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Abstract

Alzheimer’s disease (AD) is a neurodegenerative disease and the most common form of
dementia, with over 50 million affected worldwide. The Hippocampus (HC) is a tiny
structure responsible for memory consolidation and among the first brain regions suffering
damage. HC atrophy (tissue loss), assessed with magnetic resonance imaging (MRI ), is
the most important imaging marker of AD and outcome measure in clinical trials. Proper
assessment of the HC -volume is therefore crucial. However, manual segmentation – the
gold standard – requires an adept annotator, is a taxing and time consuming task and prone
to inter-rater bias. These problems can be reduced by automated segmentation, where
FreeSurfer is the most frequently used software in clinical research. For these segmentations,
T1-weighted (T1w) MR images are standard, however, their capability to clearly separate
the HC from surrounding tissue and CSF is limited. Thus, due to its enhanced contrast,
T2-weighted (T2w) images have been proposed to serve as a better ground truth (GT) for
segmenting the HC.

This thesis aims to assess if deep learning approaches can outperform FreeSurfer ’s
segmentation and if T2w high-resolution images can further improve the labelling result. A
dataset with corresponding pairs of high-resolution 3T T1w and T2w scans was specifically
acquired from healthy subjects, of which 28 hippocampi were manually labelled (=GT).
The labelling was done on T2w images to benefit from the superior contrast and resolution.
Different convolutional neural networks (CNNs) are proposed for segmentation and all
results are compared to our GT . As a reference approach, FreeSurfer showed a Dice
similarity coefficient (DSC) of 78.06%. Using these baseline labels also for training a CNN
on T1w images reduced the computation time drastically and improved the DSC . Training
with the GT -labels further increased results (DSC of 85.62%), while using the T2w images
yielded overall the best result (DSC of 91.91%). As appropriate T2w scans are not feasible
in clinical practice, T2-enhanced training of our CNNs was evaluated, including training
on T2w and fine-tuning on T1w images, or by using generative adversarial networks to
transform T1w scans to mimic T2-contrast. However, these results are similar to only
using T1w images. Concluding all experiments, T2w images are suggested to obtain a
reliable HC segmentation and a ground truth, since they provide better contrast of HC
related features and show less flow- or susceptibility artefacts.
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Kurzfassung

Die Alzheimer-Krankheit (AK) ist mit über 50 Millionen Erkrankten weltweit die häufigste
Form der Demenz. Im Zuge dieser neurodegenerativen Erkrankung wird der Hippocam-
pus (HC), eine kleine Struktur der Temporallappen die maßgeblich für die Bildung des
Langzeitgedächtnisses verantwortlich ist, bereits zu Beginn stark geschädigt. Konkret führt
die AK zu einem Gewebsverlust (Atrophie) im Bereich des medialen Temporallappens und
speziell des HC. HC-Atrophie lässt sich mittels Magnetresonanztomographie (MRT) sehr
gut darstellen und ist der wichtigste Bildgebungsmarker für die degenerative Komponente
der AK, sowie eine häufig verwendete Messgröße für die Wirksamkeit von Therapiestudien.
Die exakte Bestimmung des HC-Volumens ist daher essentiell. Der Goldstandard, die
manuelle Segmentierung, ist jedoch sehr komplex und zeitintensiv sowie anwenderabhängig.
Die mit manueller Segmentierung verbundenen Probleme lassen sich durch Verwendung
einer standardisierten, automatischen Methode reduzieren. FreeSurfer (FS) ist in der
klinischen Forschung die dafür meist genutzte Applikation. Dafür werden standardmäßig
T1-gewichtete (T1w) MR-Bilder verwendet, die jedoch das Potential zur exakten Differen-
zierung zwischen dem HC und dem angrenzenden Gewebe sowie des Liquors limitieren.
Aufgrund besserer Kontrasteigenschaften von T2-gewichteten (T2w) Bildern werden diese
zur Erstellung einer akkuraten Ground Truth (GT) Segmentierung empfohlen.

Der Fokus dieser Diplomarbeit liegt im Wesentlichen auf zwei Fragestellungen. Er-
stens soll evaluiert werden, ob es mittels maschinellem Lernen möglich ist eine bessere
Segmentierung des HC, verglichen mit FreeSurfer, zu erreichen. Zweitens soll untersucht
werden, ob und in welchem Maße hochaufgelöste T2w Bilder das Ergebnis beim Lernen
verbessern können. Dafür wurde ein neues Datenset, bestehend aus korrespondieren-
den, hochaufgelösten T1w und T2w MR-Bildern von gesunden Probanden aufgenommen.
Von diesen akquirierten Daten wurden 28 Hippocampi händisch eingezeichnet. Um die
bestmöglichen GT-Labels zu erhalten, wurden dazu die T2w Bilder verwendet. In dieser
Diplomarbeit werden verschiedene Convolutional Neural Networks (CNNs) zur Segmen-
tierung des HC vorgeschlagen und die Ergebnisse mit den manuellen GT-Labels evaluiert.
Dazu wurden Dice Similarity Coefficients (DSCs) berechnet. Als Basis für jegliche Vergle-
iche wurden die Ergebnisse der FreeSurfer Segmentierung herangezogen (DSC=78.06%).
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Werden die FS-Masken in Kombination mit den T1w Bildern zusätzlich dazu verwendet
die Segmentierungsnetzwerke zu trainieren, konnte nicht nur die Berechnungszeit drastisch
reduziert, sondern auch das Ergebnis verbessert werden. Werden hingegen die GT-Labels,
gemeinsam mit den T1w Bildern, zum Trainieren des Modells verwendet, konnte das Ergeb-
nis weiter verbessert werden (DSC=85.62%). Das beste Resultat konnte erzielt werden,
indem stattdessen die T2w Bilder segmentiert wurden (DSC=91.91%). Da die Akquisition
von entsprechenden T2w Scans bei klinischen Untersuchungen leider nicht möglich ist,
wurde zusätzlich das Potential von T2-verstärktem Training der Netzwerke evaluiert. Dafür
wurden die Segmentierungsnetzwerke mit bereits auf T2w Bildern trainierten Gewichten
initialisiert und mittels T1w Bildern optimiert. Außerdem wurden in einem Zusatztask
mittels Generative Adversarial Networks (GANs) synthetische T2w Bilder, basierend auf
den jeweiligen T1w Bildern, generiert, um damit die T1w-basierte Segmentierung zu
verbessern.

Diese Zusatzexperimente lieferten sehr ähnliche Ergebnisse zu der reinen Segmentierung
von T1w Bildern. Unter Berücksichtigung aller erworbenen Erkenntnisse lässt sich folgern,
dass mit hochaufgelösten T2w Scans eine verlässliche GT Segmentierung erstellt und
mittels CNNs automatisch reproduziert werden kann. Dies lässt sich auf die verbesserte
Bildqualität sowie die kontrastreichere Darstellung relevanter anatomischer Strukturen
zurückführen. Weiters haben die durchgeführten Experimente gezeigt, dass die Ergebnisse
von FreeSurfer mittels maschinellem Lernen sowohl beschleunigt als auch verbessert werden
können.
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1
Introduction

Alzheimer’s disease (AD) is the most common form of dementia accounting for 60 – 80%
of all dementia patients [2]. Hippocampal volume and especially its atrophy (shrinkage),
assessed with Magnetic resonance imaging (MRI), has shown to be a valuable marker for
dementia related diseases, most notably to aid early diagnosis and as an outcome measure
for therapy studies.

The brain (or encephalon) is our most complex organ and builds together with the
spinal cord the central nervous system (CNS). Receiving and processing all sensory input
provided by our senses, makes it the most important body part regarding information
processing. The encephalon controls our actions, enables us to express unique behaviour
and have complex thoughts. It is composed of two major tissue groups: grey matter
(GM) and white matter (WM). The cerebrum (or telencephalon) is the largest part of the
brain and responsible for higher brain functions such as sophisticated thoughts, logic and
creativity. It is divided by the medial longitudinal fissure into two sides; the left and right
hemisphere. The outermost layer of the cerebrum is called cerebral cortex, consists of GM
and can be separated into four lobes: frontal lobe, parietal lobe, temporal lobe and occipital
lobe. The temporal lobe, especially the medial temporal lobe (MTL), which includes the
hippocampus (HC), plays a key role in long-term memory formation. The hippocampi are
essential for memory consolidation, involved in emotions and enables navigation.

Dementia is an umbrella-term for conditions characterised by several deficits of cognitive
abilities, such as decline in memory, thinking, orientation and judgement, which are strongly
related to the HC . This cognitive deficit is typically followed, and sometimes preceded, by
deterioration in behaviour, motivation or emotional control, causing a disability to perform
everyday tasks [2]. In addition to AD, other dementia causes include severe types such as
vascular dementia (VaD), dementia with Lewy bodies (DLB) and forms which conduce to
frontotemporal dementia [28, 106]. While all forms of dementia show similar syndromes
and are caused by neuronal damage, the different types of dementia depend on the affected
brain cell type and the brain region where the damage occurs.
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2 Chapter 1. Introduction

In Alzheimer’s disease excessive accumulation of amyloid-β (Aβ), a fragmented protein
also known as (neuritic) plaques, and abnormally twisted tau protein (τ-protein), also
called (neurofibrillary) tangles, are the hallmarks of the disease. Alzheimer-related stages
of these pathological changes can be analysed with the Braak staging [13, 14]. Alterations
occurs even years before symptoms are notable, with early MTL (HC and entorhinal cortex
(ErC)) participation followed by progressive neocortical impairment [13, 27]. The brain
damage in VaD is supposed to happen because of insufficient blood supply of the brain
tissue. In other causes of dementia, like DLB and Parkinson’s disease, an unusual clumping
of the alpha-synuclein (α-synuclein) protein occurs. Abnormal brain proteins can also
be caused by genetic conditions, such as Huntington’s disease, which yield symptoms of
dementia. Independent of the specific cause, these types are often generally described as
neurodegenerative due to the progressive nerve cell damage and the resulting decline in
the patients condition. [85]

In total, roughly 50 million people worldwide suffer from dementia with an increase
of around 10 million each year [106], whereas dementia and AD is most frequent in
Western Europe, followed by North America [77]. These tremendous numbers make
dementia, along with AD, a condition causing one of the highest costs for health
care and long-term care costs to society. The Alzheimer’s Association estimates
the national costs of the United States of America in 2020 to reach 305 billion
dollar with additional costs for informal care of $ 244 billion [3]. Alzheimer’s Disease
International (ADI) estimated the global financial burden in 2015 due to dementia,
including medical and social care costs as well as costs for informal care, at $ 818
billion [77]. Moreover, Wimo et al. analysed that the global costs increased by 35% in
the time from 2010 to 2017 and forecast to reach costs of $ 1500 billion already by 2025 [104].

Despite all these numbers, dementia is currently under-diagnosed, under-disclosed and
under-treated in primary care [78, 106]. Also, diagnosis is usually made only at a relatively
late stage of the disease [106] and the explicit causes for dementia are still unclear. Due
to overlapping alterations a clear identification of the specific type is also hardly possible.
Unfortunately, there is no single test to diagnose AD or dementia. Physicians rather use
a combination of cognitive tests, imaging to rule out other causes of the symptoms, and
lumbar puncture to assess tau-levels to come up with a diagnosis like “possible Alzheimer’s
dementia” or “probable Alzheimer’s dementia”.

The most frequently used test is the Mini Mental State Examination (MMSE) which
takes only 10 minutes and is comprised of tasks and questions that evaluate cognitive
capabilities such as memory, language or attention. For AD patients the average MMSE-
score decline is around 2 – 4 per year [22]. An increasingly used alternative is the Montreal
Cognitive Assessment (MoCA) test, which is a 10 minute screening tool to assess mild
cognitive impairment (MCI) [73]. Another common test, to quickly check if further
evaluation is needed, is the Mini-Cog test, where only three common objects need to be
recalled after drawing a complete clock showing a specified time. The Consortium to
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Establish a Registry for Alzheimer’s Disease (CERAD) neurophysiological battery is a
collection of five subtests to reliable measure cognition in normal ageing and AD [19]. It is
comprised of the Animal Naming, Boston Naming Test (BNT), MMSE , Constructional
Praxis and Word List Memory and takes 40 minutes or more. The ADAS-cognitive subscale
(ADAS-Cog) ([81]) was specifically designed to assess the severity of cognitive dysfunctions
in AD patients and became the most commonly used test in research and clinical AD trials
[88]. Skinner et al. [88] improved the ADAS-Cog with regard to the responsiveness in MCI ,
while Verma et al. [96] further improved the ADAS-Cog using item response theory (IRT)
yielding to the ADAS-Cog using IRT (ADAS-CogIRT).

Despite neuropsychological tests, to assess the cognitive capabilities, an evaluation of
the skills to perform everyday tasks is also crucial. This is done in terms of activities of daily
living (ADL) for which several scales exist. While the Bristol ADL Scale (BADLS)([16]) is
presumably the gold standard for evaluating non-cognitive deficits in dementia, the most
popular one, however, is the Neuropsychiatric Inventory ([24]) [28].

If the diagnosis of a dementia syndrome has been made, the most likely cause for it
has to be found. The reason is, that the syndromes can be caused by several forms of
dementia. However, they can also be caused by other reasons such as vitamin deficiencies,
medication side effects, infections or metabolic disorders. Therefore, in addition to the
various questionnaires, laboratory tests and brain imaging are performed to rule out these
causes, that might be reversible [28]. Laboratory tests include blood work or urinalysis
and are primarily used to check functioning of various organs and screen for infections.

While an accurate and reliable clinical diagnosis with more than 90% [65] is possible
with such questionnaires, a definite AD diagnosis can still only be achieved postmortem
after a histopathological validation. Moreover, all of these questionnaires and clinical tests
suffer from several disadvantages. They are biased by education, language and culture
[15] and the condition of the subject at test time. Furthermore, professional examinations
usually happen only at a late stage of the disease, at which the brain is already damaged.

Achieving a diagnosis as early as possible is of utmost interest yielding many benefits
not only for the patients itself, but also for caregivers and society. This could be achieved
by observing prodromal AD or subjects at risk of evolving AD. Amnestic MCI is the most
commonly accepted recommendation among them [21]. Mild cognitive impairment refers
to subjects with significant but isolated memory derogation in comparison to references of
the same age. Careful tracking of MCI cases is supported by annual conversion rates from
MCI to AD of approximately 10 – 15%, yielding a translation to AD of 50 – 75% over
the coarse of five years[65]. The most promising way to indicate already early stages of
Alzheimer’s or MCI is the use of biomarkers.

Biomarkers, shorthand for biological markers, are measurable parameters that can be
reliably used for accurate detection of a disease or pathological conditions, assess the
chance of developing the disease or even understand how patients respond to certain
treatments. Therefore, a lot of research is going on to study and establish biomarkers for
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early AD detection. The most promising candidates involve brain imaging, cerebrospinal
fluid (CSF) proteins and blood and urine tests [21, 34, 45, 56, 75, 91, 110]. Genetic risk
profiling can be useful to rule out rare causes due to genetic deficiencies. These laboratory
and neuroimaging biomarkers can be categorised into pathophysiological and topographical
markers [34].

Olsson et al. [75] conducted the most comprehensive meta-analysis of CSF and blood
biomarker literature in AD as well as MCI . A total of 231 articles, comprising 15699 AD
cases and 13018 controls were included and examined for 15 biomarkers from blood and
CSF . Three of these 15 markers are known as core CSF biomarkers for AD diagnosis:

• 42-aminoacid form of amyloid-β (Aβ42), found at low concentrations in AD patients
as a result of cortical amyloid deposition.

• total tau (T-tau), found at high concentrations through cortical neuronal loss.
• phosphorylated tau (P-tau), found at high concentrations reflecting the formation of

cortical tangles.
These core biomarkers are able to differentiate AD patients from controls with good success.
Moreover, they can be effectively used to differentiate between MCI and stable MCI .
Cerebrospinal fluid neurofilament light (NFL) protein, together with plasma T-tau, were
also strongly associated with AD. Because of the consistency of the mentioned markers,
they are suggested to be used in clinical practice and research.

Neuroimaging, is also among the most promising ways for early detection of
Alzheimer’s disease and for following up its progression. Several imaging techniques, such
as structural MRI or computed tomography (CT), functional imaging with functional
MRI (fMRI) or positron emission tomography (PET) and even molecular imaging
including fMRI and PET are studied. Of all the underlying principles, MRI is the most
alluring for several reasons. One of them is the high availability and utility, which is why
it is renowned as an essential examination for dementia in most centres. Another major
benefit is, that MRI uses harmless high power radio waves to create detailed views from
inside the body. Different tissue contrasts, emphasising for example WM or GM , can be
achieved with variations of the sequence parameters.

In comparison, CT uses X-rays to image cross-sections of various body parts and is
mainly used to check for tumours, head trauma or stroke. While being faster and less
noisy than MRI , CT , however, relies on ionising radiation. The latter is especially true for
imaging methods including radioactive substances as used in PET .

Imaging of the brain alone is not used for a definite diagnosis but rather supports the
diagnosis in various ways. It can not only be used to rule out other causes of symptoms
such as tumours, haemorrhages and strokes, but also to differentiate between subtypes of
dementia. For example shrinkage of specific brain areas can be an indicator for a certain
subtype. In AD, dementia is caused by progressive loss of brain tissue, which can show up
in a vast variety in brain imaging. Or, a detailed evaluation of brain vessel damage could
allow for diagnosis of VaD. Both scenarios can be shown with magnetic resonance (MR)
imaging. Moreover, a baseline and progression of degeneration can be accomplished.
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In the last decade imaging markers have shown to reliably differentiate mild and
moderate dementias from other neurodegenerative dementias and healthy controls [21,
34, 38, 91, 110]. In amyloid imaging via PET , a radiolabelled tracer is used to detect
Aβ deposition into plaques. Teipel et al. [91] performed a pooled evaluation of published
neuropathological validation studies, reporting a pooled sensitivity of 92% and a pooled
specificity of 95% for amyloid aggregation detection with the use of F-labelled amyloid
PET tracers. If the C-labelled Pittsburgh compound B (PIB) tracer is used, PIB PET
scans showed a pooled sensitivity of 73% and a pooled specificity of 100% compared to
histopathological presence/absence of amyloid. The main clinical usage of amyloid PET is
limited to early stages of dementia. However, for the prediction of conversion speed from
MCI to AD neuronal injury markers like CSF tau, FDG PET or structural MRI are more
powerful.

Structural imaging with MR of patients with probable AD, in comparison to healthy
aged controls, is consistent with established histopathological data and is able to show
the most specific and sensitive characteristics of AD. These characteristics are atrophy
(tissue loss) of the HC and the ErC and correspond even better if additional reduction in
the temporal neocortex volume is present [21]. In comparison with MCI patients, these
atrophic regions significantly expand to the temporal association neocortex, neighbouring
the hippocampal regions. Moreover, MCI shows a significant atrophy of the HC compared
to healthy controls. Frisoni et al. [38] also report typical early sites of atrophy, shown via
MRI , to be along the perforant pathway, which is comprised of the ErC , the hippocampus
formation and the posterior cingulate cortex. This coincides with early deposition of
hyperphosphorylated tau and early deficits in memory. The authors also report atrophy
of the medial temporal structures not only as a valid diagnostic marker already at the
MCI stage, so before dementia occurs, but also as diagnostic criteria for most prevalent
non-Alzheimer dementias.

Atrophy is an unavoidable and unstoppable consequence of neurodegeneration. The
topography of this cerebral tissue loss correlates cross-sectionally and longitudinally with
neuropsychological (cognitive) deficiencies. Moreover, these structural brain changes
also precisely map upstream to the Braak stages of neurofibrillary tangle deposition
[34, 55, 95, 103]. As such, MRI measures of atrophy can be used as a valid indicator
of disease state and progression [38]. The latter is supported not solely by the change
but also by the rate of change of structural measures, such as whole-brain-, ErC -, HC -
and temporal lobe (TL) volumes. Additionally, enlargement of the ventricles is closely
correlated with alterations in cognitive performance. These structural measures also change
with progression of the disease over a broad range of AD severity. In stages from MCI to
moderate dementia in AD, they have shown to be more sensitive to such changes as imaging
or CSF markers of Aβ deposition. Therefore, hippocampal- and whole-brain atrophy rates
are sensitive neurodegeneration markers and thus increasingly used as outcome measures
in drug trials evaluating possible disease-modifying therapies [38]. Hippocampal volume in
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mild dementia stages of AD has been reported to be already 15 – 30% smaller compared to
controls [38]. In amnestic MCI cases, the reduction in HC volume is lower, with a range
of 10 – 15% [87]. Annual rates of hippocampal atrophy of 4.66% (95% CI [3.92 – 5.40])
in AD patients versus 1.41% (95% CI [0.52 – 2.3]) in healthy controls were reported by a
meta-analysis from [7]. In comparison, the estimated mean whole-brain atrophy rate in
subjects with AD is 1.9∓ 0.9% [89].

In 2015, Teipel et al. [91] showed that the differential pattern of brain-wide atrophy can
differentiate pathologically confirmed AD cases from healthy subjects with a sensitivity
of 97% and 94% specificity. Distinction from dementia patients with frontotemporal
lobar degeneration or DLB, among further underlying pathological changes, resulted in a
sensitivity and specificity of 91% and 84% respectively. While atrophy, plaques and tangles
are all associated with dementia, Johnson et al. [55] pointed out that epidemiological autopsy
studies of dementia subjects and controls showed that atrophy is the strongest correlate
with dementia at all stages. Within the evaluation of Frisoni et al. [38], hippocampal
atrophy measured on high-resolution T1-weighted MR images is the best established and
validated MRI marker of AD. By visual inspection (not to be confused with segmentation)
assessed atrophy of the MTL, rated by widely used rating scales [47], showed a sensitivity
and specificity of around 80 – 85% in distinguishing AD patients from controls. Values for
diagnosing amnestic MCI are slightly lower but also the predictive power of these scales to
anticipate the decline in MCI are good [38]. Volumetric approaches such as visual scoring
or manual segmentation of HC and ErC volume in single-centre studies of MCI have
shown prediction accuracies for conversions to AD of around 80% [91]. Yuan et al. [112]
report in their meta-analysis that medial temporal atrophy achieves a pooled sensitivity
and specificity, for prediction of amnestic MCI cases translating to AD, of ≈ 73% and
≈ 81% respectively.

Regional and global atrophy, evaluated with MRI based segmentation, has been
suggested as surrogate outcomes for disease-modifying trials due to a potential increase in
study power [55]. Also [38] suggest, that for clinical trials, enrichment of MCI groups with
AD cases, based on hippocampal atrophy as an inclusion criterion, may significantly
increase study power for drugs aiming to delay dementia development.

Segmentation can be described as delineation of one structure from another. Crucial
to evaluating brain changes, including atrophy, is a consistent assessment of the volume
and shape of corresponding brain structures. This is especially important for multi-study
comparisons or longitudinal studies.

While many scales for visual rating of atrophic changes exist and manual segmentation
measures of hippocampus volume are still considered as the gold standard for classifying
MCI and its conversion to AD [79], all of them have drawbacks. The main disadvantages
are long assessment times, required know-how as well as inter- and intra-rater reliability.

Novel image processing algorithms enable the possibility for time efficient automated
segmentation of the hippocampi or other neurodegeneration related structures with high
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anatomical accuracy, while ensuring consistency throughout the evaluation process. Frisoni
et al. [38] also pointed out that a standardised acquisition and evaluation procedure as
well as deployment of robust methods for automated assessment would increase the utility
of structural imaging and other biomarkers. Within the last couple of years, machine
learning and especially deep learning have become increasingly utilised in fields like image
processing, pattern recognition and medical image analysis, yielding to applications for
image reconstruction, segmentation and classification.





2
Related Work

Contents
2.1 Imaging of the Hippocampus . . . . . . . . . . . . . . . . . . . . 9
2.2 Segmentation of Medical Images . . . . . . . . . . . . . . . . . . 11
2.3 Image Synthesis . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

This section will give an overview of related literature to the relevant topics of this
thesis. At first, commonly used magnetic resonance imaging (MRI) sequences to image
brain structures involved in Alzheimer’s disease (AD), especially the medial temporal
lobe (MTL), are reported. Methods for manual and automated segmentation of those
important structures are shown in the next section. In the last part, a short overview of
image-to-image translation methods is given.

2.1 Imaging of the Hippocampus

MRI is the imaging gold standard for most diseases of the central nervous system (CNS). In
brain or dementia related structures, such as the MTL, two most commonly used imaging
contrasts are applied to highlight different tissue features; T1- and T2-contrast.

T1-weighted (T1w) sequences, showing a T1-contrast of the imaged region, are the
standard to visualise the whole head (brain). In research, T1 scans with a resolution of
1 × 1 × 1 mm3, also referred to as 1 mm isotropic resolution, are basically part of every
clinical MRI study ([33, 54]). While this is considered standard in research, such scans are
actually regarded as high-resolution T1 images from a clinical point of view, as conventional
sequences usually have a slice thickness of 3− 5 mm. For high-resolution T1 scans, the
three-dimensional (3D) magnetisation-prepared rapid gradient-echo (MPRAGE) ([71, 98])
is the most popular sequence and is used in many applications.

T2-weighted (T2w) sequences are used in clinical examinations to assess certain types
of pathologies, for example lesions in multiple sclerosis (MS) or microbleeds. However,

9
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T2-contrast is also increasingly used in research ([33, 54, 60, 113, 114]), especially as higher
resolutions can be achieved more easily. T2 contrast is best achieved with spin echo (SE)
or fluid-attenuated inversion recovery (FLAIR) sequences. For the former, turbo spin
echo (TSE) ([8, 35, 105, 114]) or their dual-echo variants ([50, 54, 60, 92]), creating proton
density (PD)- and T2w images, are utilised. TSE sequences are also called fast spin echo
(FSE) sequences as these are just manufacturer depending names. However, both of them
refer to Rapid Acquisition with Relaxation Enhancement (RARE) – the generic name.

The advent of emerging imaging methods have increased the reliability to delineate even
subfields of the hippocampal formation in in-vivo measurements. Specialised T2-weighted
sequences with anisotropic voxels and a limited field of view (FoV) are able to depict the
layered structure of the hippocampus [115]. This exchange, of a lower resolution along the
main axis of the hippocampus (HC) for a high coronal in-plane resolution, is motivated by
the inner structure of the HC , which resembles a Swiss roll. Changes of the spiral formation
occur less rapidly alongside its major axis, which is almost parallel to the anterior-posterior
direction [52].

The first requirement for a standardised assessment of the volume and atrophy (tissue
loss) of AD related structures is a common acquisition procedure for the underlying images.
Harmonising the input data is crucial for the required manual segmentation protocols and
especially for automated methods. To achieve this, the Alzheimer’s Disease Neuroimaging
Initiative (ADNI) was launched in 2003 by several institutes as well as private companies
and non-profit organisations. It is a longitudinal multicentre study specifically designed to
establish biomarkers (clinical, imaging, genetic and biochemical) for early AD detection
and tracking of the disease. Further information can be found in [54, 100] or on their
web-page1. By 2015 ADNI data includes more than 1500 subjects (age range of 55 – 90
years) consisting of cognitve normal (CN) elderly, people with mild cognitive impairment
(MCI) and patients with early AD, which have been used in over 1500 publications. In
late 2016 (ADNI -3) began with the aim to study the rate of change of cognition, function,
brain structures and biomarkers.

The ADNI thoroughly evaluated 3D T1-weighted sequences for morphometric
analysis and also decided to use 3D MPRAGE sequences, with an isotropic resolution
of 1 × 1 × 1 mm3, for their structural whole brain scans. Moreover, they apply several
sequences, for T2-contrast, to assess certain pathologies and for the high-resolution
visualisation of the HC [44, 100]. For the latter, an in-plane resolution of 0.39× 0.39 mm2

together with a slice thickness of 2 mm is used and utilised for the subfield evaluation.

While the ADNI data sounds promising, there are some issues which make it impractical
for us to use. Because of the large slice thickness of 2 mm the T2-weighted image data does
currently not match our high requirements for the T2-weighted visualisation of the HC ,
despite the very high in-plane resolution. This thesis is a first line of work and aims to
proof a concept of a machine learning based automated HC segmentation. To include data

1http://adni.loni.usc.edu

http://adni.loni.usc.edu/about/
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showing the HC best and to achieve consistency within the dataset by avoiding imaging
data which already expresses age or disease related changes we restrict our data to healthy,
young subjects. However, the ADNI data includes multi-centre data from a wide age range
and medical conditions. Therefore, a unique dataset is acquired and utilised in this thesis.

2.2 Segmentation of Medical Images

Segmentation is the process of identifying and differentiating certain structures or regions
from another. This partitioning is usually done based on homogeneous or similar areas
defined by common attributes like intensity, colour, texture, shape, depth or suchlike.
While the applications and needs for good segmentations are manifold, there is no single
approach to all delineation problems. On the contrary, it strongly depends on the specific
task and to date, the best option — the gold standard — still remains manual labelling.

The following described methods, for both manual and automated segmentation, are
limited to the hippocampal formation and AD-related structures, such as the MTL.

2.2.1 Manual HC-Segmentation Protocols

Since atrophy of MTL structures has become an established biomarker for different types
of cognitive disabilities, a lot of effort was made to construct common criteria for how to
manually label them on MRI data. Such segmentation protocols exist for different MRI
acquisitions, including field strengths and contrasts.

Segmentation protocols for hippocampal subfields exist for both, 3T ([25]) and 7T
([8, 90, 105]) scanners. To the authors knowledge, instructions based on T1-contrast are
only available for 3T images ([70]). While for lower field strengths much more instructions
are available, they often do not distinguish between the different subfields of the HC and
provide less detailed delineation explanations. This is, because 7T imaging provides more
consistent slice-by-slice visualisation, which is especially useful for tiny structures such as
the hippocampal formation, due to ultra-high resolutions and increased signal-to-noise
ratio (SNR).

Until 2017 many of the 7T protocols were limited to the HC body. Moreover, except of
Wisse et al. [105] and Suthana et al. [90] none of the other available protocols incorporated
novel findings from Ding and Van Hoesen [30, 31] about subfields of the perirhinal cortex
(PrC) and the hippocampal formation. Berron et al. [8] incorporated these findings and
the benefits of high-field MRI and proposed a protocol for manual segmentation of MTL
subregions. To establish these instructions, 22 subjects (mean age of 26 years) underwent
MRI examination on a 7T scanner (Siemens, Erlangen, Germany), in which T2-weighted
partial TSE images with an in-plane resolution of 0.44× 0.44 mm2 and a slice thickness of
1 mm were acquired, oriented perpendicular to the long axis of the hippocampus. Of this
dataset, a total of 24 hemispheres was then manually labelled by two expert raters and
analysed for intra- and inter-rater reliability. The utility of the protocol has been tested
with 35 participants, including 29 novices, in a hosted segmentation workshop [8].
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To achieve ADNI ’s goal of a standardised evaluation for imaging biomarkers, also
attempts for a harmonised segmentation protocol have been conducted [9]. The authors
have performed a review of 56 segmentation instructions, yielding 12 protocols (using a 3D
T1-weighted sequence) that were eventually included and evaluated for their accuracy and
translation into practice. Finally, harmonised landmarks and differences were extracted.
This resulted in the Harmonized Protocol (HarP)2 for manual segmentation of the whole
HC boundaries on magnetic resonance (MR) scans [10–12].

While the European Alzheimer’s Disease Consortium (EADC)-ADNI effort focused on
the delineation of the HC as a single structure, Yushkevich et al. [114] performed a similar
study, however, with different MR modalities and focusing on (para-) HC subfields.

Fischbach-Boulanger et al. [35] investigated which of T1- or T2-weighted imaging
is the superior sequence for visually assessing hippocampal atrophy. Therefore, visual
ratings (medial temporal lobe atrophy (MTA) score) of 100 MCI and 50 AD hippocampi
were independently acquired by two senior and two junior radiologists. Inter- and intra-
rater reproducibility, accordance with a quantitative volumetric measure – obtained with
FreeSurfer ’s, discriminative power between the MCI and AD groups as well as correlation
with several cognitive tests were used as the quality criteria. They have shown, that
MTA scores for T1- and T2-weighted images show similar variability and consent with
FreeSurfer ’s volumetric measure. However, they suggest T2-weighted images for assessing
HC atrophy in AD, as better discriminative power between the disease groups and higher
correlation with several neuropsychological tests was achieved with T2-weighted images.

2.2.2 Automated HC-Segmentation

Automated segmentation, as a tool for fast, consistent and reliable assessment of various
parameters (e.g. volume, cortical thickness...), especially for application to large data sets,
has been pointed out by many authors among the medical imaging community. With the
focus on the hippocampal formation, there are two main techniques used for segmentation

— atlas-based and learning-based approaches.
Atlas-based methods can be subdivided into topological/deterministic or probabilis-

tic/statistical atlases. While deterministic atlases are constructed only by a single subject,
probabilistic atlases include a small amount of subjects, all co-registered to a standard
space where the voxelwise frequency for each label is calculated. An atlas consists of two
combined images, one intensity image (also template) and its corresponding delineation
(also segmented/labelled image or atlas labels). For the segmentation procedure, unseen
(target) images initially need to be registered with the atlases. Subsequently, the atlas
labels can be transferred to the target image through several segmentation strategies.
Registration is a fundamental biomedical image processing problem and refers to the
process of establishing spatial alignment between images, by finding a transformation from
one image space to the other.

2http://www.hippocampal-protocol.net

http://www.hippocampal-protocol.net/SOPs/index.php
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Label propagation, the easiest and fastest option is used for a single-atlas, where only
labels of one sample exist. Label fusion, the process of combining propagated labels, is a
major element in multi-atlas segmentation (MAS) methods, where several single-atlases
are utilised. This approach has the benefit of comprising anatomical variability into the
segmentation results and reducing atlas-specific registration errors. However, with the
drawback of at least linear increased computational costs [51].

Probabilistic-atlas methods use a defined standard space to which the unseen images are
registered during the first step. In this image space it is then possible to compile statistics
about intensity, global position or neighbouring structures. This can be done as part of a
Bayesian framework. In the subsequent segmentation step, each voxel is then labelled as
the structure of interest or background. This is based on a-priori estimated probabilities
obtained from the atlases. Fischl [36] investigated such methods, as one of the first, for
neuroanatomical segmentation, yielding the well-known software package FreeSurfer.

FreeSurfer has become one of the most popular software for automated segmentation
of neuroanatomical structures on MR images, taking the spot as the benchmark tool for
whole cortical brain parcellation. This cortex segmentation consists of 21 classes, also
includes the HC as a single structure, and takes up to 10 hours for one subject on a single
central processing unit (CPU). Since the first version (v5.3 [36]), a lot of improvement and
additional features have been implemented. The successor, version 6.0, was released in
early 2017 and provides the possibility of a more sophisticated HC segmentation.

The latter is possible because of a new high-resolution post-mortem atlas, referred
to as “ex-vivo atlas”, including hemispheres of 15 subjects with an average isotropic
resolution of 0.13 mm3, and a specifically designed protocol for labelling 13 hippocampal
substructures [52]. Although ex-vivo (out of the living) data acquisition allows ultra-
high resolutions and eliminates motion artefacts, it also results in a falsely brain tissue
contrast. Additionally, missing perfusion (blood flow) and the fixation process cause different
visualisation compared to in-vivo (within the living) measurements. Also registration of
post-mortem scans becomes a harder task due to different FoVs and unique local features.
Lastly, ex-vivo data is much harder to obtain, which yields to an overall trade-off between
the advantages and disadvantages of ex-vivo atlases.

Since 29th April 2020 the latest version of FreeSurfer (v7.0) is available. While further
improving the runtime, the hippocampal subfield segmentation remains unchanged.

Atlas-based approaches strongly depend on the underlying registration of the target
images and the template. This is particularly a hard task if different contrasts/modalities
are used. Detailed information of atlas-based approaches be can found in the following
review-papers Cabezas et al. [17], Dill et al. [29], González-Villà et al. [39], Iglesias and
Sabuncu [51].
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Deep learning is a sub-class of machine learning (ML) algorithms used to model high-
level abstractions of data by utilising artificial neural networks (ANNs), which are inspired
by the neural system of humans. Learning-based approaches have been extensively utilised
within recent years as powerful, specialised hardware has become more affordable and a lot
of, still ongoing, effort is made to establish publicly available databases, providing imaging
data and their corresponding annotations.

Similar to probabilistic atlas-based methods, ANNs, aim to leverage data from multiple
subjects, known as training set, and learn features like intensity or shape for example.
Especially convolutional neural networks (CNNs) ([62]), which are ANNs based on convo-
lution operations, are widely used in medical image segmentation or classification. Recent
reviews about the use of CNNs in medical image analysis can be found in Ker et al. [57] or
Anwar et al. [4]. Another overview, focusing on convolutional architectures for the task of
3D segmentation of the HC , was given back in 2015 by Lai [63] under supervision of Prof.
Rueckert.

As for all data-driven methods, these techniques need an extensive amount of labelled
data. Ronneberger et al. [80] have implemented a specialised training strategy for biomedical
image segmentation, which allows to localise and can be trained with even little annotated
data. Their proposed architecture, known as U-net, strongly depends on data augmentation
using elastic deformations. The benefit of data augmentation concerning invariance has
previously been shown by Dosovitskiy et al. [32]. As annotated data is a common bottleneck
in the medical imaging domain, the U-net architecture is used in many applications
([18, 37, 42, 99]).

Other CNNs based methods, specifically used for segmentation of the hippocampus,
have been reported in [20, 37, 108] where convolutional long-short-term memory (LSTM),
multi-modal data and dilated deep supervision is utilised, respectively.

Among recent literature, also deep learning approaches comparable to FreeSurfer exist.
A 3D deep CNN for automated segmentation of 25 brain structures in T1-weighted MR
images, called DeepNAT, was proposed in 2018 by [97]. Tools, only applicable to segment
the hippocampus, have been proposed by [93] and [42], called HippoDeep and HippMapp3r,
respectively. While the latter has been validated against other state-of-the-art methods
(FIRST, FreeSurfer, HippoDeep) and was shown to be an efficient and robust tool for
HC segmentation to assess neurodegenerative changes, it lacks flexibility. In detail, input
images are required to have a certain orientation and acquisition sequence (contrast). Thus,
it fails segmenting T2-weighted input images. Moreover, only whole HC segmentation,
but no subfield labelling, is possible due to missing high-resolution data and different
modalities.
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2.3 Image Synthesis

Image-to-image translation refers to a class of computer vision problems, with the ultimate
goal to map an input image to an output image. Examples problems are: image denoising,
where image enhancement is achieved by noise reduction (improving SNR) of the input;
image super-resolution, to create output images with higher resolution compared to the
input; or image synthesis, in which the input is mapped to a different output modality,
usually keeping the same resolution but expressing different styles/characteristics. In this
thesis image-to-image translation refers to the class of image synthesis problems and are
henceforth used interchangeably. Typical computer vision applications of image-to-image
translation are changing season of landscape images or applying different painting-styles
(van Gogh or Monet) or colouring black-white images and vice versa [53, 116].

In the medical imaging field, image synthesis is used in the context of modality transfer,
including translation of computed tomography (CT) to MR images ([46, 48, 99]) or different
translations specific to MRI (T1-/T2-contrast mappings ([86]) or generation of 7T images
based on a 3T input ([74])).

Generative adversarial networks, first introduced by Goodfellow et al. [41], are
frameworks which utilise an adversarial process to estimate generative models. In this
adversarial process, a generative model G and a discriminative model D are simultaneously
trained. In the initially proposed implementation of generative adversarial networks (GANs)
([41]), the generator G learns to generate new sample images from input noise. While
G estimates the data distribution and is trained to maximise the probability of D being
wrong, the discriminator D evaluates whether the current sample is more likely to be from
the training data instead of being created by G. D is trained to maximise the probability
for this correct labelling for both data sources.

The standard implementation of GANs ([41]), however, showed instability issues during
training. Many of these problems, however, have been tackled with the utilisation of
Wasserstein GANs (WGANs) [5]. The training of these WGANs was then even further
improved by introducing a gradient penalty [43]. However, the output of image synthesis
tasks statistically depends on the input images. This property can be exploited by means
of conditional GANs (cGANs) ([68]), where the source image is provided as an input to
condition the generator.

Motivated by [53], Yang et al. [109] introduced cGANs ([68]) into the field of brain
MRI . In detail, Yang et al. [109] utilised cGAN for translation of T1-weighted MR images
to mimic T2 contrast and applied the proposed cross-modality generation framework to
registration and segmentation problems. During the course of this thesis, Dar et al. [26]
also proposed a new method, which is based on cGANs, for multi-contrast MRI synthesis.
The huge impact of GAN based methods in image-to-image translation problems is due to
the concept of an adversarial loss.





3
Motivation

Various factors raise the need for a feasible and reliable segmentation of the hippocampus
(HC). High-resolution T1-weighted scans, as utilised in clinical magnetic resonance (MR)
studies, show only limited capability to clearly separate the HC from surrounding tissue
and CSF . Moreover, they suffer from distinct visualisation of fine structures and subfields of
the hippocampal formation, which are also beneficial for the manual ground truth labelling.
T2-weighted MR scans are able to visualise these structures due to its complementary
contrast information as well as higher resolutions [35, 107]. However, such scans are not
feasible in clinical practice and are also not common in research studies.

As T1-weighted structural brain scans are standard during magnetic resonance imaging
(MRI) examinations, a lot of T1 image data is available, however, necessary ground truth
segmentations (GT-labels) are often missing. While the gold standard, manual annotation,
is an exhaustive and time consuming task, many automated applications are impractical,
like FreeSurfer with processing times of up to 10 hours per subject. Especially for evaluating
disease-modifying drugs, which aim to slow down the progression of Alzheimer’s disease
(AD), consistent and reproducible segmentations are crucial to compare results across
different studies. To ensure this consistency, a standardised approach for hippocampal
volume assessment is required.

To address the poor visualisation of the hippocampal formation and to create accurate
ground truth labels, a unique dataset is specifically acquired. This dataset is comprised of
corresponding pairs of high-resolution T1- and T2-weighted 3T MR images from healthy
volunteers. Based on novel T2-based instructions, 28 hippocampi were manually labelled
on our T2-weighted images to establish the corresponding GT-labels. This dataset is
subsequently preprocessed to cope with possible artefacts emerged from or during the
generation process. Deep learning has become a powerful tool in medical imaging to
learn complex models, based on annotated training data, which can then be applied to
previously unseen input data. Thus, it is used for the automated segmentation task in
order to limit the acquisition of the ultra high-resolution T2-weighted images as well as
the exhaustive manual annotation by a trained annotator for the generation of the dataset,
while exploiting the superior contrast and resolution of the T2 scans.

17
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The aim of this thesis is to evaluate the hypothesis if deep learning with convolutional
neural networks (CNNs) is able to outperform the hippocampal segmentation achieved
with FreeSurfer — the clinically used benchmark in brain cortex parcellation, including the
HC and its subfields. Additionally, the benefit of having ultra high-resolution T2-weighted
scans and their impact on the training process of the HC segmentation task is evaluated.

To address the first question, FreeSurfer is used to generate the automated baseline
segmentations of our manually labelled T1-weighted images. For our learning-based
experiments, we utilise deep artificial neural networks (ANNs) to perform the segmentation
task on our custom dataset. In more detail, deep convolutional neural networks (DCNNs)
are trained with both image modalities and our manual ground truth labels. The results
of the segmentations performed on T1 input images are used to evaluate the performance
of the learning-based segmentations in comparison to the mask achievable with FreeSurfer.

To assess the impact of our T2-weighted images on the segmentation accuracy, the
same architecture, which is utilised in the T1-based setup, is trained with the T2 input
images. Moreover, the same setup is used with a combined input, consisting of the T1-
and T2-weighted images, to evaluate the contribution of the T2 contrast.

As the advantage of the T2-weighted images can unfortunately only be exploited for
training our DCNNs, methods incorporating the T2 scans into the training process are
proposed. With the assumption of having a distinct benefit with ground truth labels that
have been created based on T2 contrast and using the T2 images only during training, a
specific deep learning approach – generative adversarial networks (GANs) – are utilised to
create synthetic T2 images of the underlying T1-weighted images. This image-to-image
translation is executed as an auxiliary task prior segmentation and meant to enhance the
final segmentation result rather than focusing on a perfectly mimicked T2 contrast.

With the assumption of having a distinct benefit with ground truth labels that have
been created based on T2 contrast and using the T2 images only during training, a GANs
is proposed to create synthetic T2 images of the underlying T1-weighted images. This
auxiliary task is used to create synthetic images, mimicking T2 contrast of the T1-weighted
input images, on the fly prior the actual segmentation via DCNN .

3.1 Outline

The following chapter provides background information related to the main tasks of this
thesis, including MRI , registration and the image synthesis with GANs.

Chapter 5 describes the acquisition process of our customised dataset and applied
preprocessing steps. Moreover, the FreeSurfer pipeline as well as the learning-based models
used for segmentation and the image-to-image translation task are introduced.

In Chapter 6 the experimental setup is given, including the training process, a list of
all conducted experiments and their evaluation process. Subsequently, quantitative and
qualitative results are shown and thoroughly discussed in chapter Chapter 7.

Eventually, Chapter 8 concludes the thesis and provides an outlook for future work.
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This chapter provides supplementary information about the principles of the utilised
concepts in this thesis. At first, a basic understanding of the physics behind magnetic
resonance imaging (MRI) and some concepts related to its contrast mechanisms are
described. Following, a brief overview of medical image registration and its necessary
elements like allowed transformations, the similarity metric as well as the optimiser is given.
The last part presents common terms and concepts of neural networks to provide a basic
understanding for the utilised architectures.

4.1 Magnetic Resonance Imaging - MRI

This section provides a short insight into basic theory of MRI , explaining the concepts
required to understand contrast mechanisms and the differences between both sequences
utilised in this thesis. Moreover, the benefits and drawbacks of each sequence are presented.

4.1.1 Spins and Signal

Clinical MRI utilises hydrogen atoms (H1) respectively their nuclei, which include only
a single proton. As every elementary particle, protons have the intrinsic property of a
nuclear spin. Based on their atomic mass, protons have a spin quantum number s = 1

2 ,
yielding two states: ms of +1

2 = “spin up” or −1
2 = “spin down”. This spin causes two

effects; an angular momentum L and a magnetic moment µ which can be expressed in
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terms of the gyromagnetic ratio:
γ = µ

L
. (4.1)

The spinning proton or spin (both are used synonymously) can be considered as a bar like
magnet. Based on the Boltzmann distribution, the parallel (“spin up”) configuration in
an external magnetic field is at a minimal better energy level, which yields slightly more
nuclei with a “spin up”. This results in a macroscopic equilibrium magnetisation Mz = M0
per volume unit:

Mz = ρ · γ
2~2

4kT ·B0 , (4.2)

with ρ... proton density, γ... gyromagnetic ratio, ~... reduced Planck constant, k... Boltzmann
constant, T ... absolute temperature and B0... external magnetic field.
This equilibrium magnetisation is aligned in parallel to the external B0 field (along the
z-axis). However, in magnetic resonance (MR) scanners the normal of the receiver coil
is always perpendicular to the z-axis, which implies that only signals in the transversal
(XY-) plane can be measured. The acquired magnetic flux Φ is then proportional to the
transversal component (Mt) of Mz. Therefore, to actually measure a signal in the detector,
the equilibrium magnetisation Mz needs to be “flipped” into the transversal plane, where
it induces a voltage. This excitation of the spin-system is achieved with high frequency
(HF), also called radio frequency (RF), -pulses of the right power. The induced HF signal
can be described by:

U(t) = k ·Mt · ω0 · sin(ω0t) . (4.3)

The angular frequency ω0, known as the Larmor frequency, describes the precession of the
magnetic moment about an external magnetic field. It depends on the gyromagnetic ratio
and the magnitude of the applied magnetic field:

ω0 = γ ·B0 . (4.4)

Common field strengths for clinical MRI are 1.5 or 3 tesla (T).

4.1.2 Contrast Parameters

MRI has great diagnostic value due to the possibility of using specific sequences to either
enhance or attenuate different tissues in a MR image. Three main tissue parameters are
responsible for the corresponding intensity (brightness) in the resulting MR image and
hence its contrast. Two characteristic times known as spin-lattice relaxation time (T1 ) and
spin-spin relaxation time (T2 ), and the proton density (PD).

The PD defines the amount of excitable spins (protons) per volume unit and therefore
defines the maximum signal of a tissue.

T1 is the time constant of the longitudinal relaxation, which is related to the dissipation
of absorbed energy into the surrounding molecular lattice. It determines how fast the tissue
returns to its equilibrium state after an excitation and depends on the tissues thermal
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conductivity and strength of the static magnetic field B0.
T2 is the time constant of the transversal- or T2 relaxation and determines how fast the

MR signal attenuates, due to spin-spin interactions, after an excitation. This attenuation
happens due to dephasing of spins without any energy dissipation to the vicinity and
is more or less independent of B0. The spins rather exchange energy among each other
because of fluctuating (fast changing) local magnetic field variations. These fluctuations
happen because the spins, as tiny magnets themselves, change the field strength for one
another. Thus, as the precession frequency depends on the magnetic field B0, the spins
precess at different speeds causing a loss in phase coherence.

However, such field strength variations can also be due to constant inhomogeneities
of the external B0-field. They are caused by the hardware itself and also by the body of
the examined subject. Therefore, the overall signal decay happens with the apparent time
constant T2∗ and is also know as the free induction decay (FID):

1
T ∗2

= 1
T2

+ 1
T2i

= 1
T2

+ γ∆ |B0| , (4.5)

with T2... spin-spin time const., T2i... time const. due to inhomogeneities, γ... gyromagnetic
ratio and γ∆ |B0|... contribution of intravoxel field inhomogeneities.

Both, T1 and T2 relaxation occur simultaneously and are independent of each other.
However, T2 relaxation (100 – 300 ms) is much faster so that the MR signal is gone before
Mz would be recovered to the equilibrium state because of T1 relaxation (0.5 – 5 s) [101].
Relaxation times are tissue dependent with a coarse division [69] of body tissues in:

Tissue
Type Examples T1 T2

fluids: CSF or oedema 1500 – 2000 ms 700 – 1200 ms
water-based tissue: brain, muscle or cartilage 400 – 1200 ms 40 – 200 ms

fat-based tissue: fat or bone marrow 100 – 150 ms 10 – 100 ms

Table 4.1: Tissue depending T1 and T2 relaxation times.

As the mentioned tissue parameters (ρ, T1, T2, T2∗) are properties of the imaged tissue,
additional timings need to be utilised to make use of the mentioned contrast behaviours.

The repetition time TR is the time between successive RF excitation pulses. It is
essential for the T1 contrast of the image as it determines how much time the excited
spins have to regain the equilibrium magnetisation Mz. This in turn, defines the available
longitudinal magnetisation for the next excitation. A “short” TR (in comparison to
T1; usually <600 ms), will result in a pronounced T1-weighting. If a “long” TR (above
≈ 1500 ms) is chosen, almost all tissues will have time to fully recover, whereby the T1
influence on the contrast gets minimal.

The echo time TE is the time between an excitation and the actual measurement,
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so the read out of the signal. It defines the T2 influence onto the image contrast. “Short”
echo times (<30 ms), yield only little T2-weighting as spin-spin relaxation processes just
began. Therefore, to get a good T2-contrast, TE should be “long” (>75 ms) together with
a “long” TR (>1500 ms) to minimise the T1 influence. A short overview of the possible
combinations of TR and TE and the resulting contrasts is shown in Table 4.2.

“Short” TR “Long” TR

“Short” TE T1-weighting PD-weighting
“Long” TE poor contrast T2-weighting

Table 4.2: Summary of possible contrasts depending on the combination of sequencing times (TR
and TE).

Depending on the chosen timings, three main types of contrasts can be achieved, namely
T1-weighted, T2-weighted or PD-weighted images. In T1-weighted images, tissues with long
T1 give the least signal whereas short T1 yields the most signal. This results in dark and
bright pixels, respectively. T2 shows a complementary contrast where tissues with long T2
yield the highest signals, resulting in bright pixel intensities. For PD-weighted images also
high PD-values result in high signal intensities.

4.1.3 Pulse Sequences

With varying the imaging technique, also known as pulse sequences, and controlling their
timings, a large range of contrasts can be achieved with MRI . A pulse sequence is a carefully
scheduled series of excitation (RF) pulses combined with gradient pulses to allow for spatial
encoding of the measurements. The (temporal) correspondence of the applied pulses is
commonly visualised with pulse sequence diagrams (PSDs). Moreover, such diagrams allow
to infer the strategy of the spatial encoding of a pulse sequence.

Common terms for labelling a PSD and their description are shown in Table 4.3.

Terms Description

RF excitation or refocussing pulse
Slice / SS / GSS / Gz slice selection (gradient)
Phase / PE / GPE / Gy phase encoding (gradient)
Readout / FE / GFE / Gx frequency encoding (gradient)
Signal / Echo measured signal

Table 4.3: Explanation of common labels used to label PSDs.

In general, a pulse sequence in MRI consists of three components: (i) a preparatory
module, (ii) the acquisition, and (iii) the recovery. The preparation module can include a
variety of preparation pulses such as spectral saturation (for fat saturation), flow or spatial
saturation pulses. In the acquisition phase any set of pulses and gradients to generate for
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example a spin echo (SE) (Fig. 4.2) or gradient echo (GE) (Fig. 4.1) are included. The
recovery, is in principle a “dead time (TD)” without any signal generation to allow the
system to return to equilibrium.

4.1.3.1 Gradient Echo vs. Spin Echo

In general, there are two principle sequence families: gradient recalled echo (GRE) or GE
and SE sequences. With GE sequences either T1-, T2∗- or PD-weighted images can be
achieved. SE sequences can produce T1-, T2- or PD-weighted scans.

As mentioned, the spin-spin relaxations (T2 and T2∗) happen due to dephasing of the
excited spins. In MRI , the moment where the dephased spins are back in phase is called an
echo. At this point in time, the spins add up creating the strongest signal and are therefore
measured in this state. The principle how this state of phase coherence is achieved, is the
main difference between a GE and a SE sequence.

A gradient echo is produced by a single RF excitation pulse together with a de-phasing
and re-phasing gradient pair. In comparison, a spin echo is generated by means of a RF
pair, where the first (90° RF -) pulse excites the spins. After exactly TE/2, a refocussing
(180° RF -) pulse is applied which creates the SE and also reverts the dephasing caused by
B0 inhomogeneities (only T2-decay of signal in Fig. 4.2). Correction of B0 inhomogeneities
cannot be done with GE sequences, which results in a T2∗ decay of gradient echoes (see
T2∗-decay in Fig. 4.1). The random, intrinsic T2-dephasing cannot be reverted with either
of both sequences, as described in Section 4.1.2.

4.1.3.2 Gradient Echo and Spin Echo -Sequences

Following, the PSD of a basic GE (Fig. 4.1) and SE (Fig. 4.2) sequence is described and
shown.

Common to both sequences (GE , SE), initially an excitation (RF -) pulse is used to flip
the magnetisation. While in SE sequences a 90° excitation pulse is used, GE sequences use
a variable flip angle α smaller than that. This excitation pulse is applied in combination
with a selective gradient (SS) to excite either a single slice or a whole slab, depending
whether a two-dimensional (2D) or three-dimensional (3D) sequence is used. The phase
encoding (PE) gradient, applied in both sequence types, is used for spatial encoding of
the measurement along the y-axis. If a 3D acquisition is used, together with the phase
encoding an additional slice encoding gradient (along the z-axis) is applied. As mentioned
before, the principle to create the echo differs now for both sequences.

Gradient echo sequences (Fig. 4.1) use a negative de-phasing gradient before the
frequency encoding (FE) gradient, which is applied during the readout (RO) of the signal.
This de- and re-phasing gradient pair (see FE in Fig. 4.1) at first causes an additional
dephasing, which is then, however, rephased with the first half of the positive FE gradient,
such that the maximal signal is measured at TE (the middle of the positive FE gradient).
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Spin echo sequences (Fig. 4.2) make use of a 180° RF - refocussing pulse, which is
again applied with the selective gradient of the excitation, to create an echo after TE/2.

modified from http://xrayphysics.com/sequences (accessed 28.05.2020)

Figure 4.1: Pulse-Sequence-Diagram of a basic GE sequence.

modified from http://xrayphysics.com/sequences (accessed 28.05.2020)

Figure 4.2: Pulse-Sequence-Diagram of a basic SE sequence.

To utilise the long repetition times in SE sequences, a rapid acquisition method, called
turbo spin echo (TSE) or fast spin echo (FSE), can be employed. Here, not only
one 180° refocussing pulse is used after one 90° excitation pulse, but rather a series of
refocussing pulses to create a whole echo train. With this method, several lines of the
image are acquired with a single 90° RF - excitation. Thus, also the overall scan time is
reduced. Figure 4.3 shows the PSD of an example TSE sequence with one repetition cycle
and an echo train length (ETL) of three.

http://xrayphysics.com/sequences.html
http://xrayphysics.com/sequences.html
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modified from http://xrayphysics.com/sequences (accessed 28.05.2020)

Figure 4.3: Pulse-Sequence-Diagram of a TSE sequence with an ETL = 3.

4.1.3.3 Inversion Recovery Sequences

Inversion recovery (IR) is an imaging technique which has such an additional preparation
module prior the “standard” imaging sequence. As the name implies, an additional 180° RF -
inversion pulse is used to flip the longitudinal magnetisation Mz in the opposite (negative)
direction. This technique introduces another sequence timing, called inversion time TI.
It is the time between the 180° RF - inversion pulse and the actual RF excitation pulse.
During the TI periode, inverted spins of all tissues undergo longitudinal (T1) relaxation.
Therefore, TI can be used to adjust the degree of separation based on the tissues intrinsic
T1 times. This allows for example for fat or water suppression. The IR principle is used
as a preparation in several MR sequences, including fluid-attenuated inversion recovery
(FLAIR) or our utilised magnetisation-prepared rapid gradient-echo (MPRAGE).

Figure 4.4 shows a schematic representation of the pulses in an MPRAGE sequence.
Note, that after one inversion pulse a series of GEs is rapidly acquired to exploit the long
recovery time (≈ 2000 ms). Usually, small flip angles α and short echo times around 5 – 12°
and 2 – 4 ms are used, respectively.

http://xrayphysics.com/sequences.html
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from http://mriquestions.com/ir-prepped-sequences.html (accessed 30.05.2020);
permitted use as a “Courtesy of Allen D. Elster, MRIquestions.com”

Figure 4.4: Simplified schematic of pulses used in a MPRAGE sequence.

4.1.4 Summary

The big advantage of SE sequences is the insensitivity to field inhomogeneities and therefore
good image quality. This is tied to longer scanning times which, in combination with the
often utilised very high resolutions, account for the sensitivity to displacement artefacts.
In comparison, GE sequences are much faster due to the missing refocussing pulse and
therefore possible shorter repetition times. The short echo times and usually lower resolution
make them less sensitive to motions artefacts. However, shorter TEs might also reduce the
signal-to-noise ratio (SNR). General artefacts inherent to MRI are shown specifically for
our data and are therefore reported in Section 5.1.1.3.

4.2 Registration

In this section a brief overview of medical image registration and its elements, which need
to be defined depending on the specific application, is given. These elements include the
allowed transformations, used similarity metric as well as the optimiser to find the best
mapping.

It is common and often necessary in medical imaging to acquired images with different
modalities or at several time points. The latter is already needed in longitudinal research
studies and is especially crucial to assess atrophy of the hippocampal formation. However,
various setups yield somewhat different orientations of the imaged structures or a changed
structure itself, due to atrophy for example. Furthermore, already within the same MRI
examination or sequence, motion artefacts can cause displacements of corresponding images
that need to be corrected.

Registration of images involves the process of finding an optimal geometric transfor-
mation that maximises the correspondence between two images. Registration methods
of different complexity and use cases exist. A categorisation, based on increasing com-
plexity, could be feature based rigid registration (points or surfaces), intensity based rigid
registration and generally deformable (non-rigid) registration.

http://mriquestions.com/ir-prepped-sequences.html
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Geometric functions can for example be categorised by the properties they preserve. A
short outline is given in the next paragraph.

Transformations. Starting with rigid (also Euclidean) transformations rotations, trans-
lations and reflections are allowed. Thus, in 3D up to six degrees of freedom (DOF) can
be manipulated. Here, Euclidean distances, so distances and angles, are preserved between
every pair of points. Affine transformations, are the next group which include all rigid
transformations. Moreover, scaling and shear mapping is possible, which yields up to 12
DOF . This group still preserves parallelism. Affine transformations can be expressed as a
combination of linear transformations followed by a translation, which is why all linear
transformations are also affine. The class of non-linear transformations introduce elastics,
splines or similar. Which of these models is the most appropriate strongly depends on the
specific application and the registration task.

Interpolation. Computation of the transformation is practically done via inverse map-
ping. Here, the voxel intensities from the moving image are interpolated and put into the
corresponding coordinate space of the fixed image. The similarity metric is subsequently
calculated, also in the space of the fixed image.

The simplest interpolation method is nearest neighbour re-sampling. Instead of calcu-
lating an intensity value, merely the value of the closest voxel is taken, which means that
the original intensity range is preserved. This yields to a piecewise-constant interpolation
and is commonly applied to binary masks. However, in images it results in a “blocky”
appearance. A more sophisticated method is linear interpolation. While those results are
less “blocky”, the procedure is slower and also some high frequency image information is
lost. There is a wide variety of other interpolation methods. However, linear interpolation
is used in many tasks because of its compromise between accuracy and computational
efficiency.

Similarity Metric. In order to compare or estimate the correspondence of two images
some kind of measure is needed. Such measures are generally called similarity met-
rics/measures or sometimes registration basis. While two main approaches exist, namely
feature- and voxel-based similarity measures, only voxel/intensity -based will be elaborated
due to its application in this thesis.

Feature-based registration requires preceding feature extraction (landmarks or segmen-
tation). Thus, errors during the feature extraction stage will propagate through the whole
registration process. To avoid such errors, voxel intensities can be directly used to estimate
the degree of common information. The benefit of this method is that no features need
to be specifically extracted. The simplest intensity-based measure is based on the sum of
squared differences (SSD).
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SSSD = − 1
N

∑
xA εΩT

IA,IB

(IA(xA)− IT
B (xA)) , (4.6)

with N as the number of voxels in the overlapping domain ΩT
IA,IB

around the voxel xA.
While it can be shown that SSD is the optimum measure for images of the same modality
diverging only by Gaussian noise, its usage is restricted to mono-modal applications [83].

A less restrictive formulation, only based on the assumption of a linear relationship
between both images, can be done by the (normalised) cross correlation (CC). One
implementation of the CC is included in the Advanced Neuroimaging Tools (ANTs), which
is an open source software library build on an Insight ToolKit (ITK) framework. The
ANTs CC [6] is defined as:

CC(x) =
∑
i

((
I(xi)− µI(x)

) (
J(xi)− µJ(x)

))2

∑
i

(
I(xi)− µI(x)

)2∑
i

(
J(xi)− µJ(x)

)2 , (4.7)

where x... the centre of an NxN squared window, µ... the mean value and xi... the running
index of that window.

Moreover, information-theoretical measures exist which are based on information content
or entropy of the registered images. One such information theory concept, that got applied
to image registration [23, 67, 102], is the (normalised) mutual information (MI), which
gets maximal when both images are aligned. MI is considered the most suitable option for
multimodal registration, where images show very dissimilar contrast relationships.

Optimiser. Given a similarity metric, the registration algorithm tries to find a transfor-
mation that maximises the similarity between the source and target image. Optimisation of
voxel-based similarity measures usually require iterative schemes such as gradient descent
(GD), Gauss-Newton or quasi-Newton methods. Among the latter, conjugate direction
methods or Broyden-Fletcher–Goldfarb-Shannon (BFGS) methods are commonly used.

Global optimisation schemes, such as exhaustive search, are not feasible for image
registration. However, while local optimisation techniques are much more efficient, they
can also get stuck in local optima. To increase the capture range of local optimisation
schemes, multi-scale approaches can be used. Here, images are downsampled and registered.
The solution of the coarse scale is then used as the initialisation of the next scale of the
pyramid.
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4.3 Machine Learning

This section presents a brief overview of the applied learning-based methods utilised in
this thesis. Therefore, at first common terminology is given.

Artificial intelligence (AI) is an umbrella term used for all algorithms that allow
machines to mimic the intelligence of humans, including machine learning (ML) and deep
learning methods.

Machine learning is a subfield of artificial intelligence which applies statistical methods
to find patterns in previously extracted features, learns from them and applies the acquired
“skills” to new data while improving with experience. It can be described as the application
of algorithms to extract features by analysing the given data, which can then be used to
solve or make decisions about the given problem. In comparison to regular software, which
is explicitly implemented to perform specific tasks, in ML only a set of tools (algorithms) is
provided such that machines can learn how to solve a given problem without being explicitly
told how to do so. The latter, italic part corresponds to a paraphrased definition of Arther
Samuel from 1959 [61]. ML models can be divided into two main groups; discriminative
models and generative models.

Discriminative Models. Discriminative approaches model the decision boundary be-
tween different classes. Therefore, mappings from the input space X to the output space
Y are modelled via the conditional probability distribution P(y|x) of the labels y given
data x.

Generative Models. Generative models on the other hand directly model the distri-
bution of a class P(x|y). Thus, the joint probability distribution P(x, y). In the case of
unlabelled data, the data distribution P(x) is modelled. In case of a classification task, the
prediction is then determined by means of the Bayes theorem:

P(y|x) = P(x, y)
P(x) = P(x|y)P(y)

P(x) . (4.8)

Because of the implicit or explicit modelling of the data distribution, generative models
can also be used to generate new data based on this learned underlying distribution.

4.3.1 Deep Learning.

Deep learning is part of the field of ML and refers to a method used to model high-level
abstractions in data by the use of artificial neural networks (ANNs). In more detail, it
corresponds to a specific approach for setting up and training ANNs, where the input is
passed through a series of non-linear transformations to acquire the model output. Thus,
the network exhibits a certain depth and is therefore referred to as deep.
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4.3.2 Supervised Learning.

One of the most frequently used ML type is supervised learning. As the name implies,
supervised learning is the task of estimating a mapping function that maps a given input
to a certain output. Therefore, an algorithm learns from training data which can be seen
as a supervisor. Consequently, the training data consists not only of the input but also of
the corresponding target output. In this thesis only supervised learning approaches are
used.

4.3.3 Artificial Neural Networks

4.3.3.1 Artificial Neuron

The design of ANNs is inspired by the human neural system. Such interconnected networks
are constructed in form of so called layers. The building blocks for all such layers are
artificial neurons, which are composed of four parts: (i) the input, (ii) the weights and
bias, (iii) a weighted summation, and (iv) an activation, as visualised in Fig. 4.5.

w1

w2

wNxN

x2

x1

� y
̭

modified from Jayesh Bapu Ahire, 2018, https://medium.com/@jayeshbahire/the-artificial-
neural-networks-handbook-part-4-d2087d1f583e (accessed 09.06.2020)

Figure 4.5: Schematic visualisation of a perceptron.

Mathematically an artificial neuron can be described as follows. Let the input be the
set of N features X = {x1, . . . , xN} with the corresponding set of parameters θ = {b,W},
which consists of the bias term b and the set of N weights W = {w1, . . . , wN}. This yields
the intermediate output, the weighted sum, of the neuron:

z =
N∑
n=0

wnxn + b . (4.9)

To use a more convenient formulation, a constant input x0 = 1 can be added to the input
set such that the input and parameter set can be written as vectors with dimension N + 1,

https://medium.com/@jayeshbahire/the-artificial-neural-networks-handbook-part-4-d2087d1f583e
https://medium.com/@jayeshbahire/the-artificial-neural-networks-handbook-part-4-d2087d1f583e
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x = (x0, x1, . . . , xN ) and θ = (b,w), respectively. The weighted sum of one neuron can
then be calculated as the dot product between both vectors:

z = θ · x =
N∑
n=0

θn · xn . (4.10)

The weights can be interpreted in such a way, that positive weights activate the neuron
while negative weights cause inhibition. The bias can be seen as an activation function
dependent threshold of the sum that needs to be reached in order for the neuron to fire.

This weighted sum is then applied to an activation function φ to produce the neurons
final output.

ŷ = φ(z) = φ(θ · x) = φ(θ;x) (4.11)

In the simplest case the activation function is a unit step which maps the output to 0 or 1:

ŷ =

1, if θ · x ≥ 0
0, else.

(4.12)

A single artificial neuron with such an activation (Heaviside) is often referred to as
perceptron, which is only capable of learning linear separable patterns. Therefore, more
complex activation functions are needed for the model to perform also complex mappings.
Non-linear activations allow to model arbitrarily complex mappings between the input and
the output. Common functions, which have also been applied in this thesis, are shown
next in Section 4.3.3.2.

4.3.3.2 Activation Functions

Activation functions are essential to introduce non-linearity into the model, which enables
the network to learn complex, non-linear features of the data.

Linear activation functions lack in capability to model complex function, because
independent of how many hidden layers are used, the network will always model only a
linear function (from the input to the output), as a linear combination of linear functions
is again linear.

A commonly used non-linear activation function, which does not suffer from this
problem and is also computationally efficient is the rectified linear unit (ReLU) [72]. Based
on the weighted sum z of an artificial neuron, it is given by:

φ(z) = max(0, z) , (4.13)

and can be visualised as in Fig. 4.6a. However, based on this definition, ReLUs yield a zero
for non-positive values φ(z)|z≤ 0 = 0. This means that the neuron is deactivated and also
the gradient will be zero. Therefore, the weights of deactivated neurons will not get updated
during training. Ultimately, neurons which enter this zero-state will stop contributing to
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the model, which is called dying ReLU problem and again yields complications during
training.

A solution to this problematic behaviour was introduced by Maas et al. [66] with a
modified version called leaky rectified linear unit (leaky ReLU). Here, negative values are
mapped as a linear function with an additional parameter α, controlling the tiny slope
of the negative part, which ensures non-zero gradients over its entire domain. The leaky
ReLU activation is given by:

φ(z) =

α z, z < 0
z, z ≥ 0

, (4.14)

and visualised in Fig. 4.6b. However, depending on α very small gradients can still prevent
the network from learning. In general, small gradients result in little (no significant) change,
which drastically slows down training or even hinders the network from learning. This
effect is especially problematic with deep networks as the gradient information gets smaller
while being back propagated through the network to the input, which is known as vanishing
gradients.

Scaled exponential linear unit (SELU) is a relatively new activation function, which
tackles not only vanishing gradients, but also their counterpart exploding gradients [59].
This activation was introduced in the context of self-normalising neural networks (SNNs),
in which neuron activation automatically converges towards zero mean and unit variance.
This improves training of neural networks and additionally converges faster. While the
output behaviour for positive values is similar as in (leaky) ReLU , the negative part is
handled via a scaled exponential. SELU activation is given by:

φ(z) = λ

α(ez − 1), z < 0
z, z ≥ 0

, (4.15)

where λ ≈ 1.051 and α ≈ 1.673 are calculated values given in the original paper [59].

(a) ReLU activation (b) leaky ReLU activation (c) SELU activation

Figure 4.6: Visualisation of ReLU , leaky ReLU and SELU activation.
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4.3.3.3 Feedforward Neural Networks

A single layer is now composed by many of the previously described artificial neurons.
Together with an input and an output layer a simple ANN can be constructed. While the
first and last layer is always called input layer and output layer, respectively, all layers in
between are referred to as hidden layers (cmp. Fig. 4.7). Hidden layers include an arbitrary
amount of artificial neurons, also termed (hidden) units or nodes.

Feedforward neural networks (FNNs) are networks that do not form any cyclic connection
or loop between nodes. Information rather flows only in a forward direction from the input
nodes via the hidden nodes to the output nodes, as shown in Fig. 4.7.

This is contrary to the group of recurrent neural networks (RNNs) where cycles can be
formed. However, they are not used in this work.

4.3.3.4 Multi-layer FNN

To build more complex and powerful models, than achievable with a single hidden layer,
multi-layer networks can be utilised. In such networks several hidden layers are stacked
after one another, and are thus called deep neural networks. The network depth is herby
given by the number of layers, whereas the network width is defined by the amount of
artificial neurons per layer. If all nodes of a layer are connected with all nodes of the
successive layer, it is referred to as a fully connected layer.

x1

xN

y1̂

yN̂

Figure 4.7: Schematic structure of a feedforward neural network.

Multi-layer FNNs achieve universal approximation capabilities [49] by composing the
various mapping functions of each layer. A feedforward network defines a mapping of an
input x to an output ŷ via a parametric function f :

ŷ = f(x;θ) , (4.16)

and tries to find the best function approximation by learning the parameters θ.
For multi-layer networks, the composition of the functions is described by a directed

acyclic graph, which is associated with the feedforward network [40]. Given a FNN with
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depth D and let fd be the function of the current layer d, the composed function f(x;θ)
can recursively be given as:

f(x;θ) = fd(fd−1(x;θd−1);θd) , with 1 < d ≤ D. (4.17)

The parameters θ are iteratively optimised, based on the provided training data, with
the aim to approximate the optimal parameters θ? of the function, representing the ideal
solution y = f(x;θ?). This process is called training and is briefly described next.

4.3.4 Optimisation

The optimisation of neural networks is achieved by minimising a measure of difference (the
“error”) between the true data y and the predictions ŷ, which is given by the objective- or
loss function L. The minimisation is achieved by iteratively adjusting the model parameters
depending on their individual contribution to the error. Rumelhart et al. [84] proposed an
efficient, iterative gradient-based algorithm called error backpropagation or simply backprop
to optimise the parameters of a neural network. Computing the gradients of the objective
function with respect to the parameters allows to adjust θ such that the loss L reaches a
local minimum. At this point the training procedure stops as the network is said to have
converged.

The iterative optimisation process of neural networks can be structured into three steps.
During the forward-propagation step the network input is passed through each layer of the
model. Based on the input, the weights and the utilised activation function the artificial
neurons are activated or deactivated. The difference between the network output ŷ and
the ground truth y is computed via the defined objective function L. Next, the gradients
of L with respect to the model parameters θ are calculated in each iteration τ for each
sample xn and its corresponding target yn in the training sets X and Y , respectively:

gθτn = ∇θτL(f(xn;θτn), yn) , (4.18)

where f was defined in Eq. (4.17).
The gradient over all samples in X is then given as:

gθτ = 1
N

N∑
n=1

gθτn . (4.19)

In the last step, the gradient descent step, the parameter set is updated as following:

θτ+1 := θτ − η · gθτ , (4.20)

where η is a non-negative weighting parameter, called learning rate, which controls the
magnitude of the update and τ + 1 indicates the next iteration.

This formulation is called GD optimisation and is computationally very demanding as
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each update requires the gradient computation for all samples in the dataset. Stochastic
gradient descent (SGD) is a GD variation in which only a small random subset Xk ⊂ X,
called mini-batch, is used to calculate the gradients for one update step. While SGD has
shown improved convergence performance [1, 64], both methods rely on a proper value for
the learning rate η, which defines how much the parameters θ are modified per iteration.
However, finding a proper learning rate is not trivial. Therefore, adaptive learning rate
optimisers were implemented which do not rely globally fixed learning rate.

Adaptive moment estimation (ADAM) ([58]) is a popular adaptive optimiser, which
incorporates a momentum that accelerates learning into the update process. To estimate
the moments, ADAM uses exponentially moving averages on the computed gradients of the
current mini-batch. The first and second order moment µ and v respectively, is defined as:

µ := β1 · µ+ (1− β1) · gθ (4.21)
v := β2 · v + (1− β2) · gθ2 , (4.22)

where β1, β2 ∈ [0, 1) are exponential decay rates for the moment estimates. The bias-
corrected estimate of µ and v is given by:

µ̂ = µ

1− β1
(4.23)

v̂ = v

1− β2
. (4.24)

The resulting update rule for the parameters is then given as:

θτ+1 = θτ − η√
v̂ + ε

· µ̂ , (4.25)

where ε is used to prevent divisions by zero. [58] suggested the following default values
η = 0.001, β1 = 0.9, β2 = 0.999 and ε = 10−8.

4.3.4.1 Loss Functions

Common measures to asses the difference between the prediction ŷ and the corresponding
ground truth y are the L1 and L2 loss.

The mean absolute error (MAE) is represented by L1 and is calculated by the mean
absolute difference between ŷ and y for all samples in a given set of size N :

L1 = MAE = 1
N

N∑
n=1
|ŷn − yn| . (4.26)
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The mean squared error (MSE) is represented by L1 and is calculated by the mean
absolute difference between ŷ and y for all samples of given set N :

L2 = MSE = 1
N

N∑
n=1

(ŷn − yn)2 . (4.27)

The cross-entropy is a measure from information theory and measures the difference
between two probability distributions. It is commonly used for classification and is for a
given sample y and its prediction ŷ calculated as:

H = − 1
N

N∑
n=1

yn log(ŷn) . (4.28)

4.3.5 Convolutional Neural Networks

In fully connected FNNs, the input is a single vector containing all values and every node
of a layer is connected to each neuron of its successive layer. This results in a vast amount
of parameters that need to be calculated and stored, which in turn would also require an
infeasibly amount of data to reduce overfitting. While the achievable performance is better
the data requirements and computational effort limit the usability of these networks.

Convolutional neural networks (CNNs) [111] are specifically designed networks that
assume a specific type of input, namely with a spatial or temporal structure such as images.
This allows to encode image related properties into the architecture and make the forward
function more efficient, which tremendously reduces the parameter count. As the name
implies, CNNs are networks that have at least one layer utilising a convolution operation
instead of the general matrix multiplication [40].

CNNs are built-up by blocks of convolution and pooling operations. This block typically
consists of three stages. First, the convolution layer or also a set of such layers. The
resulting set of linear functions is then applied to non-linear activation functions. Together,
these two stages are sometimes referred to as the detector stage. This stage is usually
followed by the third stage, a pooling layer.

4.3.5.1 Convolution Operation

A convolution is a special kind of linear operation. The discrete convolution for a 3D input
image I can be defined as:

S(i, j, k) = (I ∗W )(i, j, k) =
∑
m

∑
n

∑
o

I(m,n, o)W (i−m, j − n, k − o) , (4.29)

where W ... represents the filter or kernel and the output is often referred to as feature
map.

The motivation behind the utilisation of convolutional layers is based on three ideas.
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Sparse Interactions. In CNNs the learned filters are smaller than the input itself, which
introduces sparse interactions/connectivity. This yields to connections between spatially
neighbouring pixels, where the receptive field is defined via the size of the convolution
kernel. Moreover, fewer parameters need to be used, reducing the memory consumption as
well as improving the statistical efficiency [40].

Parameter Sharing. In fully connected (or dense) layers each weight is used exactly
once when calculating the output. In comparison, convolutional layers learn only one set
of parameters, which is, depending on the border handling, applied to every pixel in the
input image. Therefore, as the value of the weight applied to one input unit is tied to the
value of a weight applied elsewhere it can be seen as tied weights [40]. While this does not
affect the forward propagation runtime, it further reduces the memory consumption of the
model.

Equivariant Representations. Based on the particular form of parameter sharing,
convolution layers have a property called equivariance to translation. Equivariance of a
function means that the output changes in the same way as the input changes. For (MR)
images, convolutions create 3D maps where certain features appear in the input. If the
(anatomical) structure causing these features is translated within the input image, its
representation in the output will be translate in the same way.

4.3.5.2 Pooling Operation

Pooling layers transform its input into a summary statistic while decreasing the image
size. Pooling also enforce invariance to small translations, further reduce the amount of
parameters and increase the receptive field for the successive layers [40]. Commonly used
pooling functions are max-pooling or average-pooling. Here, only either the maximum or
average value from a certain neighbourhood (defined by the kernel size) of the input is
preserved in the corresponding, smaller output image.

4.3.6 Generative Adversarial Networks

Generative adversarial networks (GANs) represent a neural network based generative
modelling approach, which were first introduced by Goodfellow et al. [41]. Such networks
are composed of two parametric models, called the generator G and the discriminator or
critic D respectively. Both models are usually implemented as deep neural networks and
trained alternately in a competitive manner. This can be interpreted in a way such that
G generates new images which look as real as possible to fool the discriminator. In more
detail, G estimates the distribution of the training data and is trained to maximise the
probability of D being wrong. D on the other hand only evaluates whether the current
input sample is more likely to be from the training data instead of being created by G.
The discriminator network is therefore trained to maximise the probability for a correct
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labelling independent of the input source. This can be formulated as a minimax two-player
game (see Eq. (4.30)) between the generator and the discriminator.

More formally, let Pr be the real data distribution and let Pg be the distribution of
the synthetic data, generated via G based on the input noise z with distribution Pz. A
generated, synthetic sample ŷ is then given by ŷ = G(z), with ŷ ∼ Pg and z ∼ Pz. G is
defined as a differentiable function represented by a multi-layer network with corresponding
parameters θg. D is similarly defined as a multi-layer network with parameters θd, D(y; θd),
and a single scalar output. D(y) represents the probability that y originates from the real
data.

The objective function V (D,G) of the mentioned minimax game is now given by:

min
G

max
D

V (D,G) = Ey∼Pr [logD(y)] + Ez∼Pz [log(1−D(G(z)))] . (4.30)

The optimisation of this cost function is realised by alternately updating the parameters
of the generator θg and the discriminator θd respectively. In practice, an unbalanced update
scheme is suggested where the discriminator is updated ncritic times for each generator
update, which yields D to be near the optimal solution D* given that G changes slowly.
Assuming an optimal generator (Pg = Pr), the discriminator is unable to distinguish between
both distributions which yields D(y) = 1/2 [41]. Formally, the optimal discriminator D for
a given generator G is given as:

D*
G(y) = Pr(y)

Pr(y) + Pg(y) (4.31)

Goodfellow et al. [41] showed that given such an optimal discriminator, training of G is
equivalent to minimising the Jensen-Shannon divergence between Pg and Pr.

The standard implementation of GANs ([41]) turned out to be hard to train because of
instability problems. The problem of mode collapse can be caused if the updates of D and
G are not well synchronised and G overpowers D. In such a case, G collapses too many
values from different z to the same data value and loses the ability to model Pr. Another
issue are vanishing gradients related to the Jensen-Shannon divergence, which produces
more reliable but also smaller gradients as D improves [5].

4.3.6.1 Wasserstein GAN

To address stability related issues of the standard GAN implementation, Arjovsky et al.
[5] evaluated a variety of measures to assess the distance or divergence between the model-
and data distribution ρ(Pg,Pr) as well as their convergence influence. Based on their
findings, they have proposed to use the Wasserstein distance for training GANs. The
Wasserstein-1 or Earth Mover (EM) distance measures how much energy is needed (“mass”
needs to be transported) to transform one distribution (e.g. Pr) into another distribution
(e.g. Pg). The EM distance correlates to the “cost” of the ideal transport plan. Formally,
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this measure is defined as:

W (Pr,Pg) = inf
γ∈Π(Pr,Pg)

E(y,ŷ)∼γ [‖y − ŷ‖] , (4.32)

where Π(Pr,Pg) is the set of all joint distributions γ(y, ŷ) whose marginals are Pr and Pg,
respectively.

As it is highly intractable to determine all joint distributions to find the infimum, the
Kantorovich-Rubinstein duality can be used to reformulate Eq. (4.32) as follows:

W (Pr,Pg) = sup
‖f‖L≤1

Ey∼Pr [f(y)]− Eŷ∼Pg [f(ŷ)] , (4.33)

where the supremum is taken over all 1-Lipschitz functions with a mapping of f : X −→ R.
Moreover, the 1-Lipschitz constraint can be replaced by a K-Lipschitz assumption

yielding an approximation of the Wasserstein distance up to a constant (K ·W (Pr,Pg)).
Therefore, if a parametrised set of functions {fw}w∈W which are all K-Lipschitz for a
constant K is used, Eq. (4.33) can be reformulated [5]. If the parametrised family of
functions is replaced by our discriminator model D with its parameters θd the following
problem can be considered:

max
D

Ey∼Pr [D(y)]− Eŷ∼Pg [D(ŷ)] . (4.34)

To return to the framework of GANs, where ŷ is generated by the generator G based
on the input noise z sampled from the distribution Pz, Eq. (4.34) can be formulated as:

min
G

max
D

Ey∼Pr [D(y)]− Ez∼Pz [D(G(z))] , (4.35)

which yields the objective function of the Wasserstein GAN (WGAN).
As the parameters θd are assumed to be within the compact space W , backpropagation

estimation yields:
Ez∼Pz [∆D(G(z))] , (4.36)

which results in a training scheme based on the standard algorithm proposed for GANs
([41]). To ensure the required parameter constraint such that all functions D will be
K-Lipschitz, [5] suggested weight clipping of the discriminator weights to a fixed box of
W = [−0.01, 0.01] after each update step.

While for training the standard implementation of GANs ([41]) the balance between
updating D and G was delicate, the problem of mode collapse was not observed in WGAN
[5]. This is because in WGANs it is now possible to train the D till optimality, where it
still provides a loss for the generator which can be trained. However, Arjovsky et al. [5]
also report that training D in WGANs becomes unstable with momentum based optimisers
such as Adam (58). This, however, can be circumvented if RMSProp ([94]) is used instead.
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4.3.6.2 Wasserstein GAN with Gradient Penalty

While Arjovsky et al. [5] stated that using weight clipping in order to ensure the K-
Lipschitz requirement is prone to failure as it can easily lead to vanishing gradients, they
also encouraged others for further investigation.

Gulrajani et al. [43] demonstrated problems related to weight clipping, namely vanishing-
or exploding gradients, because of interactions between the weight clipping and the cost
function. Moreover, they observed that the capacity of D is reduced because of weight
clipping, which limits its ability to learn complex functions. Therefore, they proposed an
improved objective function, which penalises the gradients of the discriminator D to ensure
the Lipschitz constraint and is therefore called Wasserstein GAN with gradient penalty
(WGAN-GP).

Their modified cost function is defined as follows:

W (Pr,Pg) = Ey∼Pr [D(y)]− Ez∼Pz [D(G(z))]︸ ︷︷ ︸
WGAN loss

+λ · Eŷ∼Pŷ
[
(‖∇ŷD(ŷ)‖2 − 1)2

]
︸ ︷︷ ︸

gradient penalty

, (4.37)

where λ describes the penalty coefficient and Pŷ is implicitly defined by sampling uniformly
along straight lines between point pairs sampled from Pr and Pg. Gulrajani et al. [43] found
in their work that a penalty coefficient of λ = 10 works well in a variety of architectures
and datasets.

Looking at the term of the gradient penalty (Eq. (4.37)) it can be seen that the penalty
encourages the norm of the discriminator gradient to approach one, which was empirically
found to produce slightly better results [43].

4.3.6.3 Conditioned GAN

The improved training procedure of WGAN-GP yields a powerful generative model. How-
ever, common to all three versions of the explained GANs samples are generated based on
random noise z.

Mirza and Osindero [68] adapted the principle of unconditioned GANs by conditionig
the model on additional information to guide the data generation process. Therefore, the
random input noise z ∼ Pz can be replaced with a prior x with distribution Px, which can
be any meaningful information such as data from different modalities or class labels.

Isola et al. [53] evaluated the capability of conditional GAN (cGAN) in the application
of image-to-image translation tasks. Depending on the implementation, either both, the
generator G and the discriminator D, or only G can be subjected to the input prior x
sampled from a distribution Px. Limiting the prior x ∼ Px only to the generator, the
formulation of the objective in WGAN-GPs (Eq. (4.37)) can be modified to:

L(G,D) = Ey∼Pr [D(y)]− Ex∼Px [D(G(x))] + λ · Eŷ∼Pŷ
[
(‖∇ŷD(ŷ)‖2 − 1)2

]
. (4.38)
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4.3.6.4 Incorporation of Additional Loss

Other work ([76]) reported benefits if the adversarial loss is combined with a pixel-wise
loss such as L2. Isola et al. [53] also utilised this approach by incorporating L1distances
into the objective function. As a consequence, now the task of the generator is not only to
fool the discriminator but also to generate samples to be near the ground truth in a sense
of L1. The job of the discriminator remains unchanged. As L1distances were preferred to
encourage less blurring, combining the L1loss into the generator yields the final objective
utilised in this thesis:

G* = min
G

max
D
L(G,D) + γ · L1 , (4.39)

with LL1 = Ex,y [‖y −G(x, y)‖1] and a weighting parameter γ for the pixel-wise loss.
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The content of this chapter aims to explain the whole workflow of this thesis. It starts
with the creation of the dataset, which is comprised of three steps. The image acquisition,
followed by the manual delineation of the hippocampus as well as preprocessing to cope
with possible motion artefacts. This generated ground truth set is subsequently processed
with the FreeSurfer pipeline to acquire the reference segmentation currently used in clinical
research. Next, the data augmentation / preparation and utilised network architectures
are described. Finally, the evaluation process along with the used metrics is explained.

5.1 Dataset

This section gives an insight into the generation of the dataset. At first the magnetic
resonance imaging (MRI) hardware and sequences utilised for the acquisition of magnetic
resonance (MR) images are described. Following, the actual acquisition process is explained
and both of our chosen image sequences are motivated. A description of the acquired data
is given and a qualitative example of a recorded T1- and T2-weighted image pair and their
relation to each other is shown. Moreover, differences between both image modalities,
unique challenges and limitations of the imaged data are reported.

The next part provides insights into the manual annotation process. The used protocol
to label the hippocampus (HC) as well as its specific application to our acquired data is
explained in detail. An outline of the used software and faced problems is given at the end

43
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of this part.

5.1.1 MRI Acquisition

5.1.1.1 Scanning Setup

Hardware. The acquisition of the MR data has been done at the Medical University
of Graz (MUG). A Siemens Prisma 3T MR scanner was used throughout the whole data
acquisition process. For our measurements, a 20 channel head coil was used for signal
reception.

Scanning Procedure. Before the actual MRI examination, participants had to complete
a short questionnaire about medical conditions that would contradict the exposure to
high magnetic fields. Exclusion criteria are any form of metal implants, claustrophobia
or electrical devices such as pacemakers. Admitted subjects were placed into the head
coil in a “head-first-supine” manner. Moreover, headphones and foam cushioning were
used to lower noise and provide additional head support, respectively reduce the space for
possible but unwanted movement of the head. At first, so called “localiser” measurements
were performed, which are usually 3 – 5 low resolution slices in three planes to cover the
head. This is done to get an overview of the imaged anatomy and to plan the subsequent
acquisition of the study sequences, such that the desired region of interest is covered. To
achieve approximately the same orientation of all brain scans, which is essential for intra-
and inter-subject comparison in an MRI study, anatomical landmarks are used to align
the three standard planes with the current subject. The sagittal plane is hereby crucial
and oriented along to the longitudinal fissure (vertical cursor in Fig. 5.1a), which separates
the brain into both hemispheres (Fig. 5.1).

(a) axial view (b) sagittal view (c) sagittal view

Figure 5.1: Visualisation of the used landmarks to plan the MR examination.

After the initial adjustment, two types of images were acquired for our study: (i) a
structural T1-weighted scan of the whole brain, and (ii) a detailed T2-weighted scan of the
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HC .

5.1.1.2 Sequences

T1-weighted Scan. The first scan produces a high-resolution T1-weighted image of
the whole head, which is a standard scan in clinical research. It was acquired with a
three-dimensional (3D) magnetisation-prepared rapid gradient-echo (MPRAGE) sequence,
which is a spoiled gradient echo (GE) sequence for Rapid Acquired Gradient Echo (RAGE)
images. Spoiling refers to a method used for fast GE sequences and is the disruption
of transverse coherence (transverse magnetisation) at the end of each repetition cycle.
3D acquisition means, that the whole volume is excited at once instead of slice by slice.
MPRAGE sequences can produce very high-resolution T1-weighted images, providing very
good anatomical detail of the brain. In our case these scans have an isotropic resolution of
1×1×1 mm3 with a field of view (FoV) of 224×256×176 and take 6.5 minutes to complete.
The purpose of this T1 scan is to get a fast, structural image of the whole brain that can
be further used for a variety of analyses. For example, the FreeSurfer pipeline to perform
regional analysis, volumetry or similar. In our case the T1 scans were also processed with
FreeSurfer v6.0 to get the baseline segmentations of the measured hippocampi. We also use
this scan to localise the HC for the subsequent T2-weighted scan. After the whole T1 scan
is acquired, both hippocampi were located on the axial (Fig. 5.2a) and sagittal (Fig. 5.2b)
views and the graphical windows of the scanner software, indicating the coverage / region
of interest (ROI) of the T2 sequence, were adjusted to (ideally) start with the first slice
of each HC . Moreover, the planes of the principle directions were rotated to match the
orientation of the HC .

T2-weighted Scan. The second scan provides an ultra-high-resolution T2-weighted
image slab, which covers only a small region of the brain, including the HC . While only
covering a small portion of 4 cm along the sagittal plane (slice direction) (Fig. 5.3c), the
whole oblique coronal plane (cross section) (Fig. 5.3b) is acquired. The reason for this
cropped FoV (352×512×40) is that a full brain T2-weighted scan, at such a high resolution
is not feasible. However, for the purpose of hippocampal segmentation it is sufficient to
visualise only the HC and its surrounding with such detail and contrast. The T2-weighted
scan has a very high in-plane resolution of 0.47 × 0.47 mm2 and also a slice thickness
of 1 mm. This anisotropic resolution results from the trade-off to achieve the very high
in-plane resolution, while covering as much of the hippocampal formation as possible.
Moreover, this is motivated by the inner structure of the HC , which resembles a Swiss
roll. Major structural variations occur within its cross-section, whereas changes along its
main axis happen less rapidly. This special structure is also the reason for an oblique
coronal orientation of the T2 scan, with the slice direction approximately aligned with the
long axes of both hippocampi. The latter implies, that oblique coronal plane across the
HC is perpendicular to these major axes. Here, oblique stands for a slanting or inclined
orientation compared to the principal direction (see Fig. 5.8 or Fig. 5.9).
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(a) axial view (b) sagittal view

(c) standard anatomical planes 2 (d) coronal view

Figure 5.2: Example visualisation of a T1-weighted MR scan for all views. 2 adapted from
http://completesoccertraining.blogspot.com/2012/09/terminology-understandance.html (accessed
25.05.2020)

http://completesoccertraining.blogspot.com/2012/09/terminology-understandance.html
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For the acquisition of this scan a two-dimensional (2D) turbo spin echo (TSE) sequence
was utilised which takes around 8.5 minutes. An “interleaved” slice order was used, which
means that at first the odd slices and then the missing even slices are acquired and
correspondingly merged during the image reconstruction. The slice thickness of 1 mm
together with a distance factor of 0 % yields a resulting slice distance of 1 mm. The
spin echo (SE) is needed to achieve a T2-contrast of the image. Moreover, the 2D-based
acquisition allows, for the limited FoV , only capturing the region around the hippocampal
formation.

(a) axial view

(b) oblique coronal view (c) sagittal view

Figure 5.3: Example visualisation of a T2-weighted MR scan for all views.
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5.1.1.3 Challenges and Artefacts

During the described acquisition process several challenges, partly unique to this dataset,
can occur. The first step, the placement of the patient and especially the additional
cushioning, is already crucial. If the head is forced into an unnatural or overstretched
position, it is almost impossible to keep still during the roughly 20 minutes of total scan
time. A steady position of the head throughout the whole scanning procedure is crucial,
especially during each of both sequences. Motion of the head between the acquisition of
the T1 and T2 scan results in a misalignment of these scans with respect to each other.
Any form of movement during a measurement itself yields ghosting effects or blurring and
a worse image quality of the resulting MR scan. Without motion, the background should
be black and the brain visualised in a clear manner with high signal-to-noise ratio (SNR)
(cmp. Fig. 5.2).

In contrast, Fig. 5.4 exemplarily shows the mentioned motion artefacts based on an
initial (Fig. 5.4a) and repeated T1-weighted scan of the same subject. Both scans are
contaminated with motion induced artefacts, whereas the second scan is slightly better
implying less movement during the scan.

(a) severe motion (b) considerable motion

Figure 5.4: Visualisation of motion induced artefacts like ghosting, blurring and bad SNR. (a)
shows an initial T1 scan with distinctive artefacts due to severe motion. (b) shows the same slice,
with the same contrast settings of a repeated scan, with less but still considerable motion artefacts.

Motion during the 3D MPRAGE acquisition results in a worse image quality (SNR) of
the whole scan, compared to the achievable quality without any motion artefacts. For the
2D TSE sequence, used for the detailed visualisation of the HC , motion additionally results
in alternating jumping between odd- and even slices. This jiggling is due to the interleaved
acquisition of the TSE sequence, which is used to avoid cross-talk of neighbouring slices.
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Thus, motion during such a “sequential” acquisition of odd and even blocks, causes an
intra-volume misalignment of the T2-slices as well as lower image quality. An essential
factor for the susceptibility to motion artefacts is the scan time because the scanned
subjects have to stay still for an extended time, which gets harder the longer it takes.
Moreover, our ultra-high in-plane resolution is prone to show even the slightest kind of
motion. Already displacements by only 0.5 mm, which occur even due to physiological
motion (like breathing, blood and cerebrospinal fluid (CSF) pulsation, ...), result in a shift
by one pixel!

Figure 5.5 visualises motion induced misalignment between the odd and even block of
an acquired T2 slab. The shown case exhibits severe motion, most likely caused by nodding
of the head. As indicated with the schematic visualisation of the slices (bottom row), is
the even block (shown in red) not parallel to the odd block anymore. The misorientation
results in an “overlap” at the superior part of the centre slice (Fig. 5.5b) and its previous
(Fig. 5.5a) slice. This can also be seen when the upper half of the coronal slice in Fig. 5.5a
and Fig. 5.5b is compared. If the even slice (Fig. 5.5b) is compared to its subsequent
odd slice (Fig. 5.5c) it becomes visible that here the inferior part of the slices is similar.
This can now be seen when comparing the lower half of the coronal slice in Fig. 5.5b and
Fig. 5.5c.
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(c) subsequent odd slice

Figure 5.5: Misalignment between odd and even block of acquired T2 slab. The upper row shows
three successive oblique coronal slices of an example T2 MR scan. The bottom row, schematically
displays the relative orientation of these slices to each other in a sagittal view.
Dashed even rectangles (- - -) indicate the parallel, desired, configuration of both blocks. Filled
rectangles highlight the current slice, which is shown above the schematic. Green refers to slices of
the odd image block, whereas the even (centre) slice in between two odd slices is shown in red.
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Another error source connected to the acquisition process itself, is the adjustment of
the T2-weighted image slab to match the beginning (first slice) of both hippocampi. As
this is done based on the T1 scan it is very hard and often not possible to exactly start
the T2 scan with the first slice of each HC . However, this only results in a not complete
coverage of the HC head but does not affect the image quality itself. Moreover, a coverage
of the whole HC , including the complete hippocampal tail (HT), was only possible in a few
cases due to the limited amount of 40 slices. This is shown with one example in Fig. 5.6
below. In this figure, the green mask represents the manual ground truth labelling of the
left HC while the red annotation approximately shows the missing part of the HT , which
is only covered with the whole head 3D T1 scan.

(a) unlabelled missing HT (b) annotated missing HT

Figure 5.6: Visualisation of incomplete coverage of the HT . Bright slices show the T2-weighted
scan, which is overlaid onto the aligned T1 scan. The green mask is the manual ground truth of
the left HC. The left image (a) shows that, due to the missing slices of the HT , the complete tail
cannot be manually labelled. The missing part is additionally roughly outlined in red (b).

Figure 5.6 also visualises another effect of the limited FoV of our TSE sequence.
The first odd and even slice (slice 1 & 2) are much brighter, so tissues show higher
intensities, compared to the other slices. This is due to effects of magnetisation transfer
(MT) and inference from excitations of neighbouring slices. The width of the excited
slice depends among other things on the bandwidth and the slice profile of the applied
pulses. Ideally, pulses would have a rectangular (top hat) slice profile such that only
spins of the current slice are affected by applied radio frequency (RF) excitations. To
achieve a rectangular shape in the frequency domain, the amplitude of the applied
pulse in the time domain needs to resemble a sinc function (sinc = sin(x)

x ). However,
such a sinc function would have an infinite duration in the time domain. Therefore,
truncation of the pulses is needed which in turn causes non-rectangular slice profiles.
The resulting partial excitation of neighbouring slices is called cross talk, and reduces
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the SNR due to saturation effects (intensities get darker). Cross talk is especially
problematic in SE sequences because slice profiles for 180° RF - pulses are worse.
Therefore, the very first slices of the odd and even acquisition block of the T2-weighted im-
ages show much brighter intensities, with a negative gradient of the effect along the first slice.

Additionally to the artefacts caused by the acquisition process, inherent errors of the
MRI methodology respectively sequence (GE or SE) related artefacts are present. This
includes flow artefacts caused by the blood and CSF , partial volume effects or susceptibility
artefacts. The reason for partial volume artefacts is a mixture of different tissues within
the same voxel. Therefore, if the voxel size and especially its slice thickness is too big
for the measured organ, the resulting image slice will show an average of different signal
intensities. This causes an inaccurate visualisation of the underlying tissue properties.

Susceptibility artefacts also occur in GE and TSE sequences, however, they are much
more pronounced in GE acquisitions. SE sequences are almost insensitive to static field
inhomogeneities due to the additional RF pulse. Magnetic susceptibility defines to which
extend any material becomes temporarily magnetised when subjected to a strong magnetic
field. Of all tissues, bone shows the lowest susceptibility values whereas iron-containing
molecules, like blood, have the highest. Other tissues mainly express susceptibilities in a
mid-range. Air is to a large part composed of oxygen, which is paramagnetic, and provides
no MR signal due to the missing protons. However, air locally influences the magnetic
properties of its vicinity, yielding to susceptibility artefacts. Different susceptibility values
at tissue boundaries (e.g. bone-tissue or bone-air) cause slight changes in the local magnetic
field. These changes, create micro-gradients across affected voxels which speed up the
spin dephasing, similar to the T2∗ effect. The phase change caused by susceptibility, at a
specific location, is given by:

∆ϕ(~x) = γ ·Gi(~x) ·∆r · TE , (5.1)

where Gi is the internal magnetic field gradient and ∆r denotes the voxel size. Equation (5.1)
shows that a higher resolution reduces susceptibility artefacts, which also applies to our
T2-weighted scans. Figure 5.7 shows an example of susceptibility artefacts at the tissue
boundaries to the cranial base.

Another prominent artefact in MRI is caused by fat and is based on the chemical shift.
The term “chemical shift” refers to the dependence of the resonance frequency of a proton
(spin) on its molecular surrounding. Compared to water molecules (H2O), fat and their
triglyceride chains have much more hydrogen atoms (H) which are each surrounded by
many other atoms. The neighbouring electron clouds of these other atoms locally reduce
the external magnetic field (B0), which yields a reduced Larmor frequency of spins in fat
molecules compared to those of water. This difference is know as the chemical shift and
is 3.5 parts per million (ppm) between fat and water [69]. As this shift depends on the
strength of B0, the resulting frequency difference also depends on the field strength of the
used scanner. At 3T scanners it is about 440 Hz.
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This chemical shift induces now two problems. For one, chemical shift artefacts which
are mapping errors (pixel shifts) of fat containing pixels due to the incorrectly lower
frequency. This artefact is present in GE and SE sequences and occurs only along the
frequency-encoding direction. The overall pixel shift, additionally depends inversely on the
receiver bandwidth of the scanning sequence – a lower bandwidth causes a greater pixel
shift. However, increasing the bandwidth would decrease the SNR. The second fat - water
shift related artefact is called phase cancellation artefact, among other names. It is limited
to only GE sequences, but can easily avoided as it occurs only at specific echo times.

(a) original T1 coronal slice (b) T1 with T2 overlay

Figure 5.7: Visualisation of susceptibility artefacts; (a) shows a coronal slice of the original T1,
while (b) additionally has the resliced T2 overlaid (border indicated as yellow frame). Red arrows
indicate susceptibility artefacts at the cortex boundary.

5.1.2 MRI Data

Based on the previously described acquisition procedure (Section 5.1.1) a total of 33
healthy volunteers have been scanned, resulting in 33 corresponding pairs of T1- and
T2-weighted MR images. An example of these images is shown in Fig. 5.2 and Fig. 5.3 for
the T1 and T2 scans, respectively. Below, a side by side comparison of an original T1-
(Fig. 5.8 left column) and T2-weighted (Fig. 5.8 right column) image pair is shown.

The spatial relation of the T1- and T2 scans, as explained in Section 5.1.1.2, is shown
in Fig. 5.9. The T2-weighted image slab, overlaid onto the T1-weighted image, is shown
with bright intensity to visualise the special oblique coronal matching the long axis of the
hippocampus (shown as green mask).
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(a) axial view of T1 (b) axial view of T2

(c) sagittal view of T1 (d) sagittal view of T2

(e) coronal view of T1 (f) coronal view of T2

Figure 5.8: Comparison of an example T1- (left) and T2-weighted (right) MR scan. Images show
roughly the same slice, as an comparison of the exact same slice would required interpolation.
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(a) Axial view (b) Sagittal view

Figure 5.9: Spatial relation of the acquired T1- and T2-weighted MR scans. The manual ground
truth annotation of the left HC is shown in green.

To show and describe the differences between the T1- and T2-weighted scans a cross-
sectional slice at roughly the same position is shown below in Fig. 5.10 and Fig. 5.11. The
former shows the cross-sections of the original scans in their corresponding directions of
the acquisition. This means that the T1-weighted scan is shown in the standard coronal
plane, whereas for the T2-weighted scan its oblique coronal slice is depicted. Due to this
divergent orientation of both cross-sections also slightly different anatomical structures can
be seen. Figure 5.11 shows approximately the same cross-section through the brain but for
this the T1 scan had to be resliced and thus interpolated. The manual ground truth mask
of the left HC is just shown as a reference where the HC is located and how it looks like.
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(a) coronal T1 slice (b) oblique coronal T2 slice

Figure 5.10: Cross-section through both original scans at roughly the same position. Anatomical
variations are due to the different orientation of the coronal (T1) and oblique coronal (T2) planes.

(a) interpolated coronal T1 slice (b) oblique coronal T2 slice

Figure 5.11: Cross-section through both scans at roughly the same position. T1 scan is rotated
and interpolated to align with the T2 oblique coronal direction.
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5.1.3 Manual Labelling

Crucial for an accurate, repetitive and comparable segmentation of the HC and the
assessment of its volume are precise but comprehensible instructions on how to manually
label the corresponding structures. Berron et al. [8] have developed such a protocol for
manual segmentation of medial temporal lobe (MTL) subregions in 7T MRI , including novel
anatomical findings about the hippocampal subfields [30, 31]. The authors provide detailed
instructions together with slice-by-slice segmentation examples for understandable and
alleviated learning of the annotation procedure, which have also been tested for usability
in a segmentation workshop. Compared to our T2 scans, their protocol is based on similar
T2-weighted TSE images with slightly higher in-plane resolution (0.44× 0.44 mm2) but
also bigger slice distances of 1.1 mm. Furthermore, they acquired 55 slices, which ensures a
complete coverage of the HC . Their images also show somewhat improved SNR, because
of the higher field strength of 7T.

Because of the good correspondence with our acquired T2-weighted images, the manual
ground truth annotation of our data is based on this protocol [8]. Generation of the manual
ground truth is limited to our 2D T2-weighted scans, as in [8], because of the described
advantages if utilising this image modality.

5.1.3.1 Elaboration of T1 vs. T2 Contrast Differences

Figure 5.12 shows a close up view of the area around the HC on both, the native T1-
(1 mm3) and T2-weighted (0.47× 0.47× 1 mm3) scans. Despite the mentioned artefacts
(Section 5.1.1.3) both modalities show distinct differences in the image contrast. This is
due to the different acquisition sequences (GE vs SE), which rely on dissimilar methods
to create the measured echoes (cmp. Section 4.1). To be more precise, T1-weighted
(Fig. 5.12a) images show primarily a complementary contrast compared to its T2 (Fig. 5.12b)
counterpart. In general both images show dark pixels for air, bone and fast-flowing blood.
Bright intensities are expressed, among others, by fat and fatty bone marrow, whereas
such tissues are brighter in T2-weighted scans. A major drawback for the task of HC
segmentation in T1 images is, that CSF cannot really be distinguished from the background;
it shows very low signal and is basically noise. Therefore, it is very hard to delineate the
border of the HC at such CSF -tissue boundaries. In comparison, CSF yields the highest
signals in T2-weighted images and therefore yields bright pixels. This allows for an accurate
labelling of the hippocampal border in such regions and also CSF inclusions within the
HC itself. Moreover, the transitions from white matter (WM) and grey matter (GM) are
more pronounced in T2, which is due to slightly better contrast and the higher resolution.
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(a) T1 close up

(b) T2 close up

Figure 5.12: Close up comparison (T1 vs T2) of the HC and surrounding structures. Slices are
not identical as both modalities are shown in their native orientation; for T1: coronal slice at 1 mm3

isotropic resolution while for T2: an oblique coronal slice at 0.47× 0.47× 1 mm3. Green shows the
manual ground truth label of the left HC.

5.1.3.2 Annotation Protocol

The protocol by Berron et al. [8] was especially designed to annotate various subfields of the
MTL, including cortical subregions as well as the HC and its subfields. The hippocampal
formation consists of three structures (Fig. 5.13) (i) the dentate gyrus (DG), (ii) the cornu
ammonis (CA) areas, and (iii) the subiculum (Sub).

The CA areas can be subdivided into four subfields, namely CA1 – CA4, which actually
are the “true” HC also termed hippocampus proper. A more common division of the
hippocampal formation with respect to segmentation is the grouping into hippocampal
head (HH), hippocampal body (HB) and HT . Based on [8], the HH and HB are composed
of the DG, the CA fields and the Sub. It should be noted that the groupings into HH , HB,
HT or between different subfields are usually not separated by a distinct border but rather
are continuous transitions from one structure into the other. This is why specific rules to
consistently asses such ambiguous regions are needed and why delineating, especially the
hippocampal subfields, is an exhaustive and tedious task.
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In this thesis the terms HC and hippocampal formation are used interchangeably.
Moreover, we have limited our manual annotations to three labels; the HH , the combination
of both the HB and the HT as well as CSF . CSF is separately labelled as it is not part
of the hippocampal tissue and should therefore be excluded. Hippocampal subfields, or
bordering cortical regions are not explicitly labelled as this would need an additional
extensive amount of time and are also not important for the aim of this thesis.

The application of the segmentation protocol to our data, including problematic areas,
is briefly explained in the next section.

(a) annotated schematic4

DG

CA1-4

Sub

E
rC

(b) cropped section of a T2-weighted slice
2 vanat.cvm.umn.edu/ (accessed 25.05.2020)

Figure 5.13: Detailed visualisation of the hippocampal formation setup. (a) shows a schematic
coronal view of the MTL including the hippocampal formation and its surrounding structures. (b)
shows a similar view of a real MR image with annotations of the most important parts.

5.1.3.3 Application of the Segmentation Protocol

Common practice for labelling the hippocampal formation is to exclude certain structures
that can occur around or within the HC . Namely, alveus, fimbria, blood vessels and CSF .
Alveus and fimbria are structures that cover the HC , which is generally enclosed by WM .
All of them, as well as blood vessels, appear hypointense (dark) in T2-weighted images and
are excluded from anatomical masks. In comparison, CSF and cysts shows hyperintense
(bright) intensities.

To follow the instructions ([8]) and the subsequent elaboration, it should be noted that
the segmentation is performed on the oblique coronal slices in an anterior - posterior (front
to back / HH to HT ) direction.

http://vanat.cvm.umn.edu/brain18/pages/hippocampusSketch.html
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Detailed instructions how to label the HH , HB and HT can be found elsewhere (Berron
et al. [8], section 2.5.2.2). However, problematic regions that needed special attention are
pointed out below.

Superior HH Outline. At the beginning of the HH , before the Sub reaches the medial
surface, the medial and superior (upper) boundary of the Sub is determined by the
entorhinal cortex (ErC). However, this border is not always clearly visible.

The superior boundary in general remains a problematic region throughout the whole
segmentation of the HH . Additionally to the superior outline of the Sub, starting around
the mid-slices of the HH , the upper contour of the hippocampal subfields (CA1 and CA3)
also do not exhibit distinct borders. Moreover, this supero-medial area of the Sub and CA
regions often exhibits signal cancellation due to neighbouring blood vessels.

Inferior Subiculum Transition. Moreover, around the first third of the HH , the Sub
splits into an superior and inferior (lower) part. Also the inferior boundary of the Sub is
often not clearly visible and suffers from signal loss. While the Sub inferiorly transitions
into the ErC within the HH , the perirhinal cortex (PrC) becomes the inferior structure
around the beginning of the HB. Independent of the inferior structure, these merging areas
are hard to label due to signal loss that occurs also in the 7T reference images, but is more
pronounced in our 3T data. However, the Sub should maintain roughly the same thickness,
which can be exploited to estimate a better annotation.

Hippocampal Tail. Within the HT it is also sometimes hard to determine the exact
infero-medial border. Moreover, the supero-lateral borders can be a bit unclear and
especially the end (last slice) of the tail is problematic. However, the latter region is not
often present due to the short coverage of the HT in our data.

General Remarks. For the whole annotation process it is recommended to attempt
smooth curvature even if hypointense edges are discontinuous. This should not only be tried
to achieved in-plane but also for smooth transitions between slices. Therefore, switching
back and forth through the oblique coronal slices is beneficial and can also help to determine
missing borders of the current slice based on the outlines of the previous and successive
slices.

5.1.3.4 Annotation Process

The ground truth annotations were performed by the author of this thesis and a second
master students, namely Alina Dima. Both of us have been studying the instructions
by [8] in order to get familiar with the required anatomical background and landmarks
necessary to conduct the segmentation. Moreover, prior the annotation of the data in
our dataset, a view cases have been labelled independently and together to get to know
with the segmentation software and to identify possible problematic areas. This initial
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learning phase was done under supervision of Prof. Stefan Ropele, who has many years
of experience in the field of neuroimaging via MRI . Final labelling, including corrections,
took between 5 – 10 hours per HC mask.

Annotations were performed with DispImage, an Interactive Data Language (IDL)
based in-house segmentation tool made by Prof. Ropele. DispImage allows for slice wise
labelling of structures, by drawing a closed contour around the ROIs. The “value” of the
current label can be individually set, which was used to create different labels for the HH ,
the HB and HT as well as CSF . Moreover, annotations can be done at even a sub-pixel
resolution, which uncouples the drawing of the contour from the pixel size. For sub-pixel
segmentations, images are internally upsampled prior the actual labelling. The contour
is parametrised as a closed polygon, defined by the points of the polygon chain. This set
of 2D points, together with the information of the current slice, is saved as a *.roi file to
enable subsequent editing. Moreover, a proper mask, based on the original resolution of
the underlying image can be exported.

The way how our masks were generated can be briefly described as stated below
and was executed with a Python script. An original image pixel is considered to
be part of the mask if more than 50 % of the 16 times upsampled image, so at least
eight sub-pixels of the current pixel, are within the contour. This approach ensures
a certain granularity of the final mask, while also requiring a minimal occupancy of the pixel.

Based on this procedure, 29 hippocampi have been segmented from 24 different subjects,
whereas from 5 of them both hippocampi were labelled. One mask (subject), however, was
eventually removed from the dataset due to severe motion and really bad SNR. Therefore,
our manual ground truth annotations comprise a total of 28 annotated hippocampi; 14 for
each hemisphere.

5.2 Registration

Registration of images is the process of accomplishing spatial correspondence between two
images. The reasons for registration of our dataset are twofold. Patient movement in
between both MR scans, namely the T1-weighted MPRAGE and the T2-weighted TSE ,
causes sligthly diverse orientations of both scans. However, as already described, yields
motion during our TSE acquisition a misalignment of the odd and even slice slabs. Both of
these misalignments were reduced with voxel-based registration steps, which are described
below.

5.2.1 T2 Alignment

Patient motion during the acquisition of our interleaved based T2-weighted scans can cause
misalignment of the odd and even slices within the T2 volume. A possible result of such
a misalignment, are anti-parallel odd and even slice stacks, which was already shown in
Fig. 5.5. In such a case (Fig. 5.5), there exist small parts of the actual T2 volume that are
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not pictured at all, whereas for some other regions the sub-volume is imaged twice. For
the latter, tissue information is contained twice; in the current and in a neighbouring slice.
However, tissue information of the sub-volumes that are never covered by any imaged odd
or even slice of the T2 slab is simply lost and cannot be recovered without additional MR
scans until even each sub-volume was covered. This effect is schematically visualised in
Fig. 5.14.
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Figure 5.14: Motion induced intra-T2-volume information loss. Dashed even slices (- - -) should
indicate the correct configuration the even block. Transparent light red filling of the dashed
slices, indicates the parts of the corresponding even slice that is not images at all (missing tissue
information). Filled green refers to slices of the odd image block, where the dashed (- - -) line
should indicate the outline of the part that is images twice.

The aforementioned information loss needs to be considered in the intra-volume align-
ment of the T2 scan. To cope with anti-parallel slices, out-of-plane rotation (around
the x-axis) is necessary, which requires interpolation between slices. However, due to
our anisotropic resolution, with a big slice thickness of 1 mm compared to our in-plane
resolution of 0.47×0.47 mm2, and the possible missing information this interpolation would
annihilate the details of our ultra-high in-plane resolution.

If the patient’s motion, however, preserves the parallelism of the odd and even slice
slabs only in-plane transformations need to be considered. Thus, interpolation only occurs
within the high resolution of the oblique coronal T2 slices. Therefore, we have limited
our T2 slab registration to cope only with in-plane misalignment. This approach is also
supported by the inner structure of the hippocampal formation, which exhibits changes
mainly within the cross-section and not between slices.



62 Chapter 5. Methods

In this first step of our registration, the T2 volumes were aligned by 2D (in-plane) rigid
transformations. The registration scheme is performed in such a way that, starting with
the second slice, each slice is individually aligned to its previous slice. This yields the
intra-T2-volume aligned images, so the T2 images with aligned odd and even slices.

5.2.2 T2 to T1 Registration

In the next step, the previously aligned T2 scans (denoted as T2’) are then registered
to their T1-weighted counterpart. This registration is now an inter-modality (T2 to T1)
registration problem, which is harder to optimise because of the different image intensity
for the same anatomical structure. As there are now two intra-volume aligned 3D images,
there is no need for slice-wise (2D) registration. Therefore, 3D rigid transformations are
used, which means that only one transformation for the whole T2’ volume needs to be
calculated. However, transformations are still limited to in-plane translations and rotations.

The resulting “pre-”registered T2 images (denoted as T2”) together with the T1 scans
are now used in an auxiliary image synthesis task. A stacked convolutional neural network
(CNN) was trained to mimic the T2 contrast of the corresponding T1 input images. For the
optimisation a L1loss between the network output and pre-registered T2 images (T2”) was
used. Details about the architecture and its training procedure will be given at a later stage
in this thesis. Note, that the intention of this auxiliary task was not to achieve a perfect
representation of the T2 contrast including all anatomical structures, but rather increase
the similarity of the two images that are registered to each other in our second registration
step. Based on the assumption that this image synthesis task does not introduce any
spatial transformations, the synthesised T2 image (T2s) should be well aligned with the
original T1 image. Therefore, the registration is repeated between T2” and T2s, which is
now an easier to optimise intra-modality registration.

Eventually, these three single transformations are combined and applied as a single
transformation to the slices of the original T2 image, which yields the final registered
T2-weighted image.

General Remarks All three image registration steps used in-plane rigid transforma-
tions. ANTs cross-correlation (Eq. (4.7)) was used as the similarity measure together
with a conjugate gradient descent approach to optimise the transformations. This local
optimisation scheme is applied in combination with a multi-scale approach to increase the
capture range and diminish the influence of local optima.

5.2.3 Ground Truth Label Registration

The combined transformations, from the image registration steps, are also used to
transform the manual ground truth labels, which have been created in the original T2
image space (Section 5.1.3), to the corresponding T1 space.
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Together, all these registrations yield the final dataset including the resampled T1
images, the registered T2 images as well as the transformed ground truth labels.

For all experiments, except of the procession with the FreeSurfer pipeline, the original
T1 images were resampled and cropped to match the resolution (0.47× 0.47× 1 mm3) and
size of the T2-weighted images.

5.3 FreeSurfer Pipeline

To establish a baseline for the automated segmentation of our T1-weighted images, the same
23 subjects that are included in our dataset were processed with the FreeSurfer pipeline.
Specifically freesurfer-Linux-centos6 x86 64-stable-pub-v6.0.0 on a Linux Ubuntu 18.04.3
LTS machine. FreeSurfer ’s “hippocampal-subfields-T1” protocol was used, which calculates
the labels for the hippocampal subfields based on FreeSurfer ’s high-resolution “ex-vivo
atlas”. To use the hippocampal-subfields-T1 protocol, each subject has to be pre-processed
with the standard FreeSurfer pipeline, called recon-all.

The recon-all script was executed with the “-all” flag, which performs cortical and sub-
cortical parcellation of the brain. The “hippocampal-subfields-T1” flag can be additionally
set already with the initial procession or be separately executed afterwards. In total, the
segmentation of one subject took around 9 hours, which can be reduced to 4.5 h by using
the “parallel” flag.

A thorough description of all performed steps and settings of FreeSurfer ’s recon-all
pipeline can be found on their web-pages 5 6. Detailed information about the hippocampal-
subfields protocol can be found in Iglesias et al. [52] or online 7.

5.3.1 FreeSurfer Label Post-Processing

As common for atlas-based segmentation methods, the input images are registered into the
space of the reference template (the atlas). Segmentation results from the recon-all pipeline
are provided in the standard FreeSurfer (FS) space (FSvoxelSpace), which corresponds to
FreeSurfer ’s T1 image space. FreeSurfer T1 images have dimensions of 256× 256× 256
pixels at an isotropic resolution of 1 × 1 × 1 mm3. The segmentation result is given as
an image in which each pixel intensity represents a unique label. A MATLAB script was
implemented to first extract the necessary labels of the hippocampal formation, based on
FreeSurfer ’s lookup table (LUT)8, and to subsequently create the binary masks.

In order to compare the FS segmentations to our manual ground truth labels, they also
need to be registered to the corresponding space. Therefore, the inverse transformation of
the initial transformation, which was internally applied by FreeSurfer to bring the original
T1 images into the template space, was utilised. In detail, a rigid transformation with

5https://surfer.nmr.mgh.harvard.edu/fswiki/recon-all
6https://surfer.nmr.mgh.harvard.edu/fswiki/ReconAllTableStableV6.0
7https://surfer.nmr.mgh.harvard.edu/fswiki/HippocampalSubfields
8https://surfer.nmr.mgh.harvard.edu/fswiki/FsTutorial/AnatomicalROI/FreeSurferColorLUT

https://surfer.nmr.mgh.harvard.edu/fswiki/recon-all
https://surfer.nmr.mgh.harvard.edu/fswiki/ReconAllTableStableV6.0
https://surfer.nmr.mgh.harvard.edu/fswiki/HippocampalSubfields
https://surfer.nmr.mgh.harvard.edu/fswiki/FsTutorial/AnatomicalROI/FreeSurferColorLUT
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mutual information (MI) as similarity metric and trilinear interpolation was applied. The
same transformations were used for the corresponding segmentation masks.

There is one additional post-processing step required before the FS masks can be
compared with our manual ground truth masks. FreeSurfer uses the 3D whole head
T1-weighted images for segmentation. Therefore, also the whole hippocampus is labelled.
However, our T2-weighted images only cover a certain area of the brain which sometimes
does not include the complete HC . Thus, equivalently to our T1-weighted images, the
FS segmentations also needed to be cropped and resampled to match the FoV of the
T2-weighted scans.

5.4 Network-Based Setup

In this section insights into the training setup of our neural networks are given. The
preparation of the input data and the data augmentation is described. Moreover, all
utilised network architectures for the segmentation and the image-to-image translation
task are briefly reported.

5.4.1 Data Preparation

The generation of our dataset was already described in Section 5.1. However, for training a
neural network, several preparation steps are required or rather are performed to improve
the training and thus the results. All preparations were calculated and applied on the fly
to prevent excessive data storage. Moreover, transformations were computed separately,
combined and then applied at once such that only one interpolation step was needed.
Applied transformations are listed below.

Normalisation. MR images often have some outliers or show different intensities for
similar tissues. One such example was already shown in Fig. 5.6. To address this problem,
a slice-wise intensity normalisation was performed. Therefore, intensity values were shifted
by the mean and divided by the standard deviation of the current slice.

Flipping. In order to ensure similarity of all our input patches, we decided to perform
all learning-based operations on equally oriented hippocampi. Specifically, hippocampi
from the right hemisphere were flipped to be oriented in the same way as the hippocampi
from the left hemisphere. This ensures that the network is trained on hippocampi from
both hemispheres, while increasing the training data (shared information) compared to
a separate segmentation of either the left- or right side. This is also supported by the
inherent, intra-subject anatomical variations between the left and right HC . Therefore,
even if both hippocampi from the same subject are used and flipped to the same side, it
results in two different data samples with slightly different shape, orientation and coverage.
This in turn helps the network to generalise.
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Data Augmentation. Extensive data augmentation was used to enhance the variability
and quantity of the training data, such that the model can again better generalise and
is less prone to overfit. Augmentation is essential to induce invariance and robustness,
when using small datasets [80]. In detail, the dataset images (all in original T2 dimensions)
underwent translations in a range of [−10, 10] millimetre, rotations by [−20°, 20°] and
scaling by a factor of [0.8, 1.2]. Moreover, elastic deformations were applied to better
simulate anatomical variations by distorting points of a coarse 6× 6 grid by values between
[−15, 15] millimetre and interpolating with third order B-splines.

All transformation values were randomly drawn from a uniform distribution within
the given intervals, again limited to the coronal plane and applied to the whole 3D image
slab. Images were resampled with linear interpolation, whereas masks were resampled via
nearest neighbour interpolation.

Specific to our segmentation experiments an additional transformation have been
applied. Namely, intensity variations were introduced via affine augmentation of the
form f(x) = ax + b where a represents a uniform random scaling by ± 15 % and b is a
random offset in a range of ± 0.15.

Cropping. After data augmentation, the images could already be used for training.
However, as we only segment the hippocampal formation, just one side at a time, it is
not necessary to use the whole images of the dataset. On the contrary, it would only
dramatically increase computational costs, especially as we use volumetric data with such
a high-resolution. Therefore, the dataset images and labels were cropped to a certain area
around the HC . Thus, our segmentation task can be seen as a two step approach, consisting
of a localisation task and the actual labelling. For our segmentation, this localisation
task is also not that critical as only the rough location of the hippocampal formation is
required to crop the input to a patch which includes the HC . As this thesis focusses on
the segmentation task no special approach was implemented to perform the localisation
task. However, possible methods could be another dedicated network, or template-based
cropping approaches which kind of define the centre of mass of the hippocampus.

Since we are only able to train and validate our methods with annotated data, there
was currently no need for a separate localisation method as the centre of mass could be
simply calculated based on the manual ground truth annotations. Therefore, the true
centre of mass was used to crop the input images and masks to an in-plane patch size of
96× 64, while all 40 slices were kept.

Label Simplification and Smoothing. The last data preparation step was only applied
to the manual ground truth masks. In detail, our three labels (HH , HB and HT , CSF)
were unified into only one label representing the whole hippocampal formation. To alleviate
annotation inconsistencies and provide smoother training labels, the binary label image was
smoothed with a Gaussian filter (σ = 0.8) before resampling. As this results in non-integer
values, which is not usable within our optimisation framework, a thresholding of 0.5 is
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applied to the resampled label image to generate again a binary label image.

5.4.2 Segmentation Architecture

A network architecture describes the applied operations and their hierarchical setup of a
neural network. Our segmentation network is based the popular U-net [80] architecture.
The U-net architecture consists of a contracting / downsampling path and an expanding /
upsampling path. In our case, the U-net has an overall downsampling factor of 16, which
was achieved by four contracting blocks. In each contracting block, a full 3D (3× 3× 3),
reflect padded convolution with 64 filter channels, followed by a scaled exponential linear
unit (SELU) [59] activation and an average pooling operation with stride 2 was used.
The expanding blocks are essentially the reversal of the contracting blocks. Therefore,
a deconvolution (up-convolution) layer with stride 2 to upsample the images as well as
fully 3D padded convolutions were applied. All up and downsampling operations were
performed only in-plane such that the lower resolution, along the slice thickness, is not
affected from the downsampling. In comparison to the original U-net [80], features from the
contracting path were combined with the upsampling path via addition. Moreover, instead
of learning the upsampling via deconvolution layers linear upsampling was used. The final
amount of filter channels for this task was two, as we only have two labels, hippocampus
and background.

This single architecture (Fig. 5.15) was used to pre-train the segmentation for the
combined task including the image synthesis followed by the HC segmentation. For
experiments, in which only the segmentation task was executed, this architecture was
stacked to have two consecutive U-nets (Fig. 5.16) with intermediate supervision.

Figure 5.15: Schematic single CNN architecture.
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Figure 5.16: Schematic stacked CNN architecture.

5.4.3 Image Translation Architecture

This section refers to the architectures that have been used in our image-to-image translation
task to synthesise T2-weighted images based on their T1-weighted counterparts. As
described in the theory chapter about generative adversarial networks (GANs), this process
represents a minimax two-player game between the generator G and the discriminator D.

5.4.3.1 Generator Network

The generator network was used to create synthetic T2 images and utilised the same
architecture as used in the segmentation task. Moreover, for the generator only the single
architecture setup was used for two reasons. However, the final amount of channels is now
one, as we have grey-scale images. First, memory limitations of the utilised hardware and
second, for better comparability between all experiments. The image synthesis task was
only used as a first step, prior the successive segmentation task. Therefore, to limit the
utilised architectures throughout all experiments to two stacked networks only the single
setup was used for each subtask, respectively.

5.4.3.2 Discriminator Network

The discriminator architecture differs from the other U-net based networks used in this
thesis. Fundamentally, it resembles an encoder network that maps the image input to
feature representations in order to estimate whether the input is real or synthetic. Our
discriminator architecture consists of five levels with an overall downsampling factor of
16, which was achieved by four contracting blocks. In each block a 3× 3× 3 convolution
with zero-padding, 64 filter channels and leaky rectified linear unit (ReLU) activation was
applied. For downsampling, an average pooling layer was used.





6
Experimental Setup

In this section all related information to the experiments is given. At first the applied
cross-validation (CV) setup is reported. Following, a description of the training process is
given and at last, all conducted experiments are elaborated.

6.1 Cross-Validation Setup

In order to evaluate the results of deep learning-based methods and analyse their generali-
sation qualities, different data samples need to be used for training and evaluating of a
neural network. Such splitting of the dataset ensures that the model is validated/tested
only with previously unseen data and thus is not biased by this particular data sample.
To prevent such a biased evaluation, we have divided our 28 labelled data samples into a
training set including 18 samples and a validation set containing the remaining samples. As
a countermeasure to the small dataset, a 3-fold CV was performed. This ensured that each
data sample was used for training and inference at least once, while still not being used for
both tasks at the same time. These CV sets were also balanced as good as possible with
respect to the annotator and the labelled hemisphere. Based on initial experiments, we
decided to use the sample of one particular subject only during inference. The reason for
this decision was, that this scan is missing the first slices of the HH and therefore covers
not only the whole HT but also two successive slices. Thus, approximately the last five
slices look quite different from the remaining samples.

6.2 Training Procedure

This section presents insights into the actual training process of the neural networks.
Utilised loss functions, optimisers and their parameters are reported. For all experiments
Python v3.6 with the deep learning framework TensorFlow v1.13.1 were used. Training of
the models was performed with a Nvidia Titan V with 12GB of VRAM and took 50 h for
the image synthesis task and about 10 h for the segmentation per CV set.
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6.2.1 Segmentation Task

The utilised architectures for the segmentation task have been described in Section 5.4.2. To
train both architectures, either the single or the stacked setup, prepared data (Section 5.4.1)
was fed with a batch size of two. A cross-entropy loss in combination with a default
parametrised adaptive moment estimation (ADAM) ([58]) optimiser was utilised to train
the segmentation task (Section 4.3.4). The initial learning rate was set to 10−5 with an
exponential decay every 2500 iterations over the course of 60 000 iterations, which was the
total training amount.

6.2.2 Image Synthesis Task

Based on the architecture setup of a GAN , two different networks, namely the generator
G and the discriminator D, need to be trained for the image synthesis task. We have
implemented our GAN as a Wasserstein GAN with gradient penalty (WGAN-GP) (Sec-
tion 4.3.6.2). Both sub-networks (G and D) were trained simultaneously, however, the
discriminator was updated ncritic = 5 times per generator iteration. The generator was
trained for 80 000 iterations. Moreover, for both networks the same learning rate was
applied, starting at 10−5 with an exponential decay every 2500 iterations.

Generator. For the generator, also the single setup of the described segmentation
architecture was used (Section 5.4.3). Moreover, we utilised a conditioned generator,
which means that the synthetic images are not generated based on noise, but rather on
the corresponding T1-weighted images. Therefore, training of G was performed with T1
input images with a batch size of two and an ADAM optimiser. In comparison to the
segmentation tasks, a combination of a L1and an adversarial loss (see Section 4.3.6.3) was
applied for this task.

Discriminator. The discriminator architecture was introduced in Section 5.4.3. To
optimise this network, again an ADAM optimiser was used, however, with different
parameters. The settings were chosen similar to [43] with β1 = 0.5, β1 = 0.9, ε = 10−8.

6.3 Experiments

This chapter provides an outline of all conducted experiments including a brief summary
of their inputs, utilised architecture and training method. Moreover, a motivation behind
each experiment is given.

6.3.1 FreeSurfer Experiments

FreeSurfer (FS) was used to get an initial automated segmentation of our subjects,
which can be utilised as a baseline result of the automated segmentation methods. The
detailed setup was described in Section 5.3. The post-processed FS masks (Section 5.3.1),



6.3. Experiments 71

henceforth only referred to as FS-labels or FS-masks, were used in the following experiments.

In order to evaluate how good learning-based methods are able to reproduce the
FreeSurfer segmentations, we have trained the stacked segmentation network (Section 5.4.2)
together with the same T1-weighted images that were utilised with FreeSurfer. The
processed FS masks were then used as training labels for this experiment. This setup is
visualised in Fig. 6.1.

Figure 6.1: Training setup of network-based T1 segmentation with FS target labels.

6.3.2 Learning-based Segmentation Experiments

After evaluating the reproducibility of the FreeSurfer segmentations and their impact when
used as target labels during training, the outcome of our manual annotations was tested.
To analyse the performance of the networks in combination with our processed manual
ground truth annotations, henceforth called ground truth (GT) labels, simple network
based segmentation experiments were performed. Therefore, also the stacked segmentation
architecture (Section 5.4.2) was used. However, instead of the FS-labels, our GT-labels
were now applied. Moreover, to evaluate the impact of the different image modalities (T1-
vs. T2-weighted images), the same network setup was trained three times with different
inputs. To ensure comparability, always the same settings and only different input images
(i) T1-weighted images, (ii) T2-weighted images, and (iii) T1- and T2-weighted images
were used.

The setup for the T1-weighted and the T2-weighted input images is shown in Fig. 6.2.
Note that either the upper (T1) or the lower (T2) configuration is trained at a time. For
the experiment utilising T1- and T2-weighted input data, images of both modalities were
simply concatenated along the channel dimension and fed as one input.
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Figure 6.2: Training setup of network-based T1- or T2 segmentation with manual GT target
labels.

6.3.3 T2-enhanced Training of Deep NNs

After performing the simple segmentation experiments, showing an outline of the learning-
based segmentation results, setups incorporating the T2 image information into the training
process were implemented. Therefore, two different approaches were tested (i) segmentation
of T1 input with a model pre-trained on T2 input, and (ii) segmentation of synthetic T2
images with a model pre-trained on T2 input.

Pre-Trained T2 Segmentation Models
To get the required pre-trained segmentation models, the single (Fig. 5.15) and the stacked
architecture (Fig. 5.16) setup were trained as described in Section 6.2.1 with T2-weighted
input images and our GT-labels.

The model of the stacked architecture was already trained for the simple T2 segmentation
experiment described in Section 6.3.2. For the current experiment, this model has been
loaded and tuned with T1 input images. The tuning was performed for another 40 000
iterations with an initial learning rate of 10−5 and a step-wise exponential decay.

Synthetic T2 Image Segmentation
In this experiment the GAN architecture is utilised, as explained in Section 5.4.3. The
training process was executed as described in Section 6.2.2.

After pre-training the image synthesis task and the T2-based segmentation, each one
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with the single architecture setup, both of these models were loaded for the actual synthetic
T2 image segmentation experiment. From the pre-trained GAN setup, only the generator
was loaded as there is no tuning involving the discriminator or an adversarial loss anymore.
The trained generator G is merely loaded to create the synthetic T2 images on the fly for
the successive segmentation network. This is necessary, as for our data augmentation the
full sized images are required and not only the cropped patches (96× 64× 40) including
the HC , which are, however, the output of the augmentation process and thus also reflect
the output dimensions of the networks.

The generator model of the image synthesis is loaded first, while the pre-trained T2
segmentation is stacked after G of the synthesis task (see Fig. 6.3). As mentioned in the
training process (Section 6.2.2), G is fed with the T1-weighted image patches of the dataset.
Thus, the first network (pre-trained G) generates synthetic T2 images, based on their
corresponding T1-weighted input images, which are then used as inputs for the subsequent
segmentation network. The initial T1 input was concatenated with all feature channels
of the image generation task and fed into the second network, the pre-trained T2-based
segmentation architecture.

This setup was then also trained for another 40 000 iterations with an initial learning
rate of 10−5 with a step-wise exponential decay. Similar to the normal segmentation
experiments, a cross-entropy loss on the segmentation output together with an ADAM
optimiser was used for training. The parameters of both networks, the generator and the
segmentation architecture, were updated during this optimisation process.
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Figure 6.3: Training setup for the synthetic T2 image segmentation.
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6.4 Evaluation

In this last section, metrics applied to evaluate the segmentation results of the conducted
experiments are described. To evaluate the segmentations, two main measures were used;
Dice coefficients and surface distances. Independently of these measures, segmentation
masks were also visually spot-checked.

To assess the image quality of the synthetically created images mimicking T2 contrast,
we use peak signal-to-noise ratio (PSNR). However, as this does not completely represent
the perceived image quality, we mainly use visual inspection.

Quantitative and qualitative results will be presented in the next chapter 7.

6.4.1 Dice Similarity Coefficient

The Dice similarity coefficient (DSC), also known as F1 score, is an accuracy measure
calculated by means of the precision and the sensitivity. For binary classification it can be
calculated as:

DSC = 2 · precision · sensitivity
precision+ sensitivity

= 2TP
2TP + FP + FN

, (6.1)

with precision = TP/(TP+FP ), sensitivity = TP/(TP+FN), TP ... True Positive, FP ... False
Positive and FN ... False Negative.

DSCs were calculated between the automated segmentation results and our manual
ground truth annotations.

6.4.2 Surface Distances

Additionally to Dice coefficients, surface distances were calculated of which mainly the
Hausdorff distance was used for comparison of our results. Given two subsets of a metric
space, the Hausdorff distance (dH) describes the maximum distance of a point set to
the nearest point in the other set and thus, is also referred to as dmax. More formally,
the bidirectional Hausdorff distance between the point sets X = {x1, x2, . . . , xn} and
Y = {y1, y2, . . . , yn} can generally be defined as:

dH(X,Y ) = dmax(X,Y ) = max
{

max
x∈X

min
y∈Y

d(x, y), max
y∈Y

min
x∈X

d(x, y)
}
, (6.2)

where d(x, y)... can be any appropriate distance metric [82].
In our case the two subsets correspond to the voxels of the segmentation boundary of

either the automated segmentation masks or our manual ground truth annotations. As
dmax only represents the maximal error between both masks, this measure alone is not
representative for the overall quality of the predictions. Therefore, additionally the mean-
and median distances between both sets were calculated.

Based on our in-plane resolution of 0.47× 0.47 mm2, a surface distance below 0.47 mm,
corresponds to an error by up to one pixel. A median distance of dmedian = 0mm indicates
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by Rocchini, CC BY 3.0, accessed 08.06.2020
https://en.wikipedia.org/wiki/Hausdorff distance#/media/File:Hausdorff distance sample.svg

Figure 6.4: Exemplaric visualisation of the one-sided Hausdorff.

that more than 50 % of all border pixels are correct. The combination of all three surface
measures, together with the DSC allows for a holistic evaluation of the segmentation
predictions.

6.4.3 Peak Signal-to-Noise Ratio

To assess the image quality of the generated synthetic T2 images, the PSNR was used.
The PSNR is defined as the ratio of the maximal possible signal power to the power of its
corrupting noise. The noise is commonly described by means of the mean squared error
(MSE), which is given for a 2D image as:

MSE = 1
MN

M−1∑
i=0

N−1∑
i=0

[y(i, j)−G(x)(i, j)]2 , (6.3)

where M and N ... are the amount of pixels per dimension, y... is the real T2-weighted
image and G(x)... is the synthetic T2 image created by the generator of the GAN .

6.4.4 Presentation of Results

Following, the way how the acquired results of this thesis are presented is briefly described.

Quantitative Results are presented by means of DSC in percent and surface distances
in millimetres, as described in Section 6.4. In general all scores are presented in form
of mean ± standard deviation over the results of all three cross-validation sets. Note, a
standard deviation of ± 0.00 indicates that the value of the corresponding metric is exactly
the same for all evaluated samples of all CV sets.

https://en.wikipedia.org/wiki/Hausdorff_distance#/media/File:Hausdorff_distance_sample.svg
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Qualitative results are shown to visualise the resulting segmentation masks of the
utilised methods. For these visualisations, the following colour encoding is used:

• green ... true positive (TP) (union),

• yellow ... false positive (FP),

• blue ... false negative (FN),

where TP + FP = automated segmentation mask and TP + FN = manual ground truth
mask.
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This section presents and discusses quantitative and qualitative results of all our
experiments. This includes the segmentations acquired with FreeSurfer and our deep con-
volutional neural networks (DCNNs) as well as an example of the auxiliary T2 synthesis task.

An overview of the conducted experiments and their setup as well as the evaluation
procedure was given in Section 6.3, Section 6.2 and Section 6.4, respectively.

7.1 FreeSurfer Related Segmentation

In this section results related to FreeSurfer (FS) are presented. First of all this includes
the baseline segmentations performed with the software package FreeSurfer as has been
described in Section 5.3. Moreover, all DCNN -based experiments in which the post-
processed FS masks haven been utilised (Section 6.3.1).

7.1.1 FreeSurfer Segmentation Pipeline

In order to get initial segmentations of the hippocampi in our dataset, accordingly to
clinical research, our data has been processed with FreeSurfer ’s brain segmentation pipeline.
These masks also served as the baseline results of our segmentations.

Table 7.1 shows by the low Dice similarity coefficient (DSC) and high surface distances
that the hippocampal segmentation with FreeSurfer yields only moderate agreement

77



78 Chapter 7. Results and Discussion

Evaluation

Task Input Labels Dice Score Surface Distances in mm
Image training eval. in % dH dmean dmedian

FreeSurfer T1 - GT 78.06± 3.99 4.66± 1.28 0.54± 0.10 0.47± 0.00

Table 7.1: Results of the FreeSurfer (atlas-based) segmentation.

with the manual ground truth annotations. The average of the median distance with
dmedian = 0.47± 0.00 shows that for all evaluated samples, in all cross-validation (CV)-sets,
more than 50 % of the border pixels of the FS labels are off by one pixel (0.47× 0.47 mm2).
The mean distance between the FS and GT set is with dmean = 0.54 mm a bit more than
one pixel.

The mean pixel shift becomes more obvious when looking at the masks itself as shown
in Fig. 7.1 and Fig. 7.2. These figures show the T1- and T2 images with qualitative results
of an example hippocampus, segmented with the FreeSurfer pipeline (2. left column).
Moreover, the comparison against the manual ground truth (GT) mask is given in form
of an overlay visualised as true positive (TP), false positive (FP) and false negative (FN)
pixels (2. right column).

Figure 7.1 shows coronal slices of the hippocampal head (HH) (beginning and centre),
hippocampal body (HB) and hippocampal tail (HT). As one can see, the FS mask (orange)
is in some areas too small, resulting in FN pixels (yellow), while in some regions too big,
which yields FP pixels (blue). In general the hippocampus (HC) border and the transition
of the subiculum (Sub) into the entorhinal cortex (ErC) are problematic, while the central
part and general shape of the hippocampal formation is also followed quite well. Moreover,
results show that it is not trivial to distinguish the HC from surrounding cerebrospinal
fluid (CSF) on T1-weighted images, which were also used for the FreeSurfer pipeline. In
contrary, CSF is easily identifiable on the T2-weighted images.

Figure 7.2 depicts the same subject and the same masks, however, in the sagittal view.
This visualises the continuity of the masks along the slice direction. Moreover, it shows
that the FS labels more slices of the HH and especially the HT compared to the manual
ground truth.
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(a) HH beginning; left to right: T1, T2 + FS mask, T2 + (FS vs GT) labels; T2

(b) HH centre; left to right: T1, T2 + FS mask, T2 + (FS vs GT) labels; T2

(c) HB; left to right: T1, T2 + FS mask, T2 + (FS vs GT) labels; T2

(d) HT; left to right: T1, T2 + FS mask, T2 + (FS vs GT) labels; T2

Figure 7.1: Example FreeSurfer segmentation in coronal view. Left / 1. column: T1 image, all other
images show T2 modality; orange/FS-mask; green/TP-pixels; yellow/FP-pixels; blue/FN-pixels

(a) sagittal view

(b) sagittal view

Figure 7.2: Example segmentations from FreeSurfer in sagittal view. Left / 1. column: T1
image, all other images show T2 modality; orange/FS-mask; green/TP-pixels; yellow/FP-pixels;
blue/FN-pixels.
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7.1.2 Learned FreeSurfer Segmentation

In this section results are presented, which were acquired by learning the FreeSurfer
segmentation. Therefore, the stacked segmentation architecture was trained with the T1
input images and the post-processed FS masks. Table 7.2 summarises the results of this
experiment and the standard FreeSurfer pipeline compared to the T2-based manual ground
truth mask.

Evaluation

Task Input Labels Dice Score Surface Distances in mm
Image training eval. in % dH dmean dmedian

FreeSurfer T1 - GT 78.06± 3.99 4.66± 1.28 0.54± 0.10 0.47± 0.00

seg. T1 FS GT 80.85± 3.61 5.09± 2.06 0.53± 0.14 0.45± 0.08

Table 7.2: Comparison of the standard FreeSurfer results to the learned FS segmentation with
DCNNs.

As shown by Table 7.2, the trained DCNN was not only able to reproduce a similar seg-
mentation accuracy as achieved with the standard FreeSurfer pipeline, it also outperformed
the DSC of the FreeSurfer results by almost 3 %. The mean and median surface distance,
dmean and dmedian respectively, are slightly lower. Contrary, the Hausdorff distance is
bigger indicating that the maximal distance (error) between the learned FS segmentation
and the GT-labels got bigger compared to the standard FreeSurfer pipeline.

7.2 Learning-based Segmentation Experiments

Simple segmentation experiments comprise all deep learning based experiments that have
been trained with our manual ground truth labels. All image modalities haven been used,
namely T1-weighted and T2-weighted images separately as well as a combined experiment
where both images were concatenated and used simultaneously.

Table 7.3 summarises the evaluated metrics of all learning based experiments and is
therefore structured into two parts. At the very top, for easier comparison, again the
scores achieved with the standard FreeSurfer pipeline are reported. Moreover, the achieved
results by learning the FS labels are listed. In the lower part the new results of this section
are presented.

Looking at the results of the learned T1 input segmentation (Table 7.3, lower
part, 1. experiment), it can be seen that utilising T1-weighted input images
together with the ground truth labels increased the segmentation accuracy by
almost 5%, compared to training with FS-labels. Moreover, all surface distance
measures dropped whereat especially the median distance decreased. This implies
that only a few segmentation masks, out of all samples of all CV sets, exhibit a
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Evaluation

Task Input Labels Dice Score Surface Distances in mm
Image training eval. in % dH dmean dmedian

FreeSurfer T1 - GT 78.06± 3.99 4.66± 1.28 0.54± 0.10 0.47± 0.00

seg. T1 FS GT 80.85± 3.61 5.09± 2.06 0.53± 0.14 0.45± 0.08

seg. T1 GT GT 85.62± 3.86 4.12± 1.93 0.36± 0.07 0.13± 0.21
seg. T2 GT GT 91.91± 0.87 3.90± 1.41 0.19± 0.03 0.00± 0.00
seg. T1 + T2 GT GT 91.64± 0.94 4.14± 1.85 0.20± 0.03 0.00± 0.00

Table 7.3: Learning-based segmentation results of different input image modalities trained with
FS/man. GT labels. All results evaluated against manual ground truth (GT).

wrong segmentation boundary by at least one pixel for more than half of the boundary pixels.

The results achieved by segmenting T1-weighted images can be improved if T2-
weighted input images are used instead for training the DCNN . In this setting, the
overall best result is achieved with a DSC of 91.91 ± 0.87 %. Additionally, all surface
distance measures showed the smallest values of all experiments. While dmax = 3.90 mm is
the lowest overall Hausdorff distance, it still corresponds to a wrong HC outline by around
five pixels. However, a possible explanation for this could be that the network performed a
more consistent segmentation, for some slices or certain problematic regions, than given by
the actual GT-labels.

An example for such a case, where the network provided a better segmentation, is shown
in Fig. 7.3. In slice 6 (Fig. 7.3a) the GT labels properly cover the HC and the network
segmentation also matches the GT. However, looking at slice 7 Fig. 7.3b retrospectively,
there is an inconsistency in the GT label. This shift of opinion to the more accurate
HC outline is motivated by two reasons. First, it could already be guessed based on the
visible borders in the non-segmented image that the HC already continues at least to the
medial tissue boundary. Second, in the region of the HH changes along the main axis of
the hippocampal formation can only occur in a continuous manner. Therefore, it is not
reasonable that the GT-mask gets as much smaller as shown in Fig. 7.3 within the next
slice. On the contrary, it should continue along the medial boundary as the DCNN labelled
correctly (see FP pixels at the medial border of the mask in Fig. 7.3b). Such errors in the
manual GT are caused by general problems related to the delineation of the supero-medial
region, as described in Section 5.1.3.3. Mainly, they are caused by neighbouring blood
vessels, which cause signal distortions in their local vicinity, which can also be seen in
Fig. 7.3b.
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(a) coronal slice 6 (b) coronal slice 7

Figure 7.3: Visualisation of possible cause for high dmax values despite good overall segmentation
accuracy. green ... TP-pixels; yellow ... FP-pixels; blue ... FN-pixels

Figure 7.4 shows an extreme case of this problem, where the completely supero-medial
outline of the hippocampal formation is annihilated.

(a) slice 9 (b) slice 10 (c) slice 11

Figure 7.4: Severe signal distortion of the supero-medial HC border due to neighbouring vessel.

At last, the DCNN was also trained with both image modalities at the same time
in order to roughly assess the impact of each input modality on the segmentation result.
If compared to the simple T2 segmentation, this experiment showed only a marginally
worse Dice score and Hausdorff distance while the mean and median distances did not
change. This suggests, if both input images are provided the segmentation is still mainly
based on the T2 input images. The slight decrease for DSC and dmax might be caused by
inconsistencies within both image modalities.
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7.2.1 Qualitative T1 and T2 Segmentation Results

Figure 7.5 qualitatively shows the results of the simple DCNN based segmentation of either
T1- or T2-weighted input images. For both modalities the same slices of the same subject
are depicted. To give examples over the whole range of the hippocampal formation one
slice of each block of 10 slices is shown. This means the upper most row visualises a slice
from the slice block 1-10, the second row a slice from block containing slices 11-20 and so
on.

Correspondingly to the quantitative results explained above, the automated segmen-
tation masks created by our DCNNs show very high agreement with the manual GT
(TP/green pixels) if T2 images are used as the input modality (Fig. 7.5b). Almost no
pixels are labelled as FP (yellow) and only very view FN pixels (blue) can be seen.

Comparison of the generated mask created by segmenting the T1-weighted input images
exhibit more discrepancies between the DCNN mask (TP + FP) and the manual GT (TP
+ FN), shown in Fig. 7.5a.

If the results of the T1- and T2-based segmentation are compared, one can see that
in the centre of the hippocampal formation both segmentations are in good agreement
not only with the GT but also among each other. However, especially the first slices of
the HH and the last slices of the HT are wrongly labelled, visualised by the FP and FN
pixels. An explanation for this could be that the very first and last slices of the HC are,
due to the acquisition method, not present in every sample of the dataset. Moreover, as
the hippocampal formation is in general better distinguishable on T2-weighted images, the
available data covering these regions might be sufficient to train the T2-based segmentation,
while for the T1-based DCNN it seems to be not the case.
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(a) segmentation of T1 images (b) segmentation of T2 images

Figure 7.5: Exemplaric visualisation of a simple DCNN segmentation on T1 and T2 images,
respectively. Labels: green... TP-pixels; yellow... FP-pixels; blue... FN-pixels.
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7.3 Auxiliary Image Synthesis

This section presents the results for our auxiliary image synthesis task, which was described
in Section 6.3.3.

In this work, the image synthesis task was not performed to generate perfectly mimicking
T2-weighted images which can be further used for diagnosis or similar where an completely
accurate T2-representation of the underlying T1-weighted images is crucial. This experiment
was rather performed as an auxiliary task to incorporate the T2 images into the training
process of a T1 based segmentation experiment. For this reason, and because optimising
Wasserstein GANs (WGANs) is a non-trivial task extensive parameter tuning of this model
was reduced to acquiring proper rather than perfect representations of the T2 contrast.

The image synthesis model achieved an average peak signal-to-noise ratio (PSNR) of
21.69±0.66 dB over the whole CV set. However, in our case PSNR does not quite represent
the perceived image quality. Therefore, we mainly performed visual inspection, as shown
in Fig. 7.6.

(a) T1 (b) T2 synthetic (c) T2

Figure 7.6: Example T2 image synthesis result. Legend for annotations: green ... good fea-
ture replication; yellow ... average/not complete feature replication; red ... poor/missing feature
replication.

By utilising a WGAN it was possible to create synthetic T2 representations of the
underlying T1 data. When comparing the synthetic T2 image (Fig. 7.6b) with its ground
truth image (Fig. 7.6c) we can see that especially the borders of the brain tissue got
recovered correctly (dashed green lines). Moreover, the blood vessels (black “circles” in the
T2 images) medial to HC were reconstructed correctly as indicated by the green arrows.
This is quite impressive considering that blood flow related signal distortions are different
for T1- and T2-weighted image acquisition. Looking at the synthetic representations of
CSF (bright at T2 contrast) the model managed to recover such features to a moderate
degree. Yellow arrows indicate CSF regions which have been moderately but not completely
recovered. Red arrows point out regions which could not be reproduced with the current
model. Looking particularly at the HC , the inferior (lower) outlines (dotted green lines)
were mapped accurately, while the superior (upper) region exhibits errors (red arrow).
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7.4 T2-enhanced Training of Deep NNs

As the simple segmentation experiments with DCNN showed good results, especially if the
T2-weighted images were utilised, two experiments were conducted that incorporated the
T2 images into the training process. The detailed setup of these experiments was described
in Section 6.3.3. In the lower part of Table 7.4 results of both experiments are shown.

The first experiment, named seg. with pre-trained T2seg, describes a segmentation
experiment which was performed on T1-weighted images by utilising a pre-trained segmenta-
tion model. In more detail, all parameters of the already optimised T2 segmentation model
(from Section 7.2) were loaded to initialise the same architecture, which was subsequently
fine-tuned with the T1-weighted magnetic resonance (MR) images.

The second experiment, named seg. with T2 synthesis & pre-trained T2seg, utilised
the auxiliary image synthesis task in combination with a DCNN for the HC segmentation.
Therefore, the parameters of the generator of the previously trained WGAN (Section 7.3)
and the parameters of a pre-trained T2 image segmentation were loaded.

Additionally, as both experiments were eventually performed with T1-weighted input
images, the simple segmentation results for the T1 modality are shown again in the top
part of the table.

Evaluation

Task Input Labels Dice Score Surface Distances in mm
Image in % dH dmean dmedian

segmentation T1 GT 85.62± 3.86 4.12± 1.93 0.362± 0.07 0.13± 0.21

seg. with
T1 GT 85.90± 3.85 3.94± 1.28 0.357± 0.11 0.15± 0.22pre-trained

T2seg

seg. with T2
T1 GT 85.73± 4.23 4.14± 1.93 0.358± 0.13 0.17± 0.23synthesis &

pre-trained T2seg

Table 7.4: DCNN segmentation results of T2-incorporation experiments.

As shown in Table 7.4, both experiments using T2-enhanced training yield similar
results as the simple DCNN T1 segmentation. Regarding the DSCs, both experiments
got inconsiderable better where the first experiment achieved the best accuracy among
them with 85.90 ± 3.85 %. The Hausdorff distances also marginally improved for the
first experiment, while dmax more or less stayed the same for the segmentation with
image synthesis compared to the simple T1 experiment. For both experiments the median
distances minimally increased when compared to the standard T1 segmentation, while the
mean distances negligibly decreased. Generally for these two measures, the mean values
indicated almost no change while the variances marginally increased.
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Conclusion

In this thesis a deep learning (DL) -based approach for segmentation of the hippocampal
formation was proposed to answer two main questions of interest:

1. are DL-based methods able to outperform the hippocampus (HC) segmentation from
FreeSurfer (FS) ?

2. what is the impact of a high-resolution T2-weighted dataset on this segmentation
task?

Therefore, a unique dataset containing corresponding pairs of high-resolution T1-
weighted and ultra high-resolution T2-weighted 3T magnetic resonance (MR) images
has been acquired, manually annotated and pre-processed. Next, baseline segmentations
were calculated by applying FreeSurfer ’s brain segmentation pipeline together with its
hippocampal-subfields-protocol to our T1-weighted images. Additionally, several DL-based
experiments were conducted, including segmentations of the T1- or T2-weighted dataset
images with deep convolutional neural networks (DCNNs). In one experiment both image
modalities were used in combination to train the segmentation task.

The FreeSurfer segmentations, which are currently used in clinical research, showed
a segmentation accuracy, reported as Dice similarity coefficient (DSC), of 78.06± 3.99 %
when compared to our manual ground truth (GT). To evaluate the extend to which this
segmentation can be reproduced with DCNN , an initial learning-based experiment was
conducted. This experiment showed, when the FS-labels are used as target labels while
training our DCNN , the FreeSurfer results can not only be replicated but also improved
to a DSC = 80.85± 3.61 %.

The application of the same model architecture, however, trained with our GT -labels
yields a Dice score of 85.62± 3.86 %, which is again an increase of almost 5 %. Utilising
the T2-weighted images instead of our T1-weighted scans, again trained with our manual
GT -labels, yields the overall best accuracy with a DSC = 91.91± 0.87 %. If both
image modalities, simultaneously, are provided as the network input, the results are
almost identical to the findings achieved with just T2 input images, namely DSC =

87



88 Chapter 8. Conclusion

91.64± 0.94 %. This suggests that all information required by our models, to perform
the segmentation task in the best possible way, is already contained in the T2-weighted
images and that no complementary information can be gained when using T1 and T2
images together.

T2-enhanced Training Experiments
Unfortunately, such ultra high-resolution T2-weighted images are not feasible even in
clinical research. Therefore, we have conducted two additional experiments, where the
T2-weighted images are not explicitly used as an input, but rather are utilised only during
training of our DCNNs to enhance the T1-based segmentation.

For the first approach the same network architecture was utilised, however, instead
of training only once with either of the image modalities, a pre-trained model was used.
In particular, the parameters of the pre-trained DCNN from the “simple” T2-based
segmentation were loaded to initialise the model and subsequently optimise with the
T1-weighted MR images. This setup yields similar results as the “simple” T1-based
segmentation (85.62±3.86 %), with an insignificant improvement to a DSC = 85.90±3.85 %.
A possible explanation for the similar outcome could be that the loaded, initially T2-based,
weights got outweighed by the T1-based fine-tuning of the model.

For the second experiment, we have therefore implicitly enforced the usage of the
T2-weighted images not only by making use of T2-based parameters but also by combining
the segmentation task with an auxiliary T2 image synthesis task. Therefore, a Wasserstein
GAN (WGAN) was trained prior the actual segmentation to create synthetic T2 images
based on their corresponding T1-weighted counterparts. The parameters of the pre-trained
generator model of this WGAN were then loaded together with the parameters of the
segmentation architecture, again pre-trained with the T2 inputs. The actual combined
segmentation task was then trained with this initialised model and the T1-weighted
input images. The segmentation results achieved with this experiment are in between the
“simple” T1-based DCNN and the T1-based segmentation with the additional T2-based
weight initialisation. In detail, a Dice score of DSC = 85.73± 4.23 % was achieved. While
the generated synthetic T2 images express a proper T2-like contrast and is quite capable
of recovering anatomical features like blood vessels or some cortical borders, it still has
some difficulties (see Fig. 7.6). Especially recovering cerebrospinal fluid (CSF) and
sometimes its neighbouring tissue is error-prone, which could be explained thereby that in
T1-weighted images CSF is not shown distinctively but rather expressed only in form of
background noise. However, as CSF is neighbouring a considerable portion of the HC this
could be a reason for the T1-like outcome. Moreover, remaining misalignment between the
corresponding pairs of T1- and T2-weighted images in the dataset could explain missing or
shifted representations of some anatomical features.

To conclude all conducted experiments, we have shown that independently of the
applied deep learning based segmentation, the results achieved with FreeSurfer can not
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only be improved by means of the segmentation accuracy but also with respect to the
processing time. While even the application of the parallelised FreeSurfer pipeline takes
up to 4.5 hours for a single subject, the segmentation with DCNN can be acquired within
a couple of seconds.

The evaluation of the impact of the ultra high-resolution T2-weighed images can
be answered based on our “simple” segmentation experiments, which perform just the
segmentation task on either T1, T2 or T1+T2 inputs, as follows. While the DL-based
segmentation of just the T1 images together with the T2-based manual GT annotations
outperforms the FreeSurfer segmentation by around +7.5 %, the overall highest score can
be achieved if instead also the T2-weighted images are used as the model input. This yields
another increase by 6.3 % and an average DSC = 91.91± 0.87 %.

Enhancing the DCNN based segmentation of T1-weighted images with our unique,
corresponding T2-weighted image data did not show a significant improvement in the
resulting segmentation accuracy. However, there are indications that this might be caused
by the not perfectly aligned data pairs as well as the general complexity of training WGAN .
Thus, future work is needed to address these problems.

8.1 Future Outlook

In order to aid Alzheimer’s disease (AD) related research and in particular to establish a
fast, consistent and accurate assessment of the hippocampal volume a lot of studies are
currently ongoing. The presented work, was a proof of concept to evaluate the power of
DCNN with respect to the task of automated HC segmentation and to assess the feasibility
of acquiring an ultra high-resolution T2-weighted MR dataset.

As this was a first line of work in which lot of sub-tasks have been addressed, many
useful insights were revealed. Not only our two main questions have been answered but also
additional insights for future research could be identified, which can be categorised into three
related parts: (i) Dataset improvement, (ii) Registration, and (iii) Deep learning-related
improvements.

The first step to a better dataset could be improvements to the MR acquisition procedure
to ensure complete coverage of the HC and to reduce motion artefacts. Essential for deep
learning-based methods is not only the amount but especially the quality of the data. Thus,
to improve the training data and hence the overall segmentation performance, a key will
be not only to reduce ground truth noise but also to increase the amount of annotated
hippocampi. Additionally, semi-supervised learning procedures could be utilised to make
use of even unlabelled data.

As shown in this work, registration and especially the inter-modality registration of
the T1- and T2-weighted image pairs is a crucial step and will therefore be an interesting
topic of future research. Alternatively, different approaches for the image synthesis task
could be utilised, which do not rely on previously registered images. This relates already
to network architecture related improvements. Moreover, cycle generative adversarial
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networks (GANs) or types of recurrent neural networks (RNNs) could be an interesting
point of research for the synthetic T2 generation task.



A
List of Acronyms

α-synuclein alpha-synuclein
τ-protein tau protein
3D three-dimensional
Aβ amyloid-β
Aβ42 42-aminoacid form of amyloid-β
AD Alzheimer’s disease
ADAS Alzheimer’s Disease Assessment Scale
ADAS-Cog ADAS-cognitive subscale
ADAS-CogIRT ADAS-Cog using IRT
ADAS-Noncog ADAS-non-cognitve subscale
ADI Alzheimer’s Disease International
ADL activities of daily living
ADNI Alzheimer’s Disease Neuroimaging Initiative
ADRDA Alzheimer’s Disease and Related Disorders Association
ANN artificial neural network
BADLS Bristol ADL Scale
BNT Boston Naming Test
CERAD Consortium to Establish a Registry for Alzheimer’s

Disease
cGAN conditional GAN
CN cognitve normal
CNN convolutional neural network
CNS central nervous system
CPU central processing unit
CSF cerebrospinal fluid
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CT computed tomography
DCNN deep convolutional neural network
DLB dementia with Lewy bodies
DSC Dice similarity coefficient
DSM-IV-TR Diagnostic and Statistical Manual of Mental Disorders,

fourth edition
EADC European Alzheimer’s Disease Consortium
ErC entorhinal cortex
FID free induction decay
FLAIR fluid-attenuated inversion recovery
fMRI functional MRI
FoV field of view
FSE fast spin echo
GAN generative adversarial network
GE gradient echo
GM grey matter
GRE gradient recalled echo
HarP Harmonized Protocol
HC hippocampus

HF high frequency
IRT item response theory
LSTM long-short-term memory
MAS multi-atlas segmentation
MCI mild cognitive impairment
MMSE Mini Mental State Examination
MoCA Montreal Cognitive Assessment
MPRAGE magnetisation-prepared rapid gradient-echo
MR magnetic resonance
MRI magnetic resonance imaging
MS multiple sclerosis
MTA medial temporal lobe atrophy
MTL medial temporal lobe
NFL neurofilament light
NINCDS National Institute of Neurological Disorders and Stroke
P-tau phosphorylated tau
PD proton density
PET positron emission tomography
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PIB Pittsburgh compound B
PrC perirhinal cortex
RF radio frequency
SE spin echo
SNR signal-to-noise ratio
SPECT single photon emission computed tomography
T-tau total tau
T1w T1-weighted
T2w T2-weighted
TL temporal lobe
TSE turbo spin echo
USA United States of America
VaD vascular dementia
WM white matter
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