
Kevin Ayrton Pendl, BSc

Development of an Implicit

Cell-Centred Finite Volume Solver

for Nonlinear Solid Mechanics

Master's Thesis

to achieve the university degree of
Diplom�Ingenieur

Master's degree programme: Mechanical Engineering and Business Economics
Computational Engineering and Mechatronics

submitted to

Graz University of Technology

Faculty of Mechanical Engineering and Economic Sciences

Supervisor

Univ.-Prof. Dipl.-Math.techn. Dr.-Ing. Thomas Hochrainer
Institute of Strength of Materials

Second Supervisor

Dipl.-Ing. Benedikt Weger, BSc
Institute of Strength of Materials

Graz, June 2020





With your mind power,

your determination,

your instinct,

and the experience as well,

you can �y very high.

AYRTON SENNA





Eidesstattliche Erklärung

Ich erkläre an Eides statt, dass ich die vorliegende Arbeit selbstständig verfasst, andere
als die angegebenen Quellen/Hilfsmittel nicht benutzt, und die den benutzten Quellen
wörtlich und inhaltlich entnommenen Stellen als solche kenntlich gemacht habe.
Das in TUGRAZonline hochgeladene Textdokument ist mit der vorliegenden Masterar-
beit identisch.

A�davit

I declare that I have authored this thesis independently, that I have not used other than
the declared sources/resources, and that I have explicitly marked all material which has
been quoted either literally or by content from the used sources.
The text document uploaded to TUGRAZonline is identical to the present master`s
thesis.

Graz, . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
date (signature)

v





Abstract

The Finite Element (FE) method is a common tool used for calculations in solid
mechanics. In contrast, the Finite Volume (FV) method is primarily used for �uid
�ow problems. However, in the last few decades about 400 scienti�c articles on FV
approaches for solid mechanics have been published, including books, theses and papers.
The regular FV approach for solids is oriented on the �uid �ow implementations and
incorporates a deferred correction approach, especially in the context of nonorthogonal
grids. So-called cross di�usion terms are formed within the di�usion term, which are
incorporated into the right-hand side of the system of equations and are explicitly treated
in the segregated solution process.
In contrast, it is common practice in solid mechanics with FE discretisation to pursue

an implicit solution process, where the governing equations are assembled in a block
matrix. In large deformation theory, a linearisation process using directional derivatives
in combination with the Newton-Raphson method may be performed. The equations of
large deformation solid mechanics are generally nonlinear due to the nonlinear kinematics
and material law, hence the linearisation. This approach is described in detail in the
literature.
The purpose of this thesis is to develop a FV solution algorithm analogous to the

FE approach for nonlinear solid mechanics. All terms are treated implicitly and lead
to a set of linear algebraic equations as a result of the linearisation and discretisation
process. After the theoretical introduction, including nonlinear solid mechanics and
the FV method, the implicit solution algorithm is developed step by step. A generic
example, which is discussed in detail, contributes to the understanding of the introduced
equations. Eventually, simulation results of the implemented MATLAB c© code are
presented. Results from the arising code called SOOFVAM are compared to the in-house
solver SOOFEAM, a MATLAB c© FE implementation for nonlinear solid mechanics. In
addition, the results are compared to the open-source FV solvers OpenFOAM c© and
foam-extend, which comprise linear and nonlinear solid mechanics solution algorithms,
respectively.

vii





Kurzfassung

Während die Finite Elemente (FE) Methode ein wesentliches Werkzeug zur Berechnung
in der Festkörpermechanik darstellt, wird die Finite Volumen (FV) Methode haupt-
sächlich für Strömungsprobleme herangezogen. In den letzten Jahrzehnten wurden
jedoch in etwa 400 wissenschaftliche Beiträge zur Anwendung von FV Methoden in der
Festkörpermechanik verö�entlicht. Der allgemeine Ansatz orientiert sich dabei an der
Verwendung der Methode für Strömungsprobleme, die im Besonderen im Zusammenhang
mit nicht-orthogonalen Gittern einen Ansatz der verzögerten Korrektur (deferred
correction approach) vorsieht. Dabei werden im Di�usionsterm Terme sogenannter
Kreuzdi�usion (cross di�usion) gebildet, die explizit in den segregierten Lösungsansatz
(segregated solution process) ein�ieÿen.
Im Gegensatz dazu ist es in der Festkörpermechanik in Kombination mit der FE

Diskretisierung gang und gäbe, einen impliziten Lösungsansatz zu verfolgen. Die
resultierenden linearen Gleichungen werden dabei in eine Blockmatrix assembliert
und implizit gelöst. Im Fall der Festkörpermechanik für groÿe Deformationen ist
es dabei üblich, die infolge der nichtlinearen Kinematikzusammenhänge und des im
allgemeinen nichtlinearen Materialgesetzes nichtlinearen Lösungsgleichungen zunächst
zu linearisieren und dann zu diskretisieren. Dabei wird sich die Methode von
Richtungsableitungen und das Newton-Verfahren (auch bekannt als Newton-Raphson-
Methode) zunutze gemacht. Für FE Methoden ist dieser Vorgang ausführich in der
Literatur beschrieben.
Ziel dieser Arbeit ist es, einen zur FE Methode für nichtlineare Festkörpermechanik

analogen Lösungsalgorithmus für die FV Methode zu entwickeln. Hierbei sollen ebenfalls
sämtliche Terme implizit in das zu lösende Gleichungssystem eingearbeitet werden.
Nachdem die benötigten theoretischen Inhalte zur nichtlinearen Festkörpermechanik
und der FV Methode geklärt sind, wird der implizite Lösungsalgorithmus sukzessive
entwickelt. Anhand eines generischen Beispiels, welches als Gedankenexperiment
Schritt für Schritt erläutert wird, soll der Algorithmus zugänglicher gemacht werden.
Abschlieÿend werden Simulationsergebnisse des in MATLAB c© implementierten Codes
präsentiert. Die Ergebnisse des aus der Implementierung resultierenden Programms
SOOFVAM werden dabei mit der hauseigenen Software SOOFEAM, welches ein
MATLAB c© FE Programm für nichtlineare Festkörpermechanik darstellt, sowie mit den
beiden Open-Source Paketen OpenFOAM c© und foam-extend, die jeweils FV Solver für
lineare und nichtlineare Festkörpermechanik darstellen, verglichen.

ix





Danksagung

Ich möchte mich an dieser Stelle bei all jenen bedanken, die zum Gelingen dieser Arbeit,
sei es durch ihre fachliche oder persönliche Unterstützung, beigetragen haben.
Zunächst möchte ich Herrn Univ.-Prof. Dipl.-Math.techn. Dr.-Ing. Thomas

Hochrainer dafür danken, mir dieses durchaus fordernde, aber interessante Thema
anvertraut zu haben. Dabei freut es mich, dass ich die Möglichkeit hatte, neue
Erkenntnisse für diese zum Teil neue Thematik liefern zu können. Weiters möchte ich
mich hiermit auch für das rege Interesse am Fortschritt der Arbeit bedanken.
Für alle anregenden Diskussionen, fachlichen Inputs und der im Allgemeinen ausge-

zeichneten Betreuung möchte ich mich im Besonderen bei Dipl.-Ing. Benedikt Weger,
BSc, bedanken. Ohne dein Zutun wäre mir das Bewältigen der Aufgaben sicher um
einiges schwerer gefallen.
Vor allem gilt mein Dank aber meiner Familie, die mich bisher auf meiner akademis-

chen Laufbahn, sowie bei allen anderen Entscheidungen, vollends unterstützt hat. Als
mein persönlicher Motivator und Antrieb dient für mich weiterhin das Versprechen, das
ich meinem verstorbenen Vater gemacht habe, nämlich �stets so zielstrebig zu bleiben,
wie bisher�.
Nichtsdestoweniger möchte ich mich bei allen bedanken, die sich die Mühe gemacht

haben, diese Arbeit Korrektur zu lesen. Auch für jegliche Form von Kritik, sei sie von
inhaltlicher oder stilistischer Natur, die in diesem Zusammenhang an mich herangetragen
wurde, bin ich dankbar. Ohne euch wäre diese Arbeit nicht in dieser Fassung zustande
gekommen.

xi





List of Abbreviations

BC boundary condition

CFD Computational Fluid Dynamics

CM Continuum Mechanics

FE Finite Element

FEM Finite Element Method

FV Finite Volume

FVM Finite Volume Method

LHS left-hand side

LS least-squares

NR Newton-Raphson

NRM Newton-Raphson method

OpenFOAM Open Source Field Operation and Manipulation

PDE Partial Di�erential Equation

RHS right-hand side

SIMPLE Semi-Implicit Method for Pressure Linked Equations

SOOFEAM Software for Object-Oriented Finite Element Analysis in Matlab

SOOFVAM Software for Object-Oriented Finite Volume Analysis in Matlab

TC test case

UML Uni�ed Modeling Language

xiii





Contents

A�davit v

Abstract vii

Kurzfassung ix

Preface xi

List of Abbreviations xiii

List of Figures xviii

List of Tables xix

List of Algorithms xxi

1. Introduction 1

1.1. State of the Art of FV Approaches for Solids . . . . . . . . . . . . . . 3
1.2. Comparison of the FVM and the FEM . . . . . . . . . . . . . . . . . 4
1.3. Scope and Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
1.4. Mathematical Preliminaries . . . . . . . . . . . . . . . . . . . . . . . 6

2. Continuum Mechanics 9

2.1. Kinematics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
2.1.1. Con�gurations, Mapping and Displacement . . . . . . . . . . . 9
2.1.2. Deformation Gradient . . . . . . . . . . . . . . . . . . . . . . 10
2.1.3. Strain . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
2.1.4. Strain for Small Deformations . . . . . . . . . . . . . . . . . . 13

2.2. Stress Tensors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
2.3. Equilibrium and Boundary Value Problem . . . . . . . . . . . . . . . 15
2.4. Constitutive Equations . . . . . . . . . . . . . . . . . . . . . . . . . . 17

2.4.1. Compressible Isotropic Hyperelastic Material Models . . . . . 18
2.4.2. Generalized Hooke's Law for Small Deformations . . . . . . . 20

2.5. Newton-Raphson Method . . . . . . . . . . . . . . . . . . . . . . . . 21

xv



Contents

3. Finite Volume Method 23

3.1. Mesh Generation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
3.1.1. Structured Grids . . . . . . . . . . . . . . . . . . . . . . . . . 23
3.1.2. Unstructured Grids . . . . . . . . . . . . . . . . . . . . . . . . 24

3.2. Discretisation Process . . . . . . . . . . . . . . . . . . . . . . . . . . 30
3.2.1. Discretisation of the Di�usion Flux Term . . . . . . . . . . . . 31
3.2.2. Discretisation of the Source Term . . . . . . . . . . . . . . . . 32
3.2.3. Spatial Discretisation and Gradient Computation . . . . . . . 32

3.3. Deferred Correction Approach and Solution . . . . . . . . . . . . . . 37

4. Implicit Finite Volume Method for Continuum Mechanics 41

4.1. Linearised Governing Equations . . . . . . . . . . . . . . . . . . . . . 41
4.1.1. Linearisation of Kinematics, Strain and Stress . . . . . . . . . 42
4.1.2. Linearisation of the Di�usion Flux . . . . . . . . . . . . . . . 43

4.2. Discretised Governing Equations . . . . . . . . . . . . . . . . . . . . . 44
4.2.1. Discretised Equations for Large Deformations . . . . . . . . . 44
4.2.2. Discretised Equations for Small Deformations . . . . . . . . . 47

4.3. Treatment of BCs and Solution Process . . . . . . . . . . . . . . . . . 48

5. Implementation and Discussion 51

5.1. SOOFVAM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
5.1.1. Structure of SOOFVAM . . . . . . . . . . . . . . . . . . . . . 51
5.1.2. Work�ow of SOOFVAM . . . . . . . . . . . . . . . . . . . . . 52

5.2. Solving an Example with SOOFVAM . . . . . . . . . . . . . . . . . . 55
5.2.1. Work�ow of the Solution Process . . . . . . . . . . . . . . . . 56
5.2.2. Explicit and Implicit Cell Gradient . . . . . . . . . . . . . . . 57
5.2.3. Explicit and Implicit Face Gradient . . . . . . . . . . . . . . . 61
5.2.4. Treatment of Dirichlet BCs . . . . . . . . . . . . . . . . . . . 63
5.2.5. Solution of the Equation System . . . . . . . . . . . . . . . . . 67

6. Results of the Simulation 73

6.1. Performance of Mesh Generation . . . . . . . . . . . . . . . . . . . . 73
6.2. Comparison of Solvers for Small Deformations . . . . . . . . . . . . . 75
6.3. Performance of NR Iteration Convergence . . . . . . . . . . . . . . . 79
6.4. Comparison of Solvers for Large Deformations . . . . . . . . . . . . . 84
6.5. In�uence of Parameters and Mesh . . . . . . . . . . . . . . . . . . . . 86
6.6. Three-Dimensional Twist . . . . . . . . . . . . . . . . . . . . . . . . . 90

7. Conclusion and Outlook 95

A. UML Diagrams of SOOFVAM 99

Bibliography 105

xvi



List of Figures

1.1. Continuous Body . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2. Cell-Centred Grid (left) and Vertex-Centred Grid (right) . . . . . . . 3

2.1. Con�gurations and Mapping of a Body . . . . . . . . . . . . . . . . . 10
2.2. Mapping of Tangent Vectors . . . . . . . . . . . . . . . . . . . . . . . 11
2.3. Traction Vector (inspired by [5]) . . . . . . . . . . . . . . . . . . . . . 14
2.4. Boundary Value Problem of Nonlinear Elasticity . . . . . . . . . . . . 16
2.5. Newton-Raphson Method for a Scalar Function f(x) . . . . . . . . . 22

3.1. Cell C Consisting of Faces fi and Nodes Ni . . . . . . . . . . . . . . . 24
3.2. Structured Mesh and its Topological Information (inspired by [35]) . 25
3.3. Unstructured Mesh with Global and Local Indices . . . . . . . . . . . 25
3.4. Arbitrary Cell in an Unstructured Mesh (inspired by [35]) . . . . . . 26
3.5. Geometric Centre and Centroid of an Arbitrary Polygonal Cell (inspired

by [35]) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
3.6. Centroid and Normal Vector of a Face of an Arbitrary Polygonal Cell

(inspired by [35]) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
3.7. Unstructured Grid with Position Vectors to Cell C and its Neighbours Fi 33
3.8. Conjunctional Face in a Two-Dimensional Grid (inspired by [35]) . . . 35
3.9. Nonconjunctional Face in a Two-Dimensional Grid (inspired by [35]) . 36
3.10. Dirichlet BC for a Nonorthogonal Cell (inspired by [35]) . . . . . . . 39
3.11. Neumann BC for a Nonorthogonal Cell (inspired by [35]) . . . . . . . 40

4.1. Neumann BC (Dead Load) for a Nonorthogonal Cell . . . . . . . . . 49
4.2. Dirichlet BC for a Nonorthogonal Cell . . . . . . . . . . . . . . . . . 49

5.1. Source Directory Structure of SOOFVAM . . . . . . . . . . . . . . . 53
5.2. Square Computational Domain with Arbitrary Quadrilateral Cells . . 55
5.3. Computational Domain with Prescribed BCs . . . . . . . . . . . . . . 56

6.1. TC1 - Computational Domain . . . . . . . . . . . . . . . . . . . . . . 74
6.2. TC1 - Comparison of Mesh Generation Time (Create Topology) . . . 74
6.3. TC1 - Comparison of Mesh Generation Time (Read Topology) . . . . 75
6.4. TC2 - Kirsch's Problem . . . . . . . . . . . . . . . . . . . . . . . . . 76
6.5. TC2 - Computational Domain and BCs . . . . . . . . . . . . . . . . . 77
6.6. TC2 - Comparison of Relative Error . . . . . . . . . . . . . . . . . . . 78

xvii



List of Figures

6.7. TC2 - Comparison of Analysis Time . . . . . . . . . . . . . . . . . . 79
6.8. TC3 - Quadratic Plate . . . . . . . . . . . . . . . . . . . . . . . . . . 80
6.9. TC3 - Computational Domain and BCs . . . . . . . . . . . . . . . . . 80
6.10. TC3 - Behaviour of Normed Increment . . . . . . . . . . . . . . . . . 81
6.11. TC3 - Behaviour of Normed Residuum . . . . . . . . . . . . . . . . . 82
6.12. TC3 - Comparison of Analysis Time . . . . . . . . . . . . . . . . . . 83
6.13. TC3 - Visualisation of Deformed Con�guration . . . . . . . . . . . . . 83
6.14. TC4 - Cook's Membrane . . . . . . . . . . . . . . . . . . . . . . . . . 84
6.15. TC4 and TC5 - Computational Domain . . . . . . . . . . . . . . . . . 85
6.16. TC4 - Comparison of Analysis Time . . . . . . . . . . . . . . . . . . 86
6.17. TC5 - Nonorthogonal Grids: (a) Structured, (b) Unstructured Quadri-

lateral, (c) Unstructured Triangular, (d) Unstructured Quadrilateral
Re�ned . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87

6.18. TC5 - Visualisation of Deformed Con�guration . . . . . . . . . . . . . 90
6.19. TC6 - Three-Dimensional Twist of a Cantilever . . . . . . . . . . . . 91
6.20. TC6 - Visualisation of Deformed Con�guration . . . . . . . . . . . . . 92

A.1. nsAnalyser . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99
A.2. nsGeometry . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100
A.3. nsIO . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100
A.4. nsModel . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101
A.5. nsModel.nsDOF . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102
A.6. nsModel.nsMaterial . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103

xviii



List of Tables

3.1. Topological Information of Cell 28 from Figure 3.4 . . . . . . . . . . . 27
3.2. Topological Information of Face f8 from Figure 3.4 . . . . . . . . . . . 27
3.3. Topological Information of Node N32 from Figure 3.4 . . . . . . . . . 27

6.1. TC2 - Comparison of Displacement Values: Circle Bottom . . . . . . 78
6.2. TC2 - Comparison of Displacement Values: Circle Top . . . . . . . . 79
6.3. TC3 - Relative Deviation of Displacement . . . . . . . . . . . . . . . 81
6.4. TC3 - Relative Deviation of von Mises Stress . . . . . . . . . . . . . . 82
6.5. TC4 - Relative Deviation of Displacement . . . . . . . . . . . . . . . 85
6.6. TC5 - Displacement Values for Nonorthogonal Structured Grid . . . . 87
6.7. TC5 - Displacement Values for Nonorthogonal Unstructured Quadrilat-

eral Grid . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88
6.8. TC5 - Displacement Values for Nonorthogonal Unstructured Triangular

Grid . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89
6.9. TC5 - Displacement Values for Nonorthogonal Unstructured Re�ned

Grid . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89
6.10. TC6 - Relative Deviation of Displacement . . . . . . . . . . . . . . . 91
6.11. TC6 - Relative Deviation of von Mises Stress . . . . . . . . . . . . . . 91

xix





List of Algorithms

5.1. Creation of Mesh Topology . . . . . . . . . . . . . . . . . . . . . . . . 54
5.2. Run Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
5.3. Work�ow of Total Lagrangian Solution Procedure . . . . . . . . . . . 58
5.4. Calculation of Global Coe�cient Matrix . . . . . . . . . . . . . . . . 60
5.5. Calculation of Local Coe�cient Matrix . . . . . . . . . . . . . . . . . 61
5.6. Calculation of Face Gradient Coe�cient Matrix . . . . . . . . . . . . 65
5.7. Nonorthogonal Treatment of Boundary Face Coe�cient Matrix . . . . 65
5.8. Nonorthogonal Treatment of Interior Face Coe�cient Matrix . . . . . 65
5.9. Calculation and Correction of Gradient of Interior and Boundary Face 66
5.10. Work�ow of FV Solution Procedure . . . . . . . . . . . . . . . . . . . 70
5.11. Calculation of Di�usion Flux Terms . . . . . . . . . . . . . . . . . . . 71
5.12. Assembly of A . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71
5.13. Assembly of b and Treatment of Dirichlet BCs . . . . . . . . . . . . . 72
6.1. Work�ow of Updated Lagrangian Solution Procedure . . . . . . . . . 93

xxi





1. Introduction

Continuum Mechanics (CM) is a branch of mechanics that, inter alia, studies the
motion of solids and takes into account the hypothesis of continuous media [14, 19].
The hypothesis is an idealisation in which physical phenomena are explained without a
detailed knowledge of the internal microstructure of a body [14, 23].
When a body B is considered as a continuous medium (as continuum), it is seen as an

open subset of the Euclidian space [19, 38] with a continuous distribution of matter in
space and time [23]. The body B is imagined as being a composition of a set of continuum
(or material) particles, represented by the point p ∈ B and its position vector xp shown
in Figure 1.1. Properties of the body, e.g. density, temperature, velocity or displacement,
are de�ned as �eld quantities and assigned to this material points.
If the internal structure of the body B is neglected, the large number of particles

is replaced with a few quantities. This so-called macroscopic system can be a good
approximation from a physical point of view. Although the predictions based on a
macroscopic system are not exact, they are precise enough for the design of machine
elements in mechanical engineering [23].

x2

x1

B

xp

p

Figure 1.1.: Continuous Body

In solid-based continuum mechanics, one is interested in the calculation of a so-called
deformed con�guration, which is the result of loading the body B with external forces. If
this deformed condition is an equilibrium state, one needs to solve the Partial Di�erential
Equation (PDE) of the equilibrium of translational momentum. It reads (with neglected
body forces):

∇ · σ = 0 , x ∈ B . (1.1)

The derivation of Equation (1.1) is discussed in detail in Chapter 2. In general, the PDE

1



1. Introduction

in Equation (1.1) is solved numerically since there are only few analytical solutions for
the complex problems dealt with today.
The common approach in solid mechanics is a discretisation process using the Finite

Element Method (FEM). The domain of consideration is divided into so-called �nite
elements, and the discretisation process is based on the concept of virtual work, which
is not discussed further here. In the case of nonlinear solid mechanics, one needs to
solve Equation (1.1) iteratively since it is in general nonlinear. A regular approach is
the linearisation of the nonlinear equation using a directional derivative approach and
solving the resulting set of linear equations with the Newton-Raphson (NR) method.
Another discretisation concept is the Finite Di�erence Method (FDM), where PDEs are
approximated with �nite di�erences. However, the Finite Volume (FV) method works
in a di�erent manner.
But similar to the mentioned methods, the FV method transforms PDEs into a set of

linear algebraic equations. In general, the following steps need to be performed in order
to achieve this [21, 35, 40]:

(I) the computational domain is subdivided into �nite cells (with �nite volumes),
(II) the PDE, as result of balance principles, is integrated over the volume/surface of

the cell,
(III) surface and volume integrals are approximated as discrete sums using an integra-

tion quadrature,
(IV) the variation of variables within the cell is approximated and surface values are

related to their respective cell values, and
(V) the system of linear algebraic equations is assembled and solved.

This common approach can be divided into two main steps�the discretisation of the
computational domain and the discretisation of the governing equations. Step (I), which
corresponds to the discretisation of the domain, is introduced in Section 3.1, whereas the
further steps, that correspond to the latter, are discussed in Section 3.2 and Section 3.3.

Like other numerical methods, the �rst approaches of the Finite Volume Method
(FVM) were introduced in the last century. First attempts were done by McDonald,
MacCormack and Paullay, and just like then the FVM is mainly used for �uid �ow
problems today [40]. It is the most widely used method for Computational Fluid
Dynamics (CFD) [21].
Since then, two main approaches of FVMs have been developed: cell-centred and

vertex-centred approaches. They mainly di�er in the discretisation of the computational
domain. In the cell-centred approach, a cell is the result of the subdivision of the
computational domain. Each cell consists of a centroid, where the �eld variables are
de�ned and stored. In contrast, in a vertex-centred approach the cell is formed after
the subdivision of the computational domain. The cells are the result of connecting the
centroids of cells that have a vertex in common. Therefore, they form a so-called dual
mesh [4, 10, 21, 35]. In a vertex-centred approach, the �eld variables are assigned to the

2



1.1. State of the Art of FV Approaches for Solids

vertices.
On the left of Figure 1.2, a cell-centred discretisation approach is shown, while on

the right an approach of a vertex-centred grid may be identi�ed. Since a cell-centred
approach is used in this thesis, vertex-centred grids are not further taken into account.

X2

X1

X2

X1

Figure 1.2.: Cell-Centred Grid (left) and Vertex-Centred Grid (right)

The applications of FV approaches are not limited to �uid mechanics. Di�erent FV
solvers for solid mechanics have been developed, and in the last decades about 400
scienti�c papers including books, theses and conference proceedings have been published.
Cardi� and Demirdºi¢ give an overview of this work in their not yet peer-reviewed paper
[7]. The following provides a brief overview of state of the art applications of FV solvers
in CM.

1.1. State of the Art of FV Approaches for Solids

The FV approaches for solids are generally based on the implementations of �uid �ow
problems. Therefore, the governing equations are adapted to the common FV method.
Some of these approaches published over the last 15 years are presented below.

In the years 2005 and 2006, Bijelonja et al. proposed a FV formulation both for
incompressible small and large deformation problems. They both base on a SIMPLE1

algorithm for displacement-pressure coupling, with the hydrostatic pressure as an
additional dependent variable. They assumed an incompressible hyperelastic material,
i.e. a Mooney-Rivlin material model, as constitutive law for �nite deformations. The
methods were formulated using the integral conservation equations governing momentum
balance in total Lagrangian formulation [2, 3].

1Semi Implicit Method for Pressure Linked Equations

3



1. Introduction

An approach of a FV module called �MulPhys-FV� integrated into the numerical
program �MulPhys� [36] was carried out by Limache and Idelsohn in 2007. They
formulated a FV code for nonlinear solid mechanics including simulations for large
deformations, rotations and displacements. Using a vertex-centred approach, they
assumed a hyperelastic St. Venant-Kirchho� material model [31].
In 2007, Tukovic et al. developed a selfcontained FVM Fluid-Structure Interaction

solver to simulate dynamic interactions between an incompressible Newtonian �uid and
an elastic solid with the assumption of large structural deformation. Their simulations
were realised with the open-source toolbox OpenFOAM c©2. Their cell-centred approach
comprised a St. Venant-Kirchho� material model and the solver was validated on the
vibration of a cantilevered elastic beam used to simulate the dynamic response of an
axial turbine blade [45].
A matrix-free vertex-centred FV approach was discussed by Suliman et al. in 2014.

In their simulations, they investigated linear elastic structures undergoing bending. The
results were compared with the traditional isoparametric Finite Element (FE) method.
They determined similar disadvantages as in the linear FE formulation for their FV
formulation. In order to circumvent the issues, an enhanced FV approach was proposed,
which provides an alternative for the analysis of bending problems [42].
In 2017, Haider introduced a new computational framework for the numerical

analysis of large strain explicit solid dynamic problems. His proposed algorithm is
entitled TOUCH3. The basis of his work was the development of a new set of �rst
order conservation laws, where the unknown variables are linear momentum and the
extended set of geometric strain measures. In his dissertation isothermal hyperelastic
and elastoplastic constitutive models were applied. The proposed framework was
implemented from scratch in OpenFOAM c©. Finally, the code was compared against
other in-house numerical methods, including the FEM and meshless methods [20].
Cardi� et al. proposed a new cell-centred FV approach for simulations of metal forming

processes in 2017. The governing equations were formulated in updated Lagrangian
formulation, and a hyperelastoplastic constitutive relation was assumed. The results
of the simulation were compared to a number of benchmark test cases, where good
agreement with available analytical and FE solutions was achieved [8].

1.2. Comparison of the FVM and the FEM

Although some FV approaches have been developed for solid mechanics, it is still
common practice to use the FE method. As it was mentioned in the previous section,
the FEM may be used as benchmark for the proposed FV solvers. A brief overview of
particular similarities and di�erences between FV and FE methods is given below.

2Open Source Field Operation and Manipulation
3Total Lagrangian Upwind Cell Centred Finite Volume Method for Hyperbolic conservation laws

4



1.3. Scope and Outline

In general, both methods may be considered as methods of weighted residuals, but
they di�er in the choice of the weighting function. While the Galerkin method used for
FE applies shape functions as weighting functions, in the FVM the weighting functions
are chosen as unity [15, 42, 43]. Therefore, the FVM may be considered as a particular
case of the FEM with non-Galerkin weighting [15, 39, 41].
Nevertheless, these two numerical schemes di�er in their mathematical background:

FE methods base on the variational principle, where the governing equations in strong
form are transformed into their equivalent weak form [8]. The method can be easily
extended to higher-order discretisation. The FVM, on the other hand, is usually second-
order accurate, and it is based on the strong integral formulation of the conservation
laws. Therefore, the equations automatically satisfy local conservation properties at the
discrete level [4, 20, 21, 46].
Moreover, there are di�erences regarding the residence of the primary variables. While

in a cell-centred approach the values, e.g. displacements, are stored in the centroids of the
cells, in FE methods the numerical quantities are stored in the vertices of the element4

[20, 21].
In contrast to FE methods where pre-de�ned shape functions are used depending on

the topology of the element, the discretisation applied in the FVM allows to construct
a second-order accurate discretisation independent of the shape of the cell. It can be
easily applied to any arbitrary grid. Therefore, it is possible that di�erent cell shapes
are mixed and matched at will [26].
There are also di�erences between FV and FE methods in the solution process of the

system of algebraic equations. On the one hand, the FVM generally uses a segregated
solution procedure, in which coupling and nonlinearity are treated in an iterative manner
[15, 26]. On the other hand, for the solution process in the FEM, the matrices are
normally given in block-coupled form and solved implicitly [26].

1.3. Scope and Outline

The objective of this thesis is the development of an implicit cell-centred FV solver for
nonlinear elasticity analogous to the approach used for FE methods. Therefore, the task
is not to adapt the governing equations for large deformations to the solution process of
the general FV approaches (like in state of the art approaches, cf. Section 1.1), but to
adapt the FV methodology to the approach including the linearisation via directional
derivatives. A major di�erence between common FV approaches and the proposed
solution is the treatment of non-orthogonal terms, so-called cross di�usion. In the
proposed algorithm, the treatment is done in a di�erent way, while the deferred correction
approach distinguishes between implicit (orthogonal) and explicit (nonorthogonal)
terms.

4The element is the equivalent to the cell in the FVM.

5



1. Introduction

The proposed solution algorithm is formulated based on the equilibrium of internal
forces in total Lagrangian formulation, neglecting transient terms and body forces. This
thesis only focuses on compressible isotropic hyperelastic constitutive models in order
to close the equation system. The arising MATLAB c© code is entitled SOOFVAM and
is discussed in Chapter 5.

In general, this thesis is divided into two main parts. The �rst part introduces
continuum mechanics for solids (Chapter 2), including both small and large deformation
theory, as well as a description of the FVM (Chapter 3). These two topics are combined
in Chapter 4, where the governing implicit equations are developed.
The second part starts with a detailed discussion (Chapter 5) of the equations derived

in Chapter 4, and illustrates extracts of the implemented code. A main focus is set on
the derivation of the explicit and implicit forms of cell gradients with the least-squares
method and the treatment of Dirichlet boundary conditions in the implicit (and iterative)
solution procedure. Results of the simulation, including a comparison to OpenFOAM c©

and foam-extend , are presented in Chapter 6. Finally, the �ndings are summarized and
an outlook of possible further steps is given in Chapter 7.

Since this thesis depends on tensorial mathematical formulations, the discerning reader
may have a look in any textbook related to tensor algebra. Moreover, the concept of
continuum mechanics is described in more detail in e.g. [5, 14, 19, 23, 32]. For a detailed
description of the FVM the author recommends literature including [4, 16, 21, 35, 46],
since this thesis only deals with the fundamentals needed for the proposed solution.

1.4. Mathematical Preliminaries

In the subsequent chapters the reader will encounter di�erent types of tensors. In
order to get in touch with the notation of tensors used in this thesis, a few coherences
regarding tensor algebra are described below. The following terms and subjects are
presented from a more practical (i.e. engineering) point of view without any excessive
use of mathematical language.
In general, most of the physical coherences in CM are expressed in form of tensors [22].

The basis of tensorial objects is a so-called vector space V with n dimensions, whereas
in this thesis it holds n = 3 or n = 25.

Forms of Notation

In general, one can distinguish between the symbolic and index notation of tensors.
Since both forms of notation are used in this thesis, they are brie�y introduced.

5Most of the simulated test cases in Chapter 6 deal with a two-dimensional domain.

6



1.4. Mathematical Preliminaries

Each vector v ∈ V can be de�ned as the linear combination of the vector space's basis
vectors

v =
3∑
i=1

vi bi , (1.2)

where the contravariant, i.e. superscript, term vi refers to the components of the vector
v and the subscript term bi represents the basis vectors of V . The left-hand side (LHS)
of Equation (1.2) refers to the symbolic notation and as may be observed, vectors are
identi�ed with a line underneath the variable in this thesis. The right-hand side (RHS)
refers to the index notation, whereas in this thesis the distinction is made between
superscript and subscript indices.
As one can imagine, if there are many vectors (tensors) involved in an equation, one

would have to write many summation signs. In order to circumvent this issue, the
summation convention for general curvilinear coordinate systems is introduced (also
called Einstein summation convention) [14]: if an index appears once as superscript and
once as subscript in a term, one has to sum over this index and the term is written
without the summation sign, i.e.

v =
3∑
i=1

vi bi = vi bi . (1.3)

Within this context, it is not possible that the same index appears more than once as
superscript or subscript. Since in the FV discretisation process integrals are replaced by
summation signs, every summation sign that appears in an equation will be explained
from now on.
Higher-order tensors are notated in an analogous way, e.g.

A = Aij bi ⊗ bj ,
B = Bijk b

i ⊗ bj ⊗ bk ,

C = Ci
jkl bi ⊗ bj ⊗ bk ⊗ bl ,

(1.4)

where A,B and C are arbitrary tensors of order two, three and four, respectively. The

number of indices de�nes the order of the tensor, e.g. Ci
jkl represents the components

of the fourth-order tensor C. Especially in Chapter 2 and Chapter 4, the reader will

encounter the index notation of tensors.
In the introduction of the FVM (Chapter 3), the symbolic notation is su�cient.

However, subscripts will be needed in order to de�ne if a term relates to e.g. a cell
or face. This must not be confused with the indices as described above. Therefore, these
subscripts often will be separated from the terms with parantheses, e.g. (.)f refers to
an arbitrary term of a face. Moreover, the subscripts (.)C, (.)F and (.)b relate to owner
cells, neighbour cells and boundary faces, respectively.

7



1. Introduction

As can be observed in Equation (1.4), in symbolic notation the number of lines
underneath the tensor de�nes the order for higher-order tensors.

Special Forms

Two special forms used in tensor algebra are �nally de�ned below. On the one hand,
there is the Kronecker delta δij, which is de�ned as [22, 23]:

δij =

{
1 , if i = j

0 , if i 6= j .
(1.5)

In symbolic notation, Equation (1.5) may be read as I, which is the second-order identity
matrix.
On the other hand, there is the metric tensor g that can raise and lower the indices

of tensors, i.e.
Ai = gij B

j , (1.6)

where the metric tensor gij is used to lower the index of the �rst-order contravariant
tensor Bj to form the �rst-order covariant tensor Ai.
In general, the metric tensor is needed to describe lengths and angles between vectors

in arbitrary coordinate systems and is de�ned as

u · w := g[u ,w] = gij u
i wj , (1.7)

which refers to the dot product of two vectors in an arbitrary coordinate system. The
length of u can be calculated with the metric tensor as

‖u‖ =
√
u · u =

√
gij ui uj , (1.8)

and the angle ϕ between u and w is calculated as

cos(ϕ) =
u · w
‖u‖ · ‖w‖

. (1.9)

For Cartesian coordinate systems it holds gij = δij (Kronecker delta, cf. Equation (1.5))
[22]. This is also true for the other variant form of the metric tensor, i.e. gij = δij.

8



2. Continuum Mechanics

In this chapter, both the small and large deformation theory of continuum mechanics
are introduced. Thus, topics including kinematics for �nite and in�nite deformations
(Section 2.1), the concept of stress (Section 2.2), the equilibrium state and the resulting
boundary value problem (Section 2.3) as well as constitutive equations (Section 2.4)
are discussed. The last section of this chapter addresses the Newton-Raphson method,
which is a tool that is not solely used in CM. The Newton algorithm is explained for
one-dimensional functions f(x) and is then applied for arbitrary functionals F(x).

In the context of this thesis the term continuum mechanics refers to continuum
mechanics for solids.

2.1. Kinematics

2.1.1. Con�gurations, Mapping and Displacement

If the body B in Figure 1.1 moves through time and space (e.g. as the result of
external forces), it occupies a continuous sequence of geometrical regions. Two speci�c
geometrical regions of this motion are denoted as B0 and Bt and are shown in Figure 2.1.
The reference con�guration1 B0 refers to an initial state of the body at a reference time
t = 0. As may be observed in Figure 2.1, a particle point P ∈ B0 is identi�ed by its
position vector X. In contrast, the current con�guration2 Bt refers to the current state
of the body at an arbitrary time t = t > 0. As a result of the motion, the point P
gets transferred, i.e. mapped, to the point p ∈ Bt and is identi�ed by its position vector
x. Alternatively, the reference and current con�guration may be also referred to as
Lagrangian and Eulerian description, respectively [5, 14, 22, 23].
The discerning reader may notice that an uppercase letter is used for the position

vector of the reference con�guration and that the position vector of the current
con�guration is written in lowercase, cf. Figure 2.1. In general, this thesis refers to
the reference con�guration with uppercase letters and the current con�guration with
lowercase letters. This notation holds also true for e.g. the index notation of tensors.

In the following, only the two mentioned con�gurations are of interest and not the
motion itself, therefore the transition from the reference to the current con�guration is
1It is also called undeformed, initial or material con�guration.
2It is also called deformed or spatial con�guration.

9



2. Continuum Mechanics

B0

Bt

χ

χ−1

X x

P pu

X2, x2

X1, x1

Figure 2.1.: Con�gurations and Mapping of a Body

further called mapping χ. In general, the coherences described above yield [5, 23]

x = χ(X, t) ⇐⇒ X = χ−1(x, t) , (2.1)

whereby in this thesis only the state of equilibrium as the result of a load is of interest.
The time-dependency in Equation (2.1) can therefore be neglected, yielding

x = χ(X) ⇐⇒ X = χ−1(x) . (2.2)

Note that the mapping will change the position, orientation and shape of the body B
in general, cf. Figure 2.1. This so-called deformation mapping χ maps each point from
the reference (P ∈ B0) into the current con�guration (p = χ(P ) ∈ Bt). The di�erence
between the position of a particle in the undeformed and deformed con�guration can be
described as

u = x−X . (2.3)

The displacement vector u (in the deformed con�guration) holds for all particles of the
continuum [23] and is the primary variable to be calculated.

2.1.2. Deformation Gradient

As illustrated in Figure 2.1, the mapping χ causes a general alteration of the body B and
therefore also changes the orientation of tangent vectors in particle points. Figure 2.2
shows the reference con�guration with an arbitrary point P ∈ B0. The tangent vectors
of P with respect to the coordinate directions are illustrated as well. Moreover, the
e�ect of the deformation is emphasized graphically with a structured, orthogonal mesh
that is aligned with the coordinate directions of the reference con�guration. Due to the

10



2.1. Kinematics

mapping of the point P into p = χ(P ), the tangent vectors as well as the mesh do not
resemble the initial state, cf. Figure 2.2.

∂
∂X1

∂
∂X2

(
∂

∂X1

)
∗

(
∂

∂X2

)
∗

p

χ

P
B0

Bt

x2

x1

X2

X1

Figure 2.2.: Mapping of Tangent Vectors

Local deformations in the surroundings of a point are characterized with the mapping
of the tangent vectors. This is described with the mapping F = Dχ, which is
a linearisation, and is called deformation gradient. It establishes the fundamental
relationship [5, 23]

dx = F dX , (2.4)

in which the de�nition of the deformation gradient is used that can be described as
[22, 23]

F =
∂x

∂X
or F i

I =
∂xi

∂XI
. (2.5)

As one notices, Equation (2.4) describes a linear mapping between two vectors. The
deformation gradient is also called a two-point tensor because it connects points from
two di�erent con�gurations [23]. As a result, the deformation gradient can be used
to describe the mapping of the basis vectors from the reference into the current
con�guration. This mapping reads in index notation [22]( ∂

∂XI

)
∗

=
∂p

∂XI
=

∂p

∂xi
· ∂x

i

∂XI
= F i

I

∂

∂xi
(2.6)

and is the so-called push-forward (denoted with a subscript asterisk). The inverse
mapping of e.g. the basis vectors of the current con�guration reads [22]( ∂

∂xi

)∗
= F̌ I

i

∂

∂XI
(2.7)

11



2. Continuum Mechanics

and is the so-called pull-back (denoted with a superscript asterisk). F̌ I
i relates to the

components of F−1, which is the inverse of F , because it holds true that

δIJ =
∂XI

∂XJ
=
∂XI

∂xi
· ∂x

i

∂XJ
= F̌ I

i F
i
J . (2.8)

The push-forward and pull-back operations exist not only for the basis vectors but also
for all other tensorial objects, as can be seen below.

2.1.3. Strain

In contrast to the theory of small deformations, there is no unique way to de�ne a
strain measure in nonlinear elasticity. Unlike displacements, which are measurable
quantities, strains base on a concept to simplify analysis. Numerous possibilities for
the de�nition of strain tensors have been proposed in the literature [23]. Strain tensors
compare deformation tensors, that describe the alteration of lengths and angles, with
the corresponding metric tensor of the reference or current con�guration. The strain
tensor used to derive the governing equations in this thesis is the Green-Lagrange strain
tensor E, which measures changes in lengths and angles with respect to the reference
con�guration. It is de�ned as [22, 23]

E =
1

2
(C −G) , (2.9)

with the second-order metric tensor of the reference con�guration G and the right
Cauchy-Green deformation tensor C, which is de�ned as the pull-back of the metric
tensor of the current con�guration g [22, 23]:

C = g∗ = F T g F . (2.10)

If Equation (2.10) is substituted in Equation (2.9), one obtains

E =
1

2
(F T g F − I) or EIJ =

1

2
(F i

I gij F
j
J − δIJ) , (2.11)

where G = I and δIJ refers to the Kronecker delta.
The deformation gradient F can be calculated in terms of the gradient of the

displacement vector u and reads

F =
∂x

∂X
=

∂x

∂X
+
∂X

∂X
− ∂X

∂X
=
∂x− ∂X
∂X

+
∂X

∂X
=

∂u

∂X
+ I , (2.12)

where ∂u
∂X

relates to the displacement gradient. Equation (2.12) reads in index notation

F i
I = ui,I + δiI , (2.13)

12



2.2. Stress Tensors

where the comma in ui,I refers to the partial derivative of the displacement vector u with
respect to X. If Equation (2.13) is substituted in Equation (2.11), one obtains

EIJ =
1

2
(F i

I gij F
j
J − δIJ) =

1

2
(gij (ui,I + δiI)(u

j
,J + δjJ)− δIJ) =

=
1

2
(gij δ

i
I δ

j
J + gij u

i
,I δ

j
J + gij u

j
,J δ

i
I + gij u

i
,I u

j
J − δIJ) .

(2.14)

With the equality gij = δij, one obtains

EIJ =
1

2
(δij δ

i
I δ

j
J + δij u

i
,I δ

j
J + δij u

j
,J δ

i
I + δij u

i
,I u

j
J − δIJ) =

=
1

2
(δjI δ

j
J + ui,I δiJ + uj,J δjI + δij u

i
,I u

j
,J − δIJ) =

=
1

2
(ui,I δiJ + uj,J δjI + δij u

i
,I u

j
,J) .

(2.15)

Note that the last term in Equation (2.15) is nonlinear, which yields a nonlinear
kinematic relationship for �nite deformations.

2.1.4. Strain for Small Deformations

Since some of the test cases in Chapter 6 deal with linear elasticity, some of the essential
aspects of the theory of small deformations in relation to kinematics are presented below.
If the displacement gradients in Equation (2.15) are small in comparison to unity,

then products of this terms are negligible [18]. For such cases, the Green-Lagrange
strain tensor in Equation (2.15) simpli�es to

Eij =
1

2
(ui,j + uj,i) =: εij , (2.16)

whereby εij relates to the components of the second-order in�nitesimal or small strain
tensor ε. All the indices of the tensors in Equation (2.16) are written in lowercase letters
because for small deformations one assumes that there is no (�nite) di�erence between
reference and current con�guration. As can be observed, Equation (2.16) yields a linear
kinematic relationship for small deformations.

2.2. Stress Tensors

The deformation of the continuum body due to external loading gives rise to interactions
between neighbouring particles, resulting in internal forces [14, 23]. The relation of forces
to areas leads to the term stress with the physical dimension force per unit area. The
concept of stress is linked to Cauchy's stress theorem.
In order to develop the concept of stress, a body B in its current con�guration as shown

in Figure 2.3 is investigated. It contains two regions Ω1 and Ω2 that are in contact. On

13



2. Continuum Mechanics

Ω1

n

x3

Ω2

∂Ω

∆p

n
t

−n
−t

∆a
p

x2

x1

Figure 2.3.: Traction Vector (inspired by [5])

the contact surface ∂Ω, an arbitrary particle point p is chosen, whereas the area ∆a
normal to n de�nes the neighbourhood of the point. If ∆p is the resultant force, the
traction vector t at p is then de�ned as [5]

t(n) = lim
∆a→0

∆p

∆a
, (2.17)

whereas Newton's third law of action and reaction must hold, t(−n) = −t(n). In general,
there is a linear relation between the traction vector t and the normal vector n3, namely

t = σ n or ti = σij nj , (2.18)

with the second-order Cauchy stress tensor σ. Equation (2.18) is Cauchy's stress
theorem [23].

Alternative Stress Tensors

Similar to strain tensors, numerous de�nitions of stress tensors have been proposed in
the literature [23]. Since the deformed con�guration is not known in advance, it is not
convenient to work with stress tensors de�ned on the current con�guration, e.g. the
Cauchy stress tensor [23]. Therefore, the derivation of the second Piola-Kirchho� stress
tensor S, which is solely de�ned on the reference con�guration, is developed4.
The pull-back operation with respect to the second index of the Cauchy stress tensor

σ (via Piola transformation) yields the �rst Piola-Kirchho� stress tensor P [14, 22, 23]:

P = J σ F−T or P iJ = J σij F̌ J
j , (2.19)

3if t is dependent on n [23]
4The second Piola-Kirchho� stress tensor is the work conjugate stress to the Green-Lagrange strain
tensor, cf. Section 2.4.

14



2.3. Equilibrium and Boundary Value Problem

where J is de�ned as the determinant of the deformation gradient F , J = det(F ). The
�rst Piola-Kirchho� stress tensor P relates forces on the deformed con�guration to areas
on the reference con�guration. The pull-back operation with respect to the �rst index
of the �rst Piola-Kirchho� stress tensor P or the full pull-back of the Cauchy stress
tensor σ yields the second Piola-Kirchho� stress tensor S, which reads [22, 23]

S = F−1 P = J F−1 σ F−T or SIJ = F̌ I
i P

iJ = J F̌ I
i σ

ij F̌ J
j , (2.20)

and relates forces to areas both on the undeformed con�guration.

2.3. Equilibrium and Boundary Value Problem

The governing equations are derived from the balance of translational momentum for a
body in its current con�guration Bt, which reads [14, 19, 23]∫

Bt

ρü(x) dv =

∫
∂Bt

t(x) da+

∫
Bt

b(x) dv . (2.21)

The term ü(x) = ∂2u
∂(t)2

refers to the acceleration and is neglected for further calculations,

i.e. no time-dependency as mentioned, ∂
∂t

= ∂2

∂(t)2
= 0. Only the equilibrium state of the

body B is of interest. It reads∫
∂Bt

t(x) da+

∫
Bt

b(x) dv = 0 , (2.22)

with the traction forces t(x) per unit area and body forces b(x) per unit volume. If
Equation (2.18) is substituted into Equation (2.22) and one applies the divergence
theorem of Gauss for the surface integral, one obtains∫

∂Bt

t da+

∫
Bt

b dv =

∫
∂Bt

σ n da+

∫
Bt

b dv =

=

∫
Bt

∇ · σ dv +

∫
Bt

b dv =

∫
Bt

(∇ · σ + b) dv = 0 ,

(2.23)

where ∇ relates to the del (or nabla) operator. Considering that the equation above can
be applied to any computational domain, the integrand of Equation (2.23) must vanish
and results in

∇ · σ + b = 0 . (2.24)

Due to simplicity, body forces are neglected (b = 0) for further calculations:

∇ · σ = 0 . (2.25)

15



2. Continuum Mechanics

Equation (2.25) is the PDE of the equilibrium of internal forces to be solved. The
angular momentum of the body results in the symmetry of the Cauchy stress tensor σ
[14], σij = σji, and is not discussed further here. Within this context, the boundary
value problem to solve is introduced as follows [22]:
From a given body B in its reference con�guration B0, the deformed con�guration
Bt = χ(B0) is to be calculated in the form of the deformation mapping x(X) = χt(X).
The body B is prescribed on a part of the boundary, i.e. the Dirichlet boundary ∂DB0

and the Neumann boundary ∂NBt := ∂Bt\∂DB0. As the body is loaded, the equilibrium
state of the resulting deformed con�guration is to be calculated, i.e.

∇ · σ = 0 , x ∈ Bt
σ · n = t , x ∈ ∂NBt

χt(X) = χt(X) , X ∈ ∂DB0 ,

(2.26)

where the second line in Equation (2.26) refers to the prescribed traction or Neumann
boundary condition (BC) and the third line relates to the prescribed displacement or
Dirichlet BC.

x2

x1

∂DB0

B0

Bt

t(x)

∂NBt

Figure 2.4.: Boundary Value Problem of Nonlinear Elasticity

The coherences described above are illustrated in Figure 2.4. The reference
con�guration B0 is sketched with a dashed grey line, while the current con�guration
Bt is shown as solid black. The Dirichlet and Neumann boundaries are both highlighted.
While the Dirichlet boundary ∂DB0 is emphasized with a dotdashed line and ends
in a diamond shape, the Neumann boundary ∂NBt with the prescribed traction t is
highlighted with a dotted line and dotted ends. The leftover boundary also refers to a
Neumann boundary, but with a traction force t = 05.
5It is also called implicit Neumann boundary.

16



2.4. Constitutive Equations

For the FV discretisation process, Equation (2.25) is integrated over the computational
domain, which reads ∫

Bt

∇ · σ dv = 0 . (2.27)

The linearisation (cf. Section 2.5) of the nonlinear equations in Equation (2.27) is
executed for the reference con�guration. Therefore, transformations including pull-
back operations, the divergence theorem of Gauss as well as the substitution of
Equation (2.19) result in∫

Bt

∇ · σ dv =

∫
∂Bt

σ da =

∫
∂B0

σ J F−T dA =

∫
∂B0

P dA = 0 . (2.28)

With the relationship S = F−1 P =⇒ P = F S from Equation (2.20), one obtains∫
∂B0

P dA =

∫
∂B0

F S dA =

∫
∂B0

F S N dA = 0 . (2.29)

As may be observed, the di�erential surface vector dA = N dA is split into normal
vector (of reference con�guration) N and di�erential area dA. Equation (2.29) refers
to the set of equations used for the derivation of the implicit governing equations in
Chapter 4.

2.4. Constitutive Equations

Although the equations introduced in the previous sections do hold for a continuous
body, they do not di�erentiate between individual materials. This information is set
with the material (or constitutive) law. The constitutive law approximates the physical
behaviour of a material under certain conditions of interest [23].
There are a lot of di�erent constitutive theories, and they establish a relationship

between stresses and strains. A speci�c form of such a theory is brie�y discussed below:
the �nite hyperelasticity theory [23], in which stresses are derived from stored elastic
energy functions [5].
All structural materials inherit to a certain degree the property of elasticity, i.e.

induced deformations disappear when the external forces of a loaded body are removed
[44]. Only if a material is loaded to a level below the yield strain and if the unloading
follows the same path, the material can be considered elastic [18, 44]. For the �nite
deformations dealt with in this thesis, the materials exhibit a nonlinear elastic behaviour
which manifests itself in a curved loading and unloading path.
An elastic material model generally predicts a material behaviour independent of

material history. Stresses are univocally determined by strains and vice versa [14]. As a

17



2. Continuum Mechanics

consequence, elastic material models cannot be used to model e�ects such as permanent
deformation, material damage or creep [14].
A so-called hyperelastic material postulates the existence of a scalar elastic potential

function Ψ, which is de�ned per unit reference volume. It holds that the elastic potential
is dependent on the current deformation or strain condition [22]. Therefore, it is a
function of an arbitrary strain measure ε, i.e. Ψ = Ψ(ε).
If the work done by stresses during a deformation process is only dependent on the

reference and current con�guration, the behaviour of a material is said to be path-
independent and implies a potential [5]. As a result, the stored elastic potential function
can be established as the work done by the stresses and reads [22]

Ψ(ε) =

ε∫
0

Σ(ε̃) dε̃ ⇐⇒ Σ(ε) =
∂Ψ(ε)

∂ε
, (2.30)

where Σ refers to an arbitrary stress tensor which is work conjugate to the corresponding
strain measure ε. In this thesis, the work conjugate pair consisting of the second Piola-
Kirchho� stress tensor and the Green-Lagrange strain tensor (S, E) is used for the
material law description. The relation in Equation (2.30) then becomes

S(E) =
∂Ψ(E)

∂E
or SIJ =

∂Ψ

∂EIJ
. (2.31)

In addition, for a work conjugate pair (Σ , ε) the elasticity tensor C is de�ned as [22]

C(ε) =
∂Σ

∂ε
=
∂2Ψ

∂ε∂ε
. (2.32)

The elasticity tensor for the work conjugate pair (S ,E) is the material elasticity tensor
C, which reads

C(E) =
∂S

∂E
=

∂2Ψ

∂E∂E
or CIJKL =

∂SIJ

∂EKL
=

∂Ψ

∂EIJ∂EKL
, (2.33)

and it inherits the symmetry of the strain tensor EIJ in its �rst two and second two
indices, CIJKL = CJIKL and CIJKL = CIJLK . Additionally, Schwarz' theorem holds:
CIJKL = CKLIJ .

2.4.1. Compressible Isotropic Hyperelastic Material Models

In the following, two material models of isotropic hyperelastic material behaviour are
presented. An elastic potential function Ψ is called isotropic6 if it is a function not only
6Isotropy is de�ned by the requirement that the material behaviour is identical in every material
direction [5].

18



2.4. Constitutive Equations

of a strain measure, but of the invariants of a strain measure, i.e.

Ψ = Ψ(ε) = Ψ(Iε, IIε, IIIε) , (2.34)

as the relationship between the potential function Ψ and the strain measure ε is
independent of the material axes chosen [5]. The invariants of the strain measure ε
can be calculated as

Iε = tr(ε) ,

IIε = ε : ε ,

IIIε = det(ε) ,

(2.35)

where tr(ε) refers to the trace, (:) to the double dot product operator and det(ε) to the
determinant of the strain measure ε.
The work conjugate strain measure for the second Piola-Kirchho� stress tensor S is

the Green-Lagrange strain tensor E. The elastic potential is de�ned as a function of
the invariants of the right Cauchy-Green tensor C7 because the potential function must
remain invariant, even if the current con�guration undergoes a rigid body transformation
[5]. This implies that Ψ is only a function of the stretch component U (and independent
of the rotation component R) of the deformation gradient F = R U , and C = U2 [5].
Therefore, the elastic potential Ψ can be de�ned as a function of the invariants of C, i.e.
Ψ = Ψ(IC , IIC , IIIC). According to Equation (2.31), the second Piola-Kirchho� stress
tensor S is the �rst derivative of the elastic potential with respect to the Green-Lagrange
strain tensor E. In terms of the invariants of C it can be calculated as [5]

S =
∂Ψ

∂E
= 2

∂Ψ

∂C
= 2

∂Ψ

∂IC
·
∂IC

∂C
+ 2

∂Ψ

∂IIC
·
∂IIC

∂C
+ 2

∂Ψ

∂IIIC
·
∂IIIC

∂C
. (2.36)

St. Venant-Kirchho� Material Model

The simplest approach to describe a hyperelastic material is the St. Venant-Kirchho�
material model. Basically it is only the transfer of the equations used for small
deformations to the �nite deformation range, cf. Section 2.4.2. Hence, the strain tensor
ε is replaced by the Green-Lagrange strain tensor E and the Cauchy stress tensor σ
becomes the second Piola-Kirchho� stress tensor S. The elastic potential is de�ned as
[5]

Ψ =
λ

2
tr(E)2 + µ E : E , (2.37)

where µ and λ are material parameters. Applying Equation (2.36), one obtains for the
second Piola-Kirchho� stress tensor [5]

S = λ tr(E) I + 2 µ E . (2.38)

7For convenience, it holds true that C = 2E + I.

19



2. Continuum Mechanics

The material elasticity tensor then can be calculated as [5]

C = λ I ⊗ I + µ (I + IT ) , (2.39)

with the second-order and fourth-order identity tensors I and I, respectively.

Compressible Neo-Hookean Material Model

Another common and rather simple model is the compressible Neo-Hookean material
model. It exhibits characteristics that can be identi�ed with material parameters found
in linear elasticity [5]. The elastic potential as a function of the invariants of the right
Cauchy-Green tensor C reads [5]

Ψ =
µ

2
(IC − 3)− µ ln(

√
IIIC) +

λ

2
ln(
√
IIIC)2 , (2.40)

where µ and λ are again material constants and ln(.) refers to the natural logarithm.
Applying Equation (2.36), the second Piola-Kirchho� stress tensor S becomes [5]

S = µ (I − C−1) + λ ln(
√
IIIC) C−1 . (2.41)

The material elasticity tensor C then can be calculated as [5]

C = λ C−1 ⊗ C−1 + 2 (µ− λ ln(
√
IIIC)) I , (2.42)

with the fourth-order tensor I de�ned as [5]

I = −
∂(C−1)

∂C
. (2.43)

2.4.2. Generalized Hooke's Law for Small Deformations

The generalized form of Hooke's law reads

σ = C : ε , (2.44)

with the Cauchy stress tensor σ, the in�nitesimal strain tensor ε and the fourth-order
elasticity tensor C with 81 coe�cients called elastic constants [18]. For the isotropic

case, the number of coe�cients reduces to 21 nonzero elements, which can be expressed
with two constants, namely

C = λ I ⊗ I + µ (I + IT ) , (2.45)

20



2.5. Newton-Raphson Method

with λ and µ being the Lamé parameters that can be generally calculated as

λ =
νE

(1 + ν)(1− 2ν)
,

µ =
E

2 (1 + ν)

(2.46)

The term E refers to the Young modulus and ν to the Poisson ratio. For the two-
dimensional plane stress case, λ has to be modi�ed and reads

λ =
νE

(1 + ν)(1− ν)
. (2.47)

2.5. Newton-Raphson Method

The PDE in Equation (2.29) is generally nonlinear. There are nonlinear kinematics, and
the constitutive equations introduced in Section 2.4.1 are assumed to be nonlinear as well.
In order to solve nonlinear equations, one can use the Newton-Raphson method (NRM),
which is �rst introduced for scalar equations.
Assuming a given nonlinear, di�erentiable scalar function f(x), one is interested in

calculating the root of this function. But instead of solving the nonlinear equation
f(x) = 0, the linear equation

f(xt) + (xt+1 − xt)f ′(xt) = 0 ⇐⇒ xt+1 = xt −
f(xt)

f ′(xt)
(2.48)

is iteratively solved for each iteration step t. Equation (2.48) is the result of a truncated
Taylor series expansion and f ′(xt) = df

dx

∣∣∣
xt
refers to the �rst derivative of f(x) evaluated

at the point xt. In order to �nd the root, one has to start with an initial guess x0. This
leads to the �rst so-called residuum f(x0), and the tangent in this point is calculated as
∂f
∂x

∣∣∣
x0
. As a result, the increment ∆x1 can be calculated and reads

∆x1 = − f(x0)

f ′(x0)
=⇒ x1 = x0 + ∆x1 , (2.49)

where x1 is the next evaluation point of the iterative process. Repeating Equation (2.49)
for each iteration step t up to a desired convergence limit, which is a measure of the
deviation from the �real� root, results in an approximated value of the root of the
nonlinear function f(x). Therefore, one applies

∆xt+1 = − f(xt)

f ′(xt)
=⇒ xt+1 = xt + ∆xt+1 . (2.50)

21



2. Continuum Mechanics

x
x

f(x)

x2 x1 x0

f(x0)

f(x1)

f(x2)

df
dx

∣∣∣
x0

df
dx

∣∣∣
x1

∆x1

Figure 2.5.: Newton-Raphson Method for a Scalar Function f(x)

The iterative solution algorithm of the NRM is illustrated in Figure 2.5.
There is no limitation to scalar functions, but it is possible to apply the NRM for

arbitrary functionals F(x) with arbitrary domain as well. Again, one is interested in the
root, i.e. F(x) = 0. Hence, the nonlinear equation is linearised to

F(x) ≈ F(x) +DF(x)[∆x] = 0 , (2.51)

where DF(x)[∆x] refers to the directional derivative of F(x) in the direction of the
increment vector ∆x. The directional derivative can be calculated as

DF(x)[∆x] =
d

ds

∣∣∣
s=0

(
F(x+ s∆x)

)
, (2.52)

where s is a parameter to scale the increment ∆x. Equation (2.52) can be interpreted
as follows: It describes the change8 of the functional F(x) if the variable x is slightly
altered9. However, the change must be evaluated at the point x, so the parameter s is
set to zero after the derivative has been performed.
While the functional F(x) is nonlinear in x, the directional derivative DF(x)[∆x]

is linear in ∆x. Therefore, it can be said it has been linearised with respect to the
increment ∆x [5].

8The change is represented by the derivative with respect to s.
9This is expressed by the term s∆x.

22



3. Finite Volume Method

This chapter introduces basics of the FVM, whereas the discretisation of the com-
putational domain is presented �rst (Section 3.1), and then the discretisation of the
transport equation for the general scalar variable φ is performed (Section 3.2). This
derivation forms the basis for the development of the governing equations presented
in Chapter 4. The common solution process and the so-called deferred correction
approach are introduced in Section 3.3, illustrating the di�erences to the proposed
implicit approach.

Due to simplicity in the presentation of sketches, the topics covered in this chapter
are discussed for a two-dimensional domain only. Note that they also hold true for
three-dimensional cases.

3.1. Mesh Generation

As mentioned in Chapter 1, the �rst step of the FVM is the generation of a discrete
mesh comprising a collection of nonoverlapping cells. In general, each cell1 is de�ned by
a set of faces, while each face consists of a certain number of nodes and the nodes are
de�ned by a position vector [37], cf. Figure 3.1.
Besides the distinction of the geometric shape2 of the cells, one can generally

distinguish between structured and unstructured grids. A structured mesh o�ers
advantages regarding the topological information. In contrast, a major advantage of
unstructured grids is their use for complex geometries. However, with the same regular
distribution of points, the results obtained with an unstructured grid tend to be less
accurate than with a structured grid [21]. While the cells in a structured grid can be both
orthogonal and nonorthogonal, an unstructured grid generally comprises nonorthogonal
cells.

3.1.1. Structured Grids

When the computational domain comprises a structured grid, each interior cell has the
same number of neighbours [35]. Such a grid is created by dividing the domain into
e.g. squares, cf. Figure 3.2. Each cell in the structured grid shown in Figure 3.2 is

1also referred to as control volume
2di�erent types of polygons, e.g. triangles, quadrilaterals, tetrahedrals, hexahedrals, etc.

23



3. Finite Volume Method

C

f6

f5

f4

f3

f2

f1N1

N2

N3

N4

N5

N6

XN1

X2

X1

Figure 3.1.: Cell C Consisting of Faces fi and Nodes Ni

easily accessible because the global indices [35] i and j provide access to a cell via its
respective coordinates. All the neighbours of the cell can be addressed by incrementing
or decrementing the respective indices. Consequently, the topological information is
embedded in the mesh structure of the grid [35].
However, with arbitrary geometries of the computational domain, a structured mesh

reaches its limits.

3.1.2. Unstructured Grids

As mentioned above, unstructured grids are far more �exible for complex geometries
[4, 21]. Although, this �exibility is accompanied by a disadvantage. In contrast to
structured grids, a cell in an unstructured mesh cannot be accessed simply via global
indices because the nodes are arbitrarily ordered [4, 35]. As a result, although the grid is
not restricted by the geometry of the computational domain, the topological information
must be created explicitly.
Due to the shape, an unstructured grid usually consists of nonorthogonal cells, cf.

Figure 3.3. In general, the generation of an unstructured mesh is based on the Delaunay
triangulation [4], which is not discussed further here.

Topological Information

Figure 3.3 comprises the same computational domain as Figure 3.2, but with nonorthog-
onal quadrilaterals. The global index of each cell is shown in the bottom left corner of
the cell. Moreover, an arbitrary cell C and its neighbours Fi, where i is the local index
of the neighbour cell, are shaded. In order to address face f1, which is in-between C and
F1, the use of two indices is not su�cient. As mentioned above, topological information
must be created explicitly, and therefore connectivities between

24



3.1. Mesh Generation

C(i, j)

C(i, j + 1)C(i− 1, j)

1 i− 1 i i+ 1 N

1

j − 1

j

j + 1

M

X2

X1

Figure 3.2.: Structured Mesh and its Topological Information (inspired by [35])

C

F1

2

F3

F4

1

F2

3

4

5

6

7

8

9

10

11

12

f1

X2

X1

Figure 3.3.: Unstructured Mesh with Global and Local Indices

25



3. Finite Volume Method

. cells,

. cells and faces,

. cells and nodes

. as well as between faces and nodes

are determined for each cell, face and node of the computational domain.

28

42

11

7

3

31

65

f22

f34

f8

f3

f12

f15

N12

N32

N23

N4

N53

N6

f89

N76

nf8

nf12

nf15

nf22
nf34nf3

X2

X1

Figure 3.4.: Arbitrary Cell in an Unstructured Mesh (inspired by [35])

Figure 3.4 shows an unstructured mesh with topological information. Moreover,
Table 3.1-Table 3.3 present corresponding connectivities for an arbitrary cell3, face4

and node5 from Figure 3.4. The global indices of the elements are arbitrarily chosen and
are for explanatory purposes only. Note that also for each other element in Figure 3.4
such information is determined to address all cells, faces and nodes in the unstructured,
nonorthogonal grid properly.
As can be observed in the tables below, each cell possesses a speci�c number of

(nearest) neighbours and is composed of a certain number of faces and nodes, cf.
Table 3.1. In addition, a face consists of two nodes in the 2D case and generally6

has an owner and neighbour. Usually, the owner is the cell with the smaller global index
[35]. Moreover, the orientation of the normal vector is de�ned so that it points to the
cell with the higher global index, i.e. to the neighbour cell, cf. Figure 3.4 and Table 3.2.

3cell with global index 28
4face with global index 8
5node with global index 32
6Boundary faces do not possess a neighbour.

26



3.1. Mesh Generation

Table 3.1.: Topological Information of Cell 28 from Figure 3.4

local indices global indices
neighbour face node

1 3 3 4
2 7 8 6
3 11 12 12
4 31 15 23
5 42 22 32
6 65 34 53

Table 3.2.: Topological Information of Face f8 from Figure 3.4

local indices global indices
owner neighbour node

1 3 - 4
2 - 28 53

Table 3.3.: Topological Information of Node N32 from Figure 3.4

local indices global indices
cell face node

1 11 22 12
2 28 34 23
3 42 89 76

27



3. Finite Volume Method

Geometric Quantities

Geometric quantities of cells and faces are relevant for the discretisation of the governing
equations. A general approach to calculate these quantities for arbitrary polygons in two
dimensions is presented below.
For the 3D case, the discerning reader may have a look in any geometry textbook or

in [4, 21, 35].

Computation of the Volume and Centroid of a Cell

(XG)C (XCE)C(XCE)tXN1

X2

X1

X2

X1

Figure 3.5.: Geometric Centre and Centroid of an Arbitrary Polygonal Cell (inspired by
[35])

Figure 3.5 shows an arbitrary polygonal cell of a two-dimensional unstructured mesh.
In general, for an arbitrary polygon the geometric centre XG, which is the arithmetic
average of all its surrounding points, does not coincide with its centroid XCE. Only
for some special cases this is ful�lled, e.g. for triangles. Nevertheless, to calculate the
centroid, one needs to calculate the geometric centre of the cell (XG)C which reads [35]

(XG)C =
1

n

n∑
i=1

XNi
, (3.1)

with the sum over the number of vertices, i.e. nodes, n of the cell and XNi
referring to

the position vectors of the nodes, cf. Figure 3.5 left. The subscript on the LHS, i.e. (.)C,
refers to cell. In order to calculate the centroid of a cell C with k edges, one has to

28



3.1. Mesh Generation

subdivide it into k subtriangles with the geometric centre (XG)C being the apex of each
triangle, cf. Figure 3.5 right. The centroid of the cell (XCE)C can be calculated as [35]

(XCE)C =
1

AC

∑
t

(XCE)t At , (3.2)

with the sum over the formed subtriangles t. (XCE)t is the centroid of the respective
subtriangle, which reads

(XCE)t = (XG)t =
1

n

n∑
i=1

XNi
, (3.3)

with the sum over the number vertices n of the triangle and the subscript on the LHS,
i.e. (.)t, referring to triangle. At is the area of the subtriangle, which can be calculated
with e.g. Heron's formula:

At =
1

4

√
(a+ b+ c) · (a+ b− c) · (a− b+ c) · (−a+ b+ c) , (3.4)

where a, b and c relate to the length of the edges of the triangle. They may be calculated
as

a = ‖XN2
−XN1

‖ ,
b = ‖XN3

−XN2
‖ ,

c = ‖XN1
−XN3

‖ ,
(3.5)

with the position vectors of the nodes of the respective triangle. The volume of the cell
AC, which is indeed an area for the 2D case, can then be calculated with the sum of
areas of the subtriangles t:

AC =
∑
t

At . (3.6)

Computation of the Area, Centroid and Normal Vector of a Face

In Figure 3.6, the arbitrary polygonal cell from Figure 3.5 is illustrated with the centroid
and the normal vector of the face f. As mentioned above, the geometric centre and the
centroid of a shape coincide in some special cases. This is also true for faces in the
2D case because they resemble straight lines. Therefore, the geometric centre of a face
(XCE)f reads [35]

(XCE)f = (XG)f =
1

n

n∑
i=1

XNi
, (3.7)

with the sum over the nodes n of the respective face and the subscript on the LHS, i.e.
(.)f, referring to face. The area of the face, which is a length for the 2D case, can be
calculated as the norm of the distance vector d between its nodes, which reads

Af = ‖d12‖ = ‖XN2 −XN1‖ , (3.8)

29



3. Finite Volume Method

XCE

nfXN2

XN1

X2

X1

Figure 3.6.: Centroid and Normal Vector of a Face of an Arbitrary Polygonal Cell
(inspired by [35])

where d12 refers to distance vector between the nodes N1 and N2 (cf. Figure 3.6) with
their position vectors XN1 and XN2, respectively.
With the distance vector, one can also calculate the normal vector of the face f by

rotating the distance vector by 90 degrees and divide it by its norm. Note that for each
face only one7 normal vector is stored due to computational performance and memory
e�ciency [35].

3.2. Discretisation Process

Starting with the so-called transport equation (or conservation equation [16]) of the
general scalar variable φ [35, 46], the discretisation is done only for the terms used in
solid mechanics:

∂(ρφ)

∂t︸ ︷︷ ︸
transient term

+ ∇ · (ρvφ)︸ ︷︷ ︸
convection term

= ∇ · (Γφ∇φ)︸ ︷︷ ︸
di�usion term

+ Qφ︸︷︷︸
source term

, (3.9)

where the �rst term on the LHS is the time-dependent transient term8 with the time
variable t and the second one is the convection term with the density ρ and velocity
vector v. The �rst term on the RHS is the di�usion term, where Γφ refers to an arbitrary
di�usion coe�cient and the second term is the source term.
7Although it appears twice�in the topology of its owner and neighbour cell, which do not represent
the same element.

8It is also called rate of change [46]

30



3.2. Discretisation Process

For a steady-state problem, one can neglect the transient term. Moreover, the
convection term is not relevant for solids. Hence, Equation (3.9) is simpli�ed to

∇ · (Γφ∇φ) +Qφ = 0 . (3.10)

If Equation (3.10) is integrated over the volume VC of the respective cell, one obtains
[35] ∫

VC

(∇ · (Γφ∇φ) +Qφ) dV =

∫
VC

∇ · (Γφ∇φ) dV +

∫
VC

Qφ dV = 0 . (3.11)

Replacing the volume integral of the di�usion term with a surface integral applying
Gauss' divergence theorem, Equation (3.11) becomes [46]∫

∂VC

(Γφ∇φ) · dA+

∫
VC

Qφ dV = 0 , (3.12)

where ∂VC refers to the boundary of the cell, and dA = n dA is the di�erential surface
vector of a face with normal vector n and di�erential area dA.

3.2.1. Discretisation of the Di�usion Flux Term

The di�usion term in Equation (3.12) is denoted as di�usion �ux [35] and reads

Jφ,D = Γφ∇φ , (3.13)

where the superscript D refers to di�usion. Due to the discretisation of the compu-
tational domain, the surface integral in Equation (3.12) can be replaced by a sum of
integrals over the area of each face [16, 35]:∫

∂VC

Jφ,D · dA =
∑
f

∫
Af

Jφ,D · dA , (3.14)

where f refers to the faces of the cell. For the �nal step of discretisation, the surface
integral of each face must be replaced by a quadrature. Using a Gaussian quadrature,
the integral part of Equation (3.14) becomes∫

Af

Jφ,D · dA =

∫
Af

(Jφ,D · n) dA =
∑
ip

(Jφ,D · n)ip wip Af , (3.15)

with the sum over the integration points ip. The term wip refers to the weight at the
respective integration point and Af to the area of the face. It should be pointed out that
the more integration points are used, the higher the order of accuracy. Although, the
computational e�ort rises [35] as well. Therefore, in this thesis only one integration point

31



3. Finite Volume Method

is used for the quadrature. This refers to a mean value integration and is second-order
accurate [35].
If Equation (3.15) is substituted in Equation (3.14), the discretised form of the

di�usion �ux �nally reads∑
f

(∑
ip

(Jφ,D · n)ip wip Af

)
f
=
∑
f

(Jφ,D · n)f Af . (3.16)

3.2.2. Discretisation of the Source Term

For the discretisation of the source term in Equation (3.12), also a Gaussian quadrature
is applied [16, 35]: ∫

VC

Qφ dV =
∑
ip

(Qφ)ip wip VC . (3.17)

Again, only one integration point is used for the quadrature, which yields the �nal
discretised form of the source term:∑

ip

(Qφ)ip wip VC = Qφ VC . (3.18)

3.2.3. Spatial Discretisation and Gradient Computation

If Equation (3.15) and Equation (3.18) are combined, one obtains

∑
f

(Γφ∇φ · n)f Af +Qφ VC = 0 , (3.19)

where all variables are either known or are a function, i.e. the gradient, of the general
scalar variable φ.

For the variable φ, a linear variation in space is assumed, i.e. φ = φ(X). Therefore,
φ(X) can be calculated as [35]

φ(X) = φ(XC) + (X −XC) · (∇φ)C , (3.20)

where X and XC are position vectors, and XC refers to the centroid of the respective
cell. φ(XC) relates to the evaluated quantity in the centroid and (∇φ)C to the evaluated
gradient in this point.
The gradient terms (∇φ)f in Equation (3.19) and (∇φ)C in Equation (3.20) require a

special treatment, which is developed below.

32



3.2. Discretisation Process

Least-Squares Method and Cell Gradient

In this thesis, each cell gradient (∇φ)C is computed using the least-squares (LS) method.
The calculation of the gradient with the LS method o�ers more �exibility with regard
to the order of accuracy [1]. The advantage of �exibility can only be fully exploited by
the use of appropriate weighting functions [35].
Starting with a cell C with its neighbours Fi in an unstructured grid (cf. Figure 3.7),

the value of the general scalar variable φFi
in the centroid of a neighbour Fi can be

calculated with Equation (3.20) as [4]

φFi
= φ(XFi

) = φC + (XFi
−XC) · (∇φ)C . (3.21)

C

F1

F3

F4

F2

XC

XF4

XF3 XF2

XF1

X2

X1

Figure 3.7.: Unstructured Grid with Position Vectors to Cell C and its Neighbours Fi

If this is done for each neighbour Fi of the cell C and one rearranges Equation (3.21),
one obtains a matrix equation in the form of

XCF1 YCF1 ZCF1

XCF2 YCF2 ZCF2

...
...

...
XCFn YCFn ZCFn


(∂φ

∂x
)C

(∂φ
∂y

)C
(∂φ
∂z

)C

 =


φF1 − φC
φF2 − φC

...
φFn − φC

 , (3.22)

where the subscript n relates to the number of neighbours. XCFi
, YCFi

and ZCFi
refer

to the coordinates of the distance vector dCFi
. The distance vector between an owner

cell C and its neighbour Fi can be calculated with dCFi
= XFi

− XC, XC and XFi

33



3. Finite Volume Method

being the position vectors of owner and neighbour, respectively. In general, the matrix
in Equation (3.22) is not square, therefore an exact solution cannot be obtained. There
will always be an error for the solution of the system of equations. The LS method
minimises the sum of the errors squared, whereas the solution of the cell gradient (∇φ)C
can be calculated with [35]

(∇φ)C = (dT d)−1 dT φ
CF
, (3.23)

where d refers to the matrix of distance vectors between cell and neighbours, i.e.

d =


XCF1 YCF1 ZCF1

XCF2 YCF2 ZCF2

...
...

...
XCFn YCFn ZCFn

 . (3.24)

The vector φ
CF

relates to the vector of di�erences of the general scalar variable φ between
cell and neighbours calculated as

φ
CF

=


φF1 − φC
φF2 − φC

...
φFn − φC

 . (3.25)

As mentioned above, including a weighting function increases the �exibility of the LS
method. The weighting w is a diagonal matrix of form

w =


1
‖d1‖

0 · · · 0

0 1
‖d2‖

. . . ...
... . . . . . . 0
0 · · · 0 1

‖dn‖

 , (3.26)

with the nonzero elements 1
‖di‖

, where i relates to the local index of the neighbour.
Equation (3.23) then becomes [35]

(∇φ)C = (dT wT w d)−1dT wT w φ
CF
. (3.27)

The weighting function w considers the aspect ratio or size of the cell due to the reciprocal
norm of the distance vector.
Equation (3.27) relates to the explicit form of the gradient. An implicit form, which is

necessary for the implicit governing equations, is introduced in Section 4.2.1 and derived
for a generic example in Section 5.2.2.

34



3.2. Discretisation Process

Geometric Weighting Factor and Face Gradient

In general, the gradient at the face can be interpolated linearly with [16, 35]

(∇φ)f = gC (∇φ)C + (1− gC)(∇φ)F , (3.28)

where (∇φ)C and (∇φ)F are the cell gradients of the owner C and neighbour F calculated
with Equation (3.27) and gC is the geometric weighting factor [35]. In the literature there
are di�erent approaches to determine gC, especially in combination with unstructured
grids and the Green-Gauss gradient. As the proposed equations in this thesis are treated
in a di�erent manner, two options for the geometric weighting factor gC were chosen.

Option 1: The in�uence of each cell gradient for the face gradient is related to
the distance between the cell centroid and the face centroid. Moreover, this approach
considers the aspect ratio or size of a cell. The geometric weighting factor gC can then
be calculated as

gC =
‖XF −X f‖

‖XF −X f‖+ ‖X f −XC‖
, (3.29)

where X i refers either to the position vector of the face centroid (i = f), the centroid of
the neighbour cell (i = F) or the centroid of the owner cell (index i = C). This approach
is denoted as distance option.

XC

dCFnfC Ff

XFX f

X2

X1

Figure 3.8.: Conjunctional Face in a Two-Dimensional Grid (inspired by [35])

The reason why the distance vector dCF in Equation (3.29) is split into two separate
parts is due to unstructured grids, cf. Figure 3.9. As can be observed, the face centroid
and the intersection point of the segment CF do not coincide. Hence, in order to take into
account the aspect ratio or size of the cell, the geometric weighting factor is calculated
as described in Equation (3.29). Moreover, the following option, which is proposed by
di�erent authors [4, 35], may be used as well.

35



3. Finite Volume Method

XC

nf

C Ff

XFX f

tf

dCF

X2

X1

Figure 3.9.: Nonconjunctional Face in a Two-Dimensional Grid (inspired by [35])

Option 2: The face gradient is the arithmetic average of the cell gradients of owner
and neighbour. The geometric weighting factor then becomes

gC =
1

2
. (3.30)

Equation (3.29) yields the same values as Equation (3.30) for orthogonal structured grids
with uniform cell size. Moreover, this approach, which is denoted as average option, can
be also linked to the nonorthogonal treatment of unstructured grids [35].

Treatment of Nonorthogonality

As illustrated in Figure 3.9, in an unstructured grid the distance vector dCF and the
normal vector nf are not parallel. There is a nonorthogonal contribution due to the
skewness of the mesh. This nonorthogonal contribution a�ects the di�usion term and
subsequently the solution process.
Applying Equation (3.28) to calculate the face gradient is not su�cient. The treatment

of nonorthogonality is well covered in the literature and three di�erent approaches are
presented below [33, 35]:

Approach 1: This approach was employed by Muzaferija [37] and developed by
Caughey and Jameson [9]. The nonorthogonal correction is held as small as possible and
therefore is called minimum correction approach. The corrected face gradient, denoted
with a superscript asterisk, can be calculated as [33, 35]:

(∇φ)∗f = (∇φ)f −
(∇φ)f · dCF
‖dCF‖2

dCF +
φF − φC
‖dCF‖2

dCF , (3.31)

36



3.3. Deferred Correction Approach and Solution

where (∇φ)f is the interpolated face gradient of Equation (3.28) and dCF refers to the
distance vector between the cell and its neighbour.
Another treatment of the nonorthogonality was heavily discussed by Jasak [24]:

Approach 2: In the over-relaxed approach, the nonorthogonal correction is increased
with the skewness of the mesh. The corrected face gradient reads [33]

(∇φ)∗f = (∇φ)f −
(∇φ)f · dCF
‖dCF · Af‖

Af +
φF − φC
‖dCF · Af‖

Af , (3.32)

where Af = nf Af refers to the surface vector of the face.
The last approach dealt with in this thesis is a modi�cation of the correction approach

above by Demirdzic and Muzaferija [13]:

Approach 3: The corrected face gradient of the modi�ed approach can be calculated
as follows [33]:

(∇φ)∗f = (∇φ)f −
(∇φ)f · dCF
‖dCF‖‖Af‖

Af +
φF − φC
‖dCF‖‖Af‖

Af , (3.33)

where the face gradient with the overbar denotes an arithmetic average, i.e. (∇φ)f =
1
2

(
(∇φ)C + (∇φ)F

)
.

It should be pointed out that the nonorthogonal treatment for the proposed equations
is also executed completely implicit. The derivation of the terms is explained for a generic
example in Section 5.2.3. The general approach, including the distinction between
orthogonal and nonorthogonal terms and thus the division into implicit and explicit
terms, is discussed below.

3.3. Deferred Correction Approach and Solution

The discretised equations read∑
f

(Γφ∇φ · n)f Af +Qφ VC = 0 . (3.34)

In order to solve for the primary variable φ, Equation (3.34) must be transformed into
a system of algebraic equations of the form

A φ = b , (3.35)

which is not discussed in detail here. In general, the source term in Equation (3.34)
contributes to the RHS and the di�usion term to both sides, as described below. In a
direct solution approach, φ can be calculated as φ = A−1 b, with A−1 being the inverse

37



3. Finite Volume Method

of the matrix. In contrast, the standard approach for FV approaches is an iterative
segregated solution approach9, where the matrix A is not in a block coupled form, but
a vector of scalar equations that are solved in a segregated manner [35].
Another big di�erence to the proposed implicit approach is the deferred correction

approach, which is common practice both for FV solvers for CFD and solid mechanics
applications. The deferred correction approach is introduced brie�y, but for further
details the discerning reader may have a look in [16, 28, 35].
In order to transform Equation (3.34) into Equation (3.35) using the deferred

correction approach, the face gradient is treated in a deferred manner�it is split into
two parts, namely [35]

(∇φ)f · Af = (∇φ)f · Ef︸ ︷︷ ︸
orthogonal contribution

+ (∇φ)f · T f ,︸ ︷︷ ︸
nonorthogonal contribution

(3.36)

where Af = Ef+T f refers to the surface vector of a face, which is the sum of an orthogonal
and nonorthogonal contribution.
In general, the face gradient of the orthogonal contribution in Equation (3.36) is

evaluated implicitly, and the face gradient of the nonorthogonal contribution is evaluated
explicitly, using the latest available values of φ, i.e. values from the previous iteration
step, in the segregated solution procedure. The implicit gradient term can be calculated
as [35]

(∇φ)f · Ef = Ef

φF − φC
dCF

, (3.37)

since it is the orthogonal contribution. Ef refers to the area of the face, dCF is the distance
between owner and neighbour, and the terms in the numerator in Equation (3.37) are
the primary variables to be solved for owner C and neighbour F.
Moreover, the terms of the nonorthogonal treatment are then also split into implicit

and explicit contributions which is not discussed further here. As a result, so-called
cross-di�usion [35] terms comprising the nonorthogonal contributions are then added as
source term to the RHS of the equation system.

In order to close the system of linear equations, one has to prescribe boundary
conditions. The treatment of them in the deferred correction approach is discussed
below.

Dirichlet Boundary Conditions

If the value of the general scalar variable φ is prescribed at the boundary, it is called a
Dirichlet boundary condition (BC) (value speci�ed BC, cf. Figure 3.10). As mentioned
above, if the computational domain consists of a nonorthogonal mesh, the cross-di�usion

9e.g. for the pressure-velocity coupled SIMPLE approach

38



3.3. Deferred Correction Approach and Solution

terms must be taken into account. This is also true for Dirichlet BCs. Therefore, if the
values of φ are speci�ed at the boundary, they read (cf. Equation (3.16))

(Jφ,D · n)b Ab = (Γφ∇φ)b · Ab = (Γφ∇φ)b · (Eb + T b) , (3.38)

where the index b relates to the boundary face. The orthogonal contribution (∇φ)b · Eb

is evaluated implicitly10 and the nonorthogonal contribution (∇φ)b · T b explicitly in a
deferred correction manner as mentioned above.

dCb

XC

nb
C

b

Xb

φb

X2

X1

Figure 3.10.: Dirichlet BC for a Nonorthogonal Cell (inspired by [35])

Neumann Boundary Conditions

The Neumann boundary condition refers to as �ux speci�ed BC, cf. Figure 3.11. If the
�ux is prescribed at the boundary, it can be written as [35]

− (Γφ∇φ)b · nb = qb , (3.39)

where qb relates to the speci�ed �ux. Equation (3.39) resembles the di�usion �ux term
for this boundary face, since (cf. Equation (3.16))

(Jφ,D · n)b Ab = (Γφ∇φ)b · nbAb = −qb Ab . (3.40)

Therefore, the term −qb Ab, where Ab refers to the area of the boundary face, is treated
as source term on the RHS of the equations system.

Thus the system of algebraic equations is assembled cell by cell and solved in an
iterative segregated manner.
10Analogous to Equation (3.37), except that f and F are substituted with b.

39



3. Finite Volume Method

dCb

XC

nb
C

b

Xb

qb

X2

X1

Figure 3.11.: Neumann BC for a Nonorthogonal Cell (inspired by [35])

40



4. Implicit Finite Volume Method

for Continuum Mechanics

In this chapter, the proposed implicit equations in total Lagrangian formulation
are developed. At �rst (Section 4.1), the equations introduced in Section 2.3 are
linearised using the directional derivative approach described in Section 2.5. After that
(Section 4.2), the terms are discretised according to Section 3.2 and thus yield the
discretised implicit governing equations in total Lagrangian formulation. The chapter
concludes with the assembly to a set of linear algebraic equations and the solving process.

4.1. Linearised Governing Equations

The governing equations in integral form to calculate the deformation read, cf.
Equation (2.29): ∫

∂B0

F S N dA = 0 , X ∈ B0 . (4.1)

In order to close the equation system, BCs are prescribed:

σ · n = t , x ∈ ∂NBt
χt(X) = χt(X) , X ∈ ∂DB0 .

(4.2)

In general, the equilibrium of internal forces1 in Equation (4.1) is nonlinear for both
the geometry and material law, hence the equations must be linearised. The equations
in Equation (4.1) are usually �rst linearised and then discretised. This is the common
approach in solid mechanics, although some authors prefer the contrary way [5].
The linearisation is carried out for a given deformation mapping χ. The increment

∆χt
2 is formed using the vector �eld of incremental displacements ∆u(x)3 in Bt, which

are compatible with the Dirichlet BCs, i.e. ∆u |∂DBt ≡ 0. A curve χ(s) similar to
Equation (2.52) is used in order to determine the directional derivative [22]. It reads

χ(s) = χ+ s∆u(x) (4.3)

1It can also be identi�ed as di�usion �ux term with regard to the notation in the FVM.
2∆ relates to increment and is not a Laplace operator.
3see Footnote 2

41



4. Implicit Finite Volume Method for Continuum Mechanics

and it holds true that

χ(s,X) = χ(X) + s∆u (χ(X)) ⇐⇒ x(s,X) = x(X) + s∆u(X) . (4.4)

In addition, it holds

χ(s = 0, X) = χ(X) , Dχ(s = 0, X) = ∆u(X) . (4.5)

The coherences in Equation (4.4) and Equation (4.5) are used for the linearisation
executed in Section 4.1.1 and Section 4.1.2.

In the following, the term of internal forces in Equation (4.1) will be referred to as
di�usion �ux term. It is denoted in the style of Moukalled et al. [35] as

Ju,D :=

∫
∂B0

F S N dA , (4.6)

where Ju,D stands for the di�usion �ux (J and superscript D) due to the displacement
vector (superscript u).
The nonlinear equation system

Ju,D = 0 (4.7)

is transformed into the linearised equation system

Ju,D(χt) ≈ Ju,D(χt) +DJu,D(χt)[∆u] = 0 , (4.8)

where DJu,D(χt)[∆u] refers to the linearised di�usion �ux due to the displacement of the
mapping χt in the direction of the incremental displacement vector ∆u. The equation
system in Equation (4.8) is solved for ∆u in an iterative solution procedure.

4.1.1. Linearisation of Kinematics, Strain and Stress

In order to obtain the linearisation of the di�usion �ux term, some correlations regarding
kinematics, strain and stress are derived in advance. For the linearisation of the
deformation gradient (Equation (2.5)), one obtains [5, 22]

DF (χt)[∆u] =
d

ds

∣∣∣∣
s=0

(
F (χt + s∆u)

)
=

=
d

ds

∣∣∣∣
s=0

(
∂x

∂X
+ s

∂∆u

∂X

)
=
∂∆u

∂X
=: ∇0∆u ,

(4.9)

where the directional derivative of the incremental displacement vector ∆u with respect
to X is de�ned as the material gradient ∇0∆u.

42



4.1. Linearised Governing Equations

With the product rule of di�erentiation and the substitution of Equation (4.9), one
can calculate the linearisation of the Green-Lagrange strain tensor (Equation (2.11))
[5, 22]:

DE(χt)[∆u] =
1

2
D
(
F T F − I

)
(χt)[∆u] =

=
1

2

(
DF T (χt)[∆u] F + F T DF (χt)[∆u]

)
=

=
1

2

(
(∇0∆u)T F + F T ∇0∆u

)
.

(4.10)

Furthermore, the linearisation of the second Piola-Kirchho� stress tensor (Equa-
tion (2.20)) can be evaluated applying the chain rule of di�erentiation as follows [5]:

DS(χt)[∆u] = DS
(
E(χt)

) [
DE(χt)[∆u]

]
=

= C : DE(χt)[∆u] .
(4.11)

4.1.2. Linearisation of the Di�usion Flux

The linearisation of the di�usion �ux term is performed as explained above:

DJu,D(χt)[∆u] = D

 ∫
∂B0

(
F S N dA

)
(χt)

 [∆u] =

=

∫
∂B0

(
DF (χt)[∆u] S + F DS(χt)[∆u]

)
N dA ,

(4.12)

where in the second line of Equation (4.12) the product rule of di�erentiation was applied.
Substituting Equation (4.9), Equation (4.10) and Equation (4.11) into Equation (4.12)
yields ∫

∂B0

(
DF (χt)[∆u] S + F DS(χt)[∆u]

)
N dA =

=

∫
∂B0

(
∇0∆u S + F C : DE(χt)[∆u]

)
N dA =

=

∫
∂B0

(
∇0∆u S + F C :

1

2

(
DF T (χt)[∆u] F + F T DF (χt)[∆u]

))
N dA .

(4.13)

43



4. Implicit Finite Volume Method for Continuum Mechanics

Substituting again Equation (4.9) for the linearisation of the deformation gradient yields∫
∂B0

(
∇0∆u S + F C :

1

2

(
DF T (χt)[∆u] F + F T DF (χt)[∆u]

))
N dA =

=

∫
∂B0

(
∇0∆u S + F C :

1

2

((
∇0∆u

)T
F + F T ∇0∆u

))
N dA .

(4.14)

With the symmetry CIJKL = CIJLK of the material elasticity tensor C, one can

determine the coherence

C :
(
∇0∆u

)T
F = C : F T ∇0∆u . (4.15)

Substituting Equation (4.15) in Equation (4.14) yields the �nal form of the linearised
di�usion �ux term:∫

∂B0

(
∇0∆u S + F C :

1

2

((
∇0∆u

)T
F + F T ∇0∆u

))
N dA =

=

∫
∂B0

(
∇0∆u S + F C : F T ∇0∆u

)
N dA = DJu,D(χt)[∆u] .

(4.16)

As may be observed, Equation (4.16) is now a linear function of the material gradient
of the incremental displacement vector ∇0∆u.

4.2. Discretised Governing Equations

4.2.1. Discretised Equations for Large Deformations

After the spatial discretisation, the computational domain consists of a �nite number of
cells. As a result, Equation (4.6) and Equation (4.16) must hold true for a single cell:

(Ju,D(χt))C =

∫
∂VC

F S N dA , (4.17)

(DJu,D(χt)[∆u])C =

∫
∂VC

(
∇0∆u S + F C : F T ∇0∆u

)
N dA , (4.18)

where ∂VC refers to the boundary of the cell. The discretisation is executed according
to Section 3.2. The discretised formulation of Equation (4.17) then reads∫

∂VC

F S N dA ≈
∑
f

(
F S N

)
f
Af , (4.19)

44



4.2. Discretised Governing Equations

and for Equation (4.18), one obtains∫
∂VC

(
∇0∆u S + F C : F T ∇0∆u

)
N dA ≈

≈
∑
f

((
∇0∆u S + F C : F T ∇0∆u

)
N

)
f

Af ,

(4.20)

with the sum over the faces f in the reference con�guration of a cell C and the subscript,
i.e. (.)f, also referring to it. Af refers to the area of the respective face.
Equation (4.19) reads in index notation∑

f

(
F i
J S

JK NK

)
f
Af . (4.21)

The deformation gradient F i
J is calculated using the explicit gradient of displacements

and reads
(F i

J)f = δiJ + (exui,J)f (4.22)

where the superscript ex(.) refers to explicit. The displacement gradient for a cell is
calculated with the LS method:

(exui,J)C = (GK
J )C (ûiK)CF , (4.23)

with the geometry matrix GK
J (J = 1 : dim4; K = 1 : non5) and the matrix of

displacement di�erences (ûiK)CF (i = 1 : dim) between owner C and neighbours F.
As (ûiK)CF

6 only has a meaning in connection with cells, the subscript (.)C is not used
for it. GK

J reads, cf. Equation (3.27):

GK
J = HM

J WK
M , (4.24)

where HM
J = B̌L

J dML (L = 1 : dim; M = 1 : non) and B̌L
J relates to the components of

B−1, which is the inverse of B. The components of B read BL
J = dOJ W P

O gLR gPS d
S
R
7

(R = 1 : dim; O,P, S = 1 : non) and WK
M = wQM wKQ (Q = 1 : non). dML refers

to the components of the matrix of distance vectors between cell and neighbours
(cf. Equation (3.24)) and wQM relates to the components of the weighting function
(cf. Equation (3.26)) as introduced in Section 3.2.3. The explicit face gradient in
Equation (4.22) is then calculated applying Equation (3.28):

(exui,J)f = gC (exui,J)C + (1− gC)(exui,J)F . (4.25)

4dim = dimension; i.e. dim = 2 or dim = 3
5
non = number of neighbours; it includes the number of neighbours Fi of the cell C

6The subscript (.)CF refers to cell C and neighbours F.
7gLR and gPS refer to contra- and covariant metric tensors, respectively.

45



4. Implicit Finite Volume Method for Continuum Mechanics

The face gradient (exui,J)f in Equation (4.25) is corrected with one of the nonorthogonal
treatment approaches as introduced in Section 3.2.3. The derivation of the terms above
is discussed for a generic example in Section 5.2.2 and Section 5.2.3.
Equation (4.20) reads in index notation

∑
f

((
im∆ui,J S

JK + F i
J CJKLM gno F

n
L

im∆uo,M
)
NK

)
f
Af , (4.26)

where the superscript im(.) refers to implicit. The implicit form of the gradient is
evaluated via coe�cient matrices which are derived from the geometry matrices. It
then reads (

im∆ui,J
)
C

= (TAJ )C ∆ûiA , (4.27)

where TAJ (J = 1 : dim; A = 1 : nov8) refers to the (global) coe�cient matrix. The term
∆ûiA (i = 1 : dim) refers to the incremental displacement values of the cell centroids
of the computational domain. As ∆ûiA only has meaning in connection with cells, the
subscript (.)C is not used for it. The implicit face gradient in Equation (4.26) is then
calculated applying Equation (3.28):(

im∆ui,J
)
f
=
(
gC (TAJ )C + (1− gC)(TAJ )F

)︸ ︷︷ ︸
:=(TA

J )f

∆ûiA . (4.28)

The face gradient coe�cient matrix (TAJ )f in Equation (4.28) is corrected with one of
the nonorthogonal treatment approaches as introduced in Section 3.2.3. The derivation
of the terms above is discussed in detail in Section 5.2.2 and Section 5.2.3.
If Equation (4.28) is substituted in Equation (4.26), one obtains

∑
f

((
TAJ ∆ûiA S

JK + F i
J CJKLM gno F

n
L TAM ∆ûoA

)
NK

)
f
Af =

∑
f

((
TAJ SJK δip + F i

J CJKLM gno δ
o
p F

n
L TAM

)
NK

)
f
Af ∆ûpA .

(4.29)

In the style of Bonet and Wood [5], an initial stress component [5] can be detected in
the �rst term in Equation (4.29):

∑
f

(
TAJ SJK δip NK

)
f
Af︸ ︷︷ ︸

:=(KiA
p )ISC

∆ûpA , (4.30)

8
nov = number of variables; it includes the number of cells and boundary faces with prescribed
Dirichlet BCs value 6= 0

46



4.2. Discretised Governing Equations

where (KiA
p )ISC refers to the components of the tensor, and the superscript (.)ISC refers

to initial stress component, since it contains the second Piola-Kirchho� stress tensor S.
The second term in Equation (4.29) reveals a constitutive component [5]:∑

f

(
F i
J CJKLM gno δ

o
p F

n
L TAM NK

)
f
Af︸ ︷︷ ︸

:=(KiA
p )CC

∆ûpA , (4.31)

where (KiA
p )CC refers to the components of the tensor, and the superscript (.)CC refers

to constitutive component, since it contains the constitutive law.
If Equation (4.21) and Equation (4.29) are substituted in Equation (4.8), one

obtains the discretised governing equations for large deformations in total Lagrangian
formulation:∑

f

(
F i
J S

JK NK

)
f
Af +

+
∑
f

((
TAJ SJK δip + F i

J CJKLM gno δ
o
p F

n
L TAM

)
NK

)
f
Af ∆ûpA = 0 .

(4.32)

4.2.2. Discretised Equations for Small Deformations

For the small strain theory, the governing equations read, cf. Equation (2.27):∫
Bt

∇ · σ dv =

∫
B0

∇ · σ dV = 0 . (4.33)

Due to the small deformations there is no need for a pull-back operation. A linearisation
due to the linear coherences (linear kinematics and material law) is also not necessary.
The discretisation then can be executed straightforward, applying the divergence
theorem of Gauss and the �ndings of Section 3.2. The discretised equations read(

Ju,D(χt)
)
C

=

∫
VC

∇ · σ dV =

∫
∂VC

σ N dA ≈
∑
f

(
σ N

)
f
Af = 0 . (4.34)

With Hooke's law for small deformations, one obtains:∑
f

(
σ N

)
f
Af =

∑
f

(
C : ε N

)
f

Af = 0 , (4.35)

which is equivalent to its form in index notation9:∑
f

(
Cijkl imεkl Nj

)
f
Af = 0 , (4.36)

9for the indices holds true: i, j, k, l = 1 : dim

47



4. Implicit Finite Volume Method for Continuum Mechanics

where the superscript im(.) indicates that the in�nitesimal strain tensor ε is calculated
with the implicit form of the displacement gradient. The in�nitesimal strain can then
be described as, cf. Equation (2.16):

imεkl =
1

2

(
imuk,l + imul,k

)
=

1

2

(
TAk δlp + TAl δkp

)
ûpA . (4.37)

The term ûpA (p = 1 : dim; A = 1 : nov) refers to the displacement values of
the cell centroids of the computational domain. If Equation (4.37) is substituted in
Equation (4.36), one obtains the �nal discretised equations for the small deformation
theory: ∑

f

(
Cijkl 1

2

(
TAk δlp + TAl δkp

)
Nj

)
f

Af û
p
A = 0 . (4.38)

4.3. Treatment of BCs and Solution Process

The solution process is only explained for �nite deformations, but is executed for linear
elasticity analogous to the description below. The only di�erence is the omission of the
NR procedure. In order to close the equation system, BCs are prescribed:

Neumann Boundary Conditions

For some test cases in Chapter 6, Neumann BCs are prescribed. For this thesis, only
the prescription of dead loads10 was investigated, cf. Figure 4.1. A dead load can be
prescribed as follows:

(P N)b = T b , (4.39)

where T b refers to the speci�ed dead load traction vector as force per unit area.
Equation (4.39) resembles the di�usion �ux term (cf. Equation (3.16)) for this boundary
face, since ∫

∂B0

F S N dA =

∫
∂B0

P N dA ≈ (P N)bAb = T bAb . (4.40)

Therefore, the term T bAb, where Ab refers to the area of the boundary face, is treated
as source term on the RHS of the system of equations.

Dirichlet Boundary Conditions

If the value of the displacement vector u is prescribed at the boundary, it is called a
Dirichlet BC, cf. Figure 4.2. The integration of Dirichlet BCs into the resulting system
of linear equations is described below. How the terms are calculated is discussed in detail
for a generic example in Section 5.2.5.

10i.e. a constant force (per unit area), which neither changes magnitude nor direction

48



4.3. Treatment of BCs and Solution Process

XC

nb
C

b

Xb

dCb

T b

X2

X1

Figure 4.1.: Neumann BC (Dead Load) for a Nonorthogonal Cell

dCb

XC

nb
C

b

Xb

ub

X2

X1

Figure 4.2.: Dirichlet BC for a Nonorthogonal Cell

49



4. Implicit Finite Volume Method for Continuum Mechanics

Equation (4.32) is set up for each cell of the computational domain and is transformed
into a set of algebraic equations of the form Ajk∆

ˆ̃uk = bj. The terms in Equation (4.32)
have following contribution to the equation system:

bin︷ ︸︸ ︷∑
f

(
F i
J S

JK NK

)
f
Af +

+
∑
f

((
TAJ SJK δip + F i

J CJKLM gno δ
o
p F

n
L TAM

)
NK

)
f
Af︸ ︷︷ ︸

Ai
k , b

i
bf

∆ûpA = 0 .
(4.41)

The contribution of the �rst term in Equation (4.41) is denoted as nonlinear contribution
bin (i = 1 : dim) as it is calculated using the nonlinear di�usion �ux term, i.e. the
residuum. The subscript (.)n refers to nonlinear. Due to the consideration of boundary
faces as temporary variables, the second term KiA

p = (KiA
p )ISC + (KiA

p )CC reshaped into
matrix form is of size [dim× (nov ·dim)] and contributes to both Aik (k = 1 : nod11) and
bibf. The subscript (.)bf refers to boundary face as it is calculated with the values of the
prescribed boundary faces. In the assemble process (for a 2D case), the columns 1 : noc
and (nov + 1) : (nov + noc)12 of KiA

p contribute to Aik resulting in the Newton tangent

Ajk (j = 1 : nod) with size [nod× nod]. The coe�cients of the remaining columns13 are
multiplied with the respective prescribed value of the BC and contribute to bibf. In the
assemble process, the term bi = bin + bibf results in the residuum bj. The derivation of
these terms is discussed for a generic example in Section 5.2.5.
The equations are established for each iteration step t in the NR iterative solution

procedure and read
(Ajk)t (∆ˆ̃uk)t+1 = (bj)t , (4.42)

whereas in analogy to the NRM introduced in Section 2.5, (Ajk)t is denoted as Newton
tangent and (bj)t as residuum. The equation is solved for the incremental displacement
of the cell centroids (∆ˆ̃uk)t+1. The solution vector (∆ˆ̃uk)t+1 contains the incremental cell
centroid displacement values in all directions, i.e. ∆û, ∆v̂ and ∆ŵ for a 3D case. This
is denoted with the tilde, i.e. ∆ˆ̃u. The displacement vector of cell centroids (ˆ̃uk)t+1 =
(ˆ̃uk)t + (∆ˆ̃uk)t+1 is updated in each iteration step until a desired convergence criteria for
both the increment and residuum is reached.

11
nod = number of degrees of freedom; nod is equal to number of cells times the dimension

12In a 3D case also the columns (2 · nov + 1) : (2 · nov + noc).
13These are the columns that relate to the boundary faces with prescribed Dirichlet BCs.

50



5. Implementation and Discussion

In this chapter, the equations developed in Chapter 4 are discussed and explained. The
chapter starts with a brief introduction of the implemented code in Section 5.1. In order
to clarify the form of the coe�cient matrices as well as the treatment of Dirichlet BCs,
their derivation is discussed in detail for a generic example in Section 5.2. In parallel,
excerpts of pseudocode of the MATLAB c© implementation are embedded and explained.

Most of the terms in this chapter are written in symbolic notation and in matrix
form. The indices of the components of vectors and tensors must not be confused with
the indices of the index notation. They are for explanatory purposes only and relate to
the cells and faces as discussed below.

5.1. SOOFVAM

The governing equations were implemented in MATLAB c©. The resulting implicit solver
was called SOOFVAM1, based on the in-house MATLAB c© code SOOFEAM2 of the
Institute of Strength of Materials at TU Graz. Therefore, SOOFVAM shares some basic
classes and functions with SOOFEAM. Indeed, the author implemented some of the
classes and functions of SOOFEAM as part of a lecture before starting with this
thesis. This has been very helpful for the implementation of SOOFVAM.

5.1.1. Structure of SOOFVAM

The proposed code was implemented using object-oriented programming, and its source
directory structure is illustrated in Figure 5.1. Uni�ed Modeling Language (UML)
diagrams are attached in Appendix A.

Script soofvam.m

The script soofvam.m (cf. Figure 5.1) is the centerpiece of the implemented code. It
de�nes which example is to be solved, whether the mesh is to be created or loaded and
starts the analysis.

1Software for Object-Oriented Finite Volume Analysis in Matlab
2Software for Object-Oriented Finite Element Analysis in Matlab

51



5. Implementation and Discussion

Directory examples

The directory examples contains all �les needed for the setup of a problem. These
�les are the .geo and the .msh �les, which are necessary for mesh generation. The
preprocessing is done with Gmsh c© as described below. The BCs of the example are
prescribed within the MyBCHandler.m �le. Information about material and type of
analysis are prescribed in the example.m �le. Moreover, there are the directories
meshes and results, in which mesh data and .vtk �les for postprocessing in Paraview c©

are stored, cf. Figure 5.1.

Directory src

The directory src is the most extensive directory of SOOFVAM, cf. Figure 5.1. Most
�les are stored in the namespace nsModel, which includes all �les for the topology of
the computational domain. In addition, there are the namespaces nsDOF, handling the
degrees of freedom, and nsMaterial, in which the respective material law is de�ned.
Furthermore, there is the namespace nsIO, which contains the classes for the input
(.msh �le) and output (.vtk �le). The classes for the calculation of the geometrical
coherences for the mesh are de�ned in namespace nsGeometry. The most important
namespace is nsAnalyser. Within it, there are the namespaces nsAnalysis, in which
the linear and nonlinear analysis are implemented, and namespace nsImplementation

with the class DiffusionTerm.m, in which the calculation of the governing equations
is executed.

5.1.2. Work�ow of SOOFVAM

Preprocessing

As mentioned above, the geometry of the computational domain is created using the
software Gmsh c©. Gmsh c© is an open-source 3D �nite element mesh generator. The
speci�cation of any input is done either interactively using the graphical user interface
or in ASCII text �les using Gmsh c© 's own scripting language [17].
The result of the mesh generation is a .msh �le containing information about all

nodes, elements, i.e. cells, and the boundary faces, due to being generally a 3D
�nite element mesh generator. Therefore, an additional routine, which is illustrated
in Algorithm 5.1, was implemented in SOOFVAM for the creation the topology, i.e.
connectivities, especially the generation of interior faces.

Solution Process

The calculation of the deformed con�guration in SOOFVAM is explained for a generic
example in Section 5.2.

52



5.1. SOOFVAM

SOOFVAM

examples

arbitrary example

meshes

arbitrary mesh

results

results.vtk

example.geo

example.msh

example.m

myBCHandler.m

src

nsAnalyser

nsAnalysis

Analysis.m

LinearAnalysis.m

NonlinearAnalysis.m

nsImplementation

DiffustionTerm.m

nsGeometry

...

nsIO
...

nsModel

nsDOF
...

nsMaterial
...

...

soofvam.m

Figure 5.1.: Source Directory Structure of SOOFVAM

53



5. Implementation and Discussion

Algorithm 5.1 Creation of Mesh Topology
1: function createMeshTopology(model)
2: call setBoundaryFaceTopology(model)

3: for each cell in model do

4: determine surrounding_cells
5: for each surrounding_cell of cell do
6: determine shared_face in node_list of cell and surrounding_cell

7: if shared_face is new then

8: create face
9: set owner and neighbour of face
10: set topology for owner and neighbour

11: end if

12: end for

13: end for

14: call calcGeometricQuantities(model)
15: end function

16: function setBoundaryFaceTopology(model)
17: for each face in boundary do

18: set owner of face
19: set topology for owner
20: end for

21: end function

22: function calcGeometricQuantities(model)
23: for each face in model do

24: calculate area, centroid and normal_vector

25: end for

26: for each cell in model do

27: calculate volume and centroid

28: end for

29: end function

54



5.2. Solving an Example with SOOFVAM

Postprocessing

Besides the numerical solution and using the data for plots, the results of SOOFVAM
can be visualised with the software Paraview c©. Paraview c© is an open-source data
analysis and visualisation application. The data exploration can be done interactively
using the graphical user interface or programmatically [30]. Some visualised results are
illustrated in Chapter 6.

5.2. Solving an Example with SOOFVAM

With the work�ow of SOOFVAM in mind, we want to examine the solution process for
a generic example. We assume a quadratic computational domain in two dimensions
as shown in Figure 5.2. The mesh was generated with e.g. Gmsh c© comprising an
unstructured grid with arbitrary quadrilateral cells.

2

1

3

4

5

6

7

8

9

10

11

12

X2

X1

Figure 5.2.: Square Computational Domain with Arbitrary Quadrilateral Cells

We assume a given hyperelastic material behaviour and are interested in solving the
governing equations which read∑

f

(
F i
J S

JK NK

)
f
Af+

+
∑
f

((
TAJ SJK δip + F i

J CJKLM gno δ
o
p F

n
L TAM

)
NK

)
f
Af ∆ûpA = 0 ,

(5.1)

and we want to transform Equation (5.1) into the form

(Ajk)t (∆ˆ̃uk)t+1 = (bj)t (5.2)

and solve this set of equations for each iteration step t. In each iteration step, the
displacement vector is updated with (ˆ̃uk)t+1 = (ˆ̃uk)t + (∆ˆ̃uk)t+1. This algorithm is

55



5. Implementation and Discussion

executed until a certain prescribed convergence criterion is reached, which we also assume
to be given.
In order to close the system of equations above, we have to prescribe BCs. For our

example we assume that the square is �xed at the bottom in X1- and X2-direction
and we prescribe an arbitrary �nite vertical displacement v = v at the top as shown in
Figure 5.3.

v v

f7f8f9f10

2

1

3

4

5

6

7

8

9

10

11

12

f3f2f1

f4

f6

f5

f11

f12

f13

f14 f15

X1

X2

Figure 5.3.: Computational Domain with Prescribed BCs

When the displacement �eld ˆ̃uK for each cell centroid is calculated, we can plot the
results or visualise the solution using e.g. Paraview c©.

In the subsequent sections, the following topics of the solution process of SOOFVAM
are discussed:

. work�ow of the solution process (Section 5.2.1),

. calculation of the cell gradient coe�cient matrix (Section 5.2.2),

. calculation of the face gradient and face gradient coe�cient matrix of interior faces
(Section 5.2.3),

. calculation of the face gradient and face gradient coe�cient matrix of boundary
faces, i.e. treatment of Dirichlet BCs, (Section 5.2.4) and

. treatment of BCs in the NR method and solution process (Section 5.2.5).

5.2.1. Work�ow of the Solution Process

The work�ow of the proposed implicit FV solver for large deformations is illustrated
in Algorithm 5.2 and Algorithm 5.3. The function run calls two other functions:
on the one hand solveEquationSystem, in which the NRM is embedded, shown in
Algorithm 5.3, and on the other hand solveFVSystem, in which the linear set of
equations is assembled and solved, illustrated in Algorithm 5.10.

56



5.2. Solving an Example with SOOFVAM

One of the �rst steps in solveEquationSystem is the calculation of the coe�cient
matrices in global indices of each cell of the computational domain. As the governing
equations are in total Lagrangian formulation, this step is done only once at the
beginning of the analysis. After this, the NR loop starts. In the �rst iteration step
t, the reference values, i.e. increment and residuum, required for the normed values are
determined. The normed values are compared with the preset convergence criteria. The
analysis ends, if the criteria are achieved. If a certain prescribed maximum iteration
step tmax is reached (and the convergence criteria are not), the analysis is aborted, cf.
Algorithm 5.3.

Algorithm 5.2 Run Analysis
1: function run(analysis)
2: calculate noc ← number of cells
3: calculate nod ← number of DOFs
4: write .vtk �le . displacements of reference con�guration, u = 0
5: call solveEquationSystem(noc, nod)
6: end function

5.2.2. Explicit and Implicit Cell Gradient

In Line 5 of Algorithm 5.3 the function calcGlobalCM to calculate the coe�cient
matrix of the cell gradient is called. The internal work�ow of this function is described
below by means of the introduced example.
As mentioned in Section 4.2.1, in order to calculate the coe�cients of the coe�cient

matrix TAJ , the geometry matrix G is needed. It can be calculated as, cf. Equation (3.27)

G = (dT wT w d)−1dT wT w . (5.3)

The size of the geometry matrix G is [dim × non], where dim refers to dimension and
non to number of neighbours. The geometry matrix for e.g. cell with global index 1 may
look as follows:

G = (dT wT w d)−1dT wT w =

(
G12 G13

G22 G23

)
, (5.4)

since cell 1 has two neighbours (cell 2 and cell 5). The components of G read Gij, where
i refers to the row and j to the local index of the neighbour. With the geometry matrix,
one can calculate the explicit form of the cell gradient. It reads in symbolic notation,
cf. Equation (4.23):

(
ex∇0u)C = (G)C (ˆ̃u)CF , (5.5)

with the matrix of cell displacement di�erences between owner and neighbours (ˆ̃u)CF.
In matrix form, Equation (5.5) reads for cell 1:(ex∇0u

)
1

=

(
G12 G13

G22 G23

)(
û2 − û1 v̂2 − v̂1

û3 − û1 v̂3 − v̂1

)
, (5.6)

57



5. Implementation and Discussion

Algorithm 5.3 Work�ow of Total Lagrangian Solution Procedure
1: function solveEquationSystem(analysis, noc, nod)
2: call incorporateBC(BCHandler) . load boundary conditions
3: calculate nov ← number of variables

4: for each cell do
5: call calcGlobalCM(cell) . coe�cient matrix of cell, Section 5.2.2
6: end for

7: for iteration step t = 1 to tmax do . loop for NR iteration procedure
8: inc, res ← call solveFVSystem(noc, nod, nov)

9: if t = 1 then
10: set reference increment ref_inc ← inc

11: set reference residuum ref_res ← res

12: end if

13: update displacement vector (ˆ̃uk)t+1 = (ˆ̃uk)t + (∆ˆ̃uk)t+1

14: calculate normed increment normed_inc ← inc

ref_inc

15: calculate normed residuum normed_res ← res

ref_res

16: if normed_inc and normed_res < convergence criteria then

17: break

18: else if t = tmax then
19: error: �convergence not reached� → abort analysis
20: end if

21: end for

22: update nodal values . via interpolation and extrapolation
23: calculate stresses
24: write .vtk �le . displacements of current con�guration
25: end function

58



5.2. Solving an Example with SOOFVAM

where index 1 is the local index for the owner cell 1 and the indices 2 and 3 are the
local indices of the neighbours 2 and 5, respectively. For the derivation of the coe�cient
matrix T , we start with Equation (5.5), but assume that we want to calculate the implicit
form of the cell gradient:

(
im∇0∆u)C = (G)C (∆ˆ̃u)CF , (5.7)

with the matrix of incremental cell displacement di�erences between owner and
neighbours (∆ˆ̃u)CF. The matrix form of Equation (5.7) reads for cell 1:(

im∇0∆u
)

1
=

(
G12 G13

G22 G23

)(
∆û2 −∆û1 ∆v̂2 −∆v̂1

∆û3 −∆û1 ∆v̂3 −∆v̂1

)
. (5.8)

Applying the matrix multiplication yields(
im∇0∆u

)
1

=

=

(
G11∆û1 +G12∆û2 +G13∆û3 G11∆v̂1 +G12∆v̂2 +G13∆v̂3

G21∆û1 +G22∆û2 +G23∆û3 G21∆v̂1 +G22∆v̂2 +G23∆v̂3

)
,

(5.9)

with Gi1 = − (Gi2 +Gi3) and i = 1, 2. If we take a closer look at the components
in Equation (5.9), one may observe that the Gij terms are identical for each column
due to the matrix multiplication. Therefore, the resulting coe�cient matrices for the
scalar displacements ∆u and ∆v have to be identical. As a result, for each cell in the
computational domain, only one cell gradient coe�cient matrix T needs to be calculated,
and we derive the coe�cient matrix T for the incremental displacement ∆ũ3. The cell
gradient for ∆ũ can be set up from e.g. the �rst column of Equation (5.9). It reads for
cell 1: (

im∇0∆ũ
)

1
=

(
G11∆ˆ̃u1 +G12∆ˆ̃u2 +G13∆ˆ̃u3

G21∆ˆ̃u1 +G22∆ˆ̃u2 +G23∆ˆ̃u3

)
=

(
∂∆ũ
∂X1

∂∆ũ
∂X2

)
1

, (5.10)

where ∆ˆ̃ui are the unknown incremental displacements of the owner cell 1 (index
1) and its two neighbours 2 and 5 (index 2 and 3, respectively). As illustrated in
Equation (5.10), each row represents the partial derivative of the displacement ∆ũ with
respect to the coordinate directions for cell 1. With a mathematical manipulation, one
obtains for Equation (5.10)

(
im∇0∆ũ

)
1

=

(
G11 G12 G13

G21 G22 G23

)∆ˆ̃u1

∆ˆ̃u2

∆ˆ̃u3

 , (5.11)

and we de�ne the matrix on the RHS as the local coe�cient matrix locT :(
locT

)
1

:=

(
G11 G12 G13

G21 G22 G23

)
, (5.12)

3The tilde indicates that ∆ũ can either refer to ∆u or ∆v.

59



5. Implementation and Discussion

with the superscript loc(.) referring to local. In order to obtain the global coe�cient
matrix, Equation (5.11) needs to be rewritten. For the introduced example, the implicit
form of the gradient, in global indices, reads

(
im∇0∆ũ

)
1

=

(
G11 G12 0 0 G13 0 · · · 0
G21 G22 0 0 G23 0 · · · 0

)



∆ˆ̃u1

∆ˆ̃u2

∆ˆ̃u3

∆ˆ̃u4

∆ˆ̃u5
...

∆ˆ̃u12

∆ˆ̃uf7
∆ˆ̃uf8
∆ˆ̃uf9
∆ˆ̃uf10



. (5.13)

We de�ne the global coe�cient matrix gloT as

(
gloT

)
1

:=

(
G11 G12 0 0 G13 0 · · · 0
G21 G22 0 0 G23 0 · · · 0

)
(5.14)

with the superscript glo(.) referring to global. As can be observed, the coe�cients in the
global coe�cient matrix are arranged according to the global index of the respective
cell. Moreover, the vector in Equation (5.13) does not only contain the displacement
value of the cell centroids but also the displacements of the faces f7 - f10 as (temporary)
additional variables. This is due to the prescription of the top boundary with value
v = v.
The explained procedure is performed for each cell of the computational domain and

the coherences described above are summarized in Algorithm 5.4 and Algorithm 5.5.

Algorithm 5.4 Calculation of Global Coe�cient Matrix
1: function calcGlobalCM(cell) . Equation (5.14)
2: get local coe�cient matrix

(
locT

)
C
← assembleLocalCM(cell)

3: initialise global coe�cient matrix
(
gloT

)
C

4: assemble global coe�cient matrix
(
gloT

)
C
according to global indices of cells

5: save coe�cient matrix as property of cell
6: end function

60



5.2. Solving an Example with SOOFVAM

Algorithm 5.5 Calculation of Local Coe�cient Matrix
1: function assembleLocalCM(cell) . Equation (5.12)
2: calculate geometry matrix G . Equation (5.4)

3: initialise local coe�cient matrix
(
locT

)
C

4: calculate �rst column of
(
locT

)
C
← Ti1 = −(Gi2 +Gi3)

5: calculate remaining columns of
(
locT

)
C

6: return
(
locT

)
C

7: end function

5.2.3. Explicit and Implicit Face Gradient

The explicit face gradient is needed for the calculation of Equation (5.1), since

(F )f =
(
I +

ex∇0u
)
f
, (5.15)

with the identity matrix I and the explicit face gradient
(ex∇0u

)
f
. For explanatory

purposes we want to calculate the face gradient of face f15, cf. Figure 5.3. Applying the
interpolation of the face gradient (cf. Equation (3.28)), one obtains(ex∇0u

)
f15

= gC
(ex∇0u

)
1

+ (1− gC)
(ex∇0u

)
5
. (5.16)

The explicit cell gradients are calculated with Equation (5.6), whereas the matrix
containing the di�erences of displacements is determined using the latest available
displacement values, i.e. the values of the previous iteration step in the NRM.

Moreover, Equation (5.1) requires the coe�cient matrix of the face gradient. For our
example we want to calculate the coe�cient matrix for the interior face with global index
15, cf. Figure 5.3. Applying the interpolation of the face gradient (cf. Equation (3.28)),
one obtains (

im∇0u
)
f15

=
(
gC (T )

1
+ (1− gC)(T )

5

)
︸ ︷︷ ︸

:=(T )
f15

(∆ˆ̃u)CF , (5.17)

with the coe�cient matrices for cell 1 and 5 calculated as described above (cf.
Equation (5.14)), the geometric weighting factor gC, and (∆ˆ̃u)CF relates to the matrix
of cell displacement di�erences between owner and neighbours. We decided to calculate
gC with the option distance as introduced in Equation (3.29). As illustrated in
Equation (5.17), for further calculations we de�ne the interpolation of the cell gradient
coe�cient matrices as the face gradient coe�cient matrix (T )

f15
.

61



5. Implementation and Discussion

As one may observe, the example illustrated in Figure 5.3 consists of an unstructured
mesh. Hence, we decided to use the minimum correction approach as described in
Section 3.2.34.
The nonorthogonal treatment of the explicit face gradient of face f15 reads, cf.

Equation (3.31):(ex∇0u
)∗
f15

=
(ex∇0u

)
f15
− 1

‖d15‖
2 d15 d

T
15

(ex∇0u
)
f15

+
1

‖d15‖
2 d15 (û5 − û1)T , (5.18)

where the superscript asterisk refers to the corrected face gradient. For the di�erence of
cell centroid displacement vectors in the last term of Equation (5.18), values of the latest
available iteration step are used. One has to be aware that d15 relates to the distance
vector between the cells 1 and 5 and does not refer to any quantity of face f15

5. The
gradient in Equation (5.18) is the transposition of the Jacobian of the vector �eld u,
hence Equation (5.18) is transposed for further calculations in SOOFVAM.
The nonorthogonal treatment for the coe�cient matrix (T )

f15
can be calculated

analogously and reads

(T )∗
f15

= (T )
f15
− 1

‖d15‖
2 d15 d

T
15 (T )

f15
+

1

‖d15‖
2 d15 (∆ˆ̃u5 −∆ˆ̃u1) . (5.19)

∆ˆ̃u can either refer to the incremental displacements ∆û or ∆v̂. For interior faces, the
coe�cient matrices remain identical for each displacement. Therefore, (T )∗

f15
is calculated

only once. As Equation (5.19) deals with coe�cient matrices, also the last term refers
to a matrix of the form

1

‖d15‖
2 d15 (∆ˆ̃u5 −∆ˆ̃u1) :=

1

‖d15‖

(
−e15,1 0 0 0 e15,1 0 · · · 0
−e15,2 0 0 0 e15,2 0 · · · 0

)
, (5.20)

whereas the matrix has the same size as (T )
f15
. This means, the matrix in Equation (5.20)

is of size [2 × 16], since the computational domain consists of 12 cells and 4 additional
(temporary) variables due to the prescribed boundary faces. The columns of the nonzero
elements in the matrix in Equation (5.20) are 1 and 5, referring to the cell's global
index. Therefore, the incremental displacement values ∆ˆ̃u1 and ∆ˆ̃u5 do not disappear,
but are only representatives for the positions of the nonzero elements of the matrix in
Equation (5.20). The unit vector e15 is calculated as

e15 =
d15

‖d15‖
=

(
e15,1

e15,2

)
. (5.21)

Any other interior face of the computational domain is treated analogously.

4Note that also for orthogonal cells, the derivation in SOOFVAM is executed analogously.
5In this context it is a coincidence that the face between cell 1 and 5 has global index 15.

62



5.2. Solving an Example with SOOFVAM

5.2.4. Treatment of Dirichlet BCs

The face gradient and its coe�cient matrix for a boundary face with prescribed Dirichlet
BCs is calculated similar to the interior faces. Again, we want to use the minimum
correction approach for the nonorthogonal treatment. Note that the derivations below
are executed for each6 boundary face with prescribed Dirichlet BCs. We calculate the
terms for face f9, cf. Figure 5.3.
For the face gradient coe�cient matrix of a boundary face we assume that the

coe�cient matrix is equal7 to the gradient of its owner cell, i.e. the coe�cient matrix of
boundary face f9 reads:

(T )f9 = (T )8 . (5.22)

Applying Equation (3.31) for Equation (5.22) yields

(T )∗
f9

= (T )
f9
− 1

‖d8f9
‖2 d8f9

dT8f9 (T )
ff9

+
1

‖d8f9
‖2 d8f9

(∆ˆ̃uf9 −∆ˆ̃u8) . (5.23)

The last term in Equation (5.23) reads

1

‖d8f9
‖2 d8f9

(∆ˆ̃uf9−∆ˆ̃u8) :=
1

‖d8f9
‖

(
0 · · · 0 −e8f9,1 0 · · · 0 e8f9,1 0
0 · · · 0 −e8f9,2 0 · · · 0 e8f9,2 0

)
, (5.24)

whereas the matrix in Equation (5.24) is of same size as (T )f9 , which means [2 × 16]
for our example. The columns of the nonzero elements in the matrix are 8, referring
to the global index of cell 8 and the corresponding position of boundary face f9. For
the introduced example this position is 15, since f9 is the third boundary face with a
prescribed boundary face value not equal to zero and 12 + 3 = 15. The unit vector e8f9

is calculated analogously to Equation (5.21).
One ought to be aware, that there is a signi�cant di�erence to the coe�cient matrices

of interior faces: In contrast to interior faces, where the coe�cient matrices are identical
for all8 displacements, for the boundary faces the coe�cient matrices are calculated
separately for each displacement. This is due to the fact that for each boundary face the
boundary value can be prescribed independent of each other. In face f9 only the value
in X2- direction is constrained. Hence, just the coe�cient matrix for displacement v
is determined according to Equation (5.23). For the coe�cient matrix for displacement
u the last term in Equation (5.23), i.e. the term in Equation (5.24), is a zero matrix.
Therefore, if the value of a boundary face is not prescribed, the coe�cient matrix is
calculated with Equation (5.23), but omitting the last term (Equation (5.24)).
Moreover, for boundary faces with a prescribed value of zero (faces f1 - f3, cf.

Figure 5.3) Equation (5.24) is also treated in a special way. Since these faces do

6i.e. not only for the faces of the top boundary (prescribed value 6= 0) but also for the faces of the
bottom boundary (prescribed value = 0)

7Since there is no neighbour cell, the owner cell fully a�ects the boundary face.
8i.e. u and v for our example

63



5. Implementation and Discussion

not appear as (temporary) variables in the equation system, Equation (5.24) for e.g.
boundary face f2 reads

1

‖d5f2
‖2 d5f2

(0−∆ˆ̃u2) :=
1

‖d5f2
‖

(
0 −e5f2,1 0 · · · 0
0 −e5f2,2 0 · · · 0

)
. (5.25)

That means these faces have only a cell contribution and there is no contribution for
the boundary face itself.
The distinction of boundary faces with prescribed value not equal to zero and equal to

zero was introduced for a speci�c reason. In general, one could add the boundary faces
of the bottom boundary to the number of variables (nov) as well. Since in the assemble
process the coe�cients of T corresponding to the boundary faces are multiplied with
the prescribed boundary face value (cf. Section 5.2.5), which is zero for the faces of the
bottom boundary, the apparent in�uence of boundary faces with prescribed value of
zero can already be neglected in advance. Therefore, only the faces of the top boundary
are added as additional, temporary variables, i.e. added to nov. Furthermore, this also
positively a�ects the computational e�ciency of SOOFVAM, since less variables are
involved in the calculation.

For the nonorthogonal treatment of the explicit face gradient, we also assume that
the face gradient is equal to the gradient of the owner cell, i.e. for boundary face f9:(ex∇0u

)
f9

=
(ex∇0u

)
8
. (5.26)

The nonorthogonal treatment yields

(ex∇0u
)∗
f9

=
(ex∇0u

)
f9
− 1

‖d8f9
‖2 d8f9

dT8f9
(ex∇0u

)
f9

+
1

‖d8f9
‖2 d8f9

(ûf9 − û8)T . (5.27)

For the last term in Equation (5.27) latest available displacement values are used. The
gradient in Equation (5.27) is the transposition of the Jacobian of the vector �eld u,
hence Equation (5.27) is transposed for further calculations in SOOFVAM.
Any other boundary face of the computational domain is treated analogously as

described above.

The described coherences regarding the coe�cient matrices are illustrated in Al-
gorithm 5.6. The pseudocode for function correctBfaceGradientCM9 is shown in
Algorithm 5.7 and for function correctFaceGradientCM10 in Algorithm 5.8. The
algorithms for the explicit face gradient are shown in Algorithm 5.9.

9coe�cient matrix of boundary faces
10coe�cient matrix of interior faces

64



5.2. Solving an Example with SOOFVAM

Algorithm 5.6 Calculation of Face Gradient Coe�cient Matrix
1: function getGradientCoefficientMatrix(cell, face, noc, nov)
2: if neighbour of face is empty then . the face is a boundary face
3: (T )∗

b,i
← call correctBfaceGradientCM(cell, face, noc, nov)

4: else . the face is an inner face
5: (T )∗

f
← call correctFaceGradientCM(cell, face, noc, nov)

6: end if

7: return (T )∗
b,i

or (T )∗
f

. i either refers to u, v or w
8: end function

Algorithm 5.7 Nonorthogonal Treatment of Boundary Face Coe�cient Matrix
1: function correctBfaceGradientCM(cell, face, noc, nov)
2: set (T )b ← (T )C . Equation (5.22)
3: calculate corrected face gradient (T )∗

b
. Equation (5.23)

4: if displacement u is prescribed then
5: adapt (T )∗

b,u
← (T )∗

b

6: else if displacement v is prescribed then
7: adapt (T )∗

b,v
← (T )∗

b

8: else if displaement w is prescribed then
9: adapt (T )∗

b,w
← (T )∗

b

10: end if

11: return (T )∗
b,i

12: end function

Algorithm 5.8 Nonorthogonal Treatment of Interior Face Coe�cient Matrix
1: function correctFaceGradientCM(cell, face, noc, nov)
2: get (T )C, (T )F ← coe�cient matrices of owner and neighbour
3: calculate interpolated face gradient (T )f . Equation (5.17)
4: calculate corrected face gradient (T )∗

f
. Equation (5.19)

5: return (T )∗
f

6: end function

65



5. Implementation and Discussion

Algorithm 5.9 Calculation and Correction of Gradient of Interior and Boundary Face
1: function calcGradUFace(cell, face)
2: if neighbour of face is empty then . the face is a boundary face
3:

(ex∇0u
)∗
b
← call correctBfaceGradient(cell, face)

4: else . the face is an inner face
5:

(ex∇0u
)∗
f
← call correctFaceGradient(cell, face)

6: end if

7: return
(ex∇0u

)∗
b
or
(ex∇0u

)∗
f

8: end function

9: function correctBfaceGradient(cell, face)
10: set

(ex∇0u
)
b
←
(ex∇0u

)
C

. Equation (5.26)
11: calculate corrected face gradient

(ex∇0u
)∗
b

. Equation (5.27)

12: return
(ex∇0u

)∗
b

13: end function

14: function correctFaceGradient(cell, face)
15: get

(ex∇0u
)
C
,
(ex∇0u

)
F
← cell gradients of owner and neighbour

16: calculate interpolated face gradient
(ex∇0u

)
f

. Equation (5.16)
17: calculate corrected face gradient

(ex∇0u
)∗
f

. Equation (5.18)

18: return
(ex∇0u

)∗
f

19: end function

66



5.2. Solving an Example with SOOFVAM

5.2.5. Solution of the Equation System

Since we are able to calculate each face gradient and face gradient coe�cient matrix, we
are now interested in the assemble process and the solution of the resulting system of
algebraic equations. The system of equations to be solved in index notation reads

bin︷ ︸︸ ︷∑
f

(
F i
J S

JK NK

)
f
Af +

+
∑
f

((
TAJ SJK δip + F i

J CJKLM gno δ
o
p F

n
L TAM

)
NK

)
f
Af︸ ︷︷ ︸

Ai
k , b

i
bf

∆ûpA = 0 .
(5.28)

Now we want to transform this equation into the general form

(Ajk)t (∆ˆ̃uk)t+1 = (bj)t , (5.29)

as we are then able to solve for the incremental displacement values of the cell
centroids (∆ˆ̃uk)t+1 and can update the displacement vector in each iteration step t
with (ˆ̃uk)t+1 = (ˆ̃uk)t + (∆ˆ̃uk)t+1. As can be observed in Equation (5.28), the terms
have di�erent contributions to the equation system which is explained below for the
introduced example.
The set of linear algebraic equations in matrix form reads

A11 A12 · · · · · · A1d

A21
. . . . . . ...

... . . .
. . . ...

... . . . . . . Ad−1d

Ad1 · · · · · · Add−1 Add


t



∆u1
...

∆uc
∆v1
...

∆vc


t+1

=



b1
...

...
bd


t

, (5.30)

where the subscript (.)d refers to nod and the subscript (.)c to noc. The size of matrix(
A
)
t
is [nod × nod] and the size of the vectors (b)t and (∆ˆ̃u)t+1 equals [nod × 1]. For

the example illustrated in Figure 5.3 this means that the size of A equals [24× 24], and
the size of the two vectors is [24 × 1]. As mentioned in Section 4.3 and Section 5.2.2,
the coe�cient matrices are initialised with size [dim × nov] which results in a size of
[dim × (nov · dim)] for the second term11 in Equation (5.28). For the example this
means that the coe�cient matrices are of size [2 × 16] and the linearised di�usion �ux
in Equation (5.28) is of size [2 × 32] and has therefore more columns than A. In the
assemble process this issue is �xed.
11It refers to the linearised di�usion �ux term regarding the denotion of Section 4.1.2.

67



5. Implementation and Discussion

For explanatory purposes, we want to assemble the terms of the cell with global index
2. The linearised di�usion �ux of cell 2 may look like as follows:

(
DJu,D(χt)[∆u]

)
2

=

(
DJ11 · · · DJ112 DJ113 · · · DJ116 DJ117 · · · DJ132︸ ︷︷ ︸

∆û1-∆û12

DJ21 · · · DJ212 ︸ ︷︷ ︸
∆ûf7-∆ûf10

DJ213 · · · DJ216 ︸ ︷︷ ︸
∆v̂1-∆v̂f10

DJ217 · · · DJ232

)
,

(5.31)

where the indices of the elements DJij refer to the row i and the global index j. As
can be seen in Equation (5.31), only the columns 1 - 12 relate to the incremental cell
displacements ∆ûC and the columns 17 - 28 relate to ∆v̂C. In the assemble process only
the columns corresponding to the cell displacements are included in A:

A =



· · · · · ·
· · · · · ·

DJ11 · · · DJ112 DJ117 · · · DJ128︸ ︷︷ ︸
∆û1-∆û12

DJ21 · · · DJ212 ︸ ︷︷ ︸
∆v̂1-∆v̂12

DJ217 · · · DJ228

...
...


, (5.32)

which results in the appropriate Newton tangent if this is done for each cell of the
computational domain. The remaining columns contribute to the residuum. In the
assemble process, the coe�cients of the remaining columns in Equation (5.31) are
multiplied with their prescribed values of the Dirichlet BC:

(bbf)2 = −
(
DJ113 · · · DJ116 DJ129 · · · DJ132︸ ︷︷ ︸

∆ûf7-∆ûf10

DJ213 · · · DJ216 ︸ ︷︷ ︸
∆v̂f7-∆v̂f10

DJ229 · · · DJ232

)


0
0
0
0
vf7
vf8
vf9
vf10


=

(
bbf,1
bbf,2

)
, (5.33)

and are assembled in the residuum:

b =


· · ·
· · ·
bbf,1
bbf,2
...

 . (5.34)

68



5.2. Solving an Example with SOOFVAM

The subscript (.)bf refers to boundary face. The nonlinear di�usion �ux term, also called
residuum in the denotion of the NR procedure, in Equation (5.28) may look for cell 2
as follows: (

Ju,D(χt)
)

2
=

(
J1

J2

)
= −

(
bn,1
bn,2

)
= −(bn)2 , (5.35)

and, as can be seen, is denoted as nonlinear contribution bn. The term in Equation (5.35)
is assembled as before:

b =


· · ·
· · ·

bbf,1 + bn,1
bbf,2 + bn,2

...

 . (5.36)

Therefore, the boundary face and nonlinear contribution result in the residuum b.

Treatment of Dirichlet BCs in the NRM

Similar to the FEM, where in the NR solution procedure the prescribed nodal values
are set in the �rst iteration step and set to zero for subsequent iteration steps, also in
the proposed solution process, the displacement values of prescribed boundary faces are
treated in a similar way.
One has to be aware, that in SOOFVAM there are two di�erent displacement

properties for both cells and faces: on the one hand the incremental displacement and
on the other hand the displacement value. For cells, the incremental displacement is the
calculated primary variable, while the displacement value is updated for each iteration
step as described above. For faces, they have a di�erent meaning. The incremental
displacement of the face is set in the �rst iteration step due to the prescribed BC.
When the Dirichlet BCs are assembled into b (cf. Equation (5.33) and Algorithm 5.13),
the displacement value of the faces are set to the prescribed value and the incremental
displacement is set to zero. This is because after the �rst solution the faces have reached
the prescribed displacement value.
The �nal form of the set of linear equations then reads

(Ajk)t (∆ˆ̃uk)t+1 = (bjn)t + (bjbf)t = (bj)t (5.37)

and can now be solved for the incremental displacements (∆ˆ̃uk)t+1 in each iteration step
t.
The coherences described above are summarised in Algorithm 5.10, Algorithm 5.11,

Algorithm 5.12 and Algorithm 5.13.

69



5. Implementation and Discussion

Algorithm 5.10 Work�ow of FV Solution Procedure
1: function solveFVSystem(noc, nod, nov)
2: initialise A

t
[nod × nod]

3: initialise bt [nod × 1]

4: for each cell in model do

5: initialise
(
DJu,D(χt)[∆u]

)
C
[dim× (nov · dim)]

6: initialise
(
Ju,D(χt)

)
C
[dim × 1]

7: for each face of cell do
8: if neighbour of face is not empty or

neighbour of face is empty and BC is prescribed then
9:

(
DJu,D(χt)[∆u]

)
f
,
(
Ju,D(χt)

)
f
← call

calcDiffusionTermNonlinear(cell, face, noc, nov)
10:

(
DJu,D(χt)[∆u]

)
C

+ =
(
DJu,D(χt)[∆u]

)
C

+
(
DJu,D(χt)[∆u]

)
f

11:
(
Ju,D(χt)

)
C

+ =
(
Ju,D(χt)

)
C

+
(
Ju,D(χt)

)
f

12: end if

13: end for

14: assemble A
t
← call

assembleMatrixA(A, cell, noc, nov,
(
DJu,D(χt)[∆u]

)
C
)

. Algorithm 5.12
15: assemble bt ← call

assembleVectorb(b, cell, nov,
(
DJu,D(χt)[∆u]

)
C
,
(
Ju,D(χt)

)
C
)

. Algorithm 5.13
16: end for

17: assemble bt ← call integrateNeumannBCandSourceTerm(b) . where required
18: calculate increment ∆ut+1 = A−1

t
bt

19: return increment ∆ut+1, residuum bt
20: end function

70



5.2. Solving an Example with SOOFVAM

Algorithm 5.11 Calculation of Di�usion Flux Terms
1: function calcDiffusionTermNonlinear(noc, nov)
2: (T )∗

b,i
or (T )∗

f
← call getGradientCoefficientMatrix(cell, face, noc, nov)

3:
(ex∇0u

)∗
b
or
(ex∇0u

)∗
f
← call calcGradientOfFace(cell, face) . Section 5.2.4

4: initialise
(
DJu,D(χt)[∆u]

)
f
[dim× (nov · dim)]

5: initialise
(
Ju,D(χt)

)
f
[dim× 1]

6: calculate
(
DJu,D(χt)[∆u]

)
f
,
(
Ju,D(χt)

)
f

. Equation (4.21), Equation (4.26)
7: if cell is not owner of face then
8:

(
DJu,D(χt)[∆u]

)
f
=
(
−DJu,D(χt)[∆u]

)
f
,
(
Ju,D(χt)

)
f
= −

(
Ju,D(χt)

)
f

9: end if

10: return
(
DJu,D(χt)[∆u]

)
f
,
(
Ju,D(χt)

)
f

11: end function

Algorithm 5.12 Assembly of A

1: function assembleMatrixA(A, cell, noc, nov,
(
DJu,D(χt)[∆u]

)
C
)

2: determine rows corresponding to the cell's global index
3: determine columns corresponding to the cell's displacement values
4: assemble A

5: return A
6: end function

71



5. Implementation and Discussion

Algorithm 5.13 Assembly of b and Treatment of Dirichlet BCs
1: function assembleVectorb(b, cell, nov,

(
DJu,D(χt)[∆u]

)
C
,
(
Ju,D(χt)

)
C
)

2: determine rows corresponding to the cell's global index

3: for each face of cell do
4: if DOF in face is prescribed and value 6= 0 then
5: get boundary face incremental displacement ∆ub
6: if iteration step t = 1 then . �rst step in NRM
7: set boundary face displacement ub ← ∆ub
8: set ∆ub ← 0
9: end if

10: determine columns corresponding to the boundary face's global index
11: calculate boundary face contribution bbf . Equation (5.33)
12: assemble (b)bf in b . Equation (5.34)
13: end if

14: assemble (b)n in b . Equation (5.36)
15: end for

16: return b
17: end function

72



6. Results of the Simulation

In this chapter the proposed algorithm, and thus the implemented code SOOFVAM, is
applied to di�erent cases both for small and large deformations. In order to cover as
many facets as possible, the following test cases were developed:

. performance test of mesh topology generation (Section 6.1),

. comparison of performance with di�erent software for small deformation theory
(Section 6.2),

. behaviour of convergence of the iterative solution procedure (Section 6.3),

. comparison of performance with di�erent software for large deformation theory
(Section 6.4),

. in�uence of parameters and type of mesh (Section 6.5), and

. performance of large deformations in a 3D case (Section 6.6).

The test cases were executed using the �R2020a� release of MATLAB c© in its Student's
version on the author's personal computer, an acer Aspire E 15 laptop (OS: MSWindows
10). The hardware consists of

. an Intel c© Core
TM

i7-4510U processor with a minimal clock frequency of 2.0 GHz
. 8 GB DDR3L RAM.

For the solution of the equation system A ∆ˆ̃u = b, the backslash operator (or
mldivide) was used. Besides the distinction between full/dense or sparse input arrays,
the in-built MATLAB c© algorithm determines whether the matrix is square, diagonal,
triangular or Hermetian. It searches the matrix for symmetries and dispatches it to
an appropriate solver [34]. The equation systems of the test cases in the subsequent
sections are solved via UMFPACK V5.4.01 [34], which is a set of routines for solving
unsymmetric sparse linear systems implemented in MATLAB c© [12].

6.1. Performance of Mesh Generation

In the �rst test case (TC) the performance of the mesh generation algorithm was
investigated.
As mentioned in Section 5.1.2, an additional routine (cf. Algorithm 5.1) is required to

perform the analysis. In Line 4 of Algorithm 5.1 the surrounding neighbour cells for each
cell of the computational domain are determined, before the topology is created. This

1Unsymmetric MultiFrontal package

73



6. Results of the Simulation

information is not provided by the .msh �le created with Gmsh c© because this information
is not needed for FE calculations. Algorithm 5.1 is designed speci�cally for unstructured
grids and covers meshes for both 2D and 3D computational domains.
For the tests, a simple geometry as illustrated in Figure 6.1 was chosen. The mesh

generation time over cells per side was compared to the in-house FE solver SOOFEAM
and the simulation results are shown in Figure 6.2. As might be expected, the mesh
generation time multiplies as the number of cells per side rises.

X2

X1

Figure 6.1.: TC1 - Computational Domain

2 4 8 16 32
0

20

40

60

cells per side

ti
m
e
/
s

SOOFVAM
SOOFEAM

Figure 6.2.: TC1 - Comparison of Mesh Generation Time (Create Topology)

In case of problems in a two-dimensional domain, the proposed algorithm may be
avoided because it is not mandatory to determine the surrounding cells. One can create

74



6.2. Comparison of Solvers for Small Deformations

the topology just with the nodal information provided by Gmsh c©. Although, for the 3D
case this is not possible as the nodes can be arbitrarily ordered in the cell. Therefore,
it is necessary to determine which node is located where and with which nodes it forms
a face. From the author's point of view, a simple solution is the proposed routine
in Algorithm 5.1. Hence, the author decided to maintain the proposed approach and
implement the routine in SOOFVAM.
The FE solver SOOFEAM generates the mesh anew for each simulation, since only

the created .msh �le is read in. Since this approach is not promising for SOOFVAM
(cf. Figure 6.2), once a topology is created, it can be saved. As long as the topology
remains the same, the saved mesh can be loaded for the analysis. In another test, the
loading time was compared again to SOOFEAM. Since in SOOFVAM only one variable
has to be loaded, normed time values as shown in Figure 6.3 were compared. As one
can observe, they show a similar behaviour.

All the time values illustrated in Figure 6.2 and Figure 6.3 are the average of seven
simulation runs, neglecting the highest and lowest value2.

2 4 8 16 32
0

0.2

0.4

0.6

0.8

1

cells per side

no
rm

ed
ti
m
e

SOOFVAM
SOOFEAM

Figure 6.3.: TC1 - Comparison of Mesh Generation Time (Read Topology)

6.2. Comparison of Solvers for Small Deformations

The second test case is meant to verify the results of the proposed implicit algorithm
for small deformations by comparing it with di�erent types of software. The setup

2This was done in order to exclude outliners. Therefore, the times are an arithmetic average out of
�ve values.

75



6. Results of the Simulation

of the test case with details about geometry and loading is shown in Figure 6.4. The
analysis comprises a �nite plate with a circular hole. Kirsch [29] formulated an analytical
solution for an in�nte plate, therefore this setup is also called Kirsch's problem. For the
simulations, plane stress with a Young modulus E = 2.1e5MPa and a Poisson ratio
ν = 0.3 were assumed. The distance option (cf. Equation (3.29)) was chosen for the
geometric weighting factor and the over-relaxed approach (cf. Equation (3.32)) for the
nonorthogonal treatment.

a

r

q0

q0

q0

λ
a
r

100 N
mm

1.5
1600mm
20mmλ q0

λ q0

X2

X1

Figure 6.4.: TC2 - Kirsch's Problem

The original proposed analytical equations [6, 29], after a transformation into
Cartesian coordinates3, for the displacement along the circular boundary read

u = −q0r

4E
(1 + ν)(α + 1)(3λ− 1) cos(ϕ) ,

v = −q0r

4E
(1 + ν)(α + 1)(3− λ) sin(ϕ) ,

(6.1)

where ϕ can be calculated as ϕ = atan2
(
y
x

)
, with x and y being the coordinates of the

nodes along the circular boundary (cf. Figure 6.5 right), and the factor α, for the plane
stress case, reads

α =
3− ν
1 + ν

. (6.2)

3The original equations describe the coherences in Polar coordinates.

76



6.2. Comparison of Solvers for Small Deformations

As one may observe, the computational domain consists of two axes of symmetry,
therefore the calculations are only carried out for the shaded quarter, cf. Figure 6.4.
This is shown in Figure 6.5 with the prescribed BCs and the form of the mesh used for
the simulations. The faces on the bottom boundary are constrained in X2-direction and
the faces on the left boundary in X1-direction.

q0

λ q0

X1

X2

x

y
ϕ

Figure 6.5.: TC2 - Computational Domain and BCs

In a �rst test, the simulation results were compared to the analytical solution in
Equation (6.1). Therefore, the relative error of displacements εrelu in the nodes along the
circular boundary was calculated as

εrelu =
‖ua − un‖
‖ua‖

, (6.3)

where ua refers to the vector with the analytical displacement values and un relates to
the numerical solution. Di�erent meshes analogous to the one shown in Figure 6.5 were
used for the simulations. The coarsest mesh consists of 64 cells and the �nest one of
1600. The relative error over an increasing number of cells both for SOOFVAM and
SOOFEAM is displayed in Figure 6.6.
As can be observed, the relative error for SOOFEAM is smaller than for SOOFVAM.

Note that for the introduced setup, the number of degrees of freedom for the FV solver
is always smaller than for the calculations with �nite elements. For example, for the
mesh with 1600 cells, the computational domain consists of 1681 nodes. In addition, the
nodal displacement values are extrapolated for the FV solver. As the analytical solution

77



6. Results of the Simulation

holds for a → ∞, additional tests may observe the performance for rising length a of
the plate.

64 256 576 1024 1600
0

0.2

0.4

0.6

0.8

number of cells

re
la
ti
ve

er
ro
r

SOOFVAM
SOOFEAM

Figure 6.6.: TC2 - Comparison of Relative Error

In another test, the simulation results were compared to the open-source CFD toolbox
OpenFOAM c© [25, 27, 47]. For the introduced problem, the OpenFOAM c© case called
plateHole, that incorporates a plate of �nite length with a circular hole, of the
solidDisplacementFoam tutorials was used. The displacement values in the circle
bottom4 and circle top5 position for a mesh consisting of 1600 cells were compared. The
results are shown in Table 6.1 and Table 6.2. As can be observed, the FE solver shows
results that come closest to the analytical solution, while SOOFVAM and OpenFOAM c©

provide similar but less precise results. Since the results only show a speci�c setup, more
tests with di�erent parameters should substantiate the validity of the results.

Table 6.1.: TC2 - Comparison of Displacement Values: Circle Bottom

source analytical SOOFEAM SOOFVAM OpenFOAM c©

u /mm −0.03333 −0.03091 −0.04173 −0.04009
v /mm 0.00000 0.00000 0.00005 0.00000

The comparison of the analysis time is shown in Figure 6.7. As can be observed,
the computation time for all solvers increases with increasing number of cells, whereas
OpenFOAM c© works signi�cantly faster for a high number of cells. The time values
4marked with a green circle in Figure 6.5 right
5marked with a blue cirlce in Figure 6.5 right

78



6.3. Performance of NR Iteration Convergence

Table 6.2.: TC2 - Comparison of Displacement Values: Circle Top

source analytical SOOFEAM SOOFVAM OpenFOAM c©

u /mm 0.00000 0.00000 0.00018 0.00000
v /mm −0.01429 −0.01348 −0.01535 −0.01331

illustrated in Figure 6.7 are the average of seven simulation runs, neglecting the highest
and lowest value.

64 256 576 1024 1600
0

2

4

6

8

10

12

number of cells

ti
m
e
/
s

SOOFVAM
SOOFEAM
OpenFOAM

Figure 6.7.: TC2 - Comparison of Analysis Time

6.3. Performance of NR Iteration Convergence

Test case number three is the �rst case that deals with the theory of large deformations.
Details about geometry and the prescribed Dirichlet BCs are shown in Figure 6.8, and
the relevant computational domain of the problem is illustrated in Figure 6.9. A Neo-
Hookean material model and plane stress with a Young modulus E = 20MPa and a
Poisson ratio ν = 0.45 were assumed. As this test case deals with large deformations,
an imaginary material with rubberlike material parameters was assumed. Due to the
structured mesh with orthogonal cells, the choice of the geometric weighting factor6 and
nonorthogonal treatment do not a�ect the simulation.

6gC = 1
2 holds true for the whole domain for both the average and distance option.

79



6. Results of the Simulation

a

v v

a
v

100mm
50mm

X1

X2

Figure 6.8.: TC3 - Quadratic Plate

v v

X1

X2

Figure 6.9.: TC3 - Computational Domain and BCs

At �rst, the convergence behaviour was investigated and compared to the FE solver
SOOFEAM. The test was carried out for 20 cells per side7 and the results of the
convergence behaviour are displayed in Figure 6.10 and Figure 6.11. The iterative
solution process was stopped when the convergence criterion of 1e-15 for both the normed
increment and residuum was reached. The normed values were calculated as

valuenormed =
valuet
valueref

, (6.4)

where value either relates to the increment or residuum. The subscript (.)t refers to the
iteration step and (.)ref relates to the reference value, which is the increment/residuum

7This means 10× 20 cells for the computational domain due to symmetry, cf. Figure 6.9.

80



6.3. Performance of NR Iteration Convergence

of the �rst iteration step. Note that the increment refers to the calculated incremental
displacement and the residuum is b, cf. Equation (5.37). The diagrams in Figure 6.10 and
Figure 6.11 depict a similar behaviour with quadratic convergence both for SOOFVAM
and SOOFEAM showing that the proposed algorithm may be an equivalent alternative.

1 2 3 4 5 6 7

100

10−3

10−6

10−9

10−12

10−15

iteration step

no
rm

ed
in
cr
em

en
t

SOOFVAM
SOOFEAM

Figure 6.10.: TC3 - Behaviour of Normed Increment

In a second test, the nodal displacement values of the whole computational domain
were compared. The relative deviation of the displacements φrelu to the results of the FE
solver was evaluated in the form of

φrelu =
‖uFEM − uFVM‖
‖uFEM‖

, (6.5)

where uFEM and uFVM relate to the vectors of the nodal displacements calculated with
SOOFEAM and SOOFVAM, respectively. The results for the relative deviation with
rising number of cells per side is illustrated in Table 6.3. As one observes, the relative
deviation is very small and declines with rising number of cells/elements, which con�rms
that the implemented code provides comparable results also for �nite deformations.

Table 6.3.: TC3 - Relative Deviation of Displacement

cells per side 10 20 30

φrelu 0.01041 0.00313 0.00157

A last test compared the von Mises stress σvM of the two solvers. σvM is de�ned as

σvM =
√
‖σ‖2 − 3 · p2 , (6.6)

81



6. Results of the Simulation

1 2 3 4 5 6 7

100

10−3

10−6

10−9

10−12

10−15

iteration step

no
rm

ed
re
si
du

um

SOOFVAM
SOOFEAM

Figure 6.11.: TC3 - Behaviour of Normed Residuum

with the Cauchy stress tensor σ and the hydrostatic pressure p calculated as p = 1
3

tr(σ).
The di�erence to the FE solver was determined as relative deviation φrelσvM , which reads

φrelσvM =
‖(σvM)FEM − (σvM)FVM‖

‖(σvM)FEM‖
, (6.7)

where σvM refers to a vector with the stresses for each cell/element of the computational
domain. The results of the relative deviation for the von Mises stress are displayed in
Table 6.4.

Table 6.4.: TC3 - Relative Deviation of von Mises Stress

cells per side 10 20 30

φrelσvM 0.02947 0.01073 0.00784

The comparison of the analysis time is shown in Figure 6.12. For the introduced
setup, the proposed algorithm is nearly twice as fast as the FE code. Both solvers
show an increasing computation time for an increasing number of cells. The time values
illustrated in Figure 6.12 are the average of seven simulation runs, neglecting the highest
and lowest value.
A visualisation of the deformed con�guration of the problem for a mesh with 900 cells

is shown in Figure 6.13.

82



6.3. Performance of NR Iteration Convergence

10 20 30
0

10

20

30

cells per side

ti
m
e
/
s

SOOFVAM
SOOFEAM

Figure 6.12.: TC3 - Comparison of Analysis Time

Figure 6.13.: TC3 - Visualisation of Deformed Con�guration

83



6. Results of the Simulation

6.4. Comparison of Solvers for Large Deformations

The fourth test case compares the proposed large deformation algorithm to the FV
solver foam-extend. The open-source software foam-extend [11] is the community
edition of the OpenFOAM c© library, and it integrates contributions from users and
developers, who also helped to �nd bugs and extended the code base [48]. The solver
called elasticNonLinTLSolidFoam was used for the test case. It is a solver for large
deformations in total Lagrangian formulation using the St. Venant-Kirchho� material
model. Plane stress with a Young modulus E = 2.1e5MPa and a Poisson ratio ν = 0.3
were assumed for the simulations. Details about geometry and the loading are shown
in Figure 6.14. The convergence criterion for the NRM was set to 1e-10 for this test.
The distance option (cf. Equation (3.29)) was chosen for the geometric weighting factor
and the modi�ed approach (cf. Equation (3.33)) for the nonorthogonal treatment. The
computational domain with the prescribed BCs and the form of the used mesh is
illustrated in Figure 6.15.

a

t
a
b
c

200 N
mm

440mm
600mm

b b

c

t

480mm

X1

X2

Figure 6.14.: TC4 - Cook's Membrane

84



6.4. Comparison of Solvers for Large Deformations

X1

X2

Figure 6.15.: TC4 and TC5 - Computational Domain

The investigated test case comprises the so-called Cook's membrane (cf. Figure 6.14)
problem, for which no analytical solution exists. Therefore, the relative deviation of
the cell displacement values of SOOFVAM to the numerical results obtained with foam-
extend was determined. The relative deviation of displacements φrelu reads

φrelu =
‖usv − ufme‖
‖ufme‖

, (6.8)

where usv refers to the cell displacement values of SOOFVAM, while ufme relates to the
ones obtained with foam-extend.
The results for the relative deviation are shown Table 6.5. Tests were carried out for

�ve di�erent meshes, starting with �ve cells per side and ending with 25 cells per side.
As may be observed, the relative deviation is declining with rising mesh size and becomes
very small for the mesh with 625 cells. Hence, test case four con�rms that the proposed
implicit approach provides equivalent results compared to the regular approach of FV
solvers for nonlinear elasticity. More tests with di�erent parameters should substantiate
the validity of the results.

Table 6.5.: TC4 - Relative Deviation of Displacement

cells per side 5 10 15 20 25

φrelu 0.24933 0.08253 0.03267 0.01231 0.00356

The comparison of the analysis time is shown in Figure 6.16. The time values
illustrated in Figure 6.16 are the average of seven simulation runs, neglecting the highest

85



6. Results of the Simulation

and lowest value. As can be seen, both solvers show an increasing behaviour with
increasing number of cells, but the computing time of foam-extend is superior to the
proposed algorithm.

25 100 225 400 625
0

2

4

6

8

10

12

number of cells

ti
m
e
/
s

SOOFVAM
foam-extend

Figure 6.16.: TC4 - Comparison of Analysis Time

6.5. In�uence of Parameters and Mesh

Test case number �ve also comprises the Cook's membrane problem with the same
BCs as shown in Figure 6.15, but with di�erent material parameters and loading. The
loading was set to t = 0.6N/mm and the convergence criterion was prescribed with
1e-10. A Neo-Hookean material and plane stress with a Young modulus E = 20MPa
and a Poisson ratio ν = 0.45 were assumed. This should model a compressible rubberlike
material. The results of the nodal displacement in the top right corner, marked with
a blue circle in Figure 6.15, were compared for four di�erent meshes, cf. Figure 6.17.
Furthermore, the in�uence of the adjustable parameters, geometric weighting factor and
nonorthogonal treatment, on di�erent types of meshes is discussed below.
One can observe the results for the nonorthogonal structured mesh illustrated in

Figure 6.17 (a) in Table 6.6. The computational domain consists of 20 cells per side
resulting in 400 cells. As can be seen, within themodi�ed approach there are the smallest
di�erences between the options distance and average. Moreover, the over-relaxed and
modi�ed approach provide similar results, as both approaches share similarities in the
consideration of the skewness of the mesh. In contrast, theminimum correction approach
minimises the in�uence of the nonorthogonality.

86



6.5. In�uence of Parameters and Mesh

(a) (b) (c) (d)

Figure 6.17.: TC5 - Nonorthogonal Grids: (a) Structured, (b) Unstructured Quadrilat-
eral, (c) Unstructured Triangular, (d) Unstructured Quadrilateral Re�ned

Table 6.6.: TC5 - Displacement Values for Nonorthogonal Structured Grid

nonorthogonal treatment geometric weighting factor

minimum correction distance average

u /mm −81.6803 −81.4446
v /mm 91.1311 90.9662

over-relaxed

u /mm −79.9770 −79.4603
v /mm 90.4033 90.0307

modi�ed

u /mm −79.9402 −79.9112
v /mm 90.2595 90.2489

87



6. Results of the Simulation

In Table 6.7 the numerical results for the quadrilateral unstructured grid (Figure 6.17
(b)) are displayed. The mesh consists of 397 cells to ensure comparability to the
greatest extent possible. The di�erences between the di�erent nonorthogonal treatment
approaches are even smaller compared to Table 6.6.

Table 6.7.: TC5 - Displacement Values for Nonorthogonal Unstructured Quadrilateral
Grid

nonorthogonal treatment geometric weighting factor

minimum correction distance average

u /mm −81.6917 −81.7240
v /mm 91.5815 91.6033

over-relaxed

u /mm −81.2973 −81.3143
v /mm 91.3347 91.3457

modi�ed

u /mm −81.4387 −81.3759
v /mm 91.4026 91.3790

The simulation results for the triangular unstructured grid (Figure 6.17 (c)) consisting
of 396 cells are illustrated in Table 6.8. The calculated displacement values show a
similar behaviour within a nonorthogonal treatment approach as described above. As
can be observed, the simulation results in larger displacement values compared to the
quadrilateral meshes. It is assumed that this is due to the higher skewness between cells
in triangular meshes. More tests should investigate this behaviour.
In a last test the results for the mesh displayed in Figure 6.17 (d) were investigated.

It consists of a coarse mesh which is only re�ned at the boundary of the prescribed
Neumann BC and consists of 203 cells. The results for this mesh can be observed in
Table 6.9. Although the mesh consists of only about half of the cells, the displacement
values do not di�er signi�cantly from the results above. As a result, the option to
re�ne the mesh at critical areas and keep it as coarse as possible8 in the remaining
computational domain should be kept in mind.

8for reasons of computational performance

88



6.5. In�uence of Parameters and Mesh

Table 6.8.: TC5 - Displacement Values for Nonorthogonal Unstructured Triangular Grid

nonorthogonal treatment geometric weighting factor

minimum correction distance average

u /mm −88.7912 −87.9126
v /mm 94.2502 93.9579

over-relaxed

u /mm −88.0140 −87.2257
v /mm 94.0950 93.7954

modi�ed

u /mm −87.8447 −87.3325
v /mm 94.0143 93.8300

Table 6.9.: TC5 - Displacement Values for Nonorthogonal Unstructured Re�ned Grid

nonorthogonal treatment geometric weighting factor

minimum correction distance average

u /mm −82.1730 −81.6790
v /mm 91.3665 90.8216

over-relaxed

u /mm −81.8847 −81.2910
v /mm 91.3072 90.6822

modi�ed

u /mm −81.3065 −81.3592
v /mm 90.6281 90.6949

89



6. Results of the Simulation

A visualised result of the deformed con�guration of the problem for the mesh in
Figure 6.17 (d) is shown in Figure 6.18.

Figure 6.18.: TC5 - Visualisation of Deformed Con�guration

6.6. Three-Dimensional Twist

The sixth and last test case covered in this thesis deals with a 3D case. The problem
consists of a �xed cantilever that is twisted on the free end. Details about the geometry
and the BCs are shown in Figure 6.19. The twist is realised by incrementally prescribing
an angle dα until the full angle α is reached. In order to obtain this, the previous
approach of the total Lagrangian description was changed to an updated Lagrangian
formulation with a pseudotime loop for the incremental BCs, which is not discussed
here. The implemented routine is illustrated in Algorithm 6.1. For the simulations,
a Young modulus E = 20MPa and a Poisson ratio ν = 0.4 were assumed. The
constitutive law comprises the Neo-Hookean material model. The distance option (cf.
Equation (3.29)) was chosen for the geometric weighting factor and the over-relaxed
approach (cf. Equation (3.32)) for the nonorthogonal treatment. For the convergence
criteria, 1e-8 was chosen.
In order to verify the results, the relative deviation of nodal displacements φrelu to the

results of the FE solver was evaluated in the form of

φrelu =
‖uFEM − uFVM‖
‖uFEM‖

. (6.9)

90



6.6. Three-Dimensional Twist

X1

a

a
l
α

300mm
π rad

120mm

l

α

X2

X3

Figure 6.19.: TC6 - Three-Dimensional Twist of a Cantilever

The results of the simulation for three di�erent types of meshes and seven time steps
are illustrated in Table 6.10.

Table 6.10.: TC6 - Relative Deviation of Displacement

mesh 8× 8× 20 10× 10× 25 12× 12× 30

φrelu 0.03489 0.03155 0.02921

Furthermore, the relative deviation of the von Mises stress φrelσvM for the cells/elements
was compared. It reads

φrelσvM =
‖(σvM)FEM − (σvM)FVM‖

‖(σvM)FEM‖
. (6.10)

The results are displayed in Table 6.11.

Table 6.11.: TC6 - Relative Deviation of von Mises Stress

mesh 8× 8× 20 10× 10× 25 12× 12× 30

φrelσvM 0.12313 0.11155 0.10181

The higher deviation in comparison with the 2D cases is due to the updated Lagrangian
approach, since the updating of the geometry depends on updated nodal coordinates,
which are also extrapolated for three-dimensional problems. It also has a greater impact
on the von Mises stress, since for the displacements a higher number of values9 is
9a number equal to the number of degrees of freedom, which is calculated as three times number of
nodes

91



6. Results of the Simulation

compared than for the von Mises stress10. More tests with three-dimensional problems
should investigate the performance of the proposed algorithm.
The deformed con�guration of the problem for a mesh consisting of 4320 cells

visualised with Paraview c© is illustrated in Figure 6.20.

Figure 6.20.: TC6 - Visualisation of Deformed Con�guration

10a number equal to the number of cells

92



6.6. Three-Dimensional Twist

Algorithm 6.1 Work�ow of Updated Lagrangian Solution Procedure
1: function solveEquationSystem(analysis, noc, nod)
2: for time step τ = 0 to τmax do . time loop for quasistatic approach
3: reset displacement �eld of cells u = 0 . reset displacements of last time step
4: call incorporateBC(BCHandler) . prescription of incremental angle dα
5: if τ = 0 then
6: calculate nov ← number of variables
7: end if

8: for each cell do
9: call calcGlobalCM(cell)
10: end for

11: for iteration step t = 1 to tmax do . loop for NR iteration procedure
12: inc, res ← call solveFVSystem(noc, nod, nov)
13: if t = 1 then
14: set reference increment ref_inc ← inc

15: set reference residuum ref_res ← res

16: end if

17: update displacement vector (ˆ̃uk)t+1 = (ˆ̃uk)t + (∆ˆ̃uk)t+1

18: calculate normed increment normed_inc ← inc

ref_inc

19: calculate normed residuum normed_res ← res

ref_res

20: if normed_inc and normed_res < convergence criteria then

21: break

22: else if t = tmax then
23: error: �convergence not reached�
24: end if

25: end for

26: update nodal values . via interpolation and extrapolation
27: calculate stresses
28: update Geometry . Updated Lagrangian approach
29: write .vtk �le . displacements of current con�guration
30: end for

31: end function

93





7. Conclusion and Outlook

The task of this thesis was to develop an implicit �nite volume (FV) solver for nonlinear
solid mechanics. MATLAB c© served as programming environment since the in-house
�nite element (FE) code SOOFEAM, which is also used in teaching, was referred to as
benchmark for early implementations. The biggest task besides the implementation was
the development of the implicit governing equations, since the regular approach in the
FVM for solids is a deferred correction approach.
The proposed algorithm, including the calculation of the gradient coe�cient matrices

with the least-squares method, represents one possible approach. Other approaches may
be conceivable, e.g. the gradient computation with the Green-Gauss gradient scheme.
The implementation was divided into three steps: At �rst, an implicit solver for

the 2D heat equation, which is not discussed in this thesis, was implemented. The
scalar equations of this problem were a good start, as the results were easy to interpret.
The main di�culties were the derivation of the gradient coe�cient matrices as well
as the topology routine for unstructured meshes. In order to translate the code into
an application for solid mechanics, the next step was an implicit code for the small
deformation theory. Numerical results of this solver were discussed in Chapter 6. Major
challenges at this point were the correct treatment of Dirichlet boundary conditions,
which led to the approach discussed in Section 5.2.4. Finally, the governing equations
in total Lagrangian formulation as introduced in Section 4.2.1 were developed and
implemented. The correct treatment of the BCs in the iterative Newton-Raphson (NR)
solution procedure (cf. Section 5.2.5) and the development of a neat index notation for
the governing equations were the biggest issues to cope with.

In order to verify the proposed algorithm, it was compared to di�erent in-house as
well as open-source software:
The �rst test case (Section 6.1) discussed the mesh generation algorithm. This step is

necessary for simulations as the meshes are generated with Gmsh c© , which is primarily a
FE mesh generator. The author implemented a routine to save created mesh topology
because the generation of computational domains with a large number of cells requires
a considerable amount of time. The development of an advanced mesh generation
algorithm or the usage of other mesh generation software may be helpful for future
applications.
The results of test case two in Section 6.2 already showed that the proposed implicit

algorithm provides simulation results equivalent to other solvers including FEM and
FVM approaches. The less precise results compared to the FEM are due to the

95



7. Conclusion and Outlook

fact that in a quadrilateral mesh of the same size the number of primary variables
involved in the equation systems is always smaller for the FV solver than for the
FE approach. In addition, a comparison of nodal values can be criticised, since in
the proposed FV algorithm these values are linearly interpolated via the values of
surrounding cells for interior nodes and extrapolated with the value and gradient of
the nearest neighbour cells for boundary nodes. The introduced approach with the
relative error for the nodal displacement values may be a good compromise because
not a single value is compared. Furthermore, the numerical results were compared
to the open-source software OpenFOAM c©. The solidDisplacementFoam solver of the
stressAnalysis algorithms showed equivalent results for the introduced problem. Since
the code implemented in OpenFOAM c© works with the deferred correction approach, the
proposed code seems to be an equivalent alternative for the common FV solvers used in
solid mechanics.
The convergence performance of the Newton-Raphson (NR) iteration procedure for

the proposed solving algorithm was discussed in test case three. In this matter, the
calculated increments and residua of each iteration step were compared to the in-house
FEM code and showed a similar behaviour of quadratic convergence. For the introduced
setup in Section 6.3, the proposed algorithm seems to work faster than calculations with
SOOFEAM, but it is less precise.
The comparison to the open-source code foam-extend was conducted in Section 6.4.

The provided solver called elasticNonLinTLSolidFoam was used for test case four.
The code for the large deformation theory implemented in foam-extend applies the
St. Venant-Kirchho� material model. For the introduced setup both solvers showed
equivalent results, which allows the conclusion that also the proposed implicit iterative
solution process seems to be a possible alternative.
Test case �ve (Section 6.5) showed that the choice of the implemented parameters

regarding the geometric weighting factor and the nonorthogonal treatment approach
has no major in�uence on the numerical results. Indeed, the mesh has the greatest
impact. Not only the size of the cells is decisive but also the choice of the type of the
cell. Triangular cells seem to provide larger displacement values than quadrilateral cells
for the same loading. More tests should validate this behaviour. As the test case has
shown, it may be su�cient to work with a very coarse mesh and re�ne it in critical
areas, i.e. an adaptive mesh re�nement routine should be considered.
The last test case in Section 6.6 showed that it is also possible to handle three-

dimensional problems with the proposed algorithm. If the Dirichlet BCs must be
incrementally increased, as in the case of the prescription of a twist, the code must
be adjusted to work in the updated Lagrangian formulation. Since the deviation to
FEM results is higher for three-dimensional problems compared to two-dimensional
ones, further tests should verify the performance of the proposed algorithm for three-
dimensional problems.

Although the results of the selected test cases show comparable results, there is a

96



certain drawback to call. While in a FE solver the boundary node values are accessed
and set directly if a Dirichlet BC is prescribed, in the proposed approach one cannot
do this due to the cell-centred scheme. Dirichlet BCs are set with the prescription of
boundary face values which are not part of the degrees of freedom. Hence, they are
added as temporary variables in the equation system. Furthermore, the prescription of
the boundary face value only has impact on the cell displacement via the gradient of the
boundary face. Another issue is the handling of boundary nodes. While these values
are the degrees of freedom for a FE solver, the nodal values are interpolated respectively
extrapolated for the proposed approach. Especially the extrapolation process should
be approached with caution. The updated Lagrangian formulation, which is brie�y
introduced in Section 6.6 depends on the nodal values, since the geometry of cells and
faces is updated via the nodal coordinates of the computational domain. Therefore, it
is recommended to keep the ratio of boundary cells to interior cells as low as possible.

This thesis has shown that the methodology of the FVM can be used for the implicit
approach with the NR iteration procedure, which is common practice for FE solvers.
From the author's point of view there are di�erent aspects for further steps that

can be taken into account. The proposed algorithm only treats the equilibrium state
with neglected body forces. Besides the implementation of body forces, the dynamic
response of a loading may also be of interest, which makes it necessary to take the
neglected transient term into account. Moreover, SOOFVAM currently includes two
di�erent hyperelastic materials laws, the St. Venant-Kirchho� and the Neo-Hookean
material model. Further material models may be added1 as well as the code may be
extended to elastoplastic material behaviour. As it was the �rst implementation of this
scale for the author, there may be improvements in coding possible. Furthermore, a
di�erent programming environment might be conceivable as MATLAB c© is only one of
many alternatives.
Finally, to verify that the proposed algorithm is applicable to various geometries and

mesh types, additional test cases must be examined.

1e.g. incompressible Neo-Hookean or Mooney-Rivlin model

97





Appendix A.

UML Diagrams of SOOFVAM

nsAnalyser.nsImplementation

nsAnalyser

nsAnalyser.nsAnalysis

handle

Analysis

#model
#output_handler
#FVM

+Analysis(model, output_handler, FVM)
+run(self)
#calcNumberOfVariables(self, nod)
#assembleVectorb(self, b, cell, nov, coefficients_A, coefficients_b)
#integrateNeumannBCandSourceTerm(self, b)
#updateNodalValues(self)
#assembleMatrixA(A, cell, noc, nod, nov, rows_of_cell)
#getRowIndices(cell)

#solveEquationSystem(self, noc, nod)

#getBCValue(self, face, coord_id)

#calcStresses(self)

DiffusionTerm

-geometric_weighting
-nonorthogonal_treatment

+DiffusionTerm(geometric_weighting, nonorthogonal_treatment)
+calcDiffusionTermNonlinear(self, cell, face, nov)
+calcDiffusionTermLinear(self, cell, face, nov)
-getGradientCoefficientMatrix(self, cell, face, nov)
-correctBfaceGradientCM(self, cell, face, nov)
-calcNonOrthogonalTreatmentBfaceCM(self, cell, face, nov)
-correctFaceGradientCM(self, cell, face, nov)
-calcNonOrthogonalTreatmentFaceCM(self, cell, face, nov)
-calcGradUFace(self, cell, face)
-correctBfaceGradient(self, cell, face)
-calcNonOrthogonalTreatmentBface(self, cell, face)
-correctFaceGradient(self, cell, face)
-calcNonOrthogonalTreatmentFace(self, cell, face)
-getGeometricWeightingFactor(self, cell, face)
-getNonOrthogonalCorrectionVector(self, cell, face)
-getDistanceVector(cell, face)

LinearAnalysis

+LinearAnalysis(model, output_handler, FVM)
#solveEquationSystem(self, noc, nod)
#getBCValue(self, face, coord_id)
#calcStresses(self)
-solveFVSystem(self, noc, nod, nov)
-updateDOFs(self, solution_vector)

NonlinearAnalysis

#newton_iteration
#convergence_criteria
#max_iterations

+NonlinearAnalysis(model, output_handler, FVM, convergence_criteria, max_iterations)
#solveEquationSystem(self, noc, nod)
#getBCValue(self, face, coord_id)
#calcStresses(self)
-solveFVSystem(self, noc, nod, nov)
-updateDOFs(self, solution_vector)
-resetDisplacement(self)

Figure A.1.: nsAnalyser

99



Appendix A. UML Diagrams of SOOFVAM

nsGeometry

GeometryTriangle

+calcCentroidTriangle(node_list)
+calcAreaTriangle(node_list)

GeometryTetrahedral

+calcCentroidTetrahedral(node_list)
+calcVolumeTetrahedral(node_list)

GeometryHexahedral

+calcGeometricCentroidHexahedral(node_list)
+calcVolumeHexahedral(face_list, geometric_centre)

Figure A.2.: nsGeometry

nsIO

handle

InputHandler

-file_name
-dimension

+InputHandler(file_name, dimension)
+read(self, model)

#readMesh (self, model, file_id)

GmshInputHandler

#element_types
#meshes
#number_of_nodes
#number_of_elements

+GmshInputHandler(file_name, dimension)
#readMesh (self, model, file_id)
-elementContainerState(self, line_data , old_state)

OutputHandler

-file_name
-current_time_step

+OutputHandler(file_name)
+write(self, model)

#writeResults(model, file_id)

VTKOutputHandler

+VTKOutputHandler(file_name)
#writeResults(model, file_id)

Figure A.3.: nsIO

100



nsModel

handle

n

n

NumberedObject

-number

+NumberedObject(number)

Node

-cell_list
-face_list
-coordinates
-reference_coordinates
-nodal_displacement

+Node(number, coordinates)
+addCell(self, new_cell)
+addFace(self, new_face)
+updateCoordinates(self)
+updateNodeDisplacement(self, displacement)

n

1

Model

-dimension
-node_dict
-cell_dict
-face_dict
-boundary_dict
-time_bar
-bc_handler

+Model(dimension)
+addNode(self, new_node)
+addCell(self, new_cell)
+addFace(self, new_face)
+appendFaceToBoundary(self, boundary_number, face_number)
+setBCHandler(self, bc_handler)
+setMaterial(self, material)
+addTimeStep(self, time)
+createMeshTopology(self)
+calcGeometricQuantities(self)
-setBoundaryFaceTopology(self)

n

n

TimeStamp

-index
-time

+TimeStamp(index, time)

Cell

-neighbour_list
-face_list
-volume
-material
-dof
-cell_displacement
-sigma_mises
-global_CM_utilde

+Cell(number, node_list)
+addNeighbour(self, neighbour)
+addFace(self, new_face)
+addCellToNode(self)
+calcGeometry(self)
+setMaterial(self, material)
+updateCellDisplacement(self, coord_id, increment)
+setSigmaMises(self, sigma_mises)
+calcGlobalCM(self)
+getGradientCMOfCell(self)
+calcLSGradient(self)
+calcLSGradientStress(self)
+calcLSGradientFromOwnerAndNeighbour(self, face)
-assembleLocalCM(self)
-getGeometryMatrix(self)

Face

-owner
-neighbour
-area
-normal_vector
-dof
-globalIndexBface
-J_u_D
-DJ_u_D
-surface_load

+Face(number, node_list)
+setOwner(self, owner)
+setNeighbour(self, neighbour)
+addNode(self, new_node)
+addFaceToNode(self)
+calcGeometry(self)
+setBCDisplacement(self, coord_flag, value)
+setBCIncrement(self, coord_flag, value)
+setGlobalIndexForBface(self, globalIndex)
+setSurfaceLoad(self, surface_load)
+setDiffusionFluxForFace(self, JuD)
+getDiffusionFluxOfFace(self)
+setLinDiffusionFluxForFace(self, DJuD)
+getLinDiffusionFluxOfFace(self)
+clearDiffusionFluxes(self)
-calcNormalVector(self)

Boundary

-face_list
-node_list
-dirichlet_condition
-neumann_condition

+Boundary(number)
+addFace(self, new_face)
+setDirichlet(self)
+setNeumann(self)

NodeContainer

#node_list
#centroid
#undeformed_centroid
#dimension

+NodeContainer(number, node_list)

Figure A.4.: nsModel

101



Appendix A. UML Diagrams of SOOFVAM

nsModel

handle

nsModel.nsDOF

DisplacementDOF

-displacement
-increment
-constraint

+DisplacementDOF(dimension)
+setDisplacement(self, coord_id, displacement)
+setIncrement(self, coord_id, increment)
+getDisplacement(self, coord_id)
+getIncrement(self, coord_id)
+getConstraint(self)
+setContraintDisplacement(self, coord_id, displacement)
+setContraintIncrement(self, coord_id, increment)
+addIncrement(self, coord_id, increment)

BCHandler

-model

+BCHandler(model)
+resetBC(self)
+incorporateBC(self)

Cell

-neighbour_list
-face_list
-volume
-material
-dof
-cell_displacement
-sigma_mises
-global_CM_utilde

+Cell(number, node_list)
+addNeighbour(self, neighbour)
+addFace(self, new_face)
+addCellToNode(self)
+calcGeometry(self)
+setMaterial(self, material)
+updateCellDisplacement(self, coord_id, increment)
+setSigmaMises(self, sigma_mises)
+calcGlobalCM(self)
+getGradientCMOfCell(self)
+calcLSGradient(self)
+calcLSGradientStress(self)
+calcLSGradientFromOwnerAndNeighbour(self, face)
-assembleLocalCM(self)
-getGeometryMatrix(self)

Face

-owner
-neighbour
-area
-normal_vector
-dof
-globalIndexBface
-J_u_D
-DJ_u_D
-surface_load

+Face(number, node_list)
+setOwner(self, owner)
+setNeighbour(self, neighbour)
+addNode(self, new_node)
+addFaceToNode(self)
+calcGeometry(self)
+setBCDisplacement(self, coord_flag, value)
+setBCIncrement(self, coord_flag, value)
+setGlobalIndexForBface(self, globalIndex)
+setSurfaceLoad(self, surface_load)
+setDiffusionFluxForFace(self, JuD)
+getDiffusionFluxOfFace(self)
+setLinDiffusionFluxForFace(self, DJuD)
+getLinDiffusionFluxOfFace(self)
+clearDiffusionFluxes(self)
-calcNormalVector(self)

Figure A.5.: nsModel.nsDOF

102



nsModel

handle

nsModel.nsMaterial

Material

#two_dim_type
#E_mod
#nu
#lambda
#mu

+Material(E_mod, nu, two_dim_type)
-calcLame(self)

LinearElasticMaterial

+LinearElasticMaterial(E_mod, nu, two_dim_type)

+getElasticityTensor(self, dimension)

HyperElasticMaterial

+HyperElasticMaterial(E_mod, nu, two_dim_type)

+getMaterialElasticityTensor(self, E)
+getSecondPK(self, E)

LinearStVenantKirchhoffMaterial

+LinearStVenantKirchhoffMaterial(E_mod, nu, two_dim_type)
+getElasticityTensor(self, dimension)

HyperelasticNeoHookeanMaterial

+HyperelasticNeoHookeanMaterial(E_mod, nu, two_dim_type)
+getMaterialElasticityTensor(self, E)
+getSecondPK(self, E)
-calcCauchyGreenTensorTerms(E, delta)

HyperelasticStVenantKirchhoffMaterial

+HyperelasticStVenantKirchhoffMaterial(E_mod, nu, two_dim_type)
+getMaterialElasticityTensor(self, E)
+getSecondPK(self, E)

Figure A.6.: nsModel.nsMaterial

103





Bibliography

[1] T. J. Barth, D. C. Jespersen, and Ames Research Center. The Design and
Application of Upwind Schemes on Unstructured Meshes. AIAA-89/0366. American
Institute of Aeronautics and Astronautics, 1989.

[2] I. Bijelonja, I. Demirdºi¢, and S. Muzaferija. A �nite volume method for large
strain analysis of incompressible hyperelastic materials. International Journal for
Numerical Methods in Engineering, 64(12):1594�1609, 2005. ISSN 00295981. doi:
10.1002/nme.1413.

[3] I. Bijelonja, I. Demirdºi¢, and S. Muzaferija. A �nite volume method for incompress-
ible linear elasticity. Computer Methods in Applied Mechanics and Engineering, 195
(44-47):6378�6390, 2006. ISSN 00457825. doi: 10.1016/j.cma.2006.01.005.

[4] J. Blazek. Computational �uid dynamics: Principles and applications. Butterworth
Heinemann, Amsterdam and San Diego, third edition edition, 2015. ISBN
9780080999951.

[5] J. Bonet and R. D. Wood. Nonlinear continuum mechanics for �nite element
analysis. Cambridge University Press, Cambridge and New York, NY, 2nd ed.
edition, 2008. ISBN 978-0-511-39468-3.

[6] B. H. G. Brady and E. T. Brown. Rock mechanics for underground mining. Springer,
Dordrecht, 3. ed., repr. with corr edition, 2006. ISBN 9781402021169.

[7] P. Cardi� and I. Demirdºi¢. Thirty years of the �nite volume method for solid me-
chanics, 2018. URL https://www.researchgate.net/publication/328091509_

Thirty_years_of_the_finite_volume_method_for_solid_mechanics. (visited
on 25/05/2020).

[8] P. Cardi�, �. Tukovi¢, P. De Jaeger, M. Clancy, and A. Ivankovi¢. A Lagrangian cell-
centred �nite volume method for metal forming simulation. International Journal
for Numerical Methods in Engineering, 109(13):1777�1803, 2017. ISSN 00295981.
doi: 10.1002/nme.5345.

[9] D. A. Caughey and A. Jameson. Basic Advances in the Finite-Volume Method
for Transonic Potential-Flow Calculations. In Tuncer Cebeci, editor, Numerical
and Physical Aspects of Aerodynamic Flows, pages 445�461. Springer Berlin

105

https://www.researchgate.net/publication/328091509_Thirty_years_of_the_finite_volume_method_for_solid_mechanics
https://www.researchgate.net/publication/328091509_Thirty_years_of_the_finite_volume_method_for_solid_mechanics


Bibliography

Heidelberg, Berlin, Heidelberg and s.l., 1982. ISBN 978-3-662-12612-7. doi:
10.1007/978-3-662-12610-3_26.

[10] M. A. A. Cavalcante and M.-J. Pindera. Generalized Finite-Volume Theory for
Elastic Stress Analysis in Solid Mechanics�Part I: Framework. Journal of Applied
Mechanics, 79(5), 2012. ISSN 0021-8936. doi: 10.1115/1.4006805.

[11] Community contributors. foam-extend 4.0, 2020. URL https://sourceforge.

net/projects/foam-extend/. (visited on 25/05/2020).

[12] T. A. Davis. Algorithm 832. ACM Transactions on Mathematical Software (TOMS),
30(2):196�199, 2004. ISSN 0098-3500. doi: 10.1145/992200.992206.

[13] I. Demirdºi¢ and S. Muzaferija. Numerical method for coupled �uid �ow, heat
transfer and stress analysis using unstructured moving meshes with cells of arbitrary
topology. Computer Methods in Applied Mechanics and Engineering, 125(1-4):235�
255, 1995. ISSN 00457825. doi: 10.1016/0045-7825(95)00800-G.

[14] E. N. Dvorkin and M. B. Goldschmit. Nonlinear Continua. Computational Fluid
and Solid Mechanics. Springer-Verlag Berlin Heidelberg, Berlin, Heidelberg, 2006.
ISBN 9783540249856. doi: 10.1007/3-540-29264-0.

[15] N. A. Fallah, C. Bailey, M. Cross, and G. A. Taylor. Comparison of �nite element
and �nite volume methods application in geometrically nonlinear stress analysis.
Applied Mathematical Modelling, 24(7):439�455, 2000. ISSN 0307-904X. doi: 10.
1016/S0307-904X(99)00047-5.

[16] J. H. Ferziger and M. Peri¢. Computational Methods for Fluid Dynamics. Springer
Berlin Heidelberg, Berlin, Heidelberg and s.l., third, rev. edition edition, 2002. ISBN
9783540420743. doi: 10.1007/978-3-642-56026-2.

[17] C. Geuzaine and J.-F. Remacle. Gmsh: A three-dimensional �nite element mesh
generator with built-in pre- and post-processing facilities, 2020. URL https://

gmsh.info/. (visited on 25/05/2020).

[18] P. L. Gould and Y. Feng. Introduction to Linear Elasticity. Springer International
Publishing, Cham, 4th ed. 2018 edition, 2018. ISBN 9783319738840. doi: 10.1007/
978-3-319-73885-7.

[19] M. E. Gurtin. An introduction to continuum mechanics, volume 158 ofMathematics
in science and engineering. Acad. Press, San Diego, Calif., transferred to digital
printing edition, 2009. ISBN 9780123097507.

[20] J. Haider. An upwind cell centred Finite Volume Method for large strain explicit solid
dynamics in OpenFOAM. Diss., Swansea University, Swansea, Wales, December
2017.

106

https://sourceforge.net/projects/foam-extend/
https://sourceforge.net/projects/foam-extend/
https://gmsh.info/
https://gmsh.info/


Bibliography

[21] C. Hirsch. Numerical computation of internal and external �ows: Introduction to
the fundamentals of CFD. Butterworth-Heinemann, Oxford, new ed. edition, 2007.
ISBN 9780750665940.

[22] T. Hochrainer. Elastizitätstheorie I. Lecture notes, Graz University of Technology,
Graz, 2019.

[23] G. A. Holzapfel. Nonlinear solid mechanics: A continuum approach for engineering.
Wiley, Chichester, repr edition, 2010. ISBN 9780471823193.

[24] H. Jasak. Error Analysis and Estimation for the Finite Volume Method with
Applications to Fluid Flows. Dissertation, Imperial College of Science, Technology
and Medicine, London, 1996.

[25] H. Jasak. OpenFOAM: Open source CFD in research and industry. International
Journal of Naval Architecture and Ocean Engineering, 1(2):89�94, 2009. ISSN
20926782. doi: 10.2478/IJNAOE-2013-0011.

[26] H. Jasak and H. G. Weller. Application of the �nite volume method and
unstructured meshes to linear elasticity. International Journal for Numerical
Methods in Engineering, 48(2):267�287, 2000. ISSN 1097-0207. doi: 10.1002/(SICI)
1097-0207(20000520)48:2<267::AID-NME884>3.0.CO;2-Q.

[27] H. Jasak and H. G. Weller. OpenFOAM v1912: OpenCFD Ltd, 2020. URL https:

//www.openfoam.com/. (visited on 25/05/2020).

[28] P. K. Khosla and S. G. Rubin. A diagonally dominant second-order accurate implicit
scheme. Computers & Fluids, 2(2):207�209, 1974. ISSN 00457930. doi: 10.1016/
0045-7930(74)90014-0.

[29] G. Kirsch. Die Theorie der Elastizität und die Bedürfnisse der Festigkeitslehre. Ver.
Deutsch. Ing., 42, 1898.

[30] Kitware. ParaView, 2020. URL https://www.paraview.org/. (visited on
25/05/2020).

[31] A. C. Limache and S. R. Idelsohn. On the development of �nite volume methods for
computational solid mechanics. Mecánica Computacional, 26(11):827�843, 2007.

[32] L. E. Malvern. Introduction to the mechanics of a continuous medium. EPS,
Prentice-Hall series in engineering of the physical sciences. Prentice-Hall, Englewood
Cli�s, NJ, 2007. ISBN 9780134876030.

[33] K. Maneeratana. Development of the Finite Volume Method for non-linear
structural applications. Dissertation, Imperial College of Science, Technology and
Medicine, London, 2000.

107

https://www.openfoam.com/
https://www.openfoam.com/
https://www.paraview.org/


Bibliography

[34] Mathworks. mldivide, \, 2020. URL https://www.mathworks.com/help/matlab/

ref/mldivide.html. (visited on 25/05/2020).

[35] F. Moukalled, L. Mangani, and M. Darwish. The Finite Volume Method in
Computational Fluid Dynamics: An Advanced Introduction with OpenFOAMr and
Matlabr, volume 113 of Fluid Mechanics and Its Applications. Springer Interna-
tional Publishing, Cham, 1st ed. 2016 edition, 2016. ISBN 978-3-319-16873-9.

[36] MulPhys LLC. MULPHYS: Multi-Physics Solver For Continuum And Discrete Dy-
namics, 2020. URL http://www.mulphys.com/mulphys/. (visited on 25/05/2020).

[37] S. Muzaferija. Adaptive Finite Volume Method for Flow Prediction using unstruc-
tured meshes and Multigrid Approach. Dissertation, Imperial College of Science,
Technology and Medicine, London, 1994.

[38] J. T. Oden and L. Demkowicz. Applied functional analysis. CRC Press, Boca Raton,
Fla., 2. ed. edition, 2010. ISBN 9781420091953.

[39] E. Oñate, M. Cervera, and O. C. Zienkiewicz. A �nite volume format for structural
mechanics. International Journal for Numerical Methods in Engineering, 37(2):
181�201, 1994. ISSN 00295981. doi: 10.1002/nme.1620370202.

[40] M. Schäfer. Computational Engineering - Introduction to Numerical Methods.
Springer-Verlag Berlin Heidelberg, Berlin, Heidelberg, 2006. ISBN 9783540306856.
doi: 10.1007/3-540-30686-2.

[41] A. K. Slone, C. Bailey, and M. Cross. Dynamic solid mechanics using �nite volume
methods. Applied Mathematical Modelling, 27(2):69�87, 2003. ISSN 0307-904X.
doi: 10.1016/S0307-904X(02)00060-4.

[42] R. Suliman, O. F. Oxtoby, A. G. Malan, and S. Kok. An enhanced �nite volume
method to model 2D linear elastic structures. Applied Mathematical Modelling, 38
(7):2265�2279, 2014. ISSN 0307-904X. doi: 10.1016/j.apm.2013.10.028.

[43] G. A. Taylor, C. Bailey, and M. Cross. A vertex-based �nite volume method applied
to non-linear material problems in computational solid mechanics. International
Journal for Numerical Methods in Engineering, 56(4):507�529, 2003. ISSN
00295981. doi: 10.1002/nme.574.

[44] S. P. Timo²enko and J. N. Goodier. Theory of elasticity. Engineering societies
monographs. McGraw-Hill, New York, 3. ed., mcgraw-hill classic textbook reissue
edition, 1987. ISBN 0070647208.

[45] Z. Tukovic and H. Jasak. Updated Lagrangian �nite volume solver for large
deformation dynamic response of elastic body. Transactions of FAMENA, 31(1):
55�70, 2007.

108

https://www.mathworks.com/help/matlab/ref/mldivide.html
https://www.mathworks.com/help/matlab/ref/mldivide.html
http://www.mulphys.com/mulphys/


Bibliography

[46] H. K. Versteeg and W. Malalasekera. An introduction to computational �uid
dynamics: The �nite volume method. Pearson/Prentice Hall, Harlow, 2005. ISBN
9780582218840.

[47] H. G. Weller, G. Tabor, H. Jasak, and C. Fureby. A tensorial approach to
computational continuum mechanics using object-oriented techniques. Computers
in Physics, 12(6):620, 1998. ISSN 08941866. doi: 10.1063/1.168744.

[48] Wikki Ltd. foam-extend: The community edition, 2020. URL http://wikki.

gridcore.se/foam-extend. (visited on 25/05/2020).

109

http://wikki.gridcore.se/foam-extend
http://wikki.gridcore.se/foam-extend

	Affidavit
	Abstract
	Kurzfassung
	Preface
	List of Abbreviations
	Contents
	List of Figures
	List of Tables
	List of Algorithms
	1 Introduction
	1.1 State of the Art of FV Approaches for Solids
	1.2 Comparison of the FVM and the FEM
	1.3 Scope and Outline
	1.4 Mathematical Preliminaries

	2 Continuum Mechanics
	2.1 Kinematics
	2.1.1 Configurations, Mapping and Displacement
	2.1.2 Deformation Gradient
	2.1.3 Strain
	2.1.4 Strain for Small Deformations

	2.2 Stress Tensors
	2.3 Equilibrium and Boundary Value Problem
	2.4 Constitutive Equations
	2.4.1 Compressible Isotropic Hyperelastic Material Models
	2.4.2 Generalized Hooke's Law for Small Deformations

	2.5 Newton-Raphson Method

	3 Finite Volume Method
	3.1 Mesh Generation
	3.1.1 Structured Grids
	3.1.2 Unstructured Grids

	3.2 Discretisation Process
	3.2.1 Discretisation of the Diffusion Flux Term
	3.2.2 Discretisation of the Source Term
	3.2.3 Spatial Discretisation and Gradient Computation

	3.3 Deferred Correction Approach and Solution

	4 Implicit Finite Volume Method for Continuum Mechanics
	4.1 Linearised Governing Equations
	4.1.1 Linearisation of Kinematics, Strain and Stress
	4.1.2 Linearisation of the Diffusion Flux

	4.2 Discretised Governing Equations
	4.2.1 Discretised Equations for Large Deformations
	4.2.2 Discretised Equations for Small Deformations

	4.3 Treatment of BCs and Solution Process

	5 Implementation and Discussion
	5.1 SOOFVAM
	5.1.1 Structure of SOOFVAM
	5.1.2 Workflow of SOOFVAM

	5.2 Solving an Example with SOOFVAM
	5.2.1 Workflow of the Solution Process
	5.2.2 Explicit and Implicit Cell Gradient
	5.2.3 Explicit and Implicit Face Gradient
	5.2.4 Treatment of Dirichlet BCs
	5.2.5 Solution of the Equation System


	6 Results of the Simulation
	6.1 Performance of Mesh Generation
	6.2 Comparison of Solvers for Small Deformations
	6.3 Performance of NR Iteration Convergence
	6.4 Comparison of Solvers for Large Deformations
	6.5 Influence of Parameters and Mesh
	6.6 Three-Dimensional Twist

	7 Conclusion and Outlook
	A UML Diagrams of SOOFVAM
	Bibliography

