
Edi Muškardin, univ. bacc. inf.

A Framework for Model-Based Diagnosis
of Cyber-Physical Systems

Master’s Thesis

to achieve the university degree of

Master of Science

Master’s degree programme: Software Engineering and Management

submitted to

Graz University of Technology

Supervisor

Univ.-Prof. Dipl.-Ing. Dr.techn. Franz Wotawa

Co-Supervisor

Dipl.-Ing. Dr.techn. Ingo Hans Pill

Institute for Softwaretechnology
Head: Univ.-Prof. Dipl.-Ing. Dr.techn. Franz Wotawa

Graz, June 2020

Affidavit

I declare that I have authored this thesis independently, that I have not
used other than the declared sources/resources, and that I have explicitly
indicated all material which has been quoted either literally or by content
from the sources used. The text document uploaded to tugrazonline is
identical to the present master‘s thesis.

Date Signature

ii

Abstract

Everyday reliance on cyber-physical systems requires them to be fault-
tolerant, self-adapting, and independent of human interaction. However,
faults are unavoidable, and techniques like model-based diagnosis help in
locating and dealing with faults and their consequences. Cyber-physical
systems are characterized by complex interactions between their individ-
ual cyber and physical components, and their exhaustive testing is often
impossible due to the input size.

The model-based diagnosis uses a model of the system and observations
collected at run time to reason about the correctness of the system and
its components. This thesis introduces a framework that eases the task of
creating and testing models used for diagnosis purposes.

Employing an interface to the modeling language Modelica, a designer
can simulate a cyber-physical system’s detailed behavior, and based on the
observed data then assesses the diagnostic solution(s) under development
and explore the trade-offs of individual solutions. Alongside the diagnosis
model, the special interface enables the designer to develop a controller that
can be used to explore the effect of compensating or repair actions at run
time. Part of the thesis is dedicated to the automatic generation of abductive
models using simulation and fault injection. The automatic generation of
models is an appealing way to bridge a gap between modeling costs and
diagnostic benefits, as the gap is often too wide in real-world scenarios.

CatIO is an abbreviation of a Latin phrase ”Causarum Cognitio” meaning
(seek) knowledge of causes and with CatIO the tedious process of finding
causes of faults is made easier.

iii

Abstract

Die alltägliche Abhängigkeit von cyber-physikalischen Systemen erfordert,
dass sie fehlertolerant, selbstanpassend und unabhängig von menschlicher
Interaktion sind. Fehler sind jedoch unvermeidlich, und Techniken wie die
modellbasierte Diagnose helfen bei der Lokalisierung und Behandlung von
Fehlern und deren Folgen. Cyber-physikalische Systeme zeichnen sich durch
komplexe Interaktionen zwischen ihren einzelnen Cyber- und physikalis-
chen Komponenten aus, und ihre erschöpfende Prüfung ist aufgrund der
Größe des Inputs oft unmöglich.

Die modellbasierte Diagnose verwendet ein Modell des Systems und Beobach-
tungen, die zur Laufzeit gesammelt werden, um über die Korrektheit des
Systems und seiner Komponenten zu argumentieren. Diese Arbeit stellt
einen Framework vor, der das Erstellen und Testen von Modellen für Diag-
nosezwecke erleichtert.

Mithilfe einer Schnittstelle zur Modellierungssprache Modelica kann ein
Konstrukteur das detaillierte Verhalten eines cyber-physikalischen Sys-
tems simulieren und auf der Grundlage der beobachteten Daten dann
die in Entwicklung befindliche(n) Diagnoselösung(en) bewerten und die
Kompromisse einzelner Lösungen erkunden. Neben dem Diagnosemodell
ermöglicht die spezielle Schnittstelle dem Designer die Entwicklung eines
Reglers, mit dem die Auswirkungen von Kompensations- oder Reparaturak-
tionen zur Laufzeit untersucht werden können. Ein Teil der Dissertation ist
der automatischen Generierung abduktiver Modelle mittels Simulation und
Fehlerinjektion gewidmet. Die automatische Generierung von Modellen ist
ein ansprechender Weg, um eine Lücke zwischen Modellierungskosten und
diagnostischen Vorteilen zu überbrücken, da die Lücke in realen Szenarien
oft zu groß ist.

CatIO ist eine Abkürzung des lateinischen Ausdrucks ”Causarum Cognitio”,
was (suchen) Wissen über Ursachen bedeutet, und CatIO erleichtert den
mühsamen Prozess der Fehlerursachenfindung.

iv

Contents

Abstract iii

1. Introduction 1
1.1. Motivation . 1

1.2. Objectives and Scope . 3

1.3. Structure . 4

1.4. Running Example . 4

2. From Logic to Diagnosis 7
2.1. Logic . 8

2.2. From Logic to Model . 8

2.3. From Model to Diagnosis . 10

2.4. Weak and Strong Fault Models 13

2.5. Consistency Based Diagnosis 14

2.5.1. Unsatisfiable Subset Extraction 16

2.5.2. RC-Tree . 17

2.6. Abductive Diagnosis . 19

2.6.1. Assumption Based Truth Maintenance System 20

2.7. Mixed level covering arrays . 21

2.8. Models and Simulation . 21

3. Design and Implementation of a Diagnosis Framework 25
3.1. Workflow . 25

3.2. Front end . 29

3.2.1. Modelica Models . 29

3.2.2. Diagnosis Models . 33

3.2.3. Interfaces . 37

3.2.4. Drivers . 41

v

Contents

3.3. Back end . 45

3.3.1. Submodules . 45

3.4. Graphical User Interface . 50

3.4.1. Data extraction and scenario creators 50

3.4.2. Modeling . 52

3.5. Code and Building/Running Instructions 56

4. Usage and Examples 59
4.1. Modeling the Differential Drive Robot 59

4.1.1. Modeling in Modelica 59

4.1.2. Diagnosis and Repair 62

4.2. Automatic generation of abductive model 69

4.2.1. Differential Drive Robot 69

4.2.2. Automatic generation of RC-Circuits of various sizes . 73

5. Conclusion and Future Work 79
5.1. Conclusion . 79

5.2. Future Work . 80

A. Examples 85
A.1. ModelData from JSON file . 85

A.2. Simulation Scenario defined in JSON 87

A.3. Diagnosis and Repair Example 89

A.4. Circuit Encoder and Diff Implementation 95

Bibliography 97

vi

List of Figures

1.1. A mobile robot with differential drive 5

2.1. And gate with inputs I1 and I2 and output O1 9

2.2. Model based diagnosis . 12

3.1. CatIO’s arhitecture . 26

3.2. CatIO’s inputs and outputs . 26

3.3. CatIO’s high level module interactions 27

3.4. ISCAS Benchmark Circuit c17 34

3.5. Encoding of persistent and intermittent faults 43

3.6. Output of different consistency based diagnosis procedures . 44

3.7. Data extraction and simulation scenario creator window . . . 51

3.8. Mixed level covering array generator window 53

3.9. Consistency based modeling window. 54

3.10. Abductive modeling window 55

3.11. CatIO’s directory/file structure 57

4.1. Modelica model in connection editor 60

4.2. Robot movement without any repair or compensating action 64

4.3. Robot movement with repair action 65

4.4. Robot movement with compensating action 67

4.5. Robot movement with repair and compensating actions . . . 68

4.6. Automatically generated simulation scenarios. 69

4.7. Behavior of the simple electric circuits over time. 74

4.8. Schematics of the simple electric circuits. 75

A.1. Extraction of data. 89

vii

Acknowledgments

Firstly I would like to thank my supervisors Univ.-Prof. Dipl.-Ing. Dr.techn.
Fraz Wotawa and Dipl.-Ing. Dr.techn. Ingo Pill for their willingness to
answer my questions, as well as for providing me with the opportunity to
work in Quality Assurance Laboratory for Autonomous Cyber-Physical Systems,
where I was able to develop the framework presented in this thesis. Both
supervisors allowed me to experiment with my ideas and guided me in the
development of the framework.

My colleges at the Institute of Software Technology also help me with
advice regarding the thesis itself and other work, so I would like to take
this opportunity to acknowledge their help and thank them.

Finally, biggest thanks goes to my parents, who help me achieve my goals
throughout my life and education, and the level of their support cannot be
expressed in words.
Special thanks goes to my grandma, Nona Paola, as she was the only one
who always understood the sorrows of student life.

ix

1. Introduction

In the first section, we will outline the real-world motivation behind the
need for a framework like CatIO and the desired outcomes of the framework.
The outline of the thesis structure is presented, as well as a running example
which we will use to demonstrate certain concepts through the thesis.

1.1. Motivation

Nowadays, intelligent cyber-physical systems (CPS) are deeply integrated
into everyday life and with future developments of artificial intelligence
and the internet of things [25], our reliance on their ability to perform
tasks autonomously will continue to grow. For an intelligent cyber-physical
system, it is crucial to be aware of its current status and also that of its
environment. This knowledge is used to make the right choices when
having to deal with issues like faults. However, in cyber-physical systems
interconnections of the environment and the cyber system itself makes them
very complex and introduce several challenges in areas such as testing,
verification, and validation, as well in model-based diagnosis [22].

Cyber-physical systems can be found in several different areas of expertise,
such as aerospace engineering, automotive industry, healthcare, manufac-
turing, and many more. Due to the nature of these fields, human interaction
is often limited and serves the role of observer or goal setter. Therefore,
we expect those systems to be fully autonomous, secure, and fault-free.
As faults will always be present, if compensating or repair actions can be
performed without the need for human interaction; time, space and money
saving is possible.
Consider for example offshore wind turbines used for generating electricity.

1

1. Introduction

Reliance on them as a source of clean electricity will continue to grow, and
the number of turbines will surely increase. If a fault occurs on one offshore
turbine, manual repair actions are expected to be quite costly, both in terms
of money and time, due to their location and expertise needed to perform
repairs. However, if a wind turbine can automatically repair itself once a
fault is known manual repair action is not needed. If the turbine however
cannot perform necessary repair actions on its own, compensating actions
may be used to postpone manual repair or to keep the turbine working at a
lower capacity or even to gracefully shut it down to prevent further damage
to the turbine. The application of abductive diagnostic reasoning for wind
power plants was shown in [7].

The model used for diagnostic reasoning can be developed in several ways.
Different levels of abstraction can be used to model a system, as well as
different reasoning paradigms (qualitative or quantitative). A wide variety
of options, with no choice being the correct one as well as trade-offs between
scalability and diagnostic preciseness have to be taken into consideration
when choosing abstraction level and description formats. Exploring differ-
ent abstraction levels is one of CatIO’s features, as once a model has been
developed, it can be tested with a wide variety of simulations to see which
behaviors it can distinguish.
Presented particularities and challenges resulted in the concept and imple-
mentation of CatIO. Therefore, the main purpose of this thesis is to ease the
creation and validation of models used for diagnostic reasoning and hopes
to bridge a gap between the benefits and costs associated with model-based
diagnosis in real-world development.

The thesis is partially based on [26], where the author presents a way in
which model-based diagnosis can be used in self-adaptive and autonomous
systems. CatIO was designed in a way in which enables seamless imple-
mentation and integration of all concepts presented in [26].
The architectural concepts of CatIO were recognized and well received
by peers as there is currently no framework, according to our knowledge,
which integrates model-based diagnosis with repair, especially in the scope
of cyber-physical systems. The outline of CatIO’s architecture was accepted
at the 25th International Symposium on Methodologies for Intelligent Sys-
tems conference [4].

2

1.2. Objectives and Scope

1.2. Objectives and Scope

The goal of the thesis is to develop a framework that seamlessly integrates
simulations of the cyber-physical systems with the model-based diagnosis.
As previously stated, the development of the model suitable for diagnos-
tic purposes is a cumbersome task and often a stepping stone to further
integration of MBD in the project structure/system life cycle. To overcome
this, CatIO provides two modeling environments, for both consistency-
based and abductive diagnosis (Sections 2.5 and 2.6). Logic-based modeling
grammars are presented (Section 3.2.2), as well as a graphical user interface
(Section 3.4) in which the user can develop diagnostic models aided by some
functionalities which ease the creation, as well as testing of said model.

Detailed simulations of cyber-physical systems can be developed in the
Modelica [6] modeling language. CPS in Modelica can be modeled with a
combination of logic, arithmetic, programming constructs, and differential
equations. While the development of the simulation model in Modelica
modeling language is not the focus point of the thesis, we will shortly
explain how a certain type of model is more versatile and can be used by
the framework to automatically or manually generate different simulation
scenarios. Those models and corresponding simulation scenarios are then
interacted with, and the practical feasibility of a previously developed
diagnosis model can be explored. Likewise, the quality of the controller
which handles repair/compensating actions can be explored on said fault
injected simulations.
Finally, special attention is given to the automatic generation of an abductive
model, as well as to challenges which a designer faces while implementing
needed interfaces. Several models will be automatically generated, and
problems that arose throughout automatic generation procedure noted.

Examples shown in the thesis are small and serve as a proof of concept, but
given sufficient development time, designers could employ CatIO function-
alities on real-life medium to large-sized projects.

3

1. Introduction

1.3. Structure

In this chapter, we have presented the motivations and goals of the thesis. In
the next section running example is defined. It will be used to demonstrate
concepts throughout the thesis. In the Chapter 2, we will define prelimi-
naries, with basic definitions and explanations of the concepts used and
implemented in the framework.
In Chapter 3, we will document the framework’s front-end, trough defi-
nitions, and examples, as well as describe the underlying design decision
which is found in the back-end of the framework.
Chapter 4 introduces several systems, corresponding models, their diagnos-
tic capabilities, compares different diagnosis approaches as well as evaluates
automatically generated models.
Finally, in Chapter 5 we summarize the framework and give an outline
for future work, as well as possibilities of integration of the framework in
product/system development.

1.4. Running Example

A simple example of a cyber-physical system will be used to demonstrate
some concepts described in preliminaries and framework documentation.
For this purpose, we will use a mobile robot with a differential drive which
is used to move from one point in a plain to another. The differential drive
robot is shown in Figure 1.1.

A differential drive robot is characterized by having 2 wheels with indepen-
dent speeds. Depending on the speed of each wheel the robot can either
move in a straight line, make a curve of varying degrees, or rotate in place.

As seen in Figure 1.1, the position of the robot in the coordinate system
is denoted by (XR, YR), and it is heading in the direction of θ. Distance
between wheels is denoted by d. The speed of the right and left wheel is
determined by input voltage, VR, and VL respectively, cause the rotation
of the robot around ICC (instantaneous center of curvature) with ω being

4

1.4. Running Example

Figure 1.1.: A mobile robot with differential drive

rotational speed. Finally, R denotes the distance from the center of the robot
to the ICC.

Differential equations that describe the robot’s movement can be found in
the Modelica model in Section 4.1.1. With respect to the speed of each wheel,
the movement of the robot can be described as

• speed(leftWheel) == speed(rightWheel)→ direction(straight)
• speed(leftWheel) > speed(rightWheel)→ direction(right)
• speed(leftWheel) < speed(rightWheel)→ direction(left)
• speed(leftWheel, rightWheel) == 0→ direction(stop).

Let us also introduce some faults, which will be used in this example
throughout the thesis. In fault free behavior, wheels spin with the speed
determined by voltage inputs VR and VL. However, let us assume that
a wheel can spin f aster or slower than expected. When the wheel spins
faster or slower than expected, the heading angle of the robot will be
compromised. These faults occur in the robot itself and consequently will
result in undesired behavior.

5

2. From Logic to Diagnosis

The master thesis should be self-contained, so we present and explain
underlying concepts that provide the reader with an understanding of
the inner-working of CatIO. Detailed definitions of model-based diagnosis,
different modeling principles, and their advantages and disadvantages, the
formal definition of simulation. In this chapter, our goal is to show how
concepts found in mathematical logic can be used to derive a diagnosis.
Presented concepts are implemented and design decisions are shown in
Section 3.

Throughout the thesis, we will deal with two different kinds of models:
diagnosis models and simulation1 models. Diagnosis models are used for
diagnosis, and simulation models are used for simulation. If just the term
model is used, we refer to the diagnosis model.

The following quote from statistician George Box refers primarily to statis-
tical models, but it is frequently quoted in various domains of science to
state the fact that we can never truly model complex real-world systems, but
nonetheless we can create models that can be useful, in our case to derive a
diagnosis.

All models are wrong, but some are useful.
− George Box

1In literature one can find the term “system model” often used for simulation models,
but we will use the term simulation model to make a more clear distinction.

7

2. From Logic to Diagnosis

2.1. Logic

Logic is a product of the human reason with which we formulate unam-
biguous concepts that can be compared and related to each other. Starting
from the small set of basic concepts called axioms, which are by definition
not provable and assumed to be true we can form more complex concepts
and ideas by applying simple rules.

Being a subset of philosophy and mathematics makes logic one of the oldest
branches of thought and we will show how by using a small subset of logic
we can come up with meaningful models and diagnosis.

Terms of predicate logic [18] used throughout the thesis are defined as:

• true and f alse
• predicate is a Boolean valued function P(X)→ true, false
• P is a sentence if p is a predicate
• ¬P is a sentence which is negation of sentence P
• (P ∧Q) is a sentence where and is denoted by ∧
• (P ∨Q) is a sentence where or is denoted by ∨ denoted or operator
• (P→ Q) is a sentence where implies is denoted by→
• (P↔ Q) is a sentence where and biconditional denoted by↔

While constants true and f alse, as well as basic operators as negation,
conjunction (and), and disjunction (or), are inherently clear to us, in the next
section we will explain how we can use implication and biconditional to
come up with models.

2.2. From Logic to Model

The diagnostic model is a logical representation of some real-world or
abstract systems. When describing an abstract system that can be fully
expressed with logic there is no loss of information, but when describing
some complex real-world system there are often too many factors to consider
and we have to use abstraction.

Let us consider the example of AND gate in a logical circuit.

8

2.2. From Logic to Model

Figure 2.1.: And gate with inputs I1 and I2 and output O1

Obviously, it can be represented by logic without the loss of any information.
We can model this gate either by defining all input combinations and
corresponding output in a truth table or we can define a function which
states how inputs correlate to an output.

Truth table defined as

I1 I2 I1∧ I2

T T T
T F F
F T F
F F F

can be expressed with following logical expression.

(I1∧ I2→ O1) ∨ (¬I1∧ I2→ ¬O1) ∨
(I1∧ ¬I2→ ¬O1) ∨ (¬I1∧ ¬I2→ ¬O1)

In this model, the implication is used to state that if a combination of inputs
evaluates to true then O1 will also be true, as the only way for a sentence to
be true if the left-hand side of implication is true is for a right-hand side to
also be true.

Alternatively, we can use a biconditional operator. It implicitly states that
output O1 has the same value as I1∧ I2.

I1∧ I2↔ O1

9

2. From Logic to Diagnosis

However, the real world is not comprised of systems that can be described
with logic without losing some information. Not all possible inputs and
external forces that may occur in cyber-physical systems can be expressed
without abstraction.

Abstraction is a process of simplifying a model by removing details. There
is no simple algorithm that can determine the level of abstraction which
would satisfy the designer’s needs and therefore several levels of abstraction
may be considered and compared. Often time it is not clear which details of
the system can be left out of the model without losing too much information
which would otherwise improve the outcome of diagnostic reasoning.

2.3. From Model to Diagnosis

Model-based diagnosis2 (MBD) is a subfield of artificial intelligence that
encompasses different methods of finding causes of some unexpected or
faulty behavior. As the name suggests, MBD is based on a model, which is
a formalized description of the system under consideration.

A system can be formalized as a pair (SD,H) where the system description
SD is a set of first-order/propositional logic or any other logic sentences
while H is a finite set of health state variables. Observations of the sys-
tem are a finite set of logical sentences. Observations describe outputs of
the system or symptoms/behavior that can be observed. We shall write
(SD, COMPONENTS, OBS) for a system (SD, H) alongside it’s observation
OBS. Formally, diagnosis problem and a solution to a diagnosis can be
described as follows:

Definition 1 A diagnosis problem can be described as a tuple (SD, H, OBS),
where the tuple (SD, H) describes the system to be diagnosed and OBS is a set of
observations concerning its behavior.

2from Greek diagnOsis - The art or act of identifying a disease from its signs and
symptoms

10

2.3. From Model to Diagnosis

A solution ∆ to a diagnosis problem is a set of components ci which, when
assumed that these ci behave abnormally (s.t. hci ∈ ∆), explains the conflicts
between expected and observed behavior [9, 19].

Definition 2 ∆ ⊆ H is a diagnosis for a diagnosis problem (SD, H, OBS) if and
only if SD∪OBS∪ {hi|hi ∈ H \ ∆} is consistent (satisfiable) and there exists no
∆′ ⊂ ∆ that is also a diagnosis.

Suppose that we have a trivial system that was modeled in the previous
section, comprising of only one and gate. Based on inputs of the system we
can use our model to derive expected output.

To use this model for diagnostic purposes, we have to introduce the concepts
of health state variables. A component’s health state encodes the assumption
of whether this component works correctly or not. The model with heath
states can be expressed as

¬Ab(AndGate)→ I1∧ I2↔ O1.

¬Ab(AndGate) is a health state predicate which states that component
AndGate is not behaving abnormally. As we can see from this model, we
assumed that the and gate is not behaving abnormally and we have defined
expected behavior in that case.

If we observe a discrepancy between observations of the physical system and
expected behavior defined by the model, we are interested in components or
sets of components whose simultaneous malfunction explains the issue. In
this scenario where a discrepancy is detected diagnosis is performed. This
procedure can be seen in Figure 2.2. For this system with one and gate, if
expected and actual observations do not match, the only possible diagnosis
would be Ab(AndGate). Systems usually have multiple components, so
algorithms like RC-Tree or ATMS are used to compute sets of components
that may have caused such unexpected behavior.

The result of a diagnostic reasoning process is a set of sets of components.
Each set of components in explains the discrepancy in the desired and
observed behavior. For some systems it is possible to get one diagnosis,

11

2. From Logic to Diagnosis

Figure 2.2.: Model based diagnosis

that being a one set of components which when behaving abnormally is
explaining faulty behavior. Is there is a single diagnosis, this is ideal since
then there is no uncertainty about the component(s) which had caused the
error. When the diagnosis algorithm returns multiple diagnoses, we do not
initially know which one describes the actual cause of the discrepancy.

Diagnosis can be seen as an explanation for given observations, in the case
when observations do not conform to system description. We can obtain
diagnosis either via conflicts, as described in Section 2.5 or via abductive
reasoning described in Section 2.6.

Observations put a constraint on the quality of the model. If observations are
too vague, they will result in a model that will hardly lead to the computa-
tion of a single diagnosis. However, to obtain better observations sometimes
system redesign is needed or the addition of additional sensors/reading
devices.

Suppose the example of the human body, and we want to use diagnostic
reasoning to explain why the person is feeling unwell. If our only observa-
tion is body temperature, which may be higher than expected with varying
degrees of severity, our assumptions about the cause of the sickness are very
vague. Then the physician can apply some heuristic, probabilistic reasoning
or his experience to narrow the possible diagnosis, but it is still unreliable.
However, if a person performs the blood check and a separate check of the
lungs and liver, the physician will have much more observations which he
can use to rule out some diagnosis or even to obtain the single diagnosis.

12

2.4. Weak and Strong Fault Models

We can see how the quality and quantity of observations can affect the
quality of diagnostic reasoning. From only 2 observations (high temperature
and feeling unwell) we can not precisely determine the root cause of said
symptoms, but with more and precise observations (CTR, blood work, high
temperature...) physician can derive more precise diagnosis.
While diagnostic reasoning, specifically abductive reasoning can be used in
medicine [10], we will focus on technical systems.

2.4. Weak and Strong Fault Models

Before proceeding to diagnosis procedures, we have to discuss the difference
between weak fault models and strong fault models. In weak fault models,
system description describes the expected behavior of the system assuming
that all components are working as expected. Meaning if the health state of
a component suggests that it is faulty we do not impose any restrictions on
this component’s behavior.
On the other hand, strong fault models describe the expected behavior of
the system as well as different fault modes for each component. Each fault
mode describes how a component behaves if we assume that it is in that
state like a stuck at zero fault for an logic and gate.

Component’s behavior for weak fault mode description, with AB(comp)

being unary predicate which is interpreted as comp is behaving abnormally,
is as follows

...
¬AB(comp)→ ExptectedBehavior

...

whereas strong fault models are described as

13

2. From Logic to Diagnosis

...
NormalBehavior(comp)→ ExptectedBehavior

FaultMode1(comp)→ FaultyBehavior1
FaultMode2(comp)→ FaultyBehavior2

...

where FaultModei(comp) indicates specific fault mode of a certain compo-
nent.

2.5. Consistency Based Diagnosis

Consistency based diagnosis (CBD) is based on the principle of consistency.
In logic, a set of statement is consistent if all of the statements can be
true at the same time. General idea of CBD is to describe the model of a
system in some logical representation and for a given observations check if
union of them and a model is still consistent under the assumption that all
components work correctly [9].

If model and observations are not consistent under this assumption, then
is entailed that some parts of the model have to be changed, in order to be
able to explain these observations.
In order to restore consistency, health state variables of the model are set
as abnormal in hopes of making the model and observations consistent. If
some (or more) health state variables are set to abnormal and model and
observations become consistent with the altered model we can conclude
that components associated with said health state variable was the cause of
inconsistency/discrepancy in observations.

Naturally, more than one component may be faulty at any time and deter-
mining which combination of components makes the model inconsistent
with observations is NP-complete problem. Naive algorithm would be
checking all possible combinations of components for consistency with
observations but due to the exponential size of all possible components com-
bination that approach is not used. However, with computation of conflicts
(assumption about which components can be faulty) by extracting minimal

14

2.5. Consistency Based Diagnosis

unsatisfiable subset and with diagnosis algorithm like HS-DAG or RC-Tree
computational cost of diagnosis can be reduced.
CBD is usually associated with weak faulty models, but it can also be used
with strong fault models [13].
Following definitions explain main concepts of CBD in more detail.

Definition 3 A conflict C for (SD, H, OBS) is a subset of H such that SD ∪
OBS∪ {hi|hi ∈ C} is inconsistent (unsatisfiable). If no proper subset C′ of C is a
conflict, then C is a subset-minimal conflict.

To understand how conflicts are computed, and consequently design deci-
sion for representation of consistency based model in conjunctive normal
form, in Section 2.5.1 we briefly explain how conflicts are computed. For-
mally, Reiter [19] defines hitting sets as a solution to a diagnosis problem as
follows:

Definition 4 A hitting set ∆ for a set CS of conflicts is a subset of H such that
∆ ∩ Ci 6= ∅ for all Ci ∈ CS. ∆ is a minimal hitting set if and only if no proper
subset of ∆ is also a hitting set.

Definition 5 A diagnosis ∆ for (SD, H, OBS) is a minimal hitting set for the set
of all conflicts for this diagnosis problem. Since ∆ will hit also all non-minimal
conflicts if it hits the minimal ones, it suffices to focus on the minimal conflicts only
when computing the diagnoses.

We have chosen RC-Tree as an algorithm for computing diagnosis. With
RC-Tree conflicts can be computed on-the-fly and they can be “known” in
advance. In the following sections, we will explain the inner workings of
RC-Tree and how it can be used to compute diagnosis, as well as diagnosis
up to cardinality k.

15

2. From Logic to Diagnosis

2.5.1. Unsatisfiable Subset Extraction

Conflicts are the main building block of consistency-based diagnosis. A
brief explanation of how we derive conflicts will help us understand other
design decisions behind consistency based models and their logical repre-
sentation.

Suppose that we have a Boolean propositional formula in conjunctive normal
form and that it is unsatisfiable. An unsatisfiable subset (or core) is a subset
of clauses whose conjunction is still unsatisfied. Furthermore, such an
unsatisfiable subset is minimal, if every proper subset of it is satisfactory.

The simplest approach of computing an unsatisfiable subset of an unsatisfi-
able formula would be dropping one literal at the time and checking if the
formula is then still unsatisfiable. If it is, we continue the procedure with this
newly created formula. We do this for all atoms and the resulting formula
is a minimal unsatisfiable subset. This is the most trivial approach, and
we would need n satisfiability queries if there are n literals in the formula.
One can approve this approach by using a binary search concept, initially
removing half literals at the time; or by using some other method of finding
an unsatisfiable subset.

SAT solvers can produce a resolution graph that proves the unsatisfiability
of the original problem which can be analyzed to produce a smaller unsatis-
fiable core. We will treat unsatisfiable subset extraction as a black box, as it
is not in the scope of the thesis. Tool PicoMUS is used to extract a minimal
unsatisfiable subset. Result obtained from the PicoMUS is processed and
only variables that correspond to the health state variables are considered
in further computations.

There is also the route to compute the diagnosis directly in the solver. The
interested reader may take a look at [11] for an outline of the SAT-based
encoding that can be used to compute diagnosis directly in an SAT solver. A
comparison of such an approach to other approaches can be seen in [12].

16

2.5. Consistency Based Diagnosis

2.5.2. RC-Tree

RC-Tree [14] is a variant of the HS-DAG [8] algorithm used for compu-
tation of minimal hitting sets. As seen in Section 2.5, Reiter showed that
the computation of minimal hitting sets correspond to a solution of the
diagnosis problem, therefore by using RC-Tree and user-provided model
we can compute diagnosis of a said model for given observations.
RC-Tree was chosen over more wide-spread HS-DAG, as it in the vast ma-
jority of cases perform better due to the avoidance of redundant branches.

Like for HS-DAG, the basic concept for RC-Tree is to construct a tree (a
directed acrylic graph for HS-DAG) such that the leaves marked with a
“checkmark” represent the minimal hitting sets. Union of leaves forms a
subset of minimal diagnosis.

Each node in a three/DAG is characterized with h(n), that being path from
the root up to a node. The path consists of edges which hold a health state
variable. Special for RC-Tree is that we do not construct any h(n) more than
once, so that any diagnostic candidate h(n) is investigated in one branch
only. To that end, each note has a filter Θ(n). Each filter contains a health
state variable that will not be further processed in children’s branches. By
doing so the creation of redundant notes with the same path is avoided.
Note that the path is seen as a set where the ordering of the values does
not matter ({1, 2, 3} = {3, 2, 1}) as the diagnosis is a set (not ordered) of the
component.
The real run-time benefit which RC-Tree has over HS-Dag is a smaller final
tree, which entails fewer calls to SAT solver which is the most resource-
intensive part of CBD.

Suppose that computed conflicts are sets {{1, 2}, {1, 4}, {1, 5, 6}}. For those
conflicts subset minimal hitting sets would be {{1}, {2, 4, 5}, {2, 4, 6}}. No-
tice that {1} is in all three conflicts, therefore it is a subset minimal hitting
set. Hitting set {1, 4} is not subset minimal, as it is super set of {1}.

RC-Tree starts with the root node with an empty filter for which a label is
computed on-the-fly. A label is a numerical representation of components
that can be faulty or of a certain fault state.
Then for every element of the label new node is created. Nodes are created

17

2. From Logic to Diagnosis

and processed in the breadth-first order. Once a node is created it’s filter is
set to a union of its parent filter and all current sibling (children from the
parent).
For each node closing check is performed, that is to check if the node is a
superset of some minimal hitting set, as well as pruning check and pruning
procedure.
Pruning3 is a procedure where certain branches of the tree are removed
as they are shown to be redundant, ie. they will always result in closed
nodes as they will never be subset minimal. This occurs if a node has been
labeled by a label which is a superset of some other label. In principle,
while pruning the label is then replaced by the subset in the whole tree and
the tree is updated accordingly (see [14] for more details). An empirical
evaluation has shown that pruning provides a substantial decrease in run
time, prematurely on larger examples, whereas on smaller examples with
smaller tree sizes computations performed while pruning can increase the
run time [15].

The whole RC-Tree algorithm is shown in Algorithm 1.

As the RC-Tree’s authors suggested computation of the labels in CatIO is
done on-the-fly. To achieve that, the model is changed for every node, namely
health state variables corresponding to ones found in the path from the root
are set to abnormal. Then with PicoMUS check if such a model is satisfiable
with respect to the observations. If it is satisfiable, it is entailed that before
mentioned components are not behaving as expected and form a diagnosis.
In the case of unsatisfiability, PicoMUS will return health states which then
form the label of the node in question.

3To prune - cut branches from the tree

18

2.6. Abductive Diagnosis

2.6. Abductive Diagnosis

As the name suggests, abductive reasoning is the main concept behind
abductive diagnosis [3]. In logic abduction, alongside induction and de-
duction, is a type of logical inference. Abductive reasoning aims to find
an explanation for a given observation with respect to the knowledge it
has. Therefore the main challenge in abductive reasoning is to come up
with appropriate knowledge base KB which can explain most, if not all
observations.
In MBD, such a knowledge base describes dependencies between faults
and their effects considering the system’s observable behavior. The knowl-
edge base then allows us to abductively reason backward from experienced
symptoms to possible root causes [5]. Due to the nature of reasoning, such
models/KB are less detailed than consistency based variants, as they do not
specifically state normal and abnormal behavior of components, but more
abstractly describe behavior if the form of cause→ effect statements. Follow-
ing a formalized definition will help us understand abductive diagnosis in
more detail.

Definition 6 The knowledge base is a tuple (A, Hyp, Th) where A denotes a
subset of propositional variables PROPS, hypotheses(Hyp) are a subset of A, and
theory Th is a set of Horn clauses over A.

Hypothesis corresponds directly to causes and throughout the thesis, we
will use the terms interchangeably.

Definition 7 Propositional horn clause abduction problem PHCAP is a tuple
(A, Hyp, Th, Obs), where (A, Hyp, Th) form a knowledge base and OBS are
observations such that OBS ⊆ A. Solution to PHCAP is a set ∆ ⊆ Hyp if and
only if ∆ ∪ Th |= Obs and ∆ ∪ Th 6|= ⊥.

A solution to PHCAP is the abductive diagnosis.
∆ is an explanation for a given observations. ∆ is subset minimal if there is
no ∆′ ⊂ ∆.

We used Assumption based truth maintenance(ATMS) as a reasoning sys-
tem. With ATMS we can derive explanations ∆ for the abductive diagnosis.

19

2. From Logic to Diagnosis

2.6.1. Assumption Based Truth Maintenance System

Assumption Based Truth Maintenance System(ATMS) [20] is a problem
solver module which we use for computing abductive diagnosis. Its fea-
tures include eliminating inconsistencies in the knowledge base, computing
explanations for conclusions, and updating knowledge base as well as
justifications.

ATMS’ main task is to ensure consistency, which is done by changing the
labels of the nodes.

For clearer understanding of the algorithm, following definitions are use-
ful.

• Node - corresponds to a problem-solver datum
• Justification - horn clauses which describe how nodes are derived

from other nodes
• Assumption - a special node
• Environment - a set of assumptions
• Characterizing environment - minimal consistent environment from

which a context can be derived
• Context - formed by a consistent environment and all nodes derived

from it.

The environment contains a node n if and only if n can be derived/entailed
from the environment and current theory. Furthermore, the environment is
inconsistent if the false node can be derived from it. Every node has a label,
which corresponds to a set of sets of assumptions (consistent environment)
from which the node can be derived and from which the contradicting node
cannot be derived.
Each label fulfills the following properties: consistency, soundness, complete-
ness, and minimality. The Task of ATMS is to compute the node labels.

Each node has a label, i.e., a set of sets of assumptions from which the node
can be inferred and from which the contradicting node cannot be inferred.
The latter requirement causes an ATMS algorithm to remove elements from
the label that also lead to the NoGood. Hence, an abductive explanation for
a single proposition is an element of the label of the corresponding node.
Because of the ATMS these elements provide a consistent explanation and

20

2.7. Mixed level covering arrays

fulfill the definition of abductive diagnosis. The only thing that remains
now is the extension to the case where we have a set of observations to be
explained. This extension can be easily done by adding a rule where the
left side is the conjunction of all observations and the right side is a new
proposition “explain” not used in the KB. Hence, the label of the “explain”
proposition provides all abductive diagnoses for the given PHCAP.

2.7. Mixed level covering arrays

Mixed level covering arrays (MCA) are used in combinatorial testing to deal
with the exponential growth of possible combinations of all variables and
their values.

Definition 8 A mixed-level covering array is defined as MCA(I, (A1, . . . , Ak), s)
of strength s for k = |I| variables with their individual finite alphabets Ai is a
two-dimensional k×m array such that for any I′ ⊆ I such that |I′| = s we have
every combination in the cross product of the individual alphabets of the variables
in I′ appears in at least one of the m rows.

2.8. Models and Simulation

Throughout the thesis, we described the model used for diagnosis purposes.
Alongside this model, we will also use the model of a system that will
simulate the physical system to the best of its abilities. Limitations that occur
while modeling (cyber) physical systems are inherent in the task of modeling.
We can not model every possible smallest physical interaction or the force
which can be exerted on the model due to cost or other constraints.

Nonetheless, those limitations do not prevent simulation models to be
used throughout the research and industry. Once a system model has been
developed, it can be used for various forms of testing and verification
instead of the physical model.

21

2. From Logic to Diagnosis

For the presented work, we used Modelica modeling language to develop
simulation models of the system. Observations necessary for diagnostic rea-
soning are obtained from simulations performed with said models. Without
simulations, the user would have to provide realistic observations manually
or by using some other technique.
Those models have to enable fault injection. Fault injection [24] is a process
of injecting a fault in the model while continuing to simulate its behavior.
Fault injection creates an observable difference (in the simulation modeling
environment) in between fault-free and fault injected simulation.

A simulation model is used to describe a system, using logic, mathematics,
and other concepts found in Modelica modeling language, while diagnosis
models are simply logical formulas that describe the system on an abstract
level to be able to find, hopefully, a single diagnosis if some fault occurs.

More formally, the simulation model and simulation are described in [16]
as follows.

Definition 9 Simulation model M is a tuple (COMP, MODES, µ, I, O, P), where
COMP is a finite set of components, MODES is a finite set of modes with at least
one element, that being correct mode ok. Mapping function µ : COMP →
MODES maps components to one of their modes. I is a set of variables considered
as input, while O is a set of output variables. Finally, Modelica Model P with fault
injection capabilities allows setting a mode m ∈ µ(c)|∀c ∈ COMP.

The simulation model in itself cannot be used for simulation by Model-
ica, therefore we need to introduce the concept of simulation and mode
assignment.

Definition 10 Mode assignment is a function which assigns a mode m for each
component c ∈ COMP, for all time points. Time points are a finite set denoted by
TIME. Mode assignment is then a function COMP× TIME → MODES. If a
set of inputs I is defined all inputs need to be defined over time. Inputs over time
can be denoted with a function I × TIME → val(I) where val(I) is a function
mapping input variable to a set of all possible values which that input can have.

22

2.8. Models and Simulation

Simulation can be seen as a function which computes all the variable
values of P over time, with respect to system inputs, mode assignment, and
simulation run time.

Any other modeling language and environments such as Simulink or MAT-
LAB can easily be added to the framework, as they only need to support the
extraction of the model/simulation to the functional mock-up interface.

23

2. From Logic to Diagnosis

Algorithm 1 Computing diagnoses using RC-Tree
Require: precomputed conflicts set(CS)or ability to compute conflicts on

the fly
1: Let D be a growing node and edge-labeled tree with some initial and

unlabeled root node n0. Unlabeled nodes are processed in breath first
order. Each node n is defined by h(n), which represents path(set of edge
labels) from root node n0 to node n. h(n0) is an empty set. Each node
has it’s accompanying filter Θ, with filter of root node being empty set.

2: procedure rcTree

3: MHS← {} . Minimal hitting sets
4: nodesToProcess← {rootNode}
5: while nodesToProcess 6= Ø do . Check for closing
6: nodeInProcess← nodesToProcess.pop
7: for hs ∈ MHS do
8: if hs ⊂ h(nodesToProcess) then
9: mark node with ×

10: continue
11: end if
12: end for
13: label ← computeLabel(nodeInProcess)
14: if label = Ø then
15: mark node with
16: MHS← MHS ∪ h(nodeInProcess) . h(node) is a diagnosis
17: end if
18: pruneTree(label)
19: for edge ∈ label do
20: if edge ∈ Θ(nodeInProcess) then
21: continue
22: end if
23: childNode← h(nodeInProcess) ∪ edge
24: Θ(childNode)← Θ(nodeInProcess) ∪ nodeInProcess.children
25: nodesToProcess← nodesToProcess ∪ childNode
26: end for
27: end while
28: end procedure

24

3. Design and Implementation of
a Diagnosis Framework

In this chapter design decisions and implementation will be presented
and explained in detail. Some concepts found in the preliminaries chapter
will be expanded. Alongside the design of the framework, simple code
snippets will explain the main points of interaction between the user and
the framework.

A high-level representation of CatIO’s architecture can be seen in Figure
3.1. The remainder of the chapter will be organized with respect to this
figure. Firstly, the whole front end will be explained in detail with provided
examples, as in the expected use of the framework user interacts only
through the front end. Additionally, in Section 3.2.1 2 ways of modeling in
Modelica will be explained and their benefits and drawbacks with respect
to the framework. Additionally, CatIO’s graphical user interface will be
presented.

Throughout this chapter, we will use the differential drive robot introduced
in Section 1.4 for demonstration purposes.

3.1. Workflow

In this section, we will present the expected workflow of the CatIO.
In Figure 3.2, we can see CatIO’s inputs and outputs. The inputs include
a model(s) used for diagnostic purposes, implementation of needed inter-
faces, as well as a Modelica system model exported as Functional Mock-up
Interface (FMI).

25

3. Design and Implementation of a Diagnosis Framework

Figure 3.1.: CatIO’s arhitecture

Figure 3.2.: CatIO’s inputs and outputs

CatIO can read and write data to the simulation (model). From the simula-

26

3.1. Workflow

tion, it obtains values that are used as observations of a system. CatIO can
inject faults into the simulation (used for dynamic generation of scenarios)
or write values that are used to perform repair actions.

FMI [2] is a standardized interface used in the development of complex
simulations. With FMI one can run the simulation and interact with it using
external programs, in the case of CatIO with the use of a fmu-wrapper library.
Note that through this chapter we will be referring to a . f mi file of a system,
which is a file containing all needed data for simulation of our running
example.

CatIO’s outputs are then the diagnosis of executed simulation or automati-
cally generated abductive model. To assess the capabilities of repair actions
CatIO can also provide plotted variable data of the simulation values (as
shown in Section 4.1.2).

Figure 3.3.: CatIO’s high level module interactions

27

3. Design and Implementation of a Diagnosis Framework

In Section 3.3, we can see that in order to be able to derive diagnosis, a diag-
nosis algorithm is needed, as well as the model and encoded observations.
Encoder maps concrete simulation values to observations to prepositions
found in model.
Such encoded observations of multiple correct and fault injected simulations
can be analyzed by Diff interface implementation and based on detected
discrepancies abductive model can be generated. Furthermore, Diff inter-
face can receive data directly from the simulation.
Based on the computed diagnosis, Controller can perform actions against
a simulation by writing data to it. Controller’s decision making is aided
by the ability to read data directly from the simulation.

28

3.2. Front end

3.2. Front end

3.2.1. Modelica Models

Modelica [6] system models are usually accompanied by a test bench which
serves as an input provider for a simulation. Inputs are values that are
assigned to the input variables, as well as fault modes that are used for fault
injection. Test benches consist of a system under test (SUT) as well as input
variables/mode assignment at defined time steps. The format of a standard
test bench is of a format seen in Listing 3.1.

Listing 3.1: System with corresponding test bench

model Testbench
SUT sys ;
equation

i f (time < t1) then
. . . . // F i r s t inputs

e l s i f (time >= t1 and time < t2) then
. . . . // Next inputs

e l s i f
. . . .

e l s e
. . . .

end i f ;
end Testbench ;

Therefore, we propose input oriented model. In such a model, all variables
of interest are set as inputs, and they can then be dynamically changed
during simulation, which is not only needed for the dynamical generation
of test scenarios, as the controller also needs to be able to interact with the
simulation.

Such input oriented model is defined as

Listing 3.2: Input oriented model

model SUT
input FaultTypeConnector modeAssigmenent 1 ;
. . .

29

3. Design and Implementation of a Diagnosis Framework

input FaultTypeConnector modeAssigmenent n ;
input RealInput modelRealValue 1 ;
. . .
BooleanInput modelBooleanValue 1 ;
equation

. . .
end SUT ;

The only prerequisite to simulating such a model is to provide values for all
input parameters at the initialization of simulation. Otherwise, simulation
can not be executed. How to generate simulation scenarios manually or via
combination exploration of possible inputs is shown in Section 3.3.1.

Input oriented model as well as the standard model with accompanying test
bench of differential drive robot can be found in Section 4.1.1.

Model Data Description

Once an FMI of a model or test bench has been provided to CatIO, the user
needs to extract some values from the . f mi file. ModelData class contains all
necessary description data of the . f mi file. Following member field describe
the ModelData class.

• Components to Read These components will be read at every time
step of the simulation and their values will be passed to Encoder
implementation
• Mode Assignment Variables Variable names and values which are

used for mode assignment (fault injection)
• System Inputs Inputs of the system, contain names and values which

can be used in the automatic creation of test scenarios
• System Parameters Parameters of the system, contain names and

values which can be used in the automatic creation of test scenarios
• Plot Variables Pair of strings, representing variable names found in

.fmi, which are going to be plotted. The first variable corresponds to x,
while the second corresponds to the y-axis
• Controller Controller which can be used to perform repair or compen-

sating actions.

30

3.2. Front end

Mode assignment variables were explained in Section 2.8.
Components to Read are of a type Component which is defined in follow-
ing listing. Component class contains string representing variable name of
some component found in . f mi file, TYPE it’s type, which can be either an
{STRING, BOOLEAN, DOUBLE, INTEGER, ENUM} and finally value is a
variable which stores a value read at every time step.

Listing 3.3: Component class
publ ic c l a s s Component {

S t r i n g name ;
Type type ;
Object value ;

}

// Signature of the c o n s t r u c t o r s
publ ic Component (S t r i n g name , Type type) ;
publ ic Component (S t r i n g name , Type type , Object value) ;

System inputs are inputs that the system receives from the environment
or some external controller, while system parameters are usually constant
values of the inner state of system components. In our running example,
system inputs are left and right wheel voltages, while the system parameter
is the distance between wheels. Another example of system parameters is
the resistance value of the resistor. While all resistors behave identically, de-
pending on their parameter value they produce different outputs. Changing
a resistors parameter value from 5Ω to 100Ω changes it’s the effect on the
system as a whole.

ModelInput is a data class describing all possible values which one of the
three categories can take when automatically creating test scenarios.

Listing 3.4: ModelInput Class

publ ic c l a s s ModelInput implements S e r i a l i z a b l e {
S t r i n g name ;
Type type ;
// All values which are going to be considered when

c r e a t i n g mixed l e v e l coverr ing array
Lis t<Object> values ;

}

31

3. Design and Implementation of a Diagnosis Framework

In ModelData class, mode assignment variables, system inputs and system
parameters are stored in list of ModelInput type, unlike components. Finally,
the ModelData class is defined as follow:

Listing 3.5: ModelData class with public setters

publ ic c l a s s ModelData {
// Mandatory
Lis t<Component> componentsToRead ;
// Needed f o r custom simulat ion s c e n a r i o s
// and f o r mixed l e v e l coverr ing array generat ion
Lis t<ModelInput> modeAssigmentVars ;
L i s t<ModelInput> systemInputs ;
L i s t<ModelInput> systemParams ;

// Cannot populate with GUI , use s e t t e r s
C o n t r o l l e r c o n t r o l l e r ;
Pair<Component , Component> p l o t P a i r ;
// Component plotOverTime ;

// S e t t e r s used f o r s e t t i n g c o n t r o l l e r and p l o t v a r i a b l e s
// Can be l e f t undefined
publ ic void s e t C o n t r o l l e r (C o n t r o l l e r cont) ;
publ ic void s e t P l o t V a r i a b l e s (S t r i n g xVar , S t r i n g yVar) ;

}

To create ModelData of a . f mi file, use of graphical user interface is recom-
mended. Usage with example will be shown later. Note that the user may
set two variable names in the plotting pair defined in ModelData, and after
the experiment, values will be plotted. The first variable is shown on the
x-axis, while the second is on the y-axis.

32

3.2. Front end

3.2.2. Diagnosis Models

Consistency Based Model

Consistency based models can be described using simple propositional logic.
Logical operators found in this simple language are negation (!), conjunction
(&), disjunction (|), implication (→) and biconditional (↔).
Predicates $true and $ f alse have true or false values respectively. Exam-
ple use of $ f alse predicate is to state impossibilities, in a clause if a form
(predicate1 ∧ predicate2 ∧ ...predicaten)→ $ f alse.
Literals/predicates starting with the capitalized letter are considered as
health state variables and will be taken into consideration during unsatisfi-
able core extraction and thus diagnosis.

As explained in Section 2.5.1, to be able to extract a minimal unsatisfiable
subset using SAT solvers, the model has to be in conjunctive normal form.
Therefore the model described with this grammar is automatically converted
to CNF. Every propositional formula can be converted to CNF [21] by using
logical equivalence rules (De Morgans’ Law, double negation elimination,
and distributive law).
However, if a user wants to use in some way optimized/reduces CNF
encoding, he can also create models by describing the CNF using comma-
separated predicates, and dot-separated clauses.

Once a model is in CNF, every predicate is mapped to a unique integer.
By doing so, we can express any consistency-based model in DIMCAS
format. DIMCAS is a standard encoding of CNF used by the majority of
SAT solvers. Once observations have been made, they to are mapped to
integers and added to the model, and passed to the SAT solver to check for
satisfiability.

33

3. Design and Implementation of a Diagnosis Framework

Listing 3.6: Grammar for consistency based models.

Health S t a t e : : = [A−Z] [A−Za−z0−9]∗
Variab le : : = [a−z0−9 @] [A−Za−z0−9]∗
True : : = ’ $ t rue ’
Fa l se : : = ’ $ f a l s e ’
Negation : : = ’ ! ’
Operator : : = ’& ’ | ’ | ’ | ’−> ’ | ’<−> ’
L i t e r a l : : = Var iab le | Heal thSta te | True | F a ls e |

Negation L i t e r a l
Formula : : = L i t e r a l | ’ (’ Formula ’) ’ | Formula Operator

Formula
Clause : : = L i t e r a l (’ , ’ L i t e r a l) ∗ ’ . ’
ConsistencyModel : : = (Formula ’ . ’) + | (Clause ’ . ’) +

Both weak and strong models, as shown in 2.4, can be described using this
grammar.

An example of a logical circuit is ISCAS Benchmark Circuit c17, which
is shown in Figure 3.4. It comprises 5 inputs labeled with 1, 2, 3, 6, 7, two
outputs 22, 23 and 5 nand gates. Nand gate is defined as the negation of result
of an and operator, or formally NAND(I1, I2) = NOT AND(I1, I2)

Figure 3.4.: ISCAS Benchmark Circuit c17

This system can be modeled as follows. nand literal represents nand gate.
Note that AbNand{1..6} are predicates starting with capitalized letters and
therefore can be the result of the diagnosis, as they represent health state
variables.

34

3.2. Front end

Listing 3.7: Example model of ISCAS85-c17 circuit..

// l o g i c behind the c i r c u i t / connect ions of components
! AbNand1 −> (! (input1 & input3) −> output10) .
! AbNand2 −> (! (input3 & input6) −> output11) .
! AbNand3 −> (! (input2 & output11) −> output16) .
! AbNand4 −> (! (output11 & input7) −> 19) .
! AbNand5 −> (! (output10 & output16) −> output22) .
! AbNand6 −> (! (output16 & output19) −> output23) .

CbModel class is responsible for the creation of a consistency-based model
that can be used by CatIO. The user only needs to pass the path to the
file which contains the model described by before mentioned grammar to
the CbModel constructor and the model will automatically be translated to
CNF.

The usage of a graphical user interface is recommended for the development
of the model. Following snippet shows how to get a diagnosis for manually
provided observation without the use of GUI:

// Run diagnos is where model i s CbModel o b j e c t , and
Lis t<Str ing> obs = . . . // observat ions
L is t<Integer> observat ionsToInt =

model . observat ionToInt (obs) ;
RcTree rcTree = new RcTree (model , observat ionsToInt) ;

L i s t<Lis t<Str ing>> diag = new ArrayList <>() ;

// f o r each minimal h i t t i n g set , map r e s u l t s to p r e d i c a t e s
used in model

f o r (L i s t<Integer> mhs : rcTree . getDiagnosis ())
diag . add (model . diagnosisToComponentNames (mhs)) ;

Abductive Model

Unlike consistency based models where detailed behavior of a system can
be explained using propositional logic, in abductive modeling, we rely on
implication relation, in a form of cause→ effect. Following is the grammar
used to define abductive models. Assumptions and hypotheses that are
represented by a predicate have to start with a capitalized character. Addi-
tionally, the f alse predicate is used to state contradictions or impossibilities.

35

3. Design and Implementation of a Diagnosis Framework

Note that this grammar is also used when automatically creating abductive
models.

Listing 3.8: Grammar for abductive models.

atom : : = id opt args } | ε
opt args : : = ’ (’ args ’) ’ | ε
args : : = term a r g s r e s t | ε
term : : = id opt args
a r g s r e s t : : = ’ , ’ term a r g s r e s t | ε
r u l e s : : = r u l e r u l e s | eps i lon
r u l e : : = atom r u l e r e s t ’ . ’
r u l e r e s t : : = ’ :− ’ a t o m l i s t | a t o m l i s t r e s t ’−> ’ atom
a t o m l i s t : : = atom a t o m l i s t r e s t | eps i lon
a t o m l i s t r e s t : : = ’ , ’ atom a t o m l i s t r e s t | ε

AbModel is a class analog to before mentioned class CbModel. User provides
path to the file containing abductive model defined by corresponding gram-
mar and ATMS will be constructed automatically.
AbModel::tryToExplain(List<String> obs) method is used to add obser-
vations and AbModel::getDiagnosis() method is used to get explanation.

. . .
L i s t<Str ing> obs = . . . //observat ions
abductiveModel . tryToExplain (obs) ;
System . out . p r i n t l n (abductiveModel . getDiagnosis ()) ;

36

3.2. Front end

3.2.3. Interfaces

Encoder

Encoder is the most basic interface found in CatIO. Its implementation is
required if the user wants to validate models’ diagnostic capabilities with
simulation scenarios. The encoder interface is needed as a bridge between
raw simulation data/values and predicates found in the model. Models are
created with the finite set of predicates while values found in the simulations
are not necessarily in a finite domain.

Encoders method encodeObservations is in every time step of the simula-
tion, and it’s return value processed in one of the ways described in Section
3.2.4.

Values in simulations are of internal types found in Modelica modeling
language, namely Real, Integer, Boolean and String. Observation OBS in
both types of diagnosis are not from this domain, they are rather an inter-
pretation of single or multiple values received from the simulation at any
given time. Thus, the purpose of Encoder interface is to map values from
before mentioned domains to literals/propositions found in the model.

Inputs to the encodeObservation method is a map connecting variable
names (ComponentsToRead field of the ModelData class) found in the simu-
lation with corresponding values which are in one of the before-mentioned
types.

Return value of the function is therefore a set of strings, which represent
propositions found in the model. Propositions that are false begin with
“!”.

In the following chapter, we will show a sample model of the differential
drive robot as well as it’s accompanying encoder.

37

3. Design and Implementation of a Diagnosis Framework

publ ic i n t e r f a c e Encoder {
/∗∗
∗ @param obs map conta in ing names and values read from

simulat ion
∗ @return s e t of observat ions with r e s p e c t to the model
∗/
Set<Str ing> encodeObservation (Map<Str ing , Object> obs) ;

}
Listing 3.9: Encoder interface.

Diff

Diff interface is used for the automatic generation of abductive models. In
particular, the algorithm described in Section 3.3.1 employs a Diff::encodeDiff

function to deduce the effects of injected faults. This function (also pro-
vided by the user) receives two SimulationRunData objects, which contain
either values of the corresponding simulation or observations encoded with
Encoder interface. encodeDiff identifies deviations between fault free and
fault injected simulation and maps them to predicates which describe the
discrepancy.

Listing 3.10: Diff with encoded values

publ ic i n t e r f a c e D i f f {
/∗∗
∗ @param c o r r e c t SimulationRunData values or p r e d i c a t e s

of s imulat ion without f a u l t i n j e c t i o n
∗ @param f a u l t y SimulationRunData values or p r e d i c a t e s

of s imulat ion with f a u l t i n j e c t i o n
∗ @return encoding of d i f f funct ion with r e s p e c t to the

model
∗/
Set<Str ing> encodeDiff (SimulationRunData c o r r e c t ,

SimulationRunData f a u l t y) ;
}

SimulationRunData is a helper class which contains all values or predicates
(if Encoder was used). Users can then for every time step of the simulation

38

3.2. Front end

get either map containing names of variables found in . f mi with corre-
sponding value at that time step, or predicates which were returned by an
encoder.

Listing 3.11: SimulationRunData class

publ ic c l a s s SimulationRunData {
p r i v a t e L i s t<Map<Str ing , Object>> valuesMap ;
p r i v a t e L i s t<Lis t<Str ing>> predicatesMap ;

// re turns values from step n
publ ic Map<Str ing , Object> getValuesFromStep (i n t n) ;

// re turns encoded p r e d i c a t e s from step n
publ ic L i s t<Str ing> getPredicatesFromStep (i n t n) ;

}

In principle, there are two concepts for implementing di f f function, namely
qualitative and deviation models. Qualitative models map observations in
some qualitative domain, whereas deviation model maps faulty observations
with respect to the correct observations. Derivation of qualitative models is
only possible from di f f function with direct read values, whereas deviation
models can be derived from both di f f functions, with direct or previously
encoded values.

Suppose that the left wheel is spinning faster than expected due to the slip-
pery surface and that such deviation was noticed by di f f implementation.
In deviation model, such observation would be encoded as

slippery(le f tWheel)→ f aster(le f tWheel).

Qualitative model representation of this observation could be

slippery(le f tWheel, 10)→ spinSpeed(le f tWheel, 12)

where 10 was the initial and expected speed of the wheel, and 12 was the
actual one.

39

3. Design and Implementation of a Diagnosis Framework

Controller

Controller class is used to let the user evaluate the performance of compen-
sating or repair actions with or without a diagnosis. Controller performs
an action against a running simulation when a discrepancy is detected and
diagnosis obtained.

The user has to implement a controller with respect to the . f mi file. As
stated in Section 3.2.1, all values that can be changed during simulation
have to be set as inputs. Interaction with inputs can then be performed
by the controller. Compensating actions are actions that try to enable the
correct behavior of the system in which some components do not behave
as expected. Compensating actions can be used for safety-critical situations
where it is important to reach a certain state before more complex repair
actions can be taken and to avoid further degradation of the system. Repair
actions can be seen as changing the state of the component from faulty
to correct. In CatIO, repair action is then simply a mode assignment from
faulty to correct, as we assume that the system has the capabilities for
automatic replacements of components.

Listing 3.12: Controller interface

publ ic i n t e r f a c e C o n t r o l l e r {
/∗∗
∗ @param fmiConnector fmiConnector used to wri te (and

read) from current s imulat ion
∗ @param diagnos is s i n g l e diagnos is or s i g n a l used to

determine which a c t i o n to take
∗ @return remaining time s teps of the a c t i o n
∗/
i n t performAction (FmiConnector fmiConnector ,

L i s t<Str ing> diagnos is) ;
}

In the Controller interface, performAction method returns an integer,
which represent remaining duration of an action. The duration of action is
expressed in the simulation steps. Duration of simulation step is defined
in Driver classes, as seen in Section 3.2.4. Idealistic repair actions are per-
formed in a single step, therefore return value can be set to 0 as no more

40

3.2. Front end

steps are taken after the component has been repaired.
Compensating actions can however last several steps and the duration of the
compensating action can even change depending on the system and how
it reacts to certain actions. In the following chapter, we will demonstrate
compensating actions for differential drive robot lasting several steps.
When possible, the logic of compensating actions should be implemented in
the system model in Modelica, as in model all necessary variables/values
are present. If a compensating action was implemented in Modelica, the
user would simply trigger it in the Controller.

3.2.4. Drivers

ConsistencyDriver and AbductiveDriver classes are used to bind models,
corresponding interfaces, and simulations together, as well as to select a
certain type of diagnosis. Aside from the driver classes themselves, we will
explain possible diagnosis options found in CatIO in this section, as they
are selected by drivers.

Data that has to be passed to the drivers are a path to the .fmi file containing
a simulation scenario or input-oriented model, a path to the file describing
the model used for diagnosis, corresponding encoder as well as a simulation
run time and step size.

Step size determines how often observations will be encoded. Step size
defines a time interval in seconds after which values will be either read or
written to the simulation. For example, if the step size is set to 4.3, after 4.3
seconds of the Modelica’s simulation ComponentToRead variable values are
going to be read and passed to an Encoder.
The total number of steps in the simulation run is the quotient of run time
and step size. Bigger step size will make the simulation and diagnosis
process faster but at the expanse of diagnosis quality, as some faults may
not be noticed at all, noticed too late, or even masked by some other faults.
Determining the right step size is done through trial and error, by making
an educated guess or by matching its value with a sensory data frequency
of the system.

41

3. Design and Implementation of a Diagnosis Framework

In Listing 3.13, we can see the builder responsible for the creation of the
ConsistencyDriver object with all necessary data provided.
ConsistencyDriver simpleDriver = ConsistencyDriver.builder()

.pathToFmi(”FMIs/ERobot.SubModel.InputSimpleRobot.fmu”)

.model(new
CbModel(”src/main/java/examples/extendedRobotModel.txt”))

.encoder(new SimpleRobotEncoder())

.modelData(modelData)

.numberOfSteps(20)

.simulationStepSize(1)

.build() ;

// If using input−oriented model
// Simulation scenarios are importet from JSON
List<Scenario> extendedScenarios =

Util.scenariosFromJson(”extendedScenarios.json”);
// Diagnosis is performed on scenario, with assumption that faults are

intermittent
simpleDriver.runDiagnosis(ConsistencyType.INTERMITTENT,

extendedScenarios.get(2));

// if using test−bench which defines a simulation scenario
simpleDriver.runDiagnosis(ConsistencyType.INTERMITTENT);

Listing 3.13: Sample consistency driver

On the single simulation scenario user can employ {STEP, PERSISTENT,

INTERMITTENT} diagnosis, where each type is defined as follows:

• STEP Diagnosis is performed at every time step
• PERSISTENT Diagnosis is performed after the simulation has been

completed with assumptions that faults are persistent. Faulty compo-
nents, if any, are returned.
• INTERMITTENT Diagnosis is performed after the simulation has

been completed with assumptions that faults are intermittent. Faulty
components, if any, are returned as well as time step at which faults
manifested.

Construction concepts of both persistent fault and intermittent faults model
are seen in Figure 3.5. Model of any system consists of health state variables

42

3.2. Front end

and logical sentences which describe their expected behavior as well as the
behavior of the system.

Figure 3.5.: Encoding of persistent and intermittent faults

In case of persistent faults, the model used for diagnosis consist of health
state variables, model and observations, where model description and new
observations are added at every time step to it while health state variables
are constant (not incremented).
By the addition of system description with different variables describing
its behavior, while health states are constant we will be able to determine
diagnosis that explains all faults which happened thorough the run.
On the other hand, when assuming persistent faults health states are also

43

3. Design and Implementation of a Diagnosis Framework

instantiated for every time step, to enable precise diagnosis. As new health
states are added in every time step, the final number of health states to
consider in diagnosis is multiple of the initial number of health states and
time steps. Therefore, the intermittent diagnosis exponentially increased
run time and memory requirements.

Figure 3.6.: Output of different consistency based diagnosis procedures

As seen in Figure 3.6, STEP diagnosis produces a diagnosis for each step of
the simulation, therefore for each step, RC-Tree is generated with the model
and current observations. PERSISTENT and INTERMITTENT, however, generate
RC-Tree just once, with model and observations designed as explained
above.
Note that INTERMITTENT diagnosis procedure outputs a diagnosis where
each health state variable is followed by a step in which it was diagnosed
(f aultModestepNumber).

The only difference between consistency and abductive driver is that for
abductive diagnosis there is only one type of diagnosis present that returns
diagnosis/explanations after every time step in the simulation, thus corre-
sponding to STEP option of ConsistencyDriver. AbductiveDriver::runDiagnosis
method only takes scenario as a parameter (or no parameter in case of . f mi
which defines a simulation scenario).

44

3.3. Back end

3.3. Back end

3.3.1. Submodules

PicoMUS

PicoMUS is a minimal unsatisfiable core extractor based on PicoSAT [1] SAT
solver. In CatIO PicoMUS is used to check the consistency of the model itself,
and in the case of inconsistencies, it is able to derive a minimal unsatisfiable
subset.
Predicates of the model were previously mapped to integers to conform to
the DIMACS standard. Minimal unsatisfiable subset consists of said integers.
Integers that correspond to health state variables are extracted from the
minimal unsatisfiable subset and used as labels in the RC-Tree algorithm.

Manual Scenario Generation

Simulation scenarios define the assignment of all input variables for the
simulation. All input values have to be defined at step 0, and afterward, only
those values which the user wants to change need to be defined. The rest
of the input variables will stay the same. Scenarios are defined in Scenario

class. In this class, the user defines the name of the scenario, initialization
inputs (time step 0), and values for the user-defined time step. Those inputs
are stored in the map with key being time step and value being list of
Component objects which are going to be written to the simulation at key
time step.

As seen in Table 3.1, for each scenario all input values for the initial time
step (0) are provided. All values persist until the user changes them in
subsequent time steps.

In the intermittent scenario found in the first 4 rows of Table 3.1, initializa-
tion is performed by providing values for all inputs at time step 0. Until time
step 5 both wheels are spinning at the same speed and from time step 5 left
wheel is spinning slower than the right as the left wheel voltage is decreased.
The fault is injected in the time step 7 and the left wheel starts behaving

45

3. Design and Implementation of a Diagnosis Framework

Table 3.1.: Defining several scenarios.

ScenarioID Time Step d mode(Lw) mode(Rw) input(Lw) input(Rw)

intermittent 0 2 ok ok 4 4

5 3

7 faster

15 ok

noFaults 0 3 ok ok 3 4

3 4 3

6 2 2

twoFaults 0 2 faster ok 3 3

10 slower

abnormally. All other inputs are unchanged (left wheel input voltage is still
3 as defined in time step 5). Finally, at time step 15, the previously injected
fault is corrected. At the lower table of Figure 3.7 several manually created
in the graphical user interface scenarios can be seen.

Automated Scenario Generation

In CatIO, mixed level covering arrays defied in Section 2.7 are used for
automatic generation of simulation scenarios which can be used either for
individual testing or for automatic generation of abductive model.
Once ModelData has been constructed, it can be passed to MCA class in which
user can experiment with several configuration options.

MCA class is based on ACTS [27] tool. ACTS is tool used for combinatorial
test suite generation.

In MCA class following constraints over generation of the simulation suite
can be defined:

46

3.3. Back end

• Maximum number of faults injected The upper limit of the number
of fault modes for individual simulation scenarios that are faulty, that
is not in the state ok
• Fault Injection Step Step of the simulation in which fault will be

injected
• Add relation to group Relation in one of three groups (system inputs,

parameters or mode assignment variables)
• Add constraint Constraint which hold for all rows in MCA

The maximum number of faults injected field is used to generate scenarios
that would result in a “practical” diagnosis. Often designers are not inter-
ested in diagnosis which constrains more than 2 (sometimes 3) components.
By setting the upper limit of fault components per simulation we reduce the
final number of simulation scenarios created and if we do not add additional
constraints we also assure that all combinations of faults up to a set limit
are covered.

Constraints can be used to state physical impossibilities that would cause
the simulation to misbehave/break. They can also be used to express depen-
dencies/relations in the tree-structured systems [23]. If a fault is triggered
in the component that is a parent of another component in which fault was
also triggered, the second component’s fault injection might be redundant if
the behavior is completely dependant on the correct behavior of its parent.

A graphical user interface can be used to create a generated simulation suite
(shown in Section 3.4). Generated simulation suite can be seen in the Listing
4.6.

Automatic Abductive Model Generator

Development of the diagnostic modeling is in practice often a tipping
point that discourages engineers from using any kind of model-based
reasoning or testing. In industry, however, simulation is often used as a
way to ensure quality and reduce testing costs. Complex systems with its
components are modeled in languages like Modelica. The principle idea of
the automatic generation of the abductive diagnostic model is to use the
already available simulation model and by the means of fault injection and

47

3. Design and Implementation of a Diagnosis Framework

simulation generate the model which can be used for diagnostic reasoning.
When injecting faults in components their effect on the system as a whole is
observed.

The basic principle of the automatic generation of the abductive model is to
compare fault free and fault injected simulation and detect discrepancies
[16]. Such discrepancies are then encoded with respect to the model, in the
form of injectedFault(s)→ detectedDiscrepancies.
Diff interface is used to detect discrepancies between fault free and fault
injected simulations. Furthermore, to decide which faults to inject, as well
as which parameters and inputs are to be set in simulation, combination ex-
ploration of all possible model input combinations is used. Therefore before
starting the automatic generation of the abductive model procedure, the
user should create a combinatorial suite that defines simulation scenarios.

To automatically generate abductive model following methods are used

Listing 3.14: Automatic generation of abductive model setup

AbductiveModelGenerator abductiveModelGenerator =
new AbductiveModelGenerator (pathToRobotFmi , robotData , new

RobotDiff ()) ;

\\ s e t encoder (not mandatory)
abductiveModelGenerator . setEnc (new StrongFaultAbEncoder ()) ;
\\ s imulat ion runtime , s tep s i z e and f a u l t i n j e c t i o n step
abductiveModelGenerator . generateModel (1 0 , 1 . 0 , 3) ;
\\ l e ar n model
AbductiveModel learnedModel =

abductiveModelGenerator . getAbductiveModel () ;

System . out . p r i n t l n (learnedModel . getRules ()) ;
learnedModel . modelToFile (” t e s t . t x t ”) ;

48

3.3. Back end

Algorithm 2 presented in [17], is used for automatic generation of abductive
model.

Algorithm 2 Algorithm for rule extraction with combinatorically explored
input space and simulation
Require: A mixed level covering array MCA, simulation function

sim(inputs), implementation of di f f
1: procedure Generate Model

2: ruleSet← {}
3: for simInputs ∈ MCA do
4: f aultFreeInput← simInputs
5: f aultInjectedInputs← simInputs
6: for modeAssigmentVar ∈ f aultFreeInput do
7: modeAssigmentVar ← ”Ok”
8: end for
9: Simcorr ← sim(f aultFreeInput)

10: Sim f aulty ← sim(f aultInjectedInputs)
11: D ← di f f (Simcorr, Sim f aulty)
12: injectedFaults← {}
13: for modeAssigmentVar ∈ simInputs do
14: if modeAssigmentVar 6= ”Ok” then
15: injectedFaults← injectedFaults ∪modeAssigmentVar
16: end if
17: end for
18: newRule← injectedFaults→ D
19: ruleSet← ruleSet ∪ newRule.
20: end for
21: return ruleSet
22: end procedure

49

3. Design and Implementation of a Diagnosis Framework

3.4. Graphical User Interface

Graphical user interface contains functionalities that ease tedious tasks of
data extraction and modeling. It is separated in three sections: “Data and
Simulation”, which covers the extraction of data from .fmi files as well as
generation of scenarios either manually or via mixed level covering array,
“Consistency Modeling”, which eases the task of modeling by allowing the
user to experiment and shows all transformations which are done on the
model and finally “Abductive Modeling’ section where user can create and
test abductive models. Let us discuss three sections of the graphical user
interface in the following subsections.

3.4.1. Data extraction and scenario creators

In Figure 3.7 the user first selects a . f mi file of the input-oriented model or
test bench. Once the file has been selected, all fields of the model/test-bench
will be displayed in the data extraction table.

50

3.4. Graphical User Interface

Figure 3.7.: Data extraction and simulation scenario creator window

Each field of the table is has a variable name (original name of the variable
found in the Modelica model), type, and the following characteristic which
the user can select:

51

3. Design and Implementation of a Diagnosis Framework

• Read Variables whose values are going to be read and passed to the
Encoder at every step of the simulation. Checked values will be added
to the ComponentsToRead field of ModelData
• Type Type of variable, element of {HealthState, Input, Parameter}.

Field, where a user selects a type, will appear in the table used for man-
ual creation of scenarios. Used for automatic generation of simulation
scenarios.
• Values Values are used in a mixed level covering array creation. Note

that all value fields need to have an accompanying type.

On the press of the Initialize scenario table button scenario table
where the user can create custom scenarios will be updated. As discussed
in Section 3.3.1, all input values must have value at initialization. Afterward,
at the chosen time step user defines inputs that are going to be changed.

If the user has provided values in the data extraction table, by pressing
Generate MCA button a window shown in Figure 3.8 with several options
will pop up. User can add relations, a step at which faults will be injected,
constraints, and a number of correct components which will influence the
generation of mixed level covering array as discussed in Section 3.3.1.

3.4.2. Modeling

Consistency-based and abductive diagnosis modeling environments can be
used for the development of diagnostic models. Developed models can be
manually verified by entering observations and computing the diagnosis.

In consistency modeling window, shown in Figure 3.9, two additional
feature are present.
Firstly, user can see how CNF of the model, as well as mapping of, said
CNF to DIMACS CNF format, which can be used for SAT solvers.
In the window under the CNF representation of the model, the user can see
if the model itself (without observations) is satisfiable or unsatisfiable. If the
model is satisfiable, an assignment of true/false to all propositions can be
seen.
If the model is unsatisfiable, PicoMUS will compute minimal unsatisfiable

52

3.4. Graphical User Interface

Figure 3.8.: Mixed level covering array generator window

core in a form of conjunction clauses that are still unsatisfiable. Those
clauses will be printed and users may manually examine the cause of
unsatisfiability.

Abductive modeling window can be seen if Figure 3.10.

53

3. Design and Implementation of a Diagnosis Framework

Figure 3.9.: Consistency based modeling window.

54

3.4. Graphical User Interface

Figure 3.10.: Abductive modeling window

55

3. Design and Implementation of a Diagnosis Framework

3.5. Code and Building/Running Instructions

Implementation of CatIO can be found at https://github.com/EdiMuskardin/
CatIO-MBD-Framework.

CatIO is developed with Java 1.8 (Java 1.8.0 222). Gradle1 build system is
used to build and run the framework. In Figure 3.11 we can see the gradlew

and gradlew.bat files that can be used to build and run the framework
with only Java installed on the machine. The Gradle build system will
automatically download all dependencies.

To build and run the framework one can use the following commands

• ./gradlew runGui to start the graphical user interface
• ./gradlew runDefaultMain to run ConsistenctMain example found

in /src/examples folder.

By stating the path to the main class we may define additional run com-
mands in the build.grade file.

Figure 3.11 depicts the structure of the CatIO found in the Github repository.
README.md provides a quick summary of how to use the framework. In the
src/ folders and its subfolders implementation of all concepts explained in
this chapter can be found.

To ensure that CatIO is working as expected, unit testing was performed on
the individual component level. Furthermore, to validate the implementation
of RC-Tree property-based testing (with Scalacheck) is used. Properties that
have to hold for RC-Tree are that the output of the algorithm (diagnosis) is
subset minimal and that each diagnosis is a hitting set for all inputs.

1https://gradle.org/

56

https://github.com/EdiMuskardin/CatIO-MBD-Framework
https://github.com/EdiMuskardin/CatIO-MBD-Framework
https://gradle.org/

3.5. Code and Building/Running Instructions

.
├── FMIs
├── README.md
├── build.gradle
├── gradle
├── gradlew
├── gradlew.bat
├── lib
│ ├── acts_3.0.jar
│ └── picomus
├── settings.gradle
└── src
 └── main
 └── java
 ├── FmiConnector
 │ └── FmiConnector.java
 ├── abductive
 │ ├── AbductiveDriver.java
 │ ├── AbductiveModel.java
 │ ├── AbductiveModelGenerator.java
 │ └── MCA.java
 ├── consistency
 │ ├── CbModel.java
 │ ├── ConsistencyDriver.java
 │ ├── ConsistencyType.java
 │ ├── PredicateList.java
 │ ├── SatSolver
 │ │ └── PicoMUS.java
 │ └── mhsAlgs
 │ └── RcTree.java
 ├── gui
 │ ├── AbductiveModelling.form
 │ ├── AbductiveModelling.java
 │ ├── AutomaticAbductiveGenGUI.form
 │ ├── AutomaticAbductiveGenGUI.java
 │ ├── ConsistencyModelling.form
 │ ├── ConsistencyModelling.java
 │ ├── FmiDataExtractor.form
 │ ├── FmiDataExtractor.java
 │ ├── MainGui.form
 │ ├── MainGui.java
 │ ├── McaCrator.form
 │ ├── McaCrator.java
 │ ├── RunSimulationGUI.form
 │ └── RunSimulationGUI.java
 ├── interfaces
 │ ├── Controller.java
 │ ├── Diff.java
 │ └── Encoder.java
 ├── model
 │ ├── Component.java
 │ ├── ModelData.java
 │ ├── ModelInput.java
 │ ├── Scenario.java
 │ ├── SimulationRunData.java
 │ └── Type.java
 ├── runningExamples
 │ └── SimpleRobot
 │ ├── Abductive
 │ │ ├── AbductiveDiag.java
 │ │ ├── AutomaticGenExample.java
 │ │ ├── BookAbEncoder.java
 │ │ ├── CircuitDiff.java
 │ │ ├── CircuitEncoder.java
 │ │ ├── CircuitsMain.java
 │ │ ├── RobotDiff.java
 │ │ ├── StrongFaultAbEncoder.java
 │ │ └── abductiveBookModel.txt
 │ └── Consistency
 │ ├── ConsistencyMain.java
 │ ├── RepairRobot.java
 │ ├── SimpleCarEncoder.java
 │ ├── StrongFaultDiffEncoder.java
 │ ├── simpleModel.txt
 │ ├── simpleRobot.json
 │ ├── simpleScenarios.json
 │ └── strongFaultDiffModel.txt
 └── util
 ├── Plot.java
 └── Util.java

Figure 3.11.: CatIO’s directory/file structure

57

4. Usage and Examples

In this chapter, we will demonstrate the capabilities of CatIO described
in the previous chapter. We will focus mostly on the differential drive
robot presented in Section 1.4. Several models and reasoning about their
advantages and disadvantages are laid out.

Furthermore, we will present a simple model of an RC circuit with light
bulbs of various sizes, to explore how well does to automatic generation of
the abductive model scales.

4.1. Modeling the Differential Drive Robot

4.1.1. Modeling in Modelica

Figure 4.1 shows a differential drive robot with its connections between
components as seen in the Modelica connection editor. u and u1 are standard
Modelica notation for inputs, and they map to left wheel and right wheel
input respectively. The output of both wheels is then passed to the di f f Drive
component which computes the state of the robot.

59

4. Usage and Examples

Figure 4.1.: Modelica model in connection editor

Wheels are modeled as a system with one input and one output. If the
wheel is functioning as expected, input, which represents input voltage,
should be the same as the output.
Fault injection is performed by changing the behavior of the wheel. Enu-
meration FaultType is created with 3 states: ok, f aster, slower. If the wheel is
behaving as expected it is in the ok state. When injecting a fault we change
the value of the wheel’s “state” variable from ok to f aster or slower.

We modeled both faults by increasing or decreasing output voltage by 33%
of the original one. We chose this approach instead of simply adding a
constant to the output so that the fault scales with the size of the input.

Listing 4.1: Modelica model of the wheel with faults

model Wheel
// i n i t i a l l y wheel s t a t e i s s e t to ok
FaultType s t a t e (s t a r t = FaultType.ok) ;
M o d e l i c a . B l o c k s . I n t e r f a c e s . R e a l I n p u t i ;
M o d e l i c a . B l o c k s . I n t e r f a c e s . R e a l O u t p u t o ;
equation

60

4.1. Modeling the Differential Drive Robot

i f s t a t e == FaultType.ok then
o = i ;

e l s e i f s t a t e == F a u l t T y p e . f a s t e r then
o = i ∗ 1 . 3 3 ;

e l s e
o = i ∗ 0 . 7 7 ;

end i f ;
end Wheel ;

The behavior of the differential drive robot is explained in Section 1.4. Note
that the position of the robot is calculated using differential equations,
therefore der(x) keyword is used. Five equations seen in equations block of
Listing 4.2 describe the kinematics of the robot over time.

Listing 4.2: Modelica model of differential drive

model Di f fDr ive
M o d e l i c a . B l o c k s . I n t e r f a c e s . R e a l I n p u t vL ;
M o d e l i c a . B l o c k s . I n t e r f a c e s . R e a l I n p u t vR ;
// d i s t a n c e between wheels
parameter M o d e l i c a . S I u n i t s . D i s t a n c e d = 1 ;
// x coordinate
M o d e l i c a . S I u n i t s . P o s i t i o n x (s t a r t = 0) ;
// y coordinate
M o d e l i c a . S I u n i t s . P o s i t i o n y (s t a r t = 0) ;
// s t a t e heading angle
Model i ca .S Iuni t s .Angle t h e t a (s t a r t = 0) ;
// d i s t a n c e between the c e n t e r of the robot and i t s

i n s t . c e n t e r of curvature
Real R ;
// angular v e l o c i t y
M od el i c a .S Iu n i t s . An g ul ar V e l oc i t y omega (s t a r t = 0 ,

nominal = 1) ;
equation

R = d ∗ (vL + vR) / 2 ∗ (vL − vR) ;
omega = (vR − vL) / 2 ;
der (x) = (vR + vL) / 2 ∗ cos (t h e t a) ;
der (y) = (vR + vL) / 2 ∗ s in (t h e t a) ;
der (t h e t a) = omega ;

end Dif fDr ive ;

61

4. Usage and Examples

Finally, we will use input oriented model, since we want to manually and
automatically create scenarios and perform compensating/repair actions
using CatIO.

Listing 4.3: Input oriented model of the robot

model InputSimpleRobot
input WheelFaultType l e f t F a u l t T y p e ;
input WheelFaultType r ightFaul tType ;
input M o d e l i c a . B l o c k s . I n t e r f a c e s . R e a l I n p u t

lef tWheel Input ;
input M o d e l i c a . B l o c k s . I n t e r f a c e s . R e a l I n p u t

rightWheelInput ;
ERobot.SubModel.Wheel le f tWheel ;
ERobot.SubModel.Wheel rightWheel ;
ERobot.SubModel.DiffDrive d i f f D r i v e ;

equation
l e f t W h e e l . s t a t e = l e f t F a u l t T y p e ;
r i g h t W h e e l . s t a t e = r ightFaul tType ;
l e f t W h e e l . i = lef tWheel Input ;
r i g h t W h e e l . i = rightWheelInput ;
connect (l e f t W h e e l . o , d i f f D r i v e . v L) ;
connect (r i g h t W h e e l . o , d i f f D r i v e . v R) ;

end InputSimpleRobot ;

4.1.2. Diagnosis and Repair

When constructing a diagnosis model of a system, we first have to determine
which observations are available to us, as well as find the abstraction level
of the model and observations.
We will create 3 consistency based models, with the following core princi-
ples:

• assumption that we can measure and compare inputs and outputs of
each wheel
• assumption that we can observe both, the desired directions of the

robot and actual one
• union of first two assumptions

62

4.1. Modeling the Differential Drive Robot

Firstly, if we assume that we can conclude whether the input and output of
the wheel are the same, but not strictly observe whether a wheel is spinning
faster or slower we can create the following model.

Listing 4.4: Weak Fault Diagnostic Model

! AbLeftWheel −> le f tEqInOut .
! AbRightWheel −> rightEqInOut .

From the model, it is obvious that if we get the observation !le f tlEqInOut,
which states that left wheel inputs and output are not the same, AbLe f tWheel
will be the diagnosis.
With this model, we can only perform repair actions, as we are missing
necessary information to perform any meaningful compensating action.

Suppose that we have the following scenario which we are going to simulate.
The robot starts without any faults and begins to move in the straight line.
At time step 5 of the simulation, the left wheel begins to spin faster, and
this fault persists until time step 15. Such a scenario can be defined in the
graphical user interface, by populating scenario creation table as shown In
Table 4.1.
The goal of the robot is to move in the straight line, or at least to stay as close
to the x axis as possible. x and y axis in the following images depict the
movement of the robot thorough the time, If the robot is constantly staying
on the x axis, he would be moving perfectly in the forward direction.

Table 4.1.: Single fault scenario.

ScenarioID Time Step d mode(Lw) mode(Rw) input(Lw) input(Rw)

intermittent 0 2 ok ok 3 3

5 faster

15 ok

Simulation run time is defined at 20 time steps. Once a simulation has been
terminated, we can plot the position of the robot in the coordinate plane.
The number of plot points will be the same as the number of steps, in this
case, 20. Note that the curve which describes the position of the robot is
not smooth. If we were to take smaller steps size and more steps, the curve

63

4. Usage and Examples

would be smoother as there would be more plot points, but at the expanse
of simulation speed.

Figure 4.2.: Robot movement without any repair or compensating action

Suppose that by using a simple diagnostic model shown in 4.4, we can
compute that the left wheel is behaving abnormally at time step 5. We do
not know whether the left wheel is spinning faster or slower, but if we
assume that we can put the wheel back to the correct state regardless of its
current state, we can perform repair action.
As we can see in Figure 4.3, when performing the repair action the robot
managed to stay closer to the x-axis and kept its direction straight, but the
angle of its movement was still faulty. Between a detection of the fault and
repair action, there has to be at least one step, as detection is only possible
after a fault has occurred. Therefore heading angle change of that one step

64

4.1. Modeling the Differential Drive Robot

is still a challenge.
However, in systems that are not time-dependent like the robot, repair
actions would suffice to restore the behavior of the system to normal.

Figure 4.3.: Robot movement with repair action

Compensating actions can only be taken in case of diagnostic reasoning with
the strong fault models. That is, without knowledge of a faulty component
state, we cannot perform actions that would mitigate its consequences. In
the Listing 4.5 we see the second model of differential drive robot where
we assume that we only know desired and actual heading directions. The
desired direction can be computed by comparing the inputs of both wheels,
while the actual direction can be computed by comparing the outputs of
both wheels. Note that the last 6 lines state physical impossibilities, like that
it can not move in the 2 directions at the same time.

65

4. Usage and Examples

Listing 4.5: Strong Fault Diagnostic Model
wantedStraight & a c t u a l L e f t −> SlowerLeft | Fas terRight .
wantedStraight & a c t u a l R i g h t −> F a s t e r L e f t | SlowerRight .
wantedLeft & a c t u a l S t r a i g h t −> F a s t e r L e f t | SlowerRight .
wantedLeft & a c t u a l R i g h t −> F a s t e r L e f t | SlowerRight .
wantedRight & a c t u a l L e f t −> SlowerLeft | Fas terRight .
wantedRight & a c t u a l S t r a i g h t −> F a s t e r L e f t | SlowerRight .

// phys ica l i m p o s i b i l i t i e s
wantedStraight & wantedLeft −> $ f a l s e .
wantedStraight & wantedRight −> $ f a l s e .
wantedRight & wantedLeft −> $ f a l s e .

a c t u a l S t r a i g h t & a c t u a l L e f t −> $ f a l s e .
a c t u a l S t r a i g h t & a c t u a l R i g h t −> $ f a l s e .
a c t u a l R i g h t & a c t u a l L e f t −> $ f a l s e .

The obvious problem with this model is that a discrepancy in the movement
direction can always be explained by either the left or right wheel. We can
mitigate this problem by adding predicates which we used in the weak
fault model (whether wheel input is the same as output) and all ambiguity
would be gone.

For our example, if a minimal strong fault diagnosis has been computed it
can be used to trigger one of the predefined compensating actions. In more
complex examples depending on the result of the diagnosis and available
data compensating actions first has to be derived. To compensate for the
heading angle, we have to perform at least 2 compensating steps, 4 for
optimal path correctness.
First, we set the speed of the opposite wheel for one time step by the same
amount by which the faulty wheel has been increased, all while returning
faulty wheel to correct state.
Then the heading angle is reversed back to the correct one, and we can set
the input speed of both wheel to be the same. Once such compensating
action has been performed, the plot of the robot movement is as seen in
Figure 4.4.

Compensating action managed to correct the course of the robot completely.
It was achieved in 4 steps, firstly by correcting the heading angle by increas-

66

4.1. Modeling the Differential Drive Robot

Figure 4.4.: Robot movement with compensating action

ing the input voltage of the right wheel while decreasing the left wheel
input voltage. Once a heading direction is parallel with the intended one,
inverse action can be taken to bring the robot back to the intended path.

To conclude, as seen in Figure 4.5 model-based diagnosis is a powerful tool
that can be used to compute the appropriate decision needed to perform a
repair or compensating action.

To be able to reproduce this example, one can use code found in the Ap-
pendix A.3.

67

4. Usage and Examples

Figure 4.5.: Robot movement with repair and compensating actions

68

4.2. Automatic generation of abductive model

4.2. Automatic generation of abductive model

4.2.1. Differential Drive Robot

In the previous section, we developed a model and used the consistency-
based diagnosis to get a meaningful diagnosis that we can use for repair or
compensating actions. However, the task of modeling proves to be tedious in
practice. Therefore in this section, we will demonstrate how to automatically
generate the abductive model of the differential drive robot.

The level of abstraction will be the same as in the previous examples, and
we will aim to learn a model which combines two approaches shown above,
meaning we will use predicates to express whether the input and output of
each wheel are the same and two predicates to express wanted and actual
direction of the robot.

Firstly we extract ModelData values using a graphical user interface to be
able to create a mixed-level coverings array.

Figure 4.6.: Automatically generated simulation scenarios.

69

4. Usage and Examples

Secondly, we first have to define encoder as seen in the Listing 4.6.

Listing 4.6: Encoder used for automatic generation of abductive model

publ ic c l a s s StrongFaultAbEncoder implements Encoder {
@Override
publ ic L i s t<Str ing> encodeObservation (Map<Str ing , Object> obs) {

Lis t<Str ing> encodedObservation = new ArrayList <>();
Double rightWheelInput = (Double) obs . get (” rightWheel . i ”) ;
. . .

i n t wantedDir = Double . compare (rightWheelInput , le f tWheel Input) ;
i n t a c t u a l D i r = Double . compare (rightWheelOutput , leftWheelOutput) ;

i f (wantedDir == 0)
encodedObservation . add (” wantedDirection (s t r a i g h t) ”) ;

e l s e i f (wantedDir == 1)
encodedObservation . add (” wantedDirection (r i g h t) ”) ;

e l s e
encodedObservation . add (” wantedDirection (l e f t) ”) ;

i f (a c t u a l D i r == 0)
encodedObservation . add (” a c t u a l D i r e c t i o n (s t r a i g h t) ”) ;

e l s e i f (a c t u a l D i r == 1)
encodedObservation . add (” a c t u a l D i r e c t i o n (r i g h t) ”) ;

e l s e
encodedObservation . add (” a c t u a l D i r e c t i o n (l e f t) ”) ;

i f (! r ightWheelInput . equals (rightWheelOutput))
encodedObservation . add (” notEqualInOut (r i g h t) ”) ;

e l s e
encodedObservation . add (”EqualInOut (r i g h t) ”) ;

i f (! le f tWheel Input . equals (leftWheelOutput))
encodedObservation . add (” notEqualInOut (l e f t) ”) ;

e l s e
encodedObservation . add (”EqualInOut (l e f t) ”) ;

re turn encodedObservation ;
}}

70

4.2. Automatic generation of abductive model

Both fault free and fault injected simulation is executed and encoded obser-
vations are passed to the implementation of the Diff interface. A straight-
forward implementation of Diff interface can be seen in the Listing 4.7.

Listing 4.7: Implementation of Diff interface

publ ic c l a s s RobotDiff implements D i f f {

@Override
publ ic Set<Str ing> encodeDiff (SimulationRunData

c o r r e c t , SimulationRunData f a u l t y) {
Set<Str ing> d i f f = new HashSet<>() ;
f o r (i n t i = 0 ; i < c o r r e c t . getNumberOfSteps () ;

i ++) {
S t r i n g corrWantedDir =

c o r r e c t . getPredicatesFromStep (i) . get (0) ;
// e x t r a c t i o n of data . . .

// check i f a c t u a l d i r e c t i o n s of c o r r e c t and
f a u l t y s imulat ions are same

i f (! corrActualDir . equals (fau l tyActua lDir)) {
d i f f . add (corrWantedDir) ;
d i f f . add (fau l tyActua lDir) ;

}
// add a wheel which e x e r t s d i f f e r e n t behavior
i f (! corrRightWheel . equals (faultyRightWheel))

d i f f . add (faultyRightWheel) ;
i f (! corrLeftWheel . equals (faul tyLef tWheel))

d i f f . add (faul tyLef tWheel) ;
}
re turn d i f f ;

}
}

AbductiveModelGenerator is used to connect all necessary inputs for the
automatic generation of the model as shown in Listing 4.8.

71

4. Usage and Examples

Listing 4.8: Setup for learning of abductive model

ModelData robotData =
U t i l . modelDataFromJson (pathToModelData) ;

AbductiveModelGenerator abductiveModelGenerator =
new AbductiveModelGenerator (pathToRobotFmi ,

robotData) ;
abductiveModelGenerator . setEncoderAndDiff (new

StrongFaultAbEncoder () , new RobotDiff ()) ;
// number of steps , s tep s ize , f a u l t i n j e c t i o n step
abductiveModelGenerator . generateModel (5 , 1 . 0 , 2) ;

AbductiveModel learnedModel =
abductiveModelGenerator . getAbductiveModel () ;

learnedModel . modelToFile (” learnedModel . t x t ”) ;
learnedModel . addExplain (Arrays . a s L i s t (” wantedDirection (s t r a i g h t) ” ,

” a c t u a l D i r e c t i o n (l e f t) ”)) ;
System . out . p r i n t l n (learnedModel . getDiagnosis ()) ;

Once Algorithm 2 from Section 3.3.1 is executed, an automatically generated
model can be saved to file and evaluated. This model is shown in the Listing
4.9.

Listing 4.9: Automatically generated abductive model

RightFaultType (f a s t e r) −> a c t u a l D i r e c t i o n (l e f t) .
Lef tFaultType (slower) , RightFaultType (f a s t e r) −> a c t u a l D i r e c t i o n (l e f t) .
Lef tFaultType (f a s t e r) −> notEqualInOut (l e f t) .
Lef tFaultType (slower) , RightFaultType (f a s t e r) −> notEqualInOut (r i g h t) .
LeftFaultType (slower) , RightFaultType (f a s t e r) −> notEqualInOut (l e f t) .
RightFaultType (slower) −> notEqualInOut (r i g h t) .
LeftFaultType (f a s t e r) , RightFaultType (f a s t e r) −> notEqualInOut (r i g h t) .
LeftFaultType (f a s t e r) , RightFaultType (slower) −> a c t u a l D i r e c t i o n (r i g h t) .
LeftFaultType (slower) , RightFaultType (f a s t e r) −> wantedDirection (s t r a i g h t) .
LeftFaultType (f a s t e r) , RightFaultType (slower) −> wantedDirection (s t r a i g h t) .
LeftFaultType (f a s t e r) , RightFaultType (slower) −> notEqualInOut (r i g h t) .
LeftFaultType (f a s t e r) −> wantedDirection (s t r a i g h t) .
LeftFaultType (slower) , RightFaultType (slower) −> notEqualInOut (l e f t) .
RightFaultType (f a s t e r) −> notEqualInOut (r i g h t) .
LeftFaultType (slower) −> wantedDirection (s t r a i g h t) .
RightFaultType (f a s t e r) −> wantedDirection (s t r a i g h t) .
LeftFaultType (f a s t e r) , RightFaultType (slower) −> notEqualInOut (l e f t) .
Lef tFaultType (f a s t e r) −> a c t u a l D i r e c t i o n (r i g h t) .
RightFaultType (slower) −> a c t u a l D i r e c t i o n (r i g h t) .
LeftFaultType (slower) , RightFaultType (slower) −> notEqualInOut (r i g h t) .
LeftFaultType (f a s t e r) , RightFaultType (f a s t e r) −> notEqualInOut (l e f t) .
Lef tFaultType (slower) −> a c t u a l D i r e c t i o n (l e f t) .
RightFaultType (slower) −> wantedDirection (s t r a i g h t) .
LeftFaultType (slower) −> notEqualInOut (l e f t) .

72

4.2. Automatic generation of abductive model

Depending on the observations generated model would compute the diag-
nosis. For example, observation

{notEqualInOut(left)}

would result in following diagnosis: {[[LeftFaultType(slower)], [LeftFault-
Type(faster)]]}, whereas observations

{notEqualInOut(left), wantedDirection(straight), actualDirection(left)}

would result in: {[[LeftFaultType(slower)], [LeftFaultType(faster), Right-
FaultType(faster)]]}.

Experiments presented in the previous section were repeated with automat-
ically generated model and results were identical. Furthermore, this model
can be extended by either adding rules about the behavior of the system or
by stating physical impossibilities.

4.2.2. Automatic generation of RC-Circuits of various sizes

In this section, we will reason about the scalability of the automatic gen-
eration of the abductive model. The circuit is shown in Figure 4.8 shows
a circuit which comprises of series of batteries, resistors, and light bulbs,
all connected in parallel with the load. The load is represented as a series
of the variable resistor and fixed value load resistor. Variable and load
resistor ensures that the overall resistor value can not be zero, which would
otherwise happen in the case that one of the resistors is shorted.

In the implementation, the values are set so that the bulbs are not always
glowing. This is achieved by changing the load value of the rload resistor. Its
value follows the sinus curve over time. For a light bulb to be glowing we
assume that the minimum current needs to pass through it.

The behavior of the simple electric circuits having only one battery and bulb
is seen in Figure 4.7. sut.r load.percentage gives the percentage of the resistor
value of rload over time. The other values are the current flowing through

73

4. Usage and Examples

Figure 4.7.: Behavior of the simple electric circuits over time.

the bulb and information whether the bulb is lightning (1) or not lightning
(0).

The size of the circuit can be arbitrary set, and we will explore how well
does the automatic generation of diagnosis model fair on a simple circuit
with just one series of battery, resistor, and light bulb, as well on the circuit
with 10 parallel series.

Note that the only observation we can get from the running circuit (not in
Modelica, but real-word scenario), is whether the bulb is shining or not, so
this is the information with which we will work for our experiment.

Encoder and Diff interfaces can be reused for any circuit of size n, as
only observations are n bulbs which are either on or off. In this example
limitations of observations put a severe limitation on diagnosis quality, as

74

4.2. Automatic generation of abductive model

Figure 4.8.: Schematics of the simple electric circuits.

the only thing which can be compared in the Diff is whether light is on or
off in both fault-free and fault injected simulation.

However, let us use this example to point out a few drawbacks when
generating an automatic model for abductive diagnosis. As the size of
the circuit will increase all possible combinations of components fault
modes increase exponentially. We try to tackle that problem by using a
combinatorial exploration of possible inputs or to be more precise in this
example, of the fault modes. If a fault model of a component is never
activated, it cannot be the result of the diagnosis as we do not have the
information about its consequences and it will not appear in the knowledge
base.

Following is a Modelica model of the circuit used, with each component
having defined normal and faulty behavior. Listings 4.10 shows a circuit
with one series of battery, resistor, and bulb, connected to the variable and
load resistors. Presented circuits are analog with circuits that have more
series of batteries, resistors, and bulbs.

75

4. Usage and Examples

Listing 4.10: Circuit with one battery resistor and bulb

model SC Example1

input PhysicalFaultModel ing.FaultType b a t 1 F a u l t S t a t e ;
input PhysicalFaultModel ing.FaultType r e s i s t o r 1 S t a t e ;
input PhysicalFaultModel ing.FaultType bulb1Sta te ;
input PhysicalFaultModel ing.FaultType l o a d R e s i s t o r S t a t e ;
input PhysicalFaultModel ing.FaultType i n t R e s i s t o r S t a t e ;

PhysicalFaultModeling.PFM Battery bat1 (vn = 4 . 5) ;
PhysicalFaultModel ing.PFM Resis tor r1 (r = 0 . 1) ;
PhysicalFaultModeling.PFM Bulb b1 (r =5) ;
Physica lFaul tModel ing .PFM VariableResis tor r l o a d (r =

500) ;
PhysicalFaultModel ing.PFM Resis tor r i n t (r =1) ;
PhysicalFaultModeling.PFM Ground gnd ;

equation
// connect ing f a u l t inputs to components

r 1 . s t a t e = r e s i s t o r 1 S t a t e ;
b a t 1 . s t a t e = b a t 1 F a u l t S t a t e ;
b 1 . s t a t e = bulb1Sta te ;
r l o a d . s t a t e = l o a d R e s i s t o r S t a t e ;
r i n t . s t a t e = i n t R e s i s t o r S t a t e ;
// load over time
r l o a d . p e r c e n t a g e = abs (s i n (time)) ;

// connect ions of the c i r c u i t
connect (b a t 1 . m , r 1 . p) ;
connect (r1 .m,b1 .p) ;
connect (b1 .m,gnd.p) ;
connect (b a t 1 . p , r l o a d . p) ;
connect (r l o a d . m , r i n t . p) ;
connect (r i n t . m , g n d . p) ;

end SC Example1 ;

To keep the mixed level covering array smaller, we will assume that all the
parameters of the components are constant. Extracting data is then done in
GUI, as shown in the appendix A.3.

76

4.2. Automatic generation of abductive model

Implementation of Encoder and Diff interfaces is straightforward. Encoder
interface is simply a mapping from Boolean domain to chosen predicates,
and for bulb n in a circuit we encode either bulbnon or bulbno f f . Diff
receives a list of lists which contain encoded information for every time
step, and by comparing correct and faulty simulation we can conclude that
bulb at step i is either on when it should be off and vice versa.
For this example, we can see that Encoder is redundant, as it is simply
mapping Boolean values to predicates, and we can implement the Diff

interface with values directly from the simulation.

Listing 4.11: Implementation of Diff

publ ic c l a s s C i r c u i t D i f f implements D i f f {
@Override
publ ic Set<Str ing> encodeDiff (L i s t<Lis t<Str ing>> corr ,

L i s t<Lis t<Str ing>> f a u l t y) {
Set<Str ing> d i f f = new HashSet<>() ;

f o r (i n t i = 0 ; i < corr . s i z e () ; i ++) {
f o r (i n t j = 0 ; j < corr . get (i) . s i z e () ; j ++) {

S t r i n g corrSim = corr . get (i) . get (j) ;
S t r i n g faultySim = f a u l t y . get (i) . get (j) ;

i f (! corrSim . equals (faultySim)) {
i f (corrSim . conta ins (” ON”))

d i f f . add (” bulb ” + (j + 1) + ” OFF INSTEAD ON”) ;
e l s e

d i f f . add (” bulb ” + (j + 1) + ” ON INSTEAD OFF”) ;
}

}
}

re turn d i f f ;
}

}

When learning a smaller circuit we can brute force all possible combinations
of faults or up to n faults. To execute the automatic generation process code
found in Appendix A.4 was executed. Part of a learned model for a circuit
with one component set {bulb, resistor and battery} is shown in the Listing
4.12.

77

4. Usage and Examples

Listing 4.12: Learned circuit of size 1

Bat1 . s t a t e (empty) , R1 . s t a t e (broken) −> bulb1 OFF INSTEAD ON .
B1 . s t a t e (broken) , R load . s t a t e (broken) −> bulb1 ON INSTEAD OFF .
B1 . s t a t e (shor t) , R i n t . s t a t e (broken) −> bulb1 OFF INSTEAD ON .
Bat1 . s t a t e (empty) , R load . s t a t e (broken) −> bulb1 OFF INSTEAD ON .
R1 . s t a t e (broken) , R load . s t a t e (broken) −> bulb1 ON INSTEAD OFF .
R i n t . s t a t e (broken) , R load . s t a t e (broken) −> bulb1 ON INSTEAD OFF .
B1 . s t a t e (shor t) −> bulb1 OFF INSTEAD ON .
. . .

The challenge of automatic generation of models is an exponential growth
of possible combinations with respect to the states of the components and
with the number of components. Even for small systems globally exhaustive
approach is too costly. A globally exhaustive approach has to cover the
product of the number of fault modes for all components. For a system
comprising of 6 components, each with 3 fault modes one would have to
cover 3× 3× 3× 3× 3× 3× 3 = 486 combinations. If we would restrict
ourselves to 2-way component interactions, the ACTS tool would compute
15 different scenarios for this model. 15 scenarios result in the simulation
suite size reduction of 96.9%.

To demonstrate, let us consider the learned model of the circuit with 10

series of batteries, resistors, and bulbs. Suppose that for some component,
eg. battery3, we did not run a simulation where it states was set to empty.
Therefore, battery3(empty) will never be a diagnosis, as it is not found in
the generated model. We can mitigate this problem by stating that ACTS
should generate a simulation suite with a maximum of 2 faults. We have 30

components, each with 3 fault modes, that would then result in 30 × 3 = 90

single fault and (90
2) double fault simulations, resulting in 4095 simulation

scenarios. If for each simulation we need half a second, we would be able to
automatically generate the model in just above 30 minutes.

This example considers inputs and parameters constant. If we have to deal
with a large number of parameters and input values we may experiment
with different constraints and relations when creating the mixed level cov-
ering array which determines simulation parameters. Additionally, once a
model has been generated we can manually extend it by adding rules which
either further describe the model or state impossibilities.

78

5. Conclusion and Future Work

5.1. Conclusion

In this thesis, we presented a framework that supports designers in the
implementation of model-based diagnosis for cyber-physical systems appli-
cations. Interaction with the Modelica simulation models allows the designer
to cover a multitude of systems domains.

CatIO supports the designer in the process of developing models used for
both consistency-based and abductive diagnosis. Consistency-based diagno-
sis models can be expressed by expressing the behavior of the system with
propositional logic, whereas for the abductive models’ rules are expressed
as a set of Horn clauses by the PROLOG-like syntax. Developed models
can be tested by providing observations manually or they can be tested by
obtaining observations from the simulation scenarios. Automatic generation
of simulation scenarios through the combinatorial exploration of all possible
faults and inputs which are used in a concrete instance. By obtaining the
observations from some Modelica simulation scenarios investigated with
CatIO, a designer can quantitatively assess the diagnostic capabilities of a
model early on during its development.

CatIO can interact with the simulation bidirectionally by reading and writ-
ing data of the simulation. From the simulations, observations used for
diagnostic reasoning are obtained. Writing data to the simulation is used
for the implementation of the external controller. This controller makes
use of all available data (results of the diagnosis and current values of
the simulation) and can react to them via dynamically defining the future
inputs to the simulation. Concurrent development of both repair actions
and diagnosis models can foster faster development of the diagnosis model
which is able to compute diagnosis (with respect to the observations) which

79

5. Conclusion and Future Work

contains enough information (about the faults) so that the controller can
invoke the right actions.

Oftentimes the simulation models are available but the development of
the diagnostic model from scratch may prevent the implementation of
model-based diagnosis in a real-world project. Therefore CatIO can use
the concept of the fault injection and simulation to automatically generate
abductive models. Such automatically generated models can be investigated
in Modelica simulations of the CPS to assess their diagnostic capabilities.
Automatically generated models can be manually extended by stating phys-
ical impossibilities or additional behavior, which can lead to improved
diagnostic capabilities.

The graphical user interface contains useful features that ease the develop-
ment of diagnosis models as well as extraction of all needed data from the
Modelica models. Furthermore, the manual and automatic creation of the
simulation scenarios is supported by the graphical user interface.

Aside from CatIO, a framework that connects simulations and diagnosis is
not known to the author and supervisors, and our architectural concept was
positively accepted and it resulted in a publication “CatIO - A Framework
for Model-Based Diagnosis of Cyber-Physical Systems” at 25th International
Symposium on Methodologies for Intelligent Systems.

5.2. Future Work

The present version of CatIO is fully compatible with Modelica models,
but since most modeling environments like MATLAB Simulink or Dymola
provide an option to export the simulation/model to a functional mock-up
interface, integration with other modeling languages should be straightfor-
ward. Special attention would have to be put to ”input-oriented models”,
to check how to achieve the same functionality with other modeling lan-
guages.

In this thesis, a framework is presented in Java. However, an interesting
approach would be to re-implement concepts presented in this thesis in
Modelica itself (as an extension of OMEdit editor). OMEdit is a graphical

80

5.2. Future Work

editor for Modelica. By adding the simple functionality of the encoder, which
is easily achievable in Modelica, we could apply diagnostic reasoning to all
simulations. Implementation of concepts found in this thesis can be done
in the Modelica language itself. By doing so Modelica would have a self-
contained environment used for the development of the simulations with
model-based reasoning capabilities. The same holds for specific simulators
used by the automotive or aerospace industry.

Extensions of modeling languages used for the creation of a diagnosis model
may be considered. An example of the helpful extension of the modeling
language would be the ability to define the behavior of each component
with the function which defines inputs and outputs and their relation. This
extension could shorten the development time of the diagnostic models and
make them easier to understand.

CatIO’s graphical user interface eases the tasks of data extraction, simulation
generation, and modeling. An extension to the GUI in which a user can
implement Encoder and Diff functions in a domain-specific language (to
avoid the need for specific programming language) would make CatIO com-
pletely usable from GUI. Such an extension of the GUI would enable easier
and faster validation of models, as well as ease the use of the framework for
non-programmers.

Evaluation of the framework in a university course that deals with simula-
tions and model-based diagnosis would provide valuable input to further
improve the functionalities, documentation, and structure of the framework.
Such evaluation was planned for the summer semester of 2020, but due to
the extraordinary global situation, it was postponed.

81

Appendix

83

Appendix A.

Examples

A.1. ModelData from JSON file

{
"componentsToRead":[

{
"name":"leftWheel.i",

"type":"DOUBLE"

},
{

"name":"leftWheel.o",

"type":"DOUBLE"

},
{

"name":"rightWheel.i",

"type":"DOUBLE"

},
{

"name":"rightWheel.o",

"type":"DOUBLE"

}
],

"modeAssigmentVars":[

{
"name":"leftFaultType",

85

Appendix A. Examples

"values":[

"ok",

"faster",

"slower"

],

"type":"ENUM",

"originalName":"leftFaultType"

},
{

"name":"rightFaultType",

"values":[

"ok",

"faster",

"slower"

],

"type":"ENUM",

"originalName":"rightFaultType"

}
],

"inputs":[

{
"name":"leftWheelInput",

"values":[

"2",

"4",

"8"

],

"type":"DOUBLE",

"originalName":"leftWheelInput"

},
{

"name":"rightWheelInput",

"values":[

"2",

"4",

"8"

],

86

A.2. Simulation Scenario defined in JSON

"type":"DOUBLE",

"originalName":"rightWheelInput"

}
],

"param":[

]

}

A.2. Simulation Scenario defined in JSON

{
"scenarioId": "first",

"timeCompMap": {
"0": [

{
"name": "leftFaultType",

"type": "ENUM",

"value": "ok"

},
{

"name": "rightFaultType",

"type": "ENUM",

"value": "ok"

},
{

"name": "rightWheelInput",

"type": "DOUBLE",

"value": "3"

},
{

"name": "leftWheelInput",

"type": "DOUBLE",

"value": "3"

87

Appendix A. Examples

}
],

"5": [

{
"name": "leftFaultType",

"type": "ENUM",

"value": "faster"

}
],

"10": [

{
"name": "leftFaultType",

"type": "ENUM",

"value": "ok"

}
]

}
}

88

A.3. Diagnosis and Repair Example

A.3. Diagnosis and Repair Example

Figure A.1.: Extraction of data.

Listing A.1: Repair Example

publ ic c l a s s RepairRobot implements C o n t r o l l e r {
p r i v a t e FmiConnector fmiConnector ;
p r i v a t e i n t l e f t F a s t e r S t e p = 4 ;

@Override
publ ic i n t performAction (FmiConnector fmiConnector ,

L i s t<Str ing> diagnos is) {
t h i s . fmiConnector = fmiConnector ;
f o r (S t r i n g diag : d iagnos is) {

i f (diag . equals (”AbLeftWheel”))
re turn repairLeftWheel () ;

i f (diag . equals (”AbRightWheel”))

89

Appendix A. Examples

re turn repairRightWheel () ;
i f (diag . equals (” f a s t e r (le f tWheel) ”)) {

re turn compensateLeftFaster () ;
}
/// . . .

}
re turn compensateLeftFaster () ;

}

p r i v a t e i n t repairLeftWheel () {
// to r e p a i r a component we simply put i t s t a t e to

”ok ” , which always corresponds to 1

fmiConnector . writeVar (” l e f t F a u l t T y p e ” , 1) ;
re turn 0 ;

}

p r i v a t e i n t repairRightWheel () {
fmiConnector . writeVar (” r ightFaul tType ” , 1) ;
re turn 0 ;

}

p r i v a t e i n t compensateLeftFaster () {
// n o t i c e t h a t in t h i s example ins tead of wri t ing

values which correspond to wheel speed
// we can use wheel f a u l t types to achive same e f f e c t ,

of one wheel spinning f a s t e r , other slower e t c .
// note t h a t 1 always corresponds to ok s t a t e , 2 i s

f a s t e r , and 3 i s slower
i f (l e f t F a s t e r S t e p == 4) {

fmiConnector . writeVar (” l e f t F a u l t T y p e ” , 1) ;
fmiConnector . writeVar (” r ightFaul tType ” , 2) ;
re turn −−l e f t F a s t e r S t e p ;

}
e l s e i f (l e f t F a s t e r S t e p == 3) {

fmiConnector . writeVar (” l e f t F a u l t T y p e ” , 1) ;
fmiConnector . writeVar (” r ightFaul tType ” , 1) ;
re turn −−l e f t F a s t e r S t e p ;

}
e l s e i f (l e f t F a s t e r S t e p == 2) {

90

A.3. Diagnosis and Repair Example

fmiConnector . writeVar (” l e f t F a u l t T y p e ” , 1) ;
fmiConnector . writeVar (” r ightFaul tType ” , 2) ;
re turn −−l e f t F a s t e r S t e p ;

} e l s e i f (l e f t F a s t e r S t e p == 1) {
fmiConnector . writeVar (” l e f t F a u l t T y p e ” , 2) ;
fmiConnector . writeVar (” r ightFaul tType ” , 1) ;
re turn −−l e f t F a s t e r S t e p ;

}
e l s e {

// f i n n a l y s e t wheels to c o r r e c t s t a t e
repairRightWheel () ;
repairLeftWheel () ;
re turn −−l e f t F a s t e r S t e p ;

}
}

}

Listing A.2: Main class for repair example

publ ic c l a s s ConsistencyMain {
publ ic s t a t i c void main (S t r i n g [] args) {

S t r i n g inputModelRobot =
”FMIs/ERobot . SubModel . InputSimpleRobot . fmu” ;

S t r i n g pathToSimpleModel = ”simpleModel . t x t ” ;
S t r i n g pathToScenarios = ” s impleScenar ios . j son ” ;
S t r i n g pathToModelData = ” simpleRobot . j son ” ;

// Robot data e x t r a c t e d from JSON
ModelData modelData = U t i l . modelDataFromJson (pathToModelData) ;
// Set values to be p l o t t e d
modelData . s e t P l o t V a r i a b l e s (” d i f f D r i v e . x” , ” d i f f D r i v e . y”) ;
// Set c o n t r o l l e r which w i l l perform r e p a i r a c t i o n s
modelData . s e t C o n t r o l l e r (new RepairRobot ()) ;
// Connect everything together
ConsistencyDriver cons i s tencyDr iver =

ConsistencyDriver . bui lder ()
. pathToFmi (inputModelRobot)
. model (new CbModel (pathToSimpleModel))
. encoder (new SimpleCarEncoder ())
. modelData (modelData)

91

Appendix A. Examples

. numberOfSteps (2 0)

. s imula t ionStepS ize (1)

. bui ld () ;

// Load s imulat ions from f i l e
L i s t<Scenario> s c e n a r i o s =

U t i l . scenariosFromJson (pathToScenarios , modelData) ;
// Run diagnos is and i f p o s s i b l e r e p a i r from s c e n a r i o 0

cons i s tencyDr iver . runDiagnosis (ConsistencyType . STEP ,
s c e n a r i o s . get (0)) ;

}
}

Listing A.3: Encoder and Diff for automatic generation of abductive model.

publ ic c l a s s StrongFaultAbEncoder implements Encoder {
@Override
publ ic L i s t<Str ing> encodeObservation (Map<Str ing , Object> obs)
{

Lis t<Str ing> encodedObservation = new ArrayList <>() ;
Double rightWheelInput = (Double) obs . get (” rightWheel . i ”) ;
Double rightWheelOutput = (Double) obs . get (” rightWheel . o”) ;
Double lef tWheel Input = (Double) obs . get (” le f tWheel . i ”) ;
Double leftWheelOutput = (Double) obs . get (” le f tWheel . o”) ;

i n t wantedDir = Double . compare (rightWheelInput ,
le f tWheel Input) ;

i n t a c t u a l D i r = Double . compare (rightWheelOutput ,
leftWheelOutput) ;

i f (wantedDir == 0)
encodedObservation . add (” wantedDirection (s t r a i g h t) ”) ;

e l s e i f (wantedDir == 1)
encodedObservation . add (” wantedDirection (r i g h t) ”) ;

e l s e
encodedObservation . add (” wantedDirection (l e f t) ”) ;

i f (a c t u a l D i r == 0)
encodedObservation . add (” a c t u a l D i r e c t i o n (s t r a i g h t) ”) ;

e l s e i f (a c t u a l D i r == 1)

92

A.3. Diagnosis and Repair Example

encodedObservation . add (” a c t u a l D i r e c t i o n (r i g h t) ”) ;
e l s e

encodedObservation . add (” a c t u a l D i r e c t i o n (l e f t) ”) ;

i f (! r ightWheelInput . equals (rightWheelOutput))
encodedObservation . add (” notEqualInOut (r i g h t) ”) ;

e l s e
encodedObservation . add (”EqualInOut (r i g h t) ”) ;

i f (! le f tWheel Input . equals (leftWheelOutput))
encodedObservation . add (” notEqualInOut (l e f t) ”) ;

e l s e
encodedObservation . add (”EqualInOut (l e f t) ”) ;

re turn encodedObservation ;
}

}

publ ic c l a s s RobotDiff implements D i f f {
@Override
publ ic Set<Str ing> encodeDiff (L i s t<Lis t<Str ing>> corr ,

L i s t<Lis t<Str ing>> f a u l t y) {
Set<Str ing> d i f f = new HashSet<>() ;
f o r (i n t i = 0 ; i < corr . s i z e () ; i ++) {

// as seen in encoder , p r e d i c a t e s are
// wanted d i r e c t i o n
// a c t u a l d i r e c t i o n
// i s l e f t wheel input equal to output
// i s r i g h t wheel input equal to output
S t r i n g corrWantedDir = corr . get (i) . get (0) ;
S t r i n g corrActualDir = corr . get (i) . get (1) ;
S t r i n g corrRightWheel = corr . get (i) . get (2) ;
S t r i n g corrLeftWheel = corr . get (i) . get (3) ;

S t r i n g faultyWantedDir = f a u l t y . get (i) . get (0) ;
S t r i n g fau l tyActua lDir = f a u l t y . get (i) . get (1) ;
S t r i n g faultyRightWheel = f a u l t y . get (i) . get (2) ;
S t r i n g faul tyLef tWheel = f a u l t y . get (i) . get (3) ;

93

Appendix A. Examples

// check i f a c t u a l d i r e c t i o n s of c o r r e c t and f a u l t y
s imulat ions are same

i f (! corrActualDir . equals (fau l tyActua lDir)) {
d i f f . add (corrWantedDir) ;
d i f f . add (fau l tyActua lDir) ;

}
// add a wheel which e x e r t s d i f f e r e n t behaviour
i f (! corrRightWheel . equals (faultyRightWheel))

d i f f . add (faultyRightWheel) ;
i f (! corrLeftWheel . equals (faul tyLef tWheel))

d i f f . add (faul tyLef tWheel) ;
}
re turn d i f f ;

}
}

94

A.4. Circuit Encoder and Diff Implementation

A.4. Circuit Encoder and Diff Implementation

Listing A.4: Implementation of Encoder

publ ic c l a s s Circui tEncoder implements Encoder {
@Override
publ ic L i s t<Str ing> encodeObservation (Map<Str ing , Object> obs) {

Lis t<Str ing> observat ions = new ArrayList <>() ;
f o r (i n t i = 0 ; i < obs . values () . s i z e () ; i ++) {

S t r i n g bulbId = ”b” + (i + 1) + ” . on” ;
i f ((Boolean) obs . get (bulbId)) {

observat ions . add (” bulb ” + (i + 1) + ” ON”) ;
} e l s e {

observat ions . add (” bulb ” + (i + 1) + ” OFF”) ;
}

}
re turn observat ions ;

}
}

Listing A.5: Example of automatic generation of diagnostic model

publ ic c l a s s CircuitsMain {
publ ic s t a t i c void main (S t r i n g [] args) throws IOException {

S t r i n g pathToCircuitFmi = ”FMIs/SC Example1 . fmu” ;
S t r i n g pathToModelData = ” s i n g l e C i r c u i t . j son ” ;
ModelData c i r c u i t D a t a = U t i l . modelDataFromJson (pathToModelData) ;

AbductiveModelGenerator abductiveModelGenerator = new
AbductiveModelGenerator (pathToCircuitFmi , c i r c u i t D a t a , new
C i r c u i t D i f f ()) ;

abductiveModelGenerator . setEnc (new Circui tEncoder ()) ;

// mixed l e v e l covering array w i l l be automat i ca l ly generated
without any c o n s t r a i n t s

// params f o r generate model are number of steps , s tep s i z e and
f a u l t i n j e c t i o n step

abductiveModelGenerator . generateModel (5 0 , 0 . 5 , 20) ;
AbductiveModel learnedModel =

abductiveModelGenerator . getAbductiveModel () ;

95

Appendix A. Examples

System . out . p r i n t l n (learnedModel . getRules ()) ;
learnedModel . modelToFile (” s i n g l e C i r c u i t . t x t ”) ;

}
}

96

Bibliography

[1] Armin Biere. “PicoSAT Essentials.” In: JSAT 4 (May 2008), pp. 75–97.
doi: 10.3233/SAT190039 (cit. on p. 45).

[2] T. Blochwitz et al. “Functional Mockup Interface 2.0: The Standard
for Tool independent Exchange of Simulation Models.” In: Sept. 2012.
doi: 10.3384/ecp12076173 (cit. on p. 27).

[3] Luca Console and Pietro Torasso. “Integrating Models of Correct
Behavior into Abductive Diagnosis.” In: Proceedings of the European
Conference on Artificial Intelligence (ECAI). Stockholm: Pitman Publish-
ing, Aug. 1990, pp. 160–166 (cit. on p. 19).

[4] Franz Wotawa Edi Muškardin Ingo Pill. “CatIO - A Framework for
Model-Based Diagnosis of Cyber-Physical Systems.” In: 2020 (cit. on
p. 2).

[5] Gerhard Friedrich, Georg Gottlob, and Wolfgang Nejdl. “Hypothesis
Classification, Abductive Diagnosis and Therapy.” In: Proceedings of
the International Workshop on Expert Systems in Engineering. Vienna:
Springer Verlag, Lecture Notes in Artificial Intelligence, Vo. 462, Sept.
1990 (cit. on p. 19).

[6] Peter Fritzson. Principles of object-oriented modeling and simulation with
Modelica 3.3: a cyber-physical approach. John Wiley & Sons, Dec. 2014

(cit. on pp. 3, 29).

[7] Christopher S. Gray et al. “An Abductive Diagnosis and Modeling
Concept for Wind Power Plants.” English. In: International Workshop
on Principles of Diagnosis. ., 2014, pp. 404–409 (cit. on p. 2).

[8] R. Greiner, B. A. Smith, and R. W. Wilkerson. “A Correction to the
Algorithm in Reiter’s Theory of Diagnosis.” In: Artificial Intelligence
41.1 (1989), pp. 79–88 (cit. on p. 17).

97

https://doi.org/10.3233/SAT190039
https://doi.org/10.3384/ecp12076173

Bibliography

[9] J. de Kleer and B. C. Williams. “Diagnosing Multiple Faults.” In:
Artificial Intelligence 32.1 (1987), pp. 97–130 (cit. on pp. 11, 14).

[10] Benjamin Kuipers and Jerome P. Kassirer. “Causal Reasoning in
Medicine: Analysis of a Protocol.” In: Cognitive Science 8.4 (1984),
pp. 363–385. doi: 10.1207/s15516709cog0804_3. url: https://
onlinelibrary.wiley.com/doi/abs/10.1207/s15516709cog0804_3

(cit. on p. 13).

[11] A. Metodi et al. “Compiling Model-Based Diagnosis to Boolean Satis-
faction.” In: AAAI Conference on Artificial Intelligence. 2012, pp. 793–799

(cit. on p. 16).

[12] I. Nica et al. “The Route to Success - A Performance Comparison of
Diagnosis Algorithms.” In: International Joint Conference on Artificial
Intelligence (IJCAI). 2013, pp. 1039–1045 (cit. on p. 16).

[13] I. Pill and T. Quaritsch. “An LTL SAT Encoding for Behavioral Di-
agnosis.” In: Int. Workshop on the Principles of Diagnosis. 2012 (cit. on
p. 15).

[14] I. Pill and T. Quaritsch. “RC-Tree: A variant avoiding all the redun-
dancy in Reiter’s minimal hitting set algorithm.” In: IEEE Int. Symp.
Software Reliability Engineering Workshops (ISSREW). 2015, pp. 78–84.
doi: 10.1109/ISSREW.2015.7392050 (cit. on pp. 17, 18).

[15] I. Pill, T. Quaritsch, and F. Wotawa. “From Conflicts to Diagnoses: An
Empirical Evaluation of Minimal Hitting Set Algorithms.” In: 22nd Int.
Workshop on the Principles of Diagnosis. 2011, pp. 203–210 (cit. on p. 18).

[16] Ingo Pill and Franz Wotawa. “Fault detection and localization using
Modelica and abductive reasoning.” In: Diagnosability, Security and
Safety of Hybrid Dynamic and Cyber-Physical Systems. 2018, pp. 45–72.
isbn: 9783319749617 (cit. on pp. 22, 48).

[17] Ingo Pill and Franz Wotawa. “Model-Based Diagnosis Meets Combina-
torial Testing For Generating an Abductive Diagnosis Model.” English.
In: 28th International Workshop on Principles of Diagnosis (DX’17). Kalpa
Publications in Computing. United Kingdom: EasyChair Ltd, Jan.
2018, pp. 248–263. doi: 10.29007/svc7 (cit. on p. 49).

[18] “Predicate Logic.” In: Logic for Computer Scientists. 2008, pp. 41–107

(cit. on p. 8).

98

https://doi.org/10.1207/s15516709cog0804_3
https://onlinelibrary.wiley.com/doi/abs/10.1207/s15516709cog0804_3
https://onlinelibrary.wiley.com/doi/abs/10.1207/s15516709cog0804_3
https://doi.org/10.1109/ISSREW.2015.7392050
https://doi.org/10.29007/svc7

Bibliography

[19] R. Reiter. “A Theory of Diagnosis from First Principles.” In: Artificial
Intelligence 32.1 (1987), pp. 57–95 (cit. on pp. 11, 15).

[20] Raymond Reiter and Johan Kleer. “Foundations of Assumption-based
Truth Maintenance Systems: Preliminary Report.” In: Jan. 1987, pp. 183–
189 (cit. on p. 20).

[21] Stuart J. Russell and Peter Norvig. “Artificial Intelligence: A Modern
Approach.” In: 1995 (cit. on p. 33).

[22] Moamar Sayed-Mouchaweh. Diagnosability, Security and Safety of Hybrid
Dynamic and Cyber-Physical Systems. 1st. Springer Publishing Company,
Incorporated, 2018. isbn: 3319749617 (cit. on p. 1).

[23] Markus Stumptner and Franz Wotawa. “Diagnosing tree-structured
systems.” In: Artificial Intelligence 127.1 (2001), pp. 1–29. issn: 0004-
3702 (cit. on p. 47).

[24] Jeffrey M. Voas and Gary McGraw. Software Fault Injection: Inoculating
Programs against Errors. John Wiley & Sons, Inc., 1997 (cit. on p. 22).

[25] Andrew Whitmore, Anurag Agarwal, and Lida Xu. “The Internet
of Things—A survey of topics and trends.” In: Information Systems
Frontiers 17 (2015), pp. 261–274 (cit. on p. 1).

[26] Franz Wotawa. “Reasoning from first principles for self-adaptive and
autonomous systems.” In: Predictive Maintenance in Dynamic Systems –
Advanced Methods, Decision Support Tools and Real-World Applications.
Ed. by E. Lughofer and M. Sayed-Mouchaweh. Springer, 2019. doi:
10.1007/978-3-030-05645-2 (cit. on p. 2).

[27] L. Yu et al. “ACTS: A Combinatorial Test Generation Tool.” In: 2013
IEEE Sixth International Conference on Software Testing, Verification and
Validation. Mar. 2013, pp. 370–375. doi: 10.1109/ICST.2013.52 (cit. on
p. 46).

99

https://doi.org/10.1007/978-3-030-05645-2
https://doi.org/10.1109/ICST.2013.52

	Abstract
	Introduction
	Motivation
	Objectives and Scope
	Structure
	Running Example

	From Logic to Diagnosis
	Logic
	From Logic to Model
	From Model to Diagnosis
	Weak and Strong Fault Models
	Consistency Based Diagnosis
	Unsatisfiable Subset Extraction
	RC-Tree

	Abductive Diagnosis
	Assumption Based Truth Maintenance System

	Mixed level covering arrays
	Models and Simulation

	Design and Implementation of a Diagnosis Framework
	Workflow
	Front end
	Modelica Models
	Diagnosis Models
	Interfaces
	Drivers

	Back end
	Submodules

	Graphical User Interface
	Data extraction and scenario creators
	Modeling

	Code and Building/Running Instructions

	Usage and Examples
	Modeling the Differential Drive Robot
	Modeling in Modelica
	Diagnosis and Repair

	Automatic generation of abductive model
	Differential Drive Robot
	Automatic generation of RC-Circuits of various sizes

	Conclusion and Future Work
	Conclusion
	Future Work

	Examples
	ModelData from JSON file
	Simulation Scenario defined in JSON
	Diagnosis and Repair Example
	Circuit Encoder and Diff Implementation

	Bibliography

