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Abstract

In clear line-of-sight conditions, positioning systems using radio signal measure-
ments are capable to deliver high accuracy. These conditions prevail outdoors,
if the distances of the radio nodes to objects are large. However, in urban
areas and especially indoors, the line-of-sight signal is interfered by diffuse re-
flections, the so-called dense multipath component. This dense multipath com-
ponent biases the estimation of position-related parameters, e.g., the delay or
the angle-of-arrival, if not treated appropriately. This thesis tackles the problem
of estimating position-related parameters in dense multipath environments.

The first research contribution examines the achievable performance of position-
related parameter estimators in dense multipath environments. To this end, the
Cramér Rao lower bound is derived and analyzed for the delay and angle esti-
mation problems with multiple-input multiple-output measurements. This the-
oretical investigation provides insights into the influence of system parameters,
like the bandwidth or the number of antennas, on the estimation accuracy.

The second research contribution analyzes the concurrent estimation of the
parameters of the dense multipath component and the position-related infor-
mation contained in the line-of-sight component. To this end, deterministic
maximum likelihood estimators are derived for ranging and direct positioning.
Utilizing single-snapshot measurements and multiple antennas in a radio fre-
quency identification backscatter setting, it is shown how the robustness and
accuracy is increased if the dense multipath component is considered.

Finally, the third research contribution investigates the joint estimation and
detection of specular multipath components within the dense multipath compo-
nent. By increasing the bandwidth or the number of antennas, multipath com-
ponents stemming from specular reflections can potentially be resolved. It is
well known that these specular multipath components contain position-related
information and positioning becomes possible even in obstructed line-of-sight
conditions. However, the number of specular multipath components is unknown
and has to be estimated jointly with their parameters. A detection threshold
is derived and verified within a sparse Bayesian learning algorithm to reliably
detect the number of resolvable specular multipath components while limiting
the probability of estimating artifacts.
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Kurzfassung

Positionierungssysteme, die auf Funksignalmessungen basieren, können bei klarer
Sichtverbindung eine hohe Genauigkeit liefern. Diese Bedingungen herrschen im
Außenbereich vor, wenn die Abstände der Funkknoten zu Objekten groß genug
sind. In städtischen Gebieten und insbesondere in Innenräumen wird die direkte
Sichtverbindung jedoch durch diffuse Reflexionen, die sogenannte diffuse Mehr-
wegekomponente, gestört. Diese diffuse Mehrwegekomponente verschlechtert
die Schätzung positionsbezogener Signalparameter, z.B. Laufzeit oder Ankun-
ftswinkel, wenn sie nicht angemessen behandelt wird. Diese Dissertation befasst
sich mit dem Problem der Schätzung positionsbezogener Signalparameter in dif-
fusen Mehrwegeumgebungen.

Der erste Forschungsbeitrag untersucht die theoretisch erreichbare Genauigkeit
positionsbezogener Parameterschätzer in diffusen Mehrwegeumgebungen. Zu
diesem Zweck wird die Cramér Rao Schranke hergeleitet und die Laufzeit- und
Winkelschätzung bei Messungen mit Mehrantennensystemen an Sender und
Empfänger analysiert. Diese theoretische Untersuchung liefert Einblicke in den
Einfluss von Systemparametern wie Bandbreite oder Anzahl der Antennen auf
die Schätzgenauigkeit.

Der zweite Forschungsbeitrag analysiert die gemeinsame Schätzung der Pa-
rameter der diffusen Mehrwegekomponente und der informationstragenden Line-
of-Sight Komponente. Zu diesem Zweck werden deterministische Maximum-
Likelihood-Schätzer für die Laufzeitschätzung und für eine direkte Position-
ierung abgeleitet. Anhand von Einzelmessungen mit einem breitbandigen Mehr-
antennen-Lesegerät in einer RFID-Anwendung wird gezeigt, wie die Robustheit
und Genauigkeit erhöht werden, wenn die diffuse Mehrwegekomponente berück-
sichtigt wird.

Der dritte Forschungsbeitrag untersucht die gemeinsame Schätzung und De-
tektion von Mehrwegekomponenten, welche als Spiegelreflexionen modeliert wer-
den können. Durch Erhöhen der Bandbreite oder der Anzahl der Antennen kön-
nen mehrere solche Spiegelreflexionen in den Messdaten aufgelöst werden. Es ist
bekannt, dass diese Spiegelreflexionen positionsbezogene Informationen enthal-
ten und die Positionierung daher auch unter eingeschränkter Sichtverbindung
möglich machen. Die Anzahl der Spiegelreflexionen ist jedoch unbekannt und
muss gemeinsam mit ihren Parametern geschätzt werden. Eine Detektionss-
chwelle innerhalb eines Bayes’schen Lernalgorithmus wird hergeleitet und veri-
fiziert, um die Anzahl der auflösbaren Spiegelreflexionen zuverlässig zu erfassen
und gleichzeitig die Wahrscheinlichkeit der Schätzung von Artefakten zu begren-
zen.
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Chapter 1

Introduction

Radio positioning, the determination of the position of people or objects using
radio measurements, has become ubiquitous in our everyday life. In rural areas
outdoors, global navigation satellite systems deliver accuracies down to the cen-
timeter level [39]. In urban areas and especially indoors, the situation is more
challenging as the satellite signals are attenuated by buildings and are affected
by multipath propagation. Thus, local positioning systems are needed to provide
reliable and accurate positioning indoors [110]. Some of these local positioning
systems may be already in place, like WLAN or cellular [24], and its signals
are used in an opportunistic fashion, or dedicated systems are deployed, like
Bluetooth low energy or ultra-wideband (UWB) based systems [24,25] [N15].

To achieve radio positioning, a two-way process is often utilized: first position-
related parameters are extracted from received signals which are in turn used
to determine the position, using dedicated positioning algorithms [39,110]. The
received signal can be modeled by the convolution of the measurement aperture
and the propagation channel. While the propagation channel outdoors is often
dominated by a strong line-of-sight (LOS) component, indoors the propagation
channel is characterized by severe multipath propagation. This multipath prop-
agation can be modeled by two components, the specular multipath components
(SMCs) and the dense multipath component (DMC) [3,61,67,71,86]. SMCs can
be seen as the part of the radio channel which is resolvable with the applied aper-
ture in the spatial and temporal domain. The DMC is then everything which
cannot be explained by SMCs and is often described by a stochastic model.
Physical phenomena that can be used to explain the DMC include scattering
at objects, diffraction around corners, but also reflections at small objects, like
the roughness of surfaces [26, 48, 71]. Regarding positioning, the SMCs are de-
scribed by position-related parameters, e.g., the delay or the angle-of-arrival.
However, the SMCs are superimposed by the DMC, often acting as hindrance
in the estimation procedure of the parameters of the SMCs [50,56,71,73,80].

Recent trends in hardware and software components enable not only large
transmission bandwidth but also allow the usage of multi-antenna configura-
tions at the transmitter (TX) and receiver (RX). These multiple-input multiple-
output (MIMO) systems do not only provide means to estimate the direction
of departure (DoD) and/or direction of arrival (DoA) of the SMCs, but also
enables the estimation of the parameters of the stochastic DMC process from
a single measured snapshot. Without multiple measurements per snapshot, the
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CHAPTER 1. INTRODUCTION

estimation of the parameters of the DMC has to be aided by multiple consecutive
measurements and a suitable tracking algorithm [73].

This thesis tackles the estimation of position-related parameters using ra-
dio signals. Its particular interest is set on the concurrent estimation of the
parameters of the DMC and the SMC using MIMO systems.

1.1 Research Hypothesis

In this thesis, three research questions are formulated. The first topic targets
fundamental limits on the estimation of position-related parameters and ana-
lyzes the influence of system parameters. The second topic treats the maximum
likelihood (ML) estimation of position-related parameters and uses a passive
RFID application to show the validity of the approach to measured data. Fi-
nally, the third topic treats the detection of SMCs showing how to reliably detect
SMCs without being prone to estimation artifacts due to additive white Gaus-
sian noise (AWGN) and the DMC. These three questions can be combined into
the overall hypothesis of the thesis:
It is hypothesized that the use of multiple-input, multiple-output techniques can
enable accurate and robust position-related parameter estimation in dense mul-
tipath environments.

1.1.1 Fundamental limits for position-related parameter
estimation in dense multipath environments

It is well known that the SMCs contain position-related information [35,78,107].
Using a suitable channel and signal model combined with a geometric representa-
tion of the environment it is shown in [35,48,50,56] how this information relates
to the achievable positioning accuracy. However, the DMC process conceals
the influence of system parameters like bandwidth or the number of antenna
elements and only a numeric evaluation is possible. Thus, the first research
question tackled by this thesis is:

Research question 1

How accurate can position-related parameters be estimated in dense multipath
environments and how do system parameters influence these estimation prob-
lems?

1.1.2 Estimation in dense multipath environments

Theory shows that the estimation performance is severely degraded if the DMC
process is not included in the estimation procedure [50, 71] [N3]. This effect
becomes especially relevant for non-UWB systems, as fewer multipath compo-
nents (MPCs) are resolvable by the measurement aperture and the interference
of the DMC process increases. To be able to estimate the parameters of the
DMC process from single snapshot measurements, multi-antenna configurations
are essential. These MIMO data provides multiple measurements needed for the
estimation of the parameters of the DMC process and additionally enables the
exploitation of angle-information. Thus, the second research question is:
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Research question 2

Is it possible to increase the robustness and accuracy of the estimation of position-
related parameters by concurrently estimating the parameters of the DMC process
using MIMO systems?

1.1.3 Towards joint estimation and detection of specular
multipath components

By increasing the number of antennas and increasing the signal bandwidth to-
ward UWB systems, the number of resolvable MPCs increases. Classic algo-
rithms [15, 30, 49, 69, 72, 75, 90] assume a certain (large) number of SMCs and
estimate their parameters accordingly. Certainly, many of the estimated SMCs
in such a way can be attributed to physically existing propagation paths. How-
ever, many of the estimated SMCs do not have a physical counterpart and should
be regarded as estimation artifacts. These artifacts do not only clutter subse-
quent applications like positioning or channel modeling, but also influence the
estimation of the actual components. Even if the algorithms are supported by
an additional model-order estimation on the basis of information theoretic crite-
ria, a positive model bias is often encountered [53]. Hence, the performance and
reliability of positioning systems or the development of channel models building
upon these estimated parameters are degraded by the artifacts. Thus, the third
research question is given:

Research question 3

Is it possible to reliably infer the number of SMCs and their parameters in dense
multipath environments?

1.2 Contributions and outline
This thesis consists of two parts. The introduction to the investigated topics
is covered in Part I, and representative publications are attached in Part II.
The first part starts by introducing the radio channel and signal models in
Chapter 2. The next three chapters are tied to the three research questions.
Finally, Chapter 6 answers the research questions and the hypothesis.

Own publications included in this thesis are referenced by [T#] and not
included publications are marked by [N#]. Note that my early publications are
published with my birth name Hinteregger.

List of included contributions

[T1] S. Hinteregger, E. Leitinger, P. Meissner, J. Kulmer, and K. Witrisal,
“Bandwidth dependence of the ranging error variance in dense multipath,”
in 2016 24th European Signal Processing Conf. (EUSIPCO), Aug. 2016,
pp. 733–737.

[T2] S. Hinteregger, E. Leitinger, P. Meissner, and K. Witrisal, “MIMO gain
and bandwidth scaling for RFID positioning in dense multipath channels,”
in 2016 IEEE Int. Conf. RFID, May 2016, pp. 1–6.
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[T3] S. Grebien, J. Kulmer, F. Galler, M. Goller, E. Leitinger, H. Arthaber,
and K. Witrisal, “Range estimation and performance limits for UHF-RFID
backscatter channels,” IEEE Journal of Radio Frequency Identification,
vol. 1, no. 1, pp. 39–50, March 2017.

[T4] S. Grebien, F. Galler, D. Neunteufel, U. Mühlmann, S. J. Maier,
H. Arthaber, and K. Witrisal, “Experimental evaluation of a UHF-MIMO
RFID system for positioning in multipath channels,” in 2019 IEEE Inter-
national Conference on RFID Technology and Applications (RFID-TA),
Sep. 2019, pp. 95–100.

[T5] S. Grebien, E. Leitinger, K. Witrisal, and B. H. Fleury, “Super-resolution
channel estimation including the dense multipath component — A sparse
variational Bayesian approach,” in preperation for submission to IEEE
Trans. Sig. Proc.

[T1] analyses the achievable ranging performance over a wide range of band-
widths and different channel parameters. It analyses measured data and shows
that the ranging error bound (REB), i.e., the Cramér Rao lower bound (CRLB)
for the ranging problem, is (approximately) achievable at intermediate and high
bandwidth, using a genie aided ML estimator. Furthermore, an approximation
for the performance bound is derived, related to the accuracy of the matched
filter (MF) estimator.

[T2] employs the REB to a wideband passive RFID setup and highlights
differences for fully correlated and uncorrelated individual channels. By adding
diversity, i.e., exploiting multi-antenna configurations, the gain in ranging per-
formance is examined and the achievable positioning accuracy is quantified for
monostatic and bistatic setups.

[T3] develops an algorithm capable of estimating the parameters of the LOS
component for an RFID system, exploiting MIMO data, in a dense multipath
environment. It analyzes measured data from two scenarios, a laboratory and
an industrial hall, applies the estimator over a wide range of bandwidths and
compares its performance with the theoretical limits.

[T4] designs a direct positioning algorithm capable of exploiting informa-
tion included in the DMC process for positioning. The algorithm coherently
processes measurements from closely-spaced antennas, thus, it inherently adds
angle information to the position solution. A dual-frequency passive RFID sys-
tem is analyzed and a position error below 15 cm is achieved for 80% of the
measured data using a bandwidth of 25MHz.

[T5] develops a Type-II ML estimator with a hierarchical Gaussian prior for
a single-input multiple-output (SIMO) system. It derives an adapted thresh-
old to reliably detect SMCs and limits the number of estimation artifacts by
deriving the excursion probability of a non-stationary χ2 random field. The
algorithm is tested with synthetic data and compared to a Type-I deterministic
maximum likelihood (DML) estimator. Finally, the estimated parameters of the
SMCs are compared to a room-geometry-related prediction which highlights the
performance of the algorithm using measured data.
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List of not included contributions
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K. Witrisal, “UHF-RFID backscatter channel analysis for accurate wide-
band ranging,” in 2017 IEEE Int. Conf. RFID, May 2017, pp. 117–123.
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ing,” in 2018 IEEE Wireless Communications and Networking Conference
(WCNC), April 2018, pp. 1–6.
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525–531.
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Chapter 2

Channel and signal model

This thesis treats the estimation of the position or of position-related quan-
tities using radio channel measurements. Position-related quantities can, e.g.,
be the distance, the angle of departure (AoD) or the angle of arrival (AoA)
between a TX and an RX, or combinations of these parameters. This the-
sis tries to highlight the influence of the so-called dense multipath component
(DMC) on the estimation and detection performance. In most contributions
to this thesis, this DMC is seen as a channel-inherent interference to the esti-
mation of position-related quantities, from so-called specular multipath compo-
nents (SMCs). However, it is also possible that parameters describing the DMC
include position-related information [48] [N3] [T4].

In the individual contributions to this thesis, different channel and signal
models are employed, depending on the setup and the available infrastructure.
For example, in three contributions [T2–T4], a passive RFID setup is utilized.
Thus, in this chapter we will first introduce the basic wireless channel model
in Section 2.1. Next, the received signal is described in Section 2.2 which is,
based on a MIMO setup, sampled in the delay and spatial domains to arrive
at a discrete signal model in Section 2.3. Section 2.5 introduces the basis to
derive many closed-form solutions in this thesis, the so-called single-SMC in
DMC channel model. Finally, in Section 2.6 the RFID-MIMO system model is
derived.

2.1 Channel model

The propagation channel in-between a TX antenna and an RX antenna models
the interactions of an electromagnetic wave with its surrounding environment.
In literature different levels of abstraction are used to model its behavior. While
ray-tracing tries to solve (or approximate) the Maxwell equations using an accu-
rate geometric model including boundary conditions, in communication appli-
cations the propagation channel is often described by few parameters, e.g., the
path-loss and the root-mean-square delay spread. The choice for a certain level
of abstraction is highly dependent on the application and on system parameters
like bandwidth and the number of employed antennas.

To be able to cope with the different system configurations treated in this
thesis, a deterministic-stochastic channel model is utilized [3,56,61,68,73]. The

9



CHAPTER 2. CHANNEL AND SIGNAL MODEL

deterministic part models propagation effects related directly to the geometry
of the scenario and thus carries position-related information. This part is de-
scribed by so-called specular multipath components (SMC) and is described in
more detail in Section 2.1.1. The stochastic part models propagation effects
that cannot be attributed directly to the geometry of the scenario. However,
position-related information can still be hidden in the parameters describing
the underlying statistical model. This part is composed of a multitude of low-
amplitude MPCs, called a dense multipath component (DMC) and is described
in more detail in Section 2.1.2.

We consider a scenario with a TX and an RX distributed and operating in
a multipath environment. Such a multipath environment is characterized by
reflections at objects, so called multipath components (MPCs). The direction-
delay spread function between a TX and an RX for a plane wave model in the
far-field1 can be defined as [26,50,60,71]

h(τ,ΩTX,ΩRX;pTX,pRX) =hSMC(τ,ΩTX,ΩRX;pTX,pRX)

+hDMC(τ,ΩTX,ΩRX;pTX,pRX). (2.1)

Eq. (2.1) is a function of the delay τ , the unit-length DoD at the TX ΩTX =
[cos(ϕD), sin(ϕD)]T with ϕD as the AoD, and the unit-length DoA at the RX
ΩRX = [cos(ϕA), sin(ϕA)]T with ϕA as the AoA.2 Furthermore, the direction-
delay spread function is parametrized by the positions of the TX pTX and the
RX pRX, highlighting the influence of these. The right hand side of (2.1) is split
into the sum of two terms, the SMCs and the DMC.

In Fig. 2.1 the floorplan of a room where measurements have been performed
is depicted. It includes the TX ( ) at position pTX and the RX ( ) at pRX.
The DMC ( ) and some SMCs are illustrated, including the LOS component
( ) and three first-order reflections ( , , ).

You certainly noticed the small pictures in the corners of this thesis. We per-
formed many measurements that we often highlight in our presentations by short
videos. I did not want to sacrifice these illustrative videos, therefore I decided to
use a flipbook. The little pictures in the corners of this thesis are always all mea-
surements of the setup depicted in Fig. 2.1 for different bandwidths. The grey
square in Fig. 2.1 is made up of 4686 individual points () where measurements
have been performed, using an automated measurement system.3 Further details
about the measurements and the setup can be found in [T1]. The distance, given
below the pictures, is the distance the transmitted pulse has traveled. Throughout
the thesis I will use the different flipbooks to highlight certain aspects. And now
it is time for some action. Have fun looking at the ’videos’.

1In our context, the plane wave far-field model means that the distance between the TX/RX
to the reflecting objects is large enough. Otherwise, a spherical wave model has to be employed.

2The contributions to this thesis are restricted to horizontal-only propagation. However,
the extensions to 3-dimensions are straightforward.

3In fact, there are 4 of these grey squares and 8 TX positions, hence 149952 measurements
have been performed in this room alone.
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Figure 2.1: Floorplan of the room where measurements have been performed,
including the TX ( ) at position pTX and the RX ( ) at position pRX. Some ex-
emplary SMCs are shown, including the LOS component ( ) and three SMCs
based on first-order reflections ( , , ). For the kth SMC the direction
of departure, the direction of arrival and the delay are highlighted. The genera-
tion of the DMC ( ) is illustrated by scattering at an edge. Furthermore, the
positions () where measurements have been performed are illustrated, forming
a rectangular grid with a spacing of 2 cm in x and y. These are the positions
used throughout this thesis in the flipbook.

2.1.1 Specular Multipath Components
The first part in (2.1) describes specular wave components. Each of these SMCs
may be described by a single plane wave [26,28]

hSMC,k(τ,ΩTX,ΩRX;pTX,pRX) (2.2)
= ᾱkδ(τ − τk)δ(ΩTX −ΩTX,k)δ(ΩRX −ΩRX,k). 11
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The kth SMC is described by its complex amplitude ᾱk, its delay τk = dk
c , with

dk as the propagation distance, its unit-length DoDΩTX,k = [cos(ϕD,k), sin(ϕD,k)]T,
and its unit-length DoA ΩRX,k = [cos(ϕA,k), sin(ϕA,k)]T. In Fig. 2.1 these pa-
rameters are illustrated for the SMC stemming from the reflection at plaster
board west ( ). It is important to note, that all four parameters describing
an SMC, ᾱk, and the dispersion parameters τk, ΩTX,k, and ΩRX,k, are func-
tions of the positions of the TX pTX and the RX pRX. For easier readability, we
show this dependency only on the left hand side of (2.2). Furthermore, we in-
cluded the complex beampattern4 of the antenna in the complex amplitude ᾱk.
Note that we will use the terms delay and propagation distance interchangeably
throughout this thesis.

Examples of SMCs are the LOS ( in Fig. 2.1), the direct path between
a TX and an RX antenna, and reflections at flat surfaces (e.g., , ,
in Fig. 2.1). In Fig. 2.1 only first-order reflections are depcited. However, of
course also higher-order reflections are possible. By the superposition principle,
these K plane waves can be combined to form the specular part of (2.1)

hSMC(τ,ΩTX,ΩRX;pTX,pRX) =

K∑

k=1

hSMC,k(τ,ΩTX,ΩRX;pTX,pRX) (2.3)

=

K∑

k=1

ᾱkδ(τ − τk)δ(ΩTX −ΩTX,k)δ(ΩRX −ΩRX,k).

Flipbook: Let’s have a look at some SMCs that can be attributed to certain
reflections in the room depicted in Fig. 2.1. Look at the flipbook in the top right
and bottom right corner, utilizing a bandwidth of 4GHz and 2GHz, respectively,
centered at a frequency of 7GHz. At a distance of about 2.8m, the LOS arrives
at the center of the measurement table.5 The SMC at 4.1m stems from the
reflection at plaster board east. The next identifiable SMC travels over the
table from 5.7m to 6.5m and corresponds to the reflection from the window.6
The next SMC is only visible in approximately half the table, arrives at 8.8m
and stems form the white board. By looking at the floor plan in Fig. 2.1, a
reflection stemming from the southern wall around the white board would be
expected to arrive slightly after the white board reflection. However, as the
white board is made from metal, while the wall is plaster board, the reflection
is probably already dampened too much to be visible. The reflection arriving at
9.4m is a second-order reflection, which is first reflected at plaster board east
and then at the white board.

2.1.2 Dense Multipath Component

Empirical observations [3, 48, 61, 68] show that a description with solely SMCs
does not suffice to accurately model the radio channel. This phenomenon can
be explained with a multitude of non-specular waves which arrive at the RX
antenna [26]. These non-specular waves stem from all propagation effects that

4We usually assume non-dispersive antennas. Dispersive antennas could be included by
introducing additional components or by changing the aperture function given in (2.10).

5The following distances will all be given with respect to the center of the measurement
table.

6The windows in the room where the measurements have been performed are metal coated.
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do not result in SMCs, e.g., scattering at objects, diffraction around corners, but
also reflections at small objects, including the roughness of surfaces [48]. Based
on the resolution of the used measurement equipment, all MPCs not modeled as
SMCs are lumped together in a single term, called dense multipath component
(DMC) hDMC(τ,ΩTX,ΩRX;pTX,pRX). This DMC is modeled as a complex
circular Gaussian random process, i.e., [26, 41,48,59,71],

E
[
hDMC(τ,ΩTX,ΩRX;pTX,pRX)

]
= 0, (2.4)

E
[
hDMC(τ,ΩTX,ΩRX;pTX,pRX)h∗DMC(τ ′,Ω′TX,Ω

′
RX;pTX,pRX)

]
(2.5)

= SDMC(τ,ΩTX,ΩRX;pTX,pRX)δ(τ − τ ′)δ(ΩTX −Ω′TX)δ(ΩRX −Ω′RX).

The random process describing the DMC is zero-mean (2.4), uncorrelated in
the delay, the direction of departure and the direction of arrival (2.5), and is
thus described solely by its variance E[|hDMC(τ,ΩTX,ΩRX;pTX,pRX)|2]. The
angular delay power spectum (ADPS) SDMC(τ,ΩTX,ΩRX;pTX,pRX) is often
denoted as power profile in literature [61].

Flipbook: Next, we will make use of the flipbooks in the top left and bottom
left corners, using a bandwidth of 1000MHz and 500MHz, respectively. Of
course, these flipbooks run from the back to the front. The colorbar is in such a
way that white color is 30 dB below the maximum value. By looking at the first
few pictures (before the LOS arrives), we see that the noise floor corresponds
to pretty white pixels. By playing the flipbooks, the LOS and some additional
SMCs can be identified. However, after the first few meters, there seems to be
an increased noise floor which diminishes towards larger distances. This is what
we call DMC. After about 35m the pictures again are rather white, meaning
that the DMC process has been attenuated to values below the AWGN noise
floor.

2.2 Multiple input, multiple output signal model

We place the origin of a coordinate system at the position of the RX pRX.The
position of a receiving antenna in close vicinity of pRX is then solely determined
by ∆pRX. For the transmitting antenna we define its position as ∆pTX with
respect to a coordinate system placed at pTX. The received signal in complex
baseband is given as7

r(t,∆pTX,∆pRX) =

∫

S1

∫

S1

∫
a(t, τ,ΩTX,ΩRX,∆pTX∆pRX) (2.6)

× h(τ,ΩTX,ΩRX)dτds1(ΩTX)ds1(ΩRX) + w(t)

where w(t) is circular symmetric complex AWGN with double-sided power spec-
tral density of N0/2. For the integration over the 1-sphere S1 we need the differ-
ential angle ds1(ΩTX) = dϕD and ds1(ΩRX) = dϕA [44].8 To reduce notational
complexity we dropped the parametrization by the positions of the TX and RX.
In (2.6) the aperture function a(t, τ,ΩTX,ΩRX,∆pTX,∆pRX) is introduced.

7When not specified, the integration domain of the integrals is the entire range of the
integration variable(s).

8In 3-dimensions the integration is over the 2-sphere and the differential solid angle s2(Ω)
is needed [44].
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Wideband aperture function Classical wideband multipath models [26,28,
65, 71] make use of the assumption that the envelope of the observed signals
are indistinguishable in a local area, around each, the TX and the RX.9 This
assumption leads to the wideband aperture function

awb(t, τ,ΩTX,ΩRX,∆pTX,∆pRX) = e−j2πfc(τ−ΩT
TX∆pTX/c−ΩT

RX∆pRX/c)

× sTX(t− τ), (2.7)

with fc as carrier frequency and sTX(t) as the transmitted pulse shape10. For
the RX the above assumption is justified if [29]

max
l,l′

B

c
‖∆p(l)

RX −∆p
(l′)
RX‖ � 1, (2.8)

with c as the speed-of-light and B as the signal bandwidth. A different approach
is used in [26], where the frequency-space cross product term 2πf

c ΩT
RX∆pRX is

used to define a local area11. The frequency-space cross product is limited to be
below π

2 . Then, by assuming that the maximum difference between two observed
frequencies is B and the maximum space displacement is the local area LA, a
condition on the size of the local area is found as

LA <
c

4B
. (2.9)

It is important to note that the local area is independent of the carrier frequency
fc. However, for array processing the carrier wavelength is paramount in defining
the size of the array. For an ultrawideband signal with a bandwidth of 1GHz, the
local area has to be below 7.5 cm. If this signal is centered at a carrier frequncy
of 6GHz, a 4-element uniform linear array (ULA) with an antenna-spacing of
λ/2 already violates the local area assumption.

Ultra-wideband aperture function To overcome this problem, we employ
the ultra-wideband aperture function

auwb(t, τ,ΩTX,ΩRX,∆pTX,∆pRX) = e−j2πfc(τ−ΩT
TX∆pTX/c−ΩT

RX∆pRX/c)

× sTX(t− (τ −ΩT
TX∆pTX/c−ΩT

RX∆pRX/c)). (2.10)

Compared to (2.7), the envelope of the received signal is shifted additionally by
the relative delays due to the DoD and DoA. In the following, we will usually
employ the ultra-wideband aperture function, if not otherwise stated. Hence,
a(t, τ,ΩTX,ΩRX,∆pTX,∆pRX) ≡ auwb(t, τ,ΩTX,ΩRX,∆pTX,∆pRX).

9This assumption is often called narrowband assumption. Here, we did not want to use
this term, as the relative delay to the center of gravity of the array is still included in the
received signal. A full narrowband assumption, would neglect this delay as well and all waves
would impinge simultaneously, only distinguishable by their phases.

10In this description of the signal and channel model the influence of the antenna is included
in the spread function (2.1). However, one could easily change the aperture function to include
the influence of an antenna.

11Here, only the local area for the RX is analyzed. For the TX similar considerations can
be derived.
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Spatio-temporal signals and the Fourier transform By inspecting the
integrals with respect to ΩTX and ΩRX in (2.6) with the wideband aperture
function given in (2.7), it is easy to interpret these as Fourier transforms from
the directions to the positions. However, using the ultra-wideband aperture
function given in (2.10) this Fourier pair is not possible. In fact, the often used
Fourier pair ’direction-position’ is only viable for the classical wideband signal
model. For an ultra-wideband model, the Fourier pair is the spatial frequency
u and the position p. One can also look at it in the following way: The Fourier
pair is always the spatial frequency u and the position p. For the wideband
model, the possible values for the wideband spatial frequency uwb are located
on a sphere with length ( 1

λc
) with λc as carrier wavelength. This means that

the three-dimensional variable uwb can actually be described by two-dimensions
only (neglecting the length), making it possible to describe it by the direction Ω.
For the ultra-wideband model this is not possible, meaning that a scaling-only
relation between the direction Ω and the spatial frequency u does not hold, but
its length has to be taken into account. In fact, its length is depending on the
frequency f which can easily be seen by taking the Fourier transform of the
received signal of a single SMC

RSMC,k(f,uTX,uRX) = ᾱkS(f)e−j2π(f+fc)τk

δ
(
uTX −

f + fc

c
ΩTX,k

)
δ
(
uRX −

f + fc

c
ΩRX,k

)
.

2.3 Sampled Signal Model
The received signal in (2.6) is sampled in the temporal and spatial domains.
In the temporal domain, the sampling frequency is given as fs = 1

Ts
and the

number of samples N leads to the total observation time T = NTs. In the spatial
domain, the signal is sampled with the TX ( ) and RX ( ) arrays consisting of
I and L antennas, respectively. In Fig. 2.2 an example for the arrays is depicted,
including the two local coordinate systems.12

The sampled received signal for antenna pair (i, l) is given as

r(i,l) = r
(i,l)
SMC + r

(i,l)
DMC +w(i,l), (2.11)

where

r(i,l) = [r(0,∆p
(i)
TX,∆p

(l)
RX), r(Ts,∆p

(i)
TX,∆p

(l)
RX), . . . ,

r((N − 1)Ts,∆p
(i)
TX,∆p

(l)
RX)]T,

and r(i,l)
SMC, r

(i,l)
DMC, and w

(i,l) are sampled versions of the SMC, the DMC, and
the AWGN, respectively. The individual entries for the SMC are given as

r
(i,l)
SMC =

K∑

k=1

αks
(i,l)(θk)

= S(i,l)(Θ)α, (2.12)
12Note that if the frame of reference for an array is rotated with respect to the global

frame of reference (x, y), the according direction has to be corrected for the rotation. Without
knowning this rotation, the orientation of the RX and TX cannot be inferred directly form
the directions, but additional information is necessary [48,76] [N9].
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Figure 2.2: Layout of the array geometries of the TX ( ) and the RX ( )
with the center of gravities at pTX and pRX, respectively, in the coordinate
system (x, y), defining the global frame of reference. Each array is described by
a local frame of reference and an according coordinate system. The individual
antenna element positions are denoted by ∆p

(i)
TX, i ∈ {1, . . . , I} for the TX, and

by ∆p
(l)
RX, l ∈ {1, . . . , L} for the TX.

where we introduced the dispersion parameter vector θk = [τk, ϕD,k, ϕA,k]T, and
the vector Θ = [θT

1 , . . . ,θ
T
K ]T. The distance-dependent phase term is incorpo-

rated into the complex amplitude13 , i.e., αk = ᾱke
−j2πfcτk and the vector of

complex amplitudes α = [α1, . . . , αK ]T are defined. Furthermore, we define the
matrix S(i,l)(Θ) = [s(i,l)(θ1), . . . , s(i,l)(θK)] and the sampled received pulse

s(i,l)(θ) ≡ s(i,l)(τ,ΩTX,ΩRX) (2.13)

= sTX(τ −ΩT
TX∆p

(i)
TX/c−ΩT

RX∆p
(l)
RX/c)

ej2πfc/c(ΩTX∆p
(i)
TX+ΩRX∆p

(l)
RX),

where

sTX(τ) = [sTX(0− τ), sTX(Ts − τ), . . . , sTX((N − 1)Ts − τ)]T.

The overall sampled received signal is then given as

r = rSMC + rDMC +w, (2.14)

13As long as an unknown phase term in included in the amplitude, it is not possible to
utilize the distance dependent phase term for ranging.
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where

r = [r(1,1)T, r(1,2)T, . . . , r(1,L)T, . . . , r(i,l)T, . . . , r(I,L)T]T,

rSMC = [r
(1,1)
SMC

T
, r

(1,2)
SMC

T
, . . . , r

(1,L)
SMC

T
, . . . , r

(i,l)
SMC

T
, . . . , r

(I,L)
SMC

T
]T,

rDMC = [r
(1,1)
DMC

T
, r

(1,2)
DMC

T
, . . . , r

(1,L)
DMC

T
, . . . , r

(i,l)
DMC

T
, . . . , r

(I,L)
DMC

T
]T,

w = [w(1,1)T,w(1,2)T, . . . ,w(1,L)T, . . . ,w(i,l)T, . . . ,w(I,L)T]T.

By combining the different antennas the received signal stemming from SMCs
is

rSMC =

K∑

k=1

s(θk)αk = S(Θ)α (2.15)

where s(θ) =
[
s(1,1)(θ)

T
, ..., s(1,L)(θ)

T
, ..., s(i,l)(θ)

T
, ..., s(I,L)(θ)

T
]T

, and S(Θ) =
[
S(1,1)(Θ)

T
, . . . ,S(1,L)(Θ)

T
, . . . ,S(i,l)(Θ)

T
, . . . ,S(I,L)(Θ)

T
]T

.
The stochastic part of the received signal is described by the DMC plus

AWGN, i.e., rDMC + w. It is easy to show that this random process is zero-
mean and has the following covariance matrix:

C = CDMC +CAWGN. (2.16)

The covariance matrix for the AWGN CAWGN = σ2
wI, with variance σ2

w =
N0/Ts. The covariance matrix for the DMC process for antenna pairs (i, l) and
(i′, l′) is in general given by

[
CDMC

]
i,l,i′,l′

=E
[
r

(i,l)
DMCr

(i′,l′)
DMC

H]

=

∫ ∫ ∫
SDMC(τ,ΩTX,ΩRX;pTX,pRX) (2.17)

× s(i,l)(τ,ΩTX,ΩRX; ∆p
(i)
TX,∆p

(l)
RX)

× s(i′,l′)(τ,ΩTX,ΩRX; ∆p
(i)
TX,∆p

(l)
RX)

H
dτds1(ΩTX)ds1(ΩRX),

where we used the uncorrelated scattering assumption in the delay, the direction-
of-departure and the direction-of-arrival domains for (2.17).

While (2.17) delivers an accurate description of the DMC process if the
uncorrelated scattering assumptions hold, the difficulty is that the DMC process
is unknown and has to be estimated. Therefore, we often apply the following
assumptions for the description of the DMC process:

(i) we employ the wideband aperture function for the DMC

(ii) we assume a separable delay - direction-of-departure - direction-of-arrival
power spectrum, i.e.,

SDMC(τ,ΩTX,ΩRX;pTX,pRX) = PDMCSDMC(τ)SDMC(ΩTX)SDMC(ΩRX),
(2.18)

where PDMC describes the power of the DMC with respect to the SMCs,
and SDMC(τ), SDMC(ΩTX), and SDMC(ΩRX) are the delay power spec-
trum (DPS), the direction of departure power spectrum (DODPS), and
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the direction of arrival power spectrum (DOAPS), respectively and inte-
grate to 1.

(iii) we neglect correlations across antenna elements.

The first two assumptions lead to the Kronecker mode decomposition, i.e.,

CDMC = PDMCCI ⊗CL ⊗CN , (2.19)

with ⊗ as the Kronecker product, and

CI =

∫
SDMC(ΩTX)sI(ΩTX)sH

I (ΩTX)ds1(ΩTX) (2.20)

CL =

∫
SDMC(ΩRX)sL(ΩRX)sH

L(ΩRX)ds1(ΩRX) (2.21)

CN =

∫
SDMC(τ)sN (τ)sH

N (τ)dτ, (2.22)

where

sI(ΩTX) = [ej2πfc/cΩ
T
TX∆p

(1)
TX . . . ej2πfc/cΩ

T
TX∆p

(I)
TX ]T (2.23)

sL(ΩRX) = [ej2πfc/cΩ
T
RX∆p

(1)
RX . . . ej2πfc/cΩ

T
RX∆p

(L)
RX ]T (2.24)

sN (τ) = [sTX(−τ) . . . sTX((N − 1)Ts − τ)]T. (2.25)

The Kronecker mode decomposition enables computationally less demanding
inversion of the covariance matrix, needed for sophisticated estimators. The
third assumption leads to eye-matrices for CI and CL. This assumption is
correct, if the individual antenna elements are spaced by λc

2 for three dimensional
propagation [65], a uniform DODPS/DOAPS and a uniform linear array. For
horizontal only propagation, the correlations in CI and CL follow a zero-order
Bessel function of the first kind [65, 94]. The first zero occurs at approximately
0.4λc, meaning that antennas spaced by 0.4λc show no correlation. However,
the following antenna, i.e., 0.8λc apart from the first antenna, will be correlated.

As we consider single-snapshot based estimation in this thesis, the sample
covariance matrix will be rank deficient and not invertible. Thus, we parametrize
the ADPS and in turn the covariance matrix by a parameter vector η, i.e., C(η).

Finally, under the made assumptions, the likelihood function of the model
reads

f(r|Θ,α,η) =
1

πNIL det(C(η))
e(r−S(Θ)α)HC(η)−1(r−S(Θ)α), (2.26)

with det(·) as the determinant of a matrix. This function is the basis for the
subsequent chapters, for the derivation of fundamental performance bounds in
Chapter 3, for the derivation of estimators in Chapter 4 and for the derivation
of a joint estimation and detection of SMCs in Chapter 5.

2.4 Detour: A slightly different point of view
Another possibility to arrive at the multiple-input multiple-output signal model
given by (2.6) is to start from a received signal described solely by the delay14,

14This description is quite general, as it does not make the plane wave assumption. Fur-
thermore, an array is not yet introduced, meaning that all correlations are expressed solely
via the delay domain.
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i.e.,

r(t) =

∞∑

i=1

ᾱis(t− τ̄i(pTX,pRX)) + n(t) (2.27)

=

K∑

k=1

ᾱks(t− τk(pTX,pRX))

︸ ︷︷ ︸
SMCs: rSMC(t)

+

∞∑

k=K+1

ᾱks(t− τk(pTX,pRX))

︸ ︷︷ ︸
non-specular waves - DMC: rDMC(t)

+ n(t)

︸︷︷︸
AWGN

,

(2.28)

where s(t − τ(pTX,pRX)) = sTX(t − τ(pTX,pRX))e−j2πfcτ(pTX,pRX). The first
term in (2.28) describes the SMCs, the second term comprises an infinite num-
ber15 of non-specular waves leading to the DMC and the third term is the
AWGN.

To uncover the influence of the direction of arrival and the direction of de-
parture, we assume that within a region around pTX and pRX the plane-wave
far-field condition holds and that within this region the same plane waves arrive.
As before, we place a coordinate system with its origin at pTX and another coor-
dinate system at pRX. Thus, an antenna placed ∆pRX apart from pRX receives
the following SMCs from a transmitting antenna placed ∆pTX apart from pTX

rSMC(t,∆pTX,∆pRX) =

K∑

k=1

ᾱks(t− τk + ΩT
TX,k∆pTX/c+ ΩT

RX,k∆pRX/c).

(2.29)

By sampling (2.29) in the temporal and spatial domain (2.12) is obtained.
The delay of the non-specular waves can be split-up in a similar way leading

to

rDMC(t,∆pTX,∆pRX) =

∞∑

k=K+1

ᾱks(t− τk + ΩT
TX,k∆pTX/c+ ΩT

RX,k∆pRX/c)

(2.30)

Comparing (2.30) with the DMC term in (2.6), the connection between the two
approaches is clearly seen.

2.5 Single-SMC Channel Model
With the channel and signal model given above, it is often not possible to derive
closed-form expressions for, e.g., the fundamental limits in Chapter 3 or the
detection performance in Chapter 5. Thus, we introduce the single-SMC in
DMC and AWGN channel model. This SMC can be the LOS as in [N3], [T1] or
any other reflection leading to an SMC. The signal is still described by (2.14),
where the description of the SMC part reduces to a single component, meaning
K = 1.

In [T1], we analyze the ranging performance of a single-input single-output
(SISO) system. Thus, the channel is described by a LOS plus DMC model.

15Often this sum is modeled to consist of a certain number of terms. As this number is
unknown, we used infinity for simplicity.
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Figure 2.3: Model and sample functions of signal model given in (2.31) for a
wide range of bandwidths neglecting AWGN. The upper row depicts the SMC
(here the LOS, ) and the square root of the DPS of the DMC ( ), while
the lower row highlights five sample functions ( , , , , ) and for
comparsion the unaltered SMC( ). The columns show different bandwidth
starting from 1MHz ((a) and (e)) up to 1GHz ((d) and (h)).

An example of a system following this model is a narrowband system with a
dominant LOS component. The sampled received signal is given by16

r = sTX(τ)α+ rDMC +w. (2.31)

The DMC term does not depend on the directions of departure and arrival
anymore17, leading to a description based solely on the delay, i.e., the delay
power spectrum SDMC(τ).

Fig. 2.3 illustrates the signal model (top row) and some sample realizations
(bottow row) neglecting AWGN for a wide range of bandwidths. For the simula-
tion of the DMC, we utilized a DPS with a double-exponential shape [41,59].18
In the UWB case (Fig. 2.3d and 2.3h), the LOS component is clearly sepa-
rated from the DMC process and neither fading nor pulse distortion occurs. By
decreasing the bandwidth, the interference between the LOS component and
the DMC process increases and leads to fading and distortion of the received
pulse. For low bandwidth, the complete DMC process interferes with the LOS
component, leading to a flat fading scenario without significant distortion.

16This is a sampled version of (2.28). It can also be seen as (2.14) without an array, meaning
that I = L = 1 and ∆p

(1)
TX = 0 and ∆p

(1)
RX = 0, hence, not depending on the direction of

departure and direction of arrival.
17In fact, the DMC is still influenced by the direction of departure and arrival, but it cannot

be observed with the chosen aperture.
18The parameters and the function can be found in [T1].
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2.6. RFID SYSTEM MODEL

2.6 RFID system model

Classical passive ultra-high frequency (UHF) RFID systems have been designed
to replace bar-codes. Such systems are narrowband and thus do not allow
accurate and robust ranging/positioning. However, several techniques have
been proposed to increase the bandwidth and allow for more accurate rang-
ing/positioning. Basically, two approaches have been investigated: (i) increas-
ing the bandwidth at the tag [22,23,34] or (ii) increasing the bandwidth at the
transmitter side [5, 7, 32] [N11]. The first approach uses a customized RFID
tag scattering back a code division multiple access (CDMA) according to a suit-
able pseudorandom time-hopping sequence. The second approach modulates the
transmitted continuous wave signal with a CDMA sequence, which is in turn
scattered back by the addressed tag. The advantage of this approach is that it
can work with standard off-the-shelf RFID tags.19

Here, we consider a system with M RFID readers operating at known po-
sitions pm. Each reader is equipped with Lm closely-spaced antennas that can
be used to transmit and receive wideband signals. An RFID label is placed
at unknown position p. The according MIMO system is depicted in Fig. 2.4.
The transmission from a TX reader antenna via the label to an RX reader an-
tenna can be described by the backscatter channel. It consists of the downlink
channel from the TX reader to the RFID label and the uplink channel from
the RFID label to the RX reader. The backscatter channel can then be de-
scribed via the convolution of the two constituent channels, the downlink and
the uplink channels. The backscatter channel is also called pinhole channel, as
all waves (modulated by the RFID label) have to converge at a pinhole (the
label). In Fig. 2.4 two different backscatter channels are highlighted depending
on the involved constituent channels: (i) a monostatic channel, consisting of the
same two constituent channels, and (ii) a bistatic channel connecting two differ-
ent readers, consisting of two uncorrelated constituent channels. Furthermore,
static clutter is highlighted, stemming from the direct transmission between a
reader with itself or between two different readers without converging at the
pinhole. This static clutter can be canceled from the received signal, by means
of different signaling and pre-processing schemes [5, 7, 23].

The two constituent channels, the downlink h(τ,ΩTX;pm,p) and the up-
link h(τ,ΩRX;pm′ ,p), are modeled with a single-SMC in DMC channel as in
Section 2.5, i.e.,

h(τ,ΩTX;pm,p) = αmδ(τ − τm)δ(ΩTX −ΩTX,m)

+ hDMC(τ,ΩTX;pm,p) (2.32)
h(τ,ΩRX;pm′ ,p) = αm′δ(τ − τm′)δ(ΩRX −ΩRX,m′)

+ hDMC(τ,ΩRX;pm′ ,p). (2.33)

Note that the downlink and the uplink channel do not depend on ΩRX and ΩTX,
respectively, as the RFID label is assumed to consist of a single antenna. By

19A different approach are (often active) UWB RFID tags [10, 17]. These tags are capable
of transmitting a UWB pulse, meaning that the received signal does only include the uplink
channel from the tag to the receiver.
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Figure 2.4: RFID setup including the RFID label at unknown position p and
two readers at position p1 and pM equipped with L1 and LM closely spaced
antennas, respectively.

convolving the two constituent channels, the backscatter channel is

hBS(τ,ΩTX,ΩRX;pm,pm′ ,p) = (2.34)
αmαm′δ(τ − τm − τm′)δ(ΩTX −ΩTX,m)δ(ΩRX −ΩRX,m′)

+ αmδ(ΩTX −ΩTX,m)hDMC(τ,ΩRX;pm′ ,p)

+ αm′δ(ΩRX −ΩRX,m′)hDMC(τ,ΩTX;pm,p)

+

∫
hDMC(λ,ΩTX;pm,p)hDMC(τ − λ,ΩRX;pm′ ,p)dλ

The first term in (2.34) shows the part based solely on the LOS components of
the two constituent channels. The second and third terms are the convolutions
of the LOS components of the up- and downlink with the DMC of the down- and
uplink, respectively. The fourth term in (2.34) represents the convolution of the
DMC terms of the two constituent channels. The backscatter channel can be
described by a single SMC plus DMCmodel (as described in Section 2.5), by sub-
suming the last three terms in (2.34) into hDMC,m,m′(τ,ΩTX,ΩRX;pm,pm′ ,p).

The sampled received signal for the backscatter channel can be obtained by
equation (2.14). To this end, we define the SMC term by means of its combined
complex amplitude αm,m′ = αmαm′ and its dispersion parameters θm,m′ =
[τm + τm′ , ϕD,m, ϕA,m′ ]

T. Additionally, we place local coordinate systems with
origins at the transmit reader position pm and the receive reader position pm′
as in Section 2.2, and sample the resulting received signal as in Section 2.3.20

2.7 Concluding Remarks
This chapter has introduced the channel and signal models used within this
thesis. The channel consists of two major building blocks:

20Of course, one has to take into consideration that pm ≡ pTX, pm′ ≡ pRX, lm ≡ i and
lm′ ≡ l, θm,m′ ≡ θ1, and K = 1.
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• Specular multipath components (SMC), containing position-related
information, i.e., the delay, the DoD, and the DoA, because these param-
eters can be derived from the positions of the transmitters and receivers.
Examples for SMCs are the LOS as well as reflections at flat surfaces.

• Dense multipath component (DMC), consisting of a continuum of
weak multipath components. The DMC acts (in this thesis) mainly as
an interference with respect to the position-related information contained
in the SMCs. The multipath components generating the DMC are non-
specular waves stemming from, e.g., diffuse reflection at rough surfaces; in
short everything that is not resulting in an SMC is part of the DMC.

The received signal is sampled in the temporal and spatial domains leading
to a MIMO signal model. The likelihood function for the sampled received
signal is characterized by a complex normal distribution which is the basis for
the subsequent chapters. In Chapter 3, a closed-form solution is analyzed for
the CRLB of a single-SMC in DMC model and for the RFID setup. Chapter 4
uses the likelihood function to derive ML estimators and Chapter 5 jointly infers
the number of SMCs that can be reliably detected.
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Chapter 3

Fundamental limits for
position-related parameter
estimation in dense multipath
environments

Fundamental limits play an essential role in assessing the performance of an
estimator. One such fundamental limit is the CRLB, placing a lower bound
on the variance of any unbiased estimator [42, 100]. Compared to other lower
bounds, e.g., the Ziv-Zakai bound [111] or Barankin-type bounds [55], the CRLB
is the easiest to determine. Furthermore, by investigating the inverse of the
CRLB, i.e., the Fisher information, properties of the system and signal model
can be assessed.

The derivation of the CRLB is straightforward and has already been derived
for a channel and signal model comprised of a multitude of SMCs [78] including
the DMC [50, 71]. However, due to the overlap of SMCs it is difficult to gain
any meaningful insight regarding the influence of individual signal and system
parameters on the estimation of position-related quantities.

Thus, in this chapter, we highlight, on the basis of the single-SMC in DMC
channel model (cf. Section 2.5), a closed-form solution for the delay estimation
problem. This enables insight on the influence of channel and signal parameters
onto the achievable ranging performance in DMC channels [N3], [T1]. Again,
note that as soon two or more SMCs start to overlap, the closed-form solution
will not hold anymore and one has to numerically evaluate the CRLB [35, 50,
71,78], [N4,N5]. Next, we focus on the passive RFID MIMO system and derive
the CRLB for the delay, the DoD and the DoA [T2], [N4]. Finally, we transform
the CRLB on the channel parameters into the CRLB on the position, enabling
insight on reader and antenna placement.

3.1 Limits on channel parameters estimation

Having the likelihood function in (2.26), we can derive the achievable perfor-
mance to estimate the dispersion parameters Θ by the CRLB. To this end, we
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CHAPTER 3. FUNDAMENTAL LIMITS

stack the parameters governing the likelihood function into a single parameter
vector ψ = [ΘT,RαT, IαT,ηT]T, where Rα and Iα are the real and imaginary
parts of the complex amplitude. The (i, j)th element of the Fisher information
matrix (FIM) I(ψ), the inverse of the CRLB, is given for the Gaussian model
as [42]

[I(ψ)]ij =2R
[∂µH(ψ)

∂ψi
C−1(ψ)

∂µ(ψ)

∂ψj

]
(3.1)

+ Tr
[
C−1(ψ)

∂C(ψ)

∂ψi
C(ψ)

∂C−1(ψ)

∂ψj

]
,

where µ(ψ) and C(ψ) are the mean vector and the covariance matrix, respec-
tively. The second part in (3.1) captures the potential influence of the covariance
matrix on the estimation of parameter ψ. In this chapter, we assume that the
covariance matrix, or the parameters of the covariance matrix are known.1

The FIM and subsequently the CRLB can always be evaluated numerically.
However, this makes it difficult to assess the influence of specific model and
system parameters. In the following, we will discuss two special cases, the SISO
ranging performance in Section 3.1.1 and the ranging and angulation perfor-
mance for a MIMO-RFID system in Section 3.1.2.

3.1.1 SISO channel

To analyze the ranging performance of a SISO radio channel, we utilize the
single-SMC channel model introduced in (2.31) in Section 2.5. Furthermore, we
assume that the parameters governing the covariance matrix of the model are
known. Thus, the parameter vector reduces to ψ = [τ,Rα, Iα]T, where Rα and
Iα are the real and imaginary parts of the complex amplitude, respectively. The
FIM is given as [N3] [T1]

I(ψ) =



Iτ,τ Iτ,Rα Iτ,Iα
IRα,τ IRα,Rα 0

IIα,τ 0 IIα,Iα


 . (3.2)

We assume that the complex amplitude does not hold any position-related infor-
mation2 and model it as nuisance parameter. Thus, the ranging performance can
be described by the equivalent Fisher information (EFI) for the delay estimation
problem

I(τ) =
[
[I−1(ψ)]1,1

]−1
. (3.3)

Finally, the ranging error bound is defined as the square root of the inverse of
the EFI, i.e.,

R(τ) =
√
I(τ)−1. (3.4)

1In [N3] we included the effect of a delay dependent covariance matrix and found that only
at very small bandwidth the DPS effects the estimation of the delay.

2The amplitude does not follow a simple path-loss model, as we assumed that the beam-
patterns of the antennas are unknown and included in the complex amplitude. Thus, it does
not hold position-related information.
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By neglecting the DMC term, (2.31) reduces to an AWGN-only model. This
leads to the well known EFI for the delay estimation in AWGN, given as [42,100]

IAWGN(τ) = 8π2β2SNR. (3.5)

In (3.5) the signal to noise ratio (SNR) is given as SNR = α2‖sTX(τ)‖2Ts

N0
and

the effective (mean-square) bandwidth of the transmit pulse β2 = ‖ṡTX(τ)‖2
4π2‖sTX(τ)‖2 ,

where ṡTX(τ) is the sampled derivative of the transmit pulse with respect to τ .
By considering the DMC in the derivation, the REB reads [N3] [T1]

I(τ) = 8π2β2γ(τ)SINR(τ) sin2(φ(τ)) (3.6)

= 8π2β2S̃INR(τ), (3.7)

with the whitening gain γ(τ) =
β2
w(τ)
β2 , the effective (mean-square) bandwidth

of the whitened pulse β2
w(τ) =

‖ṡTX(τ)‖2H
4π2‖sTX(τ)‖2H

, the effective signal to interference

plus noise ratio (SINR) S̃INR(τ) = γ(τ)SINR(τ) sin2(φ(τ)), the SINR(τ) =
|α|2‖sTX(τ)‖2HTs

N0
, and φ(τ) as the angle between sTX(τ) and ṡTX(τ) in a Hilbert

space H defined by an orthonormal expansion of the covariance matrix C(η).
The inner product of x and y in this Hilbert space is given as

〈x,y〉H =
N0

Ts
yHC(η)−1x (3.8)

and the induced norm by ‖x‖2H = 〈x,x〉H. Comparing the two norms, ‖x‖2H
and ‖x‖2, it is clear that in the AWGN-only case both norms coincide, because
the inverse covariance matrix reduces to Ts/N0. Utilizing the Woodbury matrix
identity, it is easy to show that the DMC reduces the induced norm given by
(3.8) compared to ‖x‖2, leading to SINR(τ) ≤ SNR. While (3.7) allows for an
easy comparison to the AWGN only case (3.5) as all terms are combined into
the effective SINR, (3.6) allows for more detailed insights:

• The whitening/equalization gain γ(τ) is defined as the ratio of the effec-
tive bandwidths of the whitened and non-whitened pulses. It has to be
mentioned that the whitening/equalization operation by the multiplicaton
with the inverse of the covariance matrix does not only whiten the signal
in the spectrum, but also equalize it in the delay domain, as the DMC
process is non-stationary.

• The factor sin2(φ(τ)) is the cost for estimating the nuisance parameter α.
Common pulses (even or odd waveforms) are orthogonal to their deriva-
tives. Thus, the estimation of the nuisance parameter α is ’cost-free’
in AWGN. However, due to the non-stationary nature of the DMC, the
whitening operation with the inverse of the covariance matrix makes the
pulse asymmetric.

• The DMC acts as an interference for delay estimation as it increases the
effective noise floor after the equalization with the inverse of the covariance
matrix. This is easy to recognize in the extreme case of a constant delay
power spectrum and a transmit pulse with blockspectrum: the only effect
of the DMC in this case is that it increases the noise floor, leading to a
reduced component SNR.
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Figure 3.1: Parameters governing the EFI for delay estimation given in (3.6)
and (3.7) over a wide range of bandwidth: SINR(τ) ( ), S̃INR(τ) ( ),
whitening gain γ(τ) ( ) and loss factor sin2(φ(τ)) ( ).

In Fig. 3.1 we illustrate the parameters governing the EFI for the delay es-
timation problem, i.e., SINR(τ) ( ), S̃INR(τ) ( ), whitening/equalization
gain γ(τ) ( ) and loss factor sin2(φ(τ)) ( ), over a wide range of band-
width for the LOS component. For the evaluation, we utilized a root-raised
cosine pulse with roll-off factor of 0.6 and pulse duration of 1/B, with B as
bandwidth.The DPS follows a double exponential function with parameters de-
fined in [T1]. The SNR = 25dB and the three subplots highlight the influence
of the specular to dense ratio (SDR) defined as SDR = ‖αsTX(τ)‖2

PDMC/Ts
. Fig. 3.1a,

3.1b, and 3.1c refer to SDR −10 dB, 0dB, and 10 dB, respectively.
In the flat fading case, i.e., for narrow bandwidth, the SINR(τ) tends to-

wards the SDR, while in the UWB case, i.e., for large bandwidth, the SINR(τ)

approaches the SNR. The effective S̃INR(τ) follows the SINR(τ) at large band-
width, but it also tends towards the SNR at narrow bandwidth. We interpret
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Figure 3.2: REB ( ), REB for AWGN only ( ) and simulated range esti-
mation error standard deviation for ML ( ) and MF ( ) estimator over a
wide range of bandwidth.

the behavior of the SINR(τ) and the effective S̃INR(τ) as describing the ampli-
tude fading and the pulse distortion, respectively. At large bandwidth neither
amplitude fading nor pulse distortion occur. Moving to smaller bandwidth,
pulse distortion and amplitude fading set in, leading to decreased values for
the SINR(τ) and S̃INR(τ). By decreasing the bandwidth even more, the com-
plete DMC interferes with the LOS component, leading to the flat fading case.
In this case, no pulse distortion occurs and the S̃INR(τ) approaches the SNR
again, while the SINR(τ) tends towards the Rician K factor. The loss factor
sin2(φ(τ)) is coupled with the asymmetry of the whitened pulse and reduces the
achievable gain of the whitening operation.

In Fig. 3.2, we illustrate the REB ( ) and the REB for AWGN-only ( ).
Fig. 3.2a, 3.2b, and 3.2c refer again to SDR −10 dB, 0 dB, and 10 dB, respec-
tively. According to (3.5) the REB in the AWGN-only case scales quadratically
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with the inverse of the bandwidth and linearly with the SNR. It serves as a
comparison to highlight the influence of the DMC acting as interference for
the ranging. The REB considering the influence of the DMC approaches the
AWGN-only case at narrow and large bandwidths, where the effective S̃INR(τ)
approaches the SNR. At intermediate bandwidth, the REB deviates from the
AWGN-only bound due to the interference by the DMC process and is larger
the lower the SDR is. Furthermore, the standard deviations of the ranging er-
rors for two simulated estimators are included in Fig. 3.2: (i) an ML estimator
( ) considering the noise covariance matrix, and (ii) a naïve MF estimator
( ) convolving the received signal with the template pulse. The MF estima-
tor deviates from the bound already at high bandwidth, but it approaches the
bound again at very low bandwidth. The ML estimator shows large outliers
at low bandwidth, but is able to approach the bound at intermediate and high
bandwidth. Both effects can be attributed to the whitening/equalization oper-
ation by the inverse covariance matrix: (i) The SINR(τ) reflects the component
SNR after the whitening/equalization operation and it is coupled with the de-
tection of the LOS component. This will be further investigated in Chapter 5.
This effect leads to the outliers at low bandwidth as the SINR(τ) falls below
this detection threshold. (ii) However, the accuracy is coupled with the effective
S̃INR(τ), which is increased by the whitening/equalization operation. Thus, the
ML estimator is able to approach the bound at intermediate bandwidth, where
the MF estimator already deviates from the bound [N3], [T1].

To end this section, we want to highlight again that the underlying model
is the single-SMC-in-DMC channel. As soon as two or more SMCs start to
overlap, the EFI in (3.7) will be an upper bound on the information contained
in the SMC under investigation and for an exact analysis, the CRLB has to
be evaluated numerically. However, for SMCs with a spacing of about twice
the pulse duration between each other, numerical analysis shows that the above
expressions deliver accurate results.

3.1.2 Backscatter channel

In comparison to the SISO channel, the RFID setup with closely-spaced antennas
enables classical array processing, exploiting phase information between array
antenna elements. Thus, the parameter vector governing the likelihood function
is given by ψm,m′ = [τm,m′ , ϕD,m, ϕA,m′ , |αm,m′ |, ϕαm,m′ ] for reader combination
m and m′, with |αm,m′ | and ϕαm,m′ as the absolute value and the phase of the
complex amplitude, respectively. For easier readability, we will drop the indices
m and m′ and reintroduce them where necessary.

In Appendix A.1, the covariance matrix of the DMC process is derived for a
bistatic 2-reader RFID setup using the following assumptions: (i) the wideband
model for the aperture function, (ii) a separable ADPS, and (iii) uniformly
distributed DODPS and DOAPS. The FIM for the RFID channel parameters is
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given as

I(ψ) =




Iτ,τ Iτ,ϕD
Iτ,ϕA

Iτ,|α| Iτ,ϕα
IϕD,τ IϕD,ϕD IϕD,ϕA IϕD,|α| IϕD,ϕα

IϕA,τ IϕA,ϕD
IϕA,ϕA

IϕA,|α| IϕA,ϕα

I|α|,τ I|α|,ϕD
I|α|,ϕA

I|α|,|α| I|α|,ϕα
Iϕα,τ Iϕα,ϕD

Iϕα,ϕA
Iϕα,|α| Iϕα,ϕα



. (3.9)

The definitions of the individual entries can be found in Appendix A.2. As for
the SISO setup, we can define the REB as the square root of the inverse of the
(1, 1) element of the CRLB. In a similar fashion, we define the angulation error
bound (AEB) for the AoD [35,52], [N4], i.e.,3

A(ϕD) =
√
I−1(ϕD), (3.10)

where the EFI on the angulation problem is given as

I(ϕD) =
[
[I−1(ψ)]2,2

]−1
. (3.11)

However, the spatial correlations of the covariance matrix prevent insight
beyond numerical analysis. Thus, we neglect the spatial correlations of the
covariance matrix, considering only the block-diagonal structure, leading to the
following reduced FIM

Inc(ψ) =




Inc,τ,τ 0 0 Inc,τ,|α| 0

0 Inc,ϕD,ϕD
0 0 0

0 0 Inc,ϕA,ϕA 0 0

Inc,|α|,τ 0 0 Inc,|α|,|α| 0

0 0 0 0 Inc,ϕα,ϕα



. (3.12)

For this case, the dispersion parameters decouple, meaning that they do not
influence the achievable performance of one another [N4,N6]. This enables the
derivation of closed-form expressions for the ranging and angulation capabilities
for the RFID setup.

The EFI for the AoD4 is given as

I(ϕD,m) =
8π2f2

c

c2
Lm′SINR(τm,m′)

Lm∑

l=1

(∂ΩT
TX,m

∂ϕD,m
∆p(l)

m

)2

. (3.13)

It scales linearly with the antennas at the RX and the SINR(τm,m′), and scales
quadratically with the center frequency. The last term in (3.13) captures the
scaling with respect to the array geometry and depends additionally on the value
of the AoD. It is interesting to note that while the CRLB for the delay and AoD
decouple, the EFI on the AoD still depends on the delay via the SINR(τm,m′),
i.e., the component SNR after the whitening/equalization operation with the
covariance matrix. In an AWGN-only model, the EFI for the AEB is the same,
except that the SINR(τm,m′) is replaced by the SNR.

3We will only define the AEB for the AoD. The definition of the AEB for the AoA follows
accordingly.

4Again, the EFI for the AoA is defined accordingly.
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The EFI for the delay estimation is given as

I(τm,m′) = 8π2β2S̃INR(τm,m′)LmLm′ . (3.14)

Compared to the SISO setup, the EFI for the delay scales linearly with the
number of antennas of the TX and RX. As the FIM on the delay and AoD and
AoA decouple, the same gain is achieved by a non-phase coherent setup [T2]. It
is important to note that the pinhole nature of the backscatter channel increases
the influence of the DMC with respect to the SISO channel, meaning that the
SDR is reduced. This reduction in SDR leads to a decreased SINR(τm,m′). In [6]
it is shown that

SDRBS =
SDRDLSDRUL

1 + SDRDL + SDRUL
, (3.15)

with SDRDL and SDRUL as the SDR of the downlink and the uplink channel,
respectively. It is clear from (3.15) that SDRBS < min(SDRDL,SDRUL), mean-
ing that strong LOS conditions are necessary for accurate and robust ranging
with backscatter channels.

Here, we have to mention that (3.13) and (3.14) are valid for bistatic reader
setups, meaning m 6= m′. For a monostatic setup, the information is reduced in
two ways: (i) The blocks in the DMC process covariance matrix are increased
by a factor of up to 2 , leading to a reduced SINR(τm,m) and S̃INR(τm,m). This
reduction can be as high as 2 in the extreme case of negligible AWGN [T2] (see
also (A.24) vs. (A.18)). (ii) Due to channel reciprocity, the received signal from
antenna l to antenna l′ and the reverse channel are the same (up to the AWGN)
and thus only one should be considered.5

In Fig. 3.3 the influence of considering ( , (a), (c), (e)) or neglecting
( , (b), (d), (f)) the spatial correlations in the covariance matrix on the
REB and AEB is depicted over a wide range of bandwidth. For the simulation,
we used 4-ary linear arrays with a spacing of 0.4λ, oriented along the x-axis,
at the TX reader and the RX reader, positioned at pTX ≡ pm = [0, 0]Tm
and pRX ≡ pm′ = [5, 0]Tm, respectively. As the CRLB depends on the AoD
and AoA, the RFID label was placed on a uniform rectangular grid between
[0, 2]Tm and [5, 5]Tm with a spacing of half a meter in x and y directions, leading
to 77 positions.6 The results depicted in Fig. 3.3 are thus root mean square
averaged over the label’s position. The transmitted pulse is a root-raised cosine
pulse with a roll-off factor of 0.6 and a pulse duration according to 1/B, with
B as bandwidth, at a carrier frequency of fc = 900MHz. We set SNR = 25 dB
and the SDR of the downlink and uplink are set such that SDRBS = 0dB.
The DODPS and DOAPS are assumed uniformly distributed, while the DPS
of the downlink and the uplink follows the same double-exponential function
used in the experiment to produce Fig. 3.2. The onsets of the DPSs are set
equal to the LOS delays of the constituent channels. To compare the CRLB
to the performance of standard estimators, at each RFID label position, 100
realizations of the DMC and AWGN process are drawn.

Solid lines with circle markers depict the REB/AEB ( ) for the range, the
AoD and the AoA in Figs. 3.3 (a) & (b), (c) & (d) and (e) & (f), respectively.

5By taking the mean of the two measurements it would be possible to reduce the AWGN
for these measurements.

6A comparable setup is shown in Fig. 3.4.
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Figure 3.3: REB ((a) and (b)), and AEB for the AoD ((c) and (d)), and AoA
((e) and (f)) ( ) including standard deviations of ML ( ) and MF ( )
estimators for the two different covariance models, including spatial correlations
( , (a), (c), (e)) and neglecting spatial correlations ( , (b), (d), (f)). For
comparison, the REB and AEB for an AWGNmodel ( ) are included. Finally,
a mismatched ‘ML’ estimator is added to analyze the effect of neglecting the
spatial correlations only in the estimator ( ).
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Different colors show the two different covariance models, i.e., red lines use the
spatially correlated covariance matrix ( , see Appendix A.2.1), while blue
lines use the block-diagonal covariance matrix ( , see Appendix A.2.2). As
for the SISO setup in Section 3.1.1, we compare the bounds to ML estimators
( ) making use of the inverse of the known covariance matrix and naïve MF
estimators ( ).

Fig. 3.3 (a) & (b) show that the influence of the spatial correlations is negligi-
ble at the highest bandwidth and increases slightly towards smaller bandwidth.
For very narrow bandwidth, both the REB considering and neglecting the spa-
tial correlations approach the REB in AWGN ( ), as for the SISO setup.
The ML estimators for both the model including the spatial correlations and
the model neglecting the spatial correlations approach their respective bound
at high bandwidth and deviate from the bound at 10MHz and 1MHz, respec-
tively. An interesting observation is made, by employing the covariance matrix
neglecting the spatial correlations (block diagonal matrix) to the data generated
including the correlations ( ). We called this estimator ‘ML model mismatch’.
Of course this is not an ML estimator anymore, as it uses the mismatched covari-
ance matrix. However, the estimator approaches the bound at high bandwidth,
just as the ML estimator, and it deviates at comparable bandwidth as the ML
estimator.

Fig. 3.3 (c) & (d) and (e) & (f) present the AEB7. Compared to the REB
the spatial correlations included in the covariance matrix, increase the Fisher
information, leading to a decreased AEB compared to the case neglecting the
correlations. The ML estimators perform similar as for the REB. However, the
‘ML model mismatch’ estimator ( ) is not able to approach the AEB ( ),
as it does not exploit the correlations in the covariance matrix. Nevertheless, it
still performs better than the MF estimator. Furthermore, the ‘ML model mis-
match’ estimator does not show the high risk of outliers to considerably smaller
bandwidth than the ML estimator. We interpret this effect in the following
way: (i) if the covariance matrix including the spatial correlations is utilized
for the whitening/equalization operation, the resulting signal afterwards is an
AWGN-only model with a reduced SNR, given by the SINR(τm,m′) (see discus-
sion around Fig. 3.1 and Fig. 3.2). If this SNR is below a threshold, the estimated
value will be uniformly distributed within its support. (ii) if the covariance ma-
trix neglecting the spatial correlations is utilized for the whitening/equalization
operation, the resulting signal afterwards will still include certain correlations
which can be utilized by the estimator.

The above discussion shows that neglecting the spatial correlations within the
covariance matrix does not significantly reduce the accuracy and robustness of
an estimator. In Chapter 4 we will develop estimators on the basis of this finding.
These estimators will also include the parameters of the covariance matrix which
have been assumed known for the above derivations and simulations. If these
additional parameters do not decouple from the above parameters, the presented
CRLBs will be increased.

7As we used a symmetric setup (same array at the TX and RX), the AEB for the AoD
equals the AEB for the AoA. Thus, we will only mention AEB as a general term, meaning
either one.
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3.2 Limits on position estimation
As mentioned in Chapter 2, some of the channel parameters, e.g., the delay, as
well as the directions, depend on the position of the TX and RX. Remember
that h(τ,ΩTX,ΩRX;pTX,pRX) is parametrized by the position of the TX and
RX. If we now want, e.g., to know the performance limits of estimating the
position of the RX for known TX position, we can apply the chain rule [42,
51, 78, 100] on the FIM on the channel parameters and derive the equivalent
Fisher information matrix (EFIM) for the RX position. To this end, we separate
the individual parameters in ψ into position-related and nuisance parameters
and define parameter vector ξ = [pRX, nuisance parameters in ψ]. The FIM on
parameter vector ξ is then given as

I(ξ) = JI(ψ)JT, (3.16)

where J is the Jacobian matrix, relating the variations in parameters of ψ to ξ
and its elements are given as

[J ]i,j =
∂ψi
∂ξj

. (3.17)

Finally, the position error bound (PEB) is defined as

P(pRX) =

√
Tr{I−1(pRX)} (3.18)

with the EFIM on the position estimation for 2-dimensional positioning as

I(pRX) =
[
[I−1(ξ)]1:2,1:2

]−1
. (3.19)

In the following, we will highlight this process focusing on the non-phase-
coherent RFID setup of Section 2.6. For non-phase-coherent observations, beam-
forming cannot be applied and only the ranging information is available [T2].
The EFIM on the position of the RFID label can then be found as [T2]

I(p) =

M∑

m=1

I(τm,m)hm,mh
T
m,m +

M−1∑

m=1

M∑

m′=m+1

I(τm,m′)hm,m′h
T
m,m′ , (3.20)

where the influence of the geometry is described by hm,m′ = 1
c (em + em′) with

em as unit vector pointing from the mth reader position pm towards the RFID
label’s position p. In (3.20), the first and second term highlight the contributions
of monostatic and bistatic reader measurements, respectively. As the channel
from reader m to reader m′ and its reverse channel are the same (up to the
AWGN), we consider only one of the bistatic measurements8.

In Fig. 3.49 2-fold standard deviation ellipses are depicted for different label
positions ( ) in a halfplane. Two RFID readers, each equipped with either 1 or 2

8Again, the influence of the AWGN could be reduced by averaging.
9This figure is nearly the same as Fig. 4 in [T2]. However, in [T2] we assumed that

monostatic measurements can be fully correlated (originating and ending at the same antenna)
or uncorrelated (originating and ending at different antennas). In this work, according to
(2.34), we are assuming that the DMC process only depends on the reader position pm and
not on the individual antenna position p(l)m . Thus, the gain for the monostatic measurements
is slightly decreased compared to the results in [T2].
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Figure 3.4: PEB depicted via 2-fold standard deviation error ellipses for a band-
width of 50MHz for different MIMO constellations: monostatic only without an
array ( ), mono- and bistatic without an array ( ), monostatic only with
a 2-ary array ( ), mono- and bistatic with a 2-ary array ( ).

antennas for transmitting and receiving, are depicted by . For the two mono-
static only setups ( , ), no time synchronization (per sample) is needed
between the two readers, as only backscatter channels are used that originate
and end at the same reader. According to (3.20), monostatic measurements add
information only in the radial directions, corresponding to circles around the
readers. Bistatic measurements add information mainly in the orthogonal axis,
which corresponds to the normal direction to an ellipse with the two involved
readers in its foci. This is highlighted in Fig. 3.4 by looking at the two scenar-
ios including bistatic measurements ( , ). By increasing the number of
readers, according to (3.20), the monostatic part is applied M times, while the
bistatic term is applied M(M−1)

2 times.
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3.3 Concluding Remarks
In this chapter, we highlighted the fundamental limits for estimation of positon-
related parameters from radio channel measurements in DMC channels. From a
system point of view, the main limiting factors are the bandwidth and the array
apertures.

• The EFI for the REB scales slightly super-quadratically with bandwidth
(starting at intermediate bandwidths). This is a combination of quadratic
scaling directly related to the bandwidth (also seen in AWGN) plus the
effect of less interference of the DMC. Furthermore, the EFI for the REB
scales linearly in the number of array elements at the transmitter and
receiver [T1,T2], [N3].

• The EFI for the AEB is increased by increasing the bandwidth as less
DMC interferes. In an AWGN-only setup, the AEB does not scale with
bandwidth and only the array apertures are relevant. This scaling with
respect to the array apertures applies in DMC interfered channels as well.
However, its scaling behavior is more complicated than for the REB, as the
EFI for the AEB is influenced by the array geometry and the AoD/AoA. In
the special case of a ULA with wavelength half spacing, the array aperture
scales the EFI for the AEB with a factor of L(L−1)2

48 . In general, larger
array apertures increase the EFI for the AEB [N4], and even aliased arrays
can be employed at the cost of additional ambiguities [N5].

With respect to positioning of RFID labels from range-only measurements, we
have shown that monostatic measurements deliver information in radial direc-
tion, while bistatic measurements provide information orthogonal to an ellipse
with the readers in its focal points [T2].

Regarding the channel, high SDR are beneficial for ranging and angulation,
because the SINR is at least equal to the SDR. This is especially true for RFID
setups as the SDR for the backscatter channel is at most the minimum of the
two SDRs of the constituent channels. While the SDR cannot be influenced
directly, our analysis shows that by increasing the bandwidth the influence of
the DMC, and hence the SDR, on the SINR is diminished.

Within this chapter, it is assumed that the covariance matrix, i.e., the param-
eters of the DMC and AWGN process, is/are known. If the covariance matrix
is not known, the EFI on a specific SMC parameter, e.g. τ , is influenced in
two ways: (i) the information is increased if the covariance matrix depends on
the parameter (see also (3.1) and [N3]) and (ii) the information is decreased if
the cross-element is non-zero (if the SMC parameter does not decouple from the
covariance matrix estimation) [42].

In realistic scenarios, the covariance matrix (or its parameters) will not be
known and needs to be estimated concurrently with the dispersion parameters.
Thus, in the following chapter we will drop the need of a known covariance
matrix and present methods to estimate the parameters of the SMC and DMC
jointly.
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Chapter 4

Estimation in dense multipath
environments

In the previous chapter, the CRLBs for position-related parameters have been
analyzed and compared to two estimators: (i) an MF and (ii) an ML approach.
While the MF estimator deviates form the bound at rather high bandwidth, the
ML estimator is able to approach the bound down to a much lower bandwidth.
However, the likelihood model in Chapter 3 assumed a known DMC-plus-AWGN
covariance matrix. For actual measurements, this is certainly unrealistic and the
parameters of the DMC and AWGN processes need to be estimated according
to the likelihood model given in Chapter 2.

Therefore, estimators are needed which are capable of estimating the pa-
rameters of the SMC and the DMC-plus-AWGN process from a single or a few
measurement snapshot(s). In Section 2.2, the relationship of the signal model
and its Fourier transform has been highlighted. With this relationship in mind,
the estimation of the dispersion parameters is basically a line-spectral estimation
(LSE) problem [47, 87, 89]. As LSE problems occur in many different fields of
research, e.g., sonar, radar, speech analysis, and channel estimation [89], numer-
ous methods tackling LSE have been derived. Two main classes of approaches
are subspace methods and maximum likelihood methods.

Subspace methods analyze the signal and/or noise subspace obtained by an
eigenvalue decomposition of the signal covariance matrix Csignal = E

[
rrH

]
. Ex-

amples of subspace methods are multiple signal classification (MUSIC) [69,75],
or estimation of signal parameters via rotational invariance technique (ESPRIT)
[49, 72]. All subspace based methods rely on the assumption that the sub-
space spanned by the noise eigenvectors (only AWGN) is orthogonal to the
subspace spanned by the spectral lines, the SMCs, and that the number of lines
is smaller than the number of samples N [87]. By including the DMC process,
the white noise assumption is violated, degrading the performance of subspace
based methods [87]. Furthermore, subspace based methods need an estimate
of the signal covariance matrix as input. As we want to employ our estimators
on single-snapshot observations, the sample-based covariance matrix does not
suffice. Methods like forward-backward smoothing could be applied, however,
these degrade the estimation accuracy and resolution ability [47,77,109].

Maximum likelihood (ML) methods rely on the likelihood function given in
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Section 2.3 and try to maximize the likelihood function with respect to its param-
eters. The benefit of ML based approaches is that they can be applied without a
direct estimate of the signal covariance matrix and are capable of estimating the
parameters of the SMCs from a single snapshot [47, 87]. Furthermore, they are
less sensitive to violations of the statistical assumption of white noise [87,88,91]
and it is also possible to derive estimators including the parameters of the DMC
process [71]. Unfortunately, the derived cost-functions are highly multimodal,
meaning that the initialization of the algorithms are paramount to converge
towards the global optimum [87, 90]. ML estimators are distinguished in two
categories defined by the underlying model of the complex amplitudes of the
SMCs: (i) deterministic maximum likelihood (DML) [30, 47, 71, 87, 90] and (ii)
stochastic maximum likelihood (SML) [14, 15, 40, 63, 92, 101]. The former as-
sumes that the complex amplitudes are deterministic unknowns, while the lat-
ter assumes an underlying stochastic model. In classic array signal processing
literature [47, 87, 102], the properties of the asymptotic behavior of DML and
SML estimators have been investigated and are well understood if the number
of snapshots is large [102] compared to the number of components (DML) or the
number of sensors (SML). In [70] the asymptotic consistency and normality for
the DML estimator has been proven for a single-snapshot scenario if the number
of sensors grows large.

Given the likelihood function of Section 2.3, direct maximization of the like-
lihood function with respect to all parameters is computationally demanding.
Thus, we resort to approximative schemes, e.g., variational inference [13] whose
concept is discussed in Section 4.1. By separating the unknown parameter vec-
tor into disjoint subsets, the mean field approximation [64] is introduced in
Section 4.1.1. Finally, we will present in Sections 4.2 and 4.3 two application
examples using the concept of variational inference for ranging and direct posi-
tioning, respectively.

4.1 Variational Inference

Given a likelihood function f(r|ψ), with ψ as parameter vector and r as ob-
served received signal, we want to estimate the probability distribution function
(pdf) f(ψ|r) for some prior distribution f(ψ). Unfortunately, the posterior pdf
is often intractable due to the integration in the model evidence term in the
denominator of the Bayes rule. Thus, we have to resort to approximative infer-
ence schemes. One possible pathway is variational inference, having its origins
in the calculus of variations [13]. Variational inference, sometimes also called
variational Bayesian inference or just variational Bayes, is a deterministic ap-
proximation scheme and tries to approximate the posterior pdf by some proxy
pdf, i.e.,

q(ψ|r) ≈ f(ψ|r). (4.1)

The aim of variational Bayes is to minimize the Kullback-Leibler divergence
(KLD) from the posterior to the proxy pdf, i.e.,

KL
(
q(ψ|r)‖f(ψ|r)

)
= Eq(ψ|r)

[
log

(
q(ψ|r)

f(ψ|r)

)]
. (4.2)
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Due to the intractable posterior pdf this is not possible, but it is easy to show
that the logarithm of the constant model evidence can be decomposed into
[13,16]

log(f(r)) = L
(
q(ψ|r)

)
+ KL

(
q(ψ|r)‖f(ψ|r)

)
, (4.3)

with the variational lower bound functional as

L
(
q(ψ|r)

)
= Eq(ψ|r)

[
log

(
f(ψ, r)

q(ψ|r)

)]
. (4.4)

The optimal pdf q∗(ψ|r) is the one minimizing the KLD given in (4.2). By
definition KL(q‖f) ≥ 0 for valid pdfs, thus, minimizing the KLD is equivalent to
maximizing the variational lower bound (4.4), as the model evidence is constant
with respect to q(ψ|r). Compared to the KLD, the variational lower bound
contains the tractable joint pdf f(ψ, r), and not the posterior pdf.

Minimizing the KLD from the posterior to the proxy pdf is not the only pos-
sible way of finding an approximation of the posterior. Another possibility is to
minimize the KLD from the proxy to the posterior pdf, leading to expectation
propagation algorithms [8, 13]. For multimodal posterior pdfs, the expectation
propagation algorithm tries to include all the modes of the posterior while vari-
ational Bayes focuses the probability mass of the proxy pdf at regions of the
true posterior with high probability mass [13,16,58].

4.1.1 Mean Field Approximation

Until now, we have not restricted the proxy pdf in any way. For inference
problems with a large number of parameters, an often used approximation is
(structured) mean field [13]. For the structured mean field approximation, one
splits the parameter vector in subsets1, ψ = [ψ1, ...,ψP ] and postulates that the
proxy pdf factorizes with respect to these subsets, i.e.,

q(ψ|r) =

P∏

p=1

q(ψp|r). (4.5)

Inserting (4.5) into (4.4) and evaluating the variational lower bound with
respect to a single subset ψp while keeping the other parameters (not in this
subset) fixed leads to [13,16]

L
(
q(ψ|r)

)
= Eq(ψp|r)

[
log

(
exp

{
Eq(ψp̄|r) [log(f(ψ, r))]

}

q(ψp|r)

)]
+ const, (4.6)

with q(ψp̄|r) =
∏
i 6=p q(ψi|r). Assuming that the optimal solution is achievable,

it is possible to derive the unconstrained factor update as

q∗(ψp|r) =
exp

{
Eq(ψp̄|r) [log(f(ψ, r))]

}
∫

exp
{
Eq(ψp̄|r) [log(f(ψ, r))]

}
dψp

, (4.7)

1If all individual parameters factorize it is often referred as mean field approximation, while
for non-fully factorized subsets the term structured mean field approximation is used.
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The denominator in (4.7) assures that q∗(ψp|r) is a valid pdf. By restricting
the proxy pdf to a certain family of pdfs, we need to maximize (4.6) with this
constraint. This will be performed below for the ML solution. As (4.6) or
(4.7) are only for one subset of parameters, and depend on all other subsets
of parameters, we have to iterate (in any order) over the subsets to converge
towards a local maximum of the variational lower bound. This means that we
need initial values for all subsets except the pth. The optimization is guaranteed
to converge towards a local maxima of the variational lower bound [13]. However,
convergence of mean field variational inference is only guaranteed to a local, but
not to a global maximum.

Maximum Likelihood Solution To find ML solutions with variational infer-
ence, we employ a uniform prior f(ψ) and constrain the pdfs of the individual
subsets to point estimates, i.e., q(ψp) = δ(ψp − ψ̄p) with ψ̄p arbitrary. The
solution to the maximization of (4.6) is then

ψ̂p = argmax
ψp

(
log(f(r,ψp, ψ̂p̄)

)
, (4.8)

where ψ̂p̄ are the point estimates of all other parameters except ψp. Remember
that with the mean field approximation we have to iterate over the individual
subsets to converge to a local maximum of the variational lower bound.

In [13, 16] it is shown that expectation maximization algorithms can be de-
rived by variational inference and a structured mean-field approximation. To
this end, the parameter vector is split into the hidden variables and the unknown
parameters and a structured mean-field approximation between these two sub-
sets is postulated. By employing the unconstrained factor update (4.7) for the
hidden variables and point estimates for the unknown parameters, the update
equations of the expectation maximization algorithm can be derived.

4.2 Application Example 1: Maximum Likelihood
Ranging

In [T3] we utilized the above framework to derive an ML ranging estimator for
a MIMO backscatter channel including the parameters of the DMC and AWGN
processes. The signal model consists of a single SMC, i.e., the LOS, plus the
DMC and AWGN processes. The parameter vector in this contribution is given
as ψ = [τm,m′ , ϕD,m,m′ , ϕA,m,m′ , αm,m′ ,ηm,m′ ]

T, with ηm,m′ as the parameters
of the DMC and AWGN processes, governing the covariance matrix. We split the
parameter vector into the subsets ψ1 = [τm,m′ , ϕD,m,m′ , ϕA,m,m′ ]

T, ψ2 = αm,m′ ,
and ψ3 = ηm,m′ and apply the mean-field approximation to derive the iterative
update equations (see Appendix of [T3] for details).

In [T3] we analyzed the algorithm with synthetic and measured data, en-
abling comparison to the REB derived in Section 3.1.2. The measurements
were performed using lab-grade equipment at two scenarios, a laboratory and
an industrial setup.

In Fig. 4.1 we compare the proposed algorithm to the REB (see Sec. 3.1.2),
and the MF and ML2 estimators. The proposed algorithm can be utilized with

2This is again the ML estimator with knowledge of the covariance matrix. For the mea-
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Figure 4.1: REB for SISO ( ), MIMO ( ) and MIMO including the effect
of the DPS ( ), and range estimation standard deviations of a SISO MF
estimator ( ), a SISO ML estimator ( ), a MIMO ML estimator ( ),
the proposed MIMO AWGN only estimator ( ), and the proposed MIMO
estimator including the DMC ( ) for simulated data (a) and measured data
(b). To generate (a), the DPS of the downlink and uplink have been modeled
with a double exponential DPS [41] leading to the following channel parameters:
KLOS = 0.2 dB, τRMS = 18.4ns.

two different settings for the covariance matrix, (i) the DMC-plus-AWGNmodel,
and (ii) an AWGN-only setting, neglecting the DMC process. The latter can be
seen as a MIMO MF implementation.

For Fig. 4.1a, we utilized realistic synthetic data, generated according to
two channel parameters gathered from the measurements, namely the Rician
K-factor for the LOS and the root-mean-square delay spread of the backscatter
channel [T3]. The proposed estimator including the parameters of the DMC
process ( ) is able to approach the REB at a bandwidth down to 100MHz.
For smaller bandwidths, it starts to deviate from the REB, although not as dras-
tically as the ML estimator. The algorithm is of an iterative nature, and during
the initialization, we start by performing a grid search of the LOS parameters

sured data, we used a genie-aided covariance matrix estimation utilizing the highest available
bandwidth. For details please refer to [T3].
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in AWGN only. This is in fact the proposed algorithm with the AWGN-only
setting ( ). The subsequent estimation of the parameters of the DMC process
underestimates the power in the DMC, because at small bandwidth most of the
DMC interferes with the LOS (see Fig. 2.3), therefore, most of the power in
the DMC is included in the LOS estimate. Thus, the proposed estimator tends
toward an MF implementation at low bandwidths.

For the measured data, we need to perform certain pre-processing steps to
be able to depict the REB and the ML estimator. In fact, we need to know
the covariance matrix. Thus, we utilized the full bandwidth of the measure-
ment equipment (1GHz) and a 5 × 5 grid around the measured position to
estimate the covariance matrix [T3]. The REB ( and ) and ML esti-
mators ( and ) perform similar as for the synthetic data. The proposed
estimator ( ) shows a rather large standard deviation at the highest band-
width. This is probably the effect of the DMC estimation, as the AWGN-only
estimator ( ) performs better. Another explanation is that the single SMC
in DMC-plus-AWGN model does not hold at this high bandwidth and multiple
SMCs should be considered (see Chapter 5). However, at smaller bandwidth
(50− 100MHz), the consideration of the DMC process in the algorithm benefits
the ranging accuracy considerably. A very interesting effect can be seen at very
low bandwidth (below 20MHz), as all three practical estimators (without the
need to know the covariance matrix), perform better than their respective REB.
Two explanations come to mind: (i) the covariance matrix needed to compute
the REB is wrong (remember that we used a genie-aided estimator at the high-
est bandwidth), or (ii) the power in the DMC which completely interferes with
the LOS component at low bandwidths, helps with estimating the LOS compo-
nent. This effect is depicted for the synthetic data3 by the REB MIMO, DPS
curve ( ), considering the effect of the onset on the estimation of the LOS
delay [N3].

4.3 Application Example 2: Direct Positioning

Positioning via radio channels is often achieved in a two-way process: first
position-related parameters are extracted from received signals which are in turn
used by dedicated positioning algorithms [39, 110]. Here, we want to present a
direct positioning algorithm, meaning that we model the effect of the unknown
position directly within the received signal [T4]. Again, we consider a passive
RFID setup where the aim is to infer the unknown position of an RFID tag.
However, compared to [T3], the measurements have been performed with actual
RFID tags and a software-defined-radio testbed capable of extending the utilized
bandwidth to 25MHz. The RFID tags are powered up by a classic UHF RFID
protocol. By superimposing a low power broadband reference signal onto the in-
terrogator’s signal during tag-to-reader communication, a wideband backscatter
measurement can be achieved [7, 31], [N11]. As standard UHF-RFID tags are
developed for narrowband operation only, severe distortions would occur due to
the antenna. Thus, a dual-frequency tag has been developed. In addition to
the normal UHF antenna, the tag employs a 2.45GHz antenna scattering back

3For the measured data, this is not possible as the derivative of the DPS is needed.
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synchronously with the UHF backscatter modulation. The superimposed wide-
band signal is thus transmitted in the 2.45GHz band, enabling higher transmit
power and a more flat antenna response at the RFID tag [31].

Fig. 4.2b depicts the floorplan of the laboratory where measurements have
been performed. TX1 ( ) and RX1 ( ) depict the positions of the UHF antennas
for powering up and communicating with the passive tag. The positions of the
TX and RX antennas for positioning are shown by and , respectively and
denoted as TX2-TX4 and RX2-RX4. As TX3 & TX4 and RX3 & RX 4 are
closely spaced, coherent processing is possible. The tag has been placed within
the colored area on a uniform grid. A white color means that at this position,
the tag did not receive enough power from the UHF communication, hence, it
did not respond and thus no positioning is possible.

As we employ a rather low bandwidth, we model the channel as a LOS-plus-
DMC channel. Furthermore, we directly model the influence of the unknown
RFID tag position p onto the channel. This enables the direct estimation of the
position without the need to first estimate the channel parameters and subse-
quently estimating the position. Given the direct modeling of the position on
the received signal, the likelihood is given as [T4]

f(r|p,η,α) =
e−(r−S(p)Aα)HC(η,p)−1(r−S(p)Aα)

πNJ det(C(η,p))
, (4.9)

where r ∈ CNJ×1 is the stacked received signal, S(p) ∈ CNJ×J is the position
dependent signal matrix, A ∈ {0, 1}J×K is an association matrix enabling the
coherent processing of closely-spaced backscatter channels, and α ∈ CK×1 are
complex amplitudes4. The total number of channels is J while K models the
number of reader TX and RX pairs. The number of samples in the temporal
domain is denoted by N . For the above setup, J = 9 and K = 4 or K = 9
if the closely-spaced antennas are used coherently or not, respectively. This
means that for the coherent version the number of complex amplitudes is 4
while for the non-coherent version 9 complex amplitudes have to be estimated.
Furthermore, in (4.9), the covariance matrix does not only depend on the shape
parameters of the DMC and the AWGN variance, expressed by η, but also on
the position of the RFID label. Actually, we assume that the shape of the DPS
of the DMC process does not depend on the position of the transmitting and
receiving antenna. However, we shifted the onset of the DPS with respect to
the LOS delay of the j-th channel, while the LOS delay depends directly on the
position of the RFID tag and the TX and RX antenna positions. Furthermore,
we assume that the DMC is uncorrelated for the different antenna combinations,
leading to a block-diagonal covariance matrix.

On the basis of the likelihood model, we developed an iterative ML estimator
based on the mean-field approximation f(p,α,η|r) ≈ q(p,α|r)q(η|r) and derive
update equations for the different subsets of parameters [T4].

To be able to highlight the benefit of considering the DMC process in the
estimation, we neglected the DMC process, leading to an AWGN-only model.
Depending on the association matrix and the employed covariance matrix model,
four different estimators are proposed:

• NC-AWGN: By setting the association matrix to a diagonal matrix, thus
K = J , each antenna is treated as an individual reader. This means

4For the exact definitions please refer to [T4].
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Figure 4.2: Results for the direct positioning algorithm.

that the likelihoods for the different channels factorize and a non-coherent
combining of the measurements is realized. Furthermore, by neglecting the
DMC, an AWGN only model is employed and the algorithm is comparable
to a classical MF [85,103].

• NC-DMC: Here, the association matrix is still a diagonal matrix, but the
parameters of the DMC process are estimated. This is possible as we
assume that the parameters of the DMC process are the same over the
complete room, i.e., we can observe the DMC process with all channels.

• C-AWGN: This algorithm uses closely-spaced antennas coherently, by esti-
mating only a single complex amplitude for channels involving these anten-
nas. Here, the association matrix is a tall rectangular matrix, where each
row has only a single non-zero element. The non-zero element picks the
related complex amplitude. This coherent combining of channels can be
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seen as beamforming, as the relative phase between the antenna elements
is considered. Thus, the AoD and/or AoA are included in the estimation
of the position together with the delay. Again, this estimator uses the
AWGN-only model.

• C-DMC: This variant of the estimator employs coherent processing and
estimates the parameters of the DMC process.

Fig. 4.2 shows the results obtained by applying the four different variants of
the algorithm on the measured data. Fig. 4.2a presents the cumulative frequency
of the position errors. As expected, the coherent variants of the algorithm per-
form better than the non-coherent versions. This is explained by the additional
position-related information stemming from the inherent beamforming. The
algorithms including the DMC in the estimation also perform consistently bet-
ter than the AWGN-only algorithms. Unfortunately, all algorithms show about
10% outliers5 which can be attributed to the initialization of the algorithms
and the non-optimal placement of the antennas. This can be seen by looking
at Fig. 4.2b which presents the position errors of the individual measurements.
Most of the outliers occur in the bottom and top quarter of the measured grid.
During the initialization, side modes of the evaluated likelihood function occur
opposite the correct positions. The subsequent update procedure is then unable
to recover the correct maximum. This could be improved by utilizing better
antenna placement or a swarm like updating procedure, updating not only the
maximum found during initialization but rather a number of local maxima.

4.4 Concluding Remarks
In this chapter we have shown that the estimation of position-related parameters
from radio channel measurements benefits from considering the DMC process. In
Section 4.2, the DMC process is seen purely as an interference to the estimation
procedure. By including the parameters of the DMC process in the estimation
algorithm, it is possible to approach the CRLB for ranging in DMC-plus-AWGN
channels [T3]. In Section 4.3 we highlighted the possibility of exploiting the
underlying position-related parameters within the DMC process for a direct
positioning algorithm [T4].

Both application examples assume a deterministic complex amplitude, and
can thus be categorized as DML estimators, using the single-SMC-in-DMC-
plus-AWGN model. As the target bandwidth for this RFID application is below
100MHz and the array apertures are not very large, this model simplification
seems appropriate. However, as can be seen in Fig. 4.1, the estimator is not able
to approach the CRLB for the highest bandwidths, for measured data.

For these high bandwidths, the model should be changed to include a mul-
titude of SMCs. With this multi-SMC model in mind, a so far not discussed
problem arises: How many SMCs can be estimated reliably from the given ob-
served data?

5The measurements where the tag did not respond are not considered as these are not
attributed to the algorithm but rather the UHF communication.
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Chapter 5

Towards joint estimation and
detection of specular
multipath components

In the previous chapter, maximum likelihood estimators were introduced for
the single-SMC-plus-DMC channel model. We have seen that for narrow to
intermediate bandwidths, this model can be used to develop accurate range
and position estimators. However, for large bandwidths, the model may be too
simple and a more sophisticated model, including a multitude of SMCs, has to
be used. This makes the problem more challenging, as not only the number of
unknowns is increased, but also the number of SMCs needs to be inferred.

The classical methods introduced in Chapter 4, including the subspace based
and the maximum likelihood methods, do not estimate the number of SMCs,
but only estimate their parameters. Thus, these methods need to be augmented
by another method which estimates the number of components, often on the ba-
sis of information theoretic criteria (see [53, 93] and references therein). These
approaches are computationally intensive as they need to compute the param-
eters for each considered model order and they tend to be positively biased for
non-asymptotic regions [53].

Another approach for joint estimation of the number of SMCs and their pa-
rameters are Bayesian methods [33,66,97,99,105,106], including sparse Bayesian
learning (SBL) introduced in Section 5.1. Early sparse Bayesian learning (SBL)
methods utilized a fixed dictionary approach for the estimation of the dispersion
parameters [79,99], meaning that a known dictionary matrix S, based on a grid
of parameter values, is used. This of course leads to leakage effects, thus, the
found solution is not as sparse as possible [19]. By including the dispersion pa-
rameters into the estimation procedure, super-resolution algorithms have been
developed for LSE [9,37,80,82].1

However, the inherent sparsity promoting criteria of the Bayesian methods

1Note that categorization of these methods is difficult, as the term SBL is not defined
rigorously. Classic SBL methods utilize a Gaussian-Gamma prior structure and (if at all)
compute point estimates of the dispersion parameters, thus [9,33,37,66], using different prior
structures, are not classic SBL methods. Additionally, [9] estimates pdfs for the dispersion
parameters.
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still lead to a positive model bias [36,80,84]. In [80,82] it is proposed to increase
the sparsity-inducing threshold depending on the probability of estimating arti-
facts. In [T5] we follow this idea and derive an adapted threshold to reduce the
positive model bias by controlling the probability of artifacts. This approach is
highlighted in Section 5.2. Furthermore, we show that the probability of false
alarm for the single-SMC-in-DMC channel arrives at the same formula [N7]. In
essence, the probability of artifacts / false alarms is based on a continuous search
for the maximum value of a periodogram. Thus, we are interested in the excur-
sion probability of said periodogram, or in more general terms of a χ2-random
field [1,2]. In [62] and [95] this theory is used to derive a detection threshold for
a sinusoid and a complex exponential model, respectively. Both use a DML esti-
mator and a one-dimensional dispersion parameter, meaning that it is valid for
the delay estimation problem or for an azimuth angle estimation problem using
a ULA. In comparison, in [T5] we extend the formulation to a SIMO setup, i.e.,
the joint delay and azimuth angle estimation problem and utilize more general
array geometries.

In classic detection theory [43, Ch. 7], [54] the probability of false alarm
is often analyzed using a bin-based approach. This approach is derived by
analyzing the maximum of a discrete periodogram at the Fourier frequencies,
hence it conceals the super-resolution capabilities of the employed estimation
algorithms. Thus, the theoretical probability of false alarm is too small given
a threshold, or vice versa, a threshold computed from a bin-based probability
of false alarm is too small. To characterize the operation of the developed
estimation and detection algorithm, the probability of detection is approximated
by using the single-SMC model in Section 5.3. Finally, in Section 5.4 we apply
the algorithm to a UWB SIMO data set to estimate the parameters of the
DMC-plus-AWGN process and the parameters and the number of the SMCs.

5.1 Sparse Bayesian Learning

Sparse Bayesian learning (SBL) [33, 66, 97, 99, 105, 106] is a Bayesian method
closely related to the relevance-vector machine (RVM) [98,99]. While the RVM
uses kernel basis functions, purely defined by the data set, SBL extends the
concept to arbitrary basis functions, e.g. a Fourier basis [16]. SBL starts with
the model given by2

r = S(Θ)α+ rDMC +w. (5.1)

For SBL an estimator is designed by assuming that M SMCs can be estimated,
where we have to ensure that M ≥ K, where K is the true number of SMCs.
Usually, M is selected to be as large as the number of observed samples, i.e., in
our case I×L×N . The SBL estimator is designed to set the complex amplitudes
of certain SMCs (or, as we will see shortly, their variances) to zero. This process
disables these SMCs, meaning that the estimator induces sparsity. It does so,

2In classic machine learning literature [13,99], the used variables are y ≡ r, Φ(x) ≡ S(Θ),
w ≡ α, and n ≡ w. To keep the notation uncluttered and consistent, we keep the notation
of the previous chapters.
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by using the following probabilistic model

f(r,Θ,α,η,γ) ∝ f(r|Θ,α,η,γ)f(Θ,α,η,γ)

∝ f(r|Θ,α,η)f(Θ)f(α|γ)f(γ)f(η), (5.2)

where γ are so-called hyperparameters3. These hyperparameters regulate the
width of the conditional distribution f(α|γ) and are assigned a certain prior
distribution f(γ). In our work, we use a Gaussian prior model, i.e.,

f(α,γ) = f(α|γ)f(γ), (5.3)

where f(α|γ) =
∏M
m=1 CN (αm|0, γ−1

m ), with CN (x|µx, σ2
x) as complex normal

distribution with mean µx and variance σ2
x. Furthermore, we select a flat prior

for the hyperparameters, i.e., f(γ) ∝ 1. Hence, the larger hyperparameter γm
is, the smaller the variance for the complex amplitude αm, meaning that said
amplitude is close to zero with a high probability. In fact, the above setting is
the same prior structure as for the RVM [99]. This prior setting is of course not
the only one possible. In [66], settings on the basis of Gaussian scale mixtures
are introduced, leading to Bessel-K models for the conditional distribution of
the complex amplitudes. This Bessel-K model includes the most prominent
settings used for SBL, including the `1-norm penalty [96] and the RVM setting
[99]. Another possibility for the prior structure is a Bernoulli-Gaussian prior
model4 [9,18,38,45], which uses Bernoulli random variables to disable the SMCs.

Having specified the probabilistic model, the estimator needs to infer the
dispersion parameters Θ, the complex amplitudes α, the hyperparameters γ,
and the parameters of the DMC and AWGN process η. This can be achieved
via Type-I or Type-II maximiziation [12,33,104]. Type-I maximization proceeds
from (5.2) by marginalizing the hyperparameters and maximizing with respect
to the complex amplitudes. In contrast, Type-II maximization marginalizes
the complex amplitudes and maximizes with respect to the hyperparameters.
Empirical results show that Type-II performs consistently better than Type-
I [33], thus, we proceed by marginalizing the complex amplitudes leading to the
marginalized likelihood function

f(r|Θ,η,γ) =

∫
f(r|Θ,α,η)f(α|γ)dα

∝ det(C(Θ,η,γ))−1e−r
HC(Θ,η,γ)−1r, (5.4)

where C(Θ,η,γ) = C(η) + S(Θ)Γ−1S(Θ)H with Γ = diag(γ) as diagonal
matrix [13].

The marginalized likelihood in (5.4) is now the same/closely related to the
probabilistic model used for SML5 [14]. Note that in [14] the same model is
used, while [15,40,63,92,101] use an arbitrary source covariance matrix, i.e., Γ
is not just diagonal. The main difference of SML and the SBL-based estimation
is the following: In SML the number of SMCs is known, while for SBL the

3The likelihood in (5.2) does not depend directly on it.
4Using our above definition for SBL, this prior structure should rather be called Bayesian

learning.
5For a short discussion on the traits of SML please refer to Chapter 4 and the references

therein.
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number of SMCs is fixed to some value M and the components are disabled via
the complex amplitude/hyperparameter.

In [T5] we apply variational inference (see also Section 4.1) to derive update
expressions for the dispersion parameters, the parameters of the DMC-plus-
AWGN processes and the hyperparameters. Here, we want to highlight only
the iterative update of the hyperparameters γ (please refer to [T5] for details
on the update of the other parameters). We follow [16, 27, 79, 97], leading to a
sequential update of the individual entries in γm. In short, all parameters are
fixed to their current estimate, while only γm is updated. Doing so, yields the
two stationary points [27]

γ̂m =

{
(|ρ(θm)|2 − ζ(θm))−1 , |ρ(θm)|2

ζ(θm) > 1

∞ , |ρ(θm)|2
ζ(θm) ≤ 1

, (5.5)

where ρ(θm) and ζ(θm) are, respectively, the posterior estimates of the mean and
variance for the mth SMC’s complex amplitude. Clearly, if the hyperparameter,
being the precision of the complex amplitude, is set to ∞, the corresponding
complex amplitude is 0. This leads effectively to a pruning of the mth SMC,
thus leading to a sparse solution.

5.2 Probability of Artifacts / Probability of False
Alarm

However, numerical experiments show that the SBL algorithm with the condition
|ρ(θm)|2
ζ(θm) > 1 still produces artifacts [36, 80, 84]. These artifacts are components

with finite hyperparameter that cannot be attributed to any true SMC. In [T5]
we follow [81, 82] and increase the built-in condition, i.e., |ρ(θm)|2

ζ(θm) > κ, with κ
as a modified threshold.

The probability of artifacts is defined as [81], [T5]

PA(κ) = P
[
∃m ∈ {1, . . . ,M} : θ̂m ∈ Θ \Θ(r) ∧ γ̂m <∞

]
(5.6)

≈ P
[

sup
θ∈Θ

|s(θ)HC−1(rDMC +w)|2
s(θ)HC−1s(θ)

> κ

]
. (5.7)

In (5.6) an artifact is defined to have a finite hyperparameter and its estimated
dispersion parameters are outside a neighborhood around the true value, i.e.,
Θ(r) , ∪kBr(θk), where Br(θ) is the open ball of radius centered at θ ∈ Θ, with
Θ being the support of the dispersion parameters [T5], e.g., Θ = [0, T )× [0, 2π)
for a horizontal-only propagation SIMO configuration [T5]. To arrive at (5.7)
we need to conjecture the asymptotic efficiency of SML estimators for single-
snapshot measurement6 and that the implemented iterative algorithm inherits
this property [T5].

Here, we want to highlight a different way to arrive at a comparable formula
as (5.7), on the basis of detection theory [43] [N7]. As in the previous chapters,
we employ the single-SMC-in-DMC-plus-AWGN model and assume that the

6This has been proven for a DML estimator [70] but not for SML estimators.
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covariance matrix is known. Thus, the likelihood function is given as

f(r|θ, α) =
1

πNIL det(C)
e(r−s(θ)α)HC−1(r−s(θ)α), (5.8)

where the unknown parameters are the dispersion parameters θ and the complex
amplitude α.

The detection problem can then be formulated as the question: Does the
current observation include an SMC (hypothesis H1) or not (hypothesis H0)?
The generalized likelihood ratio test [43] is given as

LG(r) = sup
θ,α

(f(r|θ, α)). (5.9)

By concentrating the likelihood with respect to α and taking the logarithm on
both sides, we arrive at the test statistic

T (θ̂) = sup
θ

|s(θ)HC−1r|2
s(θ)HC−1s(θ)

H1

≷
H0

κ. (5.10)

The probability of false alarm is then given as

PFA(κ) = P
[
T (θ̂) > κ;H0

]
(5.11)

= P
[
sup
θ

|s(θ)HC−1(rDMC +w)|2
s(θ)HC−1s(θ)

> κ

]
. (5.12)

Clearly, the right hand sides of (5.7) and (5.12) coincide. However, we want
to emphasize that the two descriptions are different: While for the probability
of artifacts an SBL-based approach is used, enabling the estimation of multiple
SMCs, the probability of false alarm is derived for the detection of a single SMC
on the basis of a DML estimator.

To find a numerical value for the probability of false alarm, we have to
analyze the excursion probability that the maximum of the χ2-random process7

u(θ) =
|s(θ)HC−1(rDMC +w)|2

s(θ)HC−1s(θ)
(5.13)

exceeds the threshold κ [1, 2, 108]. For large κ it is possible to approximate the
excursion probability with the expected Euler characteristic [2], i.e.,

P
[

sup
θ∈Θ

u(θ) > κ

]
' E [ϕ(Aκ(u,Θ)] , (5.14)

where ' means that the ratio of the two sides tends to 1 asymptotically in κ [2].
Furthermore in (5.14) the Euler characteristic ϕ(A) of excursion set Aκ(u,Θ) =
{θ ∈ Θ : u(θ) > κ} is defined. The Euler characteristic is

ϕ(A) =

{
0, if A = ∅
1, if A 6= ∅ . (5.15)

7Actually, u(θ) is a χ2-random process with component variance of 1
2
. To arrive at a

standard χ2-random process u(θ) is multiplied by 2 [T5].

53



CHAPTER 5. TOWARDS DETECTION OF SMCS

0 2 4 6 8 10 12 14 16 18 20
0

1

κ in dB

P
A
(κ

),
P
M
(κ

),
re
la
tiv
e
fr
eq
ue
nc
y

analytic PA(κ), 0 dB analytic PA(κ), 5 dB analytic PA(κ), 20 dB

relative PA(κ), 0 dB relative PA(κ), 5 dB relative PA(κ), 20 dB

analytic PM(κ), 0 dB analytic PM(κ), 5 dB analytic PM(κ), 20 dB

relative PM(κ), 0 dB relative PM(κ), 5 dB relative PM(κ), 20 dB

Figure 5.1: Operating characteristics of the algorithm for the estimation of
a single SMC for three different values of SNR = [5, 10, 20] dB with esti-
mated noise covariance matrix. The SDR = −5 dB, leading to an SINR(τ) =
[−1.8, 2.2, 6.7] dB. The analytic probability of artifact PA(κ) ( , , ) and
the analytic probability of missed detection PM(κ) ( , , ) are compared
to the relative frequency of artifacts ( , , ) and the relative frequency
of missed detection ( , , ) for 1000 realizations, respectively.

In [T5] we apply the above theory to derive the probability of artifact for
horizontal-only propagation for a SIMO setup. This means that the dispersion
parameter θ includes the delay and the azimuth AoA. In [N7] we extend the
framework to the full MIMO setup, using a 5-dimensional dispersion parameter.
The derivation shows that the arrays need to be centro-symmetric with respect
to the center of gravity of the array, i.e., p(l) = −p(l′) for the RX array. Arrays
which fulfill this requirement are, e.g., rectangular, quadratic or cubic arrays.
Note that (5.12) can be used to compute a threshold κ given a certain false
alarm probability. This leads to a constant false-alarm rate detector [43].

5.3 Probability of missed detection

To obtain a full description of the operating characteristics8, we need to specify
the probability of missed detection, defined as the complementary probability

8We do not want to use the term receiver operating characteristic, as we use the probability
of missed detection and not the probability of detection.
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of the probability of detection [81] [T5]. For the single-SMC case, it is given as

PM(κ) = 1− P
[
T (θ̂) > κ ∧ θ̂ ∈ Θ(r);H1

]
(5.16)

= P
[
T (θ̂) < κ ∨ θ̂ /∈ Θ(r);H1

]
(5.17)

≈ P
[
u(θ̃) < κ;H1

]
. (5.18)

According to (5.17) a missed detection occurs either if the test statistic does not
exceed the threshold, i.e., no SMC is detected, or if the estimated parameter
value is not in the neighborhood of the true parameter value. For the approx-
imation in (5.18) we assume that the estimated parameter value θ̂ converges
towards the true parameter value θ̃. This can be argued for large bandwidths
and apertures with the consistency of the DML estimator [11,70].

Clearly, 2u(θ̃) is distributed according to a non-central χ2 distribution with
non-centrality parameter λ = 2|α̃|2s(θ̃)C−1s(θ̃). Thus, the missed detection
can be approximated by

PM(κ) ≈
∫ κ

0

e−x−λ/2I0(
√

2λx)dx, (5.19)

where I0(·) is the modified Bessel function of the first kind. It is interesting to
take a closer look at the non-centrality parameter λ. By neglecting the spatial
correlations, the covariance matrix C reduces to a block diagonal structure, and
the non-centrality parameter λ = 2ILSINR(τ), where SINR(τ) is defined in
Sec. 3.1.1. This means that the probability of missed detection (and hence the
probability of detection) are directly related to the SINR(τ).

Fig. 5.19 compares the analytic probability of artifacts and missed detection
to the relative frequency of artifacts and missed detection from a Monte-Carlo
experiment using synthetic data, respectively. While the relative frequency of
artifacts matches its analytic counterpart well, the relative frequency of missed
detection shows a floor for small thresholds κ and small SNR. This floor is
explained by the fact that the developed algorithm [T5] is set up (for this ex-
periment) to estimate a maximum of 10 SMCs. Thus, for small SNR and small
theshold, the algorithm is not capable with this setup to detect and estimate the
SMC. Furthermore, the algorithm is too confident with respect to detection of
the SMC. While the theoretical probability of missed detection is computed on
the basis of the distribution of the test statistic at the true parameter value, the
relative frequency of missed detection has to consider a certain neighborhood
around the true parameter value to classify a detection. For this experiment, if
any estimated component falls within 5 times the square root of the CRLB it is
counted as a detection. Thus, as the algorithm employs an argmax (searching
for the continuous parameter), it is over confident.

5.4 Application Example 3: Channel parameter
estimation using UWB measurements

In [T5] we apply the developed algorithm to the data measured in the room
presented in Fig. 2.1, which was also used to generate the flipbooks. The trans-

9Please note that the algorithm developed in [T5] is used. For the channel and signal
definitions, please refer to [T5].
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Figure 5.2: Estimation using a UWB signaling scheme: (a): Estimated ADPS
of the received signal including the estimated SMCs ( ), associated predicted
SMCs ( ) and non-associated predicted SMCs ( ). (b): Estimated DPS of the
received signal ( ), the residual signal ( ), and the estimated parametrized
DPS plus AWGN ( ). (c): Estimated ADPS of the residual signal and non-
associated predicted SMCs ( ) (d): Estimated DOAPS for the same signals as
in (b).

mitter is positioned at pTX and a 3× 3 virtual receiver array with 2 cm spacing
is used at pRX. The employed antennas have a beampattern focusing most of
their energy in the horizontal plane10 and showing approximately isotropic ra-
dation patterns [46]. A root-raised-cosine pulse with pulse duration of 1 ns and
roll-off factor of 0.6 is used to filter the measured data to an effective bandwidth
of 1GHz. For the algorithm, the probability of artifacts is set to 1% and the
threshold κ is computed online.

The results are depicted in Fig. 5.2. Fig. 5.2a illustrates the ADPS of the
received signal including the estimated SMCs ( ). Using a simple optical ray-
tracer we predict SMCs on the basis of the geometry of the setup up to fifth
order reflections. These SMCs are depicted by and . To associate estimated
SMCs to predicted SMCs we use a frequentist approach: we compute the CRLB
of the estimated delay and AoA and associate a predicted SMC if both its delay
and AoA fall within 5 times the square root of the CRLB. Clearly, most of the
estimated SMCs are associated to predicted SMCs ( ) and can thus be explained
by the geometry of the setup. The non-associated SMCs ( ) are shown in both,

10This is the main reason to consider horizontal only propagation and restrict the DoA to
the azimuth AoA and neglect the elevation AoA.
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Fig. 5.2a and Fig. 5.2c, where the latter illustrates the ADPS of the residual
signal, obtained by subtracting the estimated SMCs. In theory, this residual
signal contains only the DMC and the AWGN. The strong peaks have vanished
and we conclude that the non-associated SMCs are either not detectable or not
present in the signal. Note again that the predicted SMCs are purely due to
geometric considerations and do not include any effects as blocking by furniture
or reflection coefficients. Fig. 5.2b depicts the DPS of the received signal ( ),
the residual signal ( ) and the estimated parametrized DMC-plus-AWGN
model ( ). Clearly, the estimated parametrized DPS and the DPS of the
residual signal match well. Finally, Fig. 5.2d shows the DOAPS for the same
signals as Fig. 5.2b. The residual DOAPS is already quite flat over the azimuth
range.

5.5 Concluding Remarks
This chapter discusses the problem of jointly inferring the parameters and the
number of SMCs. This joint estimation and detection problem can be tackled by
using sparsity enforcing priors for the complex amplitudes leading to inherent
sparsification of the SMCs [9, 27, 38, 82, 99, 106]. However, using the inherent
sparsity promoting threshold still leads to a high number of estimation artifacts
[80]. Thus, in [T5] we derive the probability of estimating artifacts for a SIMO
setup, by analyzing the excursion probability of a χ2-random field [2]. In turn,
the probability of artifacts can be used to adapt the threshold, which almost
eliminates the positive model-order bias. In the supplementary material to [T5]
it is shown how the threshold can be applied to state-of-the-art DML estimators
[71], leading to comparable performances.

Of course, the probability of estimating artifacts describes only one half of
the detection problem. Therefore, the probability of missed detection is derived
for the single-SMC-in-DMC channel. It shows that this probability is directly
linked to the SINR of the SMC-in-DMC.

Finally, the developed algorithm is applied to UWB data. The parame-
ters of the estimated SMCs are compared to geometry-related predicted SMCs
and most of the estimated SMCs can be associated to related predicted SMCs.
This property of the algorithm enables accurate positioning but also tracking of
position-related parameters [N8,N9] which could be used for environment and
channel modeling [68,107].
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Chapter 6

Conclusion

The indoor radio channel can be characterized by a multitude of multipath com-
ponents (MPCs). These MPCs are split into the specular multipath components
(SMCs), electromagnetic waves that are resolvable with the measurement aper-
ture, and the dense multipath component (DMC), electromagnetic waves that
overlap and/or have low power and can not be resolved at the receiver (RX).
This radio channel led to three research questions, restated here for convenience,
and answered in the following:

RQ 1: How accurate can position-related parameters be estimated in dense
multipath environments and how do system parameters influence these estima-
tion problems?
In [T1,T2], [N3–N5] the ranging error bound (REB) and angulation error bound
(AEB), i.e., the Cramér Rao lower bound (CRLB) for the delay and angle esti-
mation problem, respectively, have been derived and analyzed. It shows that the
accuracy of position-related parameters strongly depends on the bandwidth. For
additive white Gaussian noise (AWGN) only channels, i.e., neglecting the DMC,
the accuracy of the delay estimation profits from higher bandwidths, it scales
reciprocal with bandwidth. The angular estimation accuracy is not influenced
by the bandwidth in AWGN-only channels. However, for channels including the
DMC, the bandwidth plays a vital role in estimation accuracy for both, the delay
and the angular estimation problem [T1,T2] [N3–N5]. Additionally, the number
of antennas benefits the accuracy of both estimation problems [T2] [N3, N4].
However, the accuracy can only be achieved, if the parameters of the DMC
process are available to the estimator. Hence,

RQ 2: Is it possible to increase the robustness and accuracy of the estima-
tion of position-related parameters by concurrently estimating the parameters of
the DMC process using multiple-input multiple-output (MIMO) systems?
In [T3,T4] deterministic maximum likelihood (DML) estimators are developed
for ranging and direct positioning utilizing single-snapshot multi-antenna mea-
surements. Analysis of the developed algorithms highlight that the answer to
RQ 2 depends strongly on the employed algorithm and the system parameters.
If a large enough number of measurements is available due to multi-antenna sys-
tems, snapshot-based estimation of the parameters of the DMC process seems
possible [T3–T5] [71]. For wideband systems, the single-SMC-in-DMC channel
is an appropriate model to infer position-related parameters and the position it-
self. It is important to note that by decreasing the bandwidth, the equalization

59



CHAPTER 6. CONCLUSION

with the inverse covariance matrix of the DMC and AWGN model leads to out-
liers. This threshold region is similar to the classic SNR threshold region, due
to the fact that for decreasing bandwidth the component SNR, i.e., the SINR of
the SMC in DMC decreases as well. The developed algorithms navigate around
this problem as the scheduling leads to a matched filter (MF) approximation
for narrow bandwidths. For ultra-wideband (UWB) systems, the single-SMC
model does not suffice and we have to increase the model complexity by adding
additional SMCs to approach the theoretical performance limits. Consequently,
we have to estimate the number of SMCs, leading to the third research question:

RQ 3: Is it possible to reliably infer the number of SMCs and their param-
eters in unknown DMC environments?
In [T5] a detection threshold is derived within a sparse Bayesian learning al-
gorithm to detect the number of resolvable SMCs, leading to a yes, if answer
to RQ 3: Yes, it is possible to reliably detect SMCs if the SINRs are above a
threshold and the SMCs are spaced sufficiently with respect to the measurement
aperture. In [T5] we show empirically that for sufficiently spaced SMCs, i.e.,
above the Nyquist respectively the Rayleigh resolution, the detection probability
for the single-SMC channel is a good approximation for the multi-SMC-in-DMC
channel. Furthermore, for very narrow spacings, i.e., well below the Nyquist
and Rayleigh resolution, the developed algorithm only estimates a single SMC.
Hence, the algorithm is conservative with respect to the number of SMCs which
is a desired behavior for positioning purposes. In [T5], the algorithm is employed
by fixing the probability of artifacts and adapting the sparsity threshold.
Outlook on possible future research topics: The DML estimators de-
veloped for the radio frequency identification (RFID) setup assume that the
SMC, i.e., the line-of-sight (LOS), is present in the signal. Due to the favorable
conditions in the measurement setup, this assumptions is factual. In real-world
scenarios, e.g., a fashion store or a warehouse, non-line-of-sight measurements
will be encountered frequently. It would be important to study such non-line-
of-sight scenarios and apply the theory of detection to add a degree of reliability
and robustness to the estimated parameters.

Furthermore, the algorithms in this thesis are all developed based on single-
snapshot measurements. Of course, the radio channel between a transmitter
(TX) and RX does not change fundamentally, as long as the measurement up-
date rate is high enough with respect to changes in the environment. Algorithms,
tracking the estimates over multiple snapshots could not only speed up the ini-
tialization procedures of the algorithms, but also make the algorithms more
robust with respect to noisy measurements [74,83].

Another avenue for improvement is the fact that the estimates of the disper-
sion parameters are point estimates. By searching for closed-form solutions [9] or
using sampling-based approaches [4], a probability distribution of the dispersion
parameters can be estimated. Handing these distributions to the subsequent
positioning algorithms, a (more) Bayesian treatment of the positioning problem
is achieved, increasing the robustness and reliability of the solution [21].

Finally, I want to conclude with respect to the hypothesis of this thesis:
Position-related parameters in DMC environments can be estimated accurately
and robustly by combining MIMO radio transmissions and reliable estimation
techniques.
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Appendix A

Derivation of the CRLB for
the backscatter channel

A.1 Covariance Matrix including spatial correla-
tions

The sampled received signal at antenna l′ at RX readerm′, due to a transmission
at antenna l at TX reader m, assuming the wideband aperture function (2.7),
is given as (see also (2.11))

r
(l,l′)
m,m′ = αmαm′sTX(τm,m′)e

j2π fcc ΩT
TX,m∆p(l)

m ej2π
fc
c ΩT

RX,m′∆p
(l′)
m′ (A.1)

+ αmej2π
fc
c ΩT

TX,m∆p(l)
m

∫ ∫
hDMC(τ − τm,ΩRX;pm′ ,p)sTX(τ)

× ej2π
fc
c ΩT

RX∆p
(l′)
m′ dτds1(ΩRX) (A.2)

+ αm′e
j2π fcc ΩT

RX,m′∆p
(l′)
m′

∫ ∫
hDMC(τ − τm′ ,ΩTX;pm,p)sTX(τ)

× ej2π
fc
c ΩT

TX∆p(l)
m dτds1(ΩTX) (A.3)

+

∫ ∫ ∫ ∫
hDMC(λ,ΩTX;pm,p)hDMC(τ − λ,ΩRX;pm′ ,p)

× sTX(τ)ej2π
fc
c ΩT

TX∆p(l)
m ej2π

fc
c ΩT

RX∆p
(l′)
m′ dλdτds1(ΩTX)ds1(ΩRX)

(A.4)

+w
(l,l′)
m,m′ (A.5)

The term given by (A.1) describes the part based solely on the LOSs of the two
constituent channels, the terms (A.2), (A.3), (A.4) can be combined to describe
the DMC part of the backscatter channel, i.e., r(l,l′)

DMC,m,m′ and (A.5) describes
the AWGN measurement noise. Stacking the received signals for reader pair
(m,m′) results in the received signal

rm,m′ =

[
r

(1,1)
m,m′

T
, . . . , r

(1,Lm′ )
m,m′

T
, . . . , r

(Lm,1)
m,m′

T
, . . . , r

(Lm,Lm′ )
m,m′

T
]T
∈ CNLmLm′×1.

(A.6)
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The covariance matrix of the received signal from TX reader m to RX reader
m′ is given by1

Cm,m′ = CDMC,m,m′ +CAWGN,m,m′ ∈ CNLmLm′×NLmLm′ , (A.7)

assuming the AWGN and DMC process are uncorrelated. The covariance ma-
trix of the stacked AWGN vector w is given as CAWGN,m,m′ = σ2

wI and the
covariance matrix with respect to the three terms describing the backscatter
DMC process is CDMC,m,m′ . The N × N subblock, describing the covariance
of the DMC part of the backscatter channel indexed by antenna pair (l, l′) and
antenna pair (l′′, l′′′) is given as

[CDMC,m,m′ ]l,l′,l′′,l′′′ = E
[
r

(l,l′)
DMC,m,m′r

(l′′,l′′′)
DMC,m,m′

H
]
. (A.8)

Inserting the three terms (A.2), (A.3), and (A.4) in (A.8) leads to nine terms:

[CDMC,m,m′ ]l,l′,l′′,l′′′ =

|αm|2ej2π
fc
c ΩT

TX,m∆p(l)
m e−j2π

fc
c ΩT

TX,m∆p(l′′)
m

∫ ∫ ∫ ∫
sTX(τ)sH

TX(τ ′)

× E
[
hDMC(τ − τm,ΩRX;pm′ ,p)h∗DMC(τ ′ − τm,Ω

′
RX;pm′ ,p)

]

× ej2π
fc
c ΩT

RX∆p
(l′)
m′ e−j2π

fc
c Ω
′
RX

T
∆p

(l′′′)
m′ dτdτ ′ds1(ΩRX)ds1(Ω′RX) (A.9)

+ αmα
∗
m′e

j2π fcc ΩT
TX,m∆p(l)

m e−j2π
fc
c ΩT

RX,m′∆p
(l′′′)
m′

∫ ∫ ∫ ∫
sTX(τ)sH

TX(τ ′)

× E [hDMC(τ − τm,ΩRX;pm′ ,p)h∗DMC(τ ′ − τm′ ,ΩTX;pm,p)]

× ej2π
fc
c ΩT

RX∆p
(l′)
m′ e−j2π

fc
c ΩT

TX∆p(l′′)
m dτdτ ′ds1(ΩRX)ds1(ΩTX) (A.10)

+ αmej2π
fc
c ΩT

TX,m∆p(l)
m

∫ ∫ ∫ ∫ ∫ ∫
sTX(τ)sH

TX(τ ′)

× E [hDMC(τ − τm,ΩRX;pm′ ,p)h∗DMC(λ,ΩTX;pm,p)

×h∗DMC(τ ′ − λ,Ω′RX;pm′ ,p)
]

ej2π
fc
c ΩT

RX∆p
(l′)
m′ e−j2π

fc
c ΩT

TX∆p(l′′)
m

× e−j2π
fc
c Ω
′
RX

T
∆p

(l′′′)
m′ dτdτ ′dλds1(ΩRX)ds1(ΩTX)ds1(Ω′RX) (A.11)

+ αm′α
∗
mej2π

fc
c ΩT

RX,m′∆p
(l′)
m′ e−j2π

fc
c ΩT

TX,m∆p(l′′)
m
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sTX(τ)sH

TX(τ ′)

× E [hDMC(τ − τm′ ,ΩTX;pm,p)h∗DMC(τ ′ − τm,ΩRX;pm′ ,p)]

× ej2π
fc
c ΩT

TX∆p(l)
m e−j2π

fc
c ΩT

RX∆p
(l′′′)
m′ dτdτ ′ds1(ΩTX)ds1(ΩRX) (A.12)

+ |αm′ |2ej2π
fc
c ΩT

RX,m′∆p
(l′)
m′ e−j2π

fc
c ΩT

RX,m′∆p
(l′′′)
m′

∫ ∫ ∫ ∫
sTX(τ)sH

TX(τ ′)

× E
[
hDMC(τ − τm′ ,ΩTX;pm,p)h∗DMC(τ ′ − τm′ ,Ω

′
TX;pm,p)

]

× ej2π
fc
c ΩT

TX∆p(l)
m e−j2π

fc
c Ω
′
TX

T
∆p(l′′)

m dτdτ ′ds1(ΩTX)ds1(Ω′TX) (A.13)

1Please note, that we analyze a two reader problem. For an M reader problem, the deriva-
tion of the covariance matrix is even more involved, as the cross-covariance between TX reader
m and RX reader m′ and TX reader m and RX reader m′′ is non-zero.
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+ αm′e
j2π fcc ΩT

RX,m′∆p
(l′)
m′

∫ ∫ ∫ ∫ ∫ ∫
sTX(τ)sH

TX(τ ′)
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hDMC(τ − τm′ ,ΩTX;pm,p)h∗DMC(λ,Ω

′
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×h∗DMC(τ ′ − λ,ΩRX;pm′ ,p)] ej2π
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× e−j2π
fc
c Ω
′
TX

T
∆p(l′′)

m dτdτ ′dλds1(ΩTX)ds1(ΩRX)ds1(Ω′TX) (A.14)
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+
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TX(τ ′)
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]
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m ej2π
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T
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× dτdτ ′dλdλ′ds1(ΩTX)ds1(ΩRX)ds1(Ω′TX)ds1(Ω′RX). (A.17)

For a bistatic setup, i.e., m 6= m′, and assuming uncorrelated constituent
channels , i.e., E

[
hDMC(τ − τm′ ,ΩTX;pm,p)hDMC(τ − τm,ΩRX;pm′ ,p)

∗]
= 0,

only (A.9), (A.13), and (A.17) are non-zero. The terms (A.10) and (A.12) are
zero due to the uncorrelatedness of the constituent channels, and the terms
(A.11), (A.14), (A.15), and (A.16) are zero due to the zero-mean assumption.
For seperable delay power spectra (see also (2.18)) , (A.8) reduces to [6, 57]

[CDMC,m,m′ ]l,l′,l′′,l′′′ =

|αm|2ej2π
fc
c ΩT

TX,m(∆p(l)
m −∆p(l′′)

m )PDMC,m′CDMC,m′(τm)cm′(l
′, l′′′)

+ |αm′ |2ej2π
fc
c ΩT

RX,m′ (∆p
(l′)
m′ −∆p

(l′′′)
m′ )PDMC,mCDMC,m(τ ′m)cm(l, l′′)

+ PDMC,mPDMC,m′CDMC,m,m′cm(l, l′′)cm′(l
′, l′′′). (A.18)

The delay covariance matrices of the downlink and uplink channel are given as

CDMC,m(τm′) =

∫
SDMC,m(τ − τm′)sTX(τ)sTX(τ)Hdτ, and (A.19)

CDMC,m′(τm) =

∫
SDMC,m′(τ − τm)sTX(τ)sTX(τ)Hdτ, (A.20)
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respectively. The angular direction of departure (DoD) and direction of arrival
(DoA) covariance values are given as

cm(l, l′′) =

∫
SDMC,m(ΩTX)ej2π

fc
c ΩT

TX∆p(l)
m e−j2π

fc
c ΩT

TX∆p(l′′)
m ds1(ΩTX), and

(A.21)

cm′(l
′, l′′′) =

∫
SDMC,m′(ΩRX)ej2π

fc
c ΩT

RX∆p
(l′)
m′ e−j2π

fc
c ΩT

RX∆p
(l′′′)
m′ ds1(ΩRX),

(A.22)

respectively. Finally, the downlink-uplink covariance matrix is given as

CDMC,m,m′ =

∫ ∫
SDMC,m(λ)SDMC,m′(τ − λ)sTX(τ)sTX(τ)Hdτdλ. (A.23)

For a monostatic setup, i.e., m = m′, the terms (A.10) and (A.12) are also
non-zero. This leads to
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m −∆p(l′′)

m )PDMC,mCDMC,m(τm)cm(l, l′′′)

+ |αm|2ej2π
fc
c ΩT

TX,m(∆p(l′)
m −∆p(l′′′)
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+ P 2
DMC,mCDMC,m,mcm(l, l′′)cm(l′, l′′′)

+ P 2
DMC,mCDMC,m,mcm(l, l′′′)cm(l′, l′′). (A.24)

The term (A.17) leads to two terms (see [20] and [57]). In the monostatic setup
and the case that the TX antenna is the RX antenna, the power of the DMC is
doubled compared to a bistatic setup, i.e., uncorrelated constituent channels [6].

A.2 CRLB for the backscatter channel
As already mentioned in Section A.1, we consider a two-reader setup only, with
reader m transmitting and reader m′ receiving. The likelihood function govern-
ing the two-reader RFID setup is given by

f(rm,m′ |ψ) =
1

πNLmLm′ det(Cm,m′(ψm,m′))

× e(rm,m′−µm,m′ (ψ))HCm,m′ (ψm,m′ )
−1(rm,m′−µm,m′ (ψ)), (A.25)

where we assumed that the parameters governing the covariance matrix are
known, i.e., we know the delay power spectrum (DPS), direction of departure
power spectrum (DODPS) and direction of arrival power spectrum (DOAPS) of
the constituent channels, except for its dependence on parameter vector ψm,m′ =
[τm,m′ , ϕD,m, ϕA,m′ , |αm,m′ |, ϕαm,m′ ]T. The mean value

µm,m′(ψ) =

[
µ

(1,1)
m,m′(ψ)

T
, . . . ,µ

(1,Lm′ )
m,m′ (ψ)

T
, . . . ,µ

(Lm,1)
m,m′ (ψ)

T
, . . . ,µ

(Lm,Lm′ )
m,m′ (ψ)

T
]T

,

(A.26)
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where µ(l,l′)
m,m′(ψ) = |αm,m′ |ejϕαm,m′ sTX(τm,m′)e

j2π fcc ΩT
TX,m∆p(l)

m ej2π
fc
c ΩT

RX,m′∆p
(l′)
m′ .

A.2.1 Including spatial correlations

The individual Fisher information matrix (FIM) elements, considering the spa-
tially correlated DMC covariance matrix ((A.18) or (A.24)) , are given as (3.1)

[I(ψ)]ij = 2R
[∂µH

m,m′(ψ)

∂ψi
Cm,m′(ψ)−1 ∂µm,m′(ψ)

∂ψj

]

+ Tr
[
Cm,m′(ψ)−1 ∂Cm,m′(ψ)

∂ψi
Cm,m′(ψ)−1 ∂Cm,m′(ψ))

∂ψj

]
,

= 2R
[ Lm∑

l=1

Lm′∑

l′=1

Lm∑

l′′=1

Lm′∑

l′′′=1

∂µ
(l,l′)
m,m′(ψ)

H

∂ψi
[Cm,m′(ψ)−1]l,l′,l′′,l′′′

∂µ
(l′′,l′′′)
m,m′ (ψ)

∂ψj

]
,

+ Tr
[
Cm,m′(ψ)−1 ∂Cm,m′(ψ)

∂ψi
Cm,m′(ψ)−1 ∂Cm,m′(ψ))

∂ψj

]
, (A.27)

where [Cm,m′(ψ)−1]l,l′,l′′,l′′′ is the N × N subblock of the inverse covariance
matrix indexed by antenna pair (l, l′) and (l′′, l′′′). The partial derivatives of
the mean value are given as

∂µ
(l,l′)
m,m′(ψ)

∂τm,m′
= |αm,m′ |ejϕαm,m′ ṡTX(τm,m′)e

j2π fcc ΩT
TX,m∆p(l)

m

× ej2π
fc
c ΩT

RX,m′∆p
(l′)
m′ (A.28)

∂µ
(l,l′)
m,m′(ψ)

∂ϕD,m
= |αm,m′ |ejϕαm,m′ sTX(τm,m′)j2π

fc

c

∂ΩT
TX,m

∂ϕD,m
∆p(l)

m

× ej2π
fc
c ΩT

TX,m∆p(l)
m ej2π

fc
c ΩT

RX,m′∆p
(l′)
m′ (A.29)

∂µ
(l,l′)
m,m′(ψ)

∂ϕA,m
= |αm,m′ |ejϕαm,m′ sTX(τm,m′)e

j2π fcc ΩT
TX,m∆p(l)

m

× j2πfc

c

∂ΩT
RX,m′

∂ϕA,m′
∆p

(l′)
m′ e

j2π fcc ΩT
RX,m′∆p

(l′)
m′ (A.30)

∂µ
(l,l′)
m,m′(ψ)

∂|αm,m′ |
= e

jϕα
m,m′ sTX(τm,m′)e

j2π fcc ΩT
TX,m∆p(l)

m ej2π
fc
c ΩT

RX,m′∆p
(l′)
m′ (A.31)

∂µ
(l,l′)
m,m′(ψ)

∂ϕαm,m′
= j|αm,m′ |ejϕαm,m′ sTX(τm,m′)e

j2π fcc ΩT
TX,m∆p(l)

m

× ej2π
fc
c ΩT

RX,m′∆p
(l′)
m′ , (A.32)

where ∂ΩT
x,m

∂ϕx,m
= [− sin(ϕx,m), cos(ϕx,m)] for x ∈ {D,A}. For the partial deriva-

tives of the covariance matrix, we only consider the derivatives with respect to
the angle of departure (AoD) and angle of arrival (AoA). Inspecting the covari-
ance matrix ((A.18) or (A.24) carefully, only the AoD and AoA appear directly
in the covariance matrix (out of the previously defined parameter vector ψm,m′).
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While the delays and amplitudes of the constituent channels appear, the com-
bined delay and amplitude do not appear and thus we neglect the trace term.2
The partial derivatives of the N ×N subblocks of the bistatic covariance matrix
indexed by antenna pair (l, l′) and (l′′, l′′′) are given as

∂ [CDMC,m,m′(ψ)]l,l′,l′′,l′′′

∂ϕD,m
= j2π

fc

c

∂ΩT
TX,m

∂ϕD,m
(∆p(l)

m −∆p(l′′)
m )

|αm|2ej2π
fc
c ΩT

TX,m(∆p(l)
m −∆p(l′′)

m )PDMC,m′CDMC,m′(τm)cm′(l
′, l′′′) (A.33)

∂ [CDMC,m,m′(ψ)]l,l′,l′′,l′′′

∂ϕA,m
= j2π

fc

c

∂ΩT
RX,m′

∂ϕA,m′
(∆p

(l′)
m′ −∆p

(l′′′)
m′ )

+ |αm′ |2ej2π
fc
c ΩT

RX,m′ (∆p
(l′)
m′ −∆p

(l′′′)
m′ )PDMC,mCDMC,m(τ ′m)cm(l, l′′) (A.34)

The partial derivatives, given above ((A.28)-(A.32)), combined with (A.27)
suffices to numerically evaluate the FIM and subsequently the REB and AEB
presented in Section 3.1.2.

A.2.2 Neglecting spatial correlations
To derive the analytic expressions presented in Section 3.1.2, we proceed by
neglecting the spatial correlations within the DMC covariance matrix. This
means that (A.8) is set to zero, except if l = l′′ and l′ = l′′′, i.e., (A.7) reduces
to a block-diagonal matrix. Thus, the individual FIM elements ((A.27)) are
given by

[Inc(ψ)]ij = 2R
[ Lm∑

l=1

Lm′∑

l′=1

∂µ
(l,l′)
m,m′(ψ)

H

∂ψi
[C−1

m,m′ ]l,l′,l,l′
∂µ

(l,l′)
m,m′(ψ)

∂ψj

]
. (A.35)

In the following we will derive the individual elements for the following assump-
tions: (i) the bistatic reader setup, i.e., m 6= m′, (ii) a real-valued transmit pulse,
leading to a real-valued covariance matrix. By combining both assumptions (to-
gether with the fact that we neglect the spatial correlations), the subblocks in the
covariance matrix (A.18) do not depend on the individual antenna positions any-
more, hence to reduce notational complexity, we define [Cm,m′ ]l,l′,l,l′ = C̃m,m′ .
Inserting (A.28)-(A.32) in (A.35), the elements in (3.12) are given as

Inc,τm,m′ ,τm,m′ = 2R
[ Lm∑

l=1

Lm′∑

l′=1

|αm,m′ |2ṡTX(τm,m′)C̃
−1
m,m′ ṡTX(τm,m′)

]

= 2LmLm′ |αm,m′ |2ṡTX(τm,m′)C̃
−1
m,m′ ṡTX(τm,m′) (A.36)

Inc,τm,m′ ,ϕD,m
= 2R

[ Lm∑

l=1

Lm′∑

l′=1

|αm,m′ |2ṡTX(τm,m′)C̃
−1
m,m′sTX(τm,m′)

× j2πfc

c

∂ΩT
TX,m

∂ϕD,m
∆p(l)

m

]
(A.37)

2Note that the delays and amplitudes of the constituent channels are combined with the
onset and the power of the DPS, respectively in (A.18) or (A.24). While for the theoretical
derivation we assume these parameter known, actual estimators will need to estimate these
parameters and in fact will estimate the combination of the delays and amplitudes of the
constituent channels with the onset and power of the DPS, respectively.
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= 0

Inc,τm,m′ ,ϕA,m′ = 2R
[ Lm∑

l=1

Lm′∑

l′=1

|αm,m′ |2ṡTX(τm,m′)C̃
−1
m,m′sTX(τm,m′)

× j2πfc

c

∂ΩT
RX,m′

∂ϕA,m′
∆p

(l′)
m′

]
(A.38)

= 0

Inc,τm,m′ ,|αm,m′ | = 2R
[ Lm∑

l=1

Lm′∑

l′=1

|αm,m′ |ṡTX(τm,m′)C̃
−1
m,m′sTX(τm,m′)

]

= 2LmLm′ |αm,m′ |ṡTX(τm,m′)C̃
−1
m,m′sTX(τm,m′) (A.39)

Inc,τm,m′ ,ϕαm,m′
= 2R

[ Lm∑

l=1

Lm′∑

l′=1

j|αm,m′ |2ṡTX(τm,m′)C̃
−1
m,m′sTX(τm,m′)

]

(A.40)

= 0

Inc,ϕD,m,ϕD,m
= 2R

[ Lm∑

l=1

Lm′∑

l′=1

|αm,m′ |2sTX(τm,m′)C̃
−1
m,m′sTX(τm,m′)

× (2π
fc

c

∂ΩT
TX,m

∂ϕD,m
∆p(l)

m )2
]

=
8π2f2

c

c2
Lm′ |αm,m′ |2sTX(τm,m′)C̃

−1
m,m′sTX(τm,m′)

×
Lm∑

l=1

(
∂ΩT

TX,m

∂ϕD,m
∆p(l)

m )2 (A.41)

Inc,ϕD,m,ϕA,m′ = 2R
[ Lm∑

l=1

Lm′∑

l′=1

|αm,m′ |2sTX(τm,m′)C̃
−1
m,m′sTX(τm,m′)

× 4π2 f
2
c

c2
∂ΩT

TX,m

∂ϕD,m
∆p(l)

m

∂ΩT
RX,m′

∂ϕA,m′
∆p

(l′)
m′

]
(A.42)

= 0

Inc,ϕD,m,|αm,m′ | = 2R
[ Lm∑

l=1

Lm′∑

l′=1

|αm,m′ |sTX(τm,m′)C̃
−1
m,m′sTX(τm,m′)

×−j2πfc

c

∂ΩT
TX,m

∂ϕD,m
∆p(l)

m

]
(A.43)

= 0

Inc,ϕD,m,ϕα
m,m′

= 2R
[ Lm∑

l=1

Lm′∑

l′=1

|αm,m′ |2sTX(τm,m′)C̃
−1
m,m′sTX(τm,m′)

× 2π
fc

c

∂ΩT
TX,m

∂ϕD,m
∆p(l)

m

]
(A.44)

= 0
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Inc,ϕA,m′ ,ϕA,m′ = 2R
[ Lm∑

l=1

Lm′∑

l′=1

|αm,m′ |2sTX(τm,m′)C̃
−1
m,m′sTX(τm,m′)

× (2π
fc

c

∂ΩT
RX,m′

∂ϕA,m′
∆p

(l′)
m′ )

2
]

=
8π2f2

c

c2
Lm|αm,m′ |2sTX(τm,m′)C̃
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m,m′sTX(τm,m′)

×
Lm′∑

l′=1

(
∂ΩT

RX,m′

∂ϕA,m′
∆p

(l′)
m′ )

2 (A.45)

Inc,ϕA,m′ ,|αm,m′ | = 2R
[ Lm∑

l=1

Lm′∑

l′=1

|αm,m′ |sTX(τm,m′)C̃
−1
m,m′sTX(τm,m′)

×−j2πfc

c

∂ΩT
RX,m′

∂ϕA,m′
∆p

(l′)
m′

]
(A.46)

= 0

Inc,ϕA,m′ ,ϕαm,m′
= 2R

[ Lm∑

l=1

Lm′∑

l′=1

|αm,m′ |2sTX(τm,m′)C̃
−1
m,m′sTX(τm,m′)

× 2π
fc

c

∂ΩT
RX,m′

∂ϕA,m′
∆p

(l′)
m′

]
(A.47)

= 0

Inc,|αm,m′ |,|αm,m′ | = 2R
[ Lm∑

l=1

Lm′∑

l′=1

sTX(τm,m′)C̃
−1
m,m′sTX(τm,m′)

= 2LmLm′sTX(τm,m′)C̃
−1
m,m′sTX(τm,m′) (A.48)

Inc,|αm,m′ |,ϕαm,m′ = 2R
[ Lm∑

l=1

Lm′∑

l′=1

j|αm,m′ |sTX(τm,m′)C̃
−1
m,m′sTX(τm,m′) (A.49)

= 0

Inc,ϕα
m,m′ ,ϕαm,m′

= 2R
[ Lm∑

l=1

Lm′∑

l′=1

|αm,m′ |2sTX(τm,m′)C̃
−1
m,m′sTX(τm,m′)

= 2LmLm′ |αm,m′ |2sTX(τm,m′)C̃
−1
m,m′sTX(τm,m′), (A.50)

where (A.37), (A.38), (A.40), (A.42), (A.43), (A.44), (A.46), and (A.44) equate
to zero as we chose the center of gravity as the reference point for the local
coordinate system for the TX and RX arrays and (A.40), and (A.49) equate to
zero as the term inside the real part is purly imaginary.

Due to the fact that the dispersion parameters decouple, it is straightforward
to derive the AEB ((3.13)) and the REB ((3.14)) given in Section 3.1.2.
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Abstract

It is well known that the time-of-flight ranging performance is heavy
influenced by multipath propagation within a radio environment. This
holds in particular in dense multipath channels as encountered in indoor
scenarios. The signal bandwidth has a tremendous influence on this effect,
as it determines whether the time resolution is sufficient to resolve the
useful line-of-sight (LOS) signal component from interfering multipath.

This paper employs a geometry-based stochastic channel model to ana-
lyze and characterize the ranging error variance as a function of the band-
width, covering the narrowband up to the UWB regimes. The Cramér-
Rao lower bound (CRLB) is derived for this purpose. It quantifies the
impact of bandwidth, SNR, and parameters of the multipath radio chan-
nel and can thus be used as an effective and accurate channel model (e.g.)
for the cross-layer optimization of positioning systems. Experimental data
are analyzed to validate our theoretical results.

81



1 Introduction

Positioning indoors is a challenging task. Existing systems like global navigation
satellite systems (e.g GPS, Galileo) fail at indoor positioning due to the limited
visibility of the satellites and the limited signal bandwidth. In indoor scenarios
a multitude of multipath components (MPC) cause severe fading and pulse
distortion of the received signals making the localization challenging.

Performance bounds for the ranging and positioning capabilities of a system
allow for fundamental insight into system design considerations or cross-layer
optimization. In [1,2] the Cràmer Rao lower bound has been investigated for ra-
dio and radar scenarios providing insight into the influence of system parameters
like the signal to noise ratio (SNR) or the bandwidth.

Ultra-wideband (UWB) radio signals are considered to be most promising
for indoor positioning because their fine time resolution allows to separate the
arriving MPCs into individual components. To investigate performance bounds
and capture the information included in the channel, a proper channel model
is paramount. In [3] the stochastic IEEE 802.15.4a channel model has been
used to derive the Cràmer Rao lower bound and the Ziv-Zakai bound for posi-
tioning indoors. By adding geometrically modeled components to the channel
model using a so called geometry-based stochastic channel model, the additional
information provided by specular multipath components can be quantified [4].

Since bandwidth is a scarce resource, minimal usage reduces the costs of
a system drastically. By decreasing the bandwidth and moving to non-UWB
radio signals the specular components (including the line of sight (LOS)) are
no longer separated from other multipath components which are denoted as
dense or diffuse multipath (DM). This DM leads to multipath effects such as
amplitude fading and pulse distortion. For narrowband signals only amplitude
fading occurs since the complete DM interferes with the LOS component, while
for the UWB case the LOS component is well-separated from the DM. The
bottom of Fig. 1 illustrates these cases and shows the pulse distortion and
amplitude fading at bandwidths in between these ”extreme cases”.

In [5] we derived the Cràmer Rao lower bound (CRLB) on ranging and
positioning for a channel consisting of the LOS component and dense multipath.
Within this paper

• we analyze the CRLB for the ranging error for different channel parame-
ters,

• derive an approximation for the CRLB, and

• validate the model and CRLB using measurement data.

2 Signal Model

We consider L measurements obtained from signal transmissions between an
agent at an unknown position p and anchors at known positions aℓ. A unit
energy pulse s(t) is transmitted leading to the received signal

r(t) = αℓs(t− τℓ) + (s ∗ νℓ)(t) + w(t), (1)
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Figure 1: Model and sample functions illustrating the problem under investiga-
tion over a wide range of BWs (neglecting AWGN).

where αℓ = |αℓ|e−j(2πfcτℓ+ϕ0) describes the complex amplitude of the determin-
istic line-of-sight (LOS) component with delay τℓ = 1

c‖p− aℓ‖, where c denotes
the speed of light, fc is the carrier frequency and ϕ0 is a random phase offset.
The second term denotes the dense multipath (DM) which is modeled as a zero-
mean complex Gaussian random process. By assuming uncorrelated scattering
in the delay domain, the auto-correlation of the DM process is given as

K(ℓ)
ν (t, u) = Eν {νℓ(t)ν

∗
ℓ (u)} = S(ℓ)

ν (t− τℓ)δ(t− u), (2)

where S
(ℓ)
ν (t) is the power delay profile (PDP) of the DM process at position p as

a function of the excess delay time. Quasi-stationarity in the spatial domain is
assumed, meaning that the PDP does not change in the vicinity of the position
p. Finally, the third term in (1) models additive white Gaussian noise (AWGN).

The DM is modeled as double exponential function (cf. [6])

S(ℓ)
ν (τ) = Ω1

γdec + γrise

γdec(γdec + γrise(1− χ))
(1 − χe−τ/γrise)e−τ/γdec (3)

where Ω1 is the total power of the DM, and γrise, γdec, and χ are shape param-
eters. The Rician K-factor for the LOS component is

KLOS =
|αℓ|2
Ω1

. (4)

Fig. 1 illustrates the signal model and shows a few sample realizations of the
received signal neglecting the AWGN. For high bandwidths (the UWB case) the
DM process is clearly separated from the LOS component and neither fading nor
distortion of the transmitted pulse occurs. By decreasing the bandwidth (BW)
the interference between the transmitted pulse and the DM process increases
and leads to fading and distortion of the received pulse. For low bandwidths
the complete DM process interferes with the LOS component and only fading
occurs. In the following the measurement index ℓ will be dropped.

3 Ranging Error Bound (REB)

In [5] we derived the REB, which is the square root of the inverse of the equiv-

alent Fisher information (EFI) R(τ) =
√
I−1

τ , the square root of the CRLB
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var{τ̂} ≥ I−1
τ for the delay-estimation problem. This enables us to investigate

the influence of the signal and environment model parameters onto the REB.
Under the assumption that the AWGN and the DM are both Gaussian, the EFI
for a single channel can be presented as

Iτ = 8π2β2γSINRsin2(φ) = 8π2β2S̃INR (5)

where β2 = ‖ṡτ‖2 /(4π2‖sτ‖2) =
∫

f f2|S(f)|2df is the effective (mean square)

bandwidth of the (energy-normalized) transmit pulse s(t)
F←→ S(f), sτ is the

sampled transmit pulse shifted to τ , ṡτ is its derivative, SINR is the signal-to-
interference-plus-noise ratio (SINR) of the LOS component, γ is the so-called
whitening gain, and sin2(φ) incorporates the estimation of the nuisance param-
eter α. The product of β2, SINR, γ, and sin2(φ) thus provides the amount of
information transmitted in the LOS component when influenced by DM and
AWGN. For the derivation of (5), the inverse of the covariance matrix of DM
plus AWGN is needed as a whitening operator. The SINR, the whitening gain

γ, and sin2(φ) are also combined in the effective SINR, S̃INR which can be
expressed as [5]

S̃INR =
|α|2
N0
‖sτ‖2Ts

‖ṡτ‖2H
‖ṡτ‖2

sin2(φ), (6)

where Ts = 1/fs, fs is the sampling frequency, ‖ · ‖2H denotes the weighted
squared norm in a Hilbert space defined by the covariance Cn/σ2

n (see Ap-
pendix A), and φ is the angle between sτ and its derivative ṡτ in this Hilbert
space. Appendix B introduces approximations for the previously defined pa-
rameters without the need to compute the inverse of the covariance matrix.

Fig. 2a illustrates the SINR, γ, sin2(φ), and S̃INR over a wide range of
bandwidths for three different KLOS factors (−10 dB, 0 dB, and 10 dB). For
low BWs the SINR tends towards the Rician KLOS factor of the channel model
and for high bandwidth it reaches the signal to noise ratio (SNR). The SINR

reflects the amplitude fading of the LOS component. The S̃INR follows the
SINR at high bandwidth but reaches the SNR again at low bandwidth. The

S̃INR reflects the pulse distortion of the deterministic LOS component. At high

BW neither fading nor distortion occurs and both the SINR and S̃INR reach the
SNR. By decreasing the BW, both amplitude fading and pulse distortion occur

leading to decreased SINR and S̃INR. At very low BW only amplitude fading
occurs since the complete DM process interferes with the pulse (cf. Fig. 1). The
parameter sin2(φ) which can be attributed to the cost of estimating the nuisance
parameter α reduces the achievable whitening gain. The lower the KLOS factor
the higher the cost for estimating the nuisance parameter.
In Fig. 2b the shape parameter γrise of the double exponential PDP (3) is varied.
If γrise, which describes the onset behaviour of the PDP, is set to zero the double
exponential PDP reduces to an exponentially decaying PDP. Thus, for high BW

some amplitude fading and pulse distortion occur as well and the S̃INR and
SINR do not reach the SNR. The cost for estimating the nuisance parameter
α is coupled with the pulse distortion. At low BW less pulse distortion occurs
since the complete DM interferes with the LOS. In the region where the BW is
approximately the inverse of the rms delay spread (τrms = {17.3, 16.1} ns) the
most pulse distortion occurs and the cost for estimating the nuisance parameter
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Figure 2: SINR, S̃INR, whitening gain γ, and sin2(φ) as a function of bandwidth
and different channel parameters. If not stated otherwise: ELOS/N0= 25 dB,
KLOS = 0 dB, γdec= 20 ns, γrise= 5 ns.

α is the highest.
By varying both the shape parameters γrise and γdec by the same factor, it can
be shown, that the root mean square (rms) delay spread of the PDP is changed
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Figure 3: REB, approximated REB, and simulated range estimation error STDV
for ML and MF estimator for different KLOS factors (solid lines 10 dB, dot-
ted lines 0 dB, and chain dotted lines −10 dB). Other channel parameters:
ELOS/N0= 25 dB, γdec= 20 ns, γrise= 5 ns.

by the same factor. Thus, in Fig. 2c the effect of different τrms is depicted. At

low BW the S̃INR is higher for smaller τrms since less pulse distortion occurs.
At high BW, the lower τrms of the PDP, the higher the bandwidth needs to be

for the same SINR and S̃INR.
In Fig. 3a the ranging error bound for three different KLOS-factors (10 dB,

0 dB, −10 dB) is depicted. Two different gains can be seen in Fig. 3a: An accu-
racy gain can be identified by looking at the REB at the same bandwidth. The
higher the Rician K-factor, the lower the REB for the same bandwidth. The sec-
ond gain, a detection gain, is depicted by the standard deviation (STDV) of the
ranging error of a maximum likelihood (ML) estimator which uses the inverse
of the covariance matrix of the DM plus AWGN random process as whitening.
For a small KLOS factor the estimator starts to deviate from the REB at higher
bandwidth. The detection of the LOS is coupled with the SINR which reflects
the SNR after the whitening operation. Hence, for higher KLOS factors, the ML
estimator deviates from the REB at lower BW.
In Fig. 3b the STDV of the ranging error of a “näıve” matched filter (MF)
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estimator, which convolves the received signal with the transmitted pulse and
searches for its maximum, is depicted along with the approximated values (Ap-
pendix B) for the REB. As long as the SINR is high enough, the MF estimator
follows the approximation of the CRLB very well. Since the MF estimator
projects the received signal onto the pulse, this estimator works in the signal
space defined by the approximation for the inverse of the covariance matrix.

4 Validation

To validate the theoretical results in the previous section we performed mea-
surements with an M-sequence correlative channel sounder by Ilmsens, which
provides measurements over approx. the proposed UWB frequency range from
3.5 - 10.5 GHz. Out of this band we selected the desired bandwidth by filtering
with a root raised cosine pulse with a pulse duration ranging from 0.25 ns to
10 µs with roll-off factor 0.5.
Fig. 4 shows the floorplan of the measurement scenario [7]. Measurements have
been performed between an “agent” mounted on a 2D positioning table (70 cm
times 65 cm spaced by 1 cm) to eight “anchors” arranged as two linear arrays
spaced by 15 cm. Instantaneous Rician KLOS factors are shown for each mea-
surement from the agent to Anchor 8. The KLOS factor is higher in regions
closer to the anchor and is on average 0.31 dB. Instantaneous τrms are plotted
in the lower right corner of Fig. 4 and is on average 17 ns.

The covariance matrix of the dense multipath, needed for the whitening
operation, has been estimated from a 2 cm spaced 5x5 grid around the cur-
rent measurement by subtracting the LOS component from the received signal.
The complex amplitudes α̂ℓ of the LOS component have been estimated at
the highest possible BW (4 GHz) and are used at lower BWs to subtract the
LOS component. AWGN has been added to the measurements to get a desired
ELOS/N0 of 25 dB.

Fig. 5 shows the average values of the SINR, S̃INR, γ, and sin2(φ) for
42 measurements. The agent positions have been placed on the grid in such
a way that each measurement is used only once to minimize correlation effects
between different realizations. The SINR shows the same behavior as the theory.
At low BW it tends towards the KLOS factor and at high BW it is bound by the
ELOS/N0. The whitening gain as well as the effective SINR show similar behav-
iors as the theory. The synthetic data in Fig. 2a and Fig. 3a with KLOS = 0 dB,
γrise = 5 ns, and γdec = 20 ns lead to a τrms = 17.3 ns and thus compares best to
the measured data.

In Fig. 6 the REB and the STDV of the estimation error are shown for two
estimators. The MF estimator works at BWs higher than 500 MHz. At lower
BWs a positive bias and outliers occur, which push the STDV of the MF esti-
mator away from the theoretical bound. The ML estimator for a single-input,
single-output (SISO) scenario starts to deviate from the REB at BWs below
100 MHz. The accuracy gain due to proper handling of the pulse distortion is
clearly visible. The synthetic data presented in Fig. 3a for comparable channel
parameters (KLOS, τrms) deviates at about 50 MHz.
By using diversity at the anchor side, a single input, multiple output (SIMO)
system can be realized. As shown in [5] additional uncorrelated measurements
scale the effective SINR and the EFI linearly, thus the REB is scaled by the
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inverse of the square root of the number of receivers1. This factor of 1/2 is seen
in Fig. 6 for the 1x4-SIMO ML estimator. By additionally combining agent
measurements a multiple input, multiple output (MIMO) system is obtained.
Again, four measurements, have been combined to evaluate the ranging perfor-

1To obtain this diversity gain, the likelihood functions of individual measurements are
added up, which corresponds to a non-coherent combining of measurements that require no
phase coherence.
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mance of the overall 4x4-MIMO system. The accuracy gain is another factor
of 1/2 for the STDV in comparison to the 1x4-SIMO system. Furthermore, a
detection gain is achieved by combining measurements. The detection of the
LOS, which is coupled with the SINR is enhanced and the STDV of the esti-
mation error follows the REB down to lower BW. With the 4x4 MIMO system
a ranging STDV of 30 cm can be obtained at a BW of 20 MHz.

5 Conclusions and Outlook

The ranging error bound has been analyzed for LOS signals in dense multipath
(DM), evaluating the impact of signal parameters and environmental model pa-
rameters like the KLOS and τrms factor. A higher KLOS and higher τrms factor
of the power delay profile are preferred. The theoretical findings have been vali-
dated with real measurement data. Strong early reflections still pose a challenge
for the ranging algorithm, specifically the estimation of the covariance matrix,
but it is seen that diversity gain can overcome the need for ultra-wideband
signals to obtain high-accuracy positions in dense multipath channels.

A Fisher Information for Delay Estimation

For a sampled received signal, the covariance matrix of AWGN and the DM is
written as

Cn = σ2
nIN + Cc = σ2

nIN + S̄HSνS̄ (A.1)

where S̄ = [s0, · · · , sN−1]
T ∈ RN×N is a signal matrix with si = [s((−i)Ts), . . . , s((N−

1− i)Ts)]
T [4]. The elements of the covariance matrix of DM are

[S̄HSν S̄]n,m =
N−1∑

i=0

TsSν(iTs)s((n− i))s((m− i)). (A.2)

The derivation of the EFI under non-stationary, non-white Gaussian noise, in-
volves a whitening operation that is defined by the inverse of the covariance
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matrix. By utilizing an eigenvector decomposition for the covariance matrix,
and introducing the Fourier-weighted inner product in a Hilbert space defined
by [5]

〈x,y〉H
σ2

n

= yHC−1
n x

= yHU(Λ + σ2
nIN )−1UHx

=
1

σ2
n

N−1∑

i=0

yHuiu
H
i x

λi/σ2
n + 1

(A.3)

we can write the EFI as (cf. [5, 8])

Iτ =2
|α|2
σ2

n

‖ṡτ‖2H sin2(φ) + tr

[
C−1

n

∂Cn

∂τ
C−1

n

∂Cn

∂τ

]

=2
|α|2
σ2

n

‖ṡτ‖2H
(

1− |〈ṡτ , sτ 〉H|2
‖ṡτ‖2H‖sτ‖2H

)
+ tr [•] (A.4)

where the “tr [•]-part” is for the impact of unknown parameters of the DM
process, e.g. the unknown arrival time of the DM. We argue in [5] that this part
can be neglected.

Writing the SINR as

SINR =
|α|2
N0
‖sτ‖2H Ts (A.5)

the first part of (A.4 can be decomposed as in (5).

B Approximated Inverse Covariance

Inspite of the different definitions, numeric evaluations are still needed to gain
insight in the quantitative behavior of the introduced parameters. To address
this issue, we introduce a decomposition of the covariance matrix into an or-
thonormal basis that allows the approximate numeric evaluation of the Hilbert
norms. We decompose Cn as

Cn = [u1,u2,U0]




[
η ρ
ρ∗ η′

]
A

AH Λ0







uH
1

uH
2

UH
0


 (B.1)

choosing orthonormal basis vectors u1 = sτ/‖sτ‖ and u2 = ṡτ/‖ṡτ‖ in directions
of the LOS pulse and its derivative. The coefficients η, η′, and ρ describe the
statistics of these two components of noise vector n. They are computed from
Cn, e.g. ρ = uH

1 Cnu2. Matrix A expresses the correlation of the noise in these
two directions and the other coordinate axes (in U0).

Using the Schur complement and assuming that the correlations A are neg-
ligible, the inverse of Cn is written as

C−1
n ≈ [u1,u2,U0] (B.2)

×




[
η′ −ρ
−ρ∗ η

]
1

ηη′−|ρ|2 X

XH Z







uH
1

uH
2

UH
0


 .
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Using this approximation, it is straightforward to compute approximated values
for the parameters defined in Appendix A. From (A.4), we obtain

I(I)
τ ≈ 2

‖ṡτ‖2
‖sτ‖2︸ ︷︷ ︸
4π2β2

η

η′
︸︷︷︸
≈γ

|α|2‖sτ‖2η′

ηη′ − |ρ|2︸ ︷︷ ︸
≈SINR

(
1− |ρ|

2

ηη′

)

︸ ︷︷ ︸
≈sin2(φ)

. (B.3)

From this, the SINR (A.5) times sin2(φ) can be written as

sin2(φ)SINR ≈|α|2‖sτ‖2
1

η

=|α|2 1

N0 +
∑N−1

i=0 [̺s]
2
i Sν(iTs)Ts

where ̺s = S̄sτTs is the autocorrelation sequence of waveform s(t), whose norm
is independent of Ts. This results shows that the interference power scales
according to the inner product of the squared pulse ACF ̺2(t) and the PDP
Sν(t). I.e., the greater the bandwidth, the better is the DM separated from the
LOS component and the SINR converges towards the SNR. Using the results
from (B.3), the effective SINR can be approximated by

S̃INR ≈|α|2‖sτ‖2
1

η′ (B.4)
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Abstract

This paper analyzes the achievable ranging and positioning perfor-
mance for two design constraints in a radio frequency identification (RFID)
system: (i) the bandwidth of the transmit signal and (ii) the use of mul-
tiple antennas at the readers. The ranging performance is developed for
correlated and uncorrelated constituent channels by utilizing a geometry-
based stochastic channel model for the downlink and the uplink. The
ranging error bound is utilized to compute the precision gain for a ranging
scenario with multiple collocated transmit and receive antennas. The po-
sition error bound is then split into a monostatic and bistatic component
to analyze the positioning performance in a multiple input, multiple out-
put (MIMO) RFID system. Simulation results indicate that the ranging
variance is approximately halved when utilizing uncorrelated constituent
channels in a monostatic setup. It is shown that both the bandwidth and
the number of antennas decrease the error variance roughly quadratically.
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1 Introduction

RFID tags have penetrated every corner of our lifes, but are paramount in
supply chain management and logistics. One major detriment of passive RFID
technology is its unsatisfying localization capability. In numerous applications
like sorting of goods, intelligent warehouses, flexible production, etc., a sub-
meter or even sub-decimetre positioning would be needed.

A trend towards signals with higher bandwidth has been established, for both
active and passive RFID tags, to achieve higher accuracy for localization pur-
poses [1]. Dardari and coworkers have focused on ultrawide-bandwidth (UWB)
tags with the capability to scatter back a spreading sequence for CDMA [2],
while others have only adapted the readers and used existing tags for radar like
scenarios (e.g. [3]).

Several researchers have analyzed performance bounds for ranging and po-
sitioning with ultra-wideband (UWB) radio signals [4,5]. In UWB settings, the
channel is often modeled as a combination of specular reflections and so-called
dense or diffuse multipath (DM) which comprises all other “energy producing”
components [6] that cannot be resolved by the measurement aperture. By de-
creasing the bandwidth and thus going from UWB to conventional wideband
radio signals the specular reflections cannot be isolated from the line-of-sight
(LOS) component anymore, leading to a pulse distortion and fading effect. In [7]
we analysed the ranging and positioning error bound for these conventional
wideband radio signals in DM scenarios.

Besides using higher bandwidth, another way to increase the performance
is to use multiple input, multiple output (MIMO) systems. For passive RFID
tags the use of multiple antennas at the transmitter, tag and receiver have been
analyzed with respect to the received power and bit error rate [8–11]. For rang-
ing/positioning a MIMO-radar system can be employed using the geometric
spread of the sensors and narrowband signals [12]. For classical outdoor radar
applications the received signal consists of the backscattered LOS signal and ad-
ditive white Gaussian noise (AWGN). Due to the previously introduced channel
model the signal model for RFID radar systems operating indoors needs to be
adapted leading to severe fading and distortions.

The main contributions of this paper are the following:

• We develop the ranging error variance for correlated and uncorrelated
backscatter channels.

• We characterize the achievable ranging gain for multiple antennas in a
monostatic setup.

• We discuss the position error bound for several readers leading to a MIMO
RFID system.

The rest of this paper is organized as follows. Section 2 defines the system
and signal model, which is used in Secton 3 to develop the ranging error variance
for correlated and uncorrelated channels. Section 4 re-visits the relation between
the range and the position estimation errors and demonstrates how diversity
combining can be expressed in terms of monostatic and bistatic accuracy gains.
Section 5 draws conclusions and presents an outlook.
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Figure 1: System Model of the MIMO RFID setup including monostatic, bistatic
and multistatic scenarios

2 System and Channel Model

2.1 System Model

We consider L radio frequency identification (RFID) readers operating indoors
at known positions pℓ, ∀ℓ ∈ {1, . . . , L}. Each reader consists of K closely-spaced
antennas that can all be used to transmit and receive wideband signals (K TRX
per reader). The signal s(t) denotes the baseband equivalent transmit signal.
The M RFID tags placed within the room at unknown positions p(m), ∀m ∈
{1, . . . , M} scatter back the signal to the readers which in turn receive this
signal. The according multiple input multiple output (MIMO) system model is
depicted in Fig. 1.

The solid lines in Fig. 1 characterize monostatic links connecting antennas
from reader ℓ via the tag with itself. Each monostatic link consists of two con-
situent channels, the downlink from one reader antenna Aℓk to the tag antenna
A(m) and the uplink from the tag antenna A(m) back to the same reader but not
necessarily the same antenna Aℓk′ . As we will see in Section 2.3 these channels
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can be modelled as correlated or uncorrelated.
The dashed lines in Fig. 1 represent bistatic links connecting antennas from

two different readers, Aℓk and Aℓ′k′ , via the tag antenna A(m). Since the differ-
ent readers are placed at different positions in the room, these channels will be
modelled uncorrelated.

The dashed dotted lines in Fig. 1 depict static clutter that can be canceled
from the received signal depending on the employed signaling scheme (cf. [3,13,
14]).

2.2 Channel Model

Each individual baseband radio channel between any reader antenna Aℓk and
a tag antenna A(m) is modeled by a hybrid deterministic-stochastic channel
model [15]

h
(m)
ℓk (τ) = α

(m)
ℓk δ(τ − τ

(m)
ℓk ) + ν

(m)
ℓk (τ), (1)

where α
(m)
ℓk describes the complex amplitude of the deterministic line-of-sight

(LOS) component with delay τ
(m)
ℓk = 1

c‖p(m)−pℓk‖, with c as the speed of light.
The second term on the right hand side in (1) denotes the dense multipath (DM)
which models all other multipath components. This DM is modeled as a zero-
mean complex Gaussian random process. We assume uncorrelated scattering
(US) [16, 17] along the delay axis τ for the DM process which means that the
autocorrelation (ACF) of the DM is given as

Kν(τ, u) = E
{
ν

(m)
ℓk (τ)ν

(m)
ℓk (u)∗

}

= S
(m)
ν,ℓk(τ − τ

(m)
ℓk )δ(τ − u).

(2)

The power delay profile (PDP) S
(m)
ν,ℓk(τ−τ

(m)
ℓk ) is zero for τ < τ

(m)
ℓk implying that

the DM does not exist until the LOS component excites the channel. We also
assume quasi-stationarity in the spatial domain, meaning that for one reader-
tag configuration, the PDP does not change noticeably in the vicinity of the
tag [18].

The following derivation of the backscatter channel model does not restrict
the usage to a certain model for the PDP; different choices for the PDP could be
an exponentially decreasing PDP or a double exponential PDP [19]. For easier
readability only one tag is considered in the following, thus the tag index m will
be dropped. This does not limit the system model since various multiple access
schemes can be employed to handle multiple tags and to separate the signals
from different readers [3, 13, 14].

2.3 Backscatter Channel Model

One backscatter channel is formed by concatenation of the respective uplink
channel hℓk with a downlink channel hℓ′k′ . This pinhole channel can be modelled
by the convolution of the two constituent channels as

hℓk,ℓ′k′ = (hℓk ∗ hℓ′k′ )(τ)

= αℓkαℓ′k′δ(τ − τℓk − τℓ′k′)

+ αℓkνℓ′k′(τ − τℓk) + αℓ′k′νℓk(τ − τℓ′k′) + νℓk(τ) ∗ νℓ′k′ (τ).

(3)
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The first term in (3) shows the deterministic part of the backscatter channel.
The second and third terms are the convolution of the DM of the downlink chan-
nel with the deterministic part of the uplink channel, and vice versa. Finally, the
fourth term is the convolution of the two DM processes of the individual radio
channels. By combining the last three terms in (3) to νℓk,ℓ′k′ (τ), the backscatter
channel can be decomposed into a deterministic and a stochastic part resulting
in a similar structure as for the individual channel in (1). The model in (3) as-
sumes constant backscattering of the tag over the whole used bandwidth. This
assumption does certainly not hold true for the UWB case, but the smaller the
bandwidth gets, the less frequency dependent the radar cross section of a tag
gets [20, 21].

Using the quasi-stationarity and the US assumption, the PDP of the backscat-
ter channel is the second central moment of the DM process. Since the DM is
described by a zero-mean Gaussian process, first and second moment give a
complete description of the random process. In [22] the US assumption has
been proven for a backscatter channel consisting of two US channels. Using
νℓk,ℓ′k′(τ) as the sum of the last three terms in (3), the PDP of the BS channel
for two uncorrelated channels is [23]

Sν,ℓk,ℓ′k′(τ) = E
{
νℓk,ℓ′k′(τ)ν∗

ℓk,ℓ′k′(τ)
}

(4)

= |αℓk|2Sν,ℓ′k′(τ − τℓk) + |αℓ′k′ |2Sν,ℓk(τ − τℓ′k′ )

+ Sν,ℓk(τ) ∗ Sν,ℓ′k′(τ).

For two fully correlated constituent channels, e.g. the downlink and the uplink
are the same, the PDP is [22]

Sν,ℓk,ℓk(τ) = E
{
νℓk,ℓk(τ)ν∗

ℓk,ℓk(τ)
}

(5)

= 4|αℓk|2Sν,ℓk(τ − τℓk) + 2Sν,ℓk(τ) ∗ Sν,ℓk(τ).

The power in the non-line-of-sight (NLOS) components is thus twice as high for
fully correlated channels as for uncorrelated constituent channels. In comparison
the power in the LOS component is the same for correlated and uncorrelated
constituent channels.

2.4 Received Signal

RFID reader ℓ transmits a baseband pulse s(t) via anntena k and the downlink
channel hℓk(τ) to the tag. Assuming perfect backscattering by the tag, the
signal is then fed via the uplink channel hℓ′k′(τ) and antenna k′ to RFID reader
ℓ′. The received signal is given as

r(t) = s(t) ∗ hℓk,ℓ′k′ (t) + ω(t) (6)

= αℓkαℓ′k′s(t− τℓk − τℓ′k′) + s(t) ∗ νℓk,ℓ′k′ (t) + ω(t),

where ω(t) is additive white Gaussian noise (AWGN) with a two-sided power
spectral density of N0/2.

3 Ranging Error Bound and Performance Gain

In [7] we derived the ranging error bound for dense multipath channels which
is the inverse of the square root of the equivalent Fisher information (EFI) for
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the delay estimation problem

R(τ) =
√
I−1

τ . (7)

The EFI for an AWGN channel (neglecting multipath) is well known [24] and
can be presented in a canonical form as

IAWGN
τ,ℓk,ℓ′k′ = 8π2β2SNRℓk,ℓ′k′ (8)

where β2 = ‖ṡτ ‖2

(4π2‖sτ ‖2 =
∫

f
f2|S(f)|2df∫
f

|S(f)|2df
is the effective (mean square) bandwidth

of the (energy-normalized) transmit pulse s(t)
F←→ S(f), sτ is the sampled

transmit pulse shifted to τ = τℓk + τℓ′k′ , ṡτ is its derivative, and SNRℓk,ℓ′k′ =
|αℓkαℓ′k′ |2

N0
‖sτ‖2Ts is the signal to noise ratio with Ts = 1/fs, fs being the sam-

pling frequency.
Adding the Gaussian DM, the EFI can be presented for a single backscatter
channel in a canonical form as [4]

Iτ,ℓk,ℓ′k′ = 8π2β2γSINRℓk,ℓ′k′ (9)

= 8π2β2S̃INRℓk,ℓ′k′ , (10)

where SINR is the signal-to-interference-plus-noise ratio (SINR) of the LOS
component, and γ is the so-called whitening gain. The product of β2, SINR, and
γ thus provides the amount of information transmitted in the LOS component
when influenced by DM and AWGN. For the derivation of (9), the inverse of the
covariance matrix of DM plus AWGN is needed as a whitening operator. The

SINR and the whitening gain γ are also combined in the effective SINR, S̃INR
which can be expressed as (see the appendix)

S̃INRℓk,ℓ′k′ =
|αℓkαℓ′k′ |2

N0
‖sτ‖2Ts

‖ṡτ‖2H
‖ṡτ‖2

sin2(φ), (11)

where ‖ · ‖2H denotes the weighted squared norm in a Hilbert space defined by
the covariance Cn/σ2

n (see the appendix), and φ is the angle between sτ and its
derivative ṡτ in this Hilbert space.

In Fig. 2 the SINR, S̃INR, and γ are shown for a monostatic setup for fully
correlated and for uncorrelated constituent channels with solid and dashed lines
respectively over a wide range of bandwidths (BW). The necessary distance
between the downlink and uplink of the backscatter channel to be (at least par-
tially) uncorrelated is characterized by the correlation distance which is defined
as the distance at which the correlation of two channel impulse responses drops
below a given value (e.g. 50 %). For uniformly distributed angle-of-arrivals the
correlation distance is in the order of the wavelength λ [25]. The SINR is bound
for high BW by the signal to noise ratio (SNR) and for low BW by the Rician
K-factor of the backscatter channel.1 For high bandwidths the effective SINR

is also bound by the SNR, while for low bandwidths the S̃INR achieves the SNR
as well. The effective SINR is in fact a measure of the pulse distortion rather
than the fading of the LOS component [7].

1For Fig. 2 the KLOS factor for the constituent channels are chosen such that the backscat-
ter channel has an overall KLOS of 1 [22].
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Figure 2: SINR, S̃INR, and whitening gain γ for a monostatic setup with
correlated (solid line) and uncorrelated (dashed line) constituent channels.
Constituent Channel Parameters: KLOS = 6.4 dB, γrise = 5 ns, γdec = 20 ns,
ELOS/N0 = 30 dB

The REB decreases linearly with the effective bandwidth in conformity with
(10). According to Fig. 2 the effective SINR increases from about 10 MHz also
with increasing bandwidth; thus the REB decreases slightly more than linearly
with the bandwidth.

The gain in SINR achieved by using two closely-spaced antennas with un-
correlated constituent channels in a monostatic setup is 3 dB for low BW and
gets 0 dB for high BW, where the whitening gain is already negligible, since the
LOS component is isolated from the DM and the channel is AWGN dominated.

The gain for S̃INR is highest in the medium BW region where the most pulse

disortion occurs and is about 2 dB. This gain for SINR and S̃INR for uncorre-
lated channels is explained by the additional power in the DM process according
to Section 2.3.

Looking at a 1-dimensional positioning scenario, e.g. positioning on a con-
veyor belt, where only ranging is needed, the EFI from (10) can be extended
for one RFID reader with K antennas as

Iτ,ℓK = 8π2β2
K∑

k=1

K∑

k′=k

S̃INRℓk,ℓk′ . (12)

This equation holds for antenna arrays which are closely spaced with respect
to the distance between the tag and the center point of the array. The second
sum in (12) only indexes K−k+1 terms, since the channel from k to k′ and the
reverse channel from k′ to k are the same (reciprocity) thus no new observation
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Figure 3: Ranging Error Bound for monostatic setup, 2-Array reader, 4-Array
reader and standard deviations for different estimators. Constituent Channel
Parameters: KLOS = 6.4 dB, γrise = 5 ns, γdec = 20 ns, ELOS/N0 = 30 dB

of the DM process is obtained.
For an antenna array with K antennas, K fully correlated and

∑K−1
k=1 k =

K(K−1)
2 uncorrelated backscatter channels are available, leading to a total ef-

fective SINR of

S̃INRtotal = KS̃INRℓk,ℓk +
K(K − 1)

2
S̃INRℓk,ℓk′

=

(
K + guncorr

K(K − 1)

2

)
S̃INRℓk,ℓk

≈ K2S̃INRℓk,ℓk,

(13)

where guncorr is the gain in S̃INR for an uncorrelated versus a correlated mea-
surement and is approximated as 2 for the final approximation.

In Fig. 3 the REB is depicted for different reader arrays. The gain due
to the twofold antenna array and 4-ary antenna array is shown by the REB.
From (12) and Fig. 3 it is clear that the REB scales slightly more than linearly
with the bandwidth. According to (13) the number of antennas also scales the
REB linearly. However, the gain for using uncorrelated constituent channels is
smaller than 2, thus the gain for using additional antennas is smaller than for
increasing the bandwidth.

By simulating a ranging scenario with one RFID reader with K antennas
the REB can be evaluated. For the following simulations, a double exponential
PDP is used to model the NLOS contributions by the DM process [19]. For
ranging two different estimators are used, a classical matched filter (MF) and a
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maximum likelihood (ML) estimator. The accuracy gain due to the whitening
operation used for the ML estimator is especially noticeable for BW between 50
and 500 MHz. The better performance of the MF estimator at low BW can be
explained by the fact, that the complete DM interferes with the LOS, thus the
MF uses the power in the DM also for ranging. The ML estimator, in contrast,
will suppress the DM process due to the whitening filter.

The accuracy gain for the K-ary array is also shown by the standard devi-
ations of the estimator errors. Furthermore, a detection gain can be identified
when inspecting the curves for the ML estimator for SISO and MIMO pro-
cessing. The ML estimator achieves the REB at lower bandwidths since the
detection of the LOS is enhanced, similarily as the bit error rate is decreased
for MIMO processing in communication systems. While the detection gain is
impressive at bandwidth below 10 MHz the limit for useable indoor positioning,
assuming a ranging accuracy in the submeter range, is roughly in the range from
20 to 100 MHz.

4 Positioning Error Bound and Performance Gain

The position error bound (PEB) is the square root of the trace of the inverse
EFI matrix (EFIM) on the position estimation error

P{p} =

√
tr{III−1

p } ≤
√

E {‖p− p̂‖2} (14)

and can be computed from the EFI for the delay estimation with the chain rule
as [4, 5]

IIIp =

L∑

ℓ=1

K∑

k=1

K∑

k′=k

Iτ,ℓk,ℓk′hℓk,ℓk′hT
ℓk,ℓk′

+

L−1∑

ℓ=1

L∑

ℓ′=ℓ+1

K∑

k=1

K∑

k′=1

Iτ,ℓk,ℓ′k′hℓk,ℓ′k′hT
ℓk,ℓ′k′ ,

(15)

where the first term accounts for the monostatic channels between an RFID
reader with itself, and the second term relates to the bistatic channels between
two different readers leading to a multistatic scenario (cf. Fig. 1). The geometry
of the setup is expressed by hℓk,ℓ′k′ as (cf. [4, 5, 12])

h
(m)
ℓk,ℓ′k′ =

1

c
(e

(m)
ℓk + e

(m)
ℓ′k′ ), (16)

where we included the index of the tag for completeness and e
(m)
ℓk is a unit

vector in the direction between the m-th tag and the k-th antenna of the ℓ-
th reader. Using the approximation that for closely spaced antennas the unit

vector e
(m)
ℓk ≈ e

(m)
ℓk′ ,∀k, k′ and introducing hℓ,ℓ′ for h

(m)
ℓk,ℓ′k′ , (15) can be written

with (13) as

IIIp ≈ 8π2β2K2
L∑

ℓ=1

S̃INRℓ,ℓhℓ,ℓh
T
ℓ,ℓ

+ 8π2β2K2
L−1∑

ℓ=1

L∑

ℓ′=ℓ+1

S̃INRℓ,ℓ′hℓ,ℓ′hT
ℓ,ℓ′ .

(17)
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Figure 4: 2-fold standard deviation ellipses for a bandwidth of 50 MHz and
different MIMO constellations. Constituent Channel Parameters: distance de-
pendent KLOS [22], γrise = 5 ns, γdec = 20 ns, ELOS/N0 = 30 dB

By increasing the number of antennas per reader, the EFIM for the position
error scales with the square of the number of antennas K in both the mono-
static directions and the bistatic directions. Thus the PEB decreases linearly

with respect to the number of antennas in the directions defined by h
(m)
ℓ,ℓ and

h
(m)
ℓ,ℓ′ . Furthermore, by increasing the number of readers, the gain in monostatic

directions is achieved L-times, while the gain in bistatic directions is applied
L(L−1)

2 -times.

In Fig. 4 the 2-fold standard deviation ellipses are depicted for different tag
positions in a half plane. These ellipses can be computed from the inverse of
the position EFIM IIIp. One RFID reader is positioned at [0 0]T and another
reader at [5 0]T. These readers are either equipped with one or two TRX, de-
pendening on the scenario. The first two scenarios (2x1TRX monostatic only,
and 2x1TRX mono- and bistatic) use one TRX, while the latter two scenarios
(2x2TRX monostatic only, and 2x2TRX mono- and bistatic) use two TRX at
each reader. For the first and third scenario, no time synchronisation is needed
between the RFID readers, since only backscatter channels are used that origi-
nate and end at the same reader.

Within these scenarios, the influence of the geometry is clearly visible. Ac-
cording to (16) monostatic measurements (Scenarios 1 and 3) add informa-
tion only in the radial directions, corresponding to circles around the readers.
Bistatic measurements (between two different readers) add information mainly
in the orthogonal axis, which corresponds to the normal direction of an ellipse
with the two readers in its foci. In Fig. 4 this directional information gain is
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well visible since the ellipses for the mono- and bistatic scenarios are tangent to
the monostatic scenarios in one direction, while an information gain is seen for
the orthogonal direction.

By comparing the ellipses for Scenarios 1 and 2 with the Scenarios 3 and 4,
respectively, the accuracy gain for additional antennas can be seen. The ellipses
for Scenarios 3 and 4 have the same orientations as for Scenarios 1 and 2, and
are K-times smaller.

To evaluate the overall potential positioning performance in the half plane,
the PEB is displayed in Fig. 5 for a 10 cm spacing over the half plane. The
gain by adding an additional antenna is about a factor of two like described by
(17).

5 Conclusions and Outlook

The MIMO gain and bandwidth scaling have been analyzed for RFID posi-
tioning in dense multipath scenarios. The error standard deviation for addi-
tional antennas scales roughly linearly with respect to a single monostatic link.
Increasing the bandwidth scales the standard deviation of each measurement
slightly more than linearly, leading to a higher gain. Furthermore, additional
antennas also show a detection gain enabling the usage of lower bandwidths.
The next steps are to validate these findings by measurements and develop
algorithms which are able to employ the theoretical findings.
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A Fisher Information for Delay Estimation

The EFI is defined as the second moment of the partial derivative of the log-
likelihood function [24]. By sampling the received signal in (6) the likelihood
function conditioned on the parameter vector ψ = [τ,ℜα,ℑα] is defined as

f(r|ψ) ∝ exp
{
−(r− sτα)HC−1

n (r− sτα)
}

(A.1)

where the covariance matrix of DM and AWGN is

Cn = σ2
nIN + Cc = σ2

nIN + S̄HSν,ℓk,ℓ′k′ S̄, (A.2)

where S̄ = [s0, · · · , sN−1]
T ∈ RN×N is the full signal matrix with

si =
[
s((−i)Ts), . . . , s((N − 1 − i)Ts)

]T

[4]. The elements of the covariance

matrix are

[S̄HSνℓk,ℓ′k′ S̄]n,m =

N−1∑

i=0

TsSνℓk,ℓ′k′ (iTs)× s((n− i)Ts)s((m− i)Ts). (A.3)

The derivation of the FIM under non-stationary, non-white Gaussian noise,
involves a whitening operation that is defined by the inverse of the covariance
matrix. By utilizing an eigenvector decomposition for the covariance matrix, we
introduce the Fourier weighted inner product in a Hilbert space defined [7] by

〈x,y〉H
σ2

n

= yHC−1
n x

= yHU(Λ + σ2
nIN )−1UHx

=
1

σ2
n

N−1∑

i=0

yHuiu
H
i x

λi/σ2
n + 1

(A.4)

to completely define the FIM. This yields the SINR of the LOS component as

SINRℓkℓ′k′ =
|αℓkαℓ′k′ |2

N0
‖sτ‖2HTs sin2(φ), (A.5)

where ‖ · ‖2H denotes the squared norm in the Hilbert space, and φ is the angle
between sτ and its derivative ṡτ in this Hilbert space. It can cleary be seen,
that the SINR is directly influenced by the power of the DM which is reflected
in the eigenvalues λi in the whitening operation. The whitening gain is

γ =
‖ṡτ‖2H‖sτ‖2
‖ṡτ‖2‖sτ‖2H

, (A.6)

and the effective SINR is

S̃INRℓkℓ′k′ =
|αℓkαℓ′k′ |2

N0
‖sτ‖2Ts

‖ṡτ‖2H
‖ṡτ‖2

sin2(φ). (A.7)

104



References

[1] G. Li, D. Arnitz, R. Ebelt, U. Muehlmann, K. Witrisal, and M. Vossiek,
“Bandwidth dependence of CW ranging to UHF RFID tags in severe multi-
path environments,” in 2011 IEEE Int. Conf. RFID, Apr. 2011, pp. 19–25.

[2] D. Dardari, A. Conti, U. Ferner, A. Giorgetti, and M. Z. Win, “Ranging
with ultrawide bandwidth signals in multipath environments,” Proc. IEEE,
vol. 97, no. 2, pp. 404–426, Feb. 2009.

[3] H. Arthaber, T. Faseth, and F. Galler, “Spread-spectrum based ranging of
passive UHF EPC RFID tags,” IEEE Commun. Lett., vol. 19, no. 10, pp.
1734–1737, Oct. 2015.

[4] E. Leitinger, P. Meissner, C. Rudisser, G. Dumphart, and K. Witrisal,
“Evaluation of position-related information in multipath components for
indoor positioning,” IEEE J. Sel. Areas Commun., vol. 33, no. 11, pp.
2313–2328, Nov. 2015.

[5] Y. Shen and M. Z. Win, “Fundamental limits of wideband localization-
part I: A general framework,” IEEE Trans. Inf. Theory, vol. 56, no. 10, pp.
4956–4980, Oct. 2010.

[6] A. Richter and R. S. Thoma, “Joint maximum likelihood estimation of
specular paths and distributed diffuse scattering,” in IEEE Vehicular Tech-
nology Conf., VTC 2005-Spring, 2005.

[7] K. Witrisal, E. Leitinger, S. Hinteregger, and P. Meissner, “Bandwidth
scaling and diversity gain for ranging and positioning in dense multipath
channels,” IEEE Wireless Commun. Lett., vol. 5, no. 4, pp. 396–399, Aug.
2016.

[8] M. A. Ingram, M. F. Demirkol, and D. Kim, “Transmit diversity and spatial
multiplexing for RF links using modulated backscatter,” in Proceedings of
the Int. Symp. on Signals, Systems and Electron., Tokyo, Jul. 2001.

[9] J. D. Griffin and G. D. Durgin, “Gains for RF tags using multiple an-
tennas,” IEEE Trans. Antennas Propag., vol. 56, no. 2, pp. 563–570, Feb.
2008.

[10] ——, “Multipath fading measurements for multi-antenna backscatter RFID
at 5.8 GHz,” in 2009 IEEE Int. Conf. RFID, Apr. 2009, pp. 322–329.

[11] C. He, X. Chen, Z. J. Wang, and W. Su, “On the performance of MIMO
RFID backscattering channels,” EURASIP Journal on Wireless Commun.
and Networking, vol. 2012, no. 1, p. 1–15, 2012.

[12] H. Godrich, A. M. Haimovich, and R. S. Blum, “Target localization accu-
racy gain in MIMO radar-based systems,” IEEE Trans. Inf. Theory, vol. 56,
no. 6, pp. 2783–2803, Jun. 2010.

[13] D. Dardari, R. D’Errico, C. Roblin, A. Sibille, and M. Z. Win, “Ultrawide
bandwidth RFID: The next generation?” Proc. IEEE, vol. 98, no. 9, pp.
1570–1582, Sep. 2010.

105



[14] D. Arnitz, U. Muehlmann, and K. Witrisal, “UWB ranging in passive UHF
RFID: Proof of concept,” Electron. Lett., vol. 46, no. 20, pp. 1401–1402,
Sep. 2010.

[15] K. Witrisal and P. Meissner, “Performance bounds for multipath-assisted
indoor navigation and tracking (MINT),” in IEEE Int. Conf. Commun.
(ICC), 2012.

[16] P. Bello, “Characterization of randomly time-variant linear channels,”
IEEE Trans. Commun. Sys., vol. 11, no. 4, pp. 360 –393, Dec. 1963.

[17] A. F. Molisch, Wireless Communications. Wiley-IEEE Press, 2005.

[18] ——, “Ultra-wide-band propagation channels,” Proc. IEEE, vol. 97, no. 2,
pp. 353–371, Feb. 2009.

[19] J. Karedal, S. Wyne, P. Almers, F. Tufvesson, and A. F. Molisch, “A
measurement-based statistical model for industrial ultra-wideband chan-
nels,” IEEE Trans. Wireless Commun., vol. 6, no. 8, pp. 3028–3037, Aug.
2007.

[20] P. V. Nikitin and K. V. S. Rao, “Theory and measurement of backscattering
from RFID tags,” IEEE Antennas Propag. Mag., vol. 48, no. 6, pp. 212–
218, Dec. 2006.

[21] D. Arnitz, U. Muehlmann, and K. Witrisal, “Tag-based sensing and posi-
tioning in passive UHF RFID: Tag reflection,” in 3rd Int EURASIP work-
shop on RFID Technology, 2010.

[22] ——, “Wideband characterization of backscatter channels: Derivations and
theoretical background,” IEEE Trans. Antennas Propag., vol. 60, no. 1, pp.
257–266, Jan. 2012.

[23] E. Leitinger, P. Meissner, M. Frohle, and K. Witrisal, “Performance bounds
for multipath-assisted indoor localization on backscatter channels,” in 2014
IEEE Radar Conf., May 2014, pp. 0070–0075.

[24] S. Kay, Fundamentals of Statistical Signal Processing: Estimation Theory.
Upper Saddle River, NJ, USA: Prentice Hall Signal Processing Series, 1993.

[25] D. Arnitz, U. Muehlmann, and K. Witrisal, “Characterization and mod-
eling of UHF RFID channels for ranging and localization,” IEEE Trans.
Antennas Propag., vol. 60, no. 5, pp. 2491–2501, May 2012.

106



Range Estimation and Performance
Limits for UHF-RFID Backscatter

Channels

Stefan Grebien, Josef Kulmer, Florian Galler, Michael Goller,
Erik Leitinger, Holger Arthaber, and Klaus Witrisal

published at IEEE Journal of Radio Frequency Identification

pp. 39-50, vol. 1, 2017

Abstract

The accuracy of time-of-flight based ranging over UHF RFID backscat-
ter channels is fundamentally limited by the available bandwidth and
highly dependent on the channel characteristics. Comprehensive wide-
band channel measurements are presented and analyzed with respect
to parameters which influence the potential ranging performance. The
Cramér Rao lower bound on time-of-flight based ranging is evaluated and
we study the influence of dense multipath on the bound. Based on a
line-of-sight (LOS) plus dense multipath (DM) radio channel model, a
multiple-input multiple-output (MIMO) ranging algorithm is developed,
capable of iteratively estimating the LOS parameters and the statistics
of the DM. The accuracy of the developed algorithm is compared to the
performance bound. The results highlight the tradeoff between a higher
bandwidth and spatial diversity for UHF RFID systems with respect to
time-of-flight based ranging. In a 2 × 2 MIMO setup, an accuracy of about
0.5 m is achieved at a bandwidth of 50 MHz.
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1 Introduction

Accurate and robust ranging with ultra-high frequency (UHF) radio frequency
identification (RFID) tags is a key-enabler for a variety of applications in produc-
tion, supply chain management, and retail. Many of these require a sub-meter
accuracy which is still an unsolved challenge. For time-of-flight (ToF) based
ranging systems, the available bandwidth imposes a fundamental limit on the
achievable accuracy.

A thorough characterization of the UHF-RFID channel is needed for de-
veloping robust ranging algorithms. For narrowband signals, the backscatter
channel has been well analyzed with respect to fading statistics [1]. Several
measurement campaigns [1–5] have studied the individual (i.e. up- and down-
link) channels in both the narrowband and wideband regimes, but only some
analyses have been performed of wideband parameters like the Rician K-factor
for the line-of-sight (LOS) component or the root-mean-square (RMS) delay
spread for the backscatter channel [2].

The application driven requirement of sub-meter ranging leads to a clear
trend towards larger bandwidth systems in the UHF-RFID technology [6–8].
Ranging methods are heavily influenced by the wideband statistics of the backscat-
ter channel. The achievable ranging performance has been analyzed for different
scenarios. E.g., in ultra-wideband settings the Cramér Rao lower bound and
the Ziv-Zakai bound have been derived [9,10]. The Cramér Rao lower bound in
dense multipath (DM) channels has been studied in [11] for ToF-based ranging,
and in [8] for a wideband UHF-RFID scenario.

To exploit the utmost ranging information from channel measurements, high
accuracy channel estimators are necessary. Maximum likelihood estimators for
superimposed signals are typically iterative algorithms, e.g., the expectation
maximization (EM) algorithm [12] which evolved into space alternating EM
schemes [13]. These algorithms assume separable superimposed signals in addi-
tive white Gaussian noise (AWGN). Measurements showed [4, 14, 15] that due
to overlapping of the signals and a restricted measurement aperture an addi-
tional interference term, so-called DM, needs to be introduced in the channel
model. This means that a high-performance channel estimator should consider
this impairment [14].

Taking into account the requirements and the current state of the research,
the main contributions of this paper are:1

• we develop a multiple-input multiple-output (MIMO) channel estimator ca-
pable of estimating the LOS parameters (delay, angle-of-departure, angle-of-
arrival) and the statistics of the DM by utilizing a delay-sum beamformer,
and

• we analyze measurements from two scenarios, apply the developed algorithm
and analyze the ranging error bound for backscatter channels under DM, in
single-input single-output (SISO) and MIMO setups.

1Parts of this journal paper have been presented at the IEEE RFID conference 2017 [16].
In Section 2 we adapted the channel model to be able to cope with the development of the
MIMO range estimator, which is found in Section 3.2, and the ranging error bound for the
MIMO setup in Section 3.3.2. Finally, we added simulation results in Section 6.1 and applied
the developed algorithm to the measured data in Section 6.2.2.
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The paper is organized as follows: Section 2 defines the problem and intro-
duces the channel model. Section 3 develops range estimators for the SISO and
MIMO setup and presents their Cramér Rao lower bounds. Section 4 describes
the measurement setup and Section 5 analyzes the measured data. In Section 6
the algorithms are validated with simulated and measured data and Section 7
concludes the paper.

2 Problem Formulation

We investigate the backscatter channel consisting of a downlink channel from
RFID reader ` to an RFID tag and an uplink from the tag to the RFID reader
`′.2 Both RFID readers ` and `′ are equipped with K and K ′ closely spaced
antennas respectively. Antennas with index k are assigned to reader ` located
at p`k and antennas with index k′ belong to `′ at p`′k′ . The tag is located at
unknown position p.

Each of the RFID reader antennas can be used to transmit and/or receive
a wideband signal [6, 8]. The aim is to find the overall propagation delay of
the backscatter channel between the transmitting RFID reader via the tag to
the receiving RFID reader. Depending on the number of antennas used at the
transmitting and receiving RFID reader, a SISO, a SIMO or a MIMO system
can be analyzed.

2.1 Channel Model

The backscatter channel model between downlink antenna k and uplink antenna
k′ is modeled by a LOS plus DM model [2, 11]

hkk′(τ) = αkk′δ(τ − τkk′) + νkk′(τ), (1)

where δ(τ) is the Dirac pulse, and the LOS is characterized by its complex-
valued amplitude αkk′ and delay τkk′ . The LOS delay of the backscatter channel
is equivalent to the Euclidean distance between the positions of the downlink
antenna, the tag and the uplink antenna scaled by the speed of light c, such
that τkk′ = (‖p`k − p‖+ ‖p− p`′k′‖)/c.

The term νkk′(τ) in (1) models the DM consisting of all occurring mul-
tipath components (MPC), including reflections at flat surfaces and scatter-
ing at small objects. This DM is modeled as a zero-mean complex Gaussian
random process, assuming uncorrelated scattering (US) along the delay axis
τ [17]. Thus, the auto-correlation function of the DM is E{νkk′(τ)[νkk′(u)]∗} =
Sν,kk′(τ−τkk′)δ(τ−u) with Sν,kk′(τ) as the power-delay-profile (PDP) of the DM
which is zero for τ < 0. This means, that some information about the LOS de-
lay is encoded in the PDP of the DM. In this work we use a double exponential
PDP [4] which includes five parameters Γ = [τDM, PDM, γfall, γrise, χ]T , where
τDM is the onset of the DM, PDM describes the overall power of the DM, γrise,
γfall, and χ are shape parameters of the DM.3 We also assume quasi-stationarity
in the spatial domain, meaning that for one reader / tag configuration, the PDP
does not change noticeably in the vicinity of the tag [17]. The signal model does

2This can describe either a monostatic setup (` = `′) or a bistatic setup (` 6= `′).
3It is straightforward to use different PDPs, e.g. an exponential PDP, since only the

parameter vector Γ has to be adjusted.
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not include more than one tag. This does not limit the system operation to one
tag, but rather implies the usage of multiple access schemes [6, 7] to separate
multiple tags.

2.2 Received Signal

The received signal rkk′(t)
4 at any antenna k′ stemming from antenna k results

as convolution of the transmitted baseband signal s(t) and the overall backscat-
ter channel described in (1) as

rkk′(t) =αkk′s(t− τkk′) exp {−j (2πfcτkk′ + ϕ0)}+ (s ∗ νkk′)(t) + ω(t), (2)

where ϕ0 is an unknown initial phase and ω(t) is AWGN with a two-sided power
spectral density of N0/2.

3 Range Estimation

Depending on the number of used antennas at the transmitting and receiving
reader, different estimators are developed in the following section.

3.1 Single-Input Single-Output

The range measurement obtained between a transmit reader antenna, the tag,
and a receive reader antenna is given by dSISO = cτkk′ , determining the unknown
tag position p as a point on an ellipse. By sampling the received signal with
fs = 1/Ts, with Ts as sampling period, (2) can be written for the SISO model
in vector notation as

rkk′ = αkk′sτkk′ + nc,kk′ + ωkk′ (3)

where sτkk′ = [s(−τkk′), s(Ts − τkk′), ... , s((N − 1)Ts − τkk′)]T e−j(2πfcτkk′+ϕ0),
nc,kk′ = [(s∗νkk′)(0), (s∗νkk′)(Ts), ... , (s∗νkk′)((N−1)Ts)]

T , and rkk′ and ωkk′
are sampled versions of the received signal and the AWGN as vectors ∈ CN×1.

Given the deterministic unknown parameter vector θSISO = [τkk′ , αkk′ ]
T ,

the likelihood function is given as

f(rkk′ |θSISO) ∝ exp
{

(rkk′ − αkk′sτkk′ )HC−1kk′(rkk′ − αkk′sτkk′ )
}
, (4)

where Ckk′ = SHSν,kk′S + N0

Ts
I ∈ RN×N is the covariance matrix with S =

[s0, ... , s(N−1)Ts
]T and Sν,kk′ = diag{Sν,kk′(iTs) · Ts} is a diagonal matrix con-

taining the PDP.
To estimate the distance dSISO, we apply: (i) a maximum likelihood (ML)

estimator, and (ii) a näıve matched filter (MF) estimator. The ML estimator
accounts for the influence of the DM expressed by the covariance matrix and
thus requires the PDP of the DM and N0 to be known.

4This model assumes perfect (frequency independent) backscattering of the tag over the
whole bandwidth. This certainly does not hold when considering ‘wideband’ signals, but the
smaller the bandwidth gets, the less frequency dependent the radar cross section of a tag
gets [18]. It would be possible to include the frequency dependent behavior in the baseband
pulse s(t) [19], but in this work we want to focus on the influence of the channels, and thus
neglect this effect.
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3.1.1 ML estimator

The ML estimator for the delay estimation problem is found by maximizing the
likelihood function (4) with respect to the parameter τkk′ .

d̂SISO,ML = c · argmax
τkk′

{f(rkk′ |θSISO)}. (5)

The nuisance parameter αkk′ has to be estimated jointly with τkk′ [20], which
can be written as

α̂kk′(τkk′) =
rHkk′C

−1
kk′sτkk′

sHτkk′C
−1
kk′sτkk′

. (6)

3.1.2 MF estimator

The MF estimator simply correlates the received signal with the transmit pulse
and searches for the maximum, i.e.

d̂SISO,MF = c · argmax
τkk′

{rHkk′sτkk′}. (7)

This estimator (d̂SISO,MF) would be optimal for a signal model without the
DM [20, p. 192].

3.2 Multiple-Input Multiple-Output

To overcome the shortcoming of the SISO range estimation, namely the need to
know the statistics of the DM plus AWGN, a SIMO or MIMO setup is necessary
which enables the joint estimation of the LOS parameters and the parameters
of the DM.5

The received signal in a MIMO setup is found by stacking the individual
received signals between an RFID reader via the tag to an RFID reader. The
received signal r reads

r = αs + nc + ω ∈ CNKK
′×1, (8)

where r = [rT11, ..., r
T
KK′ ]

T , s = [sT11, ..., s
T
KK′ ]

T , nc = [nTc,11, ...,n
T
c,KK′ ]

T , and

ω = [ωT11, ...,ω
T
KK′ ]

T . We assume that the transmitting and receiving antennas
are spaced closely enough such that the amplitude α = αkk′∀k, k′ is the same
over all individual backscatter channels.

To reduce the K × K ′ large search space for the individual delays τkk′ ,
they are re-written as a sum of three terms: (i) a delay from the center of
the transmitting array p` via the tag to the center of the receiving array p`′ ,
τ``′ = 1

c (||p − p`||2 + ||p − p`′ ||2) = 1
cdMIMO, (ii) an additional delay ∆τ`k =

− 1
c (∆px`k cos(ϕAoD) + ∆py`k sin(ϕAoD)) as a function of the angle-of-departure

ϕAoD and the known antenna position offsets ∆p`k given by the transmitter
array geometry, and (iii) an additional delay ∆τ`′k′ = − 1

c (∆px`′k′ cos(ϕAoA) +
∆py`′k′ sin(ϕAoA)) as a function of the angle-of-arrival ϕAoA and the known

5In the following the MIMO estimator is developed which can be applied straightforwardly
to a SIMO setup by neglecting the angle-of-departure that cannot be estimated by an RFID
SIMO setup.
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antenna position offsets ∆p`′k′ given by the receiver array geometry.6 The
parameters of the LOS are combined into the vector ψ = [τ``′ , ϕAoD, ϕAoA]T

The according likelihood function for the received signal, given the unknown
deterministic parameter vector θMIMO = [ψ, α,η]T , is

f(r|θMIMO) =
1

πNKK |C(η)| exp
{

(r− αs(ψ))
H

C(η)−1 (r− αs(ψ))
}
, (9)

where we have introduced s(ψ) to show the dependence of the delay, and the two
angles explicitly.7 As for the amplitudes, we assume that the statistics of the DM
process do not change for one reader / tag configuration, thus Ckk′(η) ≈ C̃(η),
with η = [N0,Γ]T as the parameters describing the AWGN and the parameters
of the DM process. The overall covariance matrix can now be written as a
diagonal block matrix C(η) = diag(C̃(η), ..., C̃(η)).8

The direct maximization of the likelihood function (9) to derive an ML
estimator for θMIMO is difficult, since a maximization with respect to eleven
parameters9 would be necessary. To split the search space into smaller search
spaces, a structured mean field variational approach is used which approximates
the posterior of the parameters as

f(θMIMO|r) ≈ q(ψ)q(α)q(η) = q(θMIMO), (10)

where we assumed that the DM process, the parameters of the LOS component,
and the complex amplitudes are independent. As no prior information of the
parameters is available, a uniform prior is used for the parameters, meaning
that the parameter posterior is proportional to the likelihood. To find a close
approximation for the parameter posterior we chose to minimize the Kullback-
Leibler divergence from the parameter posterior f(θMIMO|r) towards q(θMIMO).
This can be accomplished [21] by maximizing the variational lower bound of q
towards the joint probability density function f(θMIMO, r)

L(q) =

∫
q(θMIMO) log

f(θMIMO, r)

q(θMIMO)
dθMIMO. (11)

By evaluating the variational lower bound for the individual subsets of param-
eters while keeping the other parameters fixed, using a point estimate for the
parameters q(ψ) = δ(ψ− ψ̂), an iterative local maximization of the variational
lower bound can be found. In the appendix, the derivation of the maximiza-
tion problems can be found for the different subsets. At each iteration step we
update the LOS parameters delay, the angle-of-arrival (AoA), and the angle-of-
departure (AoD) using the log likelihood in (9) conditioned on the LOS ampli-
tude and covariance from the previous iteration

ψ̂
new

= argmax
ψ̂

{
−
(
r− α̂olds(ψ̂)

)H
C(η̂old)−1

(
r− α̂olds(ψ̂)

)}
, (12)

6For (ii) and (iii) it is assumed that the distance between the tag and the transmit-
ter/receiver array is large with respect to the array spacing.

7We could have modeled the parameter vector ψ also as a function of the unknown tag
position p, but as we are interested in ranging we estimate the delay τ``′ directly.

8This diagonal block matrix assumes, that the DM at different antenna elements are uncor-
related. In Section 5 the spaced-distance-correlation-function for the DM is analyzed, which
expresses these correlations.

9For the direct search, the real and imaginary part of the amplitude have to be searched
for separately
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Algorithm 1: Summary of the proposed algorithm.

Initialization:

• perform grid search for ψ̂ = argmaxψ
{
rHs(ψ)

}

• estimate N̂0 according to (27) and initialize η̂ = [N̂0/2, Γ̂]T (cf.
Footnote 11) and α̂ acc. to (13)

Iterations:
do

update ψ̂ according to (12)
update α̂ according to (13)
update η̂ according to (14)

while not converged ;

followed by updating the LOS amplitude and the noise statistic parameters10

α̂new =
rHC(η̂old)−1s(ψ̂

new
)

s(ψ̂
new

)HC(η̂old)−1s(ψ̂
new

)
, (13)

η̂new = argmax
η̂

{− log {|C(η̂)|} (14)

−
(
r− α̂news(ψ̂

new
)
)H

C(η̂)−1
(
r− α̂news(ψ̂

new
)
)}

.

Due to the sequential nature of the algorithm it needs initial values for all
parameters. These can be found for the LOS parameters by a grid search for the
delay (spacing of Ts), the AoA and AoD (spaced by 5◦) with a matched filter
delay-sum beamformer, for the AWGN parameters by estimating N̂0 according
to (27) and using standard values for the DM parameters.11 A summary of the
algorithm is presented in Algorithm 1.

3.3 Ranging Error Bound R(τ)
3.3.1 REB for SISO processing

The Cramér Rao lower bound for the delay estimation problem for DM channels
[11], called ranging error bound (REB), is given by the inverse of the square root
of the equivalent Fisher information (EFI),

R(τkk′) =
√
I−1τkk′ . (15)

10As we are interested most in the LOS parameters we update these parameters first. De-
pending on the order of the update, the algorithm will sometimes converge to a different local
maxima [21].

11As the DM can only start after the LOS arrived at the receiver, we set τDM,init = τ̂`,`′ , we
assume that the power in the DM is approximately half the overall noise power, use standard
values [4] for γrise = 20 ns and γfall = 8 ns and initialize the shape parameter χ randomly in
the interval (0, 1).
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For a backscatter channel the EFI is

Iτkk′=8π2β2S̃INRkk′+tr

{
C−1kk′

∂Ckk′

∂τ
C−1kk′

∂Ckk′

∂τ

}
, (16)

≈8π2β2S̃INRkk′ (17)

where β2 = ‖ṡτkk′‖/(4π2‖sτkk′‖) is the effective (mean-square) bandwidth of
the transmit pulse, ṡτkk′ is the derivative of s(t − τkk′) with respect to t, and

S̃INRkk′ is the effective signal-to-interference-plus-noise-ratio (SINR) [8]. The
second term in (16) describes the additional delay information in the DM, as
the onset of the DM coincides with the LOS delay.12

In particular, the effective SINR describes the useful ranging information of
the LOS component when influenced by DM and AWGN and can be factored
into three parameters [11]:

(i) the signal-to-interference-plus-noise-ratio SINRkk′ = |αkk′ |2sHτkk′C
−1
kk′sτkk′

which quantifies the signal-to-noise-ratio (SNR) after the square root of
the covariance matrix has been applied as whitening filter,

(ii) the whitening gain γkk′ =
ṡHτ
kk′

C−1

kk′ ṡτkk′

sHτ
kk′

C−1

kk′sτkk′

1
4π2β2 which quantifies the band-

width gain due to the knowledge of the PDP,

(iii) and sin2(ϕkk′) which is an information loss due to the estimation of the
nuisance parameter αkk′ .

13

3.3.2 REB for MIMO processing

In [8] we have shown that the EFI is additive for individual measurements if the
statistics of the DM are known and the antenna elements within one array are
closely spaced, leading to

Iτ``′ =
K∑

k=1

K′∑

k′=1

Iτkk′ , and (18)

Iτ`` =
K∑

k=1

K∑

k′=k

Iτkk′ (19)

for a bistatic (18) and a monostatic (19) setup respectively. For the algorithm
developed in Section 3.2 this EFI is overrated, as the estimation process of the
AoA, the AoD and the DM parameters are not accounted for in the derivation of
(16) and (17). The estimation of additional parameters shows to be subtractive
with respect to the EFI [20]. Thus, the REB computed from (18) or (19) is
certainly a lower bound for Algorithm 1. While (19) and (18) are developed for
non-coherent processing of the measurements, it is discussed in [11] that for the

12In (10) we assumed independence among τkk′ and τDM yielding the compact algorithm in
(12) and (14). This assumptions affects the information contained in τkk′ and subsequently
the potential performance of the estimator.

13ϕkk′ describes the angle between the whitened pulse and the whitened pulse derivative in
a vector space. For common pulses and an AWGN model, ϕkk′ = 90◦. Due to the whitening
this angle gets smaller than 90◦.
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assumption of a uniformly distributed PDP in angular domain they also hold
for coherent processing. Eq. (18) or (19) can be interpreted as the REB for a
MIMO setup with knowledge of the PDP as well as the AoD and AoA.

In Section 6 we compare the performance of the derived ranging algorithms
with the theoretical lower bound, obtained from the signal model, for both SISO
and MIMO processing. Furthermore, we evaluate the impact of the estimated
PDP, AoD and AoA on the REB for MIMO processing. Next, the measurement
scenarios are described and basic channel parameters are analyzed.

4 Measurement Setup

The measurement data used in this work are obtained from a series of wideband
measurements using an m-sequence channel sounder by Ilmsens [22], operating
in the frequency range (−10 dB cut-off) from 0.1 to 3.2 GHz. It has one transmit-
ting (TX) and two receiving channels (RX), a sampling frequency of 6.95 GHz,
thus a resolution of 4.31 cm. It uses a sequence length of 4095 chips and thus a
maximum delay of 589.2 ns or 176.6 m. To measure up to four antennas per RX
channel we use two RF switching matrices [23]. The cross-talk and the system-
response of the measurement equipment are removed up to the antenna ports
by a match-through calibration. This setup provides the flexibility to study
different configurations, including SISO as well as MIMO setups.

A tapered slot antenna (also called Vivaldi antenna) with a 3 dB mainlobe
width of approximately 90 ◦ is used as reader antenna. Its wideband gain pattern
is not completely independent of frequency but shows good properties in the
frequency range from 0.75 to 1.5 GHz. The tag antenna is an elliptic dipole-like
structure with an omnidirectional gain pattern similar to RFID tags. Again,
the wideband pattern shows good properties in the same frequency range as the
reader antennas.

A positioning table is used to accurately position the RFID tag in an auto-
mated way to obtain a large number of measurements with different tag posi-
tions. The positioning table spans a 0.68× 0.64 m grid with a spacing of 4 cm.
For the individual measurement runs, the positioning table can be placed at
different locations in the room in order to evaluate the desired coverage.

Measurement data have been acquired in two different scenarios: Scenario A
is a standard laboratory hall at TU Wien that was chosen in order to evaluate
a typical indoor lab / office environment. Scenario B is an industrial hall with
a significant amount of metal fixtures. Both scenarios are described in more
detail in the following sections.

4.1 Scenario A

In Fig. 1a and Fig. 2a the floorplan and a picture of the measurement scenario
in the laboratory are depicted, respectively. The positioning table with the tag
antenna is placed at two positions in the room (T1 & T2), while the reader
antennas are set up as two linear arrays with antenna positions at p1 to p4 &
p5 to p8. The back of the room holds a cabinet with laboratory equipment,
while the other side of the room is occupied by a metal cabinet. Furthermore,
the lab holds a set of aluminum profiles for linear axis movements that is placed
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Figure 1: Floorplans of the two measurement scenarios. At each table position,
306 measurements are obtained with a spacing of 4 cm on a 17 × 18 grid. The
cyan arrows depict the point of view of the photographs in Fig. 2.
(a) Scenario A: Laboratory at TU Wien with some furniture and a linear axis.
Eight closely-spaced Vivaldi antennas arranged as two arrays (p1 to p4 & p5 to
p8) and two different table positions (T1 & T2).
(b) Scenario B: Industrial setup with a conveyor belt, aluminum profiles, and
many scatterers. Four closely-spaced Vivaldi antennas arranged as two arrays
(p1 and p2 & p3 and p4) and three different table positions (T1, T2 & T3).
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Figure 2: Pictures of the two measurement scenarios: (a) Scenario A, (b) Sce-
nario B. The point of view with respect to the floorplan is shown with a cyan
arrow in Fig. 1.

directly behind the antennas. All antennas are set up at a constant height of
1.3 m.

4.2 Scenario B

The second measurement campaign (see floorplan in Fig. 1b and picture in
Fig. 2b) has been performed in an industrial hall with metal fixtures and a
conveyor belt setup as typically found in manufacturing and logistics. The hall
is approximately 18 by 12 m large and the facilities are used to analyze and
study logistic processes and systems, e.g., for consignment / picking of goods.
The positioning table is placed at three partly overlapping positions (T1, T2,
T3) in three consecutive measurement runs and two readers, each having two
antennas (at p1, p2 & p3, p4), are emulated. All antennas are set up at a
constant height of 1.3 m.

4.3 Pre-Processing

The measurement setup in the two described scenarios includes a data process-
ing pipeline comprising the following steps: First, the cross-talk and system-
response are removed for calibration of the downlink and the uplink chan-
nel measurements. These measurements are subsequently convolved with each
other to get the calibrated measurements of the backscatter channel [2]. Next,
this backscatter signal is converted to baseband using a center frequency of
fc = 900 MHz. Finally, the bandwidth is reduced by convolution with a root-
raised-cosine pulse s(t) with a pulse duration of Tp = 1 ns and roll-off-factor of
0.6. The result of this pre-processing is called channel response (CR) gkk′ given
by

gkk′ = αkk′sτkk′ + nc. (20)

In contrast to the received signal model, the actual signal contains AWGN which
is neglected in further considerations due to the high SNR of the employed
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channel sounder.

Due to the large bandwidth, we can assume that the LOS can be resolved
from the multipath components which enables us to estimate αkk′ by a pro-
jection α̂kk′ = gHkk′sτkk′,GM

Ts of the CR onto the baseband pulse at the true
delay given by the geometric model τkk′,GM = (‖p`k−p‖+‖p−p`′k′‖)/c. This
estimate is used for the following channel analysis.

5 Channel Analysis

In order to investigate the properties of the backscatter channel with a focus
on ranging and positioning, we consider the following three parameters for the
analysis:

Rician K-factor of the LOS component The ranging performance is
highly influenced by the power ratio between the LOS component and all NLOS
components [24]. This power ratio is comparable to the Rician K-factor in nar-
rowband systems and is termed Rician K-factor of the LOS component KLOS.
Instantaneous KLOS values are computed from individual CRs by K̂LOS,kk′ =
‖α̂kk′sτkk′,GM

‖2

‖gkk′−α̂kk′sτkk′,GM
‖2 .

Root-mean-square delay spread τRMS The rms delay spread quantifies
the variance of the arrival times of MPCs with significant energy and is esti-
mated from the second centralized moment of instantaneous normalized PDPs
including the LOS component, i.e., |gkk′ |2.

Spaced-distance-correlation-function For methods that exploit spatial di-
versity (e.g., beamforming, combining of measurements from closely-spaced an-
tennas), uncorrelated measurements are usually preferred to get additional in-
formation [8]. We analyze the spaced-distance-correlation-function (SDCF) of
the DM which expresses the percentage of correlation at a certain distance. To
compute the SDCF for a specific backscatter channel and a specific grid point pc,
we find all points around pc on the grid with a certain distance (e.g. 16±2 cm),
Pc = {pi : ‖pi − pc‖ = 16 ± 2 cm}, shift the CRs along time domain such
that the LOS delay coincides with the LOS of the center point pc, estimate the
mean of the complex channel coefficients for the LOS component, subsequently
subtract the LOS component, compute the correlation coefficients between the
channel transfer functions of the DM at pc with all pi, and average over all
points in Pc. In Section 3.2 the overall covariance matrix is approximated with
a diagonal block matrix. This means, that correlations between the individual
antenna elements are neglected. The lower the SDCF for the DM is, the better
this approximation holds.

We evaluate the described parameters for all individual channels and all
backscatter channels, and discuss the results and their implications for the rang-
ing problem (for the two scenarios described in Section 4). The channel-analysis
results are shown in Fig. 3 as cumulative distribution functions (CDF). The left
column shows the results for Scenario A and the right for Scenario B.
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Figure 3: Cumulative distribution functions (CDF) of the three parameters (1st

row KLOS, 2nd row τRMS, 3rd row SDCF16cm) for both individual (Ind.) and
backscatter (BS) channels for Scenario A (left column) and Scenario B (right
column). The different line types distinguish the table positions (solid lines:
T1, dashed lines: T2, dash-dotted lines: T3). Additionally the BS channels are
separated into fully correlated (FC) and uncorrelated channels (UC).
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5.1 Analysis for Scenario A

Solid and dashed lines are table positions T1 and T2 respectively. The backscat-
ter channel results, which are separated in fully correlated (FC - red and squares)
channels (downlink =uplink / ` = `′ and k = k′) and (partly) uncorrelated (UC
- black and asterisks) channels (` 6= `′ or k 6= k′), and the individual (Ind. -
blue and crosses) channel (downlinks/uplinks) results are depicted.

The KLOS factor (in dB) for the individual channels is always positive for
T1 (median of 4.2 dB), while for T2 it is positive for 80 % of the measurements
(median of 0.9 dB). This reduction is explained by the larger distance to T2
since the power in the LOS component decreases faster than the power in the
NLOS components. According to theory [2] the Rician K-factor for the LOS
component of a backscatter channel is

KLOS,kk′ =
(

1− κ

2

) KLOS,kKLOS,k′

1 +KLOS,k +KLOS,k′
, (21)

with κ as correlation coefficient ranging from 0 to 1 for uncorrelated and fully
correlated channels respectively, and KLOS,k and KLOS,k′ as the Rician K-factor
for the individual constituent channels. Equ. (21) shows that the backscatter
KLOS factor is dominated by the smaller of the two individual factors and that
for fully correlated individual channels, a 3 dB loss is expected compared to
uncorrelated channels. In Fig. 3, this loss is only 2 dB because the assumption
of fully uncorrelated channels does not hold true within this set-up.

The RMS delay spread for the individual channels is slightly larger for T2
explained by the same reasoning as above, that the LOS component attenuates
faster with increasing distance than the NLOS components. The RMS delay
spread is larger for the backscatter channels since the delays are extended by
the convolution of the channels. The FC data have a larger RMS delay spread
than the UC data because the power in the NLOS component is increased up
to a factor of two.

The median of the SDCF evaluated at a spacing of 16 cm is 0.7 for both
individual and the uncorrelated backscatter channels, and below 0.4 to 0.5 for
the fully correlated backscatter channels. With increasing distance (cmp. T1
and T2) the correlation of the DM is slightly reduced for both the individual
and the backscatter channels by a value of approximately 0.1.

5.2 Analysis for Scenario B

Solid, dashed, and dash-dotted lines are table positions T1, T2, and T3 respec-
tively. The results compare well to the data gathered in the laboratory. The
KLOS factor for individual channels again exceeds 0 dB (median of 5 dB) and the
results for the backscatter channel are slightly above the KLOS factor obtained
in the laboratory due to the shorter distances. The median of the RMS delay
spread is 17 ns for the backscatter and 11 ns for the individual channels. The
median of the SDCF evaluated at 16 cm is 0.4 for the FC backscatter and 0.5 for
the individual and UC backscatter channels. The results for the different table
positions are in general more homogeneous than for the laboratory scenario,
since the table positions are partly overlapping.
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6 Validation of the Algorithms

We finally validate the algorithms presented in Sec. 3 with simulated and mea-
sured data over a wide range of bandwidths.

6.1 Simulated Data

The algorithms are validated using simulated data, generated according to the
estimated channel parameters (KLOS and τRMS) from Section 5. Fig. 4 shows
the REBs for the SISO (blue, solid line) and MIMO model (blue, dashed line)
according to (17), as well as the REB for the MIMO model including the effect of
the PDP (blue, dash-dotted line) according to (16). For Scenario A and Scenario
B a 4×4 and 2×2 MIMO setup is used respectively. The effect of including the
PDP dependent part in the REB is only relevant at lower bandwidths (BWs).
Furthermore, the standard deviations for different estimators are depicted in
Fig. 4:

• ML SISO (red solid, ’o’): The SISO ML estimator (5) is able to follow the
REB to BWs in the range of 50− 100 MHz. At smaller BW the risk of large
outliers is high, as the SINR, which determines the detectability of the LOS
after whitening, is small.14

• MF SISO (green solid, ’+’): The SISO MF estimator (7) does not consider
the DM and deviates from the bound already at large BW. At small BW the
MF estimator gets more robust than the ML, as the complete power of the
PDP overlaps with the arrival of the LOS, and the estimator can make use of
this power. However, the ranging precision is only in the range of the distance
between the transmitting reader, the tag and the receiving reader (or higher).

• ML MIMO (red dashed, ’o’): In Section 3.3 it was argued that (18) is the
REB for a MIMO setup with knowledge of the PDP and the AoD and AoA.
To show that with this knowledge, the actual REB can be achieved, we use the
following technique: We compute the log-likelihoods according to (4) (needing
to know the DM) align them in time-domain with respect to the array positions
(needing to know the AoD and AoA for the delay-sum beamformer) and take
the sum over all array positions. In Fig. 4 two gains are seen for the ML MIMO
estimator, (i) a precision gain at constant bandwidth, and (ii) a detection gain,
as the estimator is able to follow the bound to smaller BWs compared to the
ML SISO estimator.

• A1 MIMO (green dashed, ’+’): The MIMO estimator applying Algorithm 1
is able to achieve the MIMO REB at large BWs. It deviates from the bound
at larger BWs than the ML MIMO estimator, since the estimation of the pa-
rameters of the DM, the AoD and the AoA reduces the EFI. Interestingly, the
estimator does not show the high level of outliers as the ML estimators. This
can be argued in the following way: During the initialization of the algorithm,
a grid search is performed which is closely related to an MF estimator. As
the MF estimator does not take the DM process into account, some power of
the DM process is included in the initial LOS estimate. The subsequent DM
estimation procedure underestimates the power included in the DM. At small

14see dashed lines in Fig. 5 and explanation below.
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Figure 4: REB (blue, triangles) for SISO (solid), MIMO (dashed) according
to (17) and MIMO including the effect of the PDP (dash dotted) according
to (16), and range estimation standard deviations of the developed algorithms
for simulated data (solid lines: SISO, dashed lines: MIMO). The PDP of the
downlink and uplink have been modeled with a double exp. PDP [4] leading to
the following channel parameters:
(a) Scenario A: KLOS = −3 dB, τRMS = 18.6 ns.
(b) Scenario B: KLOS = 0.2 dB, τRMS = 18.4 ns.
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BWs (below 10 MHz) most of the DM interferes with the LOS component
and thus most of the DM power is included in the LOS initialization. Thus,
Algorithm 1 converges towards a matched filter implementation at small BW.

6.2 Measured Data

To be able to compute the REB, the associated parameters, and the ML esti-
mators, the covariance matrix of the DM process needs to be estimated from
the measured data.

6.2.1 Covariance Estimation

The covariance matrix is determined as follows.15 At each table position, the
overall 18 × 17 grid is reduced to smaller subgrids (5 × 5), leading to Nsg = 9
non-overlapping subgrids. This reduction of the grid is necessary since the
covariance matrix of DM is position dependent. The following processing steps
are conducted:

• Extract channel responses gkk′,1GHz at the largest possible bandwidth (1 GHz)
on a subgrid.

• Align the channel responses such that the LOS components arrive at the same
time τkk′ .

• Estimate the complex channel coefficients α̂kk′ with the projection of the CR
onto the baseband pulse sτkk′ .

• Compute the mean value of the estimated complex channel coefficients ¯̂αkk′ .

• At the target bandwidth, extract channel responses gkk′ , align the signals such
that the LOS components arrive at the same time, subtract the LOS signal
¯̂αkk′sτkk′ and compute the covariance matrix of the resulting signals.

• To arrive at the covariance matrix for DM plus AWGN we need to add the
noise variance N0/Ts to the main diagonal. We define N0 via the energy of the
LOS component ELOS = | ¯̂αkk′ |2‖sτkk′‖2Ts. The SNR for the LOS component
is set to ELOS/N0 = 25 dB for the following validation.

The resulting covariance matrix estimate is shown in Fig. 6 for a BW of
100 MHz. For the plot, the signals are shifted such that the LOS components
arrive at 0 ns. The resulting estimate shows that the US assumption does not
hold for the considered scenario. The off-diagonal terms stem from deterministic
reflections at flat surfaces which are correlated via the room geometry.

6.2.2 Evaluation and Comparison to Simulated Data

To be able to apply the developed estimators to the acquired measurement
data, we use the pre-processing steps laid out in Sec. 4.3 to derive the CRs at

15The estimation of the covariance matrix as described here is for the validation of the REB
only. It is not a practical algorithm to be used in actual ranging / positioning applications
due to its requirement of the LOS amplitudes.
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Figure 5: SINRkk′ , S̃INRkk′ , whitening gain γkk′ , and information loss
sin2(ϕkk′) for measured (solid lines) and simulated data (dashed lines).
(a) Scenario A: measured data (solid lines / TX antenna at p1, table position
T2, RX antenna at p2 / KLOS = −3 dB, τRMS = 18.3 ns) and simulated data
(dashed lines / channel parameters see Fig. 4a).
(b) Scenario B: measured data (solid lines / TX antenna at p2, table position
T3, RX antenna at p4 / KLOS = 0.22 dB, τRMS = 18.2 ns) and simulated data
(dashed lines / channel parameters see Fig. 4b).
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Figure 6: Estimated covariance matrix of DM at B = 100 MHz for the backscat-
ter channel from antenna 1 via tag 1 to antenna 1 measured in the laboratory
scenario. For improved illustration, the absolute values scaled to the range
0 -1 are shown.

the target bandwidth, and add AWGN (generated with the previously defined
N0) to obtain the received signal described in (3).

In Fig. 5, the SINRkk′ , effective SINR S̃INRkk′ , whitening gain γkk′ and in-
formation loss sin2(ϕkk′) are shown for different bandwidths for both scenarios
(solid lines). The SINR tends towards the SNR and towards the KLOS factor
for large and small bandwidth respectively. In comparison, the effective SINR

is achieving the SNR also at small bandwidth. The SINRkk′ and S̃INRkk′ de-
scribe the amplitude fading and the pulse distortion of the LOS component
respectively [11]. At very large bandwidth neither pulse distortion nor ampli-
tude fading occur as the DM is resolved from the LOS component. At small
bandwidth only “flat” amplitude fading occurs as the complete DM overlaps
with the LOS component. In-between these two extreme cases, both effects

occur and deteriorate the ranging precision which is described by S̃INRkk′ . The

two factors linking the SINRkk′ and S̃INRkk′ are the whitening gain γkk′ and
the information loss sin2(ϕkk′). In both scenarios, the comparison to simu-
lated data (dashed lines) shows an excellent match over the entire considered
bandwidth range. The main difference is the negative whitening gain at large
bandwidths in Fig. 5a which is explained by a frequency dependent behavior of
the antenna pattern. The useful bandwidth in this case is actually smaller than
1 GHz explaining the negative whitening gain. As the bandwidth gets smaller,
the frequency dependent behavior vanishes and the simulated data fits the ac-
tual measurements. In Scenario B, this effect is not visible due to the different
geometric setup.

In Fig. 7, the REB and the standard deviations of the introduced estimators
are shown for a SISO and MIMO ranging scenario. The REB including the effect
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Table 1: Summary of the achievable REB and standard deviations of the MF
and A1 estimators for three different operating scenarios (SISO, 2x2 MIMO &
4x4 MIMO) at three different bandwidths (regulations of the ETSI (EU), FCC
(US) and for operation in the 2.4 GHz ISM band) in m. The REB has been
simulated with the parameters given in Fig. 5b for the SISO and 2 × 2 MIMO
case and the parameters given in Fig. 5a for the 4× 4 MIMO case.

ETSI 3 MHz FCC 26 MHz ISM 83.5 MHz
REB SISO 3.68 0.70 0.19
MF SISO 3.47 0.86 0.35
REB MIMO 2x2 1.84 0.35 0.09
A1 MIMO 2x2 1.85 0.32 0.11
REB MIMO 4x4 0.86 0.19 0.06
A1 MIMO 4x4 2.08 0.52 0.18

of the PDP cannot be computed, as the US assumption (off-diagonal terms in
the covariance matrix, cf. Fig. 6) is violated. The same four estimators as in
Fig. 4 are analyzed:

• ML SISO (red solid, ’o’): The SISO ML estimator is able to follow the REB to
BWs in the region of 50 MHz again and shows the high risk of outliers below
this BW.

• MF SISO (green solid, ’+’): The SISO MF estimator deviates from the REB
at high BWs, and gets more robust than the ML at lower BWs, just as in the
simulations. At BWs below 10 MHz, in Scenario B, it outperforms the REB
which can be explained since the REB does not consider the second term in
(16), leading in turn to a too high REB (cf. Fig. 4).

• ML MIMO (red dashed, ’o’): The MIMO ML estimator shows a similar be-
havior as in the simulations. In Fig. 7a, it starts to deviate from the bound at
50 MHz but does not show the high risk of outliers down to a BW of 10 MHz.
This can be attributed to the off-diagonal terms in the covariance matrix (vi-
olation of US assumption).

• A1 MIMO (green dashed, ’+’): The developed algorithm for the MIMO setup
does not achieve the bound at very high BWs because the LOS-plus-DM chan-
nel model is not correct at these BWs. Here, a channel model consisting of
more than one distinct specular component plus DM (a so-called geometry-
based stochastic channel model [25]) should be employed. At a bandwidth
below 100 MHz the algorithm starts to achieve the bound since the LOS plus
DM model starts to fit the measured data better. At even lower BWs, the
algorithm starts to outperform not only the MIMO ML estimator but also
the REB for the MIMO case (in Scenario B). As Algorithm 1 tends towards
an MF algorithm at small BWs it makes use of the DM process, hence it
outperforms the MIMO ML estimator. The REB in Fig. 7 does not take the
delay information of the DM process into account, which is the reason that
the algorithm can outperform the REB.

In Table 1 an overview of the achievable ranging precision is listed for
three different operating scenarios (Scenario B; SISO, 2x2 MIMO & Scenario
A; 4x4 MIMO) at three different BW. The BW are chosen to fit into the ETSI
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Figure 7: REB and range estimation standard deviations for measured data
(solid lines: SISO, dashed lines: MIMO). The REB (blue, triangles) is depicted
for the SISO and MIMO setup according to (17). Non-practical algorithms
(need to know the PDP of the DM) are shown with ’o’. Practical algorithms
are shown with ’+’. (a) Scenario A, (b) Scenario B.
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and FCC regulations for UHF RFID systems and the 2.4 GHz ISM band. At
each BW the estimators, MF for the SISO case and A1 for the MIMO case, are
compared to the REB. Interestingly, the estimator performs better for the 2×2
than the 4× 4 MIMO setup. This can be explained by (i) the “better” channel
parameters with respect to ranging of Scenario B [24] and (ii) the shortcomings
of the algorithm: it does not take the correlations of the DM into account and
assumes that the complex amplitudes as well as the DM are the same for all
backscatter channels.16 For a 2 × 2 setup, the ranging precision is 1.85, 0.35
and 0.11 m in the ETSI, the FCC and the ISM band respectively.

7 Conclusions

We analyzed channel measurements in the UHF-RFID frequency band, obtained
in two different environments, a laboratory and an industrial hall. Wideband
channel parameters have been analyzed, the Rician K-factor for the LOS com-
ponent, the RMS delay spread, and the spaced distance correlation function.
These parameters influence the achievable ranging performance which can be
quantified with a Cramér Rao lower bound. This bound on the ranging er-
ror standard deviation has been validated with two algorithms which need to
know the statistics of the DM with simulated data and measured data. Fur-
thermore, two practical algorithms have been developed, (i) a näıve matched
filter estimator for the SISO setup and (ii) an iterative algorithm for the MIMO
setup capable of estimating the parameters of the LOS and the parameters of
the DM. For a MIMO system the precision is below 20 cm at a bandwidth of
83.5 MHz which fits in the ISM band. Future research will focus on validating
the developed algorithms with measurements including a real UHF-RFID tag.

This appendix derives the update equations for the MIMO algorithm pre-
sented in Section 3.2. Inserting the structured mean field approximation (10)
into the variational lower bound given in (11) one can show that [21]

L(q) = −KL(q(ψ)||f̃(ψ)) + const. (22)

with KL as Kullback-Leibler divergence and

f̃(ψ) =
exp(Eq(η)q(α){log f(θMIMO, r)})∫
exp(Eq(η)q(α){log f(θMIMO, r)})dψ . (23)

By choosing a point estimate for the parameters q(ψ) = δ(ψ− ψ̂) we find from
(22)

ψ̂
new

= argmin
ψ̂

{
KL(δ(ψ − ψ̂)||f̃(ψ))

}
= argmax

ψ̂

{
log f̃(ψ̂)

}

= argmax
ψ̂

{
Eq(η)q(α)

{
log f(ψ̂,η, α, r)

}}
(24)

= argmax
ψ̂

{
Eq(η)q(α)

{
log
(
f(r|ψ̂,η, α)f(ψ̂)

)}}
+ const.

16As the antennas emulating an RFID reader are spaced by 20 cm these assumptions start
to be violated.
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We thus have to solve for the expectation operator in (24). This is done by
choosing point estimates for the AWGN, the DM parameters q(η) = δ(η −
η̂), and the complex amplitudes q(α) = δ(α − α̂). Since we have no prior
information regarding the parameters, a uniform prior is chosen, leading to the
update equation for the LOS parameters

ψ̂
new

= argmax
ψ̂

{
−
(
r− α̂s(ψ̂)

)H
C(η̂)−1

(
r− α̂s(ψ̂)

)}
.

By performing the same steps for the complex amplitude, (24) reads

α̂new = argmax
α̂

{
Eq(η)q(θ){log (f(r|ψ,η, α̂)f(α̂))}

}
+ const.

= argmax
α̂

{
−
(
r− α̂s(ψ̂)

)H
C(η̂)−1

(
r− α̂s(ψ̂)

)} (25)

As α̂ appears linearly in (25), the maximum can be found analytically as

α̂new =
rHC(η̂)−1s(ψ̂)

s(ψ̂)HC(η̂)−1s(ψ̂)
. (26)

For the noise parameters, (24) reads

η̂new = argmax
η̂

{
Eq(ψ)q(α){log (f(r|ψ, η̂, α)f(η̂))}

}
+ const

= argmax
η̂

{
− log {|C(η̂)|} −

(
r− α̂s(ψ̂)

)H
C(η̂)−1

(
r− α̂s(ψ̂)

)}
,

where the last equality is again due to the assumption of a uniform prior for the
noise parameters.

Finally, during the initialization of the algorithm it is assumed, that only
AWGN is present to initialize the power spectral density N0 and the power of
the DM PDM. By reducing the noise parameter vector to η = N0 only, and
solving (24) again, an analytical solution can be found as

N̂0 =
Ts

(
r− α̂s(ψ̂)

)H (
r− α̂s(ψ̂)

)

NKK ′
. (27)
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Abstract

This paper presents an experimental evaluation of an ultra-high-frequency
(UHF) multiple-input-multiple-output (MIMO) radio-frequency identifi-
cation (RFID) system for positioning. To this end, we propose a set of
novel parametric maximum likelihood direct-positioning algorithms capa-
ble of exploiting the coherent measurements performed by closely-spaced
antennas and simultaneously exploiting the non-coherent measurements
by widely-spaced antennas. The radio channel indoors for relatively small
bandwidth can be characterized by a line-of-sight component plus a mul-
titude of so-called dense multipath components (DMC). The proposed al-
gorithm framework is able to consider the DMC, enabling more accurate
positioning. We present an experimental RFID testbed, capable of per-
forming wideband measurements up to 50 MHz bandwidth. This testbed
is able to query the RFID tag at the UHF band while performing the posi-
tion measurements in the 2.45 GHz band, supporting such wideband signal
transmission. A dual-frequency RFID tag is presented, equipped with two
antennas, scattering back synchronously at the UHF and 2.45 GHz bands.
Utilizing the experimental UHF-MIMO RFID testbed we show that 80 %
of the position errors are smaller 0.15 m if the DMC process is included
in the algorithm.
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1 Introduction

In passive ultra-high frequency (UHF)-radio frequency identification (RFID),
the reader transmits a continuous wave (CW) signal which activates the tag.
Once powered up, the tag receives commands from the reader and answers
by switching the load of its antenna, known as backscatter modulation. The
initial intention when developing the UHF-RFID technology was to replace bar
codes to track goods by simply moving tagged objects through a gate. This
application became so successful that the technology is now ubiquitous in retail,
manufacturing, and supply-chain management.

Accurate positioning of RFID tags at decimeter level would open new appli-
cations, e.g., real-time recommender systems for brick-and-mortar stores, sorting
of goods, or shelf-level navigation. Unfortunately, standard UHF-RFID systems
utilize a bandwidth of several kHz only, making these systems classical narrow-
band systems. This leads to one of the ultimate fontiers of RFID technology:
high-accuracy-positioning.

It is well known that the estimation accuracy of the position in an addi-
tive white Gaussian noise (AWGN) channel can be improved by increasing the
signal-to-noise ratio (SNR) and the signal bandwidth [1]. However, the indoor
radio channel is characterized by a multitude of multipath components lead-
ing to so called dense multipath component (DMC). This DMC interferes with
the position-information carried by the line of sight (LOS) component, thus
hindering accurate positioning indoors [2,3]. This effect is even stronger for the
pinhole channel experienced by a UHF-RFID system, as the backscatter channel
consists of two concatenated multipath channels [4].

Thus, the signal-to-interference-ratio (SIR) introduced by the DMC, and not
the SNR, ultimately dictates the performance of any RFID positioning system.
The interference of the DMC can be influenced by two system parameters:
(i) bandwidth, and (ii) diversity [4]. This has led to the trend to increase the
bandwidth utilized in RFID systems [5–7] and to utilize multiple antennas at
each reader [8–10], leading to a multiple-input multiple-output (MIMO) system.

In this paper we present a novel maximum-likelihood (ML) positioning tech-
nique which estimates besides the position, the parameters of the LOS, the
DMC, and the AWGN. We analyze measurements from a UHF-MIMO-RFID
testbed capable of utilizing up to 50 MHz and measuring up to 4 transmitter
(TX) and receiver (RX) antennas coherently.

2 System and Signal Model

2.1 System Model

We consider L transmitting and L′ receiving RFID readers, operating indoors
at known positions pl ∈ R2,∀l ∈ {1, ..., L} and pl′ ∈ R2,∀l′ ∈ {1, ..., L′}. Each
reader is equipped with Ml and M ′l′ antennas, respectively, located at known
positions pl,ml

∈ R2,∀l ∈ {1, ..., L},∀ml ∈ {1, ...,Ml} and pl′,m′
l′
∈ R2,∀l′ ∈

{1, ..., L′},∀m′l′ ∈ {1, ...,M ′l′}. An RFID tag is located at unknown position
p ∈ R2. We consider a 2-dimensional positioning problem and assume that the
RFID readers and tags are placed at the same height.

Such a scenario is illustrated in Fig. 1 which shows a floorplan of the room
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Figure 1: Floorplan of the laboratory where the measurements were performed,
including the positions of the TX and RX UHF antennas ( , ), the TX and
RX 2.4 GHz antennas ( , ), the positions where the tag did respond ( ), and
the positions where the tag did not respond ( ). depicts the point of view
of the photograph in Fig. 2a.

where measurements were taken (see also Sec. 4.3). This setup consists of 2 TX
readers (TX2 and TX3 & TX4) and 2 RX readers (RX6 and RX7 & RX8). For
a more detailed description of the setup, as well as the description of TX1 and
RX1, please refer to Sec. 4.3.

2.2 Signal Model

The radio channel from the {l,ml}-th transmitting antenna via the tag to the
{l′,m′l′}-th receiving antenna is given by

hlml,l′m′l′
(τ ;p) = αl,l′δ(τ − τlml,l′m′l′

(p)) + νlml,l′m′l′
(τ)

≡ hj(τ ;p) = αkδ(τ − τj(p)) + νj(τ), (1)

where we introduced the unique mapping j = f(l,ml, l
′,m′l′) ∈ {1, ..., J} with

J =
∑
lMl

∑
l′M

′
l′ as the total number of channels and k = g(l, l′) ∈ {1, ...,K}

with K = LL′ as the number of reader TX and RX pairs, to reduce nota-
tional complexity. We furthermore introduce the inverse mapping functions
{l(j),ml(j), l

′(j),m′l′(j)} , f−1(j) and {l(k), l′(k)} , g−1(k).
The first and second summand in (1) describe the LOS and the DMC, respec-

tively. The LOS is characterized by the delay τj(p) = 1
c (‖p−plml

‖+‖pl′m′
l′
−p‖)

with c as speed of light and the complex amplitude αk. It is assumed that the
complex amplitudes only depend on the reader positions and not the individual
antenna positions. The DMC νj(τ) is modeled as a zero-mean Gaussian random
process with auto-correlation function

E[νj(τ)ν∗j′(τ
′)] = Sν(τ − τj(p))δ(τ − τ ′)δ[j − j′], (2)
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where Sν(τ) is the delay power spectrum (DPS). In (2) we assume that the DPS
is uncorrelated in the delay domain and for different antenna combinations1.
Furthermore, we assume that the shape of the DPS of the DMC process does
not depend on the positions of the transmitting and receiving antennas.

Assume that the ml-th antenna at the l-th TX reader transmits baseband
signal s(t) at a carrier frequency fc which is scattered back by the RFID tag.
The received signal rj(t) received by the m′l′ -th antenna of the l′-th RX-reader
is

rj(t) =

∫
s(t− τ)e−j2πfcτhj(τ ;p)dτ + wj(t)

=αksj(t;p) +

∫
s(t− τ)e−j2πfcτνj(τ)dτ + wj(t), (3)

where sj(t;p) = s(t−τj(p))e−j2πfcτj(p) and wj(t) as measurement noise process
modeled as independent AWGN with double-sided power spectral density N0/2.
The signal sj(t;p) incorporates directly the position of the tag as well as the
TX and RX antenna positions.

In the receiver, the signals given in (3) are sampled with frequency fs = 1/Ts.
By stacking the J received signals of length N = T/Ts with T as observation
duration, we obtain the discrete-time signal model

r = S(p)Aα+wc +w ∈ CNJ×1, (4)

where r = [rT1 · · · rTJ ]T, α = [α1 · · ·αK ]T ∈ CK×1,

S(p) =




s1(p) 0 · · · 0
0 s2(p) · · · 0
. . . . . . . . . . . .
0 0 · · · sJ(p)


 ∈ CNJ×J , (5)

with sj(p) = [sj(0;p) sj(Ts;p) · · · sj((N − 1)Ts;p)]T ∈ CN×1, 0 as a vector of
zeros of same size and association matrix A with entries

[A]j,k =

{
1 if l(k) = l(j) and l′(k) = l′(j)
0 otherwise

∈ NJ×K .

The advantage of this association matrix is that we can formulate an ML es-
timator for the position p which inherently applies coherent processing, i.e.
beamforming, if a specific reader is equipped with more than one antenna. The
details of this ML estimator can be found in Section 3.

Furthermore, in (4) we define the two vectors obtained by stacking and
sampling the DMC wc and AWGN w. The (j, j)-th N × N subblock of the
covariance matrix of the DMC process is

[Cc(p,ϑ)]j,j =

∫
Sν(τ − τj(p);ϑ)s(τ)s(τ)Hdτ, (6)

1Usually uncorrelated scattering in the delay and angular domains is assumed. This leads
(in general) to spatial correlations of the DMC at different antennas. However, most state-of-
the-art algorithms [11,12] have been developed for a spatially white DMC process, as assumed
here.
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where s(τ) = [s(−τ) s(Ts − τ) · · · s((N − 1)Ts − τ)] and we introduced a DPS
Sν(τ ;ϑ) parametrized by vector ϑ. It is important to note that (6) shifts the
onset of the DPS Sν(τ ;ϑ) to the delay of the LOS τj(p). The covariance matrix
for the DMC and AWGN vector is

C(η,p) = Cc(ϑ,p) +Cw ∈ CNL×NL, (7)

where Cw = σ2
wI, with σ2

w = N0/Ts, I as the identity matrix of appropriate
dimensions and we combined the parameters of the DPS and AWGN into η =
[σ2

w ϑT]T.
Thus, the likelihood function of the model reads

f(r|p,η,α) =
e−(r−S(p)Aα)HC(η,p)−1(r−S(p)Aα)

πNJ det(C(η,p))
, (8)

with det(·) as the determinant of a matrix.
In the derived algorithm, we use the following double-exponential parametric

DPS [13]

Sν(τ ;ϑ) = Ω
γf + γr
γ2f

e−τ/γf (1− e−τ/γr )u(τ), (9)

with Ω as the power of the DMC process, γf and γr as fall and rise constant of
the process, u(τ) as step function, and ϑ = [Ω γf γr]

T.

3 ML Algorithm

The likelihood function given in (8) is the basis for deriving an ML estimator
for the position. The nuisance parameters, i.e., the complex amplitudes and the
parameters of the DMC and AWGN have to be estimated as well.

In the following we will develop four ML estimators based on the utilized
signal model: Depending on the association matrix, it is possible to utilize a non-
coherent (NC) or coherent (C) combining of the measurements. Furthermore,
by neglecting the DMC process, i.e., Cc = 0 and thus η = σ2

w, an AWGN-only
algorithm is obtained.

As a direct maximization of the likelihood function in (8) is not feasible, we
apply variational Bayes and a structured mean-field approximation [14] to find
point estimates of the position p, the complex amplitudes α and the parameters
of the DMC and AWGN η. To this end, we apply the following mean-field-
approximation with respect to the posterior2 distribution

f(p,α,η|r) ≈ q(p,α|r)q(η|r) = q(θ|r), (10)

where we assume that the position and the complex amplitudes are independent
of the parameters of the DMC and AWGN process and introduced the overall
parameter vector θ = [pTαTηT]T. We choose to minimize the Kullback-Leibler
divergence from the posterior distribution f(θ|r) to the approximating distri-
bution q(θ|r). This can be accomplished by maximizing the variational lower

2As we assume uniform priors for the parameters to estimate, the posterior is proportional
to the likelihood.
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bound of the approximating distribution

L(q) =

∫
q(θ|r) log

f(θ, r)

q(θ|r)
dθ. (11)

By evaluating the variational lower bound for the individual subsets of param-
eters while keeping the other parameters fixed, an iterative local maximization
of the variational lower bound can be found. In the next two paragraphs, we
derive the update equations for the position, the complex amplitudes, and the
parameters of the DMC and AWGN process by enforcing point estimates for
the individual parameters.

Inferring the position and the complex amplitudes By keeping the pa-
rameters for the DMC and AWGN fixed, and evaluating the variational lower
bound for the position and complex amplitudes, an iterative local maximization
of the variational lower bound can be found [14]

L(q) = −KL(q(p,α|r)||f̃(p,α)) + const (12)

where KL is the Kullback-Leibler divergence and

f̃(p,α) ∝ exp(Eq(η|r)[log f(p,α,η, r)]). (13)

By choosing point estimates for the position and the complex amplitudes q(p,α|r) =
δ(p− p̂)δ(α− α̂), (12) is minimized if the point mass centers, denoted by p̂new

and α̂new, are aligned with the mode of f̃(p,α), leading to

{p̂, α̂} = arg max
p,α

(Eq(η|r)[log f(p,α,η, r)])

= arg max
p,α

(
− log det(C(η̂,p)) (14)

− (r − S(p)Aα)HC(η̂,p)−1(r − S(p)Aα)
)
,

where we assumed point estimates for the parameters of the DMC and AWGN
process as well. By taking the partial derivative of (14) with respect to the
complex amplitudes α, an analytic solution for α̂ can be found as

α̂(p) =[(S(p)A)HC(η̂,p)−1(S(p)A)]−1

× (S(p)A)HC(η̂,p)−1r. (15)

Inserting (15) into (14), the update equation for the position estimate is found
as

p̂ = arg max
p

(
− log det(C(η̂,p)) (16)

− (r − S(p)Aα̂(p))HC(η̂,p)−1(r − S(p)Aα̂(p))
)
.

Inferring the parameters of the DMC and AWGN process To find
the update equation for the parameters of the DMC and AWGN process, we
perform the same steps when deriving (14), leading to

η̂ = arg max
η

(Eq(p,α|r)[log f(p,α,η, r)])
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= arg max
η

(
− log det(C(η, p̂)) (17)

− (r − S(p̂)Aα̂)HC(η, p̂)−1(r − S(p̂)Aα̂)
)
.

If only AWGN is considered, an analytic solution of (17) is found as

σ̂2
w =

(r − S(p̂)Aα̂)H(r − S(p̂)Aα̂)

NJ
. (18)

Initialization of the algorithm A major challenge for every local maxi-
mization is to find a proper initialization scheme. In our setup, we initialize the
position and the complex amplitudes by assuming the AWGN-only model and
perform a grid search of the likelihood over the entire room. By inserting the
AWGN only model into (14), (15) and (16) become independent of C.Having
initialized the position, the complex amplitudes and the variance of the AWGN
samples, we initialize the parameters of the DMC and AWGN process with
ηinit = [σ̂2

w/2 σ̂
2
w/2 20e−9 8e−9]T if the DMC is considered. Otherwise, we set

ηinit = σ̂2
w.

Proposed algorithms The introduced iterative optimization scheme together
with the signal model enable a variety of different algorithms that will be ex-
plained in the following and compared in Sec. 5.

• NC-AWGN: By setting the association matrix A to a diagonal matrix,
thus J=K, every antenna pair is treated as an individual reader. Another
interpretation is that the likelihoods of the different antennas factorize and
thus a NC combining of the different measurements is performed. Further-
more, during the update phase of the algorithm, (18) is used, meaning that
the DMC is neglected. This is comparable to a classical matched-filter de-
lay estimation [9].

• NC-DMC: For this setting, the association matrix A is still a diagonal
matrix, but (17) is used during the update phase. This means that the pa-
rameters of the AWGN and DMC process are estimated. Usually, coherent
measurements are needed to estimate the parameters of the DMC [11,12].
The assumption that the parameters of the DMC process do not change
with respect to the TX and RX antennas enables in this version the esti-
mation of the parameters of the DMC.

• C-AWGN: By combining antennas which are closely spaced (distance be-
tween antenna elements below the wavelength) into a single reader, thus
only estimating a single amplitude αk as a nuisance parameter and re-
lating the phase shifts of the antenna to the position p, a coherent ad-
dition of such channels is achieved. This inherently adds beamforming in
an optimal sense to the algorithm. It means that for TX and RX read-
ers with more than a single antenna, the angle-of-departure (AOD) and/or
angle-of-arrival (AOA) are/is considered, respectively. Furthermore, for all
reader pairs, the distance between the TX antenna, the tag and the RX
antenna is included in the estimation process. For this distance estimate,
additional antennas at readers increase the SNR during the estimation
process. As for the NC-AWGN estimator, only AWGN is considered.
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Algorithm 1: Summary of the proposed algorithms.

set the association matrix A according to the algorithm:

• NC-AWGN & NC-DMC: diagonal matrix

• C-AWGN & C-DMC: according to the scenario

Initialization:

• perform grid search for
pinit = max

{
−(r − S(p)Aα̂(p))H(r − S(p)Aα̂(p))

}
, with α̂(p)

according to (15).

• compute αinit(pinit) according to (15)

• estimate σ̂2
w (18) and initialize ηinit according to the different algorithms:

NC-AWGN, C-AWGN: ηinit = σ̂2
w

NC-DMC, C-DMC: ηinit = [σ̂2
w/2 σ̂

2
w/2 20e−9 8e−9]T

Iterations:
do

update η̂ ≡ σ̂2
w according to (18) (NC-AWGN, C-AWGN) or η̂ (17)

(NC-DMC, C-DMC)
update p̂ and α̂ according to (16) and (15)

while not converged ;

• C-DMC: The fourth variant of the proposed algorithm does not only uti-
lize the coherent processing introduced above, but also considers the DMC
process. It has been shown that proper treatment of the DMC leads to a
more accurate and robust distance, AOD, AOA and thus position estima-
tion [4, 15].

A summary of the proposed algorithms is presented in Algorithm 1.

4 Results

In this section, we present the utilized bandwidth extension with respect to
classical UHF-RFID tags and introduce the testbed as well as a dual-frequency
RFID tag used for measurements in a laboratory environment. Finally, we em-
ploy the developed ML algorithms to the measured data and show positioning
results.

4.1 Bandwidth Extension for RFID tags

To be able to utilize a higher bandwidth and increase the positioning perfor-
mance, a previously developed broadband system for backscatter tags is em-
ployed [6]. This method superimposes a low power broadband reference signal
onto the interrogator’s signal during tag-to-reader communication. The received
signal by the interrogator is cyclically aligned and averaged over the same num-
ber of ’zero’ and ’one’ modulation bits of the tag. This process suppresses signal
components of static echos and antenna coupling. Hence, the reference signal
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Figure 2: Picture of the measurement scenario (a) and picture of the dual-
frequency RFID tag (b). The point of view with respect to the floorplan is
shown with in Fig. 1.

transmitted over the backscatter channel can be measured. In this work, a 255
bit long maximum length sequence with a chip rate of 25 MHz is used.

4.2 Architecture of the testbed

For the experimental research on the proposed positioning algorithms, an RFID
reader testbed based on an off-the-shelf software defined radio (SDR) was de-
veloped. Among the wide range of different SDRs the Ettus research N210 with
the SBX daughter board was chosen. The main reasons were the accessibility of
the schematics, and the high sampling rate of 100 MHz. To be able to communi-
cate with RFID tags, stringent timing requirements need to be met during the
interrogation. Furthermore, for the positioning method under research, a large
bandwidth and a high resolution of the received signal are necessary, which are
limited by the Ethernet data rate when the standard GNU radio framework is
used. A custom field programmable gate array (FPGA) design was developed
to overcome these issues.

For this implementation, a light-weight electronic product code (EPC) de-
coder and encoder were developed. The decoder was designed to provide accu-
rate information of the sub bit edges in the 100 MHz time domain, which is essen-
tial for the coherent adding explained in [6]. Furthermore, a logic was designed
such that an arbitrary signal can be cyclically added to the EPC transmitter.
A RX was developed such that the coherent adding is already done within the
FPGA and the data needed to be transferred to a PC for post-processing is
reduced.

Furthermore, to be able to perform research with multiple-input multiple-
output (MIMO) systems a synchronization over the ”MIMO link3” was devel-
oped [8].

UHF-RFID tags are designed for good sensitivity in a narrow frequency band
in the range from 865 − 928 MHz. This makes positioning with a wideband sig-

3A connector of the USRP enabling high speed data transfer and synchronization directly
between two USRPs.
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nal utilizing off-the-shelf UHF-RFID tags difficult since noticeable signal distor-
tions occur4. Therefore, a dual-frequency tag was designed which can be seen in
Fig. 2b. Its design is based on the UCODE 7 IC and in addition to the normal
RFID operation in the UHF band, the tag employs a 2.45 GHz antenna, scat-
tering back synchronously with the EPC backscatter modulation. This enables
the extension of the tested to the 2.45 GHz band, conceptually described in [8].
The localization signal in the 2.45 GHz band was transmitted with an EIRP
of 8 dBm. The maximum allowed power-level for tranmission in the 2.45 GHz
band in the EU without listen before talk is 10 dBm [16]. Thereby, it is much
higher than the allowed powerlevel in the UHF band. Another advantage is that
the antenna employed for the localization of the RFID tag is designed to be
wideband leading to fewer signal distortions.

4.3 Measurement Setup

The floorplan and a picture of the measurement setup are presented in Fig. 1
and in Fig. 2a, respectively. In Fig. 1 the TX and RX antennas are depicted
by and , respectively. These antennas transmit and receive the localization
sequence in the 2.45 GHz band, while the UHF reader, which powers up and
queries the tag, is presented by the and (placed on top of each other).
The utilized antennas are six Huber&Suhner SPA-2400/75/0/V and two Hu-
ber&Suhner SPA-8090/78/8/0/V antennas for the 2.45 GHz and UHF bands,
respectively.

All antennas were placed at a height of 1.45 m above the ground except for
the UHF transmit antenna which was placed on a height of 2 m. The height
difference of the UHF transmit antenna does not influence the positioning prob-
lem, as it is only used to power up the tag. The RFID tag was positioned on a
grid with size 3.8×4 m with a spacing of 10 cm by an automated tag positioning
system. This system uses four winches and high tensile strength lines connected
to a suspended tag [8]. The measured positions are presented by , while the
positions where the tag answered are represented by . Only the positions where
the tag answered can be used for the positioning algorithms.

For the following results, only the antennas transmitting and receiving in
the 2.45 GHz band have been used (presented by and in Fig. 1). For the
NC-AWGN and NC-DMC algorithms, all TX-RX antenna pairs are treated
as individual readers, i.e., we have 3 TX and RX readers with 1 antenna per
reader leadign to a total of J = K = 9 channels. For the C-AWGN and C-DMC
algorithms, the antennas TX3 & TX4 and RX3 & RX4 are combined to form
a reader. Thus, 2 TX and RX readers are utilized, either equipped with 2 or 1
antenna, leading to J = 9 channels and K = 4 TX-RX reader pairs.

5 Evaluation of the Algorithm

Fig. 3 illustrates the cumulative distribution functions (CDF) of the position er-
ror, defined as P (‖p− p̂‖ ≤ ∆ep), for the proposed algorithms. The NC-AWGN
algorithm ( ) shows the largest errors and the most outliers. Remember that
the NC-AWGN algorithm does not make coherent use of the closely spaced an-
tennas TX3 & TX4 and RX3 & RX4. The NC-DMC algorithm ( ) which

4However, the presented testbed and algorithm work with off-the-shelf UHF-RFID tags.
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Figure 3: CDF of the position error for the proposed algorithms NC-AWGN
( ), NC-DMC ( ), C-AWGN ( ), and C-DMC ( ).

considers the DMC process increases the positioning accuracy significantly and
reduces the number of outliers. The coherent versions, C-AWGN ( ) and
C-DMC ( ), profit from the additional information in the coherent measure-
ments. 80 % of the position errors are below 0.28 and 0.15 m for the C-AWGN
and C-DMC algorithm, respectively.

In Fig. 4 the position error at the measured positions is presented in a color-
coded way for the C-DMC algorithm. The position error is capped at 1 m and
positions where the tag did not answer are presented in white.

As can be seen in Fig. 3 and Fig. 4, all proposed methods show about 10 %
outliers, meaning that the position error is larger 1 m. As can be seen, most of
the outliers do form a circle-like shape around the center of the measured grid.
This can be related to a poor geometry of the reader antennas as illustrated in
Fig. 4. Due to the backscatter channel, the ’small apertures’ of the two arrays
formed by TX3 & TX4 and RX3 & RX4, and the non-ideal placement of the
additional readers TX2 and RX2, the evaluated likelihood function during the
initialization shows side-modes which are mirrored at a straight line from TX1
towards the window. Due to the DMC and AWGN process, such a side-mode
can be higher than the correct mode. As the consecutive iterative algorithm
optimizes locally, it cannot recover to find to the correct mode.

In Fig. 3, the advantage of considering the DMC process can clearly be seen.
Note that we assumed that the parameters of the DMC process do not change
for the different channels, but rather that only the onset of the DMC is shifted
(cmp. (6)). Usually, it is assumed that the DPS, given by (2), is stationary only
within a small local area [3,13]. However, as the utilized bandwidth is 25 MHz,
the covariance matrix, given in (6), is quasi-stationary in a larger area [17].

6 Conclusions

In this work, we introduced a novel positioning algorithm for a dual-frequency
RFID tag, capable of estimating the position, the complex amplitude and the
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Figure 4: Position error over the entire measurement scenario for the C-DMC
algorithm.

parameters of the DMC and AWGN process. By utilizing coherent processing
of closely-spaced antennas, an ML estimator is proposed and analyzed. Fur-
thermore, a UHF-MIMO experimental testbed is presented enabling coherent
processing of up to 4 TX and RX antennas as well as a bandwidth extension
of up to 50 MHz. It is shown that by considering the DMC 80 % of the position
errors lie below 0.15 m for a bandwidth of 25 MHz.
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Abstract

In this paper, we present a sparse Bayesian learning (SBL) algorithm
for super-resolution estimation of single-input-multiple-output (SIMO)
multipath channel parameters. The algorithm is developed for estimat-
ing the two-dimensional dispersion parameters, delay and angle of arrival
(AoA), of the multipath components. SBL algorithms are well suited for
estimating jointly the model order and parameters of superimposed sig-
nals. Specifically, the proposed algorithm is a Type-II SBL algorithm with
a hierarchical Gaussian prior. It considers — beside the parameters of the
specular multipath components (SMCs) — also the parameters of the
dense multipath component (DMC) and noise. Typically, the DMC in-
corporates SMCs that cannot be resolved due to the finite aperture of
the measurement equipment. The DMC can severely degrade the estima-
tion accuracy of the dispersion parameters of SMCs, if not properly dealt
with. We formulate a theoretical framework to derive a probability of es-
timating artifacts using non-stationary χ2-random fields. The framework
is used to adapt a threshold to counteract the trend of point-estimate-
based SBL algorithms to overestimate the number of signal components,
i.e., the model order. Using synthetic and real channel measurements, we
show that the proposed algorithm has the ability to estimate the param-
eters of correctly detected SMCs and of the DMC with high accuracy.
We compare our results with a state-of-the-art parametric Type-I max-
imum likelihood channel estimation algorithm and show the benefits of
our proposed method.
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1 Introduction

Future 5G wireless communication technologies and the Internet of Things (IoT)
paradigm will be characterized by supporting a variety of services with high
quality requirements, addressing performance metrics such as reliability, latency,
data throughput, and resource-efficient use of the infrastructure [1, 2]. Spatial
location information is expected to become an indispensable feature of these
emerging wireless networks, considering that the user devices will have the ca-
pability of estimating accurately their locations and predicting relevant radio
channel quality measures [3,4]. The robustness of acquired location information
strongly depends on the surrounding environment and hence multipath propa-
gation [5–7]. To exploit efficiently the position-related information acquired from
the multipath channels for localization [6–10], high performance multiantenna
parametric channel estimators are needed. Note that in general, the estimation
of multipath channel parameters can be cast as a line spectral estimation (LSE)
problem [11–13].

1.1 State of the Art

Parametric channel models are in general represented by superimposed weighted
Dirac delta distributions with distinct locations (atoms) in the respective do-
main (delay, angle, space, frequency). Usually, a finite measurement aperture
leads to a model based on the convolution of the response of the measurement
equipment with these atoms. Expectation-maximization algorithms (EM) [14]
were suggested first to estimate parameters of superimposed signals. Next,
space-alternating EM methods [15, 16] evolved and were used in the context
of wideband radio channel data. In recent years, these estimators have been
extended towards a channel model which includes a dense multipath com-
ponent (DMC), multipath components that cannot be resolved by the finite
measurement aperture [17]. Considering the DMC process can significantly im-
prove the estimation accuracy of the locations of the atoms and their according
weights [17]. However, all these estimators have in common that they do not
incorporate the model order into the estimation problem directly, even though
it has a pivotal role when estimating superimposed model parameters from real
measured data. Traditionally, estimators are augmented by a separate model-
order selection based on information theoretic criteria as for example the Akaike
information criterion (AIC), the Bayesian information criterion (BIC), or the
minimum description length (MDL) [18–20]. Yet, such approaches are computa-
tionally intensive as the information criteria need to be computed first for each
model order candidate before a decision can be made. But more importantly, it
has been shown that information-criterion-based model-order estimation tends
to be positively biased in non-asymptotic regions of SNR and number of ob-
served samples. Hence, artifacts that are induced by the estimators themselves
are a pitfall of these procedures. A number of penalty terms have been proposed
to correct this bias [21].

Another approach towards joint estimation of superimposed signal param-
eters and model-order selection has emerged within the field of sparse signal
reconstruction (SSR) [22–24]. SSR aims at recovering a sparse weight vector
in an underdetermined linear model with a known discrete dictionary (ma-
trix) [25]. It solves an optimization problem with L1-norm regularization also
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called basis pursuit denoising [26] or LASSO (least absolute shrinkage and selec-
tion operator) [24]. SSR can also be formulated within the Bayesian framework
as maximum-a-posteriori (MAP) estimator using a sparsity promoting prior on
the weight vector distribution [27]. From a (probabilistic) graphical model point
of view, learning methods using hierarchical sparsity promoting priors (Lapla-
cian or gamma priors) were coined with the name sparse Bayesian learning
(SBL) [28–32]. In [33], Type-I and Type-II estimators of sparsity-promoting hy-
perpriors are discussed. Type-I estimators can be seen as maximum a posteriori
(MAP) estimators using sparsity-inducing prior distributions and marginalizing
over these priors while Type-II estimators maximize the evidence of the priors.
All these methods have in common that they only consider a finite discretized
dictionary to represent the signal parameters as for example the line spectral
frequencies, i.e., the SMC parameters.

The main shortcoming of a finite discretized dictionary is the occurrence of
aliased atom locations, which leads again to a positive model bias and inaccu-
rate estimation of locations. Partly, this can be circumvented by increasing the
granularity of the dictionary, but with a significant increase of computational
cost and without removing the tendency of model bias especially in asymptotic
regions. Extension of SSR to a continuous dictionary, which leads to super-
resolution capabilities1, as found in [34–39]. In there, the regularization term is
the atomic norm or total variation norm. Many SBL algorithms as for exam-
ple [12, 13, 40, 41] naturally include the estimation of atom’s locations into the
inference process and therefore support super resolution. These algorithms dif-
fer in some aspects as for example (i) the chosen sparsity-inducing hierarchical
prior model, e.g. gamma-Gaussian [40, 41], Bernoulli-Gaussian [12, 13], (ii) the
statistical structure of the location parameters, i.e. if they are modeled inde-
pendently [12,40] or joint [41], or (iii) whether the full posterior of the location
parameters is inferred [12] or point estimates are acquired [13,40,41].

Instances of Type-II algorithms, as for example for reformulated automatic
relevance determination (R-ARD) [27] and iterative R-ARD (IR-ARD) [42,43],
contain a threshold which is used to decide whether a signal atom is kept.
In [27,42,43] it was shown that the model-order determination by thresholding
still leads to a positive model bias. By considering the full posterior of the super-
imposed signal parameters, and in particular of the atom locations, a significant
reduction of the positive model bias was achieved [12]. 2 In general, it was ob-
served that reducing posterior pdfs of model parameters to point estimates has
the tendency to induce a positive model-order bias. However, considering the
full posterior pdfs of the model parameters comes typically at the cost of an
increased complexity.

In [41], an adapted threshold was derived for detecting signal atoms for a
Type-II maximum-likelhood (ML) SBL algorithm. This adaptation almost elim-
inates the positive model bias. Based on the fact that the detection is closely
related to the extreme value distribution of the maximum of a periodogram and
therefore of a random field [45,46]. Using χ2-random fields, an upper bound was
derived on the probability of estimating artifacts (and on the according proba-
bility of missed detection of signal atoms) under the simplifying assumption of

1Super resolution in the context of optimization or inference means that an algorithm is
capable of recovering signal locations beyond the sensing equipment’s resolution.

2A Markov chain Monte Carlo implementation to infer the location parameters of super-
imposed signals jointly with model order selection can be found in [44].
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non-overlapping signal atom artifacts in noise. Numerical analyses have shown
that signal atom pruning using this adapted threshold leads to almost no positive
model bias in medium and high SNR regions and tendency of underestimating
the model order in low SNR regions. As comparison, in classical detection the-
ory [47], the detection threshold is derived for a single signal atom with unknown
frequency in noise by analyzing the maximum of a periodogram at the n Fourier
frequencies. This leads to a (detection-)threshold that contains the probability
of estimating artifacts (i.e. false alarm probability) and a log n-term considering
for the n Fourier frequencies, but not a random-field-theory-related log log n-
term that considers for the arg max-function on the periodogram [41,45,46].

1.2 Contributions of the Paper

In this paper, we propose a Type-II ML SBL algorithm with a hierarchical Gaus-
sian prior for single-input-multiple-output (SIMO) multipath channels consid-
ering also the parameters of the DMC process. It jointly estimates the two-
dimensional dispersion parameters, delay and angle of arrival (AoA), of the
SMCs, the parameters of the DMC and noise, and the number of SMCs (the
model order). Furthermore, the probability of artifact is derived for this SIMO
multipath channel model, which can be used to reduce the positive model bias
substantially.

The contributions of this paper are the following:

• Development of a Type-II point-estimate-based SBL algorithm with a hi-
erarchical Gaussian prior for SIMO multipath radio channels3, which is
applicable to colored non-stationary noise models, i.e. measurement noise
plus a DMC are accounted for. The algorithm jointly estimates the delays
and AoAs of the SMCs, the parameters of the DMC and noise processes,
and the model order.

• Derivation of the probability of artifacts of the SIMO multipath channel
model by using two-dimensional non-stationary χ2-random fields [48,49].

• In-depth analysis of the proposed algorithm and the derived adaptive
threshold using synthetically generated channel measurements.

• Comparison with an equivalent Type-I point-estimate-based ML algo-
rithm.

• Room-geometry-related analysis of the parameters of the SMCs estimated
from real channel measurements acquired in an indoor environment.

The remainder of the paper is structured as follows: In Section 2 we intro-
duce the signal model and the underlying statistical structure. Section 3 presents
the statistical inference problem and the structure of the sparsity inducing hi-
erarchical prior and Section 4 formulates the variational inference algorithm.
In Section 5 the adapted threshold is derived for the pruning condition. Sec-
tion 7 reports numerical results using synthetic and real channel measurements.
Section 8 concludes the paper.

3The presented algorithm is designed for a multiple-input–single-output (MISO) and single-
input–multiple-output (SIMO) system, but the extension to a multiple-input–multiple-output
(MIMO) system is straightforward.
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2 Signal Model

2.1 Channel Model

We consider an experimental setup with an ultra-wideband measurement equip-
ment consisting of a transmitter and a receiver operating in an indoor environ-
ment. The transmitter is equipped with a single antenna, while an antenna array
with colocated elements is mounted at the receiver. For the sake of simplicity
we assume a two dimensional scenario with horizontal-only propagation.4 We
also postulate that the transmitter and the receiver are located sufficiently far
away from each other and from objects in the environment that notably af-
fect propagation, like walls, boards, etc. so that the plane-wave assumption is
realistic.

The experimental setup allows for investigating dispersion in the radio chan-
nel in delay and angle of arrival (AoA) at the receiver site. The system response
characterizing this mechanism is the delay-AoA spread function that we denote
by h(τ, ϕ), with τ ∈ R and ϕ ∈ [−π,+π) being respectively the (relative) delay
and AoA variables.5 Obviously h(τ, ϕ) depends on the position of the trans-
mitter and receiver in the environment. We make the common assumption that
the time-frequency-space aperture of the sounding equipment is selected so that
h(τ, ϕ) is nearly constant over it. This will be the case provided the propagation
conditions remain practically the same over a region including the receive array.
Furthermore, the electromagnetic properties of the objects, such as reflection
and transmission coefficients, that significantly affect propagation are nearly
constant over the observed frequency range. In this study we assume that the
delay-AoA spread function consists of the superposition of a finite number, say
K, of specular components and a dense (diffuse) component, i.e.

h(τ, ϕ) =
∑

k∈K
α̃kδ(τ − τ̃k)δ(ϕ− ϕ̃k) + ν(τ, ϕ) . (1)

The kth specular multipath component (SMC), k ∈ K , {1, . . . ,K}, is char-
acterized by its amplitude α̃k ∈ C, its (relative) delay τ̃k ∈ R and AoA ϕ̃k ∈
[−π,+π). We model the dense multipath component (DMC) ν(τ, ϕ) as a com-
plex circular (i.e. zero-mean) Gaussian random process [17, 51]. Furthermore,
we assume uncorrelated scattering in which case the auto-correlation function
of ν(τ, ϕ) takes the form

E[ν(τ ′, ϕ′)ν∗(τ, ϕ)] = P (τ, ϕ;ϑ)δ(τ ′ − τ)δ(ϕ′ − ϕ) (2)

with the delay-AoA power spectrum P (τ, ϕ;ϑ) [52] being entirely determined
by a vector parameter ϑ that we shall specify later. The rationale behind the
selection of the model (1) is as follows. Specular components originate from
electromagnetic wave propagation in the environment that is essentially non-
dispersive, such as LOS propagation, specular reflection and transmission. SMCs
are such specular components that can be resolved by the measurement equip-
ment with its finite sounding aperture (in space and frequency). The DMC

4An extension to three dimensional scenarios with horizontal and vertical propagation is
straightforward, but it would lead to a cumbersome notation and one would not gain any new
insights.

5We adapt the terminology from [50].
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Figure 1: Layout of the array with its center of gravity at pc, element positions at
pm, m ∈M, and reference orientation ψ. The mth position is characterized by
the angle ϕm and the distance dm with respect to pc. The 1st SMC originates
from propagation along the line-of-sight path from the anchor at position a1

with angle ϕ̃1 and distance cτ̃1. The kth SMC is incident with angle ϕ̃k and can
be conceived as originating from a virtual anchor [6] at position ak which is at
distance cτ̃k from pc. Constant c denotes the speed of light.

incorporates specular components that cannot be resolved and contributions
originating from dispersive electromagnetic interactions, like diffuse scattering
and diffraction. Thus, the model (1) depends on the sounding aperture or equiv-
alently the resolution capability of the measurement equipment.

The number K of SMCs, their individual parameters τ̃k and ϕ̃k, k ∈ K, and
the vector parameter ϑ characterizing the DMC are unknown. In this paper we
propose an algorithm to estimate these parameters. We consider the following
scenario: (1) the delay-AoA spread function h(τ, ϕ) has bounded support, i.e.,
without loss of generality h(τ, ϕ) = 0 whenever τ /∈ [0, T ) and (2) the equipment
is designed in such a way to ensure an aliasing-free estimation of h(τ, ϕ) over the
domain [0, T ) × [−π, π). Condition (1) is fullfilled provided τ̃k ∈ [0, T ), k ∈ K
and P (τ, ϕ;ϑ) = 0 whenever τ /∈ [0, T ). Thus, we can restrict the range of τ to
[0, T ).

2.2 Received Signal

The array at the receiver has M elements located at pm ∈ R2 m ∈ {1, . . . ,M} ,
M, see Fig. 1. Its center of gravity is p = M−1

∑M
m=1 pm and its orientation

determined by angle ψ as depicted in the figure. We also define dm = ‖pm− p‖
and ϕm = ∠(pm − p) − ψ, the distance of the m-th element to the reference
location p and its angle relative to the array orientation, respectively.

Signals are represented by their complex envelope with respect to a center
frequency fc. Under the assumptions made in Sec. 2.1 and with the definitions
introduced above, the signal at the output of the mth antenna element reads

rm(t) =
∑

k∈K
α̃ks

(
t; τ̃k, ϕ̃k,pm

)

+

∫ ∫
s
(
t; τ, ϕ,pm

)
ν(τ, ϕ)dτdϕ+ nw,m(t) (3)
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where

s
(
t; τ, ϕ,pm

)
= ej2πfcg(ϕ,pm)s

(
t− τ + g

(
ϕ,pm

))
, (4)

with s(t) as transmitted pulse. The function

g
(
ϕ,pm

)
=
dm cos (ϕ− ψ − ϕm)

c
(5)

gives the delay shift of a plane wave incident with AoA ϕ, and measured relative
to the array orientation ψ, at the mth antenna position with respect to the
array center of gravity. The measurement noise processes nw,m(t), m ∈ M are
independent additive white Gaussian noise (AWGN) with double-sided power
spectral density N0/2.

2.3 Discrete-Time Signal Model

The signals rm(t), m ∈M are synchronously sampled with frequency fs = 1/Ts

and N = T/Ts consecutive samples collected and arranged in vectors rm.6 The
M so-obtained length-N -vectors of samples are stacked to the length-NM vector
r = [rT

1 · · · rT
M ]T which can be expressed as

r = S(ψ̃)α̃+ n ∈ CNM×1. (6)

In the first summand α̃ = [α̃1 · · · α̃K ]T ∈ CK×1, ψ̃ = [ψ̃1 · · · ψ̃K ] with entries
ψ̃k = [τ̃k ϕ̃k], k ∈ K and S(ψ̃) = [s(ψ̃1) · · · s(ψ̃K)] ∈ CNM×K with columns
given by

s(ψ̃k) = [s1(ψ̃k)T · · · sM (ψ̃k)T]T ∈ CNM×1, (7)

k ∈ K. The mth entry in the column vector in (7) reads

sT
m(ψ̃k) , [s

(
0; τ̃k, ϕ̃k,pm

)
· · · s

(
(N − 1)Ts; τ̃k, ϕ̃k,pm

)
] ∈ C1×N . (8)

It contains the entries associated with the mth antenna element, m ∈M.
We can write the NM -vector n in (6) as n = nc + nw, where the entries

in nc and nw are the (arranged) samples of the integral summand and the
measurement noise, respectively, in (3) when m ranges in M.

From the made assumption on the DMC nc is a complex circular symmetric
Gaussian random vector, i.e. with zero mean, and MN×MN covariance matrix
following from (2) to be

[Cc(ϑ)]m,m′ =

∫ ∫
P (τ, ϕ;ϑ)sm(τ, ϕ)sm′(τ, ϕ)Hdτdϕ, (9)

(m,m′) ∈ M2. From the assumptions made on the noise measurement process
nw is a complex circular symmetric Gaussian random vector with covariance
matrix Cw = σ2I with σ2 = N0/Ts and I being an identity matrix of ap-
propriate dimension. We assume that nc and nw are uncorrelated, so that the
covariance matrix of n reads

C(η) = Cc(ϑ) +Cw = Cc(ϑ) + σ2I (10)

with η = [σ2,ϑ].

6Note that the received signal rm(t) before sampling is Nyquist low-pass filtered with an
equivalent bandwidth of 1/Ts.
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2.4 Selected Model for the DMC

To simplify the design of the estimator we shall make a series of assumptions
on the modelling of the DMC.

a) We consider a separable delay-AoA power spectrum, i.e., P (τ, ϕ) = P p(τ)p(ϕ).
Here, P =

∫∫
P (τ, ϕ)dτdϕ is the power of the DMC, and p(τ) and p(ϕ) are

respectively the normalized delay power spectrum (DPS) and the normalized
azimuth power spectrum (APS), [48].

b) In the computation of (9) we discard the second occurrence of the term
g
(
ϕ,pm

)
in (4). In doing so we neglect the relative delays of the complex en-

velopes induced by impinging waves across the array elements, which amounts
to adopting a narrowband representation [17,53].

As a result of the two above assumptions, the DMC covariance matrix fac-
torizes as

Cc = P CM ⊗CN , (11)

with ⊗ denoting the Kronecker product [17, 53]. The first factor is the spatial
correlation matrix given by

CM =

∫
p(ϕ)s̄M (ϕ)s̄H

M (ϕ)dϕ (12)

with s̄M (ϕ) = [e−j2πfcg(ϕ,p1) · · · e−j2πfcg(ϕ,pm)]T ∈ CM×1 being the narrow-
band array response. The second factor is the delay correlation matrix:

CN =

∫
p(τ)s̄N (τ)s̄H

N (τ)dτ (13)

with s̄N (τ) = [s(−[(N − 1)/2]Ts − τ) · · · s([(N − 1)/2]Ts − τ)]T.
c) We neglect the spatial correlations across antenna elements, i.e., we set

CM = I [17, 54]. This assumption is approximately fullfilled in case of uniform
azimuth dispersion, i.e., constant APS p(ϕ) = 1/2π, for the antenna-element
spacings used in practice.7

d) The DPS is given by the gamma function

p(τ ; ϑ̄) =
1

γβf Γ(β)

(
τ − τon

)β−1
e

(
− τ−τonγf

)
u(τ − τon) , (14)

where ϑ̄ = [τon, γf , β] and u(τ) is the unit step function. We refer to τon, γf , and
β as respectively the onset, the scale, and the shape parameters of the DMC
process. Experimental evidence motivates the selection of a gamma-function to
describe time-dispersion. The DPS typically exhibits an exponentially decaying
tail [17,51,55] and a smooth onset [51,56,57]. This behaviour is well represented
by a gamma function.

Combing all above assumptions, we arrive at the following model of the
covariance matrix C(η):

C(η) = I ⊗ PCN (ϑ̄) + σ2INM , (15)

with ϑ = [P, ϑ̄].

7This assumption is exact for a uniform linear array with half-a-wavelengh element spacing
in the case of 3 dimensional propagation. For horizontal-only propagation, a suitable antenna
spacing is approximately 40% of the wavelength, leading to zero correlations for adjacent
antennas.
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2.5 Discrete-Time Signal Model for Inference

Since K is unknown, we adopt the framework of SBL and modify the original
signal model (6) by assuming a large, but fixed, number L of hypothetical SMCs.
Parameter L is a design parameter set so that NM ≤ L is fulfilled. Moreover
we shall assume that K is not larger than the number NM of observations. In
summary, we have thatK ≤ NM ≤ L. Similarly as in the previous subsection we
define the vector ψ = [ψ1 · · · ψL] with entries ψl = [τl ϕl], where τl ∈ [0, T ),
and ϕl ∈ [−π + π), l ∈ {1, . . . , L} , L. With the above modifications we arrive
at the discrete-time signal model used for inference:

r = S(ψ)α+ n ∈ CNM×1, (16)

where α = [α1 · · · αL]T ∈ CL×1, and S(ψ) = [s(ψ1) · · · s(ψL)] ∈ CNM×L
with s(ψl) defined similarly to (7).

Under the assumptions made, the likelihood function of this model is given
by

f(r|ψ,η,α) =
e−(r−S(ψ)α)HC(η)−1(r−S(ψ)α)

πNM det(C(η))
, (17)

where det(·) is the determinant of a matrix.
In the following section, model (16) and its likelihood function (17) are the

baseline for deriving the sparse variational Bayesian inference algorithm that
estimates the unknown model parameters, including the model order K.

3 Problem Formulation

If the number of components K was known, the dispersion parameters ψ̃ and
complex amplitudes α̃ of the SMCs and the parameters η of the DMC and
noise process could be inferred using a maximum a posteriori or maximum
likelihood estimation technique applied to generative model (6). In the case
where K is unknown, sparse Bayesian learning (SBL) [58,59] allows for including
the estimation of this parameter by reformulating the initial inference problem
as that of inferring the parameter vectors ψ, η, α of model (16). Adopting the
Bayesian framework, we assign a prior to each of these vectors and compute their
posterior distributions given the observation r. The SBL approach considers a
hierarchical prior for each entry αl in form of a Gaussian scale mixture,8 i.e.

f(α,γ) = f(α|γ)f(γ) = Πl∈Lf(αl|γl)f(γl) (18)

where f(αl|γl) = CN (αl|0, γ−1
l ), l ∈ L and γ = [γ1 · · · γL]T ∈ RL×1

+ . The
entries in γ are referred to as hyperparameters and their priors with pdfs f(γl),
l ∈ L hyperpriors. With these specifications we obtain the probabilistic model

f(ψ,η,α, r) = f(r|ψ,η,α)f(α|γ)f(γ)f(ψ)f(η) (19)

used for inference. In this study, we select flat priors for ψ, γ, η, i.e. f(ψ) ∝ 1,
f(γ) ∝ 1, f(η) ∝ 1.

8A recent work [33] generalizes the initial hierarchical priors of SBL to power exponential
scale mixtures.
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Following [29,41], we solve the inference problem using a Type-II estimation
method [27, 29]. The method estimates first ψ, η, γ by marginalizing the com-
plex amplitude vector α out in (19) and then infers a posterior distribution for
α from these estimates. The posterior pdf f(ψ, η, γ|r) is obtained from (19)
to be

f(ψ,η,γ|r) ∝
∫
f(r|ψ,η,α)f(α|γ)dα

∝ det(C(ψ,η,γ))−1e−r
HC(ψ,η,γ)−1r , (20)

where C(ψ,η,γ) = C(η) + S(ψ)Γ−1S(ψ)H with Γ = diag[γ1, . . . , γL]. MAP
estimates of ψ, η, γ are then computed. Due to the selected priors they coincide
with the ML estimates:

ψ̂ML, η̂ML, γ̂ML = argmax
ψ,η,γ

f(ψ,η,γ|r). (21)

From (19) we obtain the conditional pdf

f(α|r,ψ,η,γ) ∝ f(r|ψ,η,α)f(α|γ) (22)

which is readily shown to be Gaussian, see discussion around (25) and (26).

Vector α is inferred using f(α|r, ψ̂ML, η̂ML, γ̂ML).

4 Sparse Variational Bayesian Channel Estima-
tion

4.1 Variational Bayesian Inference

Since the maximizer of the posterior pdf f(ψ,η,γ|r) in (20) cannot be cal-
culated analytically, even though this pdf is given in an analytical form, and
a numerical solution is computationally prohibitive, we resort to variational
Bayesian inference to compute an approximation thereof. Variational Bayesian
inference relies on a family of proxy pdfs q(ψ,η,γ|r) together with a lower
bound on the log evidence log f(r), i.e.,

log f(r) ≥ Eq(ψ,η,γ|r)

[
log

(
f(ψ,η,γ, r)

q(ψ,η,γ|r)

)]
. (23)

One recognizes in the expectation the negative Kullback-Leibler divergence from
the posterior pdf f(ψ,η,γ|r) to q(ψ,η,γ|r) [58, Ch. 10], [59].

The approximate posterior pdf is that proxy pdf that maximizes the lower
bound in (23) or equivalently minimizes the aforementioned Kullback-Leibler
divergence. However, maximizing (23) jointly over q(ψ,η,γ|r) is not viable. We
simplify the problem by postulating that the proxy pdf q(ψ,η,γ|r) factorizes
as (structured mean-field assumption)

q(ψ,η,γ|r) = q(η|r)q(ψ|r)q(γ|r). (24)

We then maximize (23) alternately with respect to each factor q(η|r), q(ψ|r),
and q(γ|r) individually while keeping the others fixed. Furthermore, we restrict
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these factors to be Dirac delta distributions, i.e. q(ψ|r) = δ(ψ − ψ̄), q(η|r) =
δ(η − η̄), and q(γ|r) = δ(γ − γ̄), where ψ̄, η̄, and γ̄ are arbitrary. By doing so
we enforce point estimates for ψ, η and γ.9 With this restriction, the proxy pdf
q(α|r) ∝ Eq(η|r)q(ψ|r)q(γ|r)[f(r|ψ,η,α)f(α|γ)] is Gaussian with mean

µ̂α = Ĉα
(
S(ψ̂)HC(η̂)−1r

)
(25)

and covariance matrix

Ĉα =
(
S(ψ̂)HC(η̂)−1S(ψ̂) + Γ̂

)−1
, (26)

where S(ψ̂) = S(ψ)|ψ=ψ̂ (see Section 4.2), C(η̂) = C(η)|η=η̂ (see Section 4.3),

and Γ̂ = diag[γ̂1, . . . γ̂L] (see Section 4.4).

4.2 Inferring the Dispersion Parameters

Keeping its arguments q(γ|r) and q(η|r) fixed, the bound on the log evidence
log f(r) in (23) can be written as [58, Ch. 10]

log f(r) ≥ Eq(ψ|r)

[
log

(
f̃(r,ψ)

q(ψ|r)

)]
+ const (27)

with

log(f̃(r,ψ)) ∝ Eq(γ,η|r)[log(f(r,ψ,η,γ))]

∝ −Eq(γ,η|r)[log(det(C(ψ,η,γ)))]

− rHEq(γ,η|r)[C(ψ,η,γ)−1]r . (28)

With the point estimate restriction q(ψ|r) = δ(ψ− ψ̄), the expectation in (27)

is maximized for ψ̄ = ψ̂ with10

ψ̂ = arg min
ψ

log(det(C(ψ, η̂, γ̂))) + rHC(ψ, η̂, γ̂)−1r. (29)

4.3 Inferring the DMC and Noise Parameters

Similarly, keeping its arguments q(ψ|r) and q(γ|r) fixed, the bound on the log
evidence log f(r) in (23) takes the form

log(f(r)) ≥ Eq(η|r)

[
log

(
f̃(r,η)

q(η|r)

)]
+ const (30)

with

log(f̃(r,η)) ∝ Eq(ψ,γ|r)[log(f(r,ψ,η,γ))]

∝ −Eq(ψ,γ|r)[log(det(C(ψ,η,γ)))]

9Using (28), (31), and (34) one could derive a full Bayesian estimator that finds more
generic proxy pdfs [12, 44] However, this would be computationally demanding.

10The negative Kullback-Leibler divergence in (27) is maximized if the mode of q(ψ|r) is
aligned with the maximum of log(f̃(r,ψ).
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− rHEq(ψ,γ|r)[C(ψ,η,γ)−1]r . (31)

Given the restriction q(η|r) = δ(η − η̄), the expectation in (30) is maximized
for η̄ = η̂ with

η̂ = arg min
η

log(det(C(ψ̂,η, γ̂))) + rHC(ψ̂,η, γ̂)−1r. (32)

4.4 Inferring the Hyperparameters

Finally, keeping the arguments q(ψ|r) and q(η|r) of the bound on the log evi-
dence log f(r) in (23) fixed yields

log(f(r)) ≥ Eq(γ|r)

[
log

(
f̃(r,γ)

q(γ|r)

)]
+ const (33)

with

log(f̃(r,γ)) ∝ Eq(ψ,η|r)[log(f(r,ψ,η,γ))]

∝ −Eq(ψ,η|r)[det(log(C(ψ,η,γ)))]

− rHEq(ψ,η|r)[C(ψ,η,γ)−1]r . (34)

Given the restriction q(γ|r) = δ(γ − γ̄), the expectation in (33) is maximized
for γ̄ = γ̂ with

γ̂ = arg min
γ

log(det(C(ψ̂, η̂,γ))) + rHC(ψ̂, η̂,γ)−1r. (35)

Following [60], (35) can be replaced by a sequential optimization over the indi-
vidual entries in γ. Doing so yields

γ̂l =

{
(|ρl|2 − ζl)−1 , |ρl|

2

ζl
> κ∗

∞ , |ρl|
2

ζl
≤ κ∗

l ∈ L, (36)

with κ∗ = 1. The parameters ρl = ρ(ψ̂l) and ζl = ζ(ψ̂l) are the posterior
estimates of the mean and the variance, respectively, of the complex amplitude
when γ̂l = 0. They are given as

ζl =
(
s(ψ̂l)

HC(η̂)−1s(ψ̂l) (37)

−s(ψ̂l)HC(η̂)−1S(ψ̂l̄)Ĉl̄,αS(ψ̂l̄)
HC(η̂)−1s(ψ̂l)

)−1

ρl = ζls(ψ̂l)
HC(η̂)−1r

− ζls(ψ̂l)HC(η̂)−1S(ψ̂l̄)Ĉl̄,αS(ψ̂l̄)
HC(η̂)−1r

= ζls(ψ̂l)
HC(η̂)−1r̄l (38)

with

r̄l = r − S(ψ̂l̄)µl̄,α , (39)

µ̂l̄,α = Ĉl̄,α(S(ψ̂l̄)
HC(η̂)−1r), (40)
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Ĉl̄,α = (S(ψ̂l̄)
HC(η̂)−1S(ψ̂l̄) + Γ̂l̄))

−1, (41)

Γ̂l̄ = diag([γ̂1, . . . , γ̂l−1, γ̂l+1, . . . , γ̂L]), (42)

and ψ̂l̄ = [ψ̂1, . . . , ψ̂l−1, ψ̂l+1, . . . , ψ̂L].
It is worth noting that the computation step of γ̂l (36) contains a condition

that determines whether or not the lth atom shall be retained (is relevant).
Indeed, γ̂l =∞ implies q(αl|r) = δ(α), i.e. the lth atom is effectively pruned if
|ρl|2/ζl ≤ κ∗.

The proposed algorithm incorporates an incremental implementation [40,42]
that solves (36). Details can be found in these references.

5 Analysis of Pruning Condition

Numerical experiments have shown that the SBL algorithm with its built-in

pruning condition |ρl|2
ζl

> κ∗ with κ∗ = 1 computes artifacts. The number of
these artifacts increases when either the SNR or the number of samples increases.
Similarly to [41], we modify the threshold κ∗ in (36) to κ∗ > 1 to reduce the
occurrence of artifacts.

In the following, we compute the probability of artifacts when the threshold
κ∗ in this condition varies. This relationship is exploited to control the proba-
bility of detecting artifacts at a prespecified level.

5.1 Derivation of Probability of Artifact for Array Pro-
cessing

We define the set of estimated components K̂ = {l ∈ L : γ̂l <∞}, with K̂ = |K̂|
components. Adopting the definitions in [41], we have the signal support Ψ̃ ,
{ψ̃k : k ∈ K} with the neighborhood Ψ̃(r) , ∪k∈KBr(ψ̃k), where Br(ψ) is the
open ball of radius r > 0 centered at ψ ∈ Ψ.

Assumption 1. We assume that the noise covariance matrix C , C(η) is
known and that the Kronecker factorization in (15) holds.

Assumption 2. We assume that signal atoms of artifacts are mutually or-
thogonal [41], i.e., for any ψ̂l′ , ψ̂l′′ ∈ Ψ \ Ψ̃(r) with l′, l′′ ∈ K̂ and l′ 6= l′′

s(ψ̂l′)
HC−1s(ψ̂l′′) = 0. We assume that these atoms are orthogonal to the esti-

mated signal atoms, i.e., s(ψ̂l)
HC−1s(ψ̂l′) = 0 with ψ̂l ∈ Ψ̃(r) and ψ̂l′ ∈ Ψ\Ψ̃(r)

with l, l′ ∈ K̂.

The probability of artifact is defined as [41]

P
(r)
A (κ) , P

[
∃l ∈ L : ψ̂l ∈ Ψ \ Ψ̃(r) ∧ γ̂l <∞

]

= P
[ ⋃

l∈L

{
ψ̂l ∈ Ψ \ Ψ̃(r) ∧ ũ(ψ̂l) ≥ κ

}]
, (43)

where ũ(ψl) = ζ−1
l |%l|2.

Theorem 1. When Assumption 1 and 2 hold, the probability of artifacts in
(43) can be upper-bounded according to [41, 48]

P
(r)
A (κ) ≤ P

[
sup
ψ∈Ψ

ũ(ψ) ≥ κ
]
. (44)
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The numerical value of the bound is given as

P
[

sup
ψ∈Ψ

ũ(ψ) > κ
]
∼ 4π

∫ T

0

∫ 2π

0

√
1

M

∑

m∈M
D2
m(ϕ)

× βw(ψ)ξτ (ψ)
√
f2
c − fcξϕ(ψ) + β2

w(ψ) dτdϕκe−κ (45)

where Dm(ϕ) = d(m)

c sin
(
ϕ − ϕ(m)

)
, m ∈ M, and we introduced the effective

square bandwidth β2
w(ψ), and the two loss factors ξτ (ψ) and ξϕ(ψ) whose defi-

nitions11 can be found in the supplementary material in Appendix B.

Note that the term
√

1
M

∑
mDm(ϕ)2 captures the impact of the array ge-

ometry. The terms βw(ψ), ξτ (ψ), and ξϕ(ψ) capture the impact of the baseband
signal parameters and DMC plus noise parameters.

Proof. We can rewrite (39) as

r̄l = n+
∑

k∈K,ψ̃k∈Ψ̃

µα,ks(ψ̃k)−
∑

l′∈K̂\l,ψ̂l′∈Ψ̃(r)

µ̂α,l′s(ψ̂l′)

−
∑

l′∈K̂\l,ψ̂l′∈Ψ\Ψ̃(r)

µ̂α,l′s(ψ̂l′) , (46)

where µα,k , α̃k. Inserting (46) into (38) and (37) and using Assumption 1 and

Assumption 2, we get for artifacts ψ̂l ∈ Ψ \ Ψ̃(r) with l ∈ K̂

ζ(ψ̂l) = s(ψ̂l)
HC−1s(ψ̂l), (47)

ρ(ψ̂l) = ζ(ψ̂l)s(ψ̂l)
HC−1n . (48)

Inserting (47) and (48) into (43) leads to the upper bound, stated in Theorem
1, i.e.

P
(r)
A (κ) ≤ P

[
sup
ψ∈Ψ

ũ(ψ) ≥ κ
]
. (49)

The upper boundedness comes from the fact that the support of the dispersion
parameters is not restricted to Ψ \ Ψ̃(r), but rather Ψ. Therefore, we have also
dropped the index l. The upper bound on the probability of artifacts is the
excursion probability that the maximum of the random process ũ(ψ) withψ ∈ Ψ
exceeds the threshold κ [48,62]. Therefore, the probability of artifacts is derived
by finding the excursion probability of the two dimensional χ2-random field
(random process with two dimensions)

u(ψ) = 2ũ(ψ) =

2
∣∣∣
∑

m∈M

〈
n(m), s(m)(ψ)

〉
H

∣∣∣
2

∑
m∈M

∥∥s(m)(ψ)
∥∥2

H
(50)

for large κ, where n(m) is the DMC plus noise vector for antenna m. For easier
readability we introduced the Hilbert space H with the weighted inner-product

11These terms are related to the Fisher information on the position error exploiting SMCs
and their in-depth explanation can be found in [6, 61].
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〈x,y〉H , σ2
wy

HC̃−1x, with the (m,m)th N×N block of the covariance matrix
C̃ = [C(η)]m,m. This weighted inner-product induces the norm ‖x‖2H , 〈x,x〉H
[61]. Note that since the variance of ũ(ψ) is one, we need to multiply it by 2 to be
in line with the definition of a χ2-distribution with two degrees of freedom [41].
We reformulate u(ψ) , |x(ψ)|2 = <{x(ψ)}2 + ={x(ψ)}2, where <{x(ψ)} and
={x(ψ)} are the imaginary and real part of x(ψ), respectively. Using [45] in [41]
it is shown that the results of [62] can be extended to circular complex processes.
The circularly-symmetric complex Gaussian random process x(ψ) is given as

x(ψ) =

√
2
∑

m∈M

〈
n(m), s(m)(ψ)

〉
H

√ ∑
m∈M

∥∥s(m)(ψ)
∥∥2

H

, (51)

where x(ψ) , x(τ, ϕ). This process has autocorrelation function E[x(ψ)x(ψ′)∗]
and has the following properties (the proofs can be found in the supplementary
material in Appendix A):

1. The variances of the real and imaginary parts of x(ψ) are E
[∣∣<{x(ψ)

∣∣2] =

1 and E
[∣∣={x(ψ)

∣∣2] = 1.

2. The real part <{x(ψ)} and the imaginary part ={x(ψ)} are independent
processes, i.e., E[<{x(ψ)}={x(ψ′)}] = 0 ∀ ψ, ψ′ ∈ Ψ.

Since <{x(ψ)} and ={x(ψ)} are independent and ψ is 2-dimensional, u(ψ)
is described by a 2-dimensional χ2-random field [48, 62] with two degrees of
freedom (real and imaginary part). In our case, ψ = [τ, ϕ]T ∈ Ψ = [0, T ) ×
[0, 2π), the domain Ψ represents a cylinder. Note that in general x(ψ) is non-
stationary w.r.t. τ and ϕ. Applying Weyl’s tube formula [49, Theorem 3.3.1] on
the non-stationary 2-dimensional χ2-random field and using [49, Theorem 4.4.1]
combined with the results of k-dimensional χ2-random fields [49, Section 4.5.2],
yields the following excursion probability asymptotically in κ, i.e. for κ→∞

P
[

sup
ψ

2ũ(ψ)≥ κ
]
∼
∫

Ψ

√
|det(Λ(ψ)|

4π2
dψκe−

κ
2 , (52)

where Λ(ψ) ∈ R2×2 is the covariance matrix of the 2-dimensional χ2 random
field:

Λ(ψ) =
1

2
E

[
∂x(ψ)

∂ψ

[
∂x(ψ)

∂ψ

]H
]

=
1

2




E
[
∂x(ψ)∂x(ψ)∗

∂τ2

]
E
[
∂x(ψ)∂x(ψ)∗

∂τ∂ϕ

]

E
[
∂x(ψ)∂x(ψ)∗

∂ϕ∂τ

]
E
[
∂x(ψ)∂x(ψ)∗

∂ϕ2

]


 . (53)

The entries in (53) are computed to be

E
[
∂x(ψ)∂x(ψ)∗

∂τ2

]
= 8π2β2

w(ψ)ξ2
τ (ψ) (54)

E
[
∂x(ψ)∂x(ψ)∗

∂ϕ2

]
=

8π2

M

∑

m∈M
D2
m(ϕ)

(
f2

c + fcξϕ(ψ) + β2
w(ψ)

)
(55)
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E
[
∂x(ψ)∂x(ψ)∗

∂τ∂ϕ

]
= E

[
∂x(ψ)∂x(ψ)∗

∂ϕ∂τ

]
= 0 . (56)

The detailed derivations can be found in the supplementary material in Ap-
pendix B. Using (54)-(56), det(Λ(ψ)) is calculated and plugged into (52)12.
By multiplying κ by 2 in (52), we obtain (45), which completes the proof of
Theorem 1.

To obtain a numerical value for the threshold κ we can state the following:

Corollary 1. Under Assumption 1 and 2, given ε > 0,

PA(κ∗) ≤ P
[

sup
ψ
ũ(ψ) ≥ κ∗

]
. ε, (57)

where the symbol . means “less than but close to”, provided κ∗ satisfies

κ∗ ≥ −W−1

(
− ε

4π

(∫ 2π

0

∫ T

0

√
1

M

∑

m∈M
D2
m(ϕ)

× βw(ψ)ξτ (ψ)
√
f2

c + fcξϕ(ψ) + β2
w(ψ) dϕdτ

)−1)
. (58)

Proof. We need to determine the minimum level of κ∗ > 1 such that the right-
hand side of (52) satisfies

∫
Ψ

√
|det(Λ(ψ)|/π2 dψκe−κ ≤ ε (κ is multiplied by

2). To that end we take the logarithm on both sides of the latter expression and
consider equality. After rearranging, we obtain

κ− log κ =

∫

Ψ

√
|det(Λ(ψ)|

π2
dψ − log ε. (59)

Solving for κ yields

κ∗ = −W−1

(
− πε∫

Ψ

√
|det(Λ(ψ)| dψ

)
, (60)

where W−1(·) is the second real branch of the Lambert W function. Using (54)
and (56), det(Λ(ψ)) is calculated and plugged into (60), which completes the
proof of Corollary 1.

Remark 1. Inequalities (57) and (58) of Corollary 1 can be used to control the
probability of artifacts of SBL algorithms.

6 Implementation

A summary of the proposed algorithm is shown in Algorithm 1. The algorithm is
split in two basic blocks, the acquisition and the refinement phase. Furthermore,
there is an overarching loop due to the iterative nature of the algorithm. More
details about the chosen scheduling can be found in the supplementary material
in Appendix C.

12Since Λ(ψ) is a non-negative hermitian its determinate is non-negative.
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Algorithm 1: Summary of the proposed algorithm.

Input : signal measurement r
Output: Estimates of model order K̂, dispersion parameters Ψ̂, noise

and DMC parameters η̂, and mean and covariance of the
complex amplitudes µ̂α and Ĉα, respectively.

1 Ψ̂, γ̂, µ̂α, Ĉα ← [ ]

2 η̂ ← [σ̂2
w, ϑ̂

T]T

with σ̂2
w ← ‖r‖2

NM and ϑ̂← [ ] (AWGN only)
3 do
4 acquisition()

5 refinement()

6 if DMC not yet initialized then

7 ϑ̂← [1m/c, σ̂2
w/2NTs, T/2, Ts]

T

8 η̂ ← [σ̂2
w/2, ϑ̂

T]T

9 initialize η̂ with least square curve fit
10 refinement()

11 end

12 µ̂α, Ĉα ← (25), (26), respectively

13 while ‖µ̂α‖0 changes

14 K̂ ← ‖µ̂α‖0

For the acquisition, we follow [63] and employ a bottom-up strategy, meaning
that we start with an empty model and add signal atoms iteratively into the
model. During the first acquisition and refinement phase, we choose to utilize
an AWGN-only model, i.e., (15) reduces to C(η) = σ2

wINM . After that, the
parameters of the DMC process ϑ are initialized using a least square curve fit
(line 6).

The acquisition procedure to fill the model is described in detail in Proce-
dure 1. In the acquisition phase, SMCs are added until the number of SMCs
‖µ̂α‖0 is not changing anymore or a maximum number of SMCs ‖µ̂α‖0 ≤ L
is reached. The operator ‖µ̂α‖0 gives the number of non-zero elements of the
vector µ̂α [23]. A candidate SMC is found by an “incoherent” estimation from
the residual signal followed by an update of the vectors η, Ψ, κ∗, and γ using
(32), (29), (58), and (36), respectively.

The refinement procedure is described in more detail in Procedure 2. In the
refinement phase, the parameters η, Ψ, κ∗, and γ (provided by the acquisition
phase) are updated using (32), (29), (58), and (36), respectively.

7 Experimental Results

To validate the algorithm, we first test it with synthetically generated mea-
surements according to the model given in (6) with the noise covariance given
in (15). We then apply the algorithm to measurements acquired in an indoor
environment. For all experiments, the transmitted pulse s(t) is a root-raised
cosine pulse with a roll-off factor of 0.6, and duration of Tp = 1 ns. The center
frequency is 6 GHz and the received signal is critically sampled.
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Procedure 1: Acquisition phase to add new components.

1 Procedure acquisition()

2 do

3 rres = r − S(Ψ̂)µ̂α

4 ψ̂candidate = arg min
ψ

|rHresC(η̂)−1s(ψ)|2
s(ψ)HC(η̂)−1s(ψ)

5 γ̂candidate = (|ρcandidate|2− ζcandidate)−1 (37), (38)

6 append (ψ̂candidate, γ̂candidate) to (Ψ̂, γ̂)
7 η̂ ← update according to (32)

8 Ψ̂← update according to (29)
9 κ∗ ← (58)

10 γ̂ ← update according to (36)
11 if any(γ̂ ==∞) then

12 remove component with minimal |ρl|
2

ζl
from (Ψ̂, γ̂)

13 end

14 µ̂α, Ĉα ← (25), (26), respectively

15 while ‖µ̂α‖0 grows or ‖µ̂α‖0 ≤ L

Procedure 2: Refinement phase of the proposed algorithm.

1 Procedure refinement()

2 do
3 η̂ ← update according to (32)

4 Ψ̂← update according to (29)
5 κ∗ ← (58)
6 γ̂ ← update according to (36)
7 if any(γ̂ ==∞) then

8 remove component with minimal |ρl|
2

ζl
from (Ψ̂, γ̂)

9 end

10 while not converged

7.1 Synthetic Radio Channels

The DMC process is generated using (14) with τon = 1m/c, γf = 5 ns and
β = 1.8. The power of the DMC process is specified via the specular-to-dense-

ratio SDR = 10 log10

(
1
M ‖

∑
k∈K α̃ks(ψ̃k)‖2
P/Ts

)
. In addition, AWGN is generated

with noise variance σ2
w, specified by the signal-to-noise ratio

SNR = 10 log10

(
1
M ‖

∑
k∈K α̃ks(ψ̃k)‖2+P/Ts

σ2
w

)
. Both ratios are defined for a single-

antenna channel.

7.1.1 Estimation of a Single Component

We first empirically validate the probability of artifacts given in (45) and the
probability of missed detection. For a single SMC, the probability of missed
detection can be approximated in line with [41]. For NM → ∞ and a given
ψ ∈ Ψ̃(r), the distribution of u(ψ) = 2ζ(ψ)−1|ρ(ψ)|2 can be approximated
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by a non-central chi-square distribution with 2 degrees of freedom and non-

centrality parameter 2η = 2 |α̃|
2

σ2
w

∑
m∈M〈s(m)(ψ̃), s(m)(ψ)〉H, with ψ̃ and α̃ as

the true dispersion parameters and complex amplitude of the SMC, respectively.
The proof that u(ψ) is asymptotically approximated by a non-central chi-square
distribution can be found in [41]. Therefore, the probability of missed detection

P
(r)
M (κ) ≤ P[1/2u(ψ) < κ] of a model component is approximated by [41]

P
(r)
M (κ) =

∫ κ

0

e−(x+η)I0(2
√
ηx)dx. (61)

To analyze the probability of missed detection and get an operating charac-
teristic, we synthesize a signal with a single SMC according to (6) for a 5 × 2
array with an inter-element spacing of 2 cm. We adapt the algorithm presented in
Algorithm 1 to utilize a fixed threshold κ∗ and set L = 10.13 The parameters of
the SMC are set as follows: we fix the delay of the SMC to τ̃1 = 3m/c, and draw
the AoA of the SMC uniformly over its range ϕ̃1 ∼ U(0, 2π). The SDR = −5 dB,
the SNR = {5, 10, 20} dB and the number of samples N = 54. By fixing the de-
lay of the SMC, we are able to evaluate the probability of missed detection, as
the non-centrality parameter stays constant at η = {8.2, 12.2, 16.7} dB for the
different values of the SNR. For the detection of the SMC, the non-centrality
parameter η plays a more important role than the SNR. In fact, the DMC pro-
cess has a saturating effect on the non-centrality parameter which can be seen
as a signal-to-interference-plus-noise-ratio [61].14

Fig. 2 shows a comparison of the analytical probability of artifacts P
(r)
A (κ)

(dashed lines) with the relative frequency of artifacts (solid lines) computed
empirically from 1000 trials according to the setup described above. If one of
the estimated components falls within 5 times the square root of the Cramér
Rao lower bound [64] around the true value of ψ̃1 it is recognized as a successful
detection and used to compute the empirical relative frequency of missed de-
tection (dotted lines) which is compared to the analytical probability of missed

detection P
(r)
M (κ) (dash dotted lines).

The derivations in the previous section have been made with the assumption
that the covariance matrix is known. Thus, we compare the results for known
(Fig. 2a) and estimated (Fig. 2b) covariance matrix. The influence of the esti-
mation of the covariance matrix is only small with respect to the probability of
artifact and missed detection. For the latter, the following observation can be
made: If the parameters of the covariance matrix are estimated, the probability
of missed detection is slightly lower. This is because during the first acquisition
procedure, SMCs are favored with respect to the DMC. For small SNR, the rela-
tive frequency of missed detection shows a floor at small values of the threshold
κ. For these SNRs when κ is small, the estimated components are outside the
previously defined radius around the true component.

7.1.2 Estimation of overlapping SMCs

In Fig. 3, we highlight the super-resolution capabilities of the algorithm (note
that in Fig. 3 we depict the delays as distances (remember that d = τc with c

13We restrict the value of L to reduce the computational load.
14In an AWGN-only setup (neglecting the DMC), the non-centrality parameter reduces to

the SNR.
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Figure 2: Operating characteristics of the algorithm for the estimation of a
single SMC for known (a) and unknown (b) covariance matrix for three different

values of SNR = [5, 10, 20] dB. The analytical probability of artifact P
(r)
A (κ)

and the analytical probability of missed detection P
(r)
m (κ) are compared to the

relative frequency of artifacts and the relative frequency of missed detection for
1000 realizations, respectively.

as speed-of-light) for easier readability of the plots). To this end, signals with
K = 2 SMCs are synthesized with different spacings in the delay and angular
domains. The location ψ1 of the first SMC in the 2D delay-angular space is
drawn uniformly within the support of the delay15 and angular domains. The
location of the second dispersion parameter is then given by ψ̃2 = ψ̃1+[∆d/c, 0]T

or ψ̃2 = ψ̃1 + [0,∆ϕ]T.

The spacing ∆d, depicted by the bottom x-axis (blue solid curves), and ∆ϕ,
depicted by the top x-axis (red dashed curves), are fractions of the recipro-
cal Nyquist bandwidth (0.3 m) and Rayleigh resolution (56 ◦), respectively [65].
Both complex amplitudes have a magnitude of 1 and a uniformly drawn phase.
In Fig. 3 we depict the delays as distances (remember that d = τc with c
as speed-of-light) for easier readability of the plots. The used array is a two-
dimensional 3× 3 rectangular array with an inter-element spacing of 2 cm. The
SDR = 6 dB, the SNR = {10, 30, 50} dB and the number of samples N = 54. As
before, we set the number of estimated SMCs to L = 10 and the probability of
artifact to 0.1 % and compute the according threshold κ∗ online.

15For this experiment the support of the delay of the first SMC is restricted to be in
[2Tp, T − (2Tp + ∆d/c)]. The reason for this is that the SMCs shall be within the observation
duration.
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Figure 3: Estimation of two closely spaced SMCs with a 3× 3 array with inter-
element spacing of 2 cm in AWGN plus DMC with unknown covariance matrix.
Blue solid lines and red dashed lines refer to the bottom and top x-axis, respec-
tively. The rows depict different SNR: (a)-(e) SNR = 10 dB, (f)-(j) SNR = 30 dB,
and (k)-(o) SNR = 50 dB. The columns depict the mean number of estimated
SMCs ((a), (f), and (k)), the relative frequency that exactly 2 SMCs are found
((b), (g), and (l)), the RMSE of the delay ((c), (h), and (m)), the RMSE of the
AoA ((d), (i), and (n)), and the mean value (unfilled) and RMSE (filled) of the
absolute value of the complex amplitudes ((e), (j), and (o)).

In Fig. 3 we compare the proposed Type-II algorithm (circles) to a determin-
istic maximum likelihood (DML) algorithm (triangles) with the same scheduling.
The derivation of the DML algorithm and the detailed update equations can
be found in the supplementary material in Appendix D. As classical DML does
not include model-order selection, we utilize similar reasoning as in [46], adapt
it to the signal model in the supplementary material in Appendix D and apply
the threshold derived in Sec. 5.

The first two columns of Fig. 3 show the mean number of estimated SMCs
〈K̂〉 and the relative frequency that exactly 2 SMCs are estimated 〈1(K̂ = 2)〉
over the spacing in the delay (blue solid curves) and angular (red dashed curves)
domain. Both the proposed Type-II and the DML algorithm are able to find the
correct number of SMCs if the spacing between the two SMCs is wide enough.
For a high SNR (see Fig. 3 (k) to (o)) this spacing is as low as 0.15 m or 20 ◦

for the simulated system parameters. At lower SNR (see Fig. 3 (a) to (e)) the
spacing to robustly detect both SMCs rises to the reciprocal Nyquist bandwidth
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Figure 4: Picture of the investigated room. The anchor position pA, the agent
position p1 as well as some items are labeled (cf. Fig. 5).

(0.3 m) and Rayleigh resolution (56◦). However, the spacing to robustly detect
two SMCs is not only influenced by the AWGN but also by the DMC, meaning
that for high SNR the detection capability is capped by the SDR. Furthermore,
both algorithms tend to underestimate the model order for very small spacings
and do not produce artifacts.

Columns three and four depict the root-mean-square error (RMSE) of the
delay (distance) and the AoA, respectively, if exactly 2 SMCs are found. We
associate the two estimated SMCs to the true SMCs via the optimal sub-pattern
assignment (OSPA) metric [66]. To be able to use the OSPA metric we normalize
the estimated delays and AoAs with the reciprocal Nyquist bandwidth and
Rayleigh resolution, respectively. Additionally, the root of the sum CRLB for
the delays and AoAs are depicted (solid lines with stars). The estimated values
approach the root CRLB if the spacing is large enough for both estimators.

The last column presents the mean of the absolute value of the complex
amplitudes 〈∑l |α̂l|〉 (empty markers) and the RMSE of the absolute value of
the complex amplitudes (filled markers) if exactly 2 SMCs are found.

While the two estimators show nearly no difference in the estimation of the
dispersion parameters delay and AoA, the estimation of the complex amplitudes
is clearly different for narrow spacings. This can be explained by the fact that
the DML utilizes a least-squares estimator for the complex amplitudes. If the
two estimated SMCs are closely spaced, the inverse needed for the least squares
estimator is close to singular, leading to estimates for the complex amplitudes
that are huge but have opposite sign.

7.2 Measured Radio Channels

The measurements were performed in the room depicted in Fig. 4 using an m-
sequence correlative channel sounder [67]. More details about the measurement
setup can be found in [68]. The channel sounder measures within a bandwidth
of 7 GHz centered at 7 GHz. We reduced the overall bandwidth by filtering
with a root-raised-cosine pulse at a center frequency of 6 GHz. This filtered
signal does not include any noticeable AWGN, hence, to arrive at the model
described in (3), we artificially add AWGN with an SNR = 40 dB. By using a
positioning table during the measurement campaign, a virtual 3 × 3 antenna
array with inter-element spacing of 2 cm is employed. Furthermore, we set the
observation duration to range from −4 to 40 m, leading to N = 235 samples.
For the algorithm, we set the probability of artifact to 1 % and compute the
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Figure 5: Floorplan of the investigated environment including the anchor posi-
tion pA, the two agent positions p1 (red filled circle) and p2 (blue filled triangle),
the estimated VAs for agent 1 (red crosses) and agent 2 (blue pluses) and the
associated VAs (black circles and triangles, respectively). The ellipses around
the estimated VAs depict root CRLBs (magnified by a factor of 50 in the delay
domain and 5 in the AoA domain).

according threshold κ∗ online. Furthermore, we set L = MN to the number of
samples.

The layout of the room is depicted in Fig. 5. This is an exact model of the
room, including the position of the anchor pA. We placed the agent at two
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Figure 6: Detailed analysis for one array: (a): Estimated delay-azimuth power
spectrum of the received signal r including the estimated SMCs (red crosses),
associated predicted SMCs (red circles) and non-associated predicted SMCs
(blue diamonds). (b): Estimated DPS of the received signal r (solid blue with

crosses), the residual signal r − S(Ψ̂)µ̂α (solid red with pluses), and the esti-
mated parametrized DPS plus AWGN (solid black with stars). (c): Estimated

delay-azimuth power spectrum of the residual signal r − S(Ψ̂)µ̂α and non-
associated predicted SMCs (blue diamonds) (d): Estimated APS for the same
signals as in (b).

different positions p1 and p2 equipped with the virtual array. SMCs are pre-
dicted arising from virtual anchors (VAs). These VAs are obtained as mirror
images of the anchor with respect to the walls [6]. Up to 5th-order reflections
are considered. SMCs can be seen as if they originate from these VAs, meaning
inversely that an estimated VA position can be inferred from the estimates of
the SMCs ψ̂l as p̂A,l = p+ cτ̂l[cos(ϕ̂l) sin(ϕ̂l)]

T. These estimated VA positions
are depicted by red crosses and blue pluses for agent positions p ∈ {p1,p2},
respectively. To associate estimated SMCs with predicted SMCs, we use a fre-
quentist approach: we compute the CRLB of the estimated delay and AoA and
associate a predicted SMC if both its delay and AoA fall within 5 times the
estimated root-CRLB. Due to calibration artifacts in the measured data16, we
added 10 cm to the estimated root-CRLB in the delay domain. These associ-
ated predicted VAs are depicted in Fig. 5 by black circles and triangles for agent
1 and 2, respectively. Clearly, most of the estimated SMCs are associated to

16The measurement setup was calibrated up to the antenna connectors, meaning that the
antennas are not calibrated for.

170



predicted VAs. Additionally, in Fig. 5 we added the estimated root-CRLBs for
the estimated VA positions as error ellipses with a 50-fold increase in the delay
domain and a 5-fold increase in the angular domain.

For both agent positions the algorithm is able to identify the LOS, most
of the first-order reflections and some higher-order reflections. Especially the
second-order reflections via the white board and the window are found as these
surfaces are made of highly reflective materials. In comparison, the “plaster
board west” and “plaster board east” reflections correspond to much less re-
flective plasterboard walls. Furthermore, a metallic frame has been present
(see Fig. 4) This could also explain the detected component at approximately
[−8, 6]T m close to the plaster board west which probably stems from scattering
from this metallic frame. For agent position 2 many SMCs are found in the re-
gion at [−15, 8]T m which can probably also be attributed to the metallic frame
which is not modeled in the floorplan, hence no predicted VAs are generated.

In Fig. 6 the results are shown in more detail for agent position 1. In Fig. 6(a),
the estimated delay-azimuth power spectrum is depicted [69] for the received
signal. The red crosses mark the delay and angle of the estimated SMCs, the
red circles mark the associated predicted SMCs, and the blue diamonds mark
the non-associated predicted SMCs. Again, most of the estimated SMCs are
associated with geometrically expected SMCs. Furthermore, it could be argued
that the estimated SMCs at 15 m and 10 ◦, and at 12 m and 150 ◦ should be
associated to the close predicted VAs. Again, it has to be mentioned, that the
red circles and blue diamonds are purely due to ’geometric’ ray tracing and do
not consider reflection coefficients, blocking by some furniture, etc. In Fig. 6(c)
the estimated delay-azimuth power spectrum is shown for the residual signal
r−S(Ψ̂)µ̂α and compared to the non-associated VAs (blue triangles). Clearly,
the strong peaks have vanished. Fig. 6(b) shows the estimated DPS for the origi-
nal signal (solid blue with crosses), the residual signal (solid red with pluses), and
the estimated parametrized DPS plus AWGN (solid black with stars). The es-
timated DPS is computed by averaging the corresponding delay-azimuth power
spectrum. The residual estimated DPS and the estimated parametrized DPS
match well. This empirically justifies the choice of a gamma-function for the
DPS. Finally, Fig. 6(d) depicts the estimated angle-power-spectrum (APS) for
the same signals as in Fig. 6(b). The APS is computed by averaging the corre-
sponding delay-azimuth power spectrum over the delay domain. It can be seen
that the APS of the residual signal is already quite flat over the whole azimuth
range.

8 Conclusions

In this paper, we investigate a super-resolution SBL algorithm for single-input-
multiple-output (SIMO) multipath channel parameter estimation using a hier-
archical Gaussian prior. Particularly, a Type-II point-estimate-based SBL al-
gorithm is developed with a hierarchical Gaussian prior, which is applicable
to colored non-stationary noise models, capable of representing measurement
noise plus DMC. The algorithm jointly estimates the delays and AoAs of the
SMCs, the DMC and noise parameters, and the number of SMCs (model order).
Whether an SMC is considered as part of the model or discarded as an estima-
tion artifact is based on a sparsity parameter, which is only finite, if a built-in
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pruning condition exceeds a (detection) threshold. This threshold is derived by a
probability of artifacts using two-dimensional non-stationary χ2-random fields.
It is suitable for common signal pulses, i.e., even or odd waveforms, general
symmetric array-geometries, and a general noise covariance matrix.

The numerical results show that the expected probability of artifacts based
on the derived threshold predicts very accurately the actual relative frequency
of the proposed algorithm. We also show that the proposed algorithm is capable
of determining the correct model order and estimating the parameters of the
SMCs, the DMC and noise with high accuracy (close to the CRLB performance)
even for SMC spacings far below the Nyquist and Rayleigh separation (in delay
and angle domain). The comparison to an equivalent Type-I point-estimate-
based ML algorithm shows that both algorithms perform similarly in terms of
accurate model-order estimation and accuracy of model parameters. However,
the complex amplitudes estimated by the Type-I point-estimate-based ML al-
gorithm show a very high estimation bias and variance for closely-spaced SMCs,
while this is not the case for the proposed Type-II point-estimate-based SBL
algorithm.
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A Properties of Gaussian Process

Assuming that n(m) is zero-mean complex Gaussian noise with known covari-
ance matrix C̃ = [C(η)]m,m (the (m,m)th N × N block of the covariance
matrix), we get:

E
[
x(ψ)

]
= C1

∑

m∈M
E
[
〈n(m), s(m)(ψ)〉H

]
= 0 (1)

where C1 =
√

2/
( ∑
m∈M

∥∥s(m)(ψ)
∥∥2

H
)1/2

.

Furthermore,

E
[
|<{x(ψ)}|2

]
= E

[
<{x(ψ)}T<{x(ψ)}

]

= C2
1E
[∣∣ ∑

m∈M
〈<{n(m)},<{s(m)(ψ)}〉H

+ 〈={n(m)},={s(m)(ψ}〉H
∣∣2]

= C2
1

1

2

∑

m∈M
‖<{s(m)}‖2H + ‖={s(m)}‖2H = 1.

A similar derivation leads to E
[
|={x(ψ)}|2

]
= 1.

To show that E[<{x(ψ)}={x(ψ′)}T] = 0, we assume that the real and
imaginary part of the transmitted complex baseband signal are equal, i.e.,
<{s(t)} = ={s(t)} = s̃(t), and define s̃(m)(ψ) = [s̃

(
− (N − 1)/2Ts − τ +
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g
(
ϕ,p(m)

))
· · · s̃

(
(N − 1)/2Ts − τ + g

(
ϕ,p(m)

))
]T ∈ RN×1

E
[
<{x(ψ)}={x(ψ′)}T

]
=

= C1C2E
[
<
{ ∑

m∈M
〈n(m), s(m)(ψ)〉H

}
=
{ ∑

m∈M
〈n(m), s(m)(ψ′)〉H

}]

= C1C2

∑

m∈M
〈s̃(m)(ψ), s̃(m)(ψ′)〉H sin

(
2πfc

(
g
(
ϕ,p(m)

)
− g
(
ϕ′,p(m)

)))

≈ C1C2〈s̃(cg)(ψ), s̃(cg)(ψ′)〉H
×
∑

m∈M
sin
(
2πfc

(
cos(ϕ(m))C3 + sin(ϕ(m))C4

))
(2)

= 0 , (3)

where C2 =
√

2/
( ∑
m∈M

∥∥s(m)(ψ′)
∥∥2

H
)1/2

. For (2) we assumed

〈s̃(m)(ψ), s̃(m)(ψ′)〉H ≈ 〈s̃(m′)(ψ), s̃(m′)(ψ′)〉H ≈ 〈s̃(cg)(ψ), s̃(cg)(ψ′)〉H with

s̃(cg)(ψ) at the center of gravity of the array1, and defined C3 = cos(ϕ − ψ) −
cos(ϕ′ − ψ), and C4 = sin(ϕ− ψ)− sin(ϕ′ − ψ). Finally, to get from (2) to (3)
we need the antenna array to be symmetric w.r.t. the x-axis and y-axis, i.e.,
p(m) = −p(M−m+1).

B Covariance of 2-dimensional χ2 Random Field

One entry of (52) is given in general as (4).

E
[∂x(ψ)∂x(ψ)∗

∂ψi∂ψj

]
= 2

( ∑
m∈M

〈∂s
(m)(ψ)
∂ψi

, ∂s
(m)(ψ)
∂ψj

〉H
∑

m∈M
‖s(m)(ψ)‖2H

(4)

−

∑
m∈M

〈s(m)(ψ), ∂s
(m)(ψ)
∂ψi

〉H<
{ ∑
m′∈M

〈s(m′)(ψ), ∂s
(m′)(ψ)
∂ψj

〉H
}

∣∣∣
∑

m∈M
‖s(m)(ψ)‖2H

∣∣∣
2

−

∑
m∈M

〈∂s
(m)(ψ)
∂ψj

, s(m)(ψ)〉H<
{ ∑
m′∈M

〈s(m′)(ψ), ∂s
(m′)(ψ)
∂ψi

〉H
}

∣∣∣
∑

m∈M
‖s(m)(ψ)‖2H

∣∣∣
2

+

<
{ ∑
m∈M

〈s(m)(ψ), ∂s
(m)(ψ)
∂ψi

〉H
}
<
{ ∑
m′∈M

〈s(m′)(ψ), ∂s
(m′)(ψ)
∂ψj

〉H
}

∣∣∣
∑

m∈M
‖s(m)(ψ)‖2H

∣∣∣
2

)

We define the partial derivative w.r.t. the delay, i.e.,

∂s(m)(ψ)/∂τ = −ej2πfcg(ϕ,p
(m))ṡ(m)(ψ) and w.r.t. the AoA, i.e.,

∂s(m)(ψ)/∂ϕ = −Dm(ϕ) exp(j2πfcg(ϕ,p(m)))(ṡ(m)(ψ) + j2πfcs
(m)(ψ)) with

1This approximation is exact for a wideband signal model for the array, i.e.,

s(t; τ, ϕ,p(m)) = ej2πfcg(ϕ,p
(m))s(t− τ).

180



Dm(ϕ) = d(m)

c sin
(
ϕ−ψ−ϕ(m)

)
, s(m)(ψ) = [s

(
0− τ + g

(
ϕ,p(m)

))
· · · s

(
(N −

1)Ts − τ + g
(
ϕ,p(m)

))
]T ∈ CN×1, and ṡ(m)(ψ) = ∂s(m)(ψ)/∂t . To present the

more intuitive results from the main text, we introduce the following approxi-
mations

‖ṡ(m)(ψ)‖H ≈ ‖ṡ(cg)(ψ)‖H (5)

〈s(m)(ψ), ṡ(m)(ψ)〉H ≈ 〈s(cg)(ψ), ṡ(cg)(ψ)〉H (6)

‖s(m)(ψ)‖H ≈ ‖s(cg)(ψ)‖H (7)

where (5)-(7) hold ∀m ∈M and the superscript (cg) indicates the signals at the
center of gravity of the array2.

The specific entries are then given as:

E
[∂x(ψ)∂x(ψ)∗

∂τ2

]
= 2

( ∑
m∈M

‖ṡ(m)(ψ)‖H
∑

m∈M
‖s(m)(ψ)‖2H

−
<
{ ∑
m∈M

〈s(m)(ψ), ṡ(m)(ψ)〉H
}2

∣∣∣
∑

m∈M
‖s(m)(ψ)‖2H

∣∣∣
2

)
(8)

≈ 2
‖ṡ(cg)(ψ)‖2H
‖s(cg)(ψ)‖2H

(
1− <

{
〈s(cg)(ψ), ṡ(cg)(ψ)〉H

}2

‖s(cg)(ψ)‖2H‖ṡ(cg)(ψ)‖2H

)
, (9)

= 8π2β2
w(ψ)ξ2

τ (ψ) , (10)

where β2
w(ψ) = ‖ṡ(cg)(ψ)‖2H/(4π2‖s(cg)(ψ)‖2H) as the whitened effective square

bandwidth and ξ2
τ (ψ) = 1 − <

{
〈s(cg)(ψ),ṡ(cg)(ψ)〉H

}2

‖s(cg)(ψ)‖2H‖ṡ(cg)(ψ)‖2H
as a loss factor w.r.t. the

delay τ [1].

E
[∂x(ψ)∂x(ψ)∗

∂ϕ2

]
≈ 2

M

∑

m∈M
D2
m(ϕ)

(
4π2β2

w(ψ)

+ 4π2f2
c − 4πfc

=
{
〈s(cg)(ψ), ṡ(cg)(ψ)〉H

}

‖s(cg)(ψ)‖2H

)

=
8π2

M

(
β2

w(ψ) + f2
c − fcξϕ(ψ)

) ∑

m∈M
D2
m(ϕ) (11)

where ξϕ(ψ) = =
{
〈s(cg)(ψ), ṡ(cg)(ψ)〉H

}
/(π‖s(cg)(ψ)‖2H) as a loss factor w.r.t.

the AoA and the last three terms in (4) become zero as all include only one
derivative w.r.t. the AoA leading to a single

∑
m∈MDm(ϕ) which is zero.

Finally,

E
[∂x(ψ)∂x(ψ)∗

∂τ∂ϕ

]
≈ 0, (12)

as all terms in (4) become zero because all include only one derivative w.r.t. the
AoA leading to a single

∑
m∈MDm(ϕ) being zero.

2The approximations (5)-(7) hold exactly for either a stationary covariance matrix or the
wideband signal model.
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C Scheduling

To highlight the scheduling of the estimator, we chose to present results for
the following (rather easy) setup: The main parameters are set to the same
values as in the main text of the paper [2]. Furthermore, the number of samples
N = 107, the number of SMCs K = 3 with parameters according to Table 1,
the SNR = 23 dB, and the SDR = 0.7 dB.

Parameters of SMCs

τ̃kc ϕ̃k

1 3 0

2 4 70

3 13 130

Table 1: Parameters of the SMCs including the delay expressed as a distance
im m, and the AoA in ◦.

Fig. 1 depicts the results after certain parts of the algorithm have been com-
puted. All subfigures include the squared absolute value of the residual signals
(at the individual antennas, ), the mean squared received signal ( ), the
mean squared residual signal ( ), and the diagonal of the estimated covari-
ance matrix ( ) over relative delay expressed as a distance. Additionally, the
parameters of the SMCs with a finite hyperparameter value are included in each
subfigure in the table.

Fig. 1a shows the results after the first acquisition phase. As mentioned in the
main part of the paper, the first acquisition phase is executed with an AWGN
only model, meaning that the covariance matrix does only depend on σ2

w. Due to
the AWGN only model, the algorithm is not able (in the first acquisition phase)
to find the correct SMCs, but rather underestimates the number of SMCs in the
latter part of the signal and overestimates the number of SMCs in the first part
of the signal. Fig. 1b shows the results after the parameters of the DMC have
been initialized, including the refinement phase thereafter. One can see that the
SMC at 3.75 m is pruned and only the first two SMCs are included in the model.
After the second acquisition phase, presented in Fig. 1c, the third SMC is added
to the model. Finally, Fig. 1d depicts the results after final convergence of the
algorithm.

D Deterministic ML - Type I ML

As a comparison method, we utilize a Type I maximum likelihood estimator
(also known as deterministic ML (DML)). This method is comparable to SAGE
[3] or Rimax [4]. In comparison to the Type II maximum likelihood estimator
(stochastic ML (SML)), the Type I ML looks at the complex amplitudes as
deterministic unknowns. The log-likelihood function is given as

log(f(r|Ψ,η,α)

∝ − log(det(C(η)))− rHC(η)−1r

+αHS(Ψ)HC(η)−1r + rHC(η)−1S(Ψ)α
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1 2.999 -0.396
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(b) after 1st Refinement and Initialization of the
DMC parameters
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2 3.987 72.006
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(c) after 2nd Acquisition
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1 3.000 -0.066

2 3.987 71.996

3 12.934 128.783

Distance in m

(d) Final-Result

Figure 1: Exemplary view of the acquisition and refinement phases of the algo-
rithm. Each subfigure shows a plot of the squared absolute value of the residual
signal ( ), the mean squared received signal ( ), the mean squared resid-
ual signal ( ), and the diagonal of the estimated covariance matrix ( )
over the relative delay expressed as a distance. The estimated parameters of the
SMCs with finite hyperparameter are included within the small table in each
subfigure.).

−αHS(Ψ)HC(η)−1S(Ψ)α . (13)

Solving for the complex amplitude α with η and Ψ kept fixed

α̂ = (S(Ψ)HC(η)−1S(Ψ))−1S(Ψ)HC(η)−1r . (14)

Reinserting (14) into (13) leads to the concentrated log-likelihood function

log(f(r|Ψ,η,α)

∝ − log(det(C(η)))− rHC(η)−1r

+ rHC(η)−1S(Ψ̂)(S(Ψ̂)HC(η)−1S(Ψ̂))−1

× S(Ψ̂)HC(η)−1r . (15)

183



Algorithm 1: Summary of the Type-I ML algorithm.

Input : signal measurement r
Output: Estimates of model order K̂, atom parameters Ψ̂, noise and

DMC parameters η̂, and complex amplitudes α̂.
1 Ψ̂, α̂← [ ]

2 η̂ ← [σ̂2
w, ϑ̂

T]T with σ̂2
w ← ‖r‖2

NM and ϑ̂← [ ] (AWGN only)
3 do
4 acquisition()

5 refinement()

6 if DMC not yet initialized then

7 ϑ̂← [1/c, σ̂2
w/2NTs, T/2, Ts]

T

8 η̂ ← [σ̂2
w/2, ϑ̂

T]T

9 initialize η̂ with least square curve fit
10 refinement()

11 end
12 α̂← (14)

13 while ‖µ̂α‖0 changes

14 K̂ ← ‖α̂‖0

Based on the concentrated log-likelihood function in (15) we came up with the
following Type I ML update rules for Ψ and η

Ψ̂ = arg min
Ψ

− rHC(η̂)−1S(Ψ)(S(Ψ)HC(η̂)−1S(Ψ))−1

× S(Ψ)HC(η̂)−1r (16)

η̂ = arg min
η

log(det(C(η))) + rHC(η)−1r

− rHC(η)−1S(Ψ̂)(S(Ψ̂)HC(η)−1S(Ψ̂))−1

× S(Ψ̂)HC(η)−1r . (17)

These update equations could also be derived by utilizing the same framework
as in the main text of the paper. By postulating that the proxy pdfs factorize
as q(Ψ,η|r) = q(Ψ|r)q(η|r) and assuming point estimates (to derive an ML)
for q(Ψ|r) = δ(Ψ − Ψ̄) and q(η|r) = δ(η − η̄). Applying variational Bayesian
inference on (15) we came up with the update rules in (16) and (17).

A summary of the proposed Type I ML algorithm is shown in Algorithm
1. We used the same scheduling as for the Type II ML to compare the two
algorithms in a fair way.

To be able to infer the number of SMCs with the Type I framework, we
utilized an adapted version of [5]. More specifically, we compute the following
test statistic (compared to [5] we need to incorporate the non-stationary colored
covariance matrix C)

T (ψ̂l) =
|〈C−1/2n, P⊥

l̄
C−1/2s(ψ̂l)〉|2

‖(P⊥
l̄

)1/2C−1/2s(ψ̂l)‖2
, (18)
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Procedure 1: Acquisition phase to add new components.

1 Procedure acquisition()

2 do

3 rres = r − S(Ψ̂)α̂

4 ψ̂candidate = arg min
ψ

|rHresC(η̂)−1s(ψ)|2
s(ψ)HC(η̂)−1s(ψ)

5 append ψ̂candidate to Ψ̂
6 η̂ ← update according to (17)

7 Ψ̂← update according to (16)
8 κ∗ ← (57) in main text [2]
9 T ← update according to (18)

10 if any(T < κ∗) then

11 remove component with minimal T from Ψ̂
12 end
13 α̂← (14)

14 while ‖α̂‖0 grows or ‖α̂‖0 ≥ L

Procedure 2: Refinement phase of the proposed algorithm.

1 Procedure refinement()

2 do
3 η̂ ← update according to (17)

4 Ψ̂← update according to (16)
5 κ∗ ← (57) in main text [2]
6 T ← update according to (18)
7 if any(T < κ∗) then

8 remove component with minimal T from Ψ̂
9 end

10 while not converged

where

P⊥l̄ = I −C−1/2S(Ψ̂l̄)(S(Ψ̂l̄)
HC−1S(Ψ̂l̄))

−1

× S(Ψ̂l̄)
HC−1/2 (19)

is defined as the orthogonal projection operator onto the space spanned by
C−1/2S(Ψ̂l̄) and Ψ̂l̄ is the vector Ψ̂ without the l-th entry. Furthermore, we

define T = [T (ψ̂1) . . . T (ψ̂L)]T. Using the same reasoning as in [5], we can utilize
the threshold derived in the main text [2].
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1 Special Cases of the Pruning Condition

In the following, we present some cases of special interest of the bound derived
in [1, (44)]:

Corollary 1. For blockspectrum (sinc-pulse in the time domain) and AWGN
only, the bound in [1, (44)] reduces to

P
[

sup
ψ∈Ψ

ũ(ψ) > κ
]
∼ 4π

√√√√N2 − 1

12

(
f2

c +
N2 − 1

12N2T 2
s

)
(1)

×
∫

ϕ

√
1

M

∑

m∈M
D2
m(ϕ) dϕκe−κ .

Proof. By assuming AWGN only, β2
w(ψ) reduces to the effective square band-

width β2. For block spectrum the effective square bandwidth is given as β2 =
‖ṡ(cg)(ψ)‖2/(4π2‖s(cg)(ψ)‖2) = (N2− 1)/(12N2T 2

s ). The loss factors reduce to

ξτ (ψ) = 1− <
{
〈s(cg)(ψ),ṡ(cg)(ψ)〉

}2

‖s(cg)(ψ)‖2‖ṡ(cg)(ψ)‖2 = 1 and

ξϕ(ψ) = =
{
〈s(cg)(ψ), ṡ(cg)(ψ)〉

}
/(π‖s(cg)(ψ)‖2) = 0 for an even or odd pulse

waveform s(t) which completes the proof.

Corollary 2. In the case of a rectangular array with equally spaced antennas,
(1) can be rewritten as

P
[

sup
ψ∈Ψ

ũ(ψ) > κ
]
∼ 4π

√√√√N2 − 1

12

(
f2

c +
N2 − 1

12N2T 2
s

)
(2)

×

∫

ϕ

√√√√
(
d2
x

c2
sin2(ϕ− ψ)

M2
x − 1

12
+
d2
y

c2
cos2(ϕ− ψ)

M2
y − 1

12

)
dϕκe−κ,

whereMx andMy are the numbers of antennas in x and y direction, respectively,
and dx and dy are the spacings between the antennas in x and y direction,
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respectively. For quadratic uniform arrays, the bound given in (2) reduces to

P
[

sup
ψ∈Ψ

ũ(ψ) > κ
]
∼ 8π2

√√√√N2 − 1

12

(
f2

c +
N2 − 1

12N2T 2
s

)
d2

c2
M − 1

12
κe−κ , (3)

where d = dx = dy is the spacing between antennas and M = MxMy is the
number of antennas.

Proof. For a rectangular array, the square aperture function is given as

∑

m∈M
D2
m(ϕ) =My

d2
x

c2
sin2(ϕ− ψ)

Mx(M2
x − 1)

12

+Mx

d2
y

c2
cos2(ϕ− ψ)

My(M2
y − 1)

12
.

Plugging this into (1) yields (3).

2 Comparison to Atomic Norm Soft Threshold-
ing

In the last few years, several publications utilizing atomic norm denoising for
spectral line estimation have been proposed [2,3]. While [2] focus on a single do-
main (either delay or AoA), [3] highlights the application of atomic norm denois-
ing for two or more domains. For a single domain, an exact semidefinite program
to solve atomic norm minimization can be developed [2]. However, for higher
dimensional domain problems only an approximate semidefinite program can
be formulated [3]. Furthermore, it is important to highlight that atomic norm
methods denoise the received signal and do not directly estimate the number
of components or the spectral frequencies of these components. Thus, another
algorithm is needed, applied subsequently on the denoised signal. Thus, matrix
enhancement and matrix pencil [4] is proposed to be applied to the denoised
signal [3]. Furthermore, for atomic norm denoising to work, the following prereq-
uisites need to be given: (i) additive white Gaussian noise, (ii) block spectrum,
(iii) uniform linear array(ULA).

In the following two plots we compare the proposed algorithm with the
algorithm proposed in [3], called Atomic Norm Soft Thresholding (ANST), and
with the plain (without previously applying ANST) matrix enhancement and
matrix pencil (MEMP) algorithm [4]. We chose to utilize the same simulation
framework as in [1, Fig. 3] (estimation of two closely spaced SMCs).

In Fig. 1 the signal model as presented in [1, (3)] is used to generate the
signal. The SDR = ∞dB (or no DMC is simulated), SNR = {10, 30, 50} dB,
the number of samples is set to N = 11, and the number of antennas is 5. The
location of the first SMC is drawn uniformly within the support of the delay
and angular domain1. The location of the second dispersion parameter is then

1For this experiment the support of the delay of the first SMC ψ̃1 is restricted to be in
[2Tp/c, T −(2Tp +∆τ)/c. The reason for this is that the SMCs shall be within the observation
duration. For the angular domain the support of the AoA is restricted to be in [−π/2 +
δϕ, π/2 − δϕ+ ∆ϕ), where δϕ is the Rayleigh resolution of the ULA.
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Figure 1: Estimation of two closely spaced SMCs with a 1 × 5 uniform linear
array in AWGN with known covariance matrix. Blue solid lines and red dashed
lines refer to the bottom and top x-axis, respectively. The rows depict different
SNR: (a)-(d) SNR = 10 dB, (e)-(h) SNR = 30 dB, and (i)-(l) SNR = 50 dB.
The columns depict the mean number of estimated SMCs ((a), (e), and (i)), the
relative frequency that exactly 2 SMCs are found ((b), (f), and (j)), the RMSE
of the delay ((c), (g), and (k)), the RMSE of the AoA ((d), (h), and (l)).

given by ψ̃2 = ψ̃1 + [∆τ, 0]T or ψ̃2 = ψ̃1 + [0,∆ϕ]T for the bottom x-axis (blue
solid curves) and top axis (red dashed curves) in Fig. 1, respectively. In Fig. 1
we actually depict the delays as distances (remember that d = τc with c as
speed-of-light) for better readability of the plots.

The first column in Fig. 1 shows the mean number of estimated components.
The Type II (circles) and ANST (triangles) estimators show a comparable per-
formance for low SNR. The MEMP only (diamonds) estimator does not work
anymore and only estimates an single SMC if the components start overlapping
and may add up constructively. Remember that the complex amplitudes are
drawn randomly, thus the two overlapping SMCs can add up constructively or
destructively. For a higher SNR (second row) the Type II estimator outperforms
both, the ANST and MEMP estimator which perform similarly. For very high
SNR (third row), the MEMP estimates too many SMCs. This is due to a model
mismatch of the generative and inference signal model. The generative signal
model is based on [1, (3)] which we refer to as ultra-wideband (UWB) signal
model. The inference model for MEMP (and also ANST) is based on a wideband
signal model which neglects the time delay between different antenna elements,
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thus [1, (3)] becomes

r(m)(t) =
∑

k∈K
α̃kej2πfcg(ϕ̃k,p

(m))s
(
t− τ̃k

)
. (4)

This model mismatch leads to additional estimated SMCs for the MEMP esti-
mator. The ANST method reduces this problem, as the denoising process takes
part of this mismatch and contributes it to noise. The subsequently applied
MEMP algorithm, used on the denoised signal, is then able to find the cor-
rect number of SMCs. However, for a spacing of exactly twice the inverse of the
Nyquist bandwidth, the ANST algorithm shows more outliers. This is due to the
fact, that the sidelobes of the two SMCs overlap exactly, leading to potentially
constructive interference between the two mismodeled SMCs. We verified that
at spacings of multiples of the inverse of the Nyquist bandwidth this behavior
occurs again.

The second column in Fig. 1 presents the probability that exactly two SMCs
are detected. The third and fourth column depict the RMSE if exactly 2 SMCs
are found of the distance and the AoA, respectively. The same association pro-
cess as in [1] is utilized. The proposed Type II estimator outperforms the ANST
and MEMP estimators nearly for all SNRs. Only the RMSE for the AoA at the
lowest SNR (Fig. 1d) shows larger outliers than the ANST and MEMP estima-
tors. This can be explained by the large sidelobes of a ULA (especially at AoAs
approaching endfire) and the iterative nature of the proposed algorithm. As the
ANST and MEMP algorithm perform a global optimization they do not show
this behavior. However, in our opinion, this behavior is not a big problem. By
reducing the aperture of the array slightly, meaning that we reduce the antenna
spacing to values below λ/2, these outliers vanish. For the MEMP estimator it is
not possible to reduce the array aperture, as it operates in the spatial frequency
domain, meaning that the estimated frequency is in the range from [−0.5, 0.5).
However, for array spacings below λ/2 the frequency is generally in a smaller
range [−fr, fr], where fr < 0.5.

In Fig. 2, the same analysis as in Fig. 1 is presented if the generative model is
changed to the wideband model given in (4). For the proposed Type II estimator
we also changed the inference model to the wideband model. Now the ANST
and MEMP estimator do not show the outliers at high SNR. Nevertheless, the
proposed estimator outperforms both the ANST and the MEMP estimator.
At low SNR (first row) the ANST estimator performs better than the MEMP
estimator as the denoising of the received signal leads to an increased detection
of the SMCs. At high SNR (second row) both the ANST and MEMP estimator
perform nearly similar and at very high SNR (third row) the MEMP estimator
outperforms the ANST estimator. This can be explained, as for the ANST
algorithm a subsequent MEMP algorithm is applied after denoising. However,
for MEMP to estimate the number of components a noise estimate is necessary.
While for the MEMP only method the noise is assumed to be known (as for the
denoising process in ANST), the noise of the denoised signal is unknown and
needs to be estimated [4, 5].
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Figure 2: Estimation of two closely spaced SMCs with a 1 × 5 uniform linear
array in AWGN with known covariance matrix. Blue solid lines and red dashed
lines refer to the bottom and top x-axis, respectively. The rows depict different
SNR: (a)-(d) SNR = 10 dB, (e)-(h) SNR = 30 dB, and (i)-(l) SNR = 50 dB.
The columns depict the mean number of estimated SMCs ((a), (e), and (i)), the
relative frequency that exactly 2 SMCs are found ((b), (f), and (j)), the RMSE
of the delay ((c), (g), and (k)), the RMSE of the AoA ((d), (h), and (l)).
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