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Kurzfassung 

Isomere sind ein bedeutendes Forschungsfeld in der heutigen chemischen Industrie. 

Reine Isomere sind schwer zum Gewinnen, da sich die Eigenschaften der Isomere 

stark ähneln. Dies macht eine Theorie, um deren Eigenschaften vorauszusagen um-

so bedeutender.  

Die „Lattice Cluster Theorie“ (LCT) (1) (2) eignet sich gut zur Beschreibung der ther-

modynamischen Eigenschaften von Polymeren. Sie bestimmt Eigenschaften über 

das Berechnen der Zustandssumme eines Systems. Durch eine zweifache Reihen-

entwicklung in der Gitterkoordinationsnummer z und der molekularen Interaktionse-

nergie ε liefert sie einen Ausdruck für die freie Helmholtz Energie. Die Flory Huggins 

Theorie dient dabei als „mean field“, welches von einer unverzweigten Kette ausgeht. 

Einflüsse der Architektur des Isomers korrigieren dann einzelne Beiträge der Struktu-

ren, die man im Molekül findet. Die bisherige Theorie beachtet dafür Strukturdia-

gramme mit bis zu vier Bindungen, sowie bis zu zwei Wechselwirkungen, welche je-

weils eine Bindung ersetzten. Was Beiträgen einer Ordnung von bis zu ε2z-2 ent-

spricht. Ihre große Stärke liegt darin, dass sie basierend auf einem Parameterset in 

der Lage ist, die thermodynamischen Eigenschaften der anderen Isomere zu be-

schreiben. In ihrer inkompressiblen Form konnte die LCT bereits unter anderem für 

Polystyrol Mischungen (3), Copolymere (4) und hochverzweigte Polymere (5) ange-

wendet werden. Leider stoßt die LCT bei kurzkettigen Kohlenwasserstoffen in ihrer 

aktuellen Form an ihre Grenzen. Die Betrachtung von Beiträgen mit der Ordnung von 

bis zu z-3 verbessert jedoch die Anwendbarkeit der LCT auf diese (6).  

Daraus ergibt sich als nächster Schritt das Erweitern jener auf ε3. Die somit Dia-

gramme mit bis zu sechs Bindungen berücksichtigen. Um den nötigen Aufwand zu 

minimieren sind vorerst nur entropische Diagramme berücksichtigt worden. Der 

energetische Anteil wurde über das „mean field“ dargestellt. Durch den Vergleich ei-

ner berechneten Dampfdruckkurve mit experimentellen Werten, sollen die Auswir-

kungen der Erweiterung erkenntlich sein. Das hierdurch erweiterte Model ist in der 

Lage eindeutig zwischen den Isomeren zu unterscheiden, kann aber durch die feh-

lenden energetischen Diagramme noch keine exakten Ergebnisse liefern.  



   

 

Abstract 

Isomers are an important field of research in the present chemical industry. Purely 

branched substances are difficult to obtain because the properties of the isomers are 

very similar. This makes a theory to predict their properties even more important.  

The Lattice Cluster Theory (LCT) (1) (2) is a useful tool to describe the thermody-

namic properties of polymers. It derives properties by determining the sum of states 

of a system. It delivers an expression for the Helmholtz energy by a twofold series 

development in the lattice coordination number z and the molecular interaction ener-

gy ε. The Flory Huggins theory serves as a mean field which assumes an un-

branched chain. The architecture of the isomer then corrects this by adding individual 

contributions from the structures found in the molecule. The current theory considers 

structural diagrams with up to four bonds and up to two interactions, each replacing 

one bond. This corresponds to contributions of an order up to ε2z-2. Its great strength 

is that it is able to describe the thermodynamic properties of the other isomers based 

on a set of parameters. In its incompressible form, LCT has already been used for 

polystyrene mixtures (3), copolymers (4) and highly branched polymers (5).  Unfortu-

nately, LCT reaches its limits with short-chain hydrocarbons in its current form. How-

ever, the consideration of contributions with up to z-3 improves the applicability of 

LCT to these (6).  

The next step is the extension of the LCT to ε3, which therefore considers diagrams 

with up to six bonds. To minimize the necessary effort, only entropic diagrams have 

been considered for the time being. The energetic part was represented by the mean 

field. By inspecting the vapour pressure curve derived from this adapted model com-

pared to some experimental values, the effect of the extension should be noticeable. 

The adapted model can distinguish clearly between the isomers, but due to the miss-

ing energetic diagrams it is not yet able to give exact results.  
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1 Introduction 

Isomers are chemical substances that have the same composition but a different 

structure. The term isomerism was established as early as 1830, when Liebig and 

Wöhler discovered silver fuliminate and silver cyanate (7). Both have different proper-

ties although they consist of the same composition of atoms. Isomerism can occur in 

many different forms and has significance in many technical areas. For example, mir-

ror isomeric substances are of great importance in the pharmaceutical and biotech-

nological industry. Like many isomers, they have similar physical and chemical prop-

erties but, in their case, they differ greatly in their biological properties.  

The separation of the individual isomers is made difficult by the generally very similar 

chemical and physical properties. Especially the isomers whose structure are alike 

can only be purified by extensive methods. This further leads to the measurement of 

such substance data to become expensive and difficult. Pure substance data about 

isomers are therefore rare. Only for the purification of the unbranched compounds a 

multitude of processes exist. For example, urea can be used in the Urea Extractive 

Crystallization process (8) to isolate them. Furthermore, the number of isomers in-

creases exponentially with chain length (9). This can be observed well with the ex-

ample of alkanes. While there are two different structures for butane, the number of 

theoretical isomers for decane is already 75 and for C20H22 there are theoretically 

366319 different isomers. However, not all of them occur in nature due to steric hin-

drance. The analysis of so many different components is not feasible on a realistic 

scale. 

For the design of many processes one must therefore resort to thermodynamic mod-

els and estimations to describe their properties. Many models cannot really distin-

guish between the individual isomers. By which they either reflect the properties of an 

unbranched substance or an average of the individual isomers. Other models may 

differ between them but require a separate parameter set for each isomer. To get 

such a parameter set one would need some experimental data. This limits their us-

age for some applications. 
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The Lattice Cluster Theory (LCT) (1) provides a useful tool capable of distinguishing 

many isomers. It is based on the Flory Huggins theory (FH) developed in 1953 (10). 

FH is one of the first models that could correctly describe the properties of polymeric 

solutions for many polymers. It considers polymers as chains of segments, which are 

placed on a lattice. By calculating all the way such a chain can be placed on the lat-

tice it can calculate the constitutional entropy of the system. By further applying inter-

action forces between the chains, it arrives at an expression for the Helmholtz energy 

of the system, which can be used to describe a large amount of properties of the sys-

tem.  Many models stem from the FH to describe polymers even better. The FH only 

allows the modelling of unbranched substances. The LCT corrects this by using a 

cluster expansion that resembles Mayer’s cluster (11) expansion for nonideal gases. 

It considers the FH as a mean field and by adding corrections, it can also be used for 

branched polymers. These corrections are derived from the structures found in the 

chain. It only requires one set of parameters for all isomers of a component. These 

can be easily obtained from the unbranched isomers.  

It was originally developed to describe branched polymers, which in nature often ap-

pear as a spectrum for the degree of branching. Thanks to some improvements, it 

can also be used in its incompressible form for polystyrene blends (3), copolymers 

(4) and hyperbranched polymers (5) are used. Thanks to the introduction of empty 

lattices sites, so-called "voids", even compressible properties of polymers can be de-

scribed. By considering these as separate non-interacting components (12), it could 

even be used for describing the vapour pressure long-chain alkanes.  

In the case of shorter-chain hydrocarbons such as hexane, however, it unfortunately 

still reaches its limits. While it can predict the properties of the isomers of high chain 

hydrocarbons with considerable accuracy, it has difficulties in predicting the se-

quence of the isomers in the case of short chain hydrocarbons, for example in the 

case of vapour pressure. In its current form it can hardly distinguish between the 

isomers of short-chain hydrocarbons. This form of the model includes all diagram 

contributions that meet the following criteria, a lattice coordination number z with a 

minimum power raised to minus two and a number of bonds in the diagram of up to 

four bonds which correlates with a maximum power of the interaction parameter ε 

raised to two. All other diagram contributions are neglected, since their contribution 

becomes comparable small. In the case of short-chain ones, Zimmermann et al. (6) 
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found that the inclusion of diagram contributions with a minimum coordination num-

ber z of minus three significantly improves the predictive power of LCT for such. This 

enhancement enables it to distinguish between the individual short-chain isomers 

and even ranks their properties in the correct order. The calculated vapour pressures 

of the hexane isomers are still too close to those of the n-hexane used for parameter 

calibration. The next resulting step to extend the LCT is therefore to include diagram 

contributions from diagrams with up to six bonds. This corresponds to a maximum 

order of the interaction parameter of three. In order to demonstrate the possible effect 

of including these diagram contributions, this thesis will primarily examine the contri-

bution of entropic diagrams. The energetic contributions are modelled only by the 

mean field contribution from the FH. The result of such an extension is then present-

ed by comparison with experimental data and results from previous models.  
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2 Theory 

The Lattice Cluster theory (LCT) (1) derives from the Flory Huggins theory (FH) (10) 

which stems from the statistic thermodynamic. However, FH Theory can also be seen 

as a special case of LCT, the case of unbranched molecules. In the case of un-

branched molecules, FH Theory is able to describe the properties of polymer melts 

and solutions. It starts from a lattice in which the individual molecules are located. 

The individual polymer molecules are significantly larger than the molecules of the 

solvents. While the latter can be placed in a lattice site, this is not possible with the 

polymer molecules. Instead, the polymer molecule is divided into segments of the 

same order of magnitude as the lattice sites.  These segments are then placed one 

after the other alongside each other in the lattice. The neighbouring sides where the 

next segment is located can be described by a statistical probability.  This way the 

possible states of the system can be described. The entropy of a system is defined 

by the number of possible states it can have. This is expressed in the Boltzmann’s 

equation Eq. 2.1. kB is the Boltzmann constant and Z is the partition function of the 

system, which specifies its sum of states. 

 

𝑆 = 𝑘𝐵 ln 𝑍 Eq. 2.1 

A state is a distinguishable microstate of the system. Two states are then distin-

guishable if at least one molecule has a different position, you can distinguish further 

if a molecule has another amount of energy, such as that which can be triggered by 

interaction forces. If two molecules of the same kind, with the same energy, are ex-

changed, the new state is indistinguishable from the before. The states are only 

counted as a single state. It is possible to obtain an expression of the Helmholtz En-

ergy F by Eq. 2.2 through the sum of the microstates. With the help of this, one can 

describe a large set of the thermodynamic properties of a substance. 

 

𝐹 =  −𝑘𝐵𝑇 ln 𝑍 Eq. 2.2 
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The FH theory is derived according to Dudowicz et al (3). The consideration of vol-

ume contraction ensures that no two segments of the chain share a lattice place. In 

the case of a two-segment chain in a 2x2 lattice, these can still just be counted. Figu-

re 1 shows all possibilities for such a case 

 

In a real example with long chains and huge spatial lattices, this is no longer possi-

ble. This is done mathematically by a several fold constrained sum (Eq. 2.3) (3)of the 

Kronecker delta δ over all segments of the chain, all placed chains, all lattice loca-

tions and all adjacent lattice locations. The Kronecker delta is a mathematical func-

tion that returns zero if the two input variables are different and one if they are equal. 

The restriction of the sum is denoted as S, which is the condition that no counter i is 

the same. In the sum k is the number of components in the system, nμ is the number 

of chains of one component, N μ is the number of segments in a chain, z is the coor-

dination number, r is lattice position and α is a vector pointing to the adjacent posi-

tions. In the previous example the restricted sum would look like in equation Eq. 2.4. 

 

𝑍 =∏
1

𝑛𝜇! 2
𝑛𝜇
∑∏{∏ ∑ 𝛿(𝑟𝑖𝛼𝜇,𝑚𝜇

𝜇 , 𝑟𝑖𝛼𝜇+1,𝑚𝜇
𝜇 + 𝛼𝛽𝛼𝜇,𝑚𝜇

𝜇 )

𝑧

𝛽𝛼𝜇,𝑚𝜇
𝜇

=1

𝑁𝜇−1

𝛼𝜇=1

}

𝑛𝜇

𝑚𝜇

 

𝑆

𝑘

𝜇=1

  
Eq. 2.3 

𝑍 =∏
1

1! 21
∑ ∏{∏ ∑ 𝛿(𝑟𝑖𝛼𝜇,𝑚𝜇

𝜇 , 𝑟𝑖𝛼𝜇+1,𝑚𝜇
𝜇 + 𝛼𝛽𝛼𝜇,𝑚𝜇

𝜇 )

4

𝛽𝛼𝜇,𝑚𝜇
𝜇

=1

1

𝛼𝜇=1

}

1

𝑚𝜇

= 4

 

𝑖1≠𝑖2

1

𝜇=1

 
Eq. 2.4 

The energetic states of the system are then determined by the interaction energies. 

Repulsion forces are already considered as volume exclusion. Attractive forces are 

only considered if the two segments are located exactly next to each other. Seg-

Figure 1: All possible configural states of a two segmented chain with identical 

segments in a 2x2 lattice 
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ments that are further away from each other are considered to be non-interacting. 

The attractive forces can also be expressed as a several fold constrained sum of the 

Kronecker delta δ multiplied by the interaction parameter ε1,2 in this case. 

The FH theory involves some assumptions which limit its usage. It assumes that all 

lattice spaces not occupied by polymer chains are occupied by monomers. This re-

sults in the absence of free volume spaces. It further assumes that all molecules are 

far larger than the monomers and are branchless. FH ignores preferred orientations 

of the molecules, through its rudimentary description of attractive forces and only al-

lows one kind of segment. These assumptions result in following limitations: 

 

• The solvent is described by single segments 

• The usable solvent is limited 

• It only models incompressible systems 

• It can`t describe isomers and branched polymers 

 

The FH theory is therefore not usable for a lot of cases. In order to circumvent this 

limitation, the FH has been modified in several ways. One of these further develop-

ments is the Lattice Cluster Theory (LCT) of Freed and co-workers (1). This theory 

especially revises the assumption of unbranched chains. 

The LCT thus corrects some of the assumptions of Flory Huggins by using ta cluster 

expansion approach like Mayer`s Cluster expansion for nonideal gases (11). It takes 

the entropic part of the Flory Huggins theory as a mean field and adds all the devia-

tions as power series expansion. Each one of these added terms is a cluster dia-

gram. A cluster diagram represents a structure which can be found in the molecular 

chain. This leads finally to the representation Eq. 2.5 for the state sum. Here ZMF rep-

resents the state sum which results from the FH and CBm the contribution of an indi-

vidual diagram. 

 

𝑍 = 𝑍𝑀𝐹 (1 +∑𝐶𝐵𝑚
𝐵

) 
Eq. 2.5 
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The diagrams can be divided into three different kinds.  

 

• Diagrams of the first kind which consist of only one structure.  

• Diagrams of the second kind which consist of the combination of two struc-

tures and are on two different molecules.  

• Diagrams of the third kind which also consist of several structures but where 

two of them are at least on the same molecule. 

 

Every Cluster diagram contribution is divisible into a lattice dependent and a combi-

natorial part. The lattice-dependent part is determined by volume contraction or the 

attraction of a diagram. It is completely independent of the architecture of the mole-

cules but depends on the diagram structure and the properties of the lattice. The 

combinatorial part depends on the number of ways the Diagram can be found in the 

inspected molecules. The lattice has no influence on it. In order to determine the con-

tribution of a diagram, these two parts must first be calculated. The new expression 

for the free energy, based on the new description for the sum of states, is now Eq. 2.6 

 

𝐹 = −𝑘𝐵𝑇 𝑙𝑛 {𝑍
𝑀𝐹 (1 +∑𝐷𝐵 ∗  𝛾𝐵

𝐵

 )} 
Eq. 2.6 

It now contains the logarithm of a sum. This logarithm can be expanded into a Taylor 

series (Eq. 2.7). After expanding the individual terms of the sum, it can be rearranged 

in such a way that diagrams with the same composition of structures are always 

standing next to each other. The different ways in which a diagram can be represent-

ed are called cumulants. Diagrams of the first kind are made up of a single structure 

and only occur in the linear term in this rearranged series. For the other diagrams, 

the diagram contribution is now formed from the sum of the cumulants. Each of the 

cumulants has its own lattice dependent and combinatorial contribution. The calcula-

tion of the lattice dependent and the combinatorial part for these differs slightly be-

tween them. Cumulants that are composed of several smaller diagrams consist in 

separate units. In contrast to the main cumulant, which consists of only one diagram, 

these separate units do not restrict each other. 
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𝑙𝑛 (1 +∑𝐷𝐵 ∗  𝛾𝐵
𝐵

 ) =  (∑𝐷𝐵 ∗  𝛾𝐵
𝐵

 ) −
1

2
∗ (∑𝐷𝐵 ∗  𝛾𝐵

𝐵

 )

2

 

+
1

3
∗ (∑𝐷𝐵 ∗  𝛾𝐵

𝐵

 )

3

…. 
Eq. 2.7 

The lattice-dependent fraction DB can also be expressed as Eq. 2.8. It is then com-

posed of α and dB. α is only dependent on the number of lattice locations in the lattice 

and the number of lattice sides that a diagram occupies. It is calculated with Eq. 2.9, 

where Nl is the number of lattice positions and kc is the number of segments in the 

Diagram. dB specifies the number of ways in which a diagram cannot be folded to-

gether due to volume exclusion and is represent as a restricted sum. This sum adds 

up over all lattice positions for each segment of the graph and for each bond over all 

directions, but no lattice position of a segment may be the same. This restricted sum 

can be represented by several unrestricted sums. The unrestricted sum over all lat-

tice positions and orientations, minus all the sums representing cases where some 

segments share a lattice position. By applying graph theory, one can see that these 

cases can be represented by so-called contracted graphs. When a graph is contract-

ed, two vertices of the graph are merged, and the edges of the vertices are trans-

ferred to the new vertex. In this case, a contracted vertex represents the sharing of a 

lattice space and is therefore a prohibited case. Each of these diagrams thus adds a 

contribution to dB. Since a contracted diagram can usually be formed in several ways 

from an initial diagram, they cover several possible prohibited cases. Therefore, their 

contributions must be given a pre-factor to include all cases. The result is that dB is 

described by the sum shown in Eq. 2.10. RBm is the contribution of one of the dia-

grams. By applying graph theory Brahznik (13) can list all significant contracted dia-

grams up to eight bonds and their contribution. Contracted diagrams that make no 

contribution because their contribution becomes zero in the thermodynamic limit were 

intentionally left out. The pre-factor fBc results from the number of possibilities to con-

struct a contracted diagram and their number of merged vertices. In the case of the 

cumulants, it should be ensured that the separated entities of the cumulant are not 

connected to each other by merging the vertices. By determining the individual pre-
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factors, the lattice-dependent contribution DB can be calculated using the equations 

Eq. 2.8 and Eq. 2.10. 

 

𝐷𝐵 =
𝑑𝐵

 α
   Eq. 2.8 

𝛼 = 𝑁𝑙 ∗ (𝑁𝑙 − 1) ∗ (𝑁𝑙 − 2) ∗ … ∗ (𝑁𝑙 − 𝑘𝑐 + 1) Eq. 2.9 

𝑑𝐵 = ∑𝑓𝐵,𝑐𝑅𝐵,𝑐
𝑐

 
Eq. 2.10 

The combinatorial fraction results from the structural form and the number of mole-

cules. It indicates how often a diagram can be found in a system. This is achieved by 

placing the individual structures of a diagram one after the other on all possible posi-

tions in a molecule. With second and third kinds of diagrams, it is important that no 

segments are occupied twice, otherwise the diagram would be incomplete. With mul-

ti-component systems, it is more difficult because the individual structures of the dia-

grams can be located on the same or different components. All possible distributions 

of the structures must then be added together. For cumulants with separate entities, 

the restriction of the double assignment of segments does not apply. In this case, the 

individual entities are complete even if they share a segment with another entity. 

By summing up the products of the combinatorial and lattice dependent fractions, the 

contribution of a diagram to the correction of the mean field is obtained for all cumu-

lants. The thermodynamic limit, which in this case makes the number of lattice loca-

tions Nl in the lattice go towards infinity, causes any correction without Nl in the coun-

ter to be negligible. This significantly reduces the number of contributions and their 

number of terms. It even results in the fact that some diagrams, such as diagram 1a, 

have no contribution. 

As with the FH theory, the interactions between the individual segments must be 

considered in LCT. This is not yet included in the mean field of the LCT, they are 

added as another kind of cluster diagrams instead. These energetic diagrams are like 

entropic diagrams except that some bonds have been replaced by energetic interac-

tions. The contribution of the energetic mean field comes from the diagram with only 
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a single interaction bond. Its contribution results from the power series development 

of the underlying Mayer-f function Eq. 2.11.  

 

𝑓𝜇𝜆 = 𝑒
𝜀𝜇𝜆 − 1 =  𝜀𝜇𝜆 +

𝜀𝜇𝜆
2

2
+
𝜀𝜇𝜆
3

6
 …  Eq. 2.11 

The contributions of the energetic cluster diagrams are obtained by Eq. 2.12. The DBe 

stems from multiplying the lattice -dependent part DB of an entropic diagram by the 

first term of the Taylor series development of the equation Eq. 2.13. 

 

𝐶𝐵𝑒 = 𝐷𝐵𝑒 ∗ 𝛾𝐷 ∗ 𝑠𝐷 Eq. 2.12 

[

𝑓𝜇𝛾𝑧
𝑁𝑙

1 +
𝑓𝜇𝛾𝑧
𝑁𝑙

]

𝑙

=
𝑧

𝑁𝑙
∗ 𝜀𝜇𝜆… 

Eq. 2.13 

For each replaced bond the contribution must be multiplied by the left hand side of 

Eq. 2.13. This is represented as the power l and results in the epsilon order of the 

model. The higher the power of the contribution, the more bonds were replaced by 

interaction bonds. sD is the number of symmetries of the diagram. While γD repre-

sents the number of ways to select the bonds and vertices with interaction in the 

molecule. After applying the thermodynamic limit, the calculated energetic contribu-

tions are summed up after applying the thermodynamic limit and added to the ex-

pression Eq. 2.5 of the sum of states. Thus, the new expression for the sum of states 

is Eq. 2.14. Which results in a final expression for the Helmholtz energy F of Eq. 2.15.  

 

 

𝑍 = 𝑍𝑀𝐹 (1 +∑𝐶𝐵𝑚 +

𝐵

∑𝐶𝐵𝑒
(𝜀)
+∑𝐶′𝐵𝑒

(𝜀2)

𝐵𝐵

 +∑𝐶𝐵𝑒
(𝜀2)

𝐵

) 
Eq. 2.14 

−
𝐹

𝑁𝑙𝑘𝐵𝑇
=  (𝑠𝑀𝐹 +∑𝐶𝐵𝑚 +

𝐵

∑𝐶𝐵𝑒
(𝜀)
+∑𝐶′𝐵𝑒

(𝜀2)

𝐵𝐵

 +∑𝐶𝐵𝑒
(𝜀2)

𝐵

) 
Eq. 2.15 
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Like the FH, the LCT only needs three parameters to describe properties of a com-

ponent. These are the lattice side length σ and the interaction parameters ε1 and ε2. 

By using only one set of parameters, the LCT can model all the isomers of a compo-

nent. Up to now, the LCT considerers a maximum of four bonds or two bonds and 

two interactions. This results in a maximal order of ε2 z-2 for the theory. The LCT can 

model large polymers molecules up to a high degree of accuracy. However, it fails 

significantly in the range of the much shorter alkanes such as hexane. According to 

Zimmermann et al. (6), the extension of ε2 z-2 to ε2 z-3 improves the model noticeable 

for those cases. This is achieved by including contributions with z-3, which only ap-

pear in contracted diagrams from the four bound cluster diagrams onwards. More 

specifically, the contracted R4.4 and R4.6 according to Brahznik (13) are included. A 

planned extension of the model to ε3z-3 would require the inclusion of diagrams with 

up to six bonds and up to three interaction bonds. 
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3 Methodology 

3.1 Additional Diagrams 

The Lattice Cluster Theory (LCT) corrects the Flory Huggins Theory (FH), which it 

takes as mean field, with the help of cluster diagrams. Therefore, as shown in Eq. 

2.15, the configural part of the FH sMF is corrected by addition of the diagram contri-

butions. These diagrams contain the substructures which can be found on the mole-

cules and the interaction forces between adjacent segments. As the number of bonds 

in a diagram increases, its contribution decreases significantly. Freed (1) stopped the 

development of the diagrams at a maximum contribution of ε2z-2. He included 17 en-

tropic diagrams and 82 energetic diagrams in his model. These have up to four 

bonds, or up to two bonds and two interactions between the segments. The so se-

lected upper limit of B=4 allows only two interactions, which in turn leads to a maxi-

mum exponent for the interaction parameter ε of two. The limitation of the exponent 

for the coordination number z results from the contribution of the diagrams. Here all 

parts of the contributions are omitted that contain a z to a power smaller than minus 

two. In this thesis only the influence of the entropic diagrams is considered. All possi-

ble entropic diagrams with up to four bonds are shown in Figure 2. The circles are the 

vertices and represent a segment. The connecting lines are the edges and represent 

the chemical bond between the segments. The energetic contribution is represented 

by the Mean field energy expression from the FH. This is discussed in more detail in 

chapter 3.4. Zimmermann (6) increased the allowed exponent for the coordination 

number z to minus three. The contributions with z-3 are considered but no new dia-

grams are included. According to Brahznik (13), who used graph theory to calculate 

the contributions of the contracted diagrams, diagrams with at least five bonds have 

only contributions with z-3 or smaller. It thereby allows the extension of the model to 

an order of ε3z-3. To obtain symmetry, the diagrams with up to six bonds must be 

considered. Otherwise some of the higher diagram contributions will not cancel out 

each other and unphysical behaviour occurs. For the development of the model all 

entropic diagrams with up to six bonds must be determined. The entropic diagrams 

can be divided into three categories. These three have different properties and be-

have differently while calculating their contributions. The first category contains dia-

grams which consist of a single structure. Diagrams of the second kind consist of two 
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or more structures that are not connected directly. Diagrams of the third kind also 

consist of at least two not directly connected structures, of which at least two are on 

the same chain. All possible entropic diagrams can be classified into one of the cate-

gories.  

 

Figure 2: All entropic cluster diagrams with up to four bonds 

Diagrams of the first kind consist of only one structure. For the diagrams with up to 

four bonds from Figure 2 this corresponds to {1a, 2b, 3c, 3d, 4e, 4f, 4g}. In the en-

tropic diagrams, the edges correspond only to chemical bonds. They therefore follow 

the rules of organic chemistry, more precisely the rules of the alkanes. One vertex 

can be connected with a maximum of 4 other vertices. Edges may only exist between 

two adjacent vertices, a further distance would not allow a covalent bond. Structures 

with two bonds between the diagrams or circular diagrams are not considered since 

such cases are counted as monomers and are accounted by the parameters of the 

model. The segments can be rotated freely over the edges. This has been consid-

ered in the representation by always showing the longest chain and always starting 

to place branches on the left side. This corresponds to the rules of the standard no-

menclature according to IUPAC (14). Since the structures follow the rules of the al-

kanes there is a corresponding structure for each isomer. This means that there are 

exactly as many diagrams of the first kind with five and six bonds as there are iso-

mers for hexane and heptane. The number of possible isomers is a much-researched 
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field of organic chemistry. Bytautas and Klein (9) listed them with the help of chemical 

combinatorics. They started from alkyl radicals and applied the method of rooted 

trees, following the valid alkane rules, to arrive at the number of possible isomers. 

There are five isomers for hexane and nine for heptane. So, there are five diagrams 

of the first kind with five bonds {5h, 5i, 5j, 5k, 5l} and nine with six bonds {6m, 6n, 6o, 

6p, 6q, 6r, 6s, 6t, 6u}. In total there are 21 diagrams of the first kind. These are listed 

in Figure 3. 

 

Figure 3:All inspected entropic cluster diagrams of the first kind 

Diagrams of the second kind consist of more than one structure. These structures 

must not share any vertices. There is always at least one unoccupied bond between 

the individual structures when placing them on the molecule. These diagrams result 

from combinations of smaller diagrams of the first kind. In Figure 2 this corresponds 

to the eight diagrams {2aa, 3ba, 3aaa, 4ca, 4bb, 4baa, 4aaaa, 4da}. First, all possible 

diagrams with five bonds have been determined and then those with six bonds. The 

same counting method is used for both. The diagrams of the first kind with one bond 

less are used as a starting point. These are then combined with a diagram whose 

structures have fewer or the same number of bonds as the initial diagram. Diagrams 

of the third kind are left out, since a combination of any diagram with a diagram of the 
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third kind always results in a diagram of the third kind. The process is always started 

with the largest possible diagram to avoid double counting. Diagrams with four bonds 

can only be combined with diagram 1a to get five bonds, this results in three new di-

agrams {5ea, 5fa, 5ga}. Diagrams with three bonds require two bonds to get five 

bonds. They can therefore be combined with diagrams 2b and 2aa. This creates four 

new diagrams {5cb, 5caa, 5db, 5daa}. The diagram 2b with two bonds is combined 

with the diagrams 3aaa and 3ba, resulting in two new diagrams {5baaa, 5bba}. The 

last diagram 1a can only be combined with the diagrams 4aaaa, which creates one 

more diagram {5aaaaa}. So, there are ten new diagrams of the second kind with five 

bonds. With six bonds the same counting process is performed, starting with the dia-

grams with five bonds. One gets 22 diagrams of the second kind with six bonds {6ha, 

6ia, 6ja, 6ka, 6la, 6eb, 6eaa, 6fb, 6faa, 6gb, 6gaa, 6cc, 6cd, 6caaa, 6cba, 6dd, 

6daaa, 6dba, 6bbb, 6bbaa, 6baaaa, 6aaaaaa}. This results in a total of 40 diagrams 

of the second kind, which are listed in Figure 4.  

Diagrams of the third kind consist of several structures like diagrams of the second 

kind. They result from the method used to calculate the combinatorial contribution of 

second kind diagrams. To prevent two structures of these diagrams from sharing a 

segment, the individual structures are always placed on different molecules. Third 

kind diagrams now cover the case where two or more structures are placed on the 

same molecule. If two structures are on the same molecule, this is represented by a 

wiggling line between the structures. In Figure 2 there are thirteen diagrams {aa1, 

ba1, ca1, da1, bb1, aaa1, aaa2, baa1, baa2, baa3, aaaa1, aaaa2, aaaa3}. So, they 

are closely related to the diagrams of the second kind. For each of these diagrams 

there is at least one diagram of a third kind. But since there can be more than one, 

the number of diagrams of this kind is considerably higher. The starting point is al-

ways a second kind diagram and from this the third kind diagrams are developed. 

Thus, one obtains 22 diagrams of the third kind with five bonds and 79 diagrams with 

six bonds. This kind of diagrams accounts for the largest share of the diagrams and 

therefore most of the time to calculate the diagram contributions. To avoid this, the 

method for calculating the combinatorial contribution of second kind diagrams has 

been modified instead. Nemirovsky (15) introduced a new method for this. The struc-

tures can be on the same molecule, but the possibilities of complete overlapping are 

counted. Furthermore, all diagrams that can be formed are subtracted from these. 
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With this method the third kind of diagrams become obsolete and can be omitted. 

This is discussed in more detail in chapter 3.3. 

 

Figure 4:All inspected entropic cluster diagrams of the second kind 

Each of the diagrams consists of cumulants. These cumulants are derived from Tay-

lor series expansion of the logarithm of the sum of the cluster diagrams shown in eq. 

2.7. The result of this series expansion is expanded and the terms with identical 

structures are cumulated. Each of these composite terms is a cumulant of the dia-

gram. One can divide the resulting cumulants into two categories. First, there are the 

main cumulants that consist of only one cluster diagram. These come from the linear 

term of series development. Since diagrams of the first kind have only one structure, 
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they can also have only one cumulant. The second category, the sub-cumulants, is 

derived from the subsequent terms of series development.  Each of these cumulants 

represents a product of several cluster diagrams. Each diagram of the second kind 

has at least one of these sub-cumulants. However, since these represent a product 

of two cluster diagrams, their contribution is negligible if the contribution of one of the 

diagrams is negligible. Therefore, all cumulants that have an unit made up of a single 

diagram 1a in  are omitted. In particular, this reduces the number of cumulants in di-

agrams with many a structures. It further reduces the highest order of the Taylor se-

ries terms to the cubic terms. Thus, although most of the second kind of diagrams still 

have cumulants, the number of cumulants is significantly reduced. 

By extending the upper limit of bonds in diagrams from B=4 to B=6, the way for ex-

tending the model to an order from ε3z-3 was made possible. It leads to the introduc-

tion of a total of 46 new diagrams, 14 diagrams of the first kind and 32 diagrams of 

the second kind. By changing the methodology for determining the combinatorial 

part, the third kind of diagrams is omitted. This gives a total of 61 included entropic 

diagrams. In addition, the premature deletion of non-contributory cumulants further 

reduces the computational effort per diagram.  

 

3.2 Contracting the Diagrams 

The lattice-dependent part of a diagram contribution indicates how many postures a 

diagram can have. It depends only on the examined diagram and the selected lattice 

and is independent of the examined molecule. It can be represented as Eq. 3.1. 

Whereby the denominator α indicates the number of possibilities to find the segments 

of the diagrams in a lattice with Nl lattice positions. It includes the volume contraction 

but does not take into account the condition that two segments must be next to each 

other. For diagrams with up to four bonds, the first two terms of the expanded form of 

α are sufficient for performing the necessary polynomial division. Since all other 

terms only influence parts that approach zero in the thermodynamic limit. For dia-

grams with up to six bonds, however, the third term can still have an influence. The 

function Eq. 3.2 for the calculation of α can thus be displayed with the function Eq. 3.3 

without the necessary information being lost. Nv is the number of vertices in the clus-
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ter diagram. The two factors f1 and f2 stem from the Binomial coefficient of the prod-

uct and are a function of Nv. 

 

𝐷𝐵 =
𝑑𝐵
𝛼

 Eq. 3.1 

𝛼 = 𝑁𝑙 ∗ (𝑁𝑙 − 1) ∗ (𝑁𝑙 − 2) ∗ … ∗ (𝑁𝑙 − 𝑁𝑣 + 1) Eq. 3.2 

𝛼 ≅ 𝑁𝑙
𝑁𝑣 ∗ (1 −

𝑓1

𝑁𝑙
+
𝑓2

𝑁𝑙
 ) Eq. 3.3 

Since some cumulants are made up of more than one diagram, their α is the product 

of the α terms from the diagrams they are made up. The factor dB stands for the 

number of permissible positions that the diagram can assume in the lattice. It can be 

calculated as the sum of the first Brilllouin zone of the limited sum of vertices of pos-

sible monomer positions, the product of the binding contributions. 

 

∑ ∑ ∏𝑏𝛿

𝑚

𝛿=0𝑖1≠⋯≠𝑖𝑚

1𝑠𝑡𝐵𝑟𝑖𝑙𝑙𝑜𝑢𝑖𝑛 𝑧𝑜𝑛𝑒

𝑞1,...,𝑞𝑚≠0

 
Eq. 3.4 

The restricted part of this sum makes solving it very complex. However, this restricted 

sum can also be represented by several unrestricted sums. More precisely, by sub-

tracting all invalid sums from the unrestricted sum of the vertices over the possible 

monomer positions. 
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∑  

𝑖1≠⋯≠𝑖𝑚

= ∑  

𝑖1,𝑖2,… ,𝑖𝑚 

 

− ∑  

𝑖1,𝑖2,… ,𝑖𝑚

𝛿(𝑟𝑖1 , 𝑟𝑖2) + 𝛿(𝑟𝑖1 , 𝑟𝑖3) + ⋯+ 𝛿(𝑟𝑖𝑚−1 , 𝑟𝑖𝑚) 

+ ∑  

𝑖1,𝑖2,… ,𝑖𝑚

𝛿(𝑟𝑖1 , 𝑟𝑖2 , 𝑟𝑖3) + ⋯+ 𝛿(𝑟𝑖𝑚−2 , 𝑟𝑖𝑚−1 , 𝑟𝑖𝑚) + ⋯ 

+ ∑  

𝑖1,𝑖2,… ,𝑖𝑚

𝛿(𝑟𝑖1 , 𝑟𝑖2 , … , 𝑟𝑖𝑚) Eq. 3.5 

An invalid posture can also be seen as an overlapping of two vertices. These vertices 

merge when overlapped. In graph theory, the merging of such vertices is called con-

tracting and the resulting diagrams are called contracted diagrams (CD). This has 

been applied by Nemirovsky (15) to these invalid postures. As a result, the sums of 

invalid positions were displayed as CDs. The contribution of the CDs dB derives from 

the sums in Eq. 3.5.  

However, since the contribution are also tied to a diagram, Brazhnik (13) used graph 

theory to calculate and list all the necessary diagrams for the contributions. The origi-

nal methodology is used as a starting point and is transformed in such a way that it 

only depends on the geometric properties of the diagram. The complex sum is re-

duced to a handy form Eq. 3.6. In this form RB,m is the value of one sum represented 

by a CD. 

 

𝑑𝐵 = ∑𝑓𝐵,𝑚 ∗ 𝑅𝐵,𝑚

𝑁𝑣
′

𝑚

 
Eq. 3.6 
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Not all formable CDs are necessary for the calculation of dB. Many can be omitted for 

various reasons. These reasons can be recognized by four specific characteristics 

that the CD has.  

• A vertex that is connected to itself by an edge 

• A vertex that is connected to only one edge 

• Two parts of a diagram that are only connected by a single edge 

• A closed circle with an odd number of vertices 

A vertex that is connected to itself by an edge is contradicted in the underlying delta 

function from function Eq. 2.3. Since the edge connects the same point twice, the val-

ue of the part 𝛿(𝑟𝑖, 𝑟𝑖+1 + 𝛼𝛽  ) is in the case of 𝑖 =  𝑖 + 1 always zero, because 𝛼𝛽   is 

always nonzero.  

A vertex that is connected to the rest of the diagram by only one edge and a part of 

diagram that is connected by only one edge disappear for the same reason. They do 

not satisfy the conservation of moment over every possible intersection. At least two 

intersections must occur to fulfil this condition.  

Closed rings with an odd number of vertices are not possible in the case of a hyper-

cube lattice. They therefore have no contribution. The number of vertices in a ring is 

equal to the number of bonds. In a hypercubic lattice, the edges can only go in the 

six directions of the cube faces. To form a circle from any chosen starting point, the 

circle must have for each bond a bond pointing in the opposite direction. The bonds 

only appear as pairs in the circles and must therefore have an even number. The 

case that a cluster diagram in a hypercube lattice forms an odd ring is therefore not 

possible.  

According to Brazhnik (13), this omission reduces the number of CDs considered to 

only 26 CDs for diagrams with up to six bonds. Furthermore, the selected elimination 

criterion for contributions with a z exponent of less than z-3 means that nine additional 

CDs are not necessary. This shortens the contribution of some diagrams considera-

bly. The 17 CDs under consideration are listed in Table 1 together with their contribu-

tions.  
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Table 1: Contracted diagrams used for the determination of the lattice dependent part with their contribution RB,m 

Contracted 

diagram 

Structure Contribution 

RB,m 

Contracted 

diagram 

Structure Contribution 

RB,m 

2.1 
 

𝑁𝑙
3

𝑧
 6.6 

 

𝑁𝑙
9

𝑧3
 

3.1 
 

𝑁𝑙
4

𝑧2
 6.7 

 

𝑁𝑙
8

𝑧3
 

4.1 
 

𝑁𝑙
5

𝑧3
 6.8 

 
𝑁𝑙
7

𝑧3
 

4.2 

 

𝑁𝑙
6

𝑧2
 6.12 

 

𝑁𝑙
7

𝑧3
 

4.3 
 

𝑁𝑙
5

𝑧2
 6.13 

 

3𝑁𝑙
8

𝑧3
 

4.4 

 

3𝑁𝑙
5

𝑧2
−
3𝑁𝑙

5

𝑧3
 6.14 

 

3𝑁𝑙
7

𝑧3
 

5.2 

 

𝑁𝑙
7

𝑧3
 6.15 

 

15𝑁𝑙
7

𝑧3
 

5.3 

 

𝑁𝑙
6

𝑧3
 6.16 

 

𝑁𝑙
7

𝑧3
 

5.4 

 

3𝑁𝑙
6

𝑧3
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A diagram can form a specific CD in several ways. By introducing the pre-factor fB,m 

for each CD, this is taken into account. This pre-factor is in the case of just two 

merged vertices Eq. 3.7. 

 

𝑓𝐵,𝑚
(𝑑) = − 𝑛𝐵,𝑚

  Eq. 3.7 

Here the nBm stands for all different ways to form the contracted diagram from the 

original cluster diagram. In other words, how many distinguishable ways there are to 

merge two vertices. With this pre-factor some CDs count certain states multiple 

times. This error is corrected with some additional contraction diagrams. In these di-

agrams, further vertices are merged. It continues until the point where all vertices 

merge and all bonds form loops. This means that CDs change their sign depending 

on the number of merged vertices. This change in the sign and the number of times a 

multiple contraction diagram is formed must again be included by the pre-factor fBm. 

This generalizes the factor to the form Eq. 3.8.  

 

𝑓𝐵,𝑚
(𝑑) = (−1)𝑁𝑣−𝑁𝑣

′
∗∑ 

𝑎

𝜂

𝑛𝐵,𝑚,𝜂
 ∗∏(𝑘𝜆 − 1)!

𝑁𝑣
′

𝜆=1

 
Eq. 3.8 

In this form Nv stands for the number of vertices in the cluster diagram and N'v for the 

number of vertices in the CD. The difference between the two is equal to the number 

of merged vertices. In many cases a possible CD can be formed in several different 

ways. The variable a stands for all possible appearances of the CD. This can easily 

be illustrated by using the example of cluster diagram e to the CD 4.2. In Figure 5 it 

can easily be seen that either the fourth and the second vertex are merged or the 

first, third and fifth vertex. Both forms of appearance have the same number of verti-

ces and have the same number of overlays but are distributed differently. While for 

appearance (1) there is a single vertex and two vertices overlaid once, for appear-

ance (2) there are two single vertices and one vertex overlaid twice. The counter 

nBm,η counts how many ways an appearance can be formed. One gives each vertex 

an identity and search for all the different combinations of vertices. In the example of 
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Figure 5 there is for each appearance only one unique combination. The following 

product goes over all vertices of the contracted diagram. Multiply the factorial of the 

variable kλ minus one. kλ is the number of superimposed vertices at that position. If 

you subtract one you get the number of merges at this position. Since these can take 

place in different orders, one takes the factorial to calculate the complete amount of 

necessary corrections. 

In the case of several cumulants, the contribution of the lattice dependent contribu-

tion is determined separately for each one. 

With the determination of the pre-factor fB,m, all variables previously unknown for the 

determination of the lattice-dependent contribution DB are now available. Starting 

from a cluster diagram, the following procedure is performed. 

1. determination of the CDs which can be formed from the cluster diagram 

2. determine the possible appearances and the number of possible ways of form-
ing them 

3. the calculation of the pre-factor fB,m 

4. determine dB by adding up the products of the pre-factors fB,m and the contri-
bution RB,m of the CDs 

5. polynomial division of the contribution dB by the first three terms of the ex-
panded form of α 

Figure 5: Both appearances of the CD 4.2 from the cluster diagram 4e 
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The procedure contains mostly analytical formulas and is therefore simpler to tackle 

with. However, the first two steps are somewhat complex. The first step is done by 

manually checking all valid CDs with the same number of bonds. The second step 

can also be counted relatively easily for diagrams with up to four bindings. For dia-

grams with up to six bindings, however, this becomes significantly more complex. 

The number of appearances increases significantly and must be counted in accord-

ance with certain rules. However, the number of the respective arrangement of the 

vertices in such an appearance is still significantly higher. These arrangements can 

no longer be determined with reasonable effort. Instead, the methods of combinator-

ics are employed. 

At the first step of the procedure it is possible to discard some of the valid CDs in ad-

vance. In the diagrams of the first kind it is not possible to create CDs consisting of 

several structures. During contracting, a structure can only be joined together, but not 

split apart. It is therefore limited to CDs consisting of one structure. The largest form-

able ring of a diagram depends on the longest chain that can be found in the dia-

gram. CDs with larger rings than the chains are not formable. In the case of diagrams 

of the second kind, CDs consisting of several structures can be formed, but the struc-

tures of the individual sub CDs must not have fewer bonds than the structures of the 

CD. For both kinds, the maximum number of edges connected to a vertex can only 

increase and not decrease. CDs where this number is less than that of the cluster 

diagram are also not able to form.  

The original cluster diagram is used to determine the appearances which can be 

formed. The vertices are assigned numbers starting from one vertex. It is important to 

note that even numbers are only connected with odd numbers and vice versa. For 

this purpose, it is possible to omit individual numbers from the numbering. If an odd 

ring is created while contracting a diagram, it cannot be removed by contracting. It 

can only be split up into two smaller rings, one of which must be odd. All CDs that 

can be made from it are non-contributory. Between two vertices associated with an 

even number or two associated with an odd number there is always an even number 

of edges. If one only merges even with even and odd with odd vertices, only even 

rings can be formed during contracting. The possible formation of odd rings can be 

avoided. In case the diagram is of the second kind and has several structures, this 

rule only applies within one structure. By merging the vertices of two structures they 
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become one single structure and the rule becomes valid again. As with step 1, the 

selection of CDs that can be formed, the number of bonds tied to a vertex cannot be 

reduced. Vertices of the original diagram can only occupy a position in the CD if at 

least as many edges are attached to them as in the original diagram. These rules 

limit the number of appearances to be checked. Nevertheless, all possible ways of 

forming the appearances must be examined. 

However, the number of arrangements of vertices in an appearance can be solved 

with the help of combinatorics. To do this, first some properties of the CDs, the ap-

pearance and the cluster diagrams must be determined. The number of arrange-

ments that a diagram occupies in an appearance can be calculated with Eq. 3.9.  

 

𝑛𝐵,𝑚,𝜂 =
𝑛𝑝 ∗ 𝑛𝑜

𝑛𝑝𝑜𝑠 ∗ 𝑠
 Eq. 3.9 

In the numerator there are the variables np and no, the first represents the number of 

states the structures can take and the second the number of sequences in which the 

similar structures can be placed. The denominator contains the properties of the ap-

pearance itself. npos depends on the number of equivalent positions in the diagram 

and the factor s indicates that some appearances are symmetrical over some axes.  

For the determinations, the first step is to identify the number of possible states np. 

This indicates the number of ways in which the structures can be positioned in their 

intended position in the appearance. They thus depend on the structure under con-

sideration and on the position. The product of the possible states over all positions in 

the diagram illustrates this mathematically. The number of positions is equal to the 

number of structures in the diagram because each position must be occupied. While 

structure a, with only a single edge between two vertices, always has two states, with 

structure b, having three vertices and two edges, it already depends on its position in 

the appearance. Structure b can either have two states if it occupies three vertices in 

a position and is straight or a single state if it occupies only two vertices and is folded. 

Of the diagrams under consideration, except for structure o, each structure can take 

several states in at least one position. This is because all other diagrams have at 

least one symmetry axis.  
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𝑛𝑝 = ∏ 𝑛𝑝,𝑖

𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛𝑠

𝑖

 
Eq. 3.10 

If the diagram has several identical structures, these structures can occupy one posi-

tion. To include such a case, no is introduced. Since diagrams of the first kind always 

consist of only one structure, this factor is always one in these cases. It becomes im-

portant for diagrams of the second kind. Here one can assume that the positions of 

the appearance are filled with the structures one after the other. In order to observe 

all sequences of filling, the product of the factorial is taken from the number of identi-

cal structures ns,j. This product depends only on the type and number of structures in 

the cluster diagram and is therefore independent of the form of appearance and the 

CD.  

 

𝑛𝑜 = ∏ 𝑛𝑠,𝑗!

𝑡𝑦𝑝𝑒 𝑜𝑓 𝑠𝑡𝑟𝑢𝑐𝑡𝑢𝑟𝑒𝑠

𝑗

 
Eq. 3.11 

The number of equivalent positions npos in the denominator is again a function of ap-

pearance. If two positions are identical, they do not bring a new arrangement, but 

they are still counted twice. Identical means in this case that they share all their verti-

ces with the same structures. To counteract this, the number of arrangements is 

halved in that case. If one continues to follow that thought, it can occur on some CDs 

that three structures are completely identical. In this case, it is shown that the same 

arrangement is counted six times. This is because the variable no considers all pos-

sible arrangements of the structures in one position. It is necessary to divide by the 

factorial of the number of equal positions. In the case that several groups of such 

identical positions exist, the faculties resulting from them are multiplied with each 

other. This also occurs if different types of structures have identical positions. If the 

structures of the publication form itself are identical, the faculty of the number of iden-

tical structures must be multiplied again. Two structures are identical if the freestand-

ing structures are made of the same type of structures and the vertices are merged in 
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the same way. The variable npos is thus mathematically describable as the product of 

the products of the individual identical positions and the product of the identical CD 

structures.  

 

𝑛𝑝𝑜𝑠 = ∏ 𝑛𝑠𝑡𝑟,𝑙!

𝐶𝐷 𝑠𝑡𝑟𝑢𝑐𝑡𝑢𝑟𝑒𝑠

𝑙

∗ ∏ 𝑛𝑝𝑜𝑠,𝑘!

𝐶𝐷 𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛𝑠

𝑘

 
Eq. 3.12 

The variable s stands for the symmetries which can be found in the appearance. 

These are determined individually and then multiplied in the same way as the number 

of equivalent positions. Symmetry means that a structure of an appearance can be 

rotated around an axis of symmetry without changing the arrangement of the posi-

tions. In most cases two indistinguishable states can result from the rotation. The on-

ly exception to this is the CD 6.12, which creates six different indistinguishable states 

when the arms are rotated and thus interchanged. s can easily be represented as the 

product of these states. 

 

𝑠 = ∏ 𝑠𝑎𝑥

𝑠𝑦𝑚𝑚𝑒𝑡𝑟𝑦 𝑎𝑥𝑖𝑠

𝑎𝑥

  
Eq. 3.13 

By inserting the four expressions into the equation (Eq. 3.9), one obtains a rather 

complex formula for calculating the possible arrangements of the vertices. Instead of 

listing all possible arrangements, it is now sufficient to use equation (Eq. 3.14) for 

each form of appearance. 

 

𝑛𝐵,𝑚,𝜂 =
∏ 𝑛𝑝,𝑖
𝑝𝑜𝑠
𝑖 ∗ ∏ 𝑛𝑠,𝑗!

 𝑠𝑡𝑟𝑢𝑐
𝑗

∏ 𝑛𝑠𝑡𝑟,𝑙!
𝐶𝐷 𝑠𝑡𝑟𝑢𝑐
𝑙 ∗ ∏ 𝑛𝑝𝑜𝑠,𝑘!

𝐶𝐷 𝑝𝑜𝑠
𝑘 ∗ ∏ 𝑠𝑎

𝑎𝑥𝑖𝑠
𝑎  

 Eq. 3.14 

In the case of cumulants, they are a product of several diagrams and cannot interact 

with each other. They can form a common CD but are not allowed to share a vertex. 
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This is because the contributions of the composite CD are only the product of the 

CDs they are composed of. To determine the possible forms of appearance of these 

CDs, all diagrams should be kept separate. While np and s are to be treated equally 

by all cumulants, this changes for no and npos. For no, only the structures of the same 

type may be selected, which are also in the same diagram of the cumulant. The 

same structures that are in different diagrams are treated in the same way as differ-

ent structures. For npos, identical positions of the CD that are assigned to different 

diagrams of the cumulant are not considered identical. They are regarded as different 

positions. Within a diagram of the cumulant, identical positions are still regarded as 

identical.  

By using the number of arrangements of the respective appearances one can now 

calculate the contribution of each cluster diagram using equation Eq. 3.8, Eq. 3.6 and 

Eq. 3.1. The polynomial division of Eq. 3.1 results in terms with a decreasing order of 

the number of lattice locations Nl. Terms whose order is less than −(𝑛 − 1) would 

disappear in the thermodynamic limit after multiplication with the combinatorial con-

tribution. n is in this case the number of structures in the diagram.  

 

3.2.1 Example 5daa 

Diagram 5aad is used to illustrate this procedure presented on page 23. The diagram 

has two cumulants, whose contribution cannot be omitted. Both are shown in Figure 

6. The one the left is the main cumulant 5daa1 and the one on the right side is the 

cumulant 5d|aa2. The first step of the procedure is the determination of the formable 

contracted diagrams. For the cumulant 5daa1 these are all CDs determined by Bra-

zhnik (13) which have a valid contribution and five bonds. With the second cumulant 

5d|aa2 it is only CD 5.2 formable. 

The second step in the procedure is the determination of the possible appearances. 

For each formable CD, the possible appearances are listed in Table 2. 

The third step is now the calculation of the pre-factors with the help of these appear-

ances. Since no is only dependent on the cluster diagram, it is the same for all ap-

pearances. It consists of three structures of which two are identical, these have two 

possibilities to be distributed in the appearances. The number of distribution possibili-

ties no is therefore two. 
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Figure 6: Cumulants of the diagram 5daa and their pre-factor 

 

Table 2: All formable appearances from the cumulants of diagram 5daa 

CD for 5daa1 Appearances of the CD 

5.2 
 

5.3 
 

 
 

 
 

 
 

5.4 
 

CD for 5d|aa2  

5.2 
 

 

The CD 5.1 has no contribution with an z exponent of minus three or higher. Its pre- 

factor is therefore obsolete.  

For CD 5.2 there is only one appearance. The structure a can take two states. For 

the structure d there is only one possible state. The two positions for  structure a are 

identical which leads to a npos of two. The second structure of the CD which consists 

of two knots and two bindings can be rotated around an axis without changing the 
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arrangement of the positions. It therefore has an s of two. By inserting it into equation 

Eq. 3.14 this results in two possible arrangements for the appearance. The difference 

of the vertices is even, which means that the pre-factor is positive. The CD has four 

vertices two with two merged vertices, one with three merged vertices and one with a 

single vertex. The resulting pre-factor is Eq. 3.15. 

 

𝑓𝐵,𝑚 = (−1)
8−4 ∗ (2 ∗ ((  1 − 1)! ∗ (2 − 1)!2 ∗ (3 − 1)!)) = 4 

Eq. 3.15 

For the CD 5.3, there are four appearances. The first two appearances differ only in 

the position of the structure d. For both positions of the structure np and npos are iden-

tical. At the same time, both forms of appearance have no symmetry s, it is therefore 

one. The number of arrangements is therefore the same for both. They both have two 

states for each structure a and the two positions are identical. They can therefore be 

arranged in four different ways. The third type has three possible states for structure 

d and two for structure a. The positions of the individual structures are not identical 

and result in 𝑛𝑝𝑜𝑠 = 1. The number of arrangements for the third appearance is there-

fore 24 possible arrangements. The fourth appearance has three states for the struc-

ture d and two for the a's. It also has no symmetry. However, the positions of the 

structures a are identical, which results in a npos of 2. The fourth form of appearance 

therefore has twelve possible arrangements. With the number of arrangements and 

merged vertices per appearance the pre-factor of the CD can be calculated. Since 

the difference in the number of vertices in this CD with five is odd, the pre-factor is 

negative as seen in Eq. 3.16.  

 

𝑓𝐵,𝑚 = (−1)
8−3 ∗

(

 

    4 ∗ ((  2 − 1)! ∗ (3 − 1)! ∗ (5 − 1)!)

+ 4 ∗ ((  2 − 1)! 
 
∗ (3 − 1)!2)

+ 24 ∗ ((  2 − 1)! 
 
∗ (3 − 1)!2)

+12 ∗ ((  2 − 1)! 
 
∗ (3 − 1)!2) )

 = −256 

 
Eq. 3.16 
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The CD 5.4 has again only one possible appearance. In this form the structure d can 

take three states and the structure a, two states. None of the positions is identical 

and it has no symmetry. Both variables in the denominator are therefore one. The 

resulting pre-factor is therefore Eq. 3.17. 

 

𝑓𝐵,𝑚 = (−1)
8−4 ∗ (24 ∗ ((  1 − 1)! ∗ (2 − 1)!2 ∗ (3 − 1)!)) = 48 Eq. 3.17 

The cumulant 5aa|d2 can only form the CD 5.2 This has only one valid appearance 

form. The first part of the cumulant consists of two structures a, and these can each 

take up two states. However, the positions are identical and have symmetry. The 

second part consists only of the structure d, which can only take up one state and 

again has no symmetry. The number of arrangements is therefore two and the pre-

factor is therefore the same as in Eq. 3.15. 

With the pre-factors and the contributions of the CDs listed in Table 1 the contribution 

dB can now be calculated for both cumulants. In the fourth step this is done by multi-

plying the contributions with the correlating pre-factor and summing them up. It is 

shown in Eq. 3.18 for the cumulant 5daa1 and in Eq. 3.21 for 5d|aa2. 

 

𝑑5𝑑𝑎𝑎1 = 4 ∗
𝑁𝑙
7

𝑧3
− 256 ∗

𝑁𝑙
6

𝑧3
+ 48 ∗

3 ∗ 𝑁𝑙
6

𝑧3
 Eq. 3.18 

𝑑5𝑑|𝑎𝑎2 = 4 ∗
𝑁𝑙
7

𝑧3
 Eq. 3.19 

The fifth step is to divide this sum by α. The first cumulant has a total of eight verti-

ces. These result in an α of Eq. 3.20. If you expand this form you get the form which 

consists of eight terms. Of these, only the three with the highest Nl orders are im-

portant for the calculation of the diagram contributions. The remaining terms influ-

ence only parts of the contribution which are approaching zero in the thermodynamic 

limit. α can therefore easily be approximated with Eq. 3.21.  
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𝛼5𝑑𝑎𝑎1 = 𝑁𝑙 ∗ (𝑁𝑙 − 1) ∗ … ∗ (𝑁𝑙 − 7) = 𝑁𝑙
8 − 28 ∗ 𝑁𝑙

7 + 320 ∗ 𝑁𝑙
6 +⋯ Eq. 3.20 

𝛼5𝑑𝑎𝑎1 ≅ 𝑁𝑙
8 ∗ (1 −

28

𝑁𝑙
+
320

𝑁𝑙
2 ) Eq. 3.21 

In the second cumulant both parts consist of four vertices. α results from the product 

of the two parts. It thus results from the equation Eq. 3.22. As with the first cumulant, 

it can be expanded and approximated by Eq. 3.23.  

 

𝛼5𝑑|𝑎𝑎2 = (𝑁𝑙 ∗ (𝑁𝑙 − 1) ∗ … ∗ (𝑁𝑙 − 3)) ∗ (𝑁𝑙 ∗ (𝑁𝑙 − 1) ∗ … ∗ (𝑁𝑙 − 3)) 

= 𝑁𝑙
8 − 12 ∗ 𝑁𝑙

7 + 58 ∗ 𝑁𝑙
6 +⋯ 

Eq. 3.22 

𝛼5𝑑|𝑎𝑎2 ≅ 𝑁𝑙
8 ∗ (1 −

12

𝑁𝑙
+
58

𝑁𝑙
2) Eq. 3.23 

The lattice dependent fraction of the two cumulants can now be calculated with α and 

dB. The polynomial division required for this can already be aborted after the second 

term. The cluster diagram consists of only three structures, so the lattice-dependent 

contribution of the cumulants only needs to be developed up to Nl to order minus two. 

The second term of the first cumulant does not have a contribution. It thus results in 

the contributions Eq. 3.25 for the first cumulant 5daa1 and Eq. 3.27 for the second cu-

mulant 5d|aa2. 

 

𝐷6𝑑𝑎𝑎1 =
4 ∗
𝑁𝑙
7

𝑧3
− 256 ∗

𝑁𝑙
6

𝑧3
+ 48 ∗

3 ∗ 𝑁𝑙
6

𝑧3

𝑁𝑙
8 ∗ (1 −

28
𝑁𝑙
+
320
𝑁𝑙
2 )

  
Eq. 3.24 

𝐷6𝑑𝑎𝑎1 =
4

𝑁𝑙 ∗ 𝑧3
  Eq. 3.25 
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𝐷6𝑑|𝑎𝑎2 =
4 ∗
𝑁𝑙
7

𝑧3

𝑁𝑙
8 ∗ (1 −

12
𝑁𝑙
+
58
𝑁𝑙
2)

 

Eq. 3.26 

𝐷6𝑑|𝑎𝑎2 =
4

𝑁𝑙 ∗ 𝑧3
+

48

𝑁𝑙
2 ∗ 𝑧3

 Eq. 3.27 

 

3.3 Correction diagrams in the combinatorial part   

The combinatorial part of the cluster diagrams stands for the number of possibilities 

to find the diagrams in the considered system. This part therefore depends on the 

considered diagram and the considered system of substances. It is independent of 

the underlying lattice and the possible posture of the individual diagrams. In the case 

of the first kind of diagrams, it can be determined by the sum Eq. 3.28 of the product 

of the frequency of the diagram Ni in one molecule of the component and the number 

of molecules nμ of one component over all components of the system. This product 

indicates how often the structure is found in all molecules of a component. 

∑𝑁𝑖 ∗ 𝑛𝜇

𝑘

𝜇

 
Eq. 3.28 

The number of molecules is the total number of molecules of this type in the system. 

The frequency of a diagram in a component represents how often the structure of the 

diagram can be found in the component. It counts how often the individual bonds in 

the component form the structure of a diagram. As soon as only two structures can 

be distinguished by a single bond, they are counted. The combinatorial part gives the 

diagram contribution the information about the system. Since diagrams of the second 

kind can consist of several structures, all possible combinations of their positions 

must be taken into account. For example, structures can be located on different mol-

ecules or even different components. The sum Eq. 3.28 for first kind diagrams chang-

es into a multiple sum Eq. 3.29. In this case, the product of the number in all mole-

cules of a component of both structures is summed up. The sum must be calculated 
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individually for each structure. So, for each new structure a sum for all components is 

added.  

 

∑∑𝑁𝑖,𝜇 ∗ 𝑛𝜇 ∗ 𝑁𝑗,𝜆 ∗ 𝑛𝜆

𝑘

𝜆

𝑘

𝜇

 
Eq. 3.29 

If a diagram has several structures of the same type, it can happen that the resulting 

positions are indistinguishable. They do not lead to a new state of the system but are 

still counted in all the possible combinations. The product must be divided by the fac-

torial of the number of identical structures on the same component to correct for this 

counting error. In cases where this occurs with several components or structures, the 

product of the factorials is taken. It is inserted in the multiple sum of Eq. 3.30 as feq. 

 

∑∑𝑓𝑒𝑞 ∗ 𝑁𝑖,𝜇 ∗ 𝑛𝜇 ∗ 𝑁𝑗,𝜆 ∗ 𝑛𝜆

𝑘

𝜆

𝑘

𝜇

 
Eq. 3.30 

Two structures must not share a vertex. In this case they are not separated on the 

molecule but represent a different diagram. To avoid this Freed (1) uses the ap-

proach that two structures of a diagram are never located on the same molecule. 

This is mathematically converted into the sum of Eq. 3.30 by reducing the number of 

molecules with each following structure by one. Diagrams that are on different com-

ponents cannot be on the same molecule. Therefore, the number of molecules only 

has to be reduced if the counting indexes of the sum are equal.  

 

∑∑𝑓𝑒𝑞 ∗ 𝑁𝑖,𝜇 ∗ 𝑛𝜇 ∗ 𝑁𝑗,𝜆 ∗ (𝑛𝜆

𝑘

𝜆

𝑘

𝜇

− 𝛿(𝜇, 𝜆)) 
Eq. 3.31 

The omission of several structures on a chain requires that they are integrated in a 

different way. Therefore, diagrams of a third kind were introduced. These diagrams 
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contain at least two structures on the same molecule. If they do, there is a wiggly line 

drawn between the structures to symbolize this. For each case, the combinatorial 

part left out for diagrams of the second kind, there is a diagram of the third kind. This 

means that every possible combination of several structures is necessary. If two 

combinations are indistinguishable, they may only be counted once. The number of 

diagrams of the third kind is significantly higher than the number of the second kind. 

Which means that these diagrams take up the majority of all diagrams. When includ-

ing diagrams with up to six bonds 178 diagrams are taken into account. 117 of these 

diagrams are diagrams of the third kind, which is 65 percent of the diagrams. Each 

diagram contains a combinatorial and a lattice-dependent portion. Diagrams of the 

third kind thus make up the majority of the work required to extend the model. Omit-

ting the third kind of diagrams would reduce the amount of work involved in extending 

the model.  

Nemirovsky (15) introduced a new method of calculating the combinatorial part of the 

diagram contributions for diagrams of the second kind. This method allows individual 

structures of the diagram to be placed on the same molecule. This makes third kind 

diagrams obsolete, because the contributions of these diagrams are now also includ-

ed in second kind diagrams. By allowing more than one structure on a molecule 

chain, the combinatorial part for second kind diagrams would change back to the 

form Eq. 3.30. This form, however, allows the overlapping of the vertices. This over-

lapping can only occur if there are several structures on one molecule. If they are on 

other components, the number of positions is simply multiplied. A distinction is made 

between two cases, either one structure completely covers another structure, or the 

structures only share some vertices.  

For one structure to completely cover another structure, both must be on the same 

molecule and one structure must be able to completely cover the other. One structure 

is able to completely cover another if they are the same structure or the covered 

structure can be identified in the other.  Two different structures that have the same 

number of bonds can therefore not completely overlap. If a structure is completely 

covered, it cannot occupy one or more positions in the system. The number of miss-

ing positions depends on how often the structure can be identified in the other one 

and is called Ni,j. This can easily be described mathematically by the sum Eq. 3.32. 

The first placed structure can occupy any position within a component. Its number of 
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possible positions is still the product of the frequency of the diagram Ni in one mole-

cule of the component and the number of molecules nμ
 of that component. When 

adding the possible positions of the next coverable structure, the omitted positions Ni,j 

are subtracted from this number. The number becomes a polynomial term. With each 

further addition, all positions of the previous placed structures must be considered. 

However, since the previous structures can still partially overlap, the smallest dia-

gram that can be created by partially overlapping these structures is formed and 

checks how many positions are omitted by these structures. So, the number of posi-

tions Ni,j is subtracted from the placed diagram.  

 

∑∑𝑓𝑒𝑞 ∗ 𝑁𝑖,𝜇 ∗ 𝑛𝜇 ∗ (𝑁𝑗,𝜆 ∗ 𝑛𝜆

𝑘

𝜆

𝑘

𝜇

− 𝑁𝑖,𝑗 ∗ 𝛿(𝜇, 𝜆)) Eq. 3.32 

Since the polynomials depend on the sequence of the placement, the sequence is 

important. The sequence of the polynomials can no longer be freely chosen. Instead, 

you have to make sure that the first placed structures cannot be covered by any of 

the other structures. Then the next structures are placed in a way that they can only 

be covered by the previous structures. A structure placed later must either not be 

able to cover the previous ones or be the same structure as the previous one. The 

number of omitted positions increases with each new polynomial. 

The structures a and b can be found in any structure with more bonds. They can 

therefore be covered by any larger structure. At least one of the two structures are 

also present in all, but three cluster diagrams considered. However, two of these dia-

grams {6cc, 6dd} consist of the same structures and can form a complete overlap. 

The only cluster diagram that does not have complete overlap is therefore the dia-

gram 6cd. 

With this diagram, partial overlapping of several bonds can still occur. In this case, 

however, they only share some vertices. If these cases were also handled as omitted 

positions, the number would depend on the respective position. Depending on where 

the structure is located in the system, a vertex can then prevent one, several or no 

position at all. The number would therefore be different for each position. According 

to Nemirovsky (15), these partial overlaps are allowed instead. The resulting error 
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includes the combinatorial part of another diagram in a diagram. Namely of any dia-

gram that can be created by partial overlapping of two structures. The number of in-

correctly counted positions can therefore be represented by the number of these dia-

grams. By subtracting these combinatorial parts from the Eq. 3.32 one obtains the 

combinatorial part of the considered diagram. These correction diagrams (CorD) can 

often be formed in several different ways. Each different type is counted separately in 

the combinatorial contribution of the diagram. This means that each CorD requires a 

pre-factor fcd which indicates how many ways the cluster diagram can form it. To de-

termine the pre-factor fcd, the number of ways to find the structures in the CorD can 

be counted. Only those arrangements can be counted where all vertices of the CorDs 

are occupied. In addition, indistinguishable arrangements may only be counted once 

since multiple counting has already been corrected by the factor feq. The possible 

orientations of the CorD in the lattice are not taken into account by the factor fcd. This 

is completely considered by the CorD itself. The CorD itself can have several identi-

cal structures, just like the cluster diagrams. With these, multiple counting of identical 

arrangements must also be avoided. This also results in a separate feq. By subtract-

ing the CorDs from the sum Eq. 3.32, the form Eq. 3.33 is obtained for the combinato-

rial part. To simplify the formula, the sums of the individual diagrams are expressed 

as γB,m,i. 

∑∑𝑓𝑒𝑞 ∗ 𝑁𝑖,𝜇 ∗ 𝑛𝜇 ∗ (𝑁𝑗,𝜆 ∗ 𝑛𝜆

𝑘

𝜆

𝑘

𝜇

− 𝑁𝑖,𝑗 ∗ 𝛿(𝜇, 𝜆)) 

−𝑓𝑐𝑑 ∗  ∑𝑓𝑒𝑞 ∗ 𝑁𝐶𝑜𝑟𝐷,𝜇 ∗ 𝑛𝜇

𝑘

𝜇

 

= 𝛾𝐵,𝑚,𝑖 − 𝑓𝑐𝑑 ∗ 𝛾𝐵,𝑚,𝐶𝑜𝑟𝐷    
Eq. 3.33 

For diagrams with more than two structures, both types of overlapping can also occur 

in the CorDs. The omitted items from a complete overlap are to be handled in the 

same way as in the individual diagrams. The structures are placed in an orderly 

manner and the omitted structures are subtracted. For the partial overlapping of the 

structures, further CorDs are created which correct the original CorDs. These CorDs 
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are to be handled in the same way as the original CorDs. For easier distinction, how-

ever, they are called CorDs of second order. As long as a CorD has more than one 

structure, it can again overlap vertices and must therefore be corrected with further 

CorDs. So, there are as many orders of diagrams in the combinatorial part as there 

are structures in the cluster diagram. 

CorDs can be formed from the structures of the actual cluster diagram and the struc-

tures of the lower-order CorDs. Their pre-factor fcd is no longer dependent on a single 

diagram. It can be considered as the sum of the individual pre-factors fcd,i for the for-

mation from the lower-order diagrams. Since the CorDs can already be formed in 

several ways from the cluster diagram, the pre-factor fcd,i must be multiplied by the 

respective pre-factors fcd. The pre-factor for the original cluster diagram is one be-

cause it can only be formed by itself. The sign of the terms is changed with each or-

der. To take this change into account, the sign is moved into fcd Eq. 3.34 and the orig-

inal subtraction becomes the sum Eq. 3.35.  

 

𝑓𝑐𝑑 = − ∑ 𝑓𝑐𝑑
(𝑗)
∗ 𝑓𝑐𝑑,𝑖

(𝑗)

𝑑𝑖𝑎𝑔𝑟𝑎𝑚𝑠

𝑗

 
Eq. 3.34 

𝛾𝐵,𝑚 = 𝛾𝐵,𝑚,𝑖 + ∑ 𝑓𝑐𝑑
(𝑗)
∗ 𝛾𝐵,𝑚,𝑗 

𝐶𝑜𝑟𝐷

𝑗

 
Eq. 3.35 

Cumulants that consist of more than one diagram are treated by the combined con-

tribution as if their structures are on different components. Same structures on differ-

ent components in different diagrams are distinguishable and are not corrected with 

pre-factor feq. They cannot overlap and do not influence each other, neither the num-

ber of omitted positions nor the possible CorDs. Since the CorDs do not share any 

vertices between the two diagrams, they are always composed of several non-

interacting diagrams. It should be noted, however, that some CorDs are formed sev-

eral times by different diagrams of the cumulant. They then must be counted several 

times. 
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In the thermodynamic limit, the contributions of some CorDs go towards zero. The 

number of molecules in system nµ varies with the size of the investigated system. It 

would go approach infinity in the thermodynamic limit like Nl. The number can also be 

expressed by the volume fraction φi of the component in combinatorial part through 

Eq. 3.36.  

 

nµ =
𝜑𝑖 ∗ 𝑁𝑙
𝑀𝑖

   Eq. 3.36 

nµ equals the number of segments in the total lattice sites Nl multiplied by the volume 

fraction and divided by the number of segments per molecule Mi. Instead of several 

variables going towards infinity, only Nl goes towards infinity in this form. The order of 

the number of lattice sites Nl is equal to the number of structures in the diagram. 

When multiplying the combinatorial contribution by the lattice-dependent contribution, 

only a few terms remain whose lattice number Nl is not in the denominator and thus 

approaches zero. The less structures a CorD has, the more likely it is to be omitted. 

In order not to use CorDs whose contribution is approaching zero, the number of 

necessary structures can be calculated in advance. However, the lattice -dependent 

contribution must first be known. The maximum order of Nl in the denominator of the 

lattice-dependent contribution plus one corresponds to the minimum number of nec-

essary structures. The additional one comes from the additional normalization of the 

free energy to make it independent from the system size.  

For a convenient check whether the determined combinatorial part of the diagram is 

correct, the system under consideration can be simplified considerably. In a system 

where there is only one molecule, the possibilities to find the diagram in this molecule 

can be manually counted. In such a system Eq. 3.33 takes the form Eq. 3.37. Because 

there is only one molecule nµ is equal to one and does not have to be replaced by Eq. 

3.36. The sums over the single components are also omitted because there can be 

only one component each. An error due to the wrong counting of feq or the missing 

positions, with several components can therefore not be checked in such a system. 

But there is a good clue if the pre-factors feq and fcd are correct in the case that all are 
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on one component. These can then be converted to the other cases relatively easily. 

Since the system consists of only one molecule, the application of the thermodynam-

ic limit is not reasonable. In this system it would have no effect on nµ and therefore on 

the total sum. The simplification of omitting some CorDs cannot be made here.  

 

𝑓𝑒𝑞 ∗ 𝑁𝑖,𝜇 ∗ (𝑁𝑗,𝜆 − 𝑁𝑖,𝑗) − 𝑓𝑐𝑑 ∗  𝑓𝑒𝑞 ∗ 𝑁𝑐𝑜𝑟,𝜇 Eq. 3.37 

To determine the combinatorial contribution of a diagram, the following steps have 

been performed: 

1. check which correction diagrams can be formed based on the structures of the 

diagram.  

2. determine the pre-factor feq for all diagrams  

3. determine the pre-factor fcd for all correction diagrams starting from the cluster 

diagram 

4. determine the order of placement for all diagrams and the omitted positions for 

the individual structures 

5. repeat the procedure for all cumulants 

Step four varies slightly between possible combinations of components and must be 

performed separately for each combination. As a result, the individual terms of each 

sum change by the number of positions omitted. In the case of several identical struc-

tures, each possible combination of components is counted several times, which is 

cancelled out by the pre-factor feq. 
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3.3.1 Example 5bba 

The diagram 5bba illustrates how the combinatorial part of a cluster diagram is de-

termined. As with determining the lattice dependent fraction, the procedure is dis-

cussed step by step. The diagram 5bba consists of the structures a and b and can 

form two valid cumulants, the main cumulant 5bba1  and the cumulant 5b|ba2. By par-

tially overlapping the vertices of the individual structures, the first cumulant can form 

15 correction diagrams (CorD). Of the twelve diagrams, seven are first-order dia-

grams and five are second-order diagrams. The first order diagrams are {ca, da, ea, 

fa, ga, cb, db} and the second order diagrams are {e, f, g, h, i, j, k, l}. 

After it is known which CorDs can be formed, the pre-factor feq can be determined for 

these and the cluster diagram itself. Only the cluster diagram itself has the same 

structure two times. Therefore, feq is for this ½ and for all other CorDs one. If one of 

the two b structures are placed on a different component, the two b structures are no 

longer interchangeable since multiple counting of the combination would cancel out 

the factor feq. 

The calculation of the pre-factor fcd is determined for each CorD based on the cluster 

diagram 5bba itself. For example, the diagram ca can be created if the two b struc-

tures each share two vertices. As shown in Figure 7, this can be done in only one 

way. The two b structures share the central bond of structure c. The resulting pre-

factor fcd is therefore minus one. This would also result from the equation Eq. 3.34. 

Figure 7: Overlaying of two b Structures to create a c Structure 
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In this case, the structure a can be placed freely from the other diagrams and thus 

lead to overlapping of individual vertices. In Table 3 the pre-factors for the first order 

CorDs are listed. 

 

Table 3: The pre-factors for the correction diagrams of the first order for the cumulant 5aab1 

Correction 

diagram 

Pre-factor 

fcd 

Correction 

diagram 

Pre-factor 

fcd 

Correction 

diagram 

Pre-factor 

fcd 

ca -1 fa -1 db -3 

da -3 ga -3   

ea -1 cb -2   

 

It is noticeable that all first order diagrams always have one structure less than dia-

gram 5bba. This is not always the case. For example, with the diagram 6bbb, dia-

gram 3d can only be formed from the initial diagram and is therefore a first-order dia-

gram. The second order CorDs can be formed from the initial diagram and from at 

least one of the second order diagrams. Thus, diagram 4e can be formed from 5bba 

but also from 4ca and 5cb. These can each form it in two different ways, as shown in 

Figure 8. Table 4 shows the pre-factor for each of the second order CorDs together 

with the diagrams from which it can be calculated. The contribution of the second 

order CorD approaches zero since they are only made up of one structure and re-

sults in a too low power of Nl. 
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Table 4: The pre-factors for the correction diagrams of the second order for the cumulant 5aab1, with all diagrams 

the stem from 

Correction diagram Overlaying diagrams with fcd,i Pre-factor fcd 

e bba [-2]    cb [2]    ca[2]   2 

f bba [-5]   ca [2]   da [1]   cb [4]  db [1]  11 

g bba [-6]   da [4]   db [12] 42 

h bba [-3]   ea[2]   cb[2] 3 

i bba [-3]   ea [2]   fa [1]   cb [1]   db [1] 5 

j bba [-3]   ea [1]   fa [2]   cb [2]    4 

k bba [-5]   fa [4]   db [2] 5 

l bba [-9]   fa [3]   ga [1]   cb[3]   db [1] 6 

Figure 8: The different ways to overlay the diagrams and form the CorD 4e 
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When naming the individual diagrams, attention was already paid to the correct se-

quence for placing them. For example, with the 5bba, the first structure b can be 

placed unhindered because it cannot be completely covered by the structure a. But 

the positioning takes a possible position for the next structure b, which corresponds 

to a position Ni,j which is eliminated. When placing the structure a, the three positions 

already occupied by the partial overlapping of two structures b are eliminated. If, 

however, one of the structures b is placed on another component, no positions for 

the other b structure and structure a are lost. Both b structures can be freely placed 

and only two items are left for a. If structure a is placed on a different component than 

the others, it can be freely positioned. If all three structures are placed on other com-

ponents, as can happen with tertiary and multiple mixtures, no items are required. In 

the case of CorDs such as 4ca, structure c can be placed freely again, while structure 

a has three positions omitted. If there is a structure on another component, no items 

are omitted. Since the second-order CorDs only consist of one structure, no struc-

tures are eliminated. By inserting all the terms determined in this way into equation 

Eq. 3.35, the equation Eq. 3.38 is obtained for the first cumulant to describe the com-

binatorial part in case of a system with one component.  

 

𝛾5𝑏𝑏𝑎1 =
1

2
∗ (
𝑁𝑙
 

𝑀 
)
3
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 ++ 
𝑁𝑙
 

𝑀 
∗ 𝑁𝑗

  +  
𝑁𝑙
 

𝑀 
∗ 𝑁𝑘

  +  
𝑁𝑙
 

𝑀 
∗ 𝑁𝑙,𝑑𝑖𝑎𝑔𝑟𝑎𝑚

  Eq. 3.38 
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In the case of the second cumulant 5b|ba2, the structure b is an independent dia-

gram. However, this structure cannot cause any overlapping of vertices and is always 

independent in every sum without influencing the others in any way. The remaining 

two structures a and b can therefore only form the structures c and d. This results in 

the CorDs only the two diagrams {b|c, b|d}. Both are CorDs of the first order. No sec-

ond order CorDs are therefore formed in this case.  

Since neither the cluster diagram nor the CorDs of the cumulant have two identical 

structures, the pre-factor feq is one for each sum. The pre-factor fcd is minus two for 

the diagram b|c because the structures a and b can be placed in the structure c in 

two ways. For the diagram b|d it is minus three. Since the two diagrams of the cumu-

lant do not influence each other, only the cluster diagram itself has two positions for 

the structure a. The combinatorial part of the second cumulant thus becomes Eq. 

3.39. The entire combinatorial part of the diagram 5bba can therefore be described by 

the two combinatorial parts of the cumulant. 

 

𝛾5𝑏|𝑏𝑎2 = (
𝑁𝑙
 

𝑀 
)
3

∗ 𝑁𝑏
 ∗ 𝑁𝑏

 ∗ (𝑁𝑎
 − 2)  −   (

𝑁𝑙
 

𝑀 
)
2

∗ 𝑁𝑏
 ∗ 𝑁𝑐

 − (
𝑁𝑙
 

𝑀 
)
2

∗ 𝑁𝑏
 ∗ 𝑁𝑑

  Eq. 3.39 

 

3.4 Energetic mean field  

In addition to the entropic diagrams describing all configured micro-states of the sys-

tem, the energetic diagrams are also needed to describe it completely. These derive 

from interaction forces between two segments. While the repulsive forces are already 

considered by the volume contraction, the attractive forces have to be handled sepa-

rately. Their force is a function of the distance between the segments. In the Flory 

Huggins theory (FH) (1) only forces between two adjacent segments are considered. 

If two segments are further separated from each other, the possible interactions are 

neglected. The interactions can therefore be described by the expression  𝛿(𝑟𝑖  , 𝑟𝑗 +

𝛼𝛽  ), which is already used for the entropic contribution. 

This interaction term described by FH Eq. 3.40 is described in the LCT by the linear 

component of diagram 1a1. This consists of only a single interaction bond between 
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two segments. The LCT has further energetic diagrams which describe how such 

interaction bonds behave in combination with other structures. To cover all possible 

combinations, starting from the entropic diagrams, single existing bonds are replaced 

by interaction bonds. Like the FH, the LCT also only considers interactions between 

adjacent segments (16). In diagrams with up to six bonds, up to three of them can be 

replaced by interactions. The resulting diagrams can describe cases where up to six 

segments interact simultaneously.  

 

 𝑍𝐹𝐻 = exp(∑∑∑ ∑ ′(∑𝛿(𝑟𝑖, 𝑟𝑗 + 𝑎𝛽) ∗ 𝜀𝜅𝜆

𝑧

𝛽=1

)

𝑗∈𝑆𝜆𝑖∈𝑆𝜇𝜆=1

𝑘

𝜅=1

) 
Eq. 3.40 

The aim of this thesis is to find out whether increasing the number of bonds from four 

to six has an effect on the predictive power of LCT in small molecules. It is assumed 

that such an effect can already be determined by developing the necessary entropic 

contributions. However, a description of the energy is also necessary to describe the 

system. This is done by the energetic mean field. The energetic mean field neglects 

all possible combinations of bonds and interactions and considers only the interac-

tions between the adjacent segments. Thus, there are equal interactions between all 

neighbouring segments. To better understand how much the omission of the energet-

ic diagrams affects the model, the energy has been described in three different ways. 

• With the interaction described in the FH, the so-called χ function.  

• The energetic mean field used by Freed with up to two interactions.  

• A mean field with up to three interactions.  

Due to their increase in the number of interaction bonds involved, the maximum order 

of the interaction parameter also increases. The description with the χ-function has a 

maximum contribution of ε z-3, with Freed's (1) description a maximum contribution of 

ε2 z-3 and with three interaction bonds it is ε2 z-3.  

The description of the interaction between the individual segments already used in 

the FH considers only two segments and checks whether an interaction takes place 
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between them. In the LCT such an interaction is described by diagram 1a1. If an in-

teraction takes place, a potential energy is delivered which is described by interaction 

parameter εµ,λ. This parameter describes the interaction between two segments of 

the components µ and λ. Mathematically it is done by exponential function of multiple 

sum Eq. 3.40 over all components of the system and all segments of the two selected 

components. By introducing the Mayer function Eq. 3.41 and multiple transforming 

this sum becomes the expression Eq. 3.42, which is multiplied to the partition function 

Z. This product becomes a sum of the logarithms by the logarithm of the partition 

function Z. The individual products can be lifted out of the logarithm and are trans-

formed into sums. This leaves the two sums of the term in Eq. 3.43. 

 

𝑓𝜅𝜆 = exp (𝜀𝜅𝜆 − 1) Eq. 3.41 

 𝑍𝐹𝐻 =∏(1 +
𝑧

𝑁𝑙
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𝑛𝜅𝑀𝜅(𝑛𝜅𝑀𝜅−1)
2!

∗

𝑘

𝜅=1

 ∏∏(1 +
𝑧

𝑁𝑙
∗ 𝑓𝜅𝜆)

𝑛𝜅𝑀𝜅𝑛𝜆𝑀𝜆
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𝜆<𝜅

𝑘

𝜅=1

 
Eq. 3.42 

ln 𝑍𝐹𝐻 = 𝑁𝑙 
2 ∗ [∑

𝜑𝜅
2

2
∗ ln (1 +

𝑧

𝑁𝑙
𝑓𝜅𝜅)

𝑘

𝜅=1

 ∑∑𝜑𝜅𝜑𝜆 ∗ ln (1 +
𝑧

𝑁𝑙
𝑓𝜅𝜆)

𝜅−1

𝜆=1

𝑘

𝜅=1

 ] 
Eq. 3.43 

Through a series development this term can be further transformed. All but the first 

term is omitted. When the first term is inserted back into this sum, only the multiple 

sum Eq. 3.44 remains over the components. The expression of the Mayer function 

itself can then be transformed again by a series expansion Eq. 3.45, this time a power 

series expansion. In this model only the linear term of the series is considered, thus 

the mean field term becomes Eq. 3.46 according to FH. After emphasizing an Nl for 

the normalization of the free energy, the mean field term can be added to the entrop-

ic diagrams as diagram contribution. It falls thereby into the sum linear diagrams 

∑ 𝐶𝐵𝑒
(𝜀)

𝐵  from the sum Eq. 3.47. 

 

ln 𝑍𝐹𝐻 = 𝑁𝑙 ∗
𝑧

2
 ∑∑𝜑𝜅 ∗ 𝜑𝜆 ∗ 𝑓𝜅𝜆

𝑘

𝜆=1

𝑘

𝜅=1

  Eq. 3.44 
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𝑓𝜅𝜆 = (1 + 𝜀𝜅𝜆 +
𝜀𝜅𝜆
2

2
+
𝜀𝜅𝜆
3

6
+⋯) − 1 Eq. 3.45 

𝑒𝑀𝐹 = 𝑁𝑙
𝑧

2
∗∑∑𝜑𝜅 ∗ 𝜑𝜆 ∗

𝑘

𝜆=1

𝑘

𝜅=1

𝜀𝜅𝜆 Eq. 3.46 

𝐶𝜒 =
𝑧

2
∗∑∑𝜑𝜅 ∗ 𝜑𝜆 ∗

𝑘

𝜆=1

𝑘

𝜅=1

𝜀𝜅𝜆 Eq. 3.47 

The description of the energetic part used by Freed (1) is done via energetic dia-

grams up to the second order of ε. The energetic mean field is described in this form 

by diagrams 1a1 and 2b2. Both diagrams are listed in Table 5 and have only interac-

tions between the individual segments. Diagram 1a1 describes the individual interac-

tion between two segments. The contribution of diagram 1a1 is obtained in the same 

way as the χ-function, by a power series development of the sum Eq. 3.45. The quad-

ratic term is also taken into account here, which leads to two contributions for the di-

agram 1a1.  

Diagram 2b2 on the other hand describes interactions of one segment with two adja-

cent segments. It represents the diagram 2b where all bonds have been replaced by 

interaction bonds. The contribution of such an energetic diagram CB,e contains, just 

like the contribution of an entropic diagram, a lattice-dependent DB,e and a combina-

torial part γB,e.  

The lattice-dependent fraction DB,e can be calculated by Eq. 3.48. The lattice-

dependent fraction of the correlating entropic diagram is taken as a starting-point and 

multiplied by the factor in the square bracket for each replaced bond. This factor is 

expressed by the first term of a Taylor series development. 

 

𝐷𝐵,𝑒 = 𝐷𝐵,𝑚 ∗ [

𝑓𝜅𝜆∗𝑧

𝑁𝑙

1+(𝑓𝜅𝜆∗
𝑧

𝑁𝑙
)
]

𝑙

= 𝐷𝐵,𝑚 ∗ (
𝑧∗𝜀𝜅𝜆

𝑁𝑙
)
𝑙

  
Eq. 3.48 

In the case of the 2b2 diagram this results in a lattice-dependent contribution DB,e of 

Eq. 3.49. The combinatorial contribution γB,e results with Eq. 3.50. It consists of the 
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symmetry number sD and the number of possibilities to select the diagram γD. The 

symmetry number sD corrects the number of ways the diagrams can be found in the 

selected vertices. It is the reciprocal of the number of ways to connect the selected 

vertices from one point. In the case of diagram 2b2 there are 2 ways to connect these 

three interacting vertices from one starting point. The number γD in case of diagram 

2b2 is the product of the possibilities to select a segment and can be calculated with 

Eq. 3.51. The number of molecules nµ can again be represented by the expression 

Eq. 3.36. The positions which are omitted by previously selected segments do not 

contribute to the thermodynamic limit and are therefore omitted. The contribution of 

the diagram results from the product, after the removal of a Nl to normalize the free 

energy, the thermodynamic limit can be applied. For the diagram b2 this results in the 

diagram contribution of Eq. 3.52. 

𝐷2𝑏2,𝑒 =
𝑧 ∗ 𝜀𝜅𝜆 

3

𝑁𝑙
2  Eq. 3.49 

γB,e = γB ∗ 𝑠𝐷 Eq. 3.50 

𝛾𝐷 = (𝑛𝑖 ∗ 𝑀𝑖)
𝑁𝑣     Eq. 3.51 

𝐶2𝑏2,𝑒 = 𝐷2𝑏2,𝑒 ∗ 𝛾2𝑏2,𝑒 = −
𝑧

2
∗ 𝜑𝑖

3 ∗ 𝜀𝜅𝜅
2  Eq. 3.52 

In order to remove interactions between two segments already connected with a 

bond, Nemirovsky et al. (15) added the term -ε into the equation Eq. 2.15. These in-

teractions have already been taken into account in the LCT by the bonds themselves. 

This term can be written into the description of the energetic mean field, thus forming 

the expression Eq. 3.53.  

 

 exp(∑∑∑ ∑ ′(∑𝛿(𝑟𝑖, 𝑟𝑗 + 𝑎𝛽) ∗ 𝜀𝜅𝜆

𝑧

𝛽=1

)

𝑗∈𝑆𝜆𝑖∈𝑆𝜇𝜆=1

𝑘

𝜅=1

−∑ ∑ ∑ 𝜀𝜅𝜅

𝑀𝜅−1

𝑚𝜅=1 

𝑛𝜅

𝛼𝜅=1

𝑘

𝜅=1

) 
Eq. 3.53 
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Zimmermann et al. (6)  introduced another possibility to describe it. All segments al-

ready connected by a bond are described by diagram 1a. The product of the number 

Na and nµ describes how often they can be found in the system. In this case Na de-

scribes how often the structure can be found on a chain, and thus how many bonds 

there are. The number nµ indicates for a component, how many molecules it has. It is 

describable by Eq. 3.36. If this structure a is replaced by an interaction, it describes 

the surplus energetic contribution. As already with the original FH the expression Eq. 

3.41 can also be described by the sum Eq. 3.45 by a series development. The correc-

tive term thus appears in both contributions of diagram 1a1. The new contributions 

are Eq. 3.55 and Eq. 3.56 with the number of lattice sides used for the normalization of 

the free energy.  

 

−∑𝑛𝜅 ∗ 𝑁𝑎
(𝜅)

𝑘

𝜅=1
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𝑘
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𝑁𝑎
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𝑀𝜅
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2  Eq. 3.56 

The third way to describe the energetic part of the LCT is the development of the 

mean field energy up to the third order. This case corresponds to a maximum contri-

bution of ε3z-3. While in the two previous descriptions of the energy, these alone were 

described by the contributions already known in previous models, this one includes 

new energetic diagrams. The Mean field is described by the diagrams 1a1, 2b2 and 

3c3, which each consist of interaction bonds only. The diagram 2b2 can be taken 

over unchanged from the previous description and has a contribution from Eq. 3.52. In 

the diagram 1a1 it is now possible to include the cubic term from the power series, 

which has a contribution of ε3. This diagram therefore has three contributions Eq. 

3.55, Eq. 3.56 and Eq. 3.57. 
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𝐶1𝑎1,𝑒3 =
𝑧

12
∗ 𝜑𝑖

2 ∗ 𝜀𝜅𝜅
3 −

1

62
∗ 𝜑𝜅 ∗

𝑁𝑎
(𝜅)

𝑀𝜅
∗ 𝜀𝜅𝜅 

3  Eq. 3.57 

The contribution of the diagram 3c3 is the same as that of 2b2. Starting from diagram 

3c, all its bonds are exchanged by interaction bonds. This is done by multiplying by 

the first term of the Taylor series development for each exchanged bond with the lat-

tice dependent term DB,e. Since the diagram allows four segments to interact and has 

no bonds, the number of possible placements γD is (𝑛𝑖 ∗ 𝑀𝑖)
4, ignoring the segment 

positions that are omitted. The symmetry number sD is one sixth for four segments. 

The contribution of the energy diagram 3c3 is therefore Eq. 3.58. 

 

𝐶3𝑐3,𝑒 = −
𝑧

6
∗ 𝜑𝑖

4 ∗ 𝜀𝜅𝜅
3  Eq. 3.58 

All ways to describe the mean field of energy are based on the interaction parameter 

ελμ. According to Langenbach (12) this parameter can be represented as a series 

development to describe the temperature dependence of the term. This results in the 

function Eq. 3.59 for the interaction parameters. This description requires two pa-

rameters ελμ,1 and ελμ,2 which together with the lattice size σ form the parameter set 

used for the LCT. 

 

𝜀𝜅𝜆 =
𝜀𝜅𝜆,1
𝑘𝐵𝑇

∗ (1 +
𝜀𝜅𝜆,2
𝑘𝐵𝑇

) Eq. 3.59 

The diagrams required for the individual descriptions of the energetic part of the sum 

of states are listed again in Table 5 with their respective contributions.  
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Table 5: All considered energetic diagrams and their contributions for the energetic mean field 

Energetic 

diagram 
 Contribution CB,e 

1a1 

 

𝐶1𝑎1
(𝜀) =

𝑧

2
∑∑𝜑𝜅𝜑𝜆𝜀𝜅𝜆

𝑘

𝜆=1

− ∑𝜑𝜅

𝑘

𝜅=1

𝑘

𝜅=1 

𝑁𝑎
𝑀𝜅
𝜀𝜅 

 
𝐶1𝑎1
(𝜀2)

=
𝑧

4
∑∑𝜑𝜅𝜑𝜆𝜀𝜅𝜆

2

𝑘

𝜆=1

−
1

2
∑𝜑𝜅

𝑘

𝜅=1

𝑘

𝜅=1 

𝑁𝑎
𝑀𝜅
𝜀𝜅𝜅
2  

 
𝐶1𝑎1
(𝜀3)

=
𝑧

12
∑∑𝜑𝜅𝜑𝜆𝜀𝜅𝜆

3

𝑘

𝜆=1

−
1

6
∑𝜑𝜅

𝑘

𝜅=1

𝑘

𝜅=1

𝑁𝑎
𝑀𝜅
𝜀𝜅𝜅
3  

2b2 
 

𝐶2𝑏2
(𝜀2)

=
𝑧

2
∑∑∑𝜑𝜅𝜑𝜆𝜑𝜇𝜀𝜅𝜆

 

𝑘

𝜇=1

𝑘

𝜆=1

𝑘

𝜅=1 

𝜀𝜆𝜇 

3c3 
 

𝐶3𝑐3
(𝜀3)

=
𝑧

2
∑∑∑∑𝜑𝜅𝜑𝜆𝜑𝜇𝜑𝜏𝜀𝜅𝜆

 𝜀𝜆𝜇𝜀𝜇𝜏

𝑘

𝜏=1

𝑘

𝜇=1

𝑘

𝜆=1

𝑘

𝜅=1 

 

 

3.5 Contributions of the entropic diagrams 

The contribution of a diagram corrects the mean field from the Flory Huggins depend-

ing on the number of times the diagram can be found in the system. By introducing 

diagrams with up to six bonds, the description of more complex structures in the in-

vestigated systems is made possible. In this thesis the entropic diagrams up to the 

sixth order have been investigated. To describe the mean field of the energy with up 

to three energetic bonds, the energetic diagrams 1a1, 2b2 and 3c3 are also exam-

ined. 

The diagram contributions of the individual entropic diagrams result from the product 

of the combinatorial components and the lattice-dependent components. The combi-

natorial part indicates how often a diagram can be found in a system. The lattice-

dependent fraction indicates how many positions such a diagram can occupy. Dia-

grams with several structures, diagrams of the second kind have so-called cumu-

lants. These come from the series development of the logarithm and the number of 

structures indicates their number. Thereby different diagrams are combined which all 
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together have the same structures as the examined diagram. Each cumulant has a 

pre-factor which also results from the series development. As you can already see in 

Eq. 2.7 the pre-factor of the individual terms of the development is significant. The 

pre-factor of a cumulant fcu also lists how often it can be formed from the individual 

structures of the diagram. It can be calculated with  Eq. 3.60 for each individual cumu-

lant.  

 

𝑓𝑐𝑢 = 𝑘𝑙𝑛 ∗ (
𝑛𝑑
𝑛𝑑,𝑓

) ∗ (
𝑛𝑑 − 𝑛𝑑,𝑓
𝑛𝑑,𝑓,2

) Eq. 3.60 

Here kln is the pre-factor which it inherits from the term of series expansion. This pre-

factor also contains the sign of the cumulant. nd is the number of different diagrams in 

the cumulant and nd,f is the number of the most frequent diagram. If there are more 

than two different diagrams, the binomial coefficient is determined from the remaining 

diagrams and multiplied. To get the amount of a diagram, you must determine the 

sum of all the cumulants.  

The Helmholtz energy expressed with the model is still dependent on the system size 

in the description. In order to normalize it and make it independent of it, the Helm-

holtz energy must be divided by the number of lattice positions. In the contributions 

this is expressed by the extraction and subsequent division by the number of lattice 

sites Nl.  

The resulting contribution of the diagram itself contains many terms which are divided 

several times by the number of lattice sites. Such a lattice site corresponds to a dis-

cretized location for a segment. A macroscopic system contains a huge number of 

possible locations for each segment. To take this huge number into account in the 

model, the thermodynamic limit is applied. The value Nl which represents the number 

of lattice locations is set to infinity and all terms in the with it in the denominator be-

come infinitely small. If a term would have the expression in the numerator, its contri-

bution would be infinite. This should not happen and would indicate an error in the 

development of the contribution. The remaining terms correspond to the contribution 

of the diagram and can be read in Table 6 for all diagrams considered in this thesis. 
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3.5.1 Example 5bba 

As already described in the description of the determination of the lattice-dependent 

and combinatorial components, the determination of the diagram contribution itself is 

also carried out exemplarily. Here the diagram 5bba is chosen. It has two cumulants, 

each with a combinatorial and a lattice-dependent component. By multiplying these 

two terms, you obtain the diagram contributions of the individual cumulants.  

These can be multiplied by their respective pre-factors. The pre-factor for the first 

cumulant 5bba1 is one, since both the factor k from the series development and the 

number of diagrams in the cumulant are one. For 5b|ba2, the contribution is minus 

one, because although the factor k is minus 0.5, the cumulant also has two identical 

diagrams. From the sum of the two cumulants, the number of lattice locations Nl is 

now extracted to normalize the free energy. The resulting contribution of the diagram 

still contains many terms with Nl in the denominator. A large part of these are derived 

from the polynomials of the omitted positions. After applying the thermodynamic limit, 

these terms become zero and only the contribution remains for the diagram. 
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3.5.2 List of the contributions 

Table 6: The contribution of all inspected cluster diagrams 

1a 𝑪𝟏𝒂
(𝒔) = 𝟎 2b 

𝑪𝟐𝒃
(𝒔) = −

𝟏

𝒛
∑

𝑵𝒂
𝑴𝝁

𝝋𝝁 

𝟐

𝝁=𝟏

 

2aa 
𝐶2𝑎𝑎
(𝑠) =

1

𝑧
∑∑

𝑁𝑎
𝑀𝜇

𝑁𝑎
𝑀𝜅
𝜑𝜇𝜑𝜅  

2

𝜅=1

 

2

𝜇=1

 
3c 

𝐶3𝑐
(𝑠) =

1

𝑧2
∑

𝑁𝑐
𝑀𝜇
𝜑𝜇 

2

𝜇=1

 

3d 
𝐶3𝑑
(𝑠) =

2

𝑧2
∑

𝑁𝑑
𝑀𝜇
𝜑𝜇 

2

𝜇=1

 
3aaa 

𝐶3𝑎𝑎𝑎
(𝑠) =

8

3𝑧2
∑∑∑

𝑁𝑎
𝑀𝜇

𝑁𝑎
𝑀𝜅

𝑁𝑎
𝑀𝜆
𝜑𝜇𝜑𝜅𝜑𝜆 

2

𝜆=1

 

2

𝜅=1

 

2

𝜇=1

 

3ba 
𝐶3𝑏𝑎
(𝑠) = −

4

𝑧2
∑∑

𝑁𝑏
𝑀𝜇

𝑁𝑎
𝑀𝜅
𝜑𝜇𝜑𝜅  

2

𝜅=1

 

2

𝜇=1

 
4e 

𝐶4𝑒
(𝑠) =

1

𝑧3
∑

𝑁𝑒
𝑀𝜇
𝜑𝜇 

2

𝜇=1

 

4f 
𝐶4𝑓
(𝑠) =

1

𝑧2
∑

𝑁𝑓

𝑀𝜇
𝜑𝜇 

2

𝜇=1

−
2

𝑧3
∑

𝑁𝑓

𝑀𝜇
𝜑𝜇 

2

𝜇=1

 
4g 

𝐶4𝑔
(𝑠) =

3

𝑧2
∑

𝑁𝑔

𝑀𝜇
𝜑𝜇 

2

𝜇=1

−
6

𝑧2
∑

𝑁𝑔

𝑀𝜇
𝜑𝜇  

2

𝜇=1

 

4aaaa 
𝐶4𝑎𝑎𝑎𝑎
(𝑠) =      

2

𝑧2
∑∑∑∑

𝑁𝑎
𝑀𝜇

𝑁𝑎
𝑀𝜅

𝑁𝑎
𝑀𝜆

𝑁𝑎
𝑀𝜏
𝜑𝜇𝜑𝜅𝜑𝜆𝜑𝜏 +

6

𝑧3
∑∑∑∑

𝑁𝑎
𝑀𝜇

𝑁𝑎
𝑀𝜅

𝑁𝑎
𝑀𝜆

𝑁𝑎
𝑀𝜏
𝜑𝜇𝜑𝜅𝜑𝜆𝜑𝜏  

2

𝜏

 

2

𝜆

 

2

𝜅

 

2

𝜇

2

𝜏

2

𝜆

2

𝜅

2

𝜇

−
2

𝑧2
∑∑∑

𝑁𝑎
𝑀𝜇

𝑁𝑎
𝑀𝜅

𝑁𝑎
𝑀𝜆
𝜑𝜇𝜑𝜅𝜑𝜆 

2

𝜆=1

 

2

𝜅=1

−
4

𝑧2
∑∑∑

𝑁𝑏
𝑀𝜇

𝑁𝑎
𝑀𝜅

𝑁𝑎
𝑀𝜆
𝜑𝜇𝜑𝜅𝜑𝜆 

2

𝜆

 

2

𝜅

2

𝜇

 

2

𝜇=1

   

 4baa 
𝐶4𝑏𝑎𝑎
(𝑠) = −

12

𝑧3
∑∑∑

𝑁𝑏
𝑀𝜇

𝑁𝑎
𝑀𝜅

𝑁𝑎
𝑀𝜆
𝜑𝜇𝜑𝜅𝜑𝜆  

2

𝜆

 +

2

𝜅

2

𝜇

4

𝑧2
∑∑

𝑁𝑏
𝑀𝜇

𝑁𝑎
𝑀𝜅
𝜑𝜇𝜑𝜅  

2

𝜅=1

 

2

𝜇=1

+
4

𝑧2
∑∑

𝑁𝑐
𝑀𝜇

𝑁𝑎
𝑀𝜅
𝜑𝜇𝜑𝜅  

2

𝜅

 

2

𝜇

+
6

𝑧2
∑∑

𝑁𝑑
𝑀𝜇

𝑁𝑎
𝑀𝜅
𝜑𝜇𝜑𝜅  

2

𝜅

 

2

𝜇

 

4ca 
𝐶4𝑐𝑎
(𝑠) = −

2

𝑧2
∑∑

𝑁𝑐
𝑀𝜇

𝑁𝑎
𝑀𝜅
𝜑𝜇𝜑𝜅  

2

𝜅

 

2

𝜇

+
2

𝑧3
∑∑

𝑁𝑐
𝑀𝜇

𝑁𝑎
𝑀𝜅
𝜑𝜇𝜑𝜅  

2

𝜅

 

2

𝜇

 

4da 
𝐶4𝑑𝑎
(𝑠) = −

6

𝑧2
∑∑

𝑁𝑑
𝑀𝜇

𝑁𝑎
𝑀𝜅
𝜑𝜇𝜑𝜅  

2

𝜅

 

2

𝜇

+
12

𝑧2
∑∑

𝑁𝑑
𝑀𝜇

𝑁𝑎
𝑀𝜅
𝜑𝜇𝜑𝜅  

2

𝜅

 

2

𝜇

 

4bb 
𝐶4𝑏𝑏
(𝑠) =

1

𝑧2
∑∑

𝑁𝑏
𝑀𝜇

𝑁𝑏
𝑀𝜅
𝜑𝜇𝜑𝜅  

2

𝜅

 

2

𝜇

+
2

𝑧2
∑∑

𝑁𝑏
𝑀𝜇

𝑁𝑏
𝑀𝜅
𝜑𝜇𝜑𝜅  

2

𝜅

 

2

𝜇

−
1

2𝑧2
∑

𝑁𝑏
𝑀𝜇
𝜑𝜇 −

1

𝑧2
∑

𝑁𝑐
𝑀𝜇
𝜑𝜇 

2

𝜇=1

 

2

𝜇=1

3

𝑧2
∑

𝑁𝑑
𝑀𝜇
𝜑𝜇 

2

𝜇=1

−
1

𝑧2
∑

𝑁𝑒
𝑀𝜇
𝜑𝜇 

2

𝜇=1

−
1

𝑧2
∑

𝑁𝑓

𝑀𝜇
𝜑𝜇 

2

𝜇=1

−
3

𝑧2
∑

𝑁𝑔

𝑀𝜇
𝜑𝜇 

2

𝜇=1

 

5h 
𝐶5ℎ
(𝑠) =

1

𝑧3
∑

𝑁ℎ
𝑀𝜇
𝜑𝜇 

2

𝜇=1

 
5i 

𝐶5𝑖
(𝑠) =

1

𝑧3
∑

𝑁𝑖
𝑀𝜇
𝜑𝜇 

2

𝜇=1

 

5j 𝐶5𝑗
(𝑠) = 0 5k 

𝐶5𝑘
(𝑠) = −

4

𝑧3
∑

𝑁𝑘
𝑀𝜇
𝜑𝜇 

2

𝜇=1

 

5l 
𝐶5𝑙
(𝑠) = −

5

𝑧3
∑

𝑁𝑙
𝑀𝜇
𝜑𝜇 

2

𝜇=1
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5aaaaa 
𝐶5𝑎𝑎𝑎𝑎𝑎
(𝑠) = −

144

𝑧3
∑∑∑∑∑

𝑁𝑎
𝑀𝜇

𝑁𝑎
𝑀𝜅

𝑁𝑎
𝑀𝜆

𝑁𝑎
𝑀𝜏

𝑁𝑎
𝑀𝜔

𝜑𝜇𝜑𝜅𝜑𝜆𝜑𝜏𝜑𝜔 

2

𝜔=1

2

𝜏=1

 

2

𝜆=1

 

2

𝜅=1

 

2

𝜇=1

−
16

𝑧3
∑∑∑∑

𝑁𝑎
𝑀𝜇

𝑁𝑎
𝑀𝜅

𝑁𝑎
𝑀𝜆

𝑁𝑎
𝑀𝜏
𝜑𝜇𝜑𝜅𝜑𝜆𝜑𝜏  

2

𝜏

 

2

𝜆

 

2

𝜅

  

2

𝜇

−
32

𝑧3
∑∑∑

𝑁𝑏
𝑀𝜇

𝑁𝑎
𝑀𝜅

𝑁𝑎
𝑀𝜆
𝜑𝜇𝜑𝜅𝜑𝜆  

2

𝜆

2

𝜅

2

𝜇

 

5baaa 
𝐶5𝑏𝑎𝑎𝑎
(𝑠) = −

48

𝑧3
∑∑∑∑

𝑁𝑏
𝑀𝜇

𝑁𝑎
𝑀𝜅

𝑁𝑎
𝑀𝜆

𝑁𝑎
𝑀𝜏
𝜑𝜇𝜑𝜅𝜑𝜆𝜑𝜏

2

𝜏

2

𝜆

2

𝜅

2

𝜇

+
40

𝑧3
∑∑∑

𝑁𝑏
𝑀𝜇

𝑁𝑎
𝑀𝜅

𝑁𝑎
𝑀𝜆
𝜑𝜇𝜑𝜅𝜑𝜆  

2

𝜆

2

𝜅

2

𝜇

+
16

𝑧3
∑∑∑

𝑁𝑏
𝑀𝜇

𝑁𝑏
𝑀𝜅

𝑁𝑎
𝑀𝜆
𝜑𝜇𝜑𝜅𝜑𝜆  

2

𝜆

2

𝜅

2

𝜇

+
32

𝑧3
∑∑∑

𝑁𝑐
𝑀𝜇

𝑁𝑎
𝑀𝜅

𝑁𝑎
𝑀𝜆
𝜑𝜇𝜑𝜅𝜑𝜆  

2

𝜆

2

𝜅

2

𝜇

+
48

𝑧3
∑∑∑

𝑁𝑏
𝑀𝜇

𝑁𝑎
𝑀𝜅

𝑁𝑎
𝑀𝜆
𝜑𝜇𝜑𝜅𝜑𝜆  

2

𝜆

2

𝜅

2

𝜇

 

5caa 
𝐶5𝑐𝑎𝑎
(𝑠) = +

4

𝑧3
∑∑∑

𝑁𝑐
𝑀𝜇

𝑁𝑎
𝑀𝜅

𝑁𝑎
𝑀𝜆
𝜑𝜇𝜑𝜅𝜑𝜆  

2

𝜆

2

𝜅

2

𝜇

−
6

𝑧3
∑∑

𝑁𝑐
𝑀𝜇

𝑁𝑎
𝑀𝜅
𝜑𝜇𝜑𝜅  

2

𝜅=1

 

2

𝜇=1

−
4

𝑧3
∑∑

𝑁𝑒
𝑀𝜇

𝑁𝑎
𝑀𝜅
𝜑𝜇𝜑𝜅  

2

𝜅=1

 

2

𝜇=1

−
4

𝑧3
∑∑

𝑁𝑓

𝑀𝜇

𝑁𝑎
𝑀𝜅
𝜑𝜇𝜑𝜅  

2

𝜅=1

 

2

𝜇=1

 

5daa 
𝐶5𝑑𝑎𝑎
(𝑠) = −

24

𝑧3
∑∑∑

𝑁𝑑
𝑀𝜇

𝑁𝑎
𝑀𝜅

𝑁𝑎
𝑀𝜆
𝜑𝜇𝜑𝜅𝜑𝜆  

2

𝜆

2

𝜅

2

𝜇

−
12

𝑧3
∑∑

𝑁𝑑
𝑀𝜇

𝑁𝑎
𝑀𝜅
𝜑𝜇𝜑𝜅  

2

𝜅=1

 

2

𝜇=1

−
4

𝑧3
∑∑

𝑁𝑓

𝑀𝜇

𝑁𝑎
𝑀𝜅
𝜑𝜇𝜑𝜅  

2

𝜅=1

 

2

𝜇=1

−
16

𝑧3
∑∑

𝑁𝑔

𝑀𝜇

𝑁𝑎
𝑀𝜅
𝜑𝜇𝜑𝜅  

2

𝜅=1

 

2

𝜇=1

 

5ea 𝐶5𝑒𝑎
(𝑠)

= −
4

𝑧3
∑∑

𝑁𝑒
𝑀𝜇

𝑁𝑎
𝑀𝜅
𝜑𝜇𝜑𝜅  

2

𝜅=1

 

2

𝜇=1

 

5fa 
𝐶5𝑓𝑎
(𝑠) =

8

𝑧3
∑∑

𝑁𝑓

𝑀𝜇

𝑁𝑎
𝑀𝜅
𝜑𝜇𝜑𝜅  

2

𝜅=1

 

2

𝜇=1

 

5ga 
𝐶5𝑔𝑎
(𝑠) =

40

𝑧3
∑∑

𝑁𝑔

𝑀𝜇

𝑁𝑎
𝑀𝜅
𝜑𝜇𝜑𝜅  

2

𝜅=1

 

2

𝜇=1

 

5bba 
𝐶5𝑏𝑏𝑎
(𝑠) =

8

𝑧3
∑∑∑

𝑁𝑏
𝑀𝜇

𝑁𝑏
𝑀𝜅

𝑁𝑎
𝑀𝜆
𝜑𝜇𝜑𝜅𝜑𝜆  

2

𝜆

2

𝜅

2

𝜇

−
4

𝑧3
∑∑

𝑁𝑏
𝑀𝜇

𝑁𝑎
𝑀𝜅
𝜑𝜇𝜑𝜅  

2

𝜅=1

 

2

𝜇=1

−
4

𝑧3
∑∑

𝑁𝑏
𝑀𝜇

𝑁𝑏
𝑀𝜅
𝜑𝜇𝜑𝜅  

2

𝜅=1

 

2

𝜇=1

−
8

𝑧3
∑∑

𝑁𝑐
𝑀𝜇

𝑁𝑎
𝑀𝜅
𝜑𝜇𝜑𝜅  

2

𝜅=1

 

2

𝜇=1

−
24

𝑧3
∑∑

𝑁𝑑
𝑀𝜇

𝑁𝑎
𝑀𝜅
𝜑𝜇𝜑𝜅  

2

𝜅=1

 

2

𝜇=1

−
8

𝑧3
∑∑

𝑁𝑒
𝑀𝜇

𝑁𝑎
𝑀𝜅
𝜑𝜇𝜑𝜅  

2

𝜅=1

 

2

𝜇=1

−
8

𝑧2
∑∑

𝑁𝑓

𝑀𝜇

𝑁𝑎
𝑀𝜅
𝜑𝜇𝜑𝜅  

2

𝜅=1

 

2

𝜇=1

−
24

𝑧3
∑∑

𝑁𝑔

𝑀𝜇

𝑁𝑎
𝑀𝜅
𝜑𝜇𝜑𝜅  

2

𝜅=1

 

2

𝜇=1

−
8

𝑧3
∑∑

𝑁𝑐
𝑀𝜇

𝑁𝑏
𝑀𝜅
𝜑𝜇𝜑𝜅  

2

𝜅=1

 

2

𝜇=1

−
12

𝑧3
∑∑

𝑁𝑑
𝑀𝜇

𝑁𝑏
𝑀𝜅
𝜑𝜇𝜑𝜅  

2

𝜅=1

 

2

𝜇=1

 

5cb 
𝐶5𝑐𝑏
(𝑠) = −

4

𝑧3
∑∑

𝑁𝑐
𝑀𝜇

𝑁𝑏
𝑀𝜅
𝜑𝜇𝜑𝜅  

2

𝜅=1

 

2

𝜇=1

+
2

𝑧3
∑

𝑁𝑐
𝑀𝜇
𝜑𝜇  

2

𝜇=1

+
2

𝑧3
∑

𝑁𝑒
𝑀𝜇
𝜑𝜇  

2

𝜇=1

+
4

𝑧3
∑

𝑁𝑓

𝑀𝜇
𝜑𝜇 

2

𝜇=1

+
2

𝑧3
∑

𝑁ℎ
𝑀𝜇
𝜑𝜇 

2

𝜇=1

+
1

𝑧3
∑

𝑁𝑖
𝑀𝜇
𝜑𝜇 

2

𝜇=1

+
2

𝑧3
∑

𝑁𝑗

𝑀𝜇
𝜑𝜇  

2

𝜇=1

+
3

𝑧3
∑

𝑁𝑙
𝑀𝜇
𝜑𝜇 

2

𝜇=1

 

5db 
𝐶5𝑑𝑏
(𝑠) = −

24

𝑧3
∑∑

𝑁𝑑
𝑀𝜇

𝑁𝑏
𝑀𝜅
𝜑𝜇𝜑𝜅  

2

𝜅=1

 

2

𝜇=1

+
6

𝑧3
∑

𝑁𝑑
𝑀𝜇
𝜑𝜇 

2

𝜇=1

+
2

𝑧3
∑

𝑁𝑓

𝑀𝜇
𝜑𝜇 

2

𝜇=1

+
24

𝑧3
∑

𝑁𝑔

𝑀𝜇
𝜑𝜇 

2

𝜇=1

+
2

𝑧3
∑

𝑁𝑖
𝑀𝜇
𝜑𝜇 

2

𝜇=1

+
2

𝑧3
∑

𝑁𝑘
𝑀𝜇
𝜑𝜇 

2

𝜇=1

+
4

𝑧3
∑

𝑁𝑙
𝑀𝜇
𝜑𝜇  

2

𝜇=1

 

6m 
𝐶6𝑚
(𝑠) = −

3

𝑧3
∑
𝑁𝑚
𝑀𝜇
𝜑𝜇 

2

𝜇=1

 
6n 𝐶6𝑛

(𝑠) = 0 
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 6o 𝐶6𝑜
(𝑠) = 0 6p 

𝐶6𝑝
(𝑠) = −

1

𝑧3
∑

𝑁𝑝
𝑀𝜇
𝜑𝜇 

2

𝜇=1

 

6q 
𝐶6𝑞
(𝑠) =

1

𝑧3
∑

𝑁𝑞
𝑀𝜇
𝜑𝜇 

2

𝜇=1

 
6r 𝐶6𝑟

(𝑠) = 0 

6s 𝐶6𝑠
(𝑠) = 0 6t 

𝐶6𝑡
(𝑠) = −

3

𝑧3
∑

𝑁𝑡
𝑀𝜇
𝜑𝜇 

2

𝜇=1

 

6u 
𝐶6𝑢
(𝑠) =

2

𝑧3
∑

𝑁𝑢
𝑀𝜇
𝜑𝜇 

2

𝜇=1

 

6aaaaaa 
𝐶6𝑎𝑎𝑎𝑎𝑎𝑎
(𝑠) =

64

𝑧3
∑∑∑∑∑∑

𝑁𝑎
𝑀𝜇

𝑁𝑎
𝑀𝜅

𝑁𝑎
𝑀𝜆

𝑁𝑎
𝑀𝜏

𝑁𝑎
𝑀𝜔

𝑁𝑎
𝑀𝜐
𝜑𝜇𝜑𝜅𝜑𝜆𝜑𝜏𝜑𝜔𝜑𝜐

2

𝜐=1

2

𝜔=1

2

𝜏=1

2

𝜆=1

2

𝜅=1

2

𝜇=1

−
16

𝑧3
∑∑∑∑∑

𝑁𝑎
𝑀𝜇

𝑁𝑎
𝑀𝜅

𝑁𝑎
𝑀𝜆

𝑁𝑎
𝑀𝜏

𝑁𝑎
𝑀𝜔

𝜑𝜇𝜑𝜅𝜑𝜆𝜑𝜏𝜑𝜔  

2

𝜔=1

2

𝜏=1

 

2

𝜆=1

 

2

𝜅=1

 

2

𝜇=1

−
32

𝑧3
∑∑∑∑∑

𝑁𝑏
𝑀𝜇

𝑁𝑎
𝑀𝜅

𝑁𝑎
𝑀𝜆

𝑁𝑎
𝑀𝜏

𝑁𝑎
𝑀𝜔

𝜑𝜇𝜑𝜅𝜑𝜆𝜑𝜏𝜑𝜔  

2

𝜔=1

2

𝜏=1

 

2

𝜆=1

 

2

𝜅=1

 

2

𝜇=1

+
20

3𝑧3
∑∑∑∑

𝑁𝑎
𝑀𝜇

𝑁𝑎
𝑀𝜅

𝑁𝑎
𝑀𝜆

𝑁𝑎
𝑀𝜏
𝜑𝜇𝜑𝜅𝜑𝜆𝜑𝜏  

2

𝜏

2

𝜆

2

𝜅

2

𝜇

+
32

𝑧3
∑∑∑∑

𝑁𝑏
𝑀𝜇

𝑁𝑎
𝑀𝜅

𝑁𝑎
𝑀𝜆

𝑁𝑎
𝑀𝜏
𝜑𝜇𝜑𝜅𝜑𝜆𝜑𝜏

2

𝜏

2

𝜆

2

𝜅

2

𝜇

+
16

𝑧3
∑∑∑∑

𝑁𝑏
𝑀𝜇

𝑁𝑏
𝑀𝜅

𝑁𝑎
𝑀𝜆

𝑁𝑎
𝑀𝜏
𝜑𝜇𝜑𝜅𝜑𝜆𝜑𝜏

2

𝜏

2

𝜆

2

𝜅

2

𝜇

+
8

𝑧3
∑∑∑∑

𝑁𝑐
𝑀𝜇

𝑁𝑎
𝑀𝜅

𝑁𝑎
𝑀𝜆

𝑁𝑎
𝑀𝜏
𝜑𝜇𝜑𝜅𝜑𝜆𝜑𝜏

2

𝜏

2

𝜆

2

𝜅

2

𝜇

+
16

𝑧3
∑∑∑∑

𝑁𝑑
𝑀𝜇

𝑁𝑎
𝑀𝜅

𝑁𝑎
𝑀𝜆

𝑁𝑎
𝑀𝜏
𝜑𝜇𝜑𝜅𝜑𝜆𝜑𝜏

2

𝜏

2

𝜆

2

𝜅

2

𝜇

 

6baaaa 
𝐶6𝑏𝑎𝑎𝑎𝑎
(𝑠) =

141

𝑧3
∑∑∑∑∑

𝑁𝑏
𝑀𝜇

𝑁𝑎
𝑀𝜅

𝑁𝑎
𝑀𝜆

𝑁𝑎
𝑀𝜏

𝑁𝑎
𝑀𝜔

𝜑𝜇𝜑𝜅𝜑𝜆𝜑𝜏𝜑𝜔

2

𝜔=1

2

𝜏=1

2

𝜆=1

2

𝜅=1

2

𝜇=1

+
16

𝑧3
∑∑∑∑

𝑁𝑏
𝑀𝜇

𝑁𝑎
𝑀𝜅

𝑁𝑎
𝑀𝜆

𝑁𝑎
𝑀𝜏
𝜑𝜇𝜑𝜅𝜑𝜆𝜑𝜏

2

𝜏

2

𝜆

2

𝜅

2

𝜇

+
16

𝑧3
∑∑∑∑

𝑁𝑐
𝑀𝜇

𝑁𝑎
𝑀𝜅

𝑁𝑎
𝑀𝜆

𝑁𝑎
𝑀𝜏
𝜑𝜇𝜑𝜅𝜑𝜆𝜑𝜏

2

𝜏

2

𝜆

2

𝜅

2

𝜇

+
24

𝑧3
∑∑∑∑

𝑁𝑑
𝑀𝜇

𝑁𝑎
𝑀𝜅

𝑁𝑎
𝑀𝜆

𝑁𝑎
𝑀𝜏
𝜑𝜇𝜑𝜅𝜑𝜆𝜑𝜏

2

𝜏

2

𝜆

2

𝜅

2

𝜇

−
24

𝑧3
∑∑∑

𝑁𝑏
𝑀𝜇

𝑁𝑎
𝑀𝜅

𝑁𝑎
𝑀𝜆
𝜑𝜇𝜑𝜅𝜑𝜆  

2

𝜆

2

𝜅

2

𝜇

−
4

𝑧3
∑∑∑

𝑁𝑏
𝑀𝜇

𝑁𝑏
𝑀𝜅

𝑁𝑎
𝑀𝜆
𝜑𝜇𝜑𝜅𝜑𝜆

2

𝜆

2

𝜅

2

𝜇

−
6

𝑧3
∑∑∑

𝑁𝑏
𝑀𝜇

𝑁𝑏
𝑀𝜅

𝑁𝑏
𝑀𝜆
𝜑𝜇𝜑𝜅𝜑𝜆

2

𝜆

2

𝜅

2

𝜇

−
38

𝑧3
∑∑∑

𝑁𝑐
𝑀𝜇

𝑁𝑎
𝑀𝜅

𝑁𝑎
𝑀𝜆
𝜑𝜇𝜑𝜅𝜑𝜆  

2

𝜆

2

𝜅

2

𝜇

−
66

𝑧3
∑∑∑

𝑁𝑑
𝑀𝜇

𝑁𝑎
𝑀𝜅

𝑁𝑎
𝑀𝜆
𝜑𝜇𝜑𝜅𝜑𝜆 

2

𝜆

2

𝜅

2

𝜇

−
12

𝑧3
∑∑∑

𝑁𝑒
𝑀𝜇

𝑁𝑎
𝑀𝜅

𝑁𝑎
𝑀𝜆
𝜑𝜇𝜑𝜅𝜑𝜆

2

𝜆

2

𝜅

2

𝜇

−
20

𝑧3
∑∑∑

𝑁𝑓

𝑀𝜇

𝑁𝑎
𝑀𝜅

𝑁𝑎
𝑀𝜆
𝜑𝜇𝜑𝜅𝜑𝜆  

2

𝜆

2

𝜅

2

𝜇

−
48

𝑧3
∑∑∑

𝑁𝑔

𝑀𝜇

𝑁𝑎
𝑀𝜅

𝑁𝑎
𝑀𝜆
𝜑𝜇𝜑𝜅𝜑𝜆 

2

𝜆

2

𝜅

2

𝜇

−
16

𝑧3
∑∑∑

𝑁𝑐
𝑀𝜇

𝑁𝑏
𝑀𝜅

𝑁𝑎
𝑀𝜆
𝜑𝜇𝜑𝜅𝜑𝜆  

2

𝜆

2

𝜅

2

𝜇

−
24

𝑧3
∑∑∑

𝑁𝑑
𝑀𝜇

𝑁𝑏
𝑀𝜅

𝑁𝑎
𝑀𝜆
𝜑𝜇𝜑𝜅𝜑𝜆 

2

𝜆

2

𝜅

2

𝜇

 

6caaa 
𝐶6𝑐𝑎𝑎𝑎
(𝑠) = +

8

𝑧3
∑∑∑∑

𝑁𝑐
𝑀𝜇

𝑁𝑎
𝑀𝜅

𝑁𝑎
𝑀𝜆

𝑁𝑎
𝑀𝜏
𝜑𝜇𝜑𝜅𝜑𝜆𝜑𝜏

2

𝜏

2

𝜆

2

𝜅

2

𝜇

+
16

𝑧3
∑∑∑

𝑁𝑐
𝑀𝜇

𝑁𝑎
𝑀𝜅

𝑁𝑎
𝑀𝜆
𝜑𝜇𝜑𝜅𝜑𝜆

2

𝜆

2

𝜅

2

𝜇

+
8

𝑧3
∑∑∑

𝑁𝑒
𝑀𝜇

𝑁𝑎
𝑀𝜅

𝑁𝑎
𝑀𝜆
𝜑𝜇𝜑𝜅𝜑𝜆

2

𝜆

2

𝜅

2

𝜇

+
8

𝑧3
∑∑∑

𝑁𝑓

𝑀𝜇

𝑁𝑎
𝑀𝜅

𝑁𝑎
𝑀𝜆
𝜑𝜇𝜑𝜅𝜑𝜆

2

𝜆

2

𝜅

2

𝜇

+
8

𝑧3
∑∑∑

𝑁𝑐
𝑀𝜇

𝑁𝑏
𝑀𝜅

𝑁𝑎
𝑀𝜆
𝜑𝜇𝜑𝜅𝜑𝜆  

2

𝜆

2

𝜅

2

𝜇
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6daaa 
𝐶6𝑑𝑎𝑎𝑎
(𝑠) = −

40

𝑧3
∑∑∑∑

𝑁𝑑
𝑀𝜇

𝑁𝑎
𝑀𝜅

𝑁𝑎
𝑀𝜆

𝑁𝑎
𝑀𝜏
𝜑𝜇𝜑𝜅𝜑𝜆𝜑𝜏

2

𝜏

2

𝜆

2

𝜅

2

𝜇

+
48

𝑧3
∑∑∑

𝑁𝑑
𝑀𝜇

𝑁𝑎
𝑀𝜅

𝑁𝑎
𝑀𝜆
𝜑𝜇𝜑𝜅𝜑𝜆 

2

𝜆

2

𝜅

2

𝜇

+
12

𝑧3
∑∑∑

𝑁𝑓

𝑀𝜇

𝑁𝑎
𝑀𝜅

𝑁𝑎
𝑀𝜆
𝜑𝜇𝜑𝜅𝜑𝜆  

2

𝜆

2

𝜅

2

𝜇

+
48

𝑧3
∑∑∑

𝑁𝑔

𝑀𝜇

𝑁𝑎
𝑀𝜅

𝑁𝑎
𝑀𝜆
𝜑𝜇𝜑𝜅𝜑𝜆 

2

𝜆

2

𝜅

2

𝜇

+
24

𝑧3
∑∑∑

𝑁𝑑
𝑀𝜇

𝑁𝑏
𝑀𝜅

𝑁𝑎
𝑀𝜆
𝜑𝜇𝜑𝜅𝜑𝜆 

2

𝜆

2

𝜅

2

𝜇

 

6eaa 𝐶6𝑒𝑎𝑎
(𝑠) = 0 

6faa 
𝐶6𝑓𝑎𝑎
(𝑠) = −

8

𝑧3
∑∑

𝑁𝑓

𝑀𝜇

𝑁𝑎
𝑀𝜅
𝜑𝜇𝜑𝜅

2

𝜅

2

𝜇

−
2

𝑧3
∑∑

𝑁𝑖
𝑀𝜇

𝑁𝑎
𝑀𝜅
𝜑𝜇𝜑𝜅

2

𝜅

2

𝜇

−
4

𝑧3
∑∑

𝑁𝑗

𝑀𝜇

𝑁𝑎
𝑀𝜅
𝜑𝜇𝜑𝜅

2

𝜅

2

𝜇

−
8

𝑧3
∑∑

𝑁𝑘
𝑀𝜇

𝑁𝑎
𝑀𝜅
𝜑𝜇𝜑𝜅

2

𝜅

2

𝜇

−
6

𝑧3
∑∑

𝑁𝑙
𝑀𝜇

𝑁𝑎
𝑀𝜅
𝜑𝜇𝜑𝜅

2

𝜅

2

𝜇

 

 

6gaa 
𝐶6𝑔𝑎𝑎
(𝑠) = −

48

𝑧3
∑∑∑

𝑁𝑔

𝑀𝜇

𝑁𝑎
𝑀𝜅

𝑁𝑎
𝑀𝜆
𝜑𝜇𝜑𝜅𝜑𝜆

2

𝜆

2

𝜅

2

𝜇

−
24

𝑧3
∑∑

𝑁𝑔

𝑀𝜇

𝑁𝑎
𝑀𝜅
𝜑𝜇𝜑𝜅

2

𝜅

2

𝜇

−
6

𝑧3
∑∑

𝑁𝑙
𝑀𝜇

𝑁𝑎
𝑀𝜅
𝜑𝜇𝜑𝜅

2

𝜅

2

𝜇

 

6ha 
𝐶6ℎ𝑎
(𝑠) =

6

𝑧3
∑∑

𝑁ℎ
𝑀𝜇

𝑁𝑎
𝑀𝜅
𝜑𝜇𝜑𝜅

2

𝜅

2

𝜇

 
6ia 

𝐶6𝑖𝑎
(𝑠) =

2

𝑧3
∑∑

𝑁𝑖
𝑀𝜇

𝑁𝑎
𝑀𝜅
𝜑𝜇𝜑𝜅

2

𝜅

2

𝜇

 

6ja 𝐶6𝑗𝑎
(𝑠) = 0 6ka 

𝐶6𝑘𝑎
(𝑠) =

10

𝑧3
∑∑

𝑁𝑘
𝑀𝜇

𝑁𝑎
𝑀𝜅
𝜑𝜇𝜑𝜅

2

𝜅

2

𝜇

 

6la 
𝐶6𝑙𝑎
(𝑠) =

18

𝑧3
∑∑

𝑁𝑙
𝑀𝜇

𝑁𝑎
𝑀𝜅
𝜑𝜇𝜑𝜅

2

𝜅

2

𝜇

 

6bbaa 
𝐶6𝑏𝑏𝑎𝑎
(𝑠) =

106

𝑧3
∑∑∑∑

𝑁𝑏
𝑀𝜇

𝑁𝑏
𝑀𝜅

𝑁𝑎
𝑀𝜆

𝑁𝑎
𝑀𝜏
𝜑𝜇𝜑𝜅𝜑𝜆𝜑𝜏

2

𝜏

2

𝜆

2

𝜅

2

𝜇

−
8

𝑧3
∑∑∑

𝑁𝑏
𝑀𝜇

𝑁𝑏
𝑀𝜅

𝑁𝑎
𝑀𝜆
𝜑𝜇𝜑𝜅𝜑𝜆

2

𝜆

2

𝜅

2

𝜇

−
8

𝑧3
∑∑∑

𝑁𝑐
𝑀𝜇

𝑁𝑏
𝑀𝜅

𝑁𝑎
𝑀𝜆
𝜑𝜇𝜑𝜅𝜑𝜆  

2

𝜆

2

𝜅

2

𝜇

−
12

𝑧3
∑∑∑

𝑁𝑑
𝑀𝜇

𝑁𝑏
𝑀𝜅

𝑁𝑎
𝑀𝜆
𝜑𝜇𝜑𝜅𝜑𝜆 

2

𝜆

2

𝜅

2

𝜇

+
4

𝑧3
∑∑

𝑁𝑏
𝑀𝜇

𝑁𝑎
𝑀𝜅
𝜑𝜇𝜑𝜅  

2

𝜅=1

 

2

𝜇=1

+
4

𝑧3
∑∑

𝑁𝑏
𝑀𝜇

𝑁𝑏
𝑀𝜅
𝜑𝜇𝜑𝜅  

2

𝜅=1

 

2

𝜇=1

+
14

𝑧3
∑∑

𝑁𝑐
𝑀𝜇

𝑁𝑎
𝑀𝜅
𝜑𝜇𝜑𝜅  

2

𝜅=1

 

2

𝜇=1

+
36

𝑧3
∑∑

𝑁𝑑
𝑀𝜇

𝑁𝑎
𝑀𝜅
𝜑𝜇𝜑𝜅  

2

𝜅=1

 

2

𝜇=1

+
14

𝑧3
∑∑

𝑁𝑒
𝑀𝜇

𝑁𝑎
𝑀𝜅
𝜑𝜇𝜑𝜅  

2

𝜅=1

 

2

𝜇=1

+
30

𝑧3
∑∑

𝑁𝑓

𝑀𝜇

𝑁𝑎
𝑀𝜅
𝜑𝜇𝜑𝜅  

2

𝜅=1

 

2

𝜇=1

+
96

𝑧3
∑∑

𝑁𝑔

𝑀𝜇

𝑁𝑎
𝑀𝜅
𝜑𝜇𝜑𝜅  

2

𝜅=1

 

2

𝜇=1

+
6

𝑧3
∑∑

𝑁ℎ
𝑀𝜇

𝑁𝑎
𝑀𝜅
𝜑𝜇𝜑𝜅

2

𝜅

2

𝜇

+
8

𝑧3
∑∑

𝑁𝑖
𝑀𝜇

𝑁𝑎
𝑀𝜅
𝜑𝜇𝜑𝜅

2

𝜅

2

𝜇

+
8

𝑧3
∑∑

𝑁𝑗

𝑀𝜇

𝑁𝑎
𝑀𝜅
𝜑𝜇𝜑𝜅

2

𝜅

2

𝜇

+
10

𝑧3
∑∑

𝑁𝑘
𝑀𝜇

𝑁𝑎
𝑀𝜅
𝜑𝜇𝜑𝜅

2

𝜅

2

𝜇

+
18

𝑧3
∑∑

𝑁𝑙
𝑀𝜇

𝑁𝑎
𝑀𝜅
𝜑𝜇𝜑𝜅

2

𝜅

2

𝜇

+
8

𝑧3
∑∑

𝑁𝑐
𝑀𝜇

𝑁𝑏
𝑀𝜅
𝜑𝜇𝜑𝜅  

2

𝜅=1

 

2

𝜇=1

+
18

𝑧3
∑∑

𝑁𝑑
𝑀𝜇

𝑁𝑏
𝑀𝜅
𝜑𝜇𝜑𝜅  

2

𝜅=1

 

2

𝜇=1

+
2

𝑧3
∑∑

𝑁𝑑
𝑀𝜇

𝑁𝑏
𝑀𝜅
𝜑𝜇𝜑𝜅  

2

𝜅=1

 

2

𝜇=1

+
4

𝑧3
∑∑

𝑁𝑐
𝑀𝜇

𝑁𝑐
𝑀𝜅
𝜑𝜇𝜑𝜅  

2

𝜅=1

 

2

𝜇=1

+
9

𝑧3
∑∑

𝑁𝑑
𝑀𝜇

𝑁𝑑
𝑀𝜅
𝜑𝜇𝜑𝜅  

2

𝜅=1

 

2

𝜇=1

+
12

𝑧3
∑∑

𝑁𝑑
𝑀𝜇

𝑁𝑐
𝑀𝜅
𝜑𝜇𝜑𝜅  

2

𝜅=1

 

2

𝜇=1
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6cba 
𝐶6𝑐𝑏𝑎
(𝑠) = −

16

𝑧3
∑∑∑

𝑁𝑐
𝑀𝜇

𝑁𝑏
𝑀𝜅

𝑁𝑎
𝑀𝜆
𝜑𝜇𝜑𝜅𝜑𝜆  

2

𝜆

2

𝜅

2

𝜇

−
4

𝑧3
∑∑

𝑁𝑐
𝑀𝜇

𝑁𝑎
𝑀𝜅
𝜑𝜇𝜑𝜅  

2

𝜅=1

 

2

𝜇=1

−
4

𝑧3
∑∑

𝑁𝑒
𝑀𝜇

𝑁𝑎
𝑀𝜅
𝜑𝜇𝜑𝜅

2

𝜅=1

2

𝜇=1

−
8

𝑧2
∑∑

𝑁𝑓

𝑀𝜇

𝑁𝑎
𝑀𝜅
𝜑𝜇𝜑𝜅  

2

𝜅=1

 

2

𝜇=1

−
4

𝑧3
∑∑

𝑁ℎ
𝑀𝜇

𝑁𝑎
𝑀𝜅
𝜑𝜇𝜑𝜅

2

𝜅

2

𝜇

−
2

𝑧3
∑∑

𝑁𝑖
𝑀𝜇

𝑁𝑎
𝑀𝜅
𝜑𝜇𝜑𝜅

2

𝜅

2

𝜇

−
4

𝑧3
∑∑

𝑁𝑗

𝑀𝜇

𝑁𝑎
𝑀𝜅
𝜑𝜇𝜑𝜅

2

𝜅

2

𝜇

−
6

𝑧3
∑∑

𝑁𝑙
𝑀𝜇

𝑁𝑎
𝑀𝜅
𝜑𝜇𝜑𝜅

2

𝜅

2

𝜇

−
4

𝑧3
∑∑

𝑁𝑐
𝑀𝜇

𝑁𝑐
𝑀𝜅
𝜑𝜇𝜑𝜅  

2

𝜅=1

 

2

𝜇=1

−
2

𝑧3
∑∑

𝑁𝑐
𝑀𝜇

𝑁𝑏
𝑀𝜅
𝜑𝜇𝜑𝜅  

2

𝜅=1

 

2

𝜇=1

−
6

𝑧3
∑∑

𝑁𝑑
𝑀𝜇

𝑁𝑐
𝑀𝜅
𝜑𝜇𝜑𝜅  

2

𝜅=1

 

2

𝜇=1

 

6dba 
𝐶6𝑑𝑏𝑎
(𝑠) =

120

𝑧3
∑∑∑

𝑁𝑑
𝑀𝜇

𝑁𝑏
𝑀𝜅

𝑁𝑎
𝑀𝜆
𝜑𝜇𝜑𝜅𝜑𝜆 

2

𝜆

2

𝜅

2

𝜇

−
18

𝑧3
∑∑

𝑁𝑑
𝑀𝜇

𝑁𝑎
𝑀𝜅
𝜑𝜇𝜑𝜅  

2

𝜅=1

 

2

𝜇=1

−
6

𝑧3
∑∑

𝑁𝑓

𝑀𝜇

𝑁𝑎
𝑀𝜅
𝜑𝜇𝜑𝜅  

2

𝜅=1

 

2

𝜇=1

−
72

𝑧2
∑∑

𝑁𝑔

𝑀𝜇

𝑁𝑎
𝑀𝜅
𝜑𝜇𝜑𝜅  

2

𝜅=1

 

2

𝜇=1

−
6

𝑧3
∑∑

𝑁𝑖
𝑀𝜇

𝑁𝑎
𝑀𝜅
𝜑𝜇𝜑𝜅  

2

𝜅=1

 

2

𝜇=1

−
12

𝑧3
∑∑

𝑁𝑘
𝑀𝜇

𝑁𝑎
𝑀𝜅
𝜑𝜇𝜑𝜅

2

𝜅

2

𝜇

−
6

𝑧3
∑∑

𝑁𝑙
𝑀𝜇

𝑁𝑎
𝑀𝜅
𝜑𝜇𝜑𝜅

2

𝜅

2

𝜇

−
6

𝑧3
∑∑

𝑁𝑑
𝑀𝜇

𝑁𝑏
𝑀𝜅
𝜑𝜇𝜑𝜅  

2

𝜅=1

 

2

𝜇=1

−
18

𝑧3
∑∑

𝑁𝑑
𝑀𝜇

𝑁𝑑
𝑀𝜅
𝜑𝜇𝜑𝜅  

2

𝜅=1

 

2

𝜇=1

−
12

𝑧3
∑∑

𝑁𝑑
𝑀𝜇

𝑁𝑐
𝑀𝜅
𝜑𝜇𝜑𝜅  

2

𝜅=1

 

2

𝜇=1

 

6eb 
𝐶6𝑒𝑏
(𝑠) =

4

𝑧3
∑∑

𝑁𝑒
𝑀𝜇

𝑁𝑏
𝑀𝜅
𝜑𝜇𝜑𝜅  

2

𝜅=1

 

2

𝜇=1

 

6fb 
𝐶6𝑓𝑏
(𝑠) = −

6

𝑧3
∑∑

𝑁𝑓

𝑀𝜇

𝑁𝑏
𝑀𝜅
𝜑𝜇𝜑𝜅

2

𝜅=1

2

𝜇=1

+
4

𝑧3
∑

𝑁𝑓

𝑀𝜇
𝜑𝜇

2

𝜇=1

+
1

𝑧3
∑

𝑁𝑖
𝑀𝜇
𝜑𝜇

2

𝜇=1

+
2

𝑧3
∑

𝑁𝑗

𝑀𝜇
𝜑𝜇

2

𝜇=1

+
8

𝑧3
∑

𝑁𝑘
𝑀𝜇
𝜑𝜇

2

𝜇=1

+
9

𝑧3
∑

𝑁𝑙
𝑀𝜇
𝜑𝜇

2

𝜇=1

+
1

𝑧3
∑

𝑁𝑛
𝑀𝜇
𝜑𝜇

2

𝜇=1

+
1

𝑧3
∑

𝑁𝑜
𝑀𝜇
𝜑𝜇

2

𝜇=1

+
1

𝑧3
∑

𝑁𝑝
𝑀𝜇
𝜑𝜇

2

𝜇=1

+
2

𝑧3
∑

𝑁𝑞
𝑀𝜇
𝜑𝜇

2

𝜇=1

+
2

𝑧3
∑

𝑁𝑠
𝑀𝜇
𝜑𝜇

2

𝜇=1

+
3

𝑧3
∑

𝑁𝑡
𝑀𝜇
𝜑𝜇

2

𝜇=1

 

6gb 
𝐶6𝑔𝑏
(𝑠) = −

12

𝑧3
∑∑

𝑁𝑔

𝑀𝜇

𝑁𝑏
𝑀𝜅
𝜑𝜇𝜑𝜅

2

𝜅=1

2

𝜇=1

+
18

𝑧3
∑

𝑁𝑔

𝑀𝜇
𝜑𝜇

2

𝜇=1

+
3

𝑧3
∑

𝑁𝑙
𝑀𝜇
𝜑𝜇

2

𝜇=1

+
3

𝑧3
∑

𝑁𝑟
𝑀𝜇
𝜑𝜇

2

𝜇=1

+
3

𝑧3
∑

𝑁𝑡
𝑀𝜇
𝜑𝜇

2

𝜇=1

 

6bbb 
𝐶6𝑏𝑏𝑏
(𝑠) = −

16

3𝑧3
∑∑∑

𝑁𝑏
𝑀𝜇

𝑁𝑏
𝑀𝜅

𝑁𝑏
𝑀𝜆
𝜑𝜇𝜑𝜅𝜑𝜆

2

𝜆

2

𝜅

2

𝜇

+
2

𝑧3
∑∑

𝑁𝑏
𝑀𝜇

𝑁𝑏
𝑀𝜅
𝜑𝜇𝜑𝜅

2

𝜅=1

2

𝜇=1

+
4

𝑧3
∑∑

𝑁𝑐
𝑀𝜇

𝑁𝑏
𝑀𝜅
𝜑𝜇𝜑𝜅

2

𝜅=1

2

𝜇=1

+
12

𝑧3
∑∑

𝑁𝑑
𝑀𝜇

𝑁𝑏
𝑀𝜅
𝜑𝜇𝜑𝜅

2

𝜅=1

2

𝜇=1

+
4

𝑧3
∑∑

𝑁𝑒
𝑀𝜇

𝑁𝑏
𝑀𝜅
𝜑𝜇𝜑𝜅

2

𝜅=1

2

𝜇=1

+
4

𝑧3
∑∑

𝑁𝑓

𝑀𝜇

𝑁𝑏
𝑀𝜅
𝜑𝜇𝜑𝜅

2

𝜅=1

2

𝜇=1

+
12

𝑧3
∑∑

𝑁𝑔

𝑀𝜇

𝑁𝑏
𝑀𝜅
𝜑𝜇𝜑𝜅

2

𝜅=1

2

𝜇=1

−
1

3𝑧3
∑

𝑁𝑏
𝑀𝜇
𝜑𝜇

2

𝜇=1

−
2

𝑧3
∑

𝑁𝑐
𝑀𝜇
𝜑𝜇

2

𝜇=1

−
8

𝑧3
∑

𝑁𝑑
𝑀𝜇
𝜑𝜇

2

𝜇=1

−
4

𝑧3
∑

𝑁𝑒
𝑀𝜇
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𝑀𝜅
𝜑𝜇𝜑𝜅  

2

𝜅=1

 

2

𝜇=1
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4 Results 

The Lattice Cluster Theory in its original form (1) can describe the properties of long 

chain molecules well. For this it requires only one parameter set for all possible iso-

mers of a molecule, which describes their properties. This proves to be very advan-

tageous because many isomers are difficult to separate due to their similar chemical 

and thermodynamic properties. In the case of smaller molecules, this form reaches 

its limits. It can hardly distinguish between the individual isomers of small molecules. 

The extensions to the model made in this work should improve the applicability in 

these cases.  

In order to recognize the effects of the extension, exactly such components are there-

fore to be investigated. Pentane (17) (18) (19) (20) (21), hexane (17) (22) and octane 

(17) (20) are investigated. For pentane, the components examined are n-pentane 

and 2,2-dimethylbutane. All three were calculated with the same parameter set, 

which was fitted to the n-pentane. For hexane, the isomers are n-hexane, .2-

methylpentane, 3-methylpentane, 2,2-dimethylbutane, 2,3-dimethylbutane. Here the 

parameter set was created with n-hexane. The three isomers studied from octane are 

n-octane and 3-methylheptane. As with the other components, the unbranched iso-

mer was used to create the parameter set. The unbranched isomers were chosen 

because they are the simplest to isolate. The experimental determination of their ma-

terial data is therefore the least problematic.  

The vapour pressure and the liquid density are used as substance properties to ad-

just the parameter set. The vapour pressure of the component is derived from the 

expression Eq. 4.1. By inserting the normalized free Helmholtz energy and substitut-

ing nµ with the volume fraction, the expression becomes Eq. 4.2. The density of the 

liquid phase can be described by the expression Eq. 4.3.  
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−𝑝 = (
𝜕𝐹

𝜕𝑉
)
𝑛𝑖,𝑇

 Eq. 4.1 

𝑝 = −
1

𝜎3
∗ (𝑓 − 𝜑𝑖 ∗

𝜕𝑓

𝜕𝜑𝑖
) Eq. 4.2 

𝜌𝑙 =
𝜑𝑖
𝜎3
∗
𝑀𝑀𝑖
𝑁𝐴

 Eq. 4.3 

In Table 7 the substance properties used for the generation are listed. This parame-

ter set is then used to calculate the other isomers. For the calculation of the sub-

stance data the individual isomers differ only in the frequency Ni of the diagram in the 

molecule . This indicates how often the respective structure is found in a molecule. 

To satisfy the model equations, the thermodynamic equilibrium conditions of pressure 

and chemical potential are solved. The pressure is solved again with the expression 

Eq. 4.2. For the chemical potential, the expression Eq. 4.4 is used, which becomes Eq. 

4.5 by substituting the individual variables. 

 

𝜇𝑖 = (
𝜕𝐹

𝜕𝑛𝑖
)
𝑉,𝑇

 Eq. 4.4 

𝜇𝑖 = 𝑓 + (1 − 𝜑𝑖) ∗
𝜕𝑓

𝜕𝜑𝑖
 Eq. 4.5 
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Table 7: Experimental data of the isomers used for the parameter fitting 

n-Alkanes Temperature [K] 
Pressure [Pa] 

Liquid density 
[kg/m³] 

Reference 

n-Pentane 197 133.3  (23) 

 223.1 1333  

 260.6 13330  

 273.15  719.4  

 293.15  704.2 

 313.15  684.9 

n-Hexane 219.3 133.3  (23) 

 289 13330  

 341.9 101300  

 343.15  611.2  

 423.15  519.1 

 503.15  332.7 

n-Octane 259.2 133.3  (23) (24) 

 292.4 1333  

 338.9 13330  

 273.15  719.42  

 293.15  704.23 

 333.15  671.14 

 

The modified LCT is compared with the underlying versions of Freed (1) and Zim-

mermann (6). Thereby the effects of the diagrams with six bonds shall be observed. 

Since the modified LCT considers the term of energy with the energetic mean field 

alone, this term is also applied to the other versions for a better comparison of the 

models. All energetic diagrams, which are not included in the energetic mean field, 

are neglected. Three different versions of the new modified LCT were considered and 
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compared with two modified versions by Zimmermann (6) and the original modified 

LCT (1). These inspected models are listed in. 

 

Table 8 : All inspected cases of the model in the thesis 

 max. contribution 

of diagram 

max. number of  

bonds 

Reference 

Case 1 ε3z-3 6  

Case 2 ε2z-3 6  

Case 3  ε z-3 6  

Case 4 ε2z-3 4 Zimmermann et al. (6) 

Case 5 ε z-3 4 Zimmermann et al. (6) 

Case 6 ε2z-2 4 Freed et al. (1) 

 

 

For some inspected cases and corresponding component, a set of parameters is fit-

ted. All three parameter, Side length of lattice cell σ, Interaction parameter εii,1 and 

Interaction parameter εii,2, are listed in Table 9.  
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Table 9 : The parameter sets of Pentane, Hexane and Octane used for LCT 

Component Model σ [Å] εii,1 εii,2 

Pentane Case 1 2.89364 116.463 254.936 

 Case 4 2.91483 84.3035 496.323 

 Case 6 2.93205 81.1779 523.992 

Hexane Case 1 2.83018 105.911 310.068 

 Case 2 2.90800 64.8938 726.101 

 Case 3 3.31947 89.2108 238.997 

 Case 4 2.90063 80.8263 535.401 

 Case 5 3.21217 109.064 196.451 

 Case 6 2.90928 80.1492 539.923 

Octane Case 1 2.68332 94.2913 399.333 

 Case 4 2.63272 131.629 244.981 

 Case 6 2.75725 72.8886 652.756 

 

By directly comparing the calculated vapour pressures for the isomers of hexane with 

the experimental data, their modelability with the different models can be illustrated. 

Figure 10, Figure 11 and Figure 12 show the vapor pressures in the range 200 to 350 

K for all five isomers. Here all three possibilities for modelling the energetic mean 

field were compared. In all three cases the curve of the n-hexane deviates only slight-

ly from the experimental values. This is explained by the fact that the parameter set 

was fitted with n-hexane. For the remaining isomers there is an increasing deviation 

of the curves from the experimental data. It can be observed that with increasing de-

viation of the experimental values from the values of the n-hexane, the deviation of 

the model also increases. The calculated vapour pressures of the isomers decrease 

while the experimental ones increase. This results in an inverse order of the vapour 

pressures. Only the two isomers 2-methylpentane and 3-methylpentane are shown in 

the correct order. This effect is strongest in the model which represents the energetic 

part, only with the χ function, which corresponds to a maximum contribution of ε z-3.  
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With the increase of the ε exponent and thus included diagrams the error decreases. 

When directly comparing the modelling of the hexane isomers with the adapted form 

of the Freed Model in Figure 10 with the newly extended form ε3z-3 in Figure 9,  the 

former hardly distinguishes between the isomers. The results of the model according 

to Freed (1) all clearly follow the results for the n-hexane, which was used to fit the 

parameters. 

 

 

 

Figure 9: The vapor pressure of all isomers of hexane calculated with the 

modified model with six bonds and ε3z-3  (23) (25) 
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Figure 10: The vapor pressure of all isomers of hexane calculated with the modified model according to Freed (1) (23) 

(25) 

Figure 11: The vapor pressure of all isomers of hexane calculated with the modified model according to Zimmermann 

(6) (23) (25) 
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As with the results of the extended models, there is a deviation of the results in the 

wrong direction. It has a much smaller error than the extended model, but its results 

differ less. When increasing the resolution by the range of 10 000 Pascal it becomes 

clear that the order is reversed in the same way as with the other models. 

The modified form of the model developed by Zimmermann (6) with a maximum con-

tribution of ε2z-3 and diagram with up to four bonds can distinguish more clearly be-

tween the individual isomers when calculating the vapour pressure curve. However, 

like the other models, it also deviates in the wrong direction. The resulting error is 

considerably larger than that of the modified Freed model, but smaller than the error 

of the extended model. In the comparison, the error of model of Zimmermann et al. 

(6) version with the χ-function for the energy terms is noticeably larger.  

 

 

 

 

Figure 12: The vapor pressure of all isomers of hexane calculated with the modified model according to Zimmermann  

with the energetic contribution described with the chi-function (6) (23) (25) 
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The direct comparison of the vapour pressure curves of the isomer 2,2-

dimethylbutane is shown in Figure 13 for all models considered. Here it is clearly vis-

ible that the deviation from the experimental data is smallest for the modified model 

of Freed, followed by the modified model of Zimmermann, the extended model with a 

maximum contribution of ε3z-3, the one with a maximum contribution of ε2z-3 and the 

one using the χ-function. For all models, the error also increased significantly with 

increasing temperature. The relative error on the other hand decreases for models 

according to Freed (1) and Zimmermann (6) and is relative constant for the expanded 

models. This can be seen in Figure 14. 

  

The same trend in predictive power can be observed in the Figure 16 and Figure 15 

for isomers 2.2 dimethylpropane and 3-methylheptane. Here it can also be observed 

that the behaviour also occurs at the lower temperatures with 2.2-dimethylpropane. 

When comparing the vapour pressure curves for the isomer n-hexane, which was 

used for the creation of the parameter sets, almost all curves can follow the experi-

mental data well. Only the models using the χ function deviate slightly from the data 

sets. 

Figure 13: The vapor pressure of 2.2-Dimethylbutane 

calculated with all inspected models (23) 
Figure 14: The behavior of the relative error for all mod-

els for 2,2-Dimethylbutane 
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Figure 15: The vapor pressure of 3-Methylheptane calcu-

lated with the adjusted models according to Freed and 

Zimmermann as well as with expanded model (23) 

Figure 16:The vapor pressure of 2.2-Dimethylpropane 

calculated with the adjusted models according to Freed 

and Zimmermann as well as with expanded model (20) 

(23) (26) 



5 Interpretation 70 

 

5 Interpretation 

The results of the individual models show that the new extended models have a larg-

er error than the previous models. This can lead to the conclusion that the underlying 

assumption of the work is incorrect. An extension of the entropic diagrams to dia-

grams with up to six bonds does not increase the predictive power of LCT for small 

molecules. It even leads to a deterioration of the predictive power. However, the fact 

that none of the considered models with the energetic mean field alone can correctly 

predict the sequence must also be taken into account.  According to Zimmermann (6) 

his model with a contribution of ε2z-3 is largely able to represent the vapour pressures 

in the correct order. In this case, the deviation that increases with temperature can be 

explained by the neglection of the energy diagrams. This is also supported by the 

fact that the additional omission of the diagrams with ε2 leads to a further shift of the 

vapor pressure curves in the wrong direction. This is also supported by the observa-

tion that the error of the extended models increases with less energy diagrams con-

sidered. The error may therefore be due to neglecting the energetic diagrams. The 

diagrams which include both bonds and interactions. The assumption that entropic 

diagrams and the energetic mean field are sufficient to detect an improvement of the 

modelability of small molecules can be rejected. 

The energetic diagrams additionally introduce a multitude of terms with ε of different 

orders. Since the interaction parameter is a function of temperature, as can be seen 

with the function Eq. 3.59, these diagrams bring with them an additional temperature 

dependence. Their omission can partly explain the temperature dependence of the 

error. 

When considering the fitted parameters for the individual models in Table 9 the lattice 

size σ decreases with increasing molecule size.  However, the individual segments of 

the components are quite similar. This would correspond to a similar grid size. In the 

case of the models under consideration, the parameters possibly compensate for the 

errors caused by the missing energy dependencies. Especially for diagrams with 

larger molecules the mean field is no longer sufficient, and the error is compensated 

by the parameters. 

Compared to Freed, the extended models are also able to distinguish clearly be-

tween the individual isomers. While the structure of the isomers has only a minimal 

influence on the modelability in the former versions, is the influence clearly visible in 
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the extended models. With the extended LCT the structure of the small molecules 

has an influence on the calculated results. Without considering the remaining ener-

getic diagrams it cannot be determined whether the extension has a better predictive 

power for small molecules. 

The next considered step to improve the model would therefore be the development 

of the energetic diagrams up to a contribution from ε3z-3.  
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6 Summary 

Current forms of LCT are already well suited for modelling large molecules such as 

polymers. However, in the area of smaller molecules, such as hexane, it is not really 

able to distinguish between the individual isomers. This limits their applicability for 

many systems. The introduction of diagrams with up to six bonds should make it pos-

sible to distinguish between the individual isomers of these components. For this 

purpose, 46 new entropic diagrams have been introduced, 14 that consist of a single 

structure and 32 diagrams that consist of multiple structures. When calculating their 

contributions, the lattice-dependent and the combinatorial components were deter-

mined separately. For the lattice-dependent contribution only contributions with a z-

exponent of at least z-3 were considered. Contributions with a lower order were ne-

glected. In addition, the methodology for determining the number of ways to contract 

a diagram has been standardized. For the combinatorial contribution of the individual 

diagrams the counting methodology introduced by Nemirovsky (15) is used. This 

leads to the omission of diagrams which correct errors in the previous counting 

method. However, it leads to the introduction of so-called correction diagrams (CorD) 

in the combinatorial part. Each of these has a pre-factor for which a method for de-

termination is found. The energetic diagrams of the LCT are presented with the ener-

getic mean field. This contains only energetic diagrams, which consist exclusively of 

interaction bonds. In order to observe the effects of omitting the remaining energetic 

diagrams, the mean field is described by different numbers of diagrams. The extend-

ed LCT thus has a maximum contribution of ε3z-3. When calculating the vapour pres-

sures of the isomers of pentane, hexane and octane, one obtains clearly different 

results for the individual isomers. When comparing with the current form of the LCT, 

where the energy is also expressed only by the mean field, the error for the expand-

ed form is larger for the individual isomers. Their results deviate more from the exper-

imental data. When looking at the influence of the energetic diagrams, it becomes 

clear that this can be explained by omitting most of them. The next step in the exten-

sion of the LCT would be the inclusion of all these energetic diagrams. 
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7 Appendix 

7.1 Symbols 

Variables 

Ci  Contribution of a diagram 

DB  Lattice dependent contribution 

dB  Enumerator of lattice dependent  contribution 

e energetic contribtion  

F Helmholtz energy [J] 

f Normalized Helmholtz energy [J/segment] 

f1 First binomial coefficiant for α 

f2 Second binomial coefficiant for α 

fB,c Pre-factor for contracted diagram 

fcd Pre-factor for formable correction diagrams 

fcd,i Pre-factor of correction diagram from diagram i 

fcu Pre-factor for cumulants 

feq Pre-factor for equal structures  

fii Mayer- f function 

k Number of components 

kB Boltzmann constant [J/K] 

ki Number of merged vertices on choosen vertex 

kln Coefficient of cumulant deriving from series development 

Mi Number of segments in molecule 

MM Molare mass [kg/mol] 

N`v Number of vertices in contracted diagram 

NA Avogadro constant [1/mol] 

nB,m Number of ways to arrange vertices in contracted diagram 
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nd Number of different diagrams in cumulant 

ndf Number of the most common diagram in cummulant 

ndf2 Number of the second most common diagram 

nµ Number of molecules 

Ni Number of possible ways to place structure in the chain 

Ni,j Number of of positions lost in j through i 

Nl Number of lattice sides 

no Number of ways to place the similar structure 

np Number of states a structure can take in one position 

npos Number of identical positions 

Nv Number of vertices in cluster diagram 

p Pressure [Pa] 

r Position vector of lattice side 

RB,c Contribution of the contracted diagram 

S Entropy [J/K] 

s  Number of symmetries in appearance 

sD Symmetry number 

T Temperature [K] 

Z Sum of states 

z Lattice coordination number 

α Denominator of lattice dependent contribution 

αi Position vector to neighbor side 

γD Number of ways to choose the segments 

γi Combinatoral contribution 

εii Interaction parameter for Interaction energy 

εii,1 Parameter 1 for the interaction parameter 

εii,2 Parameter 2 for the interaction parameter 
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μi chemical potential [J/mol] 

ρl Density of liquid phase [kg/m3] 

σ Side length of one lattice cell [Angstrom] 

φi Volume fraction of component 

  

Subscripts and superscripts 

i Placeholder  for other index 

μ; κ; λ; τ; ω; υ Counter for the components 

a…u  Respective structure 

S Volume contraction condition 

mi Counter for molecules of one component 

αi Counter for Segments in one molecule 

βi Counter for all directions of lattice 

MF mean field  

B,m entropic diagram 

B,e energetic diagram  

ε order of energetic contribution 

m counter of bonds in contracted diagram 

i1 …im counter for sides of lattice 

j counter for structures 

l  counter for structures in contracted diagram 

k counter for positions in appearance 

ax counter of symmetry axis 

CorD Correction diagram 

χ chi function to model energy 

V constant volume 
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