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Danke an meine Lebensgefährtin Judith, die mich über die letzten Jahre hinweg
immer unterstützt hat. Zu guter Letzt danke ich meiner Großmutter, die mich
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Abstract

Arterial spin labeling (ASL) perfusion imaging is a non-invasive technique capa-

ble of measuring the cerebral blood flow. Due to its poor signal-to-noise ratio,

an efficient denoising method is required. Recently proposed methods like spatio-

temporal total generalized variation (stTGV) improve the image quality but utilize

full optimization procedures and thus are slow in inference. In contrast, deep learn-

ing (DL) based methods are fast in inference, but need much data and time for

training. The aim of this thesis is to implement a co-sparse analysis model (CSM)

and a variational network (VN) for ASL denoising to avoid both limitations.

A CSM uses learned filter kernels and applies a penalty function to the response

of the filter. The result of this procedure forms a regularization term. In combina-

tion with a data fidelity term an ”energy” is obtained which is topic to minimize

w.r.t. an input image. In the framework of VNs, full optimization is replaced by

an unrolled gradient descent scheme with a fixed number of steps. By using learn-

able penalty functions and a single parameter set for each descent step, a highly

expressive and efficient model is obtained. Both models were trained with ASL

data from 6 subjects and compared to stTGV on a quantitative and visual basis.

Although both models showed very good denoising performance, the VN outper-

formed the CSM. Despite visual differences, the VN and the stTGV performed on

par in terms of structural similarity. However, the VN was about 50 times faster

in denoising than stTGV. Further, the training of the VN lasts only 15 minutes.

This thesis highlighted the efficient ASL denoising capability of the VN. Its fast

training and the ability to deal with few data makes the VN highly suited for more

advanced applications in the field of arterial spin labeling.

Keywords: Magnetic Resonance Imaging, Arterial Spin Labeling, Image Denois-

ing, Co-Sparse Analysis Model, Variational Network





Kurzfassung

Arterial Spin Labeling (ASL) Perfusionsbildgebung ist eine nicht-invasive Tech-

nik zur Quantifizierung des zerebralen Blutflusses, die durch einen sehr kleinen

Signal-Rausch-Abstand gekennzeichnet ist. Kürzlich publizierte Methoden wie

spatio-temporal Total Generalized Variation (stTGV) oder Deep Learning (DL)

konnten die Bildqualität zwar deutlich verbessern, sind allerdings rechenintensiv

bzw. benötigen viel Zeit und viele Daten für das Training. Das Ziel dieser Ar-

beit ist es beide Nachteile durch die Adaptierung eines Co-Sparse Analysis Models

(CSM) sowie eines Variational Networks (VN) zu vermeiden.

Ein CSM verwendet lernbare Filter und penalisiert die Filterantwort mit Hilfe einer

vorgegebenen Funktion. Dieser Regularisierungsterm in Kombination mit einem

Datenterm bildet eine ”Energie”, welche in Bezug auf ein Eingangsbild minimiert

wird. Diese vollständige Minimierung wird bei VNs umgangen, d.h. nach einer

festen Anzahl an Gradientenschritten abgebrochen. Erlernbare Penalisierungsfunk-

tionen sowie unterschiedliche Parametersätze für jeden Abstiegsschritt führen zu

einem expressiven und effizienten Modell. Beide Methoden wurden mit ASL Daten

von 6 Probanden trainiert und quantitativ sowie visuell mit stTGV verglichen.

Beide Modelle konnten die Bildqualität deutlich erhöhen, wobei das VN bessere

Resultate erzielte. Trotz visueller Unterschiede erzielten VN und stTGV gleichw-

ertige strukturelle Ähnlichkeits Indizes. Weiters ist das VN rund 50 mal schneller

in der Bildverarbeitung als stTGV und benötigte nur 15 Minuten für das Training.

Diese Arbeit unterstreicht die Fähigkeit des VNs zur effizienten Bildverbesserung.

Aufgrund der wenig benötigten Daten und des kurzen Trainings ist das VN beson-

ders für herausfordernde Aufgaben im Bereich des Arterial Spin Labelings geeignet.

Keywords: Magnetresonanztomographie, Arterial Spin Labeling, Bildverbesserung,

Co-Sparse Analysis Model, Variational Network
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1. Introduction

Magnetic resonance (MR) perfusion weighted imaging summarizes several acqui-

sition techniques which are capable of measuring signals proportional to the CBF.

This is achieved by employing the impact of an intravascular, extracellular or dif-

fusible tracer on the tissue magnetization. The gained information is used in clinics

for the diagnosis and localization of diseases resulting in a pathologic cerebral blood

flow (f.e. strokes and tumors) as well as for scientific research.

In principle, three different kinds of methods are distinguished: dynamic suscepti-

bility contrast (DSC) perfusion magnetic resonance imaging (MRI), dynamic con-

trast enhanced (DCE) perfusion MRI and ASL. The first two techniques have the

use of an intravenous injected gadolinium-based contrast agent (GBCA) in com-

mon. In contrast, ASL uses magnetically labeled bloodwater as an endogenous

tracer. Some GBCAs are related to the development of nephrogenic systematic

fibrosis (NSF) in patients with renal insufficiency [1]. Also gadolinium deposition

in brain and body have been observed. In addition, qualified personal is needed

for tracer injection. These properties make DSC and DCE less suited for research.

The non-invasive and safe character of ASL overcomes these issues and thus is

considered as an appropriate technique especially for research like f.e. functional

magnetic resonance imaging (fMRI), where it is advantageous over blood oxygena-

tion level dependent (BOLD) contrast imaging in the sense of directly measuring

the perfusion.

In ASL, the PWI is obtained by the difference of an unaffected ’control’ image

and a ’label’ image. The essential part of the ASL pulse sequences is the labeling

of arterial blood water outside the region of interest. The first labeling technique,

continuous ASL (CASL), was proposed by Williams et al. in 1992 [2]. Over the

next decade the methods EPISTAR [3, 4], FAIR [5], PICORE [6], PULSAR [7]
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and QUASAR [8] formed the new class of pulsed ASL (PASL) techniques. The

main difference between these methods and CASL is the use of one adiabatic pulse

for labeling the arterial blood in a broad area instead of continuous RF-irradiation

which results in relevant tissue heatening. The latest technique, namely pseudo-

continuous ASL (pCASL) was proposed by Dai et al. [9] in 2008 and is considered

as hybrid form between CASL and PASL. Once labeled, the images can be acquired

using 2D or 3D [10] readouts. In general, 3D methods yield a higher signal-to-noise

ratio (SNR) but are less robust against motion. Nevertheless, depending on the

labeling method the magnetisation is increased or decreased just slightly (1%-2%)

which results in a very poor SNR. In order to increase the SNR and hence the im-

age quality, several images are obtained and averaged. The resulting long scanning

times are clinically not acceptable and additionally lead to movement artifacts.

To enhance the image quality and reduce the scanning time, ASL has been topic

for many denoising techniques: anisotropic difusion filtering [11], adaptive wiener

filtering [11], iterative soft thresholding [12], wavelet domain filtering [13], 3D block

matching [14], spatio-temporal low rank total variation [15], spatio-temporal total

generalized variation (stTGV) [16], deep learning methods [17, 18, 19, 20] and

others [21, 22].

A very effective convential technique is given by stTGV denoising. However, this

method needs a manual parameter tuning for different SNR cases and, due to

full optimization, long inference (i.e. denoising) times. Neural network based ap-

proaches avoid long denoising times but have the need for large datasets (f.e. [19]

used data from 20 subjects for learning, [20] 240 subjects) and long training times

(f.e [19] trained 12h for low resolution images). In addition, all proposed learning

based models exploit a squared L2 based loss, which is known to favour blurry

solutions more then sharp ones [23]. On the other hand, the possible solution of

using a perceptual based loss like the SSIM [24] or the multiscale SSIM (msSSIM)

[25] lead to a very complex and non-convex energy function, which is likely to

dramatically increase the computational costs.

The aim of this work is to tackle the reported problems by firstly use learnable

filter operators in the framework of field of experts (FoE) [26, 27] and secondly

by adapting a VN [28, 29] to the certain characteristics of high resolution 2D

PASL data. The FoE method will help to overcome costly parameter sweeps like

2



needed for stTGV. The VN approach will reduce the image processing time to

the millisecond range, which would increase the usability of the ASL denoisng

procedure greatly. Further, the VN comes with a powerful optimization strategy

(inertial proximal alternating linearized minimization (iPALM) [30]) which might

be capable of performing efficient SSIM optimization.
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1.1. Theory

Low level computer vision tasks like denoising, inpainting or non-blind deconvo-

lution can be formulated as an energy based inverse problem. Eq. 1.1 describes

the noise-free forward problem in terms of a system matrix S, data ŷ and ground

truth model parameters x̂.

ŷ = Sx̂ (1.1)

If the problem is well-posed, x̂ is obtained by computing the inverse of S. Unfor-

tunately, the measured data is almost always subject to noise n (eq. 1.2)

y = Sx̂ + n (1.2)

and the system matrix might not be positive definite. In such cases, the ground

truth x̂ is not obtainable any more and therefore an estimated solution x∗ is

computed as the minimizer of a suitable energy function (eq. 1.3).

x∗ = arg min
x

E(S,x,y) (1.3)

The most simple form of an energy models only the distance between the measured

(noisy) data y and the forward mapping Sx. For instance, if a squared L2 norm is

used to measure this difference, the well known least-square solution is obtained.

Depending on the task and on the SNR, this distance measure, which is often

called data fidelity term D(S,x,y), does not yield acceptable results. Therefore,

it is extended with a so called regularization term R(x) (eq. 1.4).

E(S,x,y) = R(x) +D(S,x,y) (1.4)

The exponential of the negative energy is proportional to a Boltzmann distribu-

tion and, therefore, is proportional to a probability. If R(x) and D(S,x,y) are

proportional the negative logarithm of the prior probability P (x) and likelihood

4
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P (y|x), than e−E(S,x,y) is proportional to the a posteriori probability (eq. 1.5).

e−E(S,x,y) = e−R(x) · e−D(S,x,y) ∝ P (x) · P (y|x)

P (y)
= P (x|y) (1.5)

Minimizing the energy E(S,x,y) is equivalent to maximizing the joint probability

P (x,y) and because the optimization is independent to the evidence P (y), the

whole procedure is equivalent to maximizing the posterior probability P (x|y) (eq.

1.6).

max
x

P (x)P (y|x)

P (y)
= max

x
P (x)P (y|x) (1.6)

Therefore, if the regularization term and the data term are modeling the corre-

sponding probabilities, minimizing the energy of an inverse problem is equivalent

to finding the maximum a posteriori (MAP) solution in a Bayesian framework.

The Modeling of the Data Term

The most important question to this point is how to model the parts of the energy

function. The data fidelity term has to capture the imperfection of the data acqui-

sition. If the error distribution is known, one can easily infer a suitable distance

metric by maximizing the logarithmic likelihood function. As an example, eq. 1.7

shows the relation between spatial independent Gaussian noise and the L2 norm.

max
x

logP (y|x) = max
x

log

(
Np∏
n=1

1√
2πσ

e−
(yn−xn)2

2σ2

)

= min
x

Np∑
n=1

1

2
(yn − xn)2 = min

x

1

2
||y− x||22

(1.7)

Data y and estimate x can be considered as vectorized images with Np pixels.

Another well known data term function is the L1 norm. It maximizes the log-

likelihood in case of Laplace distributed noise and leads to sharper solutions in

5
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general. In case of a very complex error distribution, it might be beneficial to use

a general formulated data term like a mixture of radial basis functions, where the

parameters are learned from data. However, the central limit theorem is valid for

many problems and thus the squared L2 norm is an appropriate choice. Never-

theless, for reasons of generality D is modeled in terms of an arbitrary distance

measure

D(S,x,y) = ψ(S,x,y). (1.8)

The Modeling of the Data Prior

In contrast to the data term, the choice of data prior is more critical and thus

many different regularization terms have been proposed. The definition of the prior

over the whole image as a Np dimensional distribution, is not only computational

infeasible in case of learning but also restricts the prior to a certain image size. To

avoid these problems and to exploit the self-similarity of images, the majority of

different variants of image priors have in common that they are defined over image

patches.

Product of Experts

The product of experts (PoE) model formulated by Hinton et al. [31] provides

a specific filter-based approach for modeling the prior distribution of (vectorized)

image patches u ∈ RN . In the framework of PoE, the prior probability p(u) is

written as formulated in eq. 1.9 with EPoE being the energy of the model, Θ

model parameters, Z(Θ) the normalization, Nf the number of filter - expert pairs,

ai ∈ RN the i-th (vectorized) filter kernel and ρi the i-th expert function that aims

to model the probability distribution of the i-th filter response.

p(u) =
1

Z(Θ)
e−EPoE(u,Θ) with EPoE = −

Nf∑
i=1

log ρi(a
T
i u) (1.9)

6
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The filter response of natural images are typically heavy-tailed distributed [32],

therefore the Student-t distribution (ST) and generalized Laplace distribution (GL)

are widely used expert functions. The scalar product aTi u can be considered as

filtering the image patch u with the filter ai. Further, it can be considered as

projecting u on the basis vector ai. Assuming the matrix A ∈ RNfxN is composed

by stacking the Nf filters aTi , then Au describes the linear transformation of u by

the transformation matrix A. As the heavy-tailed expert functions favor sparse

filter responses, the model can be considered to transform the image patch onto a

sparse feature space, where deviations from the expectation can be detected and

penalized more reliable. For sake of completeness, instead of modeling the expert

function it is common to directly model the penalty function φi = − log ρi. The

link between expert function ρi and penalty φi can be seen in eq. 1.10 where αi

and βi are some parametrization constants.

ρi(u) = (1 + u2)
−αi ⇔ φi(u) = αi log (1 + u2) ST

ρi(u) = e−|u|
βi ⇔ φi(u) = |u|βi GL

(1.10)

In case of setting βi = i, ∀i the penalty represents the L1 norm of the filter response.

This is particularly interesting when building a connection from PoE to TV priors.

Markov Random Fields

A markov random field (MRF) is an undirected graphical model G(V,E) with

nodes V and edges E that fulfill the local Markov property. The nodes represent

random variables and typically refer to image properties like intensity values, sur-

face normals or optical flow estimations. The structure of the MRF enables a

factorization of the probability distribution p(V = X) by employing the maximal

cliques of the graph defined by eq. 1.11. A clique is an undirected subgraph where

every two distinct nodes are connected to each other. It is said to be maximal if

no node could be added without violating the previous definition.

p(X) =
1

Z(Θ)

K∏
k

fk(Xk) (1.11)

7
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Here, K defines the number of maximal cliques Xk of an image X, fk is the factor-

ization function, Z is the normalization and θ is the entire set of parameters. In

analogy to the PoE, the above equation can also be written in terms of an energy

p(X) =
1

Z(Θ)
e−

∑K
k qk(Xk) (1.12)

where qk corresponds to the factorization function fk and is termed potential func-

tion or clique potential. In order to establish translation invariance, the same

potential function qk is used for each clique. In this case the MRF is called homo-

geneous.

In general, the potential function is written in terms of a penalty function φ, whose

argument is robust scalar mapping defined on the nodes of the cliques. Eq. 1.13

shows exemplarily how a clique potential q(Xk) could look in case of a pairwise

MRF, where just the direct non-diagonal neighbors are connected.

q(Xk) = q(xi, xj) = φ(xi − xj) (1.13)

The scalar mapping used above can be interpreted in the simplest form as a gradi-

ent estimation, i.e. forward differences. If the penalty φ is set to be the absolute

function, the TV prior is obtained (eq. 1.14).

EpwMRF =
K∑
k

q(Xk) =

(Nx−1,Ny−1)∑
(i,j)=(1,1)

|xi+1,j − xi,j|+ |xi,j+1 − xi,j| = ||∇X||1 (1.14)

Unfortunately, low-order MRF do not lead to satisfying results. For example,

the TV prior introduces so called staircasing artifacts because it favors piecewise

constant solutions. To obtain a more powerful model, higher order MRFs can

be established by forming larger maximal cliques (larger neighborhoods). Among

others, Geman and Reynolds [33] did so by using polynomial functions for scalar

mapping. Roth and Black [26] reformulated this mapping by filtering the nodes of

a (vectorized) clique xk with suitable (vectorized) filters ai. Thus, each clique xk

8
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is centered at pixel k and its size is determined indirectly via the filter size.

q(xk) =

Nf∑
i=1

φ(aTi xk) (1.15)

Note that the higher order MRF clique potential defined in eq. 1.15 is equivalent to

the PoE model if the image patch u is considered as a maximal clique. Therefore,

Roth and Black termed this combination of MRF and PoE a field of experts (FoE).

Field of Experts

The field of experts (FoE) overcomes the problem of the PoE of just being defined

over small image patches by incorporating the PoE in the framework of MRFs (eq.

1.16).

p(X) =
1

Z(Θ)
e−EFoE(X,Θ) with EFoE = −

Np∑
k=1

Nf∑
i=1

log ρi((Ai ∗X)k) (1.16)

In contrast to the PoE (eq. 1.9), in the FoE (eq 1.16) the filter Ai is applied to

the whole image X instead to a image patch U. As a consequence, a second sum

over the number of pixels Np is introduced which adds up the penalized filter re-

sponses for each center pixel k. This formulation instantly models the overlapping

of different image patches and thus avoids any patch averaging procedures. In the

following sections the FoE energy will also be written by using the filter opera-

tor A ∈ RNpNf×Np , where φΣ in combination with the latter also comprises the

required integration steps. This leads to the following, more compact formulation.

R(x) = EFoE(x) = φΣ(Ax) (1.17)

9
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The Co-Sparse Analysis Model

Combining eq. 1.8 and eq. 1.17 yields the overall energy of the first model, the

so-called CSM.

min
x

φΣ(Ax) + ψ(S,x,y) (1.18)

Assuming A is invertible and defining D = A−1 and x = Dχ one can also write

min
χ

φΣ(χ) + ψ(Dχ,y,S), (1.19)

which gives the so-called sparse synthesis model. The idea behind this model is

to use a dictionary D and synthesize the solution from dictionary atoms. As the

penalty function promotes sparsity in the solution space, just a few atoms are

needed for synthesis. The dictionary D can be learned from data or set to be a

rich transformation basis like DCT atoms or wavelets.

Inference and Learning in Markov Random Fields

Many parameters like the maximal clique, the neighboring structure, the filters

and the penalty function exist and are often chosen by hand. The TV model,

for instance, can be interpreted as hand-tuned MRF model. However, in the last

15 years, learning approaches have gained more and more attention. Therefore,

it is natural to consider optimizing the parameters of the FoE model with an

appropriate algorithm. Basically, there are two different strategies to learn the

MRF parameters. The first approach tries to minimize the difference between

the model distribution and data distribution. Hence, if sampling from the model

distribution the data distribution should be obtained. This procedure can be

considered as minimizing the Kullback-Leibler divergence between the model and

data distribution and is also equivalent to maximizing the likelihood of the given

training data X. The gradient of the log-likelihood (eq. 1.20) can be used to

employ any first order maximization method.

∂ logLX
∂Θi

=

〈
∂EFoE
∂Θi

〉
p

−
〈
∂EFoE
∂Θi

〉
X

(1.20)
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Here, 〈.〉p and 〈.〉X denote the expectation value of parameter Θi for the model

and data distribution. The data distribution is obtained by simply building the

average over the data X. The exact computation of the model distribution is

not possible, because the partition function has to be evaluated over all possible

energy configurations which is computationally not traceable. Therefore, suitable

sampling strategy like markov chain Monte Carlo (MCMC) or metropolis hastings

(MH) are employed to estimate the model distribution. However, to obtain a

very accurate estimate of the model distribution, many sampling steps would be

necessary, leading to a very slow learning procedure. Fortunately, Hinton et al.

[34] found a very efficient way to overcome this issue. They suggest to initialize

the MCMC with the training data and updating the chain just a few times. This

concept is called contrastive divergence (CD) and works even for one single update.

This probabilistic learning scheme represents a generative model and thus once

learned, it can be used for any kind of problem. Nevertheless, for a specific task a

discriminatively learned prior often leads to better results. Therefore, Samuel and

Tappen [35] proposed a loss-specific learning approach that directly optimizes the

MRF prior for MAP inference. This is achieved by minimizing the loss L(x∗(Θ), x̂)

which measures the distance between the ground truth x̂ and the minimizer of the

inference scheme x∗. This is formally written as bilevel optimization scheme (eq.

1.21) where the inference represents the lower level problem (LLP) and the loss

minimization the higher level problem (HLP).

min
Θ

L(x∗(Θ), x̂)

x∗ = arg min
x

EFoE(x,Θ) + ψ(S,x,y)
(1.21)

The drawback of the bilevel approach is that the LLP has to be solved with a

very high accuracy [36], which is particularly hard if the penalty function is also

learnable. Therefore, the penalty function is typically chosen a-priori. However,

the LLP is non-convex in general and thus hard to solve anyway, even if powerful

optimization methods like conjugate gradient (CG) [35] or L-BFGS [36] are used.

A different learning approach was performed by Barbu [37] and Domke [38] by

11
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using truncated optimization. This active random field called technique stops the

LLP optimization after a fixed, rather low number of iterations, leading to a fast

but suboptimal inference. The lack for accurate inference is compensated by a

prior, that is optimized not only for a certain inference scheme, but also for the

exact number of inference steps. Nevertheless, solving the LLP with a very high

accuracy still leads to better results than using truncated optimization [27].

Variational Networks

The proposed learning schemes for MRF-FoE are feasible, but still not very efficient.

Other image restoration algorithms like BM3D [14] attend also good performance,

but are difficult to incorporate into a parallelized GPU based training. Chen et al.

[28] tackled this problem by formulating a VN. The VN’s basic concept is similar

to those of active random fields, but with the difference of learning a separate prior

for each gradient descent step. In combination with learnable penalty functions

this leads to a highly expressive model that gains very good performance. More

formally, the reconstructed image x∗ in the VN framework is written as:

x∗ = xT , xt+1 = xt− ∂

∂xt

 Np∑
k=1

Nf∑
i=1

φti
((
At
ix
t
)
k

)
+ λtψ

(
Sxt − y

) , 0 ≤ t ≤ T−1

(1.22)

where At
i and φti denote the i-th filter-penalty pair for the t-th gradient descent

step. λt denotes the t-th non-negative data term weight. Nf refers to the number

of filter-penalty pairs and T to the number of gradient descent steps. By computing

the derivatives and rearranging some variables, eq. 1.23 is obtained.

xt+1 − xt

∆t
= −

Nf∑
i=1

At
i
>
φti
′ (At

ix
t
)
− λt

∂

∂xt
ψ
(
Sxt − y

)
with ∆t = 1 (1.23)

This formulation is closely related to the well-known Perona-Malik model for

anisotropic diffusion [39], with the first part being the so-called diffusion term

and the second part being the reaction term. The models differ in the formulation
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of the filter operator, which is composed of a horizontal and vertical gradient filter

in case of the Perona-Malik model and Nf principally unconstrained learnable fil-

ters in case of the variational network. A second difference is given by the reaction

term, which is not part of the original anisotropic diffusion model.

Further, Kobler et al. [40] showed the relation between VNs and deep learning.

A single diffusion step, in this context also called variational unit (VU), can be

interpreted as residual unit, which is the building block of residual neural networks.

The central idea behind residual networks is to utilize short-cut links to skip cer-

tain layers, leading to efficiently learnable networks with up to 1000 layers. The

short-cut link between input xt and output xt+1 establishes a residue function (eq.

1.24) gt which is typically formulated using filter kernels and thus is closely related

to eq. 1.23.

xt+1 − xt = gt(x
t) =

Nf∑
i=1

At
i
2
a
(
At
i
1
xt
)

(1.24)

At
i
1

and At
i
2

refer to filter operators and a(.) to the activation function, which

is often set to be the well-known rectified linear function (rectified linear units -

ReLU). The data term can be incorporated in the framework of residual neural

networks by using a second residual mapping, yielding so-called multi residual units.

It is obvious that the residual function estimates the gradient of the current image

xt. Hence, variational networks combine the profound theoretical background of

variational models and the efficiency of neural networks.
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2. Methods

2.1. Data Acquisition and Preprocessing

The ASL data used throughout this work was acquired and preprocessed in context

with the publication of Spann et al. [16]. The following chapters summarize the

data recording and preprocessing steps performed in the context of the above

publication.

2.1.1. Data Acquisition

ASL measurements were performed on ten healthy subjects (24-28 years, 4 women)

after giving written informed consent (caffeine and tobacco consumption were

avoided before the MR experiment). The latter is reasoned in alternations on

the global and regional CBF caused by the mentioned substances. ([41], [42], [43])

Label and control images were acquired using a 3T MR system (Magnetom Skyra,

Siemens Healthcare, Germany) performing pulsed ASL (PASL) measurements (PI-

CORE [6] - Q2TIPS [44]) with a 32-channel head coil. For the reduction of motion

artifacts small foam blocks were used to fixate the head of the subjects. In more de-

tail: 12 slices with an in-plane resolution of 1.8x1.8 mm2 (128x128 matrix, 230x230

mm2 field-of-view (FOV)) and 3.6 mm thickness (distance factor 25%), 6/8 partial

Fourier, GRAPPA-factor 2 and pre-scan normalize. Single-shot echo planar imag-

ing (EPI) with TR/TE = 2800/19 ms was used for imaging with a flip angle of

90◦, bolus duration TI1 = 800 ms, labeling inversion time TI2 = 1800 ms, labeling

slab thickness of 100 mm (20 mm gap between slab and image slice), ascending

slice order and a bandwidth of 1630 Hz/px. To estimate a noise-free ground truth
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500 L/C-pairs and a proton density weighted image (M0) were acquired in about

45 min.

2.1.2. Tissue Masks

WM, GM and cerebrospinal fluid (CSF) masks were computed from the acquired

T1w image. The anatomical T1 weighted images were measured using a 3D

MPRAGE sequence with the following imaging parameters: 1 mm isotrop, FOV=256x256

mm2, 144 slices, flip angle of 8◦ and TR/TE/TI = 1910/1.81/1000 ms). The

segmentation was performed using the Statistical Parameter Mapping 12 toolbox

(SPM12, Wellcome Trust Centre for Neuroimaging, London Uk, www.fil.ion.ucl.ac.uk/spm).

The generated partial volume (PV) content maps were registered to the first ASL

image and thresholded to obtain the corresponding tissue masks (threshold = 0.5).

In addition, a whole brain mask was computed by summing up the PV-content

maps and thresholding at 0.1.

2.1.3. Preprocessing

The ASL data was preprocessed as recommended in [45] using the SPM12 ASL

toolbox [46, 47] and in-house MATLAB scripts. In a first step ASL data was motion

corrected and de-trended using a Butterworth high-pass of 1st order with a cutoff

frequency of 0.01 Hz [47, 48] followed by discarding the first and the last slice of

each volume. Further, residual motion artifacts and global signal fluctuations were

removed from the label-control time series and outlier L/C-pairs were discarded

by performing z-score thresholding [49].

2.1.4. CBF Quantification

For the conversion of perfusion weighted images to CBF maps the general kinetic

model of Buxton et al. [50] was exploited (eq. 2.1).
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f(x, y, z) =
6 · 106 · λ ·∆M(x, y, z)

2α ·M0(x, y, z) · TI1 · e
−TI2
T1b

(2.1)

In eq. 2.1 above ∆M(x, y, z) denotes the PWI, TI1 the labeling duration (800

ms), TI2 the total delay time (1800 ms for the first slice, 80 ms added for each

subsequent slice [51]), T1b the longitudinal relaxation time of blood at 3T (1650 ms

[52]), α the labeling efficiency (0.98 [53]) and λ the blood-brain partition coefficient

(0.9 ml/g [54]). The resulting CBF values f(x, y, z) are given in ml/100g/min.

The proton density weighted image (M0) was smoothed with a Gaussian filter

(FWHM=3 mm [51] to reduce the impact of noise.
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2.2. Data Analysis

In the following sections different aspects regarding the preprocessed 2D ASL data

are analyzed. The obtained results are important to gain a profound understand-

ing of the characteristics of 2D PASL data. The differences to natural images

(BSDS300, [55]), which are corrupted with spatial independent Gaussian noise,

are from particular interest, because almost all denoising models are designed and

tested for such cases. The knowledge gained from this analysis will be used for se-

lecting theoretically reasonable hyperparameters for the two denoising approaches.

2.2.1. Temporal Distribution of Perfusion Weighted Images

Real and imaginary part of MRI voxels suffer from Gaussian noise, which causes

the voxels of the corresponding magnitude images to be Rice distributed. Al-

though the use of multiple coils in combination with GRAPPA transforms the

noise distribution approximately to a non-central χ distribution [56], for reasons

of interpretability this section focuses on the Rician distribution. Eq. 2.2 states

the Rician probability density function for an arbitrary positive x ∈ R+ with ν

being the truth value, σ the scaling factor and I0 the modified Bessel function of

first kind and zero order.

Rpdf (x|ν, σ) =
x

σ2
e−

x2+ν2

2σ2 I0

(xν
σ2

)
(2.2)

The truth value directly corresponds to the voxel intensity, i.e each voxel intensity

suffers from its own error distribution. This makes the modeling of the error dis-

tribution particular difficult. Fortunately, the PWI is obtained from the difference

of two very similar Rician distributed images. The theoretic PDF of a random

variable being the difference of two Rice distributed random variables, is stated in

eq. 2.3 where (µC ,σC) and (µL,σL) correspond to the parameters of the control

voxel and the label voxel, respectively.
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2.2. Data Analysis

R2s
pdf (x|νC , νL, σ) =


Rpdf (x+m|νC , σ) for x ≥ m

Rpdf (x+m|νC , σ) +Rpdf (−(x−m)|νL, σ)) for |x| < m

Rpdf (−(x−m)|νL, σ) for x ≤ −m
(2.3)

Figure 2.1 shows the estimated PDF of the ratio between ground truth control and

label voxels. This plot indicates that the difference is beneath 2% for the large

majority of voxels. In theory the ratio should be greater than one, but due to noise

and artifacts (e.g. motion) this is not the case for all voxels.

Figure 2.1.: Estimated PDF of the ratio between ground truth (400 averages) control (C) and
label (L) voxels. This PDF indicates negative perfusion in some voxels (L>C), which
is physically not possible and thus must be reasoned in the presence of errors in the
ground truth.

Figure 2.2 shows the PDF eq. 2.3 with different parameter settings. For a small
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ν (red curve) the one-sided character of the Rice distribution leads to two promi-

nent non-smooth points left and right from the origin (red arrows). For larger ν

(green curve) the non-smooth points migrate to outer regions where their impact

is negligible. This behavior is to some extent independent to σ, because a larger σ

will shift the single distributions even more apart from the origin. The parameter

setting of the yellow dotted curve (νC = 1.1νL) is motivated by the PDF shown

before (Figure 2.1) and shows that even an intensity difference of 10% has no ob-

servable effect on the corresponding ’two-sided’ Rice distribution. The Gaussian

PDFs depicted in this graphic show the remarkable similarity to their correspond-

ing ’two-sided’ Ricians, especially for large ν’s. Note that for large ν’s already the

”one-sided” Rice distribution is quite Gaussian like.
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R( C = 4.4, L = 4, = 1)

Figure 2.2.: Probability density functions of ’two-sided’ Ricians and the corresponding Gausian
distributions .
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Statistical Testing for Normality

To verify the validity of a Gaussian approximation, a d’Agostino-Pearson test

[57] was performed. The Null-Hypothesis H0 of the voxel intensities being drawn

from a normal distribution is rejected if the p-value is below a significance level

of α = 0.001. Figure 2.3 shows the ratio between rejected Null-Hypotheses and

tested voxels for each slice and all subjects.
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Figure 2.3.: Fraction between rejected H0 (α = 0.001) and tested voxels per slice for all subjects
(dashed line). The bold line indecates the average over all subjects.

This Figure shows that H0 is rejected for only a small fraction of voxels, with a

slightly increase in rejections for upper slices. The prominent outlier in the last

slice is founded in an acquisition artefact. The brain maps of rejected H0 (Figure

2.4) indicate a spatial dependency of the rejections. The majority of rejected voxels

are from cortical regions, where motion artefacts are more problematic. In these

areas, motion will mix in-brain voxels with background voxels which result in a

mean afflicted and asymmetric error distribution. Therefore, the approximation
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of the temporal voxel distribution by a Gaussian can be considered valid for the

majority of voxels, especially in the absence of motion.

Figure 2.4.: Brainmap (left subject VI slice 10, middle subject IX slice 8, right subject X slice
10 ) of rejected H0 (black) and not rejected H0 (gray) voxels

2.2.2. Data and Error Distribution

The estimated PDFs studied in this chapter were obtained for a certain number of

L/C-pairs (Nave) by repetitively (100 times) choosing Nave random L/C-pairs from

the acquired 400 L/C-pairs, followed by computing normalized histograms within

masked regions. As the general data distribution is considered here, the data from

all subjects is used without any seperation in subjects and slices. Additionally, the

arithmetic mean µ, the standard deviation σ and the skewness s are calculated.

Data Distribution

Figure 2.5 depicts the estimated PDFs for a different number (Nave) of L/C-pairs.

For less averages the noise dominates and thus the shape of the PDF is Gaussian-

like. For more averages the skewness (Table 2.1) increases and a shoulder evolves,

Table 2.1.: Estimated statistics of the data distribution for different numbers of averages Nave

(mean µ, standard deviation σ and skewness s).

Nave µ σ s

16 1.67 2.85 0.44

64 1.68 1.97 1.03

256 1.68 1.68 1.53

400 1.68 1.64 1.63
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which is likely to correspond to a second modal value.
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Figure 2.5.: Estimated probability density functions of the averaged PWI (PWIave) using a dif-
ferent number of averages Nave.

In theory, two modes are expected, the first corresponds to white and the second to

gray matter, respectively. Because of a high noise level, the bimodal characteristic

vanishes and only a shoulder and consequently an increased skewness are observ-

able. As expected, all curves share approximately the same mean value, which

indicates an approximately mean-free error distribution. Regardless of the num-

ber of used L/C-pairs, the PDFs indicate negative perfusion, which is physically

not possible and thus must be the effect of noise and artefacts (see also Figure 2.1).
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Error Distribution

The PDF of the error shown in Figure 2.6 is derived by subtracting the estimated

ground truth (400 L/C-pairs) from the mean PWI (Nave pairs). For a higher

number of L/C-pairs the standard deviation of the error decreases with about
√
Nave. Table 2.2 confirms the validity of this relation for less Nave. For more

L/C-pairs, it deviats more and more, which is reasoned in the computation of the

ground truth as the average of a finite number (400) of L/C-pairs, i.e. the ground

truth still contains noise. This leads to an underestimation of the variance. Hence,

for Nave = 400 the error PDF would collapse to a Kronecker-Delta impulse.
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Figure 2.6.: Estimated Error distribution and the corresponding normal distributions for different
number of L/C-pairs (Nave). The ground truth is estimated from 400 L/C-pairs.

Although, the skewness and the mean differ significantly (α = 0.001) from zero
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(see Table 2.2, pmf and psym) for some Nave, both are very close to zero regardless

the number of Nave. This indicates an almost (0.42% bias for Nave = 16) mean-free

and symmetric distribution. Nevertheless, the dashed lines in the plot emphasize

a notable deviation from normal distribution. This difference is also appearent in

the p-values pAP of Table 2.2 being smaller than α = 0.001. Hence, the H0 of the

data being drawn from a normal distribution can be rejected with a significance

level of α = 0.001.

Table 2.2.: Estimated statistics and related p-values of the error distribution for different numbers
of averages Nave (mean µ, standard deviation σ, skewness s, test for normality pAP

[57], t-test for zero-mean pmf and zero-skewness test psym [58]).

Nave µ σ s pAP pmf psym

1 2.51E-2 9.50E-0 2.82E-2 0 0 0

4 -1.77E-2 4.73E-0 4.03E-3 0 0 0

16 -7.00E-3 2.34E-0 -6.55E-3 0 0 0

64 3.21E-4 1.11E-0 9.37E-4 0 4.22E-2 7.47E-3

256 4.78E-5 4.02E-1 -2.19E-2 0 4.06E-1 0

The log PDFs depicted in Figure 2.7 visualizes the difference to logarithmized

normal distributions (illustrated with dashed lines) more clearly. As Rician or χ

distributions (degree of freedom ≥ 3) do not exhibit heavy-tailing (see section 2.2.1

”Temporal Distribution of Perfusion Weighted Images”), the occurence of heavy-

tails in the error distribution must be reasoned in another error source. However,

errors due to motion are in a mathematical sense very similar to the filter re-

sponse of gradient kernels. As this response is generalized Laplace distributed, i.e.

heavy-tailed, the tailing characteristic of the error’s PDF could be explained by

an imperfect motion correction due to distinct patient movement. But also other

error sources must kept in mind.

It is remarkable that despite temporal voxel distributions is Gaussian like for about

90% of voxels (see Figure 2.3) the joint error distribution is heavy-tailed. In this

context it is important to highlight that the temporal voxel distribution corre-

sponds to the curve for Nave = 1 L/C-pair, where the Gaussian noise fraction is

very high and thus dominates the Laplacian error. For more PWI used, the fraction
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Figure 2.7.: Negative logarithm of the Error distribution and the corresponding normal distri-
butions. The heavy-tailed character of the error PDF indicates the presence of
Laplacian like noise, which is an indicator for residual motion artifacts.

of Gaussian noise decreases and the heavy-tailed generalized Laplace distribution

becomes more prominent.

2.2.3. Slice Dependent Voxel Intensity and Intensity Deviation

The performed 2D PASL measurements lead to a very basic issue: As already

described in the introduction section, arterial blood water is magnetically labeled.

After waiting a period of time, allowing the blood to flow into the region of interest,

the images are acquired. In case of 2D readouts the slices are acquired in ascending

order, which leads to the issue that the magnetization of bloodwater in upper slices
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is already more relaxed when read out. As a consequent, the label images’ signal

intensity is less decreased for upper slices which leads to less difference signal.

Hence, PWIs from upper slices have less signal and less SNR, respectively.

In addtion, regions being more distant to the head coils (f.e. lower slices) are

contributing less signal but undergo the same noise level. The effect of less signal is

corrected by Siemens’s Prescan Normalize algorithm, but this correction increases

the standard deviation of the noise.
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Figure 2.8.: Temporal mean and temporal standard deviation, averaged over all voxels within the
masked regions of a slice. The colored dashed lines correspond to specific subjects,
the colors to a specifc number of L/C-pairs and the bold lines to the average over
all subjects.

Figure 2.8 depicts both phenomenons for different numbers of L/C-pairs by show-

ing the temporal voxel mean and standard deviation, avaraged over the masked

slices. The curvers corresponding to more than 1 L/C-pair are obtained by repet-
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itively (400 times) building the mean over N randomly chosen PWIs, followed by

computing the desired statistics. The curves in this graph show the intensity loss

as well as the decrease in standard deviation for upper slices. In contrast to the

intensity curves, the deviation curves depend on the number of used L/C-pairs.

As expected, an increase in the number of L/C-pairs by a factor of four leads to

a decrease in the standard deviation by a factor of two. This is consistent with

the theory that the standard deviation is proportional to
√
N with N being the

number of measurements (L/C-pairs).

2.2.4. Filter Response

For the selection of an appropriate penalty function, the filter response of standard

kernels applied to gold standard ASL data, is essential. As discribed in chapter

2.3.1 ”Details on the Model Formulation”, the filter kernels are composed as a

weighted sum of the DCT basis. Consequently, in this chapter the response to

DCT filters is analyzed. The distributions shown below are obtained by averaging

over all filter responses corresponding to a certain DCT base. I.e. for DCT-7 PDFs

all 48 non-constant filters are evaluated.

Figure 2.9 shows the negative log-probability of the DCT filter response for dif-

ferent image classes and different kernel sizes ks. All graphs are bias corrected

and normalized by their maximum to emphasize their tailing behavior. This plot

indicates several differences between ASL perfusion weight images (ASL-D, aver-

aged over 400 L/C-pairs), ASL control images (ASL-C, averaged over 400 images)

and natural images (BSDS300). First, unlike ASL-D, the shape of ASL-C is very

similar to BSDS300. ASL-D is more quadratic around the origin, whereas ASL-C

is more narrow and more heavy-tailed. For all image classes, larger kernels lead

to a more distinct heavy-tailing. The graph of ASL-C for a kernel size ks=3 is

very different to all other graphs. It is not clarified in total, but it is likely that

the estimated distribution is unstable for larger responses. The normalization to

a maximum value of one further distorts the shape of this graph.

28



2.2. Data Analysis

2.0 1.5 1.0 0.5 0.0 0.5 1.0 1.5 2.0
filter response x

0.0

0.2

0.4

0.6

0.8

1.0

lo
g (

(h
is

t(x
)

m
ax

(h
is

t(x
))

)
Y r

es
ca

le
1

Estimated Normalized Negative log-Probability of the DCT Filter Response

BSDS300 - ks=3
BSDS300 - ks=5
BSDS300 - ks=7
ASL-D - ks=3
ASL-D - ks=5
ASL-D - ks=7
ASL-C - ks=3
ASL-C - ks=5
ASL-C - ks=7

Figure 2.9.: Estimated negative log-probability of the DCT filter response for natural images
(BSDS300), averaged PWIs (ASL-D, 400 L/C-pairs) and averaged control images
(ASL-C, 400 images). The probability corresponds to all ks2 − 1 non-constant filter
kernels of the DCT-ks basis.

The distributions depicted in Figure 2.10 and Figure 2.11 uncover the noise-level

dependency of the filter responses for PWI and natural images. More noise (less

L/C-pairs) leads to a broadend center and to a less distinct heavy-tailing. The

dashed lines indicate the distribution of the filter response to Gausian noise only.

The comparison of the noise-only PDFs with the remaining PDFs leads to the as-

sumption that the center broadening is caused by the ground truth’s noise portion.

As it is not clear which characteristics of the distributions are caused by noise and

which are caused by information, a penalty selection based on the given ground

truth is considered as inappropriate.
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Figure 2.10.: Estimated negatavie log-probability of the ASL PWI’s DCT filter response for dif-
ferent noise levels (number of averages Nave).

2.0 1.5 1.0 0.5 0.0 0.5 1.0 1.5 2.0
filter response x

0

2

4

6

8

10

12

lo
g (

hi
st

(x
)

m
ax

(h
is

t(x
))

)

Negative log-Probability of the DCT Filter Response for Natural Images

GT
+N(0,0.0125)
+N(0,0.025)
+N(0,0.05)
+N(0,0.1)

Figure 2.11.: Estimated negative log-probability of the DCT filter response of natural images for
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noise only.
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An alternative interpretation of the filter response distributions is given by the

data’s degree of correlation. Fully correlated data, i.e. constant pixel values within

an image batch, will result in a filter response of zero (mean-free filters). A Dirac

impulse as PDF would be the consequence. Small deviations within the constant

batches would cause a response that slightly differs from zero. The resulting PDF

would be slightly broadened. In contrast, if the values of the batch are completly

uncorrelated the response would be equally distributed. Hence, the broadened cen-

ter of the filter response’s negative log-PDF for noisy data is not directly because

of the noise, but because of the decrease of correlation caused by the noise.
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Figure 2.12.: Comparison of the estimated negative log-probability of the PWIs’ and Natural
Images’ filter response and commonly used penalty functions.

Figure 2.12 shows the normalized negative log-probability for PWI and natural

images as well as three often used penalties. The root function (green dotted,

equivalent to logarithmized generalized Laplacian) adapts to the distribution for

natural images almost perfectly but not to the distribution for PWIs. Neither the

log-Cauchy penalty (green dashed) nor the absolute function (green dash-dotted)

seem to be good estimates for the PWI distribution.
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To conclude, the analysis of the filter responses did not emphasize the use of

any specific penalty function. For reasonable decision making a less noisy ground

truth would be needed. In general, it might be better to use a penalty that fits to

the expected filter response of noise-free data. However, in a learning based model

this would probably lead to bad solutions because of the discrepancy between noisy

ground truth and hyperparameters that are adapted to an ideal ground truth. In

this context also the convexity of the chosen penalty has to be considered. A non-

convex penalty might be theoretical more reasonable, but might also lead to bad

local optimal solutions.

2.2.5. Summary

At the beginning of this chapter it was found that the error distribution is a mix-

ture of at least a Gaussian and a Laplace distribution. The ratio depends mainly

on the number of L/C-pairs, i.e. more used pairs are reducing the portion of

Gaussian noise. For training and testing, at least 30 L/C-pairs will be used. Less

pairs are not considered to yield acceptable image quality, regardless of the spe-

cific denoising approach. For more than 30 L/C-pairs the error is more Laplacian

like distributed and thus a L1 norm as data term function is preferable against

a squared L2 norm. As a Gausian noise portion is still assumed to be present, a

center smoothed approximation of the L1 norm is prefered over an ideal L1 norm.

This has the additional advantage that a non-continuously differentiable function

can be avoided.

It was also found that the voxel intensity and standard deviation is dependent

on the position of the slice within the volume. Different intensities are han-

dled by normalizing the data by an appropriate measure (see section 2.2.6 ”Data

Normalization”). Different standard deviations and thus different noise levels could

be handled in principle by using a regularization map. However, the computation

of the latter would include the need for a robust estimation of the temporal stan-

dard deviation, especially when considering learning based approaches.

The last part of the ASL data analysis dealt with the DCT filter response to PWIs

and highlighted the impact of noise to the filter responses. The remaining noise

within the ground truth makes a penalty selection based on the responses inappro-
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priate. Hence, the final penalty will be chosen not only on theoretic assumptions

but also on the obtained image quality and convergence criteria.

2.2.6. Data Normalization

The most simple way to normalize the data would be by dividing each slice by its

maximum intensity. Unfortunatelly, the data is corrupted by noise and artifacts,

so the maximum is very likely to be an outlier. To overcome this problem, a robust

maximum is found by analysing the standard deviation of different percentiles for

100 random combinations for each slice, subject and noise level (number of L/C-

pairs). The effects of different brain dimensions per slice are handled by using just

the inner 64x64 patch for computation. It was found that the 94 - percentile yields

a good tradeoff between maximum correlation and stability for all subjects and

noise levels.

Figure 2.13 shows the normalized average intensity and standard deviation per slice

for different numbers of L/C-pairs. As expected, the intensities are less dependent

to the slice order compared to the unnormalized case (see Figure 2.8). Due to

different normalization factors for different noise levels, the intensities are now

dependent on the noise levels. This is not an issue, because data with different

numbers of L/C-pairs are not mixed up during learning and testing. Additionally,

because negative perfusion is not possible, negative values in the PWIs are clipped

to zero. This increases the error’s bias but decreases the error’s standard deviation.
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Figure 2.13.: Temporal statistics of the normalized PWIs for different number of L/C-pairs. The
colored dashed lines correspond to specific subjects, the colors to a specifc number
of L/C-pairs and the bold lines to the average over all subjects.
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2.3. A Markov Random Field for ASL denoising

The first model investigated for ASL denoising was the co-sparse analysis model

(CSM). The basic form of this model is already explained, therefore the following

will focus on the formulation of the kernels, the exact inference scheme, the loss

based learning of the free parameters as well as the choice of the hyperparameters.

2.3.1. Details on the Model Formulation

Filter Operator

Chen et al. [27] found that using mean-free filters lead to a better performance than

non mean-free filters. Therefore, one could either apply constrained optimization

methods which would make the MAP inference more difficult to solve or use a

suitable mean-free filter basis. As this part of the thesis was based on the work of

Chen, the filter kernels were defined as linear combination of the discrete cosine

transform (DCT) basis. This does not only yield a meaningful basis, but also mean-

free filters if the constant-entry atom of the DCT basis is omitted. Eq. 2.4 shows

how the i-th filter kernel Ai ∈ Rks×ks with ks being the kernel size, is composed

using the DCT basis B = {Bi, . . . ,BNb} where Bi ∈ Rks×ks denotes the i-th DCT

atom and Nb = k2
s − 1 the number of basis atoms. The learnable basis weights are

written as β ∈ RNf×Nb

Ai =

Nb∑
j=1

βijBj (2.4)

If the filter process is stated as matrix-vector multiplication, the filter matrix A ∈
RNpNf×Np is used. It is obtained from eq. 2.4, by replacing the DCT filters kernels

Bi with its sparse matrix formulation Bi ∈ RNp×Np , followed by subsequently

stacking of the resulting row vectors.

To control the ideal amount of regularization, each filter is weighted separately

by introducing an additional non-negative parameter α ∈ RNf×1
+ . The objective

function of the CSM for denoising ECSM is formulated in eq. 2.5. In contrast to eq.
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1.18, the sampling matrix S was set to be the identity matrix and an additional

regularization factor γ was introduced.

ECSM(x,y,α,β) = γ

Np∑
k=1

Nf∑
i=1

αiφ

([ Nb∑
j=1

βijBj

]
x

)
k

+ψ(x,y) where α ≥ 0.

(2.5)

Penalty Function

Although learnable penalty functions are desired, the minimization of the LLP with

a high level of accuracy would become too difficult and time consuming. Therefore,

several meaningful penalties were investigated. A probably powerful penalty is

given by the logarithm of the smooth and heavy-tailed Lorentzian distribution, also

known as Cauchy distribution, which is equivalent to a student-t distribution with

one degree of freedom. Eq. 2.6 shows the primitive as well as the corresponding

first and second derivatives of a log-Cauchy penalty.

log-Cauchy



φ(x) = κ1 log
(
1 + κ2

2x
2
)

φ′(x) = 2κ1κ
2
2

x

1 + κ2
2x

2

φ′′(x) = 2κ1κ
2
2

(1− κ2
2x

2)

(1 + κ2
2x

2)
2

(2.6)

The parametrization of the penalty could theoretically be omitted by incorporat-

ing κ1 and κ2 into the learnable weights β and α, but in practice they simplify

the choice for a robust initialization.

Another distribution that is likely to model the filter response well is the General-

ized Laplacian (see eq. 1.10) with the parameter βi = 1
3
∀i. To obtain a continuous

differentiateable penalty, the absolute function of the GL was replaced by a smooth

approximation |x| =
√
x2 + ε2. The compact formulation of the approximated log-

GL penalty and its derivatives are stated in eq. 2.7.
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approx. GL



φ(x) = κ1

(
x2 + ε2

) 1
6

φ′(x) =
κ1

3

x

(x2 + ε2)
5
6

φ′′(x) =
κ1

3

ε2 − 2
3
x2

(x2 + ε2)
11
6

(2.7)

For further comparison also the performance of a smooth approximated L1 penalty

(eq. 2.8) and a squared L2 penalty (eq. 2.9) were evaluated. However, the squared

L2 for a scalar is actually just a square function, which is indeed not heavy-tailed

and thus not very suited. This theoretic limitation is probably counteracted by a

very accurate and fast LLP solution as the quadratic penalty causes a quadratic

LLP, whose global minimum could be found by using on Newton update step.

approx L1



φ(x) = κ1

√
x2 + ε2

φ′(x) = κ1
x√

x2 + ε2

φ′′(x) = κ1
ε2

(x2 + ε2)
3
2

(2.8)

squared L2


φ(x) =

κ1

2
x2

φ′(x) = κ1x

φ′′(x) = κ1

(2.9)

Table 2.3 shows the parameters used for the different penalty functions as well as

their identifiers. Two different parameterizations were used for the approximated

absolute function. The first, EstAbs aims to estimate the absolute function as

exact as possible. For ε smaller than 0.01, the LLP optimizer was not able to find

an acceptable solution within reasonable time. The second, SmoAbs, models a

function that shares the tailing behavior with the absolute function and the shape

around the origin with a quadratic function.
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Table 2.3.: Parametrization of the used penalty functions. EstAbs is considered as an estimation
to an absolute function and SmoAbs as an absolute function with a distinct quadratic
shape around the origin.

Name Penalty κ1 κ1 ε

Cauchy log-Cauchy 0.05 4.0 -

xRoot log-GL 0.1 - 0.05

EstAbs approx. L1 0.1 - 0.01

SmoAbs approx. L1 0.1 - 0.6

Square squared L2 0.1 - -

Data Term Function

Although chapter 2.2 ”Data Analysis” showed that the error distribution is heavy-

tailed, for reasons of convergence the data term function ψ(x,y) was chosen to be

a Huber norm (eq. 2.10). The Huber norm is a simple extension to the Huber loss

h(u) that also works with multivariate input data. It is received by computing the

Huber loss for each element of the input, followed by an integration of the results

over all elements.


ψ(x,y) = 1>h(x− y)

ψ′(x,y) = h′(x− y)

ψ′′(x,y) = diag(h′′(x− y))

with


h(u) = (h(u1), . . . , h(uN))>

h′(u) = (h′(u1), . . . , h′(uN))>

h′′(u) = (h′′(u1), . . . , h′′(uN))>

and



h(u) =

{
u2

2ε
+ ε

2
|u| ≤ ε

|u| else

h′(u) =

{
u
ε

|u| ≤ ε

sign(u) else

h′′(u) =

{
1
ε
|u| ≤ ε

0 else

(2.10)

The Huber loss shares the shape of a quadratic function around the origin and the

linear tailing of an absolute function. The parameter ε controls the switchover of
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the multipart function. I.e. a small ε will lead to a smooth approximation of the

absolute function and a large one to a squared function that is more robust against

outliers. For comparison some trained CSM models use the squared L2 norm (eq.

2.11) as data term function.


ψ(x,y) =

1

2
‖x− y‖2

2

ψ′(x,y) = x− y

ψ′′(x,y) = I

(2.11)

Kernel Size and the Number of Filters

Theoretically, more and larger filter kernels lead to a more expressive prior and

thus to a better denoising performance. In practice, the size and the amount of

filters are limited by computational feasibility and the aggregation of numerical

errors, which introduce further problems when solving the LLP. Kernel sizes of

3x3, 5x5 and 7x7 were selected for testing the models. Previous work [59, 60, 61]

often focused on cases where the number of filter kernels Nf exceeded the kernel

dimension. Chen et al. [27] showed that it is sufficient to chose Nf to be exactly

the kernel dimension, which is in the current case k2
s − 1 due to the excluded DCT

atom.

Initial Values

The used initial values were inspired by Chen et al. and adapted slightly to ensure

fast and stable converging properties for the given data. For all performed experi-

ments, the initial value for αi was set to 1 over the number of filters. The initials

for β were drawn from a normal distribution and normalized such that
∥∥β.j∥∥2

= 1.

For inference as well as for learning, the x0 was set to be the input image y. The

Huber loss’s ε was set to 10−1, which yield a good tradeoff between accuracy and

convergence stability. For smaller values the training procedure becomes more

likely to fail. Unless stated otherwise, the additional regularization factor γ was

set to 1.
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2.3.2. Inference and Learning

The bilevel learning scheme (eq. 1.21) can be interpreted as constrained optimiza-

tion problem. Assuming the existence of x∗ and a convex LLP, the first order

optimality condition is sufficient and thus can be used to further simplify the ex-

pression. Using the fully parametrized CSM (eq. 2.5) as LLP, the corresponding

Lagrangian L with λ ∈ RNp×1 being the Lagrange multiplier writes as follows:

L(x,α,β,λ) = L(x, x̂) +∇xECSM(x,y,α,β)λ

= L(x, x̂) +

 Nf∑
i=1

αiA>i φ′ (Aix) + ψ′ (x,y)

λ
= L(x, x̂) +

 Nf∑
i=1

αi

[
Nb∑
j=1

βijBj

]>
φ′

([
Nb∑
j=1

βijBj

]
x

)
+ ψ′ (x,y)

λ
(2.12)

The inequality constraint of α is omitted in the formula above and will be handled

as a simple box constraint by the optimizer itself. To solve the bilevel problem at

least the gradient of the Lagrangian is needed.

∇xL(x,α,β,λ) = L′(x, x̂) + HEλ

= L′(x, x̂) +∇2
xECSM(x,y,α,β)λ

= L′(x, x̂) +

 Nf∑
i=1

αiA>i diag(φ′′(Aix))Ai + ψ′′(x,y)

λ
∇λL(x,α,β,λ) = ∇xECSM(x,y,α,β)

=

Nf∑
i=1

αiA>i φ′ (Aix) + ψ′ (x,y)

∇αiL(x,α,β,λ) =
(
A>i φ′(Aix)

)>
λ

∇βijL(x,α,β,λ) = αi
(
B>j φ′(Aix) + A>i diag(φ′′(Aix))Bjx

)>
λ

(2.13)
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Eq. 2.13 shows the first order partial derivatives of the Lagrangian L with respect

to x, α, β and λ. In principle, the gradient above would be sufficient to start an

iterative optimization procedure, but it is possible to simplify the learning scheme.

A closer look at the dependencies of the partial derivatives uncovers that ∇λL just

depends on x and ∇xL just on x and λ. In addition, the latter can be obtained in

closed form by using the first order optimality condition ∇xL = 0. Hence, if x is

solved first with a high level of accuracy using a suitable optimization algorithm,

followed by computing λ, ∇xL = 0 and ∇λL = 0 are fulfilled and thus more

effective optimization steps are obtained for α and β. It is further noteworthy

that ∇λL is equivalent to ∇xECSM , the gradient of the LLP w.r.t to x and that

HE notes the corresponding Hessian matrix. This raises an important clue to the

existence of the inverse Hessian needed for the computation of the gradient w.r.t to

α and β: In case of a convex LLP, hence a convex penalty and a convex data norm,

the Hessian is always positive definite and thus invertible. In case of a non-convex

LLP, the Hessian is not positive definite for all possible x ∈ RNp , but it follows

from the second order optimality condition that the Hessian is positive definite if

x is a local minimum of the LLP.

In general, the gradient of the whole test set could be obtained by summing up all

gradients w.r.t to α and β of single image patches. A more sophisticated approach

is given by so called mini-batches. Here, the gradients are computed over small

subsets rather than over the whole dataset. For each iteration a different mini-

batch is used, leading to faster but more inaccurate updates. This inaccuracy

is reflected by a loss evolution that is superimposed with more or less strong

oscillations. This sometimes called Stochastic Gradient Descent (SGD) known

technique has shown to work out well for many different kind of problems. Apart

from performance considerations, the stochastic nature of this procedure might

also help to escape from local minima, which is important when considering a

non-convex loss function. The full iterative learning scheme looks like follows:
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1. Initialization

2. Select NB batches from the training dataset

3. Solve the LLP with a suitable optimizer (f.e. Newton’s Method, CG)

4. Compute λ in closed form (exploiting sparsity)

5. Compute metrics (loss, PSNR, SSIM)

6. Compute the gradient w.r.t to α and β

7. Perform a parameter update on α and β (f.e. Adam)

8. Apply box constraints to α

9. If convergence criteria is not reached, go back to 2.

Optimizers

Basically, there is no limitation in which optimizer to use, but in preliminary tests

it was found that Newton’s Method performed well on the LLP for patch sizes

up to 64x64 pixels. For larger patch sizes the computation of the Hessian matrix

needed for Newtons method becomes too costly and thus CG was used in such

cases. For both methods the step size was found according to a linesearch.

The HLP, i.e. the learning of the parameters α and β, was optimized by using

Adam [62], which is a first order method using an adaptive momentum term. It

is often used in state of the art machine learning tasks and determines its step

size automatically. This is particularly important, because a line search or similar

techniques would imply the evaluation of the loss for each different step. This

evaluation would just be valid after solving the LLP and the Hessian. Hence, a

stepsize selection scheme for the HLP would slow down the learning a lot.

Stopping Criterion

As already mentioned, to reach acceptable convergence properties it is important

to solve the LLP with a high level of accuracy. Chen et al. stopped the LLP

optimization as soon as the L2 norm of the LLP’s gradient, normalized by the
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number of pixels, falls below 10−5 (input range [0-255]) [36]. Kunisch et al. stopped

it at 10−9 (input range [0-1]) [63]. As those values are related to images with a

known maximum intensity they can not by transfered directly to the used ASL

input data. Nevertheless, for training a stopping epsilon of 2 · 10−7 turned out to

work well. In case of inference this high level of accuracy is not needed and thus

an epsilon of 5 · 10−4 was used.

The HLP optimization was early stopped after 500 iterations. A stopping based

on vanishing gradients or vanishing loss was not used as the stochastic learning

scheme as well as the outlier prone data lead to oscillations of the loss and of the

gradients during training.

Loss Function

The CSM was trained using a squared L2, a Huber L1 (ε = 10−3) and a SSIM Loss.

Apart from its smooth and thus simple to optimize nature, the squared L2 norm

is closely related to the mean squared error (MSE) and therefore to the PSNR. As

it penalizes large deviations stronger than the L1 loss it favors smooth solutions

rather then sharp ones.

The optimization of the non continuously differentiateable L1 norm is often done by

exploiting proximal gradient methods like the primal dual algorithm [64]. Another,

simpler way is to use a smooth approximation like the Huber norm (eq. 2.10). This

approximation does not affect the tailing behavior of the loss and thus is especially

suited when sharp edges are desired.

The SSIM [24] measures the structural similarity between two image patches and is

designed to model the human perception. Compared to the PSNR it favors sharp

solutions rather than blurry ones and is therefore preferable as quantitative metric

although its relation to human perception might be doubtful [23].

SSIM(x,y) =

(
2µxµy + c1

µ2
x + µ2

y + c1

)(
2σxy + c2

σ2
x + σ2

y + c2

)
= l(x,y) · cs(x,y) (2.14)

Eq. 2.14 states the SSIM computations between the image patches x and y of
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size NSSIM x NSSIM (NSSIM = 11 px). µx and µy refer to the mean values of

the patches. σ2
x and σ2

y to the variances of the patches and σxy to the covariance

between those two patches. The originally proposed SSIM version weights the ele-

ments within the patches according to a 2D-Gaussian function (σ = 1.5 px). The

constants c1 and c2 are set to 0.012 and 0.032 respectively. There are several hyper-

parameters for calculating the SSIM which effect the result. A very important one

is given by the patch size: large patch sizes favor sharp but noisy solutions, small

patch sizes favor more blurry ones. The authors proposed to use the SSIM with a

patch size of 11 pixels, which is found to work well on natural images. However,

to overcome the problem of selecting an appropriate patch size the authors also

proposed a multiscale SSIM (msSSIM) [25].

The msSSIM is obtained by computing the contrast and structure cs(x, y) part of

the SSIM on different scales and multiplying all results with the luminescence part

l(x, y) at maximum scale. The formula for the msSSIM is given as follows:

msSSIM(x,y) = lσM (x,y) ·
M∏
i=1

csσi(x,y) (2.15)

The subindex σi indicates the changed Gaussian weighting which is interpreted

as a change in scale. The msSSIM used throughout this work is performed with

σ = [0.5, 2, 4]. The gradients of the SSIM and msSSIM w.r.t. x can be found in

appendix A.

2.3.3. Metrics for Evaluation

The obtained results were compared on the basis of the peak signal-to-noise ratio

(PSNR) and the SSIM 2.14. The PSNR is computed as follows:

PSNR(x,y)dB = 10 log10

(
y2
max

MSE(x,y)

)
(2.16)

where x notes the denoised and y the GT CBF map, MSE denotes the mean

squared error and y2
max is the maximum intensity within the reference slice y. It

is noteworthy that in case of natural images ymax is typically set to the maximum
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possible intensity (255 in case 8bit). The PSNR computation above states its

relation to the MSE and as a consequence the relation to the squared L2 norm.

In fact, minimizing the squared L2 also minimizes the MSE and thus the PSNR

gets maximized. Both metrics are calculated slicewise within given brain masks

(whole brain, gray matter and white matter). To evaluate the performance on

whole datasets, the metrics are averaged over all slices.

2.3.4. Datasets

The averaged ASL difference data 2.17 from 10 subjects was splitted into 3 subsets.

yin =
1

Nave

Nave∑
i=1

Ci − Li (2.17)

The first subset was the learning set which was formed from all slices (1-10) except

3,6,9 from subject I-VI. The skipped slices 3,6,9 formed the intra-subject test set.

The last subset was the inter-subject test set which contained all data from subject

VII - X. Although the basic error level differs quite a lot for different subjects,

especially for men and women (higher CBF for women), the sets can be considered

equal because the ratio between ’good’ and ’bad’ quality slices is about the same.

For each of the 128x128 test set slices, 10 randomly selected combinations of L/C-

pairs were used to build the input. Therefore, the inter-subject test set contained

400 images and the intra-subject test set 120 images. A second version of the

inter-subject test set was obtained by using just the first Nave L/C-pairs. Thus

this set is named InARow test set.

During training, for each iteration new Nave randomly chosen L/C-pairs were used.

An alternative is given by using subsequently acquired L/C-pairs, which would

enhance the quality of the input data due to less motion. However, the ’random

load’ approach overcomes the effects of bad input combinations to some extent.

I.e. it is more robust against outliers. Additionally, this method yields a more

comprehensive trainingset as for each iteration different datat is used. As the

mini-batches were composed of all trainig slices within a single subject, 7 slices

were used for each iteration. Hence, after 500 training iterations the model has seen
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3500 different input slices. However, they must be considered as highly correlated

due to the 42 basic image slices (7 slices from 6 subjects).

2.3.5. Experimental Setup

To evaluate the basic principle, initial tests on a synthic dataset [16] were performed

at the very beginning. Afterwards three groups of experiments were carried out

to chose appropriate hyperparameters. The first group of expermiments focused

on the preselection of different penalty functions. The second group explored the

impact and the interaction between loss, data term and penalty. The last group

investigated the impact of the number and size of the used filters. All of these

experiments were carried out using the inter-subject test set and 50 L/C-pairs.

After appropriate hyperparameters were found, the performance of the SSIM loss

was tested. Further, the impact of the additional regularization factor γ during

inference was explored. Once the final model was chosen, the performance on the

remaining test sets with different numbers of input L/C-pairs was evaluated and

compared to the VN and stTGV [16].

2.3.6. Implementation Details

The model was implemented using TensorFlow in combination with PYTHON 3.6.

TensorFlow does not support sparse matrix formats which are needed to efficiently

compute the Hessian matrix. Therefore, the λ computation was performed outside

the TensorFlow graph using the ScientificPython (SciPy) library. The inversion of

the Hessian was performed using the sparse Cholesky decomposition provided by

the Skimage library. Convolutions were performed using zero padding at bound-

aries. To increase the LLP accuracy, all computations were carried out using

double precision floating point operations. All experiments were carried out on an

Intel i5-2500K @ 3.30GHz x 4.
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2.4. A Variational Network for ASL denoising

2.4.1. Details on the Model Formulation

Filter Operator

In contrast to the CSM, the VN uses basis free filters. Hence, the filter parameters

were optimized directly. Therefore, mean-free filters were ensured by adding a

constraint to the optimization scheme. A second constraint fixed the filters to

have unity norm, i.e. ||kti||2 = 1.

Penalty Function

A fundamental improvement of the VN compared to the CSM is the use of learnable

penalty functions for each filter. Therefore, the gradient of the penalty (i.e. the

activation) φti
′
(x) (eq. 2.18) of the i-th filter in stage t is modeled as a weighted

combination of several radial basis functions (RBFs).

φti
′
(x) =

Nw∑
j=1

wtije
−

(x−µj)
2

2σ2 (2.18)

Here, Nw is the number of radial basis functions which were set up linearly between

vmin = −0.5 and vmin = +0.5 and was set to 31. The center of the j-th RBF is

termed as µj and the standard deviation σ is calculated as follows: σ = vmax−vmin
Nw−1

Data Term Function

For the data term ψ three different functions were tested: a squared L2, a L1

and a center-smoothed root (csRoot) (ψ(x) = ||x�2 + 1||γγ, γ = 0.15). Additional

experiments were carried out using temporal data terms as well as SSIM based

data terms. However, these data term approaches were not further investigated as

they do not improve the result for the given model-optimizer setup.
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Kernel Size, the Number of Filters and the Number of Stages

In analogy to the CSM the number of filters were set to k2
s − 1, with ks being the

kernel size. Tested kernel sizes include 3x3, 5x5, 7x7 as well as 9x9. The tested

number of stages were set to 3,5,7 and 9.

Initial Values

The filters were initialized with normal distributed random values followed by

applying the zero mean and the unit ball constraint. The penalty weights were

initialized linearly between -0.02 and 0.02. The initial weight for the data term

was set to 0.1 for all stages. Like for the CSM, the initial image x0 was set to be

the input image y.

2.4.2. Inference and Learning

The network was trained using either a L2, L1, SSIM or msSSIM loss for 500

iPALM [30] iterations. For the iPALM, a fixed momentum of 0.4 and a maximum

of 40 backtracking iterations were used. The Lipschitz constant was initialized

with 1000. The data was preprocessed and loaded exactly as described in 2.3.4

”Datasets”. For training, a batch size of 42 images was used (7 slices of 6 training

subjects).

2.4.3. Experimental Setup

At first, an appropriate model size was found by varying the number of stages

between 3 and 9, and the number and size of filters between 8x3x3 and 48x7x7.

Further, the impact of different losses and data term functions on the denoising

performance was investigated using the InARow test set. At the end, the perfor-

mance on the inter-subject and intra-subject test set was evaluated and compared

to the CSM and stTGV.

48



2.4. A Variational Network for ASL denoising

2.4.4. Implementation Details

The model was implemented in TensorFlow using the Framework provided by

Kobler [40] and adapted to the peculiarities of ASL denoising. Convolutions were

performed using reflected boundary conditions. All experiments were carried out

on a Nvidia Titan Xp.
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3. Results

3.1. Phantom Data, Convergence and Input

At the very beginning a proof of concept is established by training the CSM with

synthetic data [16]. The obtained kernels for this test set are shown in Figure 3.1

(EstAbs penalty, squared L2 loss, squared L2 data term and 10 filters of size 5x5).

The four non-zero weighted kernels could be paired to form symmetric difference

kernels. This highlights the close relation of the learned operator to total variation

(TV) regularization. This behavior is caused by the piecewise constant nature

of the used synthetic data, which is known to be attracted by TV regularized

solutions.

Figure 3.1.: Learned kernels for EstAbs penalty, squared L2 loss, squared L2 data term, 10 filters
of size 5x5, 50 L/C-pairs and phantom data.The corresponding weight and norm of
the filter is stated in brackets.

Figure 3.2 shows exemplarily the training progress for real PASL data (inter-

subject test set). After an initial loss decrease the latter begins to oscillate. This is



3. Results

probably due to the rather small batch-size and the randomly chosen PWI for each

iteration. On a first glance this might be an issue, but actually these stochastic

updates help to escape from local minima.

Figure 3.2.: Training progress for SmoAbs penalty, squared L2 loss, squared L2 data term, 24
filters of size 5x5 and 50 L/C-pairs.

Figure 3.3 shows several input and reference CBF maps for different subjects and

slices as well as the initial SSIM and PSNR for 50 L/C-pairs.
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Figure 3.3.: Input CBF maps for several subjects and slices (50 L/C-pairs) as well as the cor-
responding reference CBF map. The three given maps per slice differ in the used
L/C-pair combination. The stated SSIM and PSNR are computed between the cor-
responding slice and its reference.
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3.2. Hyperparameters of the CSM

3.2. Hyperparameters of the CSM

3.2.1. Impact of the Penalty Functions

The results of the first group of model selection experiments can be seen in Table

3.1 as well as in Figure 3.4. Log-Cauchy, SmoAbs and also Square penalties lead to

very similar WB PSNR values (22.55dB - 22.61dB), whereas the xRoot penalty is

clearly worse considering PSNR (22.45dB) and SSIM (68.62%). This is particular

interesting as the xRoot penalty is in theory the most appropriate penalty func-

tion. A reason for this phenomenon might be explained by the non-convexity as

well as the non-smoothness of this function. Due to the weak performance and the

long training time, the xRoot penalty approach is not pursued. The CBF maps

show that the xRoot penalty yields very blurry results and therefore a lower SSIM

(68.62%). The Square penalty maps contain more noise than the remaining ones

and thus a lower PSNR (22.57dB) is obtained. However, they are also sharper

which leads to a higher SSIM (69.70%). EstAbs and SmoAbs behave to some

extend like xRoot and Square penalties, respectively. This is surprising, because

in general one would expect that more quadratic penalties lead to more blurry

solutions because they penalize larger filter responses stronger. A possible expla-

nation is derived from another viewpoint: SmoAbs and Square have a quadratic

center, which means that small filter responses are less penalized compared to the

linear shaped center of xRoot and EstAbs penalty. Small filter responses are likely

in rather constant valued regions which are corrupted with noise. This behavior

might be increased by the bias which is introduced by the clipping of negative val-

ues (especially in WM). During learning, accepting small filter responses reduces

the amount of regularization of the learned prior. This leads to less regularization

and thus to sharper images. Despite its acceptable performance, the square penalty

will not be part of further experiments, because the SmoAbs penalty combines the

advantages of the Square penalty and the theoretic assumptions made upon the

log-probability of the filter response.

This first set of experiments (as well as all proceeding ones) also highlights the

different SNR levels in GM and WM. Although this was expected, the ideal model

should perform equally well in both regions.
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3. Results

Table 3.1.: Parameter setup, training loss and testing results (CBF, inter-subject test set) for the
penalty selection tests. All experiments were carried out using 50 L/C-pairs, squared
L2 loss, squared L2 data term and 24 filters of size 5x5. The stated loss is averaged
over the last 60 iterations. Training was early stopped after 500 iterations.

Setup Training Testing (WB / GM / WM)
Penalty Function Time αi ≤ 0 Loss PSNR in dB SSIM in %

SmoAbs

√
x2+0.62

10
2h40 0-5 408.0 22.61 / 20.74 / 17.59 69.74 / 85.41 / 57.61

EstAbs

√
x2+0.012

10
5h20 0-1 410.2 22.55 / 20.64 / 17.64 69.07 / 85.08 / 56.64

Cauchy
log
(
1+(4x)2

)
20

4h20 0-4 408.3 22.60 / 20.69 / 17.70 69.87 / 85.32 / 57.90

xRoot
(x2+0.052)

1
3

10
14h10 0-2 419.8 22.45 / 20.52 / 17.60 68.62 / 84.75 / 56.50

Square x2

20
2h40 0 417.8 22.57 / 20.72 / 17.48 69.70 / 85.44 / 57.48
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Figure 3.4.: Penalty Evaluation. CBF maps, SSIM and PSNR for different slices using 50 L/C-
pairs. All models use a L2 loss, a L2 data term and 24 filters of size 5x5.

3.2.2. Interaction between Loss, Data Term and Penalty

In the following section the results for different combinations of data term (squared

L2, smooth Huber-L1 with ε = 10−1 (HL1E-1)) and loss (squared L2 and Huber-L1

with ε = 10−3 (HL1E-3)) with the previously selected penalty functions (SmoAbs,

EstAbs, Cauchy) are stated. Firstly, the influence of loss and data term for SmoAbs
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3.2. Hyperparameters of the CSM

penalty are investigated and the results are listed in Table 3.2. From a quantitative

point of view, a Huber loss with squared L2 data term (HL1E-3L2) performs best on

the given dataset (22.61dB / 70.92%). The other setups can not be ranked clearly:

L2L2 gives a better PSNR (22.61dB), whereas L2HL1E-1 and HL1E-3HL1E-1 a bet-

ter SSIM (70.39% and 70.38%). Despite trained with different losses, L2HL1E-1

and HL1E-3HL1E-1 share quite the same metrics.

Table 3.2.: Parameter setup, training loss and testing results (CBF, inter-subject test set) for
different loss-data term combinations using the SmoAbs penalty. All experiments
were carried out using 50 L/C-pairs and 24 filters of size 5x5. The stated loss is
averaged over the last 60 iterations. Training was early stopped after 500 iterations.

Setup Training Testing (WB / GM / WM)
Loss Data Term Time αi ≤ 0 Loss PSNR in dB SSIM in %

L2 L2 2h40 0-5 408.8 22.61 / 20.74 / 17.59 69.74 / 85.41 / 57.61

HL1E-3 L2 2h40 4-8 3590.7 22.61 / 20.72 / 17.74 70.92 / 85.60 / 58.81

L2 HL1E-1 8h30 0-15 416.6 22.54 / 20.48 / 18.11 70.39 / 84.52 / 59.56

HL1E-3 HL1E-1 8h30 1-14 3512.9 22.54 / 20.46 / 18.17 70.38 / 84.49 / 59.75

Comparing the CBF maps (Figure 3.5) it is observable that a L1 data term leads
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Figure 3.5.: Loss-data term evaluation for SmoAbs penalty. CBF maps, SSIM and PSNR for
different slices and 50 L/C-pairs. All models using 24 filters of size 5x5.
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3. Results

to lower CBF values in regions were less CBF is assumed (WM regions). This is

expected because larger deviations from the input are assumed as more likely and

thus less penalized. Despite a lower SSIM, L1 data term images appear sharper

than corresponding L2 data term images. A drawback due to allowing larger

deviations from the input is the clipping of large CBF values (potentially hyper-

perfusion).

Table 3.3.: Parameter setup, training loss and testing results (CBF, inter-subject test set) for
different loss-data term combinations using the EstAbs penalty. All experiments
were carried out using 50 L/C-pairs and 24 filters of size 5x5. The stated loss is
averaged over the last 60 iterations. Training was early stopped after 500 iterations.

Setup Training Testing (WB / GM / WM)
Loss Data Term Time αi ≤ 0 Loss PSNR in dB SSIM in %

L2 L2 5h20 0-1 410.2 22.55 / 20.63 / 17.64 69.09 / 85.06 / 56.68

HL1E−3 L2 5h20 3-4 3601.9 22.56 / 20.64 / 17.77 70.64 / 85.38 / 58.29

L2 HL1E−1 22h50 0-3 415.4 22.33 / 20.14 / 18.24 69.19 / 83.69 / 59.00

HL1E−3 HL1E−1 22h50 0-2 3499.7 22.46 / 20.30 / 18.35 69.68 / 84.00 / 59.28

S
u
b
je

ct
 V

II
S
lic

e
 3

67.63% - 23.89dB

L2L2

69.08% - 23.85dB

HL1E-3L2

66.50% - 23.19dB

L2HL1E-1

65.92% - 23.13dB

HL1E-3HL1E-1

S
u
b

je
ct

 V
II
I

S
lic

e
 6

61.01% - 21.29dB 62.17% - 21.25dB 60.22% - 20.93dB 60.47% - 20.96dB

S
u
b
je

ct
 X

S
lic

e
 9

75.66% - 18.26dB 78.53% - 18.51dB 78.57% - 18.68dB 79.29% - 18.73dB

0

20

40

60

80

100

120

ml
100g min

Figure 3.6.: Loss-data term evaluation for EstAbs penalty. CBF maps, SSIM and PSNR for
different slices and 50 L/C-pairs. All models using 24 filters of size 5x5.
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3.2. Hyperparameters of the CSM

For the EstAbs penalty, the combination of HL1E-3L2 attains also the best quanti-

tative results (Table 3.3). However, compared to SmoAbs all setups are worse. A

squared L2 loss leads to particular blurry CBF maps (Figure 3.6) and a L1 data

term suppresses large CBF values even stronger compared to a SmoAbs penalty.

All in all, the SmoAbs penalty outperforms the EstAbs penalty. Hence, an EstAbs

penalty will not be considered in future experiments.

Table 3.4.: Parameter setup, training loss and testing results (CBF, inter-subject test set) for
different loss-data term combinations using the Cauchy penalty. All experiments
were carried out using 50 L/C-pairs and 24 filters of size 5x5. The stated loss is
averaged over the last 60 iterations. Training was early stopped after 500 iterations.

Setup Training Testing (WB / GM / WM)
Loss Data Term Time αi ≤ 0 Loss PSNR in dB SSIM in %

L2 L2 4h20 0-4 408.3 22.60 / 20.69 / 17.70 69.85 / 85.32 / 57.88

HL1E−3 L2 4h20 7-11 3586.4 22.59 / 20.67 / 17.81 70.84 / 85.48 / 58.85

L2 HL1E−1 14h10 0-1 410.9 22.51 / 20.36 / 18.38 70.09 / 84.10 / 60.02

HL1E−3 HL1E−1 14h10 0 3482.3 22.46 / 20.35 / 18.26 70.91 / 84.40 / 60.31
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Figure 3.7.: Loss-data term evaluation for Cauchy penalty. CBF maps, SSIM and PSNR for
different slices and 50 L/C-pairs. All models using 24 filters of size 5x5.
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3. Results

The results of the third investigated penalty, the Cauchy penalty, are listened in

Table 3.4. The best SSIM (70.91%) is obtained using a Huber loss and a Huber-L1

data term (HL1E-3HL1E-1). Regardless of the loss, the best PSNR (22.59dB) is

obtained when using a squared L2 data term. However, a higher SSIM is obtained

by using a Huber loss (70.84%) instead of a L2 loss (69.85%). In general, the

Cauchy penalty leads to better metrics than an EstAbs penalty and to comparable

results using the SmoAbs penalty. The CBF maps in Figure 3.7 uncover the most

important property of the Cauchy penalty: The preservation of large CBF values

(see marked regions).

To sum up the results, this study showed that the highest SSIM and PSNR are

obtained by using a Huber loss with a squared L2 data term and a SmoAbs penalty.

However, a Cauchy penalty with Huber loss and Huber data term provides the

same SSIM but lower PSNR. This combination is considered superior compared

to the first one because of the following reasons:

• The clipping of high CBF values is considered as a knockout criteria.

• A Cauchy penalty and HL1E-3HL1E-1best meets the theoretic considerations.

This leads to a more general model.

• The more than 5 times longer training time (14h10min) compared to SmoAbs

HL1E-3L2 (2h40Min) is still acceptable.

3.2.3. Impact of the Filter Size

In this section the kernel size and the number of filters for a Cauchy penalty, L1

data term (Huber loss approximation) and L1 loss is explored. Table 3.5 states

a non-expected result, the small model with 8 filters of size 3x3 (8x3x3) attains

better metrics than the large model with 48 filters of size 7x7 (48x7x7). From a

PSNR point-of-view it is also on par with the 24x5x5 model.
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3.2. Hyperparameters of the CSM

Table 3.5.: Parameter setup, training loss and testing results (CBF, inter-subject test set) for
the size selection tests for Cauchy penalty, Huber loss (L1) and Huber loss (smooth
L1) data term. All experiments were carried out using 50 L/C-pairs and 24 filters of
size 5x5. The stated loss is averaged over the last 60 iterations. Training was early
stopped after 500 iterations.

Setup Training Testing (WB / GM / WM)

Kernel Size #Filters Time αi ≤ 0 Loss PSNR in dB SSIM in %

3x3 8 8h20 0-1 3499.9 22.46 / 20.35 / 18.28 70.46 / 84.19 / 60.27

5x5 24 14h10 0 3482.3 22.46 / 20.35 / 18.26 70.91 / 84.40 / 60.31

7x7 48 81h40 0-15 3510.2 22.33 / 20.08 / 18.42 67.83 / 82.89 / 58.77

The CBF maps (Figure 3.8) emphasize the quantitative results, i.e 48x7x7 gives

blurry images whereas 8x3x3 and 24x5x5 shows comparable results. Since a larger

model should perform at least as well as a small model, it is likely that the found

solution is not a very deep local minimum or even no minimum at all. This is

verified by the training loss which is higher than for the other two models.
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Figure 3.8.: Model size evaluation. CBF maps, SSIM and PSNR for different slices using 50
L/C-pairs. All models use a HL1E-3 loss, a Cauchy penalty and a HL1E-1 data
term.
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3. Results

Although the 8x3x3 model is 40% faster to train, all further experiments are carried

out with a 24x5x5 model due to the slightly better SSIM metrics.

An aspect which was not focused on yet is the number of negative or zero elements

in α. Non-positive αi during the last few iterations, where the model is assumed to

be close to a minimum, means that the number of filters could be reduced without

loss of performance. Nevertheless, the reduction of the number of filters from 24

to 22 (Cauchy HL1E-3HL1E-1) would be only around 10% and thus is considered

as negligible.

The training time mainly depends on the used data term function as well as on

the used penalty (see training time results). In contrast, the used loss does not

affect the training time at all. This is explained by the computationally costly

solution of the LLP, which is further hardened by the use of non-convex penalties

and non-quadratic data term functions on the one hand and the similarity between

a smooth L1 loss and a squared L2 loss on the other hand.

3.2.4. SSIM loss and additional Regularization

In the previous section it was shown that a L1 loss produces sharper images than

a squared L2 loss and thus obtains a higher SSIM. Although highly non-linear

and non-convex, a SSIM loss model is trained as well and compared to the L1

loss model. The hyperparameters are chosen according to the findings in the

previous section. Hence, a Huber loss approximation of a center smooth L1 norm

as data term function, a Cauchy penalty function and 24 filter of size 5x5 are used.

Further, the effect of an additional regularization factor is investigated. To find a

regularization factor that is stable across different noise levels, all experiments are

carried out for Nave = {30, 40, 50, 60, 80, 100}.

Table 3.6.: Training and test results (CBF, inter-subject test set) for SSIM and L1 loss both with
L1 data term, Cauchy penalty, 50 L/C-pairs and 24 filters of size 5x5. The stated loss
is averaged over the last 60 iterations. Training was early stopped after 500 iterations.

Setup Training Testing (WB / GM / WM)
Loss Time αi ≤ 0 Loss PSNR in dB SSIM in %

SSIM 16h30 3-7 0.71 22.21 / 20.22 / 17.72 71.27 / 84.41 / 59.73

HL1E−1 14h10 0 3482.3 22.46 / 20.35 / 18.26 70.91 / 84.40 / 60.31
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3.2. Hyperparameters of the CSM

Table 3.6 and Figure 3.9 show the training and testing results for the SSIM model

in comparison to the L1 loss model. The SSIM model takes slightly longer to

finish the 500 training iterations, but attains a higher SSIM (71.27%). This result

has to be taken with care, because both models perform on par in gray matter

and in white matter the L1 model performs even better. Therefore, the increased

whole brain SSIM for the SSIM loss model must be reasoned in regions which are

neither in GM, nor in the WM mask. The relevance of this phenomenon is not

clear, because it might be founded in imperfect brain masks, i.e. not all white

(gray) matter is necessarily part of the WM (GM) mask.

The visual quality of depicted CBF maps agree with the quantitative results. The

maps of the SSIM loss model appear sharper but also contain more noise than the

L1 loss model’s CBF maps.
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Figure 3.9.: SSIM vs L1 loss CSMs. CBF maps, SSIM and PSNR for different slices and 50
L/C-pairs. Both models use a Cauchy penalty and a L1 data term.

Figure 3.10 contains the SSIM and PSNR graphs for different regularization pa-

rameters using the L1 and SSIM loss model with different numbers of L/C-pairs

(Nave). It is observable that for the L1 loss, the best SSIM is obtained for η be-
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tween 0.7 and 0.8 and the best PSNR for η between 0.8 and 1.0. The SSIM model

is in general less dependent to the choice of η. Here, the best SSIM is obtained

for η = 0.9 and the best PSNR for η = [0.9, 0.95]. In theory, the SSIM loss model

should have best SSIM for a regularization factor of 1. This contradiction is not

clear at all. However, it is most likely that the overregularized learning is based

in a lower GM/WM ratio in the 64x64 patches for learning than in the 128x128

patches for testing. A more detailed explanation is given in section 4.3.2 ”Addi-

tional Regularization of the CSM”. For the final tests a regularization factor of

η = 0.8 for the L1 model and η = 0.9 for the SSIM model is chosen.
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Figure 3.10.: SSIM and PSNR results of the SSIM and L1 loss model for different regularization
factors. The error bars indicate the averaged (over subjects and slices) estimated
standard deviation for the different variations of L/C-pairs.
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3.3. Hyperparameters of the VN

3.3.1. Model Size

To determine the most appropriate model size in terms of diffusion stages, number

of filters and kernel size, models with {3, 5, 7, 9} stages and 8 filters of size 3x3,

24 filters of size 5x5, 48 filters of size 7x7 and 80 filters of size 9x9 were trained

(squared L2 and L1 loss) and evaluated (PSNR and SSIM). No explicit results are

depicted here, but the outcome of the tests are summarized. All experiments were

carried out with 50 L/C-pairs as input, a squared L2 data term and the InARow

test set.

In general larger models yield a lower loss during training. When using a squared

L2 loss, 5x5 and 7x7 kernel models perform better on test data than 3x3 kernel

models. However, for more than 5 stages, 7x7 models started to overfit to the

training data. When using a L1 loss, the 5x5 model with 5 stages attains a higher

SSIM than all 7x7 models. Therefore, the 24x5x5 model with 5 stages is considered

as an appropriate choice which yields sharp results and is robust against overfitting.

Additionally, some of these experiments were also performed using just the first

50 L/C-pairs for training. As assumed theoretically, this increased the effects of

overfitting (see section 2.3.4 ”Datasets”).

3.3.2. Loss and Data Term

In analogy to the section above, the results are only summarized here. All prelim-

inary results are given in Appendix B.

For a squared L2 data term, the highest PSNR values are obtained using a squared

L2 loss. However, this combination leads to blurry images and consequently to a

low SSIM. A tradeoff between noise removal and sharp images is obtained by us-

ing a L1 loss. In contrast to a L2 loss, a SSIM based loss delivers the best SSIM

metrics but due to less noise reduction also a lower PSNR.

The drawback of the SSIM is its single scale definition. In this definition a 11x11

SSIM patch is used which averages out noise deviations. Hence, less noise is sup-

pressed when optimizing the single scale SSIM. The msSSIM overcomes this issue
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by computing the SSIM on several scales. Also hybrid loss forms like L1 with SSIM

(L1SSIM) or L1msSSIM were tested. However, a msSSIM loss generally worked

best.

For a msSSIM based loss additionally to the L1 and L2 data terms a log-Cauchy

and a center-smoothed root (csRoot) were used. The best quantitative results

were obtained for a squared L2 and a center-smoothed root, which performed very

similar. However, the latter has the theoretical advantage of being heavy-tailed

and thus fits better to the data characteristics. Therefore, the center-smoothed

root function is chosen for all remaining experiments.

Additionally to the previous investigation of spatial denoising, the denoising per-

formance of the VN with additional temporal information as input was evaluated.

Therefore, also a squared L2 and L1 with estimated temporal voxelwise variances

(corresponds to a Mahalanobis distance) and temporal data terms (all L/C-pairs

as input) were tested. They yield a working denoising, but the obtained metrics

and CBF maps were not able to compete with non-temporal data terms at all.

This might be reasoned in a more difficult training and hence a bad local solution.

Nevertheless, the choice of the model based on the test data has to be considered

critical: Firstly, TensorFlow is not deterministic at all and secondly, the test data

varies a lot for different combinations of L/C-pairs. Hence, another model might

attain better metrics for different test conditions. In general, statistical testing

would be used to cope with this uncertainty, but due to variances caused by Ten-

sorFlow, by the slice quality and by ’good’ and ’bad’ L/C-pair combinatios, this

is not profitably for this task. Therefore, the model with the best (not-significant)

results and the best theoretic agreement was chosen.

64



3.4. Final Test and Comparison to TGV

3.4. Final Test and Comparison to TGV

In this section the final results for the chosen CSM and VN models are shown

for intra-subject and inter-subject data. In addition, they are compared with the

results of stTGV variants on the basis of the InARow dataset.

3.4.1. Inter-Subject Test Set

Figure 3.11 shows the SSIM in gray matter, white matter and in the whole brain for

the CSM-L1 loss, CSM-SSIM loss and the VN model for {30,40,50,60,70,80,90,100}
L/C-pairs. The black curves indicate the input of the models i.e the temporal mean

over the used PWI.
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Figure 3.11.: Inter-Subject Testing. SSIM in GM, WM, and WB, for the CSM-L1, CSM-SSIM
and VN model using a different number of PWIs. The errorbars indicate the stan-
dard deviation over the used different L/C-pair combinations, which is averaged
over all slices and subjects.

It is clearly visible that all models outperform the input by a margin larger than the

estimated standard deviation. In addition, all models attain better quantitative
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results in gray matter than in white matter. This is expected because in gray

matter the blood supply is approximately 3 times as large as in white matter.

Regardless of matter and the number of used PWI, the variational network attains

a higher SSIM than the CSM models. Further, it is observable that the SSIM

increases monotonically with the number of L/C-pairs. However, the increase in

SSIM gets lower for higher numbers of averages due to the
√
N improvement. I.e.

the gap between 30 and 50 pairs is larger than for 80 and 100 pairs. Additionally,

also a decrease of variation for more L/C-pairs is visible.
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Figure 3.12.: Inter-Subject Testing. SSIM in whole brain for all testing subjects, for the CSM-L1,
CSM-SSIM and VN model using a different number of PWIs. The errorbars indicate
the standard deviation over the used different L/C-pair combinations, which is
averaged over all slices.

Figure 3.12 shows the SSIM and the PSNR for different noise levels (L/C-pairs) and

all subjects of the inter-subject test set. Three new observations can be made here:

First, the single subjects attain quite different metrics. For example, subject X has
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3.4. Final Test and Comparison to TGV

approximately the same SSIM for 30 L/C-pairs as Subject VII for 100 L/C-pairs.

In contrast, the PSNR of both subjects is nearly identical. Second, for subject VIII

all models obtain a higher PSNR for 40 pairs than for 50 pairs. As this behavior

is not observable for the SSIM, it might be the case that the input data of subject

VIII is more noisy than expected. This might leads to an underregularization in

terms of PSNR. Third, the VN yields a lower PSNR for 30 L/C-pairs for subject

VII - IX than the CSM models. This might be reasoned in the used msSSIM loss,

which does not guarantee high PSNR values.

Table 3.7 shows the SSIM and PSNR, computed over all subjects and for different

numbers of L/C-pairs.

Table 3.7.: Inter-Subject Testing. SSIM and PSNR for the final models using a different number
of L/C-pairs. The error stated is the standard deviation over the input variations,
averaged over all slices and subjects.

Metric L/C-pairs Input CSM-L1 CSM-SSIM VN

S
S
IM

in
%

30 54.83 ± 2.44 62.49 ± 3.66 63.86 ± 3.27 65.38 ± 2.91

40 60.47 ± 2.55 67.85 ± 3.03 68.11 ± 2.94 69.54 ± 2.81

50 64.64 ± 2.21 71.20 ± 2.39 70.87 ± 2.36 72.58 ± 2.29

60 68.60 ± 2.05 74.36 ± 2.22 74.17 ± 2.18 75.41 ± 2.10

80 73.94 ± 1.96 78.23 ± 1.96 78.07 ± 1.97 79.29 ± 1.90

100 78.56 ± 1.58 81.75 ± 1.54 81.83 ± 1.53 82.61 ± 1.46

P
S
N
R

in
d
B

30 18.28 ± 0.77 21.26 ± 0.71 21.02 ± 0.88 20.91 ± 0.95

40 19.48 ± 0.78 21.77 ± 0.83 21.64 ± 0.89 21.80 ± 0.96

50 20.29 ± 0.73 22.15 ± 0.83 22.02 ± 0.82 22.42 ± 0.87

60 21.27 ± 0.64 23.07 ± 0.72 23.01 ± 0.70 23.29 ± 0.75

80 22.45 ± 0.75 23.96 ± 0.78 23.85 ± 0.77 24.11 ± 0.83

100 23.75 ± 0.62 25.07 ± 0.62 25.03 ± 0.61 25.20 ± 0.66

Figure 3.13, 3.14 and 3.15 show the CBF maps for subject VII slice 3, subject VII

slice 6 and subject X slice 9. Although the visual difference between the CSM

(SSIM loss) and the VN is in general small, the VN’s CBF maps appear sharper

and less noisy.
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Figure 3.13.: CBF maps, SSIM and PSNR for different numbers of L/C-pairs (Nave) of subject
VII slice 3 (inter-subject test set) for the CSM-SSIM and VN model. For Nave=60
a chemical shift artifact is visible.
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Figure 3.14.: CBF maps, SSIM and PSNR for different numbers of L/C-pairs (Nave) of subject
VIII slice 6 (inter-subject test set) for the CSM-SSIM and VN model.
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Figure 3.15.: CBF maps, SSIM and PSNR for different numbers of L/C-pairs (Nave) of subject
X slice 9 (inter-subject test set) for the CSM-SSIM and VN model.
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3.4.2. Intra-Subject Test Set

The aim of this test set is to evaluate if there are any differences in behavior of

the models compared to the inter-subject test set. Figure 3.16 shows the SSIM in

GM, WM and WB for different models and a different number of L/C-pairs.
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Figure 3.16.: Intra-Subject Testing. SSIM in GM, WM and WB, for the CSM-L1, CSM-SSIM and
VN model using a different number of PWIs. The errorbars indicate the standard
deviation over the used different L/C-pair combinations, which is averaged over all
slices and subjects.

Compared to the inter-subject case, the trends and the behavior of the models are

the same. The single subject results are shown in Figure 3.17. Principally these

results emphasize the same behavior as the curves for the inter-subject test case.

Table 3.8 indicates a slightly higher SSIM (1.1%-1.9%) and PSNR (0.6dB-1.1dB)

for the intra-subject test set than for the inter-subject test set. As this is also the

case for the input data, the better metrics can be assumed to be caused by a lower

noise level of the intra-subject test set.

Figure 3.18, 3.19 and 3.20 show the CBF maps for subject I slice 9, subject II slice

6 and subject V slice 3. In analogy to the inter-subject test case, the VN attains

sharper and less noisy CBF maps than the CSM.
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Table 3.8.: Intra-Subject Testing. SSIM and PSNR for the final models using a different number
of L/C-pairs. The error stated is the standard deviation over the input variations,
averaged over all slices and subjects.

Metric L/C-pairs Input CSM-L1 CSM-SSIM VN

S
S
IM

in
%

30 56.27 ± 2.55 64.28 ± 2.97 65.19 ± 2.75 66.73 ± 2.76

40 62.22 ± 2.54 69.64 ± 2.87 69.82 ± 2.73 71.15 ± 2.58

50 66.19 ± 1.96 72.57 ± 2.13 72.46 ± 2.11 74.05 ± 2.00

60 70.43 ± 1.65 76.20 ± 1.86 76.08 ± 1.82 77.15 ± 1.66

80 75.77 ± 1.69 79.96 ± 1.75 79.86 ± 1.70 81.00 ± 1.57

100 79.84 ± 1.30 82.81 ± 1.37 82.95 ± 1.34 83.75 ± 1.28

P
S
N
R

in
d
B

30 18.90 ± 0.68 21.84 ± 0.66 21.72 ± 0.69 21.56 ± 0.81

40 20.24 ± 0.62 22.53 ± 0.69 22.46 ± 0.70 22.65 ± 0.74

50 21.15 ± 0.65 23.04 ± 0.65 22.90 ± 0.70 23.34 ± 0.74

60 22.11 ± 0.52 23.97 ± 0.60 23.90 ± 0.60 24.20 ± 0.60

80 23.44 ± 0.62 25.03 ± 0.64 24.90 ± 0.63 25.17 ± 0.68

100 24.61 ± 0.52 25.91 ± 0.52 25.89 ± 0.50 26.07 ± 0.58
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Figure 3.17.: Intra-Subject Testing. SSIM in whole brain for all testing subjects, for the CSM-L1,
CSM-SSIM and VN model using a different number of PWIs. The errorbars indicate
the standard deviation over the used different L/C-pair combinations, which is
averaged over all slices.
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Figure 3.18.: CBF maps, SSIM and PSNR for different numbers of L/C-pairs (Nave) of subject
I slice 9 (intra-subject test set) for the CSM-SSIM and VN model.
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Figure 3.19.: CBF maps, SSIM and PSNR for different numbers of L/C-pairs (Nave) of subject
II slice 6 (intra-subject test set) for the CSM-SSIM and VN model.
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Figure 3.20.: CBF maps, SSIM and PSNR for different numbers of L/C-pairs (Nave) of subject
V slice 3 (intra-subject test set) for the CSM-SSIM and VN model.
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3.4.3. Comparison to TGV

In this section, the final models are compared to different variants of stTGV de-

noising used by Spann et al. [16]. Beside of the full spatio-temporal approach

(TGV-L1-LC-temporal), also a variant without temporal information (TGV-L1-

LC) and without L/C-separation (TGV-L1-dM-temporal) is tested. In addition,

also a spatial dependent squared L2 data terms (Mahalanobis L2) is used in a 2D

and 3D setting.
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Figure 3.21.: SSIM based comparison between the learned models (VN and CSM) and different
TGV models for 50 L/C-pairs.

Figure 3.21 and 3.22 show the SSIM and the PSNR for all subjects (InARow test

set). Each model performs clearly better than the input. On the basis of SSIM,

both CSM perform worse than the best TGV models. The VN attains a higher

SSIM for Subject VIII, a comparable for subject IX and a lower SSIM for the
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Figure 3.22.: PSNR based comparison between the learned and TGV models for 50 L/C-pairs.

remaining two subjects. On the basis of PSNR, the TGV models outperform the

learned models. The results for all subjects are summarized in Table 3.9.

Table 3.9.: SSIM and PSNR results for 50 L/C-pairs for the learned models (VN and CSM) and
the TGV models.’C’ indicate a CSM model, ’T’ a TGV model. ’dM’ states temporal
TGV without L/C-splitting and ’LC’ termes non-temporal TGV. ’2D’ and ’3D’ stand
for the 2D and 3D spatial regularized TGV models.

Metric Input VN C-L1 C-SSIM T-L1 T-L1-dM T-L1-LC T-L2 T-2D T-3D
SSIM in % 65.37 73.33 71.79 71.60 73.81 71.84 70.12 73.01 72.87 73.69
PSNR in dB 20.60 22.78 22.47 22.34 23.46 22.91 22.23 22.76 23.16 23.35

Figure 3.23 compares the learned VN and the manually tuned stTGV. Due to

their very different formulation, a clear difference between the models is visible.

For the stated slices, the VN seems to suppress more noise but preserves less edge

information than the TGV model.
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Figure 3.23.: CBF maps, SSIM and PSNR for different slices of the inter-subject test set for the
VN and TGV (L1-LC-temporal) model and 50 L/C-pairs.
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3.4.4. Edge preservation

To examine the models’s capability of preserving edges, Figure 3.24 shows the TV

maps for the input, the reference and the denoised CBF maps using the CSM, VN

and stTGV. Large values indicate an large intensity change between the center

pixel and its neighborhood, like f.e. at edges or in noisy regions. These maps show

the highest supression of noise like structures in case of the VN. The TV maps

show narrower edges for the stTGV model. I.e. the results of the VN seems to

be less noisy but more blurry than the results of the stTGV approach. The CSM

suppresses less noise than the other two models and blures edges about the same

as the VN.
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Figure 3.24.: TV maps of input, reference and denoised CBF maps. The TV maps are obtained
by summing the absolute value of the gradient maps using forward differences in x
and y direction.
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3.4.5. Learned Parameters

Figure 3.25 and 3.26 depict the 24 learned kernels for the two CSM models. Fig-

ure 3.27 and 3.28 show the learned kernels and the corresponding activation and

penalty functions of the VN in the first and fifth stage. Some of the stated kernels

can be interpreted as gradient filters, some as second order (Laplace) filters, and

some of them as edge detectors. However, the majority does not seem to have

a particular structur. Many of the learned penalty functions are of quadratic na-

ture and some undergo a heavy-tailed characteristic. These penalties fit with the

theoretic expectations, but there are also unsymmetric bimodal penalties.
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(0.21, 2.53) (0.19, 2.21) (0.19, 3.05) (0.17, 2.85) (0.17, 2.57) (0.17, 2.09) (0.16, 3.35) (0.15, 3.65)

(0.13, 3.32) (0.12, 2.42) (0.12, 2.69) (0.10, 3.92) (0.09, 2.56) (0.09, 3.20) (0.07, 2.65) (0.05, 4.75)

(0.04, 6.36) (0.04, 5.26) (0.04, 8.58) (0.03, 8.87) (0.03, 8.37) (0.02, 2.50) (0.01, 6.62) (0.01, 9.45)

Figure 3.25.: Learned filter kernels for the final CSM with L1 loss. The corresponding weight
and norm of the filter is stated in brackets.

(0.29, 1.94) (0.25, 1.95) (0.24, 2.28) (0.24, 1.68) (0.23, 1.81) (0.22, 2.23) (0.21, 2.24) (0.19, 2.64)

(0.17, 1.69) (0.15, 2.28) (0.11, 2.68) (0.10, 2.22) (0.07, 2.75) (0.05, 3.22) (0.03, 6.40) (0.03, 5.22)

(0.00, 10.08) (0.00, 4.19) (0.00, 4.65) (0.00, 4.75) (0.00, 4.87) (0.00, 4.04) (0.00, 4.07) (0.00, 2.42)

Figure 3.26.: Learned filter kernels for the final CSM with SSIM loss. The corresponding weight
and norm of the filter is stated in brackets.
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3.4. Final Test and Comparison to TGVStage 0

Figure 3.27.: Learned filter kernels, activation function (yellow) and corresponding penalty func-
tion (blue) for the VN at the first stage.

Stage 4

Figure 3.28.: Learned filter kernels, activation function (yellow) and corresponding penalty func-
tion (blue) for the VN at the fifth stage.
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4. Discussion

4.1. Quality of the learned Solution

In optimization the quality of the found parameters always has to be considered.

Is the solution a deep local minimum or even a global minimum? Is it a bad

minimum or just a saddle point? Is it robust to noise, i.e. does it generalize

well? In case of a convex problem, the solver should converge to a unique global

solution immediately. Unfortunately, the used models exploit non-convex penalty

functions and non-convex loss functions, leading to a non-convex optimization

problem. Consequently, the learned parameters are potentially related to low local

minima. Apart from this, very flat regions of the energy landscape can also lead

to bad solutions, even in convex settings. The impact of flat regions might become

worse when numerical limitations arise. Therefore, badly scaled input values have

to be avoided.

4.1.1. Local Optima

The used CSM as well as the VN are non-convex models and thus prone to get

stuck in bad local optima or in very flat regions of the energy landscape. A sim-

ple way to overcome these issues is to use mini-batches for training. The sampling

noise introduced by this method helps to escape from local solutions or flat regions.

As mini-batch training is performed, it can be assumed that the found solution is

at least a moderately low minimum or valley. An exact evaluation of the quality

of the solution is computationally not feasible because this would include the eval-

uation of the whole energy landscape.
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In case of the VN, the batch based learning approach leads to large oscillations of

the loss during training. This might be reasoned in large variations of the input

noise level for different PWIs of different slices and subjects.

Anyway, there is no guarantee that the training will converge to stationary point.

Beside the right training approach the initial values are also very important for a

successful training. Bad initial values or hyperparameters can lead to poor conver-

gence and hence to bad results. Fortunately, the proposed hyperparameters have

turned out to be very reliable in yielding convergence.

4.1.2. Overfitting

A simple and effective strategy against overfitting is given by reducing the number

of learnable parameters, i.e. small models are preferred. The proposed VN utilizes

6725 free parameters (5 stages with 24 filters of size 5x5, each of which is related to a

31 RBF based penalty function as well as a data term weight for each stage), which

is pretty little compared to more than 86 million different data points presented

during training (642 ·42 data points per iteration, for each iteration a new training

set is used, see 2.3.4 ”Datasets”). It is obvious that the CSM with its 600 free

parameters is even less prone to overfitting. Additionally, the large variations of

the inputs’s noise level avoid overfitting too. These more theoretical considerations

are proofed by the similar performance of the models on the intra-subject and inter-

subject test set. Overfitting would have lead to a better performance of the models

on the intra-subject test set, which is highly correlated to the training data.

4.1.3. Input Scaling and Numerical Problems

Float numbers are stored using two values, the mantissa and the exponent. Both

of them are represented using a fixed number of bits (8 exponent + 23 mantissa +

1 sign in case of single precision, 11+54+1 for double precision). When performing

computations on values with very different scaling, information is lost leading to

inaccurate results. A simple way to overcome this issue is by scaling the values to
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be in about the same range. In the present case, the intensities of PWIs are in

the range of about 0-10 and the final parameters about 0-1. Hence, it is useful to

scale down the input before denoising. This scaling yields in general more accurate

gradients and thus a faster convergence. Nevertheless, in case of the CSM and its

bilevel learning approach, numerics are still a limiting factor, because it is crucial

to solve the LLP with a very high accuracy. In this context two phenomenons have

to be reported:

In case of using an EstAbs penalty, which approximates a linear function, the

additional scaling of the single filters (parameter α) is redundant, because the

scaling of the filters could be incorporated in the learned kernels. (αi|Aix| =

|αiAix| ∀αi ≥ 0). The existence of this additional parameter and the convexity

of the problem leads to a non-strict global minimum, i.e. the single minimum of

the function is not a point, but a 24 (length of α) dimensional space. The fact

that the EstAbs penalty just approximates a linear function turns to above stated

equality to be slightly inexact. A unique strict global minimum is the consequence.

The combination of both aspects, leads to the assumption that the unique global

minimum must be located in an extremely flat 24 dimensional region of the energy

landscape. Several trainings with the same EstAbs setting and different random

initials have been carried out. Although the same results would be expected, all

tests lead to different kernels. Obviously the energy landscape became too flat to

perform further gradient descent steps.

As a second example, even if the LLP optimization is subject to an unlimited

number of descent steps, the theoretical possible residual of zero is not reached.

The gradient simple vanishes before.

These two examples show the impact of numerical errors due to the finite resolution

of the data type. Especially when model parameters and gradients get close to

the machine epsilon, the approximation of the discrete optimization problem as

continuous valued problem becomes inaccurate.
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4.2. Optimization of the CSM Parameters

4.2.1. Choice of the HLP Solver

Beside of numerical considerations, the bilevel learning undergoes another issue:

Solving the LLP to a high level of accuracy is computational very costly, f.e. a

whole update lasts 165s, including 157s for the solution of the LLP (averaged over

500 iterations for the CSM with log-Cauchy penalty, 24 filters of size 5x5, SSIM

loss and L1 data term; training batch of 7 slices). Therefore, to reduce the number

of HLP iterations, it is very important to perform a powerful update on the model

parameters. On a first glance it would make sense to compute the Hessian of

the HLP and apply Newton’s method or approximate second order information

by using f.e L-BFGS. The problem with those methods is that they would require

a step size selection to perform well. In the case of bilevel learning, a linesearch

procedure is not efficient because it would include the solving of the LLP for each

loss evaluation. For this reason, Adam as a state of the art first order solver was

chosen for the HLP update.

4.2.2. GPU Acceleration Potential

As the training of the CSM is particular expensive, an arising question is how it

could be accelerated. One issue considering GPU parallelization is the computa-

tion of the inverse of the sparse Hessian. The fastest way to do so is probably

based on a sparse Cholesky decomposition. Unfortunately, there is less support

for sparse computations on GPUs and the efficient implementation of the latter

would exceed the effort of this thesis by far.

Therefore, only investigations to accelerate the LLP were done. However, prelimi-

nary test on the GPU where the LLP was solved using CG were not very promising.

This might be reasoned in unoptimized TensorFlow code and the little suitability

ofCG with its linesearch (evaluation of the LLP loss has to be started from outside

of the TensorFlow graph, leading to much overhead). Nevertheless, there is no

reason why an optimization of the LLP on the GPU is not possible, but as with

the VN a faster and actually more powerful model is available, there was no focus
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on accelerating the CSM inference (inference time on a 1282 slice using CG about

25s, using the CSM log-Cauchy L1 model and an i5-2500K CPU @ 3.30GHz x 4).
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4.3. The used ASL Data

4.3.1. Different Noise Levels and Regularization Maps

Natural images used for evaluating new machine learning approaches are mostly

corrupted with rather simple noise distributions. In general, Gaussian noise with

the same variance for each pixel is added to the noise-free ground truth, leading

to high-quality datasets for learning. In contrast, the used ASL data undergoes

different noise characteristics in each voxel. Even if the basic shape of the distribu-

tions is the same, the variance differs a lot between voxels within a slice, between

slices within a volume and between volumes of different subjects.

To overcome these SNR variances, the learned priors form a tradeoff between the

low and high SNR input for a certain number of L/C-pairs. The unavoidable

drawback is that some areas will be underregularized and others overregularized.

In some cases, fewer averages of a specific subject yield better results than more

averages of another subject. Due to outliers, it can not be excluded that fewer

averages of the same voxel would yield better results than more averages. The

separation of the noise levels based on the number of L/C-pairs is thus not ideal.

The stated problems could be solved using regularizations maps and skipping the

separation based on the number of L/C-pairs. Unfortunately, the regularization

maps estimated from the temporal standard deviations within each voxel lead to

a more difficult training. In addition, the estimation is prone to outliers. The

implemented preliminary tests with regularization maps were not very promising

at all. As the data related problems could also be solved to some extend by more

sophisticated acquisition techniques, the regularization map approach was not fur-

ther investigated. An improvement in data-quality could be achieved with newer

labeling schemes like pCASL, which reduces outliers due to labeling in different

states of the cardiac cycle or by using efficient background-suppression techniques

to reduce the influence of physiological noise. An further improvement in SNR

could be achieved with 3D readout strategies.
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4.3.2. Additional Regularization of the CSM

In general, if the training set is drawn from the same distribution as the test set,

an additional regularization factor would not be not needed. Nevertheless, it was

shown that an additional regularization factor is beneficial in terms of SSIM, even

if the model was trained using a SSIM based loss. The simplest explanation would

be, that training and test set differ in terms of noise level. Another reason for

this observation could be caused by the 64x64 subset used for training, which is

characterized by a decreased GM/WM ratio and thus in average has less signal

per voxel (GM/WM1282 = 1.28 and GM/WM642 = 1.09). This results in lower

SSIM and higher MSE (SSIM1282 = 78.56%, SSIM642 = 75.43%, MSE1282 = 47.23,

MSE642 = 141.75). This means, that using the full 1282 patch for training would

lead to better results. In case of the CSM, 1282 patches are not used because of

infeasible long training times. In case of the VN, no benefit could be observed

using the full 1282 patch. The latter contradicts the GM/WM ratio explanation,

although theoretically solid. However, one might assume that the VN is more ro-

bust to slight variations of the input SNR between test and training set.

Apart the clear impact of an additional regularization factor and the probably not

ideal 642 patch, the relative shape of the learned filters are in principle independent

from the noise level. The ideal amount of regularization will always be a matter

of the used metric, which might be adapted to different needs and subjective pref-

erences of the radiologist or any other expert. Hence, once learned an expressive

prior it might be more useful to provide the practitioner the possibility to chose

her/his preferred amount of regularization. In case of the VN, due to the it’s fast

inference, this would be possible to perform on-line.
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4.4. Interpretation of the Results

The interpretation and comparison of the results are not straightforward. One

image attains a high SSIM but a low PSNR, another image a low SSIM and a high

PSNR, so it is not clear which image is closer to the reference. Additionally, the

used reference is not noise-free, hence obtaining a better metric does not necessarily

mean to be closer to the unknown noise-free reference. An alternative way of

comparison, with the drawback of being subjective, is given by the direct visual

evaluation of the CBF maps.

4.4.1. CSM and VN Results in General

Both models successfully improve the image quality of the input, regardless of

the input noise level. As the VN can be interpreted as an advanced CSM, it is

absolutely consistent with the theory that the VN exceeds the performance of the

CSM.

Both learned models outperform the non-temporal TGV on the basis of the given

dataset. Including temporal information, the TGV’s performance increase and

attain better quantitative results for some subjects than the VN. This emphasizes

the importance of temporal or variance information for denoising of artifact prone

ASL data.

A difference in performance between the TGV denoising and the learned models is

founded in the use of local and global information. The latter is potentially useful,

f.e. for tracking of long edges or homogeneous areas. The TGV based models

utilize a few thousand gradient based optimization steps on the 1282 image patch,

resulting in whole image information for each pixel. In contrast, the VN uses 5

stages and hence each pixel receives information from a r=11 neighborhood. The

CSM needs 28 LLP iterations on average, which results in information from a r=57

neighborhood.

The CBF maps (Figure 3.23) highlight the difficulty of a direct interpretation.

For instance in the first row, the VN result clearly looks more natural and more

denoised than the TGV result, but the latter attains higher SSIM and PSNR. It is

unknown if this is reasoned by the metric calculation itself or by the noise within
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the ground truth. This raises the question if the use of metrics for evaluation is

meaningful at all.

4.4.2. Metrics for Evaluation

There are many ways for measuring the distance between two images. MSE, abso-

lute error, PSNR, SSIM to name a few. But which metric should be used to rank

images? On the one hand, PSNR and MSE are linked to a physical quantity, the

power of the error. On the other hand, the SSIM tries to imitate human perception.

It can not be answered if a physical quantity is a better choice than a psychological

or vice versa, but it might be better to weight metrics stronger which are more

attracted by desired image properties. As the SSIM is more attracted by sharp

images, which are preferred against blurry images, the SSIM is weighted stronger

than the PSNR.

Beside of the principal choice for a certain metric, there are different ways for com-

puting the certain metric. As equally weighted slices are desired, the here used

PSNR and SSIM are computed slicewise and averaged over the whole volume. Due

to different foreground fractions (brain volume) per slice this leads to the drawback

that single voxels are not weighted equally. F.e. in a slice with less foreground

voxels, voxel deviations are weighted stronger than in a slice with more foreground

voxels. This fact must be considered with care, as the standard deviation of the

brain volume per slice is not negligible. (16.8% from the mean brain volume per

slice, computed over all 10 subjects)

4.4.3. Edge Preservation

In section 3.4.4 ”Edge preservation” it was shown that the full stTGV model pre-

serves edges better than the VN and CSM. In general, the nature of the TGV

functional is attracted by sharp images and thus preserves edges well. However,

the additional inclusions of temporal information and the splitting of label and con-

trol images have a positive impact on the edge preservation. The SSIM and PSNR

graphs (Figure 3.21 and 3.22) indicate a constant increase for the non-temporal,
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temporal dM and full stTGV model. This raises the assumption that both model

improvements (temporal input, L/C separated input) increase the capability in

preserving edges.

4.4.4. Interpretation of the Learned Parameters

Theoretically, the learned parameters could be interpreted as MRF prior. They

assign an energy proportional to the negative logarithm of the prior probability

to each image patch, which could be used to identify likely and unlikely, maybe

pathologic regions. Preliminary tests showed that the interpretation of the learned

MRF as prior probability is not very promising. This is probably reasoned in the

difference between discriminative and generative models. As the priors of the VN

and the CSM are optimized for denoising, the filters mainly extract features to

improve the performance in reducing noise and preserving image structures like

edges. The learned priors should thus not be interpreted as generative priors.
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4.5. Miscellaneous

4.5.1. CBF denoising

Actually, it would have been more reasonable to perform the image enhancement

directly on the CBF maps and not on the PWIs. However, it has to be noted

that an essential part of the CBF calculation is the division of the PWI by the M0

image. This could introduce problems like a division by zero or a rescaling of the

noise. Nevertheless, CBF denoising was tested too and it performed very similar

as PWI denoising.

4.5.2. Statistical Testing

In this thesis no statistical tests were performed for comparing different methods,

because of the following reasons:

For an expressive testing rather 100 than just 10 repetitions would have been

needed, which would last approximately 28h per test case (CSM) and thus is not

feasible considering all different tested regularization factors, model hyperparame-

ters etc.

As GPU computations are designed to be fast, they have the side effect of lacking

for accuracy. In fact, the errors have a stochastic nature and thus the VN infer-

ence is not deterministic. In addition, TensorFlow is not completely deterministic

either.

The result of a statistical test would only be useful in stating which method yields

a significant better metric. However, a better metric does not include better per-

formance. For instance, if one method attains significant higher PSNR and the

other significant higher SSIM, the question which model should be chosen remains.

In addition, the choice for the significance level is subjective too.

Summarized, statistical testing was not performed because it would be computa-

tional very costly (CSM), the inference is not deterministic (VN) and the mean-

ingfulness is still low.
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In the first part of the work it was shown that a co-sparse analysis model (CSM)

as variant of a field of experts (FoE) is able to learn a discriminative prior for ASL

image enhancement. In terms of PSNR and SSIM the CSM performs about as

well as the non-temporal TGV approach but worse than stTGV. Nevertheless, the

objective of designing an usable image enhancement method without the need for

manually tuned parameters was fulfilled.

In the second part the drawbacks of the CSM, i.e the long inference time and the

simplicity of the model (fixed penalty functions, etc.) were tackled by the use of a

more powerful and flexible variational network (VN). Although the VN yields bet-

ter results than the previously tested CSM, on a quantitative base it is only able

to compete with the stTGV in terms of SSIM. However, the qualitative compari-

son shows a visual improvement of the VN CBF-maps compared to the CBF-maps

from the stTGV. For reasons of a time consuming parameter tuning process for the

stTGV, just results for 50 L/C-pairs were compared. It is reasonable to suspect

that the impact of the temporal approach will decrease for more L/C-pairs used

or for a less outlier prone ASL sequences.

The huge benefit of the VN is founded in its fast inference (50ms for a 128x128

patch) and fast learning (15min with a highly non-convex msSSIM loss) in com-

bination with the ability to deal with a very low amount of data (data from 6

subjects for learning). For comparison, the stTGV denoising process takes about

2.5s (stTGV and VN experiments carried out on a Nvidia Titan Xp). Other learn-

ing based methods have shown to require costly trainings ([19] take 12h training

in combination with a low resolution dataset and a MSE loss) as well as data from

numerous subjects (f.e. Xie et al. [20] used 240 subjects for training). This high-

lights the VN’s suitability for further applications in context with ASL image and
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volume enhancement. As shown, even without temporal information the VN is

able to perform almost equally well as the stTGV. Unfortunately, in the presence

of large outliers or artifacts, this property reduces the ability to detect doubtful

data like outliers and artifacts. In extreme cases this can lead to non-physiological

structures.

Outlook

For future work, superior results are expected for the VN if additional informa-

tion like temporal data, separate label and control images and regularization maps

are included. The inclusion of the regularization maps might be difficult, because

it seems to make the training more complex. Additionally, it would be impor-

tant to obtain trust full variance statistics. This could be accomplished using

the bootstrapping technique. Further, regularization maps could be used to skip

the separation in different models for different numbers of used L/C-pairs. Hence,

only one model would have to be trained. The amount of regularization would

be determined by the regularization map. However, this would only increase the

usability and not the performance. A probably fast way to increase the model

capacity would be to include a learnable data term. This was actually part of

preliminary tests, but the learning did not work well for this case. Beside of the

mentioned model improvements, a very promising step goes towards the use of

sophisticated 3D pCASL sequences. The increased basic image quality of these

techniques makes highly resolved voxels possible (1.5mm isotropic). For such reso-

lutions 3D denoising with 3D filter kernels becomes useful. Parameter learning in

this case is particularly costly, thus a fast and effective model is needed. The VN

might be the only model which meets the requirements of efficient inference and

efficient learning.
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A. Appendix - Derivations

A.1. SSIM

SSIM(x,y) =
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2µxµy + c1
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∂σxy
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= wi(yi − µy) (A.4)

With xp and yp being the p-th pixel of patch x and y, respectively. wp notes the

Gaussian weighting of the p-th pixel of a patch.
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A.2. msSSIM

msSSIM(x,y) = lσM (x,y) ·
M∏
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Table B.1.: Quantitative results for different VN setups. All results for 24 filters of size 5x5 in 5
stages with 31 RBFs - 30 and 100 L/C-pairs.

Patchsize: 64x64 – 30 L/C-pairs 

Loss L1 L2 SSIM msSSIM L1SSIM L1msSSIM

DT S-VII S-VIII S-IX S-X mean S-VII S-VIII S-IX S-X mean S-VII S-VIII S-IX S-X mean S-VII S-VIII S-IX S-X mean S-VII S-VIII S-IX S-X mean S-VII S-VIII S-IX S-X mean

WB 55.76 52.16 67.58 73.66 62.29 54.80 50.71 66.56 72.20 61.07 57.60 54.46 69.78 76.35 64.55 49.78 51.39 65.11 72.66 59.73 57.55 54.02 69.27 75.49 64.08 57.20 54.66 69.53 75.81 64.30

SSIM GM 76.86 68.98 83.39 87.25 79.12 78.32 71.24 84.00 87.58 80.29 76.15 69.43 83.75 88.57 79.48 70.84 68.83 81.46 88.06 77.30 76.67 69.32 83.75 88.09 79.46 77.91 71.31 84.53 88.93 80.67

L1
WM 43.27 47.39 55.73 61.94 52.08 40.95 46.47 53.72 59.00 50.03 43.00 47.41 56.77 62.61 52.45 34.09 41.57 49.22 54.66 44.88 43.91 47.89 56.92 62.88 52.90 42.51 47.85 56.25 62.30 52.23

WB 23.13 18.52 22.24 21.94 21.46 23.10 18.82 22.26 21.86 21.51 22.52 18.21 22.04 22.13 21.22 20.18 16.68 20.61 21.05 19.63 22.94 18.48 22.26 22.12 21.45 22.77 18.44 22.25 22.27 21.43

PSNR GM 18.95 16.75 20.83 20.68 19.30 19.23 17.20 21.03 20.78 19.56 18.34 16.49 20.65 21.03 19.13 16.38 15.54 19.48 20.64 18.01 18.73 16.69 20.83 20.91 19.29 18.81 16.85 20.97 21.24 19.47

WM 14.46 13.82 19.30 19.65 16.81 13.84 13.49 18.80 18.96 16.27 13.84 13.46 19.23 19.58 16.53 10.59 11.56 17.02 17.20 14.09 14.30 13.76 19.42 19.78 16.82 13.74 13.49 19.16 19.56 16.49

WB 56.14 55.11 67.92 73.95 63.28 54.40 51.56 65.76 70.71 60.61 56.81 56.05 69.79 76.28 64.73 56.62 56.07 70.09 76.69 64.87 57.10 56.20 69.36 75.67 64.58 56.85 55.89 69.09 75.24 64.27

SSIM GM 79.34 74.22 84.89 89.11 81.89 79.46 74.08 84.62 88.07 81.56 77.15 72.84 84.44 89.27 80.92 76.70 72.42 84.32 89.40 80.71 78.30 73.61 84.79 89.41 81.53 78.74 73.85 84.94 89.44 81.74

L2
WM 40.19 47.03 53.67 59.14 50.01 38.65 45.34 51.31 55.29 47.65 41.12 47.82 55.59 61.74 51.57 41.11 47.67 56.08 61.99 51.71 41.23 47.83 55.07 61.01 51.28 40.92 47.58 54.73 60.27 50.88

WB 22.70 18.50 22.11 22.11 21.36 22.85 18.84 22.14 21.69 21.38 22.04 18.13 21.85 22.08 21.03 21.92 18.00 21.81 22.13 20.96 22.36 18.31 22.02 22.17 21.22 22.50 18.40 22.09 22.19 21.29

PSNR GM 19.08 17.17 21.08 21.37 19.67 19.32 17.51 21.19 20.98 19.75 18.16 16.70 20.63 21.22 19.18 18.02 16.58 20.56 21.26 19.10 18.59 16.92 20.89 21.37 19.44 18.78 17.03 20.99 21.42 19.55

WM 13.08 13.08 18.43 18.68 15.82 12.97 13.00 18.06 18.00 15.51 12.84 12.95 18.62 19.02 15.86 12.77 12.92 18.73 19.13 15.89 12.99 13.04 18.60 18.95 15.90 13.04 13.08 18.60 18.88 15.90

WB 56.61 55.06 69.23 75.91 64.20 57.39 54.14 70.12 76.38 64.51 58.26 54.60 69.52 74.93 64.33 57.71 53.09 69.16 74.63 63.65

SSIM GM 76.92 72.15 84.10 89.03 80.55 75.24 68.26 83.89 88.64 79.01 75.94 67.92 83.37 86.98 78.55 75.88 67.49 83.29 86.83 78.37

L1 ZMF
WM 40.86 47.21 55.13 61.30 51.13 42.49 45.63 55.77 60.98 51.22 44.95 48.25 57.68 62.83 53.43 44.26 46.84 57.05 62.22 52.59

WB 22.07 18.13 21.77 21.99 20.99 22.26 18.04 22.05 22.11 21.12 22.96 18.49 22.36 21.92 21.43 23.01 18.57 22.34 21.86 21.44

PSNR GM 18.14 16.64 20.53 21.11 19.11 18.09 16.39 20.67 21.05 19.05 18.67 16.65 20.81 20.52 19.16 18.72 16.70 20.78 20.43 19.16

WM 12.90 12.95 18.57 18.92 15.84 13.56 13.11 19.10 19.46 16.31 14.52 13.96 19.70 20.02 17.05 14.56 14.02 19.71 20.03 17.08

WB 57.63 53.01 67.00 71.70 62.34 56.80 52.27 66.99 71.81 61.97 56.76 55.78 69.77 76.34 64.66 57.73 54.71 70.22 76.36 64.75 58.42 55.08 69.62 75.02 64.54 58.21 54.43 69.20 74.69 64.13

SSIM GM 75.84 66.76 82.00 84.86 77.37 77.70 69.79 82.92 85.55 78.99 76.90 72.63 84.30 89.24 80.77 75.19 68.23 83.80 88.59 78.96 76.28 68.36 83.48 87.08 78.80 76.38 68.22 83.60 87.32 78.88

L2 ZMF
WM 44.93 46.75 56.27 61.05 52.25 43.95 48.31 55.99 61.27 52.38 41.26 47.68 55.71 61.78 51.61 43.20 46.13 56.11 60.99 51.61 44.65 48.23 57.48 62.78 53.29 44.29 46.78 56.52 61.86 52.36

WB 23.20 18.52 22.19 21.45 21.34 23.39 19.07 22.37 21.58 21.60 22.00 18.08 21.81 22.08 20.99 22.26 18.00 22.05 22.12 21.11 22.92 18.42 22.35 21.94 21.41 22.89 18.39 22.33 21.97 21.39

PSNR GM 18.84 16.59 20.52 19.87 18.96 19.26 17.24 20.78 20.04 19.33 18.07 16.65 20.56 21.19 19.12 18.06 16.35 20.64 21.05 19.02 18.70 16.63 20.82 20.56 19.18 18.69 16.63 20.85 20.65 19.21

WM 14.90 14.21 19.67 19.91 17.17 14.68 14.26 19.53 19.86 17.08 12.85 12.93 18.66 19.08 15.88 13.67 13.18 19.18 19.50 16.38 14.33 13.88 19.68 20.01 16.97 14.25 13.77 19.49 19.84 16.84

WB 57.28 53.17 68.38 74.68 63.38 56.44 50.82 66.92 73.17 61.84 56.04 52.59 69.05 75.92 63.40 56.49 53.62 69.50 76.05 63.92 57.22 53.92 69.32 75.91 64.09 57.32 53.96 69.43 75.94 64.16

SSIM GM 76.65 69.40 84.10 88.63 79.69 76.71 69.08 83.70 87.93 79.35 74.35 68.60 83.40 88.85 78.80 75.21 68.96 84.06 89.13 79.34 75.96 69.39 84.21 89.13 79.68 76.02 69.38 84.28 89.16 79.71

temporal L1
WM 41.44 44.10 55.36 60.95 50.46 41.64 43.95 54.52 60.17 50.07 38.50 42.66 54.33 59.25 48.69 38.95 43.21 55.07 60.32 49.39 40.05 43.67 55.25 60.79 49.94 40.30 43.83 55.60 61.11 50.21

WB 22.82 18.28 22.18 22.15 21.36 23.11 18.66 22.25 22.04 21.52 21.81 17.77 21.58 21.85 20.75 22.02 17.79 21.86 22.07 20.94 22.36 18.02 22.00 22.17 21.14 22.42 18.03 22.06 22.21 21.18

PSNR GM 18.70 16.64 20.91 21.19 19.36 18.96 16.95 20.97 20.98 19.47 17.69 16.15 20.26 20.99 18.77 17.99 16.23 20.63 21.25 19.03 18.29 16.43 20.76 21.29 19.19 18.34 16.44 20.81 21.32 19.23

WM 13.99 13.35 18.96 19.14 16.36 14.25 13.49 18.92 19.07 16.43 12.91 12.74 18.55 18.76 15.74 12.94 12.83 18.68 18.91 15.84 13.40 13.03 18.81 19.05 16.07 13.46 13.08 18.90 19.14 16.15

WB 58.33 54.15 68.64 74.83 63.99 55.92 50.67 67.53 73.04 61.79 56.50 53.18 69.37 75.68 63.68 56.28 53.41 69.37 75.94 63.75 57.21 53.58 69.39 75.84 64.00 57.38 53.54 69.46 75.95 64.08

SSIM GM 76.98 69.21 84.32 88.57 79.77 76.02 68.18 83.68 87.85 78.93 75.27 68.89 84.16 88.81 79.28 74.76 68.58 83.87 88.96 79.04 75.77 68.92 84.14 89.00 79.46 76.13 69.01 84.33 89.09 79.64

temporal L2
WM 41.37 44.26 55.35 61.13 50.53 39.93 43.24 53.93 59.01 49.03 39.12 43.05 54.86 60.53 49.39 38.49 42.87 54.66 59.80 48.95 39.88 43.35 55.27 60.60 49.77 40.46 43.90 55.51 61.32 50.30

WB 22.78 18.09 22.11 22.05 21.26 22.58 18.24 22.01 21.76 21.15 22.09 17.87 21.86 21.95 20.94 21.86 17.66 21.72 21.94 20.80 22.25 17.86 21.92 22.06 21.02 22.38 17.94 22.02 22.16 21.13

PSNR GM 18.72 16.49 20.91 21.09 19.31 18.55 16.57 20.81 20.83 19.19 18.05 16.29 20.69 21.10 19.03 17.83 16.11 20.51 21.13 18.89 18.18 16.29 20.69 21.19 19.09 18.34 16.36 20.80 21.28 19.20

WM 13.92 13.15 18.87 19.05 16.25 13.37 12.98 18.58 18.60 15.88 13.02 12.80 18.60 18.85 15.82 12.82 12.71 18.57 18.83 15.73 13.31 12.93 18.79 19.02 16.01 13.39 13.01 18.86 19.14 16.10

Patchsize: 64x64 – 100 L/C-pairs 

Loss L1 L2 SSIM msSSIM L1SSIM L1msSSIM

DT S-VII S-VIII S-IX S-X mean S-VII S-VIII S-IX S-X mean S-VII S-VIII S-IX S-X mean S-VII S-VIII S-IX S-X mean S-VII S-VIII S-IX S-X mean S-VII S-VIII S-IX S-X mean

WB 79.21 79.24 84.36 88.60 82.85 78.70 78.77 83.70 87.60 82.19 79.48 80.06 84.21 88.59 83.08 79.71 80.28 85.00 89.23 83.55 79.60 79.76 84.79 89.04 83.30 79.69 80.17 84.70 88.96 83.38

SSIM GM 88.98 88.18 92.17 95.33 91.17 89.14 88.33 92.12 95.19 91.19 89.48 89.03 92.26 95.53 91.58 89.11 88.82 92.46 95.70 91.52 88.96 88.32 92.31 95.53 91.28 89.53 89.03 92.53 95.75 91.71

L1
WM 64.25 69.43 74.74 78.81 71.81 63.02 68.58 72.94 76.01 70.14 64.15 70.25 73.78 78.11 71.57 64.13 69.31 75.13 78.76 71.83 64.51 69.47 75.25 79.08 72.08 64.46 70.20 74.56 78.66 71.97

WB 27.15 24.29 25.57 26.19 25.80 27.19 24.32 25.54 26.00 25.76 27.05 24.42 25.53 26.20 25.80 26.93 24.30 25.54 26.30 25.77 27.08 24.28 25.57 26.27 25.80 27.13 24.47 25.65 26.41 25.91

PSNR GM 22.64 22.14 24.25 25.16 23.55 22.73 22.19 24.23 25.02 23.54 22.70 22.38 24.28 25.36 23.68 22.48 22.25 24.30 25.43 23.61 22.57 22.14 24.28 25.31 23.58 22.76 22.42 24.42 25.58 23.79

WM 18.37 20.17 23.28 23.36 21.29 18.36 20.11 23.10 22.96 21.13 17.89 19.94 22.86 22.87 20.89 18.04 19.96 23.19 23.23 21.10 18.30 20.11 23.31 23.37 21.27 18.12 20.08 23.16 23.18 21.14

WB 79.42 80.00 84.36 88.44 83.05 78.59 78.82 83.31 87.01 81.93 79.40 80.03 83.98 88.38 82.95 79.83 80.71 85.00 89.12 83.66 79.75 80.47 84.69 88.86 83.44 79.73 80.42 84.71 88.91 83.44

SSIM GM 89.61 89.17 92.45 95.58 91.70 89.50 88.77 92.14 95.16 91.40 89.35 89.04 92.10 95.48 91.49 89.45 89.29 92.56 95.77 91.77 89.64 89.35 92.52 95.67 91.79 89.65 89.28 92.57 95.77 91.82

L2
WM 63.93 70.10 73.99 77.81 71.46 62.28 68.47 71.68 74.44 69.22 63.97 70.25 73.35 77.64 71.30 64.32 70.18 74.85 78.48 71.96 64.38 70.41 74.49 78.49 71.94 64.20 70.27 74.39 78.34 71.80

WB 27.18 24.53 25.64 26.28 25.91 27.21 24.41 25.52 25.90 25.76 26.95 24.40 25.47 26.12 25.74 26.99 24.46 25.60 26.35 25.85 27.11 24.53 25.62 26.33 25.90 27.13 24.52 25.66 26.41 25.93

PSNR GM 22.82 22.48 24.42 25.44 23.79 22.87 22.35 24.27 25.04 23.63 22.61 22.37 24.19 25.31 23.62 22.60 22.43 24.36 25.53 23.73 22.77 22.51 24.41 25.49 23.79 22.78 22.49 24.44 25.60 23.83

WM 18.13 20.11 23.08 23.03 21.09 18.13 20.00 22.84 22.50 20.87 17.75 19.87 22.78 22.72 20.78 17.95 20.02 23.16 23.13 21.06 18.04 20.07 23.10 23.06 21.07 18.02 20.08 23.12 23.12 21.08

WB 78.81 78.91 83.82 88.67 82.55 79.93 80.42 85.10 89.36 83.70 79.79 79.72 84.59 88.95 83.26 79.32 78.93 84.31 88.45 82.75

SSIM GM 88.08 87.51 91.57 95.28 90.61 89.12 88.95 92.54 95.72 91.58 88.92 88.19 92.13 95.40 91.16 88.41 87.51 91.92 95.11 90.74

L1 ZMF
WM 63.74 69.08 73.39 78.10 71.08 64.57 69.32 74.78 78.66 71.83 65.02 69.67 74.97 79.16 72.21 64.05 67.98 74.51 77.90 71.11

WB 26.60 23.97 25.28 26.13 25.50 26.94 24.36 25.57 26.32 25.80 27.09 24.26 25.53 26.21 25.77 27.02 24.09 25.43 25.98 25.63

PSNR GM 22.07 21.81 23.90 25.16 23.23 22.50 22.33 24.35 25.47 23.66 22.58 22.13 24.20 25.19 23.52 22.44 21.91 24.07 24.90 23.33

WM 17.54 19.64 22.79 22.96 20.74 18.02 19.92 23.13 23.14 21.06 18.31 20.08 23.25 23.34 21.25 18.38 20.02 23.28 23.30 21.24

WB 79.46 78.79 84.06 87.97 82.57 78.95 78.83 83.81 87.61 82.30 79.39 79.42 84.05 88.56 82.85 79.93 80.18 85.01 89.11 83.56 79.92 79.84 84.63 88.85 83.31 79.75 79.43 84.57 88.65 83.10

SSIM GM 88.71 87.69 91.85 94.99 90.81 88.97 87.97 91.92 94.82 90.92 88.57 87.98 91.83 95.23 90.90 89.05 88.81 92.54 95.65 91.51 88.94 88.19 92.13 95.30 91.14 88.81 87.96 92.13 95.30 91.05

L2 ZMF
WM 64.43 68.17 74.31 77.52 71.11 63.65 69.00 73.42 76.63 70.67 64.36 69.37 73.32 77.96 71.25 64.17 68.56 74.41 77.88 71.26 65.02 69.63 74.87 78.95 72.12 64.65 68.62 74.63 78.08 71.50

WB 27.10 24.17 25.46 25.96 25.67 27.22 24.29 25.50 25.85 25.71 26.80 24.12 25.38 26.03 25.58 26.94 24.32 25.57 26.27 25.77 27.08 24.28 25.54 26.17 25.77 27.07 24.22 25.53 26.14 25.74

PSNR GM 22.55 21.99 24.08 24.84 23.37 22.69 22.07 24.11 24.67 23.38 22.30 21.99 24.03 25.06 23.35 22.48 22.30 24.36 25.42 23.64 22.56 22.13 24.20 25.11 23.50 22.54 22.06 24.20 25.10 23.47

WM 18.38 20.07 23.28 23.27 21.25 18.55 20.31 23.26 23.19 21.33 17.80 19.78 22.82 22.90 20.83 18.04 19.87 23.12 23.08 21.03 18.27 20.11 23.26 23.35 21.25 18.31 20.05 23.29 23.32 21.24

WB 79.30 79.61 84.60 88.93 83.11 78.64 78.51 83.85 87.85 82.21 78.27 78.16 82.55 86.91 81.47

SSIM GM 89.01 88.80 92.34 95.65 91.45 88.69 88.21 91.89 95.08 90.97 88.24 87.78 91.10 94.68 90.45

temporal L1
WM 62.51 67.65 74.95 78.94 71.01 62.63 67.26 74.64 77.68 70.55 62.53 67.52 72.37 76.02 69.61

WB 26.91 24.33 25.53 26.36 25.78 27.01 24.24 25.44 25.98 25.67 26.54 23.97 25.02 25.54 25.27

PSNR GM 22.53 22.34 24.31 25.49 23.67 22.54 22.17 24.11 24.97 23.45 22.15 21.93 23.67 24.64 23.10

WM 17.79 19.75 23.07 23.14 20.94 18.11 19.86 23.12 22.98 21.02 17.23 19.30 22.30 22.07 20.23

WB 79.33 79.35 84.51 88.74 82.98 79.03 78.86 84.29 88.20 82.60 78.95 79.19 83.72 88.11 82.49

SSIM GM 89.01 88.59 92.29 95.54 91.36 88.88 88.20 92.11 95.23 91.10 88.64 88.38 91.78 95.15 90.99

temporal L2
WM 62.81 67.71 75.13 78.90 71.14 62.83 67.75 75.07 78.10 70.94 62.64 67.63 73.79 77.71 70.44

WB 26.94 24.28 25.53 26.29 25.76 27.00 24.23 25.51 26.07 25.70 26.69 24.13 25.25 25.90 25.49

PSNR GM 22.56 22.27 24.30 25.40 23.63 22.56 22.15 24.21 25.08 23.50 22.31 22.12 23.98 24.96 23.34

WM 17.87 19.75 23.13 23.12 20.97 18.01 19.84 23.18 23.04 21.02 17.53 19.55 22.70 22.69 20.62

XII



Table B.2.: Quantitative results for different VN setups. All results for 24 filters of size 5x5 in 5
stages with 31 RBFs - {30,40,50,60,80,100} L/C-pairs.
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