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Kurzfassung

Es gibt zwei etablierte Methoden zur EDX-Quantifizierung im Transmissionselektronen-
mikroskop: die konventionelle Cliff-Lorimer- und die neuere 𝜁-Faktor-Methode. Mit der
𝜁-Faktor-Methode ist es nicht nur möglich, die Konzentration der einzelnen Elemente zu
bestimmen, sondern auch die Massendicke der betrachteten Probenstelle. Damit ist eine
Absorptionskorrektur bei leichten Elementen einfach durchführbar. Die Voraussetzung
für diese Technik ist die Verfügbarkeit von Empfindlichkeitsfaktoren (𝜁-Faktoren). Es ist
jedoch schwierig, genaue Werte für leichte Elemente zu bestimmen, was zu unzuverlässigen
Quantifizierungsergebnissen führt.

In dieser Arbeit werden einige Ansätze zur Bestimmung von 𝜁-Faktoren diskutiert sowie
ein komplett neuer entwickelt. Hierzu wird der Effekt der Röntgenabsorption genutzt und
damit die üblicherweise notwendige Dickenmessung umgangen. Die Daten, die für die
experimentelle Bestimmung von 𝜁-Faktoren notwendig sind, wurden mittels EDXS und
EELS ermittelt.

Mit Hilfe sogenannter Horita-Plots kann der exponentielle Verlauf der teilweise absorbierten
Röntgenlinien indirekt in Abhängigkeit von der Probendicke dargestellt werden. Expo-
nentielle Fits aus den Plots ermöglichen die Bestimmung genauer 𝜁-Faktoren speziell für
leichte Elemente, welche in dieser Arbeit für Kohlenstoff und Sauerstoff bestimmt wurden.
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Abstract

There are two common methods for elemental quantification via EDXS in the TEM: the
conventional Cliff-Lorimer technique and the newer 𝜁-factor method. Using the 𝜁-factor
method, one can not only obtain the elemental concentrations but also the mass-thickness
of the observed specimen area. Thereby, a proper absorption correction for light elements
is possible. A precondition for using this method is the determination of sensitivity factors
(𝜁-factors). However, it is hard to get accurate values for light elements which makes the
quantification of such highly unreliable.

In this work, several known approaches to determine 𝜁-factors are discussed and a com-
pletely new one is developed which uses the effect of absorption of low-energy X-rays within
the specimen. Therefore, no thickness measurement is necessary anymore. The required
data to determine 𝜁-factors experimentally was obtained by simultaneously acquired EDXS
and EELS Spectrum Images.

Via so-called Horita-Plots, the exponential behavior of the partly absorbed X-ray lines is
indirectly depicted in dependence of the specimen thickness. Exponential fits from these
plots allow the determination of accurate 𝜁-factors, especially for light elements which, in
this thesis, were determined for carbon and oxygen.
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CHAPTER 1
Introduction

State-of-the-art transmission electron microscopes (TEM) reach resolutions smaller than
100 pm. Considering the lengths of atomic distances (on the order of a few tenths of a
nanometer), it is possible to image and detect lattice defects, grain boundaries and even
single atoms of a solid. Most TEMs are used as analytical electron microscopes (AEM)
which means that - additional to imaging methods - the chemical composition of a speci-
men can be investigated. The combination of good lateral resolution and precise chemical
analytical capabilities is the reason why the TEM is such a powerful instrument. The
investigation of very small features and the ability to tell what they are made of are often
the key for further conclusions. Two main techniques for chemical analysis in the TEM are
energy-dispersive X-ray spectroscopy (EDXS) and electron energy loss spectroscopy (EELS).

If an atom within the specimen is ionized by the primary electron beam, it may emit
a characteristic X-ray when it returns to its ground state. This X-ray is characteristic
for a specific element and gets evaluated by the EDXS system to provide qualitative and
quantitative information about the specimen. This technique has been usually used for
the detection of middle and heavy elements, whereas light elements are more challenging
due to small detector efficiencies and fluorescence yields for low energy X-rays. Moreover,
the lower the energy of an X-ray is, the more likely it gets absorbed by the specimen itself
and is no longer detectable. Nevertheless, with modern EDXS systems it is nowadays
possible to detect elements down to beryllium. Contrary to the qualitative analysis, the
quantification of light elements with EDXS is still a major issue to overcome.

The 𝜁-factor is one method to evaluate X-ray spectra quantitatively [1]. It requires
the respective peak intensities, the electron dose and the element and microscope specific
𝜁-factors. However, for the determination of such 𝜁-factors, the specimens thickness of the
sample has to be known. Since accurate thickness measurements at the nanometer scale
are not trivial at all and hard to perform, the aim of this work is to develop a method to
determine 𝜁-factors without the necessity of knowing the specimen’s thickness. The idea is
to harness the effect of X-ray absorption within the specimen which is thickness-dependent
and to calculate 𝜁-factors from this information. This is a promising approach especially
for light elements whose characteristic X-ray lines substantially suffer from absorption
which is usually a major drawback for the analysis of such, but in this case is used to our
advantage.
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CHAPTER 2
Fundamentals of EDXS in the TEM

The method developed in this thesis is based on the generation and absorption of X-rays.
Therefore, these effects as well as the predominant EDXS quantification methods are
discussed.

2.1 Generation of X-rays
X-rays can be categorized into two sections based on their production - characteristic X-rays
and bremsstrahlung. While characteristic X-rays are used for qualitative and quantitative
analysis, bremsstrahlung is generally unwanted and has to be considered as a background
signal. If a high-energy electron interacts with inner-shell electrons, an ionization process
may occur. If an inner-shell electron is kicked out of the atom and escapes the attractive
field of the nucleus, the atom is left in an excited state because it has an excess of energy,
and we describe it as ionized. To return to the ground state, the generated hole is filled
with an electron from an outer shell. Along with this transition, either an X-ray or an
Auger electron with a specific energy is emitted. [2]

Figure 2.1: The ionization process. An inner (K) shell electron is ejected from the atom by a
high-energy electron. When the hole in the K-shell is filled by an electron from the L-shell,
characteristic (K𝛼) X-ray emission occurs. The incident electron looses energy and continues
its way through the specimen. (taken from D. B. Williams et al. [2])

The energy of characteristic X-rays depends on the difference of the participating shell
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4 Chapter 2 Fundamentals of EDXS in the TEM

energies during the ionization and the relaxation process. Since every element has unique
energy levels, each detected energy can be assigned to an individual element. The more
shells an atom has, i.e. the heavier it is, the more possibilities for different transitions exist
with simultaneous consideration of Fermi’s golden rule. Oxygen, for example, has only one
characteristic X-ray main line at 0.523 keV, whereas zinc has two main lines at 8.637 keV
and 1.012 keV. Moreover, each shell consists of further sub-shells resulting in sub-peaks
with similar energies as the main specific X-ray line.
In figure 2.2 possible kinds of transitions are shown. The nomenclature of the different
shells is K, L, M, N, O and is called Siegbahn notation. The X-ray line of a transition from
a higher shell to the K-shell is called K-line, to the L-shell L-line and to the M-shell M-line.
Depending on the shell and sub-shell where the electron came from, the numerated suffixes
such as 𝛼, 𝛽, 𝛾 and 𝛿 are used.

Figure 2.2: Possible electron transitions that give rise to K, L and M characteristic X-rays.
Not all of them are detectable by the EDXS in the TEM. (taken from D. B. Williams et al. [2])

If an electron interacts inelastically with the nucleus, it experiences a change in momen-
tum by interacting with the nucleus’ Coulomb field. During this process, an X-ray which
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gives rise to the above-mentioned bremsstrahlung may be emitted. The energy of the
emitted X-rays is dependent on the incident beam energy and the atomic number Z of the
ionized atom. Unwanted bremsstrahlung adulterates the intensities of the characteristic
X-ray peaks and, therefore, has to be subtracted from the spectrum.

2.2 Absorption of X-rays
The absorption of characteristic X-rays within the specimen is a major issue for quantifica-
tion. If X-rays are absorbed, they will not be detected. Therefore, the measured intensities
are falsified and need to be corrected. To understand the methods used in this work, a
brief insight into the theory of the absorption effect is given.

The mass attenuation coefficient 𝜇/𝜌

The mass attenuation coefficient(MAC) is the quotient of the linear attenuation coefficient
and the density of a material. It expresses how much electromagnetic radiation is damped
by passing through matter depending on the photon’s energy. The exponential decay of
the initial intensity is described by the Beer-Lambert law. [3]

𝐼 = 𝐼0 · 𝑒
(− 𝜇

𝜌
𝜌𝑑) (2.1)

𝐼...intensity of the transmitted X-ray
𝐼0...intensity of the incident X-ray
𝜇
𝜌 ...mass attenuation coefficient
𝜌...density
𝑑...thickness

According to equation 2.1, the higher 𝜇/𝜌 and the thicker the sample is, the more
absorption takes place and, thus, the less intensity of the transmitted X-rays will be
measured. Each element has tabulated values for MACs at different photon energies.
The physical effects underlying the Beer-Lambert law within energies below 1 MeV are
the photoelectric effect, elastic (Thomson) scattering and inelastic (Compton) scattering.
Calculated MAC’s rely heavily on theoretical values of the total cross section per atom
𝜎𝑡𝑜𝑡 related to 𝜇

𝜌 according to [4]

𝜇

𝜌
= 𝜎𝑡𝑜𝑡

(︂
𝑁𝐴

𝐴𝑟

)︂
(2.2)

𝑁𝐴...Avogadro’s number
𝐴𝑟...relative atomic mass
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𝜎𝑡𝑜𝑡 can be written as the sum over contributions from the principal photon interactions.

𝜎𝑡𝑜𝑡 = 𝜎𝑐𝑜ℎ + 𝜎𝑖𝑛𝑐𝑜ℎ + 𝜏 + 𝜅 + 𝜎𝑝ℎ.𝑛. (2.3)

𝜎𝑐𝑜ℎ...coherent (Rayleigh) scattering cross section
𝜎𝑖𝑛𝑐𝑜ℎ...incoherent (Compton) scattering cross section
𝜏 ...atomic photo-effect cross section
𝜅...positron-electron pair-production cross section
𝜎𝑝ℎ.𝑛....photo-nuclear cross section

The value of 𝜇/𝜌 for a particular X-ray within a specimen is calculated by the sum
over the mass absorption coefficients for each element times their weight fraction [2].
The absorption of the specific X-ray line originating from element A by all elements i is
summarized including the self-absorption by element A.

𝜇

𝜌

]︂𝐴

𝑠𝑝𝑒𝑐

=
∑︁

𝑖

𝐶𝑖
𝜇

𝜌

]︂𝐴

𝑖

(2.4)

where 𝐶𝑖 is the fractional concentration of element i in the specimen such that

∑︁
𝑖

𝐶𝑖 = 1 (2.5)

2.3 Quantitative X-ray analysis

In EDXS, it is easy to qualitatively analyze a material by assigning the peaks of an
EDX spectrum to their corresponding elements. But when it comes to the elemental
concentration of the observed area, one has to apply a quantitative analysis. To apply
quantification methods, it is necessary to determine not only the locations of the peaks
at the energy scale, but also their intensities. The peak intensity is equal to the area
underneath the peak and is calculated by integration. As mentioned above, the spectrum
contains characteristic peaks and bremsstrahlung which has to be subtracted to get the net
intensities of the X-ray lines. The resulting intensities are the basis for each quantification
method to finally calculate concentrations.

2.3.1 The Cliff-Lorimer method

Cliff and Lorimer (1975) suggested a method for determining relative concentrations by
measuring the ratio of two element-specific intensities

(︁
𝐼𝐴

𝐼𝐵

)︁
[1]. This ratio is proportional
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to the ratio of concentrations.

𝑐𝐴

𝑐𝐵
= 𝑘𝐴𝐵

𝐼𝐴

𝐼𝐵
(2.6)

𝑐𝐴, 𝑐𝐵...concentrations in weight percent of element A resp. B
𝐼𝐴, 𝐼𝐵...intensities of the corresponding X-ray lines above background
𝑘𝐴𝐵...proportionality factor

The proportionality factor 𝑘𝐴𝐵 is called the Cliff-Lorimer factor or k-factor and, if
it is known, the concentrations can be determined by measuring intensities under the
assumption that

∑︀
𝑖 𝐶𝑖 = 1 . The k-factor varies depending on the high-voltage of the

microscope and the detector but is not dependent on the thickness and the composition of
the specimen. If the so-called thin film criterion (TFC) is fulfilled, absorption within the
specimen can be ignored. Since fluorescence is usually a minor effect it is neglected [2].
The thinner the observed area is, the less absorption/fluorescence will occur (see chapter
2.2).
k-factors can be determined by calculations from first principles or experimentally. Both
approaches have crucial drawbacks. The experimental determination is time-consuming
and needs well defined standards. The relative error is about 1%. Although the theoretical
calculations are fast, the precision decreases substantially, leading to relative errors of
about 15 − 20% [5].
The main limitation of the Cliff-Lorimer method is that an absorption correction is only
possible if the mass thickness is known which is usually not the case for an unknown
specimen (Horita et al. [6]). For low-energy X-ray lines, the TFC is no longer valid because
these lines are absorbed to a high extent even in very thin specimens. This fact makes a
proper absorption correction essential to get reliable results for light elements.

2.3.2 The 𝜁-factor method

If we consider that the TFC is valid in a TEM sample, the measured intensity is proportional
to the mass thickness and the corresponding elemental concentration. The proportionality
factor which connects this relation is called 𝜁-factor [1]. To make this factor independent
of the beam current and the acquisition time of the spectrum, it is normalized by the total
electron dose.
The 𝜁-factor method has several advantages compared to the Cliff-Lorimer method, espe-
cially a much easier application of an absorption correction.

𝜌𝑡 = 𝜁𝐴
𝐼𝐴

𝑐𝐴𝐷𝑒
(2.7)
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with

𝐷𝑒 = 𝑁𝑒𝐼𝑝𝜏 (2.8)

𝑡...thickness
𝜌...density
𝜌𝑡...mass thickness
𝐼𝐴...intensity of the characteristic X-ray line of element A
𝑐𝐴...mass fraction of element A
𝐷𝑒...total electron dose
𝑁𝑒...number of electrons in one unit of electric charge
𝜏 ...acquisition time

Therefore, 𝜁-factors are element-specific quantities. To be more precise, each characteris-
tic X-ray line family of each element has its own 𝜁-factor. As mentioned above, the 𝜁-factor
is not dependent on current, concentration, composition and mass thickness by definition. It
summarizes all attributes of generation and detection of X-rays within a specific instrument,
including detector and collection efficiency. This means that each microscope has different
𝜁-factors as every system has different detectors/detector arrangements. Basically, 𝜁-factors
can be determined either theoretically or experimentally. The intensity of characteristic
X-rays originating from element A is theoretically described by [7]

𝐼𝐴 = 𝑁
𝑄𝐴𝜔𝐴𝑎𝐴

𝑀𝐴
𝑐𝐴𝜌𝑡𝐷𝑒

(︂
𝛺

4𝜋

)︂
𝜖𝐴 (2.9)

𝑁 ...Avogadro’s number
𝑄𝐴...ionization cross section
𝜔𝐴...fluorescence yield
𝑎𝐴...relative line intensity ratio
𝑀𝐴...atomic weight
𝛺/(4𝜋)...detector solid angle
𝜖𝐴...detector efficiency

If we compare equation 2.7 and 2.9, the 𝜁-factor can be expressed as:

𝜁𝐴 = 𝑀𝐴

𝑁𝑄𝐴𝜔𝐴𝑎𝐴

(︀
𝛺
4𝜋

)︀
𝜖𝐴

(2.10)

If all these parameters are known, it is possible to calculate 𝜁-factors. Nevertheless, it is
very hard to get accurate values, especially for 𝑄𝐴, 𝜔𝐴 and 𝑎𝐴. Thus, the experimental
approach is often preferred. There are several methods for determining 𝜁-factors experimen-
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tally. The limiting factor for accuracy is generally the thickness measurement. Kothleitner
et al. [8] prepared a lamella and a needle of the same material by means of a focused ion
beam. The needle with a well defined shape was used to obtain the inelastic mean free
path 𝜆 which was then applied to measure the thickness of the lamella (see section 2.4.4).
Since it is not possible to get rid of amorphous layers during the needle preparation, the
value for 𝜆 is error-prone. The advantage of this technique is that it can be applied to all
kinds of materials.
Watanabe et al. [1] used a glass standard (NIST SRM2063a) with known thickness and
composition. From this standard, 𝜁-factors for all incorporated elements can be determined
directly. To gain 𝜁-factors for other elements, one has to apply a mathematical fit using
models for the above mentioned parameters (like ionization cross section ...) . The need
for this particular standard as well as uncertainties related to the fitting procedure are
major drawbacks of this strategy.
In a third approach developed by Zanaga et al. [9], nanoparticles with a known geometry
(determined by electron tomography) of the specimen were used. Due to the complexity of
this measuring procedure and the fact that it is restricted to specific materials, this method
is not universally applicable. Therefore, the need for a new approach which can be applied
to a wide range of materials and does not require thickness measurement is evident.
Once reliable 𝜁-factors are obtained for your system, they can be used for quantification.
Equation 2.7 is valid for each compound of the system, and, if reformulated, it is possible
to express mass thickness and concentrations as follows:

𝜌𝑡 = 𝜁𝐴𝐼𝐴 + 𝜁𝐵𝐼𝐵

𝐷𝑒
, 𝑐𝐴 = 𝜁𝐴𝐼𝐴

𝜁𝐴𝐼𝐴 + 𝜁𝐵𝐼𝐵
, 𝑐𝐵 = 𝜁𝐵𝐼𝐵

𝜁𝐴𝐼𝐴 + 𝜁𝐵𝐼𝐵
(2.11)

For equation 2.11, a binary system with the elements A and B is assumed. However,
this approach can be expanded to any multi-component specimen. Hence, it is possible
to attain the concentrations as well as the mass thickness of the analyzed region just by
measuring X-ray intensities and the beam current.

Absorption correction for the 𝜁-factor method

As mentioned above, the concept explained in chapter 2.3.2 is only valid if the TFC is
fulfilled, meaning that X-ray absorption within the specimen can be neglected. However, if
this is not the case, an X-ray absorption correction has to be applied. This is done with an
iterative procedure which is described by Watanabe et al. [1]. After the calculation of the
initial mass thickness and compositions, the different correction terms are determined and
added to the equations 2.11 in the way it is shown in figure 2.3. Once the corrected values
are calculated they are either used to calculate new, more proper correction terms or are
considered as final concentration and mass thickness if there is no more change.
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Figure 2.3: A flow chart of the quantification procedure in the 𝜁-factor method with the
X-ray absorption correction. (taken from Watanabe et al. [1])

The absorption correction term depends on the MAC of the corresponding X-ray line
in the specimen, the take-off angle 𝛼𝑇 𝑂 and the mass thickness (see equation 2.12) [10].
Since the mass thickness is a result of the 𝜁-factor method itself, the effort to apply an
absorption correction is much lower compared to the Cliff-Lorimer method.

𝐴𝐴 =

𝜇

𝜌

]︂𝐴

𝑠𝑝𝑒𝑐

𝜌𝑡 𝑐𝑜𝑠𝑒𝑐 𝛼𝑇 𝑂

1 − 𝑒𝑥𝑝

[︃
− 𝜇

𝜌

]︂𝐴

𝑠𝑝𝑒𝑐

𝜌𝑡 𝑐𝑜𝑠𝑒𝑐 𝛼𝑇 𝑂

]︃ (2.12)

𝐴𝐴...absorption correction term
Equation 2.12 is valid for a parallel slab geometry of the specimen.

The X-ray take-off angle 𝛼𝑇 𝑂 is used to calculate the distance which an X-ray has to
travel through before it is detected. This distance is called the absorption path length and
influences the absorption in accordance to equation 2.12.
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Figure 2.4: Relationship between the specimen thickness t and the absorption path length
𝑡 · 𝑐𝑜𝑠𝑒𝑐 𝛼𝑇 𝑂, for a take-off angle 𝛼𝑇 𝑂. (taken from D. B. Williams et al. [2])

The take-off angle 𝛼𝑇 𝑂 is determined by the geometry of the EDX system (detector
elevation angle) and the specimen tilt which can be adjusted by the TEM’s operator . If a
double tilt specimen holder is used, it is possible to tilt the specimen in two directions,
namely into the 𝛼 and 𝛽 direction. The take-off angle depends on the alpha and beta tilt
as follows [11]:

𝑠𝑖𝑛 𝛼𝑇 𝑂 = 𝑐𝑜𝑠 𝜗𝑒(𝑠𝑖𝑛 𝛽 𝑐𝑜𝑠 𝜗𝑎 − 𝑠𝑖𝑛 𝛼 𝑐𝑜𝑠 𝛽 𝑠𝑖𝑛 𝜗𝐴) + 𝑐𝑜𝑠 𝛼 𝑐𝑜𝑠𝛽 𝑠𝑖𝑛𝜗𝑒√︀
(𝑠𝑖𝑛 𝛽 𝑐𝑜𝑠 𝜗𝐴 − 𝑠𝑖𝑛 𝛼 𝑐𝑜𝑠 𝛽 𝑠𝑖𝑛𝜗𝐴)2 + (𝑐𝑜𝑠 𝛼 𝑐𝑜𝑠 𝛽)2

(2.13)

𝜗𝑒...detector elevation angle
𝜗𝐴...detector azimuthal angle

2.4 Extrapolation methods - new approaches for 𝜁-factor determination
In order to measure correct k-factors or 𝜁-factors for light elements, it is necessary to take
absorption into account. It is mandatory to know the mass thickness of the specimen to
calculate the absorption correction term (equation 2.12). Though, thickness determination
can be tedious and inaccurate. The two main possibilities for measuring the specimen
thickness in a TEM is via the 𝑡

𝜆 -method or via CBED measurements [12], [13]. The first
one yields a value which is relative to the inelastic mean free path 𝜆 of the incident electron
in the specimen. Only if 𝜆 is known, an absolute value for the thickness can be calculated.
However, theoretical and experimental methods for the 𝜆-determination are error-prone.
The second method using CBED is only applicable for crystalline parts of the specimen
and disregard all amorphous layers. Hence, both methods are not satisfying.

2.4.1 Horita plots

Horita et. al. [14] have developed an extrapolation method for determining the absorption
free k-factor to overcome this issue. Generally, the k-factor can be connected to the
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element-specific 𝜁-factors by

𝑘𝐴𝐵 = 𝜁𝐴

𝜁𝐵
(2.14)

if we compare equation 2.6 and 2.7.

The idea of the extrapolation method by Horita et al. [14] is to measure X-ray spectra
at different specimen thicknesses. The intensity of an X-ray line is considered as a measure
for thickness. If this X-ray line is not absorbed its intensity is proportional to the film
thickness. Based on the measurements at different thicknesses an extrapolation to zero
thickness is made to obtain an absorption free k-factor.
In a Horita plot the k-factor is plotted against a non-absorbed X-ray line intensity and
could be misunderstood as a thickness dependent parameter which is not the case if we
consider equation 2.6. In fact, the k-factor is a relation of a concentration ratio and an
intensity ratio. The intensity ratio is thickness dependent if absorption takes place.

Figure 2.5: Example of a Horita plot showing measuring points at different thicknesses. The
thickness is represented by the silicon K𝛼-line intensity of a SiC crystal. The intersection of
the exponential fit with the ordinate indicates the absorption-free k-factor. (taken from Marvel
et al. [15])

Regarding equation 2.14, this means that 𝜁𝐴 can be calculated, if 𝜁𝐵 is known, and vice
versa. This fact can be used in particular to determine 𝜁-factors of light elements, which
are very often part of chemical compounds, if the 𝜁-factor of the second element is already
known.

Marvel et al. [15] use a standard glass thin film (NIST SRM2063a) with a known
composition and thickness to directly measure the 𝜁-factor of the silicon K-line. Afterwards,
they measured Horita plots to get the absorption-free k-factors of SiC and SiB6. For each
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series of measurements the silicon K𝛼 intensity represents the thickness (see figure 2.5).
Since the 𝜁-factor of the silicon K-line is already known, the 𝜁-factors for carbon and boron
are calculated according to equation 2.14.

We were inspired by the work of Marvel et al. [15] and advanced their method to
determine 𝜁-factors especially for light elements by using the fitting parameters of such
Horita plots. Since the shape of the curve represents the magnitude of absorption, it should
be possible to give the fitting parameters a physical meaning and, if all other parameters
are known, to calculate 𝜁-factors from them without measuring the specimen thickness.
The following three chapters will explain the derivation of 𝜁-factors using the absorption of
X-ray lines within the specimen. In every explanation, a binary system in which A and
B are different elements is considered. Furthermore, each approach results in a modified
Horita plot where the abscissa represents a measure for thickness and the ordinate an
X-ray intensity or a ratio of intensities.

2.4.2 Method A - Thickness dependence of 𝑘𝐴𝐵-factor

In this first ansatz, the resulting dependence reflects a classic Horita plot. The starting
points are the equations 2.6, 2.9, 2.12 and 2.14. Under the assumption that the X-rays of
element B are not absorbed (𝐴𝐵 = 1) and are therefore a valid measure for thickness, we
can write the line intensities of A and B

𝐼𝐴 = 𝑐𝐴
𝑁𝜌𝑡

𝑀𝐴
𝐷𝑒(𝑄𝜔𝑎)𝐴

1
𝐴𝐴

(︂
𝛺

4𝜋
𝜖𝐴

)︂
(2.15)

𝐼𝐵 = 𝑐𝐵
𝑁𝜌𝑡

𝑀𝐵
𝐷𝑒(𝑄𝜔𝑎)𝐵

(︂
𝛺

4𝜋
𝜖𝐵

)︂
(2.16)

If we put these intensities into equation 2.6, we get

𝑘𝐴𝐵 = 𝑀𝐴(𝑄𝜔𝑎)𝐵𝜖𝐵

𝑀𝐵(𝑄𝜔𝑎)𝐴𝜖𝐴
𝐴𝐴 = 𝑀𝐴(𝑄𝜔𝑎)𝐵𝜖𝐵

𝑀𝐵(𝑄𝜔𝑎)𝐴𝜖𝐴

(𝜌𝑡) 𝑐𝑜𝑠𝑒𝑐 𝛼𝑇 𝑂
∑︀

𝑖 𝑐𝑖
𝜇
𝜌

]︁𝐴

𝑖

1 − 𝑒
−(𝜌𝑡) 𝑐𝑜𝑠𝑒𝑐 𝛼𝑇 𝑂

∑︀
𝑖 𝑐𝑖

𝜇
𝜌

]︁𝐴

𝑖

(2.17)

which is a function of t. If we reformulate equation 2.16 and substitute t in 2.17 with
the non-absorbed intensity 𝐼𝐵, we get the following dependence:

𝑘𝐴𝐵 = 𝐼𝐵

𝑀𝐴
∑︀

𝑖 𝑐𝑖
𝜇
𝜌

]︁𝐴

𝑖

𝑐𝐵𝑁(𝑄𝜔𝑎)𝐴𝜖𝐴𝐷𝑒( 𝛺
4𝜋 ) 𝑠𝑖𝑛 𝛼𝑇 𝑂

1 − 𝑒
−

𝐼𝐵𝑀𝐵
∑︀

𝑖 𝑐𝑖
𝜇
𝜌 ]𝐴

𝑖

𝑐𝐵𝑁(𝑄𝜔𝑎)𝐵𝐷𝑒( 𝛺
4𝜋 𝜖𝐵) 𝑠𝑖𝑛 𝛼𝑇 𝑂

(2.18)
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which is of the form

𝑦 = 𝑔1𝑥

1 − 𝑒−𝑔2𝑥
𝑤𝑖𝑡ℎ 𝑦 = 𝑘𝐴𝐵, 𝑥 = 𝐼𝐵 (2.19)

𝑔1, 𝑔2...fitting parameters of the Horita plot

and

𝑔1 =

∑︀
𝑖 𝑐𝑖

𝜇
𝜌

]︁𝐴

𝑖

𝑐𝐵𝐷𝑒 𝑠𝑖𝑛 𝛼𝑇 𝑂

𝑀𝐴

𝑁(𝑄𝜔𝑎)𝐴

(︀
𝛺
4𝜋

)︀
𝜖𝐴

(2.20)

𝑔2 =

∑︀
𝑖 𝑐𝑖

𝜇
𝜌

]︁𝐴

𝑖

𝑐𝐵𝐷𝑒 𝑠𝑖𝑛 𝛼𝑇 𝑂

𝑀𝐵

𝑁(𝑄𝜔𝑎)𝐵

(︀
𝛺
4𝜋

)︀
𝜖𝐵

(2.21)

By comparing equation 2.20 and 2.21 with equation 2.10, the 𝜁-factors for both elements
can be calculated by

𝜁𝐴 = 𝑔1𝑐𝐵𝐷𝑒 𝑠𝑖𝑛 𝛼𝑇 𝑂∑︀
𝑖 𝑐𝑖

𝜇
𝜌

]︁𝐴

𝑖

(2.22)

𝜁𝐵 = 𝑔2𝑐𝐵𝐷𝑒 𝑠𝑖𝑛 𝛼𝑇 𝑂∑︀
𝑖 𝑐𝑖

𝜇
𝜌

]︁𝐴

𝑖

(2.23)

The 𝜁-factors for both elements are calculated from the fitting parameters of the Horita
plot and the other known quantities (concentrations, MAC, take-off angle and electron
dose).

2.4.3 Method B - Intensity dependence of reference intensity

The second ansatz stems from a slightly modified version of the Horita plot where the k-
factor no longer represents the ordinate but the intensity of the X-ray line which experiences
absorption. The abscissa is still represented by the intensity of the non-absorbed (𝐴𝐵 = 1)
X-ray line. If we merge equation 2.15 with equation 2.10 and 2.12, we get the following for
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the absorbed X-ray line:

𝐼𝐴 =

𝐷𝑒𝑐𝐴 𝑠𝑖𝑛 𝛼𝑇 𝑂

⎡⎣1 − 𝑒
−

𝜌𝑡
∑︀

𝑖 𝑐𝑖
𝜇
𝜌 ]𝐴

𝑖
𝑠𝑖𝑛 𝛼𝑇 𝑂

⎤⎦
𝜁𝐴

∑︀
𝑖 𝑐𝑖

𝜇
𝜌

]︁𝐴

𝑖

(2.24)

If equation 2.7 is altered by putting 𝑡 on the left side alone and substitute 𝑡 in equation
2.24 with it, one gets

𝐼𝐴 = 𝐷𝑒𝑐𝐴 𝑠𝑖𝑛 𝛼𝑇 𝑂

𝜁𝐴
∑︀

𝑖 𝑐𝑖
𝜇
𝜌

]︁𝐴

𝑖

⎡⎣1 − 𝑒
−

𝜁𝐵𝐼𝐵
𝐷𝑒𝑐𝐵

∑︀
𝑖 𝑐𝑖

𝜇
𝜌 ]𝐴

𝑖
𝑠𝑖𝑛 𝛼𝑇 𝑂

⎤⎦ (2.25)

which is of the form:

𝑦 = ℎ1

[︁
1 − 𝑒−𝑥ℎ2

]︁
𝑤𝑖𝑡ℎ 𝑦 = 𝐼𝐴, 𝑥 = 𝐼𝐵 (2.26)

ℎ1,ℎ2...fitting parameters of the modified Horita plot

and

ℎ1 = 𝐷𝑒𝑠𝑖𝑛 𝛼𝑇 𝑂∑︀
𝑖 𝑐𝑖

𝜇
𝜌

]︁𝐴

𝑖

𝑐𝐴

𝜁𝐴
(2.27)

ℎ2 =

∑︀
𝑖 𝑐𝑖

𝜇
𝜌

]︁𝐴

𝑖

𝐷𝑒𝑠𝑖𝑛 𝛼𝑇 𝑂

𝜁𝐵

𝑐𝐵
(2.28)

Again, the 𝜁-factors 𝜁𝐴 and 𝜁𝐵 can be calculated by the fitting parameters and reformulating
equation 2.27 and 2.28.
Method B is very similar to method A, since the same information is used to perform both
fits. The only difference is that the quasi non-absorbed X-ray line is used twice in method
A - within the k-factor and as a measure for thickness.

2.4.4 Method C - Intensity dependence of 𝑡
𝜆

In the third derivation used to determine 𝜁-factors from fitting parameters, the measure
for thickness is changed from a non-absorbing X-ray line intensity to the relative thickness
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which is measured by EELS and is defined as

𝑡

𝜆
= 𝑙𝑛

(︂
𝐼𝑡𝑜𝑡

𝐼0

)︂
(2.29)

𝑡...specimen thickness
𝜆...inelastic mean free path
𝐼𝑡𝑜𝑡...intensity of the whole spectrum
𝐼0...intensity of the zero loss peak

If the inelastic mean free path of the material is known, it is possible to obtain the
absolute thickness by rewriting formula 2.29 as:

𝑡 = 𝜆 · 𝑙𝑛

(︂
𝐼𝑡𝑜𝑡

𝐼0

)︂
(2.30)

The derivation starts again with the relation for the X-ray line of element A which suffers
from absorption (see equation 2.15). Here, equation 2.10 is inserted and the 𝜁-factor is
brought to the left side.

𝜁𝐴 = 𝜌𝑡𝑐𝐴𝐷𝑒

𝐼𝐴

1
𝐴𝐴

(2.31)

The absorption correction term (equation 2.12) is inserted and each thickness-term is
divided and multiplied by 𝜆, which gives

𝜁𝐴 =
𝑡
𝜆𝜆𝜌𝑐𝐴𝐷𝑒

𝐼𝐴

1 − 𝑒
− 𝑡

𝜆
𝜆𝜌 𝑐𝑜𝑠𝑒𝑐 𝛼𝑇 𝑂

∑︀
𝑖 𝑐𝑖

𝜇
𝜌

]︁𝐴

𝑖

𝑡
𝜆𝜆𝜌 𝑐𝑜𝑠𝑒𝑐 𝛼𝑇 𝑂

∑︀
𝑖 𝑐𝑖

𝜇
𝜌

]︁𝐴

𝑖

(2.32)

The above-mentioned formula can be rewritten as

𝐼𝐴 = 𝑐𝐴𝐷𝑒 𝑠𝑖𝑛 𝛼𝑇 𝑂

𝜁𝐴
∑︀

𝑖 𝑐𝑖
𝜇
𝜌

]︁𝐴

𝑖

1 − 𝑒
− 𝑡

𝜆
𝜆𝜌 𝑐𝑜𝑠𝑒𝑐 𝛼𝑇 𝑂

∑︀
𝑖 𝑐𝑖

𝜇
𝜌

]︁𝐴

𝑖 (2.33)

which is of the form

𝑦 = 𝑓1

[︁
1 − 𝑒−𝑥𝑓2

]︁
𝑤𝑖𝑡ℎ 𝑦 = 𝐼𝐴, 𝑥 = 𝑡

𝜆
(2.34)
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𝑓1,𝑓2...fitting parameters of the modified Horita plot

and

𝑓1 = 𝑐𝐴𝐷𝑒 𝑠𝑖𝑛 𝛼𝑇 𝑂

𝜁𝐴
∑︀

𝑖 𝑐𝑖
𝜇
𝜌

]︁𝐴

𝑖

(2.35)

𝑓2 = 𝜆𝜌 𝑐𝑜𝑠𝑒𝑐 𝛼𝑇 𝑂

∑︁
𝑖
𝑐𝑖

𝜇

𝜌

]︂𝐴

𝑖

(2.36)

𝜁𝐴 and 𝜆 can be calculated by rewriting the equations 2.35 and 2.36. 𝜁𝐵 is determined
according to equation 2.14. Therefore, it is necessary to perform an additional Horita plot
to obtain the absorption-free k-factor like it is explained in chapter 2.4.1. Since we want
to avoid to use the assumption of a non-absorbed X-ray line the measure for thickness is
represented by the relative thickness 𝑡

𝜆 in this version of a Horita plot.
The advantage of this method is that one can not only determine both 𝜁-factors but also
the specimen’s inelastic mean free path if the density is known. Moreover, the assumption
of a non-absorbing X-ray line is no longer necessary.





CHAPTER 3
Experiments and results

Elemental standards are needed to put the procedures, described in the theoretical part,
into practice. These standards have to be prepared in a way that the resulting specimen
has regions with different thicknesses, at which, EDXS measurements are taken. For
each method a current measurement is required. Method C, additionally needs an EELS
measurement at each region where an EDX spectrum is acquired. An evaluation routine
needs to be implemented for both, the EDX spectra and the created fits.
EDXS and EELS spectrum images (to increase the measurement efficiency), were acquired
simultaneously at different thicknesses on each crystalline specimen. Every single spectrum
was evaluated with respect to X-ray intensities (EDXS) and 𝑡

𝜆 -values. The data was then
used to acquire Horita plots, perform exponential fits and determine the 𝜁-factors from the
fitting parameters.

3.1 Specimens
3.1.1 Choice of samples

For the determination of 𝜁-factors via extrapolation and fitting methods, both, the com-
position of the specimen and its thickness distribution, are vital to get reliable results.
Since these methods depend on the effect of X-ray absorption, it is necessary to ensure
that enough absorption takes place within the specimen. As described in chapter 2.2 the
probability for low-energy X-rays of light elements to be absorbed is much higher than
for high-energy X-rays which originate from heavier elements. Another criterion for the
choice of the sample is that it emits one X-ray line which hardly suffers from absorption.
This non-absorbing line can be used as a measure for thickness. The standard has to
have constant composition and density, hence, it is feasible to work with single crystals.
Furthermore, the energies of the generated X-ray lines should be well separated. This
simplifies the evaluation of the EDX-spectra. Moreover, the sample should be stable under
the electron beam, thinned to electron transparency and should not contain elements
used in microscope components or elements which can be implanted during specimen
preparation.
Since the method is based on EDXS/EELS measurements at different thicknesses, it is
obvious that the sample needs to have a proper thickness distribution which can be achieved
by a wedge-shaped lamella.

19
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In this work, single crystals of three materials were chosen. Their densities and composi-
tions are listed in table 3.1

Table 3.1: Materials used for the acquisition of EDXS and EELS spectrum images
c...concentration in percentage by mass [wt%]
𝜌...density [g/cm3]

Silicon dioxide single crystal SiO2
(Quartz crystal) 𝑐𝑆𝑖 = 46.74 𝑤𝑡%, 𝑐𝑂 = 53.26 𝑤𝑡%

𝜌 = 2.65 g/cm3
Zinc oxide single crystal ZnO

𝑐𝑍𝑛 = 80.34 𝑤𝑡%, 𝑐𝑂 = 19.65 𝑤𝑡%
𝜌 = 5.61 g/cm3

Silicon carbide 4H single crystal SiC
𝑐𝑆𝑖 = 70.04 𝑤𝑡%, 𝑐𝐶 = 29.96 𝑤𝑡%
𝜌 = 3.21 g/cm3

The values for the mass attenuation coefficients in table 3.2 were calculated with equation
2.4. The values of the individual elements’ MACs were taken from the website of the
National Institute of Standards and Technology (NIST) [16]. The lower the atomic number
Z of the ionized atom within the specimen, the higher the value of the MAC for the emitted
X-ray lines. Therefore, it is evident that low-energy X-rays get absorbed to a higher extent
than X-rays with higher energies.

Table 3.2: MACs for Si and O in SiO2, Zn and O in ZnO, Si and C in SiC,
values taken for the K(𝛼) lines,
source: NIST-database [16]

SiO2 𝜌𝑆𝑖𝑂2 [𝑔/𝑐𝑚3] 𝑐𝑆𝑖 [𝑤𝑡%] 𝑐𝑂 [𝑤𝑡%] 𝜇

𝜌

]︂𝑆𝑖

𝑠𝑝𝑒𝑐

[𝑚2/𝑘𝑔] 𝜇

𝜌

]︂𝑂

𝑠𝑝𝑒𝑐

[𝑚2/𝑘𝑔]

2.65 46.74 53.26 66.89 412.29

ZnO 𝜌𝑍𝑛𝑂 [𝑔/𝑐𝑚3] 𝑐𝑍𝑛 [𝑤𝑡%] 𝑐𝑂 [𝑤𝑡%] 𝜇

𝜌

]︂𝑍𝑛

𝑠𝑝𝑒𝑐

[𝑚2/𝑘𝑔] 𝜇

𝜌

]︂𝑂

𝑠𝑝𝑒𝑐

[𝑚2/𝑘𝑔]

5.61 80.34 19.66 3.89 484.89

SiC 𝜌𝑆𝑖𝐶 [𝑔/𝑐𝑚3] 𝑐𝑆𝑖 [𝑤𝑡%] 𝑐𝐶 [𝑤𝑡%] 𝜇

𝜌

]︂𝑆𝑖

𝑠𝑝𝑒𝑐

[𝑚2/𝑘𝑔] 𝜇

𝜌

]︂𝐶

𝑠𝑝𝑒𝑐

[𝑚2/𝑘𝑔]

3.21 70.05 29.95 35.25 2462.60
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3.1.2 Specimen preparation

The specimens were prepared from bulk material by means of a focused ion beam (FIB)
with the FEI Nova 200 Nanolab. Every specimen was thinned to a wedge-shaped lamella
and mounted on an Omniprobe grid. The goal of the preparation was to obtain a wedge
angle in the range of 1-2° with different thicknesses. To avoid shadowing effects, the
specimen was mounted on the grid in the so-called "top-position" (see figure 3.1).

Figure 3.1: SiO2 lamella mounted on an Omniprobe grid in top-position, SE image taken
during FIB preparation

3.2 Used TEM-EDXS system

FEI Titan (S)TEM
The Titan 60-300 is equipped with a high-brightness Schottky X-FEG with a monochro-
mator. The operating voltage was 300 kV. A Cs-probe corrector for high-resolution STEM
imaging, several HAADF, BF and ADF detectors and a high-resolution GIF (Gatan
Imaging Filter) Quantum electron spectrometer for EELS and EFTEM are implemented.
The Titan is provided with an EDXS detector system which is called Super-X detector. It
contains four windowless SDD detectors placed symmetrically around the optical axis.
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Figure 3.2: Schematic of the Super-X geometry: Four SDD detectors are arranged symmetri-
cally around the sample (taken from Schlossmacher et al. [17]).

In addition to the top-position of the lamella on the grid, an analytical double tilt holder
especially designed for the Super-X detector system was used for a further reduction of
shadowing effects. To avoid channeling effects, the probe was tilted out of the zone axis
towards the active quadrant of the detector. Since the four quadrants may differ slightly
in terms of solid angle, only a single quadrant per measurement was turned on. These
differences may also result in slightly different 𝜁-factors which will be discussed later on.

Experimental set-up
The measurements were performed in STEM mode. The parameters for the acquisition
of EDXS and EELS data are listed in table 3.3. A small camera length was selected to
ensure that all electrons enter the GIF to get reliable current measurements via the drift
tube. An acquisition time of 100 𝑠 was chosen to have good statistics in terms of X-ray
counts. The specimen tilt was different for each measurement, since zone axis avoidance
had to be considered.

Table 3.3: Measurement parameters

C1 aperture [µm] 2000
C2 aperture [µm] 50
C3 aperture [µm] 2000
Convergence angle [mrad] 19.6
EELS collection semi angle [mrad] 37.7
Camera length [mm] 29.5
Spectrometer entrance aperture [mm] 5
Dispersion EDXS [eV/channel] 5
Dispersion EELS [ev/channel] 0.25
Voltage [kV] 300
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3.3 Acquisition of required data

As described in chapter 2.4, the data needed to experimentally obtain 𝜁-factors depends
on the extrapolation method that is used. For the methods A and B, it is sufficient to
measure the X-ray intensities of the respective X-ray lines at different thicknesses. Method
C additionally requires the relative thickness 𝑡

𝜆 . Therefore, at each measured point both, an
EDX spectrum and an EEL spectrum, were acquired. At the beginning and after every 9th
acquisition, the current of the electron beam was measured to check whether the current
was stable. The points were distributed over a range of specimen thicknesses. To get good
statistics, 90 points for each measurement series were recorded. The zinc oxide lamella is
shown in figure 3.3. The indicated points mark where the measurements were performed.
They are distributed from thin at the top to thick at the bottom (corresponds to a relative
thickness range of 𝑡

𝜆 ≈ 0.2 . . . 1.6). The first and the 11th point are located off the lamella
to control the beam current.

Figure 3.3: ZnO lamella with indicated measurement points
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3.3.1 Determining peak intensities of EDX spectra

For the determination of the measured X-ray intensities, a Matlab script was written.
Existing software was not used due to its unreliable background subtraction in the low-
energy region. Moreover, only single spectra evaluation would have been possible which
is very inefficient and time consuming. This script finds the desired peaks of the related
X-ray lines, subtracts the background and evaluates the associated intensities. Figure 3.4
shows an example of an X-ray spectrum of SiO2. The left peak represents the oxygen
K-line, the right peak represents the silicon K-line. The background was fitted by the
script with a polynomial function which was calculated from the orange-marked points in
the figure. The position of the points at the edges of the peaks were read out manually
from the software Digital Micrograph (DM) for each standard (see appendix for the whole
script).

Figure 3.4: An original EDX spectrum of SiO2 with fitted background

3.3.2 Determination of 𝑡
𝜆 -values

According to equation 2.29, the value of 𝑡
𝜆 is obtained by calculating the natural logarithm

of the fraction of the unfiltered EEL spectrum and the zero-loss filtered EEL spectrum.
This is done automatically by DM. To get the absolute thickness t, the inelastic mean free
path 𝜆 has to be known (see equation 2.30.)
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3.4 𝜁-factor determination

𝜁-factors were measured for X-ray lines of the elements oxygen, carbon, silicon and zinc.
Since oxygen and silicon are components of two used materials, two results were obtained
and compared for these elements. The measurements were taken separately for detector I
and detector II of the Super-X system. The relative orientation of the specimen to the EDX
system in the microscope is an important factor to avoid shadowing effects. Therefore, the
Omniprobe grid with the lamella was placed into the Super-X holder according to figure
3.5 for detector I and was rotated by 180° for detector II. Furthermore, the specimen was
tilted towards the respective detector and out of zone axis to increase the efficiency and
avoid channeling effects.

(a)

(b)
Figure 3.5: Orientation of the Omniprobe grid in the Super-X holder for detector I: (a) from
top, (b) from below
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As described in chapter 2.4, four different kinds of graphs to determine 𝜁-factors were
generated. Either the ratio of the measured X-ray intensities (k-factor) or the line of the
element which suffers from absorption, here the oxygen or carbon K-line, represents the
ordinate. On the abscissa, a measure for thickness is plotted namely the X-ray intensity of
the non-absorbed line or the 𝑡

𝜆 -value. The graphs depict the effect of X-ray absorption in
a descriptive way. The amount of X-rays increases with increasing thickness but at the
same time more X-rays get absorbed, which is described by an exponential behavior (see
figure 3.6). If an exponential fit whose equation is equal to either equation 2.19, 2.26 or
2.34 is applied, two fitting parameters are obtained in each case. Figure 3.6 shows all four
graphs of ZnO at detector I. Figure 3.6 (a) is needed in order to perform method A, (b) for
method B and (c) + (d) for method C. The implemented table within each graph depicts
the calculated fitting parameters and their associated standard errors. All other graphs for
ZnO, SiO2 and SiC for both detectors can be found in the appendix.

(a)
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(b)

(c)
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(d)
Figure 3.6: Graphs performed for 𝜁-factor determination of ZnO at detector I; (a) k-factor
dependence over Zn K𝛼 Intensity; (b) O K Intensity dependence over Zn K𝛼 Intensity; (c) O
K Intensity dependence over 𝑡

𝜆 ; (d) k-factor dependence over 𝑡
𝜆

As discussed in chapter 2.2, the degree of absorption is determined by the MAC of a
specific X-ray line within the specimen (see table 3.2). This means that the higher the
MAC of a specific X-ray line, the larger the curvature of the exponential fit. In other words,
the absorption in the specimen has to be sufficient in order to perform reliable fits. The
data-points appear to lie close to the fitted lines, thus, the applied models (method A to
C) are considered to work reasonably good. However, there seem to be differences in their
quality.

Determination of the X-ray take-off angle 𝛼𝑇 𝑂

To calculate 𝜁-factors including X-ray absorption, the take-off angle 𝛼𝑇 𝑂 has to be known.
The adjusted tilting angle of the specimen holder in combination with the geometry of
the EDX system determines 𝛼𝑇 𝑂 (see equation 2.13). The azimuthal angle 𝜗𝐴 is 315° for
detector I and 225° for detector II. The elevation angle 𝜗𝑒 is 18° (taken from Kraxner [11]).
However, this is only the case if the lamella is considered to be mounted perfectly parallel
to the Omniprobe grid. This was controlled by measuring the angle of the lamella within
the FIB for all three specimens. The ZnO lamella was found to be slightly inclined in 𝛽
direction with respect to the grid. At the other two lamellas (SiO2 and SiC) no measurable
inclinations have been noticed. This circumstance was considered by adding the measured
divergence of 1.4° to the preset tilt angle 𝛽 for measurements at the ZnO lamella.
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(a) (b)
Figure 3.7: Angle measurement of the mounted ZnO lamella with respect to the Omniprobe
grid: (a) shows the angle in 𝛼 direction (𝛼 = 0°), (b) in 𝛽 direction (𝛽 = 1.4°).

Although the mounting angle of the lamella was measured, a specific uncertainty for the
X-ray take-off angle (estimated at 0.5°) still has to be considered.

Determination of the electron dose 𝐷𝑒

According to equation 2.8, the electron dose is calculated from the beam current, the
acquisition time and the elementary charge e. We noticed that the lifetime provided by
DM was wrong since the numbers appeared to be higher than the chosen real time. Since
the displayed dead time in the microscope’s user interface was at 0% during the entire
acquisition, we assume that the life time is very close to the real time. Therefore, the
preset real time of 100 s was considered as the acquisition time and was used to calculate
the electron dose. The beam current was measured frequently via the drift tube of the
microscope’s GIF before and after each measuring series. To assure that all electrons enter
the drift tube when measuring without any specimen, a small camera length was chosen.
The relative error of this measurement is considered to be 1%.

Table 3.4: Take-off angle and electron dose for each measured specimen at the detectors I
and II

Specimen Detector I Detector II
𝛼𝑇 𝑂 [°] 𝐷𝑒 [𝑒−] 𝛼𝑇 𝑂 [°] 𝐷𝑒 [𝑒−]

SiO2 21.54 ± 0.25 1.12 · 1011 24.39 ± 0.25 1.13 · 1011

ZnO 36.71 ± 0.25 1.07 · 1011 25.53 ± 0.25 1.08 · 1011

SiC 27.27 ± 0.25 1.08 · 1011 28.72 ± 0.25 1.06 · 1011
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3.5 Results
For each specimen one data-set was acquired and evaluated with each of the two used
detectors. Spectrum images (multipoint spectrum function of Digital Micrograph) were
performed in order to increase the efficiency of the measurements. In the following three
tables, the 𝜁-factors of C-K, O-K, Si-K𝛼 and Zn-K𝛼 are listed. Each table represents the
values obtained from one fitting method (A, B or C) according to equations 2.19, 2.26 and
2.34. Theoretically, each measured, element specific 𝜁-factor should have the same value if
it is measured with the same detector, no matter which method was used for evaluation.
The 𝜁-factors of O-K and Si-K𝛼 have been measured twice, since these elemental lines
occur in more than one specimen. Errors were determined using single standard deviation
(for the calculation see appendix C).

Table 3.5 displays 𝜁-factors obtained from method A.

Table 3.5: 𝜁-factors for K(𝛼)-lines of C, O, Si and Zn determined from fitting parameters
of the thickness dependent k-factor (method A) measured with the EDX detectors I and II.
Errors were determined using single standard deviation.

Specimen Element 𝜁-factor
[︁

𝑘𝑔·𝑒𝑙𝑒𝑐𝑡𝑟𝑜𝑛
𝑚2·𝑝ℎ𝑜𝑡𝑜𝑛

]︁
Detector I Detector II

SiO2

{︂
Si 472 ± 28 410 ± 20
O 456 ± 24 395 ± 19

ZnO
{︂

Zn 1302 ± 50 1495 ± 64
O 496 ± 17 542 ± 19

SiC
{︂

Si 553 ± 44 562 ± 37
C 908 ± 43 912 ± 32

The weak point of this method is that it is based on the premise that the X-ray line of
the heavier element is a valid measure for thickness, which is only true to a certain extent.
Also, this X-ray energy could be absorbed which depends on the MAC of the respective
X-ray line. For example, the MAC-value of the Si-K𝛼 line in SiO2 is 66.89 𝑘𝑔

𝑚2 . Since the
MAC of the O-K line in SiO2 (412.29 𝑘𝑔

𝑚2 ) is only about six times higher this may lead to
an substantial error. The situation for ZnO and SiC, with MAC-ratios of the associated
X-ray lines of about 125 and 70, is different. Moreover, the MACs of the O-K line in ZnO
(484.89 𝑘𝑔

𝑚2 ) and the C-K line in SiC (2462.60 𝑘𝑔
𝑚2 ) have larger absolute values than the

O-K line in SiO2. This matter of fact gives rise to more absorption of the named X-ray
lines within ZnO and SiC compared to SiO2 and thus, more accurate fitting parameters
and 𝜁-factors.
None the less, the results for the 𝜁-factors of all elements are already similar to the values
that Fladischer and Kraxner achieved with other methods for the same system (see PhD
thesis of Fladischer and Kraxner [18], [11]). Therefore, MAC-values of about 400 𝑘𝑔

𝑚2 for the
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well absorbed X-ray line of the light element seem to be sufficient to perform exponential
fits used in method A.
Since method B (table 3.6) uses the same kind of information to determine 𝜁-factors
the above mentioned arguments ought to be valid as well. The observable differences of
the determined 𝜁-factors could be explained by the usage of a different fitting function.
Furthermore, the measured X-ray intensity of the quasi non-absorbed X-ray line no longer
is used twice in order to calculate Cliff-Lorimer factors and as a measure for thickness.
Hereby, some differences for the resulting 𝜁-factors could emerge.

Table 3.6: 𝜁-factors for K(𝛼)-lines of C, O, Si and Zn determined by fitting parameters of the
thickness-dependent intensity (method B) measured with the EDX detectors I and II. Errors
were determined using single standard deviation.

Specimen Element 𝜁-factor
[︁

𝑘𝑔·𝑒𝑙𝑒𝑐𝑡𝑟𝑜𝑛
𝑚2·𝑝ℎ𝑜𝑡𝑜𝑛

]︁
Detector I Detector II

SiO2

{︂
Si 519 ± 27 443 ± 20
O 490 ± 22 420 ± 16

ZnO
{︂

Zn 1127 ± 45 1422 ± 61
O 448 ± 15 524 ± 17

SiC
{︂

Si 498 ± 43 554 ± 41
C 882 ± 33 909 ± 29

In method C, contrary to the other two methods, 𝑡
𝜆 represents the thickness of the

modified Horita plot whose fitting parameters are used to calculate the 𝜁-factors shown
in table 3.7. The 𝜁-factor of the light elements (O and C) are determined directly from
the fitting parameters. An additional step is necessary to obtain the 𝜁-factor of the
heavier elements (Si and Zn). Since the absorption-free k-factor is equal to the quotient of
the 𝜁-factor of the light element and the 𝜁-factor of the heavy element, it is possible to
calculate one 𝜁-factor if the other is known according to equation 2.14. In order to get the
absorption-free k-factor the k-factors at different specimen thicknesses are plotted over the
relative thickness and extrapolated to zero-thickness (see figure 3.6 (d)). One drawback
here is that the precision of the calculated second 𝜁-factor suffers from the errors of two
different fitting methods. This leads to relative errors of about 10%. A benefit is, that
additionally to 𝜁-factors, the inelastic mean free path 𝜆 of the specimen is determined.
The EELS measurement is not influenced by absorption and therefore, method C is con-
sidered to deliver more reliable results. Especially the 𝜁-factors of the O-K line determined
with SiO2 and ZnO should have similar results and their error margins ought to overlap.
Since this is not the case, for both detectors, other error sources need to be contemplated.
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Table 3.7: 𝜁-factors for K(𝛼)-lines of C, O, Si, Zn and inelastic mean free path 𝜆 determined
by fitting parameters of the thickness-dependent intensity of the light element (method C)
measured with the EDX detectors I and II. Errors were determined using single standard
deviation.

Specimen Element 𝜁-factor
[︁

𝑘𝑔·𝑒𝑙𝑒𝑐𝑡𝑟𝑜𝑛
𝑚2·𝑝ℎ𝑜𝑡𝑜𝑛

]︁
𝜆 [nm]

Detector I Detector II Detector I Detector II

SiO2

{︂
Si 528 ± 80 496 ± 69 191 ± 12 193 ± 7O 509 ± 29 483 ± 19

ZnO
{︂

Zn 1103 ± 89 1286 ± 92 135 ± 4 140 ± 4O 416 ± 14 439 ± 14

SiC
{︂

Si 559 ± 66 571 ± 49 123 ± 9 142 ± 9C 863 ± 32 899 ± 29

In figure 3.8, the 𝜁-factors of the oxygen K-line are depicted. The relative error of the
single values lies between 3 and 6%. The difference of the determined values are up to
approximately 20% at detector I and up to 30% at detector II. While at detector I method
A and B lead to more similar results than method C, at detector II it appears to be
vice versa. Therefore, no method can be preferred to the other and further error sources
need to be considered. The geometry of detector I and II, namely the detector elevation
angle, could vary from each other. This fact may lead to different results at the two used
detectors.
The observed differences of the Si K𝛼-line 𝜁-factors (figure 3.9) are similar to figure 3.8.
The relative errors of the 𝜁-factors determined with method C lie between 9 and 15%.
Because this relative errors have their origin from two different fitting procedures they
appear to be larger than errors obtained with method A and B.
Figure 3.10 and 3.11 show the obtained 𝜁-factors for the carbon K-line and the zinc
K𝛼-line. Here, it is remarkable, that the results for carbon determined with different fitting
procedures are more similar. One possible reason is that the difference of absorption of
the two involved elements is higher than for the other two used standards. Especially the
carbon K line is heavily absorbed in SiC. (see table 3.2). The results at detector II are
constantly higher compared to detector I, which could be explained by slightly different
solid angles due to small differences of the geometry.
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Figure 3.8: Summarized values for the 𝜁-factor of the oxygen K-line determined with SiO2
and ZnO at detector I and II with method A, B and C

Figure 3.9: Summarized values for the 𝜁-factor of the silicon K-line determined with SiO2
and SiC at detector I and II with method A, B and C
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Figure 3.10: Summarized values for the 𝜁-factor of the carbon K-line determined with SiC
at detector I and II with method A, B and C

Figure 3.11: Summarized values for the 𝜁-factor of the zinc K𝛼-line determined with ZnO at
detector I and II with method A, B and C
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Figure 3.12 gives an overview of the determined 𝜁-factors of carbon, oxygen, silicon and
zinc. The selected values were determined with method C at detector I. The trend of
increased 𝜁-factors for high (zinc) and low (carbon) atomic numbers appears to be similar
to the behavior Fladischer observed for the same system [18]. While Fladischer’s values for
light elements were unreliable and highly dependent on the used model for the ionization
cross section, in our case, the method is particularly suitable for low atomic numbers.
In figure 3.13, the results for the IMFP are illustrated for detector I and II. This parameter
should only depend on the specimen itself and not on the detector. Nevertheless, 𝜆 is
calculated with the take-off angle which depends on the elevation angle of each individual
detector. This fact could again explain the continued trend of higher values when measuring
with detector II. The IMFP of a specific material can be calculated if the incident-
convergence semi-angle, the EELS collection semi-angle and the high voltage are known.
Depending on the used models by Malis et al. [13] , Iakubovski et al. [19] or Jin et al.
[20] different values are obtained. The range of the determined IMFP’s of SiO2, ZnO and
SiC are shown in table 3.8. If we compare the experimentally determined values and the
calculated values the IMFP’s of ZnO and SiC a nice correspondence can be seen. Although
the measured values of SiO2 are slightly out of the calculated range the determined values
of all three specimens seem to be reasonable.

Figure 3.12: Values for the 𝜁-factors of carbon K-, oxygen K-, silicon K𝛼- and zinc K𝛼-lines
determined with SiC and ZnO at detector I with the 𝑡

𝜆 -method
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Figure 3.13: Inelastic mean free path 𝜆 of SiO2, ZnO and SiC determined at detector I and
II

Table 3.8: Calculated inelastic mean free path 𝜆 of SiO2, ZnO and SiC

Specimen range of IMFP 𝜆[𝑛𝑚]
SiO2 139 − 177
ZnO 105 − 147
SiC 120 − 169
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Evaluation - Quantification

In order to evaluate which method is regarded as most accurate and reliable, the calculated
𝜁-factors were used to perform the quantification by the iterative procedure shown in figure
2.3. This iterative procedure was implemented in a Matlab-script to obtain the elemental
concentrations and the mass-thickness of each specimen. The script can be found in the
appendix. The input parameters are the measured X-ray intensities at different thicknesses,
the determined 𝜁-factors, the electron dose and the take-off angle. Since an absorption
correction is applied, in theory, each spectrum should deliver the same result of elemental
concentrations.
In figure 3.14 the elemental concentration of oxygen in atomic percent (at%) in ZnO
is plotted over the specimen thickness. The mass-thickness, as a result of the 𝜁-factor
method, gives us the actual specimen thickness if it is divided by the standard’s density. A
linear, horizontal fit was applied whose intercept parameter gives us the mean value for the
elemental concentration. Moreover, the functionality of the absorption correction can be
estimated if we compare the deviations of the data-points from the fit at different thicknesses.

(a)
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(b)

(c)
Figure 3.14: Determination of the atomic fraction of oxygen in ZnO. The intercept of the
linear fit indicates the mean value of the elemental concentration in at%. The data was acquired
at detector I and evaluated with 𝜁-factors obtained by method A (a), B (b) and C (c)



3.5 Results 39

The relative error (single standard deviation) of the quantification result of each graph
in figure 3.14 is approximately 2%. This indicates that no thickness dependence of the
obtained concentrations is observable and thus, the absorption correction was performed
successfully.
The atomic concentration of oxygen in ZnO is 50%. The obtained values deviate from the
nominal value depending on which 𝜁-factors (method A, B or C) were used for quantifica-
tion. Method A (49.96 at%) and B (50.23 at%) are evidently closer to the theoretical value
than method C (47,99 at%). In this particular case of ZnO, the EELS measurement needed
for method C seems to be influenced by an additional effect which has to be investigated
in more detail in future work, but will not be part of this master thesis.
While in ZnO the deviation from the theoretical concentrations strongly depends on the
used method, the results of SiO2 and SiC have similar values for all three methods (see
appendix B for all graphs/results).

Since the result rather depends on the combination of the 𝜁-factors of oxygen and zinc
than on their absolute values, it is questionable if an evaluation of the different methods in
terms of accuracy is possible. Moreover, in each case, both 𝜁-factors were determined from
the same measurement series that has been quantified. Thus, the obtained 𝜁-factors need
to be tested on an independent standard to get a reliable verification.





CHAPTER 4
Conclusion

The aim of this Master’s thesis was the development of a method to determine 𝜁-factors
without explicitly measuring the specimen thickness. This was achieved by using the effect
of absorption in a thin film which is related to the film thickness. X-ray absorption can be
illustrated by Horita plots where X-ray intensity ratios (k-factors), measured at different
specimen thicknesses, are plotted against thickness or a valid measure for thickness 𝑡

𝜆 .
Motivated by the work of Marvel et al. [15] 𝜁-factors were determined via three different
kinds (methods) of Horita plots. Method A uses an original Horita plot as described above.
In method B the absorbed X-ray line is plotted over the non-absorbed X-ray line and in
method C the absorbed X-ray line is plotted over the relative thickness. For these plots,
exponential fits were performed whose fitting parameters were used to determine 𝜁-factors.

The data was acquired with EDXS and EELS measurements on a Titan microscope.
The measurements were taken from three different standards: SiO2, ZnO and SiC single
crystals. Two detectors of the Super-X detector were used individually. The EDX and EEL
spectra were measured at different thicknesses. In order to ensure that enough absorption
takes place to realize an exponential fit, the MAC of the absorbed X-ray line within the
specimen needs to be sufficiently large. We experienced that values of 𝜇

𝜌 > 400 𝑘𝑔/𝑚2

are adequate. Additionally, the take-off angle should be minimized which leads to more
absorption since the absorption path increases.

The obtained 𝜁-factors of the four X-ray lines of carbon, oxygen, silicon and zinc are
similar to the values measured previously by Fladischer [18] and Kraxner [11] achieved
with other methods for the same system. The elements oxygen and silicon are present in
two specimens and their 𝜁-factors ought to be equal. In order to evaluate the used methods
in terms of accuracy and reliability the obtained values were determined independently and
compared afterwards. Differences of approximately 20% at detector I and 30% at detector
II have been noticed. Although, method C is considered to be more accurate than A and
B no trend is observable.

Additionally, the calculated 𝜁-factors were used to quantify the acquired spectra. The
absorption correction was successfully applied and mean concentrations near to the the-
oretical value of the standards were obtained (max. ±4 at% difference). Especially, the
quantification results of ZnO spectra with 𝜁-factors determined by method C differed
strongly from the expected value which may be a hint for an additional effect that influences

41
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the EELS measurement. Owing to the fact that the quantification was applied on the
spectra which were used to obtain 𝜁-factors in the first place the significance of these
results should be handled with care. Moreover, the quantification rather depends on the
combination of two 𝜁-factors than on their absolute values. As a next step, the obtained
𝜁-factors could be applied on an independent specimen to evaluate them reliably.

None the less, a 𝜁-factor determination without measuring the specimen thickness is
indeed possible. Especially, if there is a high amount of absorption the results of the
applied methods seem to be reliable. This can be observed on the results for the 𝜁-factor
of the carbon K-line in SiC - their error-margins overlap over a wide range. Hence, an
additional EELS measurement is not required to get reliable results. However, if method C
is applied the relative thickness needs to be measured. At the cost of an additional EELS
measurement the IMFP 𝜆 is obtained. The IMFP’s of SiO2, ZnO and SiC were measured
and compared with calculated values. They agreed with each other. On the other hand a
further factor of uncertainty has to be considered if an additional measurement is applied.
It is emphasized that the newly developed method is especially suitable to determine
𝜁-factors of light elements whose X-ray lines suffer heavily from absorption. This is a
major benefit for X-ray quantification since they are present in many chemical compounds.
Moreover, the same technique could be applied to any pure element standard for heavy
elements which possess high-energy (K, L) and low-energy (L, M, N...) X-ray lines.
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A Used Matlab scripts

A.1 Matlab script to evaluate EDX-spectra in terms of peak intensities
The written Matlab script has to be modified for each specimen. The core of the script
are the built-in functions findpeaks.m and peakfit.m which determine the location of the
gauss-peaks and evaluate them in terms of intensity. The background was fitted with a
polynomial function. The provided data for the fit was created by averaging over five
channels next to the peaks. These locations were determined in Digital Micrograph. The
file from DM was read by the function ReadDMFile2Dto4D.m. The following source code
was used to calculate the intensities of the oxygen K and silicon K𝛼 peaks of the SiO2
lamella.

1 close all
2 clear all
3
4 %read the DM-file with the function ReadDMFile2Dto4D
5 filename = 'C:\UNI\Master\Masterarbeit\Messungen\TITAN\SiC Lamelle Det1\SI-005\

EDS Spectrum Image.dm4';
6
7 %write the data into the matrix 'SPECTRUM'
8 [spec, scales, units, origins, bn_scale, bn_origin, bn_unit] = ReadDMFile2Dto4D(

filename);
9 spec = double(spec)

10
11 SPECTRUM = num2cell(spec)
12 %%
13
14 %subtract the first part of the spectrum to align the energy scale
15 %(the spectra provided by DM start at -475 eV)
16 for i=1:96
17 SPECTRUM(1,:)=[]
18 i+1;
19 end
20
21 channels = length(SPECTRUM);
22 %%
23 %choose the spectra of the measurment series
24 for j=2:11
25
26 for i=1:(channels)
27 intensities(i)=(SPECTRUM{i,j});
28 end
29
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30 dispersion = 5e-3; %kev/channel
31 energy = 0:dispersion:(channels-1).*dispersion;
32 %%
33
34 % Background Model SiO2:
35
36 %values of background window in eV (taken from Digital Micrograph)
37
38 eVbdx1=144;
39 eVbdx2=354;
40 eVbdx3=664;
41 eVbdx4=1579;
42 eVbdx5=1949;
43 eVbdx6=7789;
44 eVbdx7=9574;
45 eVbdx8=19989;
46
47 %values of background window in channels
48
49 bdx1=28;
50 bdx2=70;
51 bdx3=132;
52 bdx4=315;
53 bdx5=389;
54 bdx6=1557;
55 bdx7=1914;
56 bdx8=3998;
57
58 %mean value_counts of 5 channels (+-2 of background window value)
59
60 bdy1=(intensities(bdx1-2)+intensities(bdx1-1)+intensities(bdx1)+intensities(bdx1

+1)+intensities(bdx1+2))/5;
61 bdy2=(intensities(bdx2-2)+intensities(bdx2-1)+intensities(bdx2)+intensities(bdx2

+1)+intensities(bdx2+2))/5;
62 bdy3=(intensities(bdx3-2)+intensities(bdx3-1)+intensities(bdx3)+intensities(bdx3

+1)+intensities(bdx3+2))/5;
63 bdy4=(intensities(bdx4-2)+intensities(bdx4-1)+intensities(bdx4)+intensities(bdx4

+1)+intensities(bdx4+2))/5;
64 bdy5=(intensities(bdx5-2)+intensities(bdx5-1)+intensities(bdx5)+intensities(bdx5

+1)+intensities(bdx5+2))/5;
65 bdy6=(intensities(bdx6-2)+intensities(bdx6-1)+intensities(bdx6)+intensities(bdx6

+1)+intensities(bdx6+2))/5;
66 bdy7=(intensities(bdx7-2)+intensities(bdx7-1)+intensities(bdx7)+intensities(bdx7

+1)+intensities(bdx7+2))/5;
67 bdy8=(intensities(bdx8-2)+intensities(bdx8-1)+intensities(bdx8)+intensities(bdx8

+1)+intensities(bdx8+2))/5;
68
69 bkgrddata = [eps,eps;eVbdx1,bdy1;eVbdx2,bdy2;eVbdx3,bdy3;eVbdx4,bdy4;eVbdx5,bdy5;

eVbdx6,bdy6;eVbdx7,bdy7;eVbdx8,bdy8];
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70 bkgrddata(:,1) = bkgrddata(:,1).*1e-3;
71 %%
72 %
73 % % Background Model ZnO:
74 %
75 % %values of background window in eV
76 %
77 % eVbdx1=144;
78 % eVbdx2=354;
79 % eVbdx3=629;
80 % eVbdx4=779;
81 % eVbdx5=1244;
82 % eVbdx6=7729;
83 % eVbdx7=8199;
84 % eVbdx8=8394;
85 % eVbdx9=8999;
86 % eVbdx10=9347;
87 % eVbdx11=9849;
88 % eVbdx12=19989;
89 %
90 % %values of background window in channels
91 %
92 % bdx1=28;
93 % bdx2=70;
94 % bdx3=132;
95 % bdx4=155;
96 % bdx5=248;
97 % bdx6=1545;
98 % bdx7=1639;
99 % bdx8=1678;

100 % bdx9=1799;
101 % bdx10=1874;
102 % bdx11=1969;
103 % bdx12=3998;
104 %
105 % %mean value_counts of 5 channels (+-2 of background window value)
106 %
107 % bdy1=(intensities(bdx1-2)+intensities(bdx1-1)+intensities(bdx1)+intensities(

bdx1+1)+intensities(bdx1+2))/5;
108 % bdy2=(intensities(bdx2-2)+intensities(bdx2-1)+intensities(bdx2)+intensities(

bdx2+1)+intensities(bdx2+2))/5;
109 % bdy3=(intensities(bdx3-2)+intensities(bdx3-1)+intensities(bdx3)+intensities(

bdx3+1)+intensities(bdx3+2))/5;
110 % bdy4=(intensities(bdx4-2)+intensities(bdx4-1)+intensities(bdx4)+intensities(

bdx4+1)+intensities(bdx4+2))/5;
111 % bdy5=(intensities(bdx5-2)+intensities(bdx5-1)+intensities(bdx5)+intensities(

bdx5+1)+intensities(bdx5+2))/5;
112 % bdy6=(intensities(bdx6-2)+intensities(bdx6-1)+intensities(bdx6)+intensities(

bdx6+1)+intensities(bdx6+2))/5;
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113 % bdy7=(intensities(bdx7-2)+intensities(bdx7-1)+intensities(bdx7)+intensities(
bdx7+1)+intensities(bdx7+2))/5;

114 % bdy8=(intensities(bdx8-2)+intensities(bdx8-1)+intensities(bdx8)+intensities(
bdx8+1)+intensities(bdx8+2))/5;

115 % bdy9=(intensities(bdx9-2)+intensities(bdx9-1)+intensities(bdx9)+intensities(
bdx9+1)+intensities(bdx9+2))/5;

116 % bdy10=(intensities(bdx10-2)+intensities(bdx10-1)+intensities(bdx10)+intensities
(bdx10+1)+intensities(bdx10+2))/5;

117 % bdy11=(intensities(bdx11-2)+intensities(bdx11-1)+intensities(bdx11)+intensities
(bdx11+1)+intensities(bdx11+2))/5;

118 % bdy12=(intensities(bdx12-2)+intensities(bdx12-1)+intensities(bdx12)+intensities
(bdx12+1)+intensities(bdx12+2))/5;

119 %
120 % bkgrddata = [eps,eps;eVbdx1,bdy1;eVbdx2,bdy2;eVbdx3,bdy3;eVbdx4,bdy4;eVbdx5,

bdy5;eVbdx6,bdy6;eVbdx7,bdy7;eVbdx8,bdy8;eVbdx9,bdy9;eVbdx10,bdy10;eVbdx11,bdy11;
eVbdx12,bdy12];

121 % bkgrddata(:,1) = bkgrddata(:,1).*1e-3;
122 %%
123 %
124 % % Background Model SiC:
125 %
126 % %values of background window in eV
127 %
128 % eVbdx1=124;
129 % eVbdx2=179;
130 % eVbdx3=389;
131 % eVbdx4=1584;
132 % eVbdx5=1934;
133 % eVbdx6=7929;
134 % eVbdx7=8189;
135 % eVbdx8=19989;
136 %
137 %
138 % %values of background window in channels
139 %
140 % bdx1=24;
141 % bdx2=35;
142 % bdx3=77;
143 % bdx4=316;
144 % bdx5=386;
145 % bdx6=1585;
146 % bdx7=1637;
147 % bdx8=3998;
148 %
149 %
150 % %mean value_counts of 5 channels (+-2 of background window value)
151 %
152 % bdy1=(intensities(bdx1-2)+intensities(bdx1-1)+intensities(bdx1)+intensities(

bdx1+1)+intensities(bdx1+2))/5;
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153 % bdy2=(intensities(bdx2-2)+intensities(bdx2-1)+intensities(bdx2)+intensities(
bdx2+1)+intensities(bdx2+2))/5;

154 % bdy3=(intensities(bdx3-2)+intensities(bdx3-1)+intensities(bdx3)+intensities(
bdx3+1)+intensities(bdx3+2))/5;

155 % bdy4=(intensities(bdx4-2)+intensities(bdx4-1)+intensities(bdx4)+intensities(
bdx4+1)+intensities(bdx4+2))/5;

156 % bdy5=(intensities(bdx5-2)+intensities(bdx5-1)+intensities(bdx5)+intensities(
bdx5+1)+intensities(bdx5+2))/5;

157 % bdy6=(intensities(bdx6-2)+intensities(bdx6-1)+intensities(bdx6)+intensities(
bdx6+1)+intensities(bdx6+2))/5;

158 % bdy7=(intensities(bdx7-2)+intensities(bdx7-1)+intensities(bdx7)+intensities(
bdx7+1)+intensities(bdx7+2))/5;

159 % bdy8=(intensities(bdx8-2)+intensities(bdx8-1)+intensities(bdx8)+intensities(
bdx8+1)+intensities(bdx8+2))/5;

160 %
161 %
162 % bkgrddata = [eps,eps;eVbdx1,bdy1;eVbdx2,bdy2;eVbdx3,bdy3;eVbdx4,bdy4;eVbdx5,

bdy5;eVbdx6,bdy6;eVbdx7,bdy7;eVbdx8,bdy8];
163 % bkgrddata(:,1) = bkgrddata(:,1).*1e-3;
164 %%
165 %
166 % approximate background with spline interpolation:
167 figure;
168 plot(energy,intensities);
169 hold on
170 backgrnd_interpy = interp1(bkgrddata(:,1),bkgrddata(:,2),energy,'pchip'

);
171 plot(bkgrddata(:,1),bkgrddata(:,2),'o',energy,backgrnd_interpy,':.');
172 hold on
173 title('Original spectrum with fitted background');
174 xlabel('Energy [keV]');
175 ylabel('Intensity [counts]');
176 legend('Original Spectrum','Background Data','Fitted Background')
177
178 %%
179
180 % remove background from original spectrum:
181 peaksonly = intensities - backgrnd_interpy;
182 %
183 % estimate peak positions:
184 %findpeaks: gives back the positions of the peaks in the spectrum
185 [peakheights,peakpos] = findpeaks(peaksonly,energy,'MinPeakDistance',0.05,'

MinPeakHeight',300);
186
187 peakdistances = diff(peakpos);
188 count = 1:length(peakpos);
189 for i=1:length(peakdistances)
190 if peakdistances(i)<0.1
191 count(i) = count(i) - 1;
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192 end
193 end
194 peakheights;
195 peakpos;
196 figure;
197 plot(energy,peaksonly);
198 hold on
199 plot(peakpos,peakheights,'o');
200 hold off
201 title('Background corrected spectrum');
202 xlabel('Energy [keV]');
203 ylabel('Intensity [counts]');
204 %%
205
206 % fit peaks (with manual peakpositions):
207 peakpos = 0.525; %position of oxygen K-alpha peak
208 window = 0.4;
209 [FitResults(1,:), ~, ~, ~, xi, yi, ~] = peakfit([energy;peaksonly],peakpos,window

);
210 %see: https://terpconnect.umd.edu/~toh/spectrum/InteractivePeakFitter.htm#command
211
212 peakpos = 1.74; %position of silicon K-alpha peak
213 [FitResults(2,:), ~, ~, ~, xi, yi, ~] = peakfit([energy;peaksonly],peakpos,window

);
214
215 % peakpos = 9.115; %position of zinc K-alpha peak
216 % [FitResults(3,:), ~, ~, ~, xi, yi, ~] = peakfit([energy;peaksonly],peakpos,

window);
217
218 % peakpos = 0.745; %position of carbon K-alpha peak
219 % [FitResults(3,:), ~, ~, ~, xi, yi, ~] = peakfit([energy;peaksonly],peakpos,

window);
220
221
222 %%
223
224 % calculate gaussians with above fitting constants:
225
226 for i=1:size(FitResults,1)
227
228 area = FitResults(i,j);
229 calculatedInt(i) = area/dispersion;
230
231 %write the calculated intensities into the matrix IntResults
232 IntResults(5,i)=calculatedInt(i);
233
234 end
235
236 end
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A.2 Matlab script to quantify EDX-spectra using the 𝜁-factor method
The written Matlab script has to be modified for each specimen and measurement series in
terms of input parameters and elemental MACs. The input and output parameters are
listed in the first couple of lines. According to figure 2.3 an iterative process is realized.
The convergence criteria is chosen at 0.001 %wt for the determined concentrations and at
10-12 kg/m2 (corresponds to approximately 0.01 nm absolute specimen thickness) for the
mass-thickness. About 15 iteration steps were necessary to obtain the final result.

1 %% Zeta-factor quantification for a BINARY system
2 % written for Nikolaus Rauch by Judith Lammer 27.3.2020
3
4 %output parameters of this script are:
5 % rhot... rho*t = mass thickness
6 % c_a... concentration [wt%] of the low-energy element
7 % c_b... concentration [wt%] of the high-energy element
8
9 % type in all parameters here and load your intensity file. If you run the script

afterwards, the function
10 % zetafactorquantification.m (below) will perform the quantification for
11 % all your intensities.
12 % NOTE: current, acquisiton time, elements and MACs are assumed to be the
13 % same for ALL intensities!
14
15 %% Input parameters
16
17 % D... dose [electrons] (if not known type in cur and tau)
18 % cur... current [A] (ATTENTION: if dose is already known, set to 1)
19 % tau... live time [s] (ATTENTION: if dose is already known, set to 1)
20 % alpha... take-off angle [degr]
21 % zet_a... zeta-factor of the low-energy element
22 % zet_b... zeta-factor of the higher-energy element
23 % murrho_a... MACspec [cm^2/g] of the low-energy X-ray line
24 % murrho_b... MACspec [cm^2/g] of the higher-energy X-ray line
25 % I... matrix of all intensities als xlsx-file: first column low-energy X-ray

line, second column higher-energy X-ray line
26
27 %dose (if known):
28 D=118198578097.60;
29 %if dose is not known, type in current and live time:
30 cur = 1; %measured current [A], IF NOT USED SET TO 1!!!!
31 tau = 1; %acquisition time [s] -> live time
32
33 %type in take-off angle
34 alpha = 24.39019608;
35
36 %EDX specific parameters:
37 %zeta-factors
38 zet_a = 545.2336555; % O-K
39 zet_b = 1432.5230592; % Zn-K
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40
41 %elemental MACs (ZnO)
42 murho_a = 112.149336497841; % O-K in O -> MACspec [m^2/kg]
43 murho_b = 576.089233275353; % O-K in Zn -> MACspec [m^2/kg]
44 murho_c = 0.888200755699; % Zn-K in O -> MACspec [m^2/kg]
45 murho_d = 4.620148790967; % Zn-K in Zn -> MACspec [m^2/kg]
46
47 % %elemental MACs (SiO2)
48 % murho_a = 112.149336497841; % O-K in O -> MACspec [m^2/kg]
49 % murho_b = 754.2279762; % O-K in Si -> MACspec [m^2/kg]
50 % murho_c = 97.09024494; % Si-K in O -> MACspec [m^2/kg]
51 % murho_d = 32.48850367; % Si-K in Si -> MACspec [m^2/kg]
52 %
53 % %elemental MACs (SiC)
54 % murho_a = 231.2153508; % C-K in C -> MACspec [m^2/kg]
55 % murho_b = 3416.858008; % C-K in Si -> MACspec [m^2/kg]
56 % murho_c = 41.71792322; % Si-K in C -> MACspec [m^2/kg]
57 % murho_d = 32.48850367; % Si-K in Si -> MACspec [m^2/kg]
58
59 %read in Excelfile with intensities: first column low-energy X-ray line,
60 %second column higher-energy X-ray line; Attention: readtable sets the
61 %first row as column description (O-K-int, Zn-K-int), so make sure there
62 %is one in your Excelsheet!
63 I = readtable('C:\UNI\Master\Masterarbeit\Berechnungen\Quantifizierung\

int_ZnO_det1.xlsx');
64
65 %% ZETA-FACTOR-Quantification: run the function
66 [rhot, c_a, c_b] = zetaquantification(D,cur,tau,alpha,zet_a,zet_b,murho_a,murho_b

,murho_c,murho_d,I);
67
68 %% saving results to xlsx-file
69 header = {'rho*t', 'conc_low-energy', 'conc_high-energy'}; %names for columns in

Excelsheet (first row!)
70 result = [rhot', c_a', c_b']; %data for Exelsheet in one Matrix
71 filename = 'C:\UNI\Master\Masterarbeit\Berechnungen\Quantifizierung\ZnO\Detektor

1\test-higher-dose.xlsx'; %location and filename of Excelsheet
72
73 xlswrite(filename, header, 1,'A1:C1'); %saving first row in Excelsheet
74 xlswrite(filename, result, 1,'A2'); %saving data in Excelsheet (starting with 2nd

row)

1 %% This function performs a zeta-Faktor quantification with a binary system
2
3 %output parameters:
4 % rhot... rho*t = mass thickness
5 % c_a... concentration [wt%] of the low-energy element
6 % c_b... concentration [wt%] of the high-energy element
7
8 %input parameters:
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9 % D... dose [electrons] (if not known type in cur and tau)
10 % cur... current [A] (ATTENTION: if dose is already known, set to 1)
11 % tau... live time [s] (ATTENTION: if dose is already known, set to 1)
12 % alpha... take-off angle [degr]
13 % zet_a... zeta-factor of the low-energy element
14 % zet_b... zeta-factor of the higher-energy element
15 % murrho_a... MACspec [cm^2/g] of the low-energy X-ray line
16 % murrho_b... MACspec [cm^2/g] of the higher-energy X-ray line
17 % I... matrix of all intensities: first column low-energy X-ray line,
18 % second column higher-energy X-ray line
19
20 function [rhot, c_a, c_b]=zetaquantification(D,cur,tau,alpha,zet_a,zet_b,murho_a,

murho_b,murho_c,murho_d, I)
21 %% section for playing around with just one spectrum - just for checking the code

- please ignore it
22
23 %type in acquisition parameters:
24
25 %if dose is known, type in dose:
26 %D=107453252816.001;
27
28 %if dose is not known, type in current and live time:
29 %cur = 1; %measured current [A], IF NOT USED SET TO 1!!!!
30 %tau = 1; %acquisition time [s] -> live time
31
32 % type in take-off angle
33 %alpha=36.71;
34
35 %type in EDX specific parameters:
36 %n=2;
37
38 % type in zeta-factors
39 %zet_a = 549.953; % O-K
40 %zet_b = 1455.45; % Zn-K
41
42 % type in MAC for the specific energy in the material
43 %murho_a = 4848.90; % O-K in ZnO -> MACspec [cm^2/g]
44 %murho_b = 38.87; % Zn-K in ZnO -> MACspec [cm^2/g]
45
46 %type in intensities
47 %intensities from lowest to highest energy
48 %I_a = 7184.643657; % O-K intensity
49 %I_b = 10948.62689; % Zn-K intensity
50
51 %% one intensity-vector for each energy
52 I_a = I(:,1); %all measured intensities for lower energy line (absorbed)
53 I_b = I(:,2); %all measured intensities for higner energy line (non-absorbed)
54
55 if istable(I_a), I_a=table2array(I_a); end %when reading in xlsx-files, Matlab
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stores them as a table. You need to convert them into an array!
56 if istable(I_b), I_b=table2array(I_b); end
57
58 % evaluate the size of I_a for while loop afterwards
59 n = size(I_a);
60
61 %% calculate dose if only current and live time are given
62
63 Ne = 1.602176634*10^(-19);
64 if cur~=1
65 D=cur*tau/Ne;
66 end
67 for k=1:n(1,1)
68 %% quantification: first step without absorption
69 rhot(k)=(zet_a*I_a(k)+zet_b*I_b(k))/D;
70 c_a(k) = zet_a*I_a(k)/(zet_a*I_a(k)+zet_b*I_b(k));
71 c_b(k) = zet_b*I_b(k)/(zet_a*I_a(k)+zet_b*I_b(k));
72
73 %define convergence criteria
74 convconc = 0.001; convrhot = 0.000000000001;
75 convcheck=0;
76
77 %% convergence loop for quantification with absorption correction
78 while convcheck==0
79
80 Abs_a = ((murho_a*c_a(k)+murho_b*c_b(k)) * rhot(k)* csc(degtorad(alpha)))/(1-

exp(-((murho_a*c_a(k)+murho_b*c_b(k)) * rhot(k)* csc(degtorad(alpha)))));
81 Abs_b = ((murho_c*c_a(k)+murho_d*c_b(k)) * rhot(k)* csc(degtorad(alpha)))/(1-

exp(-((murho_c*c_a(k)+murho_d*c_b(k)) * rhot(k)* csc(degtorad(alpha)))));
82
83 %calculate quantification terms
84 rhottest=(zet_a*I_a(k)*Abs_a+zet_b*I_b(k)*Abs_b)/D;
85 c_atest = zet_a*I_a(k)*Abs_a/(zet_a*I_a(k)*Abs_a+zet_b*I_b(k)*Abs_b);
86 c_btest = zet_b*I_b(k)*Abs_b/(zet_a*I_a(k)*Abs_a+zet_b*I_b(k)*Abs_b);
87
88 %check convergence
89 delta_ca = abs(c_atest-c_a(k)); % convergence crit: < 0,001wt%
90 delta_cb = abs(c_btest-c_b(k));
91 delta_rhot = abs(rhottest - rhot(k)); % convergence crit: < 0,01nm
92
93 convcheck=(delta_ca < convconc && delta_cb < convconc && delta_rhot <

convrhot); %check convergence criterion
94
95 c_a(k) = c_atest;
96 c_b(k) = c_btest;
97 rhot(k) = rhottest;
98
99 end

100 end
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B.1 Residual graphs for 𝜁-factor determination

In this section of the appendix all residual graphs for 𝜁-factor determination are illustrated.
For each measurement series four graphs have been performed to obtain the fitting param-
eters of method A, B and C.

(a) (b)

(c) (d)
Figure B.1: Graphs performed for 𝜁-factor determination of ZnO at detector II; (a)
k-factor dependence over Zn K𝛼 intensity; (b) O-K intensity dependence over Zn K𝛼 intensity;
(c) O-K intensity dependence over 𝑡

𝜆 ; (d) k-factor dependence over 𝑡
𝜆

61
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(a) (b)

(c) (d)
Figure B.2: Graphs performed for 𝜁-factor determination of SiO2 at detector I; (a) k-factor
dependence over Si-K intensity; (b) O-K intensity dependence over Si-K Intensity; (c) O-K
intensity dependence over 𝑡

𝜆 ; (d) k-factor dependence over 𝑡
𝜆

(a) (b)
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(c) (d)
Figure B.3: Graphs performed for 𝜁-factor determination of SiO2 at detector II; (a)
k-factor dependence over Si-K intensity; (b) O-K intensity dependence over Si-K intensity; (c)
O-K intensity dependence over 𝑡

𝜆 ; (d) k-factor dependence over 𝑡
𝜆

(a) (b)

(c) (d)
Figure B.4: Graphs performed for 𝜁-factor determination of SiC at detector I; (a) k-factor
dependence over Si-K intensity; (b) C-K intensity dependence over Si-K intensity; (c) C-K
intensity dependence over 𝑡

𝜆 ; (d) k-factor dependence over 𝑡
𝜆
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(a) (b)

(c) (d)
Figure B.5: Graphs performed for 𝜁-factor determination of SiC at detector II; (a) k-factor
dependence over Si-K intensity; (b) C-K intensity dependence over Si-K intensity; (c) C-K
intensity dependence over 𝑡

𝜆 ; (d) k-factor dependence over 𝑡
𝜆
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B.2 Residual graphs of the quantification-procedure via the 𝜁-factor method

The quantification procedure was performed for every measurement series. The given
graphs display the atomic fraction of the light element of the specimen over the absolute
specimen thickness. These graphs were made for every method (A, B and C) at each
detector.

(a) (b)

(c)
Figure B.6: Determination of the atomic fraction of oxygen in ZnO. The intercept of the
linear fit indicates the mean value of the elemental concentration in at%. The data was acquired
at detector II and evaluated with 𝜁-factors obtained by method A (a), B (b) and C (c).
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(a) (b)

(c)
Figure B.7: Determination of the atomic fraction of oxygen in SiO2. The intercept of the
linear fit indicates the mean value of the elemental concentration in at%. The data was acquired
at detector I and evaluated with 𝜁-factors obtained by method A (a), B (b) and C (c).

(a) (b)
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(c)
Figure B.8: Determination of the atomic fraction of oxygen in SiO2. The intercept of the
linear fit indicates the mean value of the elemental concentration in at%. The data was acquired
at detector II and evaluated with 𝜁-factors obtained by method A (a), B (b) and C (c).

(a) (b)

(c)
Figure B.9: Determination of the atomic fraction of carbon in SiC. The intercept of the linear
fit indicates the mean value of the elemental concentration in at%. The data was acquired at
detector I and evaluated with 𝜁-factors obtained by method A (a), B (b) and C (c).
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(a) (b)

(c)
Figure B.10: Determination of the atomic fraction of carbon in SiC. The intercept of the
linear fit indicates the mean value of the elemental concentration in at%. The data was acquired
at detector II and evaluated with 𝜁-factors obtained by method A (a), B (b) and C (c).



C Error analysis

All errors were calculated using single standard deviation. During the fitting procedure
the standard error of the fitting parameters is calculated. These values were inserted into
the below formulas. The considered error of the electron dose is 1%; the uncertainty of the
take-off angle was estimated at ± 0.25°.

Method A

𝛥 𝜁𝐴 =

⃒⃒⃒⃒
⃒⃒⃒ 𝑐𝐵𝐷𝑒 𝑠𝑖𝑛 𝛼𝑇 𝑂∑︀

𝑖 𝑐𝑖
𝜇
𝜌

]︁𝐴

𝑖

⃒⃒⃒⃒
⃒⃒⃒*𝛥 𝑔1 +

⃒⃒⃒⃒
⃒⃒⃒ 𝑔1𝑐𝐵 𝑠𝑖𝑛 𝛼𝑇 𝑂∑︀

𝑖 𝑐𝑖
𝜇
𝜌

]︁𝐴

𝑖

⃒⃒⃒⃒
⃒⃒⃒*𝛥 𝐷𝑒 +

⃒⃒⃒⃒
⃒⃒⃒ 𝑔1𝑐𝐵𝐷𝑒 𝑐𝑜𝑠 𝛼𝑇 𝑂∑︀

𝑖 𝑐𝑖
𝜇
𝜌

]︁𝐴

𝑖

⃒⃒⃒⃒
⃒⃒⃒*𝛥 𝛼𝑇 𝑂 (C.1)

𝛥 𝜁𝐵 =

⃒⃒⃒⃒
⃒⃒⃒ 𝑐𝐵𝐷𝑒 𝑠𝑖𝑛 𝛼𝑇 𝑂∑︀

𝑖 𝑐𝑖
𝜇
𝜌

]︁𝐴

𝑖

⃒⃒⃒⃒
⃒⃒⃒*𝛥 𝑔2 +

⃒⃒⃒⃒
⃒⃒⃒ 𝑔2𝑐𝐵 𝑠𝑖𝑛 𝛼𝑇 𝑂∑︀

𝑖 𝑐𝑖
𝜇
𝜌

]︁𝐴

𝑖

⃒⃒⃒⃒
⃒⃒⃒*𝛥 𝐷𝑒 +

⃒⃒⃒⃒
⃒⃒⃒ 𝑔2𝑐𝐵𝐷𝑒 𝑐𝑜𝑠 𝛼𝑇 𝑂∑︀

𝑖 𝑐𝑖
𝜇
𝜌

]︁𝐴

𝑖

⃒⃒⃒⃒
⃒⃒⃒*𝛥 𝛼𝑇 𝑂 (C.2)

Method B

𝛥 𝜁𝐴 =

⃒⃒⃒⃒
⃒⃒⃒ 𝑐𝐴𝐷𝑒𝑠𝑖𝑛 𝛼𝑇 𝑂

−ℎ1 2 ∑︀
𝑖 𝑐𝑖

𝜇
𝜌

]︁𝐴

𝑖

⃒⃒⃒⃒
⃒⃒⃒*𝛥 ℎ1 +

⃒⃒⃒⃒
⃒⃒⃒ 𝑐𝐴𝑠𝑖𝑛 𝛼𝑇 𝑂

ℎ1
∑︀

𝑖 𝑐𝑖
𝜇
𝜌

]︁𝐴

𝑖

⃒⃒⃒⃒
⃒⃒⃒*𝛥 𝐷𝑒 +

⃒⃒⃒⃒
⃒⃒⃒ 𝑐𝐴𝐷𝑒𝑐𝑜𝑠 𝛼𝑇 𝑂

ℎ1
∑︀

𝑖 𝑐𝑖
𝜇
𝜌

]︁𝐴

𝑖

⃒⃒⃒⃒
⃒⃒⃒*𝛥 𝛼𝑇 𝑂 (C.3)

𝛥 𝜁𝐵 =

⃒⃒⃒⃒
⃒⃒⃒ 𝑐𝐵𝐷𝑒 𝑠𝑖𝑛 𝛼𝑇 𝑂∑︀

𝑖 𝑐𝑖
𝜇
𝜌

]︁𝐴

𝑖

⃒⃒⃒⃒
⃒⃒⃒*𝛥 ℎ2 +

⃒⃒⃒⃒
⃒⃒⃒ ℎ2𝑐𝐵 𝑠𝑖𝑛 𝛼𝑇 𝑂∑︀

𝑖 𝑐𝑖
𝜇
𝜌

]︁𝐴

𝑖

⃒⃒⃒⃒
⃒⃒⃒*𝛥 𝐷𝑒 +

⃒⃒⃒⃒
⃒⃒⃒ ℎ2𝑐𝐵𝐷𝑒 𝑐𝑜𝑠 𝛼𝑇 𝑂∑︀

𝑖 𝑐𝑖
𝜇
𝜌

]︁𝐴

𝑖

⃒⃒⃒⃒
⃒⃒⃒*𝛥 𝛼𝑇 𝑂 (C.4)
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Method C

The 𝜁-factors determined with method C depend on the results of two fitting procedures.
Therefore, an extra step of error-propagation is needed (see equation C.7).

𝛥 𝜁𝐴 =

⃒⃒⃒⃒
⃒⃒⃒ 𝑐𝐴𝐷𝑒𝑠𝑖𝑛 𝛼𝑇 𝑂

−𝑓1 2 ∑︀
𝑖 𝑐𝑖

𝜇
𝜌

]︁𝐴

𝑖

⃒⃒⃒⃒
⃒⃒⃒*𝛥 𝑓1 +

⃒⃒⃒⃒
⃒⃒⃒ 𝑐𝐴𝑠𝑖𝑛 𝛼𝑇 𝑂

𝑓1
∑︀

𝑖 𝑐𝑖
𝜇
𝜌

]︁𝐴

𝑖

⃒⃒⃒⃒
⃒⃒⃒*𝛥 𝐷𝑒 +

⃒⃒⃒⃒
⃒⃒⃒ 𝑐𝐴𝐷𝑒𝑐𝑜𝑠 𝛼𝑇 𝑂

ℎ1
∑︀

𝑖 𝑐𝑖
𝜇
𝜌

]︁𝐴

𝑖

⃒⃒⃒⃒
⃒⃒⃒*𝛥 𝛼𝑇 𝑂 (C.5)

𝛥 𝜁𝐵 = |𝜁𝐴| * 𝛥 𝑘𝐴𝐵 + |𝑘𝐴𝐵| * 𝛥 𝜁𝐴 (C.6)

with

𝛥 𝑘𝐴𝐵 =
⃒⃒⃒⃒
1
𝑙1

⃒⃒⃒⃒
* 𝛥 𝑔2 +

⃒⃒⃒⃒
1

−𝑙2 2

⃒⃒⃒⃒
* 𝛥 𝑔1 (C.7)

𝑔1, 𝑔2...fitting parameter of the modified Horita plot (see figure 3.6 d))

𝛥 𝜆 =

⃒⃒⃒⃒
⃒⃒⃒ 𝑠𝑖𝑛 𝛼𝑇 𝑂

𝜌
∑︀

𝑖 𝑐𝑖
𝜇
𝜌

]︁𝐴

𝑖

⃒⃒⃒⃒
⃒⃒⃒ * 𝛥 𝑓2 +

⃒⃒⃒⃒
⃒⃒⃒ 𝑓2 𝑐𝑜𝑠 𝛼𝑇 𝑂

𝜌
∑︀

𝑖 𝑐𝑖
𝜇
𝜌

]︁𝐴

𝑖

⃒⃒⃒⃒
⃒⃒⃒ * 𝛥 𝛼𝑇 𝑂 (C.8)
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