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verfasst, andere als die angegebenen Quellen/Hilfsmittel nicht benutzt, und
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Abstract

The aim of this thesis is to compare different model-based control concepts
applied to a fan driven pendulum. The laboratory setup of the pendulum
is analyzed and a mathematical model is determined using measurement
data from experiments. The mathematical model forms the basis for the
used control concepts. A cascaded control system is used, whereby the inner
control circuit controls the speed of a Brushless DC-Motor (BLDC) and
the outer circuit controls the angle of the pendulum arm. Three nonlinear
control concepts namely, the exact linearization, backstepping and adaptive
backstepping are investigated. The results show that adaptive backstepping
provides the best control behavior. It turns out that the achievable accuracy
only can be improved if more accurate measurement devices are used.

Keywords: model-based control, nonlinear control, backstepping
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Kurzfassung

Das Ziel dieser Arbeit ist es, verschiedene modellbasierte Regelungskonzepte
zu vergleichen und mögliche Verbesserungen des derzeit verwendeten Pro-
peller betriebenen Pendels aufzuzeigen. Der bestehende Laboraufbau wird
analysiert und die mathematischen Zusammenhänge werden anhand von
Experimenten ermittelt. Das ermittelte mathematische Modell bildet die
Grundlage für die verwendeten Regelungskonzepte. In dieser Arbeit wird
ein kaskadierter Regelkreis vorgeschlagen. Der innere Regelkreis regelt
die Drehzahl, des zur Aktuierung des Pendels verwendeten Brushless DC-
Motors (BLDCs) und der äußere Kreis regelt den Winkel des Pendelarms.
Für die Winkelregelung werden die drei nichtlinearen Regelkonzepte: ex-
akte Linearisierung, Backstepping und adaptives Backstepping untersucht.
Die Ergebnisse zeigen, dass das adaptive Backstepping das beste Regelver-
halten erreicht. Um den Toleranzbereich der resultierenden Regelung zu
reduzieren, muss die Genauigkeit der Winkel- und Geschwindigkeitsmes-
sung erhöht werden.

Keywords: modelbasierte Regelung, nichtlineare Regelung, Backstepping
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1. Introduction

1. Introduction

The first time probably most of us have heard about the pendulum equation
was in secondary school physics class. It is a common topic to explain
oscillation processes, from harmonic to damped harmonic oscillation [1,
Chap. 15.5, 15.6]. In the field of control engineering, the pendulum is a
very popular model for testing control concepts and investigating their
performance. Examples are: The inverse pendulum [2] and the propeller-
levitation arm model [3].

The aim of this work is to combine the broad knowledge of physics, pro-
gramming, mathematics and control engineering to provide a functioning
propeller-levitated arm model, which is called Fan Driven Pendulum (FDP)
in this thesis.

With the FDP, different linear and nonlinear control concepts and their
performance can be evaluated. Examples for possible control concepts are:
PID-control, exact linearisation, backstepping, sliding mode control [4], etc.
In addition, this thesis offers the opportunity to bridge the gap between
computer simulation and a real-life problem with the associated challenges.
This can help students to motivate themselves for more complex topics in
the field of nonlinear control engineering and provides a platform to test
what they have learned [5]. A further motivation is to provide a robust
hands-on model for students at the Institute of Automation and Control at
TU-Graz.

This work is divided into five sections. The first section gives a brief overview
of the thesis. In the second part, the mechanical structure, the physically
occurring effects and the resulting mathematical model are presented. The
third chapter discusses the methods used and the necessary theory. In the
fourth part, the simulation and the implementation of the control on the
real model are examined. At last, the results of this thesis are discussed.
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2. System Description

2. System Description

In this chapter, all facts relevant to the model are presented. These are: the
mechanical structure, the used components, the occurring physical effects
and the resulting mathematical system description.

2.1. Model setup

The mechanical model of the FDP is provided by the Institute of Automation
and Control. The scheme of the FDP is shown in Figure 2.1 .

Figure 2.1.: Scheme of the FDP. All distances needed for the calculation of the model
parameters are provided in this scheme. ha is the distance to the ground, ls is
the distance to the center of gravity, lp is the distance from the pivot point to
the mounted motor and la the length of the pendulum arm.

2



2. System Description

All necessary distances for the system description are shown in this figure.
The height from the ground to the pivot point is ha. The distance ls represents
the distance from the pivot point to the center of gravity of the arm. la is the
length of the pendulum arm. The BLDC motor is mounted at the distance
lp to the pivot point. This motor has an APC propeller connected to its
shaft. The thrust necessary to lift the pendulum arm is generated by the
rotating propeller. The BLDC motor needs an AC voltage to spin. The MCU
provides the ESC with the necessary Pulse Width Modulation (PWM) signal
to generate the AC voltage. The MCU used for measuring and control
purposes is a 32 bit 100MHz AMR Cortex-M3 micro controller from NXP.

A hall sensor is used to measure the angle. Due to the mechanical construc-
tion, a direct measurement is not possible, therefore an indirect measure-
ment with a gear factor of four is used. The speed of the rotor is measured
with a phase sensor and an infrared sensor. Since the infrared sensor has a
limited measuring range, high speeds cannot be measured and therefore it
is not used for control. The relation between the actual speed of the rotor
and the speed measured by the phase sensor is presented in Section 2.3.

The only mechanical changes realized during the elaboration of the present
thesis were: the replacement of the bearing from the pivot point of the
model, and the extension of the range of the angular limitations. The range
of the moving arm goes from 67° to 150°.

Conversely to the few mechanical changes, the provided C++ code needed
a complete makeover. The coding for the FDP software is done in an on-
line development environment from Mbed. Mbed is a rapid prototyping
platform for embedded systems, which provides necessary libraries for the
used components. The maximum speed of the serial connection is limited
to a Baudrate (BR) of 115200 bauds due to the imprecise oscillator of the
MCU. This speed is sufficient for the exchange of the measured data.

Detailed information regarding the used components can be found in Ap-
pendix A.1.

3



2. System Description

2.2. Mathematical Model

As starting point for the mathematical model, the pendulum equation from
[6, P. 7] is taking under consideration.

ẋ1 = x2

ẋ2 = − g
ls

sin(x1)−
kR

m
x2 +

1
m · l2

s
T

(2.1)

In Equation 2.1, x1 is the angle ϕ, x2 is the angular velocity ω and ẋ2 is the
angular acceleration α. The variable g is the gravitational acceleration. The
mass of the pendulum is represented with the variable m, kR is the friction
coefficient and T represents the torque provided by the propeller.

The moment of inertia is defined in Equation 2.2

J = m · l2
s (2.2)

The torque T from Equation 2.1 is generated by the rotating propeller. The
following relations for APC-Propeller were determined by experiments, as
described in [7].

cp = 0.0856 · H
dp
− 0.0091 (2.3)

In Equation 2.3, cp is the resulting power factor of the propeller, H is the
pitch of the propeller and dp is the diameter of the propeller.

Pm = cp · ρ ·
n
60

3
· d5

p (2.4)

The mechanical power Pm is calculated in Equation 2.4, where cp is the
power factor, ρ is the air density, n is the speed of the propeller in 1

min and

4



2. System Description

dp is the diameter.

Fp = 0.67 · 3

√
ρ

2
· π · d2

p · P2
m

= 0.67 · ρ 3

√
π

2
c2

p(
n
60

)2 · d4
p

(2.5)

The thrust Fp, generated by the propeller, is calculated with Equation 2.5.

The generated thrust Fp is proportional to the square of the speed and to
the fourth power of the radius of the propeller.

• Fp ∝ n2

• Fp ∝ r4

The mechanical power needed to turn the propeller, is proportional to the
third power of the speed and the fifth power of the radius of the propeller.

• Pm ∝ n3

• Pm ∝ r5

Inserting Fp from Equation 2.5 for the thrust T in Equation 2.1 yields
Equation 2.6.

ϕ̇ = ω

ω̇ = − g
ls

sin(ϕ)− kR

m
ω +

1
m · l2

s
· 0.67 · ρ 3

√
π

2
c2

pn2 · d4
p · lp

(2.6)

Another physical effect that occurs due to the rotation of the propeller has
to be added to Equation 2.6. The so called ground effect, also referred to
as hovering effect in the literature, is increasing the thrust of the propeller
in the area close to the ground (see [8]). The thrust is increased by an air
cushion generated by the rotation of the propeller. The ground effect is
described by Equation 2.7.

Tg

T∞
=

1

1− r2

16·z2

(2.7)

5



2. System Description

The variables used in the previous equation are the thrust Tg, which repre-
sents the thrust increased by the ground effect; the thrust T∞, which is the
generated thrust by the propeller without the ground effect; and z which is
the distance to the ground.

The current distance z to the ground of the FDP depends on the angle ϕ
and is described in Equation 2.8.

z = ha − la · cos(ϕ) (2.8)

ge(ϕ) =
16 · (ha − la · cos(ϕ))2

16 · (ha − la · cos(ϕ))2 − r2 (2.9)

The ground effect ge(ϕ) of the model can be seen in Equation 2.9. Further-
more, the effect in respect to the elevation of the arm can be seen in Figure
2.2. The effect has a big impact on the thrust near the ground. If the distance
to the ground is smaller than the radius of the propeller, the thrust increases
by up to 28%. The impact of the ground effect decreases with increasing
distance to the ground. At the point where z reaches twice the diameter of
the rotor, the increase of the thrust is below 0.5% and can be neglected.

0 5 10 15 20 25 30 35 40 45 50 55 60
0

5

10

15

20

25

30

distance to ground in cm

in
cr

ea
se

of
th

ru
st

in
%

Figure 2.2.: The Ground effect of the FDP with respect to the distance between the propeller
and the ground.
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2. System Description

The ground effect is taken into account by multiplying the thrust Fp from
Equation 2.5 with ge(ϕ) (Equation 2.9). Inserting the resulting thrust for the
thrust T in Equation 2.1 yields

ϕ̇ = ω

ω̇ = − g
ls

sin(ϕ)− kR

m
ω +

16 · (ha − la · cos(ϕ))2

16 · (ha − la · cos(ϕ))2 − r2 ·
1

m · l2
s
· 0.67 · ρ 3

√
π

2
c2

pn2 · d4
p · lp

(2.10)

which can be written as

ẋ1 = x2

ẋ2 = −c1 · sin(x1)− c2 · x2 + ge(x1) · c3 · u
(2.11)

The manipulation variable u = n2. The constants c1, c2 and c3 can be found
in Equation 2.12.

c1 =
g
ls

c2 =
kR

m

c3 =
1

m · l2
s
· 0.67 · ρ · d4

p
3

√
π

2
c2

p · lp

(2.12)

2.3. Relation between the real speed and the
measured speed of the propeller

Since the built-in infrared sensor can only measure low speeds and the phase
sensor can not measure the real speed but the speed of the rotating field,
the relationship between the measured speed of the rotating field and the
speed of the rotor is investigated in this section. This relation is determined
experimentally. For this purpose, the measurement of the infrared sensor
was verified with an external tachometer to be sure to measure the real
speed of the propeller. Due to the two bladed rotor, two pulses are measured

7



2. System Description

per revolution by the infrared sensor. The phase sensor measures six pulses
per revolution due to the six poles of the BLDC.

The speed relevant for controlling the angle ϕ is in the range from 160 to
175 Revoltion per Second (RPS).

The MCU is connected to Matlab via a serial bidirectional connection. The
BR for the serial connection is set to 115200 bauds and the parity bit is odd.
The value of the PWM-signal used to control the BLDC is sent from Matlab
to the MCU. The acquired data is the measured speed of the infrared sensor
and the phase sensor. Furthermore, the PWM-signal and the time are added
to the measured data and are sent to the PC.

For this experiment, the speed of the propeller is calculated every second by
adding up the recorded pulses and dividing them by the number of pulses
per revolution, depending on the sensor.

135 140 145 150 155 160 165 170 175 180 185
115

120

125

130

135

140

145

150

155

160

Phase-sensor in rps

In
fr

ar
ed

se
ns

or
in

rp
s

fitted
measured

Figure 2.3.: Relation of the real speed of the propeller and the measured speed. The fitted
curve displayed in blue and the measured points are given in red.

This experiment shows a linear relationship (Figure 2.3) between the real
speed of the propeller and the measured speed of the phase sensor. The slope
k and the offset d of the linear relation was computed from the measured
data in Figure 2.3. It turned out that the offset d can be neglected due to its
low value of d= -0.016RPS because the accuracy of speed measurement by

8



2. System Description

the phase sensor is ± 0.166RPS when calculated every second. The speed of
the propeller nir can be calculated from the measured speed of the rotating
field nt f by:

nir = k · nt f

nir = 0.8568 · nt f
(2.13)

2.4. Transfer function of BLDC-Motor and ESC

The open loop method was used to determine the behavior of the BLDC
combined with the ESC. The input of the system is a PWM-signal and the
output is the speed of the propeller. The connection between the MCU
and the PC was established with a Matlab script. A PWM value of 15% is
sent to the MCU, the BR is set to 115200 bauds and the parity bit is odd.
300 samples were measured for each step response, which correspond to a
time of approximately 3.5s. This process was repeated 20 times. The mean
of the measured step responses is calculated and is used for the further
evaluation.

From the measured data, it can be seen that the transfer function has a PT1

behavior with a time delay.

This behavior is described in Equation 2.14 where G(s) is the transfer
function, K is the gain, TPT1 is the time constant and Td is the time delay of
the system.

G(s) =
y(s)
u(s)

=
K

1 + s · TPT1
· e−s·Td (2.14)

The impulse response g(t) in the time domain is given by Equation 2.15.

g(t) = K · e−
t−Td
TPT1 · δ(t− Td) (2.15)

The corresponding step response n(t) is shown in Equation 2.16.

n(t) = K · (1− e−
t−Td
TPT1 ) · σ(t− Td) (2.16)

9



2. System Description

The 63%-rule presented in [9] was used to evaluate the parameters K and
TPT1 of the transfer function.

The results of the evaluation can be seen in Figure 2.4. The parameter

0 0.2 0.4 0.6 0.8 1 1.2 1.4
0

20

40

60

80

100

120

140

160

180

t in s

n
in

rp
s

meas

Figure 2.4.: The open loop method is used to determine the System parameters of the
BLDC with the ESC. The mean of the 20 measured step responses is the blue
curve. The red straight line is used to determine the time constant with the 63%
method.
The resulting system parameters are: Td = 184.1ms, K15 = 175.2 and T15 =
101.3ms

K15 = 175.2 must be converted due to the fact that no unit step has been
used to obtain the step response.

The conversion can be seen in Equation 2.17.

K =
K15

15
· 100 = 1168 (2.17)

In Figure 2.5, the mean of the measured signals and the step response can
be seen.

The ripple of the measured signal, before the curve starts to rise, can be
explained by measurement uncertainties due to the fast evaluation of the
speed of the phase sensor (10ms).
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Figure 2.5.: The mean of the 20 measured step responses is displayed in the blue curve.
The red curve is the step response of the transfer function of the BLDC by 15%
PWM.

The transfer function which is used for the simulation of the speed controller
can be seen in Equation 2.18.

G(s) =
1168

1 + s · 0.1013
· e−s·0.1841 (2.18)

An unexpected result of that experiment is that the BLDC and ESC have
a varying time delay Td. The range of the time delay is 180ms to 245 ms.
Most time delays occurred in the range of 180 ms to 191.5ms. This is also
reflected in the calculated mean of the time delay Td= 184.1ms.

2.5. Model verification

The starting point for the evaluation is the assumption that the pendulum
arm is in balance. Balance means that the angle of the arm is constant which
yields to the following relation (see Equation 2.19).
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2. System Description

x1 = const⇒ x2 = 0, ẋ2 = 0 (2.19)

The following relation is obtained by combining Equation 2.19 with Equation
2.11:

u =
c1

c3 · ge(x1)
· sin(x1) (2.20)

The mathematical model is verified with an experiment, where a Smith
Predictor (SP) is implemented on the MCU in order to control the speed of
the propeller. Due to the fact that the transfer function of the BLDC is of
first order, the used controller in the SP is a PI-controller (see Section 3.3).
The parameters of the controller are:

ki = 0.00265
kp = 0.00072

The range of the reference values of the speeds is between 160 RPS and
176 RPS. Furthermore, two points with an angle greater than 90 degrees
are recorded. For this experiment, the evaluation time Ts of the speed is set
to 170ms and the sample time Tcn of the controller is 5ms. The evaluation
time Ts is the time used to determine the speed. The recorded pulses from
the sensor are divided by the number of pulses per revolution and the
evaluation time to obtain the speed.

n =
pulses
6 · Ts

(2.21)

The connection between the MCU and the PC was established with a Matlab
script. The reference value of n is sent to the MCU, the BR is set to 115200

bauds and the parity bit is odd. Three runs of this experiment were executed.
For each run, 600 samples per reference value are recorded.

In this experiment, no perfect resting position is found. For the evaluation,
the points with constant speed are determined and the corresponding angles
are summed up and averaged. These values are used to approximate the
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2. System Description

function n(ϕ) by a polynomial of third order using the Matlab command
polyfit.

During the verification process it was found that the mathematical model
(Equation 2.10) had to be adapted to reality. It was found that the transition
where the force must decrease to keep the arm in balance is 105 degrees
instead of 90 degrees as expected. For this shift of the peak of the sine to
the right side, ϑ = 15° is introduced. This behavior is probably due to the
geometry of the pendulum arm used. In addition, the calculated power
factor cp of the propeller was adjusted until the approximated curve and the
mathematical model overlapped. cp was changed from the calculated value
cp = 0.0694 to a value of cp = 0.0498. The adapted model is given by:

ẋ1 = x2

ẋ2 = −c1 · sin(x1 − ϑ)− c2 · x2 + ge(x1) · c3 · u
(2.22)

The resulting relation between the angle and the speed of the propeller is
shown in Figure 2.6.

To illustrate the influence of the ground effect, the adjusted model was
plotted with and without the ground effect. This influence can be seen in the
range from 70° to 100° by the occurring gap between the blue and red line.
The yellow curve is the approximated model obtained from the measured
data. The red curve is the adjusted mathematical system model to fit to
the approximated curve including the ground effect. The blue line is the
adjusted mathematical system without the ground effect. The black dots
are the measured data and the green dots are the measured data which
are used for the approximation. The two black dots were not used for the
approximation because the pendulum arm is not moving free in this area.

2.6. Determination of the friction coefficient kR

Starting point for the determination of the friction coefficient is the following
second order differential equation (see [10, P. 59-61]).

J · ˙̇ϕ + kR · ϕ̇ · l2
s + m · g · sin(ϕ) · ls = 0 (2.23)
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Figure 2.6.: Approximated model of the FDP. The yellow curve is the approximated model
obtained from the measured data. The red curve is the adjusted mathematical
system model to fit to the approximated curve including the ground effect. The
blue line is the adjusted mathematical system without the ground effect. The
black dots are the measured data and the green dots are the measured data
which are used for the approximation.

Equation 2.23 can be simplified to Equation 2.24 by using the approximation
for small angles that sin(ϕ) ≈ ϕ and by dividing Equation 2.23 by the
moment of inertia. The simplification for small angles holds for angles
smaller than 10°.

ϕ̈ +
kR

m
· ϕ̇ +

g
ls
· ϕ = 0

ϕ̈ + 2δd · ϕ̇ + ω2
0 · ϕ = 0

(2.24)

The differential Equation 2.24 is solved using the ansatz ϕ = A · eλ·t. The
resulting values for λ for the decay process δ2

d < ω2
0 are given in equation

2.25.

λ1,2 = −δd ± i ·
√

ω2
0 − δ2

d

= −δd ± i ·ωd

(2.25)
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The damped angular frequency ωd can be determined from the decay
process of the pendulum.
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Figure 2.7.: The damped harmonic oscillation of the FDP. The blue curve is the measured
data from the decay process; the red curve is the part which was used for
the evaluation of the damped angular frequency ωd; the period time Tdp is
measured between the two green points.

In Figure 2.7, the damped harmonic oscillation of the FDP is shown. The
blue curve is the measured data from the decay process; the red curve is the
part which was used for the evaluation of the damped angular frequency
ωd; the period time Tdp is measured between the two green points and the
resulting period time of the damped oscillation is Tdp = 0.9514s.

2 · δd =
kR

m
(2.26)

ω2
0 =

g
ls

(2.27)

ωd =
√

ω2
0 − δ2

d (2.28)

ωd =
2 · π
Tdp

(2.29)

The damped angular frequencies ωd and the harmonic angular frequency ω0
can be calculated with equations 2.27 and 2.29. By transforming the Equation
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Symbol Value Unit
ωd 6.604

rad
s

ω2
0 50.308

rad
s

δd 2.587

kR 1.216

Table 2.1.: Resulting values of the friction coefficient calculation.

2.28, the damping coefficient δd can also be calculated. The resulting friction
coefficient kR can be computed by transforming Equation 2.26.

The results are shown in Table 2.1.

With the parameter kR, the constants: c1, c2 and c3 in 2.22 can be calculated
(Equation 2.12). The parameters used for the calculations of the constants
can be found in Appendix A.1.

The resulting values of the constants can be seen in 2.30.

c1 = 50.3077
c2 = 5.1745
c3 = 0.002207

(2.30)
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2.7. Limitations

Due to the mechanical design and the components used, several limitations
have to be taken into account when designing the control of the propeller
speed and the controller of the angel:

1. The transmission speed is limited to 115200 BR via the Universal Serial
Bus (USB), due to imprecision of internal clock of the MCU.

2. The pendulum can be moved in the angular range from 67° to 150°
(Figure 2.1).

3. The PWM signal is limited to a range of 1% to 20% due to the limitation
of the current by the power supply unit.

4. The accuracy of the phase sensor depends on the evaluation speed of
the recorded pulses. Slower speed leads to a more precise measurement
and vice versa.

5. The backlash of the cogs lead to an inaccuracy of the angular mea-
surement of 1.3° every time that the pendulum changes the moving
direction.

6. The varying time delay Td, which occurs due to the used components.
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3. Theory and Methods

3. Theory and Methods

In this chapter, the different control concepts and their application to the
FDP are discussed.

3.1. PID-Control

The PID-Controller is a common controller in industrial applications [11, P.
257]. It consists of:

• A proportional gain, which responds immediately to an error e.
• An integral part, which responds to the integral of the error e.
• A differential part which responds to de derivative of the error e.

The general form of the PID-control in the time domain is given by Equation
3.1.

u(t) = kp

(
1 +

1
τi

∫ t

0
e(τ)dτ + τd ·

de(t)
dt

)
(3.1)

In this equation: u(t) is the control variable; e(t) is the error; kp is the
proportional gain; τi is the integration time and τd the derivation time. By
transforming Equation 3.1 with the Laplace transformation, it turns out that
this equation is not realizable due to the fact that the denominator has a
lower order than the numerator. By adding a T1-element to the differential
part, the realizable PID-control equation is obtained. The transfer function
of the realizable PID-controller C(s) is shown in Equation 3.2.

C(s) =
u(s)
e(s)

= kp

(
1 +

1
τi · s

+
s · τd

1 + s · TT1

)
(3.2)
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The time constant TT1 has to be chosen such that the DT1-element has
D behavior in the relevant frequency range. Setting τd = 0 yields the PI-
control

C(s) = kp +
ki

s
(3.3)

where ki =
kp
τi

.

For stable systems, experiments can be performed to acquire plant parame-
ters which are needed to determine the control parameters kp, τi, τd.

Such experiments are:

• The open loop method, also known as step response method;
• The closed loop method

For the open loop method, a step is applied as input of to the system and
the system response is measured. From the measured response, the system
behavior and the system parameters can be determined. The gain K of the
plant is defined as the steady state of the response. Several methods for
determining the rise time TPTn are known in the literature, two of them are
mentioned here:

• The method of the inflection point tangent;
• The 63%-method

The method of the inflicting point tangent has a lower accuracy than the
63% method. For the 63%-method, TPTn is the time required to reach 63%
of the final value K.

This method was used for the determination of the transfer function of the
BLDC in Section 2.4.

For the closed loop method, the controller of the plant is a proportional
gain. This gain has to be increased until the system starts to oscillate. From
this measured response, the critical gain kcrit and the critical period time
Tcrit of the oscillation can be obtained.

For the calculation of the control parameters, there are many existing rules.
In appendix B.1, the methods to calculate the parameters with Ziegler
Nichols and Chien, Hrones, Reswick (CHR) are displayed. The calculated

19



3. Theory and Methods

parameters usually have to be adjusted in order to obtain the desired control
behavior.

3.2. Linearization in the vicinity of the operation
point

For controlling nonlinear systems with linear control concepts, the system
needs to be linearized around the point of operation.

The nonlinear system is given by Equation 3.4.

ẋ = f(x, u)
y = h(x)

(3.4)

The bold symbols are multidimensional variables and functions.

Jx=x̄,u=ū =


∂ f1
∂x1
· · · ∂ f1

∂xn
...

...
...

∂ fn
∂x1
· · · ∂ fn

∂xn


x=x̄,u=ū

= A (3.5)

By the calculation of the Jacobian matrix J (Equation: 3.5) and entering
the values x̄ and ū of the operation point, the system matrix A of the
linear system is obtained. Vector b and vector C are calculated by partial
differential equations (Equation 3.6).

b =


∂ f1
∂u
...

∂ fn
∂u


x=x̄,u=ū

C =
[

∂h
∂x1
· · · ∂h

∂xn

]
x=x̄,u=ū

(3.6)

The result is the linear system described in Equation 3.7.

∆̇x ≈A∆x + b∆u ∆x(t) = x(t)− x̄
∆y ≈C∆x

(3.7)
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Design methods for linear systems can now be applied to the linearized
model.

3.3. Smith-Predictor

The information in this section was mainly gathered from [12, P.224–237.].
The SP is a powerful method to increase the performance of the closed-loop
control with occurring time delay. In Figure 3.1, the structure of the SP can
be seen.

Figure 3.1.: The structure of the Smith Predictor (Source: [13, P. 1270]). For the ideal case
that the plant and the delay free model are exactly the same, the closed control
loop behaves like the delay free model.

The closed-loop transfer function Gr(s) from r to y is given by:

Gr(s) =
y
r
=

C0 · P
1 + C0 · P̂0 + C0 · P− C0 · P̂

(3.8)

With the transfer functions: P(s) as the real plant; P̂0(s) is the copy of plant
P(s) without time delay; P̂(s) is the copy of the model with time delay and
C0(s) is the controller. Q(s) is defined as the closed loop transfer function
Gr(s) for the ideal case, divided by the occurring time delay eτs. The ideal
case is given if P(s) = P̂(s).

Q(s) =
C0 · P̂0

1 + C0 · P̂0
(3.9)
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In the case that the system model is known and the uncertainties occur only
in the time delay, the following relations apply. Q(s) is practically stable if:

limω→∞|Q(jω)| < 1
2

, (3.10)

is fulfilled. If Q(s) is strictly proper the system is practically stable. Practically
stable means that the desired system can oscillate within an acceptable range
near the point of operation.

Now the uncertainty in the time delay Td is introduced.

∆Td = Td − T̂d (3.11)

T̂d is the used lag time in the SP.

The closed loop system is asymptotically stable for any ∆Td if:

|Q(jω)| < 1
2

∀ ω ≥ 0, (3.12)

is satisfied. The closed loop is asymptotically stable for |∆Td| < ∆Tdm if :

|Q(jω)| ≤ 1 ∀ ω ≥ & limω→∞|Q(jω)| < 1
2

, (3.13)

with the rough estimate of ∆Tdm is given by:

∆Tdm =
π

3ω0sp
(3.14)

where ω0sp is a frequency above which |Q(jω)| < 1
2 is satisfied.

The classical SP can just be used for stable systems. If the following four
points are fulfilled a zero stead-state error for reference steps and for step
disturbances is displayed:

1. The plant is asymptotically stable;
2. The plant does not contain a pure differentiator;
3. The primary controller includes an integrator;
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4. The closed-loop transfer function is asymptotically stable (Equations
3.12, 3.13) and practically stable (Equation 3.10).

The SP is not in general robust to parameter and time delay uncertainties,
but if the closed-loop stability of Q(s) is still maintained despite occurring
uncertainties and the other three points are fulfilled, a zero steady-state
error is displayed.

Massive improvements of reference tracking can be achieved with a SP. On
the other hand, it is less effective in disturbance attenuation.

For first and second order plants, there are some guidelines on how to set
the control parameters. Due to the fact that the transfer function of the
BLDC (Equation 2.14) is of first order, the guide lines for first order systems
will be mentioned in this section. If all poles and zeros of the system are in
the left half plane, the following structure of C0(s) can be used:

C0(s) =
Kc

s
· P̂0
−1 (3.15)

For a system description of a first order filter (PT1-element), the controller
C0 is a classical PI-Controller (see Equation 3.3). The control parameters
of kp and τi depend on the parameters of the plant and are given in the
following equation.

kp =
Kc · TPT1

K
& τi = TPT1 (3.16)

If the parameters are chosen like in Equation 3.16 suggested, the close-loop
transfer function leads to:

Q(s) =
Kc

s + Kc
(3.17)

To provide stability of Q(s), the variable Kc needs to be positive for the ideal
case. Due to model uncertainties and the relative error in the time delay,
there is an upper limit given for Kc (see [12, P. 231]).
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A tuning rule for Kc is set to:

Kc =
3
T̂d

(3.18)

An interesting fact is that, Kc < 3 assures stability for a ±100% mismatch of
the time delay.

Another approach to calculate the parameters for the PI control is from
Hägglund [14].

kp =
1
K

& τi = T63% (3.19)

With T63%, the time constant of the open loop step response is evaluated
with the 63% method and K is the constant gain of the step response of the
system.

If the time delay is bigger than the time constant of the plant, the smith
predictor outperforms the classical PID-control.

A result of the use of the smith predictor is that higher values for the control
parameters can be used in comparison to PID- or PI-control without SP.

3.4. Exact linearization

The references for this section are [15, P.287-293] and [6, P. 505-521].

In this section, a Single Input Single Output (SISO)-Systems, like in Equation
3.20, is considered.

ẋ = f(x) + g(x) · u
y = h(x)

(3.20)

The bold symbols are multidimensional variables and functions. If the
system is given by the nonlinear controllable canonical form, it is a flat
system. A flat system means that all inputs and state variables can be
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written as a function of the output and its derivatives. The system (Equation
3.20) is flat if the relative degree δ of the output y is equal to the system
order n. Therefore we introduce the Lie derivative:

ẏ =
∂h(x)

∂x
( f (x) + g(x)u)

ẏ =L f h(x) + Lgh(x) · u
(3.21)

Where:

L f h(x) =
∂h(x)

∂x
f (x) (3.22)

is the Lie-derivative of h with respect to f. For higher order derivatives of y
the following relation for the Lie derivatives is given.

LgL f h(x) =
∂L f h(x)

∂x
g(x)

L2
f h(x) =L f L f h(x) =

∂L f h(x)
∂x

h(x)
(3.23)

To determine the relative degree, the output y is repeatedly derived with
respect to the time. The relative degree δ is reached when, the manipulated
variable u can be expressed as a function of the output y and its derivatives
for the first time.

y(δ) = Lδ
f h(x) + LgLδ−1

f h(x) · u (3.24)

If the relative degree δ=n, where n is the system order, the system is flat.
Flat systems are controllable and the exact linearization can be used. Fur-
thermore, flat systems can be written in the strict feedback form. In the
case that δ < n the system can be written in the Byrnes-Isidori canonical
form with an external and an internal dynamic of the system. The internal
dynamic has no influence on the output y, but if it is not stable it causes
instability for the whole system.

The goal of the exact linearization is to eliminate the nonlinear parts of
the system with the control variable u and to use a linear control law v
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to stabilize the corresponding linear system (Equation 3.25). The resulting
linear system has the system order δ.

ξ̇ =Aξ + bv
y =Cξ

(3.25)

where ξ ∈ Rδ is the state vector of the external dynamics. It consists of the
states ξ1 = y, ξ2 = ẏ, ..., ξδ = y(δ−1).

By eliminating the nonlinear terms with the control variable u, the resulting
linear system (Equation 3.25) is given in the Brunovsky-canonical form. To
eliminate the nonlinearities, Equation 3.24 equals to v and u yields

u =
1

LgLδ−1
f h(x)

(
−Lδ

f h(x) + v
)

(3.26)

A =


0 1 0 · · · 0
0 0 1 · · · 0
...

...
... . . . ...

0 0 0 · · · 1
0 0 0 · · · 0

 , b =


0
0
...
0
1

 (3.27)

The matrix (A-b K) needs to be a Hurwitz matrix. K is a row vector with
the control parameters (k1, k2, · · · , kδ). For the first and second order case,
this is satisfied if the control parameters (k1, k2) are positive.

3.4.1. Exact linearization FDP

To determine if the pendulum system description is a flat system, the relative
degree of the system needs to be calculated.

The mathematical system is given by the Equation 3.28
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ẋ1 =x2

ẋ2 =− c1 · sin(x1 − ϑ)− c2 · x2 − c3 · ge(x1) · u
y =x1

(3.28)

When the manipulated variable u, as a function of output y and its deriva-
tives, appears for the first time, the relative degree δ has been reached.

ẏ =ẋ1 = x2

ÿ =ẋ2 = −c1 · sin(x1 − ϑ)− c2 · x2 + c3 · ge(x1) · u
(3.29)

The relative degree δ = 2 is the same as the system order n=2. The FDP sys-
tem is flat and controllable. A full compensation is performed by choosing
u (Equation 3.30) with the linear control law v = −k1 · x1 − k2 · x2.

u =
1

c3 · ge(x1)
(c1 · sin(x1 − ϑ) + c2 · x2 − k1 · x1 − k2 · x2) (3.30)

The parameters k1 and k2 are chosen such that a satisfying performance is
achieved in the simulation in Matlab Simulink.

3.5. Backstepping

The reference for elaborating this section is [15, P.400-404]. Compared to
exact linerization, which requires a precise model and eliminates all non-
linearities, even if they have an advantage for the control behavior, the
backstepping method can deal with model uncertainties. Furthermore, non-
linearities can be used for a better control behavior, which can lead to a
smaller control variable.

Backstepping can be used if the system is a flat system, as defined in Section
3.4. The system description for integrator backstepping is given by the strict
feedback form in Equation 3.31.
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ẋ1 =f1(x1) + h1(x1) · x2

ẋ2 = f2(x1, x2) + h2(x1, x2) · u
(3.31)

The bold symbols are multidimensional variables and functions. For the
strict feedback form f1(0)=0.

x2 = φ(x1) is a virtual control law of the first line of Equation 3.31 with
φ(0) = 0, that leads to an asymptotically stable equilibrium x1,R = 0 of the
first system. Furthermore, a Lyapunov function V(x1) is used to guarantee
stability for the first line of Equation 3.31.

The direct method of the stability criterion from Lyapunov is shown in
Equation 3.32 [15, P. 85].

V(x1) �0

V̇(x1) ≺0
lim
‖x1‖→∞

V(x1) =∞
(3.32)

If all points of Equation 3.32 are fulfilled, then the controlled system is
globally asymptotically stable. The resulting control law u, for a SISO
system (Equation 3.31), is given in Equation 3.33, where k2 > 0 leads to an
asymptotic stable equilibrium [x1,R x2,R] = 0.

u =
1

h2(x1, x2)

(
∂φ(x1)

∂x1
(f1(x1) + h1(x1)x2)−

∂V(x1)

∂x1
h1(x1)−

k2 · (x2 − φ(x1))− f2(x1, x2)

) (3.33)

The resulting Lyapunov function for the controlled system is given by
Equation: 3.34.

V(x1, x2) = V(x1) +
1
2
· (x2 − φ(x1))

2 (3.34)
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3.5.1. Backstepping FDP

The starting point for this method is Equation 3.28. The error z1 = x1 − rt
(x1 = z1 + rt) is introduced, where rt is the reference value. With a constant
reference value (rt = const) the derivative leads to ż1 = ẋ1 − ṙt with ṙt = 0.
The error z1 and the relation for x1 are used to obtain the system description
which is used for the backstepping method.

ż1 = x2

ẋ2 = −c1 · sin(x1 − ϑ)− c2 · x2 − c3 · ge(x1) · u
(3.35)

The virtual control and the Lyapunov function are given by φ(z1) = −k1 · z1
and V(z1) =

1
2 · z2

1.

V(z1) =
1
2

z2
1 > 0

V̇(z1) = z1ż1 = −k1 · z2
1 < 0 ∀ k1 > 0

(3.36)

By inserting the corresponding variables and functions in Equation 3.33, we
get the control law for the FDP (Equation 3.37).

u =
1

c3 · ge(x1)

(
c1 sin(x1− ϑ)+ c2x2− k1 · x2− z1− k2(x2 + k1 · z1)

)
(3.37)

The Lyapunov function of the controlled system is given in Equation 3.38

with z2 = x2 − φ(z1).

VI(z1, z2) =
1
2

z2
1 +

1
2

z2
2 (3.38)
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3.6. Adaptive backstepping

The references for this section are [16]–[18]. They all conclude that every
model has his uncertainties in its parameters due to modeling errors and
simplifications. Those uncertainties, that occur due to model imprecision, are
called parametric or structured uncertainties in the literature. For the case of
parametric uncertainties of strict feedback systems, adaptive backstepping
is one option to increase the control performance and preserve global
stability.

In this part the adaptive backstepping is introduced in the general case for a
n-th order system The starting point is backstepping, which was introduced
in Section 3.5. The uncertain parameters of the system are described by Θ
and are introduced to the system here:

ẋi = xi+1 + ϕT
i (x1, · · · , xi)Θ

ẋn = ϕ0(x1, · · · , xn) + ϕT
n (x1, · · · , xn)Θ + β0(x1, · · · , xn)u

y = x1

(3.39)

If one line of the system has no uncertain parameter, the control law for this
step is determined in the manner of the general backstepping algorithm. In
a line with parametric uncertainties, the Lyapunov function of the controlled
system without uncertainties has to be extended by this uncertainties. An
example is the extended Lyapunov function for the case i=1 with uncertain
parameters in this equation with the transformation in error coordinates
z1 = x1− rt. (Equation 3.40).

V(z1, Θ̂) = V(z1) +
1
2

Θ̃TΓ−1Θ̃ (3.40)

Where Γ is positive definite and Θ̃ = Θ − Θ̂ where Θ̂ is the estimated
uncertainty.

By derivation of the Lyapunov function (Equation 3.40), the parameter
update law can be obtained (V̇(z1, Θ̂) → ˙̂Θ).
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3. Theory and Methods

The above process needs to be repeated until the system order n is reached.
By combining all obtained adaption laws, the resulting control law for the
n-th order system can be calculated.

The following connections are taken from the above mentioned procedure
(the exact derivation can be found in [16, P. 58-66]).

Starting with a coordinate transform in error coordinates:

z1 = x1 − r

zk = xk − φk−1(x1, · · · , xk−1, Θ̂) 2 ≤ k ≤ n
(3.41)

The virtual control for the k-th step is given by:

φk(x1, · · · , xk, Θ̂) = −zk−1 +
k−1
Σ

i=1

∂φk−1

∂xi
xi+1 +

∂φk−1

∂Θ̂
τk−

ωT
k Θ̂ +

(
k−2
Σ

i=1
zi+1

∂φi

∂Θ̂

)
Γωk − kkzk

(3.42)

The functions ωk and τk are given by the Equations 3.43 and 3.44.

ωk(x1, · · · , xk, Θ̂) = ϕk −
k−1
Σ

i=1

∂φk−1

∂xi
ϕi (3.43)

τk(x1, · · · , xk, Θ̂) = τk−1 + Γωkzk = Γ
k
Σ

i=1
ωizi (3.44)

The law to update the uncertain parameters is given by:

˙̂Θ = τn(x, Θ̂) = ΓW · z with W(z, Θ̂) =
[
ω1, · · · , ωn

]
z =

z1
...

zn


(3.45)

The adaptive control law is given by:
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u =
1

β0(x)

[
− zn−1 − ϕ0(x) +

n−1
Σ

i=1

∂φn−1

∂xi
xi+1 −ωT

k Θ̂ +
∂φn−1

∂Θ̂
τn

+

(
n−2
Σ

i=1
zi+1

∂φi

∂Θ̂

)
Γωn − knzn

] (3.46)

If all uncertainties appear only in the last equation of the system description,
those uncertainties are called matched uncertainties.

3.6.1. Adaptive backstepping for the FDP

The starting point for the adaptive backstepping is Equation 3.35. By intro-
ducing the error z2 = x2 − φ(z1), the resulting system is given by Equation
3.47.

ż1 = z2 + φ(z1)

ż2 + φ̇(z1) = −c1 sin(x1 − ϑ)− c2 · x2 + c3 · ge(x1) · u := v
(3.47)

The control law for v is given due to the backstepping algorithm (Equation
3.33) where h2(x1, x2) = 1 and f2(x1, x2) = 0.

v = −k2 · z2 −
∂V(z1)

∂z1
h1(z1) + φ̇(z1) (3.48)

The parameters c1 and c2 should now be considered as uncertain parameters.
The resulting system with matched parametric uncertainties is shown in
Equation 3.49.

ż1 = z2 + φ(z1)

ż2 + φ̇(z1) = W ·Θ + c3 · ge(x1) · u := v
with W =

[
ω1 ω2

]
=
[
− sin(x1 − ϑ), −x2

]
and Θ =

[
Θ1
Θ2

]
=

[
c1
c2

] (3.49)
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The control law u for the system (Equation 3.49) is given by:

u =
1

c3 · ge(x1)
(v−W · Θ̂) (3.50)

The resulting closed loop description of the system with unknown paramet-
ric uncertainties leads to Equation 3.51.

ż1 = z2 + φ(z1)

ż2 = W · Θ̃− k2 · z2 −
∂V(z1)

∂z1
h1(z1)︸ ︷︷ ︸
z1

(3.51)

The Lyapunov function of the controlled system for known uncertainties is
given in Equation 3.38. This Lyapunov function needs to be extended by the
relation with the uncertainties, that leads to Equation 3.52.

VI I(z1, z2, Θ̂) = VI(z1, z2) +
1
2

Θ̃TΓ−1Θ̃ with Γ−1 =
(

Γ−1
)T

> 0 (3.52)

The parameter adaption law is calculated using the time derivative of VI I .

V̇I I(z1, z2, Θ̂) =z1 · (z2 + φ(z1))− k2 · z2
2 − z2 · z1 + z2 ·W · Θ̃+

1
2

[
˙̃ΘTΓ−1Θ̃− Θ̃TΓ ˙̃Θ

]
with ˙̃Θ = Θ̇− ˙̂Θ

where Θ̇ = 0

(3.53)

V̇I I(z1, z2, Θ̂) =−k1 · z2
1 − k2 · z2

2︸ ︷︷ ︸+z2 ·W · Θ̃ + Θ̃TΓ−1 ˙̂Θ

V̇I
∣∣
Θ=0

(3.54)
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V̇I I(z1, z2, Θ̂) = V̇I
∣∣
Θ=0+ (z2 ·W · Θ̃)T︸ ︷︷ ︸+Θ̃TΓ−1 ˙̂Θ

z2 · Θ̃TWT
(3.55)

V̇I I(z1, z2, Θ̂) = V̇I
∣∣
Θ=0+Θ̃T · (z2 ·WT − Γ−1 ˙̂Θ)︸ ︷︷ ︸

= 0
(3.56)

Equation 3.56 leads to the adaption law in Equation 3.57.

˙̂Θ = z2 · Γ ·WT (3.57)

The final control law is given for u by Equation 3.58.

u =
1

c3 · ge(x1)
(−k2 · z2 − z1 − k1 · x2 −W · Θ̂) (3.58)

The matrix Γ is chosen to be positive definite and symmetric.

Γ =

[
a b
b d

]
(3.59)

There are two possibilities to achieve the above mentioned properties. With
coupling the uncertainties with each other or without coupling. The coupling
can be achieved, if the value b is not zero, and the resulting matrix is positive
definite. For no link between the two uncertain parameters, b is zero and the
remaining values are positive to guarantee a positive definite matrix Γ.
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4. Simulation and Implementation

In this section, the simulation and the code implementation on the MCU
are presented.

The programs used for the simulation and evaluation are MATLAB R2018b
including Simulink and CoolTerm as a serial port terminal. For the im-
plementation on the MCU, the development environment Mbed is used.
The program, which runs on the MCU, measures data, evaluates them and
transfers the data via USB over a serial connection to the PC. The program is
structured in a main part, where the functions for measurements, evaluation
and control purposes are called with timers and interrupts in the main
function. The code was implemented in C++ and a flowchart of the program
can be found in Appendix B.5.

The angle is measured with a Hall-sensor, while the speed of the propeller is
measured twice: once with an infrared sensor, which can only measure low
speeds; the second measurement is obtained using a phase sensor which is
measuring the Back Electro Magnetic Force (BEMF) of the BLDC motor. The
PWM-output of the MCU is connected to the ESC, which provides the AC
voltage for the motor. The ESC is a converter, that consist of 6 Transistors,
which switch on and off corresponding to a pattern, to generate the three
phase voltages.

The following settings for the serial connection apply to all implementa-
tions:

• BR = 115200 bauds
• Data bits = 8

• Stop bit = 1

• Parity bit = odd
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4.1. n-Controller

There are several limitations for the n-controller like:

The measurement accuracy of the speed of the propeller is ± 0.98RPS, for an
evaluation time of 170ms. This is due to the sensor which is measuring the
change of the back EMF. One revolution consists of 6 changes. The second
limitation is the restrain of the current to 4A, due to the power supply, and
the resulting limitation of the PWM to 0% to 20%.

With that limitations and the evaluated transfer function (Eq.: 2.14 ) of the
BLDC, the PI-controller and the smith predictor are implemented.

A starting point for the evaluation of the n-controller is the open loop method.
The parameters kp and ki can be calculated from the system parameters of
the transfer function G(s) (Equation 2.18).

Two different methods, namely the Ziegler Nichols and the Chien, Hrones,
Reswick (CHR) are used to design the PI-controller. The method after CHR
distinguishes between aperiodic and 20% overshot behavior of the controlled
plant. Furthermore, it distinguishes between reference tracking (rt) and
disturbance attenuation (da). For the control of the speed, the rt was used.
The calculation of the corresponding control parameter can be seen in
Appendix B.1. The system parameters used for the calculation are obtained
in Section 2.4.

• K= 1168

• TPT1= 101.3ms
• Td=184.1ms

The resulting parameters for kp and ki can be found in Table 4.1. The last
row of this table has the resulting parameters for the SP, which are used for
the control of the angle ϕ.

Two different cases are examined. In the first one, the control sample time
Tcn is less than the evaluation time of the speed measurement. In the second
one, the sampling time is the same as the measurement evaluation time. For
the first case, the sampling time Tcn is set to 5 ms due to the intention to
provide a fast inner control loop for the angular control. The evaluation time
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kp ki
Ziegler Nichols 0.00042 0.00069

CHR-aperiodic- rt 0.00017 0.0014

CHR-20% oscillation- rt 0.00028 0.0028

SP 0.00038 0.00237

Table 4.1.: Control parameters kp and ki for the n-control. The control parameters are
calculated with the method of Ziegler Nichols, CHR and the adjustment rule for
the SP.

Ts of the measured speed is 170ms. For the second case, the sample time of
the controller Tcn and the evaluation time Ts of the measured speed are set
to 100ms. The evaluation time of 100ms leads to a measurement uncertainty
of the speed of ± 1.66RPS.

The simulation and implementation part will be explained for a general
case, if further differences besides the sample time occur, they will be
mentioned.

4.1.1. Simulation

The solver ode1 (euler), with the fixed step size Tcn is used for all simulations.
The controllers have been designed without uncertainties in the simulation.
For further investigation, the uncertainties of the measured signals are
added to the simulation.

PI-Control

The PI-Controller was implemented in the parallel form. The control loop
with the parameters from Table 4.1 was simulated in Simulink. The system
model can be seen in Equation 2.18.

G(s) =
1168

1 + s · 0.1013
· e−s·0.1841

The Simulink connection diagram can be seen in Figure 4.1.
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Figure 4.1.: The Simulink connection diagram of the PI-n-control. In the blue area, the
discrete PI-controller with anti wind up is shown, the sample time is set to Tcn.
The sample time for the Zero Order Hold (ZOH) after the PI-controller is the
same as the control sample time Tcn. This ZOH simulates a DAC. The second
ZOH has the sample time of the evaluation speed of the speed measurement.
The system is simulated as a transport delay, with the delay time of Td=184.1ms,
multiplied with the transfer function of the BLDC (Equation 2.18).

The simulation is divided into a discrete part (controller), and a continuous
part (system) which are separated with the zero order hold. In the blue
area, the discrete PI-controller with anti wind up is shown, the sample time
is set to Tcn. For the discrete PI controller, the continuous integrator (1

s ) is
replaced by the discrete integrator ( Tcn

z−1). The anti-windup is realized as a
feedback of the difference before and after the saturation, this difference is
multiplied by ka which is the gain for the anti-windup. The sample time for
the ZOH after the PI-controller is the same as the control sample time Tcn.
This ZOH simulates a DAC. The second ZOH has the sample time of the
evaluation speed Ts of the speed measurement. The system is simulated as
a transport delay, with the time delay of Td=184.1ms, multiplied with the
transfer function of the BLDC (Equation 2.18)

The sampling times are:

• First case: Tcn = 5ms and Ts = 170ms
• Second case: Tcn = 100ms and Ts = 100ms
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Smith-Predictor

For the implementation on MCU, the SP must be discretized. For this
reason, the continuous system (Equation 2.18) needs to be transformed to a
discrete system. The transform from the Laplace-domain to the z-domain
was performed with the c2d command in Matlab.

The sample time for the transform is Tcn. The resulting transfer function for
the first case can be seen in Equation 4.1 and for the second case in Equation
4.2.

G(z) =
56.25

z− 0.9518
· z−37 (4.1)

G(z) =
732.8

z− 0.3726
· z−2 (4.2)

The Simulink connection diagram can be seen in Figure 4.2.

Figure 4.2.: The simulink connection diagram of the SP-n-control. The SP is shown in the
blue area. It consists of a discrete copy of the system, a discrete delay and
a PI-controller. The first Zero Order Hold (ZOH) after the SP has the same
sample time as the control sample time Tcn. This ZOH simulates an DAC.
The second ZOH has the sample time of the evaluation speed Ts of the speed
measurement.
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4.1.2. Implementation

The discrete part of the simulation (blue area in Figure 4.1 and Figure
4.2) is used for the code generation. Therefore, the Embedded Coder from
Simulink generates the C++ code of the selected area. The settings for the
embedded coder can be found in appendix B.3. The generated code for the
n-controller is migrated to the program of the MCU. For this reason a new
function, with the name n control, is created and the generated variables
from the embedded coder are changed in accordance to the variables used
in the program. The online compiler from Mbed is used to generate the
binary file for the MCU. The program is loaded via USB to the MCU and is
tested for the expected outcome with CoolTerm. The data is exchanged via a
bidirectional serial connection.

4.1.3. Evaluation

For the evaluation, the communication between the MCU and the PC is
established with the Matlab script communication n control.m. The code to
establish the serial connection with the mentioned Matlab script is shown in
Appendix B.4. A serial bidirectional connection is used to send a reference
value of nre f erence to the MCU and to receive data in the following order:
Angle in rad; PWM signal; measured speed of propeller in RPS; nre f erence
and time in µs. The reference value needs to be sent in the following format
to be recognized by the MCU:

’n : %f \n ’

The reference variable nre f erence is in the range of 165 to 175RPS with a
step size of 2RPS. For each reference value, 400 samples are measured.
The measured data is saved in different Matlab files for each method (see
Appendix B.2).

The simulation time for the comparison is set to 10s. For the comparison
between reality and simulation, the uncertainty of the phase sensor is added
to the simulation. This uncertainty is simulated with a random number
generator with normal Gaussian distribution. The mean is set to zero and
the variance σ is set to 0.16 for the evaluation time of 170ms and σ=0.45 for
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the evaluation time of 100ms. The random number is added to the output
of the system.

4.2. ϕ - Control

A cascaded control loop is used to control the angle of the pendulum arm.
The structure of the control loop is shown in Figure 4.3. There you can see
the Simulink connection diagram of the control loop. The green part is the
continuous system. The yellow part is the n-control loop with the sample
time Tcn. The blue part is the angular control loop with the sample time
Tcϕ. The sample times of the ZOH blocks are corresponding to the sample
time of the inner and outer control loop.

Figure 4.3.: The used cascaded control structure. The green part is the continuous system.
The yellow part is the n-control loop with the sample time Tcn. The blue part is
the angular control loop with the sample time Tcϕ.

Four different controllers are tested and analyzed for the angular control of
the FDP. Those four controllers are:

• PI-Control;
• Exact linearization;
• Backstepping and
• Adaptive Backstepping

41



4. Simulation and Implementation

All of these controllers are studied for two different cases. The sample time
of the n-control for the first case is Tcn = 5ms and the sample time of the ϕ-
control is Tcϕ = 100ms. In every 170ms, the measured speed of the propeller
is provided to the n-control. In this case, the measurement uncertainty of
the speed is ± 0.98RPS. The n-controller is a SP with the following control
parameters:

• ki = 0.00256
• kp = 0.00016

The system parameters for the discrete copy of the system are given in
Equation 4.1.

For the second case, the sample time of the n-control is Tcn = 100ms and the
sample time of the ϕ-control is Tcϕ = 800ms. In every 100ms, the measured
speed of the propeller is provided to the n-controller. In this case, the
measurement uncertainty of the speed is ± 1.66RPS. The n-controller is a
SP with the following control parameters:

• ki = 0.00237
• kp = 0.00038

The system parameters for the discrete copy of the system are given in
Equation 4.2.

Additionally to the previous mentioned limitation for the n-control, the
backlash of the cogs leads to an inaccuracy of the angular measurement
every time the pendulum arm changes directions. The backlash is 1.3°.

Furthermore, the investigation focuses on angles between 75 and 90°, be-
cause the settling time of the n-controller is to slow, to be able to control
angles bigger than the transmission point as explained in Section 5.3.

4.2.1. Simulation

The system is divided into two parts: the speed behavior of the motor and
the behavior of the pendulum depending on the applied torque. The speed
behavior is described with the transfer function G(s) (Equation: 2.18) and the
behavior of the FDP is described with two differential equations (Equation
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2.22). Due to the fact that the measured speed and the actual speed differ
(see Section 2.3), a conversion block needs to be introduced between the
transfer function of the BLDC and the system description of the FDP. The
integrator for x1 has the initial condition set to x1,0 = 67°and the saturation
was activated. The upper limit is set to 150° and the lower bound to the
initial condition x1,0, which is the rest position of the pendulum. The initial
condition for the integrator of x2 is set to x2,0 = 0. The two ZOHs, which
represent an Analog Digital Converter (ADC) in the green area of Figure 4.3,
have the same sample time as the cycle time Tcϕ of the angular controller.
The ZOHs in the yellow area have the same sample time as sample time
Tcn of the n-control. The measurement uncertainty of the speed sensor is
simulated with a random number generator with normal distribution. The
mean µ is set to 0 and the variance σ is set to 0.16 for the evaluation time of
170ms and to σ=0.45 for the evaluation time of 100ms. The backlash of the
cogs is simulated with a uniform distribution with the limit ±0.0209 rad,
which is ±1.3°.

The yellow part of Figure 4.3 represents the n-controller. This part was
explained in Section 4.1.

Figure 4.4.: The phi-control subsystem consists of a controller, a square root function and
a conversion from the real speed of the fan to the measured speed.

The subsystem phi-control in the blue area is now explained in more detail.
The Figure 4.4 shows the layer of the subsystem phi-control. This subsystem
consists of a controller, a square root function and a conversion from the
real speed of the fan to the measured speed and provides the reference
value of the speed for the inner control loop. If not mentioned otherwise,
the controller is replaced by the respective algorithm.

For the controller design, the uncertainties are not considered in the simula-
tion. The used control algorithms are explained in Chapter 3.
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PI-Control

For the PI-control, the standard PID-controller block from Matlab Simulink
replaces the phi-control subsystem. The output saturation and the anti wind
up are activated. The limits are in the range of 60 to 200RPS. The control
parameters: ki, kp and ka are determined heuristically. This means that
the parameters are adjusted until the desired behaviour is achieved in the
simulation. The resulting control parameters for the case with the sample
times Tcn = 5ms and Tcϕ = 100ms are:

ki = 22 , kp = 20 and ka = 2

For the slower controller, with the sample times Tcn = 100ms and Tcϕ =
800ms, the control parameters are:

ki = 25 , kp = 35 and ka = 2

Exact linearization

The implemented control law is given below.

u =
1

c3 · ge(x1)
(c1 · sin(x1 − ϑ) + c2 · x2 − k1 · x1 − k2 · x2)

The parameters are chosen based on simulation results.

The parameters used for the exact linearization for the first case are:

k1 = 15 and k2 = 7

The parameters used for the second case are:

k1 = 17 and k2 = 5
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Backstepping

The implemented control law is shown below:

u =
1

c3 · ge(x1)

(
c1 sin(x1 − ϑ) + c2x2 − k3 · x2 − z1 − kBS(x2 + k3 · z1)

)

The parameters used for the first case are:

k1 = 4 and kBS = 3.1

The parameters used for the second case are:

k1 = 5.9 and kBS = 3.2

Adaptive backstepping

For adaptive backstepping, four cases are simulated. In the first case, the
uncertain system parameters c1 and c2 are not linked to each other via the
matrix Γ. In the second case, the uncertain parameters c1 and c2 are coupled
via the matrix Γ. The control law for this two cases is given below:

u =
1

c3 · ge(x1)
(−kBS · z2 − z1 − k1 · x2 −W · Θ̂)

The update law is given by:

˙̂Θ = z2 · Γ ·WT

Where W=
[
− sin(x1 − ϑ) −x2

]
and Θ̂=

[
ĉ1
ĉ2

]
.

The matrix Γ needs to be positive definite. For the first case, the value b
of Γ (Equation 3.59) is set to zero. For the second case, the value of b is
not zero and this values have to be determined such that the matrix Γ is
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positive definite. In the third case, all three system parameters c1, c2 and c3
are uncertain parameters. In this case, the parameters are not coupled via
the matrix Γ. In the fourth and last case, the parameters are coupled via the
matrix Γ. This leads to the following control law:

u =
1

ge(x1)
(−kBS · z2 − z1 − k1 · x2 −W · Θ̂)

The update law and W are the same for all four cases. Θ̂ changes for the

last two cases to Θ̂=
[ c1

c3
c2
c3

]
.

All found control parameters for the faster cascaded control are presented
below. The sample times are Tcn = 5ms and Tcϕ = 100ms. The control
parameters for the first case are:

k1 =3.5 and k2 = 3.5

Θ̂T
0 =

[
c1 − 5 c2

]
Γ =

[
1.2 0
0 0.05

]

The control parameters for the second case are:

k1 =4.5 and k2 = 3.5

Θ̂T
0 =

[
c1 − 5 c2

]
Γ =

[
1.2 0.2
0.2 0.05

]

The control parameters for the third case are:

k1 =900 and k2 = 5

Θ̂T
0 =

[
22000 0

]
Γ =

[
1 0
0 1

]
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The control parameters for the fourth case are:

k1 =900 and k2 = 6

Θ̂T
0 =

[
22000 0

]
Γ =

[
1 0.2

0.2 0.5

]

Below are all control parameters for the slower cascaded control with the
sample times of Tcn = 100ms and Tcϕ = 800ms. For the first case, with the
uncertain parameters c1 and c2 and without coupling, the resulting control
parameters are given by:

k1 =4 and k2 = 4.7

Θ̂T
0 =

[
c1 − 5 c2

]
Γ =

[
1.2 0
0 0.05

]
For the second case, the control parameters are:

k1 =4.5 and k2 = 3.8

Θ̂T
0 =

[
c1 − 5 c2

]
Γ =

[
1.2 0.2
0.2 0.05

]

The control parameters for the third case are:

k1 =900 and k2 = 6.7

Θ̂T
0 =

[
22000 0

]
Γ =

[
1 0
0 1

]
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The control parameters for the fourth case are:

k1 =900 and k2 = 7.6

Θ̂T
0 =

[
22000 0

]
Γ =

[
1 0.2

0.2 1

]

4.2.2. Implementation

For each of the four control algorithms, the phi-control subsystem from
Figure 4.3 was used to perform the code generation via the Embedded Coder
from Simulink. The generated C++ code for the corresponding control
concept of the ϕ-control is migrated to the program of the MCU. For this
reason, a new function with the name phi controller is created and the
program is saved for each control concept individually. The generated
variables from the code generation needed to be changed accordingly to the
variables used in the program. The online compiler from Mbed is used to
generate the binary file for the MCU. The program is loaded to the MCU
via USB and is tested for the expected outcome with CoolTerm. The data is
exchanged via a bidirectional serial connection.

4.2.3. Evaluation

For the evaluation, the communication between the MCU and the PC is
established with the Matlab script communication phi control.m. A serial
bidirectional connection is used to send the reference value rt from the PC
to the MCU. The reference value needs to be sent in the following format to
be recognized from the MCU:

’ r : %f \n ’

The data sent from the MCU to Matlab for the PI-controller, exact lineariza-
tion and backstepping are the following: the first value is the angle x1; the
second value is the PWM-signal; the third value is the measured speed of
the phase sensor; the fourth value is the reference speed and the last value is
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the time in ms. In the data sent for adaptive backstepping, the PWM-signal
is replaced by the estimates of the uncertain parameters. The reference
values for this evaluation were 75, 80, 85 and 90°. For each reference value
the resulting angle was measured for a minimum time of 60s. The length
of the recorded sample is not the same for each reference value due to the
varying transmission time of the respective measurement. For the first case,
with the faster control loop, the recorded data is between 1000 and 1600

samples per angle. In the second case, with the slower control loop the
samples are in a range of 600 to 800 samples per angle.

For the comparison, between the measured data and the simulation, the
uncertainties for the speed measurement and the angle sensor are added to
the simulation. The simulation time is 80s.
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5. Results and Outlook

5.1. Model verification

In this section, the observations during system model verification from
Section 2.5 are mentioned and probable reasons are given.

The first thing to mention is, that the entire system description refers to the
warm state of the components used. For this reason, all experiments and
measurements are recorded twice. The second recorded data is used for
evaluation purposes. The different behavior for the cold and warm state of
the FDP, results from the components used for the motor and the ESC.

The behavior of the pendulum, also depends on whether it is placed close
to a wall or freely in the room. This can be explained by the rotation of the
propeller: the rotation creates an airflow that is reflected by the wall and
causes interference. All control concepts are evaluated using the system
description in Section 2.5, this system description was recorded while the
pendulum was placed on a table far from a wall.

5.2. n-control

In this section, the results of the n-controller evaluation are presented and
discussed. The influence of the difference between the actual dead time of
the system and the dead time used in the SP is shown in Figure 5.1.

For this simulation, the dead time T̂d of the SP is equated with the evaluated
dead time (Td=184.1ms) from Section 2.4. The dead time of the system is
varied by ± 40%. The blue line is the ideal case, where Td = T̂d. The red
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Figure 5.1.: The behavior of the SP for varying time delays. For this simulation, the dead
time T̂d of the SP is set to Td=184.1ms. The dead time of the system is varied by
± 40%. The blue line is the ideal case, where Td = T̂d. The red line is the case
where Td > T̂d. The yellow line is the case where Td < T̂d.

line is the case where Td > T̂d. This leads to an overshoot in the output. The
yellow line is the case where Td < T̂d. This results in a longer settling time,
but no overshoot occurs.

5.2.1. Pi-Control

The control parameters calculated with CHR, for the case of 20% overshot,
can not be used for the control of the speed of the fan, because they cause a
high control variable u at the start, which leads to a too high current that
the power supply can not provide and the system shuts down.

The method of Ziegler Nichols (ZN) leads to a slow control response. The
reference value is reached within 10 seconds. In this case, there is no big
difference between the different control approaches described in Figure
5.2.

With the aperiodic approach of CHR, the best result with the calculated
parameters, without any adjustment of the parameters, is achieved. In this
case, a difference between the two PI-controllers with different values for
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Figure 5.2.: The first figure shows the measured control response of a reference value of
171 RPS for the Ziegler Nichols Method. The second plot shows the control
variable u. The blue line is the SP for the case with Tcn=100ms. The red line
is the SP for Tcn=5ms. The yellow line is the PI controller for Tcn=100ms. The
purple line is the PI controller for Tcn=5ms.

Tcn can be detected. The faster controller, with Tcn=5 ms, needs longer to
reach the reference value. In the second case with a slower sample time of
the controller, but with the same sample time as the measured signal, the
reference value can be reached faster with a slight overshot (Figure 5.3).

The simulation and the measured curves have only small deviations (Figure
5.4). If the deviations are bigger, it can be assumed that this is due to the
varying time delay in the system.
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Figure 5.3.: Comparison of the PI controllers with the sampling times of Tcn=5ms and
Tcn=100ms, for which the CHR method for the aperiodic case with a reference
value of nt=173RPS is used. The first plot shows the measured speed of the
propeller and the second plot shows the control variable u. The blue line
is the PI controller with the sample time of Tcn=100ms. The red line is the
PI-controller with the sample time of Tcn=5ms.

5.2.2. Smith-Predictor

The first control parameters for the SP are calculated with the approach of
Hägglund (Equation 3.19), which leads to kp=0.00085 and ki=0.0085. Those
control parameters can not be used in the controller due to the used power
supply. Instead, the approach of Palmor (Equation 3.16) is used. The case
which is able to guarantee stability for all uncertainties in the time delay
with Kc < 3 is used and leads to kp=0.00026 and ki=0.0026.

The control parameters are found by iterative changes of the parameters
in the simulation and testing on the model. The final parameters for the
sample time Tcn=100ms are kp = 0.00038 & ki = 0.00237 and kp =
0.00016 & ki = 0.0025 for the sample time Tcn=5ms.

In Figure 5.5a, the comparison between the simulation and the measured
signal for Tcn=5ms is shown. In this figure, it can be seen that the simulation
and the measured signal show the same behavior. This leads to the conclu-
sion that the time delay in the simulation and the varying time delay are in
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Figure 5.4.: Comparison of the PI-control (Tcn=5ms) measured data with the simulation.
The first plot shows the measured speed of the propeller and the second plot
shows the control variable u. The blue line is the measured PI controller. The
red line is the simulation of the PI-controller.

the same range. In Figure 5.5b, it can be seen that the simulation has a bigger
deviation than in Figure 5.5a. This can be explained due to the varying time
delay. The varying time delay has an influence of the performance of the
SP. In Figure 5.5b the occurred time delay of the system is bigger than the
time delay used in the simulation (this is evident from the rise of the blue
curve).

Figure 5.6 shows the measured data of the PI-Control and the SP for
Tcn=100ms, with the same control parameter (Table 4.1, Line 2). In the
first diagram, the output (the speed of the fan) is plotted over the time. In
the second diagram, the manipulation variable, in the form of the PWM-
signal, is shown. It can be seen, that the SP takes the dead time into account
for the calculation of the actuating variable, resulting in a smaller control
variable as for the PI controller.

This shows that the SP can use higher values for the control parameters to
achieve better control performance.
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Figure 5.5.: The behavior by different occurring time delays for the SP (Tcn=5ms) of the
measured data, in comparison to the simulation. The blue line is the measured
data, the red line is the simulated data and the yellow line is the reference value.
In Figure a, the case for Td = T̂d is shown. In Figure b, the case for Td > T̂d is
shown.

5.2.3. Chosen controller for the inner control loop

The decision upon which n-controller is chosen for the inner control loop
was determined with the least error square sum method (Equation 5.7) and
the condition that no overshot occurs. This additional condition is based on
the angular control. It is necessary for the case that the angle is close to the
transition point. A higher speed of the motor would cause the arm to tilt.

e = Σ(nt − nmeas)
2 (5.1)

The least error square sum was calculated for:

• SP with CHR20 parameters and a sample time of Tcn=5ms.
• SP with SP parameters and a sample time of Tcn=100ms.
• SP with SP parameters and a sample time of Tcn=5ms.
• PI-controller with CHR aperiodic parameters and a sample time of

Tcn=100ms.
• PI-controller with SP parameters and a sample time of Tcn=100ms.
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Figure 5.6.: Comparison of the SP with the PI-Controller with CHR aperiodic (Tcn=100ms).
The first plot shows the measured speed of the propeller and the second plot
shows the control variable u. The blue line is the SP and the red line is the
PI-controller.

• PI-controller with SP parameters and a sample time of Tcn=5ms.

For this calculation all six measured reference values, 165RPS to 175RPS
with a step size of 2RPS, where taken into account. The sum was calculated
for the first rise of the output plus 140 samples, which is approximately
equivalent to 4.5 seconds.

The measured data for the reference value of 173RPS can be seen in Figure
5.7a.

The three best results are: the SP with the SP parameters for a sample time of
100ms, the PI-controller with the parameters of CHR for the aperiodic case
for a sampling time of 100ms and the PI-controller with the same parameter
as the SP for a sampling time of 5ms. In Figure 5.7b, the three lines of the
measured signals for a reference speed of 175RPS are displayed. The lines
all start at the same time because the time delay was eliminated for this
evaluation. Due to the second condition with no overshoot, the SP is chosen
as controller for the rotor speed n. Using a less conservative controller is
not possible because this could lead to an oscillation of the arm.
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Figure 5.7.: Figure a shows the measured data for all cases for which the least square error
calculation was performed. Figure b shows the three best results, where the
blue line is the SP for Tcn=100ms. The red line is the PI-controller with the
parameters of CHR for the aperiodic case with the sample time of Tcn=100ms.
The yellow line is the PI-controller with the same parameters as the SP with a
sample time of Tcn=5ms.

5.3. ϕ-Control

In this section, the results of the angular control are presented.

When controlling the angle, it had to be specified that no overshooting of the
set speed is permissible. This is achieved by a more conservative design of
the speed controller. Due to the different dead times, the parameters of the
SP are designed for a dead time of +40% of the mean dead time (Td=184.1ms).
This is a compromise that must be made to prevent overshooting. If the
dead time is bigger than +40%, overshooting will occur.

The tipping point is at the angle of 105°, and to remain in a steady state
larger than the tipping point, a lower propeller speed than at the tipping
point is required. Due to the limitations of the n-controller, the minimum
time without overshoot until the stationary speed is reached is two seconds.
The settling time of the n-controller is limited due to the differing time
delays and the used power supply. The final settling time can alternate
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due to the occurring varying time delay. Since the n-controller always lags
behind the reference variable, no angles larger than the tipping point can be
controlled.

For the distinction between the two cases, the faster and slower cascaded
control, the indices sp5 and sp100 are introduced. The index sp5 stands
for cascade control with the sample times Tcn=5ms and Tcϕ=100ms. Index
sp100 represents the cascaded control with the sample times Tcn=100ms
and Tcϕ=800ms.

It turns out that no better control results can be achieved with the faster
cascaded control.

5.3.1. PI-control

The first intention for the angular control was to use a PID controller. This
was not possible because of the uncertainties that occur, as the derivative part
would provide a too high actuating variable u and that leads to oscillations
within the limits of the arm. For this reason, the PI controller was used
instead. In this case, the simulation deviates very much from reality (Figure
5.8a). This leads to the conclusion that additional uncertainties occur, which
are not considered in the simulation. For the second case, with the sampling
times Tcn=100ms and Tcϕ=800ms, the arm oscillates around the setpoint
with an angular deviation of ±5°. In addition, some outliers can be observed.
The result is, that it is not well suited to control the angle of the pendulum.

5.3.2. Exact linearization

With the exact linearization, the angles 85° and 90° can be controlled within
± 3.3°. For the angles 85° and 90°, the simulation and the measured data
show a similar behavior. This can be seen in Figure 5.8b.

The measured data of the faster and slower cascaded control are shown in
Figure 5.9. The faster cascaded control, with the sampling times Tcn=5ms
and Tcϕ=100ms, is the blue curve. The slower cascaded control, with the
sampling times Tcn=100ms and Tcϕ=800ms, is the red curve. The reference
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Figure 5.8.: Comparison between the measured and the simulated data for the slower
cascaded control (sp100). The reference value is 85° for all plots. The blue
lines are the measured data; the red lines are the simulated data with all
mentioned uncertainties; the yellow lines are the reference value. In Figure a,
the PI control is displayed. In Figure b, the exact linearization is plotted. In
Figure c, Backstepping can be seen and in Figure d, adaptive backstepping can
be seen.
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Figure 5.9.: Comparison between the two cases of exact linearization at an angle of 85°.
In this figure, the measured values and the reference value of the control
are shown. The faster cascaded control with the sample times Tcn=5ms and
Tcϕ=100ms is the blue curve. The slower cascaded control with the sample times
Tcn=100ms and Tcϕ=800ms is the red curve. The reference value is marked as
yellow.

value is marked yellow. The high exceeding of the slower case at the be-
ginning can be explained by the varying time delay. The time delay that
occurred is bigger than the time delay used for the n-control. Despite the
varying time delay, the angle can be controlled after 25s in the range of
±3.3°.

Angles below 85° do not show good control behavior, which can be ex-
plained by model uncertainties. These deviations can be caused by sim-
plifications (averaging, mathematical simplifications) during the modeling
process and the uncertainties of the measurements. Throughout the ad-
justment process of the control parameters, the simulation without any
disturbances revealed that, for a beginning oscillation at higher angles, the
parameter k2 must be increased and the parameter k1 must be decreased to
obtain a zero steady-state error of the angle ϕ. The mentioned increase and
decrease lead to a more dynamic manipulated variable u. The simulation
also shows that the set control parameters do not support the full range
of motion of the arm. For example, control parameters that show good
control behavior at higher angles will result in oscillation at lower angles. A
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compromise must be found to cover a broad range.

5.3.3. Backstepping

Compared to the previous control concepts, the backstepping algorithm
provides a better result. With this method, a control of the angle in the
range between 80° to 90° can be achieved. The faster control loop has a more
agile behavior, although it does not lead to a better result. This is due to the
fact that, the speed controller outputs a new controlled variable 42 times
without knowing the current state of the system. Therefore, the compromise
of shortening the measurement evaluation time from 170ms to 100ms and
setting the control cycle time to the same value proves to be effective. A
similar result, with a higher measurement uncertainty and a slower control
time, can thus be achieved.
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Figure 5.10.: Comparison between the two cases of backstepping at an angle of 85°. The
fast cascaded control with the sample times Tcn=5ms and Tcϕ=100ms is the
blue curve. The slower cascaded control with the sample times Tcn=100ms
and Tcϕ=800ms is the red curve. The reference value is marked as yellow.

The measured data for the first (blue curve) and second case (red curve) are
plotted in Figure 5.10. This figure shows the control behavior for an angle
of 85°. The two cases show a similar result, which is in the range of ±3.3°
of the reference value r.
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The simulation shows that larger angles than the tipping point can be con-
trolled theoretically. For this purpose, parameter k1 must be increased and
parameter k2 must be decreased. The resulting parameters for controlling an
angle of 110° with the slower cascade control can be found with the simula-
tion (k1=10 and k2=0.3). The simulation shows that with these parameters,
the settling time for the reference value increases for angles below 110°. On
the real model, this leads to oscillations due to the slow controller. This was
also tested for the faster controller and led to the same result. This can be
explained since the settling time of the n-controller is in the same range.

5.3.4. Adaptive backstepping

The best results can be achieved with adaptive backstepping. The four cases
studied are the following:

1. The uncertain parameters c1 and c2 without coupling via the matrix Γ.
2. The uncertain parameters c1 and c2 with coupling via the matrix Γ.
3. The uncertain parameters c1, c2 and c3 without coupling via the matrix

Γ.
4. The uncertain parameters c1, c2 and c3 with coupling via the matrix Γ.

The respective variant with the coupling of the uncertain parameters proves
to be the better one. The reference values of 80°, 85° and 90° are reached in
a tolerance band of±3°. At an angle of 75°, the settling time increases.

Considering the three system parameters c1, c2 and c3 as uncertainties,
shows the best result for angles greater than 75° when compared to the
other applied control concepts. The comparison of the second and the fourth
case for an angle of 85° is shown in Figure 5.11. The blue line is the measured
signal of the angle for the second case. The red line is the measured data
for the fourth case. This diagram shows that the controller for the fourth
case reaches the settling point faster, than for the second case.

For an angle of 75°, the second case with the uncertain parameters c1 and c2
gives the best result.

In Figure 5.12, the first and second case for a reference angle of 90° is
shown. This figure includes the measured data for the cascaded control with
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Figure 5.11.: Comparison of case two and four of adaptive backstepping for a reference
angle of 85°. The blue line is the measured signal of the angle for the second
case. The red line is the measured data for the fourth case. The yellow line is
the reference value of 85°.

the uncertain parameters c1 and c2. The sample times are Tcn=100ms and
Tcϕ=800ms. The blue line is the measured data from adaptive backstepping
with not coupled uncertain parameters. The red line is the coupled case.
The yellow line is the reference value of the angle. In Figure 5.12a, the
measured response of the control is displayed. In Figure 5.12b, the change
of the uncertain parameter c1 is shown. In Figure 5.12c, the change of the
uncertain parameter c2 is shown. Due to the occurring disturbances in the
control loop, the adapted uncertainties do not reach a constant value. This
can be seen in Figure 5.12, plot b and c. The influence of the coupling is
also visible. The main change between these cases can be seen in diagram c,
where the uncertain parameter c2 changes more with coupling.

The initial values of the uncertainties have a big influence on the settling
time. If the uncertainty is in the range of the expected final value, the
reference value is reached faster. This behavior is shown in Figure 5.13. The
blue curve has the starting values for both uncertainties at Θ̂0 =

[
0 0

]T. The
red curve has the starting values for the uncertainties at Θ̂0 =

[
c1 c2

]T. The
yellow curve shows the behavior for the starting values Θ̂0 =

[
c1 − 5 c2

]T.
If the uncertain values are to close to the final value, this results in an
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Figure 5.12.: Comparison between the first and second case for the slower cascaded control
at an angle of 90°. This figure includes the measured data for the cascaded con-
trol with the uncertain parameters c1 and c2. The sample times are Tcn=100ms
and Tcϕ=800ms. The blue line is the measured data from adaptive backstep-
ping with not coupled uncertain parameters. The red line is the coupled case.
The yellow line is the reference value of the angle. In Figure a, the measured
response of the control is displayed. In Figure b, the change of the uncertain
parameter c1 is shown. In Figure c, the change of the uncertain parameter c2
is shown.

overshoot of the controlled output (red line).

The matrix Γ and the control parameter k1 have a direct influence on the rate
of change of the uncertainties. This can be seen from the law of adaptation
(Equation 3.57), when z2 = x2 + k1z1 is used.

˙̂Θ = (x2 + k1z1) · Γ ·WT (5.2)

The control parameter k2 is used to set the final behavior of the control loop.
This parameter can increase or decrease the influence of the error z1 on the
control behavior. This can be seen from Equation 3.58, if z2 = x2 + k1z1 is
used.
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Figure 5.13.: Behavior of the adaptive backstepping for different starting values of the
uncertainties. The blue curve has the starting values for both uncertainties at
Θ̂0 =

[
0 0

]T . The red curve has the starting values for the uncertainties at
Θ̂0 =

[
c1 c2

]T
]. The yellow curve shows the behavior for the starting values

Θ̂0 =
[
c1 − 5 c2

]T .

u =
1

c3 · ge(x1)
(−k2 · (x2 + k1z1)− z1 − k1 · x2 −W · Θ̂)

For the case that k2 is smaller than one, the influence of the error is reduced.
On the other hand, for k2 bigger than one, the influence of the error is
increased.

5.4. Conclusion

In this thesis different model based control concepts applied to the Fan
Driven Pendulum (FDP) are compared.

The results of the exact linearization show that the used model has some
parameter uncertainties and, therefore, a robust algorithm able for coping
with uncertainties was used for controlling the pendulum. The best results
for controlling the angle could be achieved with the adaptive backstepping
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algorithm. With this algorithm, uncertain parameters are adapted during
the control process.

In Figure 5.14, the non-linear control concepts for the four reference val-
ues (75°=a, 80°=b, 85°=c and 90°=d) are presented. The lines represent the
achieved position signal for the corresponding control algorithm. The blue
line represents the exact linearization; the red line represents backstepping;
the yellow line represents adaptive backstepping with the uncertain param-
eters c1 and c2; the purple line represents adaptive backstepping with the
uncertain parameters c1, c2 and c3; and the green line is the reference value.
In these plots, it can be seen that the yellow line (adaptive backstepping
with the uncertain parameters c1 and c2) reaches all four reference values
within an error band of ±3° with some outliers.

From the investigation of the slow (Tcn=100ms, Tcϕ=800ms) and fast (Tcn=5ms,
Tcϕ=100ms) cascaded control, it was not possible to detect any advantage of
the faster cascaded control, nor a disadvantage of the slower control. This
can be explained by a similar settling time of the speed signal of the fan in
closed loop operation, for both cases of 2 seconds. To achieve a satisfying
control behavior, the inner control loop needs to reach the settling point
before a new reference value is sent from the outer control loop. In the
case of the laboratory setup of the pendulum it was not possible, due to its
used components. Due to the slow settling time of the speed controller, it
is also not possible to control angles greater than 105°. In order to achieve
a better behavior of the angular control, the settling time of the n-control
must be shortened. To achieve a faster control, the range of the PWM-signal
can be increased by using a power supply that is able to provide enough
current and voltage for the BLDC. Furthermore, the accuracy and the speed
to measure the motor speed should be increased. For this purpose there are
BLDCs with integrated speed measurement, which is carried out with Hall
sensors.

Furthermore, the occurring temperature behavior was not considered in the
mathematical model, because all experiments were recorded in the warm
state.

The MCU should be exchanged to a Matlab Simulink compatible device, in
order that the whole program can be implemented in Simulink. This reduces
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Figure 5.14.: Comparison of all algorithms for the angular control. The lines represent the
achieved position signal for the used control algorithm. The blue line is the
result for the exact linearization; the red line is the result for backstepping;
the yellow line is the result for adaptive backstepping with the uncertain
parameters c1 and c2; the purple line is the result for adaptive backstepping
with the uncertain parameters c1, c2 and c3; and the green line is the reference
value.
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errors which, can occur during the migration process form the generated
code.

In order to use the fan actuated pendulum for further research and also as
a laboratory model some changes are suggested in Section 5.5.

5.5. Outlook

Some components must be replaced in order to use the Fan Driven Pendu-
lum (FDP) as a reliable laboratory model. This means that the microcon-
troller should be Simulink compatible and fully programmable in Simulink.
This eliminates all errors, that can occur during the migration process. Fur-
thermore, control parameters can be changed in a more efficient way. Some
alternatives are:

• Arduino
• STM32

• TI C2000

• TI C6000

For this mentioned types of MCUs, support packages are available for
Simulink. The code for the project is automatically generated in Simulink
with the embedded coder. It is necessary to have an Integrated Development
Environment (IDE), to build the binary file for the MCU. For instance, for
the Texas Instruments (TI) controllers, the TI Code Composer Studio is an
option.

For the extension of the PWM-signal range and to supply the BLDC with
sufficient current, a power supply unit that can provide peak currents up to
30A, should be used.

Furthermore, the measurement of the angle needs to be adjusted. Due to the
backlash of the indirect measurement, an inaccuracy of 1.3° by a direction
change of the arm movement occurs. In a modified setup the backlash
needs to be reduced, to stay with the indirect measurement and the hall
sensor. An other option is to use an incremental encoder for a direct angular
measurement.
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The occurring varying time delay and the temperature dependency of the
model is probably caused by the used ESC. The varying time delay can be
explained due to the tolerances of the used transistors in the converter. By
exchanging the ESC for a more precise ESC, the variety of the time delay
can be reduced. There are several providers of ESCs, like for example: NXP
and Infineon.

To get a more precise measurement of the motor’s speed, it is suggested
to exchange the motor for a BLDC with internal speed measurement (for
this reason hall sensors are used). This BLDC can also have a lower rate of
change than the used one. This leads to an increase of the range of the used
PWM-signal, due to the higher supply voltage needed by the BLDC. An
other alternative would be an external sensor that can measure speeds of
up to 10500RPM of the propeller. For this case the existing BLDC could be
still used.
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Appendix A.

Model

In this part of the Appendix, additional information regarding the model is
provided.

A.1. Model components

The following components are used in the FDP:

• Micro-controller NXP (LPC176 )
• Mbed development board (C12832)
• BLDC-motor (a2212/6t 2200kV)
• Propeller (APC E 6055)
• Motorcontroller ESC
• Currentsensor (ACS712-ELCTR-05B-T)
• Fan speed measurement:

– Infrared sensor plus comparator (H2010, LM393)
– Phasesensor (BXA76013-BEASTX)

• Angular measurement Hall sensor
• Power supply (12V, 5A)
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A.2. Mathematical model constants

In this section the mathematical model constants, for the calculation of the
model, are given in the table below.

Symbol Value Unit
cp 0.0498

dp 0.1524 m
g 9.81

m
s2

ha 0.23 m
H 0.1397 m
kR 1.216

k 0.8568

la 0.38 m
lp 0.288 m
ls 0.195 m
m 0.235 kg
r 0.0762 m

ρ20 1.2041
kg
m3

ϑ 15 °

Table A.1.: Constant values for the calculation of the model parameters of the FDP.

The parameters of Table A.1 are used for the calculation of the differential
equation of the system description (Equation 2.22). To calculate parameter
c1 the following parameters are needed: the gravitational acceleration g and
the distance ls, to the center of gravity. For the parameter c2, the mass m of
the pendulum arm and the friction coefficient kR are needed. The constant
values of the power factor cp, the diameter of the propeller dp, the pitch H
of the propeller and the air density at 20°C ρ20, are used in Equation 2.5
to calculate the thrust Fp generated by the propeller. The values relevant
for the calculation of the ground effect ge(x1) are, the height of the pivot
point ha, the length of the pendulum arm la and the radius r of the propeller.
Furthermore, the distance form the pivot point to the center of gravity ls,
the mounted distance lp of the BLDC and the mass m of the pendulum arm,
are needed for the calculation of parameter c3.
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Appendix B.

Controller

In this part additional information needed for the controller implementation
is provided.

B.1. Tables

This section provides the adjustment rules from Ziegler Nichols (ZN) and
Chien, Hrones, Reswick (CHR) for the PI- controller used in Section 4.1.

Figure B.1.: Ziegler Nichols adjustment rules, Source [9, P. 470]
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Figure B.2.: Chien, Hrones, Reswick Parameter adjustment rules, Source [19, P. 227]

B.2. Matlab files

The following files contain measured data of the n-control that is used for
the evaluation. The corresponding control parameters can be found in Table
4.1, except for sp opt tc 5.mat the control parameters are ki = 0.00256 and
kp = 0.00016.

• pi chr20 tc 5.mat
• pi chr20 tc 100.mat
• pi chra tc 5.mat
• pi chra tc 100.mat
• pi zn tc 5.mat
• pi zn tc 100.mat
• pi opt tc 5.mat
• pi opt tc 100.mat

• sp chr20 tc 5.mat
• sp chr20 tc 100.mat
• sp chra tc 5.mat
• sp chra tc 100.mat
• sp zn tc 5.mat
• sp zn tc 100.mat
• sp opt tc 5.mat
• sp opt tc 100.mat

For each measured file exists an corresponding simulation file.

The used files for the evaluation of the angular control are given below.
The corresponding control parameters can be found in Section 4.2. sp5

indicates the faster cascaded control with the sample times Tcn=5ms and
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Tcϕ=100ms. sp100 indicates the slower cascaded control with the sample
times Tcn=100ms and Tcϕ=800ms.

• pi control kp20 ki22 sp5.mat
• pi control kp35 ki25 sp100 2.mat
• exact lin k1 15 k2 7 sp5 var2 2.mat
• exact lin k1 17 k2 5 sp100 var2 2.mat
• Backstepping k1 4 kbs 3 1 sp5 var2 2.mat
• Backstepping k1 5 9 kbs 3 2 sp100 var2 2.mat
• adaptive Backstepping c1 c2 1 sp5 2.mat
• adaptive Backstepping c1 c2 1 sp100 2.mat
• adaptive Backstepping c1 c2 1 sp5 link 2.mat
• adaptive Backstepping c1 c2 2 sp100 link 2.mat
• adaptive Backstepping c1 c2 c3 1 sp5 2.mat
• adaptive Backstepping c1 c2 c3 1 sp100 2.mat
• adaptive Backstepping c1 c2 c3 2 sp5 link 2.mat
• adaptive Backstepping c1 c2 c3 1 sp100 link 2.mat

For each measured file exists an corresponding simulation file with the
mentioned uncertainties.

B.3. Embedded Coder

For the code generation of the implemented controller in Matlab, the em-
bedded coder is used. For this reason the discrete controller is copied in a
new file and the following steps are performed:

1. Open the Model Configuration Parameters in Simulink. In the menu
Solver, in the field Solver selection, the type needs to be changed to
Fixed-step (with the sample time of the controller) and the solver is set
to discrete (no continuous states).

2. In the menu Data Import/Export, make sure that in the Section Save to
workspace or file nothing is selected.

3. In the menu Hardware Implementation, select the corresponding hard-
ware. For the used MCU select under Device Vendor, NXP and under
Device-Type, Cortex-M3.
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4. In the menu Code Generation the final adjustments need to be made:

• In the field Target Selection, the System Target File needs to be
changed to ert.tlc Embedded Coder and the Language can be selected
between C and C++.

• In the field Build Process select Generate code only and Package
code and artifacts. Furthermore the Building configuration can be
selected. For the generated code, Faster Runs, was selected.

• In the submenu Optimize the Default parameter behavior can be
selected between Inlined or Tuneable. Due to the necessary change
of the control parameters in the adjustment phase, Tuneable was
selected.

After the above steps, the model can be saved and build. The generated
code can be migrated to Mbed.

B.4. Communication with the MCU

In this section, how to establish the connection between the MCU and the PC
is shown. This is shown for the two used programs, Matlab and Coolterm.

To establish a connection with CoolTerm the following steps need to be
performed. After opening CoolTerm the serial port needs to be configured
in the options. For this reason in the Serial Port Options the Baudrate needs to
be changed to 115200 and the Parity is set to odd. The Terminal Mode needs
to be changed to Line Mode to be able to send and receive data. With a click
on Connect the serial connection is established and the serial port terminal
can be used to send reference values to the MCU.

The following code shows how the serial connection is set up with a Matlab
script. This script was used, to exchange data between the PC and the
MCU. The reference values and the format of the send reference value, were
changed accordingly to the investigated controller (n-control or ϕ-control).
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%c l e a r up a l l b e f o r e open ing c o n n e c t i o n
c l e a r a l l ; c lose a l l ; c l c ; delete ( i n s t r f i n d ) ;

%% i n i t i a l i z a t i o n ( Baudrate , e r r o r c h e c k i n g )
BR=115200 ;
lpc1768= s e r i a l ( ’COM4 ’ , ’ Baudrate ’ ,BR ) ;% f o r win use
lpc1768 . P a r i t y = ’odd ’ ;
lpc1768 . Terminator= ’LF ’ ;
fopen ( lpc1768 ) ; %opens s e r i a l c o n n e c t i o n
% s e t d a t a t o be send
n = 1 7 0 : 1 : 1 7 3 ;
n send=zeros ( 1 , length ( n ) * 2 ) ;
n send ( 1 : 2 : end )=n ;

s t a t u s s e r =lpc1768 . s t a t u s ; % t o c h e c k i f s ometh ing i s wrong

for i =1 : length ( n send )
for j =1 :400

i f ( lpc1768 . s t a t u s == ’ open ’ )% s e n d s d a t a
f p r i n t f ( lpc1768 , ’n : %f \n ’ , n send ( i ) , ’ async ’ ) ; % asyncronus n e c c e s a r y due t o mcu

end
i f ( lpc1768 . s t a t u s == ’ open ’ ) % r e c e i v e s d a t a

Data in { j , i }= fscanf ( lpc1768 ) ;
e lse

disp ( ’ Error ’ )
end

end
end

f p r i n t f ( lpc1768 , ’n : %f \n ’ , 1 , ’ async ’ ) ; % turn o f BLDC
f i l e name= ’Name ’ ;
save ( f i le name , ’ Data in ’ ) ; %Saves d a t a t o f i l e
i f ( lpc1768 . s t a t u s == ’ open ’ ) %c l o s e s c o n n e c t i o n t o mcu

f c l o s e ( lpc1768 ) ;
delete ( lpc1768 ) ;
c l e a r lpc1768 ;

end
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B.5. Flowchart of the implemented code

The flowchart shows the program structure of the implemented C++ code.
The used functions are called in the main program by interrupts and timer
interrupts. The interrupt to receive data, blocks all other interrupts until
no more data is received. To detect the rising edge of the speed sensor
an interrupt is used. The controllers are called by timer interrupts with
the corresponding sampling time (Tcn, Tcϕ). The evaluation of the speed is
started by a timer with the time Ts. The lowest priority has to send data,
which is send when the MCU has no other tasks to process. The minimum
time that has to elapse between new data is send is set to Tsend. The value
of Tsend was changed in accordance to the used controller.
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Figure B.3.: The flowchart of the implemented C++ program.
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