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Abstract

Arterial spin labeling (ASL) perfusion imaging is a non-invasive technique capa-
ble of measuring the cerebral blood flow. Due to its poor signal-to-noise ratio,
an efficient denoising method is required. Recently proposed methods like spatio-
temporal total generalized variation (st TGV) improve the image quality but utilize
full optimization procedures and thus are slow in inference. In contrast, deep learn-
ing (DL) based methods are fast in inference, but need much data and time for
training. The aim of this thesis is to implement a co-sparse analysis model (CSM)
and a variational network (VN) for ASL denoising to avoid both limitations.

A CSM uses learned filter kernels and applies a penalty function to the response
of the filter. The result of this procedure forms a regularization term. In combina-
tion with a data fidelity term an “energy” is obtained which is topic to minimize
w.r.t. an input image. In the framework of VNs, full optimization is replaced by
an unrolled gradient descent scheme with a fixed number of steps. By using learn-
able penalty functions and a single parameter set for each descent step, a highly
expressive and efficient model is obtained. Both models were trained with ASL
data from 6 subjects and compared to stTGV on a quantitative and visual basis.
Although both models showed very good denoising performance, the VN outper-
formed the CSM. Despite visual differences, the VN and the stTGV performed on
par in terms of structural similarity. However, the VN was about 50 times faster
in denoising than stTGV. Further, the training of the VN lasts only 15 minutes.
This thesis highlighted the efficient ASL denoising capability of the VN. Its fast
training and the ability to deal with few data makes the VN highly suited for more
advanced applications in the field of arterial spin labeling.

Keywords: Magnetic Resonance Imaging, Arterial Spin Labeling, Image Denois-

ing, Co-Sparse Analysis Model, Variational Network






Kurzfassung

Arterial Spin Labeling (ASL) Perfusionsbildgebung ist eine nicht-invasive Tech-
nik zur Quantifizierung des zerebralen Blutflusses, die durch einen sehr kleinen
Signal-Rausch-Abstand gekennzeichnet ist. Kiirzlich publizierte Methoden wie
spatio-temporal Total Generalized Variation (stTGV) oder Deep Learning (DL)
konnten die Bildqualitidt zwar deutlich verbessern, sind allerdings rechenintensiv
bzw. benétigen viel Zeit und viele Daten fiir das Training. Das Ziel dieser Ar-
beit ist es beide Nachteile durch die Adaptierung eines Co-Sparse Analysis Models
(CSM) sowie eines Variational Networks (VN) zu vermeiden.

Ein CSM verwendet lernbare Filter und penalisiert die Filterantwort mit Hilfe einer
vorgegebenen Funktion. Dieser Regularisierungsterm in Kombination mit einem
Datenterm bildet eine "Energie”, welche in Bezug auf ein Eingangsbild minimiert
wird. Diese vollstdndige Minimierung wird bei VNs umgangen, d.h. nach einer
festen Anzahl an Gradientenschritten abgebrochen. Erlernbare Penalisierungsfunk-
tionen sowie unterschiedliche Parametersétze fiir jeden Abstiegsschritt fithren zu
einem expressiven und effizienten Modell. Beide Methoden wurden mit ASL Daten
von 6 Probanden trainiert und quantitativ sowie visuell mit st TGV verglichen.
Beide Modelle konnten die Bildqualitit deutlich erhéhen, wobei das VN bessere
Resultate erzielte. Trotz visueller Unterschiede erzielten VN und stTGV gleichw-
ertige strukturelle Ahnlichkeits Indizes. Weiters ist das VN rund 50 mal schneller
in der Bildverarbeitung als stTGV und benétigte nur 15 Minuten fiir das Training.
Diese Arbeit unterstreicht die Féahigkeit des VNs zur effizienten Bildverbesserung.
Aufgrund der wenig benétigten Daten und des kurzen Trainings ist das VN beson-
ders fiir herausfordernde Aufgaben im Bereich des Arterial Spin Labelings geeignet.
Keywords: Magnetresonanztomographie, Arterial Spin Labeling, Bildverbesserung,

Co-Sparse Analysis Model, Variational Network
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1. Introduction

Magnetic resonance (MR) perfusion weighted imaging summarizes several acqui-
sition techniques which are capable of measuring signals proportional to the CBF.
This is achieved by employing the impact of an intravascular, extracellular or dif-
fusible tracer on the tissue magnetization. The gained information is used in clinics
for the diagnosis and localization of diseases resulting in a pathologic cerebral blood
flow (f.e. strokes and tumors) as well as for scientific research.

In principle, three different kinds of methods are distinguished: dynamic suscepti-
bility contrast (DSC) perfusion magnetic resonance imaging (MRI), dynamic con-
trast enhanced (DCE) perfusion MRI and ASL. The first two techniques have the
use of an intravenous injected gadolinium-based contrast agent (GBCA) in com-
mon. In contrast, ASL uses magnetically labeled bloodwater as an endogenous
tracer. Some GBCAs are related to the development of nephrogenic systematic
fibrosis (NSF) in patients with renal insufficiency [!]. Also gadolinium deposition
in brain and body have been observed. In addition, qualified personal is needed
for tracer injection. These properties make DSC and DCE less suited for research.
The non-invasive and safe character of ASL overcomes these issues and thus is
considered as an appropriate technique especially for research like f.e. functional
magnetic resonance imaging (fMRI), where it is advantageous over blood oxygena-
tion level dependent (BOLD) contrast imaging in the sense of directly measuring
the perfusion.

In ASL, the PWI is obtained by the difference of an unaffected ’control’ image
and a 'label’ image. The essential part of the ASL pulse sequences is the labeling
of arterial blood water outside the region of interest. The first labeling technique,
continuous ASL (CASL), was proposed by Williams et al. in 1992 [2]. Over the
next decade the methods EPISTAR [3, 1|, FAIR [5], PICORE [6], PULSAR [7]
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and QUASAR [8] formed the new class of pulsed ASL (PASL) techniques. The
main difference between these methods and CASL is the use of one adiabatic pulse
for labeling the arterial blood in a broad area instead of continuous RF-irradiation
which results in relevant tissue heatening. The latest technique, namely pseudo-
continuous ASL (pCASL) was proposed by Dai et al. [9] in 2008 and is considered
as hybrid form between CASL and PASL. Once labeled, the images can be acquired
using 2D or 3D [10] readouts. In general, 3D methods yield a higher signal-to-noise
ratio (SNR) but are less robust against motion. Nevertheless, depending on the
labeling method the magnetisation is increased or decreased just slightly (1%-2%)
which results in a very poor SNR. In order to increase the SNR and hence the im-
age quality, several images are obtained and averaged. The resulting long scanning
times are clinically not acceptable and additionally lead to movement artifacts.

To enhance the image quality and reduce the scanning time, ASL has been topic
for many denoising techniques: anisotropic difusion filtering [11], adaptive wiener

filtering [1 1], iterative soft thresholding [12], wavelet domain filtering [13], 3D block

matching [11], spatio-temporal low rank total variation [15], spatio-temporal total
generalized variation (stTGV) [10], deep learning methods [17, 18, 19, 20] and
others [21, 22].

A very effective convential technique is given by st TGV denoising. However, this
method needs a manual parameter tuning for different SNR cases and, due to
full optimization, long inference (i.e. denoising) times. Neural network based ap-
proaches avoid long denoising times but have the need for large datasets (f.e. [19]
used data from 20 subjects for learning, [20] 240 subjects) and long training times
(f.e [19] trained 12h for low resolution images). In addition, all proposed learning
based models exploit a squared L2 based loss, which is known to favour blurry
solutions more then sharp ones [23]. On the other hand, the possible solution of
using a perceptual based loss like the SSIM [21] or the multiscale SSIM (msSSIM)
[25] lead to a very complex and non-convex energy function, which is likely to
dramatically increase the computational costs.

The aim of this work is to tackle the reported problems by firstly use learnable
filter operators in the framework of field of experts (FoE) [26, 27] and secondly
by adapting a VN [28, 29] to the certain characteristics of high resolution 2D
PASL data. The FoE method will help to overcome costly parameter sweeps like



needed for stTGV. The VN approach will reduce the image processing time to
the millisecond range, which would increase the usability of the ASL denoisng
procedure greatly. Further, the VN comes with a powerful optimization strategy
(inertial proximal alternating linearized minimization (iPALM) [30]) which might

be capable of performing efficient SSIM optimization.
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1.1. Theory

Low level computer vision tasks like denoising, inpainting or non-blind deconvo-
lution can be formulated as an energy based inverse problem. Eq. 1.1 describes
the noise-free forward problem in terms of a system matrix S, data y and ground

truth model parameters x.

y = Sx (1.1)

If the problem is well-posed, X is obtained by computing the inverse of S. Unfor-

tunately, the measured data is almost always subject to noise n (eq. 1.2)

y=Sx+n (1.2)

and the system matrix might not be positive definite. In such cases, the ground
truth x is not obtainable any more and therefore an estimated solution x* is

computed as the minimizer of a suitable energy function (eq. 1.3).

x* = argmin E(S,x,y) (1.3)
The most simple form of an energy models only the distance between the measured
(noisy) data y and the forward mapping Sx. For instance, if a squared L2 norm is
used to measure this difference, the well known least-square solution is obtained.
Depending on the task and on the SNR, this distance measure, which is often
called data fidelity term D(S,x,y), does not yield acceptable results. Therefore,

it is extended with a so called regularization term R(x) (eq. 1.4).

E(S,x,y) = R(x) + D(S,x,y) (1.4)

The exponential of the negative energy is proportional to a Boltzmann distribu-
tion and, therefore, is proportional to a probability. If R(x) and D(S,x,y) are
proportional the negative logarithm of the prior probability P(x) and likelihood
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P(y|x), than e=#(8*¥) is proportional to the a posteriori probability (eq. 1.5).

P(x) - P(y[x)

~E(Sxy) _ ,~R(x) . ~D(Sxy)
e =€ - e XX
P(y)

= P(x]y) (1.5)
Minimizing the energy E(S,x,y) is equivalent to maximizing the joint probability
P(x,y) and because the optimization is independent to the evidence P(y), the
whole procedure is equivalent to maximizing the posterior probability P(x|y) (eq.

1.6).

max ——5 - = m?XP(X)P(y|X) (1.6)

Therefore, if the regularization term and the data term are modeling the corre-
sponding probabilities, minimizing the energy of an inverse problem is equivalent

to finding the maximum a posteriori (MAP) solution in a Bayesian framework.

The Modeling of the Data Term

The most important question to this point is how to model the parts of the energy
function. The data fidelity term has to capture the imperfection of the data acqui-
sition. If the error distribution is known, one can easily infer a suitable distance
metric by maximizing the logarithmic likelihood function. As an example, eq. 1.7

shows the relation between spatial independent Gaussian noise and the L2 norm.

N,
. ]. (’yn—zn)2
max log P(y|x) = maxlog (H egg2>
x x o V2m

o
. (1.7)
1 1
= min Y~ 2 (n — 7)” = min o[y — x|
n=1

Data y and estimate x can be considered as vectorized images with N, pixels.
Another well known data term function is the L1 norm. It maximizes the log-

likelihood in case of Laplace distributed noise and leads to sharper solutions in
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general. In case of a very complex error distribution, it might be beneficial to use
a general formulated data term like a mixture of radial basis functions, where the
parameters are learned from data. However, the central limit theorem is valid for
many problems and thus the squared L2 norm is an appropriate choice. Never-
theless, for reasons of generality D is modeled in terms of an arbitrary distance

measure
D(SJX7Y) :¢<SJX7Y)- (18)

The Modeling of the Data Prior

In contrast to the data term, the choice of data prior is more critical and thus
many different regularization terms have been proposed. The definition of the prior
over the whole image as a N, dimensional distribution, is not only computational
infeasible in case of learning but also restricts the prior to a certain image size. To
avoid these problems and to exploit the self-similarity of images, the majority of
different variants of image priors have in common that they are defined over image

patches.

Product of Experts

The product of experts (PoE) model formulated by Hinton et al. [31] provides
a specific filter-based approach for modeling the prior distribution of (vectorized)
image patches u € RY. In the framework of PoE, the prior probability p(u) is
written as formulated in eq. 1.9 with Ep,gr being the energy of the model, ®
model parameters, Z(0) the normalization, Ny the number of filter - expert pairs,
a; € RY the i-th (vectorized) filter kernel and p; the i-th expert function that aims
to model the probability distribution of the i-th filter response.

Ny
p(u) = — e FPos(WO)  with Epyp = — Z]og pl-(a;ffu) (1.9)

=1
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The filter response of natural images are typically heavy-tailed distributed [32],
therefore the Student-t distribution (ST) and generalized Laplace distribution (GL)
are widely used expert functions. The scalar product al u can be considered as
filtering the image patch u with the filter a;. Further, it can be considered as
projecting u on the basis vector a;. Assuming the matrix A € RV*V is composed
by stacking the N filters a, then Au describes the linear transformation of u by
the transformation matrix A. As the heavy-tailed expert functions favor sparse
filter responses, the model can be considered to transform the image patch onto a
sparse feature space, where deviations from the expectation can be detected and
penalized more reliable. For sake of completeness, instead of modeling the expert
function it is common to directly model the penalty function ¢; = —logp;. The
link between expert function p; and penalty ¢; can be seen in eq. 1.10 where o

and f; are some parametrization constants.

pz(ll) = (]. + u2>_ai 54 ¢Z(U) = IOg (1 + 112) ST

1.10
pi(u) = e~ll” A ¢i(u) = [ul” GL )

In case of setting 8; = 7, Vi the penalty represents the L1 norm of the filter response.

This is particularly interesting when building a connection from PoE to TV priors.

Markov Random Fields

A markov random field (MRF) is an undirected graphical model G(V, E) with
nodes V and edges E that fulfill the local Markov property. The nodes represent
random variables and typically refer to image properties like intensity values, sur-
face normals or optical flow estimations. The structure of the MRF enables a
factorization of the probability distribution p(V = X) by employing the maximal
cliques of the graph defined by eq. 1.11. A clique is an undirected subgraph where
every two distinct nodes are connected to each other. It is said to be maximal if

no node could be added without violating the previous definition.

p(X) = g 1 Aex0 (1.11)
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Here, K defines the number of maximal cliques X, of an image X, f; is the factor-
ization function, Z is the normalization and @ is the entire set of parameters. In

analogy to the PoE, the above equation can also be written in terms of an energy

p(X) = 7o Sk a(Xs) (1.12)
where ¢, corresponds to the factorization function f; and is termed potential func-
tion or clique potential. In order to establish translation invariance, the same
potential function g is used for each clique. In this case the MRF is called homo-
geneous.

In general, the potential function is written in terms of a penalty function ¢, whose
argument is robust scalar mapping defined on the nodes of the cliques. Eq. 1.13
shows exemplarily how a clique potential ¢(Xj) could look in case of a pairwise

MRF, where just the direct non-diagonal neighbors are connected.

q(Xy) = q(@i, z) = p(x; — ;) (1.13)

The scalar mapping used above can be interpreted in the simplest form as a gradi-
ent estimation, i.e. forward differences. If the penalty ¢ is set to be the absolute
function, the TV prior is obtained (eq. 1.14).

K (Nz—1,Ny—1)

Epworire = Y a(Xe) = Y v — @iy

k (4,5)=(1,1)

Flwijen —zigl = [[VX][y (1.14)

Unfortunately, low-order MRF do not lead to satisfying results. For example,
the TV prior introduces so called staircasing artifacts because it favors piecewise
constant solutions. To obtain a more powerful model, higher order MRFs can
be established by forming larger maximal cliques (larger neighborhoods). Among
others, Geman and Reynolds [33] did so by using polynomial functions for scalar
mapping. Roth and Black [20] reformulated this mapping by filtering the nodes of

a (vectorized) clique x; with suitable (vectorized) filters a;. Thus, each clique x
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is centered at pixel k and its size is determined indirectly via the filter size.

q(xx) = Z o(a; X (1.15)

Note that the higher order MRF clique potential defined in eq. 1.15 is equivalent to
the PoE model if the image patch u is considered as a maximal clique. Therefore,
Roth and Black termed this combination of MRF and PoE a field of experts (FoE).

Field of Experts

The field of experts (FoE) overcomes the problem of the PoE of just being defined
over small image patches by incorporating the PoE in the framework of MRFs (eq.
1.16).

Np Ny
1 .
p(X)Z—Z(Q)e_EF"E(X’@) with EFOE:_E E log p;((Ai x X)) (1.16)
k=1 i=1

In contrast to the PoE (eq. 1.9), in the FoE (eq 1.16) the filter A; is applied to
the whole image X instead to a image patch U. As a consequence, a second sum
over the number of pixels N, is introduced which adds up the penalized filter re-
sponses for each center pixel k. This formulation instantly models the overlapping
of different image patches and thus avoids any patch averaging procedures. In the
following sections the FoE energy will also be written by using the filter opera-
tor A € RY»Nr*No wwhere ¢~ in combination with the latter also comprises the

required integration steps. This leads to the following, more compact formulation.

R(x) = Erop(x) = ¢ (Ax) (1.17)
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The Co-Sparse Analysis Model

Combining eq. 1.8 and eq. 1.17 yields the overall energy of the first model, the
so-called CSM.
min  ¢”(Ax) + ¥(S,x,y) (1.18)

Assuming A is invertible and defining D = A ™! and x = D one can also write
min ¢%() + U(DX.¥.5). (119)

which gives the so-called sparse synthesis model. The idea behind this model is
to use a dictionary D and synthesize the solution from dictionary atoms. As the
penalty function promotes sparsity in the solution space, just a few atoms are
needed for synthesis. The dictionary D can be learned from data or set to be a

rich transformation basis like DCT atoms or wavelets.

Inference and Learning in Markov Random Fields

Many parameters like the maximal clique, the neighboring structure, the filters
and the penalty function exist and are often chosen by hand. The TV model,
for instance, can be interpreted as hand-tuned MRF model. However, in the last
15 years, learning approaches have gained more and more attention. Therefore,
it is natural to consider optimizing the parameters of the FoE model with an
appropriate algorithm. Basically, there are two different strategies to learn the
MRF parameters. The first approach tries to minimize the difference between
the model distribution and data distribution. Hence, if sampling from the model
distribution the data distribution should be obtained. This procedure can be
considered as minimizing the Kullback-Leibler divergence between the model and
data distribution and is also equivalent to maximizing the likelihood of the given
training data X. The gradient of the log-likelihood (eq. 1.20) can be used to

employ any first order maximization method.

dlog Lx o OFErpop OFErpop
90; _< 90 >p < 00 >X (1:20)
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Here, (.), and (.)x denote the expectation value of parameter ©, for the model
and data distribution. The data distribution is obtained by simply building the
average over the data X. The exact computation of the model distribution is
not possible, because the partition function has to be evaluated over all possible
energy configurations which is computationally not traceable. Therefore, suitable
sampling strategy like markov chain Monte Carlo (MCMC) or metropolis hastings
(MH) are employed to estimate the model distribution. However, to obtain a
very accurate estimate of the model distribution, many sampling steps would be
necessary, leading to a very slow learning procedure. Fortunately, Hinton et al.
[31] found a very efficient way to overcome this issue. They suggest to initialize
the MCMC with the training data and updating the chain just a few times. This
concept is called contrastive divergence (CD) and works even for one single update.
This probabilistic learning scheme represents a generative model and thus once
learned, it can be used for any kind of problem. Nevertheless, for a specific task a
discriminatively learned prior often leads to better results. Therefore, Samuel and
Tappen [35] proposed a loss-specific learning approach that directly optimizes the
MRF prior for MAP inference. This is achieved by minimizing the loss L(x*(®), x)
which measures the distance between the ground truth x and the minimizer of the
inference scheme x*. This is formally written as bilevel optimization scheme (eq.
1.21) where the inference represents the lower level problem (LLP) and the loss

minimization the higher level problem (HLP).

min L(x*(0©),x)
© (1.21)

The drawback of the bilevel approach is that the LLP has to be solved with a
very high accuracy [30], which is particularly hard if the penalty function is also
learnable. Therefore, the penalty function is typically chosen a-priori. However,
the LLP is non-convex in general and thus hard to solve anyway, even if powerful
optimization methods like conjugate gradient (CG) [35] or L-BFGS [30] are used.
A different learning approach was performed by Barbu [37] and Domke [38] by

11
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using truncated optimization. This active random field called technique stops the
LLP optimization after a fixed, rather low number of iterations, leading to a fast
but suboptimal inference. The lack for accurate inference is compensated by a
prior, that is optimized not only for a certain inference scheme, but also for the
exact number of inference steps. Nevertheless, solving the LLP with a very high

accuracy still leads to better results than using truncated optimization [27].

Variational Networks

The proposed learning schemes for MRF-FoE are feasible, but still not very efficient.
Other image restoration algorithms like BM3D [11] attend also good performance,
but are difficult to incorporate into a parallelized GPU based training. Chen et al.
[28] tackled this problem by formulating a VN. The VN’s basic concept is similar
to those of active random fields, but with the difference of learning a separate prior
for each gradient descent step. In combination with learnable penalty functions
this leads to a highly expressive model that gains very good performance. More

formally, the reconstructed image x* in the VN framework is written as:

Np Ny

x*=xT, x'=x 0 ZZ¢§((A§Xt)k)+)\t¢(Sxt—y) , 0<t<T-1

- Oxt :
k=1 i=1
(1.22)

where A! and ¢! denote the i-th filter-penalty pair for the t-th gradient descent
step. A denotes the t-th non-negative data term weight. N; refers to the number
of filter-penalty pairs and T" to the number of gradient descent steps. By computing

the derivatives and rearranging some variables, eq. 1.23 is obtained.

xt — xt all T 0
— = > Al (Al - Nt (Sx —y)  with At=1 (123)
i=1

This formulation is closely related to the well-known Perona-Malik model for
anisotropic diffusion [39], with the first part being the so-called diffusion term

and the second part being the reaction term. The models differ in the formulation

12
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of the filter operator, which is composed of a horizontal and vertical gradient filter
in case of the Perona-Malik model and Ny principally unconstrained learnable fil-
ters in case of the variational network. A second difference is given by the reaction
term, which is not part of the original anisotropic diffusion model.

Further, Kobler et al. [10] showed the relation between VNs and deep learning.
A single diffusion step, in this context also called variational unit (VU), can be
interpreted as residual unit, which is the building block of residual neural networks.
The central idea behind residual networks is to utilize short-cut links to skip cer-
tain layers, leading to efficiently learnable networks with up to 1000 layers. The
short-cut link between input x* and output x**! establishes a residue function (eq.
1.24) g; which is typically formulated using filter kernels and thus is closely related
to eq. 1.23.

Ny
X —x'=g(x") = Z Afa (Aflxt) (1.24)
i=1

.Aﬁl and AfQ refer to filter operators and a(.) to the activation function, which
is often set to be the well-known rectified linear function (rectified linear units -
ReLU). The data term can be incorporated in the framework of residual neural
networks by using a second residual mapping, yielding so-called multi residual units.
It is obvious that the residual function estimates the gradient of the current image
x'. Hence, variational networks combine the profound theoretical background of

variational models and the efficiency of neural networks.
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2. Methods

2.1. Data Acquisition and Preprocessing

The ASL data used throughout this work was acquired and preprocessed in context
with the publication of Spann et al. [16]. The following chapters summarize the
data recording and preprocessing steps performed in the context of the above

publication.

2.1.1. Data Acquisition

ASL measurements were performed on ten healthy subjects (24-28 years, 4 women)
after giving written informed consent (caffeine and tobacco consumption were
avoided before the MR experiment). The latter is reasoned in alternations on
the global and regional CBF caused by the mentioned substances. ([11], [12], [13])
Label and control images were acquired using a 3T MR system (Magnetom Skyra,
Siemens Healthcare, Germany) performing pulsed ASL (PASL) measurements (PI-
CORE [0] - Q2TIPS [11]) with a 32-channel head coil. For the reduction of motion
artifacts small foam blocks were used to fixate the head of the subjects. In more de-
tail: 12 slices with an in-plane resolution of 1.8x1.8 mm? (128x128 matrix, 230x230
mm? field-of-view (FOV)) and 3.6 mm thickness (distance factor 25%), 6/8 partial
Fourier, GRAPPA-factor 2 and pre-scan normalize. Single-shot echo planar imag-
ing (EPI) with TR/TE = 2800/19 ms was used for imaging with a flip angle of
90°, bolus duration TI; = 800 ms, labeling inversion time TI; = 1800 ms, labeling
slab thickness of 100 mm (20 mm gap between slab and image slice), ascending

slice order and a bandwidth of 1630 Hz/px. To estimate a noise-free ground truth
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500 L/C-pairs and a proton density weighted image (M0) were acquired in about

45 min.

2.1.2. Tissue Masks

WM, GM and cerebrospinal fluid (CSF) masks were computed from the acquired

T1w image. The anatomical T1 weighted images were measured using a 3D
MPRAGE sequence with the following imaging parameters: 1 mm isotrop, FOV=256x256
mm?, 144 slices, flip angle of 8° and TR/TE/TI = 1910/1.81/1000 ms). The
segmentation was performed using the Statistical Parameter Mapping 12 toolbox
(SPM12, Wellcome Trust Centre for Neuroimaging, London Uk, www.fil.ion.ucl.ac.uk/spm).
The generated partial volume (PV) content maps were registered to the first ASL

image and thresholded to obtain the corresponding tissue masks (threshold = 0.5).

In addition, a whole brain mask was computed by summing up the PV-content

maps and thresholding at 0.1.

2.1.3. Preprocessing

The ASL data was preprocessed as recommended in [15] using the SPM12 ASL
toolbox [16, 17] and in-house MATLAB scripts. In a first step ASL data was motion
corrected and de-trended using a Butterworth high-pass of 1st order with a cutoff
frequency of 0.01 Hz [17, 48] followed by discarding the first and the last slice of
each volume. Further, residual motion artifacts and global signal fluctuations were
removed from the label-control time series and outlier L/C-pairs were discarded

by performing z-score thresholding [19].

2.1.4. CBF Quantification

For the conversion of perfusion weighted images to CBF maps the general kinetic

model of Buxton et al. [50] was exploited (eq. 2.1).
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6-10°- X - AM(z,y, 2)
TI
2a0- My(z,y,2) - T - ¢ T

f(x,y,z) = (2.1)

In eq. 2.1 above AM(z,y, z) denotes the PWI, T'I; the labeling duration (800
ms), T'1, the total delay time (1800 ms for the first slice, 80 ms added for each
subsequent slice [51]), T'1, the longitudinal relaxation time of blood at 3T (1650 ms
[52]), a the labeling efficiency (0.98 [53]) and A the blood-brain partition coefficient
(0.9 ml/g [51]). The resulting CBF values f(z,y,2) are given in ml/100g/min.
The proton density weighted image (MO0) was smoothed with a Gaussian filter
(FWHM=3 mm [51] to reduce the impact of noise.
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2.2. Data Analysis

In the following sections different aspects regarding the preprocessed 2D ASL data
are analyzed. The obtained results are important to gain a profound understand-
ing of the characteristics of 2D PASL data. The differences to natural images
(BSDS300, [55]), which are corrupted with spatial independent Gaussian noise,
are from particular interest, because almost all denoising models are designed and
tested for such cases. The knowledge gained from this analysis will be used for se-

lecting theoretically reasonable hyperparameters for the two denoising approaches.

2.2.1. Temporal Distribution of Perfusion Weighted Images

Real and imaginary part of MRI voxels suffer from Gaussian noise, which causes
the voxels of the corresponding magnitude images to be Rice distributed. Al-
though the use of multiple coils in combination with GRAPPA transforms the
noise distribution approximately to a non-central x distribution [50], for reasons
of interpretability this section focuses on the Rician distribution. Eq. 2.2 states
the Rician probability density function for an arbitrary positive x € R, with v
being the truth value, o the scaling factor and Iy the modified Bessel function of

first kind and zero order.

Ropaf (x]v,0) = %6_%3210 (%) (2.2)
The truth value directly corresponds to the voxel intensity, i.e each voxel intensity
suffers from its own error distribution. This makes the modeling of the error dis-
tribution particular difficult. Fortunately, the PWI is obtained from the difference
of two very similar Rician distributed images. The theoretic PDF of a random
variable being the difference of two Rice distributed random variables, is stated in
eq. 2.3 where (ue,0¢) and (pp,0r) correspond to the parameters of the control

voxel and the label voxel, respectively.
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Rpaf(x +mlve,o) for = > m

Rfjlf(adyc,vj;,a): Rpar(x +m|ve, 0) + Rpar(—(x — m)|vp, o)) for |z < m
Rpaf(—(x —m)|vp,0) for x < —m

(2.3)

Figure 2.1 shows the estimated PDF of the ratio between ground truth control and
label voxels. This plot indicates that the difference is beneath 2% for the large
majority of voxels. In theory the ratio should be greater than one, but due to noise

and artifacts (e.g. motion) this is not the case for all voxels.
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Figure 2.1.: Estimated PDF of the ratio between ground truth (400 averages) control (C) and
label (L) voxels. This PDF indicates negative perfusion in some voxels (L>C), which

is physically not possible and thus must be reasoned in the presence of errors in the
ground truth.

Figure 2.2 shows the PDF eq. 2.3 with different parameter settings. For a small
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v (red curve) the one-sided character of the Rice distribution leads to two promi-
nent non-smooth points left and right from the origin (red arrows). For larger v
(green curve) the non-smooth points migrate to outer regions where their impact
is negligible. This behavior is to some extent independent to o, because a larger o
will shift the single distributions even more apart from the origin. The parameter
setting of the yellow dotted curve (vo = 1.1v7) is motivated by the PDF shown
before (Figure 2.1) and shows that even an intensity difference of 10% has no ob-
servable effect on the corresponding two-sided’ Rice distribution. The Gaussian
PDF's depicted in this graphic show the remarkable similarity to their correspond-
ing "two-sided’ Ricians, especially for large v’s. Note that for large v’s already the

“one-sided” Rice distribution is quite Gaussian like.

PDFs of 'two-sided' Rice and Normal Distributions

1.0 - === N(u=0,0=0.813)
—— R(ve=1l,v,=1,5=1)
s N(u=0,0=0.986)
0.8 A m—— R(Vc=4,v,=4,0=1)
(

R(ve=4.4,v,=4,0=1)

pdf(x)
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Figure 2.2.: Probability density functions of *two-sided’ Ricians and the corresponding Gausian
distributions .
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Statistical Testing for Normality

To verify the validity of a Gaussian approximation, a d’Agostino-Pearson test
[07] was performed. The Null-Hypothesis Hy of the voxel intensities being drawn
from a normal distribution is rejected if the p-value is below a significance level
of @ = 0.001. Figure 2.3 shows the ratio between rejected Null-Hypotheses and

tested voxels for each slice and all subjects.

Fraction between rejected Hy and tested Voxels per Slice
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Figure 2.3.: Fraction between rejected Hy (o« = 0.001) and tested voxels per slice for all subjects
(dashed line). The bold line indecates the average over all subjects.

This Figure shows that Hj is rejected for only a small fraction of voxels, with a
slightly increase in rejections for upper slices. The prominent outlier in the last
slice is founded in an acquisition artefact. The brain maps of rejected Hy (Figure
2.4) indicate a spatial dependency of the rejections. The majority of rejected voxels
are from cortical regions, where motion artefacts are more problematic. In these
areas, motion will mix in-brain voxels with background voxels which result in a

mean afflicted and asymmetric error distribution. Therefore, the approximation
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of the temporal voxel distribution by a Gaussian can be considered valid for the

majority of voxels, especially in the absence of motion.

Figure 2.4.: Brainmap (left subject VI slice 10, middle subject IX slice 8, right subject X slice
10 ) of rejected Hy (black) and not rejected Hy (gray) voxels

2.2.2. Data and Error Distribution

The estimated PDFs studied in this chapter were obtained for a certain number of
L/C-pairs (Naye) by repetitively (100 times) choosing N, random L/C-pairs from
the acquired 400 L/C-pairs, followed by computing normalized histograms within
masked regions. As the general data distribution is considered here, the data from
all subjects is used without any seperation in subjects and slices. Additionally, the

arithmetic mean p, the standard deviation o and the skewness s are calculated.

Data Distribution

Figure 2.5 depicts the estimated PDF's for a different number (N,,.) of L/C-pairs.
For less averages the noise dominates and thus the shape of the PDF is Gaussian-

like. For more averages the skewness (Table 2.1) increases and a shoulder evolves,

Table 2.1.: Estimated statistics of the data distribution for different numbers of averages N,
(mean u, standard deviation o and skewness s).

Nue | 0 | o | s
16 1.67 | 2.85 | 0.44
64 1.68 | 1.97 | 1.03
256 | 1.68 | 1.68 | 1.53
400 | 1.68 | 1.64 | 1.63
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2.2. Data Analysis

which is likely to correspond to a second modal value.

Estimated Propability Density Functions of averaged PWIs
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Figure 2.5.: Estimated probability density functions of the averaged PWI (PW1,,,) using a dif-
ferent number of averages Nyqe.

In theory, two modes are expected, the first corresponds to white and the second to
gray matter, respectively. Because of a high noise level, the bimodal characteristic
vanishes and only a shoulder and consequently an increased skewness are observ-
able. As expected, all curves share approximately the same mean value, which
indicates an approximately mean-free error distribution. Regardless of the num-
ber of used L/C-pairs, the PDFs indicate negative perfusion, which is physically

not possible and thus must be the effect of noise and artefacts (see also Figure 2.1).
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Error Distribution

The PDF of the error shown in Figure 2.6 is derived by subtracting the estimated
ground truth (400 L/C-pairs) from the mean PWI (N, pairs). For a higher
number of L/C-pairs the standard deviation of the error decreases with about
/Nave. Table 2.2 confirms the validity of this relation for less Ng,.. For more
L/C-pairs, it deviats more and more, which is reasoned in the computation of the
ground truth as the average of a finite number (400) of L/C-pairs, i.e. the ground
truth still contains noise. This leads to an underestimation of the variance. Hence,

for Ny, = 400 the error PDF would collapse to a Kronecker-Delta impulse.

Estimated Propability Density Function of the Error
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Figure 2.6.: Estimated Error distribution and the corresponding normal distributions for different
number of L/C-pairs (Ngye). The ground truth is estimated from 400 L/C-pairs.

Although, the skewness and the mean differ significantly (o = 0.001) from zero
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(see Table 2.2, p,,,r and pgym,) for some Ny, both are very close to zero regardless
the number of N,,.. This indicates an almost (0.42% bias for N,,. = 16) mean-free
and symmetric distribution. Nevertheless, the dashed lines in the plot emphasize
a notable deviation from normal distribution. This difference is also appearent in
the p-values pap of Table 2.2 being smaller than o = 0.001. Hence, the Hy of the
data being drawn from a normal distribution can be rejected with a significance
level of o = 0.001.

Table 2.2.: Estimated statistics and related p-values of the error distribution for different numbers
of averages Ny (mean p, standard deviation o, skewness s, test for normality pap

[57], t-test for zero-mean p,,; and zero-skewness test psym [58]).
Nave K o S Pap Py Psym
1 2.51E-2 | 9.50E-0 | 2.82E-2 0 0 0
4 -1.77E-2 | 4.73E-0 | 4.03E-3 0 0 0
16 | -7.00E-3 | 2.34E-0 | -6.55E-3 0 0 0
64 3.21E-4 | 1.11E-0 | 9.37E-4 0 4.22E-2 | 7.47E-3
256 4.78E-5 | 4.02E-1 | -2.19E-2 0 4.06E-1 0

The log PDFs depicted in Figure 2.7 visualizes the difference to logarithmized
normal distributions (illustrated with dashed lines) more clearly. As Rician or x
distributions (degree of freedom > 3) do not exhibit heavy-tailing (see section 2.2.1
"Temporal Distribution of Perfusion Weighted Images”), the occurence of heavy-
tails in the error distribution must be reasoned in another error source. However,
errors due to motion are in a mathematical sense very similar to the filter re-
sponse of gradient kernels. As this response is generalized Laplace distributed, i.e.
heavy-tailed, the tailing characteristic of the error’s PDF could be explained by
an imperfect motion correction due to distinct patient movement. But also other
error sources must kept in mind.

It is remarkable that despite temporal voxel distributions is Gaussian like for about
90% of voxels (see Figure 2.3) the joint error distribution is heavy-tailed. In this
context it is important to highlight that the temporal voxel distribution corre-
sponds to the curve for Ny, = 1 L/C-pair, where the Gaussian noise fraction is

very high and thus dominates the Laplacian error. For more PWI used, the fraction
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Figure 2.7.: Negative logarithm of the Error distribution and the corresponding normal distri-

butions. The heavy-tailed character of the error PDF indicates the presence of
Laplacian like noise, which is an indicator for residual motion artifacts.

of Gaussian noise decreases and the heavy-tailed generalized Laplace distribution
becomes more prominent.

2.2.3. Slice Dependent Voxel Intensity and Intensity Deviation

The performed 2D PASL measurements lead to a very basic issue: As already
described in the introduction section, arterial blood water is magnetically labeled.
After waiting a period of time, allowing the blood to flow into the region of interest,
the images are acquired. In case of 2D readouts the slices are acquired in ascending

order, which leads to the issue that the magnetization of bloodwater in upper slices
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is already more relaxed when read out. As a consequent, the label images’ signal
intensity is less decreased for upper slices which leads to less difference signal.
Hence, PWIs from upper slices have less signal and less SNR, respectively.

In addtion, regions being more distant to the head coils (f.e. lower slices) are
contributing less signal but undergo the same noise level. The effect of less signal is
corrected by Siemens’s Prescan Normalize algorithm, but this correction increases

the standard deviation of the noise.

Mean Intensity Standard Deviation
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Figure 2.8.: Temporal mean and temporal standard deviation, averaged over all voxels within the
masked regions of a slice. The colored dashed lines correspond to specific subjects,
the colors to a specifc number of L/C-pairs and the bold lines to the average over
all subjects.

Figure 2.8 depicts both phenomenons for different numbers of L/C-pairs by show-
ing the temporal voxel mean and standard deviation, avaraged over the masked

slices. The curvers corresponding to more than 1 L/C-pair are obtained by repet-
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itively (400 times) building the mean over N randomly chosen PWIs, followed by
computing the desired statistics. The curves in this graph show the intensity loss
as well as the decrease in standard deviation for upper slices. In contrast to the
intensity curves, the deviation curves depend on the number of used L/C-pairs.
As expected, an increase in the number of L./C-pairs by a factor of four leads to
a decrease in the standard deviation by a factor of two. This is consistent with
the theory that the standard deviation is proportional to v/N with N being the

number of measurements (L/C-pairs).

2.2.4. Filter Response

For the selection of an appropriate penalty function, the filter response of standard
kernels applied to gold standard ASL data, is essential. As discribed in chapter
2.3.1 "Details on the Model Formulation”, the filter kernels are composed as a
weighted sum of the DCT basis. Consequently, in this chapter the response to
DCT filters is analyzed. The distributions shown below are obtained by averaging
over all filter responses corresponding to a certain DCT base. I.e. for DCT-7 PDF's
all 48 non-constant filters are evaluated.

Figure 2.9 shows the negative log-probability of the DCT filter response for dif-
ferent image classes and different kernel sizes ks. All graphs are bias corrected
and normalized by their maximum to emphasize their tailing behavior. This plot
indicates several differences between ASL perfusion weight images (ASL-D, aver-
aged over 400 L/C-pairs), ASL control images (ASL-C, averaged over 400 images)
and natural images (BSDS300). First, unlike ASL-D, the shape of ASL-C is very
similar to BSDS300. ASL-D is more quadratic around the origin, whereas ASL-C
is more narrow and more heavy-tailed. For all image classes, larger kernels lead
to a more distinct heavy-tailing. The graph of ASL-C for a kernel size ks=3 is
very different to all other graphs. It is not clarified in total, but it is likely that
the estimated distribution is unstable for larger responses. The normalization to

a maximum value of one further distorts the shape of this graph.
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Estimated Normalized Negative log-Probability of the DCT Filter Response
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Figure 2.9.: Estimated negative log-probability of the DCT filter response for natural images
(BSDS300), averaged PWIs (ASL-D, 400 L/C-pairs) and averaged control images
(ASL-C, 400 images). The probability corresponds to all ks? — 1 non-constant filter
kernels of the DCT-ks basis.

The distributions depicted in Figure 2.10 and Figure 2.11 uncover the noise-level
dependency of the filter responses for PWI and natural images. More noise (less
L/C-pairs) leads to a broadend center and to a less distinct heavy-tailing. The
dashed lines indicate the distribution of the filter response to Gausian noise only.
The comparison of the noise-only PDFs with the remaining PDF's leads to the as-
sumption that the center broadening is caused by the ground truth’s noise portion.
As it is not clear which characteristics of the distributions are caused by noise and
which are caused by information, a penalty selection based on the given ground

truth is considered as inappropriate.
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Negative log-Probability of the DCT Filter Response for ASL Data
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Figure 2.10.: Estimated negatavie log-probability of the ASL PWI’s DCT filter response for dif-
ferent noise levels (number of averages Nyye).
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Figure 2.11.: Estimated negative log-probability of the DCT filter response of natural images for
different noise levels. The dashed lines indicate the est. neg. log-P for Gaussian
noise only.
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An alternative interpretation of the filter response distributions is given by the
data’s degree of correlation. Fully correlated data, i.e. constant pixel values within
an image batch, will result in a filter response of zero (mean-free filters). A Dirac
impulse as PDF would be the consequence. Small deviations within the constant
batches would cause a response that slightly differs from zero. The resulting PDF
would be slightly broadened. In contrast, if the values of the batch are completly
uncorrelated the response would be equally distributed. Hence, the broadened cen-
ter of the filter response’s negative log-PDF for noisy data is not directly because

of the noise, but because of the decrease of correlation caused by the noise.

Estimated Normalized Negative log-PDFs and standard Penalty Functions
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Figure 2.12.: Comparison of the estimated negative log-probability of the PWIs’ and Natural
Images’ filter response and commonly used penalty functions.

Figure 2.12 shows the normalized negative log-probability for PWI and natural
images as well as three often used penalties. The root function (green dotted,
equivalent to logarithmized generalized Laplacian) adapts to the distribution for
natural images almost perfectly but not to the distribution for PWIs. Neither the
log-Cauchy penalty (green dashed) nor the absolute function (green dash-dotted)
seem to be good estimates for the PWI distribution.
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To conclude, the analysis of the filter responses did not emphasize the use of
any specific penalty function. For reasonable decision making a less noisy ground
truth would be needed. In general, it might be better to use a penalty that fits to
the expected filter response of noise-free data. However, in a learning based model
this would probably lead to bad solutions because of the discrepancy between noisy
ground truth and hyperparameters that are adapted to an ideal ground truth. In
this context also the convexity of the chosen penalty has to be considered. A non-
convex penalty might be theoretical more reasonable, but might also lead to bad

local optimal solutions.

2.2.5. Summary

At the beginning of this chapter it was found that the error distribution is a mix-
ture of at least a Gaussian and a Laplace distribution. The ratio depends mainly
on the number of L/C-pairs, i.e. more used pairs are reducing the portion of
Gaussian noise. For training and testing, at least 30 L/C-pairs will be used. Less
pairs are not considered to yield acceptable image quality, regardless of the spe-
cific denoising approach. For more than 30 L/C-pairs the error is more Laplacian
like distributed and thus a L1 norm as data term function is preferable against
a squared L2 norm. As a Gausian noise portion is still assumed to be present, a
center smoothed approximation of the L1 norm is prefered over an ideal L1 norm.
This has the additional advantage that a non-continuously differentiable function
can be avoided.

It was also found that the voxel intensity and standard deviation is dependent
on the position of the slice within the volume. Different intensities are han-
dled by normalizing the data by an appropriate measure (see section 2.2.6 "Data
Normalization”). Different standard deviations and thus different noise levels could
be handled in principle by using a regularization map. However, the computation
of the latter would include the need for a robust estimation of the temporal stan-
dard deviation, especially when considering learning based approaches.

The last part of the ASL data analysis dealt with the DCT filter response to PWIs
and highlighted the impact of noise to the filter responses. The remaining noise

within the ground truth makes a penalty selection based on the responses inappro-
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priate. Hence, the final penalty will be chosen not only on theoretic assumptions

but also on the obtained image quality and convergence criteria.

2.2.6. Data Normalization

The most simple way to normalize the data would be by dividing each slice by its
maximum intensity. Unfortunatelly, the data is corrupted by noise and artifacts,
so the maximum is very likely to be an outlier. To overcome this problem, a robust
maximum is found by analysing the standard deviation of different percentiles for
100 random combinations for each slice, subject and noise level (number of L/C-
pairs). The effects of different brain dimensions per slice are handled by using just
the inner 64x64 patch for computation. It was found that the 94 - percentile yields
a good tradeoff between maximum correlation and stability for all subjects and
noise levels.

Figure 2.13 shows the normalized average intensity and standard deviation per slice
for different numbers of L/C-pairs. As expected, the intensities are less dependent
to the slice order compared to the unnormalized case (see Figure 2.8). Due to
different normalization factors for different noise levels, the intensities are now
dependent on the noise levels. This is not an issue, because data with different
numbers of L/C-pairs are not mixed up during learning and testing. Additionally,
because negative perfusion is not possible, negative values in the PWIs are clipped

to zero. This increases the error’s bias but decreases the error’s standard deviation.
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Figure 2.13.: Temporal statistics of the normalized PWIs for different number of L/C-pairs. The
colored dashed lines correspond to specific subjects, the colors to a specifc number
of L/C-pairs and the bold lines to the average over all subjects.
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2.3. A Markov Random Field for ASL denoising

The first model investigated for ASL denoising was the co-sparse analysis model
(CSM). The basic form of this model is already explained, therefore the following
will focus on the formulation of the kernels, the exact inference scheme, the loss

based learning of the free parameters as well as the choice of the hyperparameters.

2.3.1. Details on the Model Formulation
Filter Operator

Chen et al. [27] found that using mean-free filters lead to a better performance than
non mean-free filters. Therefore, one could either apply constrained optimization
methods which would make the MAP inference more difficult to solve or use a
suitable mean-free filter basis. As this part of the thesis was based on the work of
Chen, the filter kernels were defined as linear combination of the discrete cosine
transform (DCT) basis. This does not only yield a meaningful basis, but also mean-
free filters if the constant-entry atom of the DCT basis is omitted. Eq. 2.4 shows
how the i-th filter kernel A; € R¥**s with k, being the kernel size, is composed
using the DCT basis B = {B;, ..., By, } where B; € RF*ks denotes the i-th DCT
atom and N, = k? — 1 the number of basis atoms. The learnable basis weights are

written as 3 € RNsxN

Ny
j=1

If the filter process is stated as matrix-vector multiplication, the filter matrix A €
RN»Ns*Np js used. It is obtained from eq. 2.4, by replacing the DCT filters kernels

*Nofollowed by subsequently

B, with its sparse matrix formulation B; € R
stacking of the resulting row vectors.

To control the ideal amount of regularization, each filter is weighted separately
by introducing an additional non-negative parameter o € Rff “! The objective

function of the CSM for denoising Ecgy/ is formulated in eq. 2.5. In contrast to eq.
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1.18, the sampling matrix S was set to be the identity matrix and an additional

regularization factor v was introduced.

N, Ny N
Ecsu(x,y,0,8) =7) ) oo ([Z Bi;B;
j=1

k=1 i=1

x) +(x,y) where a > 0.
k

(2.5)

Penalty Function

Although learnable penalty functions are desired, the minimization of the LLP with
a high level of accuracy would become too difficult and time consuming. Therefore,
several meaningful penalties were investigated. A probably powerful penalty is
given by the logarithm of the smooth and heavy-tailed Lorentzian distribution, also
known as Cauchy distribution, which is equivalent to a student-t distribution with
one degree of freedom. Eq. 2.6 shows the primitive as well as the corresponding

first and second derivatives of a log-Cauchy penalty.

(

() = log (14 w3?)
2 X
¢'(z) = 2/11&2@

2 (1— ’fng)

log-Cauchy (2.6)

The parametrization of the penalty could theoretically be omitted by incorporat-
ing k1 and ks into the learnable weights B and «, but in practice they simplify
the choice for a robust initialization.

Another distribution that is likely to model the filter response well is the General-
ized Laplacian (see eq. 1.10) with the parameter 8; = $Vi. To obtain a continuous
differentiateable penalty, the absolute function of the GL was replaced by a smooth
approximation |z| = v/22 4 2. The compact formulation of the approximated log-
GL penalty and its derivatives are stated in eq. 2.7.
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o(x) = Ky (2° +€%)°
, K T
¢ o) =3 ——s
approx. GL 3 (22 4 £2)6 (2.7)
" K e — 2
() =5 ——
\ (22 4 €2) s

For further comparison also the performance of a smooth approximated L1 penalty
(eq. 2.8) and a squared L2 penalty (eq. 2.9) were evaluated. However, the squared
L2 for a scalar is actually just a square function, which is indeed not heavy-tailed
and thus not very suited. This theoretic limitation is probably counteracted by a
very accurate and fast LLP solution as the quadratic penalty causes a quadratic

LLP, whose global minimum could be found by using on Newton update step.

($(z) = k1 Va? + €
b x
approx L1 ¢(z) = i Va2 + g2 (2.8)
2
¢"(z) = Ky 7
L (2% 4 €2)2
8(x) = o’
squared L2 ¢ (x) = ki (2.9)
¢"(x) = ra

Table 2.3 shows the parameters used for the different penalty functions as well as
their identifiers. Two different parameterizations were used for the approximated
absolute function. The first, EstAbs aims to estimate the absolute function as
exact as possible. For € smaller than 0.01, the LLP optimizer was not able to find
an acceptable solution within reasonable time. The second, SmoAbs, models a
function that shares the tailing behavior with the absolute function and the shape

around the origin with a quadratic function.
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Table 2.3.: Parametrization of the used penalty functions. EstAbs is considered as an estimation
to an absolute function and SmoAbs as an absolute function with a distinct quadratic
shape around the origin.

Name Penalty K1 | K1 €
Cauchy | log-Cauchy | 0.05 | 4.0 | -
xRoot log-GL 0.1 | - ]0.05
EstAbs | approx. L1 | 0.1 - 10.01
SmoAbs | approx. L1 | 0.1 - 0.6
Square | squared L2 | 0.1 - -

Data Term Function

Although chapter 2.2 "Data Analysis” showed that the error distribution is heavy-
tailed, for reasons of convergence the data term function ¢(x,y) was chosen to be
a Huber norm (eq. 2.10). The Huber norm is a simple extension to the Huber loss
h(u) that also works with multivariate input data. It is received by computing the
Huber loss for each element of the input, followed by an integration of the results

over all elements.

;

d(x,y) =1"h(x—y) h(u) = (h(uw), ..., h(uy))"
Y'(x,y) =h'(x—y) with h(u) = (W (uy),...,H (un))"
V"(x,y) = diag(h"(x —y)) (0" () = (A"(w), ..., B (un))"
([ ) <e
hlu) = { |ul else (2.10)
and B (u) = { g Jul <€
sign(u)  else
W' (u) = {% vl =<
0 else

The Huber loss shares the shape of a quadratic function around the origin and the

linear tailing of an absolute function. The parameter € controls the switchover of
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the multipart function. I.e. a small € will lead to a smooth approximation of the
absolute function and a large one to a squared function that is more robust against
outliers. For comparison some trained CSM models use the squared L2 norm (eq.

2.11) as data term function.

1
vxy) = 5 lx -yl

(xy)=x—y (2.11)

V'(x,y) =1
Kernel Size and the Number of Filters

Theoretically, more and larger filter kernels lead to a more expressive prior and
thus to a better denoising performance. In practice, the size and the amount of
filters are limited by computational feasibility and the aggregation of numerical
errors, which introduce further problems when solving the LLP. Kernel sizes of

? ) ]

often focused on cases where the number of filter kernels Ny exceeded the kernel

3x3, bx5 and 7x7 were selected for testing the models. Previous work |

dimension. Chen et al. [27] showed that it is sufficient to chose Ny to be exactly
the kernel dimension, which is in the current case k2 — 1 due to the excluded DCT

atom.

Initial Values

The used initial values were inspired by Chen et al. and adapted slightly to ensure
fast and stable converging properties for the given data. For all performed experi-
ments, the initial value for a; was set to 1 over the number of filters. The initials
for B were drawn from a normal distribution and normalized such that H,B j H , = L
For inference as well as for learning, the xy was set to be the input image y. The
Huber loss’s € was set to 107!, which yield a good tradeoff between accuracy and
convergence stability. For smaller values the training procedure becomes more
likely to fail. Unless stated otherwise, the additional regularization factor v was
set to 1.
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2.3.2. Inference and Learning

The bilevel learning scheme (eq. 1.21) can be interpreted as constrained optimiza-
tion problem. Assuming the existence of x* and a convex LLP, the first order
optimality condition is sufficient and thus can be used to further simplify the ex-
pression. Using the fully parametrized CSM (eq. 2.5) as LLP, the corresponding

Lagrangian £ with A € RY»*! being the Lagrange multiplier writes as follows:

L(x,a,3,\) =L(x,%x)+V ECSM(X y,a, B)A\

ZO@AT ¢ (Aix) + ¢ (x,y) | A

X) + 9 (x,y) | A

T N,
Bj| ¢ ( [Z BiiB;
j=1

Ny Ny
E Q; E 51’]’
i=1 j=1

(2.12)

The inequality constraint of a is omitted in the formula above and will be handled
as a simple box constraint by the optimizer itself. To solve the bilevel problem at

least the gradient of the Lagrangian is needed.

ViL(x,a,B,A) = L'(x,%) + HgA
= L,<X7§() + ViECSM(Xv Yy, &, ﬂ)A

Ny
=L'(x,%) + | Y oAl diag(¢"(Ax)A; +4"(x,y) | A
i=1
VA‘C<Xa anB7>‘) =V, ECSM(X y, & /6) (213)
_ZQZAT ¢ (Aix) + ¢ (x,y)

Vo L(x, . B.X) = (AJ ¢'(Ax) " A
Ve, L(x,a,8,\) = ; (BjngS’(.A,L-X) - Ajdiag(gb”(Aix))Bjx)T A
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2.3. A Markov Random Field for ASL denoising

Eq. 2.13 shows the first order partial derivatives of the Lagrangian £ with respect
to X, a, B and A. In principle, the gradient above would be sufficient to start an
iterative optimization procedure, but it is possible to simplify the learning scheme.
A closer look at the dependencies of the partial derivatives uncovers that VL just
depends on x and V. £ just on x and A. In addition, the latter can be obtained in
closed form by using the first order optimality condition V£ = 0. Hence, if x is
solved first with a high level of accuracy using a suitable optimization algorithm,
followed by computing A, V4L = 0 and VL = 0 are fulfilled and thus more
effective optimization steps are obtained for o and 3. It is further noteworthy
that VL is equivalent to VyFEcsyr, the gradient of the LLP w.r.t to x and that
Hpg notes the corresponding Hessian matrix. This raises an important clue to the
existence of the inverse Hessian needed for the computation of the gradient w.r.t to
a and 3: In case of a convex LLP, hence a convex penalty and a convex data norm,
the Hessian is always positive definite and thus invertible. In case of a non-convex
LLP, the Hessian is not positive definite for all possible x € R™», but it follows
from the second order optimality condition that the Hessian is positive definite if
X is a local minimum of the LLP.

In general, the gradient of the whole test set could be obtained by summing up all
gradients w.r.t to a and 3 of single image patches. A more sophisticated approach
is given by so called mini-batches. Here, the gradients are computed over small
subsets rather than over the whole dataset. For each iteration a different mini-
batch is used, leading to faster but more inaccurate updates. This inaccuracy
is reflected by a loss evolution that is superimposed with more or less strong
oscillations. This sometimes called Stochastic Gradient Descent (SGD) known
technique has shown to work out well for many different kind of problems. Apart
from performance considerations, the stochastic nature of this procedure might
also help to escape from local minima, which is important when considering a

non-convex loss function. The full iterative learning scheme looks like follows:
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Initialization

Select Np batches from the training dataset

Solve the LLP with a suitable optimizer (f.e. Newton’s Method, CG)
Compute A in closed form (exploiting sparsity)

Compute metrics (loss, PSNR, SSIM)

Compute the gradient w.r.t to a and 3

Perform a parameter update on e and 8 (f.e. Adam)

Apply box constraints to a

© o N e e W D

If convergence criteria is not reached, go back to 2.

Optimizers

Basically, there is no limitation in which optimizer to use, but in preliminary tests
it was found that Newton’s Method performed well on the LLP for patch sizes
up to 64x64 pixels. For larger patch sizes the computation of the Hessian matrix
needed for Newtons method becomes too costly and thus CG was used in such
cases. For both methods the step size was found according to a linesearch.

The HLP, i.e. the learning of the parameters a and 3, was optimized by using
Adam [62], which is a first order method using an adaptive momentum term. It
is often used in state of the art machine learning tasks and determines its step
size automatically. This is particularly important, because a line search or similar
techniques would imply the evaluation of the loss for each different step. This
evaluation would just be valid after solving the LLP and the Hessian. Hence, a

stepsize selection scheme for the HLP would slow down the learning a lot.

Stopping Criterion

As already mentioned, to reach acceptable convergence properties it is important
to solve the LLP with a high level of accuracy. Chen et al. stopped the LLP

optimization as soon as the L2 norm of the LLP’s gradient, normalized by the
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2.3. A Markov Random Field for ASL denoising

number of pixels, falls below 10~° (input range [0-255]) [36]. Kunisch et al. stopped
it at 107 (input range [0-1]) [63]. As those values are related to images with a
known maximum intensity they can not by transfered directly to the used ASL
input data. Nevertheless, for training a stopping epsilon of 2 - 107 turned out to
work well. In case of inference this high level of accuracy is not needed and thus
an epsilon of 5-107* was used.

The HLP optimization was early stopped after 500 iterations. A stopping based
on vanishing gradients or vanishing loss was not used as the stochastic learning
scheme as well as the outlier prone data lead to oscillations of the loss and of the

gradients during training.

Loss Function

The CSM was trained using a squared L2, a Huber L1 (¢ = 1073) and a SSIM Loss.
Apart from its smooth and thus simple to optimize nature, the squared L2 norm
is closely related to the mean squared error (MSE) and therefore to the PSNR. As
it penalizes large deviations stronger than the L1 loss it favors smooth solutions
rather then sharp ones.

The optimization of the non continuously differentiateable L.1 norm is often done by
exploiting proximal gradient methods like the primal dual algorithm [6]. Another,
simpler way is to use a smooth approximation like the Huber norm (eq. 2.10). This
approximation does not affect the tailing behavior of the loss and thus is especially
suited when sharp edges are desired.

The SSIM [24] measures the structural similarity between two image patches and is
designed to model the human perception. Compared to the PSNR it favors sharp
solutions rather than blurry ones and is therefore preferable as quantitative metric

although its relation to human perception might be doubtful [23].

2101y + 1 20, + Co
SSIM(x,y) = Y Y ) =Il(x,y) - cs(x, 2.14
() <u§+u§+c1) <a§+a§+c2 (x.y) - es(x,y) (2.14)

Eq. 2.14 states the SSIM computations between the image patches x and y of
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size Ngsiv X Nssim (Nssiv = 11 px). p, and g, refer to the mean values of

2
T

between those two patches. The originally proposed SSIM version weights the ele-

the patches. ¢ and 03 to the variances of the patches and o,, to the covariance
ments within the patches according to a 2D-Gaussian function (o = 1.5 px). The
constants ¢; and ¢y are set to 0.01% and 0.03? respectively. There are several hyper-
parameters for calculating the SSIM which effect the result. A very important one
is given by the patch size: large patch sizes favor sharp but noisy solutions, small
patch sizes favor more blurry ones. The authors proposed to use the SSIM with a
patch size of 11 pixels, which is found to work well on natural images. However,
to overcome the problem of selecting an appropriate patch size the authors also
proposed a multiscale SSIM (msSSIM) [25].

The msSSIM is obtained by computing the contrast and structure cs(z,y) part of
the SSIM on different scales and multiplying all results with the luminescence part

[(z,y) at maximum scale. The formula for the msSSIM is given as follows:

M
msSSIM(x,y) = l,,,(x,y) - Hcsgi(x, y) (2.15)

i=1

The subindex o; indicates the changed Gaussian weighting which is interpreted
as a change in scale. The msSSIM used throughout this work is performed with
o = [0.5,2,4]. The gradients of the SSIM and msSSIM w.r.t. x can be found in
appendix A.

2.3.3. Metrics for Evaluation

The obtained results were compared on the basis of the peak signal-to-noise ratio
(PSNR) and the SSIM 2.14. The PSNR is computed as follows:

2
PSNR(X, Y)dB =10 1Og10 (%) (216)

where x notes the denoised and y the GT CBF map, MSFE denotes the mean
squared error and 32 is the maximum intensity within the reference slice y. It

is noteworthy that in case of natural images ¥,,.. is typically set to the maximum
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2.3. A Markov Random Field for ASL denoising

possible intensity (255 in case 8bit). The PSNR computation above states its
relation to the MSE and as a consequence the relation to the squared L2 norm.
In fact, minimizing the squared L2 also minimizes the MSE and thus the PSNR
gets maximized. Both metrics are calculated slicewise within given brain masks
(whole brain, gray matter and white matter). To evaluate the performance on

whole datasets, the metrics are averaged over all slices.

2.3.4. Datasets
The averaged ASL difference data 2.17 from 10 subjects was splitted into 3 subsets.

Nu/ue

1
Ci— L, (2.17)

Yin =
ave S5
The first subset was the learning set which was formed from all slices (1-10) except
3,6,9 from subject I-VI. The skipped slices 3,6,9 formed the intra-subject test set.
The last subset was the inter-subject test set which contained all data from subject
VII - X. Although the basic error level differs quite a lot for different subjects,
especially for men and women (higher CBF for women), the sets can be considered
equal because the ratio between 'good’ and ’bad’ quality slices is about the same.
For each of the 128x128 test set slices, 10 randomly selected combinations of L/C-
pairs were used to build the input. Therefore, the inter-subject test set contained
400 images and the intra-subject test set 120 images. A second version of the
inter-subject test set was obtained by using just the first N, L/C-pairs. Thus
this set is named InARow test set.
During training, for each iteration new Ng,. randomly chosen L/C-pairs were used.
An alternative is given by using subsequently acquired L/C-pairs, which would
enhance the quality of the input data due to less motion. However, the 'random
load” approach overcomes the effects of bad input combinations to some extent.
L.e. it is more robust against outliers. Additionally, this method yields a more
comprehensive trainingset as for each iteration different datat is used. As the
mini-batches were composed of all trainig slices within a single subject, 7 slices

were used for each iteration. Hence, after 500 training iterations the model has seen
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3500 different input slices. However, they must be considered as highly correlated

due to the 42 basic image slices (7 slices from 6 subjects).

2.3.5. Experimental Setup

To evaluate the basic principle, initial tests on a synthic dataset [16] were performed
at the very beginning. Afterwards three groups of experiments were carried out
to chose appropriate hyperparameters. The first group of expermiments focused
on the preselection of different penalty functions. The second group explored the
impact and the interaction between loss, data term and penalty. The last group
investigated the impact of the number and size of the used filters. All of these
experiments were carried out using the inter-subject test set and 50 L/C-pairs.
After appropriate hyperparameters were found, the performance of the SSIM loss
was tested. Further, the impact of the additional regularization factor v during
inference was explored. Once the final model was chosen, the performance on the
remaining test sets with different numbers of input L/C-pairs was evaluated and
compared to the VN and stTGV [16].

2.3.6. Implementation Details

The model was implemented using TensorFlow in combination with PYTHON 3.6.
TensorFlow does not support sparse matrix formats which are needed to efficiently
compute the Hessian matrix. Therefore, the A computation was performed outside
the TensorFlow graph using the ScientificPython (SciPy) library. The inversion of
the Hessian was performed using the sparse Cholesky decomposition provided by
the Skimage library. Convolutions were performed using zero padding at bound-
aries. To increase the LLP accuracy, all computations were carried out using

double precision floating point operations. All experiments were carried out on an

Intel i5-2500K @ 3.30GHz x 4.
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2.4. A Variational Network for ASL denoising

2.4.1. Details on the Model Formulation
Filter Operator

In contrast to the CSM, the VN uses basis free filters. Hence, the filter parameters
were optimized directly. Therefore, mean-free filters were ensured by adding a
constraint to the optimization scheme. A second constraint fixed the filters to

have unity norm, i.e. ||ki||s = 1.

Penalty Function

A fundamental improvement of the VN compared to the CSM is the use of learnable
penalty functions for each filter. Therefore, the gradient of the penalty (i.e. the
activation) ¢! (x) (eq. 2.18) of the i-th filter in stage t is modeled as a weighted

combination of several radial basis functions (RBF's).

(I*Mj)2

Ny
¢f/<x) = waj@_ 202 (218)
j=1

Here, N, is the number of radial basis functions which were set up linearly between
Umin = —0.5 and v, = +0.5 and was set to 31. The center of the j-th RBF is

termed as f1; and the standard deviation o is calculated as follows: o = Zng—mm

Data Term Function

For the data term 1 three different functions were tested: a squared L2, a L1
and a center-smoothed root (csRoot) (1(x) = [[x®* + 1[|2, v = 0.15). Additional
experiments were carried out using temporal data terms as well as SSIM based
data terms. However, these data term approaches were not further investigated as

they do not improve the result for the given model-optimizer setup.
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Kernel Size, the Number of Filters and the Number of Stages

In analogy to the CSM the number of filters were set to k? — 1, with k, being the
kernel size. Tested kernel sizes include 3x3, 5x5, 7x7 as well as 9x9. The tested

number of stages were set to 3,5,7 and 9.

Initial Values

The filters were initialized with normal distributed random values followed by
applying the zero mean and the unit ball constraint. The penalty weights were
initialized linearly between -0.02 and 0.02. The initial weight for the data term
was set to 0.1 for all stages. Like for the CSM, the initial image x, was set to be
the input image y.

2.4.2. Inference and Learning

The network was trained using either a L2, L1, SSIM or msSSIM loss for 500
iPALM [30] iterations. For the iPALM, a fixed momentum of 0.4 and a maximum
of 40 backtracking iterations were used. The Lipschitz constant was initialized
with 1000. The data was preprocessed and loaded exactly as described in 2.3.4
"Datasets”. For training, a batch size of 42 images was used (7 slices of 6 training

subjects).

2.4.3. Experimental Setup

At first, an appropriate model size was found by varying the number of stages
between 3 and 9, and the number and size of filters between 8x3x3 and 48x7x7.
Further, the impact of different losses and data term functions on the denoising
performance was investigated using the InARow test set. At the end, the perfor-
mance on the inter-subject and intra-subject test set was evaluated and compared
to the CSM and stTGV.
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2.4.4. Implementation Details

The model was implemented in TensorFlow using the Framework provided by
Kobler [10] and adapted to the peculiarities of ASL denoising. Convolutions were
performed using reflected boundary conditions. All experiments were carried out

on a Nvidia Titan Xp.
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3. Results

3.1. Phantom Data, Convergence and Input

At the very beginning a proof of concept is established by training the CSM with
synthetic data [16]. The obtained kernels for this test set are shown in Figure 3.1
(EstAbs penalty, squared L2 loss, squared L2 data term and 10 filters of size 5x5).
The four non-zero weighted kernels could be paired to form symmetric difference
kernels. This highlights the close relation of the learned operator to total variation
(TV) regularization. This behavior is caused by the piecewise constant nature
of the used synthetic data, which is known to be attracted by TV regularized

solutions.

(0.083,2.5)  (0.055, 1.8) (0.05, 1.8) (0.027, 1.2) (0.0, 0.53)

(0.0, 0.94) (0.0, 0.9) (0.0, 0.43) (0.0, 0.41) (0.0, 0.77)

Figure 3.1.: Learned kernels for EstAbs penalty, squared L2 loss, squared L2 data term, 10 filters
of size 5x5, 50 L/C-pairs and phantom data.The corresponding weight and norm of
the filter is stated in brackets.

Figure 3.2 shows exemplarily the training progress for real PASL data (inter-

subject test set). After an initial loss decrease the latter begins to oscillate. This is
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probably due to the rather small batch-size and the randomly chosen PWI for each
iteration. On a first glance this might be an issue, but actually these stochastic

updates help to escape from local minima.

Training Progress

» 450 1 "‘ . f,
8 LY P W “-, e o a S ] .
ol o PR N N" Y. 3\.3;,,,4»\:,,\“/[‘? S
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Figure 3.2.: Training progress for SmoAbs penalty, squared L2 loss, squared L2 data term, 24
filters of size 5x5 and 50 L/C-pairs.

Figure 3.3 shows several input and reference CBF maps for different subjects and
slices as well as the initial SSIM and PSNR for 50 L/C-pairs.

Reference

Input Variation 1 Input Variation 2 Input Variation 3 37min20s

mi
100g - min

r 120

Subject VII
Slice 3

100

b - 20.94dB

Subject VIII
Slice 6

60

b - 20.24dB

40

Subject X
Slice 9

79.42% - 17.37dB 78.68% - 17.79dB

Figure 3.3.: Input CBF maps for several subjects and slices (50 L/C-pairs) as well as the cor-
responding reference CBF map. The three given maps per slice differ in the used
L/C-pair combination. The stated SSIM and PSNR are computed between the cor-
responding slice and its reference.
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3.2. Hyperparameters of the CSM

3.2.1. Impact of the Penalty Functions

The results of the first group of model selection experiments can be seen in Table
3.1 as well as in Figure 3.4. Log-Cauchy, SmoAbs and also Square penalties lead to
very similar WB PSNR values (22.55dB - 22.61dB), whereas the xRoot penalty is
clearly worse considering PSNR (22.45dB) and SSIM (68.62%). This is particular
interesting as the xRoot penalty is in theory the most appropriate penalty func-
tion. A reason for this phenomenon might be explained by the non-convexity as
well as the non-smoothness of this function. Due to the weak performance and the
long training time, the xRoot penalty approach is not pursued. The CBF maps
show that the xRoot penalty yields very blurry results and therefore a lower SSIM
(68.62%). The Square penalty maps contain more noise than the remaining ones
and thus a lower PSNR (22.57dB) is obtained. However, they are also sharper
which leads to a higher SSIM (69.70%). EstAbs and SmoAbs behave to some
extend like xRoot and Square penalties, respectively. This is surprising, because
in general one would expect that more quadratic penalties lead to more blurry
solutions because they penalize larger filter responses stronger. A possible expla-
nation is derived from another viewpoint: SmoAbs and Square have a quadratic
center, which means that small filter responses are less penalized compared to the
linear shaped center of xRoot and EstAbs penalty. Small filter responses are likely
in rather constant valued regions which are corrupted with noise. This behavior
might be increased by the bias which is introduced by the clipping of negative val-
ues (especially in WM). During learning, accepting small filter responses reduces
the amount of regularization of the learned prior. This leads to less regularization
and thus to sharper images. Despite its acceptable performance, the square penalty
will not be part of further experiments, because the SmoAbs penalty combines the
advantages of the Square penalty and the theoretic assumptions made upon the
log-probability of the filter response.

This first set of experiments (as well as all proceeding ones) also highlights the
different SNR levels in GM and WM. Although this was expected, the ideal model

should perform equally well in both regions.
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Table 3.1.: Parameter setup, training loss and testing results (CBF, inter-subject test set) for the
penalty selection tests. All experiments were carried out using 50 L /C-pairs, squared
L2 loss, squared L2 data term and 24 filters of size 5x5. The stated loss is averaged
over the last 60 iterations. Training was early stopped after 500 iterations.

[ Setup I Training I Testing (WB / GM / WM) |
[ Penalty [ Function ” Time [ a; <0 [ Loss ” PSNR in dB [ SSIM in % ]
\Jx240.62
SmoAbs % 2h40 0-5 408.0 22.61 / 20.74 / 17.59 | 69.74 / 85.41 / 57.61
\x240.012
EstAbs % 5h20 0-1 410.2 22.55 / 20.64 / 17.64 | 69.07 / 85.08 / 56.64
log(1+(4z)2)
Cauchy Ty E— 4h20 0-4 408.3 22.60 / 20.69 / 17.70 69.87 / 85.32 / 57.90
2 2,%
xRoot (@740.057)3 14h10 0-2 419.8 || 22.45 / 20.52 / 17.60 | 68.62 / 84.75 / 56.50
2
Square z- 2h40 0 417.8 22.57 / 20.72 / 17.48 | 69.70 / 85.44 / 57.48
SmoAbs EstAbs Cauchy xRoot Square _m
Y000 7
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Slice 3

I 100

r 80
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Slice 6

60

il aoAnd % aptnd

. ~ =
61.51% - 21.39dB 60.96% - 21.30dB 61.70% - 21.33dB 60.81% - 21.18dB 61.28% - 21.38dB

40
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Slice 9

76.79% - 18.45dB 5. 76.65% - 18.37dB 75.48% - 18.21dB 77.37% - 18.54dB

0

Figure 3.4.: Penalty Evaluation. CBF maps, SSIM and PSNR for different slices using 50 L/C-
pairs. All models use a L2 loss, a L2 data term and 24 filters of size 5x5.

3.2.2. Interaction between Loss, Data Term and Penalty

In the following section the results for different combinations of data term (squared
L2, smooth Huber-L1 with € = 107! (HL1g)) and loss (squared L2 and Huber-L1
with ¢ = 1073 (HL1g.3)) with the previously selected penalty functions (SmoAbs,
EstAbs, Cauchy) are stated. Firstly, the influence of loss and data term for SmoAbs

o4



3.2. Hyperparameters of the CSM

penalty are investigated and the results are listed in Table 3.2. From a quantitative
point of view, a Huber loss with squared L2 data term (HL1g_3L2) performs best on
the given dataset (22.61dB / 70.92%). The other setups can not be ranked clearly:
L21.2 gives a better PSNR, (22.61dB), whereas L2HL1g; and HL1g 3HL1g a bet-
ter SSIM (70.39% and 70.38%). Despite trained with different losses, L2HL1g ;

and HL1g 3HL1g.; share quite the same metrics.

Table 3.2.: Parameter setup, training loss and testing results (CBF, inter-subject test set) for
different loss-data term combinations using the SmoAbs penalty. All experiments
were carried out using 50 L/C-pairs and 24 filters of size 5x5. The stated loss is
averaged over the last 60 iterations. Training was early stopped after 500 iterations.

[ Setup I Training I Testing (WB / GM / WM) |

| Loss [ Data Term [[ Time [ a; <0 [ Loss || PSNR in dB [ SSIM in % |
L2 L2 2h40 0-5 408.8 22.61 / 20.74 / 17.59 69.74 / 85.41 / 57.61
HL1g.3 L2 2h40 4-8 3590.7 22.61 / 20.72 / 17.74 70.92 / 85.60 / 58.81
L2 HLlpg q 8h30 0-15 416.6 22.54 / 20.48 / 18.11 | 70.39 / 84.52 / 59.56
HL1g_3 HLlg ¢ 8h30 1-14 3512.9 22.54 / 20.46 / 18.17 70.38 / 84.49 / 59.75

Comparing the CBF maps (Figure 3.5) it is observable that a L1 data term leads

L2L2 HL1g;L2 L2HL1, HL1gsHL1g,

r 120

Subject VII
Slice 3

67.74% - 23.45dB

- 80

Subject VIII
Slice 6

¥ W LI

61.51% - 21.38dB 62.50% - 21.37dB 61.01% - 21.04dB 61.12% - 21.06dB

Subject X
Slice 9

76.78% - 18.44dB % - 18.59dB 79.67% - 18.62dB 79.51% - 18.58dB

Figure 3.5.: Loss-data term evaluation for SmoAbs penalty. CBF maps, SSIM and PSNR for
different slices and 50 L/C-pairs. All models using 24 filters of size 5x5.
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to lower CBF values in regions were less CBF is assumed (WM regions). This is

expected because larger deviations from the input are assumed as more likely and

thus less penalized. Despite a lower SSIM, L1 data term images appear sharper

than corresponding L2 data term images.

A drawback due to allowing larger

deviations from the input is the clipping of large CBF values (potentially hyper-

perfusion).

Table 3.3.:

Parameter setup, training loss and testing results (CBF, inter-subject test set) for

different loss-data term combinations using the EstAbs penalty. All experiments
were carried out using 50 L/C-pairs and 24 filters of size 5x5. The stated loss is
averaged over the last 60 iterations. Training was early stopped after 500 iterations.

[ Setup Training Testing (WB / GM / WM) |
| Loss [ Data Term [[ Time [ a; <0 [ Loss PSNR in dB SSIM in % |
L2 L2 5h20 0-1 410.2 22.55 / 20.63 / 17.64 69.09 / 85.06 / 56.68
HLlg_3 L2 5h20 3-4 3601.9 22.56 / 20.64 / 17.77 70.64 / 85.38 / 58.29
L2 HLl1g_, 22h50 0-3 415.4 22.33 / 20.14 / 18.24 69.19 / 83.69 / 59.00
HLlp_ 3 | HLlg_ ; 22150 0-2 3499.7 || 22.46 / 20.30 / 18.35 | 69.68 / 84.00 / 59.28
L2L2 HL1psL2 L2HL1., HL1esHLLe, m

Subject VII
Slice 3

Subject VIII
Slice 6

Subject X
Slice 9

75.66% - 18.26dB

i

=

62.17% - 21.25dB

78.57% - 18.68dB

% - 20.96dB

r 120

- 100

Figure 3.6.: Loss-data term evaluation for EstAbs penalty. CBF maps, SSIM and PSNR for
different slices and 50 L/C-pairs. All models using 24 filters of size 5x5.
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For the EstAbs penalty, the combination of HL1g 312 attains also the best quanti-
tative results (Table 3.3). However, compared to SmoAbs all setups are worse. A
squared L2 loss leads to particular blurry CBF maps (Figure 3.6) and a L1 data
term suppresses large CBF values even stronger compared to a SmoAbs penalty.
All in all, the SmoAbs penalty outperforms the EstAbs penalty. Hence, an EstAbs

penalty will not be considered in future experiments.

Table 3.4.: Parameter setup, training loss and testing results (CBF, inter-subject test set) for
different loss-data term combinations using the Cauchy penalty. All experiments
were carried out using 50 L/C-pairs and 24 filters of size 5x5. The stated loss is
averaged over the last 60 iterations. Training was early stopped after 500 iterations.

[ Setup I Training I Testing (WB / GM / WM) |

[ Loss [ Data Term ” Time [ a; <0 [ Loss ” PSNR in dB [ SSIM in % ]
L2 L2 4h20 0-4 408.3 22.60 / 20.69 / 17.70 69.85 / 85.32 / 57.88
HLlg_3 L2 4h20 7-11 3586.4 22.59 / 20.67 / 17.81 70.84 / 85.48 / 58.85
L2 HLlg_; 14h10 0-1 410.9 22.51 / 20.36 / 18.38 | 70.09 / 84.10 / 60.02
HLlg_3 HLlg_; 14h10 0 3482.3 || 22.46 / 20.35 / 18.26 | 70.91 / 84.40 / 60.31

212 HL1gsL2

L2HL1g, HL1gsHL1g, o

Subject VII
Slice 3

67.62% - 23.27dB

- 80

Subject VIII
Slice 6

i

21.03dB

Subject X
Slice 9

76.63% - 18.38dB 78.57% - 18.54dB 79.40% - 18.45dB 80.35% - 18.47dB

Figure 3.7.: Loss-data term evaluation for Cauchy penalty. CBF maps, SSIM and PSNR for
different slices and 50 L/C-pairs. All models using 24 filters of size 5x5.
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The results of the third investigated penalty, the Cauchy penalty, are listened in
Table 3.4. The best SSIM (70.91%) is obtained using a Huber loss and a Huber-1.1
data term (HL1g3HL1g,). Regardless of the loss, the best PSNR (22.59dB) is
obtained when using a squared L2 data term. However, a higher SSIM is obtained
by using a Huber loss (70.84%) instead of a L2 loss (69.85%). In general, the
Cauchy penalty leads to better metrics than an EstAbs penalty and to comparable
results using the SmoAbs penalty. The CBF maps in Figure 3.7 uncover the most
important property of the Cauchy penalty: The preservation of large CBF values
(see marked regions).

To sum up the results, this study showed that the highest SSIM and PSNR are
obtained by using a Huber loss with a squared L2 data term and a SmoAbs penalty.
However, a Cauchy penalty with Huber loss and Huber data term provides the
same SSIM but lower PSNR. This combination is considered superior compared

to the first one because of the following reasons:

e The clipping of high CBF values is considered as a knockout criteria.

e A Cauchy penalty and HL1g.3HL1g 1best meets the theoretic considerations.

This leads to a more general model.

e The more than 5 times longer training time (14h10min) compared to SmoAbs
HL1g3L2 (2h40Min) is still acceptable.

3.2.3. Impact of the Filter Size

In this section the kernel size and the number of filters for a Cauchy penalty, L1
data term (Huber loss approximation) and L1 loss is explored. Table 3.5 states
a non-expected result, the small model with 8 filters of size 3x3 (8x3x3) attains
better metrics than the large model with 48 filters of size 7x7 (48x7x7). From a
PSNR point-of-view it is also on par with the 24x5x5 model.
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Table 3.5.: Parameter setup, training loss and testing results (CBF, inter-subject test set) for
the size selection tests for Cauchy penalty, Huber loss (L1) and Huber loss (smooth
L1) data term. All experiments were carried out using 50 L/C-pairs and 24 filters of
size 5x5. The stated loss is averaged over the last 60 iterations. Training was early
stopped after 500 iterations.

Setup Training Testing (WB / GM / WM)
Kernel Size [ #Filters Time [ a; <0 [ Loss PSNR in dB [ SSIM in %
3x3 8 8h20 0-1 3499.9 22.46 / 20.35 / 18.28 70.46 / 84.19 / 60.27
5x5 24 14h10 0 3482.3 22.46 / 20.35 / 18.26 70.91 / 84.40 / 60.31
<7 48 81h40 0-15 3510.2 22.33 / 20.08 / 18.42 67.83 / 82.89 / 58.77

The CBF maps (Figure 3.8) emphasize the quantitative results, i.e 48x7x7 gives
blurry images whereas 8x3x3 and 24x5x5 shows comparable results. Since a larger
model should perform at least as well as a small model, it is likely that the found
solution is not a very deep local minimum or even no minimum at all. This is

verified by the training loss which is higher than for the other two models.

8x3x3 24x5x5 48x7x7 e

Subject VII
Slice 3

- 100

66.89% - 23.34dB 67.62% 62.39% - 22.80dB

- 80

1‘1

Subject VIII
Slice 6

L 41 [

63.02% - 20.93dB 62.14% - 21.08dB 58.46% - 20.85dB

Subject X
Slice 9

79.36% - 18.36dB 80.35% - 18.47dB 77.30% - 18.48dB

Figure 3.8.: Model size evaluation. CBF maps, SSIM and PSNR for different slices using 50

L/C-pairs. All models use a HL1g 3 loss, a Cauchy penalty and a HL1g.; data
term.
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Although the 8x3x3 model is 40% faster to train, all further experiments are carried
out with a 24x5x5 model due to the slightly better SSIM metrics.

An aspect which was not focused on yet is the number of negative or zero elements
in a. Non-positive «; during the last few iterations, where the model is assumed to
be close to a minimum, means that the number of filters could be reduced without
loss of performance. Nevertheless, the reduction of the number of filters from 24
to 22 (Cauchy HL1g 3HL1g 1) would be only around 10% and thus is considered
as negligible.

The training time mainly depends on the used data term function as well as on
the used penalty (see training time results). In contrast, the used loss does not
affect the training time at all. This is explained by the computationally costly
solution of the LLP, which is further hardened by the use of non-convex penalties
and non-quadratic data term functions on the one hand and the similarity between

a smooth L1 loss and a squared L2 loss on the other hand.

3.2.4. SSIM loss and additional Regularization

In the previous section it was shown that a L1 loss produces sharper images than
a squared L2 loss and thus obtains a higher SSIM. Although highly non-linear
and non-convex, a SSIM loss model is trained as well and compared to the L1
loss model. The hyperparameters are chosen according to the findings in the
previous section. Hence, a Huber loss approximation of a center smooth L1 norm
as data term function, a Cauchy penalty function and 24 filter of size 5x5 are used.
Further, the effect of an additional regularization factor is investigated. To find a
regularization factor that is stable across different noise levels, all experiments are
carried out for N = {30, 40, 50,60, 80, 100}.

Table 3.6.: Training and test results (CBF, inter-subject test set) for SSIM and L1 loss both with
L1 data term, Cauchy penalty, 50 L/C-pairs and 24 filters of size 5x5. The stated loss
is averaged over the last 60 iterations. Training was early stopped after 500 iterations.

[ Setup I Training I Testing (WB / GM / WM) |

[ Loss ” Time [ a; <0 [ Loss ” PSNR in dB [ SSIM in % ]
SSIM 16h30 3-7 0.71 22.21 / 20.22 / 17.72 71.27 / 84.41 / 59.73
HLlgp_4 14h10 0 3482.3 22.46 / 20.35 / 18.26 70.91 / 84.40 / 60.31
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3.2. Hyperparameters of the CSM

Table 3.6 and Figure 3.9 show the training and testing results for the SSIM model
in comparison to the L1 loss model. The SSIM model takes slightly longer to
finish the 500 training iterations, but attains a higher SSIM (71.27%). This result
has to be taken with care, because both models perform on par in gray matter
and in white matter the L1 model performs even better. Therefore, the increased
whole brain SSIM for the SSIM loss model must be reasoned in regions which are
neither in GM, nor in the WM mask. The relevance of this phenomenon is not
clear, because it might be founded in imperfect brain masks, i.e. not all white
(gray) matter is necessarily part of the WM (GM) mask.

The visual quality of depicted CBF maps agree with the quantitative results. The
maps of the SSIM loss model appear sharper but also contain more noise than the
L1 loss model’s CBF maps.

CSM-L1 CSM-SSIM wul

100g - min

5]

r 120

Subject VII
Slice 3

- 80

Subject VIII
Slice 6

A

L |

64.01% - 20.85dB

Subject X
Slice 9

80.35% - 18.47dB 81.23% - 18.44dB

Figure 3.9.: SSIM vs L1 loss CSMs. CBF maps, SSIM and PSNR for different slices and 50
L/C-pairs. Both models use a Cauchy penalty and a L1 data term.

Figure 3.10 contains the SSIM and PSNR graphs for different regularization pa-
rameters using the L1 and SSIM loss model with different numbers of L/C-pairs
(Nave)- It is observable that for the L1 loss, the best SSIM is obtained for 7 be-
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tween 0.7 and 0.8 and the best PSNR for  between 0.8 and 1.0. The SSIM model
is in general less dependent to the choice of 1. Here, the best SSIM is obtained
for n = 0.9 and the best PSNR for n = [0.9,0.95]. In theory, the SSIM loss model

should have best SSIM for a regularization factor of 1. This contradiction is not

clear at all. However, it is most likely that the overregularized learning is based
in a lower GM/WM ratio in the 64x64 patches for learning than in the 128x128

patches for testing. A more detailed explanation is given in section 4.3.2 "Addi-

tional Regularization of the CSM”. For the final tests a regularization factor of
n = 0.8 for the L1 model and n = 0.9 for the SSIM model is chosen.

L1 loss
90

®
v

SSIM in %
~
w

=
1
1
1
1
1
1
1
1
i
g
1
1
1
]
1
I
1
I
1
I

o
o

w
b

0;7 0;8 0‘.9

Regularization factor n

26

25 @ e e

244 4 e
[2e]
o
- I . -SSP L sttt
g B e
w
a

20

N N
= N
1
\
1
1
\
1
1
1
1
\
:
1
1
1
1
|
1
|
1
1
[}
1
1
1
I
I
I
I
1
|
1

0.7 0.8 0.9
Regularization factor n

SSIM in %

PSNR in dB

90

<]
[

®
o

~
v

~
S)

o
a

o
o

26

25 A

241

23 A

224

21

20

SSIM loss =®- 40 L/C-pairs

~&- 60 L/C-pairs
=®- 80 L/C-pairs
—@- 100 L/C-pairs

[ ¢-————————- B —— *
0.85 0.90 0.95 1.00

Regularization factor n

0.85 0.90 0.95 1.00
Regularization factor n

Figure 3.10.: SSIM and PSNR results of the SSIM and L1 loss model for different regularization
factors. The error bars indicate the averaged (over subjects and slices) estimated
standard deviation for the different variations of L /C-pairs.
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3.3. Hyperparameters of the VN

3.3.1. Model Size

To determine the most appropriate model size in terms of diffusion stages, number
of filters and kernel size, models with {3,5,7,9} stages and 8 filters of size 3x3,
24 filters of size 5x5, 48 filters of size 7x7 and 80 filters of size 9x9 were trained
(squared L2 and L1 loss) and evaluated (PSNR and SSIM). No explicit results are
depicted here, but the outcome of the tests are summarized. All experiments were
carried out with 50 L/C-pairs as input, a squared L2 data term and the InARow
test set.

In general larger models yield a lower loss during training. When using a squared
L2 loss, 5x5 and 7x7 kernel models perform better on test data than 3x3 kernel
models. However, for more than 5 stages, 7x7 models started to overfit to the
training data. When using a L1 loss, the 5x5 model with 5 stages attains a higher
SSIM than all 7x7 models. Therefore, the 24x5x5 model with 5 stages is considered
as an appropriate choice which yields sharp results and is robust against overfitting.
Additionally, some of these experiments were also performed using just the first
50 L/C-pairs for training. As assumed theoretically, this increased the effects of

overfitting (see section 2.3.4 "Datasets”).

3.3.2. Loss and Data Term

In analogy to the section above, the results are only summarized here. All prelim-
inary results are given in Appendix B.

For a squared L2 data term, the highest PSNR values are obtained using a squared
L2 loss. However, this combination leads to blurry images and consequently to a
low SSIM. A tradeoff between noise removal and sharp images is obtained by us-
ing a L1 loss. In contrast to a L2 loss, a SSIM based loss delivers the best SSIM
metrics but due to less noise reduction also a lower PSNR.

The drawback of the SSIM is its single scale definition. In this definition a 11x11
SSIM patch is used which averages out noise deviations. Hence, less noise is sup-

pressed when optimizing the single scale SSIM. The msSSIM overcomes this issue
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by computing the SSIM on several scales. Also hybrid loss forms like L1 with SSIM
(LISSIM) or L1msSSIM were tested. However, a msSSIM loss generally worked
best.

For a msSSIM based loss additionally to the L1 and L2 data terms a log-Cauchy
and a center-smoothed root (csRoot) were used. The best quantitative results
were obtained for a squared L2 and a center-smoothed root, which performed very
similar. However, the latter has the theoretical advantage of being heavy-tailed
and thus fits better to the data characteristics. Therefore, the center-smoothed
root function is chosen for all remaining experiments.

Additionally to the previous investigation of spatial denoising, the denoising per-
formance of the VN with additional temporal information as input was evaluated.
Therefore, also a squared L2 and L1 with estimated temporal voxelwise variances
(corresponds to a Mahalanobis distance) and temporal data terms (all L/C-pairs
as input) were tested. They yield a working denoising, but the obtained metrics
and CBF maps were not able to compete with non-temporal data terms at all.
This might be reasoned in a more difficult training and hence a bad local solution.
Nevertheless, the choice of the model based on the test data has to be considered
critical: Firstly, TensorFlow is not deterministic at all and secondly, the test data
varies a lot for different combinations of L/C-pairs. Hence, another model might
attain better metrics for different test conditions. In general, statistical testing
would be used to cope with this uncertainty, but due to variances caused by Ten-
sorFlow, by the slice quality and by ’good’ and ’bad’ L/C-pair combinatios, this
is not profitably for this task. Therefore, the model with the best (not-significant)

results and the best theoretic agreement was chosen.

64



3.4. Final Test and Comparison to TGV

3.4. Final Test and Comparison to TGV

In this section the final results for the chosen CSM and VN models are shown
for intra-subject and inter-subject data. In addition, they are compared with the
results of stTGV variants on the basis of the InARow dataset.

3.4.1. Inter-Subject Test Set

Figure 3.11 shows the SSIM in gray matter, white matter and in the whole brain for
the CSM-L1 loss, CSM-SSIM loss and the VN model for {30,40,50,60,70,80,90,100}
L/C-pairs. The black curves indicate the input of the models i.e the temporal mean
over the used PWI.

SSIM in Whole Brain SSIM in Gray Matter SSIM in White Matter

90 1 1
80 1 1
R 70 4 4
£
=
n
» 60 A 4 4
50 - —€— Input i i
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—@— CSM-SSIM
40 1 —@— VN-msSSIM T T
40 60 80 100 40 60 80 100 40 60 80 100
L/C-pairs L/C-pairs L/C-pairs

Figure 3.11.: Inter-Subject Testing. SSIM in GM, WM, and WB, for the CSM-L1, CSM-SSIM
and VN model using a different number of PWIs. The errorbars indicate the stan-
dard deviation over the used different L/C-pair combinations, which is averaged
over all slices and subjects.

It is clearly visible that all models outperform the input by a margin larger than the

estimated standard deviation. In addition, all models attain better quantitative
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results in gray matter than in white matter. This is expected because in gray
matter the blood supply is approximately 3 times as large as in white matter.
Regardless of matter and the number of used PWI, the variational network attains
a higher SSIM than the CSM models. Further, it is observable that the SSIM
increases monotonically with the number of L./C-pairs. However, the increase in
SSIM gets lower for higher numbers of averages due to the v/N improvement. I.e.
the gap between 30 and 50 pairs is larger than for 80 and 100 pairs. Additionally,

also a decrease of variation for more L/C-pairs is visible.

Subject VII Subject VIII Subject IX Subject X
90 A

80 85

85 1

80

75 A

—8— Input

70 —$— CSM-L1

45 —&— CSM-SSIM
=$— VN-msSSIM
T T T — 65 T T T T
40 60 80 100 40 60 80 100
274
26 26
251
24
24 4
o
o
£ 23
4
Z 224
o 22 .
214
201 1
181 20
16 4 4
18 L T T T T T T T T T T T T 19 T T T T
40 60 80 100 40 60 80 100 40 60 80 100 40 60 80 100
L/C-pairs L/C-pairs L/C-pairs L/C-pairs

Figure 3.12.: Inter-Subject Testing. SSIM in whole brain for all testing subjects, for the CSM-L1,
CSM-SSIM and VN model using a different number of PWIs. The errorbars indicate
the standard deviation over the used different L/C-pair combinations, which is
averaged over all slices.

Figure 3.12 shows the SSIM and the PSNR for different noise levels (L/C-pairs) and
all subjects of the inter-subject test set. Three new observations can be made here:

First, the single subjects attain quite different metrics. For example, subject X has
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approximately the same SSIM for 30 L /C-pairs as Subject VII for 100 L/C-pairs.
In contrast, the PSNR of both subjects is nearly identical. Second, for subject VIII
all models obtain a higher PSNR for 40 pairs than for 50 pairs. As this behavior
is not observable for the SSIM, it might be the case that the input data of subject
VIII is more noisy than expected. This might leads to an underregularization in
terms of PSNR. Third, the VN yields a lower PSNR for 30 L/C-pairs for subject
VII - IX than the CSM models. This might be reasoned in the used msSSIM loss,
which does not guarantee high PSNR values.

Table 3.7 shows the SSIM and PSNR, computed over all subjects and for different
numbers of L/C-pairs.

Table 3.7.: Inter-Subject Testing. SSIM and PSNR for the final models using a different number
of L/C-pairs. The error stated is the standard deviation over the input variations,
averaged over all slices and subjects.

[ Metric | L/C-pairs ] Input [ csM-L1 | CSM-SSIM | VN |

30 54.83 + 2.44 | 62.49 + 3.66 | 63.86 & 3.27 | 65.38 + 2.91
kS 40 60.47 + 2.55 | 67.85 & 3.03 | 68.11 & 2.94 | 69.54 + 2.81
£ 50 64.64 + 2.21 | 71.20 & 2.39 | 70.87 & 2.36 | 72.58 + 2.29
2 60 68.60 £ 2.05 | 74.36 & 2.22 | 74.17 £+ 2.18 | 75.41 + 2.10
@ 80 73.94 + 1.96 | 78.23 + 1.96 | 78.07 £ 1.97 | 79.29 + 1.90

100 78.56 + 1.58 | 81.75 + 1.54 | 81.83 + 1.53 | 82.61 + 1.46
0 30 18.28 & 0.77 | 21.26 & 0.71 | 21.02 + 0.88 | 20.91 + 0.95
o 40 19.48 + 0.78 | 21.77 4+ 0.83 | 21.64 + 0.89 | 21.80 + 0.96
£ 50 20.29 + 0.73 | 22.15 & 0.83 | 22.02 & 0.82 | 22.42 + 0.87
§ 60 21.27 £+ 0.64 | 23.07 £ 0.72 | 23.01 &+ 0.70 | 23.29 + 0.75
% 80 22.45 £+ 0.75 | 23.96 &£ 0.78 | 23.85 &+ 0.77 | 24.11 + 0.83

100 23.75 £ 0.62 | 25.07 &£ 0.62 | 25.03 & 0.61 | 25.20 % 0.66

Figure 3.13, 3.14 and 3.15 show the CBF maps for subject VII slice 3, subject VII
slice 6 and subject X slice 9. Although the visual difference between the CSM
(SSIM loss) and the VN is in general small, the VN’s CBF maps appear sharper

and less noisy.
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Figure 3.13.: CBF maps, SSIM and PSNR for different numbers of L/C-pairs (Ngye) of subject
VII slice 3 (inter-subject test set) for the CSM-SSIM and VN model. For N,,.=60
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Figure 3.14.: CBF maps, SSIM and PSNR for different numbers of L/C-pairs (Ngye) of subject

VIII slice 6 (inter-subject test set) for the CSM-SSIM and VN model.
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X slice 9 (inter-subject test set) for the CSM-SSIM and VN model.
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3.4.2. Intra-Subject Test Set

The aim of this test set is to evaluate if there are any differences in behavior of
the models compared to the inter-subject test set. Figure 3.16 shows the SSIM in
GM, WM and WB for different models and a different number of L./C-pairs.

SSIM in Whole Brain SSIM in Gray Matter SSIM in White Matter
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L/C-pairs L/C-pairs L/C-pairs

Figure 3.16.: Intra-Subject Testing. SSIM in GM, WM and WB, for the CSM-L1, CSM-SSIM and
VN model using a different number of PWIs. The errorbars indicate the standard
deviation over the used different L/C-pair combinations, which is averaged over all
slices and subjects.

Compared to the inter-subject case, the trends and the behavior of the models are
the same. The single subject results are shown in Figure 3.17. Principally these
results emphasize the same behavior as the curves for the inter-subject test case.
Table 3.8 indicates a slightly higher SSIM (1.1%-1.9%) and PSNR (0.6dB-1.1dB)
for the intra-subject test set than for the inter-subject test set. As this is also the
case for the input data, the better metrics can be assumed to be caused by a lower
noise level of the intra-subject test set.

Figure 3.18, 3.19 and 3.20 show the CBF maps for subject I slice 9, subject II slice
6 and subject V slice 3. In analogy to the inter-subject test case, the VN attains
sharper and less noisy CBF maps than the CSM.
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Table 3.8.: Intra-Subject Testing. SSIM and PSNR for the final models using a different number
of L/C-pairs. The error stated is the standard deviation over the input variations,
averaged over all slices and subjects.

SSIM in %

PSNR in dB

[ Metric | L/C-pairs || Input [ CsMLi | CSM-SSIM | VN |
30 56.27 + 2.55 | 64.28 4+ 2.97 | 65.19 + 2.75 | 66.73 + 2.76
=X 40 62.22 + 2.54 | 69.64 + 2.87 | 69.82 £ 2.73 | 71.15 4 2.58
£ 50 66.19 + 1.96 | 72.57 4+ 2.13 | 72.46 £ 2.11 74.05 £ 2.00
= 60 70.43 £ 1.65 | 76.20 + 1.86 | 76.08 + 1.82 | 77.15 + 1.66
@ 80 75.77 £ 1.69 | 79.96 + 1.75 | 79.86 + 1.70 | 81.00 £ 1.57
100 79.84 £ 1.30 82.81 £+ 1.37 82.95 £+ 1.34 83.75 + 1.28
0 30 18.90 + 0.68 | 21.84 + 0.66 | 21.72 + 0.69 | 21.56 + 0.81
= 40 20.24 + 0.62 | 22.53 + 0.69 | 22.46 + 0.70 | 22.65 + 0.74
£ 50 21.15 + 0.65 | 23.04 4+ 0.65 | 22.90 + 0.70 | 23.34 4+ 0.74
§ 60 22.11 + 0.52 | 23.97 4+ 0.60 | 23.90 £+ 0.60 | 24.20 & 0.60
E 80 23.44 £+ 0.62 25.03 £ 0.64 24.90 £+ 0.63 25.17 + 0.68
100 24.61 £ 0.52 25.91 £ 0.52 25.89 £+ 0.50 26.07 £+ 0.58
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Figure 3.17.: Intra-Subject Testing. SSIM in whole brain for all testing subjects, for the CSM-L1,
CSM-SSIM and VN model using a different number of PWIs. The errorbars indicate
the standard deviation over the used different L/C-pair combinations, which is
averaged over all slices.
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Figure 3.18.: CBF maps, SSIM and PSNR for different numbers of L/C-pairs (Ngy) of subject
I slice 9 (intra-subject test set) for the CSM-SSIM and VN model.
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Figure 3.19.: CBF maps, SSIM and PSNR for different numbers of L/C-pairs (Ngye) of subject
IT slice 6 (intra-subject test set) for the CSM-SSIM and VN model.
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Figure 3.20.: CBF maps, SSIM and PSNR for different numbers of L/C-pairs (Ngye) of subject

V slice 3 (intra-subject test set) for the CSM-SSIM and VN model.
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3.4.3. Comparison to TGV

In this section, the final models are compared to different variants of stTGV de-
noising used by Spann et al. [16]. Beside of the full spatio-temporal approach
(TGV-L1-LC-temporal), also a variant without temporal information (TGV-L1-
LC) and without L/C-separation (TGV-L1-dM-temporal) is tested. In addition,
also a spatial dependent squared L2 data terms (Mahalanobis L.2) is used in a 2D
and 3D setting.
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Figure 3.21.: SSIM based comparison between the learned models (VN and CSM) and different
TGV models for 50 L/C-pairs.

Figure 3.21 and 3.22 show the SSIM and the PSNR for all subjects (InARow test
set). Each model performs clearly better than the input. On the basis of SSIM,
both CSM perform worse than the best TGV models. The VN attains a higher
SSIM for Subject VIII, a comparable for subject IX and a lower SSIM for the
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Figure 3.22.: PSNR based comparison between the learned and TGV models for 50 L /C-pairs.

remaining two subjects. On the basis of PSNR, the TGV models outperform the

learned models. The results for all subjects are summarized in Table 3.9.

Table 3.9.: SSIM and PSNR results for 50 L/C-pairs for the learned models (VN and CSM) and
the TGV models.’C’ indicate a CSM model, "T” a TGV model. ’dM’ states temporal
TGV without L/C-splitting and "LC’ termes non-temporal TGV. 2D’ and ’3D’ stand
for the 2D and 3D spatial regularized TGV models.

Metric Input VN C-L1 C-SSIM T-L1 T-L1-dM T-L1-LC T-L2 T-2D T-3D
SSIM in % 65.37 73.33 71.79 71.60 73.81 71.84 70.12 73.01 72.87 73.69
PSNR in dB 20.60 22.78 22.47 22.34 23.46 22.91 22.23 22.76 23.16 23.35

Figure 3.23 compares the learned VN and the manually tuned stTGV. Due to
their very different formulation, a clear difference between the models is visible.
For the stated slices, the VN seems to suppress more noise but preserves less edge
information than the TGV model.
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Figure 3.23.: CBF maps, SSIM and PSNR for different slices of the inter-subject test set for the
VN and TGV (L1-LC-temporal) model and 50 L/C-pairs.
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3.4.4. Edge preservation

To examine the models’s capability of preserving edges, Figure 3.24 shows the TV
maps for the input, the reference and the denoised CBF maps using the CSM, VN
and stTGV. Large values indicate an large intensity change between the center
pixel and its neighborhood, like f.e. at edges or in noisy regions. These maps show
the highest supression of noise like structures in case of the VN. The TV maps
show narrower edges for the stTGV model. I.e. the results of the VN seems to
be less noisy but more blurry than the results of the stTGV approach. The CSM
suppresses less noise than the other two models and blures edges about the same
as the VN.
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Figure 3.24.: TV maps of input, reference and denoised CBF maps. The TV maps are obtained
by summing the absolute value of the gradient maps using forward differences in x
and y direction.
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3.4.5. Learned Parameters

Figure 3.25 and 3.26 depict the 24 learned kernels for the two CSM models. Fig-
ure 3.27 and 3.28 show the learned kernels and the corresponding activation and
penalty functions of the VN in the first and fifth stage. Some of the stated kernels
can be interpreted as gradient filters, some as second order (Laplace) filters, and
some of them as edge detectors. However, the majority does not seem to have
a particular structur. Many of the learned penalty functions are of quadratic na-
ture and some undergo a heavy-tailed characteristic. These penalties fit with the

theoretic expectations, but there are also unsymmetric bimodal penalties.
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3.4. Final Test and Comparison to TGV
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Figure 3.27.: Learned filter kernels, activation function (yellow) and corresponding penalty func-
tion (blue) for the VN at the first stage.

Figure 3.28.: Learned filter kernels, activation function (yellow) and corresponding penalty func-
tion (blue) for the VN at the fifth stage.
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4. Discussion

4.1. Quality of the learned Solution

In optimization the quality of the found parameters always has to be considered.
Is the solution a deep local minimum or even a global minimum? Is it a bad
minimum or just a saddle point? Is it robust to noise, i.e. does it generalize
well? In case of a convex problem, the solver should converge to a unique global
solution immediately. Unfortunately, the used models exploit non-convex penalty
functions and non-convex loss functions, leading to a non-convex optimization
problem. Consequently, the learned parameters are potentially related to low local
minima. Apart from this, very flat regions of the energy landscape can also lead
to bad solutions, even in convex settings. The impact of flat regions might become
worse when numerical limitations arise. Therefore, badly scaled input values have

to be avoided.

4.1.1. Local Optima

The used CSM as well as the VN are non-convex models and thus prone to get
stuck in bad local optima or in very flat regions of the energy landscape. A sim-
ple way to overcome these issues is to use mini-batches for training. The sampling
noise introduced by this method helps to escape from local solutions or flat regions.
As mini-batch training is performed, it can be assumed that the found solution is
at least a moderately low minimum or valley. An exact evaluation of the quality
of the solution is computationally not feasible because this would include the eval-

uation of the whole energy landscape.



4. Discussion

In case of the VN, the batch based learning approach leads to large oscillations of
the loss during training. This might be reasoned in large variations of the input
noise level for different PWIs of different slices and subjects.

Anyway, there is no guarantee that the training will converge to stationary point.
Beside the right training approach the initial values are also very important for a
successful training. Bad initial values or hyperparameters can lead to poor conver-
gence and hence to bad results. Fortunately, the proposed hyperparameters have

turned out to be very reliable in yielding convergence.

4.1.2. Overfitting

A simple and effective strategy against overfitting is given by reducing the number
of learnable parameters, i.e. small models are preferred. The proposed VN utilizes
6725 free parameters (5 stages with 24 filters of size 5x5, each of which is related to a
31 RBF based penalty function as well as a data term weight for each stage), which
is pretty little compared to more than 86 million different data points presented
during training (642 -42 data points per iteration, for each iteration a new training
set is used, see 2.3.4 "Datasets”). It is obvious that the CSM with its 600 free
parameters is even less prone to overfitting. Additionally, the large variations of
the inputs’s noise level avoid overfitting too. These more theoretical considerations
are proofed by the similar performance of the models on the intra-subject and inter-
subject test set. Overfitting would have lead to a better performance of the models

on the intra-subject test set, which is highly correlated to the training data.

4.1.3. Input Scaling and Numerical Problems

Float numbers are stored using two values, the mantissa and the exponent. Both
of them are represented using a fixed number of bits (8 exponent + 23 mantissa +
1 sign in case of single precision, 11+54+1 for double precision). When performing
computations on values with very different scaling, information is lost leading to

inaccurate results. A simple way to overcome this issue is by scaling the values to
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be in about the same range. In the present case, the intensities of PWIs are in
the range of about 0-10 and the final parameters about 0-1. Hence, it is useful to
scale down the input before denoising. This scaling yields in general more accurate
gradients and thus a faster convergence. Nevertheless, in case of the CSM and its
bilevel learning approach, numerics are still a limiting factor, because it is crucial
to solve the LLP with a very high accuracy. In this context two phenomenons have
to be reported:

In case of using an EstAbs penalty, which approximates a linear function, the
additional scaling of the single filters (parameter ) is redundant, because the
scaling of the filters could be incorporated in the learned kernels. (a;|A;x| =
|a;A;x| Ya; > 0). The existence of this additional parameter and the convexity
of the problem leads to a non-strict global minimum, i.e. the single minimum of
the function is not a point, but a 24 (length of ) dimensional space. The fact
that the EstAbs penalty just approximates a linear function turns to above stated
equality to be slightly inexact. A unique strict global minimum is the consequence.
The combination of both aspects, leads to the assumption that the unique global
minimum must be located in an extremely flat 24 dimensional region of the energy
landscape. Several trainings with the same EstAbs setting and different random
initials have been carried out. Although the same results would be expected, all
tests lead to different kernels. Obviously the energy landscape became too flat to
perform further gradient descent steps.

As a second example, even if the LLP optimization is subject to an unlimited
number of descent steps, the theoretical possible residual of zero is not reached.
The gradient simple vanishes before.

These two examples show the impact of numerical errors due to the finite resolution
of the data type. Especially when model parameters and gradients get close to
the machine epsilon, the approximation of the discrete optimization problem as

continuous valued problem becomes inaccurate.
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4.2. Optimization of the CSM Parameters

4.2.1. Choice of the HLP Solver

Beside of numerical considerations, the bilevel learning undergoes another issue:
Solving the LLP to a high level of accuracy is computational very costly, f.e. a
whole update lasts 165s, including 157s for the solution of the LLP (averaged over
500 iterations for the CSM with log-Cauchy penalty, 24 filters of size 5x5, SSIM
loss and L1 data term; training batch of 7 slices). Therefore, to reduce the number
of HLP iterations, it is very important to perform a powerful update on the model
parameters. On a first glance it would make sense to compute the Hessian of
the HLP and apply Newton’s method or approximate second order information
by using f.e L-BFGS. The problem with those methods is that they would require
a step size selection to perform well. In the case of bilevel learning, a linesearch
procedure is not efficient because it would include the solving of the LLP for each
loss evaluation. For this reason, Adam as a state of the art first order solver was
chosen for the HLP update.

4.2.2. GPU Acceleration Potential

As the training of the CSM is particular expensive, an arising question is how it
could be accelerated. One issue considering GPU parallelization is the computa-
tion of the inverse of the sparse Hessian. The fastest way to do so is probably
based on a sparse Cholesky decomposition. Unfortunately, there is less support
for sparse computations on GPUs and the efficient implementation of the latter
would exceed the effort of this thesis by far.

Therefore, only investigations to accelerate the LLP were done. However, prelimi-
nary test on the GPU where the LLP was solved using CG were not very promising.
This might be reasoned in unoptimized TensorFlow code and the little suitability
of CG with its linesearch (evaluation of the LLP loss has to be started from outside
of the TensorFlow graph, leading to much overhead). Nevertheless, there is no
reason why an optimization of the LLP on the GPU is not possible, but as with

the VN a faster and actually more powerful model is available, there was no focus
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on accelerating the CSM inference (inference time on a 1282 slice using CG about

25s, using the CSM log-Cauchy L1 model and an i5-2500K CPU @ 3.30GHz x 4).
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4.3. The used ASL Data

4.3.1. Different Noise Levels and Regularization Maps

Natural images used for evaluating new machine learning approaches are mostly
corrupted with rather simple noise distributions. In general, Gaussian noise with
the same variance for each pixel is added to the noise-free ground truth, leading
to high-quality datasets for learning. In contrast, the used ASL data undergoes
different noise characteristics in each voxel. Even if the basic shape of the distribu-
tions is the same, the variance differs a lot between voxels within a slice, between
slices within a volume and between volumes of different subjects.

To overcome these SNR variances, the learned priors form a tradeoff between the
low and high SNR input for a certain number of L/C-pairs. The unavoidable
drawback is that some areas will be underregularized and others overregularized.
In some cases, fewer averages of a specific subject yield better results than more
averages of another subject. Due to outliers, it can not be excluded that fewer
averages of the same voxel would yield better results than more averages. The
separation of the noise levels based on the number of L/C-pairs is thus not ideal.
The stated problems could be solved using regularizations maps and skipping the
separation based on the number of L/C-pairs. Unfortunately, the regularization
maps estimated from the temporal standard deviations within each voxel lead to
a more difficult training. In addition, the estimation is prone to outliers. The
implemented preliminary tests with regularization maps were not very promising
at all. As the data related problems could also be solved to some extend by more
sophisticated acquisition techniques, the regularization map approach was not fur-
ther investigated. An improvement in data-quality could be achieved with newer
labeling schemes like pCASL, which reduces outliers due to labeling in different
states of the cardiac cycle or by using efficient background-suppression techniques
to reduce the influence of physiological noise. An further improvement in SNR

could be achieved with 3D readout strategies.
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4.3.2. Additional Regularization of the CSM

In general, if the training set is drawn from the same distribution as the test set,
an additional regularization factor would not be not needed. Nevertheless, it was
shown that an additional regularization factor is beneficial in terms of SSIM, even
if the model was trained using a SSIM based loss. The simplest explanation would
be, that training and test set differ in terms of noise level. Another reason for
this observation could be caused by the 64x64 subset used for training, which is
characterized by a decreased GM/WM ratio and thus in average has less signal
per voxel (GM/WM,e. = 1.28 and GM/WMg,. = 1.09). This results in lower
SSIM and higher MSE (SSIM952 = 78.56%, SSIMgy2 = 75.43%, MSE 9g2 = 47.23,
MSEgg = 141.75). This means, that using the full 1282 patch for training would
lead to better results. In case of the CSM, 1282 patches are not used because of
infeasible long training times. In case of the VN, no benefit could be observed
using the full 128% patch. The latter contradicts the GM/WM ratio explanation,
although theoretically solid. However, one might assume that the VN is more ro-
bust to slight variations of the input SNR between test and training set.

Apart the clear impact of an additional regularization factor and the probably not
ideal 642 patch, the relative shape of the learned filters are in principle independent
from the noise level. The ideal amount of regularization will always be a matter
of the used metric, which might be adapted to different needs and subjective pref-
erences of the radiologist or any other expert. Hence, once learned an expressive
prior it might be more useful to provide the practitioner the possibility to chose
her /his preferred amount of regularization. In case of the VN, due to the it’s fast

inference, this would be possible to perform on-line.
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4.4. Interpretation of the Results

The interpretation and comparison of the results are not straightforward. One
image attains a high SSIM but a low PSNR, another image a low SSIM and a high
PSNR, so it is not clear which image is closer to the reference. Additionally, the
used reference is not noise-free, hence obtaining a better metric does not necessarily
mean to be closer to the unknown noise-free reference. An alternative way of
comparison, with the drawback of being subjective, is given by the direct visual

evaluation of the CBF maps.

4.4.1. CSM and VN Results in General

Both models successfully improve the image quality of the input, regardless of
the input noise level. As the VN can be interpreted as an advanced CSM, it is
absolutely consistent with the theory that the VN exceeds the performance of the
CSM.

Both learned models outperform the non-temporal TGV on the basis of the given
dataset. Including temporal information, the TGV’s performance increase and
attain better quantitative results for some subjects than the VN. This emphasizes
the importance of temporal or variance information for denoising of artifact prone
ASL data.

A difference in performance between the TGV denoising and the learned models is
founded in the use of local and global information. The latter is potentially useful,
f.e. for tracking of long edges or homogeneous areas. The TGV based models
utilize a few thousand gradient based optimization steps on the 1282 image patch,
resulting in whole image information for each pixel. In contrast, the VN uses 5
stages and hence each pixel receives information from a r=11 neighborhood. The
CSM needs 28 LLP iterations on average, which results in information from a r=57
neighborhood.

The CBF maps (Figure 3.23) highlight the difficulty of a direct interpretation.
For instance in the first row, the VN result clearly looks more natural and more
denoised than the TGV result, but the latter attains higher SSIM and PSNR. It is

unknown if this is reasoned by the metric calculation itself or by the noise within
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the ground truth. This raises the question if the use of metrics for evaluation is

meaningful at all.

4.4.2. Metrics for Evaluation

There are many ways for measuring the distance between two images. MSE, abso-
lute error, PSNR, SSIM to name a few. But which metric should be used to rank
images? On the one hand, PSNR and MSE are linked to a physical quantity, the
power of the error. On the other hand, the SSIM tries to imitate human perception.
It can not be answered if a physical quantity is a better choice than a psychological
or vice versa, but it might be better to weight metrics stronger which are more
attracted by desired image properties. As the SSIM is more attracted by sharp
images, which are preferred against blurry images, the SSIM is weighted stronger
than the PSNR.

Beside of the principal choice for a certain metric, there are different ways for com-
puting the certain metric. As equally weighted slices are desired, the here used
PSNR and SSIM are computed slicewise and averaged over the whole volume. Due
to different foreground fractions (brain volume) per slice this leads to the drawback
that single voxels are not weighted equally. F.e. in a slice with less foreground
voxels, voxel deviations are weighted stronger than in a slice with more foreground
voxels. This fact must be considered with care, as the standard deviation of the
brain volume per slice is not negligible. (16.8% from the mean brain volume per

slice, computed over all 10 subjects)

4.4.3. Edge Preservation

In section 3.4.4 "Edge preservation” it was shown that the full stTGV model pre-
serves edges better than the VN and CSM. In general, the nature of the TGV
functional is attracted by sharp images and thus preserves edges well. However,
the additional inclusions of temporal information and the splitting of label and con-
trol images have a positive impact on the edge preservation. The SSIM and PSNR

graphs (Figure 3.21 and 3.22) indicate a constant increase for the non-temporal,
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temporal dM and full stTGV model. This raises the assumption that both model
improvements (temporal input, L./C separated input) increase the capability in

preserving edges.

4.4.4. Interpretation of the Learned Parameters

Theoretically, the learned parameters could be interpreted as MRF prior. They
assign an energy proportional to the negative logarithm of the prior probability
to each image patch, which could be used to identify likely and unlikely, maybe
pathologic regions. Preliminary tests showed that the interpretation of the learned
MRF as prior probability is not very promising. This is probably reasoned in the
difference between discriminative and generative models. As the priors of the VN
and the CSM are optimized for denoising, the filters mainly extract features to
improve the performance in reducing noise and preserving image structures like

edges. The learned priors should thus not be interpreted as generative priors.
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4.5. Miscellaneous

4.5.1. CBF denoising

Actually, it would have been more reasonable to perform the image enhancement
directly on the CBF maps and not on the PWIs. However, it has to be noted
that an essential part of the CBF calculation is the division of the PWI by the M0
image. This could introduce problems like a division by zero or a rescaling of the
noise. Nevertheless, CBF denoising was tested too and it performed very similar

as PWI denoising.

4.5.2. Statistical Testing

In this thesis no statistical tests were performed for comparing different methods,
because of the following reasons:

For an expressive testing rather 100 than just 10 repetitions would have been
needed, which would last approximately 28h per test case (CSM) and thus is not
feasible considering all different tested regularization factors, model hyperparame-
ters etc.

As GPU computations are designed to be fast, they have the side effect of lacking
for accuracy. In fact, the errors have a stochastic nature and thus the VN infer-
ence is not deterministic. In addition, TensorFlow is not completely deterministic
either.

The result of a statistical test would only be useful in stating which method yields
a significant better metric. However, a better metric does not include better per-
formance. For instance, if one method attains significant higher PSNR and the
other significant higher SSIM, the question which model should be chosen remains.
In addition, the choice for the significance level is subjective too.

Summarized, statistical testing was not performed because it would be computa-
tional very costly (CSM), the inference is not deterministic (VN) and the mean-

ingfulness is still low.
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5. Conclusion

In the first part of the work it was shown that a co-sparse analysis model (CSM)
as variant of a field of experts (FoE) is able to learn a discriminative prior for ASL
image enhancement. In terms of PSNR and SSIM the CSM performs about as
well as the non-temporal TGV approach but worse than stTGV. Nevertheless, the
objective of designing an usable image enhancement method without the need for
manually tuned parameters was fulfilled.

In the second part the drawbacks of the CSM, i.e the long inference time and the
simplicity of the model (fixed penalty functions, etc.) were tackled by the use of a
more powerful and flexible variational network (VN). Although the VN yields bet-
ter results than the previously tested CSM, on a quantitative base it is only able
to compete with the stTGV in terms of SSIM. However, the qualitative compari-
son shows a visual improvement of the VN CBF-maps compared to the CBF-maps
from the stTGV. For reasons of a time consuming parameter tuning process for the
stTGV, just results for 50 L/C-pairs were compared. It is reasonable to suspect
that the impact of the temporal approach will decrease for more L/C-pairs used
or for a less outlier prone ASL sequences.

The huge benefit of the VN is founded in its fast inference (50ms for a 128x128
patch) and fast learning (15min with a highly non-convex msSSIM loss) in com-
bination with the ability to deal with a very low amount of data (data from 6
subjects for learning). For comparison, the st TGV denoising process takes about
2.5s (st TGV and VN experiments carried out on a Nvidia Titan Xp). Other learn-
ing based methods have shown to require costly trainings ([19] take 12h training
in combination with a low resolution dataset and a MSE loss) as well as data from
numerous subjects (f.e. Xie et al. [20] used 240 subjects for training). This high-
lights the VN’s suitability for further applications in context with ASL image and
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volume enhancement. As shown, even without temporal information the VN is
able to perform almost equally well as the stTGV. Unfortunately, in the presence
of large outliers or artifacts, this property reduces the ability to detect doubtful
data like outliers and artifacts. In extreme cases this can lead to non-physiological

structures.

Outlook

For future work, superior results are expected for the VN if additional informa-
tion like temporal data, separate label and control images and regularization maps
are included. The inclusion of the regularization maps might be difficult, because
it seems to make the training more complex. Additionally, it would be impor-
tant to obtain trust full variance statistics. This could be accomplished using
the bootstrapping technique. Further, regularization maps could be used to skip
the separation in different models for different numbers of used L/C-pairs. Hence,
only one model would have to be trained. The amount of regularization would
be determined by the regularization map. However, this would only increase the
usability and not the performance. A probably fast way to increase the model
capacity would be to include a learnable data term. This was actually part of
preliminary tests, but the learning did not work well for this case. Beside of the
mentioned model improvements, a very promising step goes towards the use of
sophisticated 3D pCASL sequences. The increased basic image quality of these
techniques makes highly resolved voxels possible (1.5mm isotropic). For such reso-
lutions 3D denoising with 3D filter kernels becomes useful. Parameter learning in
this case is particularly costly, thus a fast and effective model is needed. The VN
might be the only model which meets the requirements of efficient inference and

efficient learning.
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Table B.1.: Quantitative results for different VN setups. All results for 24 filters
stages with 31 RBFs - 30 and 100 L/C-pairs.

of size 5x5 in 5

Patchsize: 64x64 - 30 LIC-pairs
Loss. u L2 sSIM msSSIM L1SSIM LimsSSIM
DT SVI SVl SIX  S-X mean| SVI SVI S4X S-X mean| SVl SVIl S4X S-X mean| SVl SVIl S4X SX mean| SVl SVH S4X SX mean| SVl SVIl S4X SX mean
WB | 5576 5216 6758 7366 6229|5480 50.71 6656 7220 6107 | 57.60 54.46 69.78 7635 6455|4978 5139 6511 7266 50.73 | 57.55 54.02 6927 7549 64.08 | 57.20 5466 6953 7581 64.30
SSIM GM | 7686 6898 8339 87.25 7912|7832 7124 8400 8758 8029|7615 69.43 8375 8857 7948|7084 6883 8146 8806 7730 | 7667 6932 8375 8809 7946|7791 7131 8453 8893 8067
" WM | 4327 4739 5573 6194 5208 | 4095 4647 5372 59.00 5003 | 43.00 47.41 5677 6261 5245 |34.09 4157 49.22 5466 4488 | 4391 47.80 5692 62.88 5290 | 4251 47.85 5625 6230 52.23
wB | 2313 1852 2224 2194 2146|2310 1882 2226 2186 2151|2252 1821 2204 2213 2122|2018 1668 2061 2105 1963|2294 1848 2226 2212 2145|2277 1844 2225 2227 2143
PSNR GM [1895 1675 2083 2068 19301923 17.20 2103 2078 1956 [ 1834 1649 2065 2103 1913|1638 1554 1948 2064 1801|1873 1660 2083 2091 19.20 [ 1881 1685 2097 2124 19.47
WM | 1446 1382 1930 1065 1681|1384 1349 1880 1806 1627 | 1384 1346 1923 1058 1653 | 1059 1156 17.02 17.20 1409 | 1430 1376 1942 1078 1682 | 1374 1349 10.16 1056 16.49
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SSIM GM | 7934 7422 8480 8911 8189|7946 7408 8462 8807 8156 |77.15 7284 8444 8927 8092|7670 7242 8432 89.40 8071|7830 7361 8479 8941 8153|7874 7385 8494 89.44 B8L74
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wB | 2270 1850 2211 2211 2136|2285 1884 2214 2169 2138|2204 1813 2185 2208 2103|2192 1800 2181 2213 2096|2236 1831 2202 2217 2122|2250 18.40 2209 2219 2129
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ws — |se61 5506 6923 7591 6420|5739 5414 7012 7638 6451|5826 5460 6952 7493 6433|5771 5300 6916 7463 6365
SSIM  GM 7692 7215 8410 8903 8055|7524 6826 8389 8864 7901|7594 67.92 8337 8698 7855|7588 6749 8329 8683 78.37
LizvE wM 4086 4721 5513 6130 5113|4249 4563 5577 60.98 5122|4495 4825 57.68 6283 5343 | 44.26 4684 57.05 6222 5259
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PSNR GM — 1814 1664 2053 2111 19111809 1639 2067 2105 1905|1867 1665 2081 2052 19.16 | 1872 1670 20.78 2043 19.16
WM 1290 1295 1857 1892 1584|1356 1311 19.10 1946 1631)1452 1396 1970 2002 17.05 | 1456 1402 19.71 2003 17.08
WB | 5763 5301 67.00 7170 6234|5680 5227 6699 7181 6197|5676 5578 6977 7634 64.66 |57.73 5471 7022 7636 6475|5842 5508 69.62 7502 6454 | 5821 5443 6920 7469 6413
SSIM GM |75.84 6676 8200 8486 77.37 | 77.70 69.79 8292 8555 7899 | 7690 7263 8430 8924 80.77 | 7519 6823 8380 8850 7896 | 7628 6836 8348 87.08 7880 | 7638 6822 8360 87.32 78.88
Lo 2uE WM | 4493 4675 5627 6105 5225|4395 4831 5599 6127 5238 | 4126 47.68 5571 6178 5161|4320 4613 5611 6099 5161 | 4465 4823 5748 6278 5329 | 4429 4678 5652 6186 5236
wB | 2320 1852 2219 2145 2134|2339 1907 2237 2158 2160|2200 1808 2181 2208 2099 | 2226 1800 2205 2212 2111|2292 1842 2235 2194 2141|2289 1839 2233 21.97 2139
PSNR GM [1884 1650 2052 1087 1896|1926 17.24 2078 2004 1933 1807 1665 2056 2119 1912|1806 1635 2064 2105 1902|1870 1663 2082 2056 19.18 [ 1869 1663 20.85 2065 19.21
wM | 1490 1421 1967 1991 1717|1468 1426 1953 1986 17.08|1285 1293 1866 1008 1588 | 1367 1318 19.18 1950 1638|1433 1388 1968 2001 1697 | 1425 1377 1949 1984 1684
WB |57.28 5317 6838 7468 6338|5644 5082 6692 7317 6184|5604 5259 60.05 7592 63.40 | 5649 5362 6950 76.05 6392 |57.22 5392 6032 7591 6400 |57.32 5396 6943 7594 6416
SSIM GM | 7665 69.40 8410 8863 7969|7671 69.08 8370 87.93 7935|7435 6860 8340 8885 7880|7521 6896 8406 8913 7934|7596 6939 8421 89.13 7968 | 7602 6938 8428 89.16 7971
remporal L1 WM | 4144 4410 5536 6095 5046|4164 4395 5452 6017 5007 | 3850 4266 54.33 5025 4869 | 3895 4321 5507 6032 49.39 | 4005 4367 5525 6079 49.94 | 4030 4383 5560 6111 50.21
wB | 2282 1828 2218 2215 2136|2311 1866 2225 2204 2152|2181 17.77 2158 2185 2075|2202 17.79 2186 2207 2094|2236 1802 2200 2217 2114|2242 1803 2206 2221 2118
PSNR GM [1870 1664 2091 2119 1936|1896 1695 2097 2098 19.47 [17.69 1615 2026 2099 1877 [17.99 1623 2063 2125 19.03 | 1829 1643 2076 2129 19.19 [ 1834 1644 2081 2132 19.23
wM | 1399 1335 1896 1914 1636 | 1425 1349 1892 1907 1643|1201 1274 1855 1876 1574|1294 1283 1868 1891 1584|1340 1303 1881 1905 1607 | 13.46 1308 1890 19.14 16.15
WB | 5833 5415 6864 7483 6399|5592 5067 6753 7304 6179|5650 5318 6937 7568 6368|5628 5341 6937 7594 6375|5721 5358 6939 7584 6400|5738 5354 6946 7595 64.08
SSIM GM | 7698 6921 8432 8857 7977 | 7602 68.18 8368 87.85 7893|7527 68.89 8416 8881 7928|7476 6858 8387 8896 79.04 | 7577 6892 8414 89.00 79.46 | 7613 69.01 8433 89.09 79.64
\emporal L2 WM | 4137 4426 5535 6113 5053|3003 4324 5393 5901 4903|3912 4305 5486 6053 49.39 | 3849 4287 5466 5980 4895|3988 4335 5527 6060 49.77 | 4046 4390 5551 6132 50.30
wB | 2278 1809 2211 2205 2126|2258 1824 2201 2176 2115|2209 17.87 2186 2195 2094 | 2186 1766 2172 21.94 2080 | 2225 17.86 2192 2206 2102|2238 1794 2202 2216 2113
PSNR GM [1872 1649 2091 2109 1931|1855 1657 2081 2083 1919|1805 1629 2069 2110 1903 [17.83 1611 2051 2113 1889 1818 16290 2069 2119 19.09 | 1834 1636 2080 2128 19.20
wm |1392 1315 1887 1905 1625|1337 1298 1858 1860 1588|1302 1280 1860 1885 1582|1282 1271 1857 1883 1573|1331 1293 1879 1902 16011339 1301 1886 1914 1610
Patchsize: 64x64 - 100 LIC-pairs
Loss &Y L2 ssiM msSSIM L1SSIM L1msSSIM
pT. SVI SVl S4X  S-X mean| SVW SVH S4X S-X mean| SVl SVIl S4X S-X mean| SVl SVIl S4X S-X mean| SVl SVN S4X SX mean| SVl SVIl S4X SX mean
wB | 7921 7924 8436 8860 8285|7870 7877 8370 87.60 8219|7948 80.06 8421 8859 8308|7971 8028 8500 89.23 8355|7960 7976 8479 89.04 8330|7960 8017 8470 8896 8338
SSIM  GM |8898 8818 9217 9533 9117 |89.14 8833 9212 9519 9119|8948 8903 9226 9553 9158|8911 8882 9246 9570 9152|8896 8832 9231 9553 9128|8953 8903 9253 9575 9171
" WM | 6425 6943 7474 7881 7181|6302 6858 7294 7601 7014|6415 7025 7378 7811 7157 | 64.13 6931 7513 7876 71.83 | 6451 6947 7525 79.08 7208 | 64.46 7020 74.56 78.66 71.97
wB | 2715 2429 2557 2619 2580|2719 2432 2554 2600 2576|2705 2442 2553 2620 2580|2693 2430 2554 2630 2577 | 27.08 2428 2557 2627 2580 |27.13 2447 2565 2641 2591
PSNR GM |2264 2214 2425 2516 2355|2273 2219 2423 2502 2354|2270 2238 2428 2536 2368 2248 2225 2430 25.43 2361|2257 2214 2428 2531 2358 | 2276 2242 2442 2558 23.79
wm | 1837 2017 2328 2336 2120|1836 2011 2310 2296 21.13|17.89 1094 2286 2287 2089 | 1804 1996 2319 2323 2110|1830 2011 2331 2337 2127|1812 2008 2316 2318 2114
wB | 7942 8000 8436 8344 8305|7859 7882 8331 8701 8193|7940 8003 8398 8838 8295|7983 8071 8500 89.12 8366|7975 8047 8469 8886 8344 | 7973 8042 8471 8891 8344
SSIM  GM | 8961 8917 9245 9558 9170 | 8950 8877 9214 9516 9140 | 89.35 89.04 9210 9548 9149 | 89.45 8929 9256 9577 9177 | 89.64 8935 9252 9567 9179 | 89.65 8928 9257 9577 9182
» wM | 6393 7010 7399 7781 7146|6228 6847 7168 7444 6922|6397 7025 7335 7764 7130|6432 7018 7485 7848 7196 | 6438 7041 7449 7849 7194 | 6420 7027 7439 7834 7180
WB |27.18 2453 2564 2628 2591|2721 2441 2552 2590 2576|2695 2440 2547 2612 2574 | 2699 2446 2560 2635 2585|2711 2453 2562 2633 2590 | 27.13 2452 2566 2641 2593
PSNR GM |2282 2248 2442 2544 2379|2287 2235 2427 2504 2363|2261 2237 2419 2531 2362|2260 2243 2436 2553 2373|2277 2251 2441 2549 2379 | 2278 2249 2444 2560 2383
wm |1813 2011 2308 2303 21091813 2000 2284 2250 2087|1775 1987 2278 2272 2078 |17.95 2002 2316 2313 2106|1804 2007 2310 2306 2107|1802 2008 2312 2312 2108
wB 7881 7891 8382 8867 82557993 8042 8510 8936 8370 7979 7972 8459 8895 8326 |79.32 7893 8431 8845 8275
SsiM  GM 8808 8751 9157 9528 9061|8012 8895 9254 9572 9158|8892 8819 9213 9540 9116|8841 8751 9192 9511 90.74
LizvE WM 6374 6908 7339 7810 7108|6457 6932 7478 7866 7183 | 6502 69.67 74.97 79.16 7221|6405 67.98 7451 77.90 7111
wB 2660 2397 2528 2613 2550 2694 2436 2557 2632 2580 [ 27.00 2426 2553 2621 2577 |27.02 2409 2543 2598 2563
PSNR  GM ; 2207 2181 2390 2516 2323|2250 2233 2435 2547 2366 | 2258 2213 2420 2519 2352|2244 2191 2407 2490 2333
WM _ 17541964 2279 2296 2074|1802 1992 2313 2314 2106|1831 2008 2325 2334 2125|1833 2002 2328 2330 2124
wB | 7946 7879 8406 8797 8257|7895 7883 8381 8761 8230|7939 79.42 8405 8856 8285|7993 8018 8501 89.11 8356 |79.92 7984 8463 8885 8331|7975 79.43 8457 8865 83.10
SSIM  GM |8871 8769 9185 9499 9081|8897 87.97 9192 9482 9092|8857 87.98 9183 9523 9090 | 89.05 8881 9254 9565 9151|8894 8819 9213 9530 9114 | 8881 87.96 9213 9530 9105
Lo 2vF wM | 6443 6817 7431 7752 7111|6365 69.00 7342 7663 7067 | 6436 69.37 7332 77.96 7125|6417 6856 7441 7788 7126 | 6502 69.63 7487 7895 7212|6465 6862 7463 7808 7150
WB | 2710 2417 2546 2596 2567 |27.22 2429 2550 2585 2571|2680 2412 2538 2603 2558 | 2694 2432 2557 2627 2577|2708 2428 2554 2617 2577|2707 2422 2553 2614 2574
PSNR GM |2255 2199 2408 2484 2337|2269 2207 2411 2467 2338|2230 2199 2403 2506 2335|2248 2230 2436 25.42 2364 | 2256 2213 2420 2511 2350 | 2254 2206 2420 2510 23.47
wm | 1838 2007 2328 2327 2125|1855 2031 2326 2319 2133|1780 1978 2282 2290 2083|1804 1987 2312 2308 2103|1827 2011 2326 2335 2125|1831 2005 2329 2332 2124
wB | 7930 7961 8460 8893 8311|7864 7851 8385 87.85 8221|7827 7816 8255 8691 8147 - —
SSIM  GM | 8901 8880 9234 9565 9145|8860 8821 9189 9508 9097 | 8824 87.78 9110 9468 9045 - —
temporal L1 WM | 6251 67.65 7495 7894 7101|6263 67.26 7464 7768 7055 | 6253 67.52 72.37 7602 69.61
WB | 2691 2433 2553 2636 2578 |27.01 2424 2544 2598 2567 | 2654 23.97 2502 2554 2527
PSNR GM |2253 2234 2431 2549 2367|2254 2217 2411 2497 2345|2215 2193 2367 2464 2310
wm |1779 1975 2307 2314 2094|1811 1986 2312 2298 2102|1723 1930 2230 2207 20.23
wB | 7933 7935 8451 8874 8298|7903 7886 8429 8820 8260|7895 7919 8372 8811 8249
SSIM  GM | 8901 8859 9220 9554 9136|8388 8820 9211 9523 9110|8864 8838 9178 9515 9099
jemporal L2 WM | 6281 67.71 7513 7890 7114|6283 67.75 7507 7810 7094 | 62.64 67.63 7379 7771 70.44
WB | 2694 2428 2553 2629 2576|2700 2423 2551 2607 2570|2669 2413 2525 2590 2549
PSNR GM |2256 2227 2430 2540 2363|2256 2215 2421 2508 2350 [ 2231 2212 2398 2496 2334
wm |1787 1975 2313 2312 2097|1801 1984 2318 2304 2102|1753 1955 2270 2269 2062
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