

Abstract

Simulations help us to develop new hardware for the future. As the development of new
hardware needs to get faster and result in fewer errors, new approaches to perform the
simulations need to be developed. This thesis explores the idea to generate the stimuli for
the hardware simulations based on the simulation of the intended use cases.

During the work at this thesis two core questions are asked and answered. The first ques-
tion is how the stimuli can be created from a description of the use case and how the
created stimuli can be fed to the hardware simulation. The second question deals with
the speed of the simulation. As hardware simulations can be slow, and additionally simu-
lating the intended use cases further reduces the simulation speed, we seek new methods
to accelerate the simulation.

The developed concept is based on the co-simulation of the hardware and the intended
environment. The use cases for the new hardware specify the parameters for the envi-
ronment simulation. Inside this virtual environment one or multiple instances of the new
hardware are placed and connected to the hardware simulation. The environment simu-
lation is then able to generate the effects of the environment on the new hardware. These
effects can be produced by any property that is generated by the environment itself such as
gravity or light, or can be produced by data that is transmitted through the environment
to communicate with the new hardware. In addition to that, the new hardware is also
able to communicate to other entities in the environment by using attached actuators or
communication interfaces.
To test the developed concept, the Gazebo simulator, a simulation tool for robotic pur-
poses, is used to simulate the environment. The hardware simulation is performed using
the SystemC language. This allows the simulation of the hardware at any layer of abstrac-
tion.
As an example, a co-simulation is considered, where a sensor platform can be accessed by
a robot using a wireless communication interface.
The hardware simulation can experience large amounts of idle time when also simulating
the environment of the hardware. This can happen when, for example, an entity moves in
the environment. Such events can go unnoticed by the hardware. For such cases, acceler-
ation methods for the hardware simulations have been created. These methods work by
checking the received input data. The information gained by observing the input data is
combined with the knowledge about the internal state of the hardware to decide whether
the full simulation needs to be executed or if the resulting changes can be estimated. To
minimize errors due to non-linearities of the full model that are not represented in the
estimation, the estimation process can also trigger the full simulation.
These methods can not only accelerate the overall simulation process, but can also reduce

the memory requirements needed to store the created trace-files.

Two sensor prototypes have been created to generate data for the simulations and help
verifying the simulation concept. These prototypes are able to generate data on the en-
ergy output of energy harvesting methods and the energy usage of the components of a
smart sensor. Furthermore, the testbench for one of the prototypes is able to emulate the
behaviour of various energy sources.

As this thesis was funded by the IoSense project, the developed simulation concepts and
the hardware prototypes have been used by project partners in order to examine new
sensor hardware.

Kurzfassung

Simulationen helfen uns bei der Entwicklung neuer Hardware für die Zukunft. Da die Ent-
wicklung von neuer Hardware schneller und trotzdem weniger fehlerhaft sein soll, müssen
neue Ansätze zur Durchführung der Simulationen entwickelt werden. Diese Dissertation
ging der Idee nach, die Stimuli für die Hardwaresimulationen auf Basis der vorgesehe-
nen Anwendungsfälle zu generieren. Während der Arbeit an dieser Dissertation wurden
zwei Kernfragen gestellt und beantwortet. Die erste Frage ist, wie die Stimuli durch eine
Beschreibung der Anwendungsfälle generiert werden können und wie die erzeugten Sti-
muli der Hardwaresimulation zugeführt werden können. Die zweite Frage beschäftigt sich
mit der Geschwindigkeit der Simulation. Da Hardwaresimulationen langsam sein können
und die zusätzliche Simulation der Anwendungsfälle die Simulationsgeschwindigkeit weiter
verringert, wird im Zuge dieser Frage geklärt, welche Methoden zur Beschleunigung der
Simulation es gibt.

Das entwickelte Konzept basiert auf der Kosimulation der Hardware und der geplanten
Umgebung. Die Anwendungsfälle für die neue Hardware spezifizieren die Parameter für
die Simulation der Umgebung. In dieser virtuellen Umgebung werden ein oder mehrere
Exemplare der neuen Hardware platziert und mit der Hardwaresimulation verbunden. Die
Umgebungssimulation kann dann die Effekte der Umgebung auf die Hardware generieren.
Diese Effekte können durch jede Eigenschaft der Umgebung selbst, also Gravitation oder
Lichteinfall, oder durch Daten, die durch die Umgebung gesendet werden um mit der neu-
en Hardware zu kommunizieren, verursacht werden. Zusätzlich ist die neue Hardware in
der Lage mit anderen Entitäten in der Umgebung zu kommunizieren. Dies kann durch die
Verwendung von angebrachten Aktuatoren oder Kommunikationsschnittstellen geschehen.
Um das entwickelte Konzept zu testen wurde der Gazebo Simulator, ein Simulationswerk-
zeug für die Robotik, verwendet um die Umgebung der neuen Hardware zu simulieren.
Die Hardwaresimulation wurde in der SystemC-Sprache geschrieben. Dies erlaubt die Si-
mulation der Hardware auf unterschiedlichen Abstraktionsebenen. Beispielhaft wurde die
Kosimulation einer Sensorplattform untersucht welche von einem Roboter über eine ka-
bellose Kommunikationsschnittstelle kontaktiert werden kann.
Die Hardwaresimulation kann langen Wartezeiten ausgesetzt sein wenn die Umbebung der
Hardware mitsimuliert wird. Dies kann beispielsweise der Fall sein wenn sich eine Entität
in der Umgebung bewegt. Ein solches Event kann von der Hardware übersehen werden.
Für solche Fälle wurden Methoden zur Beschleunigung der Hardwaresimulation erstellt.
Diese Methoden zur Beschleunigung überprüfen die empfangenen Eingaben der Simulation
um die Simulation zu beschleunigen. Die gewonnene Information aus dem Beobachten der
Eingaben wird mit dem Wissen um den internen Zustand der Simulation verbunden um
zu ermitteln ob die komplette Simulation ausgeführt werden muss oder ob die resultieren-
den Änderungen abgeschätzt werden können. Um die Fehler der Abschätzung, die durch

in der Abschätzung nicht berücksichtigte Nichtlinearitäten entstehen, zu minimieren kann
der Abschätzungsprozess auch die vollständige Simulation anstarten.
Diese Methoden können nicht nur den Gesamtprozess der Simulation beschleunigen son-
dern auch die Anforderungen an den Speicher reduzieren, um die erstellten Trace-Dateien
zu speichern.

Es wurden zwei Sensor Prototypen entwickelt um die Daten für die Simulation zu gene-
rieren und um das Simulationskonzept zu verifizieren. Diese Prototypen sind in der Lage
Daten über die Energieausbeute von Energiegewinnungsmethoden und den Energiever-
brauch der Komponenten eines intelligenten Sensors zu generieren. Desweiteren ist ein
Prüfstand der Prototypen dazu in der Lage, das Verhalten von verschiedenen Energie-
quellen zu emulieren.

Da diese Dissertation durch das IoSense Projekt finanziert wurde, wurden die entwickelten
Simulationskonzepte und die Prototypen von Projektpartnern dazu verwendet um neue
Sensorkomponenten zu testen.

Note of Thanks

Herewith I would like to thank all those who have guided me in the course of this doctoral
thesis.

I want to express my thankfulness to Associate Prof. Dipl.-Ing. Dr. Christian Steger, who
has tutored me while conducting this work. His professional and personal support guided
me throughout this time. The comments of my supervisor, Univ.-Prof. Dipl.-Inform.
Dr.sc.ETH Kay Uwe Römer, have significantly improved the quality of this thesis. For
this task he deserves the biggest thanks. Dipl.-Ing. Holger Bock’s skilful assistance and
Andreas Wallner’s competent help have significantly contributed to improving the expe-
rience of this work.

A special thank you goes to the students Fikret Basic and Benjamin Mößlang, who pro-
vided some results for my thesis and helped by conducting their theses with me.

Beyond that I want to thank my parents Josef and Edith and my brothers Daniel and
Roman, who enabled me to participate in this study and encouraged me throughout it.
Their support has led me through these tough times.

Furthermore, I want to thank Natalie, my girlfriend, for her patience and the support she
gave me. Without her the experience of conducting this thesis would not have been the
same.

Another special thank you goes to my fellow students Jakob, Marco, Sarah, and Thomas,
who also supported me on countless occasions throughout my university time. The dis-
cussions with them have inspired and brightened my time, I found true friends in them.
Especially I want to thank Thomas, with whom I also shared the office during the course
of this thesis and conducted his researches in the same project.

Last but not least I want to thank all my friends who patiently supported me.

Contents

List Of Figures xix

List Of Abbreviations xxi

1 Introduction 25
1.1 Motivation . 26
1.2 Contribution . 26
1.3 Outline . 29

2 Background and Related Work 31
2.1 Background . 31
2.2 Related Work . 33

2.2.1 Co-Simulations . 33
2.2.2 X-in-the-Loop Simulations . 34
2.2.3 Stimuli Generation for Simulations 35
2.2.4 SystemC Co-simulation . 36
2.2.5 Parallel SystemC . 36
2.2.6 Network Simulations . 37
2.2.7 Speed vs. Accuracy of Simulations 38

3 Design 41
3.1 Expanding Model-in-the-Loop Simulations 41

3.1.1 Requirements of the SSiL simulation 41
3.1.2 Stimuli Generation in XiL Simulations 42
3.1.3 X-in-the-Loop Co-Simulation . 43
3.1.4 Synchronizing the Simulations . 44

3.2 Optimizing the Simulation Speed of Co-Simulations 44
3.2.1 Simulation State Estimation . 45
3.2.2 State Changes due to the Estimation 47
3.2.3 Applying the Optimizations to SystemC 48

4 Implementation 51
4.1 Requirements for the implementation . 52
4.2 Connecting Unlike Simulators . 56

4.2.1 Instantiation . 56
4.2.2 Communication Between the Simulations 58
4.2.3 Timing Differences . 58
4.2.4 Speed Bottlenecks and Remedies 59

4.3 Parallelizing the Simulations . 62
4.3.1 Parallelization by Interleaving Simulation Steps 62
4.3.2 Parallelization by Using a Central Connection 62

4.4 Example Simulation . 64
4.4.1 Acquiring Data for the Simulation 65
4.4.2 Implementation of the Example Simulation 68

– xv –

4.4.3 Optimization Handling of the Example Simulation 70

5 Evaluation 73
5.1 Results of the Example Simulations . 73

5.1.1 Generated Raw Data and Post-Processed Data 73
5.1.2 Differences Between Optimized and Non-optimized Simulations . . 74

5.2 Validation of Simulation Results . 76
5.2.1 Results of the Prototype Measurements and Simulations 76

5.3 Discussion of the Results . 79

6 Conclusions and Future Work 81
6.1 Conclusion . 81

6.1.1 New Intellectual Contributions . 82
6.2 Improvements to the Simulation Concept 82
6.3 Recommendations for Future Research . 83

7 Acknowledgements 85

Bibliography 87

A Publications 97

List of Figures

1.1 Overview of the thesis. 27

2.1 Lockstep synchronization. 35

3.1 Simulation time advancement of parallel simulations and synchronization. 42
3.2 Concept of an XiL simulation. 43
3.3 Time steps of multiple simulators and synchronization points. 44
3.4 Real time used for steps when using estimation techniques. 45
3.5 Simulation of charges at a capacitor. Calculated and estimated. 48
3.6 Errors of the simulation and the estimations. 48

4.1 Concept to integrate SystemC with an environment simulation. 52
4.2 Communication interface states on Gazebo side. 54
4.3 Communication interface states on SystemC side. 55
4.4 Actions to start SystemC by forking from Gazebo. 57
4.5 Actions to connect SystemC to Gazebo via a network. 57
4.6 Communication to be synchronized at the end of a Gazebo time step. . . 59
4.7 Execution of interleaved and non-interleaved simulations. 61
4.8 Sequence diagram for interleaved simulations. 61
4.9 Difference between the non-parallel and the interleaved simulation. 62
4.10 Communication for to connect to SystemC over a network. 64
4.11 Block Diagram of the simulated smart sensor. 65
4.12 Diagram of the expansion PCB of Prototype A. 66
4.13 Prototype to explore energy harvesting methods. 66
4.14 Prototype of a smart sensor and power measurement unit. 67
4.15 Diagram of the PCB design for Prototype B. 67
4.16 Block diagram of Prototype B. 68
4.17 Robot holding an NFC reader approaching the sensor. 69
4.18 Trace from the SystemC simulation. 69

5.1 Time compression of the optimizations in the trace. 74
5.2 RTF increase over different operations using optimizations. 75
5.3 Loss in accuracy because of the optimizations. 76
5.4 Measurement of Prototype A during charging. 77
5.5 Comparison between measurement and simulation of the charging process. 77
5.6 Measurements of Prototype B’s internal currents during operations. . . . 78
5.7 Simulation of the internal loads of a smart sensor. 78

– xix –

List Of Abbreviations

3D Three Dimensional

ACSL Advanced Continuous Simulation Language

CPS Cyber Physical System

CRV Constrained Random Verification

CS Continuous Simulation

DES Discrete Event Simulation

FMI Functional Mockup Interface

GNS3 Graphical Network Simulator-3

GPIO General Purpose Input Output

GPU Graphics Processing Unit

HDL Hardware Description Language

HiL Hardware in the Loop

IDSSO Input Dependent Simulation Speed Optimization

IoT Internet of Things

JSON Java Script Object Notation

LBNL Lawrence Berkeley National Laboratory

MiL Model in the Loop

NFC Near Field Communication

NS-2 Network Simulator Version 2

NS-3 Network Simulator Version 3

OMNET++ Objective Modular Network Testbed in C++

PCB Printed Circuit Board

PiL Processor-in-the-Loop

RTF Real-Time-Factor

RTL Register Transfer Level

SC Security Controller

SiL Software-in-the-Loop

SIMCOS Simulation of Continuous Systems

SSiL System Simulation in the Loop

TLM Transaction-Level Modelling

uC or µC Micro Controller

VHDL Very High Speed Integrated Circuit Hardware Description Language

ViL Vehicle-in-the-Loop

WSN Wireless Sensor Network

XiL X in the Loop

– xxi –

XML Extensible Markup Language

YAML YAML Ain’t Markup Language

1
Introduction

The design of new hardware can require a lot of testing, especially if there is no re-use of
already tested building blocks. To test the new designs, simulations are often used. There
are many simulation tools available to test the functionality of a single piece of hardware.
These simulation instances are written in Hardware Description Languages (HDLs). These
languages, such as the Very High Speed Integrated Circuit HDL (VHDL)[1] or Verilog [2]
describe the hardware in detail. The resulting specification, which describes the hardware,
can be used to synthesize the final hardware layout which can then be manufactured. Other
languages, such as SystemC [3], are designed to describe the hardware on a higher level
of abstraction. This reduces the amount of work needed to create a decent simulation.
Furthermore, as the description is more abstract, fewer calculations are required to sim-
ulate the behaviour. Thus the simulation is faster. This comes at the cost of increased
development time if the created design is then to be synthesized.

All these simulation tools are designed to be used to simulate one piece of hardware. In the
case of VHDL or Verilog one chip is simulated. Due to the higher abstraction, SystemC is
being used to simulate a collection of components. To perform simulations that connect
multiple such collections, other simulation methods need to be used.

There are some tools that can be used to simulate a collection of individual computing
nodes. One of the most prevalent tools to simulate a network of computers is Simics [4].
Furthermore, simulation tools for Wireless Sensor Networks (WSNs)[5] can be used to
estimate the connectivity between the nodes.

The primary use of these tools is to test different distributed algorithms. All those simu-
lation tools sacrifice accuracy for speed [6]. This decrease in accuracy is acceptable for
these applications as slightly different computation times or different energy consumption
does not change the validity of the algorithm. These tools are, however, not intended to
be used to validate the behaviour of the hardware itself.

There are further simulators used to simulate WSNs, such as OMNET++ [7], the LBNL
network simulator (or NS-2 [8]), NS-3 [9], or GNS3 [10]. These simulators are designed to
simulate the communication between the sensor nodes. To do so, these simulators use ab-
stract models of the hardware. These simulators do either not care about the environment
at all or use a simplified static environment as a reference.

– 25 –

1 Introduction

1.1 Motivation

WSN nodes are the most basic instance of a Cyber Physical System (CPS). The United
States National Science Foundation defines CPS as follows [11]:

CPS are engineered systems that are built from, and depend upon, the seam-
less integration of computation and physical components. CPS tightly inte-
grate computing devices, actuation and control, networking infrastructure, and
sensing of the physical world.

Creating new hardware that is intended for the use in a CPS thus requires simulations
of the hardware in their intended physical environment. As Ying and Sztipanovits stated
in their report [6], new simulation tools are needed to fully model CPS hardware in their
environment.

This problem also occurred in the IoSense [12] project. Here we needed a simulation
that can estimate the effects on the lifetime of sensors caused by hardware and software
changes. These sensors are powered, read, and configured by using NFC technology. This
puts forward the problem that the estimations need to be very accurate as charging an
overly large capacitor is inefficient.

This combination of problems, the lack of simulation tools for CPS and the project that
needs a very accurate simulation of a CPS in the corresponding environment led to the
research that culminated in this thesis.

1.2 Contribution

In this thesis a new concept to model and simulate CPSs is being explored. An overview
about this thesis is given in Figure 1.1.
As the simulation of the CPSs should be excited by stimuli created from use cases, a proper
definition of the terms “stimulate” and “use case” is needed. In the “IEEE standard
glossary of modeling and simulation terminology” the term “stimulate” is defined in the
following way [13]

To provide input to a system in order to observe or evaluate the system’s
response.

The term “use case” is defined by the IEEE 26515:2018 standard as the following [14]

Description of behavioural requirements of a system and its interaction with a
user.

The work of this thesis starts at the top of this image: State of the art analysis of
hardware systems simulations. Here the focus is on the security andefficiency of new
hardware. This work resulted in a first publication (P1). The next step is the analysis of
the creation of the stimuli for hardware simulations. At this point the research questions of
this thesis have been defined as: How can the stimuli for the hardware simulation be created
using the use case description, and how can the simulation be made more efficient? The

– 26 –

1.2 Contribution

Figure 1.1: Overview of this thesis. It starts by analyzing the state of the art regarding simulations
of hardware. Then two research questions (yellow boxes) are formed from occurring
problems. The solutions to these questions are finalized in the green boxes. During this
thesis six publications (P1 - P6 in blue circles) have been created.

– 27 –

1 Introduction

answers to these questions are shown in the green boxes. During the process of answering
the research questions more publications (P2 - P6) have been created.

To solve the problem of creating a tool that can efficiently simulate the behaviour of a
CPS while also simulating the hardware itself, it is of utmost importance to understand
the basic concepts of hardware simulation. Stimuli of the surroundings need to be fed into
the simulation of the hardware. This is usually done by using precomputed stimuli. In
the case of simulating a sensor and actuator network this is not possible, as the input of
a sensor circularly depends on the output of an actuator. Thus, the stimuli need to be
generated inside the simulation environment.

The calculation of stimuli for a hardware simulation poses two problems:

1. How can the stimuli be calculated automatically if a description of the use-case is
available?

2. How can the simulation speed be improved while maintaining the accuracy of the
simulation where it is needed?

To generate stimuli for a hardware simulation that depend on the output of the simula-
tion itself, a co-simulation of the hardware and the use case can be performed. In this
co-simulation an initial stimulus can be created that is projected onto the hardware simu-
lation. When the calculations of the hardware reaction are completed, the outputs can
be used to compute the reaction of the environment that represents the use case. This
reaction leads to an update of the stimuli on the hardware. This approach can also be
used if multiple hardware instances are situated in the simulated environment. In the case
of a sensor simulation, a three dimensional (3D) environment can be used. This allows the
placement of virtual sensors in the environment, taking measurements of the surroundings,
and represent effects of the sensors actions that in turn can be measured again. In other
words, a simulation similar to a “Hardware in the Loop (HiL) simulation” is created where
also the hardware itself is simulated. This differs from a so called “Model in the Loop
(MiL) simulation” [15] as in the MiL simulation the model only functionally represents
the intended hardware. Brockmeyer et al. state in their publication that the used hard-
ware model in a MiL simulation is usually a crude reference model of the intended final
hardware [16]. Thus, the SystemC simulation used in this thesis represents an extended
and refined version of such a hardware model that can already be used to execute code
written for this hardware. Such simulation can be called a “System Simulation in the
Loop (SSiL)”.
The overhead in computation imposed by this simulation technique further reduces the
simulation speed as more calculations need to be performed to achieve the same result.
Question two is therefore equally important to be answered.

As other simulators that compute the behaviour of multiple computers show, the simula-
tion speed can be improved by reducing the accuracy of the simulation [17]. One possibility
where the accuracy can be reduced is during the phases when a sensor is idle. During these
phases only the volatile values, such as the idle energy consumption, need to be estimated.
Further simulation speed improvements can be achieved by combining multiple estimation
steps or pausing the simulation if the sensor becomes idle during the simulation step. So,
this thesis explores the possibility to monitor the stimuli of the simulation to decide if the

– 28 –

1.3 Outline

simulation of the next step will cause significant changes to the overall system.
Such improvements can benefit the simulation speed while the reduction in accuracy is
minimal.

To test the concepts developed in this thesis, an example simulation has been written.
Using this simulation, we are able to derive the errors that are introduced by the co-
simulation, as well as the speed improvements.

1.3 Outline

In Chapter 2 background information about the simulation of sensors is presented. Fur-
thermore, the work of other researchers are examined, and significant differences to our
work are highlighted. Chapter 3 focuses on the design of the simulator. This chapter starts
by defining requirements for the simulator. Furthermore, the generation of stimuli in the
designed co-simulation is evaluated. A major topic in this chapter is the optimization of
the simulation to achieve useful simulation speeds. Crucial steps of the implementation
are explained in Chapter 4. This chapter focuses on the realization of the design. To do
so, requirements are formulated and implemented. Furthermore, this chapter defines an
example simulation as a proof of concept that is used to test the simulator. The results of
the proof-of-concept simulation and the evaluation of the results are shown in Chapter 5.
Possible improvements to the current state of the simulator are explained in Chapter 6. A
conclusion of this thesis is also given in this chapter. Acknowledgements to the sponsors
and partners without which this thesis would not have been possible are given in Chapter
7.

In appendix A the publications that have been created in the course of this thesis are
attached.

– 29 –

2
Background and Related Work

This chapter focuses on the background upon which this thesis builds. General information
about simulations, sensor efficiency, and sensor security are presented. Furthermore, the
work of other researchers that have studied and are studying this field are presented and
compared to this thesis.

2.1 Background

This section provides information about techniques used throughout this thesis. As this
thesis revolves around the topic of simulations, general information about this topic is
presented here. Furthermore, a part of this section is dedicated to the simulation tools
which are used to implement the developed concepts.

It is a fact that there are many types of simulations, which are used to predict the be-
haviour of an arbitrary system or process without disrupting the actual system or the need
to create the system before the experiments [18]. To be able to do this, a model of the
desired system needs to be created. In the case of a user who wants to create a realistic
model of an already existing system, the simulation results are compared to the real sys-
tem and then the model is refined. If the user wants to create a new system that should
fulfil defined requirements, the simulations show if the requirements are met. Should the
requirements not be met, the analysis of the simulation allows the refinement of the new
system in order to get closer to the goal. There are simulations for any kind of system
such as chemical systems [19], electrical systems [1–3,20], and robotic systems [21–24]. In
the course of this thesis electrical and robotic systems are examined in greater detail.

Simulations have two core measures that can be improved or traded for each other: ac-
curacy and speed [25, 26]. If simulations need to be more accurate, more calculations are
needed to be done and therefore the simulation speed is slower. To find a good balance
between these two core measures is the core issue when optimizing a simulation.

This thesis explores the possibility to devise a simulation where not only one part (hard-
ware or environment) is simulated, but both with distinct simulators. To realize such an
approach this thesis uses SystemC [3] to simulate the hardware and the Gazebo simulator
[21] to provide an environment simulation.

SystemC is chosen as it is able to simulate a system on a high layer of abstraction and is
therefore able to achieve a high simulation speed. The Gazebo simulator is widely known
in the community of robotics. As its functionality can be expanded by implementing

– 31 –

2 Background and Related Work

plugins, a wide array of physical properties can be supported.

Simulation Types

There are two main groups of simulations: “Continuous simulations” (CSs) and “Discrete
event simulations” (DESs).

Continuous simulations can be written with languages such as the “Advanced Continuous
Simulation Language” (ACSL) [27] or “Simulation of Continuous Systems” SIMCOS [28,
29].
These simulations typically use differential equations to describe a system that is then
simulated. By solving the set of given differential equations the solution of the simulation
is calculated.

For systems that cannot be easily modelled using differential equations, discrete event
simulations (or event-based simulations) are used. DESs change their simulation state at
discrete points in time. Mathematically this corresponds to a step-function [30]. This
assumes that the simulation state does not change between the simulation steps. When
using sufficiently small simulation steps, accurate results can be generated.

SystemC

SystemC [3] is an expansion of C++ to allow the description of hardware. To do so, it
adds a notion of time to C++ and introduces a method to compute parallel tasks [31]. It
is an event-based simulation that supports the simulation of hardware on different layers
of abstraction.
The communication between the modules of the simulation is based on logical signals
and channels. Each module needs to provide ports to transmit data in and out of the
module. A module can be nested in another module. Nested modules are connected using
a channel. A complete description and tutorial on the use of SystemC has been written
by Black et al. [32].
In a typical SystemC simulation the testbench provides the master clock for the simulated
components and represents the environment where the stimuli are created. The testbench
furthermore monitors channels in the modules of the simulation to create a trace-file for
the user.
SystemC is used in this thesis because of its ability to simulate the hardware on a high
layer of abstraction.

Gazebo

Gazebo is a simulation tool developed by the Open Source Robotics Foundation [21]. It
is a simulation tool for robotic purposes. It operates in discrete time steps. Each module
of the simulation needs to implement a function that is called upon every time step. As
the modules are called after each other and the core of Gazebo waits for each module to
finish its calculations, the complete simulation operates sequentially.
The communication between the modules of the simulation is based on a publish-subscribe
pattern. The simulation core provides the data structures necessary to provide this com-
munication. Each module can publish data to the topics and can subscribe to the topics

– 32 –

2.2 Related Work

it wants information about.
These simulations typically contain one or more robots that move through the environ-
ment. This provides the user with the possibility to check a robot’s behaviour in certain
conditions.
Gazebo was used in this thesis because of its extensibility. By implementing plugins vari-
ous new features can be added. Furthermore, due to the large user community, there are
a lot of plugins available that help in the development process.

Stimuli of Simulations

Stimuli are required to inflict change on a system and observe its reaction to it. In classi-
cal hardware simulation such stimuli are either generated manually to test the hardware
reaction in a certain use case, or the stimuli are generated randomly using a Constrained-
Random-Verification (CRV) technique. CRV is used to randomly test stimuli examples in
the stimuli-space. There are some methods that try to improve the speed of CRV methods
[33–36].
As CPS are interacting with their environment and expect plausible inputs, CRV is not
useful to test these systems. Therefore, also the environment needs to be simulated in
conjunction with the CPS. Fummi et al. created a simulation of an embedded system that
interacts with the environment [37]. In their paper the authors present a co-simulation of
SystemC and NS-2. In their case the focus lies on the simulation of the available bandwith
for applications with respect to different protocols.
In the case of MiL simulations, the stimuli can be generated by the intended surrounding
itself, or a functional model of the surrounding [16]. In this work, the stimuli are generated
by a model of the environment.

2.2 Related Work

This section compares the work of this thesis to already existing work found in the
literature. As this work can be analyzed from different perspectives, this section also
illustrates the different aspects of this work.

2.2.1 Co-Simulations

Co-simulation is defined as the coordinated execution of two or more models that differ in
their representation as well as in their runtime environment [38]. Steinbrink et al. state
that the definition of Schloegl et al. implies some sort of interaction between hardware
and software. But if the purpose of the co-simulation is to conduct the testing of the
hardware it is a HiL simulation [39]. The authors furthermore state that the benefit of a
co-simulation is the separation of the modelling and simulation tasks. Thus different teams
can cooperate in creating the co-simulation. Each team provides input to the simulation
based on their core expertise. This then enables the modelling and simulation of large
complex systems and so-called “systems of systems”.

– 33 –

2 Background and Related Work

The creation and orchestration of such large simulations is a major task when creating
co-simulations. To do so the Functional Mockup Interface (FMI) [40] can be used [41].
During the conduction of this thesis FMI interfaces have been developed for SystemC [42]
and Gazebo [43].

In the FMI definition for co-simulations every solver (or simulator) is a slave to the
FMI-master. That implies that the master defines a time interval for which the simulators
need to do the simulation. At the end of this step the generated information is transmitted
to the intended recipient simulator. To use the FMI for a co-simulation, the simulation
needs to be built with that in mind.
In contrast to that, the implementation of this thesis incorporates the “master” side of
the communication in the environment in which the sub-simulation takes place. In the
example used in this thesis the master simulation is the Gazebo simulation calculating
the environment, and the slave simulation is the SystemC simulation that receives stimuli
from the environment and returns its result to the environment. The approach in this
thesis only requires that the testbench supports the in- and output of information to any
other simulation.

Another framework that is used to create co-simulations of CPS has been proposed by
Zhang et al. [44]. This framework also requires that all simulation components are created
with the final goal of connecting them. Also in this framework the synchronization of the
component simulations is done either by the communication controller or the clocks run
independent of each other.

2.2.2 X-in-the-Loop Simulations

There is a lot of research in the literature about X-in-the-Loop (XiL) simulations. Most
of the research focuses on the creation of better HiL simulations [45–47]. According to
Brockmeyer et al. the HiL simulations are to be done after the other XiL simulations
[16]. This is due to the fact that a functioning hardware needs to exist before the HiL
simulations can start.

MiL simulation is not that prominent in the literature [15,48]. Most MiL simulations have
been created for the automotive industry.

XiL simulations, other than MiL and HiL, that occur in the literature are Software-
in-the-Loop (SiL) and Processor-in-the-Loop (PiL). These XiL simulations can be seen
as a transition from MiL to HiL. In an SiL simulation the Software that is intended
to be executed in the new hardware is tested. The PiL simulation is testing the single
components of the final hardware.
As an expansion to the HiL simulation some researchers created simulations that embed
the complete hardware system in a simulation of the environment. One example of such
simulations are Vehicle-in-the-Loop (ViL) simulations [49,50].

Model-in-the-Loop Simulations

In this thesis an MiL simulation is used as a starting point. From there the concept
is expanded to use more refined models of hardware and a complete simulation of the
environment.

– 34 –

2.2 Related Work

Classic MiL simulations use a functional model of the hardware under development and a
simplified model of the environment to stimulate the hardware simulation [15]. Thus, it
can be said that the classic MiL simulation is performed in the early development phases.
In later phases the model of the MiL simulation is replaced by more advanced components
such as the complete hardware in the end (HiL). Currently there are no MiL simulations
in the literature where a detailed model of the hardware is created and used in these
simulations.

Synchronization of XiL Simulations

The topic of synchronizing co-simulations is common in the literature [51–56]. One of the
most used methods to synchronize any parallel system is using a lock-step pattern (Figure
2.1).

Figure 2.1: Timeline of a lock-step co-simulation. The execution of both simulators appears single-
threaded. Simulator 1 advances one time step; Simulator 2 advances until the simulation
times match.

This synchronizes the simulations after every time step. This ensures that all simulations
have the same simulation time at the end of every step. Thus, all messages that are
exchanged between the simulations are sent and received at the same simulation time.

A proper synchronization is of utmost importance in XiL simulations. Therefore, also in
this thesis, a lock-step approach is used. As the lock-step approach effectively eliminates
parallelism, slight changes in the execution need to be made to speed up the co-simulation.

2.2.3 Stimuli Generation for Simulations

For many simulations of hardware designs, stimuli are created at random but with certain
constraints. This constraint-based random verification performs well to find border cases
for the hardware and test hardware features [57, 58]. Thus, most of the literature that is
concerned with the generation of stimuli for simulations tries to find better constraints for
this kind of testing [33,59].

The testing and verification process for more complex systems not only requires the hard-
ware to work properly but also that the software run on that hardware is correct [60,61].
Thus, normal constraint-based testing is not enough.

To fully test the complete design of hardware and software, a simulation of the complete
system needs to be performed.

– 35 –

2 Background and Related Work

2.2.4 SystemC Co-simulation

There are a number of researchers that have used SystemC as a component for co-
simulations [62–66]. These publications connect SystemC to either other HDLs or to
a system-simulation tool such as Matlab or Simulink. These examples of co-simulation
in combination with SystemC show different methods to connect another simulator to
SystemC.

Simulators Connection Synchronization

SystemC - NS-2; [37] Network After every time step

SystemC - Simulink; [62] Not specified When the input is modified
or at predictable events

SystemC - Simulink; [63] Network After every time step

SystemC - VHDL; [64] Wrapper methods Continuously

SystemC - Matlab; [65] Network At synchronization events

SystemC - SystemC; [66] Not specified At synchronization events

SystemC - Gazebo; This work Pipes or Network After every time step

Table 2.1: Comparison on SystemC co-simulations.

Fummi et al. [37] use simulation kernel modifications to keep the simulations synchro-
nized. To do so, every message sent contains the simulation time when it was sent. In this
way the communication between the simulations keeps the simulations synchronized.
Mendoza et al. [63] use a synchronization function whenever a transition between the
Simulink and SystemC parts happens. As the authors of this paper include SystemC
blocks in their Simulink model, the synchronization is controlled by Simulink. In their
case multiple SystemC simulations can run in parallel with each other but do not neces-
sarily share the same time.

In contrast to these examples of time synchronization, the approach in this thesis uses a
lock-step execution to keep all simulators synchronized. To do so, a message is generated
at the end of every time step of every simulator to keep the others informed of the status.
In the case of the example simulation of this thesis, the Gazebo simulator sends a message
to SystemC when the simulation step is finished, telling the SystemC simulator for how
long to simulate. After that the Gazebo simulator is idle until it receives a message from
SystemC that the simulation time is up-to-date. This does not require any modifications
to the simulation kernels. Furthermore, if multiple SystemC simulations are executed in
parallel, although they do not directly synchronize their clocks, all simulation clocks will
be synchronized at the end of the time step.

2.2.5 Parallel SystemC

As the simulation speed of SystemC can be slow, a number of researchers tried to op-
timize the simulation tool to utilize the multiple cores of a modern computer. This is
typically done by altering the standard scheduler of SystemC to allow multiple CPU cores
or Graphics Processing Units (GPUs) to execute the simulation components [66–71].
There are three main approaches to have concurrent simulations:

– 36 –

2.2 Related Work

1. Multi-instance-one-simulation: One simulation contains multiple parallel exe-
cuted tasks.

2. One-instance-multi-simulation: One simulation computes one task. Multiple
such simulations communicate with each other.

3. Multi-instance-multi-simulation: Multiple simulation instances communicate
with each other. Each of these simulations contain multiple parallel executed tasks.

Work Parallelism type

Concurrent SystemC simulations; [67] 1

Fast and Accurate SystemC; [66] 2

Parallel SystemC on SMP Workstations; [68] 2

parSC; [69] 2

Mixed-abstraction SystemC; [70] 2

Time-decoupled SystemC; [71] 2

Multiple SystemC instances; This work 2

Table 2.2: Comparison on the parallelization of SystemC.

As the basic SystemC is not parallel, the literature tries to achieve parallelism by up-
dating the SystemC core to allow multiple parallel tasks (type 1) or combining multiple
SystemC simulations to split a larger simulation (type 2). The combination of both would
yield a parallel simulation of type 3.

In contrast to the other simulations, parallelism in this thesis means that multiple
complete SystemC simulations are executed in parallel. Each of these simulations could
also be executed sequentially to yield the same result, whereas the parallelism in the other
approaches means that one single simulation is split into multiple smaller simulations
that need to work together to produce the result. In other words, the approach of this
thesis parallelizes multiple instances of SystemC simulations, whereas the other examples
parallelize the simulation of the components of one instance of a SystemC simulation.

2.2.6 Network Simulations

When simulating an IoT (Internet of Things) network, one of the main challenges is the
simulation of the network components. As many devices need to communicate with each
other, such a simulation must be able to calculate the behaviour of all network nodes.
There are a number of publications that describe such simulations. One of the widest
known tools is Simics [4]. This simulation tool virtually connects the network nodes with
each other. All the nodes are abstractly simulated and react to the incoming messages.
The combination with another simulation tool such as SystemC is possible, although the
simulation becomes very slow. Therefore Khan and Wolf needed to scale the SystemC
clock and temporally decouple the Simics and SystemC simulations [72]. In addition to
that, Khan et al. tried to optimize the Simics - SystemC co-simulation by creating a
multi-threaded co-simulation [73].

– 37 –

2 Background and Related Work

Work Stimuli generation Synchronization

Simics; [4] Logical interaction of Internally synchronized;
modules Externally temporally decoupled

SEED; [74] Classic testbench Event based

Internet of Simulation; [75] N/A N/A

Simulation of node and From 3D environment At the end of every step
environment; This work

Table 2.3: Comparison of related work performing simulations of networks.

Simics and SEED are designed to simulate a network of multiple communication part-
ners. Therefore, their priority is to accurately describe the logical connection between the
components. The main aspect of this thesis is the integration of a hardware simulation in
an environment. If multiple instances of hardware simulations are placed inside the same
environment, the simulation of a network comes as an emergent feature.

2.2.7 Speed vs. Accuracy of Simulations

The speed of a simulation is a very important criterion when comparing different simu-
lations. More accurate simulations are usually slower than simulations that are written
on higher levels of abstraction. MathWorks describes methods to balance the simulation
speed and simulation accuracy [25]. Here three main methods for balancing the speed and
accuracy are given:

1. Change the model fidelity or scope: When the model fidelity or the simulation
scope is decreased, fewer calculations need to be performed.

2. Change the sample time: When increasing the sample time (or time step) longer
durations can be simulated. This decreases the temporal accuracy of the simulation.

3. Change the number of solver iterations: For simulations that solve numerical
problems by iteratively improving the result, a decrease in these iterations reduces
the accuracy but speeds up the simulation. This method is not applicable to SystemC
simulations.

To keep the simulation as accurate as possible while increasing the simulation speed, a
combination of these methods can be used. The simulation can be stopped if the system
is idle, this decreases the fidelity of the simulation. Furthermore, simulation steps can be
combined to decrease the sample time.

Furthermore, Popovici and Mosterman describe the connection between the speed and
accuracy of simulations [17]. The authors claim that finding the best trade-off between
accuracy and speed is the main challenge when designing a simulation that should be
executed in a given time interval.

Meftali et al. describe a multi-level SystemC simulation [76]. The authors suggest the
modelling of simulation components on different levels of abstraction. This decreases the

– 38 –

2.2 Related Work

simulation accuracy for the components described on a higher level of abstraction. This
method to accelerate a simulation can only be used if the complete simulation is created
anew and the components that need to be described accurately are known before the start
of the development.

As Schirner et al. show in Figures 9 and 10 of their work [77], the duration of the simulation
is increased while the simulation error is reduced if the level of abstraction is lowered. The
authors describe the relation between level of abstraction and accuracy as follows:

In other words, the simulation time increases exponentially with the amount
of modelled features. [...] The results indicate that a loss in accuracy has
to be accepted due to feature abstraction. The observed error reduces when
including more features.

Further authors describe the use of Transaction-Level Modelling (TLM) instead of Reg-
ister Transfer Level (RTL) modelling to increase the simulation speed [78–80]. Jung et al.
also claim that the speed-up factor of TLM simulations in comparison to RTL simulations
is between approx. 70 and 600.

For most XiL simulations the simulation speed is one of the main concerns. As the
simulation of the virtual components needs to be as fast as the connected hardware, the
accuracy of these models is often reduced. As Xia et al. state, such simulations can often
be “up to 100 times slower than wall-clock-time” [81]. Xia et al. also state that one of
the main challenges of their simulation is the trade-off between simulation speed and the
modelling accuracy.

Work Model Fidelity Sample Time

Fast SystemC simulation methodology; [76] 3 7

Accurate RTOS Modelling and Analysis; [82] 3 7

Real-time Engine Modelling; [81] 3 7

Premature stopping and estimation; This work 3 3

Table 2.4: Comparison between this work and related work comparing the methods to increase the
simulation speed.

In addition to these optimization techniques, this work introduces a concept that uses
the inputs of a simulation to optimize the simulation speed. This input-dependent si-
mulation speed optimization (IDSSO) is a novel concept and could not be found in the
literature.

– 39 –

3
Design

The path to a design has a large impact on the result. Therefore, this chapter informs
about the design process underlying this thesis. A large portion of this chapter deals with
the co-simulation of hardware and use case, the connection of different simulation tools,
and problems that occur when combining such simulators that are not intended to work
together.

Another very important aspect of this thesis is the improvement of the simulation speed.
This chapter also explains the used methods to improve it.

3.1 Expanding Model-in-the-Loop Simulations

In classic MiL simulations the models of the hardware and the environment are crude.
This kind of simulation is used to verify that a certain function would solve the problem
at hand. After this step more advanced models are created and other simulation types
(SiL, PiL, HiL) are used to verify the functionality.

Currently, there is no concept for a simulation of an advanced system simulation in con-
junction with the environment (henceforth System-Simulation-in-the-Loop (SSiL)). Such
simulation could be used to verify that the complete system behaves as intended before
the hardware is being built. The following sections describe the design we created in this
thesis to construct an SSiL simulation.

3.1.1 Requirements of the SSiL simulation

The functional requirements of an SSiL simulation do not differ much from the require-
ments of any other XiL simulation. These requirements are:

� Stimuli that arise from the use case need to be generated.

� The stimuli need to be transmitted between the simulators.

� The simulators need to be synchronized.

In the case of an SSiL simulation, the requirement for the synchronization is more strict.
The simulators need to be synchronized after every simulation step. This comes from the
fact that the complex behaviour of a system allows the spontaneous creation of messages

– 41 –

3 Design

Figure 3.1: Time difference of different simulators when synchronized after every time step.

that need to be captured in the other simulation. Therefore, the synchronization needs to
be kept as tight as possible.

In contrast to the lock-step synchronization shown in Section 2.2.2 Figure 2.1, Figure
3.1 shows the synchronization of multiple parallel simulations. In the case shown in Figure
3.1, three simulators using different time steps are used. As the simulations are executed
in parallel, and different simulators may use different time steps, the simulators can only
be synchronized at time instances of the least common multiple of all time steps. At this
time, all simulators need to wait for the slowest one to finish the calculation until this time
step. In Figure 3.1 simulators A, B, and C have 100, 33.3, and 1 simulation time ticks
respectively. Furthermore, Simulator A finishes with its calculation step the fastest while
Simulator C is the slowest to have reached 100 simulation time steps. Therefore, Simulators
A and B need to wait until Simulator C has reached the common synchronization time
step.

Following this, the simulators in this thesis will use time steps that allow a synchronization
as often as possible. This means that the simulator with the largest time step should be
able to synchronize to all others in every time step. All other simulators that are connected
will therefore use time steps which fit N times into the larger interval (N ∈ N).

3.1.2 Stimuli Generation in XiL Simulations

In MiL simulations the stimuli are usually generated by a simplified model of the environ-
ment of the hardware under development. These environment models are tailored to fit
the required stimuli. As this approach is typically static, a new model of the environment
needs to be created for each use case tested.
As the model and the environment are simulated on a functional level, both parts of
the simulation can be created using one simulation environment. As an example Brock-
meyer et al. used Matlab/Simulink to create the functional model and the model of the

– 42 –

3.1 Expanding Model-in-the-Loop Simulations

environment to perform the MiL simulation of their system [16].

Figure 3.2: Basic concept of an XiL simulation. The model gets stimulated by the environment and
the environment can in turn be changed by the model.

Any XiL simulation follows the overall model shown in Figure 3.2. The two components
of the simulation are the model of the hardware and the model of the environment. The
environment stimulates the model and reacts to the output of the model. For most MiL
simulations the model is very abstract and does only represent the functionality of the de-
sired hardware, the environment is also modelled very abstractly. Due to this abstraction,
the simulation of the environment can be performed quickly, but poses restrictions on the
capability of the environment simulation.

When using a more complex simulation of the environment, a wider array of use cases
can be simulated with one model. Furthermore, a more complex interaction between the
environment and the hardware under development can be implemented and tested.

For many MiL simulations, the model of the environment and the hardware are created
in the same simulation environment such as Matlab/Simulink [16]. For following XiL
simulations (SiL, PiL, HiL, ViL) the model of the hardware is then replaced.

The design of the SSiL simulation in this thesis follows the same approach. We replace
the model of the hardware of the XiL simulation by a more complex model that is capable
of executing a program and reacting to events in the environment. Furthermore, the
simulated environment is also be replaced by a more complex environment simulation
allowing more complex and realistic scenarios.

The model complexity directly influences the accuracy and the speed of the simulation.
A more complex model typically yields more accurate results but is slower to compute
[25].

3.1.3 X-in-the-Loop Co-Simulation

When using different simulators to simulate the model of the hardware and the envi-
ronment the simulation becomes a co-simulation [38, 39]. Due to the simulation of the

– 43 –

3 Design

components using specialized simulation tools, more details can be seen in the simula-
tions and more accurate results can be created. This increase in detail comes at the cost
of modelling the components in separate simulation tools and connecting the simulators.
Furthermore, the increase in detail implies that more calculations are needed and therefore
the overall simulation becomes slower.

In the co-simulation of this thesis, we use two simulators: SystemC to perform the simu-
lation of the hardware, and Gazebo to simulate the environment.

3.1.4 Synchronizing the Simulations

A very important part of any co-simulation is the synchronization between the simulation
tools.

In the case of an XiL simulation, both simulators can send information to the other one at
any simulation time. Thus, the simulators need to be fully synchronized. Wu et al. showed
that using a lock-step synchronization, all components of a co-simulation are synchronized
at the end of every time step [54]. When using simulators that use different time step
durations, the synchronization can be achieved at the least common multiple of the time
steps. This is shown in Figure 3.3.
Also the work in this thesis uses a lock-step approach to keep the simulators synchronized.

Figure 3.3: Time steps of multiple simulators and synchronization points.

3.2 Optimizing the Simulation Speed of Co-Simulations

Next to the accuracy of simulations, another core metric is the simulation speed. These
two parameters are linked to each other. If more accurate results are needed, the
simulation will perform more calculations and thus the simulation will be slower (Section
2.2.7).

If the simulation allows interactive inputs from the operator, the simulation speed may
need to be optimized after the model is created. At this time the model fidelity, sample
time, and number of solver iterations are fixed.

To solve the issue of optimizing the simulation speed after the simulation model has
been created, we use the inputs of the simulation to optimize the simulation speed.

– 44 –

3.2 Optimizing the Simulation Speed of Co-Simulations

The basic concept of the Input Dependent Simulation Speed Optimization (IDSSO) is to
estimate the effects a certain input has on the simulation variables at the end of the time
step. If the effects can be estimated, the simulation step is skipped and the estimations
are used as result.

This technique of using estimations introduces errors in the simulation. To minimize these
errors the optimization should not be used during the whole simulation. Furthermore,
when using estimations to calculate parameters used further, the errors accumulate and
lead to large errors over time.

3.2.1 Simulation State Estimation

If the simulation runs too slow to be useful, but the model cannot be changed to a less
accurate but faster model, estimation of simulation states is a tool that we examined to
increase the simulation speed. This effectively increases the simulation speed at the cost
of accuracy.
The question whether it is useful to implement an estimation process for an already existing
simulation cannot be generally answered for all use cases.

The estimation of simulation states is not always possible, therefore such methods increase
the jitter on the simulation times. Figure 3.4 shows an example of this. The calculations for
each time step take different amounts of time. This can lead to varying overall simulation
speeds. To estimate a general speed improvement, we designed micro-benchmarks to
estimate the speed increase for the most common states the simulation is in. With an
analysis of the amount of time spent in each of these states, an overall speed improvement
is estimated.

Figure 3.4: Real time used for steps when using estimation techniques.

Linear State Estimation

Simulations essentially take the current simulation state and other inputs and generate a
new state from it. The calculation of the inner states is described by the model. In normal
simulations we are interested in the inner states of the simulation. Thus, a simulation can
be seen as a non-linear function that takes three parameters, the model, the current
simulation state and other inputs, and generates a new simulation state (Equation 3.1).

State(t+ 1) = Simulation(Model, State(t), Inputs(t)) (3.1)

– 45 –

3 Design

In XiL simulations the other input is generated by the (simulated) environment. In
addition to this, the XiL simulation can produce outputs that affect the environment.
This can be described by Equation 3.2.

StateS(t+ 1), OutputsS(t+ 1) = Simulation(ModelS , StateS(t), OutputsE(t));

StateE(t+ 1), OutputsE(t+ 1) = Environment(ModelE , StateE(t), OutputsS(t))
(3.2)

In XiL simulations, the calculation of the Simulation function is considered as the
bottleneck for the simulation speed. Thus, to increase the simulation speed, optimizations
for these functions are needed.

To estimate the change of the simulation state StateS , the derivative of the function needs
to be calculated. This requires the OutputE input to the function to be constant.

The derivative of any function f(x) at x = t is defined as:

f ′(t) = lim
h→0

f(t+ h)− f(t)

h
(3.3)

Thus, the derivative of State(t) of Equation 3.1 can be approximated as

State′(t) =
State(t)− State(t−∆t)

∆t
(3.4)

From this the state at the next discrete time interval can be approximated as:

State(t+ ∆t) = State(t) + State′(t) ·∆t (3.5)

To apply this logic to the Simulation function in Equation 3.2, OutputsS(t + 1) also
needs to be derived. This leads to

State′S(t) =
StateS(t)− StateS(t−∆t)

∆t
;

Outputs′S(t) =
OutputsS(t)−OutputsS(t−∆t)

∆t

(3.6)

Using these equations it is possible to estimate the next simulation state StateS(t+ ∆t)
and the output OutputS(t + ∆t) under the prerequisite that the input OutputE(t) does
not change.

As a simulation might also trigger internal state changes based on internal states or timers,
these need to be modelled as additional inputs. Therefore, this optimization is only pos-
sible if the internal workings of the model are well known and these triggering states are
accessible.

Furthermore, if the inputs OutputsE change, the simulation needs to be executed to gen-
erate the needed states (StateS(t) and StateS(t− 1)) to perform an estimation.

As OutputE needs to be constant for the estimation to be applicable, such estimation
increases the simulation speed while the simulation is idle.

Based on the model and time step, it can be possible that such an estimation is not

– 46 –

3.2 Optimizing the Simulation Speed of Co-Simulations

accurate enough. Then, further simulation steps need to be calculated to gain enough
data for a better estimation. For example, if the data of three simulation steps is used
to also calculate the second discrete derivative of the state, the estimated state does not
change linearly in time but quadratically.

For the example simulation in this thesis we use the first derivative of the states to
calculate the state change.

Applicability of the Estimation

The estimation in Equation 3.6 is correct for static inputs StateS(t), OutputsE(t) and
∆t→ 0. As ∆t is not 0 for event-driven simulations, and StateS(t+ ∆t) may differ from
StateS(t), an error is introduced by every step taken using the estimation.

Using the estimation to calculate a new StateS(t+∆t) effectively advances the simulation
time by ∆t. The effects of this are explained in Section 3.2.2.

The input to the simulation OutputE(t + ∆t) is itself calculated by another simulation.
The difference between two such inputs may not be trivial to calculate. Therefore, the
effects of such change are also not trivial to calculate. Thus, the estimations in Equation
3.6 are not applicable if OutputE(t+ ∆t) is different from OutputE(t).

3.2.2 State Changes due to the Estimation

The above estimations linearize the model at the given state StateS(τ). This introduces
errors if the current state of the simulation StateS(t) differs from StateS(τ). To keep the
error small, the difference ∆ between these values needs to be small. The calculation of
the difference of such simulation states may not be trivial. Therefore, it is required that
StateS(t) differs minimally to StateS(t+ 1). Therefore, the difference between states can
be estimated by the time between these states. This leads to the conclusion, that after
some time T the difference ∆ is too big, and the linear estimation introduces too much
error. At this time τ +T the simulation needs to be executed anew to linearize the model
at StateS(τ + T).

It is furthermore possible to use higher-order equations to calculate the estimations.
This may increase the usefulness of the estimation in such way that T can be chosen
differently.

Figure 3.5 shows a simulation of the charging and discharging of a capacitor. In this
figure the ground truth (Ref) is calculated. The unoptimized simulation (Sim) matches
the ground truth. Additionally four estimations are shown in this figure. Two that use a
linear model (Lin50, Lin100) and two that use a quadratic model (Qua100, Qua200) to
estimate the charge on the capacitor. In this example T is chosen to be 50 and 100 for the
linear estimations and 100 and 200 for the quadratic ones. After T steps are calculated
using the estimation, the simulation is used for 2 and 3 steps respectively to calculate the
new parameters for the estimation.

A statistical analysis of the errors that arise in the simulation and the estimates are
plotted in Figure 3.6. From these errors one can see that, for the model of a capacitor,
a quadratic estimation can reduce the introduced error at least as good as a linear esti-
mation using a T that is halved. But, when doubling T for the quadratic estimation, the

– 47 –

3 Design

introduced error is bigger than the error in the linear case.

Figure 3.5: Simulation of charges at a capacitor. Calculated and estimated.

Figure 3.6: Errors of the simulation and the estimations.

3.2.3 Applying the Optimizations to SystemC

As SystemC does not natively support the skipping of time steps and using an estimation
instead, we developed a method that allows us to do this.

This method makes use of adding data to the generated trace file that is used in a post-
processing step. The data added signals the post-processing step that some simulation
time has been skipped. In the post-processing step the datapoints after the signal are
delayed by the amount of skipped time. After inserting the signals to the post-processing,
the estimated internal states are updated. When the simulated hardware is idle multiple
such signals are created in a short amount of time. This effectively compresses the trace
of the simulated time while the hardware is idle. During post-processing the skipped time
is added back.

– 48 –

4
Implementation

The following chapter sheds light on the most important implementation aspects. It
provides insights into the combination of the two simulators that simulate the environment
and the hardware system, respectively. This chapter also describes the used optimization
strategies. Furthermore, this chapter describes a hardware prototype of a smart sensor
system that serves as a test case for the designed SSIL co-simulation.

The SSIL co-simulation uses a simulation of the environment of a hardware system to
drive the simulation of the hardware. Thus, the hardware simulation is integrated in the
simulation of the environment. Figure 4.1 shows a concept on how to integrate a SystemC
simulation with an environment simulation. Here the environment simulation calculates
stimuli for the SystemC simulation and transmits them to the SystemC simulation. To
complete the simulation step, the environment simulation waits until the SystemC simu-
lation has finished.

This process effectively creates stimuli for a hardware simulation based on a high-level
description of the intended use case. This speeds up the stimuli generation compared
to the current practice of an engineer reverse engineering the use case and extracting
the stimuli manually from that. In contrast to other methods of deriving stimuli for a
hardware simulation (e.g., [83–85]), this method is deterministic and does not rely on
machine learning algorithms.

– 51 –

4 Implementation

Figure 4.1: Concept for integrating the SystemC hardware simulation with an environment simulation
to generate Stimuli.

4.1 Requirements for the implementation

There are two requirements for the implementation of SSiL simulations, which concern
the simulation speed and accuracy (Section 3.1.1).

� The final co-simulation should not be significantly slower than the hardware simu-
lation on its own.

� The final accuracy of the co-simulation should be comparable to the accuracy of the
hardware simulation alone.

These two requirements can also be quantified and be used to determine the quality of
the resulting co-simulation.

From these high-level requirements, demands on the interface between the simulations can

– 52 –

4.1 Requirements for the implementation

be inferred. These demands for the interface can be split according to the simulators and
expressed as needed steps.

In the proof-of-concept co-simulation, the Gazebo simulator is used to simulate the
environment. Therefore, the needed steps are tailored to the Gazebo simulator.

RG.1 Collect all necessary data from the environment. This is sensor data, communication
data, and simulation status information.

RG.2 Package the collected information and transmit it.

RG.3 Until the SystemC simulation is finished, halt the environment simulation.

RG.4 While waiting, collect all received information sent by the SystemC simulation and
sort it by the intended recipient.

RG.5 When the SystemC simulation step is finished, forward the collected information to
the recipients of the simulation.

The implementation of these steps is done in a separate Gazebo plugin that acts as the
interface to the hardware simulation. Figure 4.2 shows a possible order of these steps.

To be able to communicate with the environment simulation, the hardware simulation
(SystemC in this case) needs to implement a matching interface and support the following
steps.

RS.1 All data intended for the simulation needs to be received. The simulation must be
halted until all data is received.

RS.2 The SystemC simulation needs to be halted at the simulation time of every time
step of the environment simulation. Furthermore, the SystemC simulation needs to
be restarted at these points.

RS.3 Unpack the received information and provide it to the SystemC simulation in a
usable form.

RS.4 When resuming the simulation, match the time step to the time step of the environ-
ment simulation to keep the simulations synchronized.

RS.5 At the end of the time step, SystemC and Gazebo must be synchronized.

RS.6 As the SystemC simulation is slower than Gazebo, measures to increase the simula-
tion speed should be taken when possible.

The interface to the Gazebo simulation acts as the testbed for the SystemC simulation.
Figure 4.3 illustrates how the interface can be implemented on SystemC side.

– 53 –

4 Implementation

Figure 4.2: States the communication interface on the Gazebo side needs to have.

– 54 –

4.1 Requirements for the implementation

Figure 4.3: States the communication interface on the SystemC side needs to have.

– 55 –

4 Implementation

4.2 Connecting Unlike Simulators

In Section 3.1.2 it is described that in XiL simulations the model gets stimulated by the
environment. As the environment is also simulated in the SSiL simulation two simulators
are connected to form a co-simulation. The two simulators can be connected in different
ways. These possibilities come with different challenges and advantages, which we describe
below.

4.2.1 Instantiation

There are two ways to instantiate the SystemC simulations and connect them to the
Gazebo simulator.

The first one is to instantiate them as part of the setup routine in the Gazebo plugin.
This is done by forking from the current process and executing the SystemC simulation
as a child process.
By doing so the new process can be connected to the Gazebo simulator via POSIX-
pipes. These pipes can transport text between the simulators. This way of instantiating
the SystemC process entails that it is executed on the same computer as the Gazebo
simulation. Figure 4.4 shows the sequence that is needed to start the SystemC simulation
from the corresponding plugin. During the initialization of the plugin POSIX pipes are
created. When the fork syscall is executed, the child process connects the pipes to the
standard in- and output. Thereafter the SystemC process is executed. The parent process
still holds handles to the pipes. This realizes the communication channel between the
Gazebo plugin and the SystemC process. To be able to receive the data from SystemC
whenever some is available, a thread that listens on the receiving pipe is created. The
functions onUpdate and onEndSignal are called by the Gazebo controller. These two
functions generate messages that are sent via the outgoing pipe to the SystemC simulation.
These messages are received in the sc main function. There the messages are parsed and
the SystemC simulation is handled accordingly. During the execution of the SystemC
simulation, data may be sent back to the Gazebo simulator. There the listening thread
receives the data and stores it to be used by the simulation.

Method two of instantiating the SystemC simulation does not have the limitation that
the SystemC simulation needs to be executed on the same computer as the Gazebo si-
mulation. Using this method all components of the simulation are started separately.
To connect to the Gazebo simulation, each SystemC simulation requires a configuration
that lets it find the Gazebo simulation. The SystemC simulation can then connect to the
Gazebo simulator via the network. The Gazebo simulator at the other side needs to be
able to wire the incoming connection to the corresponding plugin. Figure 4.5 shows the
sequence of actions that are needed to establish such connection via the network.

– 56 –

4.2 Connecting Unlike Simulators

Figure 4.4: Sequence of actions to start a SystemC simulation by forking from the plugin.

Figure 4.5: Sequence of actions to connect a SystemC simulation to Gazebo via the network.

– 57 –

4 Implementation

4.2.2 Communication Between the Simulations

Both solutions to instantiating the SystemC simulations and connecting them to the
Gazebo simulator support the transmission of byte streams. Therefore, a text-based seri-
alization scheme, such as the Extensible Markup Language (XML), the Java Script Object
Notation (JSON), or YAML (YAML Ain’t Markup Language), can be used.
As Kazuaki Maeda stated: “XML is currently used as a standard language for data rep-
resentations in [a] wide application area.” [86]. Therefore, XML is being used to serialize
the data that is communicated between the simulations.

4.2.3 Timing Differences

A major problem that can be noticed is the difference in the time resolution between
the simulation steps. While Gazebo operates in steps of 1 ms, SystemC can be operated
using time steps of 1 fs. This means that SystemC usually takes more time to simulate a
given duration. This difference needs to be accounted for when implementing the interface
between the simulators.

In order to operate correctly, special care needs to be taken of the synchronization between
the simulations. When sending the data for the SystemC simulation without waiting for a
SystemC response that the simulation step is finished, unexpected behaviour, such as long
communication delay and huge buffer sizes, can occur. Such behaviour is not faulty per
se, but can lead to the false conclusion that the SystemC simulation is faulty. Therefore,
a proper synchronization protocol where each partner waits for the other one needs to be
implemented. Figure 4.6 illustrates the communication that is needed to be synchronized
at the end of each Gazebo time step. When using this protocol the simulators operate in
a lock-step manner (Section 3.1.4). Therefore, SystemC only receives the data it needs for
the current time step and notifies Gazebo when the time step is finished. This notification
at the end of every time step also signals that the simulation is operational. This also
avoids overly large buffer sizes.

– 58 –

4.2 Connecting Unlike Simulators

Figure 4.6: Communication to be synchronized at the end of a Gazebo time step.

4.2.4 Speed Bottlenecks and Remedies

SystemC is normally used to test the functionality of hardware, but not the effects that a
longer runtime has. Therefore, SystemC simulations can be constructed to perform cycle-
accurate simulations. This accuracy comes at the cost of a longer simulation time.

The Gazebo simulator on the other hand is used to simulate the behaviour of robots.
These simulations tend to include idle times and usually simulate longer durations. The
simulation itself calls every component once every time step. This behaviour is used to
have a high simulation speed. To be accurate, Gazebo is implemented single threaded.
This entails that a single low-performance module causes the whole system to be slow.

This simple analysis shows the major bottlenecks of a combination of the two simulators:

1. A SystemC simulation is slower than the Gazebo simulation. This slows the overall
simulation.

2. The single-threadedness of Gazebo prevents a partial simulation of the next simula-

– 59 –

4 Implementation

tion step while the SystemC simulation is active.

3. The single-threadedness of Gazebo furthermore prevents multiple SystemC simula-
tions to run in parallel.

To minimize the impact of a slow SystemC simulation on the overall simulation (Bottleneck
1), the accuracy of the SystemC simulation is reduced by estimating the results while the
simulated hardware is idle. This estimation is described in Section 3.2.

Bottlenecks 2 and 3 can be remedied by interleaving the simulation steps of the simulators.
The change that needs to be done in order to allow that, is that the interface module in
the Gazebo simulation needs to wait for the completion of the SystemC simulation at
the beginning of its turn rather than at its end. Figure 4.7 shows the activation of the
simulations when implementing the non-interleaved or interleaved interface. The non-
interleaved simulation behaves in a single-threaded manner. In the interleaved version, a
part of the Gazebo simulation, as well as the SystemC simulation can be active at the same
time. The communication for the interleaved simulation is depicted in Figure 4.8. This
figure reveals that the results of the SystemC simulation can only be received in the next
Gazebo time step. This results in a delay of one Gazebo time step in the communication.
This interleaving of simulation steps can only increase the simulation speed until all cores
of the CPU are used. To keep increasing the parallelism of the computation, the SystemC
simulations can be outsourced over a network. Further details on the parallelization of
the SystemC and Gazebo components can be found in Section 4.3.

– 60 –

4.2 Connecting Unlike Simulators

Figure 4.7: Comparison between the execution of non-interleaved and interleaved simulations.

Figure 4.8: Sequence diagram for interleaved simulations.

– 61 –

4 Implementation

4.3 Parallelizing the Simulations

When one wants to simulate a network, multiple sensor nodes need to be placed in the
environment. As Gazebo is blocked by the execution of a sensor plugin, the simulation
of multiple sensor nodes is done sequentially. To circumvent this, two approaches are
possible. These are described in the following sections.

4.3.1 Parallelization by Interleaving Simulation Steps

When interleaving the simulation steps, the code for the sensor plugin only requires little
change. Instead of waiting for the end-signal of SystemC at the end of the plugin update
routine, the wait-step is performed at the beginning. This simple measure allows the
parallel execution of SystemC processes if CPU cores are available. One core is needed to
perform the Gazebo step. The rest can be used to perform the SystemC simulation. Figure
4.9 highlights the differences between the non-parallelized and interleaved simulation. Here
the Steps portion of the sequence diagram has been cut out and compared to each other.

Figure 4.9: Difference between the non-parallel and the interleaved simulation.

4.3.2 Parallelization by Using a Central Connection

If even more nodes need to be simulated, the SystemC simulations need to be outsourced
to different computers. Therefore, the simulations cannot be forked directly from the
sensor plugins. In this scenario the SystemC simulations need to be started on another
computer and connected to the Gazebo simulator. This forms a star topology where
each SystemC simulation is directly connected to the Gazebo simulation. To handle the
incoming requests, a server plugin needs to be created. This server can then create a
communication thread for each connection. These threads need to determine to which
sensor plugin the SystemC simulation needs to be connected. The sensor plugin is not
required to handle the communication directly. The data they need to transmit to their

– 62 –

4.3 Parallelizing the Simulations

SystemC simulation is handed over to the server plugin. The communication thread for
this simulation passes on this information. The communication thread now listens for
incoming packets from their SystemC simulation and stores the data. If the end-signal
is received, the communication thread forwards the data to the sensor plugin. If all
communication threads have received the end-signal, the simulation can proceed.

In addition to this parallelization, the interleaving of the simulation steps can also be
performed.

Figure 4.10 shows the communication that is performed for each sensor plugin. The
sensor plugin first collects the required data. This information is sent to the communication
thread of the server plugin. The communication thread appends information about the
simulation status. This information is then packed and sent via a network to the receiving
computer. There the SystemC simulation receives the packet and processes it. If data is
generated during this simulation step, the data is transmitted to the computer running the
Gazebo simulation. At the end of the simulation step a signal is generated that notifies the
Gazebo simulation that the step has been executed. The communication thread receives
this signal and forwards the information it received in the meantime to the sensor plugin.

– 63 –

4 Implementation

Figure 4.10: Communication that is performed to use SystemC simulations on different computers.

4.4 Example Simulation

To test the simulator an example simulation needs to be developed. During the IoSense
project, a simulation of a sensor system was needed. This simulation was used to test
the constructed simulator and evaluate it. In this simulation, a complete smart sensor
was modelled. This sensor consists of a micro controller (uC or µC), a flash memory, an
additional security controller (SC), an NFC controller that is capable to harvest energy,
and two ports to external sensor hardware. A block diagram of this smart sensor is shown
in Figure 4.11.

– 64 –

4.4 Example Simulation

Figure 4.11: Block Diagram of the simulated smart sensor.

4.4.1 Acquiring Data for the Simulation

To get exact figures for the test simulation, two research prototypes have been de-
signed. The first prototype (Prototype A), shown in Figure 4.13, is used to test the
capabilities of energy harvesting from a Near Field Communication (NFC) field and
to test the possibility of operating a sensor from a super-capacitor. This prototype
consists of an MSP430FR5969 evaluation board that is expanded by a custom-built
Printed Circuit Board (PCB). This PCB connects the energy harvesting interface of the
NFC controller to the super-capacitor of the evaluation board. Via this connection the
super-capacitor can be charged and the sensor operated. Figure 4.12 shows the wiring
diagram to connect the NFC controller to the super capacitor of the evaluation board.
Additionally, the PCB connects the data lines of the NFC controller to General Purpose
Input Output (GPIO) pins of the evaluation board. This research prototype has then
been charged and discharged to measure the capabilities of this energy provisioning system.

The second research prototype (Prototype B) is used to evaluate the capabilities of
the modelled smart sensor. A photo of this prototype can be seen in Figure 4.14. This
prototype consists of two PCBs. The first one is the sensor node itself. This sensor
node prototype has a µC, a flash memory, an NFC interface, an SC, and two external
ports for sensor hardware. To supply these elements with energy and to measure each
element separately, a separate power line for each element is linked to an external port.
To reduce the energy consumption of the complete sensor node even further, each power
line can be interrupted with a power switch. The second PCB of Prototype B holds the
power supply. This power supply can regulate the input voltage for the smart sensor.
Additionally, the current of each channel to the smart sensor can be measured. These
measurements can then be sent to a control computer. There the power draw can be
calculated and, according to different power sources, the voltage drop can be calculated.
This voltage drop is then communicated to the power supply which acts accordingly to
provide a supply voltage of the modelled power supply. By using this system, various
energy sources can be simulated. A block diagram of this prototype is shown in Figure

– 65 –

4 Implementation

Figure 4.12: Diagram of the expansion PCB of Prototype A.

Figure 4.13: Prototype to measure the capabilities of harvesting energy from an NFC field and oper-
ating a sensor from a super capacitor.

4.16. The PCB schematic for Prototype B is shown in Figure 4.15. In addition to the two

– 66 –

4.4 Example Simulation

PCB boards a connector board is added here. This connector board allows the use of the
smart sensor without the measurement board.

Figure 4.14: Prototype of a secured smart sensor with attached power measurement unit.

Figure 4.15: Diagram of the PCB design for Prototype B.

– 67 –

4 Implementation

Figure 4.16: Block diagram of Prototype B.

4.4.2 Implementation of the Example Simulation

In the example simulation a robot communicates with a sensor. This sensor is modelled
in SystemC. The sensor acquires data from the environment and processes it. When the
robot approaches the sensor, an NFC reader is activated. Using the NFC field, the sensor
recharges its internal capacitor. The robot then transmits a request to receive the sensor
data to the sensor. The sensor processes the request, fetches the data from the internal
memory, and sends the data via the NFC interface. When the robot receives the data, it
retracts the NFC reader and switches off the NFC field. Figure 4.17 shows a screenshot
of the simulation in Gazebo during execution.

As the robot moves towards the sensor while the NFC reader is active, the arm can
wobble. This causes differences in the alignment of the NFC antennas and therefore
influences the antennas ability to harvest energy. This can be seen in Figure 4.18. This
figure shows the explained trace two times. The difference in the two traces lies in the
recorded time. This difference is caused by the optimization process described in Section

– 68 –

4.4 Example Simulation

Figure 4.17: Robot holding an NFC reader approaching the sensor.

3.2.3.

In the trace at the top the entire trace is finished in 3.4 ms, while the same trace at the
bottom is expanded to 6.5 s. Furthermore, the trace at the top shows an additional data
line - tAdvance. This data line is used to expand the rest of the data to fit the actual
simulation time. The time compression at the top can be seen especially well at the end
of the trace. While at the top the decrease in the Energy data takes place in 0.1 ms the
same decrease uses 50 ms in the bottom trace.

Figure 4.18: Trace from the SystemC simulation. The wobble in the arm position can be seen in
the harvested energy trace. The trace is shown two times - top: compressed, bottom:
expanded.

– 69 –

4 Implementation

4.4.3 Optimization Handling of the Example Simulation

During this simulation, the sensor is idle most of the time. It becomes active when
measurements need to be taken or the NFC interface is active. Therefore, the simulation
speed can be optimized by prematurely stopping a simulation step and by checking the
inputs of the NFC interface. During these idle times, only a counter is active that triggers
the measurement procedure. Furthermore, the level of stored energy changes. These two
quantities need to be estimated in order to skip simulation time. This estimation is done
by using the equations described in Section 3.2. The counter increases linearly over time,
whereas the energy level decreases exponentially.

– 70 –

5
Evaluation

To test the developed concept, a proof of concept has been implemented as described
in Section 4.4. This chapter focuses on this simulation of this test case and its results.
To test the speed improvements, simulation parts are executed with and without the
optimizations. The difference between the results shows how effective the optimizations
are and how they affect the accuracy of the simulation.

5.1 Results of the Example Simulations

As SystemC does not natively support the skipping of simulation time, a method to
support that has been implemented. This section discusses the differences between the
raw data and the data that has been post-processed to hide the skipping of time (Section
3.2.3).

This section furthermore discusses the differences introduced by the optimizations of the
SystemC simulation speed.

5.1.1 Generated Raw Data and Post-Processed Data

Due to the speed optimizations, the time axis of the raw generated data is warped nonlin-
early. Some time steps are executed fully, some are stopped prematurely, and others are
not even started. Figure 5.1 shows a comparison between the generated raw data in the
top and the post-processed data in the bottom. The arrows in the image connect features
in the raw data with the same feature in the post-processed one. It can be seen that the
details while the sensor is operating are saved using a better time resolution than while
the sensor is idle. This reduces the file-size while keeping the important data.

– 73 –

5 Evaluation

Figure 5.1: The generated data squishes the idle-time and stores the data while operating in more
detail.

5.1.2 Differences Between Optimized and Non-optimized Simulations

As the increase of the simulation speed is achieved by prematurely stopping the simulation
run and estimating the resulting state, errors in the changing variables are introduced.
Thus, the simulation speed increase causes a decreased accuracy.

The simulation speed is given by the real-time-factor (RTF). This is a factor by which
the simulation duration has to be multiplied to get the simulated time. To examine the
RTF of different sensor operations, simulations that contain only one operation have been
performed as micro-benchmarks. The examined sensor operations are:

� Idle: The sensor node does not perform any operation. All inputs stay constant.

� Charge: The sensor node does not perform any operation. The energy harvesting
is active and charges the internal capacitor.

� Busy: The sensor node performs calculations or takes a measurement. No external
field for the energy harvesting is active.

� Charge while Busy: The sensor node is active and may take a measurement.
Furthermore, energy harvesting is performed.

� Field Change: The sensor node does not perform any operation. The external
field for the energy harvesting device changes. The harvested energy changes in
each simulation step.

� Field Change while Busy: The sensor node is active and may take a measurement.
The external field for the energy harvesting and the harvested energy changes in each
simulation step.

The simulations for these operations are then executed and the final RTF is calculated.
Two levels of optimization have been examined to also show the effects of the optimization.

– 74 –

5.1 Results of the Example Simulations

The Optimized version calls the SystemC simulation for every simulation step of Gazebo.
Here the simulation is started and stopped when the results can be estimated. The Heavily
Optimized simulations also reduce the calls to the SystemC simulation by checking the
parameter change in the Gazebo simulation. The input parameters are also checked with
this optimization and it is evaluated, if the input requires the simulation to be started.
Otherwise the results are estimated as described in Section 3.2. Figure 5.2 shows the results
of these experiments. The Unoptimized simulation always performs the full simulation.
This is the baseline of the experiments.

Figure 5.2: The optimization increases the simulation speed. The RTF becomes higher as the simu-
lation becomes faster. Different sensor operations can be optimized by different amounts.

Idle Charge Busy Charge Field Change Field Change
while Busy while Busy

99,6% 0.1% 0.08% 0.1% 0.06% 0.02%

Table 5.1: Average state occupation during a simulation.

The charge of the sensor’s capacitor changes for each simulation step. Therefore, this
value needs to be estimated when the simulation skips some steps to optimize the si-
mulation speed. This causes a loss in accuracy when the simulation speed is optimized.
Therefore, the difference of the charge of the capacitor directly correlates to the loss in
accuracy. As the final error is the sum of the errors throughout the simulation, and each
simulation run can simulate a different amount of time, the error is calculated as average
error that is made per millisecond. Figure 5.3 shows the average error per millisecond of
simulation time for each of the sensor operations. This figure shows that both optimiza-
tions cause approximately the same error for all operations. This can be explained by the
fact that the optimization uses a linear model to estimate the still occurring changes. This
change is not affected by the number of calls to the simulation but only by the simulation
time that is estimated. Furthermore, the error increases, when the energy harvesting is
active. This signals that some parameters in the model that affect the capacitor charge
have not been considered when creating the estimations.

– 75 –

5 Evaluation

Figure 5.3: The optimization causes a loss in simulation accuracy. This accuracy loss depends on the
performed operation and the duration of the operation.

5.2 Validation of Simulation Results

To validate the simulation, its results can be compared to measurements obtained from
real hardware. Therefore, prototypes A and B (described in Section 4.4.1) are used to
generate data for the evaluation.

As the simulations are generated using data derived from measurements done using the
same prototypes, the errors in the simulation only originate from the generalization of the
measurement data and the intrinsic errors of the simulator.

5.2.1 Results of the Prototype Measurements and Simulations

Figure 5.4 shows a measurement taken from Prototype A during charging of the capacitor
and subsequent operation. A similar scenario has also been simulated. Figure 5.5 illus-
trates a comparison between the simulation and the real measurement. In this figure the
measurement is plotted bold, the simulation using thin lines. The measurement data was
aligned to the phases of operation where the change in voltage and current is maximized.
This comparison shows that the simulation is close to the real system.

Prototype B can be used to measure the energy consumption of each component of the
sensor. Figure 5.6 shows a measurement of the internal currents during an operation.
Figure 5.7 also shows the internal currents of the simulated smart sensor during an op-
eration. The comparison between these two figures also shows major similarities. These
similarities show that also the simulation of the internal values can be performed using
the implemented approach.

Figure 5.6 shows a measurement operation at Prototype B. When the system wakes up,
the sensor at EXT-1 is switched on. During the startup of the external sensor, the system
waits. After the startup is finished, the µC switches into another state to acquire the data
and stores it in the internal memory. After this the sensor platform is switched back into
a low-power mode.

A simulation where a message is received and answered is shown in Figure 5.7. The

– 76 –

5.2 Validation of Simulation Results

Figure 5.4: Measurement of Prototype A during charging.

Figure 5.5: Simulation of the charging process of a smart sensor. The measurements of Figure 5.4
are layed over the simulation data to illustrate the error between the simulation and the
measurement.

Receiver structure is active at the beginning of the trace. When it recognizes that a valid
message has been received, the µC wakes up and receives the data from the Receiver
structure. When the message is processed, the µC uses the Memory. Therefore, the
Memory uses more energy. When the memory operation is finished, the µC transmits

– 77 –

5 Evaluation

data to the Sender structure. After the data transfer to the Sender is finished, the Sender
switches into a high-power mode to transmit the data.
The trace of the EnergyLoad is the sum of all components. The Voltage applied to the
system changes according to the load applied to the energy provisioning system. As the
energy is consumed, the Charge drops during these operations.

Figure 5.6: Measurements of Prototype B’s internal currents during operations.

Figure 5.7: Simulation of the internal loads of a smart sensor.

– 78 –

5.3 Discussion of the Results

5.3 Discussion of the Results

The results of the previous sections show that the co-simulation concept of connecting an
environment simulator and a hardware simulation tool can yield useful information. Such
co-simulation has the potential to reduce errors during the creation of the simulation tests
as the use case can be used directly to generate stimuli for the new hardware. The shown
simulation speed improvements can be used to minimize the simulation duration while the
decrease of accuracy of the results is marginal.

The comparison of measurements to a simulation of a similar hardware show that the
overall processes of the hardware can still be accurately simulated. Furthermore, the
internal behaviour of the simulated hardware can also be stimulated accurately. To achieve
more accurate results, the optimization of the simulation can be reduced or switched off.

For a simulation performed during the IoSense project the simulation time reduced from
approximately 120 hours to a approximately 12 minutes. Furthermore, the file size to
store the simulation traces is also reduced by 91%.

– 79 –

6
Conclusions and Future Work

This chapter intends to draw conclusions from this thesis. Additionally, the intellectual
contributions of this thesis are summarized and answers to stated research questions are
summarized. Furthermore, the chapter outlines possible future improvements of the simu-
lation concept. This chapter ends by putting forward some recommendations for future
research.

6.1 Conclusion

In this thesis a simulation concept has been provided, that can generate stimuli for a
hardware simulation out of the use case description. This is done by describing the
use case in a robotics simulation tool. This tool can simulate the environment of the
hardware to be developed. As this simulation tool is also able to simulate the physical
environment around the new hardware, even stimuli for a sensor can be generated. The
generated stimuli are then sent to the simulation of the hardware. There the testbench is
replaced by the mechanism to receive and distribute the stimuli. Data that is generated
in the hardware simulation that can affect the environment of the new hardware is sent
back to the environment simulation. There the incoming data is used to perform actions
in the environment.
As the simulation of the hardware is slow, improvements to the simulation speed are
implemented. The simulation accuracy is reduced to achieve the improved simulation
speed. This is done by stopping the simulation of an idle hardware and checking if the
simulation needs to be resumed before the simulation step is performed. In order to
reduce the introduced errors, the transient variables are estimated.

The shown simulation concept allows the simulation of new hardware in the intended
environment. The results indicate that the simulation speed optimizations can achieve a
speedup of up to 103 for idle simulations and 101 for simulations that are continuously
busy.

To create the proof of concept simulation and the data needed for the evaluation, two
smart sensor prototypes have been realized. These prototypes can be used to characterize
the energy consumption of a smart sensor and to characterize an energy provisioning
system for the sensor.

– 81 –

6 Conclusions and Future Work

6.1.1 New Intellectual Contributions

In this thesis, two research questions have been put forward. These are summarized and
answered here.

How to efficiently create stimuli for simulations of Smart Sensors using the
use case description?
A new co-simulation concept has been developed that combines the simulation of the
hardware and the simulation of the environment. The environment simulation utilizes the
use case description to generate stimuli for the hardware simulation. To also stimulate
the sensory part of the hardware, a 3D environment including physics simulation has been
chosen to simulate the use case.

How to efficiently simulate the complex compound system and environment
and smart sensor?
To more efficiently execute the compound simulation, a novel optimization strategy has
been proposed and implemented in this thesis. The optimization strategy checks the inputs
of the system and decides whether the resulting actions can be estimated or not. If they
can be estimated, the simulation is not executed and the state changes are estimated and
applied to the system.

6.2 Improvements to the Simulation Concept

There are some possible improvements to the simulator. The communication between
the Gazebo simulator and SystemC can be optimized by using binary protocols such as
Protobuf. This should reduce the communication overhead.
If the simulation is run on one machine, another improvement can be made by moving
the estimation whether the simulation needs to become active to the Gazebo side. As the
call of the SystemC simulation needs to perform a context switch for every millisecond of
simulated time, this reduction in needed operations has the potential to further increase
the simulation speed by improving the estimation process.
A visualization that shows the state of the remote machines can be an improvement for
simulations that are performed in a network. This can be an on-line graph of the com-
puted traces. This way an estimation of the state of the simulation is easier.
To validate the hardware in the simulation, a comparison between the input stimuli and
the generated traces can be added.
As a further addition the possibility to change the optimization strategy during the simu-
lation can be considered.
To decrease the workload on the engineer creating the simulation, the optimization can
learn the input parameters and input changes that require the full simulation to be ex-
ecuted. This can be done by starting the simulation without optimization and checking
the results for the simulation steps. If the results can be predicted such inputs allow opti-
mization. If unknown inputs or unknown combinations of inputs are added, the learning
process needs to be started again.

– 82 –

6.3 Recommendations for Future Research

6.3 Recommendations for Future Research

The topic of generating stimuli for simulations based on the simulation of the use case
is not common in the literature. Thus, further research regarding this topic is advisable.
This could further increase the overall simulation speed and reduce the introduced errors.
It may also be possible to combine the hardware simulation and the simulation of the
environment in a single simulator. This can help the developers of hardware to use the
described concept.

As each simulation tool has its individual limitations, further research may also be re-
quired to use different HDLs and environmental simulators. Such research could open the
developed simulation concept to a wider audience and help in creating better hardware
faster.

– 83 –

7
Acknowledgements

This project has received funding from the Electronic Component Systems for European
Leadership Joint Undertaking under grant agreement No 692480. This Joint Undertak-
ing receives support from the European Union’s Horizon 2020 research and innovation
programme and Germany, Netherlands, Spain, Austria, Belgium, Slovakia.

IoSense is funded under the agreement number 853326 by the Austrian Federal Ministry
of Transport, Innovation and Technology (BMVIT) under the program ”ICT of the Fu-
ture” between May 2016 and April 2019. More information https://iktderzukunft.at/en/

I want to thank Infineon Technologies, and especially Holger Bock and Rainer Matischek
for providing us the security controllers used in the system creation and for their support
that helped to create the prototypes and simulations.

– 85 –

Bibliography

[1] Tristan Gingold. GHDL - An Open Source Compiler and Interpreter for VHDL.
https://github.com/ghdl/GHDL, 2017. Last accessed on Jun 06, 2019.

[2] Bleyer. Icarus Verilog for Windows. http://bleyer.org/icarus/, 2000. Last accessed
on Jun 06, 2019.

[3] Accelera. SystemC. http://accellera.org/downloads/standards/systemc, 2000. Last
accessed on Mar 18, 2019.

[4] Peter S Magnusson, Magnus Christensson, Jesper Eskilson, Daniel Forsgren, Gustav
Hallberg, Johan Hogberg, Fredrik Larsson, Andreas Moestedt, and Bengt Werner.
Simics: A full system simulation platform. Computer, 35(2):50–58, 2002.

[5] Esteban Egea-Lopez, Javier Vales-Alonso, Alejandro S Martinez-Sala, Pablo Pavon-
Marino, and Joang Garćıa-Haro. Simulation Tools for Wireless Sensor Networks. In
proceedings of the international symposium on performance evaluation of computer
and telecommunication systems (SPECTS05), page 24, 2005.

[6] S Ying and J Sztipanovits. Foundations for Innovation in Cyber-Physical Systems.
In Workshop Report, Energetics Incorporated, Columbia, Maryland, US, 2013.

[7] OpenSim Ltd. OMNET++. https://omnetpp.org/. Last accessed on Mar 18, 2019.

[8] Steven McCanne. The LBNL Network Simulator. 1997.

[9] Network Simulator Verion 3. Ns-3. https://www.nsnam.org/, 2019. Last accessed on
Nov 04, 2019.

[10] Graphical Network Simulator-3. Gns3. https://gns3.com/, 2018. Last accessed on
Nov 04, 2019.

[11] U.S. National Science Foundation. Cyber-Physical Systems (CPS).
https://www.nsf.gov/pubs/2019/nsf19553/nsf19553.pdf, 2019. Last accessed on
Dec 13, 2019.

[12] IoSense-Consortium. IoSense - Flexible FE/BE Pilot Line for the Internet of Every-
thing. http://www.iosense.eu, 2016.

[13] IEEE standard glossary of modeling and simulation terminology, 1989.

[14] ISO/IEC/IEEE International Standard - Systems and software engineering - Devel-
oping information for users in an agile environment, 2018.

[15] A. R. Plummer. Model-in-the-Loop Testing. Proceedings of the Institution of Mechan-
ical Engineers, Part I: Journal of Systems and Control Engineering, 220(3):183–199,
May 2006.

– 87 –

http://www.iosense.eu

Bibliography

[16] Udo Brockmeyer, Guido Sandmann, and Michael Beine. Formal Verification Tech-
niques in a Model-Based Development Process based on TargetLink generated C-
Code. 01 2006.

[17] Katalin Popovici and Pieter J. Mosterman. Real-Time Simulation Technologies: Prin-
ciples, Methodologies, and Applications. CRC Press, mar 2016.

[18] Jerry Banks, John S Carson, Barry L Nelson, David M Nicol, et al. Discrete-Event
System Simulation, volume 3. Prentice hall Upper Saddle River, NJ, 1996.

[19] ScienceBySimulation. A chemical reaction modeling and simulation app.
https://www.sciencebysimulation.com/chemreax, 2016. Last accessed on Jan 05,
2020.

[20] Patrick Noonan and Robert Berger. Basics of Simulation Technology (SPICE),
Virtual Instrumentation and Implications on Circuit and System Design.
https://www.ieee.li/pdf/viewgraphs/basics simulation technology.pdf, 2007. Last ac-
cessed on Jan 05, 2020.

[21] Open Source Robotics Foundation. Gazebo Simulator. http://www.gazebosim.org,
2004. Last accessed on Jan 03, 2017.

[22] Rosen Dinkov. Open Robotic Automation Virtual Environment (OpenRAVE).
http://openrave.org/, 2011. Last accessed on Jan 05, 2020.

[23] Rosen Dinkov. Automated Construction of Robotic Manipulation Programs. PhD
thesis, 2010. Last accessed on Jan 05, 2020.

[24] Cyberbotics Ldt. Webots. http://www.cyberbotics.com/, 1996. Last accessed on Jan
05, 2020.

[25] MathWorks. Improving Speed and Accuracy.
https://de.mathworks.com/help/physmod/simscape/ug/improving-speed-and-
accuracy.html, 2019. Last accessed on Jul 17, 2019.

[26] Gabino Alonso. LTspice: Speed Up Your Simulations.
https://www.analog.com/en/technical-articles/ltspice-speed-up-your-
simulations.html, n.d. Last accessed on Jan 05, 2020.

[27] Norecopa. Advanced Continuous Simulation Language (ACSL).
https://norecopa.no/norina/advanced-continuous-simulation-language-acsl, 2019.
Last accessed on Mar 22, 2020.

[28] Borut Zupancic, Rihard Karba, and Drago Matko. Simulacija dinamicnih sistemov.
Fakulteta za elektrotehniko in racunalnistvo, 1995.

[29] Borut Zupancic. SIMulation of COntinuous Systems (SIMCOS. http://msc.fe.uni-
lj.si/Download/Zupancic/Simcos namestitev.zip. Last accessed on Mar 22, 2020.

[30] Norm Matloff. Introduction to Discrete-Event Simulation and the SimPy Language.
Davis, CA. Dept of Computer Science. University of California at Davis. Retrieved
on August, 2(2009):1–33, 2008.

– 88 –

Bibliography

[31] David C. Black, Jack Donovan, Bill Bunton, and Anna Keist. A Notion of Time. In
SystemC: From the Ground Up, pages 59–64. Springer US, December 2009.

[32] David C Black, Jack Donovan, Bill Bunton, and Anna Keist. SystemC: From the
Ground Up, volume 71. Springer Science & Business Media, 2009.

[33] Nathan Kitchen and Andreas Kuehlmann. Stimulus Generation for Constrained Ran-
dom Simulation. In Proceedings of the 2007 IEEE/ACM International Conference on
Computer-Aided Design, ICCAD ’07, page 258–265. IEEE Press, 2007.

[34] Jun Yuan, Kurt Shultz, Carl Pixley, Hillel Miller, and Adnan Aziz. Modeling De-
sign Constraints and Biasing in Simulation Using BDDs. In Proceedings of the
1999 IEEE/ACM international conference on Computer-aided design, pages 584–590.
IEEE Press, 1999.

[35] Wei Wei, Jordan Erenrich, and Bart Selman. Towards Efficient Sampling: Exploiting
Random Walk Strategies. In AAAI, volume 4, pages 670–676, 2004.

[36] Vibhav Gogate and Rina Dechter. A New Algorithm for Sampling CSP Solutions
Uniformly at Random. In International Conference on Principles and Practice of
Constraint Programming, pages 711–715. Springer, 2006.

[37] Franco Fummi, Giovanni Perbellini, Paolo Gallo, Massimo Poncino, Stefano Martini,
and Fabio Ricciato. A Timing-Accurate Modeling and Simulation Environment for
Networked Embedded Systems. In Proceedings of the 40th annual Design Automation
Conference, pages 42–47. ACM, 2003.

[38] Florian Schloegl, Sebastian Rohjans, Sebastian Lehnhoff, Jorge Velasquez, Cornelius
Steinbrink, and Peter Palensky. Towards a Classification Scheme for Co-Simulation
Approaches in Energy Systems. In 2015 International Symposium on Smart Electric
Distribution Systems and Technologies (EDST), pages 516–521. IEEE, 2015.

[39] Cornelius Steinbrink, Sebastian Lehnhoff, Sebastian Rohjans, Thomas I Strasser, Ed-
mund Widl, Cyndi Moyo, Georg Lauss, Felix Lehfuss, Mario Faschang, Peter Palen-
sky, et al. Simulation-based Validation of Smart Grids - Status Quo and Future
Research Trends. In International Conference on Industrial Applications of Holonic
and Multi-Agent Systems, pages 171–185. Springer, 2017.

[40] Torsten Blochwitz, Martin Otter, Martin Arnold, Constanze Bausch, H Elmqvist,
A Junghanns, J Mauß, M Monteiro, T Neidhold, Dietmar Neumerkel, et al. The
Functional Mockup Interface for Tool independent Exchange of Simulation Models. In
Proceedings of the 8th International Modelica Conference; March 20th-22nd; Technical
Univeristy; Dresden; Germany, number 063, pages 105–114. Linköping University
Electronic Press, 2011.

[41] Jérôme Hugues, Jean-Marie Gauthier, and Raphaël Faudou. Integrating AADL and
FMI to Extend Virtual Integration Capability. arXiv preprint arXiv:1802.05620,
2018.

– 89 –

Bibliography

[42] Stefano Centomo, Julien Deantoni, and Robert De Simone. Using SystemC Cyber
Models in an FMI Co-Simulation Environment. 2016.

[43] Silvio Traversaro, Luca Tricerri, and Prashanth Damadoss. Gazebo-FMI.
https://github.com/robotology/gazebo-fmi, 2018. Last accessed on Jan 25, 2020.

[44] Zhenkai Zhang, Joseph Porter, Emeka Eyisi, Gabor Karsai, Xenofon Koutsoukos,
and Janos Sztipanovits. Co-simulation framework for design of time-triggered cyber
physical systems. In Proceedings of the ACM/IEEE 4th International Conference on
Cyber-Physical Systems - ICCPS '13. ACM Press, 2013.

[45] Rolf Isermann, Jochen Schaffnit, and Stefan Sinsel. Hardware-in-the-loop simulation
for the design and testing of engine-control systems. Control Engineering Practice,
7(5):643–653, 1999.

[46] Darcy Bullock, Brian Johnson, Richard B Wells, Michael Kyte, and Zhen Li.
Hardware-in-the-loop simulation. Transportation Research Part C: Emerging Tech-
nologies, 12(1):73–89, 2004.

[47] M. Bacic. On hardware-in-the-loop simulation. In Proceedings of the 44th IEEE
Conference on Decision and Control. IEEE, 2005.

[48] Stefan Kowalewski, Bernhard Rumpe, and Andre Stollenwerk. Cyber-Physical Sys-
tems - eine Herausforderung an die Automatisierungstechnik? arXiv preprint
arXiv:1409.0385, 2014.

[49] Thomas Bock, Markus Maurer, Franciscus Meel, and Thomas Müller. Vehicle in the
Loop. ATZ - Automobiltechnische Zeitschrift, 110(1):10–16, January 2008.

[50] Guy Berg and Berthold Färber. Vehicle in the Loop. In Handbuch Fahrerassisten-
zsysteme, pages 155–163. Springer Fachmedien Wiesbaden, 2015.

[51] H. El Tahawy, D. Rodriguez, S. Garcia-Sabiro, and J.-J. Mayol. VHD/sub e/LDO:
A new mixed mode simulation. In Proceedings of EURO-DAC 93 and EURO-VHDL
93- European Design Automation Conference. IEEE Comput. Soc. Press.

[52] Youngmin Yi, Dohyung Kim, and Soonhoi Ha. Fast and Accurate Cosimulation
of MPSoC Using Trace-Driven Virtual Synchronization. IEEE Transactions on
Computer-Aided Design of Integrated Circuits and Systems, 26(12):2186–2200, 2007.

[53] Raphael Beese. Prototypische Umsetzung eines XiL-Testsystems für
Gesamtfahrzeugintegration und -absicherung. https://www.fb06.fh-
muenchen.de/fb/images/img upld/arbeiten/00011.pdf, 2007.

[54] Meng-Huan Wu, Cheng-Yang Fu, Peng-Chih Wang, and Ren-Song Tsay. An Ef-
fective Synchronization Approach for Fast and Accurate Multi-core Instruction-set
Simulation. In Proceedings of the seventh ACM international conference on Embed-
ded software, pages 197–204, 2009.

– 90 –

Bibliography

[55] Shafagh Jafer, Qi Liu, and Gabriel Wainer. Synchronization methods in parallel and
distributed discrete-event simulation. Simulation Modelling Practice and Theory,
30:54–73, January 2013.

[56] Sunghee Lee, Bueng Il Hwang, Kang-Bok Seo, and Woo Jin Lee. Relative Time
Synchronization of Distributed Applications for Software-in-the-Loop Simulation. In
2016 IEEE Intl Conference on Computational Science and Engineering (CSE) and
IEEE Intl Conference on Embedded and Ubiquitous Computing (EUC) and 15th Intl
Symposium on Distributed Computing and Applications for Business Engineering
(DCABES). IEEE, August 2016.

[57] Yehuda Naveh, Michal Rimon, Itai Jaeger, Yoav Katz, Michael Vinov, Eitan s Marcu,
and Gil Shurek. Constraint-based Random Stimuli Generation for Hardware Verifi-
cation. AI magazine, 28(3):13–13, 2007.

[58] Robert Wille, Daniel Große, Finn Haedicke, and Rolf Drechsler. SMT-based Stimuli
Generation in the SystemC Verification Library. In 2009 Forum on Specification &
Design Languages (FDL), pages 1–6. IEEE, 2009.

[59] Shuo Yang, Robert Wille, Daniel Grosse, and Rolf Drechsler. Minimal Stimuli Ge-
neration in Simulation-Based Verification. In 2013 Euromicro Conference on Digital
System Design. IEEE, September 2013.

[60] Robert Oshana and Mark Kraeling. Software Engineering for Embedded Systems:
Methods, Practical Techniques, and Applications. Newnes, 2019.

[61] Tingting Yu. Testing Embedded Systems Applications, 2010.

[62] F Bouchhima, M Briere, G Nicolescu, M Abid, and EM Aboulhamid. A System-
C/Simulink co-simulation framework for continuous/discrete-events simulation. In
2006 IEEE International Behavioral Modeling and Simulation Workshop, pages 1–6.
IEEE, 2006.

[63] Francisco Mendoza, Christian Köllner, Jürgen Becker, and Klaus D Müller-Glaser.
An Automated Approach to SystemC/Simulink Co-Simulation. In 2011 22nd IEEE
International Symposium on Rapid System Prototyping, pages 135–141. IEEE, 2011.

[64] Massimo Bombana and Francesco Bruschi. SystemC-VHDL co-simulation and syn-
thesis in the HW domain. In 2003 Design, Automation and Test in Europe Conference
and Exhibition, pages 101–105. IEEE, 2003.

[65] Davide Quaglia, Riccardo Muradore, Roberto Bragantini, and Paolo Fiorini. A Sys-
temC/Matlab co-simulation tool for networked control systems. Simulation Modelling
Practice and Theory, 23:71–86, 2012.

[66] Christoph Roth, Harald Bucher, Simon Reder, Florian Buciuman, Oliver Sander,
and Juergen Becker. A SystemC Modeling and Simulation Methodology for Fast and
Accurate Parallel MPSoC Simulation. In 2013 26th Symposium on Integrated Circuits
and Systems Design (SBCCI), pages 1–6. IEEE, 2013.

– 91 –

Bibliography

[67] Seunghyun Park, Hanjoo Kim, Hichan Moon, Jun Heo, and Sungroh Yoon. Concur-
rent Simulation Platform for Energy-Aware Smart Metering Systems. IEEE transac-
tions on Consumer Electronics, 56(3):1918–1926, 2010.

[68] Aline Mello, Isaac Maia, Alain Greiner, and Francois Pecheux. Parallel Simulation
of SystemC TLM 2.0 Compliant MPSoC on SMP Workstations. In Proceedings of
the Conference on Design, Automation and Test in Europe, pages 606–609. European
Design and Automation Association, 2010.

[69] Christoph Schumacher, Rainer Leupers, Dietmar Petras, and Andreas Hoffmann.
parSC: Synchronous Parallel SystemC Simulation on Multi-Core Host Architectures.
In 2010 IEEE/ACM/IFIP International Conference on Hardware/Software Codesign
and System Synthesis (CODES+ ISSS), pages 241–246. IEEE, 2010.

[70] Rohit Sinha, Aayush Prakash, and Hiren D Patel. Parallel Simulation of Mixed-
abstraction SystemC Models on GPUs and Multicore CPUs. In 17th Asia and South
Pacific Design Automation Conference, pages 455–460. IEEE, 2012.

[71] Jan Henrik Weinstock, Christoph Schumacher, Rainer Leupers, Gerd Ascheid, and
Laura Tosoratto. Time-Decoupled Parallel SystemC Simulation. In 2014 Design,
Automation & Test in Europe Conference & Exhibition (DATE), pages 1–4. IEEE,
2014.

[72] Asad Khan and Chris Wolf. Simics/SystemC Hybrid Virtual Platform - A Case Study.
http://www2.dac.com/50th/proceedings/slides/13D 4.pptx, 2013. Last accessed on
Jul 22, 2019.

[73] Asad Khan, Weiqiang Ma, Chris Wolf, and Bengt Werner. Multi-Threaded Simics
SystemC Virtual Platform. In Proceedings of the IEEE/ACM International Confer-
ence on Computer-Aided Design, pages 373–379. IEEE Press, 2015.

[74] Peter Garraghan, David McKee, Xue Ouyang, David Webster, and Jie Xu. SEED:
A Scalable Approach for Cyber-Physical System Simulation. IEEE Transactions on
Services Computing, 9(2):199–212, 2015.

[75] SJ Clement, David Wesley McKee, Richard Romano, Jie Xu, JM Lopez, and David
Battersby. The Internet of Simulation: Enabling Agile Model Based Systems En-
gineering for Cyber-Physical Systems. In 2017 12th System of Systems Engineering
Conference (SoSE), pages 1–6. IEEE, 2017.

[76] Samy Meftali, JOEL Vennin, and Jean-Luc Dekeyser. A fast SystemC simulation
methodology for Multi-Level IP/SoC design. In IFIP Intl. Workshop on IP Based
SoC Design, 2003.

[77] Gunar Schirner, Andreas Gerstlauer, and Rainer Dömer. Multifaceted Modeling of
Embedded Processors for System Level Design, Abstract. In Proceedings of the Asia
and South Pacific Design Automation Conference (ASPDAC), 2007.

[78] Christoph Ossimitz. The HW/SW Design Language SystemC.
https://ti.tuwien.ac.at/ecs/teaching/courses/hwswcode vu/hwsw-codesign-student-
presentations/4-systemc.pdf, 2016. Last accessed on Jul 17, 2019.

– 92 –

Bibliography

[79] Syed Saif Abrar, Maksim Jenihhin, and Jaan Raik. SystemC-Based Loose Models for
Simulation Speed-Up by Abstraction of RTL IP Cores. In 2015 IEEE 18th Interna-
tional Symposium on Design and Diagnostics of Electronic Circuits & Systems, pages
71–74. IEEE, 2015.

[80] Matthias Jung, Christian Weis, and Norbert Wehn. DRAMSys: A Flexible DRAM
Subsystem Design Space Exploration Framework. IPSJ Transactions on System LSI
Design Methodology, 8:63–74, 2015.

[81] Feihong Xia, Philip Griefnow, Serge Klein, Raul Tharmakulasingam, Andreas Bal-
azs, Matthias Thewes, and Jakob Andert. Crank Angle Resolved Real-Time Engine
Modeling for HiL Based Component Testing. 10 2017.

[82] Henning Zabel, Wolfgang Müller, and Andreas Gerstlauer. Accurate RTOS Model-
ing and Analysis with SystemC. In Hardware-dependent Software, pages 233–260.
Springer, 2009.

[83] Shai Fine, Ari Freund, Itai Jaeger, Yishay Mansour, Yehuda Naveh, and Avi Ziv.
Harnessing machine learning to improve the success rate of stimuli generation. IEEE
Transactions on Computers, 55(11):1344–1355, 2006.

[84] Olga Goloubeva, M Sonza Reorda, and Massimo Violante. Automatic Generation of
Validation Stimuli for Application-Specific Processors. In Proceedings Design, Au-
tomation and Test in Europe Conference and Exhibition, volume 1, pages 188–193.
IEEE, 2004.

[85] Finn Haedicke, Hoang M Le, Daniel Große, and Rolf Drechsler. CRAVE: An Ad-
vanced Constrained RAndom Verification Environment for SystemC. In 2012 Inter-
national Symposium on System on Chip (SoC), pages 1–7. IEEE, 2012.

[86] Kazuaki Maeda. Performance Evaluation of Object Serialization Libraries in XML,
JSON and Binary Formats. In 2012 Second International Conference on Digital
Information and Communication Technology and it's Applications (DICTAP). IEEE,
May 2012.

[87] Thomas W. Pieber, Thomas Ulz, Christian Steger, and Rainer Matischek. Hardware
Secured, Password-based Authentication for Smart Sensors for the Industrial Internet
of Things. In Network and System Security, pages 632–642. Springer International
Publishing, 2017.

[88] Thomas W. Pieber, Thomas Ulz, and Christian Steger. SystemC Test Case Genera-
tion with the Gazebo Simulator. In Proceedings of the 7th International Conference on
Simulation and Modeling Methodologies, Technologies and Applications, pages 67–72.
SCITEPRESS - Science and Technology Publications, 2017.

[89] Thomas W. Pieber, Thomas Ulz, and Christian Steger. Using Gazebo to Generate Use
Case Based Stimuli for SystemC. In Advances in Intelligent Systems and Computing,
pages 241–256. Springer International Publishing, November 2018.

– 93 –

Bibliography

[90] Thomas Wolfgang Pieber, Thomas Ulz, and Christian Steger. Model-Based Design of
Secured Power Aware Smart Sensors. In Sensor Systems Simulations, pages 227–251.
Springer International Publishing, June 2019.

[91] Thomas W. Pieber, Benjamin Mößlang, Thomas Ulz, and Christian Steger. Towards
Continuous Sensor Operation: Modelling a Secured Smart Sensor in a Sparse Network
Operated by Energy Harvesting. In Proceedings of the 9th International Conference
on Pervasive and Embedded Computing and Communication Systems (PECCS 2019),
pages 57–64. SCITEPRESS - Science and Technology Publications, 2019.

[92] Thomas Wolfgang Pieber, Fikret Basic, Thomas Ulz, and Christian Steger. Simu-
lating a Network: An Approach for Connecting Multiple SystemC Simulations. In
SENSORCOMM 2019, The Thirteenth International Conference on Sensor Technolo-
gies and Applications, pages 21–26. IARIA, October 2019.

– 94 –

A
Publications

The following publications have been created during the conduction of this thesis. They
are collected in this chapter.

P1 Thomas W. Pieber, Thomas Ulz, Christian Steger and Rainer Matischek. Hard-
ware Secured, Password-based Authentication for Smart Sensors for the Industrial
Internet of Things. In Network and System Security, pages 632-642. Springer Inter-
national Publishing, 2017. [87]

P2 Thomas W. Pieber, Thomas Ulz, and Christian Steger. SystemC Test Case Genera-
tion with the Gazebo Simulator. In Proceedings of the 7th International Conference
on Simulation and Modeling Methodologies, Technologies and Applications, pages
67-72. SCITEPRESS - Science and Technology Publications, 2017. [88]

P3 Thomas W. Pieber, Thomas Ulz and Christian Steger. Using Gazebo to Gener-
ate Use Case Based Stimuli for SystemC. In Advances in Intelligent Systems and
Computing, pages 241-256. Springer International Publishing, November 2018. [89]

P4 Thomas W. Pieber, Thomas Ulz and Christian Steger. Model-based Design of Se-
cured Power Aware Smart Sensors. In Sensor System Simulations, pages 241-256.
Springer International Publishing, June 2019. [90]

P5 Thomas W. Pieber, Benjamin Moesslang, Thomas Ulz and Christian Steger. To-
wards Continuous Sensor Operation: Modelling a Secured Sensor in a Sparse Net-
work Operated by Energy Harvesting. In Proceedings of the 9th International
Conference on Pervasive and Embedded Computing and Communication Systems
(PECCS 2019), pages 57-64, SCITEPRESS - Science and Technology Publications,
2019. [91]

P6 Thomas W. Pieber, Fikret Basic, Thomas Ulz and Christian Steger. Simulating a
Network: An Approach for Connecting Multiple SystemC Simulations. In SENSOR-
COMM 2019, The Thirteenth International Conference on Sensor Technologies and
Applications, pages 21-26, IARIA, October 2019. [92]

– 97 –

Paper P1 - NSS2017

Hardware Secured, Password-based
Authentication for

Smart Sensors for the Industrial Internet of
Things

Thomas W. Pieber1, Thomas Ulz1, Christian Steger1, and Rainer Matischek2

1 Graz University of Technology - Institute for Technical Informatics, Graz, Austria
{thomas.pieber, thomas.ulz ,steger}@tugraz.at
2 Infineon Technologies Austria AG, Graz, Austria

rainer.matischek@infineon.com

Abstract. Sensors are a vital component for the Internet of Things.
These sensors gather information about their environment and pass this
information to control algorithms and/or actuators. To operate as effec-
tive as possible the sensors need to be reconfigurable, which allows the
operators to optimize the sensing activities. In this work we focus on the
mechanisms of such reconfiguration possibilities. As the reconfiguration
can also be used to manipulate the sensors (and their attached systems)
in a subtle way, the security of the reconfiguration interface is of ut-
most importance. Within this work we test a lightweight authentication
method for use on a smart sensor and describe a possible implementa-
tions of the authentication mechanism on a hardware security module.

1 Introduction

In the Internet of Things (IoT) sensors are key components. They create the
bulk of the information needed to control their environment according to the
wishes of the operator. They furthermore monitor the environment and need to
make decisions if the monitored environment is changing in a way that needs
the operators’ attention. The sensors are equipped with some sort of microcon-
troller, software, energy source, communication mechanism, and most likely an
interface for configuring the software and the decision making. This interface
poses a threat to the integrity and trustworthiness of the sensor itself and, in
the long run, to the whole system. In order to become a trustworthy system
the configuration- and sensor data must be protected against all adversaries.
To accomplish this, the sensors can be equipped with tamper resistant hard-
ware security modules (hereafter HSM or security controller). This HSM on
a smart sensor can perform critical operations during the configuration of the
device and during communication of sensor data to the outside world. These
critical operations include the encryption of sensor data, establishing a secured
and authenticated channel to maintenance personnel, and the secured storage of
configuration- and authentication data and cryptographic keys.

Original work published in Network and System Security, pages 632-642. Springer Inter-
national Publishing, 2017.

– 98 –

Paper P1 - NSS2017

The authentication of users that can see and manipulate the confidential
settings of the sensor is one of the core features that a secured system needs.
This process not only blocks others from accessing the confidential information
but also enforces that only trusted personnel can manipulate the settings. One
of the most convenient and widely used methods of authentication is the use of
passwords. These passwords can be remembered by the trusted operators and
take the function of a shared secret. In a conventional system the user shows the
knowledge of the shared secret by directly entering it on the used device. In the
case of remote authentication, as it is the case with smart sensors, the password
must be transmitted securely to the verifying party. In an unconstrained device
this would be accomplished by securing the channel against eavesdroppers and
then sending the password over the secured channel. For resource constrained
devices this method is impractical. Therefore, methods that perform the authen-
tication alongside the establishment of the secured channel have been developed.
This is not only faster than performing these operations sequentially, but also
more efficient in terms of energy usage, computation steps needed, and mem-
ory allocated on the constrained device. At this step an HSM with dedicated
cryptographic hardware can also perform these steps faster, more efficient, and
in a more secured fashion compared to a normal microcontroller. The HSM can
additionally store the users’ credentials in the tamper resistant memory, keeping
information leakage as low as possible.

A HSM is typically very limited in terms of general computational power
and available memory. This entails that the used protocols must be lightweight
in those parameters. This is additionally challenged by the energy constraints
on the smart sensor. As such sensors might be operated using battery power,
the cryptographic challenging (and therefore energy hungry) functions must be
reduced to a minimum to keep the sensor alive as long as possible.

In this work we examined the use of a lightweight authentication method for
smart sensors. Therefore, we used simulation techniques to design and imple-
ment a prototype application and tested the results on an Infineon type security
controller.

The remainder of this paper is structured as follows: In Section 2 the prereq-
uisites for the implementation and related works are stated. The design questions
and the approaches are elaborated in Section 3. Details on the implementation
are given in Section 4. The 5th section is dedicated to the evaluation of the
authentication protocol and answers why the used protocol and hardware is
suitable for smart sensors. Possible future work is stated in Section 6. The paper
concludes with Section 7.

2 Related Work

To perform a secured authentication a key agreement protocol needs to be used.
the most widely used protocol for this task is the Diffie-Hellman key exchange [1].
This protocol defines public and private keys. After the exchange of the public
keys a shared secret can be calculated. The security of that scheme is based on

– 99 –

Paper P1 - NSS2017

the Computational Diffie-Hellman problem. However, this protocol alone is not
able to authenticate the communicating parties.

The authentication of users is a crucial part of a secured communication
as an adversary can impersonate the other communication partner and per-
form a man-in-the-middle attack. Typically, the authentication is done with a
shared secret - a password. There are many algorithms that use passwords for
authentication. One of them is proposed by M. Peyravian and N. Zunic [2]. This
protocol is especially well-suited for use in microcontrollers as the only crypto-
graphic function is a collision-resistant hash function H and therefore uses very
little computational effort. In this protocol the user sends his username (un)
and a nonce (ru) to the server which replies with another nonce (rs). The user,
knowing the password (pw), calculates the function M = H(H(un, pw), ru, rs)
and sends the resulting M to the server. The server then uses a lookup-table to
get the H(un, pw) matching to the username and can verify M. This protocol
can authenticate a user against the server but does not provide the needed se-
curity on its own. This has to be done beforehand with a key exchange. This,
on the other hand, needs more computational time as the two protocols need to
be executed. Another, newer protocol was proposed by I. Liao, C. Lee, and M.
Hwang [3]. In this protocol a message pair is exchanged during the registration
and further three messages need to be sent for the authentication. This proto-
col, when executed with ECC, requires four multiplications, two additions, five
hash-operations and one random number. Additionally to those operations, the
operations for securing the channel in the first place have to be added.

There are also protocols that perform a key agreement while authenticating
the user to the server. One of the first protocols that perform an authenticated
key exchange is the EKE protocol proposed by S. M. Bellowin and M. Merrit
proposed [4]. This protocol is the predecessor to most modern protocols. It works
by symmetrically encrypting a public key and session key with the password.
This is also the weak part of this protocol as S. Halevi and H. Krawczyk [5]. They
say that it is not wise to use a password (or any other low-entropy key) as a key
to a cryptographic function. The term “low-entropy” means that even a random
string of ASCII-characters uses only the letters from 20 to 126 (=106) of all 256
possible 8-bit characters. This means that more than half of the possibilities are
not used and therefore such strings should not be used for encryption, only for
authentication.

There are many variants of this protocol in the literature such as [6–10].
The Gennaro-Lindell PAKE protocol from [10] can be proven secure in the stan-
dard model of cryptography. A computationally less expensive protocol is the
SPAKE-protocol from [6]. This protocol was proposed by M. Abdalla and D.
Pointcheval and is proven to be secure under the random oracle model. It is also
very efficient as it only needs two messages to be exchanged. The whole protocol,
when implemented with ECC, uses only six multiplications, two additions, five
hash-operations, and one random number. Abdalla states in [11] that:

– 100 –

Paper P1 - NSS2017

[. . .] the simple password-authenticated key exchange protocol [. . .] to
which we refer as SPAKE [. . .] is among the most efficient PAKE schemes
based on the EKE protocol.

3 Design

There are two important questions to be answered in order to design an au-
thentication mechanism for smart sensors. (I) In which situation of the sensor’s
lifecycle is this authentication going to be used? (II) What hardware can be used
in order to perform the critical steps - and what costs / benefits come with that
hardware?

The answers to these questions are intertwined. The configuration of the
sensor system should be able to be performed at any time during the sensor’s
lifecycle. That means that the configuration interface might not be connected
to any power source or even the controller storing the configuration data is not
connected at all (e.g. during the production of the system parts). This leads to
the use of Near Field Communication (NFC) as a communication mechanism
and energy source for the chip containing the (confidential) parameters. This
entails that a security controller that is capable of using an NFC antenna is
needed. One controller that is capable of such operation is used in [12]. The
use of this controller furthermore comes with the benefit that the cryptographic
functions, necessary during the communication, can be performed with the har-
vested energy and do not consume the limited energy source on board of the
sensor.

Another requirement that comes from using the same authentication method
throughout the entire lifecycle of the sensor, is the possibility of changing cryp-
tographic keys, encryption parameters, usernames and passwords. This can be
subsumed with the term Bring Your Own Key / Encryption (BYOK / BYOE)
[13]. With the use of such methods it can be assured that the device cannot
be read by anyone except the authorized persons. This rises the need for a se-
cure user authentication scheme. The authentication of the sensor itself can be
performed by only sharing the password with one only one sensor.

The SPAKE-protocol introduced in [6] is a suitable protocol for establishing
an authenticated secure link between the trustworthy sensor and the user. This
protocol performs a Diffie-Hellman key agreement to generate the session key
for the encrypted messages. To authenticate the user a mask is calculated that
is applied to the public keys of both partners. At the remote end the mask is
removed and the key agreement finishes. If the calculated masks do not match
the resulting key will be different and the communication cannot be performed.

Because of the reduced memory consumption on the smart sensor and the
sufficient hardware acceleration of the secure element, elliptic curve cryptography
(ECC) was chosen to perform the key agreement and authentication. In Table

1 the SPAKE2 algorithm using ECC is shown. There KA
!
= KB and therefore

secret symmetric the key skA = skB .

– 101 –

Paper P1 - NSS2017

Table 1. Design of the ECC implementation of the SPAKE2 algorithm [6]

public information: G,H(·), uA, uB

private shared information: password

User A User B

x = rand() y = rand()

X = xG; M = H(uA)G Y = yG; N = H(uB)G

X∗ = X + (password)M Y ∗ = Y + (password)N

X∗ →
← Y ∗

N = H(uB)G M = H(uA)G

KA = x(Y ∗ + Inv((password)N)) KB = y(X∗ + Inv((password)M))

skA = H(H(uA), H(uB), X∗, Y ∗, password,KA)

skB = H(H(uA), H(uB), X∗, Y ∗, password,KB)

The use of a special hardware for the authentication yields some constraints
on what operations can be used to perform the authentication. Such constraints
can come from be the available memory of the HSM, the computational speed,
the energy intake during the computation, and the hardware support of crypto-
graphic functionalities.

The selected HSM supports ECC operations up to 256 bits and SHA256.
Therefore, the final implementation only supports curves with 256-bit param-
eters and uses the SHA256 algorithm to perform the final key generation and
key expansion for the username and password. The constraints on the memory
entail a maximum of different curves and users.

3.1 Evaluation Design

The evaluation of the implementation against the reference from Googles Weave
project [14] cannot be performed, as currently fundamental differences between
that implementation and the description of the protocol in [6] exist. Most no-
tably Googles design uses fixed points for M and N and they do not use a
Key-Derivation-Function to generate the session key - this is a mistake denoted
in [6] that would render the authentication insecure. Furthermore, Google uses
224-bit parameters while this implementation of SPAKE2 uses 256-bit. There-
fore, the evaluation will concentrate on the performance of our implementation
of the SPAKE2-protocol on the HSM.

To evaluate the performance of the protocol the security controller commu-
nicates with an implementation on a laptop computer over an NFC interface.
To get a complete picture of the protocol-performance the round-trip time for
packets with different lengths is the baseline. For further testing a version of the
SPAKE2 protocol was deployed on an NFC enabled Android device. There the
whole process for authentication and writing sample configurations was moni-
tored.

– 102 –

Paper P1 - NSS2017

Fig. 1. Prototype-hardware used for evaluating the performance

For further comparison, two variants of the protocol are implemented on the
security controller. One that is optimized for low memory usage and one that
has low computing times at the cost of increased memory consumption. These
two versions are then compared against each other to evaluate the performance
change if the cryptographic operations for authentication are reduced to a min-
imum. To demonstrate the capabilities of using different curves and users two
curves and users should be supported.

4 Implementation

To test the implementation on the HSM a command structure based on Ap-
plication Protocol Data Units (APDUs) has been defined. To be able to test
the performance of the single steps of the protocol a command for every oper-
ation was defined. The operators’ device sends the necessary commands to the
HSM, retrieves the answers from the HSM, takes timing measurements, and asks
the operator for the desired operation and, if necessary for the authentication
credentials.

Figure 1 shows the authentication interface on the NFC-enabled smartphone
asking the operator for the credentials. This test version is configured to emulate
a user and has the demo credentials entered. The implementations support the
handling of arbitrary ECC curves; it therefore has a setting to insert the curve
parameters manually. The buttons visible can generate the local public key and
generate the final key after the communication is complete. After the authenti-
cation is finished successfully the operator can view the device’s configuration,
alter the received configurations, and deploy an altered one.

– 103 –

Paper P1 - NSS2017

Fig. 2. Communication structure for fine granular evaluation

5 Performance Evaluation

The measurement of the bare communication with different sized payloads is
performed with the echo command. If the user is authenticated this command
returns the payload, otherwise an empty packet with an error number is returned.
As expected, the time used for communication increases linearly with the payload
length. Also the time for communication approximately doubles if the payload is
also sent back. When the corresponding time is subtracted of the communication
time of other commands, it can be evaluated how long the operations on the
secure element take to perform.

As expected, the timing of the authenticated echo request is slightly more
than double of the unauthenticated one. This is because the data has to be sent
back again and some more internal computation has to be done.

In Figure 2 the communication structure for evaluation purposes is shown.
It comprises of the calculations on the two sides of the communication and the
communication itself.
The average timing of generating the public key on the HSM is about 218800 µs.
Considering that the communication of one empty packet and one packet with
64 bytes payload takes on average 8000 µs, one can conclude that the necessary
calculations can be performed in 210800 µs or about 210 ms. The key deriva-
tion (KA and KB) also takes about 200 ms. The calculation of the key from
the users credentials and the shared secret uses approximately 37 ms. All those
measurements were made 1000 times. The distribution of the values is gaussian.
The gaussian parameters for the operations can be found in Table 2. With those
numbers we can estimate that the whole authenticated key exchange can be
performed in about 426 ms. The time to initialize the users is negligible as only
the credentials need to be saved. Other methods like combining ECDH and the
protocol proposed in [3] take approximately an equal amount of operations on
every run but require additional messages to be sent and perform cryptographic

– 104 –

Paper P1 - NSS2017

Table 2. Timings of the different operations

Operation (low-mem) Mean [µs] Sigma [µs]

unauthSend(64b) 8023 45

sendKey 8295 61

generatePubKey 218813 205

calculateSharedSecret 203548 142

calculateKey 42381 68

Operation (low-comp) Mean [µs] Sigma [µs]

generatePubKey 74077 67

calculateSharedSecret 67858 125

calculateKey 39554 49

initUser 91002 28

initMachine 12453 + 18
43542/User

changeMachine 273919 170

functions on initializations of new users. A comparison of the necessary opera-
tions is shown in Table 3.
If the operations are altered in a way such that more computations are done
when initializing a new user (or altering the user-credentials) it would take more
memory space but the computation time on every run can be cut down to about
145 ms on every run and 91 ms upon initializing the user. Changing the creden-
tials of the security controller requires that some credentials of the users need to
be recalculated. This requires about 110 ms per user. These numbers are shown
combined in Table 2 in the low-comp section.

Table 3. Comparison between different authentication schemes.

ECDH [3] SPAKE-low-mem SPAKE-low-comp

Crypto-operations 2; 0; 1; 1 3; 2; 6; 1 6; 2; 5; 1 2; 2; 1; 1
(∗; +;H(. . .); rand())

initialization 0; 0; 0; 0 3; 2; 0; 0 0; 0; 0; 0 4; 0; 2; 0
crypto-operations

Time authentication [ms] 120 279 + ECDH 426 145

Time initialization [ms] 0 203 0 ∼100

Permanent Memory / User 0 credentials credentials 2 Hashes +
2 Points

Permanent Memory SE 0 credentials credentials 1 Hash

Table 3 compares two possible SPAKE implementations (one designed for
low memory usage, one for low computation time) with operations needed when
using ECDH and the authentication scheme proposed by [3]. It furthermore
shows approximated timings for the operations when executed on the chosen
HSM. The protocol from [3] uses a previously secured communication channel

– 105 –

Paper P1 - NSS2017

to transmit data. Therefore, an algorithm like ECDH needs to be executed before
the authentication is performed. The table shows the required cryptographic op-
erations for every authentication and the operations necessary when initializing
a new user. Furthermore, the timings for initializing and authentication on the
HSM, and the memory usage for the different algorithms per user and for the
HSM are shown. The comparison indicates that the SPAKE protocol is at least
as efficient as the protocol proposed by I. Liao, C. Lee and M. Hwang [3]. If the
hardware allows for more memory usage, the shown SPAKE2 implementation
performs the authentication on top of the ECDH with little overhead.

With these statistics the strength of the implemented SPAKE2 protocol gets
visible. While other protocols initially perform a key exchange followed by the
authentication, these two steps get done in a single operation. Not only the time
used to communicate, but also the time needed to protect the authentication data
during transport can be reduced. With this the transmission of data can stop
earlier, resulting in decreased energy consumption. Additionally, the amount
of required cryptographic operations is reduced. A protocol using an ECDH
scheme and an authentication protocol afterwards uses more random numbers,
more hash-operations, and more ECC-related functionalities. Furthermore, the
memory usage per user can be just a few bytes (the credentials and additional
information for authorization and cryptography details). The term credentials
means that the password and username are stored in plain text inside the tamper
resistant memory. In the low-comp section, the credentials are stored in their key-
expanded form (Hash) as they will be used like this during the computation.
Additionally the ECC points M and N are calculated beforehand and stored in
the memory to reduce computation time.

6 Future Work

As previously described, the authorization and establishing of the secured chan-
nel can be performed with two messages. This can reduce the communication
overhead, which is especially useful for low-powered sensors where the use of the
communication devices consumes most of the available energy. This protocol can
be changed to also enable authentication between machines. This is especially
useful for an industrial setting where robots need to communicate with other ma-
chinery to fulfil their tasks. It can also be combined with other communication
techniques to enhance current sensor configuration possibilities.

7 Conclusion

In this paper an implementation of the SPAKE2-algorithm [6] has been shown.
The evaluation shows that the protocol can be implemented efficiently on an
HSM. It also shows that the use of an authenticated key agreement protocol is
advantageous compared to a standard solution where key agreement and authen-
tication are performed separately. These features naturally reduce the commu-
nication overhead and can be implemented with little overhead in computation

– 106 –

Paper P1 - NSS2017

or memory size. Combined, this leads to the conclusion that an authenticated
key agreement like SPAKE2 is useful for the use on a smart sensor.

Acknowledgment

This project has received funding from the Electronic Component Systems for
European Leadership Joint Undertaking under grant agreement No 692480. This
Joint Undertaking receives support from the European Unions Horizon 2020
research and innovation programme and Germany, Netherlands, Spain, Austria,
Belgium, Slovakia.

References

1. Diffie, W., Hellman, M.: New directions in cryptography. IEEE transactions on
Information Theory 22(6) (1976) 644–654

2. Peyravian, M., Zunic, N.: Methods for protecting password transmission. Com-
puters & Security 19(5) (2000) 466–469

3. Liao, I.E., Lee, C.C., Hwang, M.S.: A password authentication scheme over insecure
networks. Journal of Computer and System Sciences 72(4) (2006) 727–740

4. Bellovin, S.M., Merritt, M.: Encrypted key exchange: Password-based protocols
secure against dictionary attacks. In: Research in Security and Privacy, 1992.
Proceedings., 1992 IEEE Computer Society Symposium on, IEEE (1992) 72–84

5. Halevi, S., Krawczyk, H.: Public-key cryptography and password protocols. ACM
Transactions on Information and System Security (TISSEC) 2(3) (1999) 230–268

6. Abdalla, M., Pointcheval, D.: Simple password-based encrypted key exchange pro-
tocols. In: Cryptographers Track at the RSA Conference, Springer (2005) 191–208

7. Bellare, M., Rogaway, P.: The autha protocol for password-based authenticated
key exchange. Technical report, Technical report, IEEE (2000)

8. Kobara, K., Imai, H.: Pretty-simple password-authenticated key-exchange under
standard assumptions. iacr eprint archieve, 2003

9. Krawczyk, H.: Sigma: The sign-and-macapproach to authenticated diffie-hellman
and its use in the ike protocols. In: Annual International Cryptology Conference,
Springer (2003) 400–425

10. Gennaro, R., Lindell, Y.: A framework for password-based authenticated key ex-
change. In: International Conference on the Theory and Applications of Crypto-
graphic Techniques, Springer (2003) 524–543

11. Abdalla, M.: Password-based authenticated key exchange: An overview. In: Inter-
national Conference on Provable Security, Springer (2014) 1–9

12. Druml, N., Menghin, M., Kuleta, A., Steger, C., Weiss, R., Bock, H., Haid, J.: A
flexible and lightweight ecc-based authentication solution for resource constrained
systems. In: Digital System Design (DSD), 2014 17th Euromicro Conference on,
IEEE (2014) 372–378

13. Ulz, T., Pieber, T., Steger, C., Haas, S., Bock, H., Matischek, R.: Bring your own
key for the industrial internet of things. In: Industrial Technology (ICIT), 2017
IEEE International Conference on, IEEE (2017) 1430–1435

14. Google: Google Weave - uWeave. https://weave.googlesource.com/weave/
libuweave/+/HEAD (2016)

– 107 –

Paper P2 - SIMULTECH2017

SystemC Test Case Generation with the Gazebo Simulator

Thomas W. Pieber, Thomas Ulz, and Christian Steger
Institute for Technical Informatics, Graz University of Technology, Inffeldgasse 16/I, Graz, Austria

{thomas.pieber, thomas.ulz, steger}@tugraz.at

Keywords: SystemC, Gazebo, Plugin, Cosimulation, Simulation, XML, Test Case Generation

Abstract: The current approach of hardware simulators is a testbed, that supplies the Device under Test (DUT) with
inputs. These sequences of inputs are the result of engineers reverse engineering the use cases extracting the
inputs from them and adding some extreme cases. This paper describes an approach where the input sequences
are generated directly from the use case itself. The use case is therefore simulated in an environmental sim-
ulator such as Gazebo. This generates the stimuli for the DUT. To facilitate the compatibility between the
different simulation environments we present an easy-to-use and easy-to-implement communication strategy.

1 INTRODUCTION

A system design needs to be simulated in order to
test it extensively. Such a simulation should be stimu-
lated with real world events and unusual events to test
the functionality under normal working situations and
extreme cases. Such tests are normally designed by
thinking of scenarios, defining how the device should
react, and testing these input sequences. Furthermore,
random input sequences can be applied to the sys-
tem to test the design more extensively. These ran-
dom tests are unlikely to produce valid inputs and pri-
marily test the error handling. As these tests are un-
likely to perform useful tasks, it is necessary to have
a system that can generate useful input and the ac-
cording expected data. We have therefore designed a
system that uses an environment simulation to gener-
ate the inputs for testing a sensor system. This de-
sign can also reduce the effort needed to design test
cases, as only scenarios in which the DUT normally
operates need to be constructed. From these scenar-
ios valid input data is automatically generated. As an
environmental simulator, a robotics simulator, such as
Gazebo, can be used.

A robotics simulator is designed to handle com-
plex systems and generate sensory information of any
kind. A widely used robotics simulator is the Gazebo
simulator (Open Source Robotics Foundation, 2004;
Koenig and Howard, 2004). This open source product
can be modified (in a, for us, useful way) by writing
plugins for the entire world, the models, the sensors,
and an entire system. Further modifications can be

made to the visuals and the GUI. The Gazebo simu-
lator operates in discrete time steps of 1 ms . This is
enough for simulating the movement of a robot and
scarce enough that the robot’s operating system can
handle most commands in this time step.

For simulating a sensory device (hereafter Device
under Test or DUT) a tool like SystemC (Accelera,
2000) can be used. With this simulator, a complex mi-
crosystem can be designed and tested. Also the com-
ponent parts of this system can be modelled in varying
detail, allowing for later synthetization. SystemC can
simulate the DUT in discrete time intervals as small
as 1 fs.

This difference in simulation speed is a major
problem to be solved to combine the two simulation
environments. As the SystemC simulation is operates
in such fine time intervals, it generates huge amounts
of data during the execution of a test scenario, as such
a test scenario can last for many minutes. The prob-
lem of generating and handling these amounts of data
must be considered when designing the status output
of the DUT. Also the connection of the DUT on the
SystemC side of the simulation needs to be modified
in order to allow the storage of communication data
between it and the simulator and the correct input of
the data to the DUT.
Another issue that comes with connecting the simu-
lators comes from the communication between them.
The simulators have to communicate in order to ex-
change status information like the actual simulation
time, commands, and generated messages. As the
SystemC simulation works with finer time steps it re-

Original work published in Proceedings of the 7th International Conference on Simulation
and Modeling Methodologies, Technologies and Applications, pages 67-72. SCITEPRESS
- Science and Technology Publications, 2017.

– 108 –

Paper P2 - SIMULTECH2017

quires much more fine granular input data and pro-
duces huge amounts of output data. This data needs
to be extrapolated from the data Gazebo provides and
afterwards filtered to allow Gazebo to work with the
return data.

The remainder of this paper is structured as fol-
lows: In Section 2 other works that combine SystemC
or Gazebo with other simulators are described. Sec-
tion 3 explains the motivation for our design, the re-
quirements that need to be implemented, and details
of the solution for the requirements. An evaluation
of the usability and functionality of the design is de-
scribed in Section 4. Following that, Section 5 men-
tions ideas on how to further improve the proposed
design. This paper concludes with Section 6.

2 RELATED WORK

Gazebo is an open source robotics simulator. It is
primarily combined with the Robot Operating Sys-
tem (ROS). There are some approaches for combining
Gazebo with other software for robotics and compu-
tational intelligence (Zamora et al., 2016).
There are approaches that connect other tools that can
be used to simulate hardware, to Gazebo (Mathworks,
2016). In these approaches, the main interface to the
simulation environment is the interface to ROS.

SystemC is a modelling language based on C++.
The extension consists of a class library and a simu-
lation kernel. In (Panda, 2001) a short summary of
design processes for SystemC is given.

There exist some interfaces to SystemC in the lit-
erature such as (Martin et al., 2002; Possadas et al.,
2005; Bouchhima et al., 2006; Huang et al., 2008;
Mueller-Gritschneder et al., 2013). These papers use
SystemC as a primary basis and extend the function-
ality of it. (Huang et al., 2008) describe a possibility
of running a SystemC simulation on a distributed net-
work, improving the time performance significantly.
An interface to SystemC was designed in (Bouchhima
et al., 2006). This work uses Matlab/Simulink as
a continuous simulation for the environment, which
communicates with the SystemC model.
In the work found in (Martin et al., 2002), SystemC
was connected with an analog circuit simulator like
SPICE (Simulation Program with Integrated Cir-
cuit Emphasis) and VHDL (Very High Speed Inte-
grated Circuit Hardware Description Language (VH-
SIC Hardware Description Language)).
In (Mueller-Gritschneder et al., 2013) a platform for
simulating an entire robot is modelled in SystemC.
In this approach the SystemC simulation was used
to simulate the behaviour of a robotic system on the

transaction layer. With their simulation results the au-
thors update the model of a robot in a virtual world,
simulated in a Java environment. After that measure-
ments are taken in the Java environment and sent to
the SystemC robot model for further processing. They
use network sockets to communicate between the two
simulations. In this paper SystemC was used to sim-
ulate the robot’s movement as accurate as possible,
while in our proposal the robot’s behaviour gives the
input to the simulation of other hardware.

In summary, SystemC was connected with many
simulators for cycle accurate measurements, other
hardware description languages, or circuit simulators.
In (Mueller-Gritschneder et al., 2013) SystemC was
used to simulate physical effects on robots.

Comparing this previous work with our proposal,
our contributions are a completely new aspect of
connecting simulators for generating test cases for
systems automatically, as well as connecting the
SystemC simulation with an open source robotics
simulation. That means that SystemC was previously
used to simulate effects in the larger simulation, in
this approach the larger simulation is used to stimu-
late the whole system simulated in SystemC.

In our use-case a sensor is read using a wireless
channel. For such a use-case the NFC technology is
well well-suited. This is due to the fact that energy
can be transmitted through the RF (radio frequency)
field. With that energy the sensor and the supporting
microcontroller(s) can be operated. The same energy
can also be used to charge a small battery or capacity.
In (Wireless Power Consortium et al., 2010; Strom-
mer et al., 2012; Lee et al., 2013) the mechanism for
transmitting energy alongside data and for storing that
energy are described.

There are different approaches to communicate
between simulation environments; commonly used
are XML (Extensible Markup Language) and JSON
(JavaScript Object Notation). Of these two, JSON
is more efficient as (Nurseitov et al., 2009) show.
(Sumaray and Makki, 2012) furthermore compares
Google’s Protocol Buffer (protobuf), which is used by
the Gazebo simulator, alongside JSON and XML.
As the SystemC simulation works in many cycles for
every internal time step, the efficient generation of
JSON objects, as well as the generation of protobuf-
messages, would require major changes in the exist-
ing simulations. Following this, the approach to com-
municate from SystemC to Gazebo is to embed the
values of interest in XML-tags.

– 109 –

Paper P2 - SIMULTECH2017

3 DESIGN

The goal of the presented design is to connect a
SystemC simulation to a high-level simulator in order
to generate stimuli for the simulation. Using this ap-
proach, the testbed for the SystemC simulation is the
simulation of the use-case. This method allows the
generation of stimuli for the SystemC simulation from
the specification of an interaction of the designed sys-
tem with the environment. This is not only more effi-
cient than a system engineer could be, but also small
variations of the environment can generate a wide va-
riety of tests.

To support a SystemC simulation with input from
an environment simulator like Gazebo, a plugin for
that simulator needs to be developed. This plugin
must be able to send commands and data to the
SystemC environment and receive the results and sta-
tus of the SystemC simulation.

A huge hurdle for connecting the two simula-
tion environments is the different simulation speeds.
Gazebo works with time steps of 1 ms whilst SystemC
can handle steps as small as 1 fs. This is a twelve or-
ders of magnitude higher time resolution of SystemC.
Even a “slow” computer which only works at 50 MHz
performs 5 ·104 steps in one time step of Gazebo. This
results in amounts of data that are hard to evaluate in
a high-level simulation environment. Therefore, mea-
sures have to be made to limit the amount of data that
needs to be transmitted. In order to do this a connec-
tion between the simulators needs to be defined.

The connection between the two simulation envi-
ronments must be supported by both environments. In
the Gazebo simulator a plugin can be written. Figure
1 shows a subset of the states the plugin needs to per-
form during the execution. This model-plugin needs
to open communication channels and fork a new pro-
cess that will become the SystemC simulation. The
plugin then proceeds to the normal execution. For
that it connects to the required Gazebo internal sig-
nals. One of the required connections is to the onUp-
date signal. This signal is set on every time step in
the simulation. On activation of this signal the plugin
retrieves the status information and other messages
from the DUT in the SystemC simulation. When this
is done and the data is processed, the plugin can send
new commands and messages to the DUT.

To send different messages between the communi-
cating parties an easy-to-implement approach is used.
In the SystemC simulation the interesting parameters
can be sent to the communication channel. The quick-
est way to implement such a communication would
be to redirect the standard output to the communi-
cation pipe before forking the SystemC simulation,

Figure 1: States of the execution of the implemented plugin.

and send the interesting values encased by XML-style
tags. With these tags it is easy to find the interest-
ing values in the input stream and separate it from
the rest. With this approach the produced data can
be collected by Gazebo in the order it was produced.
Another approach is the collection of the interesting
data in a global data structure, generate a JSON mes-
sage, and send it at the end of the time step. This
approach however would require more changes in the
simulation, while the improvement of the efficiency is
negligible in contrast to the whole execution.
The Gazebo plugin needs to parse the incoming
stream of data. With the XML-tags it can detect the
values, perform some preprocessing and store it in a
fitting datastructure. When the simulation halts at the
specified time, a sync tag needs to be sent to Gazebo.
When this signal is received, the plugin can operate
again and send the received data to the processing
nodes. As (Sumaray and Makki, 2012) show, this
communication is done most efficiently with Google’s
protobuf approach. To use this method, custom mes-
sages are defined. These messages can then be sent
to a simulation of the channel. This separation is
done in order to provide the possibility of changing
the channel and the parameters independently of the
rest. In our design a NFC communication is chosen.
The channel simulation is implemented as a World-
plugin of Gazebo. This plugin takes the environmen-
tal states and calculates the transmitted power and can
induce errors or attacks on the communication. The
calculations of the transmission statistics are based on
(Wireless Power Consortium et al., 2010; Lee et al.,
2013) The channel plugin can then relay the (modi-
fied) messages with additional information about the
channel to the receiving party. In our scenario, the
ROS system can then access the received data.
The communication in the other direction follows the
same rules. The robot’s OS sends data to the chan-
nel, the channel modifies and appends the message
and retransmits it to the sensor plugin (if the sensor
is within communication range). The sensor plugin

– 110 –

Paper P2 - SIMULTECH2017

gathers the data and commands from the robot and
from the channel, and generates a message that can
be sent to the SystemC simulation.
Another useful extension is another World-plugin that
gatheres sensory information for the sensor to pro-
cess. Also this information can be collected by the
sensor plugin and relayed to the SystemC simulation.

In the SystemC simulation the testbed needs to be
changed to accommodate the interface to the high-
level Gazebo simulation. The requirements that the
altered testbed has to fulfil, in order to work properly,
are:

R.1 The simulation parameters, commands to the
DUT, and other information regarding the hard-
ware simulation must be configurable.

R.2 The commands that come from the Gazebo simu-
lator must be parsed and distributed.

R.3 The testbed must be able to be activated continu-
ously.

R.4 The simulation time for each iteration should be
variable to allow a variety of scenarios.

R.5 A direct communication to the parts that can be
affected by the commands must be possible.

R.6 The incoming commands must be stored and exe-
cuted in the correct order.

R.7 A proper time synchronization between the two
environments needs to be established.

R.8 The traces from the simulation should be de-
activated, or at least reduced, as a execution
over a prolonged simulation time produces huge
amounts of data.

Furthermore, some minor changes have to be made in
the rest of the simulation. Most notably is the inser-
tion of messages back to the Gazebo simulator. These
changes are similar to the changes needed for require-
ment R.7.

Requirement R.1 is fulfilled by providing a
POSIX (Portable Operating System Interface) pipe
that connects the standard input of the SystemC
testbed with the Gazebo plugin. This allows the
transfer of information (like configuration parame-
ters) through the standard input from the Gazebo sim-
ulator to the SystemC simulation.
To satisfy requrement R.2 a parser for the received
messages is implemented and called at the start of ev-
ery execution cycle.
To fulfil requirement R.3 the testbed is written in an
endless loop. The condition to terminate the process
is taken from the standard input. As the input is con-
nected via a POSIX pipe to the Gazebo simulator, the
SystemC simulation can be ended if Gazebo is closed.
Special commands to change timing parameters are

included in the command structure to implement re-
quirement R.4. In SystemC two commands are
needed; one for the time unit and one for the value.
As we want to simulate a sensor system, it is useful to
feed the simulated sensory information to the sensor-
input of the SystemC simulation. This corresponds
to specification R.5. With special tags this data can
be extracted from the received message. This data is
then sent to a FIFO (first in, first out) memory “sen-
sor”. This sensor can then set the required values on
its data lines.
The same approach can be used for requirement R.6.
In this requirement the input is stored in a FIFO at
the control unit of the sensor. This control unit can
then execute the commands in order. For a proper ex-
ecution of the commands an additional data field is
required. This data field stores the exact time values
at which the command should have arrived to simu-
late a serialized channel.
To fulfil requirement R.7, a channel to communicate
back to the Gazebo simulation needs to be declared.
This is most easily done by redirecting the standard
output to another pipe before executing the simula-
tion. The synchronization between the simulation en-
vironments is done by creating a sync-signal at the
end of a simulation step. The sync-signal is defined
by a specialized XML-tag that is sent to the standard
output. After this signal is received, the Gazebo sim-
ulator is allowed to excite another step. This step in
turn triggers the advance of the SystemC simulation
by one time step. The same method for communicat-
ing to the Gazebo environment can be used for other
data as well. These data-fragments are then encased
in XML-tags that can be found in the output stream
of the SystemC simulation. For each interesting event
in the SystemC environment a separate XML-tag is
defined. In our test-design, interesting events are: (I)
the sending of data packets from different execution
stages and (II) the status of the battery of the sensor.
When simulating an environment it is necessary that
longer amounts of time are simulated, in order to also
simulate the edge conditions. This results in huge
amounts of data that come from the SystemC environ-
ment. Normally, this data comes in form of VCD-files
(Value Change Dump files). If the clock of the simula-
tion is dumped as well, this results in vast amounts of
data referring to clock changes while the actual simu-
lation process has not even begun.
Requirement R.8 refers to that problem. Therefore it
is necessary to wait for input before initializing the
simulation. This input determines if traces will be
made, and if yes, which traces should be activated.
Furthermore, it is possible to pause the execution of
the SystemC simulation if all relevant operations for

– 111 –

Paper P2 - SIMULTECH2017

Figure 2: Overall communication process between Gazebo
and SystemC.

this time step are handeled which results in shorter
simulation times. This approach does however reduce
the quality of the simulation results and should there-
fore only be used if the DUT is in a low power mode.

If the simulation is paused prematurely two addi-
tional challenges emerge. The first is the disconnec-
tion of the simulation time of Gazebo and SystemC.
In order to prevent that from happening in the trace,
an additional value can be generated. This value is
toggled if the simulation pauses prematurely.
The second challenge is the simulation of values that
change even if basically no useful operation is per-
formed. An example for such a value is the energy
level of a battery that is drained a little even in low-
power mode. A fashionable solution to this problem
is the estimation of this value at the supposed end of
the simulation.
With these calculations at the premature pausing of
the simulation and the knowledge that every simu-
lation step takes 1 ms the timings of the operations
can be restored and the sharp edges on estimated val-
ues can be reduced by interpolating between the data
points.

Figure 2 shows the global communication paths
between the two simulation systems and the changed
interfaces. The robot from the Gazebo simulator, as
well as the environment in which the robot operates,
compute the input for the SystemC simulation. These
input parameters are sent to the interface (testbed) of
the SystemC simulation, which in turn distributes this
data to the required parts of the internal simulation.
This simulation produces outputs which are sent over
the standard output to the Gazebo simulator (dashed
line). Furthermore, data is sent to the testbed, as some
traces still need to be captured. In the Gazebo simu-
lator, the environment can affect the communication

channel between the sensor and the robot again. Fi-
nally, the robot can access the gathered data. This data
can then be compared to the data generated by the sen-
sor in order to optimize the communication process.

All parts of the simulation in the Gazebo simulator
are implemented using plugins. This allows the easy
reconfiguration of the simulation to feature other or
more actors, inputs, obstacles, parameters, and even
allows the change of the whole communication chan-
nel.

4 EVALUATION

To evaluate the developed system, a SystemC simula-
tion of a smart sensor that communicates and charges
the internal battery with NFC (Near Field Commu-
nication) technology was constructed. This is the
sensory device denoted DUT beforehand. This sim-
ulation is then started by a Gazebo plugin. The
Gazebo simulator provides the context for the sim-
ulation and gives useful sensory values as input to
the system. The Gazebo simulator can communicate
with the SystemC simulation over the standard input
and output of the SystemC simulation. In our design
the wireless NFC communication channel is modelled
in a Gazebo World-plugin. A World-plugin is a plu-
gin, that is loaded at the beginning, connected to all
parts of the simulation, and is active until the simu-
lation ends. With this approach, the channel simula-
tion can get different parameters that affect the com-
munication. Such parameters are the distance and
orientation between the antennas, obstacles between
the antennas, and other noise on the communication
band. Because the channel is modelled separately, it
can be easily changed to accommodate other commu-
nication techniques like WiFi, Bluetooth, Zigbee, or
wired connections.

The communication between the simulators is per-
formed with strings encased in XML-tags. On each
side of the communication an XML parser is written
that searches for the declared tags. The strings found
by this parser are then stored in a suiting data struc-
ture. For our use case, this data structure consists of
a list of objects, referring to the XML-tags, each con-
taining a list of the received data values.
The data contained in this structure can then be read
sorted by topic in the order it was received. For
data that needs to be transmitted via the NFC chan-
nel, a preprocessing step is executed that generates
protobuf-messages.

The SystemC simulation can get the required
stimuli from the environment of the Gazebo simula-
tor. In Figure 3 a concept for the simulation is shown.

– 112 –

Paper P2 - SIMULTECH2017

Figure 3: Concept of the Evaluation Design.

The robot, as part of the environment, interacts with
the DUT. In this simulation the DUT is attached to a
crate as an environmental feature. The robot moves
towards the DUT and tries to communicate with it.
As the robot gets closer, the NFC connection between
the robot and the DUT gets better. When the channel
is good enough such that enough energy gets trans-
mitted the DUT switches on and the communication
can happen.

This simulation performs every operational phase
of such a DUT when some entity tries to communi-
cate with it. Because the global simulation is done
in a robotics simulator, a new test case can be imple-
mented by repositioning the DUT and robot and giv-
ing the robot some new instructions. The local sim-
ulation of the DUT is still done with SystemC. This
allows very accurate measurements on the DUT. In
this scenario we want to monitor the power usage and
ability to store excess energy during such a read cy-
cle. With these measurements we hope to develop a
more efficient power manage system on our DUT. Ad-
ditionally more information about the NFC communi-
cation can be gathered from this simulation.

Figure 4 shows the environment with the robotic
arm and the DUT. To communicate with the DUT an-
other sensor was mounted on the end of the robotic
arm.

While the robot is approaching the sensor the NFC
antenna on the robot’s arm is activated. The trans-
mitted energy and commands are received at the sen-
sor. The sensor’s energy intake can be seen in Figure
5. This figure furthermore shows the compression of
simulation time as a result of requirement R.8. The
upper graph starts at approximately 0.9 ms and runs
to about 3.5 ms. The lower graph is time-expanded to
correlate with the Gazebo simulation time. This graph
starts at 5840 ms and runs to 6480 ms. This results in
a compression of the 5.8 s idle time to 0.9 ms.

Figure 4: Interaction of a robot with the sensor.

5 FUTURE WORK

As many hardware elements are simulated in lan-
guages other than SystemC, plugin-structures need to
be developed to also include such simulations with a
high-level simulator. From our point of view a simi-
lar approach to include languages such as Verilog or
VHDL seems promising.
For bigger simulations it may also be useful to con-
nect to the SystemC simulation using network sockets
to allow the parallel computation of multiple sensors.
Furthermore, simulations of the planned system as a
whole, of multiple sensors, senders and receivers, and
different channels need to be performed.

6 CONCLUSIONS

We presented a new approach for connecting a
SystemC hardware simulation to a robotic simula-
tor. This is done in order to automatically generate
the stimuli for the SystemC testbed. The huge dif-
ference in time resolution between these simulators
pose a barrier to connect them. To solve this hur-
dle, a mechanism to synchronize the simulations and

– 113 –

Paper P2 - SIMULTECH2017

Figure 5: Energy trace of the sensor while a robot is approaching. The shorter simulation time at the top is a result of the
reduction of execution time due to requirement R.8

transport data between them is shown. In addition to
that, we have mentioned that extrapolating data for the
SystemC simulation, as well as filtering the produced
data for the Gazebo simulator, is necessary. Further-
more, the SystemC simulation needs some changes in
order to be able to connect to such a high-level simu-
lator. These changes include:

• Reduction of output if possible - without greatly
decreasing the degree of detail where it is needed.

• Rewriting the testbed to allow the external simu-
lation to control the simulation

• Inclusion of special outputs for synchronization,
passing status information, and transmitting the
generated data to the Gazebo simulator.

Additional changes have been made to the Gazebo
simulator.

• A plugin to control SystemC has been developed.
This plugin handles all communication from and
to SystemC, keeps the simulations synchronized,
and controls the start and end conditions for the
SystemC simulation.

• Different channels, wireless and wired, have been
modelled in Gazebo that can be used to simulate
the connection between arbitrary devices.

ACKNOWLEDGEMENTS

This project has received funding from the Electronic
Component Systems for European Leadership Joint
Undertaking under grant agreement No 692480. This
Joint Undertaking receives support from the European
Unions Horizon 2020 research and innovation pro-
gramme and Germany, Netherlands, Spain, Austria,
Belgium, Slovakia.

REFERENCES

Accelera (2000). SystemC.
http://accellera.org/downloads/standards/systemc.
Last accessed on Jan 17, 2017.

Bouchhima, F., Briere, M., Nicolescu, G., Abid, M., and
Aboulhamid, E. (2006). A SystemC/simulink co-
simulation framework for continuous/discrete-events
simulation. In 2006 IEEE International Behavioral
Modeling and Simulation Workshop. Institute of Elec-
trical and Electronics Engineers (IEEE).

Huang, K., Bacivarov, I., Hugelshofer, F., and Thiele, L.
(2008). Scalably distributed SystemC simulation for
embedded applications. In 2008 International Sym-
posium on Industrial Embedded Systems. Institute of
Electrical and Electronics Engineers (IEEE).

Koenig, N. and Howard, A. (2004). Design and use
paradigms for gazebo, an open-source multi-robot
simulator. In 2004 IEEE/RSJ International Confer-
ence on Intelligent Robots and Systems (IROS) (IEEE
Cat. No.04CH37566). Institute of Electrical and Elec-
tronics Engineers (IEEE).

Lee, W.-S., Son, W.-I., Oh, K.-S., and Yu, J.-W. (2013).
Contactless energy transfer systems using antiparallel
resonant loops. IEEE Transactions on Industrial Elec-
tronics, 60(1):350–359.

Martin, D., Wilsey, P., Hoekstra, R., Keiter, E., Hutchinson,
S., Russo, T., and Waters, L. (2002). Integrating mul-
tiple parallel simulation engines for mixed-technology
parallel simulation. In Proceedings 35th Annual Simu-
lation Symposium. SS 2002. Institute of Electrical and
Electronics Engineers (IEEE).

Mathworks (2016). Get Started with
Gazebo and a Simulated TurtleBot.
https://de.mathworks.com/help/robotics/examples/get-
started-with-gazebo-and-a-simulated-turtlebot.html.
Last accessed on Jan 03, 2017.

Mueller-Gritschneder, D., Lu, K., Wallander, E., Greim, M.,
and Schlichtmann, U. (2013). A virtual prototyping
platform for real-time systems with a case study for
a two-wheeled robot. In Design, Automation & Test
in Europe Conference & Exhibition (DATE), 2013.
EDAA.

– 114 –

Paper P2 - SIMULTECH2017

Nurseitov, N., Paulson, M., Reynolds, R., and Izurieta, C.
(2009). Comparison of json and xml data interchange
formats: A case study. Caine, 2009:157–162.

Open Source Robotics Foundation (2004). Gazebo simula-
tor. http://www.gazebosim.org. Last accessed on
Jan 03, 2017.

Panda, P. R. (2001). SystemC - Amodelling platform sup-
porting multiple design abstractions. In Proceedings
of the 14th international symposium on Systems syn-
thesis - ISSS. Association for Computing Machinery
(ACM).

Possadas, H., Adamez, J. A., Villar, E., Blasco, F., and Es-
cuder, F. (2005). RTOS modeling in SystemC for real-
time embedded SW simulation: A POSIX model. De-
sign Automation for Embedded Systems.

Strommer, E., Jurvansuu, M., Tuikka, T., Ylisaukko-oja, A.,
Rapakko, H., and Vesterinen, J. (2012). NFC-enabled

wireless charging. In 2012 4th International Work-
shop on Near Field Communication. Institute of Elec-
trical and Electronics Engineers (IEEE).

Sumaray, A. and Makki, S. K. (2012). A comparison of data
serialization formats for optimal efficiency on a mo-
bile platform. In Proceedings of the 6th International
Conference on Ubiquitous Information Management
and Communication, ICUIMC ’12, pages 48:1–48:6,
New York, NY, USA. ACM.

Wireless Power Consortium et al. (2010). System descrip-
tion wireless power transfer. Volume I: Low Power,
Part, 1.

Zamora, I., Lopez, N. G., Vilches, V. M., and Cordero, A. H.
(2016). Extending the OpenAI Gym for robotics:
a toolkit for reinforcement learning using ROS and
Gazebo. arXiv preprint arXiv:1608.05742.

– 115 –

Paper P3 - Advances in Intelligent Systems and Computing 2018

Using Gazebo to Generate Use Case Based
Stimuli for SystemC

Thomas W. Pieber, Thomas Ulz, and Christian Steger

Graz University of Technology - Institute for Technical Informatics, Graz, Austria
{thomas.pieber, thomas.ulz, steger}@tugraz.at

Abstract. Realistic simulations of new hardware are of utmost impor-
tance to achieve good results. The current approach to such simulations
is that the Device under Test is exposed to stimuli that are either gener-
ated randomly, or that are generated by engineers reverse engineering the
use cases and extending the inputs by some extreme cases. In this paper
we describe an approach to generate useful stimuli for a SystemC simu-
lation directly from a simulation of the use case. In this approach the use
case is simulated using the Gazebo simulator. The stimuli for the Device
under Test are then extracted and sent to the SystemC simulation.

1 Introduction

In the development of new systems simulations need to be performed to find
errors early. With such simulations the developed system (or Device Under Test
”DUT”) can be tested extensively and optimizations and error corrections can be
implemented quickly and inexpensively. These simulations are usually stimulated
with events that occur in the expected use case as well as some extreme cases.
These tests are designed by engineers reworking the scenarios and defining the
inputs and the expected behaviour. In addition to these tests, random input
sequences can be applied to test the DUT’s reactions to faulty or unexpected
inputs as random input is unlikely to be valid. All together that means that the
current test procedure consists of valid inputs designed by the system engineers
and (mostly) invalid inputs generated by random testing. We therefore propose
an architecture for a generator that can produce valid inputs to the DUT design
which can also be evaluated according to the expectations of the engineers. Such
system can decrease the effort needed to design tests for the DUT, as only the
valid scenarios need to be described. These will then automatically generate valid
input data and the expected output.

For such simulation the environment in which the DUT should operate can
be simulated. This environmental description only needs to describe the essen-
tial parameters that can affect the DUT. Such simulations can be performed
in a simulator such as the Gazebo simulator [6, 13]. This simulator is designed
for robotic use cases and is designed to handle complex systems and generate
accurate sensor information of any kind. This open source simulator also allows
modifications to be as useful and accurate as we want it to be. These modifica-
tions are done by implementing plugins for the environment (world), the models,

Original work published in Advances in Intelligent Systems and Computing, pages 241-256.
Springer International Publishing, 2018.

– 116 –

Paper P3 - Advances in Intelligent Systems and Computing 2018
2 Thomas W. Pieber, Thomas Ulz, and Christian Steger

the sensors, the simulation core, the visuals, and the GUI. This simulator oper-
ates in discrete time steps of 1 ms. This degree of simulation accuracy is enough
to simulate the movement of robots and sparse enough that the robot’s operating
system can handle most commands in this time step.

To simulate our DUT another tool such as SystemC [1] can be used. With
this tool a complex microsystem can be designed and tested. Furthermore, the
component parts of the system can be modelled in various degrees of detail. This
allows for accurate simulations or even synthetization of the newly developed
parts and efficient simulation of existing hardware. SystemC operates in discrete
time intervals as small as 1 fs.

When combining these two simulations, this difference in simulation speed
poses a major problem. The execution of a test scenario can last for many min-
utes. In combination with the fine grained simulation time steps of SystemC
this can generate huge amounts of data which need to be handled. This problem
needs to be considered when choosing the traced signals and information that
should be transferred between the simulations. Additionally, the testbench of
the SystemC simulation must be altered to include the communication between
the simulations.
This leads to the issue of the communication itself. The simulations need to
exchange data such as the generated input and output of the simulation step,
as well as status information about the simulations itself. The difference in time
steps also introduces the problem that SystemC requires data in more detail
from the Gazebo simulation. This data is to be estimated and extrapolated from
the existing inputs. It also produces output data that is filtered to allow Gazebo
to work with the resulting data.

This paper is based on the work done by Pieber et al. [15]. It expands the ideas
behind that publication, gives more detail on the design and implementation of
the combination of the simulations. It furthermore expands the evaluation by
constructing a detailed simulation run and interpreting the results.

The remainder of this paper is structured as follows: In Section 2 other works
that combine SystemC or Gazebo with other simulators are described. Section
3 explains the motivation for our design, states the requirements that need to
be implemented, and gives details on the solution for the requirements. An eval-
uation of the design is described in Section 4. This is done by constructing and
analyzing a sample simulation run. Following that, Section 5 mentions ideas on
how to further improve the proposed design. This paper concludes with Section
6.

2 Related Work

As Gazebo is an open source simulator for robotics it is primarily combined with
a robot operating system such as ROS [19] or YARP [9] to control the simulated
robots [10].
There are approaches to combine the Gazebo simulator to software for robotics
and computational intelligence [21]. There are further works that connect other

– 117 –

Paper P3 - Advances in Intelligent Systems and Computing 2018
Use Case Base Stimuli for SystemC 3

tools that can simulate hardware [8], but the main approach in these works is
to use the interface from Gazebo to ROS and implement ROS nodes to connect
to the rest.

A design process for SystemC is given by Panda [14]. With this language
a model for complex systems can be described and executed. There are many
publications that implement interfaces to SystemC as it provides a good basis
for simulations [3, 4, 11, 16]. In these approaches the functionality of SystemC is
extended to provide the functions needed by the researchers.
An interface from SystemC to Matlab/Simulink was designed by Bouchhima et
al. Here the SystemC simulation was stimulated by a continuous environment
simulation written in Matlab/Simulink. SystemC was also connected to analog
circuit simulators like SPICE [5] and VHDL [2] to improve on flexibility and
simulation performance.
Mueller-Gritschneder et al. developed a robot simulation platform in SystemC
[11]. They simulate the behavior of the robot on the transaction layer and forward
the results to an environment simulation written in Java. They do this in order
to simulate the movement of the robot as accurate as possible. In this paper the
robot is simulated in SystemC, while in this proposal the robot’s behavior is the
input to the SystemC simulation to simulate parts of the environment.

In summary SystemC was connected to many other simulations. It is then
used as core for other simulations or to generate more accurate results. In the
context of robotics, SystemC has been used to simulate the movement of the
robot. In contrast to that, this publication uses the robotic simulation to stim-
ulate SystemC components with inputs from the environment to automatically
generate valid stimuli.

In this paper, a use-case is evaluated where a sensor measures data from the
environment, and is read out and charged via Near Field Communication (NFC)
by a robot. Some publications describe the techniques used to transmit data
alongside energy and storing the excess energy in small batteries or capacitors
[7, 17, 20].

To connect simulations a common interface must be created over which data
can be exchanged. In this approach the common interface used is a POSIX
(Portable Operating System Interface) pipe where XML (Extensible Markup
Language) formatted data is sent. Another possibility to format data efficiently
is the JSON (JavaScript Object Notation) format. This would be more efficient
than XML [12], but due to other reasons, explained below, the XML format is
chosen. Gazebo uses Googles Protocol Buffer (ProtoBuf) as formatting method
to transmit data internally. Sumaray and Makki compare the efficiency of this
protocol to XML and JSON [18].

Based on [15], this publication expands on the detail of the design and im-
plementation of the developed connection of the simulations. Main focus of the
expansion is on details concerning the Gazebo plugin. Additionally the evalua-
tion of the system is expanded. Here, detailed information on the traces produced
by SystemC is given.

– 118 –

Paper P3 - Advances in Intelligent Systems and Computing 2018
4 Thomas W. Pieber, Thomas Ulz, and Christian Steger

Fig. 1. States of the execution of the implemented plugin.

3 Design and Implementation

The goal of the presented design is to find a method to generate stimuli for
a SystemC simulation automatically and being able to see how the simulated
system behaves in the specific use-case. To enable this, a connection between
SystemC and a high-level simulation is established. This high-level simulation
(in this approach the Gazebo simulator) represents the surroundings of the newly
developed system (a sensor in this use-case). Using the data from the Gazebo
simulator, stimuli for the sensor can be created. That means that the environ-
ment of the sensor becomes the de-facto testbed. With this method the stimuli
for the SystemC simulation are generated by the interaction of the sensor with
the environment. This generates the stimuli not only faster than an engineer
could, but also only small variations in the environment can generate a wide
variety of different test scenarios such as more noise in the communication or
energy fluctuations due to movements of the reader or changed mutual induc-
tance due to small changes in the distance between the antennas.

To connect two simulations successful, both must support the interfaces nec-
essary. To do so, an overall structure for the communication was developed. This
structure is shown in Figure 1. This plan visualizes how the simulations are con-
nected, how they communicate and when operations are performed. This figure
also shows the minimum requirements that this approach needs to work. In this
example the SystemC process is forked from the Gazebo simulation. Here some
initial configuration concerning the communication can be set up. One step of
the Gazebo simulation then invokes one from SystemC. A return message from
SystemC informs Gazebo that the simulation step of SystemC is properly exe-
cuted. During the execution of the SystemC step additional messages for Gazebo
may be sent that need to be captured from the Gazebo environment.

Gazebo can be extended by the use of plugins. To apply the input of the
Gazebo environment to a SystemC simulation, one such plugin that handles the
communication needs to be developed. The structure for that plugin can be seen
in Figure 2. This structure implements the following five operations.

– 119 –

Paper P3 - Advances in Intelligent Systems and Computing 2018
Use Case Base Stimuli for SystemC 5

Fig. 2. States of the execution of the implemented plugin.

O.1 The required data must be collected from the environment. That includes
data that the sensor can measure as well as communication data.

O.2 The collected data needs to be packed into messages that can be sent to the
SystemC simulation.

O.3 The plugin needs to halt the simulation of the environment until the SystemC
simulation step finishes.

O.4 During the execution of the SystemC step, all messages needed for the re-
maining simulation(s) need to be received, stored, and ordered.

O.5 The collected information needs to be distributed to the remaining simula-
tion(s). This can be communication data, visual data, or status information.

The operation defined in O.1 is needed to generate valid input to the sen-
sor that can be evaluated. To generate this information a world plugin may
be needed to gather the information. This operation can then be achieved by
generating a Gazebo internal communication from this plugin to the plugin con-
necting the SystemC simulation. Additionally a communication path between
the communicating entities must be established. This communication may also
be altered in order to simulate the effect of the channel.

– 120 –

Paper P3 - Advances in Intelligent Systems and Computing 2018
6 Thomas W. Pieber, Thomas Ulz, and Christian Steger

To send the gathered information to SystemC operation O.2 is required. This
operation formats the data in a way suitable for transport to SystemC. To send
arbitrary data the data items are converted into string format and packed using
an XML structure.
To properly synchronize the two simulations Gazebo needs to be able to wait
for SystemC to finish calculating the current time step. That implies that the
plugin needs to be able to halt the Gazebo simulation until it receives the signal
indicating the completion. This operation is referred to as O.3.
While Gazebo is waiting for SystemC to finish, SystemC may send different mes-
sages that are needed for the rest of the Gazebo simulation. This information
needs to be processed and stored until Gazebo can simulate the next time step.
When this happens, the plugin needs to forward the information received from
SystemC to the rest of the simulation. This operation is described in O.4.
Operation O.5 describes the correct distribution of the gathered data. As SystemC
can send different data (e.g.: visual updates such as LEDs, or data for commu-
nicating with other entities), the information needs to be split into the topics
and sent to their destination using an internal communication mechanism.

The difference in simulation speeds is one of the biggest hurdles in connect-
ing the two simulations. As a tool for simulating interactions and movements of
robots, Gazebo works with time steps of 1 ms. On the other hand, SystemC can
handle steps as small as 1 fs. This is needed for simulating hardware components
as also a “slow” computer which only works with 50 MHz performs 5 · 104 oper-
ations in one time step of Gazebo. This difference of twelve orders of magnitude
of the simulations can result in massive amounts of data generated by SystemC
which is hard to evaluate in Gazebo. Therefore, some measures to limit the
amounts of data that are transferred need to be implemented. This can be done
best when defining the requirements for the connection between the simulators.

As the two simulations must be compatible in their interfaces to each other,
the structure of a SystemC simulation needs to be adopted. Figure 3 shows the
overall structure of such SystemC simulation. The messages coming from the
Gazebo simulator are received and analyzed. If some parameters need changing,
the adaptations are done. To reduce the simulation time, it is evaluated if the
changes require instant action. Should that not be the case, the time that should
be simulated is added as a debt in comparison to the Gazebo simulation. An
action is required if the time debt is too large or if the sensor receives messages
that require an answer. To simulate these actions in the correct order, the old
parameters and commands are reset and the simulation is run to balance the
time debt. In this run the conditions at the current time instance are estimated.
After that the new parameters are set and the simulation is started for this
time step. When a stable condition is reached the simulation is halted and the
conditions for the end of the step is calculated. Should the calculations need
more time than one time step, the checking if action is required evaluates to
“yes” in the next time step.

To send arbitrary messages between the two simulation environments, an
easy-to-implement approach is used. As the SystemC simulation gets forked from

– 121 –

Paper P3 - Advances in Intelligent Systems and Computing 2018
Use Case Base Stimuli for SystemC 7

Fig. 3. Structure of the SystemC simulation.

the Gazebo plugin (Figure 1) the standard input and output can be redirected
to a POSIX pipe. The Gazebo plugin uses that pipe to exchange messages with
the SystemC simulation. This interface allows the transmission of string-type
messages. So the commands and parameters need to be packed in a format that
can be sent as string and the string received needs to be parsed in order to get
the information back. An easy to implement method is the use of XML (Exten-
sible Markup Language) data structure to pack the information in strings. That
means that the interesting values are encased in XML-style tags. With these
tags the string can be split in parts containing different types of data, which
are then evaluated. The use of XML also allows the SystemC components them-
selves to send their information as soon as it is available and Gazebo can receive
and process the data in the order it was produced. Although JSON would be
more efficient than XML, XML was chosen because this makes the composing
of messages inside SystemC more easy. With XML the messages can be sent

– 122 –

Paper P3 - Advances in Intelligent Systems and Computing 2018
8 Thomas W. Pieber, Thomas Ulz, and Christian Steger

whenever the information is available, with JSON on the other hand the Infor-
mation needs to be packed in smaller JSON objects which can be sent. This can
introduce additional computational overhead, leading to JSON loose its better
performance.
The data sent by the SystemC simulation is received by the Gazebo plugin
and parsed. The incoming data stream is split into data chunks according to
the XML-tags, preprocessed and stored in a fitting datastructure. When the
SystemC simulation halts for the time step, a tag for synchronizing the simula-
tions is sent to Gazebo. The reception of this tag signalizes the Gazebo plugin
to transmit the collected data to the rest of the simulation and resume its work.
Gazebo is capable of using many types of communication, but Google’s Protocol
Buffer (Protobuf) is the most efficient communication it supports [18]. To fully
use this method, custom messages can be defined that can hold various types of
data. The messages from the sensor that are intended for the robot (in this sce-
nario) are for example transmitted to a simulation of the transmission channel.
There environmental information is used to simulate signal degradation due to
free space loss and multi-path interference. The channel is simulated separately
from the rest to be able to test different communication channels such as WiFi,
Bluetooth, Zigbee, or in this case NFC. The calculations of the transmission
statistics are based on [7, 20]. The channel then modifies the transmitted data
and forwards it to the robot, where it can be accessed.
Communication from the robot to the sensor follows the same rules. The robot
sends the data to the channel simulation. There, errors are introduced and the
signal strength and received energy is calculated. This information is then sent
to the sensor plugin which also collects the data for the sensor system itself. The
collected data is packed in an XML message and sent to the SystemC simulation.
The SystemC simulation receives the commands, parses the XML data and
performs the actions needed to simulate the sensor accurately. To accomplish
this, the original testbed must be modified to accommodate the interface to the
Gazebo simulation. In order for that to work properly, the following requirements
need to be fulfilled:

R.1 Gazebo must be able to transfer information about the simulation, com-
mands and parameters for the DUT to SystemC.

R.2 To be able to react to changes in the environment, the SystemC simulation
needs to operate in steps. Between the steps the information exchange can
occur.

R.3 The SystemC interface for the communication must be able to parse and
distribute the received information.

R.4 To support different types of simulation, the simulation time step of SystemC
should be variable at each step.

R.5 Parts of the SystemC simulation that need special information need to be
able to get it directly.

R.6 Commands received from the Gazebo simulator need to be executed in the
order they arrive.

R.7 The two simulations need to be synchronized during the execution.

– 123 –

Paper P3 - Advances in Intelligent Systems and Computing 2018
Use Case Base Stimuli for SystemC 9

R.8 To reduce the memory required to run the simulation for extended periods,
traces from the simulation should be able to be deactivated.

(R.9 The simulation should be done as quickly as possible, while maintaining the
accuracy where needed.)

In addition to the changes in the testbed - now the interface to the Gazebo
simulation - some adaptations in the rest of the simulation have been made.
The most notable adaptation is the insertion of messages that are sent to the
Gazebo simulator. These changes need to be made as the bulk of information
is evaluated during the simulation by the Gazebo simulator instead of after the
simulation. These changes are made in a similar fashion as the changes needed
for requirement R.7.
Figure 3 additionally shows the parts of the SystemC simulation where the
implementations of the requirements are mostly located.

To be able to fulfill requirement R.1 a POSIX pipe can be used. This allows
the transport of information in string format between SystemC and Gazebo. For
that, the standard input and output of the SystemC simulation are rerouted.
An XML parser is needed to split the gathered information into the data chunks
needed for the different settings and commands. With the use of a global datas-
tructure the distribution to all parts of the simulation can be performed. These
measures fulfill requirement R.3.
The call of the start procedure for the SystemC simulation (“sc start(. . .)”) is
inside a loop. The loop is halted when the simulation waits for input from the
Gazebo simulator and the condition to exit the loop is sent from Gazebo when
exiting or resetting the Gazebo simulation.
To allow a multitude of simulations the time step size of SystemC may need to
be changed during runtime. This is represented in requirement R.4. To meet this
requirement two special commands are added. One to set the time unit and one
to set the numerical value of the time step.
To support requirement R.5 we modified not only the testbed, but also parts of
the simulation. For every module we want a direct communication path to, we
need a special tag to extract the data. This data is then written into a global
datastructure to be accessible by all modules. The interface from the module
itself retrieves the data from this datastructure and can perform the needed op-
erations without the need to communicate the information through the layers of
the module. The finished data is then stored in FIFO (fist in, first out) structures
to wait for the simulation to need it. This requirement is especially useful for
this scenario as we modeled a sensor system and the data the sensor measures
is represented in the Gazebo simulation.
Requirement R.6 can be met with the same strategy. This time the FIFO buffer
storage is located in the control unit of the sensor. Now the commands that have
arrived can then be loaded and executed in the order they should have arrived.
To properly execute the commands an additional field that stores the time when
the command should have arrived is needed to simulate a serialized channel.
To get a proper time synchronization (R.7) the SystemC simulation needs to
send a marker message back to Gazebo indicating that the step has been pro-

– 124 –

Paper P3 - Advances in Intelligent Systems and Computing 2018
10 Thomas W. Pieber, Thomas Ulz, and Christian Steger

Fig. 4. Compression of idle-time.

cessed. This is done by declaring an extra XML-tag. After receiving this signal
the Gazebo simulation is allowed to execute another step - again triggering the
SystemC simulation.
To use a simulated environment as generator for system stimuli it is necessary
to simulate longer periods of time before the system is initially triggered. This
is done in order to generate different edge conditions on the simulated device.
As we do not know what exactly the sensor measures during this time, it is
necessary to also simulate this time in SystemC. Furthermore, the environment
simulations can be run for an extended period of time between stimuli. When
storing all generated data large files are created. Requirement R.8 refers to that
problem. This can be solved by activating only traces that are needed. The infor-
mation which traces are needed can be received during the initialization process.
This information does not only contain which traces are needed, but also if the
traces should be active at all, and what the file name should be.
To further decrease the need for memory, a detector system is be implemented
that determines weather a simulation step can be stopped prematurely, or even
needs to be started. This detector has the potential to reduce the simulation
time significantly and corresponds to the optional requirement R.9.

Such detector can only be implemented if detailed knowledge of the inner
workings of the simulation and the system it simulates is available. This also
requires some major appendices to the existing simulation.

When pausing the simulation prematurely, two challenges emerge. The first
one is the desynchronization of the two simulations. As SystemC offers no meth-
ods to change the simulation time when it is stopped, we introduced flag signals
that get triggered if the simulation time should get changed. With the help of
these signals and some post processing of the generated traces the synchroniza-
tion can be restored afterwards. Figure 4 shows a trace before (above) and after
the decompression of idle-times is performed. The markers between the traces
indicate the compression.

– 125 –

Paper P3 - Advances in Intelligent Systems and Computing 2018
Use Case Base Stimuli for SystemC 11

Fig. 5. Concept of the Evaluation Design.

The second challenge is the estimation of values that change during the skip-
ping of time, such as the remaining energy in the battery. To estimate the values
at the end of the time jump, detailed information about the process is required.
As the time between two activations can be arbitrary, the error is unbounded. To
mitigate that, a maximum time skip is defined. When linearizing the behavior
of these transient values in the last instant, we can estimate the new value after
the skip is completed. Depending on the maximum skip size, the final estimation
can be very accurate.

4 Evaluation

The evaluation of the developed system is performed using the simulation of a
smart sensor that charges the internal battery and communicates its information
using NFC technology. The Gazebo simulator provides the context of the simu-
lation. That is the environment in which the sensor is placed. During the startup
of Gazebo, the developed sensor plugin is loaded and starts the SystemC sim-
ulation. A robot is placed outside the communication range of the sensor. The
evaluation plan is to move the robot such that the sensor can be charged and
communication can occur. When this is done, the robot requests data from the
sensor.
For this evaluation we modeled the communication channel as a separate world
plugin that can calculate the noises and signal attenuation due to the environ-
ment. This also allows us to change the channel parameters by swapping the

– 126 –

Paper P3 - Advances in Intelligent Systems and Computing 2018
12 Thomas W. Pieber, Thomas Ulz, and Christian Steger

plugin. This also allows the reuse of the system for other communication tech-
nologies.

The communication between the two simulation environments is performed
with strings encased in XML-tags. The received information is then stored in
a data structure that groups the data blocks by the XML tag and stores the
blocks in the order they arrive.

Different stimuli for the SystemC simulation can be combined, processed and
sent by the developed plugin. Figure 5 shows the concept for this evaluation. The
robot wants to send commands and data to the smart sensor via some channel
(in this case NFC). To do so, it approaches the sensor, thereby changing the envi-
ronment. This change influences the channel parameters. When the antennas are
in close proximity to each other, data and energy can be transferred. The channel
can, based on the parameters, change the data that is sent (e.g.: introducing bit
errors). This message is then transmitted to the developed plugin. Furthermore,
the plugin receives status information from the simulation, and parameters from
the environment that the sensor can measure. This information is relayed to
the SystemC simulation. The modified testbench processes the data to be used
in the simulation. The simulation returns the results to the plugin. This plugin
can manipulate the appearance of the sensor in the world (e.g.: switching on an
LED), and transmitting the return messages to the channel. The channel again
modifies the message according to the parameters and forwards it to the robot.

As the global simulation is done with a robotic simulator, a new test case can
be implemented by changing the start position of the robot or introducing some
randomness in the movement of the arm with the antenna attached to it. The
rest of the simulation does not need to be altered in order to get new results. This
simulation approach furthermore allows the testing of the interaction between
the newly developed system and an existing (robotic) system. The evaluation of
the correctness of the new system can also be done directly in the simulation as
the robot expects certain answers.

As mentioned before, Figure 4 shows the compression of the idle time of the
sensor showing the results of requirement R.9. Here the “advanceTime” trace is
used to restore the time synchronicity of the two simulations after the simulation
is finished. Whenever this trace peaks the simulation was stopped prematurely.
The height of the peak indicates the time that is skipped. In this trace the first
7.1 seconds are condensed to about 0.6 ms. This means a reduction of memory
and time usage of approximately 12000:1. Also the simulation can be stopped
prematurely if the needed operations are finished before the time step is passed.
This can be seen with the third drop of the “advanceTime” trace. This part is
stored in 16.5 ms but refers to 0.15 s. This is a reduction of approximately 10:1.

Figure 6 shows the results of one simulation. Here the robot approaches the
sensor until second 17. The antenna is activated from second 6.1 to 9. Here two
messages are received (recData) but no return is generated, indicating that the
channel has introduced errors in the sent message. This claim is substantiated
by the fact that the received energy (EnergyIntake) is low and fluctuates. The
fluctuation comes from the movement of the arm during the approach to the

– 127 –

Paper P3 - Advances in Intelligent Systems and Computing 2018
Use Case Base Stimuli for SystemC 13

Fig. 6. Results of a completed simulation.

sensor.
The message at second 14.2 is being answered (DataUCToTrm). This means
that the antennas are in a range where the communication can be successful.
But the message at second 15.05 is not answered.
At second 21 the received energy is larger than before, indicating that the robot
is close enough to communicate efficiently. In second 24, two messages are ex-
changed.
After second 25 the robot moves away. To show this the antenna is activated.
During the retreat the received energy decreases.

The energy usage (EnergyLoad) of the sensor shows the combined energy
budged of the sensor. As the energy gathered by the NFC antenna is much
larger than the energy required for the calculations, it mirrors the energy intake.
This also shows that the charging of smart sensors using NFC can be effective.
The usage of the sensor itself can be seen in the trace of the remaining charge
inside the capacitor (Charge). During the phases where the antenna is active, the
charge rises, indicating that the capacitor is being loaded. In the mean time, the
charge is slowly depleted as the sensor performs its operations with the energy
stored in the capacitor.

Furthermore, the voltage available to the sensor (Voltage) is shown in this
figure. Because the module used to charge the capacitor supplies the system with
the maximum voltage allowed for this capacitor, the voltage rises rapidly to this
value. In times where no energy is harvested the voltage is calculated using the
charge of the capacitor, the energy currently used, and the serial resistance of
the capacitor.

5 Future Work

A possible expansion of this system is another world plugin comparing the mea-
surements of the sensor to the ground truth evaluated by the environment. This
can be done by combining the information of the environment, the measured
data from SystemC, as well as some of the messages received by the robot.
One drawback from forking the SystemC simulation from the Gazebo simulator
is that the two processes are running on the same computer. If a simulation is
created that encompasses multiple entities that are simulated using SystemC
the simulations may need to share the same processor core, further slowing the

– 128 –

Paper P3 - Advances in Intelligent Systems and Computing 2018
14 Thomas W. Pieber, Thomas Ulz, and Christian Steger

simulation. A solution to this would be to spread the SystemC simulation over
a network and performing the communication using network sockets.

6 Conclusions

We presented an approach to connect SystemC simulations to the Gazebo simu-
lator in order to automatically generate stimuli. This paper shows the difficulties
that arise when connecting simulators that are designed to operate using different
time steps. We showed a mechanism that can connect the simulations, proposed
a mechanism that allows the interaction of the simulations, and formed require-
ments that need to be implemented on both sides to overcome the hurdles that
we were presented by the simulations.
There are some core requirements that need to be changed we want to emphasize
again. These include:

– Synchronization between the simulators is of utmost importance. SystemC
operates usually more detailed and therefore needs longer to simulate one
step. Gazebo must be halted while SystemC is running, otherwise the com-
munication between the simulations can have unbounded delay.

– Reduction of memory and time consumption is important on all computers.
Using our time reduction mechanisms, the realtime-factor of gazebo was
optimized by a factor of 103 and the memory footprint reduced by up to
102.

This approach was first described by Pieber et al. [15]. In this publication,
we extend the detail of the developed Gazebo plugin. Furthermore, we redefined
some of the requirements needed for the SystemC adaptions to emphasize their
purpose. Additionally, the evaluation describes how the systems interact and
gives a detailed example of a complete simulation and what the created traces
can look like.

Acknowledgements

This project has received funding from the Electronic Component Systems for
European Leadership Joint Undertaking under grant agreement No 692480. This
Joint Undertaking receives support from the European Union’s Horizon 2020
research and innovation programme and Germany, Netherlands, Spain, Austria,
Belgium, Slovakia.
IoSense is funded by the Austrian Federal Ministry of Transport, Innovation and
Technology (BMVIT) under the program ”ICT of the Future” between May 2016
and May 2019. More information https://iktderzukunft.at/en/

References

1. Accelera: SystemC. http://accellera.org/downloads/standards/systemc (2000),
last accessed on Jan 17, 2017

– 129 –

Paper P3 - Advances in Intelligent Systems and Computing 2018
Use Case Base Stimuli for SystemC 15

2. Bombana, M., Bruschi, F.: SystemC-VHDL co-simulation and synthesis in the
HW domain. In: 2003 Design, Automation and Test in Europe Conference and
Exhibition. IEEE Comput. Soc (2003)

3. Bouchhima, F., Briere, M., Nicolescu, G., Abid, M., Aboulhamid, E.: A
SystemC/simulink co-simulation framework for continuous/discrete-events simula-
tion. In: 2006 IEEE International Behavioral Modeling and Simulation Workshop.
Institute of Electrical and Electronics Engineers (IEEE) (sep 2006)

4. Huang, K., Bacivarov, I., Hugelshofer, F., Thiele, L.: Scalably distributed SystemC
simulation for embedded applications. In: 2008 International Symposium on Indus-
trial Embedded Systems. Institute of Electrical and Electronics Engineers (IEEE)
(jun 2008)

5. Kirchner, T., Bannow, N., Grimm, C.: Analogue Mixed Signal Simulation Using
Spice and SystemC. In: Proceedings of the Conference on Design, Automation
and Test in Europe. pp. 284–287. DATE ’09, European Design and Automation
Association, 3001 Leuven, Belgium, Belgium (2009)

6. Koenig, N., Howard, A.: Design and use paradigms for gazebo, an open-source
multi-robot simulator. In: 2004 IEEE/RSJ International Conference on Intelligent
Robots and Systems (IROS) (IEEE Cat. No.04CH37566). Institute of Electrical
and Electronics Engineers (IEEE) (2004)

7. Lee, W.S., Son, W.I., Oh, K.S., Yu, J.W.: Contactless energy transfer systems using
antiparallel resonant loops. IEEE Transactions on Industrial Electronics 60(1),
350–359 (jan 2013)

8. Mathworks: Get Started with Gazebo and a Simulated TurtleBot.
https://de.mathworks.com/help/robotics/examples/get-started-with-gazebo-
and-a-simulated-turtlebot.html (2016), last accessed on Jan 03, 2017

9. Metta, G., Fitzpatrick, P., Natale, L.: Yarp: Yet another robot plat-
form. International Journal of Advanced Robotic Systems 3(1), 8 (2006),
https://doi.org/10.5772/5761

10. Meyer, J., Sendobry, A., Kohlbrecher, S., Klingauf, U., von Stryk, O.: Comprehen-
sive Simulation of Quadrotor UAVs Using ROS and Gazebo. In: Noda, I., Ando,
N., Brugali, D., Kuffner, J.J. (eds.) Simulation, Modeling, and Programming for
Autonomous Robots. pp. 400–411. Springer Berlin Heidelberg, Berlin, Heidelberg
(2012)

11. Mueller-Gritschneder, D., Lu, K., Wallander, E., Greim, M., Schlichtmann, U.: A
virtual prototyping platform for real-time systems with a case study for a two-
wheeled robot. In: Design, Automation & Test in Europe Conference & Exhibition
(DATE), 2013. EDAA (2013)

12. Nurseitov, N., Paulson, M., Reynolds, R., Izurieta, C.: Comparison of json and xml
data interchange formats: A case study. Caine 2009, 157–162 (2009)

13. Open Source Robotics Foundation: Gazebo simulator. http://www.gazebosim.org
(2004), last accessed on Jan 03, 2017

14. Panda, P.R.: SystemC - A modelling platform supporting multiple design abstrac-
tions. In: Proceedings of the 14th international symposium on Systems synthesis -
ISSS. Association for Computing Machinery (ACM) (2001)

15. Pieber, T.W., Ulz, T., Steger, C.: SystemC Test Case Generation with the Gazebo
Simulator. In: Proceedings of the 7th International Conference on Simulation
and Modeling Methodologies, Technologies and Applications - Volume 1: SIMUL-
TECH,. pp. 65–72. INSTICC, SciTePress (2017)

16. Possadas, H., Adamez, J.A., Villar, E., Blasco, F., Escuder, F.: RTOS modeling
in SystemC for real-time embedded SW simulation: A POSIX model. Design Au-
tomation for Embedded Systems (2005)

– 130 –

Paper P3 - Advances in Intelligent Systems and Computing 2018
16 Thomas W. Pieber, Thomas Ulz, and Christian Steger

17. Strommer, E., Jurvansuu, M., Tuikka, T., Ylisaukko-oja, A., Rapakko, H., Vester-
inen, J.: NFC-enabled wireless charging. In: 2012 4th International Workshop
on Near Field Communication. Institute of Electrical and Electronics Engineers
(IEEE) (mar 2012)

18. Sumaray, A., Makki, S.K.: A comparison of data serialization formats for optimal
efficiency on a mobile platform. In: Proceedings of the 6th International Confer-
ence on Ubiquitous Information Management and Communication. pp. 48:1–48:6.
ICUIMC ’12, ACM, New York, NY, USA (2012)

19. Willow Garage and Stanford Artificial Intelligence Laboratory: Robot Operating
System. http://www.ros.org/ (2007), last accessed on Feb 15, 2018

20. Wireless Power Consortium, et al.: System description wireless power transfer.
Volume I: Low Power, Part 1 (2010)

21. Zamora, I., Lopez, N.G., Vilches, V.M., Cordero, A.H.: Extending the OpenAI
Gym for robotics: a toolkit for reinforcement learning using ROS and Gazebo.
arXiv preprint arXiv:1608.05742 (2016)

– 131 –

Paper P4 - Sensor Systems Simulations - From Concept to Solution 2019

Chapter 8. Model-based Design of Secured
Power Aware Smart Sensors

Thomas Wolfgang Pieber, Thomas Ulz, and Christian Steger

Abstract When designing new smart sensor platforms, the system should be well
adapted to the intended use case. In most cases this means that the sensor will be
implemented as a part of a larger system - be it as a part of a sensor network or a
component of a machine. In both cases the sensor should have a long lifetime, use
the available resources with care, handle the data securely, and prevent the system
from getting damaged by misusing the sensor knowingly or unknowingly. To test all
of these properties, models of the sensor (and its component parts) can be created
and used in simulations that represent the environment and the possible uses of the
sensor in it. This chapter describes the possibility of creating a new power aware
and secured smart sensor using a model-based design approach.

Key words: Model Based Design, Simulation, SystemC, Gazebo, Prototypes, Smart
Sensors, Secured IoT

1 Introduction

Sensors can be found everywhere in our society. They measure the environment,
gather useful data to navigate robots through the environment, and enable machines
to sense the environment they want to interact with and record the changes they
cause. To get better at these versatile tasks, new sensors are developed steadily.

Thomas Wolfgang Pieber
Institute for Technical Informatics, Inffeldgasse 16/I 8010 Graz, e-mail: thomas.pieber@
tugraz.at

Thomas Ulz
Institute for Technical Informatics, Inffeldgasse 16/I 8010 Graz, e-mail: thomas.ulz@
tugraz.at

Christian Steger
Institute for Technical Informatics, Inffeldgasse 16/I 8010 Graz, e-mail: steger@tugraz.at

Original work published in Sensor System Simulations, pages 241-256. Springer Interna-
tional Publishing, 2019.

– 132 –

Paper P4 - Sensor Systems Solutions - From Concept to Solution 2019

Thomas Wolfgang Pieber, Thomas Ulz, and Christian Steger

To develop new sensors efficiently, simulations of the intended use case are created
and model simulations of the new sensor are placed in the simulated environment.
Research prototypes can then be used to verify the simulation results. If the simu-
lation results do not resemble the real measurements, the prototypes can be used to
search for errors in the simulation and gain new insights in the processes of the use
case.
This model-based design approach of sensors can be used to efficiently create opti-
mized sensors for any use case.

The act of sensing, as well as the processing, storing, securing, and transmit-
ting of the gathered data requires energy in form of electric power. This energy
can be provided by various methods. For many sensors this energy is provided by
electro-chemical batteries or is gathered from the environment by energy harvest-
ing methods. These forms of energy provisioning have in common that the sensor
needs to manage its available power carefully as either the energy is limited or only
a limited amount of power can be extracted from the environment. When designing
a sensor that should be operated with one of these methods, it is necessary to know
the characteristics of the component parts of the sensor and the possibilities of the
energy provisioning system with high accuracy. These parameters can influence the
design of the sensor massively. That means that the components of the sensor need
to match the requirements for the intended use case and the energy provisioning
needs to be capable of providing sufficient energy to operate the sensor for the in-
tended lifetime and operations. To work efficiently the sensor has to be aware of its
power usage and the current capabilities of the energy provisioning system.

The data that is generated by the sensors is mostly seen as unharmful to the pro-
cess they monitor. This can be seen as the most common approach to data security of
sensor data is ”What can be measured can be seen by anyone”. This notion of data
security is now seen as a fallacy as the STUXNET [9] and HAVEX [4] attacks have
been noted. Furthermore, as the Mirai botnet [2] shows, unsecured sensors also pose
a threat to other targets. To circumvent these threats, measures to secure the system
and the generated data need to be taken.
To prevent the new sensor to be exploited in such way, the security of the system
and data is of utmost importance, and thus, must not be neglected during the design
of the new sensor system.

The paragraphs above describe a sensor that can not only generate data about the
environment, but also about itself and take informed decisions. It can furthermore
modify the data and perform security relevant operations on it. Beyond that, it can
receive and send such data to form a network. It also knows its current power sta-
tus and can perform actions to prolong its lifetime or let the network know if the
remaining energy gets too low.
Such a sensor that is able to perform informed measures on itself, the data, or the
network can be called a smart sensor.
This chapter follows the design process shown in Figure 1.

• A reference system is created that shows all processes we want to model.
• The reference system is measured to understand the processes.
• A simulation of the system is created to abstract the system.

– 133 –

Paper P4 - Sensor Systems Solutions - From Concept to Solution 2019

Chapter 8. Model-based Design of Secured Power Aware Smart Sensors

Fig. 1 Concept of a model based design process for a secured power aware smart sensor.

• The use case is modelled and simulated.
• The simulation of the new system is connected to the simulation of the use case.
• The results of the simulations are evaluated. If the results are not as expected the

process is restarted.

In this chapter we use this design approach to create a sensor that is read and
charged by using NFC technology. To do so autonomous robots in an Industry 4.0
inspired setting will communicate to the sensors and connect them to a network.

2 Related Publications

Simulation Background

The use of simulation to predict sensor functionality and the methods to get the
parameters of the sensor components have been described in many publications.

In this publication we want to use the robotic simulation tool Gazebo [14] as a
core system. The connection of a Matlab environment to Gazebo has been published
on the official website [12]. This tutorial shows how to connect Matlab to Gazebo
via the ROS (Robot Operating System) interface to send and receive data from the
Gazebo simulation.
Further publications connect the Gazebo simulator with different software for ma-
chine learning [26]. Also here the software is connecting to the operating system
controlling the robot and influences the path the robot takes to reach a goal.

– 134 –

Paper P4 - Sensor Systems Solutions - From Concept to Solution 2019

Thomas Wolfgang Pieber, Thomas Ulz, and Christian Steger

SystemC [1] is a hardware description language based on C++. It is capable of
describing the hardware on different levels of abstraction. This is especially useful
as a detailed description of all components results in a very slow, albeit accurate,
simulation. This is furthermore useful if developing a simulation from scratch as the
components can be described in an abstract way and be defined in later steps. The
publication of Panda shows design processes to create SystemC simulations [15].

The connection of SystemC to different simulation tools has been described in
many publications [3, 7, 11, 13, 18]. In these works the SystemC simulation is pri-
marily used as a kernel to provide the functionality of the quasi parallel execution.
The connection of SystemC to Matlab was designed by Bouchhima et al. [3] As
Matlab works with discrete events, they created this cosimulation to additionally
simulate continuous events.
To speed up the SystemC simulations, Huang et al. [7] describe a possibility to
spread the simulation across a network of computers.
SystemC can also be connected to a simulation tool designed for integrated circuit
simulation[11]. Martin et al. connected it to a SPICE (Simulation Program with
Integrated Circuit Emphasis) simulator as well as to an VHDL (Very high speed
integrated circuit Hardware Description Language) simulation.
Mueller-Gritschneder et al. [13] used SystemC to compute physical processes that
affect the robot while it is moving. This simulation therefore generates data in the
SystemC simulation that is then used to model the robots behaviour. In contrast to
that, our approach generates data in the environment and uses this as input for the
SystemC simulation.

Pieber et al. [16] describe methods to connect a SystemC simulation to the
Gazebo environment in one of their publications. This paper describes in detail
how the connection between the simulations can be formed and what requirements
need to be fulfilled to create a successful simulation. This publication furthermore
announces possible advancements to increase the simulation speed if multiple Sys-
temC simulations need to be run at the same time.

Power Awareness for Sensors

The idea that sensors are aware of their own power levels and power consumption
has been discussed in many publications [5, 8, 10, 19, 20, 25]. Using this infor-
mation, the sensors can make decisions about the routing of information inside the
network, reduce the quality of the measurements to prolong the lifetime, or inform
the network that the energy level is too low to actively take part in the task of the
network.
Chen et al. [5] developed a small energy harvesting sensor node that is capable of
providing its own energy. This sensor node relies on solar cells to charge a battery.
If the charge in the battery is sufficient the sensor wakes and performs its opera-
tions until the voltage drops below a predefined value. Then the sensor switches to
a ultra-low power sleep mode. In this scenario the sensors duty cycle is provided by
the capabilities of the energy harvesting system.

– 135 –

Paper P4 - Sensor Systems Solutions - From Concept to Solution 2019

Chapter 8. Model-based Design of Secured Power Aware Smart Sensors

To calculate a duty cycle for a energy harvesting sensor system the energy usage and
harvesting capabilities must be known. Kansal et al. [8] formalized these calcula-
tions in their work. These configurations can be used to initialize such system. If the
observed parameters at the position of the sensor differ from the predicted ones, the
team of researchers propose a dynamically changing duty cycle. Using this dynam-
ically changing system the researchers noted a significantly improved performance
of their research system.
Additionally Rahimi et al. [19] explore the possibility to expand the sensors lifetime
using energy harvesting methods. In their research they try to exploit autonomously
moving nodes. These nodes search in a so called “Energy Cell” for the optimal spot
to harvest solar energy. Afterwards the moving nodes provide this energy to the sen-
sor nodes in their assigned cell.
Another possible energy source that can be used by the sensor nodes is RF energy
from broadcasting stations. Sogorb et al. [20] use sensor nodes with two antennas to
research this possibility. In their research prototype one antenna is used to harvest
the energy from broadcasting stations, the other one to transmit the gathered data to
a base station.
Another strategy that uses RF energy harvesting has been explored by Lee et al.
[10]. This research team focused on the possibility to harvest energy using antipar-
allel resonant loops. The researchers explore RFID’s (Radio Frequency IDentifica-
tion) capability to transmit energy. They stated that antiparallel loops can improve
the efficiency of energy transmission to 87% from about 50%.
The researchers around Yan [25] explored methods to construct more efficient sen-
sor networks. This is done by making the sensors aware of their own energy state. In
this research Yan et al. implemented two levels of energy saving. “Node-level energy
saving” adaptively regulates the transmission power of the sensor node. “Network-
level energy saving” adaptively reconfigures the sensor networks configuration.

Security for Sensors

Security for sensor devices has been researched in the literature [6, 17, 22, 23, 24].
Most researchers however see security as a side topic to be added later to an existing
sensor hardware.

The work by Ulz et al. [24] describes multiple methods how sensor data can
be secured. The researchers pointed towards problems that arise if sensor data is
encrypted and how these problems can be mitigated. In their publication the re-
searchers use authenticated encryption (AE) to securely transmit data between a
sensor of a control system and the controller. The researcher state that using only
this technique a DoS attack is easier to perform. To counteract this problem forward
error correction techniques have been proposed. Furthermore, the researchers state
that a security controller can be used to perform these operations as this processing
unit is specialized to perform the task of encrypting more efficiently than a regular
microcontroller.
In addition to securing the data of a sensor against adversaries Ulz et al. [22] pro-

– 136 –

Paper P4 - Sensor Systems Solutions - From Concept to Solution 2019

Thomas Wolfgang Pieber, Thomas Ulz, and Christian Steger

posed methods to secure a sensor network against misuse and misconfigured sensors
using a security controller. This paper presents the idea of a two-layer attestation
system that first checks the validity of a sensors firmware, and in a second step vali-
dates the version of this firmware. Another publication by this researchers describes
an update mechanism for such sensor system [23]. Here the researchers state that
the interface to update the sensor needs to be separated of the main communication
interface.
To prevent the misuse of single sensors, authentication to see and modify data is
necessary. Pieber et al. [17] describe a method to use a password-based authentica-
tion method that is lightweight enough to be run on a single sensor.
Haase et al. [6] propose a system to (re-)configure a sensor system via NFC . They
furthermore use cryptography to authenticate the reconfiguration device.

3 Obtaining Data for the Models

To get a decent simulation of any system, the processes and components of the
system need to be understood. A smart sensor consists at least of the following
parts:

• The sensor frontend: The part of the sensor that does the conversion from an
external stimulus to digital information.

• The controller.
• The memory.
• A communication interface.
• The energy provisioning system.
• (Optional) A security controller to perform security relevant operations.

For these components data sheets are available that specify the peak current at an
optimal voltage source. This is sufficient information to build the sensor, as over-
estimation of the components energy usage leads to a more powerful energy provi-
sioning system. To get a better estimation of the energy demands of the system, and
therefore be able to design a mote optimal energy provisioning system, measure-
ments have to be performed. This requires the development of a research prototype.

To create an efficient sensor, a model of the environment and the intended use
case is useful. Such simulation need not be very detailed as this allows the simula-
tion to be used in various ways and thus create a multitude of different stimuli for
the sensor. The simulation of the environment needs at least these components:

• A representation of the new sensor.
• Objects influencing the sensor or the communication with the sensor.
• Communication partners for the smart sensor to test the used communication

protocols.
• Things for the sensor to measure.

– 137 –

Paper P4 - Sensor Systems Solutions - From Concept to Solution 2019

Chapter 8. Model-based Design of Secured Power Aware Smart Sensors

Fig. 2 Concept of the measurement system for a smart sensor.

3.1 Measuring Data for the New Sensor

The prototype that is used to measure the sensor components should be able to vary
the input voltages to emulate the energy provisioning system. This concept is shown
in Figure 2. Here a control program gets the values of the current consumption of the
components and calculates how the voltage of the energy provisioning system re-
acts to this current flow. The updated settings are transmitted to the testbench where
the voltage is generated. The smart sensor can now be operated with this updated
voltage and the current flow changes. To have an optimal measurement of the drawn
current a gain control unit can be used to set the sensor gains of the current measure-
ment units. The measured values are given to the control program to be stored and to
calculate the new settings for the testbench. The data gained from the measurements
are used to construct models of the sensor components.

– 138 –

Paper P4 - Sensor Systems Solutions - From Concept to Solution 2019

Thomas Wolfgang Pieber, Thomas Ulz, and Christian Steger

Fig. 3 Example of a measurement of sensor components.

The data that is generated can then be used to create models of the sensor com-
ponents energy usage at different voltages. This data can furthermore be used to
specify the requirements for the energy provisioning system of the final sensor.

3.1.1 An Example

To create an energy efficient sensor, all components should be optimized for low
energy usage. Furthermore, components that are not needed still consume energy.
To counteract that, load switches can be used to cut the components off the power
supply. In Figure 3 the same sensor device is connected to the channels EXT-1 and
EXT-2. EXT-1 is cut from the power supply with a load switch. This sensor uses
33 µW. If it is switched on the sensor consumes 75 µW.

Such simple method can reduce the energy consumption drastically and therefore
prolong the sensors lifetime.
The only component that cannot be cut from the power supply is the microcontroller.
There the energy consumption can be reduced by switching into a low-power state.
Figure 3 shows a measurement of a smart sensor. Here the sensor connected to EXT-

– 139 –

Paper P4 - Sensor Systems Solutions - From Concept to Solution 2019

Chapter 8. Model-based Design of Secured Power Aware Smart Sensors

Fig. 4 Electrical model of a smart sensor.

2 is continuously active. LEDs, connected to the microcontroller, switch according
to the measured value.
Additional memory may be useful for a sensor system. Here configurations can be
stored and measurements can be buffered until they are transmitted. For the FRAM
memory module in this design the energy consumption in standby is around 35 µW.
To communicate with other devices and to harvest energy, this example design fea-
tures an NFC interface. This interface consumes about 33 µW in idle mode.
Stated as an optional component is a security controller. The energy consumption of
such element is around 45 µW in an idle phase. Also here a load switch can reduce
the energy consumption and prolong the sensors lifetime.

Using this approach, the energy provisioning system is replaced by the testbench.
That implies that the energy provisioning needs either to be measured using a dif-
ferent method, or an existing simulation can be used to get to the needed data. There
are numerous simulations of energy harvesting methods and batteries available that
can be used for this purpose.

To simplify the simulation of the electric system of the sensor, an intermediate
simulation tool can be used. Figure 4 shows how the energy consuming parts of the
sensor can be modelled in LTSpice.

The top part represents the energy harvesting and energy storing of the sensor
system. Here, the input voltage (V1) represents the capabilities of the energy harvest-

– 140 –

Paper P4 - Sensor Systems Solutions - From Concept to Solution 2019

Thomas Wolfgang Pieber, Thomas Ulz, and Christian Steger

Fig. 5 Example of an environment of a sensor.

ing device. If this voltage is higher than the sensor’s supply voltage the voltage from
the harvesting device is switched to the supply voltage. The sensor is then driven by
the harvested energy. When the sensor system (Sensor) detects that the supply volt-
age is larger than the voltage at the energy storage (UltraCap) the switches S1 and
S2 are flipped and the energy storage is charged. If the harvested voltage gets below
the voltage from the capacitor, the switches are flipped again and the sensor is not
charged any longer. If the harvested voltage drops below the voltage that can be
supported by the energy storage the sensor is again driven by the stored energy.
The middle section of Figure 4 shows the mechanism that flips the switches in
the top section (S1, S4, V1, and V3). Additionally, the mechanism that completely
switches off the sensor if the voltage gets too low (Switch and connected V2) is im-
plemented in this section. The operational part of the smart sensor (CPU C) is then
driven with that voltage.
In the bottom section of this figure various electrical networks (in this case resis-
tors) can be switched on and off. These networks are tuned to represent the different
components and power states of the sensors components.

This reduced electrical model of the sensor can be used to model the energy
consumption of the sensor components in the final simulation.

3.2 Gathering Data for the Environment Simulation

The environment simulation will be acting as the de-facto testbench of the sensor
simulation. Therefore, it should allow a multitude of different scenarios. The envi-
ronment simulation can be created with a low complexity and still produce a good
quality result.

– 141 –

Paper P4 - Sensor Systems Solutions - From Concept to Solution 2019

Chapter 8. Model-based Design of Secured Power Aware Smart Sensors

Figure 5 shows the most crucial parts of the environment simulation. In this fig-
ure, the blue arrows represent the data path for the communication between the
Sensor and its Communication Partner. The green arrows represent the data that is
generated in the environment simulation. Here the Communication Partner is a part
of the Environment and can manipulate some variables of it. Most notably the Com-
munication Partner can manipulate its own position. The change in the Environment
influences the parameters of the Channel. Furthermore, this parameter change influ-
ences the data the Sensor can observe. The Channel receives information about the
Environment and the Interference generated by other communications. Using this
information the Channel modifies the data that is communicated between the Sen-
sor and its Communication Partner.

The representation of the sensor needs to be placed somewhere in the world as
reference point. All stimuli for the sensor are calculated in reference to that point.
To validate the communication interface of the sensor, a communication partner
needs to be introduced to the virtual environment. For a better simulation of the
communication, interference generators and obstacles to the transmission may be
included.
The validation of the sensor interface can be performed by including the measured
variable in the simulation. When simulating the capabilities of an energy harvesting
device, also this stimulus needs to be generated in the simulation.

This virtual environment allows the testing of the sensors use case. The environ-
ment can be modified to test different use case scenarios, boundary conditions of
the communication, and reaction of the sensor to faulty signals.

4 Creating the Simulations

When designing a new sensor, simulations play an essential role. Not only the sim-
ulation of the sensor system, but also a simulation of the intended use case is useful.

4.1 Designing the Sensor Model

Using the data gathered in Section 3.1 a model of a generic sensor can be created
using SystemC. This models needs to represent all features of a smart sensor. These
features are:

• The sensor frontend: Depending on the use case the smart sensor can be
equipped with different frontends. Typical frontends can just be switched on or
off thus it can be modelled as a static energy consumer.

• The control unit: The microcontroller can be represented as a timed state ma-
chine. Different power states that the microcontroller operates in can be defined
(e.g.: calculating, memory access, idle, sleep).

– 142 –

Paper P4 - Sensor Systems Solutions - From Concept to Solution 2019

Thomas Wolfgang Pieber, Thomas Ulz, and Christian Steger

• The memory: If the sensor includes an additional memory unit, a detailed de-
scription is needed. Typical memory modules have very few operational modes
(data access, data write, sleep). These can be modelled very accurately without
having an overly complex model.

• The communication unit(s): The communication is typically slow and energy
intensive. The model for the communication needs to be as accurate as possible.
The description of the hardware itself can again be abstracted as a timed state
machine operating with different power levels (sending, receiving, sleep, energy
harvesting).

• The energy provisioning system: Many sensors are either connected to a bigger
machine or to the power grid. For those sensors we can assume the voltage to
be constant as it should be possible to provide sufficient energy to the sensor. If
the sensor is operated by a battery or using an energy harvesting system and a
capacitor, this system needs to be modelled with high accuracy. Voltage drops
caused by to high energy demand can cause the sensor to stop operating. To
counteract this, the sensor can use measures to decrease the energy consumption
by temporarily disabling some functionality. In addition to these radical changes
to the energy consumption, the non-linear behaviour of capacitors and batteries
is important to the accurate simulation of the voltage levels of the sensor.

• A security coprocessor: The modelling of a security coprocessor can be tricky as
the detailed description of it is most of the times classified. Nevertheless, a model
of it needs to be constructed, as this coprocessors typically consume much energy
to conceal their behaviour. The security coprocessor, can be modelled as a static
energy consumer when switched on. This overestimates the real consumption
and leads to a more robust design.

After these components have been created, they need to be connected to each
other. Figure 6 shows how these connections can be set. The red arrows represent the
energy transfer between the components. In the case that NFC is used as means of
communication, energy can be harvested from the RF field. This energy is stored in
the sensor’s capacitor or accumulator. The antenna system also requires some energy
if it is not supplied by an external field. All other components have to be connected
to the energy supply. The blue arrows in this figure represent the data connections.
All components are connected to the microcontroller. Either, as represented here
directly, or via a bus system.

When creating this simulation a tradeoff between accuracy of the model and the
simulation speed needs to be made. The more complex the model of the smart sensor
becomes, the slower the simulation will be. In addition to reducing the complexity of
some of the sensor components models, optimizations for longer simulation periods
where the sensor is idle need to be made. These optimizations require the knowledge
of the sensors non-linearities, the stimuli that wake the sensor from sleep, and the
actions the sensor takes when stimulated.
Such optimizations can stop the execution of the full simulation and switch to a
reduced version, or just estimate how the transient variables would behave during
these periods. When estimating the variables, non-linearities in the sensor system
need to be accounted for.

– 143 –

Paper P4 - Sensor Systems Solutions - From Concept to Solution 2019

Chapter 8. Model-based Design of Secured Power Aware Smart Sensors

Fig. 6 The overall structure of a smart sensor.

4.2 Designing the Environment

To test if the new sensor will be able to perform all tasks of the intended use case,
an environment needs to be created that can influence the simulation for the sensor.
The environment can be simulated using the “Gazebo” simulator. To describe the
different actions an entity can take, plugins need to be created. This simulation can
then be used as a testbench for the sensor simulation. Using the data from Section
3.2 a model of the environment can be created. Its vital components are:

• The sensor: A representation of the sensor in the environment. This component
implements the interface to the sensor simulation. All interaction of the environ-
ment with the sensor are relative to this representation. Additionally, all param-
eters the simulation calculates for the sensor to measure are calculated with this
reference model.

• Something to measure: A simulation tool representing 3D objects primarily
computes the relative motion and size between objects. Other parameters such as
communication signals, air humidity, temperature, or light might not be calcu-
lated. Depending on the use case of the sensor these variables need to be calcu-
lated and passed to the sensor model.

• A communication partner: To test the communication unit of the sensor a coun-
terpart needs to be implemented in the environment. This can be performed by
another instance of the new sensor or an already existing device. To be able to
test different scenarios it can be useful to allow the communication partner to be
moved.

• Interference and obstacles: Any communication is influenced by the environ-
ment it is performed in. In the case of a wireless communication interference
from other machinery, nearby communication, signal attenuation, and the scat-
tering and reflecting of the signal produce communication errors. To see how

– 144 –

Paper P4 - Sensor Systems Solutions - From Concept to Solution 2019

Thomas Wolfgang Pieber, Thomas Ulz, and Christian Steger

Fig. 7 The connection of the sensor and environment simulation.

the sensor reacts to faulty messages an implementation of the communication
channel, including some interferences, is needed.

These components are then placed in a 3D virtual environment and logically con-
nected.
The sensor receives information about the communication from the implementation
of the channel and information about the measured variable directly from the en-
vironment. This data is then forwarded to the sensor simulation. The data that is
produced by the sensor simulation is filtered and forwarded to the intended destina-
tion. This destination can be an actuator or the communication channel.
The communication partner sends the information that is intended for the sensor to
the communication channel and receives the information from the sensor via this
channel. If the communication partner is movable the information about the chang-
ing position is sent to the environment.
The channel receives data from all communication partners and noise sources. Addi-
tionally, information about the 3D environment is gathered. Using this information
the received data is modified (bit errors are introduced and the transmitted energy is
calculated) and sent to the receiver.
The environment gathers data about the location of all objects. The information
about the measured variable is then calculated and sent to the sensor.

4.3 Inserting the Sensor in the Environment

The simulation of the sensor and the simulation of the environment are very different
simulation types. On the one hand a simulation of a hardware and the processes that
occur in the hardware during the operation. On the other hand a simulation of some
physical processes, movements, and communication. The major difference in these
simulations are the time steps in which the simulation operates. The simulation of

– 145 –

Paper P4 - Sensor Systems Solutions - From Concept to Solution 2019

Chapter 8. Model-based Design of Secured Power Aware Smart Sensors

the hardware can occur at a very low level of abstraction and thus the time steps
are small. SystemC for example supports time steps as small as 1 fs. The movement
of robotic appliances is simulated in larger time steps. Gazebo, a robotic simulation
tool, operates in time steps of 1 ms. This difference in simulation speed requires a
complex Interface between the simulations.

Figure 7 shows the overall structure of the connection between the Gazebo simu-
lation of the environment and the SystemC simulation of the sensor. The red arrows
in this figure represent the flow of energy in the simulations. The blue and green
arrows show how data is transmitted between the modules. Here, the blue arrows
represent information that is transferred to or from the sensor, the green ones infor-
mation that is required by the environment.

To create a connection between the 3D representation of the sensor in Gazebo
and the simulation of the sensor in SystemC, a plugin is connected to the Gazebo
model. This plugin forms the Interface between the simulations. To perform the task
of connecting the two simulations, all the gathered data is packed and transferred to
the SystemC process and the returning data is distributed in the Gazebo simulation.
This plugin furthermore handles the synchronization between the simulations. This
is done by adding additional information about the time step and a signal that the
SystemC simulation should perform the calculations for this step.
In the SystemC simulation the original testbench is replaced by the counterpart of
the Interface. It receives the information and forwards it to the destination. The des-
tination for the measured variable is the model of the sensor frontend. The data that
is sent via the communication channel is forwarded to the communication interface.
The additional information about the time step is kept at the testbench. With the
information about the received values the testbench can calculate whether the full
simulation needs to be run or if the changing parameters can be estimated. During
the calculations of the simulation messages may be created that are then sent to the
Gazebo simulator. When all calculations for this time step are finished the testbench
sends a signal that the Gazebo simulation can perform another step.

Beyond the Immediate Neighbourhood

Using the data of the sensor system and the immediate interaction with the environ-
ment, more simulations can be created. Theses simulations can model the behaviour
of a network of such sensors. The sensors in this network can be placed in a larger
scale environment with moving communication partners transporting data and de-
livering energy. The approach of Ulz et al. [21] to form a network using mobile
communication partners can here be used to also distribute the required energy to
the sensor nodes.

– 146 –

Paper P4 - Sensor Systems Solutions - From Concept to Solution 2019

Thomas Wolfgang Pieber, Thomas Ulz, and Christian Steger

Fig. 8 Sequence for the Gazebo-SystemC cosimulation.

5 The Simulation in Detail

In the Gazebo simulator all operations are performed in plugins that are connected
to entities in the simulation. These plugins are executed sequentially such that the
plugin that is being executed can already work with the results of the plugins exe-
cuted before.
To synchronize the two simulations Gazebo needs to be halted until SystemC has
finished and SystemC needs to wait for Gazebo to provide the parameters for the
new time step.

The simulation sequence is shown in Figure 8. This figure shows the initialization
phase, simulation steps, and the termination of the cosimulation.

Initialization

When the simulation is started all Gazebo plugins run an initialization routine. In
these routines the communication structures between the plugins are created and
initial values are loaded. In the case of the environment description, all initial posi-
tions are gathered. The implementation of the channel loads the relative positions of
the antennas and obstacles. The interface implementation forks a new process that
will execute the SystemC simulation. It furthermore spawns a new thread that will
be listening to the forked process. Finally, initial configuration parameters are sent
via a communication channel.
The newly created process starts the SystemC simulation, loads the initial configu-
ration from the provided communication channel and informs its parent process, the
Gazebo simulation, about its status and waits for instructions.

– 147 –

Paper P4 - Sensor Systems Solutions - From Concept to Solution 2019

Chapter 8. Model-based Design of Secured Power Aware Smart Sensors

Simulation Steps

The Gazebo plugins that control the communication partner check if inputs from a
user or the robot’s operating system are available. These commands are then trans-
lated to actions the communication partner will take. These actions include moving
itself or sending some messages.
The plugin controlling the environment receives the informations about movements
and calculates new input for the sensor.
If messages are sent, the channel plugin gathers the information about the relative
distance and orientation between the communicating parties and obstacles. Using
this information the messages are altered to include bit errors. Additionally the
transmitted energy gets changed to account for the channel properties. The mod-
ified messages are then forwarded to their destination.
The interface implementation waits for the SystemC simulation to have finished its
last simulation step. When this signal is received the gathered information is for-
warded towards the intended destination. After that all information that is sent to
the interface plugin is packed and sent via the communication channel to the other
process. This information is appended by information regarding the time step and
a signal that informs the SystemC simulation that all information is sent. The Sys-
temC simulation can now execute the needed operations while the Gazebo simulator
computes the information needed for the next simulation step. Parallel to the com-
putation of the next step, the thread of the interface listens to the channel between
the processes for information the SystemC simulation sends to the Gazebo environ-
ment.

The SystemC simulation receives all information sent to it by the Gazebo simula-
tor. The testbench can now adapt the simulation parameters and start the simulation.
While the simulation is being executed messages can be sent to the Gazebo simula-
tor. These messages can originate from the communication interface module. If this
sensor also includes an actuator or some visual status indicator these modules can
also send information to the environment simulation.
When the simulation step is finished the testbench sends the signal that the simula-
tion step is finished.

Termination

After the simulation has been performed the plugins receive a signal that the simu-
lation is about to be ended.
The interface plugin relays this information and waits for the remaining messages
from SystemC. When it receives a signal that the SystemC simulation is terminated
the plugin cleans its data structures and terminates.

When the SystemC simulation receives the signal to terminate, a post-processing
step for the gathered data is initiated. This post-processing is a part of the runtime
optimizations and performs tasks to correctly display the gathered data. The data is

– 148 –

Paper P4 - Sensor Systems Solutions - From Concept to Solution 2019

Thomas Wolfgang Pieber, Thomas Ulz, and Christian Steger

Fig. 9 The testbench of the SystemC simulation is adapted to skip the simulation if it is likely to
yield results that can be estimated.

furthermore compressed by the post-processing step. Finally the data is saved and
the Gazebo simulation is informed of the termination of the simulation.

5.1 Optimizations

As the SystemC simulation operates in smaller time steps, each step of the Gazebo
simulation causes thousands of SystemC steps. This results in the SystemC simu-
lation being much slower than the Gazebo one, and thus slowing down the whole
process. To speed up the simulation, the accuracy of the results can be reduced at
certain times. A possible method to reduce the accuracy is shown in Figure 9.

To take advantages of this possibility, the testbench needs to estimate the state af-
ter the simulation step. If the sensor is in idle mode and the input parameters do not
change, the accuracy can be reduced by skipping the simulation and keeping a num-
ber that describes the amount of time that has been skipped since the last simulation
step. If the estimator evaluates that a simulation is needed this time debt is used to
calculate changing parameters. To account for non-linearities in the simulation that
have not been included in the estimation process a simulation step is needed if the
time debt exceeds a defined time interval.
As SystemC is not created to support this behaviour, the output files of the simula-
tion need the post-processing to be correctly displayed.

6 Evaluating the Simulations

The first step in the evaluation of the simulation results is the verification that the
components of the simulations show the same characteristics as the measured ones.

The results of the LTSpice simulation are compared in Figure 10. Here the left
image shows the measured variables of a research prototype. In this scenario the
sensor was charged and performed measurements every 60 s. The right hand side
shows the same operation simulated using LTSpice. The direct comparison shows

– 149 –

Paper P4 - Sensor Systems Solutions - From Concept to Solution 2019

Chapter 8. Model-based Design of Secured Power Aware Smart Sensors

Fig. 10 Comparison between the measured values during charging and the electrical LTSpice sim-
ulation.

that the LTSpice simulation approximate the real system to a high degree.
There exist some possibilities to optimize the energy consumption of the sensor
itself.

• The duty cycle can be adapted to reduce the number of measurements. The spikes
in the sensors current indicate the measurement.

• Some of the sensor components can be cut off the energy supply. For example the
sensor can take many measurements and keep the values in its internal storage. If
this storage gets too full, all data is transferred to the external memory module.
To do so, the module is then switched on and all data is transferred. This reduces
the amount of time the memory module spends in its startup phase.

• The communication module only needs to be switched on if some communica-
tion is about to happen. The same principle applies to the security controller of
the sensor.

Figure 11 shows a comparison between the simulation in LTSpice and the simu-
lation performed in SystemC. The left hand side of this figure shows the results of
another LTSpice simulation. The right hand side shows the same process in the Sys-
temC simulation. Also here the capacitor has been charged and after that a simulated
measurement has been performed every 60 seconds. The results show that the two
simulation behave similarly. To optimize the energy consumption of the complete
sensor system, some more options exist.

• The more valuable the measured variables are, the more often the sensor needs to
be looked after. If the significance of the variable changes, the sample rate can be
adapted to reduce the energy consumption of the sensor. Additionally, the sensor
can change the interval in which the measured values are transmitted. This can
be changed through configuration of the sensor.

• If the data is transmitted using mobile nodes, the moving partners can optimize
their routes to gather the data while they are on the way to perform some tasks.

– 150 –

Paper P4 - Sensor Systems Solutions - From Concept to Solution 2019

Thomas Wolfgang Pieber, Thomas Ulz, and Christian Steger

Fig. 11 Comparison between the measured values and the results of the SystemC simulation.

Examining the Effects of the Optimizations

The runtime optimization that can skip simulation steps introduces some problems.
Figure 12 shows two traces to examine this effect. The top trace is taken from the
optimized simulation, in the bottom trace the effects are removed. In this figure two
of three operation modes of the operation can be seen clearly.
The first one is in the time span from 47.4 ms to 69.7 ms of optimized trace that
corresponds to the time span from 24.8 s to 26.3 s of the last trace. This equals to a
time reduction of 98.51%. During this time the input from the Gazebo simulation
was only the changing field of the removing NFC reader. This value is constant for
any time step. As the rest of the sensor is idle, the simulation is only run for a short
period of time to check if any values are changing in an unexpected way, after that
the simulation is skipped and the rest of the changes are approximated. This can be
seen in a thin line in the advanceTime line.
In contrast to that, the first 1.2 ms of the optimized trace correspond to the first 6.3 s
of the last trace. This equals to a time reduction of 99.98%. In this time no RF field is
detected and the sensor is idle. In this phase the simulation is only started if the time
debt of Figure 9 reaches a predefined value to update the change rates due to non-
linear effects. During this phase most changes are approximated. The advanceTime
line shows a thick line while this phase lasts.

The third operation mode is seen if the advanceTime line is not elevated. Figure
13 shows a section of Figure 12 where the sensor is not idle. This phase starts from
43.5 ms of the optimized trace and has a duration until 43.74 ms. This corresponds
to the time span from 14250 ms to 14250.24 ms. In this time the sensor is receiving
data that needs to be processed. Therefore the sensor is not idle and the effects
can not be estimated. Here the full simulation is performed and no time reduction
occurs.

The values of the simulation time reduction highly depend on the processor state
and the simulated use case.

– 151 –

Paper P4 - Sensor Systems Solutions - From Concept to Solution 2019

Chapter 8. Model-based Design of Secured Power Aware Smart Sensors

Fig. 12 Effects that result from the runtime optimization by skipping simulation steps. The simu-
lation time is compressed if the sensor is idle and the effects can be estimated.

Fig. 13 Third operation mode of the optimization. If the sensor is not idle, no compression occurs.

7 Security of Smart Sensors

When developing new sensors, not only the efficiency of them is important, they
furthermore should be secure. The security should not only care about the data that
is generated by the sensor, but also the sensors should not endanger systems they
are connected to.

Any security solution for smart sensors needs to consider the following six
points:

• The sensor has limited resources in terms of energy and processing power.
• The overhead in memory usage, computational effort, and data transmission sizes

that are imposed due to security considerations can be large in comparison to the
payload data.

– 152 –

Paper P4 - Sensor Systems Solutions - From Concept to Solution 2019

Thomas Wolfgang Pieber, Thomas Ulz, and Christian Steger

Fig. 14 Concept to simulate the JEEC approach by Ulz et al. [24].

• To provide security to a sensor network every sensor needs to perform the secu-
rity relevant operations.

• The security features should be easy to use by untrained end users.
• The end user needs to trust the security features of the sensor.
• Dedicated hardware that performs the security operations is better, but needs

more energy and can be costly.

7.1 Data Security

The sensor data needs to be protected from unauthorized access. Otherwise this data
can disclose company secrets. Furthermore, if the sensor data can be replicated,
control mechanisms can be fooled to perform harmful operations that can endanger
the facility or human lives. In the case of the STUXNET attack [9] the attacker has
learned the behaviour of the system by observing the sensor data. After the learning
phase the attacker manipulated the sensor’s data to turbines of a nuclear enrichment
plant while it was hiding its doings by displaying normal looking data to the next
layer of controls.
This attack showed that the sensor data needs to be protected. To be able to read
(or guess) the sensor data can enable an attacker to manipulate the processes they
observe.

To protect the gathered data in a sensor network from unauthorized access, the
data needs to be encrypted. As Ulz et al. showed, such measures increase the severity
of introduced bit errors [24]. To still be able to communicate correctly, a forward
error correction scheme can be used on the encrypted data. Using this method, bit
errors can be detected before decrypting, thus increasing the resilience against bit
errors of the communication. Ulz et al. also suggested a solution to this problem
which they called Joint Encryption and Error Correction (JEEC).

– 153 –

Paper P4 - Sensor Systems Solutions - From Concept to Solution 2019

Chapter 8. Model-based Design of Secured Power Aware Smart Sensors

Fig. 15 Concept for testing the secured data transmission of Ulz et al. [24].

To simulate the security of the data during transmission, another simulation has
been created. Figure 14 shows the concept of this simulation. Here the green fields
represent blocks where the data is not secured. The yellow and dark blue fields rep-
resent steps for the data processing, where the dark blue describes that this process
consists of many subprocesses. The light blue fields are considered given in this
simulation.
The data to be transmitted is provided by a file. The top row shows the process the
sender takes before the data is sent. During this process the data is chunked into
packets, encrypted, a forward error correcting (FEC) code is added, and a check-
sum is calculated. This packet is then sent via a channel. This channel can see the
transmitted data and introduce bit errors. Before the receiver can use the data, it
needs to be processed again. This process, shown in the bottom row, consists of the
recovering of flipped bits using the FEC and decrypting.

Figure 15 shows a concept to test the JEEC approach. Here a magnetic angle
sensor is stimulated by a magnet. The sensor data (blue arrows) is then sent to the
smart sensor platform where it is processed. The original data gets displayed for
later comparison. Additionally, the sensor data gets encrypted and encoded using
a FEC scheme. This packed data is then sent via a network to the receiver (green
arrows with locks). The adversary is in the network and can manipulate the data.
The receiver tries to decode the data. If this succeeds the plain data is displayed to
be compared against the original one.

7.2 System Security

Recently another kind of attack using sensors has been reported. In this scenario a
large number of sensors connected to a network is used to perform a DDoS (Dis-
tributed Denial of Service) attack. In this type of attack the sensors firmware is al-
tered to send messages through the network to a common destination. Using a large
number of manipulated sensors, the common destination receives more data than it
can handle. This blocks the recipients capabilities to perform its normal operations.

– 154 –

Paper P4 - Sensor Systems Solutions - From Concept to Solution 2019

Thomas Wolfgang Pieber, Thomas Ulz, and Christian Steger

To use the sensors for such malicious purposes, their firmware needs to be
changed. Ulz et al. presented an approach to exclude sensors from the sensor net-
work that use unauthorized firmware [22]. This is done in a two-layer system. in
the first step the firmware is checked by an on-board security module. If this check
verifies that the software is from an trusted source, the sensor’s network stack is
released. Now the firmware version can be checked at a trusted backend server. This
verifies that the sensor is running the newest version of the firmware.

8 Conclusions

This chapter presents an approach to design secured power aware smart sensors us-
ing hardware models. To be able to use this model-based design, the model parame-
ters need to be known. Therefore, we discussed the methods for gathering such data
and how the data can be simplified to be used in an abstracted hardware model. In
addition to the model, use cases for the new sensor need to be known. Here a simple
simulation can be performed that generates the inputs necessary for the hardware
simulation. If the use case extends beyond one sensor, the gathered data can be ab-
stracted again and included in higher layer simulations. Additionally, we presented
the main phases of such simulations and mentioned possibilities for runtime opti-
mizations. Finally, we discussed the possibilities of attacks on and with the sensors
and mentioned methods to increase the difficulty of a successful attack. Addition-
ally, the concepts to secure the data against adversaries has also been simulated and
tested.

As the simulation should resemble a generic smart sensor, some details are lost
at every layer of abstraction of the models. This loss in detail is necessary to create
usable simulations.

The main focus of this chapter is the creation of the simulation of such sensor
systems. A detailed description on the model generation and the simulation steps
are given.

Using these simulations it is possible to analyse the effects of changes to the
sensor system, the communication protocols, or the routines in the environment.
This can be used to optimize the energy consumption of each individual components
as well as the energy consumption of the complete environment.

Acknowledgements This project has received funding from the Electronic Component Systems
for European Leadership Joint Undertaking under grant agreement No 692480. This Joint Under-
taking receives support from the European Union’s Horizon 2020 research and innovation pro-
gramme and Germany, Netherlands, Spain, Austria, Belgium, Slovakia.

IoSense is funded under the agreement number 853326 by the Austrian Federal Ministry of
Transport, Innovation and Technology (BMVIT) under the program ”ICT of the Future” between
May 2016 and May 2019. More information https://iktderzukunft.at/en/

We want to thank Infineon Technologies and especially Rainer Matischek for providing us the
security controllers used in the system and for their support that helped creating the prototypes and
simulations.

– 155 –

Paper P4 - Sensor Systems Solutions - From Concept to Solution 2019

Chapter 8. Model-based Design of Secured Power Aware Smart Sensors

References

1. Accelera: SystemC. http://accellera.org/downloads/standards/systemc (2000). Last accessed
on Jan 17, 2017

2. Antonakakis, M., April, T., Bailey, M., Bernhard, M., Bursztein, E., Cochran, J., Durumeric,
Z., Halderman, J.A., Invernizzi, L., Kallitsis, M., et al.: Understanding the mirai botnet. In:
USENIX Security Symposium (2017)

3. Bouchhima, F., Briere, M., Nicolescu, G., Abid, M., Aboulhamid, E.: A SystemC/simulink
co-simulation framework for continuous/discrete-events simulation. In: 2006 IEEE Interna-
tional Behavioral Modeling and Simulation Workshop. Institute of Electrical and Electronics
Engineers (IEEE) (2006). DOI 10.1109/bmas.2006.283461. URL http://dx.doi.org/
10.1109/BMAS.2006.283461

4. Campbell, R.J.: Cybersecurity issues for the bulk power system (2015)
5. Chen, G., Fojtik, M., Kim, D., Fick, D., Park, J., Seok, M., Chen, M.T., Foo, Z., Sylvester, D.,

Blaauw, D.: Millimeter-Scale Nearly Perpetual Sensor System with Stacked Battery and Solar
Cells. In: 2010 IEEE International Solid-State Circuits Conference - (ISSCC). IEEE (2010).
DOI 10.1109/isscc.2010.5433921

6. Haase, J., Meyer, D., Eckert, M., Klauer, B.: Wireless sensor/actuator device configuration
by nfc. In: Industrial Technology (ICIT), 2016 IEEE International Conference on, pp. 1336–
1340. IEEE (2016)

7. Huang, K., Bacivarov, I., Hugelshofer, F., Thiele, L.: Scalably distributed SystemC simulation
for embedded applications. In: 2008 International Symposium on Industrial Embedded Sys-
tems. Institute of Electrical and Electronics Engineers (IEEE) (2008). DOI 10.1109/sies.2008.
4577715. URL https://doi.org/10.1109%2Fsies.2008.4577715

8. Kansal, A., Hsu, J., Zahedi, S., Srivastava, M.B.: Power Management in Energy Harvesting
Sensor Networks. ACM Trans. Embed. Comput. Syst. 6(4) (2007). DOI 10.1145/1274858.
1274870

9. Langner, R.: Stuxnet: Dissecting a cyberwarfare weapon. IEEE Security & Privacy 9(3), 49–
51 (2011)

10. Lee, W.S., Son, W.I., Oh, K.S., Yu, J.W.: Contactless energy transfer systems using antiparallel
resonant loops. IEEE Transactions on Industrial Electronics 60(1), 350–359 (2013). DOI 10.
1109/tie.2011.2177611. URL https://doi.org/10.1109%2Ftie.2011.2177611

11. Martin, D., Wilsey, P., Hoekstra, R., Keiter, E., Hutchinson, S., Russo, T., Waters, L.: Inte-
grating multiple parallel simulation engines for mixed-technology parallel simulation. In:
Proceedings 35th Annual Simulation Symposium. SS 2002. Institute of Electrical and Elec-
tronics Engineers (IEEE) (2002). DOI 10.1109/simsym.2002.1000082. URL https:
//doi.org/10.1109%2Fsimsym.2002.1000082

12. Mathworks: Get Started with Gazebo and a Simulated TurtleBot.
https://de.mathworks.com/help/robotics/examples/get-started-with-gazebo-and-a-simulated-
turtlebot.html (2016). Last accessed on Jan 03, 2017

13. Mueller-Gritschneder, D., Lu, K., Wallander, E., Greim, M., Schlichtmann, U.: A virtual pro-
totyping platform for real-time systems with a case study for a two-wheeled robot. In: Design,
Automation & Test in Europe Conference & Exhibition (DATE), 2013. EDAA (2013). DOI
10.7873/date.2013.274. URL https://doi.org/10.7873%2Fdate.2013.274

14. Open Source Robotics Foundation: Gazebo simulator. http://www.gazebosim.org
(2004). Last accessed on Jan 03, 2017

15. Panda, P.R.: SystemC - Amodelling platform supporting multiple design abstractions. In:
Proceedings of the 14th international symposium on Systems synthesis - ISSS. Association
for Computing Machinery (ACM) (2001). DOI 10.1145/500001.500018. URL https://
doi.org/10.1145%2F500001.500018

16. Pieber, T.W., Ulz, T., Steger, C.: Systemc test case generation with the gazebo simulator. In:
Proceedings of the 7th International Conference on Simulation and Modeling Methodologies,
Technologies and Applications - Volume 1: SIMULTECH,, pp. 65–72. INSTICC, SciTePress
(2017). DOI 10.5220/0006404800650072

– 156 –

Paper P4 - Sensor Systems Solutions - From Concept to Solution 2019

Thomas Wolfgang Pieber, Thomas Ulz, and Christian Steger

17. Pieber, T.W., Ulz, T., Steger, C., Matischek, R.: Hardware secured, password-based authenti-
cation for smart sensors for the industrial internet of things. In: International Conference on
Network and System Security, pp. 632–642. Springer (2017)

18. Possadas, H., Adamez, J.A., Villar, E., Blasco, F., Escuder, F.: RTOS modeling in SystemC
for real-time embedded SW simulation: A POSIX model. Design Automation for Embedded
Systems (2005). DOI 10.1007/s10617-006-9725-1

19. Rahimi, M., Shah, H., Sukhatme, G., Heideman, J., Estrin, D.: Studying the Feasibility of
Energy Harvesting in a Mobile Sensor Network. In: 2003 IEEE International Conference on
Robotics and Automation (Cat. No.03CH37422). IEEE. DOI 10.1109/robot.2003.1241567

20. Sogorb, T., Llario, J.V., Pelegri, J., Lajara, R., Alberola, J.: Studying the feasibility of energy
harvesting from broadcast rf station for wsn. In: Instrumentation and Measurement Technol-
ogy Conference Proceedings, 2008. IMTC 2008. IEEE, pp. 1360–1363. IEEE (2008)

21. Ulz, T., Pieber, T., Steger, C., Haas, S., Matischek, R.: Sneakernet on wheels: Trustworthy
nfc-based robot to machine communication. In: RFID Technology & Application (RFID-TA),
2017 IEEE International Conference on, pp. 260–265. IEEE (2017)

22. Ulz, T., Pieber, T., Steger, C., Haas, S., Matischek, R., Bock, H.: Hardware-secured config-
uration and two-layer attestation architecture for smart sensors. In: Digital System Design
(DSD), 2017 Euromicro Conference on, pp. 229–236. IEEE (2017)

23. Ulz, T., Pieber, T., Steger, C., Lesjak, C., Bock, H., Matischek, R.: Secureconfig: Nfc and
qr-code based hybrid approach for smart sensor configuration. In: RFID (RFID), 2017 IEEE
International Conference on, pp. 41–46. IEEE (2017)

24. Ulz, T., Pieber, T., Steger, C., Matischek, R., Bock, H.: Towards trustworthy data in networked
control systems: A hardware-based approach. In: Emerging Technologies and Factory Au-
tomation (ETFA), 2017 22nd IEEE International Conference on, pp. 1–8. IEEE (2017)

25. Yan, R., Sun, H., Qian, Y.: Energy-aware sensor node design with its application in wireless
sensor networks. IEEE Transactions on Instrumentation and Measurement 62(5), 1183–1191
(2013). DOI 10.1109/tim.2013.2245181. URL https://doi.org/10.1109/tim.
2013.2245181

26. Zamora, I., Lopez, N.G., Vilches, V.M., Cordero, A.H.: Extending the OpenAI Gym for
robotics: a toolkit for reinforcement learning using ROS and Gazebo. arXiv preprint
arXiv:1608.05742 (2016)

Authors’ Biographies

– 157 –

Paper P4 - Sensor Systems Solutions - From Concept to Solution 2019

Chapter 8. Model-based Design of Secured Power Aware Smart Sensors

Thomas W. Pieber received his master’s degree (M.Sc.) in Information
and Computer Engineering from Graz University of Technology in 2016.
The focus of his studies included Embedded Systems, Mobile Comput-
ing, and Robotics. Currently he is a Ph.D. student in Information and
Computer Engineering for the Institute for Technical Informatics, Graz
University of Technology. His research currently focuses on energy effi-
ciency of IoT devices.

Thomas Ulz received his master’s degrees (M.Sc.) in Information and
Computer Engineering as well as in Computer Science from Graz Uni-
versity of Technology, both in 2016. The focus of his studies included Se-
curity, Embedded Systems, Robotics, and Machine Learning. Currently,
he is a Ph.D. student in Information and Computer Engineering at the
Institute for Technical Informatics, Graz University of Technology. His
research currently focuses on security aspects of IoT devices.

Christian Steger received the Dipl.-Ing. degree (M.Sc.) in 1990, and the
Dr. techn. degree (Ph.D.) in electrical engineering from Graz University
of Technology, Austria, in 1995, respectively. He graduated from the Ex-
port, International Management and Marketing course at Karl-Franzens-
University of Graz in June 1993 and completed the Entrepreneurship De-
velopment Program at MIT Sloan School of Management in Boston in
2010. He is strategy board member of the Virtual Vehicle Competence
Center (ViF, COMET K2) in Graz, Austria. Since 1992 he has been As-
sistant Professor at the Institute for Technical Informatics, Graz Univer-
sity of Technology were he heads the HW/SW codesign group at the
Institute for Technical Informatics.

– 158 –

Paper P5 - PECCS 2019

Towards Continuous Sensor Operation: Modelling a Secured Smart
Sensor in a Sparse Network Operated by Energy Harvesting

Thomas W. Pieber, Benjamin Mößlang, Thomas Ulz and Christian Steger
Institute for Technical Informatics, Graz University of Technology, Inffeldgasse 16/I, Graz, Austria

{thomas.pieber, thomas.ulz, steger}@tugraz.at,
benjamin.moesslang@student.tugraz.at

Keywords: Energy Harvesting, NFC, Robotics, Smart Factory, Smart Home, Smart Sensors, Sparse Networks

Abstract: In modern society sensors are omnipresent. They gather information about their environment in order to
optimize production flows, minimize energy usage, learn about the environment, or maximize the owner’s
comfort. To achieve the desired goal in already existing buildings, sensors are introduced afterwards. These
sensors might not be able to connect to a sensor network because of obstacles or user policies. If this happens,
other mechanisms to create a network to gather the data need to be found. Additionally, these sensors should
last for a long period and are therefore probably powered using energy harvesting methods. In this paper we
present an approach for simulating the charging process of such sensors and connecting them to a network
using mobile communication partners.

1 Introduction

In our society we use sensors to automatically
gather data for almost every aspect of our environ-
ment. In some applications the sensors cannot con-
nect to a network, either it is not feasible to build in-
frastructure to connect the sensors (1) or they are not
allowed to join an existing network (2).

The first use case is most likely to arise in a sparse
sensor network such as when monitoring a wide area
or if obstacles such as buildings influence the com-
munication channel. Furthermore, this can arise in
an Industry 4.0 setting where sensors can be added at
any time and due to insufficient wireless coverage, in-
terferences, obstacles, or policies the sensors cannot
connect to the local network.

In the second case the sensors can collect data that
needs to be handled confidentially and are therefore
not allowed to be transmitted over a long-range wire-
less communication channel. This can also happen in
an Industry 4.0 scenario.

For these use cases mobile communication part-
ners (nodes) with additional computational power and
further capabilities can be introduced to connect the
sensor nodes to the data sink. These mobile partners
can be a worker or robot in a factory, a home owner
in his house, or an employee of the city. These com-
munication partners then need to estimate the urgency
of the collected data, the memory usage of the sensor,

and the energy level of the sensor nodes they should
connect to the network. This results in periodical vis-
its from the mobile node at any sensor. These visits
can furthermore be used to prolong the sensor’s oper-
ational time without much effort.

Additionally, when the nodes are visited and their
data is collected by the mobile node it may also be
possible to configure the sensors behaviour to account
for changing needs of the owner. To mitigate possible
threats that come from unauthorized personnel chang-
ing the configurations, the sensors need to be secured.

There are many proposed solutions that connect
the sensors to mobile nodes (eg. (Marta and Cardei,
2009; Ye et al., 2002; Kim et al., 2003)). Most
of these use traditional radio frequency communica-
tion to communicate the distance to the mobile node.
Transporting energy in addition to the data requires
other communication technologies such as Near Field
Communication (NFC). In this work we examine the
possibility of using NFC-enabled robots, or NFC-
enabled smartphones to charge, read out, and con-
figure sensor nodes which cannot be connected in a
traditional way. This should happen while the data is
gathered reliably and secured.

The design of such sensor nodes poses many com-
plex questions such as: “Where is the energy needed
the most?”, “How much energy can be saved by re-
ducing the sample frequency?”, or “How can the en-
ergy be used more effectively?”. To answer these

Original work published in Proceedings of the 9th International Conference on Pervasive
and Embedded Computing and Communication Systems (PECCS 2019), pages 57-64.
SCITEPRESS - Science and Technology Publications, 2019.

– 160 –

Paper P5 - PECCS 2019

questions, simulations can be used to gain insights in
this complex topic. These simulations focus on the
detailed description of the sensor system and try to
give detailed answers. This however neglects other
major questions such as: “How does the designed en-
ergy harvesting system perform?” or “How does the
environment affect the sensor communication?”.

This publication focuses on the creation of a sim-
ulation that is also able to answer questions like these.
To do this we created a simulation that focuses on
the gathering of time insensitive information using
sensor nodes in an environment that does not allow
long range wireless communication. Such scenario
might arise when measuring the temperature in an au-
tomated warehouse, the air humidity of a basement,
or the air quality in a city. In these scenarios, some
agents (robots or humans) constantly move through
the environment performing operations. We propose
that they can also collect the information from the
sensor nodes, keep them operational and adapt the
sensor nodes behaviour while these agents are per-
forming their jobs.
To effectively use such a method requires the prior
knowledge of the sensors energy consumption. This
is necessary as the sensors operational lifetime is lim-
ited by the stored energy. The periodic visits should
happen shortly before the internal memory is full or
the energy level drops below a certain level to opti-
mally use the mobile agent’s time. Thus, this publi-
cation explores a method to estimate the energy con-
sumption of a smart sensor and the possibilities that
energy harvesting offers to prolong the sensors life-
time.

The remainder of this paper is structured as fol-
lows: In Section II related work is described. This
section is split to emphasize the energy harvesting, the
energy usage estimation and the mobile data collec-
tion. The theory and approach of our experiments can
be found in Section III. Here we describe the hard-
ware prototypes, experiments and the performed sim-
ulations. Section IV is dedicated to the measurements
taken with the prototypes and compares it to the re-
sults of the simulations. Section V contains ideas on
how to improve on the findings of this paper. This
paper concludes in Section VI.

2 Related Work

2.1 Energy Harvesting

Prolonging a battery powered sensor’s lifetime is the
goal of many publications. Most of the publications
include mechanisms for harvesting energy from the

surrounding. These harvesting methods include the
use of solar cells (Chen et al., 2010) or antennas
(Pinuela et al., 2013) to use electromagnetic radia-
tion, devices to convert heat gradients (Dziurdzia and
Stepien, 2011) to electrical energy, and mechanisms
to utilize mechanical energy (Choi et al., 2006).

All those methods are built to support the sensor
with a steady (or at least calculable) amount of en-
ergy. Thus, the sensors need only small energy stor-
age capacities to dampen energy fluctuations. (Kansal
and Srivastava, 2003; Kansal et al., 2007; Chen et al.,
2010; Tan and Panda, 2011).

J. Gummeson et al. (Gummeson et al., 2014) de-
veloped a small worn sensory device. This device is
embedded inside a ring which limits the size available
for energy storage. In their solution to this problem
they used NFC to recharge the internal storage when-
ever the user reaches for an NFC-enabled smartphone.
A similar approach can be used to operate larger de-
vices. In the case of a smart sensor the energy storage
can be made significantly larger, allowing for longer
operation between the recharging occurs. At the same
time larger antennas and more powerful NFC-readers
can reduce the time needed for recharging the sensor.
We also plan to use NFC to charge the sensor. In
contrast to the work of Gummeson et al. we want
to power a system that requires more energy.

A study from M. Rahimi et al. (Rahimi et al.,
2003) investigates the feasibility of mobile nodes in
order to provide energy to a sensor network. In this
study the authors show promising results of their pro-
totypical tests. This work focuses on the mechanisms
for searching for energy in an environment and how
the robots split the servicing (charging) of the sensor
nodes. They focus their research on quantifying the
power consumption of the network and specifying if
the network is sustainable.
In contrast to this research we focus on the com-
bination of energy transfer to the sensor nodes and
the simultaneous data collection performed by mobile
nodes.

Chen et al. (Chen et al., 2010) proposed and
demonstrated a nearly self sustaining micro sen-
sor that uses solar cells to generate the needed en-
ergy for sensing capacitance and temperature . This
approach to build a self-sustaining sensor network
seems promising but induces the need that the sensors
are subject to a sufficient light source which might not
be given in many scenarios. The work of Kansal et al.
(Kansal et al., 2007) described power management
techniques that can be used and they described how
such mechanism can be implemented with respect to
a known model of the desired energy source. That
can be used to improve the work of Chen et al. (Chen

– 161 –

Paper P5 - PECCS 2019

et al., 2010). Additionally, such a model can be used
in the proposed model to optimize the sensor usage.

In this paper we try to use NFC as communica-
tion technique to transmit data between a sensor and
a mobile node. In this approach a robot is acting as
the mobile node. This robot creates the connection to
the infrastructure, thus acting as a slow and random
link. The use of NFC furthermore allows us to trans-
mit power to the sensor supporting it for high power
operations and keeping it operational.

2.2 Energy Usage Estimation

The estimation of the energy consumption of sensors
is an ongoing research. There are approaches to min-
imize the energy consumption of sensor nodes based
on their specific energy levels and that take into ac-
count the energy levels of the surrounding nodes (Yan
et al., 2013).

Other researchers such as Halgamuge et al. (Hal-
gamuge et al., 2009) generated a model of a sensor’s
behaviour and try to estimate the energy consump-
tion of the sensor based on the information of the be-
haviour.

To get better results than pure estimation of the
energy consumption, we decided to create a research
prototype of a low-power sensor on which the energy
consumption can be measured.

2.3 Mobile Communication Partners

The idea of using mobile nodes in order to connect a
wide spread sensor network has been explored widely
in the existing literature. Most of these solutions use
erratic moving partners (such as animals in their habi-
tat who are equipped with a sensor node) to try to con-
nect all of the stationary nodes(Shah et al., 2003; Ulz
et al., 2017a; Rahimi et al., 2003).

The approach developed by Ulz et al. (Ulz et al.,
2017a) to connect industrial machines using robots as
links can be used to calculate the sensor node that
should be visited next.

In the work of Shah et. al. (Shah et al., 2003)
a multi-layer network with mobile nodes to connect
sensors with each other and with the data sinks was
proposed and explained. One of their main goals was
to minimize the sensors memory to decrease energy
demand. In their studies they proposed to mount the
mobile nodes on animals, roaming through their habi-
tat. In their assumption the mobile nodes (MULEs)
are performing a random walk and stumble upon the
sensors is not applicable to our use case. With that
we can simplify many of the calculations done in or-
der to get a reasonable memory size. Furthermore, as

the mobile partner can directly communicate with the
sensor, the sensor can suggest a return time for the
mobile partner to improve memory usage and sensor
lifetime.

Rahimi et. al. (Rahimi et al., 2003) describe an
approach for energy harvesting and distributing the
energy in a wireless sensor network (WSN) with the
help of mobile autonomous robots. In their approach
the robot moves through the observed area and finds
a spot with enough available solar energy to charge
the battery. The robot then moves towards the sensor
nodes which need the energy and charges them. With
this approach also sensors that can not harvest enough
energy to sustain themselves can be operated using
the delivered energy. This approach furthermore in-
creases the lifespan of the rest of the sensors as they
are provided with more energy than they could harvest
on their own. In our approach the sensors are not only
sustained by the mobile robot, but also their data is
collected. This cuts the energy demand for transmit-
ting the gathered data, allowing the sensors to operate
longer.

In our presented approach we use controllable
means of transportation in order to efficiently collect
all gathered data, update configurations of the sensors,
and charge the batteries. This controlled data collec-
tion can also provide means to predict the arrival of
new data and the possibility to have information on
the timeliness of the data.

3 Approach

Many systems, designed to be used as a sensor for
a sensor network, use batteries, wired electrical con-
nections, or continuous energy harvesting methods as
their main power source. To utilize short bursts of
energy as power source, the energy must be received
and the excess must be stored in a usable manner. To
do this, the energy is stored using accumulators or ca-
pacities. As we try to combine the transport of data
and the delivery of energy, NFC technology, and thus
energy bursts, are examined.

To use NFC as means of energy transport, the cir-
cuitry of the smart sensor must allow the extraction
of excess energy of the NFC field. Furthermore, the
excess energy must be directed to charge either a ca-
pacitor or an accumulator. This is done by extract-
ing electrical energy from the electromagnetic field.
The generated AC (alternating current) voltage is then
rectified and the voltage and current are controlled to
protect the sensor. To be more efficient, the circuitry
can include means of distinguishing between operat-
ing the sensor from the stored energy and operating

– 162 –

Paper P5 - PECCS 2019

it from the NFC field and storing the excess energy.
This switching of operation mode can be performed
by the sensor’s main controller.

To store the energy different solutions can be used.
For this domain the most useful solutions are accumu-
lators or capacitors. The energy density of capacitors
is lower in comparison to accumulators. This means
that capacitors can hold less energy. In contrast to that
the power density of capacitors is larger. This allows
capacitors to store and draw energy faster than equally
sized accumulators (Zhang et al., 2013).

We decided to use a super-capacitor based devel-
opment board as basis for the research prototype mea-
suring the energy provisioning system (henceforth
Prototype A).In addition to the prototype to measure
the energy provisioning system, we created a research
prototype on which the energy consumption of the
sensor components can be measured (henceforth Pro-
totype B).

Using these research prototypes, we gather data to
set up simulations that can represent the interactions
between the sensors and the mobile agents, as well as
help in gathering data to optimize the agent’s visiting
schedule. Here a simulation approach by Pieber et al.
(Pieber et al., 2017a; Pieber et al., 2017b) can be used
to connect the simulation of a smart sensor system to
a simulation that is more capable of simulating the
interaction between an agent and the sensor.

3.1 Research Prototypes

3.1.1 Prototype Overview

An MSP430FR5969 development board (TI, 2014) is
chosen as a basis for Prototype A. This board includes
a super-capacitor as energy source, a microcontroller
tailored for low power use, and a temperature sen-
sor. It is then extended with a custom made PCB to
connect an NFC interface (ams AG, 2006), capable
of handing energy to the host system. The extension
PCB can be configured using jumpers to allow differ-
ent communication channels. This PCB furthermore
features a simple power management system that lim-
its the power that can reach the super-capacitor and
can switch between the available power sources such
that the capacitor can be charged when an NFC field
is present. A circuit plan of the prototypical PCB is
shown in Figure 1.

Prototype B consists of three parts. The Energy
Measurement Unit (EMU, Testbench), a control com-
puter, and the Smart Sensor itself. As basis for the
EMU another PCB was designed. This is fitted to
an MSP340FR5969 board that gathers the data and
acts as a bridge between the measurement unit and

the control computer.
The smart sensor consists of a microcontroller, inter-
face ports, additional memory, an NFC interface, and
a security co-processor. Each of these components is
supplied by an energy channel coming from the mea-
suring testbench. Additionally, most components can
be cut from the power supply to reduce the energy de-
mand of the sensor.
The testbench is controlled by a LabVIEW computer
simulating the energy provisioning system. This is
done by reading the energy demand of the sensor and
setting the supply voltage according to the capabili-
ties of the simulated provisioning system. In addition
to the supply voltage the LabVIEW script also sets
the digital potentiometers to adapt the gain of the cur-
rent sensors. Using the information about the current
drawn by the sensor components and the voltage of
the system, an energy profile can be created that can
be used to create simulations describing similar sen-
sors. The design for Prototype B is shown in Figure
2.

3.1.2 Prototype Details

When the NFC antenna of Prototype A is subjected to
an NFC field, a DC (direct current) voltage is gener-
ated. This voltage is represented as NFC DC in Fig-
ure 1. If this voltage is larger than the voltage at the
capacitor C connected to CHARGE+ the controller
switches the analog-switch connected to GPIO such
that the capacitor is connected to the voltage source
via the resistor (723 Ω). This controls the current
that can pass through the capacitor. If the voltage
difference between CHARGE+ and VCC is smaller
than a threshold, the switch is flipped and the resis-
tor is short-circuited. This leaves the capacitor con-
nected to VCC via the Schottky diode D. With this
the current can not flow to the capacitor and it will
not be charged any more. If the voltage of NFC DC is
smaller than the voltage of the capacitor at VCC, the
controller is powered from the capacitor. Should the
voltage at VCC drop below a threshold, the controller
switches in a low-power mode and waits for a voltage
increase at VCC to start the charging again.
The voltages and currents that are present in the sys-
tem can be measured at the jumper pins on the PCB.
The most interesting values are the voltage at the ca-
pacitor, the voltage that reaches the sensor and the
current that is drawn by the sensor.

The three parts of Prototype B are shown in Fig-
ure 2. The Smart Sensor, the Testbench, and the Com-
puter/Control are represented as the boxes that com-
bine the necessary elements.
The Control is located at a LabVIEW computer. This
computer receives the measurements of the testbench

– 163 –

Paper P5 - PECCS 2019

Figure 1: Circuit of the energy provisioning system of Pro-
totype A.

and sets the control signals for the testbench such that
a specified energy provisioning behaviour is reached.
The Testbench receives these signals and controls the
variable voltage source and the digital potentiometers
according to the control signals. It furthermore relays
the measurement values of the current sensors to the
Control computer. The Testbench has seven variable
gain current sensors that can be used to observe the
behaviour of the device under test.
The device under test - in this case the Smart Sensor
- consists of six components, and therefore uses six
measurement channels. The control unit of the sensor
is an Ambiq Micro Appollo 2 MCU. This controller
is connected via an I2C bus to an Optiga Trust X Se-
curity Co-Processor. Another separate I2C bus con-
nects to an additional FRAM module as well as to an
NFC Interface. Additionally, two External Ports are
connected via IO pins. At these interfaces, different
expansion modules can be connected. Using the IO
pins, I2C or SPI buses can be simulated to communi-
cate with sensors, actuators, or other controllers.
Using Load Switches, the controller is able to cut dif-
ferent components off the energy supply to reduce the
energy demand of the smart sensor as far as possible.
This setup allows the measurement of the energy de-
mand of each component of a smart sensor in a flexi-
ble way.

3.2 Simulation

The data generated from the prototypes is fed into
simulations describing similar sensor systems. These
simulations are necessary, as we are interested in the
behaviour of the sensor in combination with different
systems.
To get a more abstract system description of a smart
sensor the gathered data needs to be generalized.
Thus deviations in the results of the simulations from
the measurements are expected.
To describe the sensor system electrically, a simula-
tion using a SPICE program is created that represents
the smart sensor. Here simplified but usable param-
eters can be extracted that are used in the calcula-
tions for the energy consumption of the smart sensor.

Figure 2: Design of Prototype B.

The gathered parameters are then used to describe the
electrical behaviour of the sensor is subsequent simu-
lations.

The simulation of the sensor itself is written in
SystemC as it allows the description of the entire sys-
tem at different levels of abstraction. This is espe-
cially useful as the accurate simulation of a complex
system impedes the simulation performance. This is
counteracted by performing simulations on a more ab-
stract level.
The environment is simulated using the Gazebo sim-
ulator, a simulation tool commonly used for robotic
purposes. These two simulations are connected us-
ing a method developed by Pieber et al. (Pieber et al.,
2017a). In Figure 3 such a simulation run can be seen.
The robot interacts with the sensor, charging it, col-
lecting data, and possibly reconfiguring it to alter the
sensors behaviour. Using this simulation technique,
the sensor simulation gets the stimuli from the envi-
ronment and reacts according to it. This allows the
quick creation of new test cases and stimuli, as well
as the automatic evaluation of sensor responses.

Within the Gazebo environment, it is possible to
align the antennas in various orientations to each
other. Additionally, it is possible to introduce extra
noise (such as noise from nearby communications or
multi-path signal propagation) to the communication.
This allows to find the answers to the questions asked
in Section 1.

Summarized, this means that the measurements of
the prototypes are used to generate a SPICE simula-
tion. Parameters are extracted from this simulation
that can be used to describe the electrical behaviour
of the sensor. This description is done in SystemC. To

– 164 –

Paper P5 - PECCS 2019

Figure 3: Simulation of an interaction between robot and
sensor.

subject the SystemC simulation to stimuli, the Gazebo
simulator is used. This is done in order to quickly
change the alignment of the NFC antennas and to in-
troduce additional noise to the system.

This simulation yields data about the interaction
of the smart sensor with the environment in differ-
ent situations. Furthermore, information about the
energy usage during operation as well as information
about the memory usage of the stored values are cre-
ated. This information, in connection with informa-
tion about the type of generated data, can then be used
by a mobile node to calculate the need to visit the sen-
sor node to collect data and recharge it.
If multiple sensors are connected in this way, a sen-
sor network is created using the robots as links be-
tween themselves and the infrastructure. This method
was described by Ulz et al. (Ulz et al., 2017a) as a
“Sneakernet on Wheels”.

4 Measurements and Results

Prototype A is designed to measure the energy
harvesting capabilities of the NFC connection. A typ-
ical measurement of this prototype can be seen in Fig-
ure 4. In this measurement the capacitor was charged
for approximately 120 sec. During this time the volt-
age at the capacitor (middle line) reached the nom-
inal voltage. After that the NFC field was switched
off and the voltage at the rail (bold line) drops be-
low the voltage at the capacitor. The current through
the sensor (fine line) also drops significantly as the
controller switches to a low-power mode. After that
the controller awakes every 60 sec to take a measure-
ment. At this times the current rises and the voltage at
the rail drops as the capacitor and diode pose a resis-
tance to the current. Again at 360 sec the NFC field is
switched on briefly.

The operation of the smart sensor is measured us-

Figure 4: Measurement of the charging of Prototype A.

Figure 5: Current flow during measurements at Prototype
B.

ing Prototype B. In Figure 5 a sample measurement is
shown. In this example the controller switches on an
external sensor at port EXT-1. After that, it waits un-
til the sensor has initialized itself and starts the mea-
surement. In this test, the controller finally saves the
gathered data and shuts down the sensor.
The microcontroller (uC) current rises at the start of
the measurement as the sensor module starts its op-
eration. During the communication with the sensor
and the subsequent storing of the gathered values the
power consumption and therefore the needed current
rises further.
The continuous high current at EXT2 is generated by
other sensor hardware. Furthermore, the current us-
age by the Security Controller (SC), and the FRAM
and NFC modules are increased at the start of the
measurement routine.

Using the available data and the data from the
SPICE simulations, a model can be created that shows
the energy consumption of a generic smart sensor.
Figure 6 shows the results of a simulation using the
sensor model. In this simulation the charging be-

– 165 –

Paper P5 - PECCS 2019

Figure 6: Simulation of the sensor charging.

haviour of the sensor was simulated. This behaviour
is comparable to the measurements of Prototype A,
thus a valid simulation has been created this way.

These results help in predicting the time it takes to
charge one sensor using NFC energy harvesting and
can furthermore help in estimating the time it needs
to discharge the smart sensors energy storage.

In summary these results show that the charging
of a smart sensor using NFC is possible. To charge
the 0.5 F capacity approx. 2 minutes are needed. This
also depends on external parameters such as the align-
ment of the antennas. The simulation of the sensor
furthermore shows that the sensors operational time
primarily depends on its duty cycle. While the sensor
can be operated for approximately one day when per-
forming measurements every hour, the lifetime is cut
to about seven hours when measuring every minute.

5 Future Work

Using the prototypes we can perform measure-
ments of security relevant operations. As Prototype B
also features a security coprocessor, we want to per-
form experiments determining the difference in en-
ergy usage during cryptographic operations. These
experiments can show the requirements smart sensors
and the energy provisioning systems need to fulfil to
enable secured data handling. We are planning to
take measurements of user authentication algorithms
on smart sensors such as the one proposed by Pieber
et al. (Pieber et al., 2017c), and testing data transmis-
sion protocols that secure the transmitted data using
encryption and forward error correction such as the
one proposed by Ulz et al. (Ulz et al., 2017b).

6 Conclusion

In this paper we showed the development of se-
cured smart sensor platforms. Two prototypes are
used to evaluate (1) the energy harvesting possibili-
ties that arise when using NFC technology, and (2)
the energy consumption of the main components of
a smart sensor. These results are then used to imple-
ment simulations of the sensors. The simulations are
able to not only simulate the smart sensor but also
the environment. This is then used to answer crucial
questions about the efficiency of the energy harvest-
ing possibilities and the influence the environment has
on the communication.

Acknowledgements

This project has received funding from the Elec-
tronic Component Systems for European Leadership
Joint Undertaking under grant agreement No 692480.
This Joint Undertaking receives support from the Eu-
ropean Union’s Horizon 2020 research and innovation
programme and Germany, Netherlands, Spain, Aus-
tria, Belgium, Slovakia.
IoSense is funded by the Austrian Federal Ministry
of Transport, Innovation and Technology (BMVIT)
under the program ”ICT of the Future” between
May 2016 and May 2019. More information
https://iktderzukunft.at/en/

REFERENCES

ams AG (2006). ams AS3955 NFC Interface
Tag. http://ams.com/eng/Products/Wireless-
Connectivity/Sensor-Tags-Interfaces/AS3955.

Chen, G., Fojtik, M., Kim, D., Fick, D., Park, J., Seok,
M., Chen, M.-T., Foo, Z., Sylvester, D., and
Blaauw, D. (2010). Millimeter-Scale Nearly Per-
petual Sensor System with Stacked Battery and
Solar Cells. In 2010 IEEE International Solid-
State Circuits Conference - (ISSCC). IEEE.

Choi, W. J., Jeon, Y., Jeong, J.-H., Sood, R., and Kim,
S. G. (2006). Energy harvesting MEMS de-
vice based on thin film piezoelectric cantilevers.
Journal of Electroceramics, 17(2-4):543–548.

Dziurdzia, P. and Stepien, J. (2011). Autonomous
wireless link powered with harvested heat en-
ergy. In 2011 IEEE International Conference
on Microwaves, Communications, Antennas and
Electronic Systems (COMCAS 2011). IEEE.

– 166 –

Paper P5 - PECCS 2019

Gummeson, J., Priyantha, B., and Liu, J. (2014). An
Energy Harvesting Wearable Ring Platform for
Gesture Input on Surfaces. In Proceedings of the
12th Annual International Conference on Mobile
Systems, Applications, and Services, MobiSys
’14, pages 162–175, New York, NY, USA. ACM.

Halgamuge, M. N., Zukerman, M., Ramamohanarao,
K., and Vu, H. L. (2009). An Estimation of Sen-
sor Energy Consumption. Progress in Electro-
magnetics Research, 12:259–295.

Kansal, A., Hsu, J., Zahedi, S., and Srivastava, M. B.
(2007). Power Management in Energy Harvest-
ing Sensor Networks. ACM Trans. Embed. Com-
put. Syst., 6(4).

Kansal, A. and Srivastava, M. (2003). An Environ-
mental Energy Harvesting Framework for Sen-
sor Networks. In Proceedings of the 2003 Inter-
national Symposium on Low Power Electronics
and Design, 2003. ISLPED 2003. ACM.

Kim, H. S., Abdelzaher, T. F., and Kwon, W. H.
(2003). Minimum-Energy Asynchronous Dis-
semination to Mobile Sinks in Wireless Sensor
Networks. In Proceedings of the first interna-
tional conference on Embedded networked sen-
sor systems - SenSys 2003. ACM Press.

Marta, M. and Cardei, M. (2009). Improved sen-
sor network lifetime with multiple mobile sinks.
Pervasive and Mobile Computing, 5(5):542–
555.

Pieber, T. W., Ulz, T., and Steger, C. (2017a). Sys-
temC Test Case Generation with the Gazebo
Simulator. In Proceedings of the 7th Interna-
tional Conference on Simulation and Modeling
Methodologies, Technologies and Applications
- Volume 1: SIMULTECH,, pages 65–72. IN-
STICC, SciTePress.

Pieber, T. W., Ulz, T., and Steger, C. (2017b). Using
Gazebo to Generate Use Case Based Stimuli for
SystemC. In International Conference on Sim-
ulation and Modeling Methodologies, Technolo-
gies and Applications, pages 241–256. Springer.

Pieber, T. W., Ulz, T., Steger, C., and Matischek,
R. (2017c). Hardware Secured, Password-based
Authentication for Smart Sensors for the Indus-
trial Internet of Things. In International Con-
ference on Network and System Security, pages
632–642. Springer.

Pinuela, M., Mitcheson, P. D., and Lucyszyn, S.
(2013). Ambient RF energy harvesting in ur-
ban and semi-urban environments. IEEE Trans-
actions on Microwave Theory and Techniques,
61(7):2715–2726.

Rahimi, M., Shah, H., Sukhatme, G., Heideman, J.,
and Estrin, D. (2003). Studying the Feasibility
of Energy Harvesting in a Mobile Sensor Net-
work. In 2003 IEEE International Conference on
Robotics and Automation (Cat. No.03CH37422).
IEEE.

Shah, R. C., Roy, S., Jain, S., and Brunette, W.
(2003). Data MULEs: Modeling and Analysis of
a Three-tier Architecture for Sparse Sensor Net-
works. Ad Hoc Networks, 1(2-3):215–233.

Tan, Y. K. and Panda, S. K. (2011). Energy Har-
vesting From Hybrid Indoor Ambient Light and
Thermal Energy Sources for Enhanced Perfor-
mance of Wireless Sensor Nodes. IEEE Trans-
actions on Industrial Electronics, 58(9):4424–
4435.

TI (2014). MSP430FR5969 LaunchPad
(TM) Development Kit User’s Guide.
http://www.ti.com/lit/ug/slau535b/slau535b.pdf.

Ulz, T., Haas, S., Pieber, T., Steger, C., and Matis-
chek, R. (2017a). Sneakernet on Wheels: Trust-
worthy NFC-based Robot to Machine Commu-
nication. In 2017 IEEE International Conference
on RFID Technology & Application (RFID-TA),
pages 260–265. IEEE.

Ulz, T., Pieber, T., Steger, C., Matischek, R., and
Bock, H. (2017b). Towards trustworthy data in
networked control systems: A hardware-based
approach. In Emerging Technologies and Fac-
tory Automation (ETFA), 2017 22nd IEEE Inter-
national Conference on, pages 1–8. IEEE.

Yan, R., Sun, H., and Qian, Y. (2013). Energy-
aware sensor node design with its application in
wireless sensor networks. IEEE Transactions on
Instrumentation and Measurement, 62(5):1183–
1191.

Ye, F., Luo, H., Cheng, J., Lu, S., and Zhang, L.
(2002). A Two-Tier Data Dissemination Model
for Large-scale Wireless Sensor Networks. In
Proceedings of the 8th annual international con-
ference on Mobile computing and networking -
MobiCom 2002. ACM Press.

Zhang, F., Zhang, T., Yang, X., Zhang, L.,
Leng, K., Huang, Y., and Chen, Y. (2013).
A high-performance supercapacitor-battery hy-
brid energy storage device based on graphene-
enhanced electrode materials with ultrahigh en-
ergy density. Energy & Environmental Science,
6(5):1623.

– 167 –

Paper P6 - SENSORCOMM 2019

Simulating a Network:

An Approach for Connecting Multiple SystemC Simulations

Thomas W. Pieber, Fikret Basic, Thomas Ulz, and Christian Steger
Institute for Technical Informatics

Graz University of Technology
Graz, Austria

Email: {thomas.pieber, basic, thomas.ulz, steger}@tugraz.at

Abstract—Nowadays, sensor networks are widely used. To create
new hardware for these networks, simulations are used. These
simulations help during the design of the sensor nodes by
providing information about internal states, power usage, and
expected lifetime. They are useful to design one piece of hardware,
however they are cumbersome when multiple of such hardware
simulation instances need to interact with each other. This
paper explores the possibility of starting multiple instances of
a hardware simulation and connecting these via a simulation of
the environment they will be used in.

Keywords–SystemC; Simulation; Parallel; Network.

I. INTRODUCTION

The concurrent development of hardware and software
enables the accurate simulation of the behavior of a finished
sensor node. Rather than focusing solely on the hardware
simulation, languages such as SystemC can also calculate the
software influences on the system. This is a necessary step
towards the complete simulation of a network. To simulate the
behavior of a network, multiple such sensor instances need to
be simulated simultaneously. These virtual sensor nodes are
then connected via a suitable environment simulation.

There are many solutions to the problem of simulating
single pieces of hardware. Hardware Description Languages
(HDLs) support the simulation of hardware on a low layer
of abstraction. The hardware descriptions used in this kind of
simulation typically enable the manufacturing of the hardware
itself. This means that the description, and thus the simulation,
of the device is very accurate. This accuracy comes with the
cost of low performance. To simulate more complex systems,
a higher layer of abstraction is needed. This increases the
simulation speed but decreases the resulting accuracy. A HDL
that supports multiple layers of abstraction, such as SystemC
[1], can describe the interconnection of hardware components
at a high layer of abstraction and, at the same time, keep most
of the accuracy for the components themselves [2].

The simulation of a network of computing devices can be
challenging. Most of the simulators available are either limited
to the sole simulation of the interaction between the network
components (e.g., [3]), or can just give rough estimations of
the executing time on each component (e.g., [4]).

To be able to simulate a sensor network without sacrificing
the accuracy requires the connection of a hardware simulation
tool and some tool that performs the interaction between the
sensor nodes. Pieber et al. [5][6] described an approach to
connect one instance of a SystemC simulation to the Gazebo

simulator, a tool that is able to simulate an environment for
the sensor. We want to extend this approach by instantiating
multiple sensors in the Gazebo simulation and connecting them
in this environment.

To test the resulting performance change, a small-scale
networked control system has been implemented. This system
is then performing some data acquisition, forwarding the data
through another network node and finally the data storage at
a final sensor node. In contrast to the simulation created by
Pieber et al. [5] where one SystemC instance is connected
to the Gazebo simulation, this simulation connects multiple
instances of SystemC simulations to the Gazebo environment.

The remainder of this paper describes this process. Section
II briefly describes the background information and states the
related work to this publication. In Section III, the design
of our approach is described. The implementation of the
necessary parts is described in Section IV. Section V highlights
our findings. This publication concludes in Section VI. This
section also states our thoughts of what can be done next.

II. BACKGROUND AND RELATED WORK

As concurrent tasks are a vital part of any simulation,
mechanisms to cope with this are introduced in every mod-
elling language. There are three main approaches to deal with
concurrency in simulations:

1) Multi-instance-one-simulation One simulation con-
tains multiple instances of parallel tasks.

2) One-instance-multi-simulation One model only
contains a single task. These tasks are then run
in multiple simulations that communicate with each
other.

3) Multi-instance-multi-simulation Each simulation
contains multiple concurrent tasks. The tasks com-
municate within a simulation, the simulations com-
municate within themselves.

A simulation written in SystemC and Gazebo are simulations
of the first type. SystemC simulations run its component
modules quasi parallel using delta-cycles to reach a stable state.
Then, the simulation time is advanced until the next triggered
event happens. In the Gazebo simulator, the components are
modeled via plugins. These plugins are called sequentially.
When all components have been executed, the simulation time
is advanced by one time increment and the process restarts.

A more powerful example of a SystemC simulation com-
prising of multiple instances of modules has been created by

Original work published in Proceedings ...

– 168 –

Paper P6 - SENSORCOMM 2019

Figure 1. Performance problem using Gazebo and multiple SystemC
instances.

Park et al. [7]. In this simulation, a smart house was simulated
using SystemC. There, each electrical component has been
modeled as a part of the complete simulation. These models
are evaluated in parallel.

The combination of these two simulations results in a con-
current simulation of the third type. This is a simulation with
multiple instances of different simulations, each containing
multiple concurrent modules.

The process Pieber et al. [6] described in their work is
intended to simulate one sensor node in an environment. This
environment provides the sensor with stimuli that the sensor
can work with. Furthermore, a communication channel is
provided to communicate with the sensor and get feedback
during the simulation time. In this approach, the Gazebo
simulation is halted during the execution of one SystemC
simulation. This results in a performance issue when using
multiple SystemC instances. Figure 1 illustrates this. Here, one
SystemC simulation blocks all other simulations. This results
in an execution pattern suitable for a single processor core
where only one simulation is being executed at a time. In
this paper, we try to parallelize the SystemC simulations by
introducing a mechanism that starts all SystemC simulation
steps in parallel and waits for all to finish.

There are some proposed solutions to parallelize SystemC,
such as [8]-[11]. These describe approaches that look for
all executable SystemC modules and try to execute them
in parallel. This results in a Type 2 concurrent simulation
(One-instance-multi-simulation) as each executable model is
treated as a single simulation. In these approaches, one large
simulation is split into multiple concurrent simulations that are
spread over the cores of one computer. In contrast to this, the
approach described here uses multiple SystemC simulations
and distributes them via a network. This method can spread
the simulation on cores of the same machine, but also use
additional computational resources of other computers in the

network.

Schumacher et al. [9] presented an approach to simulate an
Multi-Processor System on Chip (MPSoC). As their solution
uses threads to achieve the parallelism, the solution is tied to
a single host machine. While the authors claimed a significant
performance improvement, it is already argued that this ap-
proach is not sufficient for a large sensor network simulation.

The approach of Sinha et al. [11] splits one SystemC simu-
lation into multiple executable processes. In this approach, not
only multiple cores or the Central Processing Unit (CPU) of
one computer can be utilized, but also the Graphics Processing
Unit (GPU).

Chopard et al. [12] propose a method to parallelize the
SystemC kernel. In their approach, the researchers achieve a
speedup comparable to the number of usable CPU cores.

The article of Jones [13] describes a more optimistic
approach of parallelizing SystemC simulations. Jones also
addresses the topic of race conditions that can occur when
running such simulations in parallel. He also mentions that his
technique of accelerating SystemC simulations is not suitable
for existing simulations as large portions of code would need
to be modified.

The possibility to accelerate SystemC simulations that rely
on discrete events is discussed by Dömer et al. [14]. This team
of researchers present a scheduler that spreads the runnable
simulation nodes on the available CPUs.

Huang et al. [15] presented a SystemC library to handle
the distribution of SystemC simulations. This approach is
suited to work for multi-core machines as well as for a
number of separate hosts. A downside of this approach is
the limitation to functional and Transaction Level Modelling
(TLM) simulations. Another disadvantage of this approach
is the need for every SystemC simulation to handle its own
communication with the rest of the simulation. Both of these
issues are reflected on in our work by enabling SystemC
simulations to be independent of the distribution architecture.

Another approach for simulating multiple computers in a
network is used by Simics [3]. This simulator is built such
that it can use multiple computers in a network to simulate
the interaction of the systems. In this approach, the simulated
network nodes are connected via a simulated network. This
simulation can be used to simulate a computer network at a
high level of abstraction. The integration of analogue signals
(measurements of a sensor, or a very low level of abstraction)
is not directly possible.

Clement et al. [16] coined the term Internet of Simulation.
In their paper, the authors describe the need for heterogeneous
simulation systems that can capture the complex nature of
Cyber-Physical Systems (CPS). In their terminology, this paper
describes a co-simulation for virtual engineering.

This paper is based on the publications of Pieber et al.
[5][6]. It improves in the following details:

• Concurrency: The original approach uses one
Gazebo plugin for each sensor in the environment.
Each of these plugins directly creates a SystemC
process and communicates with it. This entails that

– 169 –

Paper P6 - SENSORCOMM 2019

all SystemC processes are located on the same host
machine. With the approach presented here, the Sys-
temC instances are started before the main simulation.
These simulation instances can be located on different
host machines and communicate via a network to the
main communication. The plugins in the main simu-
lation communicate to a server plugin that handles the
network traffic and connects the SystemC simulations
to the intended plugins.

• Modularity: As the SystemC simulations are started
before the main simulation, multiple different imple-
mentations of the same simulation can be connected to
the same sensor plugin. This increases the modularity
of the simulation as only few changes need to be made
in order to exchange the SystemC simulations.

III. DESIGN

To improve the design of Pieber et al. [6] we implemented
a server-client structure to spread the simulations to multi-
ple computers. Using this, only a single plugin (the server)
connects the SystemC instances. This plugin then blocks the
Gazebo simulation until all SystemC tasks are finished. Figure
2 shows the intended execution path. The Gazebo simulator
performs the calculations that are necessary for the data
transmission. The SystemC simulations receive the data and
perform operations on the data. When the simulation steps of
all SystemC instances are finished the Gazebo simulator can
continue its operation.

In this design, all necessary data from Gazebo is generated
during its time step. This information is gathered in the server
plugin. The server plugin then forwards the information to
the SystemC instances. While the SystemC simulations are
performing the simulation step, the Gazebo simulation is
halted. During the execution of the SystemC simulation, the
generated data is transmitted to the Gazebo simulation. There
the server plugin captures the data. When the simulation step is
finished, the SystemC simulations are halted and the Gazebo
simulation can continue. In this way, no information is lost
between the simulations, and all simulations are synchronized
at the end of the time steps. As the server starts all SystemC
simulations and waits for all to finish, also the SystemC
simulations are synchronized.

In this design, the server does not contain simulation
relevant operations. It just connects the Gazebo representations
of the sensors (sensor plugins) to the SystemC simulations.
This server therefore acts as a gateway for the sensor plugins
to the SystemC simulations which can be executed anywhere
in the network.
The server plugin has three responsibilities:

• Connecting the correct SystemC simulation to the
intended sensor plugin. This includes the identifica-
tion of the connected SystemC simulations and the
matching to the correct sensor plugin.

• Passing data between the sensor plugin and SystemC
simulation.

• Synchronizing the simulations.

The server plugin runs a thread that listens for incom-
ing connections from remote SystemC simulations. For each

Figure 2. Improved handling scheme for multiple SystemC instances.

connecting simulation, a thread is created that handles the
information exchange with the sensor plugin. Additionally, this
thread forwards the information to the SystemC simulation
and receives the resulting information. Figure 3 shows the
top-level structure of the plugin server. The server listens for
new SystemC connections and creates a worker thread for
each connected simulation. Each worker thread manages the
communication between the sensor plugin and the SystemC
simulation. To handle the SystemC simulation and the syn-
chronization of the simulations, the thread appends data about
simulation states. In addition to all of that, the thread keeps
information about the connection to the SystemC simulation.
This is information about the Internet Protocol (IP)-address,
the port number, the simulation identifier, and the last sent
command to which the SystemC simulation has to react.

Each worker thread starts by initializing its own memory.
This is followed by the initial checks of the SystemC simula-
tion. These checks are performed by verifying an identifier.
If the SystemC simulation can be used for the plugin, an
initial configuration for the SystemC simulation is sent. When
the initialization is finished, the SystemC simulation needs
to respond with its state. For each simulation step, the data
for the SystemC simulation is gathered by the sensor plugin.
This data includes the change of sensor data, information
about incoming messages, and changes of external energy
sources (for energy harvesting). This gathered information is
then forwarded to the server plugin and the correct worker
thread. The worker thread packs the data and adds additional
information. This additional information includes changes of
simulation states, status information, or commands to the
interface on the SystemC side. When the server plugin is being
executed, all information is forwarded to the SystemC simu-
lations by the worker threads. Until all worker threads have
received the signal that their SystemC simulation has finished
its execution, the Gazebo simulation is blocked. During the
execution of the SystemC simulation, data that is destined
for the Gazebo simulation is sent to the worker thread. This

– 170 –

Paper P6 - SENSORCOMM 2019

Figure 3. Top-level structure of the server plugin.

information is stored until the simulation proceeds. At the
end of the SystemC simulation step, a signal is sent to the
Gazebo simulation, informing the worker about the simulation
status. If all SystemC simulations have stopped their execution,
the Gazebo simulation can proceed. Now the stored data is
transferred to the sensor plugins. The plugins can access the
data in the next Gazebo time step.

With the use of the parallel design, the computation of
the network should have a similar performance as the sole
computation of the slowest node in the network. Thus, when
simulating similar nodes, the performance gain should be
related to the number of parallel nodes.

To test this hypothesis, multiple tests are designed:

1) All nodes the same - single This test simulates one
sensor node performing measurements.

2) All nodes the same - sequential This test comprises
of three identical nodes, each performing the same
measurements.

3) All nodes the same - parallel The three nodes are
run using the parallel computation design.

4) Networked system - single In this test each of three
different nodes is simulated on its own. The data for
nodes two and three is computed by node one and
given as input for the simulation.

5) Networked system - sequential This tests simulates
all three nodes in the network using the sequential
approach. The data is generated and encrypted in
node one, transmitted over node two, and decrypted
and stored in node three.

6) Networked system - parallel The three nodes of
the networked system are simulated using the parallel
simulation design.

The first three tests act as a baseline test for the hypothesis
that the simulation performance of the complete simulation is
comparable to the simulation of the slowest node.

Test 1 simulates each node separately. As the three nodes
are identical the simulation time should be equal as well. Test 2
uses the old connection via Gazebo to test the simulation speed
of the sequential case. Each SystemC simulation is identical.
As they are executed sequentially, the simulation time should
be roughly the sum of the single simulations - in this time three
times the duration of Test 1. Test 3 uses the new parallel design
to connect the sensors. As all simulations are calculated in
parallel, the execution time should be similar to the simulation
of one node of Test 1.

The second three tests use three different nodes. One that
gathers data, one that transmits the data to the last one, and
one that receives and stores the data. The data is continuously
transmitted and sent across the nodes. This way all nodes are
active all the time (except for the first message). Otherwise,
the test would limit the execution to the sequential case.

Test 4 uses precomputed data to test the functionality of
each node individually. Each node is simulated separately.
Test 5 combines the three nodes using the old connection via
Gazebo to test the sequential case. Test 6 uses the new parallel
design to connect the nodes.

The resulting simulation represents the data flow between
the sensor nodes on the environment scale. Furthermore, as
the sensor nodes themselves are simulated using SystemC, the
data processing on each sensor node is being calculated.

IV. IMPLEMENTATION

The most notable change to the design of Pieber et al.
[6] is that a new plugin has been implemented that per-
forms the communication tasks. In their publication, every
sensor plugin communicates with the corresponding SystemC
instance. We have implemented another plugin that performs
the communication tasks for all sensor plugins. A concept
for our implementation can be seen in Figure 4. There, the
sensor plugins send their data to the plugin server. This server
handles the communication with all SystemC instances. When
the SystemC simulations have returned data, the plugin server
forwards the information to the sensor plugins in the next time
step.

The communication between the server and the SystemC
clients is based on the concept described by Pieber et al. [6].
An additional top-level structure is added to the EXtensible

– 171 –

Paper P6 - SENSORCOMM 2019

Figure 4. Concept for transmitting data between the sensor plugins, the
plugin server, and the SystemC simulations.

Markup Language (XML)-formatted data. This structure spec-
ifies the type of message and the according payload. There are
two different types of messages that can be sent between the
server and client:

1) Command: This type specifies a message from the
server that the simulation needs as input data. This
can be a sensor value, incoming messages, or in-
structions to change the simulation status (finish the
simulation, change the simulation step size).

2) Status: The status message can be sent from either
side of the communication. If it is sent from the
server, it can ask for the identification of the SystemC
simulation, request information about the simulation
status, or inform the SystemC simulation about its
own simulation status. A status message from the
client side can contain requested information, or
signal the server that the simulation step is finished.

The complete communication structure between the server
and a client can be seen in Figure 5. The Gazebo simulation
starts the server. The server blocks the simulation until all Sys-
temC clients are connected. After that, the server receives the
commands to send from the sensor plugins. This information is
relayed to the appropriate client. With this message the client
is given the command to start the simulation step. Until all
SystemC simulations have finished their step, the server blocks
the Gazebo simulation. When all clients are ready, the Gazebo
simulation can be resumed. This results in another message to
the SystemC client. If the Gazebo simulation is to be ended,
the server disconnects from the SystemC client. This triggers
the reset of the SystemC simulation. As the simulation system
is built to run in a network, simulation clients other than the
intended ones could connect to the server. To enable the server
to check if the SystemC simulation is required in the current
Gazebo simulation run, an ID is requested from the client.
This ID specifies the type of simulation. Based on this, the
server can decide whether the client should be accepted or
rejected. Accepted clients are then logically connected to the
appropriate sensor plugin.

During the execution of the SystemC tasks, the plugin
server blocks the Gazebo simulation. When all SystemC in-
stances have returned their signal that the simulation step has

Figure 5. Messages between the server and one SystemC client.

TABLE I. Durations of the test simulations

Test Nr. Node Nr. Duration
1 1,2,3 ∼ 15.34 sec
2 1,2,3 48.0487 sec
3 1,2,3 16.7513 sec
4 1 153.7706 sec
4 2 10.6859 sec
4 3 120.8714 sec
5 1,2,3 284.6381 sec
6 1,2,3 156.1416 sec

been finished, the plugin server resumes by distributing the
received information to the sensor plugins.

V. RESULTS

The results of the experiments introduced in Section III are
listed in Table I.

These six experiments show that the final execution time
is slightly larger than the longest component simulation. It
furthermore shows that the simulation time, compared to the
sequential case, can be multiplied with a factor of ∼ 1

N where
N is the number of parallel SystemC simulations where each
simulation uses approximately the same amount of time. For
simulations that differ in their simulation duration, the final
duration is slightly longer than for the slowest simulation.
This system therefore provides an extensible and flexible
basis to add additional SystemC simulations. The Gazebo
server remains independent of any added SystemC simulations
while also the client side keeps individual SystemC models
separated.

As an additional improvement can be seen that the sim-

– 172 –

ulations need not be calculated on the same computer as the
Gazebo simulation. Normally, the Gazebo host system would
need additional resources to run the Gazebo system and the
SystemC simulation. The server-client structure allows the
SystemC simulations to be spread over a network. Thus, the
amount of possible parallel simulations is not limited to the
resources on one machine.

As a limitation to this system, the general network overhead
should be mentioned. As the commands and data are sent
over a network, additional data is added by the system. This
adds to the data size that is to be sent. Furthermore, the
data needs to be packed and unpacked at either side of
the communication, increasing the latency. This should be
considered, when designing the simulation.

VI. CONCLUSION AND FUTURE WORK

This paper describes a method to connect multiple SystemC
simulations of sensor nodes to a network. These sensor nodes
are placed in a virtual environment, simulated with the Gazebo
simulator, and communicate via this environment with each
other. As the Gazebo simulator processes its components
sequentially, the final simulation is inefficient. To improve
the performance of this simulation, a server-client structure
is proposed and implemented. This connects the server on the
Gazebo side to the SystemC simulations via network sockets.
The server can then unite the individual calls to the SystemC
simulations and start all simulations in parallel. In contrast
to the simulation duration being the sum of all component
simulations, the duration of the simulation using this structure
is only slightly longer than the longest component simulation.

In the current form, the simulation results can only be
evaluated when the simulation is finished. Due to the lengthy
simulations, this is inefficient. Therefore, live signal plotting
can be implemented. Using this, the simulation operator can
spot errors in the simulation early and stop the execution
prematurely. This would then reduce the simulation time for
erroneous runs significantly.

ACKNOWLEDGMENTS

This project has received funding from the Electronic Com-
ponent Systems for European Leadership Joint Undertaking
under grant agreement No 692480. This Joint Undertaking
receives support from the European Union’s Horizon 2020 re-
search and innovation programme and Germany, Netherlands,
Spain, Austria, Belgium, Slovakia.

IoSense is funded by the Austrian Federal Ministry of
Transport, Innovation and Technology (BMVIT) under the
program ”ICT of the Future” between May 2016 and April
2019. More information https://iktderzukunft.at/en/

REFERENCES

[1] Accelera, “SystemC.” http://accellera.org/downloads/standards/systemc,
2000. Last accessed on mar 18, 2019.

[2] P. R. Panda, “SystemC - A modelling platform supporting multiple de-
sign abstractions,” in Proceedings of the 14th international symposium
on Systems synthesis - ISSS, pp. 75–80, Association for Computing
Machinery (ACM), 2001.

[3] P. S. Magnusson, M. Christensson, J. Eskilson, D. Forsgren, G. Hall-
berg, J. Hogberg, F. Larsson, A. Moestedt, and B. Werner, “Simics: A
full system simulation platform,” Computer, vol. 35, no. 2, pp. 50–58,
2002.

[4] V. Shnayder, M. Hempstead, B.-r. Chen, G. W. Allen, and M. Welsh,
“Simulating the Power Consumption of Large-scale Sensor Network
Applications,” in Proceedings of the 2Nd International Conference on
Embedded Networked Sensor Systems, SenSys ’04, (New York, NY,
USA), pp. 188–200, ACM, 2004.

[5] T. W. Pieber, T. Ulz, and C. Steger, “SystemC Test Case Generation
with the Gazebo Simulator,” in Proceedings of the 7th International
Conference on Simulation and Modeling Methodologies, Technologies
and Applications - Volume 1: SIMULTECH,, pp. 65–72, INSTICC,
SciTePress, 2017.

[6] T. W. Pieber, T. Ulz, and C. Steger, “Using Gazebo to Generate Use
Case Based Stimuli for SystemC,” in International Conference on Sim-
ulation and Modeling Methodologies, Technologies and Applications,
pp. 241–256, Springer, 2017.

[7] S. Park, H. Kim, H. Moon, J. Heo, and S. Yoon, “Concurrent Simulation
Platform for Energy-Aware Smart Metering Systems,” IEEE transac-
tions on Consumer Electronics, vol. 56, no. 3, pp. 1918–1926, 2010.

[8] p. Ezudheen, P. Chandran, J. Chandra, B. P. Simon, D. Ravi, et al.,
“Parallelizing SystemC Kernel for Fast Hardware Simulation on SMP
Machines,” in Proceedings of the 2009 ACM/IEEE/SCS 23rd Workshop
on Principles of Advanced and Distributed Simulation, pp. 80–87, IEEE
Computer Society, 2009.

[9] C. Schumacher, R. Leupers, D. Petras, and A. Hoffmann, “parSC:
synchronous parallel systemc simulation on multi-core host ar-
chitectures,” in 2010 IEEE/ACM/IFIP International Conference on
Hardware/Software Codesign and System Synthesis (CODES+ ISSS),
pp. 241–246, IEEE, 2010.

[10] A. Mello, I. Maia, A. Greiner, and F. Pecheux, “Parallel Simulation
of SystemC TLM 2.0 Compliant MPSoC on SMP Workstations,” in
Proceedings of the Conference on Design, Automation and Test in
Europe, pp. 606–609, European Design and Automation Association,
2010.

[11] R. Sinha, A. Prakash, and H. D. Patel, “Parallel simulation of mixed-
abstraction SystemC models on GPUs and multicore CPUs,” in 17th
Asia and South Pacific Design Automation Conference, pp. 455–460,
IEEE, Jan. 2012.

[12] B. Chopard, P. Combes, and J. Zory, “A Conservative Approach to
SystemC Parallelization,” in International conference on computational
science, pp. 653–660, Springer, 2006.

[13] S. Jones, “Optimistic Pparallelisation of SystemC,” Universite Joseph
Fourier: MoSiG DEMIPS, Tech. Rep, 2011.

[14] R. Dömer, W. Chen, X. Han, and A. Gerstlauer, “Multi-Core Parallel
Simulation of System-Level Description Languages,” in Proceedings
of the 16th Asia and South Pacific Design Automation Conference,
pp. 311–316, IEEE Press, 2011.

[15] K. Huang, I. Bacivarov, F. Hugelshofer, and L. Thiele, “Scalably
distributed SystemC simulation for embedded applications,” in 2008
International Symposium on Industrial Embedded Systems, pp. 271–
274, IEEE, 2008.

[16] S. Clement, D. W. McKee, R. Romano, J. Xu, J. Lopez, and D. Bat-
tersby, “The Internet of Simulation: Enabling Agile Model Based
Systems Engineering for Cyber-Physical Systems,” in 2017 12th System
of Systems Engineering Conference (SoSE), pp. 1–6, IEEE, 2017.

– 173 –

	List Of Figures
	List Of Abbreviations
	Introduction
	Motivation
	Contribution
	Outline

	Background and Related Work
	Background
	Related Work
	Co-Simulations
	X-in-the-Loop Simulations
	Stimuli Generation for Simulations
	SystemC Co-simulation
	Parallel SystemC
	Network Simulations
	Speed vs. Accuracy of Simulations

	Design
	Expanding Model-in-the-Loop Simulations
	Requirements of the SSiL simulation
	Stimuli Generation in XiL Simulations
	X-in-the-Loop Co-Simulation
	Synchronizing the Simulations

	Optimizing the Simulation Speed of Co-Simulations
	Simulation State Estimation
	State Changes due to the Estimation
	Applying the Optimizations to SystemC

	Implementation
	Requirements for the implementation
	Connecting Unlike Simulators
	Instantiation
	Communication Between the Simulations
	Timing Differences
	Speed Bottlenecks and Remedies

	Parallelizing the Simulations
	Parallelization by Interleaving Simulation Steps
	Parallelization by Using a Central Connection

	Example Simulation
	Acquiring Data for the Simulation
	Implementation of the Example Simulation
	Optimization Handling of the Example Simulation

	Evaluation
	Results of the Example Simulations
	Generated Raw Data and Post-Processed Data
	Differences Between Optimized and Non-optimized Simulations

	Validation of Simulation Results
	Results of the Prototype Measurements and Simulations

	Discussion of the Results

	Conclusions and Future Work
	Conclusion
	New Intellectual Contributions

	Improvements to the Simulation Concept
	Recommendations for Future Research

	Acknowledgements
	Bibliography
	Publications

