
Andreas Kogler

Software-based Power Side-Channel Attacks

Master’s Thesis

Graz University of Technology

Institute for Applied Information Processing and Communications

Advisor: Michael Schwarz
Assessor: Daniel Gruss

Graz, July 2020

Statutory Declaration

I declare that I have authored this thesis independently, that I have not used other than
the declared sources/resources, and that I have explicitly marked all material which has
been quoted either literally or by content from the used sources.

Graz,

Date Signature

Eidesstattliche Erklärung1

Ich erkläre an Eides statt, dass ich die vorliegende Arbeit selbstständig verfasst, andere
als die angegebenen Quellen/Hilfsmittel nicht benutzt, und die den benutzten Quellen
wörtlich und inhaltlich entnommenen Stellen als solche kenntlich gemacht habe.

Graz, am

Datum Unterschrift

1Beschluss der Curricula-Kommission für Bachelor-, Master- und Diplomstudien vom 10.11.2008;
Genehmigung des Senates am 1.12.2008

i

Abstract

Classical power analysis attacks have been known for decades. These attacks relied on
physical access to the device under observation. Modern CPUs provide the Intel Running
Average Power Limit (RAPL) software energy measurement interface, which is indented
to monitor the energy consumption of CPU parts. Nevertheless, the interface can also be
misused to target cryptographic primitives like RSA in classical power analysis attacks.
Mantel et al. and Fusi et al. used the interface to either distinguish RSA keys or
reconstruct parts of one RSA key. The general limitation of these attacks is the timing
resolution of the RAPL interface.

Due to the limited capabilities of an attacker in the classical userspace threat model,
the reduced timing resolution prevented power analysis attacks with higher granularity.
This changed when Intel introduced Intel Software Guard Extension (SGX) to provide
a trusted environment, which is shielded from malicious operating systems and other
system-level software to protect the code from privileged attacks. With higher privileges,
an attacker can mount precise attacks as Van Bulck et al. show, by to either advancing
the execution by a single instruction or replaying the current instruction.

In this master thesis, we propose a novel approach to increase the resolution of the
RAPL interface to instruction-level granularity by combining the interface with a precise
execution control framework. We also extend the energy measurements from the RAPL
interface by a voltage-based side channel purely in software. We show the capabilities
of our approach by leaking a 71-bit long key of a 512-bit mbedTLS RSA decryption in
under five minutes. The algorithm and the key are located within an SGX enclave. With
the help of these power side channels, we can even leak detailed information about single
instructions and use this information to reconstruct secret information in cryptographic
algorithms.

We discuss why the presence of an unprivileged software-based energy measurement
facility within the context of security-relevant programming is not desirable and propose
countermeasures on how to mitigate these software-based power side channels.

The content of this thesis was a major contribution to a USENIX Security 2021 confer-
ence paper.

ii

Kurzfassung

Seitenkanalangriffe über den Stromverbrauch sind schon seit Jahrzenten bekannt. Bis
jetzt musste der Angreifer normalerweise Zugang zu dem Gerät haben, um die Attacken
auszuführen. Moderne CPUs bieten die Intel Running Average Power Limit (RAPL)
Schnittstelle an, um den Energieverbrauch von gewissen Komponenten innerhalb der
CPU zu überwachen. Diese Schnittstelle kann jedoch auch missbraucht werden, um
kryptographische Algorithmen, wie RSA, über den Stromverbrauchsseitenkanal anzu-
greifen. Mantel et al. und Fusi et al. haben die Schnittstelle verwendet, um RSA
Schlüssel zu unterscheiden oder Teile von ihnen zu rekonstruieren. Allerdings waren
diese Angriffe durch die niedrige zeitliche Auflösung dieser Schnittstelle limitiert.

Durch die verringerten Möglichkeiten des klassischen Userspace Angreifermodells, ver-
hinderte die niedrige zeitliche Auflösung der Schnittstelle, präzisiere Angriffe. Das
änderte sich, als Intel die Intel Software Guard Extension (SGX) einführte, um eine
sichere Umgebung zu schaffen, selbst wenn das Betriebssystem bösartig ist. Van Bulck
et al. zeigte, dass ein Angreifer mit diesen erhöhten Rechten im Stande ist, Instruktio-
nen innerhalb einer SGX Enklave zu wiederholen bzw. gezielt zu einer Instruktion zu
springen.

In dieser Materarbeit zeigen wir einen neuen Ansatz, um die Auflösung der RAPL
Schnittstelle auf die Genauigkeit von einzelnen CPU Instruktionen zu erweitern. Wir
erreichen dies durch die Kombination der RAPL Schnittstelle mit einem präzisen Aus-
führungs-Framework. Darüber hinaus ergänzen wir die Seitenkanalangriffe auf den
Stromverbrauch mit einen spannungsbasierten Software-Angriff. Wir zeigen die Möglich-
keiten unseres Ansatzes dadurch, dass wir einen 71-Bit langen Schlüssel einer 512-Bit
mbedTLS RSA Verschlüsselung innerhalb von fünf Minuten rekonstruieren.

Wir disktuieren, warum die Idee einer frei verfügbaren Schnittstelle zur Stromverbrauchs-
messung im Zusammenhang mit sicherheitsrelvanten Systemen keine gute Idee ist und
schlagen Lösungen vor, um software-basiere Seitenkanäle auf den Stromverbrauch zu
verhindern.

Der Inhalt dieser Masterarbeit war ein wesentlicher Bestandteil einer USENIX Security
2021 Konferenz Publikation.

iii

Acknowledgements

First, I am deeply grateful to Michael Schwarz and Daniel Gruss for their support and
the discussions about this thesis.

Second, I want to thank my parents Christine Sarlay and Ernst Meralla, for empowering
me to focus my studies on technical topics and supporting me throughout my life.

Third, I would like to express my gratitude to Moritz Lipp for his support and the chance
of being a part of a scientific publication.

Fourth, I want to thank David Oswald and Jo Van Bulck for their support and for their
time to answer related questions.

Finally, I am deeply grateful to Dietrich Sullmann for supporting this thesis with equip-
ment and giving me the freedom to fulfill my studies besides my job.

Andreas Kogler

iv

Contents

1 Introduction 1
1.1 Motivation . 2
1.2 Responsible Disclosure . 3
1.3 Contributions . 3
1.4 Structure of this Document . 3

2 Preliminaries 4
2.1 Power Consumption of a Circuit . 4
2.2 Power Side-Channel Analysis . 6
2.3 Power Management . 8
2.4 Power Monitoring . 9
2.5 Core Voltage . 11
2.6 Cryptographic Libraries and RSA . 12
2.7 Virtual Memory and Paging . 16
2.8 Intel Software Guard Extension . 16
2.9 Advanced Programmable Interrupt Controller 18
2.10 Pipelining and Out-of-Order Execution . 20
2.11 Precise Execution Control . 22

3 Threat Model 24
3.1 High-Level View of the Attacks . 24
3.2 Victim . 24
3.3 Attacker . 25

4 Attack Primitives 26
4.1 RAPL as a Power Side Channel . 26
4.2 Measurement Framework . 29
4.3 Simple Power Analysis with RAPL . 33
4.4 Extending the Measurement Resolution 35
4.5 Precise Instruction Finding . 38
4.6 Classes of Victim Algorithms . 40
4.7 Debug Profiling . 42
4.8 Power and P-State Monitoring . 43

v

5 Attack Evaluation 45
5.1 Victim Setup and MbedTLS Configuration 45
5.2 Test System . 46
5.3 SPA Attack . 47
5.4 Attack on a Symmetric Algorithm . 49
5.5 Attack on an Asymmetric Algorithm . 55

6 Countermeasures 59
6.1 Power Analysis Countermeasures . 59
6.2 RAPL and Core-Voltage Countermeasures 60

7 Limitations and Future Work 61
7.1 Attack on a Constant Algorithm . 61
7.2 Single Trace Attack . 62
7.3 Increasing the Execution Time . 63
7.4 Other (Micro)-Architectures . 63

8 Conclusion 64

vi

Chapter 1

Introduction

Power analysis attacks have been known for decades [1–3]. These attacks exploit the
physical energy behavior of the Complementary Metal-Oxide-Semiconductor (CMOS)
technology inside CPUs to leak secret information. To mount these types of attacks, the
attacker usually needs physical access to deploy the measurement equipment [4].

Modern CPUs provide the Intel Running Average Power Limit (RAPL) [5] energy mea-
surement facility to enable energy readings without the need for additional measurement
equipment. The purpose of the facility is to provide energy information for either power-
aware applications or to analyze the energy consumption of large scale software. Hähnel
et al. [6] showed how to use the RAPL interface to measure the energy consumption of
functions, by synchronizing the measurements with the rather slow update intervals of
the interface.

The possibility of measuring energy consumption via software resulted in security re-
search on software power side channels. Mantel et al. [7] used the RAPL interface to
distinguish different RSA keys based on the Hamming weight of the key. Fusi et al. [8]
used the interface to reconstruct parts of an RSA key. The general limitation here is the
timing resolution of the RAPL interface.

As user-space attackers have only limited control over other applications, there was
no further research in this direction. However, with the introduction of Intel Software
Guard Extension (SGX) [9], the threat model changed dramatically, allowing privileged
attackers.

SGX was introduced with the Skylake CPU generation, to enhance the security of server-
based computations. SGX is an instruction set extension aimed to provide a trusted
environment even if the operating system of the computer is compromised. Since these
secure enclaves must be protected from any malicious operating system, attackers have
more capabilities in the SGX threat model. They can use all features of a CPU against
the enclave [10].

1

Xu et al. [11] showed that enclaves are vulnerable to access pattern attacks because
the untrusted operating system still controls the memory pages. Van Bulck et al. [12]
introduced SgxStep, a framework exploiting timer interrupts to precisely control the
execution of instructions inside the enclave. This effect can be combined with different
attacks to extract side-channel information [12–15]. Murdock et al. [14] used the precise
execution control framework to target specific instructions inside the enclave and apply
undervolting to induce faults in a RSA computation to leak the key.

In this master thesis, we introduce a technique to record software-based power side-
channel information with instruction-level granularity. We combine the RAPL interface
with features from the SgxStep framework, allowing us to target any instruction inside
an enclave. We show that we can distinguish different instructions and even distinguish
branches within a single cache line. We abuse the hlt instruction to extend the mea-
surement resolution in a classical Simple Power Analysis (SPA) attack. Furthermore, we
discover and explore a voltage based power side channel. We achieve this by deploying
an untrusted kernel module where we modified the local APIC timer interrupt.

We also show that these new techniques can be used to attack real-world cryptographic
algorithms protected by SGX and reconstruct a 71-bit long key of a 512-bit ARM Mbed-
TLS (mbedTLS) RSA decryption within 5 minutes. We discuss how to extend these
techniques to target constant-time cryptographic algorithms.

We propose countermeasures to mitigate these software-based power side-channel attacks
by disabling the updates of the voltage-based side channel and excluding instructions
from the RAPL interface if they are executed inside an SGX enclave. In addition, we
propose to remove the unprivileged access to the RAPL interface.

In this thesis, we close the gap between hardware and software-based attacks. The
content of this thesis was a major contribution to a USENIX Security 2021 conference
paper [16].

1.1 Motivation

Due to the wide power specifications of computers, the complexity of the power man-
agement features inside the CPU grew to match the energy requirements [5]. Therefore,
vendors also increased the energy-related monitoring capabilities of CPUs [5], to provide
the operating system or applications with the possibility to adapt to the energy consump-
tion of the machine running the software. The RAPL interface provides these energy
readings over a software interface, increasing the accessibility to energy measurements
and, therefore, enables potential remote power side-channel attacks.

With the enhanced security features of SGX [17] also the threat model got extended, al-
lowing a potential adversary to use advanced system resources to target the code running
inside a from SGX protected enclave. This threat model applies to untrusted execution
environment providers since these providers control the software used to execute the

2

customer code.

The main goal of this thesis is to extract a private key of a RSA decryption from an
enclave with a classical Simple Power Analysis (SPA) attack. To overcome the limited
timing resolution, we exploited CPU hardware features like the Advanced Programmable
Interrupt Controller (APIC) and paging and show that the resolution of the RAPL or
core-voltage side channel is no longer a limiting factor and can be extended to target
single instructions.

With the attacks from this thesis, we show that power side channels are no longer
expensive and complicated to mount and can be performed purely from software to
target secure execution environments and even extract private key information from
these enclaves.

1.2 Responsible Disclosure

We followed the practice of responsible disclosure. We reported the attacks from this
thesis to Intel in November 2019. Intel issued an embargo until November 2020. Intel
acknowledged the vulnerability with two CVE numbers (CVE-2020-8694 and CVE-2020-
8695) (see Chapter 7).

1.3 Contributions

We make the following contributions in this master thesis.

• We demonstrate that we can enhance the RAPL interface resolution to instruction-
level granularity.

• We describe a voltage-based side channel running purely in software.

• We extend a precise execution control framework to record different energy relevant
side-channel information from arbitrary instructions.

• We mount an attack on a mbedTLS RSA algorithm protected by SGX and leak a
71-bit key of a RSA decryption in under five minutes.

1.4 Structure of this Document

In this thesis, we discuss the preliminaries and the general background in Chapter 2.
Chapter 3 describes the threat model and the assumptions we apply to the victim and
the attacker’s capabilities. In Chapter 4, we explain the attack primitives and the
measurement framework we use in Chapter 5 to attack the RSA implementations. We
propose countermeasures to mitigate the evaluated attacks in Chapter 6. Chapter 7
discusses additional ideas and future work arising from this thesis. Finally, Chapter 8
concludes the work of this thesis.

3

Chapter 2

Preliminaries

In this chapter, we discuss the preliminaries and acronyms needed to understand the
contributions of this thesis. We start with the general description of the power con-
sumption of a CMOS transistor-based CPU and explain how the power consumption
can be monitored and managed on Intel CPUs. We then take a look at known attacks
exploiting the power consumption of a device to extract secret information.

In the next part, we look at the mathematical concepts behind the RSA public key
cryptographic scheme and describe the different implementation methods and how to
possibly enhance the security of the implemented algorithm by inspecting Intel SGX.

Finally, we describe the general functionality of the instruction pipeline of a modern
CPU and talk about how CPUs handle interrupts and how the handling of interrupts
can be exploited to control the execution of instructions.

2.1 Power Consumption of a Circuit

In 1963 the Complementary Metal-Oxide-Semiconductor (CMOS) transistor technology
was developed by Wanlass et al. [18] and since then, the numbers of transistors inside
CPUs kept growing [19]. These transistors are mass-produced using waver technology
and kept shrinking for the past decade. Weste et al. described the CMOS technology in
detail [19], the following section is based on chapters one and five of the book.

Manufacturers implement most of the CPU’s low-level functionality with logic functions.
These logic functions are designed to take some boolean inputs and calculate a boolean
output. The essential boolean function are often denoted as gates, e.g., the and-gate.

To implement a logic function in CMOS logic, the function is split into the positive and
negative logic part.

Where the positive part implements the conditions for the function to be true, and
the negative part implements the terms for the function to be false. We show a small

4

example in Equation 2.1.

Y = (A ∧B) ∨ C
¬Y = (¬A ∨ ¬B) ∧ ¬C

(2.1)

The positive part Y is then implemented using P-type Metal-Oxide-Semiconductor
(PMOS) transistors to pull the output to the high-voltage level denoted as VDD, and
the negative part ¬Y is implemented using N-type Metal-Oxide-Semiconductor (NMOS)
transistors to pull the output to the low-voltage level VSS . Since a boolean logic function
can never be true and false at the same time, the circuit is never directly shorted. If we
did not split the logic function into these two parts, the transistors would not pull the
output of the logic function to a defined voltage level, and the output would be left in
an undefined floating state.

Manufactures combine these logical functions into larger and larger operations like adders
and state machines. However, the power consumption of such an implementation still
depends on the power consumption of the CMOS transistors.

We describe the instantaneous power consumption of a CMOS circuit with Equation 2.2.
This power consumption can be split into two different parts, the static power consump-
tion, and the dynamic power consumption.

P (t) = Pstatic(t) + Pdynamic(t) (2.2)

The most significant part of the static power consumption resembles the power consump-
tion due to leakage currents from the junction and the gate. These leakage currents are
drawn from the power supply at any time. The dynamic power consumption depends on
the state transitions a CMOS circuit is performing. The dynamic power consumption
can also be split into two parts, namely the switching power consumption and short
circuit power consumption. The switching power is the power drawn from switching
the output from the positive to the negative logic state and vice versa. It depends on
the switching frequency, the supply voltage of the transistor, and the capacitance of the
circuit. We show the relation between these quantities in Equation 2.3.

Pswitching ≈ fswitching · C · V 2
DD (2.3)

The short circuit power describes the effect if both the PMOS and NMOS parts are
closed for a short duration while switching the output voltage, therefore a short circuit
current flows between VDD and VSS .

In Equation 2.4, we relate the instantaneous power consumption to the energy a system
is consuming by integrating the instantaneous power consumption over a given period.

5

W (t) =

∫ t

0
P (τ)dτ → P (t) =

∂W (t)

∂t
(2.4)

We can calculate the instantaneous power with the derivative of the energy consumed to
time. That shows us that we can use energy measurements to estimate the instantaneous
power consumption and therefore get a correlation to the amount of switching behavior
of the CMOS transistors inside a CPU.

2.2 Power Side-Channel Analysis

Side-channel attacks focus on extracting otherwise unavailable secret information over
effects like timing information, caches, and power consumption of the hardware itself.
Side-channels are often used to build more sophisticated attacks as Kocher et al. [20]
showed with Spectre, or Lipp et al. [21] showed with Meltdown. The Spectre exploit
tricked the branch predictor into mispredicting a branch and then letting the CPU spec-
ulatively execute a memory access to an otherwise unreachable address inside a complete
valid program. This memory access resulted in a changed microarchitectural state, the
cached value in the cache. The attacker can observe this changed microarchitectural
state with a cache side channel and, therefore, make the speculative memory access
visible.

There are many other possible side-channels like the timing delay of the Advanced Vector
Instruction (AVX) unit, if it was used recently in comparison to the timing delay, if it was
just powered up, as used by Schwarz et al. [22] in NetSpectre. In this thesis, we focus on
side-channels based on the energy behavior of the CPU, the power side-channels. Power
side-channels exploit the in Section 2.1 described dynamic power consumption of the
billions of CMOS transistors of a CPU.

To measure the current power consumption of a CPU, an attacker can apply a shunt
resistor before the supply voltage input and measure the voltage drop over the resistor
with a high-resolution oscilloscope. The current is then calculated by dividing the voltage
drop of the shunt by the resistance of the shunt. If we monitor in addition to the shunt
voltage also the supply voltage of the CPU, we can calculate the instantaneous power
consumption by multiplying the supply voltage with the current through the shunt re-
sistor. Since the CPU is a clocked device, the switching inside the logic functions is also
synchronized to a clock source. If the timing resolution of the measurement equipment
and the noise of the measurements is low enough, we can see the power consumption
of the individual instructions executed. With the possibility of measuring the instanta-
neous power consumption over a given time while the CPU is executing security-relevant
operations, we enable classical power side-channel attacks like Simple Power Analysis
(SPA) and Differential Power Analysis (DPA), which Kocher et al. showed in [1, 2].

When using SPA, the attacker exploits power leakage of operations directly. Meaning
that an attacker records a few traces and then ’looks’ at them, to extract a secret key.

6

If a cryptographic algorithm uses a conditional branch on secret data to determine the
operation to execute next, an attacker can mount SPA on the algorithm. If the branch
introduces a distinguishable difference in power consumption, the attacker can infer
the secret key bit that leads to the branch taken or not and reason about the secret
information inside the condition, if no countermeasures are in place.

If the measurement traces are noisy or the secret information is not noticeable within
the SPA attack, the attacker can advance the attack to use DPA. DPA attacks use
more sophisticated statistical methods to exploit even small power leakage of the hidden
information. The attacker needs to interact with the device and query different inputs
to the algorithm and record the power traces. Afterward, the attacker can use these
traces to reconstruct parts of the key. DPA has been used to attack DES and AES, as
shown by Kocher et al. [2] and Golić et al. [23].

The power consumption of operations in hardware depends on the physical implementa-
tion in hardware, e.g., executing a xor with an operand containing all bits set to 0 might
not draw as much power as performing the same operation with a register where each bit
is set to 1 since the CPU needs to flip each bit in the result. This effect is used in Cor-
relation Power Analysis (CPA) described by Brier et al. [3]. In CPA, a model describing
the underlying physical behavior of the hardware is used. The most commonly known
models are the Hamming weight and the Hamming distance. The Hamming weight
describes the number of set bits inside a register. In contrast, the Hamming distance
describes the number of bit flips needed to change the register from the current value
to another value, i.e., the energy consumed to change the register from the old value to
the new one.

The model is then applied to the hypothesis of the trace and gives an estimate of the
consumed power. To find the right key, a correlation coefficient is used on each of
the key hypotheses, and the maximum correlation coefficient represents the right key
candidate. With CPA, the attacker can attack more complex algorithms if a correct
model is available.

The attacker’s chance of extracting essential information depends on the quality of the
traces recorded. As described by Mangard et al. [4], the power consumption for a given
instance can be formalized as in Equation 2.5.

Ptotal = Pop + Pdata + Pel,noise + Pconst (2.5)

Here the electric noise component has an expected value of zero but non zero variance.
The higher the variance of the electric noise, the harder it is to reconstruct the essential
data. To reduce the variance of the electric noise, multiple traces can be combined
by calculating the mean of the traces. These traces must be recorded under the same
conditions, i.e., the data and the electrical conditions must be the same.

If the system uses multi-core architecture, the attacker also encounters noise from dif-

7

ferent processes running on other cores. This noise can also be reduced by calculating
the mean of multiple traces, To combine an arbitrary number of traces, they need to
be time-synchronized. Otherwise, the process under observation is blurred out. Still, if
another process is also scheduled synchronized with the process under observation, the
noise of the two different processes does not cancel out since they are now statistically
dependent. In general, the attacker needs synchronization between the measurement
equipment and the execution of the algorithm under observation [4].

Power side-channels are not the only physical side-channels that can be used to extract
secret information from a CPU. Genkin et al. [24] showed that a simple microphone can
be used to extract an RSA key due to the high pitch noise specific operations make.

2.3 Power Management

Modern CPUs are used in many domains and have to cover a broad segment of de-
vices. Therefore, manufacturers produce CPUs for different segments like servers or
desktops. However, in these different segments, the same micro-architecture is used for
high-performance computers as well as low energy computers like laptops and tablets [5].

To provide the desired performance to these devices given the energy requirements,
CPUs implement complex power management. The power management is capable of
reducing the overall energy consumption of a CPU by adjusting parameters like the
CPU frequency, the active core count, or even disable parts of the CPU. Since the
performance demands of applications vary drastically between different processes, the
CPU needs to be able to adjust these parameters rapidly, as newer CPUs do in a range
between 1 ms-30 ms [25].

The most common parameter for the power management to adjust is the so-called Perfor-
mance States (P-states) [5]. A P-state consist of a frequency multiplicator and a voltage
operating point. These quantities are often referred to as dynamic frequency and voltage
scaling. The voltage operating point of the pair is often ignored in the documentations
since their frequency multiplier enumerates the P-states. On Intel CPUs, P-states can
be requested from each core, but the actual used P-state is shared amongst all cores. If
the power management reduces the frequency multiplicator, the power consumption is
also reduced as apparent from Equation 2.3.

In addition to P-states, the CPU also defines so-called Power States (C-states) [5]. C-
states are used to decrease the power consumption when idling and are divided into two
categories, namely the core C-states and the package C-states. The difference is that
core C-states only influence the power consumption of one core, e.g., disable the clocks
to reduce power. In contrast, package C-states reduce the power consumption of the
whole package when all cores are idling.

The limiting factor of the maximum power capabilities of a CPU is the Thermal De-
sign Power (TDP). The TDP is the maximum power in Watt, at which the CPU still

8

functions within its specifications. Since the TDP considers each of the cores running
at a reasonable P-state, the TDP is often not reached, and therefore the CPU still has
a thermal power budget to spend.

For this reason, Intel implemented Turbo Boost Technology 1.0, which gives the CPU
additional P-states when the TDP is not reached to enhance the performance of the
CPU as described in the Intel manual [5]. This new maximum turbo P-state depends on
the number of cores that are currently not in the zeroth C-state, i.e., the operational C-
state. The more cores are idling, the higher the maximum requested turbo P-state can be.
The maximum turbo P-state for a given core count is shown in the TURBO RATIO LIMIT

Model Specific Register (MSR). Since the thermal heat exchange is a rather slow process,
Turbo Boost Technology 2.0 introduced short time boosts, allowing the CPU to exceed
the TDP for a short duration. This allows the CPU to increase the P-state for a short
duration until the steady-state of the TDP is reached. The CPU offers Model Specific
Registers (MSRs) to configure the boost window duration and boost window peak power
consumption [5].

The operating system can request a P-state by writing to the PERF CTL MSR. The CPU
checks then if the request is a valid request inside the power budget and reports the
currently set P-state in the PERF STATUS MSR. Since the P-state is shared between all
cores, but each core can individually request a different P-state, the maximum of these
requests is the one used for all cores. If the operating system wants to reduce the P-state
below the nominal operation point, it must clear the Enable Hardware Coordination Bit
inside the MISC PWR MGMT MSR, otherwise, this P-state transition is blocked [5].

Additionally to the hand-triggered P-state transitions, Intel CPUs offer Hardware Con-
trolled Perfromance States (HWP) where different P-state targets and a switching policy
is set. Then the CPU handles the transitions inside these parameters. They are reduc-
ing the performance overhead of software P-state transitions. Should the CPU detect
that either the TDP or another specification boundary is exceeded, the CPU starts to
throttle and reduces the P-state in order to reduce the power consumption.

The Linux operating system provides two individual drivers to manage P-states, the
intel pstate [26] and the cpufreq driver [27]. Both of these are based on the described
power management features from above and feature different governors to implement
different types of power requirements.

2.4 Power Monitoring

In Section 2.3, we described the rather complex mechanisms acting upon the performance
of a CPU. The operating system needs to control parts of the power management to
provide the user with energy settings and different preferences.

To control these mechanisms from an operating system perspective, the CPU needs
to provide some mechanism to monitor the current performance and power state from

9

the operating system. The operating system has access to the current P-state and the
current throttling state of the CPU, but since the CPU is complex, estimating the power
consumption only with these mechanisms is infeasible. To address this problem, Intel
and AMD introduced an energy measurement mechanism built into the CPU, enabling
software-based energy measurements.

Applying software-based energy measurements means that we can obtain the consumed
energy of a specific part of the CPU over time without the need for additional hardware
measurement equipment. On Intel, this mechanism is called Intel Running Average
Power Limit (RAPL) [5] and provides a set of MSRs which allows the user to measure
the energy consumption of four domains, namely the package, the core, the uncore, and
the memory controller.

The RAPL register accumulates the consumed energy of the specific domain. The val-
ues in the registers are in units of microjoule, and the multiplier is specified in the
RAPL POWER UNIT MSR.

With this mechanism, the operating system is capable of classifying the power con-
sumption of different processes and even domains. This enables the operating system
to adapt the power management accordingly or manipulate the scheduling of such high
power tasks.

We shortly describe the four RAPL domain register below.

MSR PKG ENERGY STATUS register provides measurements for the whole pack-
age, including all cores, caches, and devices which are not part of the core like buses
and the builtin graphics card.

MSR PP0 ENERGY STATUS measures the energy consumptions of all the cores,
including the non shared caches.

MSR PP1 ENERGY STATUS is platform-specific and can refer to a device in the
uncore, e.g., the internal graphics card.

MSR DRAM ENERGY STATUS provides the measurements for the memory con-
troller.

In order to measure the energy consumption of instructions, the RAPL interface reg-
isters are used as an accumulating Performance Counter. The difference between the
two counter reads is used to represent the real energy consumption of the instructions
executed between the reads, as shown in Equation 2.6.

∆W = Wend −Wstart (2.6)

This difference of energy can then be divided by the period of the measurement to
calculate the average power consumption of the measured instructions, as shown in
Equation 2.7.

10

PAV G =
∆W

∆t
(2.7)

The Linux operating system provides a userspace RAPL driver, namely intel rapl, to
read the described MSRs [28,29]. The driver gives the user the needed features to read
the energy counters with no privileges if the powercap driver is installed. AMD recently
announced also a userspace energy interface integration in the Linux kernel 5.8 [30].

The difference between the implementation of RAPL on Intel and AMD is that the
MSRs on Intel CPUs are shared among cores, whereas the AMD MSRs are unique per
core. This allows the measurements on AMD CPUs to be more precise since the noise
of the other cores is not recorded. On the other hand, due to the shared MSR on Intel
CPUs, it is possible to measure the power consumption across cores.

The RAPL interface was used for either measuring energy consumption of specific code
paths or for observing the energy consumption of cryptographic primitives. We shortly
summarize related work about the RAPL interface.

To measure the precise energy consumption of functions, Hähnel et al. [6] measured the
update intervals of the RAPL interface. They used a second-generation Intel CPU code-
named Sandy Bridge from 2012. They measured that the update interval for the RAPL
registers is around 1 ms and has a jitter of ±50,000 cycles. In addition to the update
rates of RAPL, they also implemented a synchronization method that waits for the next
register update with a busy loop and then corrects the energy measurement. Rotem et
al. [31] described that Intel does not measure the real energy consumed by the CPU.
Instead, the CPU uses a model to estimate the consumption based on the instruction
stream the CPU is currently processing. Gao et al. [32] show that the powercap interface
is still available inside containers and can, therefore, be used to leak power information
from the whole server. They also propose a model for the different RAPL domains.

Mantel et al. [7] use the RAPL interface to distinguish RSA keys. The show that they
can distinguish keys by their Hamming weight with only seven measurements recorded
from the package RAPL domain with a success rate of 99%. In contrast to the key
distinguishing attack, Fusi et al. [8] use the powercap driver to target a 16384-bit RSA
key and could determine operations that were 64 square operations apart.

2.5 Core Voltage

As mentioned in Section 2.3, P-states do not only define a frequency multiplier but also
a voltage operating point. The voltage operating point is the second part of the dynamic
frequency and voltage scaling. As Wolf et al. [33] described, the rise time of a transistor
changes nearly linear with the voltage. So the performance of a CMOS transistor changes
only linearly, whereas the dynamic power consumption from Equation 2.3 is influenced
quadratically. Therefore, the core voltage can reduce the power consumption of the CPU
without reducing the performance of the transistors with the same scale.

11

Register Nr Bits Description

MSR RAPL POWER UNIT 0x606 12:8 Energy status units in 2ESUµJ

MSR PKG ENERGY STATUS 0x611 31:0 Total energy consumed

MSR DRAM ENERGY STATUS 0x619 31:0 Total energy consumed

MSR PP0 ENERGY STATUS 0x639 31:0 Total energy consumed

MSR PP1 ENERGY STATUS 0x641 31:0 Total energy consumed

MSR PERF STATUS 0x198 15:0 Current P-state
47:32 Core voltage in 2−13 Volts

MSR PERF CTL 0x199 15:0 Target P-state

MSR MISC PWR MGMT 0x1aa 0:0 Enable hardware coordination

Table 2.1: A summary of power related MSRs of Intel CPUs.

If the core voltage drops below a certain margin, the transistors start to malfunction.
This undervolting effect can lead to faults in the results of CPU instructions. Faults
have dramatic effects on the integrity of a CPU, as recent undervolting related papers
by Qiu et al. [34], Kenjar et al. [35] and Murdock et al. [14] showed. Their attacks show
that by manipulating the core voltage from software, they could inject faults into specific
instructions of RSA-CRT and AES-NI implementations, resulting in leaking the secret
key.

In contrast to the frequency operation point, the core voltage is not entirely fixed by the
P-state. In addition to the P-state, the core voltage can be manipulated on each logical
core by two MSRs. CPUs since the Sandy Bridge generation feature a per-core register
to read the current voltage of the core [5]. The value provided by the PERF STATUS MSR
in bits 47 to 32 represents the current core voltage in units of 2−13 volts. A specific core
voltage offset can be set for different operation planes by using an undocumented MSR,
which was reverse-engineered by Murdock et. al. [14].

In contrast to the RAPL energy measurements, the core voltage is represented as an ab-
solute voltage at a given time point instead of an accumulating quantity. We summarize
all the related power and energy consumption MSRs of Intel CPUs from Sections 2.3
to 2.5 in Table 2.1.

2.6 Cryptographic Libraries and RSA

Cryptographic algorithms enable secure communication over untrusted channels, or to
store data on cloud providers safely. The Transport Layer Security (TLS) cryptographic
protocol is one of the most essential cryptographic protocols used while using the mod-
ern web [36]. Cryptographic algorithms are usually designed with resistance to known
attacks in mind, i.e., the AES proposal from Daemen and Rijmen [37] stated the resis-
tance to linear and differential cryptoanalysis. Cryptographic attacks are not the only
possible attacks on cryptographic algorithms.

12

Cryptographic side-channel analysis, as summarized by Bauer et al. [38], exploits side-
channel leakage of certain operations during the execution of the algorithm. An adver-
sary can record the side-channel information and then reconstruct the secret key.

Injecting faults into computations is another attack vector for cryptographic algorithms.
As described by Yen et al. [39], simple fault mitigations can be circumvented and still
leak the secret key information.

To reduce the attack space, developers often use cryptographic libraries instead of im-
plementing the algorithms themselves. These libraries are built with additional require-
ments on security and side-channel robustness in mind. One of the largest open-source
cryptographic libraries is the openSSL library [40]. It suffered under many attacks,
including the Heartbleed attack from 2014, which still could influence us today, as sum-
marized by Mutton et al. [41].

A more lightweight library developed for embedded systems is the ARM Mbed-TLS
(mbedTLS) [42] library. It implements the TLS protocol, including many cryptographic
algorithms for applications, including RSA.

RSA is an asymmetric cryptographic scheme developed in the late 80s by Rivest, Shamir,
and Adleman [43]. The algorithm remains one of the most known cryptographic schemas.
The communication relies on a private and public key pair. To calculate the private and
public key, the algorithm demands two prime numbers p, q, a public modulus N ,

N = p · q (2.8)

a public exponent e,
1 < e < φ(N) (2.9)

where
φ(N) = (p− 1) · (q − 1) (2.10)

holds. The private exponent d can then be calculated by solving

d · e ≡ 1 mod φ(N). (2.11)

The resulting public key is the public modulus N and the public exponent e. The private
key is the private exponent d and the public modulus N .

With the public key, a message m can be encrypted into a ciphertext c by

c ≡ me mod N (2.12)

and the ciphertext c can be decrypted into the original message m′ by

m′ ≡ cd mod N. (2.13)

13

A conventional algorithm used for the binary modulo exponentiation of RSA is the
square-and-multiply algorithm. Listing 2.1 shows the left-to-right binary exponentiation
algorithm, as described in HAC 14.79 [44]. In order to keep the numbers small, we apply
the public modulus N after each operation.

1 modulo_exponentiation(x, e, N) → y:

2 y ← 1

3 for b in bits_msb_to_lsb(e):

4 if b = 1:

5 y ← y·y mod N

6 y ← x·y mod N

7 else:

8 y ← y·y mod N

Listing 2.1: Square-and-multiply algorithm used for binary modulo exponentitaion.

It is an iterative algorithm scanning the exponent in reverse for set bits. If a bit is set,
the current output temporary is squared and then multiplied with the base input of the
exponentiation. If the bit is not set, the temporary output variable is simply squared.
Here we can see that the exponent is directly used inside the branching condition.

The mbedTLS library implements RSA with an optimized algorithm, the sliding window
exponentiation algorithm, as described in HAC 14.85 [44]. The algorithm uses a fixed
exponentiation window length based on the bit size of the secret key. This window
obfuscates the direct key dependency of the square-and-multiply algorithm. Nevertheless,
as shown by Liu et al. [45], attacks mounted on a window size of one can be extended
to arbitrary window sizes. If the window size is set to one, the resulting algorithm is
simply, the square and multiply algorithm, as shown previously. To optimize the modulo
multiplications inside the square-and-multiply algorithm for real hardware, the mbedTLS
library uses Montgomery modular multiplication.

The MbedTLS library also applies exponent blinding if the user provides a randomness
source. Exponent blinding is a technique where a multiple of φ(N) is added to the
exponent during the modulo exponentiation, as Equation 2.14 shows.

dblind = d+ b · φ(N) (2.14)

The exponent blinding does not affect the result since Equation 2.11 still holds. However,
the blinded value changes the pattern used in the square-and-multiply algorithm [4].
Exponent blinding was used to prevent general timing attacks on RSA, but it only
increased the amount of needed traces to recover the secret key, as Schindler et al. [46]
described.

In contrast to the mbedTLS library, there are also libraries available that use different
approaches to not expose the key bit inside a branch condition. These are the so-called

14

constant-time algorithms. Intel has provided guidelines to prevent timing attacks on
cryptographic algorithms [47]. The guidelines state three main points. The first point
is to make the runtime of the algorithm independent of the secret information, i.e.,
the runtime does not leak information about parts of the key. The second and third
points state that the code and data access patterns must be independent of the secret
information. Following these guidelines, an algorithm is called constant time.

To convert an algorithm to a constant time algorithm, the key bit cannot be used directly
in the control flow. Instead of executing different instructions depending on the key bit,
the instructions are always the same, only differing in the data of the operands. But
independently of the key bit, the same data is accessed. The key bit is then often used
in bit operations to select one of two inputs without exposing timing differences since
the instructions are still the same.

For example, bearssl (bearSSL) [48] uses a constant time conditional memcopy to copy
the content of a temporary variable into the accumulating variable if the key bit is set. If
the key bit is not set, the copy is simply discarded. For the memcopy, the mathematical
identity in Equation 2.15 is used.

x⊕ (−b ∧ (x⊕ y)) =

{
x if b = 0

y if b = 1
(2.15)

In Equation 2.15 the twos complement negation is used to transform the bit b into a
mask containing all zeros or ones to then select the xor combination or not. If we apply
the constant time copy to the modulo exponentiation algorithm as bearSSL does, we
can rewrite the algorithm from Listing 2.1 to the following:

1 modulo_exponentiation_ctime(x, e, N) → y:

2 y ← 1

3 for b in bits_msb_to_lsb(e):

4 y ← y·y mod N

5 t ← x·y mod N

6 y ← y ⊕ (-b ∧ (y ⊕ t))

Listing 2.2: Square-and-multiply constant time algorithm used for binary modulo
exponentitaion.

This implementation always executes the same instruction inside the for loop in con-
trast to the previous implementation. The algorithms shown omit the size requirements
of the integers used in the calculations. In a real implementation, the large integer
implementations also must be handled accordingly.

15

2.7 Virtual Memory and Paging

To grant each process its own set of virtual memory, CPUs implement paging. Paging
uses multiple levels of page tables to split the virtual address space and map it to physical
addresses. The lower 12-bits of a virtual address are the offset into a given page, which
is usually 4096 bytes large. The remaining bits are uses to index the different layers of
page tables to resolve the Page Table Entrys (PTEs) [49]. When a virtual address is
used, it is send to the Memory Management Unit (MMU) to resolve the address to the
physical address. Since in a real-world application, a given address is usually accessed
more than once, the Translation Lookaside Buffer (TLB) is responsible for caching these
virtual to physical address translations [49].

The different layers of page tables do contain not only the base address of the next page
table layer but also flags describing the properties of the page tables or the page. These
flags are stored in the PTEs. The accessed flag indicates if the page was accessed since
the last reset of the flag [5]. Another common flag is the No-Execute (NX) bit, which
specifies that the CPU is not allowed to execute code from this page [5].

The page table structures are set up and managed by the operating system, which is
also responsible for exchanging the different mapping for each process during a context
switch. If a virtual address could not be resolved over the page tables, the CPU will
issue a page fault. This page fault can either be handled by the operating system by
mapping a specific page to the virtual address, or by terminating the program trying to
access the page [49].

2.8 Intel Software Guard Extension

Intel Software Guard Extension (SGX) [9] is a hardware-based feature introduced by
Intel in 2015 with the 6th generation of Intel CPUs. SGX provides Trusted Execution
Environment (TEE) even if the operating system running on the hardware is compro-
mised. This idea becomes especially useful in combination with cloud services. Since
the providers have complete control over the hardware and the software providing the
virtualization environment, the user has to blindly trust the cloud provider that the
software and hardware are not compromised. SGX focuses on establishing a potentially
safe environment for executing secret code or processing secret data on these untrusted
platforms.

The general concept of SGX is to split the program into an untrusted and trusted part.
The untrusted part is a normal process running on the operating system and is often
referred to as an application. The trusted part is called enclave and uses the SGX pro-
tection to store and compute secret data. The enclave exposes only a defined API to
the untrusted application. As summarized by Aumasson et al. [50], and Adamski [51],
SGX provides many useful security-relevant features. These enclaves are protected by
memory encryption to ensure the protection of the enclave data. In the enclave, a few
instructions are blacklisted, to reduce the attack surface from one enclave to another

16

userspace kernelspace

application

enclave call:
...
eenter
...
return

aep callback:
...
eresume

enclave

trusted function:
...

E
...
eexit

trusted data:

private key

interrupt code

timer isr:
...

apic eoi();

iret

Figure 2.1: Control flow transitions between enclaves, user applications,
and the operating system.

or from an enclave to the host system. The enclave cannot perform system calls, and
communication with the operating system must be routed over the untrusted applica-
tion. The threat model features trusted execution even if the operating system, the
BIOS, the system management mode, or even the management engine is compromised
as summarized by Costan et al. [52].

To support encryption, the Enclave Page Cache (EPC) was introduced, which is a unique
encrypted memory region. The EPC lies in the Processor Reserved Memory (PRM)
region of the CPU. This region is protected from memory reads even from the Direct
Memory Access (DMA) controller. SGX sees the DRAM as an untrusted resource and,
therefore, uses cryptographic primitives to store data there [52]. The Memory Encryption
Engine (MEE) enforces the encryption of enclave data stored outside the EPC. The
enclave defines a EnclaveLinear Address Range (ELRANGE) in the virtual memory,
which contains the enclaves data and code stored on pages in the EPC. If the untrusted
application tries to access a virtual address form the ELRANGE the read access returns
only data with all bits set to one [52].

The MEE is described in detail by Gueron et al. [53]. The EPC is limited in size, but
the pages can be swapped to the system memory in an encrypted form. Although the
MEE manages the encryption of these pages, the paging mechanism is still the same as
with a regular page. Therefore, the operating system has control of the paging control
structures and the paging flags. It also has the responsibility to set the access rights of
these pages accordingly.

An enclave can only be entered and exited with the eenter and eexit instructions.
The entry and exit points are defined during compile time. To ensure normal system
coexistence with other processes or threads running concurrently, SGX also supports
Asynchronous Enclave Exits (AEX) to handle interrupts and faults. AEX stores the

17

execution context into the EPC and then gives the execution to the interrupt or fault
handler [52]. After the interrupt handling is done, the handler returns to a callback in
the unsafe region of the application pointed by the Asynchronous Exit Pointer (AEP).
Inside the callback, the eresume instruction is invoked to restore the previously stored
execution context from the EPC and resume the execution in the protected environment.

The enclave can disable the PMC interface by using the Anti Side-Channel Interface
(ASCI) feature of the CPU. This feature changes the behavior of the PMC interface,
but the Intel documentation does not provide enough information about the feature, as
mentioned by Costan et al. [52]. So it might still be possible to use some PMC events
to determine information about the enclave [52].

SGX enclaves can either be built in debug or release mode. In the debug mode, the
enclaves memory and register can still be read with the edbgwr and edbgrd instructions.
During a context switch, the enclave registers are stored in the Save State Area (SSA).
With these debug instructions, the user can read the registers stored in the SSA for
debugging purposes. If the enclave is built in release mode, these instructions are blocked.
To build an enclave in release mode, the user must request a signing key from Intel [54].

Despite these mitigations, security researches have successfully mounted attacks on SGX.
Schwarz et al. [10] summarized and categorized the recent attacks. The first category are
side-channel attacks like Xu et al. [11] and Van Bulk et al. [55]. They used the paging
mechanism to either unmap pages or exploit page flags to extract access patterns. The
second category are the transient execution attacks, which exploit speculative execution
and out-of-order execution (see Section 2.10). Zombieload [15] and RIDL [56] are capable
of leaking data from internal CPU buffers. The last category uses fault-based attacks,
as mentioned in Section 2.5. Murdock et al. [14] and Kenjar et al. [35] used undervolting
to inject faults into an enclave to attack cryptographic algorithms.

SGX also provides additional attack space by enabling the adversary to write unde-
tectable malware, which is capable of spying on the system as shown by Schwarz et
al. [57]. They also showed that even if the rdtsc instruction is blacklisted inside the
enclave, an attacker can still use a counting thread to create a timing source for cache
timing attacks. Van Bulck et al. [12] showed that enclaves are vulnerable to precise
execution control attacks, as we summarize in Section 2.11.

2.9 Advanced Programmable Interrupt Controller

Operating systems nowadays handle many different tasks or processes running seemingly
concurrent. Since the number of processes and threads running on an operating system
are higher than the number of hardware cores provided, these tasks have to be preemptive
or cooperative. If the tasks are cooperative, they yield the control flow in specific points
of their execution to other tasks. Cooperative multitasking is often used if all the task
running are known, and it can be guaranteed that each task gets a fair share of the
execution time [49]. For a desktop operating system where the tasks running on it are

18

userspace kernelspace

program

function:
...

E
...

lapic registers

LVT vector: N

EOI

idt

N: &timer isr

interrupt code

timer isr:
...

apic eoi();

iret

Figure 2.2: Interrupt handling of an risen local APIC interrupt.

unknown, this method is not applicable. So in order to give each task a fair share of the
execution time, the control flow must be given back to the operating system at some
point. However, if the task never yields their execution to the operating system, it could
never preempt the task [49]. To solve this problem, a timer interrupt is used to generate
an interrupt after a specific time, to interrupt the currently running task and schedule
the execution back to the operating system, which then can decide to perform a context
switch to execute another task or just continue with the current task.

The timer interrupt is generated by the Advanced Programmable Interrupt Controller
(APIC) [5]. Since multi-core CPUs provide more then one core, each of the cores has
a local APIC. The local APICs are connected over a bus interface with each other and
the IO-APIC [5]. The IO-APIC handles external interrupt requests from CPU external
hardware and routes the request to the local APICs.

The local APIC implements different registers for configuration and error checking. De-
pending on if the local APIC is running x2apic mode or in the flat mode, the registers
can either be accessed by MSRs or by memory-mapped IO [5]. For local interrupt han-
dling, the local APICs come with Local Vector Tables (LVTs). These LVTs determine
which interrupts are routed to the CPU and to which interrupt vector the interrupt is
wired.

The local timer interrupt features in addition to the LVT of the timer, a configuration
register to let the timer run in one of three modes:

One-shot mode uses a simple counter register to count down from a set-value. As
soon as the value reaches zero, the controller sends the interrupt to the configured
vector.

Periodic mode is the same as the one-shot mode, but the value is reset to the set-value
after the counter reaches zero.

TSC deadline mode uses instead of the relative timer increment of the other two
modes, an absolute timestamp to generate the interrupt. The benefit of this con-
figuration is the low jitter and the possibility to trigger interrupts concerning an
absolute time.

19

Figure 2.2 shows the handling of a timer interrupt. After an interrupt was triggered
either by the local APIC or IO-APIC, the CPU looks up the dedicated interrupt vector
from the corresponding APIC LVT. With the interrupt vector, the CPU determines
the Interrupt Service Routine (ISR) from the Interrupt Descriptor Table (IDT). The
ISR is a function defined by the operating system or device drivers to handle the risen
interrupt. After the ISR finished the interrupt handling, the APIC interrupt needs to
be acknowledged. This is done by writing to the local APIC End Of Interrupt (EOI)
register. The handler can then execute the iret instruction to give the control flow back
to the previously executed code [5]. There are different types of interrupt handlers, which
can be defined by the descriptor of the vector in the IDT. ’Trap’ gates keep the interrupts
enabled during the entry of the ISR and ’interrupt’ gates disable interrupts during entry
of the ISR. A particular case for interrupt handling are the Non-Maskable Interrupts
(NMIs). These are special types of interrupts that cannot be disabled (masked) and can
occur during disabled interrupts. NMIs are often used to detect system lockups and to
implement watchdogs.

The local APIC controller has recently been used to mount so-called precise execution
control attacks, where the victim is interrupted every few cycles, enabling the adversary
to generate a timer interrupt after each instruction [12]. We describe these types of
attacks in detail in Section 2.11.

2.10 Pipelining and Out-of-Order Execution

Modern CPUs rely heavily on pipelining to increase their execution speeds. We summa-
rize the architecture of a pipeline and how the CPU handles out-of-order execution in
this section.

The classical view of a CPU pipeline executing machine code instruction is the ’fetch’,
’decode’, ’execute’, and ’writeback’ cycle as described by Hennessy et al. [58]. The
CPU cycle starts execution by fetching the current instruction from the memory address
pointed by the instruction pointer. The memory access will probably be served from
the instruction cache or result in an instruction cache miss if the CPU did not predict
the instruction address correctly. After the instruction is loaded from the memory, it
is decoded, and the register or memory operands are determined. Since the CPU can
dynamically rename the registers, the register operands are looked up in the register file.
After the operands are ready, the instruction is executed, and the results are written back
to the output operands. If the instructions were either a store or a load, the handling is
different because of the complex memory hierarchy of a CPU.

To meet the performance requirements of modern CPUs, this cycle is no longer that
simple. Instead of waiting until the writeback stage is finished to issue the next fetch, the
CPU immediately tries to fetch the next instruction after the previous fetch finished. So
instead of waiting for each pipeline stage to finish, the CPU uses each stage continuously.
In order for the fetch stage to know which instructions follow the current one branch

20

predictors are implemented in hardware. These predictors keep track of control flow
branches and try to predict the next instruction to be executed.

To reduce the complexity of modern Complex Instruction Set Computers (CISCs),
the CPU breaks the instruction defined in the machine code into finer-grained micro-
instructions during the decoding phase. Instead of executing these micro-instructions in
sequential order, the CPU analyses the dependencies of the operands concerning other
micro-instructions and tries to minimize the stalling time by reordering them. The
stalling time is the time which the CPU is idle and cannot execute micro-instructions
because of dependencies among the operations itself or due to the lack of free hardware
to execute the micro-instruction. The reordering is based on different aspects, e.g., the
CPU can execute the micro-instruction before another because the operands are inde-
pendent of each other, or the micro-instruction must wait for another micro-instruction
to finish first.

After reordering, the micro-instructions are scheduled to the different execution ports of
a CPU. These ports represent hardware components of the CPU where each core has a
given number of ports capable of executing specific instructions. On x86 architectures,
the instructions retire in order, meaning that the possible out-of-order executed micro-
instruction has to wait for their predecessor to finish. This in order retirement is achieved
with the so-called reorder buffer.

Due to mispredictions of the different predictors that predict the next instruction to
execute, it can happen that an already finished micro-instruction was falsely executed.
If this happened, the CPU must revert the effects of the executed micro-instructions
and flush (clear) the pipeline, because it is filled with micro-instructions from the wrong
instruction address. The CPU can revert the architectural state, like the internal regis-
ters and the memory content, but the state of, e.g., the caches is not reverted, and this
enabled the Spectre type attacks as summarized by Canella et al. [59]. Here a differen-
tiation between the architectural and the micro-architectural state is made, whereas the
micro-architectural state can be observed by side-effects in different components of the
CPU. After the mispredict is corrected, the real instruction is issued.

In addition to pipeline flushes due to mispredictions, the CPU also needs to flush the
pipeline if an interrupt or fault rises. Depending on when the interrupt arrives during
the execution of the instruction, it can retire or be stalled and reissued after the interrupt
was handled. Since the ISR uses regular instructions to handle the interrupt, the pipeline
must be flushed, and the control flow must continue at the given entry point of the ISR.
We described the control flow transitions and lookup of the ISR in Section 2.9.

From the microarchitectural behavior of a CPU multiple fields of attacks arise. The
Spectre attacks exploit control or data flow misprediction, whereas the Meltdown based
attack exploits transient execution after a fault occurred [20,21,59]. Mircoarchitectural
Data Sampling (MDS) attack types enable an adversary to leak data from different
microarchitectural buffers [15,56,60].

21

2.11 Precise Execution Control

Precise execution control abuses CPU features to gain control over the control flow of
a victim. The following frameworks all require kernel privileges in order to modify the
mechanism used for the attack and are, therefore, only suitable for the SGX threat
model.

The PTEditor by Schwarz [61] allows control-flow monitoring at page size level. An
attacker can use this to monitor the execution path through the victim’s control flow
and possibly detect secret information due to conditional function calls that are placed
on different pages.

MicroScope by Skarlatos et al. [62] uses page faults to precisely replay the transient
execution of a few instructions. This replay can be used to record fine-grained side-
channel information of the instructions since it can be repeated indefinitely.

SgxStep by Van Bulck et al. [12] uses the local APIC timer interrupt to interrupt the
CPU during the execution of a given instruction and forcing the instruction to stall and
be reissued after the handling of the interrupt is finished as we described in Section 2.10.
This is achieved by using the local APIC timer in one-shot mode with a small trigger
value, as we mentioned in Section 2.9. The attacker can start the timer after a known
event occurred, e.g., a page fault. To trigger the page fault, the adversary must know the
address of the code page containing the code to collect side-channel information from.
The address can be found by either knowing the offset of the code from the enclave base
address or by using, e.g., the PTEditor to monitor the pages accessed by the enclave
after calling a specific API and determine a target page.

If the enclave is loaded from the file system, the code of the enclave is unencrypted.
Aumasson et al. [17] explain a way to establish encrypted enclave code. The enclave
generates a private and public key pair and then use the public key with some authen-
tication information to receive an encrypted blob of code from a trusted source. The
code is then decrypted with the private key inside the enclave. This method enables
non-reverse engineerable enclaves.

If the code is known and the first page fault address is found, the adversary sets the
No-Execute (NX) bit in the page table entry. This is possible since the operating system
still manages the enclave pages. If the enclave tries to execute the code from the given
page, the page fault is triggered. Now the adversary can clear the NX bit and return
from the page fault handler.

This will then give the control flow to the AEP callback, which then invokes the eresume
instruction. To precisely set up the next local APIC timer interrupt, the AEP callback
must be overwritten. The AEP callback is located in the untrusted application, more
precisely in the SGX-SDK library. SgxStep uses a modified version of the SDK library,
which provides functionality to overwrite the default AEP callback.

The timer then triggers the interrupt after the specified clock ticks have passed. If the

22

interrupt arrives during the execution of the instruction and forces the CPU to stall
and reissue the instruction, this is called a zero-step. If an instruction is zero-stepped,
the CPU will not advance the instruction pointer. If the triggered timer interrupt ar-
rives after the retirement of the instruction, we can either observe a single-step if the
instruction pointer is advanced one instruction, or a multi-step if the instruction pointer
is advanced more then one instruction.

Note that the instruction pointer of an SGX enclave is only visible in debug enclaves,
as mentioned in Section 2.8. So the detection of single- and zero-steps has to be man-
aged differently. Van Bulck et al. used the paging flags of the code page containing the
enclave’s code as a replacement. If the instructions retire and the CPU advances the
instruction pointer, the accessed bit of the page gets set. If the instruction was inter-
rupted by the timer interrupt and is stalled by the CPU and the complete architectural
state is rewinded, the access bit of the code page is not set.

So to detect single- and zero-steps, the attacker clears the accessed flag of the code
pages in the AEP callback before returning the execution to the enclave. After the
timer interrupt was triggered, the attacker can then check if the code page was accessed
to determine if a singe- or zero-step occurred. Multi-steps cannot be detected with this
method. We denote this technique as instruction counting instead of the CPU instruction
pointing.

23

Chapter 3

Threat Model

In this chapter, we discuss the threat model and the attacker’s capabilities.

3.1 High-Level View of the Attacks

In our threat model, we assume that the victim and the attacker are running on the
same physical machine. The attacker has complete control of the operating system
running the victim’s code. This scenario is feasible for cloud servers, where the vendor
has complete control over the virtualization environment used to execute the customer’s
code. We assume that the victim and the attacker are running on an Intel CPU with
Intel Software Guard Extension (SGX) support. The oldest generation of Intel CPUs,
which also includes the RAPL interface, is the Skylake generation.

Our attack makes no assumptions on the use of secure boot as the root of trust on the
target platform. Enclaves cannot verify the root of trust because the input operations
have to go through the untrusted operating system. SGX enclaves only verify the in-
tegrity of the CPU they are running on and not the operating system nor the root of
trust.

Our threat model adopts the SGX [50] threat model, where the enclave should be pro-
tected from an untrusted or malicious operating system. In our attack, we do not exploit
bugs in the enclaves source code nor the source code used for loading enclaves.

3.2 Victim

The victim can run an unprivileged program inside an SGX enclave, excluding the
instructions blacklisted inside an enclave (see Section 2.8). The victim provides a API
to trigger a cryptographic RSA signing process, and the victim does not apply limitations
on the number of times the attacker can trigger the component. We assume two different
models for the victim algorithm. In the first model, we do not need any information

24

about neither the plaintext nor the keys used inside the algorithm. In the second model,
we assume that we have a known-plaintext attack, i.e., we know the currently used
plaintext of the victim. We require the second model to reconstruct intermediates of the
RSA algorithm to circumvent the plaintext-dependent instruction offsets to mount one
of our attacks.

The keys for the cryptographic component are kept in the secure enclave memory and are
not accessible for the attacker directly. The enclave also executes the same instructions
if the API is triggered multiple times. The victim does not exchange encrypted source
code with a trusted domain, and therefore, the source code is available to the attacker.
However, the attacker cannot use the key from the source code directly. We do not
exploit any bugs inside the implementation of the cryptographic algorithm nor the code
used to provide the API.

3.3 Attacker

The attacker has access to all CPU features and the whole operating system and can
execute privileged code. The attacker uses the API provided by the victim to issue a
signing process and can trigger unlimited invocations of the cryptographic algorithm
and also knows the plaintext currently used in the enclave if not mentioned otherwise.
The attacker can record multiple traces of the same invocation of the victim API. The
target of the attacker is the modulo exponentiation algorithm (see Section 2.6) inside
the enclave. The victim uses different types of RSA implementations, but the key is only
reconstructed by targeting the algorithm. The attacker has access to the source code of
the enclave if not stated otherwise.

25

Chapter 4

Attack Primitives

In this section, we introduce the three basic mechanisms for our attacks. First, a mea-
surement framework, which exploits that RAPL can be used as a power side channel,
even if the code is protected by SGX. We use this measurement framework to attack
RSA implementations inside SGX in Chapter 5. Second, we exploit the local APIC to
enable zero- and single-stepping in Section 4.4. The zero- and single-stepping technique
provides instruction-level power side-channel resolution for our attacks on SGX, similar
to SgxStep [12], Nemesis [13], and MicroScope [62]. Third, we extend the measure-
ment framework to precisely hit target instruction and describe how to determine target
instruction in Sections 4.5 and 4.7.

4.1 RAPL as a Power Side Channel

To mount a power side-channel attack, the attacker usually needs physical access to
the device or CPU to deploy the measurement equipment and measure the power con-
sumption of the device while running the victim’s code in a synchronized way. Physical
access to a device limits the attack space for remote attacks but is still considerable for
untrustworthy cloud providers since they have access to the servers.

In this section, we explain how we use the power monitoring features from Section 2.4,
to construct a software power side channel. We exploit the general idea that instruction
or even operands have a unique power consumption, and the RAPL software interface
provides the power consumption over a given time window. We can use the software
interface to generate energy readings without additional measurement hardware and,
therefore, lift the restriction of direct physical access to the device. We also reduce the
effort to implement a synchronization technique between the interface and the function
we want to measure.

The increment in the different RAPL domains can leak information about different
instructions executed with a specific granularity. If we compare it to cache side-channels

26

where the timing difference of a memory access leaks only the level from where the
memory access was served, we can gain more information over a power side channel
than a cache side channel.

We can read the RAPL interface over either the dedicated intel rapl domain files or
directly by using the rdmsr instruction. To determine the performance of the power
side channel, we first look at the update intervals of the register, i.e., we detect the time
it takes for the RAPL interface to change to a newer measurement value. The update
interval corresponds to the maximum timing resolution of our side channel. We repeat
the measurement for the update intervals of the RAPL interface to validate the intervals
found by Hähnel et al. [6], which were around 1 ms, with a jitter of ±50,000 cycles.

We first look at the update intervals of the rdmsr instruction. To measure the update
rate, we busy-wait until the MSR receives a new value and then start measuring the
time until the next new value arrives. We do this 20,000 times and plot the timing
differences as histograms. During the measurement of the update intervals, we use the
stress program on the other cores, to make sure that the system is consuming energy
and does not fall into a lower C-state, i.e., that the energy consumption is above the
increment of the RAPL interface defined in the RAPL POWER UNIT MSR.

We show the code used to record the Time Stamp Counter (TSC) differences in List-
ing 4.1. Since the rdmsr instruction needs ring 0 access, we run the code inside a Linux
kernel module.

1 uint64_t measure_msr_timing(uint32_t number , uint64_t mask) {

2 uint64_t new , last = rdmsr(number) & mask;

3 while(last == (new = rdmsr(number) & mask));

4 last = new;

5 uint64_t start = rdtsc ();

6 while (last == (rdmsr(number) & mask));

7 uint64_t end = rdtsc ();

8 return end - start;

9 }

Listing 4.1: Measuring the update interval of a specific MSR.

Table 4.1 and Figure 4.1 show the results of the timer interval measurements for an
Intel(R) Xeon(R) CPU E3-1275 v5 @ 3.60GHz CPU. In the table, the argmax fields
respond to the most common update interval.

We see a different update interval for the core domain in comparison to the package and
dram domain. Instead of the documented update intervals of 1 ms by Intel [5], the core
domain update interval is nearly twenty times faster as the package and dram domains.
The core and dram RAPL domain shows an update interval of around 0.988 ms. From
the histogram, it is visible that the package and dram domain also have a second cluster
centered around 1.03 ms. The core has a faster update rate then documented, with only
43.3 µs. In addition to the RAPL domains, we also measured the core-voltage update
interval, which is 74.8 µs. In the histogram of the core-voltage domain, we can also see

27

0.97 0.98 0.99 1 1.01 1.02 1.03 1.04 1.05
0

1,000

2,000

3,000

t in ms

co
u

n
t

HEpkg

0.97 0.98 0.99 1 1.01 1.02 1.03 1.04 1.05
0

1,000
2,000
3,000

t in ms

co
u

n
t

HEram

40 42 44 46 48 50 52 54 56 58 60
0

0.5

1

1.5
·104

t in µs

co
u

n
t

HEcore

40 50 60 70 80 90 100 110 120 130 140 150 160
0

0.5

1
·104

t in µs

co
u

n
t

HVcore

Figure 4.1: Timing histograms of the different RAPL and core-voltage
MSRs.

harmonics on each multiple of the above update interval. The reason for the harmonics is
the different register type. RAPL uses an accumulating register, and therefore, the values
are monotonically increasing, whereas the core-voltage register returns the instantaneous
voltage value. So if the voltage value gets updated with the same value, we cannot detect
the update with our measurement algorithm. From the percentiles of Table 4.1, we can
see that the package and dram domain show fewer outliers than the core domain.

When using the Linux userspace powercap RAPL driver, we can also observe update
timings around the ones when using the rdmsr instruction directly with some minor
overhead for the core domain of around 8 µs. This enables potential attacks from an
unprivileged application on the kernel or an SGX enclave. We shortly discuss the possi-
bilities in Chapter 7. In this thesis, we read the RAPL interface and the core voltage in
a privileged context and directly over the rdmsr instruction to reduce the overhead and
have access to the core-voltage register.

28

Domain Argmax Mean Median 90th Percentile 95th Percentile

package 0.987 ms 1.000 ms 0.991 ms 1.031 ms 1.033 ms

dram 0.988 ms 1.000 ms 0.991 ms 1.031 ms 1.034 ms

core 0.043 ms 0.044 ms 0.043 ms 0.044 ms 0.056 ms

core voltage 0.075 ms 0.117 ms 0.076 ms 0.224 ms 0.259 ms

Table 4.1: Update times of the registers.

4.2 Measurement Framework

We take advantage of the short update intervals when reading the RAPL domains di-
rectly via the rdmsr instruction. For that purpose, we build a Linux kernel module, so
we can execute our measurement routines in ring-0 to use the privileged instruction.
On top of the kernel module, we build a library for interacting and configuring the mod-
ule. We denote these two components as measurement framework. The measurement
framework is then used to collect power side-channel traces. We denote the collection of
traces with the measurement framework as measurement process.

As we describe in Section 2.4, the RAPL interface MSRs are accumulating counters.
Therefore, the measurement has to be split into start- and stop-measurement. Hähnel
et al. [6] used a synchronization technique to wait for the next update of the RAPL
register. Due to the slow update intervals of the interface, it can happen that the value
of the RAPL domains did not change between the start- and stop-measurement, even
though the CPU consumed energy. Therefore, a synchronization technique is needed to
wait for a new register value.

We implement a similar technique, but instead of synchronization before each read of
the RAPL registers, we only synchronize our measurements in the start-measurement
routine, and we do not account for the energy consumed during the synchronization. We
discuss our hlt instruction delay technique to handle samples where we did not observe
an update at the end of this section.

The synchronization is done by waiting for one of the RAPL domain registers to change.
In our implementation, we wait for the package domain to change, because this will also
give the other registers enough time to update. A caveat here is that the updates of the
different RAPL registers might not be synchronized to the slower package domain. In
practice, we did not observe a negative effect of not synchronizing each register. Due to
the synchronization, we get an overhead of 1 ms maximum per sample recorded.

We calculate our measurement sample from the start- and stop-measurement after the
data for the stop-measurement is recorded. Listings 4.2 and 4.3 shows the source code
for the start- end stop-measurement. Our measurement sample includes seven fields,
whereas five of them contain power-related information, as we describe below.

29

TSC Difference This field contains the Time Stamp Counter difference between the
start- and stop-measurements. This field can be used to calculate the average
power consumption, as we described in Equation 2.7.

RAPL Differences These fields contain the energy differences between the start- and
stop-measurements for the package, core, and dram RAPL domain.

Core Voltage This field contains the core-voltage operation point read from the MSR
during the stop-measurement. We decided only to read this register once because
the register itself is not accumulating. It also would not make sense to read it
in the start-measurement, because the value would not contain information about
the target instructions.

P-state This field contains the currently active P-state during the stop measurement.
The current P-state is read from the same MSR as the core voltage, and we can
read the value with no overhead. As we describe in Section 4.8, the P-state is
essential for monitoring the measurement process.

SGX Debug This field is a monitoring field only used to configure our attacks. We use
it to store a specific register from the Save State Area (SSA) [50] from an enclave
to get additional information for each sample. This becomes especially useful to
determine the position of instructions, as we describe in Section 4.7.

We store each of the fields as a 64-bit unsigned integer inside a packed structure. These
samples are then stored in a buffer within a control structure allocated with kmalloc. We
memory map the control structure, including the buffer into the userspace, so the library
can access the buffer without additional overhead and can modify the configuration of
the module.

1 struct measurement_t start;

2
3 void start_measurement () {

4 uint64_t last = rdmsr(PKG);

5 while (last == rdmsr(PKG));

6 start.tsc = rdtsc();

7 start.pkg = rdmsr(PKG);

8 start.pp0 = rdmsr(PP0);

9 start.ram = rdmsr(RAM);

10 execute_hlt_delay ();

11 }

Listing 4.2: Start-measurement function.

1 struct measurement_t stop;

2
3 void stop_measurement () {

4 stop.tsc = rdtsc ();

5 stop.pkg = rdmsr(PKG);

6 stop.pp0 = rdmsr(PP0);

7 stop.ram = rdmsr(RAM);

8 stop.sts = rdmsr(STS);

9 stop.dbg = rdssa ();

10 write_sample (&start , &stop);

11 }

Listing 4.3: Stop-measurement function.

To record a measurement sample, we first introduce two new terms. The trigger event
specifies an event, after which a sample should be recorded. The trigger type describes
the behavior of the measurement module after a trigger event occurred, i.e., how the
measurement sample is recorded. We implement the following two trigger types.

30

victim

kernel

rapl

E E

30µs

hlt

20µs

run

50µs

"

30µs

hlt

20µs

run

50µs

"

30µs

hlt

20µs

run

50µs

"

Figure 4.2: Timing squence diagram of the victim and the modified timer
interrupt with a hlt delay of 30 µs.

Symmetric Trigger When using this trigger type, every time a trigger event occurs,
the kernel module will first perform a stop-measurement and then perform a start-
measurement. This trigger type will never stop measuring and is therefore useful
for a continuous stream of samples. Note that the first measurement of this trigger
type must be discarded since the first sample never received a start-measurement.

Asymmetric Trigger This trigger type will keep track of the number of trigger events
happened and perform a start-measurement for each odd event, and the finalizing
stop-measurement for each even event. This trigger type is useful when we have
an explicit start and stop point in our observation.

We can use these trigger types with trigger events to record side-channel information.
The most straightforward trigger event we implement is an ioctl system call to our ker-
nel module to send a trigger event. This trigger event is sufficient to measure procedures
with a clear, distinguishable energy signature. The ioctl system-call has a significant
overhead and is therefore not suitable for a periodic high-frequency sample stream.

Intel’s RAPL implementation measures the energy consumption of a specific domain over
the whole package (see Section 2.4). This means that, e.g., the core domain includes
the energy consumption of all cores, including all non-shared caches. We can use this
property to dedicate one core for our energy measurements and still observe the energy
consumption of all cores. This works only for the RAPL registers, the core-voltage MSR
is unique per core and, therefore, can only be read from the given core.

We decided against the monitoring core concept since we lose the core-voltage infor-
mation. Instead, we reduce the noise of other cores as much as possible by disabling
all cores except two. From these two cores, we use one as a general-purpose core to
keep processes running, and isolated the other. CPU cores can be disabled by using the
Linux kernel parameter max cpus and isolated by using the isol cpus parameter list.
The isolated cores are removed from the scheduling list.

We denote the isolated core as the victim core. We manually schedule the measurement
kernel module and the program under observation to the victim core, by using the pthread

31

set core affinity mask function pthread setaffinity np. We can also achieve this by
using the taskset program.

We want the possibility to record periodic samples, like a classical attacker using hard-
ware power side-channels has (see Section 2.2). To do so, we take advantage of the local
APIC. The APIC timer interrupt can be configured in the so-called periodic mode. In
this mode, the local APIC generates timer interrupts with a fixed interval. Alternatively,
we can also implement periodic sampling by using a kernel thread or kernel timer. How-
ever, if we use the kernel thread, we still need a busy loop to check for the timestamps
when to trigger the measurements, and this introduces an energy overhead. Since we
run our kernel module and the process under observation on the victim core, we also
have a scheduling problem. If we use a kernel timer, we simply add overhead to the local
APIC timer interrupt, since the timer interrupt triggers the kernel timers. To sample
periodically, the local APIC timer interrupt must be configured in periodic mode, with
the start-measurement synchronization disabled or either in one-shot or TSC deadline
mode where we set the next timer interrupt trigger value to a fixed interval.

To use the timer interrupt as a trigger event for our measurements, we need to hijack
the timer interrupt handler. We use the exported kernel kallsyms symbol to look up the
local APIC structure from the victim core and modify it. We store the current handler
so we can restore it after we finished the measurement process. The handler can now be
overwritten with our custom interrupt handler, which provides the trigger event.

We do not implement a synchronization to the RAPL registers in the stop-measurement
function. Instead, we implement a delay function. The delay function is used to block
the victim’s execution until the RAPL register receives an update. To implement a
timed delay inside the local timer interrupt, we decided to use the hlt instruction. The
hlt instruction stops the execution of the core until an external interrupt arrives. Using
the instruction directly can completely lock up the CPU if we execute it with interrupts
disabled. The Linux kernel already provides a safe hlt function, which enables the
interrupts before calling the instruction.

Calling the instruction stops the core from executing instructions. Therefore, the energy
accumulated by the different RAPL domains should be at a minimum in comparison to
other delay techniques. We observed a reduction in the power consumption by factor
2.06 for the core domain in comparison with a nop delay loop with a fixed CPU frequency
of 90% of the maximum frequency.

Figure 4.2 shows the general principle of the hlt delay. To continue the execution of our
start-measurement function, we need to generate an interrupt. We can simply use the
timer interrupt in one-shot mode and trigger an additional timer interrupt. We must
handle this timer interrupt differently than the trigger event interrupts to not trigger an
additional start-measurement.

32

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6

0

0.5

1

t in ms

si
gn

a
l

in
1

xreal
xavg

Figure 4.3: Loss of information due to the filtering process.

4.3 Simple Power Analysis with RAPL

In this section, we focus on reconstructing power side-channel information with the help
of the measurement framework and explore the SPA approach (see Section 2.2).

The Running Average Power Limit interface is a running average filter, as the name
suggests. Therefore, the values represent filtered values instead of the real energy con-
sumption. Since we know the update intervals of the registers from Section 4.1, we can
simulate the theoretical limits of the measurement process due to filtering. Running or
moving average filters can be represented as a convolution of the original signal and a
filter kernel, as we show in Equation 4.1.

xavg(t) = xreal(t) ∗ kavg(t) (4.1)

Equation 4.2 shows the filter kernel of a moving average filter, which is simply a rectan-
gular window.

kavg(t) =

{
1
T , if 0 ≤ t ≤ T
0, otherwise

(4.2)

A moving average filter distributes the power of a sample to the neighboring samples.
This results in a blurring effect and reduces high-frequency components in the signal.
Figure 4.3 shows the blurring effect of a moving average filter on a simulated signal. The
moving average time constant T is set to the approximate update interval of the core
domain of 50 µs.

The original signal is plotted with the dashed line, and the filtered signal is plotted
with a solid line. We can see that the filtered signal loses information on the short
high-frequency peaks. The phase delay of the moving average filter was corrected in the
figure.

The moving average filter provides a continuous output of filtered samples. The RAPL
interface, on the other hand, provides only updates after the register values are updated,

33

trace 1

trace 2

trace 3

rapl

instructions

T0
P0[n]

t00

P 0
0

t10

P 1
0

t20

P 2
0

instructions

T1
P1[n]

t01

P 0
1

t11

P 1
1

t21

P 2
1

instructions

T2
P2[n]

t02

P 0
2

t12

P 1
2

t22

P 2
2

Tr Tr

Figure 4.4: Synchronization between the traces to reconstruct a moving
average filter.

i.e., the RAPL interface can be thought of as a time-discrete signal. We denote the effect
of time-discrete moving average filter as a blocked average filter. The blocked average
filter loses information about the data in between sample points.

Since our threat model allows us to record multiple traces (see Chapter 3), we can
establish a technique to reconstruct a moving average signal from the blocked average
data. Each recorded sample stores the measured TSC difference, and therefore, we can
reconstruct the time points when a sample was recorded.

We discuss a synchronization technique in Section 4.2 to synchronize the start sample
to a new RAPL value. We now use a similar approach, where we synchronize the start
of our measurement trace to an update of the RAPL interface. However, we implement
another delay after the synchronization finished, to shift the complete timeline of the
RAPL update intervals in comparison with the timeline of the executed instructions.

Figure 4.4 shows this process, where we record three traces, and each of the traces gets
delayed by a different time. Therefore, we shift the update interval of the RAPL interface
and can reconstruct a moving average effect. Since the different traces are overlaid with
noise, multiple traces with the same start delay can be recorded and averaged together
to reduce the noise in the combined trace. To translate the shifted periods to the time
of the moving average filter, the notation tik is used, as shown in Equation 4.3.

tik = Tk + i · Tr (4.3)

We need to calculate the difference energy or the average power between the RAPL
interface measurements. Otherwise, the traces cannot be combined due to the different
accumulating offsets. Similar to the time notation, we use the notation from Equation 4.4

34

to describe the RAPL readings in the figure. Where Pk describes the RAPL interface
updates of the trace k.

P i
k = Pk[i] (4.4)

To calculate the time shifts for the measurement process, we upsampled the RAPL
interface update interval by a factor N , i.e., we divided the update interval by an integer
factor. We then can calculate the resulting shift delays with Equation 4.5.

Ti =
Tr
N
· i (4.5)

The shifting technique allows reconstruction to the theoretical limit of a moving aver-
age, as Figure 4.3 shows. However, we can also combine this technique with the hlt

delay of the measurement framework to reduce the visible update intervals of the RAPL
interface. If the hlt delay is used, the timestamps of the measurement samples must
be adjusted accordingly. The shifting technique heavily relies on time consistency, i.e.,
the instructions executed inside the function must be executed at the exact same time
for each trace. Since this not the case for real-world CPUs due to their complexity (see
Section 2.10), we cannot reach this theoretical limit. We show a SPA attack with this
technique in Section 5.3.

4.4 Extending the Measurement Resolution

In this section, we describe how to use another approach to record high-resolution side-
channel information, which does not rely on time synchronization. We still use the
measurement framework from Section 4.2. However, we extend our trigger events and
built additional logic on top of it to control the resolution extension.

To improve the resolution of our side channel, we use a precise execution control method
(see Section 2.11). We already use the timer interrupt as a trigger event. Thus, we
adapted the measurement framework to support zero- and single-stepping as introduced
by Van Bulck et al. [12].

Our patched SGX-SDK with our AEP callback enables us to provide logic shortly before
using the eresume instruction to resume the enclave after a timer interrupt occurs.
Figure 2.1 provides a summary of the SGX control flow transitions. To adapt zero- and
single-stepping, the local APIC timer interrupt is now strictly configured in one-shot
mode.

We developed a calibration tool to determine the one-shot intervals for the zero- and
single-steps. This calibration tool uses an SGX enclave containing a function, with
an endless loop, filled with a large sled of the four-byte long nop instruction. The
calibration enclave is built in debug mode, enabling us to use the edbgrd instruction

35

to read the current instruction pointer of the enclave. In the first phase, we want
to find the single-step interval. We start with a large one-shot interval and wait for
the next timer interrupt. After the timer interrupts returned to our modified AEP
callback, we compare the difference between the current enclave instruction pointer with
the instruction pointer from the last AEP callback. If we observe a difference larger
then four bytes, the single-step interval is too large, and we decrease it. On the other
hand, if the difference is zero, we increase our single-step interval. On top of this basic
logic, we build a filter. This filter prevents jumps between increments, and it adapts
for outliers. If the single-step interval satisfies our filter and resulted in a reasonable
amount of consecutive single-steps, we calculate the zero-step interval by multiplying
the single-step interval with 0.82 This fraction was chosen empirically. To achieve a
better resolution, we manually set the local APIC timer interval multiplicator to one.
This doubles the resolution in contrast to the multiplicator of two used in SgxStep.

We also modify the interrupt handler in our kernel module. The handler is no longer
a direct measurement trigger event. Instead, we introduce a flag that specifies if the
interrupt should be used as a measurement trigger event or not. This flag gets reset if a
measurement was triggered. This allows us to use the same timer interrupt handler as
a trigger event, as a callback when the hlt delay expires and as a handler for the zero-
and single-stepping mechanism. Only in the trigger event case, the handler needs to
do actual work. In the other two, the handler simply invokes the iret instruction and
returns to the AEP callback or the hlt delay invoker.

To control the zero- and single-stepping mechanism and the measurement trigger events,
we implemented logic in the AEP callback. The first part of this logic is the instruction
counter. The instruction counter is incremented if the accessed bit of the Page Middle
Directory (PMD) of the enclave is set. This allows us to emulate information about the
instruction pointer. The accessed bit of the PMD is reset before the AEP executes the
eresume instruction. The instruction counter keeps track of the position in the enclave
functions relative to the first enclave page-fault.

With the help of the instruction counter, we implement start triggers. Start triggers
are stored in an array and are ordered from smallest to highest. As the name suggests,
they start the logic for zero- and single-stepping mechanism at a given instruction. As
soon as a start trigger is reached, the logic is in the running state. To count the number
of AEP callbacks, we introduce the runtime counter. This counter is incremented each
time the AEP callback is called if the logic is in the running state. On top of the runtime
counter, we build three more triggers, which configure the behavior of the measurement
framework.

Measurement trigger If the runtime counter is a multiple of this value, the next timer
interrupt is used as a trigger event for the kernel module to record a measurement
sample into the measurement buffer. The trigger event still uses the behavior of
either the symmetric or the asymmetric trigger type.

36

1 void aep_callback_impl () {

2 instruction_counter += was_pmd_accessed ();

3 clear_pmd_accessed ();

4
5 int start = (instruction_counter == *pstart_triggers);

6 int is_running = start || state_running;

7
8 pstart_triggers += start;

9 runtime_counter += is_running;

10
11 int single_step = (runtime_counter % single_step_trigger) == 0;

12 int measure = (runtime_counter % measurement_trigger) == 0;

13 int stop = (runtime_counter % stop_trigger) == 0;

14
15 kernel ->measure = is_running && measure || start;

16 state_running = is_running && !stop;

17
18 int interval = step_intervals [! is_running || single_step];

19 apic_one_shot(interval);

20 }

Listing 4.4: The AEP callback logic to control the zero- and single-stepping
mechanism.

Single step trigger If the runtime counter is a multiple of this value, the logic will
perform a single-step to continue to the next instruction. If the logic is in the
running state, the default behavior is to perform zero-steps to force the current
instruction to be reissued.

Stop trigger If the runtime counter reaches this value, the logic leaves the running state
and single-steps until the next start trigger is reached. If the last start trigger was
stopped, the logic could stop the zero- and single-stepping mechanism since the
measurement for the current trace is completed.

The AEP callback gets called after each zero- and single-step and is often executed
between the start- and stop-measurement of a sample. Therefore, we reduce the mea-
surement overhead and build the logic with as few branches and instructions as possible.
Listing 4.4 shows this logic. The modulo operation to calculate the trigger flags can be
replaced with an and operation if the three triggers values can be represented in the
form of 2N − 1, where N is a positive integer. This reduces the energy overhead even
further. This is the most general form of the AEP callback logic, and parts of it can be
omitted if they are not used for a specific attack.

To reduce the noise of the overhead even further, we designed an experimental local
APIC timer interrupt handler, which instead of using the Linux kernel structure directly
modifies the gate descriptor inside the IDT. With this modification, we can build a
low-level interrupt handler. The original interrupt entry saves all the registers and uses
additional logging and functions to verify system integrity. All these instructions are

37

included in the RAPL energy measurements and introduce noise. We can reduce this
noise by either averaging more traces together or by using the low-level handler. The
handler is written in assembly, and therefore, we implement only the synchronization
and the necessary measurement triggers.

The advantage of this low-level handler is that we only have a few instructions in the
interrupt path as Listing 4.5 shows.

1 asm_timer_interrupt_handler:

2 push %rax

3 ; ack apic eoi

4 mov apic_base_ptr (%rip), %rax

5 movl $0 , 0xb0(%rax)

6 ; check trigger flag

7 mov trigger_flag_ptr (%rip), %rax

8 cmpb $0 , (%rax)

9 jne asm_measurement_triggered

10 ; leave and interrupt return

11 pop %rax

12 iretq

13
14 asm_measurement_triggered:

15 ; record measurement sample here

16 pop %rax

17 iretq

18
19 asm_aep_callback:

20 mov $3 , %rax

21 ; call C aep callback here if necessary

22 enclu

Listing 4.5: Low-level assembly interrupt handler.

In the listing, only the relevant instructions are in the default path where we do not trig-
ger a measurement. The apic base ptr is a pointer to the memory-mapped local APIC.
We acknowledge the interrupt by writing to a specific memory address in the mapped
area (see Section 2.9). The trigger flag ptr points to a variable inside the mmaped

measurement framework control structure and signals if a measurement sample should
be recorded. The assembly AEP callback then simply invokes the eresume instruction
and returns the control flow to the enclave. One caveat here is that all the watchdogs
of the operating system must be disabled, otherwise, the operating system will detect
a lockup on the victim core since we no longer update the watchdog timer in the timer
interrupt handler.

4.5 Precise Instruction Finding

In our attack, we want to precisely single step to a given instruction and then use our
measurement framework to record side-channel information. We denote this process as
targeted zero- and single-stepping. In contrast to the blind zero- and single-stepping,

38

−1,000 −500 0 500 1,000 1,500 2,000 2,500 3,000 3,500 4,000

0

50

100

150

co
u

n
t

Hunprecise

−1,000 −500 0 500 1,000 1,500 2,000 2,500 3,000 3,500 4,000

0

200

400

600

800

instruction pointer offset in bytes

co
u

n
t

Hprecise

Figure 4.5: Comparison of the instruction jitter between precise and un-
precise mode.

we know the instruction which we want to record and can, therefore, skip the instruction
which we are not interested in. Targeted zero- and single-stepping has a considerable
performance benefit if the code has thousands of instructions, which would increase the
time to record a measurement trace dramatically when using the blind method.

We described in Section 4.4 how we use the start triggers to start the zero- and single-
stepping logic. We discuss in this section how we can enforce that the instruction counter
of the AEP callback is precisely counting the instructions with low jitter, i.e., how we
can optimize our single-steps to be accurate.

Since the execution time of an instruction depends on the instruction itself, each in-
struction would need its local APIC timer one-shot interval, and we would need to know
the instruction currently being executed in advance. Since this is not feasible for the
attacker, we developed a precise single-stepping mechanism. If we want to execute a
single-step, but the one-shot interval is either to larger or too small for the current in-
struction, a zero-step or a multi -step can occur. We denote these single-stepping errors
as false single-step. If we did not use the precise single-stepping mechanism, the false
single-steps would add up, and we would only measure in the surrounding of our target
instruction.

39

1 void aep_callback_impl () {

2 if (single_step_flag && !was_pmd_accessed ()) {

3 increment ++;

4 apic_one_shot(minimal_interval + increment);

5 return;

6 }

7 increment = 0;

8 /* ... */

9 single_step_flag = !is_running || single_step;

10 int interval = step_intervals[single_step_flag];

11 apic_one_shot(interval);

12 }

Listing 4.6: The modified AEP callback logic to implement precise single-stepping.

In order to establish this precise single-stepping technique, we first define the minimal
single-step one-shot interval for all instructions. This is the interval of the one-byte
long nop instruction because it is among the smallest and fastest instructions in the
Instruction Set Architecture (ISA). We still use the page table flags to distinguish the
zero-steps from the single-steps. If we now trigger a single-step, we set a flag to signal
that the next instruction should be single stepped, and then set the next one-shot interval
to the minimal single-step interval. Upon the next AEP callback entry, we check if this
flag is set. If the flag is set and the accessed bit of the PMD is not set, then we add an
increment to the minimal single-step interval and trigger the one-shot mode again and
execute an early return from the AEP callback.

With this technique, we can minimize the false single-steps since we slowly detect the
real interval to single-step the instruction. If the precise single-stepping mode is used,
the measurement time might be extended, due to the retries. We can either use the
TSC difference to normalize this effect or disable precise single-stepping if the logic is in
running mode.

Figure 4.5 compares the precise single-stepping mechanism against the simple single-
stepping where no access flags are checked. In the figure, the 100000th instruction is
targeted, and the x-axis shows the jitter around the target instruction address in bytes.
Due to the retry mechanism, the recording of a measurement trace took 6 ms longer.
However, we see a significantly reduced jitter when using precise single-stepping.

4.6 Classes of Victim Algorithms

In this section, we classify different types of algorithms a victim could use inside an
enclave and how we need to measure to extract the secret information from the enclave.
We differentiate between the following victim algorithm types.

Asymmetric Algorithm This algorithm type uses the secret information inside a
branch condition, and the resulting branches have different instruction counts.

40

Symmetric Algorithm This algorithm type uses the secret information inside a branch
condition similar to the asymmetric algorithm. However, the branches of the con-
dition have the same instruction count. The instructions themself can be different.
Only the number of instructions is essential.

Constant Algorithm The secret information is not used inside a branch. For each of
the two cases, the same instructions are executed, and the secret information is
encoded in the data of the instructions.

We assume that each of these algorithms is embedded in large binaries with thousands
of instructions, and we, therefore, use targeted zero- and single-stepping, as described
in Section 4.5 to attack the algorithm. If the algorithm uses only a few instructions, we
can use blind zero- and single-stepping, as we show in Section 5.4 to extract the secret
information processed in the algorithm. Each of these algorithm types must be handled
differently by the measurement framework.

The asymmetric algorithm is the hardest to mount targeted zero- and single-stepping
on because we must classify the secret information during the measurement phase. Oth-
erwise, we do not know which instruction to measure next. We also cannot postpone the
classification after the measurement phase, since the samples to measure the instruction
containing the secret information, would grow exponentially with the length of the secret
information. If the instruction counts of the two branches have a common divisor, this
effect is reduced since the measurement points can overlap.

The symmetric algorithm can be targeted without the classification in the measurement
phase. Both of the branches have the same number of instructions, and therefore we
can simply measure each N th instruction, where N corresponds to the instruction count
of the cases. Certainly, we must target an offset at which both branches have either a
different instruction or where the instruction encodes the secret information.

To target the instructions inside a constant algorithm, the same approach as by the
symmetric algorithm is used. The branches for the two cases have the same length
and the same instructions. The secret information is encoded in the operands of the
instructions, similar to the constant time cryptographic algorithms from Section 2.6. The
energy signatures of different instructions are more distinct than the energy signature
of different operands. Therefore, the number of traces needed to reconstruct the secret
information is higher in comparison to the symmetric algorithm.

For the symmetric and constant algorithm, we can record all of the occurrences of the
secret information in one trace, and therefore use fewer traces to reconstruct the secret
information. In an attack on an asymmetric algorithm, we need to record more traces
to classify a single part of the secret information and therefore need more overall traces.

41

4.7 Debug Profiling

In this section, we detail how to generate start triggers. For the targeted zero- and
single-stepping approach, we assume that the source code of the enclave is available.
This implies that the enclave does not receive encrypted source code over a trusted
server by generating a public and private key pair an sending the public key to the
server with some authentication information as described by Aumasson et al. [17].

The first possibility to generate a start trigger is to count instructions from a given
page-fault manually. This approach works for small examples, as we show in Section 5.4,
where we first blindly zero- and single-step and then use each sixth instruction to classify
the key. Blindly single-stepping to determine patterns and then start targeted single-
stepping can increase the performance dramatically as we show in Section 5.4, where we
observe an overhead of approximately six times in the toy example.

The overhead can be approximated by the number of instructions inside the function
N and the number of instructions targeted with targeted zero- and single-stepping Nt.
Equation 4.6 shows the relation between the execution time of blind zero- and single-
stepping in comparison with the target approach.

tblind
ttargeted

≈ N

Nt + (N −Nt) · α
(4.6)

Equation 4.7 shows how to calculate the scaling factor α. Where tss is the time needed for
a single-step, tzs is the time needed for a zero-step, and Nzs is the number of zero-steps
per instructions.

α =

(
Nzs · tzs
tss

+ 1

)−1
(4.7)

If the calibration tool from Section 4.4 is used, the time for a zero-step is calculated
by multiplying the time for a single-step by 0.82 and therefore α can be simplified to
Equation 4.8.

α = (Nzs · 0.82 + 1)−1 (4.8)

The manually counting approach is not feasible for large binaries, or if the enclave
function uses loops. Therefore, we develop a profiling mechanism. We can read a specific
value from the enclaves SSA into the debug field of the measurement sample, by passing
an address to our measurement kernel module and using the access process vm Linux
kernel function to read the enclave’s memory, as used by SgxStep [12]. Since in the SSA
are all registers stored during a context switch, we have access to the current instruction
pointer. If a debug copy of the enclave is available, or the source code of the enclave
can be used to build a debug enclave, we can use this debug enclave to record the start

42

triggers for the measurement framework. We denote such a debug enclave, where we can
execute the same code but without the secret information as a trigger oracle.

To generate start triggers from the oracle, we specify the address of the target instruction.
We then precisely single-step each instruction. Each time the kernel module timer
interrupt handler is invoked, we read the enclaves instruction pointer and check if we are
currently at the desired instruction. If we hit the instruction, we store the instruction
counter as a new start trigger and continue the search. We store the recorded start
triggers in a file, which can later be loaded by the measurement framework.

Since the configuration of the zero- and single-step intervals is complex, we also build
the reverse mechanism, where we record the instruction pointer into each measurement
sample. Thus, we can verify that the measurements are taken from the desired instruc-
tion.

4.8 Power and P-State Monitoring

In the measurements of our side channel, we exploit short term changes in the power
consumption or the core voltage to extract secret information. Nevertheless, we want to
establish the same measurement conditions for each of the samples and traces recorded,
so we can post-process them to recover the secret information.

In order to establish equal conditions for each of the samples in a trace, we fix the
P-state of the cores and disable the Intel Turbo Boost Technology. This mitigates P-
state transitions and jumps in energy consumption and the core-voltage operation point
during the different phases of an attack. To enable software P-state requests, Hardware
Controlled Perfromance States (HWP) must be disabled, and the operating system must
use a power governor accepting user-requested P-states.

We cannot control external factors, like thermal heating, so we implement additional
monitoring for distorted traces. First, we monitor the current P-state for each sample
we record with the P-state field. As we mentioned in Section 4.2, reading the current
P-state introduces no overhead, since we already read the core voltage from the same
MSR. In practice, we did not observe P-state changes after configuring the hardware to
use the requested P-states, but we may observe a drop if thermal throttling starts or the
TDP is reached.

In addition to the monitoring of the samples, we also look at the mean trend of traces
during the measurement process. We calculate the mean over the energy and core-
voltage fields of the samples inside a trace. We then repeat this process for each trace
and plot the results over the trace number. If all the traces are recorded under the
same conditions, the means should be the same for each trace, and the plot should show
a straight line. In practice, we observe different behavior of the first few traces when
starting the measurement process. We remove these traces and only use the traces where
the means lie within a margin of each other.

43

0 500 1,000 1,500 2,000 2,500 3,000 3,500 4,000 4,500

2

4

6

8

·10−3 + 0.84

trace index

vo
tl

ag
e

in
V

Vcore,trend

Figure 4.6: The mean trend of the core-voltage domain over the measure-
ment traces.

Figure 4.6 shows an example of the mean trend of the core-voltage field over the mea-
surement from Section 5.4. We can see that the first 500 traces are not recorded under
the same conditions and therefore remove them from the post-processing step. In the
figure, we can also observe traces with spikes around trace index 3700. This technique
is also useful if a background process starts on the general-purpose core and distorts the
measurements.

44

Chapter 5

Attack Evaluation

In this section, we use the measurement framework and the zero- and single-stepping ex-
tension (see Sections 4.2 and 4.4) to exploit power side-channel leakage on cryptographic
algorithms.

We describe the configuration of the mbedTLS library for our attacks in Section 5.1.
Section 5.2 describes the system we use in the evaluation of our attacks. We then use
the mbedTLS library in Section 5.3 to use the time-based reconstruction technique to
exploit SPA leakage of the square-and-multiply algorithm. In Section 5.4, we attack a
toy example to show that we can distinguish the energy signature of different branches
inside the same cache line. In addition, the branches use the same instruction except
that one of the operands is different. We then advance the attack on the square-and-
multiply algorithm from the mbedTLS SPA example to an instruction-level resolution
and target an AVX instruction inside one of the key bit paths in Section 5.5.

We show how the configuration options of the measurement framework can be used to
target each of the above algorithms without the need to change the framework. Also,
we show the influence of the different parameters for the same attack target.

5.1 Victim Setup and MbedTLS Configuration

In this section, we discuss the setup for the victim algorithms we attack with our mea-
surement framework. All of the algorithms used in Sections 5.3 to 5.5 are placed inside
an SGX enclave. Figure 5.1 shows the general setup of our attacks. The secret informa-
tion is always stored in the secure enclave memory. The victim exposes a defined API
to the victim, which can be queried arbitrarily (see Chapter 3).

In Sections 5.3 and 5.5, we use the mbedTLS library as a victim. We adopted the
mbedTLS library configuration to satisfy the restriction of an SGX enclave (see Sec-
tion 2.8). We use the mbedTLS library version 2.13.0 for our attacks.

45

victim

API

SGX

keys

algorithm

attacker

init

kernel module

local APIC

post-processing

Figure 5.1: Block diagram of the attacker and victim interaction.

We disabled all the operating system features like file input and output operations. The
only remaining output functionality was the printf function, which we routed to an
ocall.

The RSA implementation uses an optimized version of the binary exponentiation algo-
rithm (see Section 2.6). To achieve direct leakage of the key over a conditional branch,
we set the moving exponentiation window length to one. Liu et al. [45] showed that if
an attack can be mounted on windows with a length of one, the attack can be extended
to arbitrary windows sizes.

To enhance the security of the algorithm, the mbedTLS library uses exponent blinding
and fault/glitch checking. This checking is achieved by encrypting the message again
after decrypting it and test if the result matches the input message. Since these counter
mechanisms increase either the number of traces needed or the execution time of the
algorithm itself, we did not include these mechanisms in our attacks. We used the mod-
ulo exponentiation function of mbedTLS directly. The result is a square-and-multiply
algorithm that is capable of handling big integers and uses a branch condition with the
secret information inside the branch.

5.2 Test System

The following attacks were executed on an Intel(R) Xeon(R) CPU E3-1275 v5 @ 3.60GHz
CPU. The system is running Ubuntu 18.04.3 LTS with kernel version 5.0.0-15-generic.
We set the following kernel boot parameters:

nox2apic Allows us to memory map the APIC.

apic=debug Prints advanced information if the IDT is corrupted.

nmi watchdog=0 Disables the nmi watchdog, otherwise, it would detect that the victim
core is not handling timer interrupts, and try to recover by switching to a different

46

timer interrupt source. Since we hijacked the interrupt handler, we do not want
this behavior.

maxcpus=2 Disables all the cores except for two. So we have one core as general-purpose
core and one of the cores as victim core.

isolcpus=1 Removes the core number one from the scheduling list and allows us to use
it as victim core.

intel pstate=no hwp disables Hardware Controlled Perfromance States (HWP) and
enables us to set the P-state directly and without dynamic P-state transitions.

The remaining parameters are reused from the SgxStep framework [12].

5.3 SPA Attack

In this section, we use SPA with our measurement framework to reconstruct parts of a
mbedTLS RSA key.

Implementation The target for this attack uses the same mbedTLS configuration,
as described in Section 5.1. We use a 2048-bit RSA modulus with a 512-bit key. The
larger the modulus size, the longer the mbedTLS algorithm takes to calculate the mul-
tiplications of the intermediates. Therefore, the time between key bits is increased. The
key consists of different blocks of zeros and ones, as shown in Equation 5.1. The mea-
surement framework is configured to trigger the victim API and record samples over the
invocation.

D = 0xffffffff00000000ffffffff00000000ffff0000ffff0000ff00ff00ff00ff00 . . .

00000000000000000000000000000000ffffffffffffffff0000000000000001

(5.1)

Configuration We use the technique from Sections 4.2 and 4.3 to increase the resolu-
tion of the RAPL interface. We set the hlt delay to 35 µs, so we reduce the seen update
interval of the core RAPL domain to 15 µs. To reconstruct the moving average effect
from Section 4.3, we delay the invocation of the victim API with a uniformly distributed
delay between 0 µs and 15 µs.

The P-state was reduced to 20 % of the maximum P-state to increase the duration of the
victim function. We observe a trade-off between the number of samples per trace, i.e.,
the duration of the invocation and the number of traces needed to reconstruct the key
parts when reducing the P-state, since the energy consumption also drops and, therefore,
the leakage effect is also decreased.

47

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
−2

−1

0

1

2
n

o
rm

al
iz

ed
vo

lt
ag

e

Vcore

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
−2

−1

0

1

2

n
or

m
a
li

ze
d

p
ow

er

Pcore,raw

Pcore,filt

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.5

1

normalized time

ke
y

b
it

KD

Figure 5.2: RSA key leakage with a classical SPA attack.

Results We record 500,000 traces over 12 hours and apply the following post-processing
technique. Due to fluctuations in the execution speeds of the CPU, some of the traces
take less time than others. To correct this effect, the time-stamps are normalized to
a range between zero and one, where one represents the end of the algorithm shifted
by the start delay, and zero represents the start of the recording, including the shift
delay to reconstruct the moving average effect. We then apply a linear interpolation to
increase the number of samples of the traces to 2000. We need to apply this step since
the recorded traces contain a different number of samples per trace. The resulting traces
have all the same length and are interpolated to equidistant time stamps between zero
and one.

We then use a moving average filter with a length of two on each of the traces to distribute
the sample energy between the neighboring samples and then combine the traces. As a
combination method, we first apply a per trace normalization and then use the median
function to combine the traces. The resulting trace represents the normalized power

48

consumption or the normalized core voltage over the normalized time.

Figure 5.2 shows the resulting traces for the core RAPL domain and the core voltage.
We apply a moving average filter of length three to the result of the core RAPL domain
to reduce the noise from the trace.

We can see that the core voltage and the core RAPL domain leak the RSA key blocks
of the private key (see Equation 5.1). We also see the effect that the algorithm approxi-
mately takes twice the time to calculate a one bit in comparison to a zero bit. Therefore,
we adjust the timing of the key plot from Figure 5.2 to match the timing of the currently
processed key bit. We can distinguish 8-bit blocks in the core-voltage trace, but the core
voltage is slowly fluctuating, and we cannot distinguish the last 64-bit block of ones.
In the core RAPL trace, we see no fluctuation but cannot distinguish the last pair of
alternating 8-bit blocks. However, we can distinguish the remaining key blocks.

We conclude that we can mount classical SPA attacks from software on RSA algorithms
with some remaining limitations. The resolution of the bit blocks could be extended by
increasing the hlt delay or by using uncacheable memory, as we discuss in Section 7.3.
If the victim uses a slower implementation or an implementation with a more distinct
key leakage, SPA attacks become more realistic.

5.4 Attack on a Symmetric Algorithm

In this section, we attack a symmetric algorithm (see Section 4.6). A symmetric al-
gorithm uses the secret information inside a branch condition, but the two resulting
branches have the same number of instructions. In addition to the same instruction
count, we decided to enhance the attack by using the same instructions in both of the
branches, only differing in one register operand.

Implementation The toy example implements a square-and-multiply like algorithm
(see Section 2.6). Usually, this algorithm needs a big integer implementation to handle
arbitrary-length integers. We keep the example small and use 256-bit AVX registers. A
caveat of the toy example is that it is not reversible, i.e., we cannot apply the encrypt
and then decrypt function to receive the original message.

We protect the algorithm by placing it inside an SGX enclave and only provide a defined
API to encrypt a message. We place the key inside the static data segment of the enclave.
In a real algorithm, the private key is managed differently and not placed inside the
binary as constant. In our example, only the fact that the key is stored in the enclave
memory is important. Listing 5.1 shows the C code of the toy example.

The toy example uses the Labels as Values extension of the GNU Compiler Collection
(GCC), to generate a jump table. We compile the code with the maximum optimization
level, so the jump table is only computed once. With the jump table, it is possible to
generate two branches with the same instructions count directly from C.

49

1 uint32_t key[] = {1,0,1,1,0,0,1,0,1,0,2};

2 uint32_t init [8] = {1,1,1,1,1,1,1,1};

3
4 void toy_example(uint32_t in_out [8]) {

5 const void *jmp_table [] = {

6 &&case_zero ,

7 &&case_one ,

8 && case_end

9 };

10 uint32_t *pkey = key;

11 asm volatile (" vlddqu (%0), %%ymm0 "::"r"(init)); // y = init

12 asm volatile (" vlddqu (%0), %%ymm1 "::"r"(in_out)); // x = in_out

13 goto* jmp_table [*pkey ++];

14
15 case_zero:

16 asm volatile (" vpmuludq %ymm0 , %ymm0 , %ymm0"); // y = y^2

17 asm volatile (" vpmuludq %ymm2 , %ymm1 , %ymm0"); // t = x*y

18 goto* jmp_table [*pkey ++];

19
20 case_one:

21 asm volatile (" vpmuludq %ymm0 , %ymm0 , %ymm0"); // y = y^2

22 asm volatile (" vpmuludq %ymm0 , %ymm1 , %ymm0"); // y = x*y

23 goto* jmp_table [*pkey ++];

24
25 case_end:

26 asm volatile (" vmovdqa %%ymm0 , (%0) "::"r"(in_out)); // in_out = y

27 }

Listing 5.1: C code of the toy example.

We terminate the key with a sentinel, similar to C strings, so we know when to stop
the toy algorithm. To handle the sentinel, i.e., the end of the algorithm, we simply
implement and additional case in the jump table. To prevent the compiler from inlining
the key, the variable is not declared static. We define three labels for the zero, one, and
end cases. The next case is called by indexing the jump table with the current key bit
and perform an indirect jump. We use the AVX ymm0 to ymm2 registers for the data and
the calculation intermediates. We use the ymm0 as our current sate or intermediate of
the algorithm. In the ymm1 register, we store the passed input argument of the function,
and finally, the ymm2 register is used as a dummy register to store the result in the zero
case.

The algorithm then loops through the bits of the key, which we represent as unsigned
32-bit integers, so we do not need to shift out the current bit and can instead use a
distinct address to access the next bit. If the algorithm jumps to the zero case, the state
register ymm0 is squared. We use the vpmuludq instruction for squaring and multiplying.
This instruction interprets the AVX register as packed unsigned 32-bit integers and
preforms pice-wise multiplications. After the ymm0 register is squared, multiplication
with the input register ymm1 is performed, but the algorithm discards the result of the

50

multiplication by storing it in the dummy register ymm2. The difference to the one case is
that there the results of the multiplication gets stored in the state register ymm0. When
the algorithm reaches the sentinel, it stores the state register into the input pointer and
returns from the function. The complete assembly code of the two branches for the one
and zero case is 46 bytes large and, therefore, it fits inside a single cache line, which is
typically 64 bytes large.

1 case_one:

2 vpmuludq %ymm0 ,%ymm0 ,%ymm0

3 vpmuludq %ymm0 ,%ymm1 ,%ymm0

4 movslq -0x4(%rax) ,%rdx

5 add $0x4 ,%rax
6 mov -0x28(%rsp ,%rdx ,8) ,%rdx

7 jmpq *%rdx

Listing 5.2: Assembly of the one case.

1 case_zero:

2 vpmuludq %ymm0 ,%ymm0 ,%ymm0

3 vpmuludq %ymm2 ,%ymm1 ,%ymm0

4 movslq -0x4(%rax) ,%rdx

5 add $0x4 ,%rax
6 mov -0x28(%rsp ,%rdx ,8) ,%rdx

7 jmpq *%rdx

Listing 5.3: Assembly of the zero case.

Configuration In this paragraph, we describe the configuration of the measurement
framework from Sections 4.2 and 4.4. We assume that we have no access to the source
code of the victim and perform blind zero- and single-stepping to extract the secret
information. Section 2.11 describes the technique used to start the attack by finding
the first code page after the victim’s API is called. We use the page accessed flags to
determine which page is accessed after the call (see Section 2.11).

We do not know when the processing of the key starts, so we zero-and single-step each
instruction in the function until we return to our caller. To measure continuously, we use
the in Section 4.2 described symmetric trigger, which stops the previous measurement
and starts a new one, after each trigger event. As a trigger event, we use the in Section 4.4
described zero- and single-stepping mechanism. To determine the intervals of the local
APIC timer interrupt for the zero- and single-steps, we use the calibration tool on our
test system described in Section 5.2. We reduce the CPU frequency to 75%.

The AEP callback logic was configured to trigger a single-step and a measurement after
N zero-steps. We did not use the hlt delay nor the stop trigger and set the start trigger
to the first instruction, so we measure each instruction from the first page fault. The
configured attack features now only one real parameter. The others are provided by
the calibration tool for the CPU running the attack. We can influence the measurement
duration per instruction with the parameter N . The RAPL register has a defined update
rate as described in Section 4.1, so we choose N larger than the minimum value of 186
to receive updates in all the RAPL domains. If the value is below this margin, we do
not receive updates in the package and dram domain on the test system.

Results In the first run, we set N to 188 and measured 96,000 traces. This N is near
the minimum value such that the package domain receives one update on the test system.
The measurement on the test system took 8.11 hours.

51

0 6 12 18 24 30 36 42 48 54

1.5

2

2.5

·10−3 + 0.99
∆

ti
m

e
in

m
s

t188

0 6 12 18 24 30 36 42 48 54p
ow

er
eq

u
iv

al
en

t

Ppkg,188

0 6 12 18 24 30 36 42 48 54p
ow

er
eq

u
iv

al
en

t

Pcore,188

0 6 12 18 24 30 36 42 48 54p
ow

er
eq

u
iv

al
en

t

Pram,188

0 6 12 18 24 30 36 42 48 54
27.5

27.5

27.6

27.6
·10−3 + 1

vo
lt

ag
e

in
V

Vcore,188

0 6 12 18 24 30 36 42 48 54
27.5

28

28.5
·10−3 + 1

instruction index

vo
lt

a
ge

in
V

Vcore,255
Vcore,188

Figure 5.3: Results of the RAPL domains and the core voltage.

52

101 102 103 104 105
0

0.5

1

number of traces

su
ce

ss
ra

te

Vcore,255
Vcore,188
Pram,188

Ppkg,188

Pcore,188

Figure 5.4: The classification trend over the number of traces recorded.

Due to the blind zero- and single-stepping technique, each of the instructions inside
the API function represent a sample inside the measurement trace. We describe in
Section 3.2, that multiple invocations of the same victim function result in the same
executed instructions. Therefore, we can remove outlier traces, which do not contain
the same number of samples as the median of all the traces.

From the 90,000 traces of the first measurement, around 2200 traces were removed. We
observe outliers with only one or two samples difference. We post-process the remaining
traces by calculating the mean for each field of a sample over all the traces, resulting in
a single trace where each sample represents one instruction inside the victim function.

Listings 5.2 and 5.3 shows that the branches consist of six instruction each, the same
period is observable in the measurement results from Figure 5.3. In the figure, we zoomed
into the interesting part and cut away the entry and exit of the function.

We see a repeating pattern in all the energy domains and the core voltage. If we compare
the pattern to the key from Listing 5.1 (1,0,1,1,0,0,1,0,1,0), we see two different patterns
with the length of six samples, and the pattern matches the key.

We also looked at the effect of setting the parameter N to 255 and reran the experiment
with only 20,000 traces. As visible from Figure 5.3, the voltage leakage increased in
comparison with the core-voltage trace of the first experiment.

In the first attack, we use blind zero- and single-stepping to record each instruction
inside the enclave function. We observe that the pattern for one key bit and the pattern
for a zero key bit can be distinguished by only looking at one specific instruction. This
enables us to use targeted zero- and single-stepping. To determine the effectiveness of
our attack, we randomly selected a subset of the recorded traces and only use this subset
in the post-processing algorithm.

ki = C(x, i) =

(
xi >

min(x) +max(x)

2

)
(5.2)

53

Domain Instructions N Traces Success Rate Duration

package 6 (blind) 188 60000 99.7% 203.96 h

core voltage 6 (blind) 255 150 99.4% 41.65 min

package 1 (targeted) 188 40000 99.5% 29.16 h

dram 1 (targeted) 188 20000 99.7% 11.67 h

core 1 (targeted) 188 55000 99.6% 32.09 h

core voltage 1 (targeted) 255 350 99.0% 16.55 min

Table 5.1: Attack times for a 2048-bit key within the toy example.

We then post-process this subset and apply the classification algorithm from Equation 5.2
on the resulting post-processed trace x. The post-processed trace only contains the
targeted instructions. We use every fourth instruction for the RAPL domains and every
sixth instruction for the core voltage, so we have to decide which side channel we use in
advance.

We use a simple threshold comparison to determine the key bit. The threshold is the
midpoint between the maximum and minimum of the used samples. We repeat the
random selection process and the classification algorithm a thousand times and calculate
the success rate at which we correctly classify the complete key. Figure 5.4 shows how
the success rate changes over the number of traces used.

We observe that the core-voltage side channel for N set to 188 needs one order of
magnitude fewer traces than the RAPL domains recorded with the same parameter N .
If we increase the parameter N , we amplify the leakage in the core-voltage side channel,
so we see a total reduction of two orders of magnitude in comparison with the RAPL
domains.

With the given success rates and the bit timings, we calculate the time needed to re-
construct a complete 2048-bit long key within the toy example. Table 5.1 shows the
resulting attack times. Hence, we can reconstruct a complete key with a success rate of
99 percent in under 17 minutes when using the core-voltage side channel and an increased
parameter N of 255.

From the attack duration, we also see the benefit of targeted zero- and single-stepping
over the blind approach. If we target all instructions in these cases, we observe an
overhead of factor 5.87 for the core-voltage domain, if we account for the different trace
counts in Table 5.1. If we use Equation 4.6, we obtain an approximated overhead of
factor 5.81

Van Bulck et al. used SgxStep [13] to classify instruction based on their interrupt latency.
The latency between the interrupt arrival and the interrupt handling depends on the
instruction executed. We also see this effect in Figure 5.3 in the ∆ time trace. To not
include this leakage into the power calculations from Equation 2.7, we did not calculate
the power in the figure, instead, we used only the RAPL differences and denoted them

54

as power equivalents.

5.5 Attack on an Asymmetric Algorithm

In this section, we configure the measurement framework to attack an asymmetric al-
gorithm. We use the mbedTLS library as a target and reuse the configuration from
Section 5.1. The victim is again located inside an SGX enclave with the keys lying
inside the enclave’s memory. Since the mbedTLS library is not constant time (see Sec-
tion 2.6), conventional timing attacks can be mounted on the implementation. We focus
on extracting the secret information with our zero- and single-stepping extension and
the RAPL or core-voltage side channel instead of timing attacks.

Implementation We mount targeted zero- and single-stepping on the algorithm since
the library supports arbitrary length integers and is a full-grown cryptographic algo-
rithm in comparison to the toy example from Section 5.4, therefore blind zero- and
single- stepping is not feasible. We show the performance overhead of blind zero- and
single- stepping in Equation 4.6. The two branches of the asymmetric algorithm contain
different instructions and different instruction counts.

1 void mbedtls_mpi_exp_mod(/*...*/) {

2 // ...

3 mbedtls_mpi *p;

4 while(1) {

5 if(bufsize == 0) {

6 if(nblimbs == 0)

7 break;

8 nblimbs --;

9 bufsize = 64;

10 }

11 bufsize --;

12 ei = (E->p[nblimbs] >> bufsize) & 1;

13 if(ei == 0 && state == 0)

14 continue;

15 if(ei == 0 && state == 1) {

16 p = X;

17 goto mul_or_square

18 }

19 state = 1;

20 p = Y;

21 MBEDTLS_MPI_CHK(mpi_montmul(X, X, N, mm , &T));

22 mul_or_square:

23 MBEDTLS_MPI_CHK(mpi_montmul(X, p, N, mm , &T));

24 }

25 //...

26 }

Listing 5.4: C code of the mbedTLS library (rearanged to fit assembly output).

55

To distinguish the key bit inside the branch condition, we do not attack the branch
condition directly. Instead, we attack a target instruction with a more distinct en-
ergy signature than the branch itself. We target an AVX instruction inside the Intel
fast memset implementation. Which replaces the standard libc memset implementation
inside SGX. The AVX instruction is a nearly fixed offset away from the branch condi-
tion in the one case. Listing 5.4 shows the binary exponentiation algorithm, where the
memset function is called inside the mpi montmul function. We use the same offset for
each key bit and, therefore, will target the AVX instruction in the one case, but in the
zero case, we do not see the same energy signature since another instruction is at this
offset. Listings 5.5 and 5.6 shows the disassembly of the two targets. The arrows mark
the target instructions.

1 leaq 0x0001bc50 ,%rsi

2 ->vmovq %r9 ,%xmm0

3 ->vpbroadcastd %xmm0 ,%ymm0

4 ->cmpq $0x80 ,%r11
5 ja 0x1b080

Listing 5.5: Target instructions of the
one case.

1 addq $8 ,%rsp
2 ->jmp _intel_fast_memset.V

3 ->endbr64

4 ->jmp __intel_avx_rep_memset

5 endbr64

Listing 5.6: Target instructions of the
zero case.

The square-and-multiply algorithm implementation of mbedTLS skips leading zeroes of
the exponent and has, therefore, a key dependent setup phase. The big-integer multi-
plication implementation also takes a different number of instructions depending on the
data of the multiplication. Furthermore, the selection of the exponent key bit also uses
different instructions. All these factors add up and lead to a data-dependent offset to
the target instructions.

Configuration Since we assume a known assembly attack, we could reconstruct the
exact offset, if we know the plain text and mount the same attack as we describe here
on the condition to skip leading zeros. With the number of leading zeros and the
plain text, we can iteratively reconstruct the intermediates and circumvent the non-
fixed multiplication and bit selection process.

It is possible to calculate the offsets from hand, but since we have the enclaves assembly,
we instead build a trigger oracle to precisely determine the next zero- and single-stepping
trigger. Equation 5.3 shows the oracle we need for the mbedTLS library implementation.

ti = O(i,Ki−1,M,N ,L) (5.3)

The oracle depends on the previously reconstructed key bits Ki−1 = (k0, . . . , ki−1), the
known plaintext M, and the public modulus N , the current index i and due to the
setup phase the number of leading zeros L. The oracle gives us the next target offset
ti where we need to zero- and single-step to record the samples Sti . Equation 5.4 then

56

0 5 10 15 20 25 30 35 40 45 50 55 60 65 70

0

5

10

·10−3 + 1
vo

lt
ag

e
in

V

Vcore,dist

0 5 10 15 20 25 30 35 40 45 50 55 60 65 70

−2.5

0

2.5

5

7.5
·10−3 + 1

vo
lt

a
ge

in
V

Vcore,min

Vthreshold

0 5 10 15 20 25 30 35 40 45 50 55 60 65 70

0

0.5

1

key bit index

ke
y

b
it

KD

Figure 5.5: Reconstruction of the RSA key from the voltage distribution.

uses these samples to classify the next key bit ki with a given classification algorithm
C. Listing 5.7 shows the complete algorithm to reconstruct the victim’s key iteratively
where R symbolizes the sample recording process using the target offset ti.

ki = C(Sti) (5.4)

We realized the trigger oracle by using the victim mbedTLS implementation and extend-
ing the API with the possibility to use a user-defined key. We build the oracle enclave
with debug mode enabled and use the profiling functionality as we describe in Section 4.7
to record the next start-trigger. We then use this recorded start-trigger and attack the
victim implementation, gathering samples of either the one case or the zero case.

We configured the measurement framework to use the asymmetric trigger-type since we
start the measurement when we hit the start trigger and stop it after we recorded two

57

1 reconstruct_key () → KNbit :

2 k0 = 1

3 for i in (1, . . . , Nbit):

4 ti = O(i, (k0, . . . , ki−1), M, N , L)
5 Sti = R(ti)
6 ki = C(Sti)

Listing 5.7: Iterative reconstruction of the victim key.

instructions. The single-step trigger was set to 255, and the measurement trigger was set
to 511, so we measure exactly two instructions. We replaced the complex AEP callback
with the and version (see Section 4.4) to reduce the measurement noise. We execute a
hlt delay of 5000 cycles before each measurement to bring the CPU to a known state
before we zero-step the instructions.

Results Figure 5.5 shows the result of the core-voltage domain of the attack. We
record ten traces per key bit and plot the distribution of the samples as candlesticks.
We can observe that the core-voltage domain has different distributions depending on
the instruction being single stepped. For the AVX instruction, i.e., the one bit, we can
see a nearly punctual distribution. For the zero bit, we can see a broad spread of the
core voltage distribution.

ki = C(Sti) = (minVcore(Sti) > 1.0025) (5.5)

To classify the secret key, we use a minimum classifier and a threshold as Equation 5.5
shows. The complete measurement took under 5 minutes and managed to reconstruct
all 71 bits of the private key. The public modulus N had a length of 512-bit. We used
the private key D = 0x660755fff0f0555537.

58

Chapter 6

Countermeasures

In this chapter, we discuss how to mitigate the attacks we show in Chapter 5. We
discuss countermeasures against classical power analysis attacks in Section 6.1. We then
propose our countermeasures to mitigate the RAPL and core-voltage side channels in
Section 6.2.

6.1 Power Analysis Countermeasures

In this section, we discuss common countermeasures against classical power analysis
attacks.

Hiding is a mitigation technique where the power leakage of an operation containing the
secret information is hidden from the attacker by mixing irrelevant operations into the
overall power trace [4]. Since we assume known assembly attacks and target specific
instructions with our framework, software-based hiding does not help against our zero-
and single-stepping attacks.

One of the countermeasures to harden an RSA decryption is exponent blinding [4]. We
discussed the basic principle of exponent hiding in Section 2.6. The idea is to change the
exponent of the square-and-multiply algorithm with every decryption. Therefore, the
attacker cannot see the same key bits over multiple traces. This increases the duration
of the attack, as Schindler et al. [46] showed. Exponent blinding does not add security
if the attacker is capable of single-trace attacks, as we discuss in Section 7.2.

Exponent blinding is a form of masking. Masking combines the secret information with
a random mask to make the result of the operation independent of the secret value [4].
Masking is a form of secret sharing where the information is split up into multiple
shares representing the real intermediate. Exponent blinding is a particular case where
the masking does not have to be undone after the mask is applied, due to the properties
of RSA (see Section 2.6).

59

6.2 RAPL and Core-Voltage Countermeasures

To mitigate power side-channel attacks using the RAPL interface or the core-voltage side
channel, we propose to either prohibit energy readings from userspace or to introduce a
mechanism like the perf interface paranoia [63]. The paranoia level can be set by the
root user to allow readings from unprivileged users, which are disabled by default.

For the SGX threat model, where the attacker has kernel-level privileges, we propose not
to include the energy consumption of instructions executed inside an SGX enclave in the
energy readings and fix the core-voltage field to the value during the entry of the enclave,
during Asynchronous Enclave Exits (AEX) the core voltage must be reverted to the value
during the enclave entry and enforced that consecutive changes do not leak information
about the SGX instructions. If the energy consumption of SGX is not included in the
RAPL measurements, energy-aware applications will no longer be accurate. Therefore,
we propose to add a fixed energy increment per time to the RAPL domains based on
the current P-state. These mitigations can either be deployed by a microcode update or
might need hardware changes.

Decreasing the resolution of the RAPL interface does not mitigate software-based power
side channels since we still can simply increase the measurement duration of our zero-
and single-stepping attack (see Section 5.4). However, decreasing the resolution might
make some attacks infeasible.

60

Chapter 7

Limitations and Future Work

In this section, we discuss ideas and future work arising from this thesis. We classified
the different types of victim algorithms in Section 4.6. Since we covered attacks on
symmetric and asymmetric algorithms in Chapter 5, we discuss in Section 7.1 how to
extend the attack on constant algorithms.

Beyond the attacks described in this work, we also mounted further attacks as described
in our paper by Lipp et al. [16], which is currently in submission to the USENIX Security
2021 conference. The attacks in this thesis and additional attacks from the paper were
disclosed to Intel, and the attacks received two CVE numbers (CVE-2020-8694 and
CVE-2020-8695). Lipp et al. [16] discuss possible userspace attacks and additionally
demonstrate an attack on AES-NI.

7.1 Attack on a Constant Algorithm

As we described in Section 4.6, constant algorithms use the secret information in the
data operands of instructions. Therefore, cryptographic constant time algorithms (see
Section 2.6) fall into this category.

We looked at the implementation of bearSSL [48], a constant time library, providing
a constant time implementation of the square-and-multiply algorithm, similar to the
version we describe in Listing 2.2. The algorithm uses a constant time memcpy function
inside the loop iterating over the private key length. This memcpy function lies on a
different page than the loop, and we can, therefore, trigger a page fault for every distinct
key bit. This enables us to target instruction even more precisely than with the normal
precise single stepping because stepping errors will not add up. In addition, we can only
use targeted single-stepping mechanisms after we observed the page fault. Therefore,
we do not need to precisely single step over the instructions before the constant time
memcpy function is called, increasing the attack performance dramatically.

Listing 7.1 shows the assembly code of the constant time memcpy function. The key

61

1 br_ccopy:

2 xor %r8d ,%r8d

3 -> neg %edi

4 br_ccopy_loop:

5 cmp %r8 ,%rcx

6 je br_ccopy_end

7 movzbl (%rsi ,%r8 ,1) ,%r9d

8 mov (%rdx ,%r8 ,1) ,%al

9 xor %r9d ,%eax

10 movzbl %al ,%eax

11 -> and %edi ,%eax

12 -> xor %r9d ,%eax

13 mov %al ,(%rsi ,%r8 ,1)

14 inc %r8

15 jmp br_ccopy_loop

16 br_ccopy_end:

17 retq

Listing 7.1: Target instructions containing the secret information.

bit information gets passed to the function in the edi register. The instructions marked
with an arrow are the instructions containing the secret information. We can target each
of these instructions with the targeted zero- and single-stepping mechanism to record
power side-channel information.

As Lipp et al. [16] show, these different operands in the and instruction have different
energy signatures and can be detected with the RAPL interface. Since the operands of
the and and xor operation are either the value zero or the data to copy, we should be
able to distinguish the energy signature. The number of traces recorded must be way
higher in comparison to the toy example from Section 5.4. Also, the measurement noise
must be reduced, and therefore, the low-level assembly handler might be used. Due to
time limitations, this experiment was not completed for this thesis.

7.2 Single Trace Attack

Our attack on mbedTLS from Section 5.5 can be extended to a single trace attack. Cur-
rently, we record ten samples per target instruction and then apply the classification to
determine the next target instruction. We used ten different traces to record information
to reduce potential noise. We could instead use a single trace of the victim and simply
record measurement samples by only zero-stepping the target instruction.

We then could use the recorded samples inside the AEP callback to classify the next
target instruction. This would enable dramatically faster attacks since the longest phase
of the attack is to single-step to the target instruction. With single-trace attacks, we
also can attack implementations that apply exponent blinding in the decryption method
because we can observe every bit of the blinded exponent and, therefore, reconstruct

62

private keys for which Equation 2.11 holds.

7.3 Increasing the Execution Time

In our classical SPA attack in Section 5.3, we observe limitations of the key bit res-
olution we can reconstruct. To slow down the decryption of the victim, i.e., increase
the time per key bit, we could change the type of the data pages of the enclave to use
uncacheable memory. This would slow down each memory load and store of the enclave
and potentially increase the resolution to reconstruct distinct key bits. Disabling all the
caches with the Cache Disable bit in the cr0 [5] register is not applicable because we
observed instabilities with the measurement framework.

7.4 Other (Micro)-Architectures

This thesis focused only on Intel CPUs, but different manufacturers also provide software-
based energy readings.

AMD Sine the ZEN CPU generation AMD also provides a RAPL interface [64]. In
contrast to the RAPL interface from Intel, the AMD version does not include all the
cores in the core domain, instead, each of the cores provides its own per core register.
This eliminates all noise from the other cores.

Currently, the register can only be read from the kernel. Since AMD does not provide
a feature like SGX the threat models to attack userspace applications do not include
kernel-level privileges. However, the AMD RAPL interface will soon also be supported
from userspace [30], allowing unprivileged reads. This might enable power side-channel
attacks similar to the ones described by Lipp et al. [16] and this thesis

ARM ARM does not provide a direct software interface like RAPL. However, some
ARM boards like the ARM CoreTile Express A15x2 [65] provide an energy meter built
onto the development board. The energy meter provides a sample rate of 10 kHz and also
accumulates the energy in the microjoule range. Therefore, the resolution is comparable
to that of the package and the core RAPL domains. Hence, this energy meter can
potentially replace the RAPL interface. Vasilakis et al. [66] used a similar board to
characterize the energy consumption of different ARM instructions.

63

Chapter 8

Conclusion

In this master thesis, we presented a framework to record power side channel relevant
information on instruction-level granularity. We refined the capabilities of the RAPL
interface and the general idea that the interface leaks security-relevant information, even
if the code is protected by an SGX enclave. We extended power side-channel attacks by
exploiting a voltage-based side channel purely from software.

With the help of the local APIC timer, we developed a measurement framework to
record power side-channel information and used the hlt instruction to extend the RAPL
interface resolution. With the extended measurement resolution, we reconstructed the
underlying moving average signal. We applied a classical SPA attack on the mbedTLS
library, which was able to reconstruct consecutive bit blocks of size eight.

We enhanced the attack capabilities even further by adopting a precise execution control
method to record side-channel information on a per instruction-level granularity. With
this extension, we showed that we can distinguish two different branches within the same
cache line and were able to reconstruct the secret key. We mounted an attack on the
mbedTLS library and showed that these techniques are also applicable to large scale
libraries, with our precise instruction targeting technique. We managed to leak a 71-bit
long RSA key with a 512-bit long public modulus in under five minutes with ten traces
per key bit.

We disclosed our findings with collaboration with Lipp et al. [16] to Intel and received
two CVE numbers for these types of attacks.

We conclude that the general idea to support power-aware computing by implementing
a software-based energy monitoring facility conflicts with the requirements to implement
a side-channel-secure system. We proposed mitigations to allow the coexistence of these
different requirements by removing power-related information that originates from SGX
enclaves. In summary, this thesis closes the gap between hardware and software-based
power side-channel attacks.

64

Bibliography

[1] P. C. Kocher, J. Jaffe, and B. Jun, “Differential power analysis,” in CRYPTO’99,
1999.

[2] P. Kocher, J. Jaffe, B. Jun, and P. Rohatgi, “Introduction to differential power
analysis,” Journal of Cryptographic Engineering, vol. 1, no. 1, pp. 5–27, 2011.

[3] E. Brier, C. Clavier, and F. Olivier, “Correlation power analysis with a leakage
model,” in International workshop on cryptographic hardware and embedded sys-
tems. Springer, 2004, pp. 16–29.

[4] S. Mangard, E. Oswald, and T. Popp, Power analysis attacks: Revealing the secrets
of smart cards. Springer Science & Business Media, 2008, vol. 31.

[5] Intel®, “Intel® 64 and IA-32 Architectures Software Developer′s Manual, Volume
3 (3A, 3B & 3C): System Programming Guide,” no. 325384, 2016.

[6] M. Hähnel, B. Döbel, M. Völp, and H. Härtig, “Measuring energy consumption for
short code paths using rapl,” SIGMETRICS Perform. Eval. Rev., vol. 40, no. 3, pp.
13–17, Jan. 2012. [Online]. Available: http://doi.acm.org/10.1145/2425248.2425252

[7] H. Mantel, J. Schickel, A. Weber, and F. Weber, “How secure is green it? the case
of software-based energy side channels,” in European Symposium on Research in
Computer Security. Springer, 2018, pp. 218–239.

[8] M. M. Fusi, “Information-leakage analysis based on hardware performance
counters.” [Online]. Available: https://www.politesi.polimi.it/bitstream/10589/
137507/3/2017 12 FUSI.pdf

[9] Intel®, “Intel® software guard extension.” [Online]. Available: https://software.
intel.com/content/www/us/en/develop/topics/software-guard-extensions.html

[10] M. Schwarz and D. Gruss, “How trusted execution environments fuel research on
microarchitectural attacks,” IEEE Security & Privacy, 2020.

[11] Y. Xu, W. Cui, and M. Peinado, “Controlled-channel attacks: Deterministic side
channels for untrusted operating systems,” in 2015 IEEE Symposium on Security
and Privacy. IEEE, 2015, pp. 640–656.

65

http://doi.acm.org/10.1145/2425248.2425252
https://www.politesi.polimi.it/bitstream/10589/137507/3/2017_12_FUSI.pdf
https://www.politesi.polimi.it/bitstream/10589/137507/3/2017_12_FUSI.pdf
https://software.intel.com/content/www/us/en/develop/topics/software-guard-extensions.html
https://software.intel.com/content/www/us/en/develop/topics/software-guard-extensions.html

[12] J. Van Bulck, F. Piessens, and R. Strackx, “Sgx-step: A practical attack framework
for precise enclave execution control,” in Workshop on System Software for Trusted
Execution, 2017.

[13] J. Van Bulck, F. Piessens, and R. Strackx, “Nemesis: Studying microarchitectural
timing leaks in rudimentary CPU interrupt logic,” in CCS, 2018.

[14] K. Murdock, D. Oswald, F. D. Garcia, J. Van Bulck, D. Gruss, and F. Piessens,
“Plundervolt: Software-based fault injection attacks against intel sgx,” in Proceed-
ings of the 41st IEEE Symposium on Security and Privacy (S&P’20), 2020.

[15] M. Schwarz, M. Lipp, D. Moghimi, J. Van Bulck, J. Stecklina, T. Prescher, and
D. Gruss, “Zombieload: Cross-privilege-boundary data sampling,” in Proceedings
of the 2019 ACM SIGSAC Conference on Computer and Communications Security,
2019, pp. 753–768.

[16] M. Lipp, A. Kogler, D. Oswald, M. Schwarz, C. Easdon, C. Canella, and D. Gruss,
“With great power comes great leakage: Exploiting software-based power side chan-
nels on x86,” in USENIX Security, 2021.

[17] J. Aumasson and L. Merino, “Sgx secure enclaves in practice,” Blackhat, 2016.

[18] F. Wanlass and C. Sah, “Nanowatt logic using field-effect metal-oxide semiconductor
triodes,” in 1963 IEEE International Solid-State Circuits Conference. Digest of
Technical Papers, vol. 6. IEEE, 1963, pp. 32–33.

[19] H. Weste Neil and H. David, “Cmos vlsi design: a circuits and systems perspective,”
2006.

[20] P. Kocher, J. Horn, A. Fogh, , D. Genkin, D. Gruss, W. Haas, M. Hamburg, M. Lipp,
S. Mangard, T. Prescher, M. Schwarz, and Y. Yarom, “Spectre attacks: Exploiting
speculative execution,” in S&P, 2019.

[21] M. Lipp, M. Schwarz, D. Gruss, T. Prescher, W. Haas, A. Fogh, J. Horn, S. Man-
gard, P. Kocher, D. Genkin, Y. Yarom, and M. Hamburg, “Meltdown: Reading
Kernel Memory from User Space,” in USENIX Security, 2018.

[22] M. Schwarz, M. Schwarzl, M. Lipp, and D. Gruss, “NetSpectre: Read Arbitrary
Memory over Network,” arXiv:1807.10535, 2018.

[23] J. D. Golić and C. Tymen, “Multiplicative masking and power analysis of aes,”
in International Workshop on Cryptographic Hardware and Embedded Systems.
Springer, 2002, pp. 198–212.

[24] D. Genkin, A. Shamir, and E. Tromer, “Rsa key extraction via low-bandwidth
acoustic cryptanalysis,” in Annual Cryptology Conference. Springer, 2014, pp.
444–461.

66

[25] J. Haj-Yahya, A. Mendelson, Y. B. Asher, and A. Chattopadhyay, Energy Effi-
cient High Performance Processors: Recent Approaches for Designing Green High
Performance Computing. Springer, 2018.

[26] The Linux Kernel, “intel pstate.” [Online]. Available: https://www.kernel.org/
doc/html/v4.12/admin-guide/pm/intel pstate.html

[27] Archlinux Wiki, “cpufreq.” [Online]. Available: https://wiki.archlinux.org/index.
php/CPU frequency scaling

[28] Intel®, “Intel® rapl power meter.” [Online]. Available: https://01.org/
rapl-power-meter

[29] Linux Kerenl Documentation, “Linux powercap documentation,” 2019? [On-
line]. Available: https://www.kernel.org/doc/Documentation/power/powercap/
powercap.txt

[30] M. Larabel, “Amd zen/zen2 rapl support merged in linux 5.8,” 2020.
[Online]. Available: https://www.phoronix.com/scan.php?page=news item&px=
AMD-Zen-RAPL-Linux-5.8

[31] E. Rotem, A. Naveh, A. Ananthakrishnan, E. Weissmann, and D. Rajwan, “Power-
management architecture of the intel microarchitecture code-named sandy bridge,”
Ieee micro, vol. 32, no. 2, pp. 20–27, 2012.

[32] X. Gao, Z. Gu, M. Kayaalp, D. Pendarakis, and H. Wang, “Containerleaks: Emerg-
ing security threats of information leakages in container clouds,” in 2017 47th An-
nual IEEE/IFIP International Conference on Dependable Systems and Networks
(DSN). IEEE, 2017, pp. 237–248.

[33] M. Wolf, High-performance embedded computing: applications in cyber-physical sys-
tems and mobile computing. Newnes, 2014.

[34] P. Qiu, D. Wang, Y. Lyu, and G. Qu, “Voltjockey: Breaking sgx by software-
controlled voltage-induced hardware faults,” in 2019 Asian Hardware Oriented Se-
curity and Trust Symposium (AsianHOST). IEEE, 2019, pp. 1–6.

[35] Z. Kenjar, T. Frassetto, D. Gens, M. Franz, and A.-R. Sadeghi, “V0ltpwn: Attack-
ing x86 processor integrity from software,” in 29th {USENIX} Security Symposium
({USENIX} Security 20), 2020.

[36] E. Rescorla and T. Dierks, “The transport layer security (tls) protocol version 1.3,”
2018.

[37] J. Daemen and V. Rijmen, “Aes proposal: Rijndael,” 1999.

[38] A. Bauer, E. Jaulmes, E. Prouff, and J. Wild, “Horizontal and vertical side-channel
attacks against secure rsa implementations,” in Cryptographers’ Track at the RSA
Conference. Springer, 2013, pp. 1–17.

67

https://www.kernel.org/doc/html/v4.12/admin-guide/pm/intel_pstate.html
https://www.kernel.org/doc/html/v4.12/admin-guide/pm/intel_pstate.html
https://wiki.archlinux.org/index.php/CPU_frequency_scaling
https://wiki.archlinux.org/index.php/CPU_frequency_scaling
https://01.org/rapl-power-meter
https://01.org/rapl-power-meter
https://www.kernel.org/doc/Documentation/power/powercap/powercap.txt
https://www.kernel.org/doc/Documentation/power/powercap/powercap.txt
https://www.phoronix.com/scan.php?page=news_item&px=AMD-Zen-RAPL-Linux-5.8
https://www.phoronix.com/scan.php?page=news_item&px=AMD-Zen-RAPL-Linux-5.8

[39] S.-M. Yen and M. Joye, “Checking before output may not be enough against fault-
based cryptanalysis,” IEEE Transactions on computers, vol. 49, no. 9, pp. 967–970,
2000.

[40] OpenSSL, “Openssl: The open source toolkit for ssl/tls.” [Online]. Available:
http://www.openssl.org

[41] Paul Mutton, “Certificate revocation: Why browsers remain affected by
Heartbleed,” 2014. [Online]. Available: https://news.netcraft.com/archives/2014/
04/24/certificate-revocation-why-browsers-remain-affected-by-heartbleed.html

[42] ARMmbed, “Mbed TLS ,” 2019, retrieved on April 8, 2019. [Online]. Available:
https://tls.mbed.org/

[43] R. L. Rivest, A. Shamir, and L. M. Adleman, “Cryptographic communications
system and method,” 1977, uS Patent Grant 1983-09-20. [Online]. Available:
https://patents.google.com/patent/US4405829

[44] J. Katz, A. J. Menezes, P. C. Van Oorschot, and S. A. Vanstone, Handbook of
applied cryptography. CRC press, 1996.

[45] F. Liu, Y. Yarom, Q. Ge, G. Heiser, and R. B. Lee, “Last-Level Cache Side-Channel
Attacks are Practical,” in S&P, 2015.

[46] W. Schindler, “Exclusive exponent blinding may not suffice to prevent timing at-
tacks on rsa,” in International Workshop on Cryptographic Hardware and Embedded
Systems, 2015.

[47] Intel®, “Guidelines for Mitigating Timing Side Chan-
nels Against Cryptographic Implementations.” [Online]. Avail-
able: https://software.intel.com/security-software-guidance/insights/
guidelines-mitigating-timing-side-channels-against-cryptographic-implementations/

[48] T. Pornin, “Bear ssl.” [Online]. Available: https://bearssl.org/

[49] A. S. Tanenbaum and H. Bos, Modern operating systems. Pearson, 2015.

[50] J.-P. Aumasson and L. Merino, “SGX Secure Enclaves in Practice: Security and
Crypto Review,” in Black Hat Briefings, 2016.

[51] A. Adamski, “Overview of intel sgx.” [Online]. Available: https://blog.quarkslab.
com/overview-of-intel-sgx-part-1-sgx-internals.html

[52] V. Costan and S. Devadas, “Intel SGX explained,” 2016.

[53] S. Gueron, “A memory encryption engine suitable for general purpose processors,”
ePrint 2016/204, 2016.

[54] Intel®, “Intel® sgx: Debug, production, pre-release –what’s the difference?” [On-
line]. Available: https://software.intel.com/content/www/us/en/develop/blogs/
intel-sgx-debug-production-prelease-whats-the-difference.html

68

http://www.openssl.org
https://news.netcraft.com/archives/2014/04/24/certificate-revocation-why-browsers-remain-affected-by-heartbleed.html
https://news.netcraft.com/archives/2014/04/24/certificate-revocation-why-browsers-remain-affected-by-heartbleed.html
https://tls.mbed.org/
https://patents.google.com/patent/US4405829
https://software.intel.com/security-software-guidance/insights/guidelines-mitigating-timing-side-channels-against-cryptographic-implementations/
https://software.intel.com/security-software-guidance/insights/guidelines-mitigating-timing-side-channels-against-cryptographic-implementations/
https://bearssl.org/
https://blog.quarkslab.com/overview-of-intel-sgx-part-1-sgx-internals.html
https://blog.quarkslab.com/overview-of-intel-sgx-part-1-sgx-internals.html
https://software.intel.com/content/www/us/en/develop/blogs/intel-sgx-debug-production-prelease-whats-the-difference.html
https://software.intel.com/content/www/us/en/develop/blogs/intel-sgx-debug-production-prelease-whats-the-difference.html

[55] J. Van Bulck, N. Weichbrodt, R. Kapitza, F. Piessens, and R. Strackx, “Telling
your secrets without page faults: Stealthy page table-based attacks on enclaved
execution,” in 26th USENIX Security Symposium (USENIX Security 17), 2017, pp.
1041–1056.

[56] S. Van Schaik, A. Milburn, S. Österlund, P. Frigo, G. Maisuradze, K. Razavi, H. Bos,
and C. Giuffrida, “Ridl: Rogue in-flight data load,” in 2019 IEEE Symposium on
Security and Privacy (SP). IEEE, 2019, pp. 88–105.

[57] M. Schwarz, S. Weiser, D. Gruss, C. Maurice, and S. Mangard, “Malware guard
extension: Using sgx to conceal cache attacks,” in International Conference on
Detection of Intrusions and Malware, and Vulnerability Assessment. Springer,
2017, pp. 3–24.

[58] J. L. Hennessy and D. A. Patterson, Computer Architecture: A Quantitative Ap-
proach, 6th ed. Morgan Kaufmann, 2017.

[59] C. Canella, J. Van Bulck, M. Schwarz, M. Lipp, B. von Berg, P. Ortner, F. Piessens,
D. Evtyushkin, and D. Gruss, “A Systematic Evaluation of Transient Execution
Attacks and Defenses,” arXiv:1811.05441, 2018.

[60] C. Canella, D. Genkin, L. Giner, D. Gruss, M. Lipp, M. Minkin, D. Moghimi,
F. Piessens, M. Schwarz, B. Sunar et al., “Fallout: Leaking data on meltdown-
resistant cpus,” in Proceedings of the 2019 ACM SIGSAC Conference on Computer
and Communications Security, 2019, pp. 769–784.

[61] M. Schwarz, “Pteditor.” [Online]. Available: https://github.com/misc0110/
PTEditor

[62] D. Skarlatos, M. Yan, B. Gopireddy, R. Sprabery, J. Torrellas, and C. W. Fletcher,
“Microscope: Enabling microarchitectural replay attacks,” in Proceedings of the
46th International Symposium on Computer Architecture, ser. ISCA ’19. ACM,
2019, pp. 318–331.

[63] L. P. Manual, “perf event open.” [Online]. Available: https://man7.org/linux/
man-pages/man2/perf event open.2.html

[64] AMD, “Register referencefor amd family 17h processors.” [Online]. Available:
https://developer.amd.com/wp-content/resources/56255 3 03.PDF

[65] ARM, “Arm coretile express a15x2 technical reference.” [Online]. Available:
https://developer.arm.com/documentation/dui0604/f/

[66] E. Vasilakis, “An instruction level energy characterization of arm processors,” Foun-
dation of Research and Technology Hellas, Inst. of Computer Science, Tech. Rep.
FORTH-ICS/TR-450, 2015.

69

https://github.com/misc0110/PTEditor
https://github.com/misc0110/PTEditor
https://man7.org/linux/man-pages/man2/perf_event_open.2.html
https://man7.org/linux/man-pages/man2/perf_event_open.2.html
https://developer.amd.com/wp-content/resources/56255_3_03.PDF
https://developer.arm.com/documentation/dui0604/f/

	Introduction
	Motivation
	Responsible Disclosure
	Contributions
	Structure of this Document

	Preliminaries
	Power Consumption of a Circuit
	Power Side-Channel Analysis
	Power Management
	Power Monitoring
	Core Voltage
	Cryptographic Libraries and RSA
	Virtual Memory and Paging
	Intel Software Guard Extension
	Advanced Programmable Interrupt Controller
	Pipelining and Out-of-Order Execution
	Precise Execution Control

	Threat Model
	High-Level View of the Attacks
	Victim
	Attacker

	Attack Primitives
	RAPL as a Power Side Channel
	Measurement Framework
	Simple Power Analysis with RAPL
	Extending the Measurement Resolution
	Precise Instruction Finding
	Classes of Victim Algorithms
	Debug Profiling
	Power and P-State Monitoring

	Attack Evaluation
	Victim Setup and MbedTLS Configuration
	Test System
	SPA Attack
	Attack on a Symmetric Algorithm
	Attack on an Asymmetric Algorithm

	Countermeasures
	Power Analysis Countermeasures
	RAPL and Core-Voltage Countermeasures

	Limitations and Future Work
	Attack on a Constant Algorithm
	Single Trace Attack
	Increasing the Execution Time
	Other (Micro)-Architectures

	Conclusion

