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Abstract

In this master thesis, we study point sets in the n×n integer grid that have the property that each

point in the grid lies on at least one line defined by two points from the point set. We call sets with

this property geometric dominating sets and the minimum size of geometric dominating sets in the

n× n grid geometric domination number.

Our ultimate goal is to determine the value of the geometric domination number for general n, but

first, we provide some historic background and point out similarities to the Queens-Domination

Problem and the No-Three-In-Line Problem.

Then we make several general observations on points and lines in the n × n grid, which we use

subsequently to prove non-trivial lower and upper bounds on the geometric domination number.

Finally, we consider the problem on the discrete torus and use probabilistic methods to obtain lower

and upper bounds on the minimum size of geometric dominating sets in this case.

Kurzfassung

In dieser Masterarbeit setzen wir uns mit Punktmengen im n×n Gitter auseinander, die die Eigen-

schaft haben, dass jeder Punkt im Gitter auf mindestens einer Linie liegt, die von zwei Punkten

in der betrachteten Punktmenge definiert wird. Wir nennen Punktmengen mit dieser Eigenschaft

geometric dominating sets (geometrische Dominanzmengen) und die minimale Kardinalität solcher

Mengen im n× n Gitter geometric domination number (geometrische Dominanzzahl).

Unser Ziel ist es, die geometrische Dominanzzahl für allgemeine n zu bestimmen, aber zuerst liefern

wir historischen Kontext und beschreiben Ähnlichkeiten zum Dominanzproblem der Damen und

zum No-Three-In-Line Problem.

Des Weiteren machen wir einige allgemeine Beobachtungen zu Punkten und Linien im n×n Gitter,

die wir anschließend dazu verwenden nicht-triviale untere und obere Schranken für die geometrische

Dominanzzahl für allgemeine n zu beweisen.

Zu guter Letzt werden wir das Problem auch am diskreten Torus betrachten, wo wir mittels pro-

babilistischer Methoden obere und untere Schranken für die minimale Größe geometrischer Domi-

nanzmengen erhalten.
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1 Introduction

In 2017, at the 29th Canadian Conference on Computational Geometry, invited speaker David Epp-

stein initiated a discussion on the computational complexity of finding the largest subset without

three points in a line of a given point set. The question is based on the well-known No-Three-In-Line

Problem that asks for the largest point set without three points in a line in an n × n grid, which

has intrigued mathematicians such as Paul Erdős, for roughly 100 years now and which seems to

be notoriously hard to solve [3].

Further discussions at a workshop in Barbados in 2018 provoked several new ideas, approaches

and questions. One of these questions, posed by Oswin Aichholzer, was a min-max version of the

No-Three-In-Line Problem. He asked for the smallest number of points in general position in an

n× n grid such that every point in the grid lies on a common line with (at least) two of the points

in the set [3].

It turned out that this problem already appeared in 1976 in a mathematical games column by Mar-

tin Gardner in the Scientific American [12]. However, it seems that no progress has been made,

except for the special case where lines are restricted to vertical, horizontal and diagonal lines [6].

In any case, this minimum version might remind one less of the No-Three-In-Line Problem,

which itself is based on a mathematical chess puzzle, and more of the Queens Domination Problem

that asks for a placement of five queens on a chessboard such that every square of the board is

attacked by a queen. In a more general setting this problem asks for the domination number of the

n× n queen graph.

Therefore, we will call point sets in the n×n grid with the property that every point in the grid

lies on a common line with (at least) two points from the set, a (geometric) dominating set and the

smallest size of such a set the (geometric) domination number Dn.

After establishing some general results about sets of points and lines in the n×n grid in Section 2,

we will prove non-trivial asymptotic upper and lower bounds and provide computational results for

dominating sets in general position in Section 3.

In Section 5, we will discuss the problem on the discrete torus, if n is prime, and prove asymptotic

lower and upper bounds with probabilistic methods which we present in Section 4.

But first, we will give some historical context and formalize the question that we have in mind in

mathematical terms.
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1.1 Some History: Two Mathematical Chess Puzzles

In this subsection, we will give a short introduction to the No-Three-In-Line Problem and the

Queen-Domination Problem which are both based on mathematical chess puzzles.

1.1.1 The No-Three-In-Line Problem

In 1917, Henry Ernest Dudeney published a book called Amusements in Mathematics [7] that fea-

tured more than 400 mathematical puzzles, some of which intrigue researchers to this day. One of

them is A Puzzle With Pawns that inspired the No-Three-In-Line Problem.

A Puzzle With Pawns (H.E. Dudeney [7])

Place two pawns in the middle of the chessboard, one at Q4 and the other at K5. Now, place the

remaining fourteen pawns (sixteen in all) so that no three shall be in a straight line in any possible

direction.

The generalized version of this puzzle is called the No-Three-In-Line Problem, that asks for

the maximum number of points in an n × n grid such that no three points lie on a common line.

This problem is particularly hard to solve and explicit solutions only exist up to n = 46 and single

solutions for n = 48, 50, 52 (See e.g. [9]). According to Achim Flammenkamp [9] the-state-of-the-art

computational approach is a sophisticated branch-and-bound algorithm with which he computed

all solutions up to n = 16.

In the 1960s, Guy and Kelly [13] took a probabilistic approach which we will discuss in Sec-

tion 4. They conjectured that for large n, there are no point sets in general position of size greater

than (π/
√

3)n. However, we will discuss in Section 4.1 that their conjecture is, in the strict sense,

based on a wrong assumption.

General constructions of point sets in general position are relatively rare. Paul Erdös was the

first to propose a construction of n points in general position, for n prime, to Klaus Friedrich Roth,

who first published it in [24].

Roughly twenty years later, Hall, Jackson, Sudbery, and Wild [14] found a construction for a point

set in general position of size (3/2 − ε)n. To this day, this is the best lower bound on the largest

size of a point set in general position in the n× n grid, for general n.

About a decade ago, Fowler, Groot, Pandya and Snapp considered the No-Three-In-Line Prob-

lem on the n × n torus and proved for n prime that the maximal size of a point set in general

position is n + 1 by giving an explicit construction and proving its maximality [10] with algebraic

methods. Their result sparked some interest in the algebra community and further progress on
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the maximal size of point sets on the m × n torus and on higher dimensional tori was made (see

e.g. [19], [18]).

Various other versions of the No-Three-In-Line Problem were considered, too. Among them

were point sets in general position in higher dimensions and point sets without four coplanar points

in higher dimensions (see [23] and [22]).

The minimum variant of the No-Three-In-Line Problem that is the one of the main topics of

this thesis, first appeared in the column Mathematical Games in the Scientific American [12]. Its

author, Martin Gardner wrote,

Instead of asking for the maximum number of counters that can be put on an order-n board, no

three in line, let us ask for the minimum that can be placed such that adding one more counter on

any vacant cell will produce three in line.

According to Gardner, the problem had already been mentioned briefly in a paper by Adena,

Holton and Kelly [1]. He mentioned their best results which they obtained by hand for 3 ≤ n ≤ 10.

These are 4, 4, 6, 6, 8, 8, 12, 12. Surprisingly, up to n = 8, their solutions are indeed optimal solutions

as we will see in Section 3.2. However, no further progress was made.

Only in 2012, Cooper, Pikhurko, Schmitt, Warrington [6] picked up the problem and gained

access to Gardner’s notes and correspondence archived at Stanford University.

They found several letters discussing a variant of the Minimum No-Three-In-Line Problem which

they called the Queens Version. In this version, lines are restricted to vertical, horizontal and

diagonal lines, like the legal movements of a queen. One of the correspondents, John Harris,

mentioned in one of his letters that he could prove that n is a lower bound but no further notes

on the proof could be found. Cooper et.al. [6] found two different proofs that n is indeed a lower

bound in this particular version, except in the case when n is congruent to 3 modulo 4, in which

case one less may suffice.

Interestingly, as we will see in Section 3.2, optimal solutions in the general case may be smaller

than n− 1.

1.1.2 The Queen Domination Problem

Another popular chess puzzle is the Queen Domination Problem that Dudeney also published in

”Amusements in Mathematics”.

The Hat-Peg Puzzle (H.E. Dudeney [7])

Here is a five-queen puzzle that I gave in a fanciful dress in 1897. As the queens were there repre-
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sented as hats on sixty-four pegs, I will keep to the title, ”The Hat-Peg Puzzle.” It will be seen that

every square is occupied or attacked [in the way queens are placed in Figure 1]. The puzzle is to

remove one queen to a different square so that still every square is occupied or attacked, then move

a second queen under a similiar condition, then a third queen and finally a fourth queen. After the

fourth move, every square must be attacked or occupied, but no queen must then attack another. Of

course, the moves need not be ”queen moves”; you can move a queen to any part of the board.

Figure 1: Initial position of the queens in the Hat-Peg Puzzle

In more general terms, the problem asks for the smallest number of queens that need to be

placed on an n×n chessboard such that every square is attacked or occupied by a queen. A variant

further asks for the smallest number of queens needed to attack or occupy every square under the

condition that no queen attacks another.

These numbers are usually referred to as the queen domination number and the independent queen

domination number. The terms derive from the interpretation of the problem as dominating sets

of the so called queen graphs.

Definition 1 (Queen graphs). The m×n queen graph, denoted by Qm,n is a graph with mn vertices

in which each vertex represents a square in an m × n chessboard and each edge corresponds to a

legal move by a queen.

Definition 2 (Dominating sets). For a graph G = (V,E) and a subset S ⊆ V , let N(S) be the

set of vertices in G which are in S or adjacent to a vertex in S. If N(S) = V , then S is called a

dominating set.

A dominating set of smallest size is called a minimum dominating set and its size is known as the

domination number of the graph.

So, any dominating set of the n × n queen graph Qn,n corresponds to a placement of queens

that attack or occupy every square on an n × n chessboard. A minimum domination set of Qn,n
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is a solution to the generalized Queens Domination Problem and if we add the constraint that no

queen is to attack another, the minimum dominating set has to be independent too.

Definition 3 (Independent sets). An independent set of a graph G is a subset of the vertices such

that no two vertices in the subset represent an edge of G.

The first dominating sets and independent dominating sets of Qn,n for small n where published

around 1900 by Rouse Ball and Ahrens (see [25], [2]) but general results only appeared around

30 years ago. In 1990, Cockayne, Spencer and Welsh established lower and upper bounds that

are summarized in [5]. Spencer’s lower bound of (n − 1)/2 is still the best general lower bound.

Weakley [27] later improved this lower bound for n = 4k + 1 to (n+ 1)/2.

In 2001, Östergard and Weakley [20] published the general upper bound 69n/133 +O(1) on the

domination number and the upper bound 61n/111 + O(1) on the independent domination num-

ber. Additionally, they computed further optimal solutions, such that for n ≤ 120, the domination

number and independent domination number is either known, or known to have one of two values.

1.2 Geometric Dominating Sets

In the spirit of mathematical chess puzzles, we now ask,

How many pawns do we have to place on a chessboard such that every square lies on a straight

line defined by two pawns? How many pawns do we need if no three pawns are allowed to lie on a

common line?

As we will see in Section 3.2, the answer is eight and possible solutions are the placements in

Figure 2. In fact, there are 228 possibilities to place eight pawns such that every square lies on a

line defined by two pawns and no three pawns lie on a line.

But first, let us introduce some notation and definitions to formalize what ”every square lies on

a line defined by two pawns” really means and describe intuitive formulations like ”point p lies on

line L” in mathematical terms to prevent any misunderstandings later on.

1.2.1 Definitions

We start by defining lines in the grid. We will define them as finite point sets that consist of all

points in the grid that lie on a common continuous line.

Definition 4 (Lines and collinearity). We denote the range from 1 to n by [n] = {1, 2, . . . n} and

the n× n grid by [n]× [n] = [n]2.
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Figure 2: Sample solutions: Every square lies on a line defined by two pawns

A line L in [n]2 is a subset L = {x ∈ [n]2 | x = z + ty, z, y ∈ R 2, t ∈ R } with |L| ≥ 2. A point

p ∈ [n]2 lies on a line L, if p ∈ L. In this case, we also say p and L are incident. Two points

x, y ∈ [n]2 define the line xy = {z ∈ [n]2 | z = x + t(y − x), t ∈ R }.
Let x, y, z ∈ [n]2. We call these points collinear if they lie on a common line. That is, if z ∈ xy.

A set of points is called collinear, if every three points in the set are collinear.

Conversely, a set S ⊆ [n]2 is called in general position if no three points in S are collinear.

Throughout this text, if we talk about lines, we only refer to lines in [n]2 and whenever we mean

a line in R 2, that is a set {x ∈ R 2 | x = z + ty, y, z ∈ R 2, t ∈ R }, we will talk about a continuous

line.

Example. Consider the 3 × 3 grid [3]2. The set L = {(1, 1), (1, 2), (1, 3)} is a line and |L| = 3

points lie on L. The three points incident to L are collinear.

With respect to the puzzle with pawns, we will identify the n×n chessboard with [n]2 such that

every square on the chessboard naturally corresponds to a point in [n]2 and we will identify the

set of pawns as a subset S ⊆ [n]2. Now, we continue to formally describe the property that every

square on the chessboard lies on a line defined by two pawns.

Definition 5 (Geometric dominating sets). Let S ⊆ [n]2 and p ∈ [n]2. If p ∈ S or there exist

x, y ∈ S such that {x, y, p} are collinear, we call p dominated (by S). Similarly, we will say p is

dominated by a line L if p ∈ L and if p ∈ S, we also say that p is dominated by itself. Otherwise,

we call p free.

If all p ∈ [n]2 are dominated by S, we call S a (geometric) dominating set or simply dominating.

We will call the smallest size of a dominating set of [n]2 the (geometric) domination number Dn

and denote the smallest size of a dominating set in general position by Dn.

With the Queens Domination Problem in mind, we are tempted to refer to Dn as independent

(geometric) domination number. However, there is no need to introduce this notion, because our
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main focus in this thesis are dominating sets that do not need to be in general position.

While the above definition of dominating sets is very natural, note that it is equivalent to the

question

What is the smallest subset S ⊆ [n]2 such that for every element z ∈ [n]2, z ∈ S or there are

a, b ∈ Z, b 6= 0 and x 6= y ∈ S such that

b(z− x) = a(y − x)

The above follows, because three distinct points x, y, z are collinear if there is a t ∈ R such that

z = x+ t(y−x). If we look at this equation in the first coordinate, then for x = (x1, x2), y = (y1, y2),

z = (z1, z2), this means that z1 = x1 + t(y1 − x1).

We assume without loss of generality that x1 6= y1, otherwise we look at the equation in the second

coordinate. It follows that t = (z1 − x1)/(y1 − x1) = a/b ∈ Q and consequently

z = x +
a

b
(y − x) ⇐⇒ b(z− x) = a(y − x)

We note that this also means that the absolute values of a and b are at most n.

A set S fulfilling the above conditions is therefore a dominating set and the smallest size of such a

set equals Dn.

In the following sections, we will prove upper and lower bounds on the value of Dn and Dn for

a given n ∈ N and we will present dominating sets in general position for n ≤ 10 that we found

computationally.

Further, we will consider the problem on the discrete torus. In 2012, Fowler, Groot, Pandya and

Snapp solved the No-Three-In-Line Problem on the torus for n prime by using algebraic properties

of cyclic subgroups of Z/nZ × Z/nZ. We will use these as well to derive lower and upper bounds

on the size of minimum dominating sets.

1.3 Summary Of Results

In Section 2, we will explain a general strategy on how to count lines and dominated points in [n]2.

We will compute

• the number of lines incident to a point in the center of [n]2 (Subsection 2.1)

• the maximal number of dominated points by s lines incident to a fixed point (Subsection 2.3,

Lemma 5)

• lower and upper bounds on the number of possibilities to dominate a fixed point (Subsec-

tion 2.3, Lemma 6).
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In Section 3, we will prove that

• Dn ≥ Dn = Ω(n2/3) (Subsection 3.1, Theorem 3)

• Dn ≤ 2dn/2e (Subsection 3.2, Theorem 4)

and present computational results on dominating sets in general position for n ≤ 10.

In Section 4, we will introduce probabilistic models and methods which we use to show that on the

discrete torus, if n is prime, that the domination number on the torus, denoted by DT
n , is

• DT
n = Ω(

√
n) (Subsection 5.1, Theorem 8)

• DT
n = O(

√
n log n) (Subsection 5.1, Theorem 9).
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2 Points And Lines In [n]2

In this section, we will try to get a basic understanding of point and line sets in grids.

In order to find a lower bound on Dn, it is very useful to know how many points can be dominated

by a fixed number of lines incident to a fixed point. Conversely, it is interesting how ”easily” a

point is dominated. That is, how many possibilities there are to dominate a fixed point. Further

we will discuss whether this number is equal for all points in [n]2 and which points provide lower

and upper bounds on these numbers.

For simplicity, we will only consider odd n = 2k + 1, k ∈ N in this section.

2.1 Lines

First, we will count the lines incident to the point cn = (k+1, k+1) in the center of [n]2. Since [n]2

is the union of two rotated copies and two mirrored and rotated copies of the grey area in Figure 3,

we only need to consider all lines that are also incident to a point in

An = {(x1, x2) ∈ [n]2 | k + 1 ≤ x2 ≤ x1}.

Note however, that we will doublecount the vertical, horizontal and diagonal lines incident to cn.

Now, the general idea is to count lines by their slope that we will determine by the point in An

that lies on the line and that is closest to cn.

For example, if k = 6, we can see in Figure 3 that the red points uniquely define the respective

lines and the slopes of the lines incident to (7, 7) are{
0

1
,

1

1
,

1

2
,

1

3
,

2

3
,

1

4
,

3

4
,

1

5
,

2

5
,

3

5
,

4

5
,

1

6
,

5

6

}
We observe that these slopes are exactly the fractions j

i ≤ 1 with 1 ≤ i ≤ 6, 0 ≤ j ≤ 6 and

greatest common divisor gcd(j, i) = 1.

For general k, let us introduce Euler’s phi-function and Farey fractions.

Definition 6 (Euler phi-function). ϕ(n) is the number of non-negative integers k less than n such

that gcd(k, n) = 1.

Definition 7 (Farey sequence). The Farey sequence Fn for any n ∈ N is the sequence of fractions a
b

with 0 ≤ a ≤ b ≤ n and gcd(a, b) = 1, arranged in increasing order. These fractions are also called

Farey fractions.
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Figure 3: Example n = 13: Counting of lines incident to cn by their slope

Lemma 1. There is a bijection between the Farey fractions Fk and the lines incident to cn and a

point in An = {(x1, x2) ∈ [n]2 | k + 1 ≤ x2 ≤ x1}.

Proof. Let L be the set of lines incident to cn and a point in An. We define the function

L : Fk → L,
j

i
7→ L(i, j) = {y ∈ [n]2 | y = cn + t(i, j), t ∈ R }

As j ≤ i ≤ k, there is at least one y ∈ An \ {cn} that L(i, j) is incident to. So, the function is

well-defined.

For L(a, b) = L(c, d), it follows that cn + (a, b) = cn + t(c, d) for some t ∈ R . But a, b, c, d are

integers, where c 6= 0. So

a = tc ⇒ t =
a

c
∈ Q

and

b = td =
a

c
d ⇒ cb = ad.

Since gcd(a, b) = gcd(c, d) = 1, it has to hold that a = c, b = d. Hence, the function is injective.
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Now, let L ∈ L be incident to x = (x1, x2) ∈ An \ {cn}. That is

L = {y ∈ [n]2 | y = cn + t(x− cn), t ∈ R }

Further, let m = gcd(x1− (k+ 1), x2− (k+ 1)) and z = (z1, z2) ∈ {1, 2 . . . , k}× {0, 1, 2 . . . , k} such

that x− cn = m · z. So, L = {y ∈ [n]2 | y = cn + tz, t ∈ R } and gcd(z1, z2) = 1.

As x ∈ An and 0 ≤ z2 ≤ z1 ≤ k, the slope of L is z2/z1 ∈ Fk. Consequently, the function is

surjective.

The essence of this bijection is the fact that we can identify every line defined by cn and a point

in An with its slope. And the slope can be defined directly via the closest point to cn that lies on

the line. In the proof, we identified this point with x + z = (k + 1 + z1, k + 1 + z2) and the slope

with z2/z1. In Figure 3, this point is marked red.

Identifying lines with their slope in terms of the completely reduced fraction z2/z1 also makes

it very obvious that there are ϕ(k) additional lines incident to cn and a point in An if we go from

k− 1 to k. Just think about the Farey sequence Fk, that will contain ϕ(k) more fractions. That is,

|Fk| = |Fk−1|+ ϕ(k) = 1 +

k∑
i=1

ϕ(i)

where |F1| = |{ 01 ,
1
1}| = 1 + ϕ(1).

Luckily, the asymptotic behaviour of |Fk| is a well known result in number theory. The best

asymptotic formula was proven by Arnold Walfisz around 1960.

Theorem 1 (Arnold Walfisz [26]).

k∑
i=1

ϕ(i) =
3

π2
k2 +O

(
k(log k)

2
3 (log log k)

4
3

)

However, we will restrict our considerations to the use of the simpler expression 3
π2 k

2+O (k log k).

To get the total number of lines incident to cn, we multiply by 4 (as [n]2 is the union of four

copies of our considered area) and subtract 4 since we doublecount the diagonal, the horizontal and

the vertical line incident to cn. So, the number of lines incident to cn is

4 · |Fk| − 4 = 4 ·
k∑
i=1

ϕ(i) =
12k2

π2
+O(k log k) =

3

π2
n2 +O(n log n)
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Figure 4: Example n = 13: Incident points to different lines in [13]2

2.2 Dominating Points

Now, that we can distinguish the lines incident to cn by their slope, we can count exactly how many

points lie on each line and eventually derive how many points can be dominated at most by lines

defined by cn and one of s additional points.

2.2.1 How do we count dominated points?

Before we compute any numbers, we will discuss how to count dominated points in a structured

manner.

Let us consider our example n = 13 first. As we can see in Figure 4, the line with slope 1/2 will

be incident to the points

{(7, 7) +m(2, 1) | −3 ≤ m ≤ 3, m ∈ Z}

whereas the line with slope 2/3 will be incident to the points

{(7, 7) +m(3, 2) | −2 ≤ m ≤ 2, m ∈ Z}

And we also observe that the line with slope 1/3 is incident to as many points as the line with

slope 2/3.

Observation 1. A line defined by cn and a point in An with slope j
i , where gcd(i, j) = 1, will be

incident to exactly 2bki c+ 1 points in [n]2, because for any point on the line there is a t ∈ R such

that (x1, x2) = cn + t(i, j) and

1 ≤ x1 = k + 1 + t · i ≤ 2k + 1 ⇔ −k/i ≤ t ≤ k/i.

Since gcd(i, j) = 1 and x1, x2 are integers, t has to be an integer too. So, there are 2dki e+ 1 choices

for t to define a point in [n]2.
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The inequality for the second coordinate is in these cases also satisfied since for every point in An

it holds that j ≤ i.

Moreover, as we have seen in the previous subsection, there are exactly 4ϕ(i) distinct lines that

are incident to cn and 2bki c additional points. Since every point in [n]2 lies on exactly one line that

is also incident to cn, we can count the points in [n]2 line by line. As we have to count cn only

once, the sum will be

n2 = (2k + 1)2 = 1 +

k∑
i=1

2

⌊
k

i

⌋
4ϕ(i)

If we divide by 8, we can see that we proved the nice identity,(
k + 1

2

)
=

k∑
i=1

⌊
k

i

⌋
ϕ(i).

2.2.2 What is the maximal number of dominated points by lines defined by cn and

one of s other points?

Now, we are actually interested in the maximal number of dominated points by lines defined by cn

and one of s additional points.

For simplicity, let s = 4
∑m
i=1 ϕ(i). Then it easier to count the number of dominated points.

Since we are aiming for an upper bound, we try to place the s points on distinct lines incident to

cn with a lot of points. That is, first we place a point on the diagonal, vertical and horizontal lines,

then on all lines with slope ±1/2 and ±2, and so on. In short, we will try to order the lines by

the amount of points that they dominate and then choose the s lines that dominate the most points.

We think about it in the sense of a greedy algorithm. There will be s steps. In each step, we

look for a line incident to cn where no point has been placed yet. Of all those feasible lines, we

choose one of the lines that dominate the most points in [n]2 and place a point on it.

By our observation in the previous subsection, this means, we first choose the 4ϕ(1) lines incident

to 2k further points, then the 4ϕ(2) lines incident to 2bk/2c further points and so on.

In the end, after s =
∑m
i=1 4ϕ(i) steps, the number of points dominated by these lines (including cn)

is

1 +

m∑
i=1

2

⌊
k

i

⌋
4 ϕ(i) ≤ 1 + 8k

m∑
i=1

ϕ(i)

i
= 1 + 4(n− 1)

m∑
i=1

ϕ(i)

i
(1)

Note, that any placement of s points that contains no point on one of the lines that we have

chosen, would yield a lower number of dominated points. So, this is in fact an upper bound on the

number of dominated points by s lines incident to cn.
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Since we are interested in an asymptotic formula of this number, we will use another result

proven by Walfisz in [26].

Theorem 2 (Arnold Walfisz [26]).

m∑
i=1

ϕ(i)

i
=

6

π2
m+O

(
(logm)

2
3 (log logm)

4
3

)

Once again, we will restrict our considerations to the expression 6m/π2 + O (logm). Applying

this theorem to Equation 1, we obtain the following result.

Lemma 2. Let cn = (k + 1, k + 1), n = 2k + 1 and S ⊆ [n]2, with |S| = 4
∑m
i=1 ϕ(i), where

1 ≤ m ≤ k. Then the number of dominated points by lines incident to cn and some point in S is

bounded by

1 + 8

m∑
i=1

⌊
k

i

⌋
ϕ(i) ≤ 24

π2
nm+O (n logm)

2.2.3 How ”easy” is it to dominate cn?

This is another very natural question to ask in the search for dominating sets and close to asking

”How likely is it to dominate cn if we choose two random points in [n]2?”.

For now, we will count how many ways there are to place two points in [n]2 such that cn is dom-

inated. The result will be especially interesting when we compare the number to those of other

points in [n]2.

Let us first introduce a variable for convenience.

Notation. Let p ∈ [n]2. We will refer to two points x, y 6= p that dominate p as dominating pair

(of p) and define dp to be the number of dominating pairs in [n]2.

Again, we will first only consider lines defined by cn and a point in An and count the possibil-

ities to choose a dominating pair line by line, distinguishing them by their slope. Finally, we will

multiply by 4 once again.

We know, there are ϕ(i) lines that are incident to 2
⌊
k
i

⌋
points, excluding cn. So, there are(2b ki c

2

)
choices to dominate cn by two points one of these lines. Thus, summing over all lines, we

get

dcn =

k∑
i=1

(
2
⌊
k
i

⌋
2

)
4ϕ(i) ≤ 8k2

k∑
i=1

ϕ(i)

i2
= 2(n− 1)2

k∑
i=1

ϕ(i)

i2
(2)
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In order to obtain an asymptotic formula for this expression, we could take a detour into analytic

number theory (see [4], in particular p.65ff), but we will refrain to go into too many details and

compute an asymptotic formula by summation by parts.

Lemma 3.
m∑
i=1

ϕ(i)

i2
=

6

π2
logm+O (1)

Proof. Any tools and facts that we use in this proof can be found in the books by Königsberger [17].

First, we will use the general formula

m∑
i=1

aibi = Ambm +

m−1∑
i=1

Ai(bi − bi+1), where Ai =

i∑
j=1

aj

So, let Φ(m) =
∑m
i=1 ϕ(i). By Theorem 1, Φ(m) = 3m2/π2 +O(m logm) and consequently,

m∑
i=1

ϕ(i)

i2
=

1

m2
Φ(m) +

m−1∑
i=1

Φ(i)

(
1

i2
− 1

(i+ 1)2

)

=
1

m2
Φ(m) +

m−1∑
i=1

Φ(i)

(
2

i2(i+ 1)
− 1

i2(i+ 1)2

)

=
3

π2
+O

(
logm

m

)
+

3

π2

m−1∑
i=1

(
2

(i+ 1)
− 1

(i+ 1)2

)
+O

(
m∑
i=1

log i

i2

)

We will now need the facts that

lim
m→∞

(
m∑
i=1

1

i
− logm

)
= γ

where γ denotes the Euler-Mascheroni constant and that

∞∑
i=1

1

nα
<∞ ⇔ 1 < α

Further note, that logm/
√
m < 1 for all m ≥ 1. Hence,

m∑
i=1

ϕ(i)

i2
=

3

π2
+O

(
logm

m

)
+

3

π2

m−1∑
i=1

(
2

(i+ 1)
− 1

(i+ 1)2

)
+O

(
m∑
i=1

log i

i2

)

=
3

π2
+O (1) +

3

π2
(2 (logm− 1 + γ + o(1))−O(1)) +O

(
m∑
i=1

1

i3/2

)

=
6

π2
logm+O(1)

21



By applying Lemma 3 to Equation 2, we obtain the upper bound

dcn = 4

k∑
i=1

(
2
⌊
k
i

⌋
2

)
ϕ(i) ≤ 12

π2
n2 log n+O

(
n2
)

Conversely, as a lower bound, we would estimate
(2b ki c

2

)
≥ 1

2 (2(ki − 1) − 1)2 ≥ 2k
2

i2 − 6ki . But

this does not change the main term of our asymptotic result as one can see by using Theorem 2

and Lemma 3.

4

k∑
i=1

(
2
⌊
k
i

⌋
2

)
ϕ(i) ≥ 8k2

k∑
i=1

ϕ(i)

i2
− 24k

k∑
i=1

ϕ(i)

i

= 8k2
(

6

π2
log k +O(1)

)
− 24k

(
6

π2
k +O (log k)

)
=

12

π2
n2 log n+O(n2)

Hence, we get the following result.

Lemma 4. Let cn = (k+ 1, k+ 1), n = 2k+ 1. Then dcn , the number of dominating pairs of cn is

dcn = 4

k∑
i=1

(
2
⌊
k
i

⌋
2

)
ϕ(i) =

12

π2
n2 log n+O

(
n2
)

2.3 General Results

We will now try to understand how the results in the previous subsections change for points that

do not lie at the center of [n]2. We will show that in terms of asymptotics, the numbers for cn

provide upper bounds on {dp}p∈[n]2 and the number of dominated points by s lines incident to an

arbitrary point.

Intuitively, this is not very surprising. If we consider a continuous line incident to cn and

translate it, it can only get shorter in the n × n square. And since the number of two-element

subsets of a set grows quadratically with its size, points on the border of [n]2 are very reasonable

candidates for a lower bound on {dp}p∈[n]2 . However, in [n]2, lines do not behave as nicely as we

would expect them at first.

Figure 5 illustrates for n = 13 how the number of incident points of four lines change, if you

translate them from (7, 7) to (9, 8). The diagonals dominate less points, the line with slope 1/2

stays the same, but the number of points incident to the line with slope 1/4 increases.

In Figure 6, we can see that dp does not show any monotone behaviour either.
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Figure 5: Example n = 13: Comparison of number of points on lines incident to (7,7) and (9,8)

Figure 6: Example n = 13: Values of dp for all p ∈ A13, ordered according to their position

So even though the technical details might seem overbearing at first, we will carefully prove

these lower and upper bounds in this subsection.

Lemma 5. For p ∈ [n]2 and S ⊆ [n]2, with |S| = 4
∑m
i=1 ϕ(i) and 1 ≤ m ≤ k, the number of

dominated points by lines incident to p and some point in S is bounded by

1 + 8

m∑
i=1

k

i
ϕ(i) =

24

π2
nm+O (n logm)

Proof. Again, the general idea is to order lines incident to p and lines incident to cn according to

the number of points that they dominate. Then, we compare these numbers line by line and derive

that cn provides an asymptotic upper bound. But first, we observe what happens if we translate

a line from p to cn. Vertical and horizontal lines always dominate n points, but any other line L

with slope j
i , gcd(i, j) = 1 and |i|, |j| ≤ k, can be translated to cn such that the translated line L′ is
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incident to at least three points. Without loss of generality, we will assume that the line has slope
j
i ∈ Fk, where Fk are the Farey fractions.

There are two cases:

1. |L′| ≤ |L|. So, the number of points that can be dominated by L′ is at most the number of

points that can be dominated by L and in the next step, we can use the same estimation for

this line that we used in the sum for cn

2. |L′| > |L|. Note, that |L′| is bounded from above by n−1
i + 1. So, this case can only occur if(

2k

i
+ 1

)
−
(

2

⌊
k

i

⌋
+ 1

)
≥ 1 ⇐⇒ k

i
−
⌊
k

i

⌋
≥ 1

2

It is also easy to see that(
2k

i
+ 1

)
−
(

2

⌊
k

i

⌋
+ 1

)
= 2

(
k

i
−
⌊
k

i

⌋)
< 2

which means a translated line will be incident to at most one more point. But then, by the

equation above, 2ki ≥ 2bki c + 1. So, we can use the same estimation in the sum over the

dominated points as we would in the sum for cn again.

Any other line incident to p, will only be incident to one other point and could theoretically

contribute only one additional dominated point, whereas any line incident to cn dominates at least

two additional points by symmetry.

For a (rough) upper bound on dp, we will again greedily place point after point on one of the lines

incident to p that dominate the most points in [n]2 and on which no point was placed yet. Note

that these lines do not have to be the same (translated) lines we would choose for cn. There might

be lines incident to cn that reduce to the single point p if you translate them to p. Conversely,

we have seen that every line incident to p will dominate at least as many points minus 1 if you

translate it to cn. Therefore, the line in the i’th step will dominate at most one point more than

the line incident to cn in the i’th step. And even if this is the case, we can use the same estimation

as we did in our calculations of the sum for Lemma 2. Consequently, just as in Lemma 2, an upper

bound is given by

1 + 8

m∑
i=1

k

i
ϕ(i)

which, by Theorem 2 is equal to

1 + 8

m∑
i=1

k

i
ϕ(i) =

24

π2
nm+O (n logm)

Next, we will tackle the number of dominating pairs of a fixed point p.
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Figure 7: Example n = 13: Square incident to a point p ∈ An

Lemma 6. For all p ∈ [n]2, it holds that

3

2π2
n2 log n+O

(
n2
)
≤ dp ≤

12

π2
n2 log n+O

(
n2
)

Proof. Once again for symmetry reasons, we only need to consider points in An.

The upper bound follows analogously to the reasoning in the proof of Lemma 5. For p ∈ An,

lines with slope j
i , |i|, |j| ≤ k, gcd(i, j) = 1 are incident to at most one point more than the

translated line incident to cn. Nevertheless a constant change of incident points does not affect the

main term in our asymptotic expression for the number of dominating points as we have already

seen in the proof of Lemma 4. All other lines only consist of two points such that p can only be

dominated by itself on these lines and therefore, they do not contribute to dp.

For a simple lower bound, we observe that every point p = (p1, p2) ∈ An lies at the corner of a

square {(x1, x2) ∈ Z2 | p1 − k ≤ x1 ≤ p1, p2 − k ≤ x2 ≤ p2} ⊆ [n]2. We can divide this square by

the diagonal incident to p and count dominating pairs in each triangle like in the case of cn (see

Figure 7). This time, we only have two copies of our considered segment which is colored grey in

Figure 7. So, there are

2

k∑
i=1

ϕ(i)

lines and a line with slope j/i will only be incident to bk/ic + 1 points in the square including p.

Therefore, similar to Lemma 4,

dp ≥ 2

k∑
i=1

(⌊k
i

⌋
2

)
ϕ(i) =

6

π2
k2 log k +O(k2) =

3

2π2
n2 log n+O(n2)
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Remark 1. The constant in the leading term of the lower bound in Lemma 6 can be improved

significantly to 9
2π2 by more detailed considerations. However, even this constant is probably not

tight and it would not improve later results.

Remark 2. Similarly to Lemma 4, we could prove that there are Θ(n3) ways to choose three points

on a common line that is incident to a fixed point p.

The n3 factor derives from the number of possibilities to choose three points on a line with slope

j/i ∈ Fk, which is for the lower bound at least(
bki c
3

)
∼ k3

6

1

i3

and for the upper bound at most (
2bki c

3

)
∼ 4k3

3

1

i3
.

At the same time, the factor 1
i3 will give us a sum

1 ≤
k∑
i=1

ϕ(i)

i3
≤

k∑
i=1

1

i2
<∞

since ϕ(i) ≤ i for all i ∈ N and ϕ(1) = 1.
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3 Dominating Sets Of [n]2

We first notice, that we only have a trivial upper bound on the geometric domination number,

given by 2n. In this case, we could place two points in every row (or column) such that all points

are dominated. Otherwise, there are no obvious bounds.

In this section, we will present non-trivial upper and lower bounds on the geometric domination

number and computational results on optimal solutions on dominating sets in general position.

3.1 Lower Bounds

In this section, we will first prove a simple lower bound on the geometric domination number and

then refine the argument by using our results from the previous section.

Let S be a set of s points in [n]2.

First, we fix a point p ∈ S. There are at most s− 1 lines defined by p and another point in S, each

line dominating at most n points. So, summing over all those lines, at most (s− 1)n points will be

dominated.

Further, we sum over all points in S and obtain that there are at most s(s− 1)n points dominated.

Since we doublecount each line defined by two points, we can divide by two and obtain a final upper

bound of dominated points by
1

2
s(s− 1)n.

Now, if we want S to be a dominating set, it has to hold that

1

2
s(s− 1)n ≥ n2 ⇔ s2 − s− 2n ≥ 0

which is the case if s ≥ 1
2 +

√
1
4 + 2n ≥

√
2n. Hence, Dn = Ω(n1/2).

The attentive reader might notice that we could have derived the same upper bound by arguing

that each pair of points in S defines a line that dominates at most n points, but the initial reasoning

can be refined.

As we have seen in Section 2, there are very few lines incident to a point that actually dominate close

to n points. In particular, we will use Lemma 5 to improve the lower bound on Dn significantly.

Theorem 3. For n ∈ N, it holds that Dn = Ω(n2/3).

Proof. First, let n = 2k + 1, k ∈ N and let S be a set of s points in [n]2, where
√

2n ≤ s ≤ 2n.

(Remember that 2n is a trivial upper bound on Dn and
√

2n a lower bound.)
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Let m be the smallest positive integer such that

s− 1 ≤ 4 ·
m∑
i=1

ϕ(i) = s′

Since we are aiming for an upper bound on dominated points, we can continue to work with s′.

Now, it will be easier to apply results from Section 2.

At this point, it is also worth noting that m = Ω(n1/4) since by Theorem 1,

s ≤ 1 + 4 ·
m∑
i=1

ϕ(i) =
12

π2
m2 +O (m logm) and s = Ω(n1/2).

Conversely, since s ≤ 2n and

s ≥ 1 + 4 ·
m−1∑
i=1

ϕ(i) =
12

π2
(m− 1)2 +O (m logm) =

12

π2
m2 +O (m logm)

we know that m = O(n1/2).

We will now go along the same lines as in the proof of the simple lower bound at the beginning

of the section. Fix a point p ∈ S. By Lemma 5, the number of dominated points by lines incident

to p and one of s′ additional points is bounded by

1 + 8

m∑
i=1

k

i
ϕ(i) =

24

π2
nm+O (n logm) (3)

Of course, we want all points in [n]2 dominated, so it has to hold that the overall number of

dominated points is at least n2. As |S| = s, we multiply the number in Equation 3 by s and as we

doublecount each point on a line, we also divide by 2. Hence, we get the estimate

n2 ≤ 1

2
s

(
1 + 8

m∑
i=1

k

i
ϕ(i) +O(n)

)
= s

(
12

π2
nm+O (n logm)

)
Next, we plug in the asymptotic expression for s, such that the inequality above simplifies to

n2 ≤
(

12

π2
m2 +O (m logm)

)(
12

π2
nm+O (n logm)

)
=

144

π4
nm3 +O

(
nm2 logm

)
and further,

n ≤ 144

π4
m3 +O

(
m2 logm

)
(4)

Thus, for all ε′ > 0, there is a N such that for all n ≥ N it has to hold that

m > (1− ε′)
(
π4n

144

)1/3
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such that Equation 4 is satisfied. Remember that m = O(n1/2) such that for every ε > 0 and

n large enough, it follows that

s =
12

π2
m2 +O (m logm) =

12

π2
m2 +O

(
n1/2 log n

)
> (1− ε)

(
π4n

144

)2/3

Consequently, for n odd, Dn = Ω(n2/3).

Of course, we can easily generalize this result for n even by embedding [n]2 in [n + 1]2. We

know, that we need Dn points to dominate the embedded square [n]2 and we only need to place at

most two points on each of the lines {n+ 1} × [n+ 1] and [n+ 1]× {n+ 1} to dominate [n+ 1]2.

That is, in general, Dn+1 − 4 ≤ Dn ≤ Dn−1 + 4.

Hence, Dn = Ω(n2/3).

Corollary 1. Since Dn ≥ Dn, it holds that Dn = Ω(n
2
3 ).

3.2 Upper Bounds

A trivial upper bound on Dn is given by 2n, since any larger point set will contain at least three

points in one column and as Dn ≤ Dn, both values are trivially bounded by this number.

Finding a non-trivial upper bound on Dn seems complicated as there are hardly any known

constructions for point sets in general position in the first place. Paul Erdős [24] proposed the

following point set, when n is a prime number

{(i, i2 mod n) | 1 ≤ i ≤ n}

where x mod y means the smallest remainder if x is divided by a multiple of y.

Roughly twenty years later, Hall, Jackson, Sudbery, and Wild [14] improved this lower bound on

the largest point set in general position to (3/2− ε)n.

However, none of these constructions are maximal and therefore dominating sets.

3.2.1 Two simple constructions for an upper bound on Dn

So, let us first have a look at two simple constructions for a non-trivial upper bound on Dn.

Construction 1.

The basic idea is to divide the n × n grid into nine cells (see Figure 8) and place points on the

border of the inner cell.
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Figure 8: Dominating set constructions for n = 13, 14, 15

Then, every point in the cell of a corner of [n]2 lies on a line with slope ±1, that is, a line parallel

to one of the diagonals. All other points lie on horizontal or vertical lines. So let us first consider

n ≥ 10, where n − 1 mod 3 = 0 and let t be the edge length of the inner cell and s be the edge

length of the cells in the corners. We want t to be as small as possible, but we need

2s+ t = n and 2s− 1 ≤ 2(t− 1)− 1

as there are only 2(t − 1) − 1 lines with slope 1 (and −1 resp.) that could cover the points in the

cells in the corners. So, we can choose t = (n− 1)/3 + 1 and place 4(t− 1) points.

We also notice that the points on the corner of the inner cell are only needed to define diagonals and

can be moved along these diagonals. Thus, we can move the points to the inner corners of the cells

in the corners [n]2 (see Figure 8). Hence, all points of the (n+ 2)× (n+ 2) grid are covered as well.

The same holds for the (n+ 1)× (n+ 1) grid, if we identify it as a subgrid in the (n+ 2)× (n+ 2)

grid (see Figure 8). Consequently,

Dn ≤ 4

⌊
n− 1

3

⌋
for n ≥ 10.

Construction 2.

If we take into account lines with slope ±i, 0 ≤ i ≤ n as well, the construction in Figure 9 gives us

an even better upper bound. It was found by Aichholzer et.al. [3] by hand and subsequently they

verified it computationally.

Clearly, all points in the grey areas are dominated by vertical or horizontal lines.

We also note, that points in the blue areas are dominated by diagonal lines and that we cannot

extend the field in the horizontal direction, since the point (17, 4) would not be dominated anymore.

Points in the yellow area are dominated by lines with slope ±2, points in the green area by lines

with slope ±3 and so on.
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Figure 9: Dominating set construction for n = 16

Theorem 4. For n ∈ N , it holds that

Dn ≤ 2
⌈n

2

⌉
.

Proof. First, let us consider n = 2k. The idea is to choose k points on each of the two vertical lines

in the middle as dominating sets (see Fig. 9). That is,

S = {(i, j) | k ≤ i ≤ k + 1, dk/2e+ 1 ≤ j ≤ k + dk/2e}.

Obviously, all x = (x1, x2) with x1 ∈ {k, k + 1} are dominated by a vertical line and those with

dk/2e+ 1 ≤ x2 ≤ k + dk/2e are dominated by a horizontal line. Further, for symmetry reasons, it

is sufficient to prove that points in the lower left rectangle [k− 1]× [ dk/2e ] are indeed dominated.

So let x = (x1, x2) ∈ [k − 1] × [ dk/2e ] and ∆ = k − x1. We will now try to find the line with

the smallest slope t that is incident to x and two points in S.

To do so, let t be the smallest positive integer such that x2 + t∆ > dk/2e. Since 1 ≤ ∆ ≤ k − 1,

this integer t is well defined and in the range from 1 to k.

We claim, that the points (k, x2 + t∆) and (k + 1, x2 + t (∆ + 1)) are in S. This is the case if

x2 + t (∆ + 1) ≤ k + dk/2e. We consider two cases:

1. ∆ = k−x1 ≥ dk/2e. Then t = 1 and x2 +∆+1 ≤ k+dk/2e, since ∆ ≤ k−1 and x2 ≤ dk/2e.
(Note that this case is tight, which is why we cannot extend the grid).

2. ∆ < dk/2e. Since t is the smallest integer such that t > (dk/2e − x2)/∆, we know that
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t ≤ (dk/2e − x2)/∆ + 1 and obtain

x2 + t (∆ + 1) ≤ x2 +

(
dk/2e − x2

∆
+ 1

)
(∆ + 1)

= dk/2e+
dk/2e − x2

∆
+ (∆ + 1) ≤ 3dk/2e − 1 ≤ k + dk/2e

Thus, (k, x2 + t∆) and (k + 1, x2 + t (∆ + 1)) are indeed in S and x is dominated by the line that

is defined by the two points.

If n = 2k − 1, we can embed [n]2 in [2k]2 and obtain the desired upper bound.
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3.2.2 Computational results on Dn

For an upper bound, we take a computational approach and naively implement a classic backtrack-

ing algorithm.

Backtracking is a recursive procedure that builds up candidates for an optimal solution step by step

and as soon as it determines that the candidate cannot be extended to an optimal solution, takes

a step back (backtracks) and chooses an alternative step.

In our case, it builds up point sets in general position point by point. If a set becomes larger than

the currently known smallest dominating set(s) in general position, the algorithm steps back and

generates a new point set. If a set dominates the grid and is at most the size of the currently

known smallest dominating set(s), it saves the solution and steps back to generate further possible

solutions.

Algorithm 1: backtrack(grid, dom set, p, max, free)

Input: grid, the n× n grid with points marked as free or dominated

dom set, a potential candidate for the dominating set

p, a new point for the dominating set

max, the size of the smallest known dominating set

free, a variable that counts the number of free points

1 begin

2 AddPoint(dom set, p, grid, free);

3 if free = 0 then

4 if |dom set|< max then

5 max = |dom set|;
6 end

7 Save(dom set);

8 else

9 if |dom set|< max then

10 p = NextFree(point, grid);

11 while p ∈ grid do

12 backtrack(grid, dom set, p, max, free);

13 p = NextFree(point, grid);

14 end

15 end

16 end

17 end
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The function AddPoint adds the point p to the set dom set and updates the grid and the value of

the counter free. The function NextFree searches the grid line by line after the point p and returns

the first free point that it finds.

A main program starts the backtracking procedure starting at every point in the n × n grid with

the empty set as initial value for dom set, n2 for free and 2n for max.

Oswin Aichholzer [3] computed all smallest dominating sets in general position with 4-fold sym-

metries for n ≤ 30. So, we can choose the initial value of max as the size of these sets to improve

the runtime a bit. However, we know that a dominating set has to be at least of size cn2/3, which is

also a lower bound on the depth of the recursion. The algorithm will therefore at least check every

point set in general position of size cn2/3 and at most every point set of size 2n.

Nevertheless, the algorithm produced all optimal solutions up to n = 10 and Aichholzer et.al. [3]

further computed all optimal solutions for n = 11. The results are summarized in Table 1.

n Dn number of solutions

2 4 1

3 4 5

4 4 2

5 6 152

6 6 8

7 8 4136

8 8 228

9 8 11

10 8 4

11 10 108

Table 1: Values of smallest dominating sets in general position for small n

The value for n = 10 was obtained by running the algorithm with starting points (1, 1) to (1, 5),

since any dominating set that contains a point from the border can be mirrored or rotated such

that it contains one of these points. All other dominating sets would also be dominating sets of the

9× 9 grid, but none of the eleven solution for the 9× 9 grid do not dominate [10]2.

Aichholzer et.al. [3] further computed that the optimal solutions for n = 12 are at most of

size 10.
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4 Random Point Sets

4.1 Heuristic Arguments From Guy And Kelly [13]

In this section, we will discuss the steps Guy and Kelly took in a probabilistic approach to bound

the maximal size of a set in general position in [n]2 [13]. They conjectured that we cannot find a

point set of size αn in general position for α >
(
2π2/3

)1/3 ≈ 1.873856 and n large enough.

First, they calculated the probability that three uniformly at random chosen points in [n]2 lie

on a line.

To do so, they counted the number of possibilities to choose three points on a line and then divided

this number by the number of possibilities to choose three points from a set of n2 points.

Theorem 5 (Guy, Kelly [13]). The number tn of sets of three collinear points that can be chosen

from [n]2 is

tn =
3

π2
n4 log n+O(n4).

Hence, they derived that

P(E) = 1−
3
π2n

4 log n+O(n4)(
n2

3

) = 1− 18 log n

π2n2
+O

(
1

n2

)
where E denotes the event that three randomly chosen points in [n]2 are in general position.

Subsequently, they concluded that under the assumption that the events that three points of 2n

random points of [n]2 are in general position are mutually independent, the probability that 2n

random points are in general position is(
1− 18 log n

π2n2
+O

(
1

n2

))(2n
3 )

= exp

(
−24

π2
n log n+O(n)

)
where exp(x) denotes the exponential function.

If this is indeed the probability that a random point set of size 2n is in general position, the number

of solutions to the No-Three-In-Line Problem has to be(
n2

2n

)
exp

(
−24

π2
n log n+O(n)

)
= O

(
n2n−

24
π2 ncn

)
Using Stirling’s formula, we can see that this number converges to 0 as n→∞.
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In order to obtain a lower bound for this convergence behavior, they argued that the probability

that αn random points lie on a line is(
1− 18 log n

π2n2
+O

(
1

n2

))(αn3 )
= exp

(
−3α3

π2
n log n+O(n)

)
and consequently, the number of solutions should be(

n2

2n

)
exp

(
−3α3

π2
n log n+O(n)

)
= O

(
n2−

3α3

π2 ncn
)

(5)

which converges to 0 as n→∞ if α >
(
2π2/3

)1/3 ≈ 1.873856.

In 2004, Gabor Ellman pointed out a small error to Richard Guy directly. Apparently, Guy has

never published a correction and Ed Pegg only published the correct number for a lower bound on

α on his homepage ”Math Games” [21].

However, it is easy to see that we have to multiply with the number of subsets of size αn and the

correct formula for equation (5) is instead(
n2

αn

)
exp

(
−3α3

π2
n log n+O(n)

)
= O

(
nα−

3α3

π2 ncn
)

which converges to 0 as n→∞ if α >
(
π2/3

)1/2 ≈ 1.813799.

Another thing that stands out about this proof is the assumption that the events that three

points of a random subset of [n]2 are in general position are mutually independent. Of course,

this is not the case. If the points p1, p2, p3 are collinear and p1, p2, p4 are collinear the event that

p1, p3, p4 are collinear is fully determined.

One can easily verify this fact for small n. Consider for example n = 3:

There are 8 possibilities to choose three collinear points in [3]2, so the probability that three random

points are not collinear is

1− 8(
9
3

) =
19

21

but given four random points, the probability they are in general position is

1− 8 · 6(
9
4

) =
13

21
≈ 0, 619 6=

(
19

21

)4

≈ 0, 67

If we take it further, we know that there are only 2 possibilities to choose six points in general

position (see e.g. [9]) in [3]2, but

2(
9
6

) ≈ 0, 02439 6=
(

19

21

)(6
3)
≈ 0, 13511
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Figure 10: Possible choices for three points in a line for n = 3

However, these probabilities could get very close as n grows and the result could asymptotically

still hold. According to the number of solutions for small n which can be found on Flammenkamp’s

homepage [9], the numbers do not suggest that this is true. Nonetheless, Guy and Kelly’s compu-

tations could still provide an upper bound on the number of solutions as one can see in Table 2.

n number of solutions tn approx. number of sol.

3 2 8 11,35

4 11 44 131,65

5 32 152 893,63

6 50 372 9664,13

7 132 824 39475,38

8 380 1544 319791,65

9 368 2736 1285895,73

Table 2: Real number of solutions to the No-Three-In-Line Problem compared to the approximated

number of solutions by Guy and Kelly’s arguments

In the following subsection, we will introduce a number of tools and concepts that are usually

used in the study of random graphs that will help us to properly consider the mutual dependence

of certain events.

It will turn out, that this approach is not very fruitful with respect to the No-Three-In-Line Problem

or the geometric domination number of [n]2, but we will make heavy use of the theory and methods

in Section 5, where we prove lower and upper bounds on the geometric domination number on the

discrete torus.

4.2 Random Point Sets In [n]2

Similar as in the study of random graphs, we will now introduce two models of random point sets

in [n]2 and use them to prove an upper bound for Dn on the torus.

We will go along the same lines as Frieze and Karonski in their book ”Introduction to random
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graphs” [11], adapt their definitions to random point sets and use some of the theorems in their

book.

First, we define two different random point set models and relate them to each other.

Definition 8 (Random point set models). Let Rn,m be the family of all subsets of size m of [n]2.

To every point set R ∈ Rn,m we assign the probability

P(R) =

(
n2

m

)−1
Essentially, this means that we start with an empty subset of [n]2 and add m points such that all

possible
(
n2

m

)
choices are equally likely. We denote such a random point set by Rn,m and call it a

uniform random point set.

The other model that we will introduce now is similar. Fix 0 ≤ p ≤ 1. Then for 0 ≤ m ≤ n2,

assign to each point set R with m points a probability

P(R) = pm(1− p)n
2−m

Here, we start with an empty set and perform n2 Bernoulli experiments inserting points of [n]2

independently with probability p. Therefore, we call such a random point set a binomial random

point set and denote it by Rn,p.

Just like the respective random graph models, the random point set models relate to each other

such that Rn,p conditioned on the event {|Rn,p| = m} is distributed like Rn,m.

Lemma 7. (Rn,p | |Rn,p| = m) ∼ Rn,m

Proof. Let R ⊆ [n]2 with |R| = m. Then, because Rn,p = R only if |Rn,p| = m, we have

P(Rn,p = R | |Rn,p| = m) =
P(Rn,p = R, |Rn,p| = m)

P(|Rn,p| = m)

=
P(Rn,p = R)

P(|Rn,p| = m)

And since |Rn,p| is the sum of n2 independent Bernoulli random variables that take the value 1 if

the point is in the set and 0 otherwise, |Rn,p| is binomially distributed with success probability p

and therefore,

P(Rn,p = R | |Rn,p| = m) =
pm(1− p)n2−m(
n2

m

)
pm(1− p)n2−m

=

(
n2

m

)−1
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Another useful concept that we will use is the idea of monotone properties.

Definition 9 (Monotone properties). A point set property is a subset of all possible point sets

in [n]2. We call a point set property P monotone increasing if adding a point to a point set does

not destroy the property. Conversely, a point set property is monotone decreasing if removing a

point from a point set does not destroy the property.

By analogous arguments as in [11, p. 5ff], one can formally prove what intuitively seems clear:

If P is a monotone increasing property, then the probability that a uniform random point set of

size m′ is equally or more likely to have the property than a uniform random point set of size

m ≤ m′. The same holds for Rn,p and Rn,p′ if p ≤ p′.

Lemma 8. If P is a monotone increasing property, p ≤ p′ and m ≤ m′, then

P(Rn,p ∈ P ) ≤ P(Rn,p′ ∈ P ) and P(Rn,m ∈ P ) ≤ P(Rn,m′ ∈ P )

Of course the converse holds for monotone decreasing properties.

Proof. For the first inequality, we will consider two point sets R1 and R2, where R1 is distributed

like Rn,p and R2 is distributed like Rn,q, where q is such that

(1− p′) = (1− p)(1− q).

Then the probability that a point does not lie in R1 ∪ R2 is (1− p′) and consequently, R1 ∪ R2 is

distributed like Rn,p′ . Since P is monotone increasing, it follows that

R1 ∈ P ⇒ R1 ∪R2 ∈ P

which means P(Rn,p ∈ P ) ≤ P(Rn,p′ ∈ P ).

For the second inequality, we build Rn,m′ from two point sets R1 and R2, where R1 is distributed

like Rn,m and R2 is a uniform random point set of size m′ −m from the set [n]2\Rn,m.

Again, R1 ∪R2 is distributed like Rn,m′ and the inequality follows from the monotonicity of P .

Clearly, the property of a point set being in general position is a monotone decreasing property

while the property of being a dominating set is a monotone increasing property.

Guy and Kelly considered random point sets of fixed size. So, if we want to take a similar approach

to our problem, we have to work with uniform random point sets. However, the tools that we want

to use can only be applied to binomial random point sets. This is why we need the following lemma

that we will prove analogously as a respective lemma for random graphs that can be found in the

lecture notes by Joshua Erde [8].
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Lemma 9. Let P be a monotone point set property and let m,n ∈ N . If we let p = m/n2, then

P(Rn,m ∈ P ) ≤ 2P(Rn,p ∈ P )

Again, the proof is absolutely analogous to the proof in the notes. In order to provide accessi-

bility, we will include it anyways.

Proof. We will proof the theorem for monotone decreasing properties, but the case that P is mono-

tone increasing is similar.

By the law of total probability and Lemma 7, it holds that

P(Rn,p ∈ P ) =

n2∑
k=0

P(|Rn,p| = k)P(Rn,p ∈ P | |Rn,p| = k)

=

n2∑
k=0

P(|Rn,p| = k)P(Rn,k ∈ P )

≥
m∑
k=0

P(|Rn,p| = k)P(Rn,k ∈ P )

Since P is monotone, we can further estimate

P(Rn,p ∈ P ) ≥ P(Rn,m ∈ P )

m∑
k=0

P(|Rn,p| = k) = P(Rn,m ∈ P )P(|Rn,p| ≤ m)

Now, |Rn,p| is a binomial random variable with n2 trials and success probability p and its mean

and median coincide. Hence,

P(|Rn,p| ≤ m) =
1

2

Rearranging the terms above yields the desired inequality.

So instead of trying to show like Guy and Kelly that the probability that a uniform random

point set Rm is in general position goes to 0, we could try to prove the same for a binomial random

point set Rp with p = m/n2 since these models are (in this case) far easier to handle. They offer

the possibility of using the following inequalities that were first published in the 1980’s and that

can be found in Frieze and Karonski’s book.

Theorem 6 (Janson’s inequality [11]). Let A be a finite set and Rp, where p = {pi, i ∈ A}, a

random subset in such a way that the elements are chosen independently with P (i ∈ Rp) = pi for

each i ∈ A.

40



Let B be a family of subsets of A and, for every B ∈ B, let IB be the indicator variable. Then

X =
∑
B∈B IB counts those elements of B which are entirely contained in Rp. Set

µ = E(X), ∆ =
1

2

∑
A6=B∈B
A∩B 6=∅

E(IAIB)

Then, it holds that

P(X = 0) ≤ exp (−µ+ ∆) (6)

If ∆ > µ
2 , a stronger bound is given by

P(X = 0) ≤ exp

(
− µ2

µ+ 2∆

)
(7)

In the next subsection, we will use Janson’s inequality to bound the probability that a fixed

point in [n]2 is free. To do so, we will define A to be [n]2 and B to be the set of dominating pairs

of this fixed point. Then, Janson’s inequality yields an upper bound on the probability that no

dominating pair is contained in the random point set.

Subsequently, we will use the union bound to obtain an upper bound on the probability that there

is a free point in [n]2.

Theorem 7 (Union bound [16]). Let {Ai}i∈N be a countable family of events. Then

P

(⋃
i∈N

Ai

)
≤
∑
i∈N

P(Ai).

4.3 An Application To Dominating Sets Of [n]2

In this subsection, we will try to prove that Dn ≤ αn with α < 2, using random point sets. Unfor-

tunately, we will not be particularly successful. But, as we will see in the next section, the same

strategy works very well on the discrete torus.

The general outline of the proof is the following:

1. Fix a point p ∈ [n]2 and compute an upper bound on the probability that a random point set

of size αn dominates p:

(a) Use Lemma 9 and bound the probability that a uniform random point set of size αn

does not dominate p by the probability that a binomial random point with p = α/n does

not dominate p.
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(b) Use the fact that p is dominated by Rn,α/n if and only if Rn,α/n contains a dominating

pair of p. Apply Janson’s inequality to bound the probability that Rn,α/n does not

contain a dominating pair of p.

2. Use the union bound to show that the probability that there exists a free point in Rαn is

smaller than 1. Then, there exists a dominating point set of size αn.

We start with step 1. Let Rαn be a uniform random point set and p ∈ [n]2. Let Pp be the set

of all point sets in [n]2 that do not dominate p. By definition, Pp is a point set property and since

any subset of a point set that does not dominate p does not dominate p either, Pp is a decreasing

point set property.

By Lemma 9, it holds that

P(Rαn ∈ Pp) ≤ 2P(Rn,α/n ∈ Pp).

Therefore, we will only consider Rn,α/n from now on. Note that Rn,α/n dominates p if and only if

Rn,α/n contains a dominating pair of p or p ∈ Rn,α.

So, let Dp be the set of dominating pairs of p and for any D ∈ Dp, let ID be the indicator random

variable that takes the value 1 if D ∈ Rn,α/n and 0 otherwise. Likewise, let Ip be the indicator

random variable that takes the value 1 if p ∈ Rn,α/n and 0 otherwise. Then, the random variable

X = Ip +
∑
D∈Dp

ID

counts the number of dominating pairs of p in Rn,α/n and adds 1 if p ∈ Rn,α/n. That means, X ≥ 1

if and only if p is dominated by the random point set.

Now, we can apply Janson’s inequality, if we identify A with [n]2, Rp with Rn,α/n and B with

Dp ∪ {p}. We just need to calculate µ and ∆.

In order to so, remember that we defined dp = |Dp| in Section 2.2. Since any dominating pair

consists of exactly two points that are independently contained in Rn,α/n, each with probability α/n,

we know that

µ = E(X) = E(Ip) +
∑
D∈Dp

E(ID)

= P(p ∈ Rn,α/n) +
∑
D∈Dp

P(D ∈ Rn,α/n)

=
α

n
+
∑
D∈Dp

(α
n

)2
=
α

n
+ dp

(α
n

)2
.

For the ∆-term, we will only compute an asymptotic formula. Two distinct dominating pairs

C,D of p have a non-empty intersection if and only if their intersection contains exactly one point

and since both pairs dominate p the three points in C ∪ D are collinear. On the other hand, a
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dominating pair of p and {p} will have an empty intersection.

Since we know by Remark 2 that there are Θ(n3) possibilities to choose three collinear points on a

line incident to p and each of those three points is in Rn,α/n independently with probability α/n,

we obtain

∆ =
1

2

∑
C 6=D∈Dp∪{p}

C∩D 6=∅

E(ICID) =
1

2

∑
x,y,z∈[n]2

x,y,z,p collinear

(α
n

)3
= Θ(1)

Using Janson’s inequality, we can now derive

P(Rαn ∈ Pp) ≤ 2P(Rn,α/n ∈ Pp) = 2P(X = 0)

≤ 2 exp(−µ+ ∆)

≤ 2 exp

(
−α
n
− dp

(α
n

)2
+ Θ(1)

)
Finally, as outlined in step 2 at the beginning, we can now use the union bound to bound the

probability that Rαn is not a dominating set.

P(There exists a free point in Tn) = P(Rαn ∈
⋃

p∈[n]2
Pp)

≤
∑

p∈[n]2
P(Rαn ∈ Pp)

≤ 2
∑

p∈[n]2
exp

(
−α
n
− dp

(α
n

)2
+ Θ(1)

)
By Lemma 6, we know that dp ≥ 3

2π2n
2 log n+O(n2), so we advance our calculations as follows.

P(There exists a free point in Tn) ≤ 2
∑

p∈[n]2
exp

(
−α
n
− dp

(α
n

)2
+ Θ(1)

)

≤ 2n2 exp

(
−
(α
n

)2 3

2π2
n2 log n+ Θ(1)

)
= exp

(
2 log n− 3α2

2π2
log n+ Θ(1)

)
So, for all n large enough the probability that there exists a free point will be smaller than 1 if we

choose α such that

2− 3α2

2π2
< 0 ⇔ α >

2π√
3
> 2

This lower bound for α is of course useless because α = 2 yields the trivial upper bound 2n on Dn.

If we could find a better bound for dp, somehow, the lower bound for α could decrease significantly.

Let us assume, for example, we could use the upper bound of dp for all p ∈ [n]2. Then we would

obtain

2− 12α2

π2
< 0 ⇔ α >

π√
6
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where we observe that π/
√

6 ≈ 1, 28255 < 2.

However, we already showed that Dn ≤ 2dn/2e in the previous section. So this probabilistic ap-

proach does not seem useful overall.

On the other hand, we will see in the next section that on the discrete torus, we can exploit the

fact that every point is incident to the same number of lines, that all lines are of equal length and

that dp is constant for all p ∈ [n]2.
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5 Dominating Sets On The Discrete Torus

Roughly ten years ago, Fowler, Groot, Pandya and Snapp considered the No-Three-In-Line Problem

on a n × n torus and proved for n prime that the maximal size of a point set in general position

is n + 1 by giving an explicit construction and proving its maximality [10]. Additionally, they

considered n × m tori, where m = n2 and m = nk, gcd(n, k) = 1. In 2016, Misiaka, Stpieńa,

Szymaszkiewicza, Szymaszkiewiczb and Zwierzchowski made further progress on n × m tori and

solved the problem for n,m such that gcd(n,m) is a prime.

In this section, we will not provide any specific constructions for dominating sets. Instead, we

will prove lower bounds on the minimum size of dominating sets in a similar manner as in Section 3

and upper bounds with the tools that we introduced in Section 4.

But first, we need to define the discrete torus and state some preliminary facts.

Definition 10. We identify the discrete torus Tn with {0, 1, 2, . . . , n− 1}×{0, 1, 2, . . . , n− 1} and,

just as in [19], we define lines on the torus to be images of lines in Z × Z under the projection

πn : Z× Z→ [n]2 defined as follows

πn(x1, x2) := (x1 mod n, x2 mod n)

where a mod b means the smallest non-negative remainder when a is divided by b.

A set of points S on the torus is collinear, if there is a line on the torus that is a superset of S.

In Figure 11, we can see that the line incident to (0, 0) with slope 1
2 in [n]2 ”wraps around the

torus” such that it is now incident to the 13 black points. The line incident to (1, 7) with slope 1
2

now projects to exactly the same line.

By means of group theory, Fowler et.al. proved in their paper that the maximal size of a point

set in general position is n + 1 if n is prime and they obtained several other results. We will just

cite their results in order to avoid introducing any more theory.

In the following, let n be prime.

In the proof of Theorem 2.3 in the paper of Fowler et.al [10], the authors showed that every point

on the torus is incident to exactly n + 1 distinct lines and they explicitly stated the generators of

these lines if we translate them to (0, 0). While they used the term generators in the algebraic

sense, we think about these generators in a similar way as we thought about the closest point to cn

on a line in [n]2 in Section 2. These generators uniquely define a line incident to (0, 0) and every

point on the line generated by (x1, x2) is of the form

(tx1 mod n, tx2 mod n), where 1 ≤ t ≤ n.
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Figure 11: A sample line in black on the 13× 13 torus

They identified the generators G = {(0, 1), (1, 0), (1, 1), (1, 2), . . . (1, n− 1)} of the lines incident

to (0, 0). Since n is prime, we know that for 1 ≤ t1 < t2 ≤ n and x ∈ [n− 1] it holds that

(t1x mod n) 6= (t2x mod n).

It follows for any (x1, x2) ∈ G that

(t1x1 mod n, t1x2 mod n) 6= (t2x1 mod n, t2x2 mod n).

Thus, every line is incident to exactly n points.

Even though it seems obvious, the property that the intersection of two lines contains at most

one point is due to the fact that n is prime. We can verify this property in this case easily if we

count points by lines. After we count (0, 0) once, we are left with n + 1 lines incident to (n − 1)

points excluding (0, 0). Since every point lies on at least one line incident to (0, 0) and

1 + (n+ 1)(n− 1) = 1 + n2 − 1 = n2

the intersection of two distinct lines on Tn, if n is prime, must not consist of more than one point.

This is all that we need for our considerations in this section. So, let us state this observations

for future reference.

Observation 2. For n prime, every point on the n× n torus is incident to exactly n+ 1 distinct

lines and every line is incident to exactly n points.
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5.1 Lower And Upper Bounds On The Size Of Dominating Sets

The results in this section are achieved by similar considerations as in Section 3.1 and Section 4.3.

For convenience, let us denote the minimum size of a dominating set on the n× n torus by DT
n .

Theorem 8. For n prime, DT
n = Ω(

√
n).

Proof. Let S ⊆ Tn. Any pair of points in S defines a line and, by Observation 2, this line will

dominate exactly n points. So S dominates at most
(|S|

2

)
n points.

Hence, if S is a dominating set, it has to hold that(
|S|
2

)
n ≥ n2 ⇔ |S|2 − |S| − 2n ≥ 0

which is the case if |S| ≥ 1
4 +

√
1
4 + 2n.

Since every line dominates exactly n points, we cannot refine these considerations any further.

Surprisingly, the upper bound on the minimum size of dominating sets on the torus is even smaller

than the lower bound on the geometric domination number in [n]2.

Theorem 9. For n prime, DT
n = O(

√
n log n).

Proof. The proof goes along the exact same lines as our considerations in Section 4.3. We will use

random point sets that we defined, strictly speaking, for [n]2. But we can translate [n]2 by −(1, 1)

such that we obtain the discrete torus Tn = {0, 1, 2, . . . n− 1}2.

So, let Rm be a uniform random point set of size m on Tn. By our considerations on the lower

bound in Theorem 8 and the upper bound on the size of point sets in general position [10], we can

assume
√

2n ≤ m ≤ n+ 1.

Now, fix p ∈ Tn and let Pp be the set of all point sets on Tn that do not dominate p. Again, we

note that Pp is a decreasing point set property.

By Lemma 9, it holds that

P(Rm ∈ Pp) ≤ 2P(Rn,m/n2 ∈ Pp).

Therefore, we continue by considering Rn,m/n2 .

Rn,m/n2 dominates p if and only if Rn,m/n2 contains a dominating pair of p or p ∈ Rn,m/n2 .

So, once again, let X be the random variable that counts the number of dominating pairs of p.

That is

X = Ip +
∑
D∈Dp

ID
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where Ix are indicator random variables and Dp denotes the set of dominating pairs of p. Note that

X ≥ 1 if and only if p is dominated by the random point set.

Next, we apply Janson’s inequality and identifyA with Tn, Rp with Rn,m/n2 and B with Dp∪{p}.
All we have to do is computing µ and ∆.

Since p is incident to n+1 lines that consist of n points, there are (n+1)
(
n−1
2

)
distinct dominating

pairs of p on Tn. Consequently,

µ = E(X) = P(p ∈ Rn,m/n2) +
∑
D∈Dp

P(D ∈ Rn,m/n2)

=
m

n2
+
∑
D∈Dp

(m
n2

)2
=
m

n2
+

(n+ 1)(n− 1)(n− 2)

2

(m
n2

)2
=
m2

2n
+ Θ

((m
n

)2)
Furthermore, two distinct dominating pairs C,D of p have a non-empty intersection if and only

if their intersection contains exactly one point and the three points in C ∪ D are collinear. The

number of collinear triples that lie on a common line with p is therefore (n+ 1)
(
n−1
3

)
. Hence,

∆ =
1

2

∑
C 6=D∈Dp∪{p}

C∩D 6=∅

E(ICID) =
1

2

∑
x,y,z∈[n]2

x,y,z,p collinear

(m
n2

)3

=
(n+ 1)(n− 1)(n− 2)(n− 3)

12

(m
n2

)3
=

m3

12n2
+ Θ

((m
n

)3)
Using Janson’s inequality, we derive

P(Rm ∈ Pp) ≤ 2P(Rn,m/n2 ∈ Pp) = 2P(X = 0) ≤ 2 exp(−µ+ ∆)

= 2 exp

(
−m

2

2n
+ Θ

((m
n

)2)
+

m3

12n2
+ Θ

((m
n

)3))
The sum of the asymptotic terms above is O(1) because we assumed that m ≤ n + 1. Finally,

48



we use the union bound again.

P(∃ a free point in Tn) = P(Rm ∈
⋃

p∈[n]2
Pp)

≤
∑

p∈[n]2
P(Rm ∈ Pp)

≤ 2n2 exp

(
−m

2

2n
+

m3

12n2
+O(1)

)
= exp

(
2 log n− m2

2n
+

m3

12n2
+O(1)

)
If we choose m = (2 + ε)

√
n log n, with ε > 0, it follows that

2 log n− m2

2n
+

m3

12n2
+O(1)→ −∞ as n→∞

Consequently, for all n large enough, there is a dominating set of size O(
√
n log n).
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6 Summary And Future Work

In Sections 2 through 5, we were able to shed some light on dominating sets in [n]2 and on the

discrete torus Tn, for n prime. We have shown that

• for all ε > 0 and n large enough, Dn ≥ Dn > (1− ε)
(
π4n
144

)2/3
(Subsection 3.1, Theorem 3)

• for all n ∈ N , Dn ≤ 2dn2 e (Subsection 3.2, Theorem 4)

• the minimum sizes of geometric dominating sets in general positions are (Subsection 3.2.2):

- for D2 = D3 = D4 = 4

- for D5 = D6 = 6

- for D7 = D8 = D9 = D10 = 8

• for all n ∈ N , the minimum size of dominating sets on the torus is DT
n ≥ 1

4 +
√

1
4 + 2n

(Subsection 5.1, Theorem 8)

• and for all ε > 0 and n large enough, DT
n ≤ (2 + ε)

√
n log n. (Subsection 5.1, Theorem 9).

However, new questions popped up and the exact minimum size of dominating sets for general n

is still unknown.

The search for upper bounds on the geometric domination number seems to be particularly hard,

but our results in Section 2 and Subsection 3.2 might be able to fuel computational approaches.

In Subsection 2.2, we obtained a general understanding on how to place points with respect to a

fixed point in order to dominate the most points. The dominating sets in general position that we

found computationally suggest that placing points on horizontal, vertical and diagonal lines with

respect to subsequent points might be a very good strategy to maximize dominated points globally.

We could therefore try to implement a randomized algorithm that assigns weights to free points,

according to their position with respect to subsequently chosen points. The larger the weight of a

point, the more likely the algorithm will choose the point next. Conversely, we could assign weights

with respect to the likelihood that a point is dominated by the currently chosen points and an

additional free point.

From a purely theoretical viewpoint, it would be interesting to compute tight asymptotic ex-

pressions of dp for all p ∈ [n]2 too.

Aichholzer [3] also asked whether the geometric domination number is monotone and pointed

out that, in either case, it would be interesting to look for dominating sets of [n]2 that may include

points in Z2 outside of [n]2. For instance, we know that D2 = 4, but if we consider dominating sets

in Z2, three points are enough as one can see in Figure 12.
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Figure 12: Dominating sets of [2]2, restricted to [2]2 and unrestricted

On the torus, there are several cases that we have not considered yet. In particular, it should

be possible to apply our probabilistic strategy if n is not prime, once it is clear how many lines are

incident to a fixed point. However, this would probably require to exploit the algebraic properties

of the discrete torus which was out of scope of this thesis.

The attentive reader might wonder whether our probabilistic arguments can be applied to the

No-Three-In-Line Problem as well. Unfortunately, we were not able to prove Guy and Kelly’s

conjecture which we discussed in Subsection 4.1. The ∆-term in Janson’s inequality, that reflects

the variance of the number of collinear triples in a random point set, is too large and, with our

strategy, the probability that a random point set of size αn is in general position can only be

bounded by e−cn as opposed to Guy and Kelly’s bound of e−cn logn.
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[20] Östergard P.R.J., Weakley W.D. (2001). Values of Domination Numbers of the Queen’s Graph.

The Electronic Journal Of Combinatorics.

[21] Pegg E. (2005). ”Math Games: Chessboard Tasks”.

Retrieved from http://www.mathpuzzle.com/MAA/36-Chessboard

Tasks/mathgames 04 11 05.html on March 22, 2020.

[22] Pegg E., Zimmermann A. (2013). Al Zimmermann’s Programming Contests.

Retrieved from http://azspcs.com/Contest/Tetrahedra and from

https://math.stackexchange.com/questions/553431/no-four-in-plane-can-11-points-be-picked-

from-a-4-times4-times4-grid on May 30, 2020.
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