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Abstract

Title: Keyword extraction and named entity recognition on Reddit submis-

sions

The goal of this thesis was to create a pipeline for extraction of valuable

information from short natural language texts, more specifically Reddit sub-

missions. The two main areas of research that we covered were keyword

extraction and named entity recognition for the extraction of keywords and

the recognition of actors and movie titles in the texts. In our thesis we im-

plemented and evaluated four different approaches for keyword extraction

(RAKE, TextRank, LSTM and biLSTM networks) and three different ap-

proaches for named entity recognition (Spacy library models, Stanford NER

and Fine-tuned BERT models). The analysis of the algorithms showed that

the best results were achieved when using a three layered biLSTM network for

keyword extraction, an uncased BERT model fine-tuned on the MIT movie

corpus dataset for the recognition of actors, and the BERT model fine-tuned

on the Ontonotes 5 dataset for the recognition of movie titles.

Keywords

Deep learning, named entity recognition, keyword extraction, analysis





Kurzfassung

Titel: Schlüsselwortextraktion und Erkennung benannter Entitäten in Reddit-

Submissionen

Ziel dieser Arbeit war es, eine Pipeline zur Extraktion wertvoller Infor-

mationen aus kurzen Texten in natürlicher Sprache, insbesondere Reddit-

Beiträgen, zu erstellen. Die beiden Hauptforschungsbereiche, die wir behan-

delt haben, waren die Keyword-Extraktion und die Erkennung benannter

Entitäten für die Extraktion von Keywords und die Erkennung von Schaus-

pielern und Filmtiteln in den Texten. In unserer Arbeit haben wir vier ver-

schiedene Ansätze für die Schlüsselwortextraktion (RAKE, TextRank, LSTM

und biLSTM-Netzwerke) und drei verschiedene Ansätze für die Erkennung

benannter Entitäten (Spacy, Stanford NER und fein abgestimmte BERT-

Modelle) implementiert und bewertet. Die Analyse der Algorithmen ergab,

dass die besten Ergebnisse erzielt wurden, wenn ein dreischichtiges biLSTM-

Netzwerk für die Keyword-Extraktion verwendet wurde, ein BERT-Modell

für Kleinbuchstaben, das auf den MIT-Filmkorpus-Datensatz zur Erkennung

von Akteuren fein abgestimmt war, und das BERT-Modell, das auf den

Ontonotes 5-Datensatz zur Erkennung von Filmtiteln fein abgestimmt war.

Schlüsselwörter

Tiefes Lernen, Erkennung benannter Entitäten, Keyword-Extraktion, Anal-

yse





Chapter 1

Introduction

1.1 Motivation

With the explosive rise in internet usage and content creation worldwide

[1] in the past decade, there has never been a time in history when such

enormous amounts of data are being consumed every second of the day.

Finding content that we actively seek for or accidentally finding that we did

not know we might like in such a world becomes increasingly more difficult,

opening up new space for creative solutions. This shift in the amount of

content we could interact with on our daily basis lead to the creation of

systems that could find relevant information, products or services for the

user. With this in mind, data classification, content curation and content

recommendation took the center stage.

Nowadays, systems dealing with recommendations can be found practi-

cally everywhere, from their use in stores to internet advertising. Although

that is the case, the field of recommendation that is based on specific user

requests and descriptions, possibly written in natural language, stays some-

what neglected. A possible reason for that is the lack of appropriate datasets,

containing item descriptions and their respective recommendations in natu-

ral, human understandable language, that were written by other users, based

on the original users request.

1
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With that being said, this thesis will primarily focus on processing specific

user requests in short text forms. We believe that by using text written in

natural language, we can obtain more relevant information about the users

preferences and hence construct a clearer picture of the users request. In

other words, the goal of this endeavour is to create an accurate and more

importantly an automated process of creating a set of processed data that

contains the most important bits of the original text. This could provide

future research and business opportunities by making the process of including

natural language requests in models easier and more streamlined.

1.2 Methodology

1.2.1 Keyword extraction

Keyword extraction (KE) is an information extraction task that seeks to

locate and extract words or phrases of higher importance from unstructured

text. For KE, keywords are chosen from words that are explicitly mentioned

in the original text. By definition, keywords are words that describe the main

topics expressed in text, hence they provide a lot of information about the

contents of the text and can thus be leveraged for a variety of different tasks.

Such tasks include text summarizing, document classification etc.

In most cases, keyword extraction starts with a selection of potential

keywords called candidates for which a certain metric is calculated (centrality,

frequency, co-occurrence etc). Based on the calculated metrics a number of

candidates are selected as keywords.

1.2.2 Named entity recognition

Named entity recognition (NER for short) (also known as entity identifi-

cation, entity extraction and entity chunking) is a process of information

extraction aimed at locating and the subsequent classification of named en-

tities in unstructured text into pre-defined user created categories (Image
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1.1). Such categories often include organizations, locations, person names

etc. NER can be found in many different fields related to artificial intelli-

gence.

The process is usually divided into segmentation, paired with chunking

of the segmented data, and later classification. During segmentation, the in-

put text is in most approaches divided into individual words which are then

equipped with their respective part-of-speech tags (POS tags) and clumped

together using chunking methods. Classification of the tokens depends heav-

ily on the approach used.

Figure 1.1: An illustration of a NER algorithm results.

1.3 Problem definition

The problem for this thesis is centered around extracting important words

or phrases from short texts written in natural language. For the purposes

of this thesis, we will primarily focus on processing specific request and rec-

ommendation from the website Reddit1. More specifically, from submission

and their respective comments posted on a part of this website (a subreddit)

named /r/MovieSuggestions2. On this subreddit the users post specific re-

quests or questions about movies and other users try to recommend a movie

1https://www.reddit.com/
2https://www.reddit.com/r/MovieSuggestions/

https://www.reddit.com/
https://www.reddit.com/r/MovieSuggestions/
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to them, that they believe suits the expressed request. The processing of

this kind of data includes the extraction of keywords and the recognition of

named entities in the text, such as movie titles and names of actors, directors,

etc. An example of such processing would be the following:

Spider-verse3:

I really like the artwork of the new Spiderman movie, Spider-Verse.

Could anyone suggest me more movies like that?

From this submission we can extract the following details:

{artwork (keyword), Spiderman (named entity, name), Spider-Verse

(named entity, movie title)}.

The problem can be divided into two main fields, keyword extraction and

named entity recognition. For each of the two main fields, multiple different

approaches will be used in order to determine how successful and suitable

each one of them is for the problem in question. A part of this thesis will

hence deal with the analytical evaluation of those algorithms. In the end, the

ultimate goal is to present and analyse the results of the evaluation and based

on those, construct a complete algorithm for automatic keyword extraction

and named entity recognition of short texts.

1.4 Structure

This master’s thesis is alongside the introduction divided into 5 chapters, de-

tailing the research, experiments and the results of our work on this problem.

In Chapter 2 we will outline the work of other authors that was instrumen-

tal for our work. For each one of the algorithms we used, we try to explain

the underlying architecture and principles behind it.

3https://www.reddit.com/r/MovieSuggestions/comments/a8bpk8/spiderverse/

https://www.reddit.com/r/MovieSuggestions/comments/a8bpk8/spiderverse/
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In Chapter 3 we provide a detailed explanation on how we approached the

problem, how the algorithms were implemented and what combination of

test cases and parameter values were used.

Chapter 4 contains the results we obtained from the experiments explained

in Chapter 3 and a thorough analysis of them. We compare the algorithms

for both keyword extraction and named entity recognition against each other,

respectively.

In Chapter 5 we take a critical look at our research and outline possible

potential problems with our input dataset and approaches to the problem

that could skew the obtained results. We propose a few potential solutions

for the outlined problems.

Chapter 6 summarizes the results and gives the discussion of possible future

work that could meaningfully expand our research.



6 CHAPTER 1. INTRODUCTION



Chapter 2

Related work

In the following chapter we will outline the related work that served as a basis

for this thesis. We will try to explain the techniques and methods behind

the used algorithms for the purpose of this work. The goal of this chapter

is to present the existing algorithms and explain why they were selected for

this thesis.

2.1 TextRank

In 2004, Mihalcea and Tarau [2] proposed a novel solution for the problem

of KE, by representing the input text as a graph. The idea behind this is

that keywords as a part of a text can be described as having connections to

other words in that text. These connections can then be used as a sort of

a voting, or rather a sort of recommendation system, where the connections

can be seen as votes and the weight of these connections is determined by

the importance of the vertex they originate from.

Formally, let the undirected graph be described as G=(V,E), with a set

of V vertices and a set of E edges (connections between vertices), where E

is a subset of V × V . Given this notation we declare, for a certain vertex Vi,

a set of all vertices that point to Vi, to be In(Vi) and the set of all vertices

that Vi points to, to be Out(Vi). With this we can define the importance of

7
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a single vertex by:

S(Vi) = (1− d) + d ∗
∑

j∈In(Vi)

(
1

|Out(Vj)|
S(Vj)

)
(2.1)

where d is the damping factor that can be set between 0 and 1 (set to 0.85 in

this implementation of the algorithm). Due to this equation, the algorithm is

iterative and by starting from a random starting assignment of node values,

requires multiple passes through the graph to converge. The application of

the graph based ranking algorithm to the natural language text follows the

next selection of steps:

1) Identify text units that best define the task at hand, and add them as

vertices in the graph. In the case of this task, singular words are used

as vertices.

2) Identify relations that connect such text units, such as neighbouring

words, parts of phrases etc. and use these relations to draw edges

between vertices in the graph. Edges can be directed or undirected,

weighted or unweighted, but we will use unweighted undirected edges

(Figure 2.1).

3) Iteratively update the vertex scores until convergence.

4) Sort vertices based on their final score. Use the values attached to each

vertex for ranking/selection decisions.

TextRank as an algorithm works due to the fact that keywords are highly

connected to the rest of the text, meaning that a high number of words

should vote for them. This algorithm does not require any deep linguistic or

domain knowledge to run and is fairly simple implementation-wise, which is

why we decided to use this algorithm in our work.
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Figure 2.1: An illustration of an unweighted undirected graph cre-

ated by TextRank.

2.2 RAKE

Rapid automatic keyword extraction (RAKE) was proposed in 2012 by Rose

et al. [3], as a simple and efficient algorithm that could rival its concurrent

algorithms for KE. The basic premise of this algorithm is the assumption that

most keywords do not contain any punctuation marks or so-called stopwords,

words like and, of, the etc. that provide minimal lexical meaning. The

reasoning behind that is that due to the frequency of such words, they do

not provide any meaningful contribution to analyses and search tasks.

The algorithm starts with an input set of stopwords, which are used

alongside phrase delimiters to split the original text into sequences of words.
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Words in a single sequence are assigned the same position in the text and are

together considered to be a single candidate keyword. After all candidate key-

words in the original text have been identified, a graph of word co-occurrence

is computed and a score is calculated for each candidate keyword. The score

of candidate keyword is defined as the sum of all of co-occurrence scores of

the words that comprise the candidate keyword. Due to the minority of key-

words that contain an interior interim stopword, the algorithm corrects its

behaviour by joining together certain keyword candidates (and the interior

interim stopword that connects them) that adjoin each other at least two

times in the same order as in the same document (this becomes more com-

mon in longer input texts). Based on their previously calculated scores, the

candidates are sorted and the top T of them are selected as keywords, where

T is a user defined number.

The efficiency, low complexity, as well as the different way of approaching

KE, were all factors in deciding to use this algorithm in our work.

2.3 Word2Vec

Words written in a natural language are in a sense discrete states connected to

each other through language. Each language has its own vocabulary of words

and a set of rules on how to connect them. Based on that, it is possible to

compute transitional probability between words, discrete states. This notion

is found at the very base of NLP. Since neural networks are designed to work

with numerical data, these discrete states are transformed into numerical

vectors in a process called word embedding. Words carry meaning, some

more than the others, and have underlying connections to other words based

on that meaning (i.e. words ’boy’ and ’man’), which has to be accounted

for when performing word embedding. Due to this fact, a simple One-hot

encoding performs only a part of the task by vectorizing words, since the

newly embedded representations do not retain any dependencies between

each other.



2.4. LSTM AND BILSTM NEURAL NETWORKS 11

In our thesis we will be using a word embedding method called Word2Vec,

that was first proposed by Mikolov et al. [4] in 2013. The method makes

use of a shallow, two layered neural network to process text and output

numerical vector representations of words. In its architecture the network

resembles an autoencoder, but rather than trying to reconstruct the same

word as an output, the network attempts to predict neighbouring words

(context) found in the training corpus. This is done in one of two ways,

either using the input word to predict the target context (Skip-gram) or the

other way around, using context to predict the target word (continuous bag

of words, or in short CBOW) (Figure 2.2). Both approaches represent viable

ways of computing the word embeddings, although the skip-gram approach

is preferred due to a higher accuracy when compared to CBOW, which is a

faster, yet less accurate approach. During training, similar words are pushed

together due having similar contexts, preserving the dependencies between

words. The output of this method is a vocabulary of all input words and

their corresponding numerical vector representations.

2.4 LSTM and BiLSTM neural networks

Long short-term memory neural networks (LSTM for short) were first pro-

posed by Hochreiter and Schmidhuber in 1997 [5]. Since then, the LSTM

architecture has been improved and built upon, the most notable change

was the addition of a forget gate by Schmidt and Schmidhuber [6] in 1999.

In the recent years, the architecture has been adapted to natural language

processing (NLP) due to its ability to keep track of dependencies between

elements of input sequences, without the vanishing gradient problem that

occurs in the simpler recurrent neural networks (RNN) for longer sequences.

Unlike the classic feed-forward neural networks, LSTM takes advantage of

a feedback loop (Figure 2.3), which is more suitable for processing not only

single data points, but also entire sequences. A LSTM network is hence a

good match for NLP. LSTM network is a special kind of a RNN, capable
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Figure 2.2: A visual comparison of the skip-gram and CBOW ap-

proaches to word embedding. In the CBOW model, the or sur-

rounding words (word embeddings, represented by the rectangles)

are combined to predict the word in the middle. On the other

hand, in the Skip-gram model, the embedded input word is used

to predict the surrounding words.

of learning long-term dependencies. Like any RNN, LSTM network uses a

chain structure of repeating modules (Figure 2.4).

Figure 2.3: An illustration of a LSTM network. In this figure

A represents a single LSTM cell, Xt input to this cell and ht the

output of the cell. Source: colah’s blog1.

1http://colah.github.io/posts/2015-08-Understanding-LSTMs/

http://colah.github.io/posts/2015-08-Understanding-LSTMs/
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Figure 2.4: An illustration of a single LSTM cell. In this figure,

Ct−1 and Ct represent the previous and the new cell states, similarly

ht−1 and ht represent the output of the previous cell and the output

of the current cell. Additionally, Xt is the input, ft is the forget

gate, it in combination with C̃t represent the input gate and ot

represent the output gate. Source: colah’s blog2.

The main intuition behind this architecture is for the LSTM cell to keep

track of dependencies between the elements in the input sequence. This is

done via the cell state (C), a memory of the LSTM cell that goes through a

forgetting phase and a an updating phase each time new input is presented

to the cell.

Inside a single LSTM cell (Figure 2.4) we have an input (Xt), the cell

state (Ct−1), passed on from the previous cell in the sequence, a hidden

state (ht−1), also passed from the previous cell and the weights (Wf,i,c,o). To

update the cell state and form an output of the cell, these input variables pass

through three gates in the following order: a forget gate, an input gate and

an output gate. These gates control the flow of information and the extent

to which the cell state will be modified by the new information. Firstly, the

forget gate combines the previous hidden state and the new input, which are

2http://colah.github.io/posts/2015-08-Understanding-LSTMs/

http://colah.github.io/posts/2015-08-Understanding-LSTMs/
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then passed through a sigmoid function (σ). The output of this function is

between 0 and 1 for each number in the cell state, where 0 means forgetting

and 1 means keeping it. This result is then then multiplied with the cell

state in a point-wise fashion to simulate the forgetting of previous knowledge

given a new input:

Cf = Ct−1 � σ(Wf � |ht−1, Xt|) (2.2)

where Cf is the cell state after passing through the forget gate.

Secondly, the input gate controls how much new information is added to the

cell state. Similarly to the previous gate, the previous hidden state and the

new input are combined and passed into the sigmoid function. They are be

used in a point-wise multiplication with the combined hidden state and the

new input. Both of those were passed through the tanh function, to regulate

the size of the input. The result of this equation is then added to the cell

state using a point-wise addition, to produce the new cell state (Ct):

Ct = Cf + (σ(Wi � |ht−1, Xt|)� tanh(Wc � |ht−1, Xt|)) (2.3)

Lastly, we need to produce an output. This output relies on the current

cell state (regulated using the tanh function) and the result of the sigmoid

function over the combination of the previous hidden state and the new input.

The two parts are then combined using a point-wise multiplication into the

output of the cell (ht). This will also be our new hidden state, that will be

output to the next cell:

ht = σ(Wo � |ht−1, Xt|)� tanh(Ct) (2.4)

The connections from and into the gates are weighted (W) and can be recur-

rent (multiple possible variant of the LSTM cell that we do not be cover in

this work). Said weights need to be trained during the training phase.

An extension to the LSTM architecture that we will be making in this

thesis is the addition of a second layer of LSTM cells (Figure 2.5). The
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difference being in the input, this second layer of LSTM cells will process the

same text sequence as the first layer, just inverted. The results of the two

layers are combined in the end. This architecture of the LSTM network is

called the bidirectional LSTM network, or BiLSTM for short, and is often

used in NLP. With this addition, the network is able to utilize both the

past and the future context of a specific word, potentially resulting in better

performance of the algorithm. For the purposes of this work we will be using

a similar network to the one in Basaldella and Antolli et al. [7].

Figure 2.5: An illustration of a biLSTM network. Here, Si and S
′
i

represent the direction in which cell states and hidden states are

passed on, Xi is the input, Yi is the output and A and A
′

are the

LSTM cells. Source: colah’s blog 3.

2.5 Spacy

Spacy is an industrial-strength natural language processing free open-source

library in Python. The library contains multiple tools for text processing,

tokenization, serializing etc. of natural language text. Among all these tools

it also provides pre-trained NER models, as well as the possibility of training

your own model or updating an existing one, although with some restrictions.

As far as we can say, at the time of writing this thesis, no official paper

has been released about the Spacy library [8] or parts of it. Due to this we

3http://colah.github.io/posts/2015-09-NN-Types-FP/

http://colah.github.io/posts/2015-09-NN-Types-FP/
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will be relying on a video presentation4 of the Spacy NER algorithm, that

was made by Matthew Honnibal, one of the authors of the Spacy library.

The NER algorithm is a form of a transition based NER 2.6. In other

words, it is a method for recognizing entities by modelling the transitional

probabilities between states, or in our case, words. On the surface, the

algorithm behind this method seems simple. Firstly, it starts with an empty

stack and an input sequence of words. Continuing from there, the actions

that change the state are defined. Finally, a prediction for the most probable

transition (action), for each word in the input sequence, is made. The result

of the algorithm is the sequence of actions taken.

Figure 2.6: An example of a transition-based NER.

Transitional probabilities and in turn the sequence of actions is predicted

using a so-called Embed, Encode, Attend, Predict statistical framework. As

its name suggests, the framework works in 4 distinct steps, that result in the

prediction of the next transition:

Embed: The first part of this model deals with constructing a numerical vector

representation of the input words. This is done by extracting four

features of each word, namely norm, suffix, prefix and shape. Each

feature is then passed through a hashing function that transforms the

string data to a set of numbers. The hashes are then concatenated and

passed on to a shallow multilayer perceptron (MLP), which produces

the final representation for the input word.

Encode: In this part, the word representations are enriched by adding some

contextual information to them. It starts with taking a window of size

4https://spacy.io/models

https://spacy.io/models
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1 around the input word (meaning, the words left and right of the input

word). The words in this window are then concatenated and passed to a

convolutional neural network (CNN) that compacts the concatenated

representations back to the size of a single representation. To avoid

changing the initial representation too much, the result of this step

has a residual connection, which means that the output of the CNN is

added to the input representation. This series of computations is then

repeated a number of times, taking the resulting representation of each

iteration as the new center of the window. Doing all this, the context of

the neighbouring words (the number equals the number of iterations)

is infused into the input word.

Attend: The final step before the prediction is used for the summary of inputs

with respect to query. Here, a few word representations and entity

representation, from entities that were previously recognized by this

algorithm, are concatenated and passed to a MLP. The result of this

step is a feature vector of the length of the input word representation.

Predict: In this last part, the features, extracted during the attend part, are fed

into a MLP, which then produces a set probabilities for every defined

action. Out of those, the most probable is chosen and added to the

result sequence.

The Spacy library tools have been tested against the state-of-the-art bench-

marks and have shown to achieve high accuracy5.

2.6 Stanford NER

Stanford NER is a Java implementation of a Named Entity Recognizer that

uses supervised conditional random field (CRF) sequence models for recog-

nizing possible entities in the natural text [9]. CRF models are a class of

5https://spacy.io/usage/facts-figures

https://spacy.io/usage/facts-figures
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discriminative models suited for prediction tasks, where contextual informa-

tion is important. In essence CRFs are a special kind of Markov Random

fields which satisfy certain graph conditions.

CRFs were pioneered by Lafferty et al. [10] in 2001, as a framework

for building probabilistic models to segment and label sequence data. The

underlying principle behind them is their application of logistic regression

to sequential inputs. Like any classifier, CRFs make heavy use of a set

of feature functions (Equation (2.5)), to calculate probability scores. The

feature functions use the current word (s), the current word label (li), label

of the previous word (li−1) and the position of a word in a sentence (i),

to output a real-valued number (most often either 0 or 1). Assigning each

feature function a weight (λj) and calculating the sum over each feature

function and each position in the sentence, the score of a label for the given

sentence can be computed:

score(l|s) =
m∑
j=1

n∑
i=1

λjfj(s, i, li−1, li) (2.5)

By using exponents and normalizing the equation, the probability of a la-

bel, given a word, can be derived. The form of this equation closely resembles

logistic regression:

p(l|s) =
exp[score(l|s)]∑
l′ exp[score(l′|s)]

(2.6)

The last part of the algorithm are the weights, which need to be adjusted

for the problem at hand. This is done iteratively until a certain stopping

condition is met:

λi = λi + α[
m∑
j=1

fi(s, j, lj−1, lj)−
∑
l′

p(l′|s)
m∑
j=1

fi(s, j, l
′
j−1, l

′
j)] (2.7)

, where λi is the weight of the i − th word in the sentence, α is the

adjustment rate, fi is the feature function and p(l′|s) is the probability of a
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label given a word. Same as before, s represents a word and li represents a

label.

The Stanford NER pre-trained models are largely considered to be a

standard for NER. This fact and the ease of implementation being the reasons

enough that we decided to include the algorithm in our work.

2.7 Bidirectional Encoder Representations from

Transformers

Bidirectional Encoder Representations from Transformers or more commonly

referred to as BERT [11] is a natural language processing technique for pre-

training, developed by Google. The technique is designed to pre-train deep

bidirectional representations from unlabeled plain text data, by jointly con-

ditioning on both left and right context in all layers. This results in the

models ability to be fine tuned with just one additional output layer. Such

a task leads to the creation of state-of-the-art models for natural language

processing tasks, such as named entity recognition and keyword extraction.

BERT uses a masked language model (MLM) objective, that randomly

masks some of the input tokens, making the prediction of these masked

tokens the training goal. This MLM goal enables the representation to fuse

the left and the right context, which allows the technique to pre-train a

deep bidirectional Transformer. In addition to the MLM, a next sentence

prediction training is also used, jointly pre-training text-pair representations.

The usage of BERT technique is divided into two parts (Figure 2.7), the

pre-training and the fine-tuning. Pre-training of models is done using un-

labeled data, over multiple pre-training tasks and is extremely computation

expensive. On the other hand, the fine-tuning of these models is relatively

inexpensive. Fine-tuning is done using labeled data of a specific task and

although multiple tasks might use the same pre-trained parameter initializa-

tion, a separate fine-tuned model is produced for each one of them. BERT’s

architecture is that of a multi-layered bidirectional Transformer encoder, in-
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stead of a LSTM one, based on the design described by Vaswani et al. [12] in

2017. The input and output representations that BERT uses are produced

by an embedding algorithm WordPiece [13] with the addition of certain spe-

cial tokens ([CLS] and [SEP]) that signify the start of every sentence and

the separator of two joint sentences in a single sequence, respectively (Figure

2.8).

Figure 2.7: An illustration of the two parts of training a BERT

model. On the left we can observe how the pre-training of the

BERT model is carried out, using MLM (mask or masked lan-

guage model) and next sentence prediction (NSP). On the right,

it is shown how the pre-trained BERT model can be fine-tuned to

handle multiple tasks, such as named entity recognition (NER),

question answering (SQuAD stands for Stanford question answer-

ing dataset) or as a natural language interface (MNLI stands for

multi natural language interface).

In the following we provide more details about the two parts of the BERT

process. Firstly, as was mentioned in previous paragraph, the pre-training

process includes two tasks, the identification of masked tokens in a sentence

and the prediction of the next sentence. During the first of these two tasks,

prediction of masked tokens, 15% of the input tokens are randomly chosen

to be replaced as a part of the MLM objective. Out of these tokens, 80%
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Figure 2.8: An example of the MLM objective. We can observe

how tokens (words) are replaced with [MASK] and how the model

learns by predicting the next sentence.

are replaced with a [MASK] token, 10% are replaced with random tokens

and the remaining 10% stay unchanged. This is implemented to combat

the miss-match between pre-training and fine-tuning, since fine-tuning does

not make use of the [MASK] token. The second of these two tasks, next

sentence prediction, tries to capture the relationship between two sentences,

which is inherently important for certain problems, i.e. Question Answering

(QA) and Natural Language Inference (NLI). This part makes use of the

joint sentences in a single sequence, trying to predict on based on the other

as an input. The pre-training procedure using these two tasks follows the

existing literature on language model pre-training.

While the pre-training is used to create deep bidirectional representations

from unlabeled text, it is only the start. From the general representations, it

is possible to configure the model for a specific task, such question answering

or in our case named entity recognition. The process differs for any given

problem, but in its essence, it involves providing the input-output pairs for

the task at hand. Given those, the model can adjust its representations,

to deliver the desired output. In comparison with the pre-training, the in-

puts and outputs at this step are very task specific and do not include any

masking whatsoever. For any task, it is possible to simply plug in the task
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specific inputs and output and fine-tune all the parameters end-to-end. Due

to this, fine-tuning is usually carried out with a dataset much smaller than

the one used for pre-training, over a shorter period of time, making this step

computationally quite inexpensive.



Chapter 3

Experiments

In this chapter we will describe the datasets used in this thesis and the

implementation of algorithms and methods that were presented in the pre-

vious chapter. All of implementations and data processing were written in

Python1 version 3.7.1, with the help of the PyCharm Python IDE2. Any

specific Python library that we have used for the implementation of the pre-

sented algorithms we mention when describing the implementation that used

it.

3.1 Data preparation

In our thesis we will mostly deal with a dataset of submissions from the plat-

form Reddit3, more specifically from a Subreddit called Movie Suggestions4.

The dataset is a product of crowd-sourced work and is comprised of submis-

sions, comments, and a pool of movie titles and their respective IDs. The

submissions contain their respective original texts and titles, alongside the

ID, under which they were posted on Reddit, keywords, movie titles, actors

and genres. The latter four were extracted from the original texts and split

1https://www.python.org/
2https://www.jetbrains.com/pycharm/
3https://www.reddit.com/
4https://www.reddit.com/r/MovieSuggestions/
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according to their sentiment (positive and negative). In total we are dealing

with 1480 instances of submissions and a movie pool of 11578 movie titles

in their original languages. Additionally, we will use the movie pool for the

NER of movie titles.

Analysis of the submissions data shows, that the texts are relatively short,

with the median of 45 words and first (Q1), and third quartile (Q3) at 28

and 77 words respectively (Figure 3.1). The texts contain between 0 and

19 keywords, with the median of 2 keywords, Q1 at 1 keyword and Q3 at

4 keywords (Figure 3.2). The keywords in this dataset are either singular

words or key phrases divided into singular words.

Figure 3.1: A plot of submissions word counts per instance.

On a different note, named entities in the dataset are divided into two

parts, firstly into person names (actors, directors, movie characters etc.) that

were taken straight out of the original submission text. The number of actors

in the text is somewhat low, with there only being between 0 and 3 actors

per instance, with the median, Q1 and Q3 all being at 0. Secondly, the movie

titles found in the text are denoted by a tt-ID (based on IMDb movie IDs).

It is important to mention that the original texts more often than not, do
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Figure 3.2: A plot of submissions keyword counts per instance.

not contain the full titles of the movies denoted by the tt-IDs (shorter titles,

misspelling etc.). On that note, each text contained in the dataset has at

least 1 movie ID linked to it (and at most 48 IDs), with the median of 3,

Q1 at 1 IDs and Q3 at 5 IDs (Figure 3.3). The number of unique movie

title IDs found was 5521, which is less than half of the size of the movie

pool. For further references, this (the Reddit submissions dataset) will be

the dataset used in the experiments under the name Reddit data and all

future evaluations of the results will be based on it.

In addition to the described datasets, we will also be using some external

datasets as a part of our experimentation. The main purpose for this being so-

called transfer learning, a method of training a model on a dataset pertaining

to a similar problem to the one we are trying to solve (usually because such

dataset is bigger) and only fine-tuning the model on the problem related

dataset. In our thesis, we will be using the following additional dataset:

INSPEC dataset: A well known dataset constructed by Hulth et al. [14] in 2003, for use

in their research in keyword extraction. The dataset consists of 2000

abstracts in English from papers published between 1998 and 2002.
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Figure 3.3: A plot of submissions movie ID counts per instance.

The dataset has two sets of keywords assigned to it, each annotated

using a different approach. The keywords in both sets might or might

not be present in the abstract itself. For the purpose of this thesis and

due to the nature of the problems we are tackling, we will be using the

controlled keywords with the added restriction of only using keywords

that appear in the text.

Krapivin dataset: The dataset proposed by Krapivin et al. [15] in 2009 is described as a

high quality dataset consisting of 2000 scientific papers from the field

of computer science, that were published by ACM5. For each paper, the

keywords were assigned manually by authors and verified by reviewers.

This dataset was chosen due to its size, contents and most importantly

the quality of its keywords.

CoNLL-2003: This dataset, first proposed in 2003 by Sang et al. [16], is a part

of the CoNLL-2003 shared task, that concerns itself with language-

independent NER. The data itself is provided in English and German

5https://www.acm.org/

https://www.acm.org/
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and uses four entities to annotate its texts, namely persons, locations,

organizations and names of miscellaneous entities. Over the years this

dataset has become a sort of a baseline for NER research and algorithm

development, which is also the reason why we decided to use it in this

thesis. The tokens in the dataset are annotated with one of four en-

tity types, namely PER (people, names, etc.), LOC (locations), ORG

(names of organizations), MISC (other).

MIT movie corpus: A semantically tagged training and test corpus in BIO (Beginning-

Inside-Outside) format, constructed by the Spoken language systems

group at Stanford [17]. It is comprised of documents containing data

obtained from simple queries, and ones containing more complex queries.

The queries forming this dataset are centered around movie titles, ac-

tors, directors etc., making it a good choice for the problem of recog-

nizing movie titles in the text. The data contains the following entity

types: TRAILER (trailer names), YEAR, SONG (song titles), TITLE

(movie title), ACTOR, RATING, PLOT (parts of the text pertaining to

the plot of the movie), RATINGS AVERAGE, GENRE, DIRECTOR,

CHARACTER (names of movie characters) and REVIEW (parts of

the text that could be considered a review).

Ontonotes 5: This dataset is the fifth release of a large multilingual richly-annotated

corpus with hundreds of thousands of texts in multiple language, pub-

lished by the Linguistic Data Consortium6. The dataset is widely

used for training NER models, due to its size and annotation quality.

The dataset divides entities into 18 different categories, namely PER-

SON (people, including fictional names), NORP (nationalities or reli-

gious or political groups), FAC (buildings), ORG (organizations), GPE

(geopolitical entities), LOC (locations), PRODUCT (objects, prod-

ucts), EVENT, WORK OF ART, LAW (named documents made into

law), LANGUAGE, DATE, TIME, PERCENT, MONEY (monetary

6https://www.ldc.upenn.edu/

https://www.ldc.upenn.edu/
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values, including units), QUANTITY, ORDINAL (ordinal numbers),

CARDINAL (cardinal numbers).

To prepare the data for use in the various algorithms that were described in

the previous chapter, we implemented a pre-processing pipeline. We started

off by removing any markdown that was present in the text, as well as re-

moving accents and letters that might not be found in the English language

(i.e. Greek letters). In the end, the processed texts were input to the NLTK

library word tokenizer to produce tokens, which can then be used in the al-

gorithms. Afterwards, depending on the context in which the datasets were

used, the tokens were passed to the embedding function, transformed into

the BIO format or left unchanged.

3.2 Keyword extraction

3.2.1 TextRank and RAKE

The implementation of RAKE and TextRank was fairly standard, using spe-

cific functions from a Python library for each. For RAKE we made use of the

rake nltk library7 and for the TextRank algorithm we used the implemen-

tation found in the gensim library8. Due to the nature of the algorithms, we

were only able to experiment with changing a few parameters when taking

into account the whole input corpus and computing the possible keywords:

the input (the pre-processed natural language text) and the parameter lim-

iting the number output keywords. Aside from using the pre-processed text,

described in the previous section, we made an additional experiment by run-

ning the two algorithms with input texts in which the stopwords (defined by

the nltk library9) were removed. Coming back to the parameters limiting

the number of output keywords, we experimented with the minimum and

the maximum number of keywords that could possibly be found in text for

7https://pypi.org/project/rake-nltk/
8https://radimrehurek.com/gensim/summarization/keywords.html
9http://www.nltk.org/

https://pypi.org/project/rake-nltk/
https://radimrehurek.com/gensim/summarization/keywords.html
http://www.nltk.org/
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the RAKE algorithm, and with the maximum number of keywords that were

chosen (based on their ratings) for the TextRank algorithm.

3.2.2 LSTM and BiLSTM

All of the LSTM and biLSTM networks that we experimented on were im-

plemented using the Keras Python library10. For this set of algorithms, in

addition to testing the difference between the unidirectional and bidirectional

LSTM networks, we tested how transfer learning impacted the end results,

as well as the difference a certain architecture of the network could have on

the results and overall performance of the network.

We decided to test seven different network architectures, trying to en-

compass as many different shapes of the network as possible: narrow and

shallow (100), wide and shallow (300), narrow (100-100), wide (300-300),

outward cone (200-300), inward cone (300-200), and a deeper three-layered

architecture (400-300-200). The numbers here refer to the number of nodes

in a single layer of the neural network. We have mostly stayed within a

range of 100-400 nodes in a single layer, mostly due to the discoveries made

by the preceding research on this topic [7] and additionally by our initial

experiments. We also stayed within a range of 1-3 hidden LSTM or biLSTM

layers, due to the decaying results after adding more than 3 layers. Follow-

ing the LSTM or biLSTM layers, we used a time-distributed dense layer with

150 nodes and a softmax layer, to produce the results of this network. Aside

from the number of layers and their sizes, the networks try to mimic the

original design proposed by Basaldella and Antolli et al. [7], with the use

of tanh activation function in the LSTM, or biLSTM, layers, RELU in the

dense layer, hard Sigmoid for the recurrent connections and a softmax func-

tion for computing the outputs of the network. Throughout the network we

used a dropout layer between all of the LSTM, or biLSTM, layers, with the

dropout set to 0.25. We found this to improve the results the most during

our initial research. For the purposes of this thesis we tested transfer learning

10https://keras.io/

https://keras.io/
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using three types of networks, one of which was the control network which

was trained normally on the Reddit data, without any additional transfer

learning, while the other two used the INSPEC [14] and Krapivin datasets

[15] as their bases for transfer learning.

3.3 Named entity recognition

Taking a slightly different route in comparison within the KE experiments,

the experiments for this problem were divided into two tasks for each algo-

rithm. Namely, the task dealing with recognizing persons in the text (actors,

directors, etc.) and the task dealing with the recognition of movie titles. In

the most cases, the difference between these two tasks is only in the eval-

uation of the results, but, as can be seen later, in some cases, one of these

two tasks might not be possible to complete, usually due to the design of

the model and the entities it produces. This split is only possible due the

different entities that describe actors and movies.

3.3.1 Spacy

As the name and the description in the previous chapter would suggest, we

have implemented the this approach to NER with the use of the Spacy li-

brary11. The library offers a wide range of natural language processing and

prediction tools, among which we can also find some pre-trained NER models.

Out of 8 available models for texts written in English, we will be using the

en core web lg model12, since the model is compatible with our work. As

described on the official Spacy library web page, this is an English multi-task

CNN model trained on OntoNotes, with GloVe vectors trained on Common

Crawl. It can be used for assigning word vectors, context-specific token vec-

tors, POS tags, dependency parsing and NER. Since the model was trained

11https://spacy.io/
12https://github.com/explosion/spacy-models/releases//tag/en_core_web_

lg-2.2.5

https://spacy.io/
https://github.com/explosion/spacy-models/releases//tag/en_core_web_lg-2.2.5
https://github.com/explosion/spacy-models/releases//tag/en_core_web_lg-2.2.5
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on the Ontonotes 5 dataset, it is able to recognize 18 different entity types

(previously described in this chapter), out of which we are only interested in

PERSON type for actor recognition and WORK OF ART for movie titles

(possibly also LOC, location, and ORG, organization). In addition to us-

ing the model, Spacy library also offers the possibility to update preexisting

models, or to train Spacy models from scratch using your own training data.

We will be using the four different types of models, namely a control model

in the form of the Spacy pre-trained model, without any modifications and

three versions of this model, updated with the English titles data (from the

movie pool), MIT movie corpus and CoNLL-2003 data, respectively. Because

we do not know how much the new data will impact the model, we will train

each of the aforementioned models three times, using dropout values of 0.35,

0.5 and 0.7, presenting the best combinations in the end.

3.3.2 Stanford NER

Originally the Stanford NER algorithm was implemented in Java, but due

to its usefulness, there have been many successful attempts of wrapper im-

plementations that will allow us to use it in Python. The library we will be

using for this is NLTK13.

Included with the Stanford NER are three pre-trained models, that we

will be using in our experiments:

3-class: A model with only three entity types, namely Person, Location and

Organization, was trained on CoNLL-2003 [16], MUC-614 and MUC-

715 datasets, in addition to some other not specified data.

4-class: A pre-trained model with four entity types: Person, Location, Organi-

zation and Misc (miscellaneous). The model has been trained on the

English texts from the CoNLL-2003 [16] dataset.

13https://www.nltk.org/_modules/nltk/tag/stanford.html
14https://cs.nyu.edu/cs/faculty/grishman/muc6.html
15https://catalog.ldc.upenn.edu/LDC2001T02

https://www.nltk.org/_modules/nltk/tag/stanford.html
https://cs.nyu.edu/cs/faculty/grishman/muc6.html
https://catalog.ldc.upenn.edu/LDC2001T02
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7-class: A 7-class model, that was trained on the MUC-6 and MUC-716 train-

ing data. The two datasets were presented at the sixth and seventh

Message understaning conferences. As the name suggests, this model

includes seven entity types: Location, Person, Organization, Money,

Percent, Date and Time.

To expand the number of models for this approach to NER, we will also

train three new models ourselves, using the same training methods as the

pre-trained models. The three datasets that will be used for this are the

Reddit English titles from the movie pool dataset, MIT movie corpus, and

Ontonotes 5.

3.3.3 BERT

As explained in the previous chapter, BERT models for NER are constructed

in two steps, the pre-training step and the fine-tuning step. Because the

pre-training step for such models exceeds our computational and time ca-

pabilities, we will be using pre-trained models provided by Google17. Given

that, we will focus solely on the fine-tuning aspect of this process. For the

implementation of BERT models in our thesis, we took advantage of Deep-

Pavlov, an open source conversational AI framework, for its fine-tuned BERT

models. The framework also provides the added functionality of fine-tuning

the pre-trained models using your own data.

Going into more details about the pre-trained models, we will be using two

models– both of them fine-tuned on the same pre-trained model, more specif-

ically a twelve-layered cased pre-trained model, released by Google. Cased

in this context means that the model has been trained on data that has not

been lowercased before embedding, retaining some additional information.

Normally, the uncased models perform better than their cased counterparts,

but since we are dealing with a case-sensitive problem, the cased variant

16https://catalog.ldc.upenn.edu/LDC2001T02
17https://github.com/google-research/bert

https://catalog.ldc.upenn.edu/LDC2001T02
https://github.com/google-research/bert
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of the model should work better. The fine-tuning of these two models is

accomplished using CoNll-2003 and Ontonotes 5 datasets, respectively.

Additionally, we will also create two new models, one based on the cased

pre-trained model and one on the uncased variant. Both will be then fine-

tuned with the MIT movie corpus dataset. The premise of this experiment is

to test how the cased and uncased pre-trained models affect the end results.
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Chapter 4

Results

For evaluation of the experiments, we calculated precision, recall and F1 score

of the extracted keywords and the recognized named entities. To keep the

results comparable to each other, the evaluation was always performed using

20% of the original Reddit data as the testing data. The remaining 80% of

the data was further split into the training set (70%) and the validation set

(10%).

4.1 Keyword extraction

To establish a baseline, we pre-computed the baseline accuracy of 0.9522 for

the KE part of this thesis. This is the accuracy we would have achieved if

we chose to label every word in the input text as not a keyword.

4.1.1 RAKE

The amount of experiments we were able to perform using the RAKE algo-

rithm was quite limited, due to the nature of the algorithm. Although this is

the case, the algorithm, alongside TextRank was meant to serve the purpose

of a baseline for other KE algorithms. This being said, we can observe quite

an improvement in the algorithms performance (Figure 4.1) if we remove

any stopwords from the text during the pre-processing. The improvement in

35
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Figure 4.1: Evaluation results for the RAKE and TextRank key-

word extraction algorithms. In this figure we are comparing the

results of RAKE and TextRank based solely on the input text,

which either did or did not include stopwords. The exact results

for this experiment can be found in Appendix A (Tables A.1 and

A.2).

this case comes as a minor surprise as the RAKE algorithm, based on the

description of the algorithm [3], relies heavily on stopwords found in the text.

Such a result could be attributed to the fact that we used a different, more

general, stopword list, for the removal of stopwords, when compared to the

default one used by the RAKE algorithm.

4.1.2 TextRank

Similarly to the RAKE algorithm evaluation, we can observe (Figure 4.1) an

improvement in the results after the removal of stopwords. In case of this

algorithm, the observed improvement is potentially easier to explain. The
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removal of words that do not carry any meaningful information affects the

structures and nodes of graphs, created by this algorithm. This in turn affects

how the node weights converge and ultimately, which words are considered to

be keywords. Since stopwords are at most only parts of keywords, the change

in the input translates into less cluttered graphs and hence into better results.

4.1.3 LSTM and biLSTM

The evaluations performed for this subsection (Figures 4.2 - 4.6) are three-

fold: firstly, the comparative evaluation of the seven distinct neural network

architectures for each of the input datasets, secondly, the comparative evalu-

ation of different input datasets (including transfer learning) and lastly, the

comparison between the LSTM and biLSTM networks.

Starting off with the models trained solely on the Reddit dataset. We can

observe from the results (Figure 4.2) that out of all LSTM architecures (300-

300) architecture achieved the highest precision and (200-300) the highest

recall and F1 score. On the biLSTM side, (300) architecture achieved the

highest precision and the highest recall was shared between (100-100) and

(200-300) architectures. The highest F1 score was achieved by the (200-

300) architecture. From these results we can clearly see, that for this specific

training dataset, the (200-300) architecture is the best choice for both LSTM

and biLSTM networks.

Continuing with the comparison of the different architectures for the mod-

els trained solely on the Krapivin dataset (Figure 4.3). Looking at the results

of the LSTM networks, the highest precision goes to the (100) architecture

and both the highest recall and the highest F1 score go to the (400-300-200)

architecture. With the biLSTM networks, the highest precision goes to the

(300) architecture and both the highest recall and the highest F1 score go

to the (300-300) architecture. The two architectures, (400-300-200) for the

LSTM networks and (300-300) for the biLSTM networks, clearly being the

best choices in this case.

Thirdly, the models trained solely on the INSPEC datset (Figure A.5).
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Figure 4.2: Evaluation results for the LSTM and biLSTM keyword

extraction algorithms. In this figure we compare models with dif-

ferent architectures, denoted by the number of neurons in each

of their hidden layers. All of these models were trained using the

Reddit dataset. The exact results for this experiment can be found

in Appendix A (Table A.3).

The results show us that, for the LSTM networks, (300-300) architecture

achieved the highest precision and (100) architecture achieved the highest

precision and F1 score. For biLSTM networks, (100) architecture achieved

the highest precision, (300-300) the highest recall and (100-100) the highest

F1 score. Given these results we can say that (100) architecture would be

the best choice for the LSTM networks and (100-100) for the biLSTM ones.

Moving on to the first of the two sets of models that trained using transfer

learning. Starting with the models trained on the Krapivin dataset and

fine-tuned on the Reddit dataset (Figure A.6). For the LSTM networks,

the highest precision was achieved by the (100-100) architecture and the

highest recall, alongside the highest F1 score was achieved by the (400-300-
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Figure 4.3: Evaluation results for the LSTM and biLSTM keyword

extraction algorithms. In this figure we compare models with dif-

ferent architectures, denoted by the number of neurons in each of

their hidden layers. All of these models were trained using the

Krapivin dataset. The exact results for this experiment can be

found in Appendix A (Table A.4).

200) architecture. Somewhat similarly, the highest recall and F1 score is

attributed the (400-300-200) architecture and the highest precision to the

(300-300) architecture, for the biLSTM networks. Summarizing that, the

optimal choice out of these seven architectures would be the three-layered

arcitecture (400-300-200) for both LSTM and biLSTM networks.

The second set of models trained using transfer learning was trained on

the INSPEC dataset and then fine-tuned on the Reddit dataset (Figure A.7).

Out of these models, the LSTM model with (300-300) architecture achieved

the highest precision, (400-300-200) achieved the highest recall and (200-

300) the highest F1 score. On the biLSTM side, the highest precision is

attributed to the (300) architecture and both the highest recall and F1 score
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Figure 4.4: Evaluation results for the LSTM and biLSTM keyword

extraction algorithms. In this figure we compare models with dif-

ferent architectures, denoted by the number of neurons in each of

their hidden layers. All of these models were trained using the IN-

SPEC dataset. The exact results for this experiment can be found

in Appendix A (Table A.5).

to the (400-300-200) architecture. For biLSTM the best overall architecture

for this training data is clearly the (400-300-200) architecture. On the other

hand the best architecture for the LSTM networks, despite multiple models

having very similar recalls and F1 score, the (200-300) architecture is still

slightly better than the rest, for this training data.

Given these results, we can conclude, that for the most part, the three-

layered architecture was one of the best for nearly all training methods.

Furthermore, when comparing the results of the best models we observe, that

the models that were trained on the data directly related to the data used for

evaluation (Figures 4.2, 4.5 and 4.6) performed substantially better than the

ones trained on datasets that were only somewhat related to the evaluation
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Figure 4.5: Evaluation results for the LSTM and biLSTM keyword

extraction algorithms. In this figure we compare models with dif-

ferent architectures, denoted by the number of neurons in each of

their hidden layers. All of these models were trained using the

Krapivin dataset and fine-tuned using the Reddit dataset. The ex-

act results for this experiment can be found in Appendix A (Table

A.6).

data (Figures 4.3 and 4.4). When combining these two approaches, using

transfer learning, we are able to obtain even better results than the ones

obtained by only training the models on the Reddit dataset. Out of the two

transfer learning approaches, the one utilizing the INSPEC dataset proved

to be slightly better in regard to the F1 scores. One possible explanation

for this occurrence is that the models retained more generality when trained

using transfer learning.

Lastly, comparing the LSTM and biLSTM networks overall. As was some-

what expected, the biLSTM networks achieved better precision, recall and

F1 scores in almost all comparisons, when comparing best models over all
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Figure 4.6: Evaluation results for the LSTM and biLSTM keyword

extraction algorithms. In this figure we compare models with dif-

ferent architectures, denoted by the number of neurons in each of

their hidden layers. All of these models were trained using the

INSPEC dataset and fine-tuned using the Reddit dataset. The ex-

act results for this experiment can be found in Appendix A (Table

A.7).

different training methods.

4.1.4 Keyword extraction summary

Out of the three types of algorithms that we experimented with, we can con-

clude that the best ones are the biLSTM networks. When utilizing transfer

learning, this algorithm outperforms all others in the majority of experiments.

For the best performing model of this algorithm, we used a three-layered

network architecture (400-300-200), trained the algorithm on the INSPEC

dataset and fine-tuned it on the Reddit dataset. Looking back at the two
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simpler algorithms, RAKE and TextRank, it was observed, that their perfor-

mance is on par with the LSTM and biLSTM algorithms that did not use any

specific domain data (Figures 4.3 and 4.4). This makes the two algorithms a

computationally cheaper and simpler alternatives for problems for which we

do not necessarily have any specific domain data.
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4.2 Named entity recognition

The evaluation for NER is divided into evaluation of the recognition of names

and the recognition of movie titles. The two evaluations are carried out on

different subsets of entity types: entity types associated with persons and

ones associated with movie titles.

For the first of the two evaluations (entity types associated with persons),

we relied on the fact that all of the true names of persons (actors, characters,

movie directors etc.) were directly extracted from the submissions in the

Reddit dataset. Due to this, we could make a direct comparison between

the predicted names and the true names, by simply computing the similarity

between them. For this part of the evaluation we used the Ratcliff/Obershelp

pattern recognition [18] to compute the similarity between the two names.

The threshold for accepting a name as correctly predicted was set to 0.85.

Due to some names appearing multiple times in a single submission, we also

implemented a similarity check between the predicted names and removed

any names that were deemed too similar to others. The threshold for this is

signified by t in the plots (Figures 4.7-4.12) for this evaluation.

Secondly, the evaluation of the recognition of entity types associated with

movie titles. As mentioned in the previous chapter, the true movie titles

are not extracted word-by-word from the submission, but are in fact ttids

of movies that the submission is refering to. To be able to compare the

predicted results with the true results we convert the predicted results into

ttids. For the purposes of this evaluation two different methods are employed:

finding the most similar movie title from the movie pool dataset (using the

Ratcliff/Obershelp pattern recognition, denoted by its threshold value in the

plots and tables, e.g. t = 0.55) and using IMDbPY1, a Python package for

retrieving and managing the data of the IMDb movie database, to retrieve a

ttid of a movie that best matches the predicted string, denoted by API in the

plots (Figures 4.7-4.12). Although the movie search function for IMDbPY

1https://imdbpy.github.io/

https://imdbpy.github.io/
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could be considered a black box function, it provides us with the capability to

search the whole IMDb movie database and find most relevant movie titles.

Additionally, during our initial experimentation we noticed that quite a

few words or sequences of words that we would normally consider to be a

part of a movie title, were incorrectly classified under other entity tags. To

correct this and draw further conclusions from it, the results of evaluation also

include slight variations of various models that account for this. This is meant

in a way, where the same model is run twice, once normally and the second

time by treating words tagged with the LOCATION and ORGANIZATION

entity tags as tags that contain information about movie titles. Similarly, we

apply the same logic to the evaluation of named entities relating to persons,

where we, at a few points, also take in account CHARACTER entity tag.

Such extension of viable tags for a model are signified by ext. in the evaluation

plots (Figures 4.7-4.12).

4.2.1 Spacy

Updating the original Spacy model with additional data was done with three

different dropout values, signified by d in the plots (Figures 4.7 and 4.8).

Given the two sets of results: entities associated with persons and entities

associated with movie titles, we first focus on the recognition of persons.

Taking the original model for NER, provided by the Spacy library, as the

baseline of this algorithm, we can draw some conclusions about the custom

updated models from our results (Figure 4.7). Aside from the Reddit English

titles dataset, all the other models exhibit similar behaviour in terms of their

precision and recall, with a high recall and very low precision. The results do

vary between updating on different datasets, with both the CoNLL-2003 and

MIT movie corpus datasets achieving better performance than the original

model. The same cannot be said for the Reddit English titles dataset, a de-

crease in performance easily explained by the lack of any person related entity

tags in this dataset, which is also the reason for receiving invalid results at

lower dropout values. Interestingly enough, the two datasets (CoNLL-2003
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Figure 4.7: Evaluation results of Spacy models for entity types as-

sociated with persons. In this figure We compare models updated

with different datasets and with different dropout values (d), eval-

uated using different similarity thresholds (t). The exact results

can be found in Appendix B (Table B.1).

and MIT movie corpus) react differently, in terms of precision, to the increase

in the dropout value, with the CoNLL-2003 dataset exhibiting a positive cor-

relation and MIT movie corpus exhibiting a slight negative one. This leads

us to believe that MIT movie corpus dataset is better suited for problem

at hand. Additionally, it is worth mentioning that, by including CHARAC-

TER entity tag in the tags used for recognising persons, the results slightly

improve. A possible explanation of this occurrence could be the misclassi-

fication of real names under the movie character names during the prediction.

The evaluation of NER pertaining to the entity tags connected to movie

titles (Figure 4.8), is very one-sided with the models updated using the MIT

movie corpus dataset producing predominately better results when compared
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Figure 4.8: Evaluation results of Spacy models for entity types

associated with movie titles. In this figure We compare models

updated with different datasets and with different dropout values

(d), evaluated using different similarity comparisons: threshold (t)

or API. The exact results can be found in Appendix B (Table B.2).

with other models. Such results are expected, since this dataset is the only

one out of the three that were used for these models, that contained movie

titles in the context of bigger natural texts. It is true that the Reddit English

titles dataset is also comprised of movie titles, but those are standalone titles

with no additional text surrounding them. Comparing the other models with

the original one, we can observe an improvement in the end results when

using the models updated with MIT movie corpus and the Reddit English

titles, while the deterioration of those when using the model updated on the

CoNLL-2003 dataset. Unlike the evaluation of name recognition, it can be

observed here, that over all models recall deteriorates with the increase in

the dropout value, most likely due to the original model, not being intended

for such a task, improving its recognition with any additional information
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that we input. Lastly, the API evaluation method for the models that we

used seems to be the best choice in the majority of cases, no matter the

dropout. This comes as no surprise, as the similarity methods of comparison

we used with the threshold evaluation are somewhat simple and limited by

the number movies contained in the movie pool.
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4.2.2 Stanford NER

Figure 4.9: Evaluation results of Stanford NER models for entity

types associated with persons. We compare different models, eval-

uated using different similarity comparisons: threshold (t) or API.

The exact results can be found in Appendix B (Table B.3).

Looking at the resulting data (Figure 4.9) from the evaluation of Stanford

models for the recognition of entity tags related to persons, we can draw

some conclusions based on the threshold values and the models we used.

Firstly we explain the effect that different training datasets have on the

results. This comparison is not an easy one to make, since it cannot be

made simply on the number of entity types a certain model is capable of

recognising. Due to this problem we perform comparison strictly on the

datasets best results. The most successful model is the Pre-trained 7 (P7)

model, which was trained on the MUC-62 and MUC-73 datasets. In contrast

2https://cs.nyu.edu/cs/faculty/grishman/muc6.html
3https://catalog.ldc.upenn.edu/LDC2001T02

https://cs.nyu.edu/cs/faculty/grishman/muc6.html
https://catalog.ldc.upenn.edu/LDC2001T02
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to that, the least successful model was Pre-trained 4 (P4) that was trained

on the CoNLL-2003 dataset. With the comparison of these two models to

the Pre-trained 3 (P3) model, a model that was trained on the combination

of MUC datsets, CoNLL-2003 dataset and some additional data, which can

be ranked somewhere in the middle by its results, we can safely conclude that

the combination of the Stanford NER with the CoNLL-2003 dataset is not the

optimal choice. Furthermore, the addition of this dataset to other data can

actively deteriorate the results of the model. The performance of the model

that was trained using the Ontonotes 5 dataset is very similar to the one of

the P4 model with a slightly higher precision, potentially signaling that this

dataset could exhibit the same issues as the CoNLL-2003 one, in combination

with the Stanford NER algorithm. Secondly, an analysis of the results can

be made on the basis of the threshold values. We can observe that over all 4

models that we used, the increase in the threshold value translates to a slight

decrease in the precision, or in the case of the Ontonotes 5 model, maintaining

the same precision. This indicates, that the models are recognising some of

the same word sequences or parts of the sequences, which are then removed

later on with the threshold 0.55, but are not similar enough to be removed

by the threshold of 0.85.

The comparisons that can be made based on the evaluation of the results

for the recognized entities, pertaining to the movie titles (Figure 4.10), are

twofold. Firstly, comparing the models results between each other. The

performance of the P3, P4 and P7 models closely mimics their performance in

recognising persons, with P7 achieving the best results of the three, P3 behind

it and P4 performing the worst. With the addition of the P4 model with

extended tags (P4 ext.), this hierarchy changes, with the P4 ext. achieving

drastically better results than the P7. An explanation for this would the

fact, that a lot of movie titles contain words or sequences of words related to

locations or organisations (i.e. Shutter island4 or The Firm5), which, if added

4https://www.imdb.com/title/tt1130884/
5https://www.imdb.com/title/tt0106918/

https://www.imdb.com/title/tt1130884/
https://www.imdb.com/title/tt0106918/
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Figure 4.10: Evaluation results of Stanford NER models for entity

types associated with movie titles. We compare different models,

evaluated using different similarity comparisons: threshold (t) or

API. The exact results can be found in Appendix B (Table B.4).

to the predictions of a model, could boost its performance. In contrast to the

persons recognition evaluation results, the model trained on the Ontonotes

5 dataset performs much better for the recognition of movie titles, most

likely due to the inclusion of the entity type WORK OF ART in the dataset,

which also covers movie titles. Surprisingly enough, the MIT movie corpus

model performs on par with the P4 model, even though this dataset was

built exactly for these kind of problems. Secondly, we can observe that

in the majority of evaluations the F1 scores computed with the threshold

value 0.55 evaluation were the highest or very close to the highest score for

the model in question. We suspect that this occurs because Stanford NER

algorithm is not that well equipped for dealing with the recognition of movie

titles. It produces outputs that are only somewhat similar to the true movie

title, meaning that such results get cut off by the high threshold, while they
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get passed by the lower threshold. This mostly true for the results obtained

by the Ontonotes 5 and the MIT movie corpus models.

When we compare the results of this algorithm to the SPACY algorithm

results, presented in the previous section, we can see that these algorithms

perform very similar when it comes to the recognition of movie titles, while

Stanford NER produces much better results for recognition of persons.
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4.2.3 BERT

Figure 4.11: Comparison of the results of BERT models for entity

types associated with persons. The comparison between models in

this figure is based on the similarity threshold (t) when comparing

the predicted result with the true result. The complete evaluation

results can be found Appendix B (Table B.5).

From a quick glance at these results (Figure 4.11) we can immediately observe

that even the worst results produced by the BERT models are still on par

with the best ones obtained from the Spacy and Stanford NER algorithms.

The difference in the results of the two pre-trained models comes mainly

from the precision metric. Similarly to the previous section the precision

for these two algorithms deteriorates ever so slightly with the increase of the

threshold value, while the recall stays the same. Continuing on to the models

fine-tuned on the MIT movie corpus data. Contrary to some minor expecta-

tions set up by Google-research6, the uncased version of the pre-trained does

6https://github.com/google-research/bert

https://github.com/google-research/bert
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indeed perform better than the cased model for this problem. Given more

thought about this, it makes sense, since the MIT movie corpus dataset is

lower-cased, fitting neatly with the pre-trained BERT model. As with the

CoNLL-2003 and Ontonotes 5 pre-trained models, the trend of deteriorating

precision with the increased threshold value continues with these models as

well. Another notable comparison is between the initial model evaluation

and the evaluation with the extended entity type tags. The results of the

extended tags evaluation for both the cased and uncased models are consid-

erably worse than the initial evaluations. The true names contained in the

Reddit submissions do not contain any fictional character names, meaning

that if the algorithm is capable of accurately determining which names are

fictional and which ones are not, the results will deteriorate if we would add

such names to the end predictions. We believe that this is the reason for

such a difference in the results.

Similarly to the evaluation of names recognition, the results of all the

BERT models for the recognition of movie titles in text (Figure 4.12) are

considerably better when compared with any results achieved by Spacy or

Stanford NER models. It can be observed from the presented results, that

the CoNLL-2003 and the Ontonotes 5 pre-trained models achieve better

scores than their counterparts that were fine-tuned on the MIT movie cor-

pus dataset. Similarly to the previous results for the movie titles recognition

evaluation, recall seems to deteriorate with the increase of the similarity

threshold value, while precision seems to increase with it. This hold true for

both the pre-trained models as well as the ones fine-tuned on the MIT movie

corpus dataset. On the other hand, when we compare the results of the

threshold evaluation to the results returned by the API evaluation, there is a

clear difference between the two sets of models. For the pre-trained models

it holds true, that the API evaluation results in the highest scores, while for

the MIT movie corpus models the highest scores are the ones computed by

the similarity threshold evaluation with the threshold value of 0.55. Further-

more, when comparing the evaluations of the pre-trained models, it can be
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observed, that extending the entity type tags has a positive influence on the

results of the CoNLL-2003 pre-trained model, but has little to no effect on

the results of the Ontonotes 5 pre-trained model.

Figure 4.12: Comparison of the results of BERT models for en-

tity types associated with movie titles. The comparison between

models in this figure is based on the similarity threshold (t) when

comparing the predicted result with the true result. The complete

evaluation results can be found Appendix B (Table B.6).

4.2.4 Named entity recognition summary

We achieved the best results for this sub-problem using the state-of-the-art

algorithm BERT. This was achieved by fine-tuning the uncased, pre-trained

BERT network on the MIT movie corpus dataset. For both the recognition

of entities associated with persons and those associated with movie titles,

BERT models show better F1 scores than the models built using the other

two algorithms.
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4.3 Pipeline

The main contribution of this thesis is a pipeline for automated extraction of

keywords and recognition of named entities. The pipeline is comprised of a

preprocessing algorithm, a keyword extraction model and two named entity

recognition models, one for the recognition of entities associated with persons

and the other for ones associated with movie titles. The preprocessing part of

this pipeline utilizes the same preprocessing algorithm that was described in

the previous chapter. For the keyword extraction model we will use the biL-

STM model with (400-300-200) architecture, that was trained using transfer

learning utilizing the INSPEC dataset. We will recognize entities associated

with persons using the uncased BERT model that was fine-tuned on the MIT

movie corpus. For the recognition of named entities associated with movie

titles we will use the BERT model pre-trained on the Ontonotes 6 dataset.

With this setup we should be able to achieve the best overall results, given

the evaluation we performed earlier in this chapter.



Chapter 5

Discussion

In our work we strove to acquire the best possible results we could from

the data that was available to us. Yet, by diving deeper into the provided

crowd-sourced data, we have noticed several problems that could not be

completely ignored. As the data is annotated by people it includes a lot

of subjectivity, which is inherent for the extraction of keywords and poses

little to no problems on that part, but it does become a major problem

when deciding on what the original user actually meant (i.e. movie Oldboy

could refer to the original 2003 movie1 or the 2013 remake of that movie2).

Additionally, in some instances, certain ambiguous parts of the text were

not classified as named entities when in reality they should be (such as actor

nicknames, i.e. The Rock - Dwayne Johnson), creating an atmosphere of

ambiguity in the dataset. Overall, this only becomes a relevant problem due

to the smaller size of the of the original data and the fact that named entities

are very scare in it. An idea to improve upon the results we achieved as a

part of this thesis would be to correct the data and possibly even extend it

for an easier training phase and potentially better end results.

Touching upon the evaluation of outputs, we need to discuss the evalua-

tion of movie titles. As explained in the previous chapter, aside from the API

1https://www.imdb.com/title/tt0364569/
2https://www.imdb.com/title/tt1321511/
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comparison, which is in all regards a black box to us, we only compare the ex-

tracted movie entities to a pool of around 12,000 hand-picked English movie

titles. This includes only a small fraction of all movies ever made (if we take

into account only non-adult movie titles that can be found on IMDb3, we are

looking at around a total of 500,000 movie titles). Due to this, the selection

indubitably induces some bias to the results, which we need to be aware of.

For the purposes of this thesis, such a bias was acceptable. Although this

is the case, we also think that a potential improvement of this could prove

to be a big improvement on the results. A possible solution for this problem

could be an implementation of a custom-made document embedding algo-

rithm, similar in its execution to an algorithm proposed by Le and Mikolov

[19], called Doc2Vec, which would be trained on all possible movie titles. On

that note, we also need to make an additional comment about the movie

recognition process. The way the movies are recognized is by extracting a

word, or a sequence of words, and find the one most similar movie title from

the movie pool. This process works fairly well for the purposes of this thesis,

but we noticed that some submissions requested a multitude of movie titles

by only giving a broad term that could be used to describe a movie franchise

or a series of movies (i.e. Bond movies refers to a series of spy movies with

the same protagonist). Again, such a problem could be remedied by the use

of Doc2Vec by extracting not only the most similar result, but also a small

cluster around that result.

Additionally, we need to acknowledge a side of the named entity recog-

nition that we deliberately ignored. We are talking about the existence of

hypernyms among the extracted movie titles in the original Reddit datset.

For example, a user expresses a request in their submission for spy movies

that are similar to James Bond movies. When a model would extract the

phrase
”
James Bond movies” from this submission, our algorithm would re-

turn a single movie with the most similar title to this phrase, when in reality

it should have returned all or at least a subset of movies that feature the

3https://www.imdb.com/?ref_=nv_home

https://www.imdb.com/?ref_=nv_home
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titular character James Bond. We have decided to ignore this side due to

the complexity of the issue and the expansion to the scope of our thesis it

would entail. Although that was the case, we believe that the inclusion of an

algorithm that could handle such hypernyms could be beneficial to the eval-

uation of the models and as a valuable addition to the pipeline for extraction

of keywords and named entity recognition.

We are also aware that when we approached the implementation of LSTM

and biLSTM algorithms we relied on only one method of embedding the input

text sequences, namely the pre-trained Google News Word2Vec model. This

decision was made due to the scope of this thesis and some minor hardware

limitations at the time of writing. We are aware that multiple promising

new embedding techniques and algorithms have been proposed in the past

few years, that could potentially be better suited for this problem. As we

have not delved into the comparisons between different embedding techniques

for this specific problem, we would like to propose such an experiment as

potential extension of this research.

Lastly, as we have mentioned or at least implied in previous chapter,

the difference between the best models of some of the simpler algorithms

are on par with the average results of some of the more complex algorithms.

With this we can theorize, that with some additional fine-tuning, the simpler

models could still be potentially useful for this problem, as a lighter, less

computationally expensive alternative.
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Chapter 6

Conclusion

In our work we analysed four algorithms for KE and three algorithms for

NER, under different circumstances, parameters and input datasets. We

performed a multitude of tests to ascertain which algorithm for each sub

problem fits our problem the best. The conclusion we have reached about

that is that the best results are achieved by the combination of a three

layered biLSTM network for keyword extraction, an uncased BERT model,

fine-tuned on the MIT movie corpus dataset, for the recognition of actors and

the BERT model, fine-tuned on the Ontonotes 5 dataset, for the recognition

of movie titles.

The contribution of this thesis is twofold. Firstly, the analytical results

of the evaluations of multiple different algorithm. Secondly, a functional

pipeline for the extraction of keywords and named entities from the provided

input texts.

We hope that our research opens the doors for others to continue where

we have left off and improve upon our results. We firmly believe that our

contributions could present themselves as crucial in systems (such as rec-

ommendation systems, etc.) that aim to improve their functionality with

specific user generated requests. Our ideas for future work include the im-

plementation of a better collection of movie titles instead of the current movie

pool, perhaps even an implementation of more robust way of determining a

61
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movie title from a string (in place of the current method, where we check for

similarity with other movie titles). Additionally, a possible continuation of

our research could focus on the adaptation of the BERT algorithm to work

properly for the keyword extraction.



Appendix A

Keyword extraction tables
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Input \Metric Accuracy Precision Recall F1

Normal 0.4303 0.8616 0.0613 0.1145

Removed stopwords 0.6497 0.476 0.119 0.1904

Table A.1: Complete evaluation results for the RAKE keyword

extraction algorithm, comparing the performance of the algorithm

based on the input text, with or without stopwords.

Input \Metric Accuracy Precision Recall F1

Normal 0.6746 0.7138 0.0894 0.159

No stopwords 0.6909 0.4851 0.141 0.2185

Table A.2: Complete evaluation results for the TextRank keyword

extraction algorithm, comparing the performance of the algorithm

based on the input text, with or without stopwords.
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Model \Metric Accuracy Precision Recall F1

LSTM (100) 0.9572 0.8226 0.1325 0.2283

LSTM (300) 0.9572 0.8473 0.1268 0.2206

LSTM (100-100) 0.9554 0.7920 0.0914 0.1639

LSTM (300-300) 0.9550 0.8695 0.0685 0.1271

LSTM (200-300) 0.9576 0.5918 0.3645 0.4512

LSTM (300-200) 0.9577 0.7380 0.1771 0.2857

LSTM (400-300-200) 0.9614 0.7076 0.3291 0.4492

biLSTM (100) 0.9617 0.7013 0.3462 0.4636

biLSTM (300) 0.9600 0.7037 0.2822 0.4029

biLSTM (100-100) 0.9623 0.6915 0.3817 0.4918

biLSTM (300-300) 0.9600 0.6524 0.3497 0.4553

biLSTM (200-300) 0.9624 0.6943 0.3817 0.4926

biLSTM (300-200) 0.9617 0.6891 0.3622 0.4749

biLSTM (400-300-200) 0.9618 0.7002 0.3497 0.4664

Table A.3: Complete evaluation results for the LSTM and biLSTM

keyword extraction algorithms using the Reddit dataset as training

data. The names of the models in this table are taken from the used

algorithm and the architecture of the model (number of neurons

in each of its hidden layers).
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Model \Metric Accuracy Precision Recall F1

LSTM (100) 0.9523 0.5384 0.008 0.0157

LSTM (300) 0.9522 0 0 0

LSTM (100-100) 0.9517 0.4242 0.032 0.0595

LSTM (300-300) 0.9522 0 0 0

LSTM (200-300) 0.9522 0 0 0

LSTM (300-200) 0.9520 0.4285 0.0137 0.0265

LSTM (400-300-200) 0.9491 0.3251 0.0605 0.1021

biLSTM (100) 0.9524 0.5306 0.0297 0.0562

biLSTM (300) 0.9525 0.6 0.0171 0.0333

biLSTM (100-100) 0.9518 0.4677 0.0662 0.1161

biLSTM (300-300) 0.9506 0.4121 0.0777 0.1307

biLSTM (200-300) 0.9517 0.4651 0.0685 0.1195

biLSTM (300-200) 0.9523 0.5172 0.0342 0.0643

biLSTM (400-300-200) 0.9508 0.4044 0.0628 0.1088

Table A.4: Complete evaluation results for the LSTM and biLSTM

keyword extraction algorithms using the Krapivin dataset as train-

ing data. The names of the models in this table are taken from

the used algorithm and the architecture of the model (number of

neurons in each of its hidden layers).
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Model \Metric Accuracy Precision Recall F1

LSTM (100) 0.8517 0.1688 0.5371 0.2569

LSTM (300) 0.8878 0.1878 0.4057 0.2567

LSTM (100-100) 0.8809 0.1832 0.432 0.2573

LSTM (300-300) 0.8950 0.1935 0.3782 0.2560

LSTM (200-300) 0.8790 0.1770 0.4205 0.2492

LSTM (300-200) 0.8741 0.1758 0.4434 0.2517

LSTM (400-300-200) 0.8834 0.1810 0.4091 0.2510

biLSTM (100) 0.9195 0.2239 0.2777 0.2479

biLSTM (300) 0.9149 0.2182 0.3028 0.2537

biLSTM (100-100) 0.9078 0.2141 0.3485 0.2653

biLSTM (300-300) 0.9029 0.2057 0.3611 0.2621

biLSTM (200-300) 0.9040 0.1931 0.3177 0.2402

biLSTM (300-200) 0.9012 0.1979 0.3497 0.2527

biLSTM (400-300-200) 0.9159 0.1918 0.2365 0.2118

Table A.5: Complete evaluation results for the LSTM and biLSTM

keyword extraction algorithms using the INSPEC dataset as train-

ing data. The names of the models in this table are taken from

the used algorithm and the architecture of the model (number of

neurons in each of its hidden layers).
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Model \Metric Accuracy Precision Recall F1

LSTM (100) 0.9610 0.7146 0.3062 0.4288

LSTM (300) 0.9608 0.7743 0.2548 0.3834

LSTM (100-100) 0.9627 0.7727 0.3108 0.4433

LSTM (300-300) 0.9614 0.6850 0.3554 0.4680

LSTM (200-300) 0.9616 0.6541 0.4171 0.5094

LSTM (300-200) 0.9621 0.7015 0.36 0.4758

LSTM (400-300-200) 0.9620 0.6573 0.4297 0.5196

biLSTM (100) 0.9618 0.6929 0.3611 0.4748

biLSTM (300) 0.9608 0.6828 0.3371 0.4514

biLSTM (100-100) 0.9613 0.6437 0.4274 0.5137

biLSTM (300-300) 0.9628 0.6924 0.3988 0.5061

biLSTM (200-300) 0.9609 0.6412 0.4125 0.5020

biLSTM (300-200) 0.9625 0.6766 0.4114 0.5117

biLSTM (400-300-200) 0.9615 0.6384 0.448 0.5265

Table A.6: Complete evaluation results for the LSTM and biLSTM

keyword extraction algorithms using the Krapivin dataset as train-

ing data and Reddit dataset for transfer learning. The names of

the models in this table are taken from the used algorithm and the

architecture of the model (number of neurons in each of its hidden

layers).
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Model \Metric Accuracy Precision Recall F1

LSTM (100) 0.9624 0.7343 0.3348 0.4599

LSTM (300) 0.9612 0.7350 0.2948 0.4208

LSTM (100-100) 0.9637 0.7042 0.4137 0.5212

LSTM (300-300) 0.9635 0.7620 0.344 0.4740

LSTM (200-300) 0.9638 0.6992 0.4251 0.5287

LSTM (300-200) 0.9635 0.7216 0.3851 0.5022

LSTM (400-300-200) 0.9622 0.6580 0.4354 0.5240

biLSTM (100) 0.9620 0.7535 0.304 0.4332

biLSTM (300) 0.9624 0.7906 0.2891 0.4234

biLSTM (100-100) 0.9629 0.6828 0.4182 0.5187

biLSTM (300-300) 0.9629 0.6884 0.4091 0.5132

biLSTM (200-300) 0.9628 0.6857 0.4114 0.5142

biLSTM (300-200) 0.9626 0.6708 0.4262 0.5213

biLSTM (400-300-200) 0.9614 0.6183 0.5017 0.5539

Table A.7: Complete evaluation results for the LSTM and biLSTM

keyword extraction algorithms using the INSPEC dataset as train-

ing data and Reddit dataset for transfer learning. The names of

the models in this table are taken from the used algorithm and the

architecture of the model (number of neurons in each of its hidden

layers).
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Model \Metric Precision Recall F1

No update (t=0.55) 0.0699 0.7666 0.1281

No update (t=0.85) 0.0696 0.7666 0.1277

Reddit English titles (d=0.75, t=0.55) 0.4 0.0666 0.1142

Reddit English titles (d=0.75, t=0.85) 0.4 0.0666 0.1142

CoNLL-2003 (d=0.35, t=0.55) 0.0524 0.8 0.0983

CoNLL-2003 (d=0.35, t=0.85) 0.0522 0.8 0.0981

CoNLL-2003 (d=0.5, t=0.55) 0.0584 0.8333 0.1091

CoNLL-2003 (d=0.5, t=0.85) 0.0582 0.8333 0.1089

CoNLL-2003 (d=0.75, t=0.55) 0.0982 0.7333 0.1732

CoNLL-2003 (d=0.75, t=0.85) 0.0977 0.7333 0.1725

MIT corpus (d=0.35, t=0.55) 0.0807 0.8666 0.1477

MIT corpus (d=0.35, t=0.85) 0.0802 0.8666 0.1468

MIT corpus (d=0.5, t=0.55) 0.0678 0.9 0.1261

MIT corpus (d=0.5, t=0.85) 0.0676 0.9 0.1258

MIT corpus (d=0.75, t=0.55) 0.0747 0.8 0.1367

MIT corpus (d=0.75, t=0.85) 0.0745 0.8 0.1363

MIT corpus ext. (d=0.35, t=0.55) 0.081 0.9 0.1487

MIT corpus ext. (d=0.35, t=0.85) 0.0808 0.9 0.1483

MIT corpus ext. (d=0.5, t=0.55) 0.0754 0.9 0.1391

MIT corpus ext. (d=0.5, t=0.85) 0.0752 0.9 0.1388

MIT corpus ext. (d=0.75, t=0.55) 0.0722 0.8 0.1325

MIT corpus ext. (d=0.75, t=0.85) 0.072 0.8 0.1323

Table B.1: Complete evaluation results of Spacy models for entity

types associated with persons. We compare models updated with

different datasets and with different dropout values (d), evaluated

using different similarity comparisons: threshold (t) or API.
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Model \Metric Precision Recall F1

No update (t=0.55) 0.1367 0.0149 0.0269

No update (t=0.85) 0.258 0.0149 0.0282

No update (API) 0.196 0.0186 0.0341

Reddit English titles (d=0.75, t=0.55) 0.005 0.0056 0.0085

Reddit English titles (d=0.75, t=0.85) 0.0833 0.0056 0.0105

Reddit English titles (d=0.75, API) 0.027 0.0084 0.0128

CoNLL-2003 (d=0.5, t=0.55) 0.2352 0.0037 0.0073

CoNLL-2003 (d=0.5, t=0.85) 0.4 0.0037 0.0074

CoNLL-2003 (d=0.5, API) 0.25 0.0037 0.0073

CoNLL-2003 (d=0.75, t=0.55) 0.125 0.0018 0.0036

CoNLL-2003 (d=0.75, t=0.85) 0.2222 0.0018 0.0037

CoNLL-2003 (d=0.75, API) 0.1333 0.0018 0.0036

CoNLL-2003 ext. (d=0.35, t=0.55) 0.1182 0.0327 0.0512

CoNLL-2003 ext. (d=0.35, t=0.85) 0.2578 0.0308 0.055

CoNLL-2003 ext. (d=0.35, API) 0.1344 0.0364 0.0573

CoNLL-2003 ext. (d=0.5, t=0.55) 0.1327 0.0401 0.0616

CoNLL-2003 ext. (d=0.5, t=0.85) 0.2671 0.0364 0.0641

CoNLL-2003 ext. (d=0.5, API) 0.1473 0.0439 0.0676

CoNLL-2003 ext. (d=0.75, t=0.55) 0.1444 0.0121 0.0224

CoNLL-2003 ext. (d=0.75, t=0.85) 0.2954 0.0121 0.0233

CoNLL-2003 ext. (d=0.75, API) 0.1648 0.014 0.0258

MIT corpus (d=0.35, t=0.55) 0.1927 0.0644 0.0966

MIT corpus (d=0.35, t=0.85) 0.328 0.0579 0.0984

MIT corpus (d=0.35, API) 0.2352 0.071 0.1091

MIT corpus (d=0.5, t=0.55) 0.1973 0.042 0.0693

MIT corpus (d=0.5, t=0.85) 0.328 0.0383 0.0686

MIT corpus (d=0.5, API) 0.2572 0.0495 0.083

MIT corpus (d=0.75, t=0.55) 0.1276 0.0112 0.0206

MIT corpus (d=0.75, t=0.85) 0.2075 0.0102 0.0195

MIT corpus (d=0.75, API) 0.1975 0.0149 0.0278

Table B.2: Complete evaluation results of Spacy models for entity

types associated with movie titles. We compare models updated

with different datasets and with different dropout values (d), eval-

uated using different similarity comparisons: threshold (t) or API.
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Model \Metric Precision Recall F1

Pre-trained 3 (t=0.55) 0.1235 0.7 0.21

Pre-trained 3 (t=0.85) 0.1228 0.7 0.2089

Pre-trained 4 (t=0.55) 0.0774 0.7333 0.1401

Pre-trained 4 (t=0.85) 0.0771 0.7333 0.1396

Pre-trained 7 (t = 0.55) 0.1582 0.7333 0.2603

Pre-trained 7 (t=0.85) 0.1571 0.7333 0.2588

Ontonotes 5 (t=0.55) 0.088 0.7333 0.1571

Ontonotes 5 (t=0.85) 0.088 0.7333 0.1571

Table B.3: Complete evaluation results of Stanford NER models for

entity types associated with persons. We compare different models,

evaluated using different similarity comparisons: threshold (t) or

API.
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Model \Metric Precision Recall F1

Pre-trained 3 ext. (t=0.55) 0.1328 0.0158 0.0283

Pre-trained 3 ext. (t=0.85) 0.3137 0.0149 0.0285

Pre-trained 3 ext. (API) 0.13 0.0149 0.0268

Pre-trained 4 (t=0.55) 0.0808 0.0074 0.0136

Pre-trained 4 (t=0.85) 0.1842 0.0065 0.0126

Pre-trained 4 (API) 0.0842 0.0074 0.0137

Pre-trained 4 ext. (t=0.55) 0.1368 0.07 0.0927

Pre-trained 4 ext. (t=0.85) 0.2348 0.0579 0.0929

Pre-trained 4 ext. (API) 0.1339 0.064 0.087

Pre-trained 7 ext. (t=0.55) 0.1666 0.0355 0.0585

Pre-trained 7 ext. (t=0.85) 0.3055 0.0308 0.056

Pre-trained 7 ext. (API) 0.1728 0.0345 0.0576

MIT corpus (t=0.55) 0.0794 0.0224 0.0349

MIT corpus (t=0.85) 0.3666 0.0102 0.02

MIT corpus (API) 0.0596 0.0158 0.025

Ontonotes 5 (t=0.55) 0.2265 0.0271 0.0484

Ontonotes 5 (t=0.85) 0.32 0.0149 0.0285

Ontonotes 5 (API) 0.2596 0.0252 0.0459

Table B.4: Complete evaluation results of Stanford NER models

for entity types associated with movie titles. We compare different

models, evaluated using different similarity comparisons: threshold

(t) or API.
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Model \Metric Precision Recall F1

Pre-trained CoNLL-2003 (t=0.55) 0.156 0.7333 0.2573

Pre-trained CoNLL-2003 (t=0.85) 0.1549 0.7333 0.2558

Pre-trained Ontonotes 5 (t=0.55) 0.1946 0.7333 0.3076

Pre-trained Ontonotes 5 (t=0.85) 0.1929 0.7333 0.3055

MIT corpus uncased (t=0.55) 0.3209 0.8666 0.4684

MIT corpus uncased (t=0.85) 0.317 0.8666 0.4642

MIT corpus uncased ext. (t=0.55) 0.1843 0.8666 0.304

MIT corpus uncased ext. (t=0.85) 0.183 0.8666 0.3023

MIT corpus cased (t=0.55) 0.2894 0.3666 0.3235

MIT corpus cased (t=0.85) 0.2894 0.3666 0.3235

MIT corpus cased ext. (t=0.55) 0.1666 0.4333 0.2407

MIT corpus cased ext. (t=0.85) 0.1666 0.4333 0.2407

Table B.5: Complete evaluation results of BERT models for en-

tity types associated with persons. We compare different models,

evaluated using different similarity thresholds (t).
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Model \Metric Precision Recall F1

Pre-trained CoNLL-2003 (t=0.55) 0.169 0.1205 0.1407

Pre-trained CoNLL-2003 (t=0.85) 0.229 0.1074 0.1463

Pre-trained CoNLL-2003 (API) 0.1845 0.1271 0.1505

Pre-trained CoNLL-2003 ext. (t=0.55) 0.1643 0.1448 0.1539

Pre-trained CoNLL-2003 ext. (t=0.85) 0.2348 0.1308 0.168

Pre-trained CoNLL-2003 ext. (API) 0.1792 0.1514 0.1641

Pre-trained Ontonotes 5 (t=0.55) 0.2044 0.1373 0.1643

Pre-trained Ontonotes 5 (t=0.85) 0.2565 0.128 0.1708

Pre-trained Ontonotes 5 (API) 0.2169 0.1457 0.1743

Pre-trained Ontonotes 5 ext. (t=0.55) 0.1965 0.1383 0.1623

Pre-trained Ontonotes 5 ext. (t=0.85) 0.2564 0.1299 0.1724

Pre-trained Ontonotes 5 ext. (API) 0.2092 0.1476 0.1731

MIT corpus uncased (t=0.55) 0.2489 0.1102 0.1528

MIT corpus uncased (t=0.85) 0.331 0.0915 0.1434

MIT corpus uncased (API) 0.257 0.1018 0.1459

MIT corpus cased (t=0.55) 0.2877 0.0925 0.14

MIT corpus cased (t=0.85) 0.3661 0.0728 0.1215

MIT corpus cased (API) 0.3079 0.0831 0.1309

Table B.6: Complete evaluation results of BERT models for entity

types associated with movie titles. We compare different models,

evaluated using different similarity comparisons: threshold (t) or

API.
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