
va

lu
es

in
th

e
sa

gittal
v
iew

s
a
re

ca
lcu

la
ted

ov
er

th
e

w
h

o
le

b
ra

in
.



7.4. Results 159

Figure 7.4: Mean and standard deviation of CBF-values in four different areas of the synthetic
CBF-map for the fully sampled (Full) and accelerated approach in dependence of different numbers
of C/L-pairs. Note that the standard deviation in the noise free GT is due to blurring and
incorporation of GM and WM values with a probability higher than 90%. Additionally, a N of 30
corresponds to 5 C/L-pairs for the fully sampled approach due to a 6-fold lower temporal resolution.

contrast, the standard single TGV reconstruction approach shows a TSNR decrease of

66% for GM, 69% for WM and 67% for the whole brain compared to the fully sampled

data.

Compared with the fully sampled image, the TSNR is improved although the tem-

poral resolution is increased by a factor of 6. This increase in TSNR is visualized in

Figure 7.5(B), which shows the single perfusion weighted image from subject 5 for the

different methods. The improvement in image quality is confirmed for the CBF-maps

visible in Figure 7.6, which shows results from the motionless data on the left side and the

CBF-maps reconstructed form the motion-corrupted dataset on the right side. For the

fully sampled data, the motion between segments leads to aliasing artifacts and low quality

CBF-maps compared to the CBF-maps generated form the accelerated single-shot data.

The proposed acquisition strategy shows an improved robustness to motion for the accel-
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Figure 7.5: (A) Comparison of the TSNR of the PWIs averaged over all subjects for GM, WM,
and whole brain between different acquisition and reconstruction methods. The error bars shows
the standard deviation. (B) Single perfusion weighted image from subject 5 for the segmented
approaches (fully and accelerated sum) and the proposed single-shot method reconstructed with
different algorithms.

erated sum, however many residual motion-related artifacts remain (illustrated by the red

arrow in Figure 7.6). These motion-related artifacts can be suppressed by using a sTGV

or ESP-L2 reconstruction but at the cost of decreased TSNR due to the g-factor penalty.

Overall, the combination of the time-dependent 2D-CAIPIRINHA acquisition with the

proposed spatio-temporal TGV reconstruction algorithm shows the best image quality for

the motionless as well as motion-corrupted ASL data. Furthermore, for the single-shot

acquisition the CBF-maps of the ASL-TGV are the most similar to the CBF-maps of the

accelerated sum.
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The CBF values in GM and WM for the motion-less and motion-corrupted data as a

function of different numbers of C/L-pairs are shown in Figure 7.7. In addition to visual

improvements the proposed method yields accurate quantitative CBF-values. In case of

the fully sampled approach the motion leads to severe artifacts which result in a higher

standard deviation and an additional bias in mean CBF values compared to the single-shot

approaches. An increase in the standard deviations is also visible for the accelerated sum

approach, whereas for the single-shot approaches the CBF-values are in high accordance

between motion-less and motion-corrupted datasets.

Figure 7.7: Mean and standard deviation of CBF-values in GM and WM of subject 1 for the
fully sampled approach (Full) and the proposed accelerated acquisition combined with different
reconstruction methods using a different number of C/L-pairs. The error bars denote ±1 standard
deviation.

Figure 7.8 shows the CBF-maps of subject 2 for the different acquisition and recon-

struction approaches respectively. The reconstruction results are in accordance with those
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of subject 1. The motion during the acquisition leads to artifacts in the CBF-maps,

which are corrected in the proposed single-shot acquisition due to the retrospective mo-

tion correction. The corresponding mean GM and WM values of subject 2 are plotted in

Figure 7.9.

Figure 7.8: Different slices of CBF-maps for the highest and lowest number of averages (Nfull =
5/2; tacq = 4 min 30 s/2 min 3 s, Nacc = 30/12; tacq = 4 min 14 s/1 min 46 s) of subject 2.
The single-shot CBF-maps reconstructed with the ASL-TGV approach shows an improved image
quality compared to fully sampled but segmented acquisition for the motionless acquisition. In
case of subject movement, the CBF-maps of the segmented approach are not interpretable whereas
for the single-shot method the motion can be corrected retrospectively, which results in CBF-maps
with a good image quality.

Figure 7.10 shows one representative CBF-map in transversal and sagittal plane of the
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Figure 7.9: Mean CBF-values in GM and WM of subject 2 for the fully sampled but segmented
approach and the proposed accelerated single-shot acquisition in combination with different recon-
struction approaches. The error bars denote ±1 standard deviation.

remaining three subjects (subject 3 to subject 5) for the 5 acquisition and reconstruction

approaches respectively. The results are in accordance with the results of subject 1 and

2 with an improved image quality for the proposed single-shot approach combined with

the proposed ASL-TGV reconstruction compared with the rest approaches. This visual

improvement is confirmed by the quantitative mean CBF values in the GM and WM

which show the most accurate results for the proposed ASL-TGV approach as illustrated

in Figure 7.11.
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Figure 7.11: Mean GM and WM CBF-values of subjects 3 to 5 for different acquisition and
reconstruction approaches in dependence of the number N of C/L-pairs. The error bars denote ±1
standard deviation.

7.4.2.2 Multi-Delay ASL Data

Figure 7.12 shows the perfusion weighted images at different PLDs and the corresponding

estimated CBF and ATT maps respectively. The perfusion weighted images reconstructed

with the proposed ASL-TGV algorithm shows the highest quality. This improvement in

SNR leads to sharper and more detailed CBF- and ATT-maps for the proposed method

compared to the other methods (illustrated by the red arrow in Figure 7.12). The corre-

sponding mean CBF and ATT values in GM and WM are shown in Figure 7.13.

7.5 Discussion

In this study we present a novel single-shot 3D-GRASE acquisition with a time-dependent

2D-CAIPIRINHA sampling combined with a spatio-temporal reconstruction approach for

pCASL scanning. Simulated synthetic and in-vivo single-PLD ASL datasets with a dif-

ferent number of C/L-pairs were considered. Both synthetic and in-vivo datasets show

an improvement in noise-suppression and image-quality for ASL data compared to stan-

dard fully-sampled but segmented acquisition. The use of a time-dependent CAIPIRINHA

sampling pattern allows the estimation of the coil-sensitivity maps directly from the aver-

aged k-space data without the use of an additional pre-scan. Furthermore, the temporal

incoherence is increased between each C/L-pair which is directly exploited in the proposed
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Figure 7.12: One representative slice of PWI at different PLDs and the corresponding estimated
CBF- and ATT-maps. The red arrow indicates areas where the ASL-TGV method provides more
details in the CBF-map.
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Figure 7.13: Mean CBF- and ATT-values in GM and WM for the fully sampled but segmented
approach and the proposed accelerated single-shot acquisition in combination with different recon-
struction approaches. The error bars denote ±1 standard deviation.

joint spatio-temporal reconstruction approach. This leads to a higher TSNR compared

to the fully-sampled but segmented acquisition and also compared to the two single re-

construction methods. These results are in accordance with the results of [28], which

reported a decrease of TSNR for accelerated 2D-CAIPIRINHA sequences with a fixed

acquisition pattern compared to the fully sampled but segmented 3D-GRASE approach

in combination with SENSE reconstruction. Similar results were reported by [43] for ac-

celerated stack-of-spirals acquisitions with 3D-SPIRIT reconstruction. It should be noted

that in our study the TSNR was not calculated in a time-equivalent manner between the

fully sampled and accelerated acquisition. An additional incorporation of the number of

averages in the TSNR calculation would result in a higher TSNR for the single as well

as for the proposed ASL-TGV reconstruction method. In contrast to the aforementioned

studies, the proposed acquisition and reconstruction method increases the TSNR, which

results in an improved image quality. The increase in temporal resolution by a factor of 6

allows single-shot acquisition of the whole volume and hence improves the robustness to

motion. Furthermore, the improved temporal resolution and TSNR could be very bene-

ficial for perfusion based functional MRI [290]. However, the potential and evaluation of

the current approach for perfusion based fMRI is out of scope of this study and will be

part of future work.

For the proposed reconstruction approach the used model parameters are very robust and

yield accurate results for simulated and in-vivo datasets with and without motion as well

as for different number of C/L-pairs. However, the regularization parameter has to be

adapted according to the noise level, but this is also the case for the sTGV or ESP-L2

approach where the regularization parameter has to be chosen accordingly. Compared

to these single reconstruction approaches, our proposed method exploits the structural

redundancy in the C/L-images as well as in the PWIs. This leads to a higher SNR,
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better image quality as well as more accurate CBF-values compared to these two single

reconstruction approaches. The accuracy of CBF-quantification is of high importance for

quantitative analysis. Furthermore, the use of a spatio-temporal constraint on the PWI

reduces noise and leads to a better detection of the hypoperfusion area, which vanishes

for the two single reference reconstruction algorithms (Figure 7.3). However, all three

constrained reconstruction methods have a tendency to reduce the perfusion differences

between adjacent regions with increasing regularization strength. The procedure for op-

timizing the regularization parameter with the SSIM is also sensitive to this effect and

some bias remains. The present study, nevertheless, shows that for the proposed ASL-

TGV method this bias is smaller than that of reconstruction approaches using only spatial

regularization. For instance, the bias for the three methods ASL-TGV / sTGV / ESP-L2

is 5.5 / 7.6 / 11 % respectively in the small hyperperfusion area for 30 C/L-pairs and

5.8 / 8.9 / 12.3 % for 12 C/L-pairs. The remaining bias can be further reduced by using

a debiasing method [33, 64] which could be performed in a future step. The additional

incorporation of time information directly into the reconstruction approach strongly in-

creases the TSNR and leads to CBF-maps with a higher image-quality. The fully sampled

but segmented acquisition yields the lowest bias for the synthetic images. However, one

should note that motion or physiological artifacts between segments are not simulated.

Hence, the results for the accelerated sum approach are not shown for the synthetic data,

because the difference between fully sampled and accelerated sum is only due to different

Gaussian noise which is negligible. Physiological artifacts and motion can lead to mis-

alignments in k-space which directly affects the reconstruction quality of the PWI and

cannot be corrected retrospectively. This is exemplary illustrated in Figure 7.6 and 7.7

where the subject moves the head during the acquisition with a maximum rotation of

3◦ and translation of 2 mm. As expected, the fully sampled but segmented approach

results in CBF-maps with severe artifacts which are not interpretable. In contrast, the

proposed accelerated single-shot acquisition provides high quality CBF-maps which are in

high accordance with the ”motionless” CBF-maps. This is important for clinical as well

as research settings, where otherwise a rescan is necessary. Additionally, the quantitative

CBF-values are in high accordance between motionless and motion corrupted data, which

highlights the potential of the proposed approach for uncooperative subjects such as chil-

dren and elderly.

In our study we additionally compared the fully sampled k-space of the accelerated acqui-

sition, obtained by summing up the corresponding C/L-k-spaces, with the fully sampled

standard GRASE acquisition. In Figure 7.6 and 7.7 it is clearly visible that the pro-

posed acquisition strategy is inherently more robust against motion than the standard

segmented approach. This is due to the way how the 3D k-space is sampled. For the

proposed method the whole k-space (PE1 and PE2) is sampled in an interleaved manner

as illustrated in Figure 7.1C. In contrast the standard segmented approach acquires the

k-space points only interleaved along PE1 (Figure 7.1D). In PE2 direction the first half

of k-space (partition 24-46) is sampled with segments 1-3 and the second half (partition
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1-23) is sampled with segments 4-6. In case of motion this leads to a higher inconsistency

in the k-space symmetry along PE2 and hence to more severe motion artifacts. This re-

sult in lower TSNR values for the standard segmented GRASE acquisition compared to

the accelerated sum method. The variability in CBF-values between those two acquisi-

tions could be due to brain metabolism or physiological noise, e.g. motion, respiration

or differences in cardiac cycle which can affect the mean CBF-values [280]. For example

in Figure 7.6 some intravascular artifacts are clearly visible in the CBF-maps obtained

from the accelerated sum. This explains the higher mean CBF-values in Figure 7.7 com-

pared to the fully sampled approach. In contrast, the mean CBF-values of subject 4 and

5 show higher CBF values for the fully sampled approach compared to the accelerated

sum method. However, the variations in CBF between those two acquisitions are small

and comparable to reported inter-scan variations in CBF [116, 315]. By comparing the

CBF-values of the accelerated sum with the single reconstruction approaches (ESP-L2 and

sTGV) a clear bias with an underestimation of the CBF-values for GM as well as WM

is observable. This bias can be reduced by using the proposed ASL-TGV reconstruction

method which uses spatio-temporal constraints on control, label and perfusion weighted

images simultaneously. This leads to more accurate reconstruction results and hence in a

high agreement of the CBF-values with the accelerated sum acquisition for all subjects.

The proposed single-shot acquisition has in comparison to the fully sampled approach the

advantage that more PWIs can be acquired for one PLD and in combination with the

ASL-TGV reconstruction the SNR can be improved (Figure 7.12). A higher number of

averages per PLD provides a better estimation of the noise and leads therefore to a more

accurate setting of the spatial regularization of BASIL. This leads to improved perfusion

images with sharper edges for the single-shot methods compared to the fully sampled

approach (Figure 7.12). The improved SNR of ASL-TGV allows additionally a weaker

regularization of BASIL that further reduces smoothing and provides higher CBF-values

(Figure 7.13) for GM and lower CBF values for WM.

An improvement in temporal resolution provides a more flexible approach for multi-PLD

ASL data and could be either used to increase the number of total sampling points (PLDs),

which was recently shown to improve the accuracy of the quantification [311], or to shift

the number of averages form high SNR acquisitions (short PLD) to low SNR acquisitions

(long PLD), which will be investigated in a future work.

An additional benefit of the proposed single-shot method is the increased temporal resolu-

tion which results in a 6 fold increase in acquired C/L-pairs. This could be very beneficial

in case of outliers. The elimination of a small number of C/L-pairs due to outliers has a

negligible effect on the overall SNR, whereas for the fully sampled approach with only a

few averages the exclusion of 1 or 2 images would have a big effect on the overall SNR.

The computation time for the sTGV reconstruction is approximately 13 seconds for one

image which results in total in 780 seconds for 30 C/L-pairs using a Titan XP graphics

card. In comparison for the proposed ASL-TGV method the reconstruction time of a

whole 4D ASL dataset is approximately 250 seconds for 30 C/L-pairs. This is a decrease
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in computational time of 312% over the sTGV reconstruction method. However, one lim-

itation of the reconstruction framework is the available GPU-memory and therefore the

limited number of C/L-pairs. For the current dataset 36 C/L-pairs can be reconstructed

simultaneously. Different strategies can be used to overcome this problem, e.g. using

(mutli-threading) data streaming to multiple GPUs concurrently [175] or by reconstruct-

ing the 4D ASL-dataset in blocks.

The mean background suppression efficiency of the proposed method is 91.05 ± 1.2 % in

GM and 88.8± 1.5 % in WM respectively. This leads to a TSNR improvement of approx-

imately 365/338 % in GM/WM compared to non-background suppressed ASL imaging

(data not shown). Whereas a higher improvement in background suppression would lead

to lower subtraction artifacts due to motion or temporal fluctuations this could lead to a

loss in performance of all used reconstruction methods. This is due to a lower SNR in the

C/L-images. However, we expected that our proposed ASL-TGV outperforms the other

reconstruction algorithm because it incorporates information of the C/L-image as well as

the PWI simultaneously. Additionally, an even higher background suppression needs more

background suppression pulses which would affect the labeling efficiency due to imperfec-

tions of the inversion pulse. Furthermore, the lower SNR in the C/L-images would affect

additionally the quality of motion correction [45]. Hence, a strong background suppression

with two pulses is recommended by the consensus paper [8].

One limitation of the generated synthetic dataset is the shape of the hypo- and hyper-

perfusion ROI. They fit exactly in the voxels of the ASL images. A more realistic ROI

would be a spherical region drawn in high resolution space which is than down sampled to

ASL space. This would lead to more realistic hyper- and hypoperfusion areas with boards

across the voxels.

In summary, the results of this study highlights that the proposed accelerated time-

dependent 2D-CAIPIRINHA sampling strategy combined with the proposed ASL-TGV

reconstruction approach, which exploits spatial and temporal information of the C/L-

images simultaneously, allows single-shot ASL acquisition of the whole brain. As a conse-

quence, this method improves the robustness of ASL images against motion. Additionally,

due to the spatial and temporal constrains, it improves the SNR and image quality for

simulation and in-vivo data with and without motion. Furthermore, it yields high quality

quantitative CBF-maps from single-PLD data with only 12 C/L-pairs (tacq = 1 min 36

s) and high quality CBF and ATT-maps from multi-PLD ASL data. This improvement

addresses urgent clinical demands. A further improvement in the image quality could

be expected by combining the proposed approach with a prospective motion correction

strategy [5, 228]. Additionally, to reduce the amount of blurring in the final CBF images,

which leads to an underestimation of the GM and an overestimation of WM-values, a

variable-flip angle readout scheme [162] or a deblurring method [94] could be used. An ad-

ditional improvement of the proposed acquisition method could be the use of a Hadamard

encoding scheme [107] to increase the number of sampling points of the kinetic curve.
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7.6 Conclusion

The proposed time-dependent CAIPIRINHA sampling in combination with a spatio-

temporal reconstruction approach adapted for ASL data provides high-quality CBF-maps

from the whole brain with a single-shot 3D acquisition. It addresses important clinical

demands in terms of scan-time reduction and motion-robustness compared to standard

segmented 3D readouts. Furthermore, it increases the TSNR and reduces the acquisition

time of one PWI by a factor of 6 compared to fully sampled but segmented 3D-GRASE

pCASL acquisition. This makes this approach very promising for perfusion fMRI, multi-

delay ASL data as well as for uncooperative subjects, patients or children.
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Conclusion and Outlook

Arterial spin labeling (ASL) is a very promising approach with distinct advantages com-

pared to other perfusion measurements. The non-invasiveness and possibility of absolute

quantification of the cerebral blood flow (CBF) opens a broad range of applications in the

clinical and scientific area. However, today many challenges still remain to bring ASL per-

fusion imaging into clinical routine. The aim of this thesis was to improve the acquisition

efficiency of ASL imaging and thereby improving the robustness, quality, and reliability

of ASL imaging. Several methodological improvements for ASL imaging were proposed.

Variational denoising methods for static (chapter 3 and 4) and dynamic (chapter 5) ASL

imaging were developed with a significant reduction in acquisition time and an improved

robustness against artifacts and outliers in the data. In chapter 6 we introduced a pipeline

for processing and monitoring ASL data in real-time. The pipeline also offers the possibil-

ity for neurofeedback studies. In the last chapter a new accelerated 3D-gradient and spin

echo (GRASE) acquisition in combination with a ASL-total generalized variation (TGV)

reconstruction approach was proposed to solve the inter-segment motion problem of cur-

rent recommended segmented acquisitions. In the following subsection the main findings

will be discussed and an corresponding outlook will be presented.

Static Denoising of ASL

In chapter 3 and 4 different spatio-temporal variational denoising approaches for ASL

imaging were investigated and compared with recent published denoising methods. The

first implementation uses the mean perfusion weighted image (PWI) as input, which is

so far the standard input for denoising of ASL images. A successive extension of this

approach by including more information in the denoising procedure was assessed. This

extensions include in the first step the perfusion weighted time series as input, in the

next step the whole 4D dataset, and in the last step additionally the spatial-dependent

regularization map. The main findings can be summarized as follows: (1) Denoising

generally improves the quality of CBF-maps and allows a significant reduction in

173
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acquisition time. (2) Including successive more information in the denoising procedure

leads to an further improvement in image quality and the best results can be achieved by

exploiting temporal and spatial similarities of all images to jointly denoise the control

and label images. (3) For the data-fidelity term a L1 norm is preferable over the L2

norm, as it is more robust against outliers and provides sharper edges. (4) 3D denoising

approaches are preferable over 2D approaches and the improvement increases with higher

resolutions. (5) The spatial adaptive regularization approach takes into account the

varying noise level in the images and thereby increases the image quality slightly over

the robust L1 norm TGV approach. In addition, it allows for automatic denoising of the

ASL data independent of the number of averages, as the change in the signal-to-noise

ratio (SNR) is directly exploited in the regularization parameter maps. (6) Compared

with the reference denoising approaches our proposed method shows improved noise

removal while maintaining structures and edges and an improved robustness against

outliers. This results in an enhanced image quality and quantitative accuracy. (7)

The model parameters of the developed methods are very stable over subjects for a

specific image acquisition. In contrast, for the reference denoising approaches different

parameters has to be used for different subjects. (8) Although most approaches accounts

for the change in SNR by using noise dependent filter parameters, the estimation and

characterization of noise with one single parameter is often inaccurate and the degree of

smoothing depends additionally on the voxel size and image contrast.

Although ASL is an inherently low SNR technique, it is interesting that neither

in the recommendation paper of the International Society for Magnetic Resonance in

Medicine (ISMRM) perfusion study group [8] nor the recently published software package

”ExploreASL”, developed through the cost action ”ASL in Dementia”, suggests denoising

of ASL images. The results of our study clearly shows that the image quality and

quantitative metrics such as structural similarity index (SSIM) and peak signal-to-noise

ratio (PSNR) can be improved using image denoising. However, two potential problems

for denoising in the clinical and scientific research exists. First, depending on the

readout and labeling approach, ASL images have a different contrast and SNR level. To

achieve optimal results the denoising parameters had to be set up accordingly i.e the

regularization parameter λ. The proposed spatial adaptive approach inherently accounts

for different noise levels and is very robust for a specific type of image acquisition but

nevertheless a change in image contrast (going from 2D echoplanar imaging (EPI) to 3D

GRASE) leads to a change in the parameters. Second, inclusion of prior information

leads to a reduction of the standard deviation but comes at the cost of a bias. ASL is a

quantitative method and therefore the bias produced by the denoising method should

be ideally zero. This is especially important in group studies or pharmokenetic studies

where CBF changes between individual brain regions are investigated. The proposed

method delivers meaningful results, which are in high accordance to the ground truth

images, nevertheless a small bias exists. A combination of the proposed method with a
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debiasing method [33] can reduce the systematic error and thereby increase the accuracy

of the quantitative values. This should be implemented in a next step. In addition,

most of the denoising studies validate their approach on a synthetic dataset or on a

small population of healthy subjects. A systematic study of ASL denoising methods on

numerical data with different contrasts and SNR levels as well as an application and

validation on a large cohort, including data from different sequences, healthy and patient

datasets, and data from different scanners could be helpful for bringing the denoising

algorithm into a standard ASL processing pipeline.

Another still open question for variational methods is the use of an optimal image

prior. The second order TGV enforces pice-wise smoothness of the images and allows

for jumps between tissue boarders. For many natural and magnetic resonance imaging

(MRI) applications this was shown to be a reasonable image prior. Also the results of

our studies shows that TGV 2
α is very well suited for denoising ASL images. However,

Schwarzbach et al. [225] recently implemented a variational network for ASL imaging,

which maintains data-fidelity but learns the image prior on a small subset (4 datasets).

This approach performed on par with the proposed CL-T-L1 TGV method showing the

potential of including a higher number and more complex image priors. In Schwarzbach’s

network only the mean perfusion weighted image was used as input. An inclusion of

additional temporal information of the PWI or including the whole available data

similar to the proposed approach might improve the results further and may a potential

next step to enhance the image quality of ASL data. However, we should keep in

mind that for different datasets a new model and prior has to be learned, whereas the

proposed spatial adaptive approach uses the same parameters for different resolutions.

As previous mentioned ASL images have a different contrast, noise level, and corruption

with outliers, depending on the used acquisition and labeling scheme. Currently, it is

not clear which model or prior might be best suited for which image contrast. In a

potential next step the variational network might give insights into the right choice of

image priors. This information could be used for forming a new classes of image priors,

specific for ASL images. In addition, a combination with non-local operators would be a

potential next step. The non-local operators take into account global information, based

on data-similarity, which might be more suited due to the high redundancy in MRI

images [215].

During the last years deep neuronal networks have gained increased popularity for

denoising of ASL images. These approaches show first promising results, however, several

training datasets are necessary to estimate the parameters of the complex network struc-

ture following long training times [111, 195, 314]. For example Xie et al. used 200 [314],

Halles et al. used 131 [111], and Owen et al. used 20 datasets but for each dataset 10

different samples [195]. Furthermore, the learned network is somehow limited to the used

acquisition parameters such as voxel size, matrix size, and SNR. A change in one of those
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parameters requires to learn the whole network once again in a complex training. This

potentially poor transfer and complex learning, limits its applicability in clinical and sci-

entific day life and may struggle the use in a standardized ASL pipeline. However, for this

very new approaches more validations on healthy and pathological cases are necessary and

more studies regarding the stability of the approaches must be performed.

Dynamic Denoising of ASL

In chapter 5 the concept of infimal convolution of total generalized variation (ICTGV)

was introduced for denoising of dynamic ASL data. This general approach uses two

spatio-temporal weights, which are automatically balanced in the optimization procedure.

This takes into account locally different dynamic properties allowing for stronger

temporal regularization in areas with slow dynamic changes and weaker temporal

regularization in areas with high dynamic changes. As consequence, the original ASL

signal is well recovered from noisy and artifact corrupted data. Accompanied with the

increase in SNR is the improved parameter estimation from multi-post-labeling delay

(PLD) data as well as the detection of activation related areas in functional arterial spin

labeling (fASL).

Our studies highlight the importance of denoising ASL data for dynamic applications.

In case of multi-PLD data the improvement in noise suppression stabilize the

non-linear fitting approach showing a lower inter-quartile range (IQR) over different

noise-realization. Accompanied with the noise suppression is a more accurate estimation

of CBF and arterial transit time (ATT), with less outliers in the corresponding maps.

Similar results were observed for the perfusion based functional magnetic resonance

imaging (fMRI) dataset. Compared with standard Gaussian denoising the proposed

method removes outlier, suppresses noise while maintains high data-fidelity with a

well preservation of small details and edges. This results in recovery of all activation

areas in the synthetic generated map. For both applications a second order ICTGV

regularization functional is used as a-priori model. It might be possible to further

improve the image quality by using higher number of components or higher order TGV

functionals. Especially for the multi-PLD dataset a third order ICTGV functional would

be more suited as the kinetic curve shows primary a smooth behavior. In addition, this

approach can be extended to control-label time series similar as for the proposed static

denoising approaches. However, both extensions come at the cost of additional model

complexity and computational burden and the benefit has to be validated in a future study.

The proposed denoising technique might be especially beneficial for white matter

regions where the SNR is much lower due to prolonged ATT and lower perfusion. Due to

the low SNR white matter perfusion is often neglected or overlooked [123], although it

can provide useful information in various diseases [146, 180].



177

For dynamic datasets a trade-off between spatial and temporal resolution has

to be chosen. A high temporal resolution provides a good sampling of the kinetic

curve, or the activation related signal change in CBF, which is sought to increase

the quantification accuracy. Similar a high spatial resolution leads to lower partial

volume (PV) effects potentially increasing the statistical power of fASL data. For both

methods we focused on a high temporal resolution in our study. The combination

of the proposed method with more sophisticated acquisition and labeling strategies

will allow a higher spatial resolution while maintaining the temporal resolution. An

evaluation of the proposed method on higher spatial resolution would be of great

interest to benefit form the accurate localization of neuronal activity using fASL.

Current studies, including also ours, uses 3 mm in-plane and 3-6 mm through plane

resolution. This is a very low resolution since the cortex structures are between 1.5

and 4.5 mm depending on the location and 2.5 mm on average [75, 87]. Accompanied

with this coarse spatial resolution are partial volume effects (PVE). This reduces

the change in CBF during the activation period potentially reducing the statistical

power. In addition, a higher resolution provides the option to investigation the

CBF-changes in the different cortical layers as suggested by Jin et al. [139]. In blood

oxygen level dependent (BOLD) based fMRI a study regarding layer dependent

activation was recently proposed by Beckett et al. [17]. This might give new insights in

understanding metabolic changes due to neural activation and to draw observations

in which layer the CBF increases. A first promising work in this direction was

proposed by Shao et al. [229] showing a correlation of CBF with gray matter (GM) density.

For both applications the model and regularization parameters were tuned

on a synthetic generated dataset with known ground truth. The results of the

parameter tuning clearly shows that different dynamic properties of data sets lead

to different model parameters. However, for one application the parameters are

very robust and can be directly transferred to the in-vivo dataset. This good

generalization greatly improves the usability for clinical and research applications.

Nevertheless, a big change in SNR levels requires a adjustment of the regularization

parameter. The influence of different SNR levels was not considered during this

thesis, which is currently one limitation. This influence should be considered in a next step.

A current limitation of the proposed method is the implementation using a single

graphics processing unit (GPU). This constraints the size of the dynamic time series. One

workaround could be to divide the whole dataset into sub-blocks which are then denoised

separately. However, this can lead to a performance loss because some information is

neglected during the minimization process. A more appropriate solution would be to use

data-streaming onto multiple GPUs concurrently [175].
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In case of multi-PLD dataset the proposed method can be combined with a Hadamard

encoding labeling strategies to improve either the spatial resolution of the ASL data or

to improve the temporal resolution. Further improvements are expected by extending the

denoising approach to a reconstruction approach and combine this with the time-depended

controlled aliasing in parallel imaging results in higher acceleration (CAIPIRINHA) accel-

erated 3D-GRASE acquisition proposed in chapter 7.

RT-NF ASL

In chapter 6 we presented an interesting alternative to BOLD fMRI for neurofeedback

studies. We investigated the proof-of-principle concept for controlling neuronal activation

during a finger tapping experiment using fASL. The results demonstrates that all

subjects were able to learn to control their brain activity and increased the CBF of

about 10% in the first, and of about 16% in the second feedback run compared with no

feedback. The first results are very promising and show the potential of this method for

real-time applications. Problems occurring in BOLD based fMRI like baseline drifts,

or relative changes without quantitative reference can be solved with this technique.

This might be helpful in gaining insights into processes involved during neurofeedback.

Currently the specificity of neurofeedback effects is still not completely clear, and serves

as a topic of ongoing research in BOLD based fMRI. Additional reproducibility and

comparison studies with BOLD based MRI would be highly interesting to validate the

first results and see the potential and advantages of the proposed method.

The proposed real time pipeline provides an important tool for ASL imaging in general.

The online monitoring shows potential artifacts arising form successive head motion or

poor labeling efficiency due to B0 inhomogeneities, or turbulent flow. In such cases the

patient’s head can be fixed or the labeling plane can be reallocated immediately. Beside

the application on healthy subjects, the proposed concept could be applied to stroke

patients in form of rehabilitation. The online monitoring gives the user insights in the

performance of the patients during this process.

There are still a lot of open questions and future directions to go in this new field.

For example the right design of the paradigm, the right form of the presented feedback,

and also the mechanism involved during the feedback session remains unclear. In real

time neurofeedback (RT-NF) studies based on the BOLD signal a short block duration

is used to omit the effect of baseline drifts. This can hamper the accuracy of the

neurofeedback signal. The absolute quantification of ASL data provides the possibility to

increase the block duration resulting in a more accurate baseline signal. In addition, the

hemodynamic response in fASL is a slow varying signal and has a delay of approximately

4-6 seconds until the peak is reached. Accompanied with this delay is an inaccurate

feedback at the beginning of each activation block. Longer block durations would reduces

this influence.
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The feedback design is another open topic. In the current study the subjects received

a feedback every 4 seconds. However, due to the post-processing steps and the

hemodynamic response the total delay time of the feedback is 8-10 seconds. This might

confuse the subject during the task and an intermittent feedback after 12 s or after a

whole activation block might be more suited [141].

Although the first results are very promising, the contrast to noise ratio of fASL is

very low and approximately 1 for the used finger tapping experiment. Other cognitive

functions such as emotion have an even lower contrast to noise ration, which might

hamper the advantages of the method. Especially on a single subject basis, the provided

feedback might be not reliable enough to gain accurate results. However, this has to be

validated in further steps.

One current limitation of real time ASL is the limited number of slices, and the

limited spatial and temporal resolution. In our study we used a slice thickness of 6 mm to

achieve a reasonable brain coverage. The low temporal resolution and inherent blurring

of the GRASE sequences causes PVE. This leads to underestimation of GM CBF,

potentially dampening the effect of activation related CBF increase. The low temporal

resolution is caused by the long labeling period and the additional PLD. Velocity

selective arterial spin labeling (VSASL) might reduce the repetition time since moving

spins are labeled independent of their position. This eliminates the ATT form pulsed

arterial spin labeling (PASL)/pseudo continous arterial spin labeling (pCASL) sequences.

Higher spatial resolutions can be gained with accelerated acquisitions in

combination with fast reconstruction methods. The handling of the huge

amount of raw-data with iterative reconstruction is quite challenging within the

repetition time of 3-4 seconds. One potential solution can be provided by recent

developed deep learning based methods. The learned neuronal networks provide

meaningful results in a few tens of milliseconds [113, 225]. This feature makes them per-

fectly suited for real time application and should be integrated into the developed pipeline.

Accelerated 3D data acquisition

So far moderate acceleration factors of 2-3 were recommended from the ISMRM

consensus due to the inherently low SNR of ASL images. In chapter 6 we proposed

a new acquisition strategy for accelerated ASL imaging in combination with a 4D

variational reconstruction approach that exploits the whole ASL data simultaneously.

With this approach acceleration factors of 6 can be achieved allowing the acquisition of

high resolution whole brain data within a single shot. This significantly improves the

motion robustness compared with recommended segmented acquisitions and might be

of great interest for a variety of clinical applications, especially those were involuntary
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spontaneous movement can occur such as stroke imaging or in uncooperative patients. In

addition, it provides a higher flexibility for multi-PLD acquisitions or can be used for the

investigation of neuronal activity with a high spatial and temporal resolution.

The implemented time-depended CAIPIRINHA pattern has two advantages compared

with the static pattern. First, the time depended acquisition strategy allows the

estimation of the coil sensitivity maps without the use of an additional pre-scan. Second,

the shift from measurement to measurement increases the temporal incoherence, which

is directly utilized in the 4D reconstruction approach. This results in a slightly higher

temporal signal to noise ratio (TSNR) compared with the fully sampled acquisition. In

contrast to standard spatial variational reconstruction approaches the image quality and

quantitative metrics are significantly higher. The coupling of the control, label, and

perfusion weighted image during the reconstruction reduces the bias compared with

the separate reconstructions. A further reduction of the bias is expected by applying a

de-biasing method after the reconstruction [33].

Although the proposed accelerated single-shot acquisition addresses the demands of

motion-robustness the challenge of blurring along the second phase encoding direction

still remains. Our acquisition used an echo train length < 300 ms as recommended by the

consensus paper [8]. However, the results showed that the bias due to the T2-relaxation

of blood is much higher than the bias caused by one of the reconstruction approaches.

One can argue that for clinical diagnosis the bias in absolute value is not so important

than motion insensitivity because both, the healthy and diseased tissue are equally

affected. In addition, the quality of the images may be sufficient for clinical diagnosis.

However, for group studies a robust and reliable absolute quantification is necessary.

A potential solution might be to incorporate a de-blurring operator directly in the

reconstruction approach. The side effect of de-blurring is the noise amplification, which

could be hold low with the spatio-temporal constraints. A further reduction is expected

by combining the de-blurring operator with a variable flip-angle scheme [162, 328]. A

more intuitive approach would be to implemented the same 1x6(2) pattern as a two shot

acquisition. This could significantly reduce the echo-train length and accompanied bias

but comes at the cost of a decreased temporal resolution. Hence, it might be only suited

if no or only slight head motion is expected.

The proposed single-shot method is only validated on a few healthy subject. A fully

validation including patients with cerebrovascular diseases would be a possible next step

to investigate the potential of the method, especially the motion robustness. Beside

perfusion measurement, ASL provides the possibility to obtain a dynamic angiogramm of

the brain vessels [258]. Recent promising studies show that the feeding arteries in AVM

can be successfully detected [93]. To locate such small vessels high spatial and temporal

resolutions are necessary. Both requirements are fulfilled with the proposed method

showing another potential application area.
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The motion correction is currently performed after reconstruction. This may introduce

some blurring due to the incooperation of temporal information. Superior results

are expected if the the motion-correction is directly integrated in the reconstruction

approach. The motion information can be either gained from a tracking systems or by

performing a two step procedure.

The regularization and model parameters were optimized using a grid search on a

numerical generated dataset. The optimized parameters were then directly used for the

in-vivo data and provide reasonable results. The robustness of the model parameters for

different kind of data is of high importance for the general applicability. Similar to the

spatial adaptive denoising approaches the regularization parameter could be replaced by

an estimated g-factor map taking into account the spatial varying noise directly in the

reconstruction process.

In our study we limited the acceleration by a factor of 6. Higher acceleration factors

would be of great interest and can be either used to reduce the total echo train length

and hence the blurring, or to increase the spatial resolution of the ASL images. For

the latter, first promising results were recently published in form of an abstract [227]

suggesting acceleration-factors of up to 12 on a 7T MRI scanner. With this high

resolution (2 mm isotropic) whole brain images were obtained. In a potentially next step

the performance of higher acceleration factors will be evaluated.

The proposed reconstruction method is not limited to a specific sampling pattern. In

general, arbitrary Cartesian sampling strategies such as pseudo-random or pseudo spiral

could be used. In addition, the reconstruction approach can be adjusted for non-Cartesian

sampling strategies. Several studies indicate that non-Cartesian sampling strategies are

preferable over Cartesian sampling [282]. Therefore, an even higher acceleration factor

is expected by using more sophisticated patterns. A potential next step could be to test

different sampling schemes on the generated phantom and compare their performance.

Instead of simulated coil sensitivity maps, the original profiles can be taken into account

in the simulation study. In general the variations of the coil sensitivities might be lower

from inferior to superior direction. Hence, sampling pattern with lower acceleration factors

in the inferior-superior direction and higher acceleration factors along the other directions

might be more suited.
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Appendix

C.1 Definitions

Throughout this chapter we denote by Nx, Ny and Nz the image space dimensions, and

by Nt the number of time frames.

C.1.1 Discrete Forward Differences

2D Discrete Forward Differences

The discrete forward differences for an image u ∈ <Nx×Ny with Dirichlet boundary condi-

tions are given by:

(
∂+
x u
)
i,j

=

{
ui+1,j−ui,j

hx
1 ≤ i < Nx,

0 i = Nx,(
∂+
y u
)
i,j

=

{
ui,j+1−ui,j

hy
1 ≤ j < Ny,

0 j = Ny,

(C.1)

where hx and hy are the grid size of the image.

3D Discrete Forward Differences

The discrete forward differences for a volume u ∈ <Nx×Ny×Nz with Dirichlet boundary

conditions are given by:
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(
∂+
x u
)
i,j,k

=

{
ui+1,j,k−ui,j,k

hx
1 ≤ i < Nx,

0 i = Nx,(
∂+
y u
)
i,j,k

=

{
ui,j+1,k−ui,j,k

hy
1 ≤ j < Ny,

0 j = Ny,(
∂+
z u
)
i,j,k

=

{
ui,j,k+1−ui,j,k

hz
1 ≤ k < Nz,

0 k = Nz,

(C.2)

where hx, hy and hz are the grid size of the volume.

4D Discrete Forward Differences

The discrete forward differences for a volume time series u ∈ <Nx×Ny×Nz×Nt with Dirichlet

boundary conditions are given by:

(
∂+
x u
)
i,j,k,t

=

{
ui+1,j,k,t−ui,j,k,t

hx
1 ≤ i < Nx,

0 i = Nx,(
∂+
y u
)
i,j,k,t

=

{
ui,j+1,k,t−ui,j,k,t

hy
1 ≤ j < Ny,

0 j = Ny,(
∂+
z u
)
i,j,k,t

=

{
ui,j,k+1,t−ui,j,k,t

hz
1 ≤ k < Nz,

0 k = Nz,(
∂+
t u
)
i,j,k,t

=

{
ui,j,k,t+1−ui,j,k,t

ht
1 ≤ t < Nt,

0 t = Nt,

(C.3)

where hx, hy and hz are the grid size of the volume and ht is the grid size of the time

domain.

C.1.2 Adjoint of Discrete Forward Differences

Adjoint of 2D Discrete Forward Differences

The adjoint of 2D discrete forward differences for an image u ∈ <Nx×Ny with Dirichlet

boundary conditions are given by:
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(
∂∗+x u

)
i,j

=
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j = Ny,

(C.4)

where hx and hy are the grid size of the image.

Adjoint of 3D Discrete Forward Differences

The adjoint of 3D discrete forward differences for a volume u ∈ <Nx×Ny×Nz with Dirichlet

boundary conditions are given by:

(
∂∗+x u

)
i,j,k

=


−ui,j,k
hx

i = 1,
ui−1,j,k−ui,j,k

hx
1 < i < Nx,

ui−1,j,k

hx
i = Nx,

(
∂∗+y u

)
i,j,k

=


−ui,j,k
hy

j = 1,
ui,j−1,k−ui,j,k

hy
1 < j < Ny,

ui,j−1,k

hy
j = Ny,

(
∂∗+z u

)
i,j,k

=


−ui,j,k
hz

k = 1,
ui,j,k−1−ui,j,k

hz
1 < k < Nz,

ui,j,k−1

hz
k = Nz,

(C.5)

where hx, hy and hz are the grid size of the volume.

Adjoint of 4D Discrete Forward Differences

The adjoint of 4D discrete forward differences for a volume time series u ∈ <Nx×Ny×Nz×Nt
with Dirichlet boundary conditions are given by:
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(
∂∗+x u

)
i,j,k

=


−ui,j,k,t
hx

i = 1,
ui−1,j,k,t−ui,j,k,t

hx
1 < i < Nx,

ui−1,j,k,t

hx
i = Nx,

(
∂∗+y u

)
i,j,k

=


−ui,j,k,t
hy

j = 1,
ui,j−1k,t−ui,j,k,t

hy
1 < j < Ny,

ui,j−1,k,t

hy
j = Ny,

(
∂∗+z u

)
i,j,k,t

=


−ui,j,k,t

hz
k = 1,

ui,j,k−1,t−ui,j,k,t
hz

1 < k < Nz,
ui,j,k−1,t

hz
k = Nz,

(
∂∗+t u

)
i,j,k,t

=


−ui,j,k,t

ht
t = 1,

ui,j,k,t−1−ui,j,k,t
ht

1 < t < Nt,
ui,j,k,t−1

ht
t = Nt,

(C.6)

where hx, hy and hz are the grid size of the volume and ht is the grid size of the time

domain.

C.1.3 Discrete Backward Differences

2D Discrete Backward Differences

The discrete backward differences for an image u ∈ <Nx×Ny with Dirichlet boundary

conditions are given by:

(
∂−x u

)
i,j

=

{
ui,j−ui−1,j

hx
1 < i ≤ Nx,

0 i = 1,

(
∂−y u

)
i,j

=

{
ui,j−ui,j−1

hy
1 < j ≤ Ny,

0 j = 1,

(C.7)

where hx and hy are the grid size of the image.

3D Discrete Backward Differences

The discrete backward differences for a volume u ∈ <Nx×Ny×Nz with Dirichlet boundary

conditions are given by:
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(
∂−x u

)
i,j,k

=

{
ui,j,k−ui−1,j,k

hx
1 < i ≤ Nx,

0 i = 1,

(
∂−y u

)
i,j,k

=

{
ui,j,k−ui,j−1,k

hy
1 < j ≤ Ny,

0 j = 1,

(
∂−z u

)
i,j,k

=

{
ui,j,k−ui,j,k−1

hz
1 < k ≤ Nz,

0 k = 1,

(C.8)

where hx, hy and hz are the grid size of the volume.

4D Discrete Backward Differences

The discrete backward differences for a volume time series u ∈ <Nx×Ny×Nz×Nt with Dirich-

let boundary conditions are given by:

(
∂−x u

)
i,j,k,t

=

{
ui,j,k,t−ui−1,j,k,t

hx
1 < i ≤ Nx,

0 i = 1,

(
∂−y u

)
i,j,k,t

=

{
ui,j,k,t−ui,j−1,k,t

hy
1 < j ≤ Ny,

0 j = 1,

(
∂−z u

)
i,j,k,t

=

{
ui,j,k,t−ui,j,k−1,t

hz
1 < k ≤ Nz,

0 k = 1,

(
∂−t u

)
i,j,k,t

=

{
ui,j,k,t−ui,j,k,t−1

ht
1 < t ≤ Nt,

0 t = 1,

(C.9)

where hx, hy and hz are the grid size of the volume and ht is the grid size of the time

domain.

C.1.4 Adjoint of Discrete Backward Differences

Adjoint of 2D Discrete Backward Differences

The adjoint of discrete backward differences for an image u ∈ <Nx×Ny with Dirichlet

boundary conditions are given by:



200 Chapter C. Appendix

(
∂∗−x u

)
i,j

=


−ui+1,j

hx
i = 1,

ui,j−ui+1,j

hx
1 < i < Nx,

ui,j
hx

i = Nx,

(
∂∗−y u

)
i,j

=


−ui,j+1

hy
j = 1,

ui,j−ui,j+1

hy
1 < j < Ny,

ui,j
hy

j = Ny,

(C.10)

where hx and hy are the grid size of the image.

Adjoint 3D Discrete Backward Differences

The adjoint of discrete backward differences for a volume u ∈ <Nx×Ny×Nz with Dirichlet

boundary conditions are given by:

(
∂∗−x u

)
i,j,k

=


−ui+1,j,k

hx
i = 1,

ui,j,k−ui+1,j,k

hx
1 < i < Nx,

ui,j,k
hx

i = Nx,

(
∂∗−y u

)
i,j,k

=


−ui,j+1,k

hy
j = 1,

ui,j,k−ui,j+1,k

hy
1 < j < Ny,

ui,j,k
hy

j = Ny,

(
∂∗−z u

)
i,j,k

=


−ui,j,k+1

hz
k = 1,

ui,j,k−ui,j,k+1

hz
1 < k < Nz,

ui,j,k
hz

k = Nz,

(C.11)

where hx, hy and hz are the grid size of the volume.

Adjoint 4D Discrete Backward Differences

The adjoint of discrete backward differences for a volume time series u ∈ <Nx×Ny×Nz×Nt
with Dirichlet boundary conditions are given by:
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(
∂∗−x u

)
i,j,k,t

=


−ui+1,j,k,t

hx
i = 1,

ui,j,k,t−ui+1,j,k,t

hx
1 < i < Nx,

ui,j,k,t
hx

i = Nx,

(
∂∗−y u

)
i,j,k,t

=


−ui,j+1,k,t

hy
j = 1,

ui,j,k,t−ui,j+1,k,t

hy
1 < j < Ny,

ui,j,k,t
hy

j = Ny,

(
∂∗−z u

)
i,j,k,t

=


−ui,j,k+1,t

hz
k = 1,

ui,j,k,t−ui,j,k+1,t

hz
1 < k < Nz,

ui,j,k,t
hz

k = Nz,

(
∂∗−t u

)
i,j,k,t

=


−ui,j,k,t+1

ht
t = 1,

ui,j,k,t−ui,j,k,t+1

ht
1 < t < Nt,

ui,j,k,t
ht

t = Nt,

(C.12)

where hx, hy and hz are the grid size of the volume and ht is the grid size of the time

domain.

C.1.5 Discrete Gradient Operator

2D Discrete Gradient Operator

The discrete gradient operator for a given image u ∈ <Nx×Ny is a mapping ∇ : u → v,

where v ∈ <Nx×Ny×2, defined as

(∇u)i,j =

(
(∂+
x u)i,j(
∂+
y u
)
i,j

)
=

(
v1

v2

)
. (C.13)

3D Discrete Gradient Operator

The discrete gradient operator for a given volume u ∈ <Nx×Ny×Nz is a mapping ∇ : u→ v,

where v ∈ <Nx×Ny×Nz×3, defined as

(∇u)i,j,k =

(∂+
x u)i,j,k(
∂+
y u
)
i,j,k

(∂+
z u)i,j,k

 =

v1

v2

v3

 . (C.14)

4D Discrete Gradient Operator

The discrete gradient operator for a given volume time series u ∈ <Nx×Ny×Nz×Nt is a

mapping ∇ : u→ v, where v ∈ <Nx×Ny×Nz×Nt×4, defined as
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(∇βu)i,j,k,t =


(β1∂

+
x u)i,j,k,t(

β1∂
+
y u
)
i,j,k,t

(β1∂
+
z u)i,j,k,t(

β2∂
+
t u
)
i,j,k,t

 =


v1

v2

v3

v4

 . (C.15)

The additional parameter β = β1/β2 defines the relation between temporal and spatial

grid size.

C.1.6 Discrete Symmetrized Gradient Operator

2D Discrete Symmetrized Gradient Operator

The discrete symmetrized gradient operator for a given vector v ∈ <Nx×Ny×2 is a mapping

ε : v → w, where w ∈ <Nx×Ny×4, defined as

(εv)i,j =
1

2

(
(∇v)i,j + (∇v)Ti,j

)
=

=

 (
∂−x v

1
)
i,j

1
2

((
∂−x v

2
)
i,j

+
(
∂−y v

1
)
i,j

)
1
2

((
∂−x v

2
)
i,j

+
(
∂−y v

1
)
i,j

) (
∂−y v

2
)
i,j

 =

=

(
w1 w2

w3 w4

)
.

(C.16)

Since w2 = w3 equation C.16 can be rearranged:

(εv)i,j =


(
∂−x v

1
)
i,j

1
2

((
∂−x v

2
)
i,j

+
(
∂−y v

1
)
i,j

)
(
∂−y v

2
)
i,j

 =

w1

w2

w3

 . (C.17)

3D Discrete Symmetrized Gradient Operator

The discrete symmetrized gradient operator for a given vector v ∈ <Nx×Ny×Nz×3 is a

mapping ε : v → w, where w ∈ <Nx×Ny×Nz×6, defined as

(εv)i,j,k =
1

2

(
(∇v)i,j,k + (∇v)Ti,j,k

)
=

=



(
∂−x v

1
)
i,j,k(

∂−y v
2
)
i,j,k(

∂−z v
3
)
i,j,k

1
2

((
∂−x v

2
)
i,j,k

+
(
∂−y v

1
)
i,j,k

)
1
2

((
∂−x v

3
)
i,j,k

+
(
∂−z v

1
)
i,j,k

)
1
2

((
∂−y v

3
)
i,j,k

+
(
∂−z v

2
)
i,j,k

)


=



w1

w2

w3

w4

w5

w6


.

(C.18)
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4D Discrete Symmetrized Gradient Operator

The discrete symmetrized gradient operator for a given vector v ∈ <Nx×Ny×Nz×Nt×4 is a

mapping ε : v → w, where w ∈ <Nx×Ny×Nz×Nt×10, defined as

(εβv)i,j,k,t =
1

2

(
(∇v)i,j,k,t + (∇v)Ti,j,k,t

)
=

=



(
β1∂

−
x v

1
)
i,j,k,t(

β1∂
−
y v

2
)
i,j,k,t(

β1∂
−
z v

3
)
i,j,k,t(

β2∂
−
t v

4
)
i,j,k,t

1
2

((
β1∂

−
x v

2
)
i,j,k,t

+
(
β1∂

−
y v

1
)
i,j,k,t

)
1
2

((
β1∂

−
x v

3
)
i,j,k,t

+
(
β1∂

−
z v

1
)
i,j,k,t

)
1
2

((
β1∂

−
x v

4
)
i,j,k,t

+
(
β2∂

−
t v

1
)
i,j,k,t

)
1
2

((
β1∂

−
y v

3
)
i,j,k,t

+
(
β1∂

−
z v

2
)
i,j,k,t

)
1
2

((
β1∂

−
y v

4
)
i,j,k,t

+
(
β2∂

−
t v

2
)
i,j,k,t

)
1
2

((
β1∂

−
z v

4
)
i,j,k,t

+
(
β2∂

−
t v

3
)
i,j,k,t

)



=



w1

w2

w3

w4

w5

w6

w7

w8

w9

w10



.
(C.19)

C.1.7 Discrete Divergence Operator

2D Discrete Divergence Operator

The adjoint operation of the gradient operator is the negative divergence ∇∗ = −div1.

The 2D divergence operator (div1 : v → u) is defined as

(
div1v

)
i,j

=
((
∂∗+x v1

)
i,j

+
(
∂∗+y v2

)
i,j

)
, (C.20)

with v ∈ <Nx×Ny×2 and u ∈ <Nx×Ny .

3D Discrete Divergence Operator

The adjoint operation of the gradient operator is the negative divergence ∇∗ = −div1.

The 3D divergence operator (div1 : v → u) is defined as

(
div1v

)
i,j,k

=
((
∂∗+x v1

)
i,j,k

+
(
∂∗+y v2

)
i,j,k

+
(
∂∗+z v3

)
i,j,k

)
, (C.21)

with v ∈ <Nx×Ny×Nz×3 and u ∈ <Nx×Ny×Nz .

4D Discrete Divergence Operator

The adjoint operation of the gradient operator is the negative divergence ∇∗ = −div1.

The 4D divergence operator (div1 : v → u) is defined as
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(
div1

βv
)
i,j,k,t

=
(
β1

(
∂∗+x v1

)
i,j,k,t

+ β1

(
∂∗+y v2

)
i,j,k,t

+

β1

(
∂∗+z v3

)
i,j,k,t

+ β2

(
∂∗+t v1

)
i,j,k,t

)
,

(C.22)

with v ∈ <Nx×Ny×Nz×Nt×4 and u ∈ <Nx×Ny×Nz×Nt . The additional parameter β = β1/β2

defines the relation between spatial and temporal grid size.

C.1.8 Discrete Symmetrized Divergence Operator

2D Discrete Symmetrized Divergence Operator

The discrete symmetrized divergence operator is chosen to be adjoint to the symmetrized

gradient operator, that is ε∗ = −div2. The 2D symmetrized divergence operator (div2 :

w → v) is defined as

(
div2w

)
i,j

=

(
(∂∗−x w1)i,j +

(
∂∗−y w3

)
i,j

(∂∗−x w3)i,j +
(
∂∗−y w2

)
i,j

)
, (C.23)

with w ∈ <Nx×Ny×3 and v ∈ <Nx×Ny×2.

3D Discrete Symmetrized Divergence Operator

The discrete symmetrized divergence operator is chosen to be adjoint to the symmetrized

gradient operator, that is ε∗ = −div2. The 3D symmetrized divergence operator (div2 :

w → v) is defined as

(
div2w

)
i,j,k

=

(∂∗−x w1)i,j,k +
(
∂∗−y w4

)
i,j,k

+ (∂∗−z w5)i,j,k
(∂∗−x w4)i,j,k +

(
∂∗−y w2

)
i,j,k

+ (∂∗−z w6)i,j,k
(∂∗−x w5)i,j,k +

(
∂∗−y w6

)
i,j,k

+ (∂∗−z w3)i,j,k

 , (C.24)

with w ∈ <Nx×Ny×Nz×6 and v ∈ <Nx×Ny×Nz×3.

4D Discrete Symmetrized Divergence Operator

The discrete symmetrized divergence operator is chosen to be adjoint to the symmetrized

gradient operator, that is ε∗ = −div2. The 4D symmetrized divergence operator (div2 :

w → v) is defined as

(
div

2
βw
)
i,j,k,t

=



β1

(
∂∗−x w1

)
i,j,k,t

+ β1

(
∂∗−y w5

)
i,j,k,t

+ β1

(
∂∗−z w6

)
i,j,k,t

+ β2

(
∂∗−t w7

)
i,j,k,t

β1

(
∂∗−x w5

)
i,j,k,t

+ β1

(
∂∗−y w2

)
i,j,k,t

+ β1

(
∂∗−z w8

)
i,j,k,t

+ β2

(
∂∗−t w9

)
i,j,k,t

β1

(
∂∗−x w6

)
i,j,k,t

+ β1

(
∂∗−y w8

)
i,j,k,t

+ β1

(
∂∗−z w3

)
i,j,k,t

+ β2

(
∂∗−t w10

)
i,j,k,t

β1

(
∂∗−x w7

)
i,j,k,t

+ β1

(
∂∗−y w9

)
i,j,k,t

+ β1

(
∂∗−z w10

)
i,j,k,t

+ β2

(
∂∗−t w4

)
i,j,k,t


, (C.25)

with w ∈ <Nx×Ny×Nz×Nt×10 and v ∈ <Nx×Ny×Nz×Nt×4.
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C.1.9 Indicator Function

The convex indicator function is defined as follows

I||·||∞≤1 (y) =

{
0 ||y||∞ ≤ 1

+∞ ||y||∞ > 1
(C.26)

C.1.10 Convex Conjugate

The convex or Fenchel conjugate of a function f : <N 7→ < is defined as

f∗(y) = sup
x
〈x, y〉 − f(x). (C.27)

The Fenchel conjugate of any kind of norm f(x) = ||·|| is given by the indicator function

f∗(y) = I||·||∞≤1 (y) , (C.28)

and the Fenchel conjugate of a squared norm f(x) = 1
2 ||·||

2 is defined as

f∗(y) =
1

2
||y||2∗ , (C.29)

where ||y||∗ is the corresponding dual norm of f(x).

C.1.11 Proximal Mapping

Given a convex function f, the proximal mapping of f is the operator given by

x∗ = (I + σf)−1 (χ) = Pσ,f (χ) = arg max
x

1

2
||x− χ||22 + σf (x) . (C.30)

In this thesis several proximal mappings were used. For f∗(y) = I||·||∞≤α (y) the proximal

mapping is defined as

Pσf∗ (χ) = Pα (χ) = arg max
y

1

2
||y − χ||22 + I||·||∞≤1 (y) =

χ

max
(

1, |χ|α

) . (C.31)

The proximal mapping for f∗(y) = 1
2λ ||y||

2
2 is given by
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Pλ,σf∗ (χ) = P 2
λ,σ (χ) = arg max

y

1

2
||y − χ||22 +

1

2λ
||y||22 =

χ

1 + σ
λ

.
(C.32)

The proximal mapping for f∗(y) = λ
2 ||y − z||

2
2 is given by

Pλ,τf∗ (χ) = P 2
λ,τ (χ) = arg max

y

1

2
||y − χ||22 +

1

2λ
||y − z||22 =

χ+ λτz

1 + τλ
.

(C.33)

The proximal mapping for f∗(y) = λ
2 ||ςy − z||

2
2 is given by

Pλ,ς,τ,f∗ (χ) = P 2
λ,ς,τ (χ) = arg max

y

1

2
||y − χ||22 +

1

2λ
||ςy − z||22 =

χ+ λτς∗z

1 + ς∗ςτλ
.

(C.34)

C.2 Algorithm

C.2.1 Variational Denoising - L2 Norm

The total generalized variational denoising of a perfusion weighted image dM ∈ <Nx×Ny
is defined as

dM∗ ∈ arg min
dM

λ

2
||dM − ddM ||22 + TGV 2

α1,α0
(dM) , (C.35)

where ddM ∈ <Nx×Ny is the given noisy image. The full minimization problem reads as

follows

min
dM,p1

λ

2
||dM − ddM ||22 + α1 ||∇dM − p1||1 + α0 ||εp1||1 . (C.36)

For solving this problem with the primal dual splitting algorithm, it has to be reformulated

as a saddle point problem. This is achieved by calculating the convex conjugates of the

functions using definition C.27 .

min
dM,p1

max
p2,p3

λ

2
||dM − ddM ||22 + 〈∇dM − p1, p2〉−

I||·||∞≤α1γ1
(p2) + 〈εp1, p3〉 − I||·||∞≤α0γ1

(p3) .

(C.37)
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The full iterative update scheme is given in algorithm 3.

Algorithm 3 Primal dual algorithm for TGV denoising using a L2-norm data fidelity
term
Input: ddM
Output: dM

Initialize: p0
1, p0

2, p0
3, dM0, dM

0
, p0

1, choose τ , σ > 0

for n = 0 until maxIter

Dual Update:

pn+1
2 = Pα1

(
pn2 + σ

(
∇dMn − pn1

))
pn+1

3 = Pα0 (pn3 + σεpn1 )

Primal Update:
dMn+1 = P 2

λ,τ

(
dMn − τ

(
∇∗pn+1

2

))
pn+1

1 = pn1 − τ
(
−pn+1

2 + ε∗pn+1
3

)
Extrapolation step:

dM
n+1

= 2dMn+1 − dMn

pn+1
1 = 2pn+1

1 − pn1

C.2.2 Variational Denoising - L1 Norm

The total generalized variational denoising of a perfusion weighted image dM ∈ <Nx×Ny
using the L1-norm for the data-fidelity term is defined as

dM∗ ∈ arg min
dM,p1

λ ||dM − ddM ||1 + α1 ||∇dM − p1||1 + α0 ||εp1||1 , (C.38)

where ddM ∈ <Nx×Ny is the given noisy image. The solution of this problem is given

by the primal dual splitting problem. Therefore, the problem has to be reformulated as

a convex-concave saddle point problem. This is achieved by using the definition of the

Fenchel conjugate C.27 leading to

min
dM,p1

max
dM2,p2,p3

〈dM − ddM , dM2〉 − I||·||∞≤λ (dM2) +

〈∇dM − p1, p2〉 − I||·||∞≤α1γ1
(p2) +

〈εp1, p3〉 − I||·||∞≤α0γ1
(p3) .

(C.39)

The implementation of the L1-norm TGV denoising is given in algorithm 4.
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Algorithm 4 Primal dual algorithm for TGV denoising using a L1-norm data fidelity
term
Input: ddM
Output: dM

Initialize: p0
1, p0

2, p0
3, dM0, dM0

2 , dM
0
, p0

1, choose τ , σ > 0

for n = 0 until maxIter

Dual Update:

dMn+1
2 = Pλ

(
dMn

2 + σdM
n
)

pn+1
2 = Pα1

(
pn2 + σ

(
∇dMn − pn1

))
pn+1

3 = Pα0 (pn3 + σεpn1 )

Primal Update:
dMn+1 = dMn − τ

(
dMn+1

2 +∇∗pn+1
2

)
pn+1

1 = pn1 − τ
(
−pn+1

2 + ε∗pn+1
3

)
Extrapolation step:

dM
n+1

= 2dMn+1 − dMn

pn+1
1 = 2pn+1

1 − pn1

C.2.3 Variational ASL Denoising Including Time Series Information -

L2 Norm

The total generalized variational denoising of a perfusion weighted image (dM ∈ <Nx×Ny)
including temporal information in the L2-norm data fidelity term is defined as

dM∗ ∈ arg min
dM

λ

2
||ςdM − ddM ||22 + TGV 2

α1,α0
(dM) , (C.40)

where ddM ∈ <Nx×Ny×Nt is the given noisy image time series. For solving this problem

with the primal dual splitting algorithm, it has to be reformulated as a saddle point

problem. This is achieved by calculating the convex conjugates of the functions using

definition C.27 .

min
dM,p1

max
p2,p3

λ

2
||ςdM − ddM ||22 + 〈∇dM − p1, p2〉−

I||·||∞≤α1γ1
(p2) + 〈εp1, p3〉 − I||·||∞≤α0γ1

(p3)

(C.41)

The full iterative update scheme is given in algorithm 5.
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Algorithm 5 Primal dual algorithm for TGV denoising including time series information
in the L2-norm data fidelity term

Input: ddM
Output: dM

Initialize: p0
1, p0

2, p0
3, dM0, dM

0
, p0

1, choose τ , σ > 0

for n = 0 until maxIter

Dual Update:

pn+1
2 = Pα1

(
pn2 + σ

(
∇dMn − pn1

))
pn+1

3 = Pα0 (pn3 + σεpn1 )

Primal Update:
dMn+1 = P 2

λ,ς,τ

(
dMn − τ

(
∇∗pn+1

2

))
pn+1

1 = pn1 − τ
(
−pn+1

2 + ε∗pn+1
3

)
Extrapolation step:

dM
n+1

= 2dMn+1 − dMn

pn+1
1 = 2pn+1

1 − pn1

C.2.4 Variational ASL Denoising Including Time Series Information -

L1 Norm

The total generalized variational denoising of a perfusion weighted image (dM ∈ <Nx×Ny)
including temporal information in the L1-norm data fidelity term is defined as

dM∗ ∈ arg min
dM,p1

λ ||ςdM − ddM ||1 + α1 ||∇dM − p1||1 + α0 ||εp1||1 (C.42)

where ddM ∈ <Nx×Ny×Nt is the given noisy image time series. The solution of this problem

is given by the primal dual splitting problem. Therefore, the problem has to be reformu-

lated as a convex-concave saddle point problem. This is achieved by using the definition

of the Fenchel conjugate C.27 leading to

min
dM,p1

max
dM2,p2,p3

〈ςdM − ddM , dM2〉 − I||·||∞≤λ (dM2) +

〈∇dM − p1, p2〉 − I||·||∞≤α1γ1
(p2) +

〈εp1, p3〉 − I||·||∞≤α0γ1
(p3) .

(C.43)

The implementation of the full denoising problem is given in algorithm 6.
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Algorithm 6 Primal dual algorithm for TGV denoising including time series information
in the L1-norm data fidelity term

Input: ddM
Output: dM

Initialize: p0
1, p0

2, p0
3, dM0, dM0

2 , dM
0
, p0

1, choose τ , σ > 0

for n = 0 until maxIter

Dual Update:

dMn+1
2 = Pλ

(
dMn

2 + σςdM
n
)

pn+1
2 = Pα1

(
pn2 + σ

(
∇dMn − pn1

))
pn+1

3 = Pα0 (pn3 + σεpn1 )

Primal Update:
dMn+1 = dMn − τ

(
ς∗dMn+1

2 +∇∗pn+1
2

)
pn+1

1 = pn1 − τ
(
−pn+1

2 + ε∗pn+1
3

)
Extrapolation step:

dM
n+1

= 2dMn+1 − dMn

pn+1
1 = 2pn+1

1 − pn1

C.2.5 Full Variational ASL Denoising Model - L2 Norm

The full ASL-TGV denoising approach with L2-norm for the data fidelity term is defined

as

(c∗, l∗) ∈ arg min
c,l

λ

2
||ςc− dc||22 +

λ

2
||ςl − dl||22 +

γ1 (w)TGV 2
α1,α0

(l) + γ2 (w)TGV 2
α1,α0

(c− l) .
(C.44)

The solution of this problem is given by the primal dual splitting problem. Therefore,

the problem has to be reformulated as a convex-concave saddle point problem. This is

achieved by using the definition of the Fenchel conjugate C.27 leading to

min
c,l,p1,q1

max
p2,p3,q2,q3

λ

2
||ςc− dc||22 +

λ

2
||ςl − dl||22

〈∇ (c− l)− p1, p2〉 − I||·||∞≤α1γ2
(p2) +

〈εp1, p3〉 − I||·||∞≤α0γ2
(p3) +

〈∇ (l)− q1, q2〉 − I||·||∞≤α1γ1
(q2) +

〈εq1, q3〉 − I||·||∞≤α0γ1
(q3) .

(C.45)
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The final update scheme for the primal dual algorithm of the saddle point problem C.45

is defined in Algorithm 7.

Algorithm 7 Primal Dual Algorithm for L2 ASL-TGV denoising

Input: dc, dl
Output: c, l

Initialize: p0
1, p0

2, p0
3, q0

1, q0
2, q0

3, c0, l0, c0, l
0
, p0

1, q0
1, choose τ , σ > 0

for n = 0 until maxIter

Dual Update:

pn+1
2 = Pα1,γ1

(
pn2 + σ

(
∇cn −∇ln − pn1

))
pn+1

3 = Pα0,γ1 (pn3 + σεpn1 )

qn+1
2 = Pα1,γ2

(
qn2 + σ

(
∇ln − qn1

))
qn+1

3 = Pα0,γ2 (qn3 + σεqn1 )

Primal Update:
cn+1 = P 2

λ,ς,τ

(
cn − τ

(
∇∗pn+1

2 + ς∗cn+1
2

))
ln+1 = P 2

λ,ς,τ

(
ln − τ

(
−∇∗pn+1

2 +∇∗qn+1
2 + ς∗ln+1

2

))
pn+1

1 = pn1 − τ
(
−pn+1

2 + ε∗pn+1
3

)
qn+1

1 = qn1 − τ
(
−qn+1

2 + ε∗qn+1
3

)
Extrapolation step:

cn+1 = 2cn+1 − cn
l
n+1

= 2ln+1 − ln
pn+1

1 = 2pn+1
1 − pn1

qn+1
1 = 2qn+1

1 − qn1
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C.2.6 Full Variational ASL Denoising Model - L1 Norm

The full ASL-TGV denoising approach with L1-norm for the data fidelity term is defined

as

(c∗, l∗) ∈ arg min
c,l

λ

2
||ςc− dc||1 +

λ

2
||ςl − dl||1 +

γ1 (w)TGV 2
α1,α0

(l) + γ2 (w)TGV 2
α1,α0

(c− l) .
(C.46)

The solution of this problem is given by the primal dual splitting problem. Therefore,

the problem has to be reformulated as a convex-concave saddle point problem. This is

achieved by using the definition of the Fenchel conjugate C.27 leading to

min
c,l,p1,q1

max
c2,l2,p2,p3,q2,q3

〈ςc− dc, c2〉 − I||·||∞≤λ (c2) + 〈ςl − dl, l2〉 − I||·||∞≤λ (l2) +

〈∇ (c− l)− p1, p2〉 − I||·||∞≤α1γ2
(p2) +

〈εp1, p3〉 − I||·||∞≤α0γ2
(p3) +

〈∇ (l)− q1, q2〉 − I||·||∞≤α1γ1
(q2) +

〈εq1, q3〉 − I||·||∞≤α0γ1
(q3) .

(C.47)

The final update scheme for the primal dual algorithm of the saddle point problem C.47

is defined in Algorithm 8.
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Algorithm 8 Primal Dual Algorithm for L1 ASL-TGV denoising

Input: dc, dl
Output: c, l

Initialize: p0
1, p0

2, p0
3, q0

1, q0
2, q0

3, c0, c0
2, l0, l02, c0, l

0
, p0

1, q0
1, choose τ , σ > 0

for n = 0 until maxIter

Dual Update:

pn+1
2 = Pα1,γ1

(
pn2 + σ

(
∇cn −∇ln − pn1

))
pn+1

3 = Pα0,γ1 (pn3 + σεpn1 )

qn+1
2 = Pα1,γ2

(
qn2 + σ

(
∇ln − qn1

))
qn+1

3 = Pα0,γ2 (qn3 + σεqn1 )
cn+1

2 = Pλ (cn2 + σ (ςcn − dc))
ln+1
2 = Pλ

(
ln2 + σ

(
ςl
n − dl

))
Primal Update:
cn+1 = cn − τ

(
∇∗pn+1

2 + ς∗cn+1
2

)
ln+1 = ln − τ

(
−∇∗pn+1

2 +∇∗qn+1
2 + ς∗ln+1

2

)
pn+1

1 = pn1 − τ
(
−pn+1

2 + ε∗pn+1
3

)
qn+1

1 = qn1 − τ
(
−qn+1

2 + ε∗qn+1
3

)
Extrapolation step:

cn+1 = 2cn+1 − cn
l
n+1

= 2ln+1 − ln
pn+1

1 = 2pn+1
1 − pn1

qn+1
1 = 2qn+1

1 − qn1

C.2.7 Spatial Adaptive Variational ASL Denoising - L2 Norm

The variational denoising method for ASL imaging with spatial adaptive regularization

maps is given by

(c∗, l∗) ∈ arg min
c,l

1

2
||λc (ςc− dc)||22 +

1

2
||λl (ςl − dl)||22 +

γ1 (w)TGV 2
α1,α0

(l) + γ2 (w)TGV 2
α1,α0

(c− l) .
(C.48)

The solution of this problem is given by the primal dual splitting problem. Therefore,

the problem has to be reformulated as a convex-concave saddle point problem. This is

achieved by using the definition of the Fenchel conjugate C.27 leading to
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min
c,l,p1,q1

max
p2,p3,q2,q3

1

2
||λc (ςc− dc)||22 +

1

2
||λl (ςl − dl)||22

〈∇ (c− l)− p1, p2〉 − I||·||∞≤α1γ2
(p2) +

〈εp1, p3〉 − I||·||∞≤α0γ2
(p3) +

〈∇ (l)− q1, q2〉 − I||·||∞≤α1γ1
(q2) +

〈εq1, q3〉 − I||·||∞≤α0γ1
(q3) .

(C.49)

The final update scheme for the primal dual algorithm of the saddle point problem C.49

is defined in Algorithm 9.

Algorithm 9 Primal Dual Algorithm for spatial adaptive ASL-TGV denoising

Input: dc, dl
Output: c, l

Initialize: p0
1, p0

2, p0
3, q0

1, q0
2, q0

3, c0, l0, c0, l
0
, p0

1, q0
1, choose τ ,σ > 0

for n = 0 until maxIter

Dual Update:

pn+1
2 = Pα1,γ1

(
pn2 + σ

(
∇cn −∇ln − pn1

))
pn+1

3 = Pα0,γ1 (pn3 + σεpn1 )

qn+1
2 = Pα1,γ2

(
qn2 + σ

(
∇ln − qn1

))
qn+1

3 = Pα0,γ2 (qn3 + σεqn1 )

Primal Update:
cn+1 = P 2

λc,ς,τ

(
cn − τ

(
∇∗pn+1

2 + ς∗cn+1
2

))
ln+1 = P 2

λl,ς,τ

(
ln − τ

(
−∇∗pn+1

2 +∇∗qn+1
2 + ς∗ln+1

2

))
pn+1

1 = pn1 − τ
(
−pn+1

2 + ε∗pn+1
3

)
qn+1

1 = qn1 − τ
(
−qn+1

2 + ε∗qn+1
3

)
Extrapolation step:

cn+1 = 2cn+1 − cn
l
n+1

= 2ln+1 − ln
pn+1

1 = 2pn+1
1 − pn1

qn+1
1 = 2qn+1

1 − qn1

Note that in the above algorithm the regularization maps (λc and λl) are applied point

wise in the operator P 2
λ,ς,τ (χ).
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C.2.8 Spatio-Temporal ICTGV Denoising

The ICTGV denoising approach for dynamic ASL imaging is given by

dM∗ ∈ arg min
dM

λ

2
||dM − ddM ||22 + γ1 (w)TGV 2

α1,α0,β (dM − v) +

γ2 (w)TGV 2
α1,α0,β (v) ,

(C.50)

where ddM ∈ <Nx×Ny×Nz×Nt is the acquired noisy image time series and

dM ∈ <Nx×Ny×Nz×Nt the denoised image time series. The solution of this problem

is given by the primal dual splitting problem. Therefore, the problem has to be

reformulated as a convex-concave saddle point problem. This is achieved by using the

definition of the Fenchel conjugate C.27 leading to

min
dM,p1,q1,v

max
p2,p3,q2,q3

λ

2
||dM − ddM ||22 + 〈∇β (dM − v)− p1, p2〉+

〈εβp1, p3〉+ 〈∇β (v)− q1, q2〉+ 〈εβq1, q3〉−
Iα1,γ1 (p2)− Iα0,γ1 (p3)− Iα1,γ2 (q2)− Iα0,γ2 (q3) .

(C.51)

The final update scheme for the primal dual algorithm of the saddle point problem C.51

is defined in Algorithm 10.

C.2.9 4D Variational ASL Reconstruction

The full ASL-TGV reconstruction approach for accelerated ASL data is defined as

(c∗, l∗) ∈ arg min
c,l

λc
2
||Kc− dc||22 +

λl
2
||Kl − dl||22 + γ1 (w)TGVα1,α0,β (l) +

γ1 (w)TGVα1,α0,β (c) + γ2 (w)TGVα1,α0,β (c− l) .
(C.52)

The solution of this problem is given by the primal dual splitting problem. Therefore,

the problem has to be reformulated as a convex-concave saddle point problem. This is

achieved by using the definition of the Fenchel conjugate C.27 leading to

min
c,l,p1,q1,r1

max
p2,p3,q2,q3,r2,r3,y,z

〈Kc− dc, y〉 −
1

2λc
||y||22 + 〈Kl − dl, z〉 −

1

2λl
||z||22 +

〈∇β (c− l)− p1, p2〉+ 〈εβp1, p3〉+ 〈∇βl − q1, q2〉+
〈εβq1, q3〉+ 〈∇βc− r1, r2〉+ 〈εβr1, r3〉−
Iα1,γ2 (p2)− Iα0,γ2 (p3)− Iα1,γ1 (q2)−
Iα0,γ1 (q3)− Iα1,γ1 (r2)− Iα0,γ1 (r3) .

(C.53)
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Algorithm 10 Primal Dual Algorithm for 4D ICTGV denoising

Input: ddM
Output: dM

Initialize: p0
1,p0

2,p0
3,q0

1,q0
2,q0

3,dM0,v0,dM
0
,v0,p0

1,q0
1, choose τ ,σ > 0

for n = 0 until maxIter

Dual Update:

pn+1
2 = Pα1,γ1

(
pn2 + σ

(
∇βdM

n −∇βvn − pn1
))

pn+1
3 = Pα0,γ1 (pn3 + σεβp

n
1 )

qn+1
2 = Pα1,γ2 (qn2 + σ (∇βvn − qn1 ))
qn+1

3 = Pα0,γ2 (qn3 + σεβq
n
1 )

Primal Update:

dMn+1 = P 2
λ,τ

(
dMn − τ

(
∇∗βp

n+1
2

))
vn+1 = vn − τ

(
−∇∗βp

n+1
2 +∇∗βq

n+1
2

)
pn+1

1 = pn1 − τ
(
−pn+1

2 + ε∗βp
n+1
3

)
qn+1

1 = qn1 − τ
(
−qn+1

2 + ε∗βq
n+1
3

)
Extrapolation step:

dM
n+1

= 2dMn+1 − dMn

vn+1 = 2vn+1 − vn
pn+1

1 = 2pn+1
1 − pn1

qn+1
1 = 2qn+1

1 − qn1

The final update scheme for the primal dual algorithm of the saddle point problem C.53

is defined in Algorithm 11.
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Algorithm 11 Primal Dual Algorithm for 4D ASL-TGV reconstruction

Input: dc, dl
Output: c, l

Initialize: p0
1,p0

2,p0
3,q0

1,q0
2,q0

3,r0
1,r0

2,r0
3,c0,l0,y0,z0,c0,l

0
,p0

1,q0
1,r0

1 choose τ ,σ > 0

for n = 0 until maxIter

Dual Update:

pn+1
2 = Pα1,γ2

(
pn2 + σ

(
∇βcn −∇βl

n − pn1
))

pn+1
3 = Pα0,γ2 (pn3 + σεβp

n
1 )

qn+1
2 = Pα1,γ1

(
qn2 + σ

(
∇βl

n − qn1
))

qn+1
3 = Pα0,γ1 (qn3 + σεβq

n
1 )

rn+1
2 = Pα1,γ1 (rn2 + σ (∇βcn − rn1 ))
rn+1

3 = Pα0,γ1 (rn3 + σεβr
n
1 )

yn+1 = P 2
λc,σ

(yn + σ (Kcn − dc))
zn+1 = P 2

λl,σ

(
zn + σ

(
Kl

n − dl
))

Primal Update:

cn+1 = cn − τ
(
∇∗βp

n+1
2 +∇∗βr

n+1
2 +K∗yn+1

)
ln+1 = ln − τ

(
−∇∗βp

n+1
2 +∇∗βq

n+1
2 +K∗zn+1

)
pn+1

1 = pn1 − τ
(
−pn+1

2 + ε∗βp
n+1
3

)
qn+1

1 = qn1 − τ
(
−qn+1

2 + ε∗βq
n+1
3

)
rn+1

1 = rn1 − τ
(
−rn+1

2 + ε∗βr
n+1
3

)
Extrapolation step:
cn+1 = 2cn+1 − cn
l
n+1

= 2ln+1 − ln
pn+1

1 = 2pn+1
1 − pn1

qn+1
1 = 2qn+1

1 − qn1
rn+1

1 = 2rn+1
1 − rn1
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lems withÂ Applications to Imaging. Journal of Mathematical Imaging and Vision,

40(1):120–145, may 2011, doi: 10.1007/s10851-010-0251-1. (page 63, 64, 152)

[42] T. F. Chan, S. Esedoglu, and F. Park. A fourth order dual method for staircase

reduction in texture extraction and image restoration problems. In Proceedings -

International Conference on Image Processing, ICIP, pages 4137–4140, 2010, doi:

10.1109/ICIP.2010.5653199. (page 60)

[43] Y. V. Chang, M. Vidorreta, Z. Wang, and J. A. Detre. 3D-accelerated, stack-of-

spirals acquisitions and reconstruction of arterial spin labeling MRI. Magnetic Res-

onance in Medicine, 78(4):1405–1419, oct 2017, doi: 10.1002/mrm.26549. (page 32,

149, 168)

[44] M. Chappell, A. Groves, B. Whitcher, and M. Woolrich. Variational Bayesian In-

ference for a Nonlinear Forward Model. IEEE Transactions on Signal Processing,

57(1):223–236, jan 2009, doi: 10.1109/TSP.2008.2005752. (page 156)

[45] M. Chappell, B. MacIntosh, and T. Okell. Introduction to Perfusion Quantification

using Arterial Spin Labelling, volume 1. Oxford University Press, dec 2017, doi:

10.1093/oso/9780198793816.001.0001. (page 23, 25, 28, 31, 40, 49, 50, 53, 171)

[46] M. A. Chappell, M. W. Woolrich, S. Kazan, P. Jezzard, S. J. Payne, and B. J.

MacIntosh. Modeling dispersion in arterial spin labeling: Validation using dynamic

angiographic measurements. Magnetic Resonance in Medicine, 69(2):563–570, feb

2013, doi: 10.1002/mrm.24260. (page 40)

[47] J. J. Chen and G. B. Pike. Human whole blood <i>T</i> <sub>2</sub> relax-

ometry at 3 Tesla. Magnetic Resonance in Medicine, 61(2):249–254, feb 2009, doi:

10.1002/mrm.21858. (page 154)

[48] Y. Chen, H. I. Wan, J. P. O’Reardon, D. J. Wang, Z. Wang, M. Korczykowski,

and J. A. Detre. Quantification of cerebral blood flow as biomarker of drug effect:

Arterial spin labeling phMRI after a single dose of oral citalopram. Clinical Phar-

macology and Therapeutics, 89(2):251–258, feb 2011, doi: 10.1038/clpt.2010.296.

(page 22, 116)

[49] Z. Chen, X. Zhang, C. Yuan, X. Zhao, and M. J. van Osch. Measuring the la-

beling efficiency of pseudocontinuous arterial spin labeling. Magnetic Resonance in

Medicine, 77(5):1841–1852, may 2017, doi: 10.1002/mrm.26266. (page 51)



224

[50] Z. Chen, X. Zhao, X. Zhang, R. Guo, W. M. Teeuwisse, B. Zhang, P. Koken,

J. Smink, C. Yuan, and M. J. van Osch. Simultaneous measurement of brain

perfusion and labeling efficiency in a single pseudo-continuous arterial spin la-

beling scan. Magnetic Resonance in Medicine, 79(4):1922–1930, apr 2018, doi:

10.1002/mrm.26842. (page 51)

[51] D. A. Chesler and K. K. Kwong. An intuitive guide to the T1 based perfusion

model. International Journal of Imaging Systems and Technology, 6(2-3):171–174,

1995, doi: 10.1002/ima.1850060206. (page 36)

[52] C. Constantinides. Magnetic resonance imaging: The basics. Taylor & Francis Ltd,

2016. (page 92)

[53] R. W. Cox, A. Jesmanowicz, and J. S. Hyde. Real-Time Functional Magnetic Res-

onance Imaging. Magnetic Resonance in Medicine, 33(2):230–236, feb 1995, doi:

10.1002/mrm.1910330213. (page 138)

[54] K. Dabov, A. Foi, V. Katkovnik, and K. Egiazarian. Image Denoising by Sparse 3-D

Transform-Domain Collaborative Filtering. IEEE Transactions on Image Process-

ing, 16(8):2080–2095, aug 2007, doi: 10.1109/TIP.2007.901238. (page 71, 73)

[55] M. S. Dagli, J. E. Ingeholm, and J. V. Haxby. Localization of cardiac-induced signal

change in fMRI. NeuroImage, 9(4):407–415, 1999, doi: 10.1006/nimg.1998.0424.

(page 92)

[56] W. Dai, D. Garcia, C. de Bazelaire, and D. C. Alsop. Continuous flow-driven inver-

sion for arterial spin labeling using pulsed radio frequency and gradient fields. Mag-

netic Resonance in Medicine, 60(6):1488–1497, dec 2008, doi: 10.1002/mrm.21790.

(page 9, 19, 20, 47, 50, 51, 55, 88, 98, 126, 148, 154)

[57] W. Dai, P. M. Robson, A. Shankaranarayanan, and D. C. Alsop. Modified pulsed

continuous arterial spin labeling for labeling of a single artery. Magnetic Resonance

in Medicine, 64(4):975–982, oct 2010, doi: 10.1002/mrm.22363. (page 43)

[58] W. Dai, P. M. Robson, A. Shankaranarayanan, and D. C. Alsop. Reduced resolution

transit delay prescan for quantitative continuous arterial spin labeling perfusion

imaging. Magnetic Resonance in Medicine, 67(5):1252–1265, may 2012, doi: 10.

1002/mrm.23103. (page 26)

[59] W. Dai, A. Shankaranarayanan, and D. C. Alsop. Volumetric measurement of

perfusion and arterial transit delay using hadamard encoded continuous arterial

spin labeling. Magnetic Resonance in Medicine, 69(4):1014–1022, apr 2013, doi:

10.1002/mrm.24335. (page 45)



BIBLIOGRAPHY 225

[60] I. Daubechies, M. Defrise, and C. De Mol. An iterative thresholding algorithm

for linear inverse problems with a sparsity constraint. Communications on Pure and

Applied Mathematics, 57(11):1413–1457, jul 2004, doi: 10.1002/cpa.20042. (page 71,

73)

[61] T. L. Davis, K. K. Kwong, R. M. Weisskoff, and B. R. Rosen. Calibrated functional

MRI: Mapping the dynamics of oxidative metabolism. Proceedings of the National

Academy of Sciences of the United States of America, 95(4):1834–1839, feb 1998,

doi: 10.1073/pnas.95.4.1834. (page 115)

[62] A. De Havenon, D. R. Haynor, D. L. Tirschwell, J. J. Majersik, G. Smith, W. Cohen,

and J. B. Andre. Association of collateral blood vessels detected by arterial spin la-

beling magnetic resonance imaging with neurological outcome after ischemic stroke.

JAMA Neurology, 74(4):453–458, apr 2017, doi: 10.1001/jamaneurol.2016.4491.

(page 124)

[63] R. C. DeCharms, F. Maeda, G. H. Glover, D. Ludlow, J. M. Pauly, D. Soneji, J. D.

Gabrieli, and S. C. Mackey. Control over brain activation and pain learned by

using real-time functional MRI. Proceedings of the National Academy of Sciences

of the United States of America, 102(51):18626–18631, dec 2005, doi: 10.1073/pnas.

0505210102. (page 138)

[64] C.-A. Deledalle, N. Papadakis, J. Salmon, and S. Vaiter. CLEAR: Covariant LEAst-

Square Refitting with Applications to Image Restoration. SIAM Journal on Imaging

Sciences, 10(1):243–284, jan 2017, doi: 10.1137/16M1080318. (page 131, 169)

[65] C. P. Derdeyn, T. O. Videen, K. D. Yundt, S. M. Fritsch, D. A. Carpenter, R. L.

Grubb, and W. J. Powers. Variability of cerebral blood volume and oxygen extrac-

tion: stages of cerebral haemodynamic impairment revisited. Brain, 125(3):595–607,

mar 2002, doi: 10.1093/brain/awf047. (page 6)

[66] J. A. Detre, J. S. Leigh, D. S. Williams, and A. P. Koretsky. Perfusion imaging.

Magnetic resonance in medicine, 23(1):37–45, jan 1992. (page 2, 8, 9, 10, 13, 26, 35,

36, 148)

[67] J. A. Detre and J. Wang. Technical aspects and utility of fMRI using BOLD and

ASL, may 2002, doi: 10.1016/S1388-2457(02)00038-X. (page 115)

[68] J. A. Detre, W. Zhang, D. A. Roberts, A. C. Silva, D. S. Williams, D. J. Grandis,

A. P. Koretsky, and J. S. Leigh. Tissue specific perfusion imaging using arterial

spin labeling. NMR in Biomedicine, 7(1-2):75–82, mar 1994, doi: 10.1002/nbm.

1940070112. (page 8, 13)



226

[69] X. Di, S. S. Kannurpatti, B. Rypma, and B. B. Biswal. Calibrating BOLD fMRI acti-

vations with neurovascular and anatomical constraints. Cerebral Cortex, 23(2):255–

263, 2013, doi: 10.1093/cercor/bhs001. (page 116)

[70] D. C. Dobson and F. Santosa. Recovery of Blocky Images from Noisy and Blurred

Data. SIAM Journal on Applied Mathematics, 56(4):1181–1198, 1996, doi: 10.1137/

S003613999427560X. (page 60)

[71] E. F. Domino, L. Ni, Y. Xu, R. A. Koeppe, S. Guthrie, and J. K. Zubieta. Regional

cerebral blood flow and plasma nicotine after smoking tobacco cigarettes. Progress

in Neuro-Psychopharmacology and Biological Psychiatry, 28(2):319–327, 2004, doi:

10.1016/j.pnpbp.2003.10.011. (page 6, 67)

[72] M. J. Donahue, C. C. Faraco, M. K. Strother, M. A. Chappell, S. Rane, L. M.

Dethrage, J. Hendrikse, and J. C. Siero. Bolus arrival time and cerebral blood

flow responses to hypercarbia. Journal of Cerebral Blood Flow and Metabolism,

34(7):1243–1252, 2014, doi: 10.1038/jcbfm.2014.81. (page 95, 125)

[73] G. Duhamel and D. C. Alsop. Single-Shot Susceptibility Insensitive Whole Brain

3D fMRI with ASL. In Proceedings of the 12th Annual Meeting of ISMRM, page

518, 2004. (page 29, 148)

[74] G. Duhamel, C. De Bazelaire, and D. C. Alsop. Evaluation of systematic quan-

tification errors in velocity-selective arterial spin labeling of the brain. Magnetic

Resonance in Medicine, 50(1):145–153, jul 2003, doi: 10.1002/mrm.10510. (page 9)

[75] C. Economo. The Cytoarchitectonics of the Human Cerebral Cortex. Journal of

the American Medical Association, 93(10):794, sep 1929, doi: 10.1001/jama.1929.

02710100056050. (page 123, 177)

[76] R. R. Edelman and Q. Chen. EPISTAR MRI: Multislice mapping of cerebral blood

flow. Magnetic Resonance in Medicine, 40(6):800–805, 1998, doi: 10.1002/mrm.

1910400603. (page 18)

[77] R. R. Edelman, B. Siewert, D. G. Darby, V. Thangaraj, A. C. Nobre, M. M. Mesu-

lam, and S. Warach. Qualitative mapping of cerebral blood flow and functional local-

ization with echo-planar MR imaging and signal targeting with alternating radio fre-

quency. Radiology, 192(2):513–520, aug 1994, doi: 10.1148/radiology.192.2.8029425.

(page 9, 14, 15, 18, 26)

[78] A. A. El-Dash. Origin Of The Universe And Life On Earth. Xlibris, 2012. (page 5)

[79] K. Emmert, M. Breimhorst, T. Bauermann, F. Birklein, D. Van De Ville, and

S. Haller. Comparison of anterior cingulate vs. insular cortex as targets for real-

time fMRI regulation during pain stimulation. Frontiers in Behavioral Neuroscience,

8(OCT):350, oct 2014, doi: 10.3389/fnbeh.2014.00350. (page 138)



BIBLIOGRAPHY 227

[80] J. W. Evans, P. Kundu, S. G. Horovitz, and P. A. Bandettini. Separating slow BOLD

from non-BOLD baseline drifts using multi-echo fMRI. NeuroImage, 105:189–197,

jan 2015, doi: 10.1016/j.neuroimage.2014.10.051. (page 116)

[81] A. P. Fan, J. Guo, M. M. Khalighi, P. K. Gulaka, B. Shen, J. H. Park, H. Gandhi,

D. Holley, O. Rutledge, P. Singh, T. Haywood, G. K. Steinberg, F. T. Chin,

and G. Zaharchuk. Long-Delay Arterial Spin Labeling Provides More Accu-

rate Cerebral Blood Flow Measurements in Moyamoya Patients: A Simultaneous

Positron Emission Tomography/MRI Study. Stroke, 48(9):2441–2449, sep 2017, doi:

10.1161/STROKEAHA.117.017773. (page 24)

[82] L. Fan, F. Zhang, H. Fan, and C. Zhang. Brief review of image denoising techniques.

Visual Computing for Industry, Biomedicine, and Art, 2(1):1–12, dec 2019, doi:

10.1186/s42492-019-0016-7. (page 57)

[83] R. Fang, J. Huang, and W.-M. Luh. A spatio-temporal low-rank total variation

approach for denoising arterial spin labeling MRI data. In 2015 IEEE 12th Interna-

tional Symposium on Biomedical Imaging (ISBI), pages 498–502. IEEE, apr 2015,

doi: 10.1109/ISBI.2015.7163920. (page 56, 71, 73, 74, 98)

[84] A. Fazlollahi, P. Bourgeat, X. Liang, F. Meriaudeau, A. Connelly, O. Salvado, and

F. Calamante. Reproducibility of multiphase pseudo-continuous arterial spin label-

ing and the effect of post-processing analysis methods. NeuroImage, 117:191–201,

aug 2015, doi: 10.1016/j.neuroimage.2015.05.048. (page 47, 56, 70)

[85] D. A. Feinberg, S. Ramanna, and M. Guenther. Evaluation of new ASL 3D GRASE

Sequences using parallel imaging, segmented and interleaved k- Space at 3T with

12- and 32- channel coils. In Proceedings of the 10th Annual Meeting of ISMRM,

page 623, 2002. (page 148)

[86] M. A. Fernández-Seara, Z. Wang, J. Wang, H.-Y. Rao, M. Guenther, D. A. Feinberg,

and J. A. Detre. Continuous arterial spin labeling perfusion measurements using

single shot 3D GRASE at 3 T. Magnetic Resonance in Medicine, 54(5):1241–1247,

nov 2005, doi: 10.1002/mrm.20674. (page 148)

[87] B. Fischl and A. M. Dale. Measuring the thickness of the human cerebral cortex

from magnetic resonance images. Proceedings of the National Academy of Sciences

of the United States of America, 97(20):11050–11055, sep 2000, doi: 10.1073/pnas.

200033797. (page 123, 177)

[88] S. D. Forman, J. D. Cohen, M. Fitzgerald, W. F. Eddy, M. A. Mintun, and D. C. Noll.

Improved Assessment of Significant Activation in Functional Magnetic Resonance

Imaging (fMRI): Use of a Cluster-Size Threshold. Magnetic Resonance in Medicine,

33(5):636–647, may 1995, doi: 10.1002/mrm.1910330508. (page 123)



228

[89] P. T. Fox and M. E. Raichle. Focal physiological uncoupling of cerebral blood

flow and oxidative metabolism during somatosensory stimulation in human subjects.

Proceedings of the National Academy of Sciences of the United States of America,

83(4):1140–1144, feb 1986, doi: 10.1073/pnas.83.4.1140. (page 115)

[90] P. T. Fox, M. E. Raichle, M. A. Mintun, and C. Dence. Nonoxidative glucose

consumption during focal physiologic neural activity. Science, 241(4864):462–464,

1988, doi: 10.1126/science.3260686. (page 115)

[91] S. L. Franklin, S. Schmid, C. Bos, and M. J. van Osch. Influence of the cardiac

cycle on velocity selective and acceleration selective arterial spin labeling. Mag-

netic Resonance in Medicine, 83(3):872–882, mar 2020, doi: 10.1002/mrm.27973.

(page 50)

[92] K. J. K. J. Friston, J. Ashburner, S. Kiebel, T. Nichols, and W. D. Penny. Statistical

parametric mapping : the analysis of funtional brain images. Elsevier/Academic

Press, 2007. (page 117, 154)

[93] N. Fujima, T. Osanai, Y. Shimizu, A. Yoshida, T. Harada, N. Nakayama, K. Kudo,

K. Houkin, and H. Shirato. Utility of noncontrast-enhanced time-resolved four-

dimensional MR angiography with a vessel-selective technique for intracranial arte-

riovenous malformations. Journal of Magnetic Resonance Imaging, 44(4):834–845,

oct 2016, doi: 10.1002/jmri.25222. (page 180)

[94] I. B. Galazzo, M. A. Chappell, D. L. Thomas, X. Golay, P. Manganotti, and E. De

Vita. Reducing blurring artifacts in 3D-GRASE ASL by integrating new acquisition

and analysis strategies. In Proceedings of the 22th Annual Meeting of ISMRM, page

2704, 2014. (page 29, 148, 171)

[95] D. Gallichan and P. Jezzard. Modeling the effects of dispersion and pulsatility

of blood flow in pulsed arterial spin labeling. Magnetic Resonance in Medicine,

60(1):53–63, jul 2008, doi: 10.1002/mrm.21654. (page 40)

[96] D. M. Garcia, G. Duhamel, and D. C. Alsop. Efficiency of inversion pulses for

background suppressed arterial spin labeling. Magnetic Resonance in Medicine,

54(2):366–372, aug 2005, doi: 10.1002/mrm.20556. (page 34)

[97] A. G. Gardener, P. A. Gowland, and S. T. Francis. Implementation of quantitative

perfusion imaging using pulsed arterial spin labeling at ultra-high field. Magnetic

resonance in medicine, 61(4):874–82, apr 2009, doi: 10.1002/mrm.21796. (page 55)

[98] C. Gaser and R. Dahnke. CAT - A Computational Anatomy Toolbox for the Analysis

of Structural MRI Data. In HBM, 2016. (page 126, 154)



BIBLIOGRAPHY 229

[99] M. D. Ginsberg, J. Y. Chang, R. E. Kelley, F. Yoshii, W. W. Barker, G. Ingenito, and

T. E. Boothe. Increases in both cerebral glucose utilization and blood flow during

execution of a somatosensory task. Annals of Neurology, 23(2):152–160, 1988, doi:

10.1002/ana.410230208. (page 112, 115)

[100] X. Golay, J. Hendrikse, and T. C. Lim. Perfusion Imaging Using Arterial Spin

Labeling, feb 2004, doi: 10.1097/00002142-200402000-00003. (page 11, 12, 13, 124)

[101] X. Golay, E. T. Petersen, and F. Hui. Pulsed Star Labeling of Arterial Regions

(PULSAR): A robust regional perfusion technique for high field imaging. Magnetic

Resonance in Medicine, 53(1):15–21, jan 2005, doi: 10.1002/mrm.20338. (page 15)

[102] X. Golay, M. Stuber, K. P. Pruessmann, D. Meier, and P. Boesiger. Transfer

insensitive labeling technique (TILT): Application to multislice functional perfu-

sion imaging. Journal of Magnetic Resonance Imaging, 9(3):454–461, 1999, doi:

10.1002/(SICI)1522-2586(199903)9:3〈454::AID-JMRI14〉3.0.CO;2-B. (page 15)

[103] R. L. Gollub, H. C. Breiter, H. Kantor, D. Kennedy, D. Gastfriend, R. T. Mathew,

N. Makris, A. Guimaraes, J. Riorden, T. Campbell, M. Foley, S. E. Hyman, B. Rosen,

and R. Weisskoff. Cocaine decreases cortical cerebral blood flow but does not obscure

regional activation in functional magnetic resonance imaging in human subjects.

Journal of Cerebral Blood Flow and Metabolism, 18(7):724–734, jul 1998, doi: 10.

1097/00004647-199807000-00003. (page 112)

[104] M. A. Griswold, P. M. Jakob, R. M. Heidemann, M. Nittka, V. Jellus, J. Wang,

B. Kiefer, and A. Haase. Generalized Autocalibrating Partially Parallel Acquisitions

(GRAPPA). Magnetic Resonance in Medicine, 47(6):1202–1210, 2002, doi: 10.1002/

mrm.10171. (page 92)
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T. C. Glenn, C. B. Grandin, S. Pedraza, J.-F. Soustiel, T. Nariai, G. Zaharchuk, J.-
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