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Abstract

In this master’s thesis, an approach for fully automatic brain tumor segmen-
tation is presented, utilizing a deep convolutional neural network trained with
synthetically generated data. In particular, this work focuses on the segmen-
tation of glioblastoma multiforme in MRI data. Medical image processing
is an interdisciplinary field of research, which combines a large spectrum of
knowledge from applied mathematics, computer science, engineering, statis-
tics and medicine. In clinical practice, brain tumor segmentation is one of the
most challenging tasks and the utility of manually obtained segmentations is
limited, due to them being subjective, time-consuming and not reproducible.
Following the success of deep learning methods in other real-world domains,
they are now also attracting increasing interest in the field of medical image
processing, since they provide an objective, robust and fast automated seg-
mentation technique. A large dataset and the associated ground truth data
are crucial for a high performance of deep learning based segmentation ap-
proaches, however, in domains like medicine, only limited data is available in
the majority of cases. For this thesis, MR images of 14 patients suffering from
glioblastoma multiforme were provided. Manual slice-by-slice segmentation
has been performed by clinical experts to obtain the corresponding ground
truth. Since such a small dataset is not sufficient to train a deep neural
network, an approach for generating brain MR images containing synthetic
tumors is presented. Furthermore, a modified U-Net architecture for auto-
matic segmentation of the lesion is introduced. The presented network was
trained solely with synthetic MRI data and was subsequently tested on real
MR images of patients suffering from glioblastoma multiforme. With the
proposed method, it was possible to obtain a Dice similarity coefficient of
0.824 and a Hausdorff distance of 9.002 on the test set.

Keywords: Deep Learning, Semantic Image Segmentation, Synthetic Brain
Tumor, Glioblastoma Multiforme, Convolutional Neural Networks, Magnetic
Resonance Imaging





Kurzfassung

In dieser Masterarbeit wird ein Ansatz zur vollautomatischen Hirntumorseg-
mentierung vorgestellt, bei dem ein tiefes, mit synthetisch erzeugten Daten
trainiertes neuronales Netzwerk verwendet wird. Insbesondere konzentri-
ert sich diese Arbeit auf die Segmentierung des Glioblastoma multiforme in
MRT-Bildern. Die medizinische Bildverarbeitung ist ein interdisziplinäres
Forschungsgebiet, das ein breites Spektrum an Kenntnissen aus der ange-
wandten Mathematik, der Informatik, dem Ingenieurwesen, der Statistik
und der Medizin vereint. In der klinischen Praxis ist die Segmentierung von
Hirntumoren eine der schwierigsten Aufgaben und der Nutzen manueller Seg-
mentierungen ist begrenzt, da diese subjektiv, zeitaufwändig und nicht repro-
duzierbar sind. Nach dem Erfolg von Deep-Learning-Methoden in anderen
Bereichen gewinnen diese nun auch im Bereich der medizinischen Bildverar-
beitung zunehmend an Bedeutung, da sie eine objektive, reproduzierbare und
schnelle vollautomatische Segmentierungstechnik bieten. Ein umfangreicher
Datensatz inklusive zugehöriger Segmentierungsmasken ist entscheidend für
die Leistungsfähigkeit von Deep-Learning-basierten Segmentierungsansätzen.
Im medizinischen Bereich sind jedoch in den meisten Fällen nur begren-
zte Datenmengen verfügbar. Für diese Arbeit standen MR-Aufnahmen von
14 Patienten mit Glioblastoma multiforme zur Verfügung. Eine manuelle
Slice-by-Slice Segmentierung wurde von klinischen Experten durchgeführt,
um die entsprechenden Segmentierungsmasken zu erhalten. Da solch ein
kleiner Datensatz allerdings nicht ausreicht, um ein tiefes neuronales Netz-
werk zu trainieren, wird ein Ansatz zur Erzeugung von synthetischen MR-
Bildern des Gehirns präsentiert, die künstlich generierte Tumore enthalten.
Darüber hinaus wird eine modifizierte U-Net-Architektur zur automatischen
Segmentierung der Läsion vorgestellt. Das Netzwerk wurde ausschließlich mit
synthetischen MRT-Daten trainiert und anschließend mit realen MR-Bildern
von Patienten mit Glioblastoma multiforme getestet. Mit dem präsentierten
Verfahren wurden am Test-Datensatz ein Dice-Koeffizient von 0,824 und ein
Hausdorff-Abstand von 9,002 erreicht.

Keywords: Deep Learning, Semantische Bildsegmentierung, Synthetischer
Hirntumor, Glioblastoma Multiforme, Convolutional Neural Networks, Mag-
netresonanztomographie
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1 Introduction

1.1 Motivation

Magnetic resonance imaging (MRI) is a non-invasive technique for produc-
ing detailed images of the human brain with good soft-tissue contrast and
is widely used in clinical studies and diagnostics [1]. Key aspects of clinical
neuro-oncology and diagnostic medicine in general are detection and local-
ization of lesions, diagnosis, treatment planning and monitoring treatment
response. It is vitally important to segment brain tumors before starting
any therapy, in order to ensure that solely tumor cells are destroyed during
treatment, while healthy brain tissue is left undamaged [2]. In daily clinical
practice, evaluation and interpretation of MR images is typically conducted
manually by medical experts, such as physicians or radiologists, who assess
MR images based on qualitative criteria (for example, characteristic hyper-
intense tissue occurance in post-contrast T1-weighted MR images), or by
relying on simple quantitative measures such as the largest axial diameter
of the tumor [3]. However, the survival rate of a patient can be signifi-
cantly improved by early and precise detection and localization of the lesion
and by accurate disease staging; hence, fully automatic image segmentation
tools would be of considerable value for improved primary diagnosis of brain
tumors, individual treatment plannig and evaluation of therapy results [4].
Segmentation of a lesion is usually the first step in an image processing chain
and affects all subsequent steps significantly.

Manual segmentation done by medical experts is labor-intensive and prone
to human error, misinterpretation and observer bias, which leads to intra-
and inter-observer variability [5]. Therefore, it would be of enormous value
to replace the current manual assessment with automatic segmentation tech-
niques that ensure highly accurate, fast and reproducible segmentation re-
sults to improve disease diagnosis, treatment planning, and enable large-scale
studies of the pathology [6]. However, automatic image segmentation, espe-
cially brain tumor segmentation, is one of the most complex tasks in medical
image analysis, since tumor structures may deviate substantially across pa-
tients with respect to shape, size, localization and extension [7]. Hence, the
effective application of strong priors is not possible [3].
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1.2 Objective

The aim of this thesis was to perform fully automatic brain tumor segmenta-
tion using a deep neural network architecture, which was solely trained with
synthetically generated MRI data.

Deep learning approaches have demonstrated immense success in computer
vision tasks in the past few years, outperforming many previous state-of-the-
art techniques, including fully automatic image segmentation. However, it
is important to note that the medical domain is different from many other
real world domains, since usually there are only limited data samples avail-
able. Compared to other databases that may contain millions of images,
medical databases often only contain image data of one or a few subjects.
Furthermore, no corresponding ground truth segmentation is available for
most medical datasets, since manual delineation is such a time-consuming
task.

Hence, one big challenge of using deep learning approaches for medical im-
age segmentation lies in augmenting the available dataset and training deep
architectures without overfitting the training examples. By generating syn-
thetic training data (MR images containing synthetic brain tumors), this
issue can be overcome.

The objective of this thesis is twofold:

1. Generation of synthetic MR images that comply with the basic features
of glioblastoma multiforme, as they are visible in post-contrast T1-
weighted brain MR images.

2. Implementation, modification and tuning of a deep neural network ar-
chitecture for semantic image segmentation. Training the deep network
using the generated synthetic MRI data and evaluating its performance
on real MR images of patients suffering from glioblastoma multiforme.
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2 Medical Background

2.1 Brief Overview of the Human Brain

The brain is the most complex organ of the human body and has the ability
to perform higher-order cognitive functions. Together with the spinal cord it
forms the central nervous system (CNS), which is responsible for most bod-
ily functions, including movement, awareness, thoughts, sensations, memory,
and speech [8]. The CNS can be divided into gray matter and white matter,
whereby gray matter mostly consists of neurons (cell body, dendrites, axon)
and white matter is primarily composed of myelinated axons (nerve projec-
tions) [9]. Furthermore, both types of brain tissue contain glial cells, which
ensure support and protection of neurons [10]. The type of fat in myelin,
which surrounds the axons in white matter, causes the characteristic whitish
color, whereas gray matter exhibits the natural grayish color of neurons and
glial cells, due to the absence of myelin [8]. Gray matter is mainly found in
the outer cortex of the brain, however, it can also be distributed in deeper
areas, such as the basal ganglia and midbrain, where groups of neurons form
functional units. White matter is predominantly found in the inner area of
the brain [9].

The brain is suspended in cerebrospinal fluid and can be subdivided into
three main parts: the cerebrum, the brain stem and the cerebellum [9] (see
figure 1).

Figure 1: Cerebrum, cerebellum and brain stem. Adapted from [10].
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The cerebrum, which is associated with higher-order brain function, can be
divided into left and right hemisphere, while each hemisphere can again be
subdivided into four different lobes, which are the frontal, parietal, temporal
and occipital lobe [10] (see figure 2). The corresponding regions of the two
cerebral hemispheres are connected via the corpus callosum, which contains a
bundle of nerve fibres. The outer layer of the cerebrum is called the cerebral
cortex and consists of the larger neocortex, which is only present in mammals,
and the smaller allocortex [8]. The cortex is strongly folded in order to
maximize the surface area of the brain and at the same time the number of
neurons [10].

Figure 2: Sections of the cerebrum: frontal lobe, parietal lobe, temporal lobe,
occipital lobe. Adapted from [10].

The cerebellum can also be divided into two hemispheres and is located
at the back of the brain, behind the brainstem and between the cerebral
hemispheres [8]. It is involved in a variety of tasks related to movement,
coordination and balance [9]. The cerebellar cortex is also highly folded, but
exhibits finer folds compared to the cerebral cortex. The brain stem is one of
the simplest parts of the human brain, but still one of the most important,
as it is responsible for basic vital functions, such as heartbeat, breathing and
blood pressure [10]. It consists of the midbrain, pons, and medulla and is
located directly above the spinal cord and below the cerebrum [8].

The brain is surrounded and protected against physical trauma by the skull
and, in contrast to any other organ, it is additionally protected by the so-
called blood-brain barrier, which allows to accurately regulate the exchange
of molecules, ions and cells between blood and brain [11]. This mechanism
protects the brain from toxins, pathogens and harmful substances, however,
it is still vulnerable to damage, disease, and infection [12].
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2.2 Gliomas

Gliomas are the most common and aggressive primary brain tumors in adults
and presumably develop from glial cells [3]. Glial cells, also known as neu-
roglia, provide nerve cells with nutrients and energy and help maintain the
blood-brain barrier [13].

Classification of gliomas is done according to the World Health Organiza-
tion (WHO) as astrocytoma, oligodendroglioma, mixed oliogoastrocytoma,
and ependymoma. Furthermore, the tumor grade is determined by the
histopathological impression based on the WHO grading system that de-
fines grades I to IV according to aggressiveness of the lesion, where grade I
refers to least agressive and grade IV to most agressive tumors [14]. Grade
and histopathological impression are usually associated with malignant po-
tential, response to treatment and survival rate [15].

• Grade I: non-malignant and slow-growing tumors, associated with
long-term survival

• Grade II: non-malignant or malignant tumors, rather slow-growing,
can recur as higher grade tumors

• Grade III: malignant tumors, often recur as higher grade tumors

• Grade IV: most aggressive malignant tumors, fast reproduction

Around 70% of all gliomas are of grade III or grade IV and are therefore
considered malignant gliomas [16].

Astrocytic tumors can be separated into two main groups that represent
circumscribed astrocytomas (grade I) and diffuse astrocytomas (grade II-IV).
Diffuse astrocytic tumors are prone to transform into grade IV astrocytomas,
which are also known as glioblastoma multiforme [17].
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2.3 Glioblastoma Multiforme

The most common type of glioma in adults is glioblastoma multiforme (GBM),
which corresponds to WHO astrocytoma grade IV. It is named for its histo-
pathological appearance and makes up approximately 55% of all gliomas [15].

GBMs can be categorized either as primary or secondary glioblastoma accord-
ing to their clinical representation. Approximately 90% of all glioblastomas
are of the primary type, which means that they develop very fast de novo
in older patients without evidence of a less malignant previous lesion [18].
In the majority of cases, patients show first symptoms less than six months
before diagnosis [15].

In contrast, secondary glioblastomas develop from low grade gliomas, such as
diffuse astrocytoma or anaplastic astrocytomas and usually occur in younger
patients [18]. In general, symptoms appear more than six months before
diagnosis. Secondary GBMs are typically located in the frontal lobe, show
less necrosis and usually carry a better prognosis. From a histological point
of view, primary and secondary glioblastomas are basically indistinguishable;
however, they are different in their genetic and epigenetic profiles [15].

Development of GBM could be associated with certain genetic abnormali-
ties, either inherited such as the Li-Fraumeni syndrome, or resulting from
mutation into an oncogene or inactivation of the so-called tumor-suppressor
gene p53 [17].

Treatment approaches for glioblastoma multiforme usually include chemother-
apy, radiation therapy and maximum resection of the lesion [16]. However,
the median survival rate for patients with glioblastoma multiforme is still
only approximately 15 months [19].

Therefore, fast and accurate segmentation and measurement of brain lesions,
such as the glioblastoma multiforme, is critical for diagnosis, treatment plan-
ning and for monitoring therapy response.

6



2.3.1 MRI Features of Glioblastoma Multiforme

In T1 contrast-enhanced MR images, glioblastomas appear as large heteroge-
neous mass in the supratentorial white matter and usually cause significant
tumor mass effect (see chapter 2.3.2). They can sometimes also occur near
the dura mater or in the corpus callosum, posterior fossa or spinal cord [17].
Typically, glioblastomas show a thick, irregular-enhancing margin with a cen-
tral area of necrosis, surrounded by large edema [20]. In post-contrast T1-
weighted MR images, enhancement of the tumor is most commonly present
and represents the uptake of gadolinium-based contrast agent in the lesion,
which leads to a bright appearance of the tumor wall. Intravascular, flow-
related enhancement as well as interstitial, permeability-related enhancement
is involved [21]. In contrast, the necrotic core appears as dark area in post-
contrast T1-weighted MRI data [20]. Some GBMs can also show small areas
of enhancement inside the margin, typically in irregular patterns that repre-
sent areas of surviving tumor cells within necrotic regions [21].

A schematic representation of a glioblastoma multiforme in an axial gadolinium-
enhanced T1-weighted MR image can be seen in figure 3.

Figure 3: Axial gadolinium-enhanced T1-weighted MR image showing the
irregular, heterogeneous tumor mass with enhancing margin and necrotic
core. Adapted from [21].
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2.3.2 Tumor Mass Effect

The vascular system of glioblastomas is unstructerd and highly permeable,
due to an overexpression of vascular growth factors, which in addition to
the fast and large expansion of the tumor, lead to strong inflammation, fluid
leakage and edema [22]. Due to the surrounding skull, it is not possible for
the brain to make room for a growing mass, like a glioblastoma. Therefore,
the tumor compresses and displaces the adjacent brain tissue, often leading
to fatal damage. This process is called the tumor mass effect [22]. The force
that is applied to the brain by a growing tumor is an outward radial force
that originates from the central tumor area and weakens by distance [23].

Figure 4 shows this effect caused by a glioblastoma multiforme. The defor-
mation and compression of the brain mass is clearly visible by looking at
the body of the right lateral ventricle. In a healthy brain the left and right
lateral ventricle are nearly symmetric.

Figure 4: Tumor mass effect in the brain, caused by glioblastoma. Data
source: J. Egger [24].
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3 Technical Background

3.1 Magnetic Resonance Imaging

Management and evaluation of brain tumors is usually performed by various
medical experts, such as medical oncologists, neurosurgeons, neurologists and
radiologists, who all heavily depend on imaging of the central nervous system
to diagnose and characterize lesions [25]. Magnetic resonance imaging is the
standard method for brain tumor imaging, since it provides a non-invasive
technique for producing detailed images of the human brain with good soft-
tissue contrast [1].

This section gives a conceptual overview of the principles of magnetic reso-
nance imaging.

The nuclear magnetic resonance phenomenon, which is the basis for mag-
netic resonance imaging, was independently discovered by Felix Bloch and
Edward Mills Purcell in 1946, for which they received the nobel prize in
physics. Magnetic resonance imaging (MRI) is a non-invasive medical diag-
nosis technique used to generate pictures from inner parts of the body. In
contrast to Computed Tomography (CT), it does not expose the patient to
harmful radiation [26].

Magnetic resonance imaging was initially called nuclear magnetic resonance
imaging and works based on the principle that protons in the human body
are able to absorb and emit radio frequency energy when subjected to an
external magnetic field [27]. MRI is a two-step process, where in the first
step the spin-orientation of a proton is manipulated by a variety of applied
strong magnetic fields and, in the second step, alterations of the proton’s
spin-orientation can be measured by a detector coil, due to interaction with
the protons magnetic field [26]. The signal of a single proton is diminutive,
however, the sum of all magnetic fields from all involved protons produces a
considerable signal, which can be detected [28].
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3.1.1 General Principle

The human body and living tissue in general consists of approximately 60%-
80% water. Therefore, typically hydrogen atoms are targeted in MRI to pro-
duce detectable radio-frequency signals [28]. All atomic nuclei with an odd
number of protons posses an intrinsic angular moment (often called spin) and
a magnetic dipole moment, which is proportional to the angular momentum
[26]. However, it is important to note that protons are not actually spinning,
instead, spin is a fundamental property of nature. When the magnetization
has a direction different from the main magnetic field, this leads leads to
precession of the proton spin around the field direction [27]; see figure 5.

Figure 5: The interaction of the proton’s spin with the magnetic field pro-
duces a torque, causing the nucleus to precess around the field direction B0.

Protons can be seen as small magnets that align along the external magnetic
field, either parallel or anti-parallel, and the resulting magnetic moment is
called net magnetization [27]. On average, more protons align in parallel
to the external magnetic field lines, since the anti-parallel direction requires
slightly more energy than the parallel direction [28]. This equilibrium value
leads to an NMR effect, however, a small non-vanishing spin excess is not
enough to guarantee that the signal can be detected. Therefore, the magne-
tization vector is rotated away from the direction of the main magnetic field,
which is called excitation [27].

The contrast of an MR image is determined by the relaxation time of a certain
tissue and the proton density [29]. Relaxation is the process of restoring the
equilibrium situation after excitation [28]. Water can either be free or bound
to the surface of macro-molecules, and the relaxation properties of a tissue
are determined by the corresponding interaction [27].
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MR scanners produce a strong, constant, homogeneous magnetic field with
common electric field strengths of 1.5 to 3 Tesla, which is used to align spins,
producing magnetization [27]. In figure 6, a typical MR scanner can be seen.

Figure 6: MR scanner.

It is important to note that MRI comprises a release of energy from the spin
system. According to Albert Einstein’s quantum mechanical description of
the emission of energy from atomic systems, the emission can either be in-
duced or spontaneous [30]. In MRI, energy emission must always be induced.
Therefore, RF (radio frequency) pulses are applied perpendicularly to the
main magnetic field, oscillating with a specific frequency that corresponds to
the resonance frequency (Larmor frequency) of nuclei [27]. The application
of such RF pulses results in a rotation of the net magnetization vector. By
varying duration and amplitude of the RF pulse, different flip angles can be
achieved. Additionally, a so-called gradient field is created by gradient coils
in x-, y- and z-direction, which minimally distort the main magnetic field in
a predictable way [29]. This leads to a slightly different resonance frequency
of protons as a function of their position. It is desired to achieve linear gra-
dients (linear change in field) that can be used for spatial encoding of the
investigated body by using frequency and phase properties [26]. The charac-
teristic knocking noise of an MR scanner is produced by the fast switching of
these coils. As soon as the excitation via the RF-pulse stops, relaxation sets
in, which leads to re-establishment of the equilibrium situation [27]. Excited
hydrogen nuclei emit a radio-frequency signal that can be measured using
RF receiver coils, which are placed near the investigated tissue [29]. The ob-
tained signal can subsequently be transformed into an image by using inverse
Fourier transformation. The rate at which excited hydrogen nuclei return to
the equilibrium situation defines the contrast between different tissue types
[27]. There is no standard image intensity scale in MRI, which may cause
difficulties in image display and analysis. The resulting intensity depends on
many factors like scanner settings and coil imperfections [29].
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3.1.2 Relaxation

Different tissues return to equilibrium state at different rates, defined by the
two independent relaxation times T1 and T2.

• T1 relaxation: Longitudinal relaxation or spin-lattice relaxation is
the process by which the net magnetization vector returns to its initial
maximum value in direction of the main magnetic field [26]. Time
constant T1 reflects the time required for the longitudinal component
of the net magnetization vector to regain about 63% of its maximum
value, see figure 7.

• T2 relaxation: Transverse relaxation or spin-spin relaxation is the
process by which the transverse components of the magnetization vec-
tor dephase [26]. Time constant T2 reflects the time required for the
transverse magnetization to decay to around 37% of its initial maxi-
mum value, see figure 8.

Figure 7: T1 relaxation process for
two different tissues.

Figure 8: T2 relaxation process for
two different tissues.

The relaxation rate depends on the local environment of hydrogen nuclei,
hence, different relaxation rates give information about the type of tissue of
a sample. It is possible to acquire T1-weighted or T2-weighted MR images,
as described in the following sections.
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3.1.3 T1-weighted images

To obtain a T1-weighted MR image, short repetition time TR (time from one
excitation pulse to the next one) and short echo time TE (time between the
RF excitation pulse and the peak of the signal induced in the coil) must be
used to enhance the T1 differences between tissues [28]. The magnetization
of each tissue is partially recovered before measuring, depending on the cor-
responding T1 time constant. The measurement is carried out by changing
the repetition time [26]. T1-weighted images are also called ”anatomy scans”
since they have a significant tissue contrast [28]. Fluids appear very dark,
water-based tissues are gray and fat-based tissues look very bright. In sum-
mary, it can therefore be said that tissues with long T1 times are darker than
tissues with short T1 times, see figure 9 left.

3.1.4 T2-weighted images

To acquire T2-weighted MR images, long repetition time TR and long echo
time TE must be used, which means that they take longer than T1-weighted
images, in fact the scan time directly depends on TR [28]. The magneti-
zation of each tissue is partially decayed before measuring, depending on
the corresponding T2 time constant. The measurement is carried out by
changing the echo time [26]. T2-weighted images have highest intensities for
fluids, whereas water-based and fat-based tissues appear gray. They are also
called ”pathology scans”, since aggregation of pathological fluid is signifi-
cantly brighter than dark normal tissue [28]. In general, it can be said that
tissues with long T2 time constants appear brighter than tissues with short
ones, see figure 9 right.

Figure 9: Left: Example of T1-weighted MR image. Right: Example of
T2-weighted MR image.
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3.1.5 Contrast Agents

MRI is very sensitive to pathological conditions, which means that abnormal-
ities can be easily spotted, however, it is not really specific, in the context of
differentiating between various pathologies [28]. Therefore, external contrast
agents can be used, which act to reduce the T1 time constant of the affected
tissue [26]. This helps to improve specificity.

Typically tissue enhancement takes place when vascular walls, which in
healthy condition are a barrier to large molecules, are leaky due to pathologi-
cal conditions. With intra-vascular agents the enhancement is usually visible
between blood and surrounding tissue. Contrast agents can also improve
image quality due to an increase of the signal-to-noise-ratio [28].

The most frequently used contrast media for brain tumor enhancement are
based on gadolinium chelates. Since free gadolinium is a highly toxic heavy
metal, the ion must be tightly bound or chelated to a molecular ligand to en-
sure high kinetic stability [31]. Gadolinium possesses a strong paramagnetic
susceptibility, which leads to T1 shortening in tissues where it accumulates
[26]. Consequently, these tissues will have enhanced intensity in post-contrast
T1-weighted MR images.

The contrast medium is usually injected intravenously and initially stays in
the vascular system, is then distributed into the extracellular space and fi-
nally excreted via the kidney; furthermore, there is the possibility of oral
preparation for gastro-intestinal imaging purposes [28].

In general, gadolinium-based contrast agents are considered safe, however, for
patients with severe renal impairment, a strong association between nephro-
genic systemic fibrosis (NSF) and gadolinium-containing contrast agents has
been found [32].

Healthy brain tissue is not enhanced by gadolinium agents, since the con-
trast medium cannot pass the intact blood-brain barrier. As opposed to
this, brain tumors, which are typically highly vascular, will appear brighter
on T1-weighted MR images, as the contrast agent will leak into abnormal
tissue via a pathologically permeable blood-brain barrier [28].
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3.2 Artificial Neural Networks

Biological neural networks are deemed to be the most well-organized infor-
mation processing systems, which are able to process high-level information
by interconnecting numerous simple computing elements called neurons [33].
One single neuron can only execute very simple tasks, such as responding to
an input signal; however, when an abundance of neurons is connected to a
network it is possible to perform highly complex tasks [34]. In the human
brain approximately 1011 neurons can be found, which communicate via a
dense connection network of synapses and axons [35].

Artificial neural networks (ANNs) are a machine learning technique, inspired
by the functionality of the human brain [36]. Although the concept of ANNs
is loosely based on biological neural networks, the key idea is not to build
an exact replication of its physiological counterpart, but instead to use the
knowledge regarding its functionality to solve highly complex problems [38].

ANNs are able to learn through experience instead of having fixed instruc-
tions to perform specific computations. They gather their knowledge by
finding patterns and relationships in data [37]. Comparable to their biolog-
ical counterpart, the basic building block of ANNs is the artificial neuron,
which is a simple mathematical model with three elementary sets of rules:
multiplication, summation and activation [39].

A visual comparison between biological and artificial neurons is shown in
figure 10. It can be seen that some conceptual similarities between the two
structures exist. Biological neurons have highly branched dendrites to re-
ceive signals, a cell body for information processing and an axon to send
signals protruding from the cell body. Artificial neurons have input nodes, a
processing stage and an output node.

Figure 10: Biological and artifical neurons. Adapted from [40].
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3.2.1 Feedforward Neural Networks

In feedforward artificial neural networks, information only flows in one direc-
tion, from input to output, and there are no feedback connections in which
outputs of the network are fed back into itself [41].

A feedforward neural network consists of input nodes, hidden nodes (not
mandatory) and output nodes. The number of network layers, types of acti-
vation functions and the number of connections between individual neurons
is not limited [39].

3.2.1.1 Perceptron

The perceptron is the earliest type of artificial neural network, developed
by F. Rosenblatt in 1957 [42], and represents the simplest form of feedfor-
ward network. It is based on the McCulloch-Pitts neuron and the Hebbian
learning rule for weight adjustment [43],[44]. As a linear classifier, it is only
capable of solving linearly separable problems.

As can be seen in figure 11, the perceptron consists of input nodes xi, ad-
justable connection weights wi, bias w0 and an output node y. The bias is
used to shift the decision boundary away from its origin. Since the percep-
tron has one single layer of output neurons, it is also known as single-layer
perceptron [33].

Figure 11: Perceptron with sigmoid activation function. Adapted from [45].
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Given a vectorized observation of inputs x with dimension D, the resulting
output y is obtained from an activation function f , by taking the weighted
sum of inputs xi [33], see formula 1.

y(x; θ) = f

 D∑
i=1

xiwi + w0

 = f(wTx + w0) (1)

where θ denotes the parameter set concatenated from adjustable connection
weight vector w and bias w0.

Typically, the connection weights of the perceptron are initialized to small
non-zero values. The perceptron can be trained by calculating the error
between the predicted output and the desired output and by adjusting the
connection weights accordingly. Therefore this algorithm represents a form
of gradient descent. The weights are only changed if an error occurs. This
training process is repeated until the classification of all inputs is completed.
If the input data is linearly separable, the algorithm converges and the deci-
sion hyperplane is placed between the two classes [45].

3.2.1.2 Multi-Layer Perceptron

As already mentioned in the previous section, the main limitation of a single-
layer perceptron is its linear decision boundary, despite the use of a non-linear
activation function. This limitation can be overcome by simply adding an
additional layer of neurons, known as hidden layer, between the input and
the output [33]. The described concept is implemented in the multi-layer
perceptron, which is the most widely used neural network and consists of at
least one input layer, one hidden layer and one output layer, representing a
generalization of the single-layer perceptron [34],[45]. Therefore, multi-layer
perceptrons can form arbitrarily complex non-linear decision boundaries and
are able to separate various input patterns [45].

It has been proven by K. Hornik, M. Stinchombe and H. White [46] that for
any continuous function f on a compact set K, there exists a feedforward
neural network with only one hidden layer of finite size, which uniformly
approximates f to within an arbitrary ε > 0 on K. In other words, a feed-
forward neural network with a single hidden layer is in theory capable of
approximating any continuous function to arbitrary accuracy. This state-
ment is known as the universal approximation theorem.
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An example of a multi-layer perceptron with one hidden layer and full inter-
connection can be seen in figure 12.

Figure 12: Multi-layer perceptron.

• Input Layer: A layer of
input neurons, which ob-
tain information from the
outside world and pass it to
the network for further pro-
cessing [45].

• Hidden Layer: A layer of
hidden neurons, which ob-
tain information from the
input layer (or other hid-
den layers) and process it.
All connections of the hid-
den layer are to other layers
within the network [45].

• Output Layer: A layer of
output neurons, which ob-
tain processed information
and pass information to the
outside world [45].

For a neural network with one hidden layer, the composition function can be
written as follows; the bias term is omitted for simplicity:

yk(x; θ) = f (2)

 M∑
j=1

W
(2)
kj f

(1)

 D∑
i=1

W
(1)
ji xi


 (2)

where θ = {W (1) ∈ RMxD,W (2) ∈ RKxM}, D denotes the input dimension,
M is the number of nodes in the hidden layer, K represents the output di-
mension and the subscript represents a layer index.

If the nodes were linear elements, then a single-layer perceptron with suitable
weights could equally well be used instead of a multi-layer perceptron [45].
Hence it can be concluded that the great potential of multi-layer neural
networks further lies in the utilization of non-linear activation functions.
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3.2.2 Deep Learning

Deep learning in general refers to deep feedforward neural networks. The
phrase ”deep” indicates that the network contains several hidden layers to
learn representations of data with multiple levels of abstraction. However,
there is no precise definition of how many hidden layers a neural network
must contain to be considered ”deep” [47].

In the context of machine learning, the term ”deep learning” was first used
by R. Dechter in 1986 and was introduced to the field of artificial neural
networks by I. Aizenberg et al. in 2000 [48],[49],[50].

It has been stated and proven that an artificial neural network with a single
hidden layer of finite size, is able to approximate any continuous function to
an arbitrary accuracy. Moreover, it has been proven that a neural network
with two hidden layers of finite size is capable of approximating any function
to an arbitrary accuracy [46],[51]. This raises the question why deeper neural
networks with more hidden layers are commonly used.

The main advantage of using a deep neural network lies in its node-efficiency,
which means that a shallow network would need much more total nodes (very
large hidden layers) compared to a deeper one in order to approximate a com-
plex function to the same accuracy [36]. Consequently, also a smaller dataset
is required to train a deep network, due to the lower number of trainable
parameters [36],[52]. Therefore, it is much more efficient to solve complex
problems with deeper architectures.

However, it has not been possible to use the full potential of deep neural
networks for a long time, due to the vanishing gradient problem - identified
1991 by S. Hochreiter [53] - which caused very slow training when more than
one or two hidden layers were used [36]. The vanishing gradient problem
occurs due to the nature of the backpropagation algorithm, where errors are
propagated backwards through the network to perform weight updates, see
section 3.2.5. With standard activation functions, the cumulative backprop-
agated error decays exponentially with the number of layers, due to repeated
multiplication [47]. A simple solution to this issue is to use the rectified lin-
ear activation function (ReLU, see chapter 3.2.4), which does not reduce the
error when it is propagated back through the network, as proposed 2011 by
Glorot et al. [54].
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Deep learning is a form of representation learning (feature learning), which
means that the network is fed with raw data and automatically discovers the
required features [55]. Deep neural networks learn such representations of
the input by learning levels of abstraction with increasing complexity. Since
information is passed through the network, lower level abstractions of shallow
layers give rise to higher level abstractions of deeper layers [56], see figure 13.

Figure 13: Levels of abstraction in a deep neural network.

Convolutional neural networks, which are discussed in the following section,
are a prime example for deep neural networks.
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3.2.3 Convolutional Neural Networks

A main property of image data is the spatial correlation between pixels, which
means that neighbouring pixels are more strongly correlated than distant
ones; however, in fully connected multi-layer neural networks, as discussed
in the previous sections, the complex 2D spatial structure of images is not
exploited due to vectorization of the input [34],[57]. Furthermore, due to the
full connectivity between neurons in a traditional multi-layer neural network,
the number of connection weights increases rapidly when larger images are
processed [41]. Therefore, the use of fully connected neural networks is im-
practical for real-world image processing tasks.

One way to overcome these problems is to use a convolutional neural net-
work (CNN), which is a special kind of deep feedforward neural network,
widely used in the field of computer vision [58]. The three main mechanisms
incorporated into CNNs are: local receptive fields, weight sharing, and sub-
sampling (pooling) [57]. Besides, convolution allows working with inputs of
variable size [41]. A typical CNN is composed of three main types of layers:
convolutional layers, pooling layers, and fully-connected layers. A common
architecture for a convolutional neural network can be seen in figure 14.

Figure 14: The structure of a CNN, consisting of convolutional, pooling, and
fully-connected layers. Adapted from [59]
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In a convolutional layer, units are organized in so called feature maps, as
illustrated in figure 14. Usually, there are several of these maps in one layer
that allow to detect multiple features of an image [57]. Each unit in such
a feature map receives input from a small subregion of the previous layer,
known as receptive field [60]. Therefore, each neuron only has to process
information of a local patch. All units in a feature map are constrained to
share the same set of weight values (also called filter bank), which drastically
reduces the degrees of freedom of the model. Different feature maps in a
convolutional layer use different filter banks [56]. Input values of a local
patch are linearly combined using the corresponding filter bank and a bias,
and subsequently the result is passed through a non-linearity [57]. Using
a non-linear activation function is essential, since cascading linear systems,
such as convolutions, only results in another linear system; however, data
that should be modeled is typically non-linear [33]. In modern convolutional
neural networks usually the ReLU (Rectified Linear Unit) activation function,
which is described in detail in chapter 3.2.4, is used [61]. All units of a
feature map are able to detect the same pattern, but at different locations of
the image. The assessment of the activations of each unit corresponds to a
convolution of the image pixels with a filter-kernel consisting of the learned
weight values, hence the name of the network [57].

In figure 15, the mathematical principle of a convolution operation is illus-
trated. In order to calculate each resulting value of the convolution, the
filter-kernel slides across the input image with a certain shift size, usually
referred to as stride. For example, when the filter kernel is moved one pixel
at a time, then the stride size is one. In practice, however, the convolu-
tion of CNNs is done with larger strides, which is equivalent to performing
down-sampling of the image after a regular convolution [33].

Figure 15: Mathematical principle of a convolution operation.
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Pooling (subsampling) layers are used to merge semantically similar features
into one [56]. The inputs of pooling layers are established by the outputs of
previous convolutional layers. In pooling layers, each feature map is repre-
sented by a plane of units and each unit receives input from a local patch
(receptive field) of the corresponding feature map of a convolutional layer
[57]. Max pooling is the most commonly used type of pooling, which com-
putes the maximum of a receptive field in a feature map, see figure 16. Pool-
ing units are typically shifted by more than one row or column, leading to
a dimensionality reduction of the representation and creating invariance to
minor shifts and distortions [56]. Since pooling layers progressively reduce
the spatial size of feature maps, the number of parameters is also reduced,
leading to less computational effort involved in the network [33].

Figure 16: Max-Pooling.

An illustration of a convolutional layer and a pooling layer applied to an
input image can be seen in figure 17.

Figure 17: Convolutional layer and pooling layer applied to an input layer.

Several stages of convolution, non-linear activation functions and pooling
layers are stacked, followed by more convolutional layers and finally one or
two fully-connected layers [56]. Fully-connected layers are used to encode
position-dependent information and global patterns [36]. A softmax activa-
tion function can be used at the output layer to provide class probabilities,
see chapter 3.2.4.
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3.2.4 Activation Functions

Activation functions are a very important part of artificial neural networks,
since they introduce non-linearity to the model and thereby enable it to per-
form a non-linear mapping from input nodes to output nodes. This makes
the network capable of performing highly complex tasks. An artificial neural
network without an activation function would essentially be a linear regres-
sion model.

A linear activation function is typically used for output neurons in regres-
sion models, in order to provide the network with all real numbers; on the
contrary, for output neurons of classification models, a softmax function (gen-
eralization of the logistic function where the output can be interpreted as a
probability distribution over N different possible classes) is most commonly
used [36].

• Linear:

f(x) = α · x (3)

where α denotes the slope of the linear function. If α=1, the function
is called identity function. The range of the linear function is between
(−∞, ∞).

• Softmax:

fi(x) =
exi∑J
j=1 e

xj
∀i ∈ 1..J (4)

where x is a vector of dimension J . The softmax function squashes the
outputs of each node to be in the range of (0, 1).
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Regarding the activation functions of hidden neurons, a common choice is
either the hyperbolic tangent function or the logistic (sigmoid) function,
which both satisfy three desirable properties - continuous differentiability,
monotony, non-linearity [36],[45].

1. Continuous differentiability: This property is crucial to compute
gradients of error with respect to the connection weights and adjust
the weights accordingly using gradient descent methods [36].

2. Monotony: This property is important because a non-monotonic ac-
tivation function would introduce additional local minima in the pa-
rameter space, which hampers training [36].

3. Non-linearity: This property is necessary to introduce non-linearity
into the network, which allows to model non-linear patterns in the
training data [36].

The hyperbolic tangent and the logistic function can be written in the fol-
lowing form:

• Hyperbolic Tangent:

f(x) =
eαx − e−αx

eαx + eα−x
(5)

where α is a shape parameter of the function. The range of the hyper-
bolic tangent function is between (-1, 1).

• Logistic (Sigmoid):

f(x) =
1

1 + e−αx
(6)

where α is a shape parameter of the function. The range of the logistic
function is between (0, 1).
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Plots of the hyperbolic tangent function and the logistic (sigmoid) function
are provided in figure 18 and figure 19, respectively.

Figure 18: Hyperbolic tangent Figure 19: Logistic sigmoid

Both hyperbolic tangent and logistic sigmoid function suffer from the vanish-
ing gradient problem when the function values become either too high or too
low, since the corresponding derivative (gradient) becomes extremely small.
This can impede the training process, since gradient descent optimization
algorithms are used to adjust the connection weights. V. Nair and G. Hin-
ton [62] proposed a so-called rectified linear unit (ReLU) for hidden neurons
to solve this vanishing gradient problem. The functions takes a real-valued
input and thresholds it at zero, see figure 20. However, the ReLU function is
unbounded and not differentiable at x=0; therefore, in practice the gradient
at x=0 is set to either 0 or 1 and concerning the unboundedness, a regular-
ization technique can be used to limit the magnitude of the weights [33].

Figure 20: ReLU

• ReLU:

y(x) =

{
0, for x < 0

x, for x ≥ 0
(7)
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3.2.5 Training Neural Networks

The aim of training a neural network is to adjust the trainable parameters
θ, consisting of connection weights and biases, so that the network is able to
model the given input data in the best possible way.

The learning paradigm can be distinguished between supervised learning
(mapping an input to an output based on example pairs of input and desired
output values), unsupervised learning (inferring a function which describes
the organization of input data without giving any corresponding labels) and
reinforcement learning (learn how software agents are supposed to behave in
an environment in order to maximize a cumulative reward) [39]. Supervised
learning is the most common form of machine learning and is typically used
for pattern recognition and regression tasks. [56]. Furthermore, training
algorithms for neural networks can be roughly divided into two main cate-
gories, which are gradient-based and non-gradient-based methods. Currently
gradient-based techniques are most commonly used, because they typically
converge faster [36].

Since the aim of the training process is to find parameters θ that minimize
the difference between a desired pattern and the actual network output, the
learning problem can be formulated as the minimization problem of an error
function E(θ) [33]. The error function represents the distance between the
prediction and the desired output and is chosen according to the problem
definition [56]. For regression tasks a typical choice is the sum-of-squares er-
ror function (see formula 8), whereas for classification tasks the cross-entropy
function is a common choice (see formula 9 for binary classification and for-
mula 10 for multiclass classification) [57].

• Sum-of-squares error function:

E(θ) =
1

2

N∑
n=1

{y(xn,θ)− tn}2 (8)

where N is the number of observations x1, ..., xn with corresponding
target values t1, ..., tn, and y(xn,θ) denotes the network output for xn.
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• Binary cross-entropy error function:

E(θ) = −
N∑
n=1

{tnln(yn) + (1− tn)ln(1− yn)} (9)

where N is the number of observations x1, ..., xn with corresponding
target values t1, ..., tn, and yn represents y(xn,θ), which denotes the
network output for xn.

• Generalized cross-entropy error function:

E(θ) = −
N∑
n=1

K∑
k=1

tknln(yk(xn,θ)) (10)

where K denotes the number of classes; the binary target variables
tk ∈ {0, 1} have a 1-of-K coding scheme indicating the class, and the
network outputs are interpreted as yk(x,θ) = p(tk = 1|x).

The error function E(θ), which is a smooth continuous function of θ, can
be seen as a surface sitting over the weight space (parameter space), as
illustrated in figure 21. The smallest value of the error function is at a
point in parameter space where the gradient vanishes, such that ∇E(θ) = 0;
however, the error function usually has a strong non-linear dependence on
the parameters, which results in many local minima in addition to the global
minimum [57].

Figure 21: Error function E(θ). θA is a local minimum and θB is the global
minimum. At any point θC , the local gradient of the error function is given
by vector ∇E. Adapted from [57]
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There is no analytic solution of the parameter set that minimizes the error
function, due to it being highly non-linear and non-convex [33]. It may be
possible for small network architectures to perform an exhaustive search for
the ideal parameters which minimize E(θ), however for networks of reason-
able size more sophisticated methods, like using gradient information, have
to be used [36].

The simplest way to use gradient information is to perform weight updates
according to a small step in the direction of the negative gradient of the
error function, which is known as gradient descent optimization, since the
parameter vector is moved in the direction of the steepest descent [57]. The
gradient descent update can be formulated as follows:

θ(τ+1) = θ(τ) − η∇E(θ(τ)) (11)

where τ indicates the current iteration step, η denotes the learning rate (step
size) and∇E(θ(τ)) is the gradient of the error function at the current position.

The learning rate η is a hyper-parameter that controls the strength of pa-
rameter adjustment in each update step, with respect to the gradient of the
error function. Typically, the optimal learning rate is close to the largest
step size that does not cause divergence of the training criterion [63]. It
is common practice to use a decaying learning rate, which means that the
step size is rather large at the beginning and gradually decreases during the
training process.

The error function E(θ) is defined with respect to a training set; therefore,
in principle all training examples need to be processed in order to compute
the true gradient of the error function in each step [57]. However, gradient
descent optimization can vary with regard to the number of training exam-
ples used to compute ∇E(θ) [64]. Standard gradient descent, which uses the
whole training set at once, is known as batch gradient descent and has the
disadvantage that its convergence depends on the size of the training set [57].
Other common techniques are stochastic gradient descent (one training ex-
ample at a time), and mini-batch gradient descent (several training examples
at once), both providing the advantage that their convergence only depends
on the number of update steps and the richness of the training distribution;
furthermore, they converge much faster than batch gradient descent. [64].
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In feedforward neural networks the gradient can be computed by using the
so-called backpropagation algorithm [56]. The main idea of this algorithm,
which is often simply called backprop, is to feed back error information from
the output layer through all network layers [41].

Using backprop, the gradient of the error function E(θ) for a specific layer l
in a network consisting of L layers can be estimated as follows:

∂E

∂θ(l)
=

∂E

∂a(L)

∂a(L)

∂a(L−1) · · ·
∂a(l+2)

∂θ(l+1)

∂a(l+1)

∂θ(l)
∂a(l)

∂z(l)
∂z(l)

∂θ(l)
(12)

where a(L) = y, and a(l) and z(l) represent the activation function and pre-
activation function respectively of layer l [33].

The chain rule of calculus can be used to calculate derivatives of functions
composed of other functions with known derivatives; and the backpropaga-
tion algorithm calculates the chain rule highly efficiently by using a specific
order of operations [41]. Specifically, a vector of errors δ(k) is computed at
each layer k = l, l+ 1, ..., L−1, which is then propagated backwards through
the network [33].

Layer l receives an error vector δ(l+1) from layer l + 1 and updates it in the
following way:

δ(l) =
∂a(l+1)

∂z(l+1)
�

{
∂z(l+1)

∂a(l)
· δ(l+1)

}
= f ′

(
z(l)
)
�
{(
θ(l+1)

)T
· δ(l+1)

)
(13)

where � indicates an element-wise multiplication [33].

After the error vector is updated, the according gradient with respect to the
parameters in layer l can be computed as follows:

∂E(θ)

∂θ(l)
= δ(l)a(l) (14)
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The updated error vector is then sent to layer l−1 until the gradient vectors
of all layers are obtained [33]. Subsequently, the parameter set θ can be
updated as shown in formula 11, using:

∆E(θ) =

[
∂E

∂θ(1)
· · · ∂E

∂θ(l)
· · · ∂E

∂θ(L)

]
(15)

A graphical representation of the backpropagation algorithm in a network
consisting of L layers can be seen in figure 22.

Figure 22: Graphical representation of the backpropagation algorithm for a
network with L layers. Adapted from [33]

Using the backpropagation algorithm for convolutional neural networks is
as simple as for regular deep neural networks, allowing all parameters in all
filter banks to be adjusted [56].

When the model is entirely trained, the performance of the network has to
be evaluated on a so-called test set, which represents unseen data. This is
done in order to test the generalization ability of the network, which reflects
the ability to produce correct outputs for new inputs that were never seen
during the learning process [56]. Since deep neural networks are composed
of multiple non-linear hidden layers, which makes them extremely powerful
and flexible, they are prone to overfit training examples when limited train-
ing data is available; in this context overfitting refers to the fact that the
network captures sampling noise which exists in training data but not in test
data, even if it is drawn from the same distribution [65]. Overfitting results
in a low training error, but leads to a rather high test error, since the net-
work is too specialized to generalize beyond the training set [36]. Therefore,
one of the most important aspects of training a neural network is to avoid
overfitting, for example by using regularization methods.
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3.2.6 Regularization

Deep neural networks are able to learn very complex relationships between in-
puts and outputs; however, when training data is limited, the network starts
to model sampling noise and is not able to generalize from training samples
to the entire domain of unseen data, which is known as overfitting [65]. Reg-
ularization is a very important concept that helps to prevent overfitting by
controlling the complexity of a neural network [57].

• Early stopping: Very effective and easy regularization technique,
where the error of a validation set is monitored and the training process
is stopped as soon as the error starts to increase.

• Weight decay: In this technique an additional regularization term
is added to the loss function (error function), such that the result-
ing loss function consists of the data loss and an additional weight
regularization loss, which penalizes large weights. The aim of weight
regularization is to prefer local minima which have a simpler solution.
There are many different types of weight penalties, such as L1 and L2
regularization and soft weight sharing [65].

• Dropout: With this method neurons are randomly dropped (deac-
tivated) with a certain probability during the training process, which
helps to prevent undesirable dependence on the presence of specific
neurons. Due to the short-termed and random deactivation of neu-
rons, the method can be seen as training different networks at each
iteration with their connection weights shared. Hence, a huge number
of different network architectures is efficiently combined. During the
test phase, all neurons are used, but the weights are scaled to maintain
the same output range [33],[65].

3.2.7 Batch Normalization

Batch Normalization (BN) is a technique, which significantly speeds up con-
vergence and is also capable of improving generalization. It tackles the prob-
lem of the so-called internal covariate shift, which arises from continuous
change in the distribution of network activations during the training process
and slows down training. To address this issue, BN normalizes the activa-
tions of a layer in order to ensure that they stay within a small interval. This
normalization is performed with the running average of the mean-variance
statistics of each mini-batch. [33]
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3.3 Image Segmentation

Image segmentation is one of the most demanding problems in computer
vision, particularly in the field of medical image analysis [66]. The term
image segmentation refers to the process of partitioning an image into a set
of non-overlapping, semantically meaningful segments, which display spe-
cific attributes [67]. Typically, different segments indicate different objects
or parts of objects appearing in the given image. When the areas of inter-
est do not completely cover the image, one can perform segmentation into
foreground regions of interest and background regions of no interest [68]. A
segmentation result can either be an image of assigned labels defining each
segmented area or a set of contours representing the region boundaries [67].

An example of a simple segmentation task can be found in figure 23, where
coins in an image are segmented. On the left side, an image which contains
several coins is shown; on the right side, the corresponding segmentation
mask separating foreground (white) and background (black) can be seen.

Figure 23: Segmentation of coins. Left: an image containing several coins.
Right: corresponding segmentation mask indicating foreground (white) and
background (black).

Image segmentation is considered the most important part of medical image
processing, as it is used for many different applications, such as studying
anatomical structures or localizing pathologies, and is often the first step in
an image processing chain [69]. However, segmentation of medical images
is in general not trivial, due to imaging imperfections, noise corruption and
various image artifacts [67]. In the following sections, the most important
image segmentation methods for medical image analysis are discussed.
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3.3.1 Common Methods for Medical Image Segmentation

This section gives a brief overview of common methods for medical image seg-
mentation; in particular it addresses segmentation methods with application
to brain MR images and is adapted from [67].

• Manual segmentation:

Manual segmentation is performed by human experts, such as physi-
cians or radiologists, who segment and label 3D volumetric imaging
data by hand in a slice-by-slice manner. This segmentation method is
deemed to be very precise; however, manual image segmentation is a
very demanding and time-consuming task, which, according to several
intra- and interoperator variability studies, is highly prone to error.
Furthermore, manual segmentation results are practically impossible
to reproduce, even by a very experienced operator. Nonetheless, this
technique is still intensively used for ground truth delineation and eval-
uation of automated segmentation methods.

• Thresholding:

Thresholding is a segmentation method that uses the intensity his-
togram of an image to identify a threshold value τ , in order to separate
different regions of the image. It represents the simplest form of image
segmentation. There are various versions, such as single threshold-
ing, local threshold, multi-thresholding or adaptive thresholding. This
method is fast and computationally efficient, however, it does not in-
corporate spatial neighborhood information and is therefore sensitive
to intensity inhomogeneities and noise.

• Region growing:

This segmentation technique is a simple region-based method, which
extracts a connected group of pixels with similar intensity values from
an image. First, a seed point is set to a pixel that is known to belong
to the region of interest, either manually or automatically. After that,
the region growing algorithm checks every neighbouring pixel for its
intensity value and if it satisfies a predefined uniformity or homogeneity
criterion, the pixels are added to the growing region. The whole process
is repeated until there is no more change of the resulting area. This
method is highly sensitive to the initialization of the seed point.
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• Classification and Clustering:

Classification methods for image segmentation are pattern recognition
techniques that use training data (sample images with known labels)
to divide a feature space into several classes. This technique is rep-
resentative of supervised learning. Image features can be intensity
values, edge directions, texture or other image properties. Usually
multi-dimensional feature sets are used. A disadvantage of classification
methods is that manually segmented data is necessary as reference.

Clustering techniques are similar to classification techniques, however
they do not require reference data. Therefore, clustering is represen-
tative of unsupervised learning. This method groups a set of data
samples, so that samples in the same group are as similar as possible
(according to previously extracted features) and differ from samples in
other groups. This method iteratively estimates the properties of each
class and clusters data samples accordingly.

• Atlas-based methods:

An atlas is a template consisting of several manually segmented images
and can be seen as prior domain knowledge. If an atlas for a specific
area of interest is available, unseen images of this area can be seg-
mented without any additional cost. This technique is most commonly
used for the segmentation of anatomical brain images. The concept of
atlas-based methods is similar to classifier techniques, however, they
are implemented in the spatial domain. Usually, image registration
(alignment of atlas and image to be segmented) is required. After-
wards, the segmentation labels can be transformed to the target image.

• Deformable models:

Deformable models can either be used in 2D (active contours) or in
3D (active surfaces). They use parametric curves or surfaces, which
deform under the action of internal and external forces, to represent
region boundaries. An initial region boundary has to be provided (for
example by a rough manual segmentation), which is not too far from
the desired boundary. External forces are a function of the features of
the image and control the fit of the contour to the desired boundary.
Internal forces control the surface regularity.
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3.3.2 Deep Learning for Medical Image Segmentation

Deep learning approaches have demonstrated immense success in computer
vision tasks in the past few years, outperforming many previous state-of-
the-art techniques. Following the success of deep learning methods in other
real-world domains, they are now also attracting increasing interest in the
field of medical image segmentation, since they provide an objective, robust
and fast automated segmentation technique. Deep learning algorithms have
signi-ficantly benefited from the recent performance gains of graphics pro-
cessing units (GPUs), which allow the training of very deep and complex
models on large datasets. Regarding computer vision tasks, many of the lat-
est advancements are due to the application of convolutional neural networks
on modern GPUs [70]. Convolutional neural networks are typically used for
image classification tasks, where for each input image a single class label is
predicted, however, one of the most common tasks in medical image analysis
is semantic segmentation [71]. Conventional CNNs, as discussed in section
3.2.3, are not capable of semantic segmentation, since the spatial informa-
tion of an image is lost when the convolutional features are fed into the fully
connected layers of the network architecture [70].

An elegant approach to overcome this limitation is the so-called fully convo-
lutional neural network (FCN) proposed by J. Long et al. [72]. In FCNs the
final fully-connected layers are replaced by de-convolutional layers, which per-
form a transposed convolution to upsample the low-resolution feature maps
and thereby restore the original resolution of the input image while perform-
ing semantic segmentation [70]. A typical architecture of a FCN can be seen
in figure 24.

Figure 24: Typical architecture of a FCN. Adapted from [70].

A further advancement of the FCN is the U-Net architecture proposed by O.
Ronneberger et al. [71], which is discussed in detail in section 4.

36



3.3.3 Evaluation of Segmentation Results

Evaluation metrics enable an objective quantitative comparison of different
segmentation methods as well as of different parametrizations of a single
method. Such evaluation metrics can for example be overlap-based or spa-
tial distance-based. In either case, a ground truth is required, which can be
compared to the outcome of the segmentation method. Clinical experts per-
formed manual slice-by-slice segmentation on the relevant data of this work,
in order to obtain the ground truth of each image.

In figure 25 an exemplary illustration of the accordance between a predicted
segmentation mask and the corresponding ground truth can be seen, where
TP indicates the number of true positives (correctly classified as positives
by the segmentation method), FP represents the number of false positives
(wrongly classified as positives by the segmentation method) and FN denotes
the number of false negatives (wrongly classified as negative by the segmen-
tation method). The number of true negatives (TP, correctly classified as
negative) is not visible in the schematic illustration.

Figure 25: Predicted segmentation, ground truth and their union.

In the course of this thesis the Dice similarity coefficient (DSC), sensitivity,
specificity and the Hausdorff distance have been calculated to evaluate the
quality of the automatic segmentation results.
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Overlap-based evaluation metrics:

• Sensitivity: represents the proportion of all positives that are cor-
rectly classified as such. This metric is also known as the true positive
rate (TPR) or the recall.

Sensitivity = TPR = Recall =
TP

TP + FN
(16)

• Specificity: represents the proportion of actual negatives that are cor-
rectly classified as such. This metric is also known as the true negative
rate (TNR).

Specificity = TNR =
TN

TN + FP
(17)

• Dice similarity coefficient (DSC): this metric is one of the most
popular measures for evaluating segmentation performance and is com-
monly used for brain MRI data [67]. It is also known as Sørensen-Dice
coefficient, Sørensen index or Dice’s coefficient. Beyond the direct com-
parison between predicted segmentation and ground truth, the DSC is
commonly used to measure reproducibility [73].

DSC =
2 | A ∩B |
| A | + | B |

=
2TP

2TP + FP + FN
(18)

where A and B denote the set of pixels classified as positives (fore-
ground) by the ground truth and predicted segmentation, respectively.
| A | and | B | denote the number of elements in A and B. The Dice
similarity coefficient is in the range (0, 1), where a value of 0 indicates
that there is no overlap between the two segmentations and 1 indicates
that both segmentations are identical.
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Spatial distance-based evaluation metrics:

Evaluation metrics based on a spatial distance, where the spatial position of
pixels is taken into consideration, are commonly used for image segmentation
as dissimilarity measures and are advisable when the boundary delineation
of the segmentation is important [74].

• Hausdorff distance: this metric measures the spatial distance be-
tween two point sets and is a commonly used dissimilarity measure for
comparing medical image segmentations.

The Hausdorff distance (HD) between two finite point sets A and B is
given by

HD(A,B) = max(h(A,B), h(B,A)) (19)

where h(A,B) is called the directed Hausdorff distance defined as

h(A,B) = max
a∈A

min
b∈B
‖a− b‖ (20)

where‖a− b‖ is some norm, for example the Euclidean distance, which
is given by

‖a− b‖ =

√√√√ N∑
i=1

(ai − bi)2 (21)
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3.4 Frameworks

This section gives a brief overview of valuable frameworks that were used for
this thesis; namely MeVisLab, Tensorflow and Keras.

3.4.1 MeVisLab

The generation of synthetic MRI data was realized with the help of MeVis-
Lab - a powerful modular framework that can be used for image processing
research and development with a strong focus on biomedical imaging.

All explanations in this section are based on the ”MeVisLab Reference Man-
ual” [75] and the ”Getting started tutorial” [76], provided by MeVis Medical
Solutions AG. All figures in this section are obtained from the ”Getting
started tutorial” [76].

MeVisLab is a rapid prototyping and development platform for medical im-
age processing and visualization. The basic entities are graphical represen-
tations of modules with their specific functions for image processing, image
visualization, and image interaction. Image processing and interactive image
manipulation can be achieved by building networks that are constructed of
connected modules, which provide certain algorithms as well as a MeVisLab
interface and can be interconnected to form architectures that represent al-
gorithms on a higher abstraction level. MeVisLab provides three basic types
of modules that are distinguished by color, see figure 26.

• ML Modules (blue): demand-driven processing of voxels.

• Open Inventor Modules (green): visual scene graphs (3D).

• Macro Modules (brown): combination of other module types, al-
lowing implementation of hierarchies and scripted interaction.

Figure 26: Comparison of different modules in MeVisLab. Blue: ML mod-
ules. Green: open inventor modules. Brown: macro modules
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By combining several image analysis, visualization and interaction modules,
complex image processing networks can be established.

Furthermore, it is possible to create individual applications based on macro
modules. For this purpose, python scripting components can be added to
implement dynamic functionality on the network level as well as the user in-
terface level. In addition, it is possible to integrate new algorithms by using
the modular, platform-independent C++ class library.

In MeVisLab there are three types of data connectors that are distinguished
by their shape, see figure 27.

• Triangle shape: indicates transportation of ML images

• Half-circle shape: indicates transportation of inventor-scenes

• Square shapes: indicates transportation of pointers to data structures

Figure 27: Module connectors. Left: connector that indicates transportation
of ML images. Middle: connector that indicates transportation of inventor-
scenes. Right: connector that indicates transportation of pointers to data
structures.

A so-called data connection can be established by connecting modules with
the connectors shown in figure 27, which causes the corresponding infor-
mation to be transported from one module to another, however, it is only
possible to build connections between connectors of the same type. Another
way to connect modules is to use parameter connections, where any data
field of a module can be connected to another one of the same type, which
allows to join different types of modules.
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3.4.2 TensorFlow

TensorFlow is a platform-independent open-source software library, which is
widely used for machine learning applications and was developed by Google.
It provides an interface for expressing machine learning algorithms as well
as an implementation for executing them and is particularly useful for deep
neural network models. This section gives a brief conceptual overview of the
framework, based on the ”TensorFlow whitepaper” [77] and the ”TensorFlow
developement guide” [78].

Several application programming interfaces (APIs) are available for tensor-
flow, where the lowest level API (TensorFlow Core) provides complete pro-
gramming control and high level APIs help to manage datasets, estimators,
training and inference.

In order to describe computations with regard to the dependencies between
individual operations, TensorFlow uses a dataflow graph, which results in a
low-level programming model. The nodes in dataflow graphs represent units
of computation and edges represent data that is produced or utilized by a
computation. The dataflow model is a typical model for parallel computing.

As the name suggests, tensors are the central data type of TensorFlow. A
TensorFlow tensor can be seen as n-dimensional array or list consisting of
base datatypes, having dynamic dimensions and a static type. A tensor
object represents a computation that is partially defined and will finally pro-
duce a value; it is the main object to be manipulated when working with a
low level TensorFlow API. A tensor has three properties, which are shape,
rank and type. In addition, there are TensorFlow variables, which represent
a tensor whose value can be changed by running different operations on it.
Variables have to be initialized explicitly. They are used to hold and update
parameters, since without having parameters, it would not be possible to
train, update, save, restore or perform any other operation in a TensorFlow
program. In contrast to tensors, variables exist outside a single session run.

TensorFlow Core programs consist of two discrete parts, where the first is to
build a computational graph of tensor objects, specifying how each tensor is
computed based on other tensors, and the second part is to run the compu-
tational graph within a session to eventually evaluate the nodes. A session
comprises state and control of the TensorFlow runtime.

42



3.4.3 Keras

Keras is an open-source high-level deep learning API, which is written in
Python. It is capable of running on top of TensorFlow, CNTK, or Theano
and can be utilized for fast prototyping and advanced research. For this
thesis, it was used in combination with TensorFlow. In the following a brief
introduction is given, based on on the ”Keras Documentation” [79].

The four main principles of Keras are:

• Modularity: Keras models can be seen as a sequence or a graph of
modules that can be put together and are fully configurable with only
few restrictions.

• User friendliness: Keras offers consistent and simple APIs, which are
optimized for common use cases. Furthermore, it provides clear and
actionable feedback for user errors.

• Easy extensibility: Custom modules are very easy to add as new
functions or classes. It is possible to create innovative layers, loss func-
tions, and to develop state-of-the-art models. This makes Keras suit-
able for advanced research, as it allows for total expressiveness.

• Working with Python: Models are written in native Python code,
which is compact, easy to debug and simplifies extensibility, as there is
no need for separate model configuration files.

The central data structure of Keras is a model, which can be seen as a way of
organizing layers. The most straightforward type of model is the Sequential
model, which simply represents a linear stack of layers. For more complex
network architectures, such as multi-output models, directed acyclic graphs,
or models with shared layers, the Keras functional API can be used, which
allows to build arbitrary graphs of layers.

Once a model is defined, it can be compiled using the underlying framework
of TensorFlow, in order to optimize the desired computation of the model
with a specified optimizer and loss function. After that, the model has to
be fit to training data, which is the actual training process of the model.
Finally, the trained model can be used to make predictions on unseen data.

Keras can seamlessly execute on CPUs and GPUs, such as NVIDIA GPUs,
Google TPUs and OpenCL-enabled GPUs, given the underlying frameworks.
By default, Keras will use TensorFlow as its tensor manipulation library,
however, it is also possible to configure the Keras backend.
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4 Related Work

In this chapter, important publications related to the work in this thesis are
discussed. Section 4.1 deals with other attempts of synthetic brain tumor
generation, including general techniques to model 3D tumor growth as well
as methods specifically developed for MRI data. In section 4.2, the U-Net (a
convolutional neural network developed for biomedical image segmentation)
is reviewed, since the segmentation network used in this thesis is based on
the U-Net architecture. Finally, section 4.3 gives information of related work
in the field of automatic brain tumor segmentation, with a focus on the
MICCAI BraTS challenge for multimodal brain tumor segmentation.

4.1 Methods for Generating Synthetic Brain Tumors

M. Prastawa et al. [23] proposed a method for generating synthetic brain
tumor MR images, which include most of the difficulties encountered in real
MR data. They simulated a tumor mass effect by using a biomechanical
model. Furthermore, they simulated the infiltration of brain tissue by tumor
and edema using a reaction-diffusion process, which is guided by a modi-
fied diffusion tensor MR image. They also simulated tumor enhancement
as present in contrast-enhanced T1 weighted MRI. More recently, Prastawa
et al. [80] developed another method that combines physical and statistical
modeling to generate synthetic multi-modal 3D brain MR images including
tumor and edema, in combination with the anatomical ground truth. Their
new method synthesizes the lesion in multi-modal MR imaging and diffusion
tensor imaging by simulating a tumor mass effect, warping and destruction of
white matter fibers, and infiltration of brain tissue by the tumor. In addition,
they simulate the apperance of the tumor and brain tissue by synthesizing
texture images from real MRI data. They underline that they do not attempt
to simulate the full process of real tumor growth with their proposed method,
instead their intention is to create a database of synthetic brain tumor MRI
data, with similar challenges for segmentation as present in real tumors and
to provide the corresponding anatomical ground truth. Rexilius et al. [81]
proposed a framework for generating brain phantoms including tumors. They
simulated the tumor mass effect by using a biomechanical finite element
model. Their approach is to deform the phantom of a healthy subject and
insert tumor structures from a diseased subject. Furthermore, they compute
a model for edema by utilizing the distances to the tumor boundary and the
white matter mask. Their framework considers contrast enhancement inside
tumor structures, however, they do not simulate the enhancement of vessels
and cerebrospinal fluid.
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Clatz et al. [82] proposed a model to simulate the 3D growth of glioblastoma
multiforme. They used the finite element method to simulate the invasion
of the tumor in the brain tissue and its tumor mass effect, which is either
modeled with a reaction-diffusion or a Gompertz equation (based on a linear
elastic brain constitutive equation), depending on the considered tissue type.
Furthermore, they propose a coupling equation, which takes the mechanical
influence of tumor cells on the invaded tissues into account. They simulate
the growth process by comparing the synthetic tumor growth with the real
growth observed on two MR images of a patient acquired within six months.

4.2 U-Net

The segmentation concept of this thesis is based on the U-Net architecture, a
convolutional neural network developed for biomedical image segmentation,
proposed by O. Ronneberger et al. [71]. This section provides a review of
the U-Net adapted from [71].

The network is built upon the so-called fully convolutional network, intro-
duced by J. Long et al. [72], which is discussed in section 3.3.2. The archi-
tecture is modified and extended, so that the training process only requires
very few example images and yet leads to more precise segmentation re-
sults. To this end, they supplemented the standard contracting path with
a subsequent expanding neural network, where pooling layers are replaced
by upsampling layers. As a result, these layers increase the output resolu-
tion. Furthermore, high resolution features from the contracting part of the
network are combined with the upsampled output. Due to this additional
information, a subsequent convolutional layer is able to learn a more accu-
rate output. Another important modification in their network architecture is
the large number of feature channels in the upsampling path, which enables
the network to propagate context information to higher resolution layers.
Therefore, the expanding part of the network is nearly symmetric to the con-
tracting part, which leads to a u-shaped form.

No fully connected layers exist in the architecture and only the valid part of
each convolution is utilized, which means that the segmentation mask only
consists of pixels for which the full context is available in the input image.
Hence, it is possible to perform a seamless segmentation of arbitrarily large
images using an overlap-tile strategy, illustrated in figure 28.
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Figure 28: Overlap-tile strategy allowing seamless segmentation of arbitrary
large images. Missing input data for predicting the segmentation in the red
area is extrapolated by mirroring. Adapted from [71]

The overlap-tile strategy is essential to enable the application of the network
to arbitrarily large images, without being limited by the GPU memory. In
order to predict pixels at the border area of the image, the missing informa-
tion is extrapolated by mirroring the input image.

Network Architecture

An illustration of the network can be seen in figure 29. As already mentioned,
the architecture consists of a contracting path, which acts as an encoder, and
an expanding path, which acts as a decoder.

The contracting path represents the architecture of a standard convolutional
neural network, consisting of repeated 3x3 unpadded convolutions, each fol-
lowed by a ReLU activation function and a 2x2 max-pooling layer with stride
2 for downsampling. The number of features are doubled at each downsam-
pling step.

In the expanding path, each step comprises an upsampling of the feature map
with a subsequent 2x2 up-convolution, which halves the number of feature
channels, a concatenation with the according cropped feature map from the
extensive path, and two 3x3 convolutions, each followed by a ReLU activa-
tion function. Due to the loss of border pixels in each convolution, cropping
of the feature map is necessary.

A 1x1 convolution is used at the final network layer, in order to map each fea-
ture vector to the desired number of classes to be distinguished. Altogether,
the U-Net architecture consists of 23 convolutional layers and is applicable
to numerous biomedical segmentation tasks.
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Figure 29: Example of a U-net architecture for 32x32 pixels in the lowest
resolution, where each blue box represents a multi-channel feature map; the
number of channels is indicated on top of the box and the x-y-size is denoted
at the lower left edge of each box. White boxes indicate feature maps that
were copied. Arrows denote different operations. Adapted from [71].

4.3 Multimodal Brain Tumor Segmentation Challenge

BraTS [3],[83] is a brain tumor segmentation challenge in conjunction with
the MICCAI conference, which has a focus on evaluating state-of-the-art
methods for the segmentation of brain tumors in multimodal MR images, and
has been held annualy since 2012. Each year, a dataset of multi-institutional
pre-operative MR images of gliomas and the underlying ground truth seg-
mentation is provided by the organizers. An overview of the BraTS 2017
dataset is given in the following section.
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4.3.1 Provided Material of BraTS 2017

The training dataset of the brain tumor segmentation challenge (BraTS) 2017
consisted of 75 low grade glioma, 210 high grade glioma and their correspond-
ing manual ground truth segmentations, including the following labels:

• 1: necrotic core and non-enhancing tumor

• 2: peritumoral edema

• 4: enhancing tumor

• 0: everything else

Segmentation of the whole tumor (labels 1, 2, 4), tumor core (labels 1, 4)
and enhancing tumor (label 4) was required in the challenge. In contrast,
the aim of this thesis was to segment the necrotic core in combination with
the enhancing tumor of glioblastomas multiforme (grade IV), which would
not be possible with the ground truth labels of the BraTS 2017 dataset.

The BraTS 2017 validation set consisted of 46 cases of low grade glioma and
high grade glioma, however, the grade was not revealed. A testing set was
made available for participating teams during a time window of 48 hours.
The provided datasets were preprocessed before distribution, including co-
registration to the same anatomical template, interpolation to the same reso-
lution and skull-stripping. Images had a dimension of 240x240x155. For each
subject in the provided datasets, four different MR modalities were available,
namely native T1, post-contrast T1-weighted, T2-weighted and T2 fluid at-
tenuated inversion recovery (FLAIR).

4.3.2 Results of BraTS 2017

The first place for the segmentation task of BraTS 2017 was awarded to
K. Kamnitsas et al. [84]. They introduced EMMA (Ensembles of Multiple
Models and Architectures), which is an ensemble of widely varying CNNs,
including the fully 3D multi-scale CNN DeepMedic [85], three 3D FCNs [72]
and two 3D versions of the U-Net architecture [71].

Using their architecture, they were able to achieve a Dice similarity coefficient
of 73.8% for the enhancing tumor, 90.1% for the whole tumor and 79.9% for
the tumor core on the validation set; and 72.9% for the enhancing tumor,
88.6% for the whole tumor and 78.5% for the tumor core on the test set.

The results of all participating teams evaluated on the validation set can be
found at: https://www.cbica.upenn.edu/BraTS17/lboardValidation.html
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5 Methods

This chapter provides an overview of methods that were used to set the un-
derlying ideas of this thesis into practice. In particular, section 5.1 discusses
the data generation approach, which was used to create realistic looking MRI
data containing synthetic brain tumors. Section 5.2 gives a detailed descrip-
tion of the deep learning methods and datasets that were used to perform
automatic segmentation of glioblastomas in real MR images, where data pre-
processing, the architecture of the segmentation network, implementation
details and the training and testing process are discussed.

5.1 Synthetic Data Generation

Deep learning approaches require a large training dataset, in order to learn
a task and generalize from training samples to the entire domain of unseen
data. However, in the medical field there are usually only small datasets
available. Furthermore, for most medical datasets no corresponding ground
truth segmentation is available, since manual delineation is such a time-
consuming task. Hence, one big challenge of using deep neural networks
for medical image segmentation lies in augmenting the available dataset and
train the network without overfitting the training examples. This issue can
be overcome by using synthetic data. To this end, a method for generating
MR images containing synthetic brain tumors along with the underlying
ground truth segmentation is presented in this chapter. Parts of this section
are adapted from my master project [86] and the corresponding publication
about generating synthetic brain tumor MRI data for deep learning-based
segmentation approaches [87].

5.1.1 Generation of Synthetic Glioblastomas

In general, it is much easier to receive and use data of healthy subjects than
diseased ones, due to privacy concerns amongst other things. Therefore,
the main idea of this data augmentation approach was to generate synthetic
glioblastomas and insert them into brain MR images of healthy subjects.
The resulting ”hybrid” MRI slices could subsequently be used to train a
deep neural network for automatic tumor segmentation. One advantage of
inserting synthetic brain tumors into MR images is that the position, shape
and size of each tumor is already exactly known; hence, it is very easy to
automatically create the corresponding ground truth. The proposed method
is simple but nevertheless allows to simulate all crucial characteristics of
glioblastomas and facilitates the generation of a large synthetic dataset.
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The precise modeling of tumor growth on cell level was beyond the scope of
this work, since it is not necessarily needed for the segmentation approach
at hand. With the proposed method, enhancing tumor and necrotic core
of a glioblastoma (see chapter 2.3.1) as well as a tumor mass effect (see
chapter 2.3.2) were simulated. In clinical practice of oncology and diagnos-
tic medicine, typically only the enhancing tumor and the necrotic core are
segmented, since these regions are of primary interest. Delineation of other
structures is usually not done, since the segmentation of edema, for example,
is extremely challenging and will not represent the truth very well [23].

5.1.1.1 Specifications

MR images can depict several different contrast characteristics. MRI scans
can, for example, be T1-weighted, T2-weighted or post-contrast T1-weighted.
The appearance of a tumor in an MR image varies widely, depending on
the imaging modality that was used. For this thesis, the generated syn-
thetic brain tumors should exhibit the basic features of glioblastomas in
post-contrast T1-weighted brain MRI scans. A detailed description of those
features can be found in chapter 2.3.1.

5.1.1.2 ”GenerateTumor” Module

In order to easily generate realistic looking 3D glioblastomas, a custom ML
module named ”GenerateTumor” was created in MeVisLab, see figure 30.

Figure 30: Custom ML module ”GenerateTumor”.

This custom module allowed to easily generate synthetic brain tumors, which
could subsequently be inserted into existing MRI data of healthy subjects us-
ing standard MeVisLab modules. The module’s inventor-scene output con-
nector provided the generated tumor as visual scene graph. The input con-
nector was used to connect an existing 3D MR image, into which the tumor
should later be inserted. However, the image was not further processed by
this module; it was only required as reference of the image extend.
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5.1.1.3 Tumor Generation Algorithm

In this section, a detailed description of the tumor generation algorithm,
which was written in C++, is given. The tumor generation process was
based on a special type of polyhedron, namely an icosahedron.

A polyhedron is a 3-dimensional, solid body that consists of several polygons,
which are typically connected at their edges. An icosahedron is a 20-faced
polyhedron. The regular icosahedron has 12 polyhedron vertices, 30 polyhe-
dron edges and 20 equivalent equilateral polyhedron faces [88]. In figure 31
an illustration of a regular icosahedron can be seen.

Figure 31: Regular Icosahedron.

In order to receive an approximation of a sphere with more polyhedron ver-
tices, the icosahedron was recursively refined. This was done by dividing each
of the existing faces into three equivalent, equilateral triangles and repeating
this procedure five times, which resulted in a polyhedron with 2432 vertices,
4860 faces and 7294 edges. The algorithm used for refining the polyhedra
was based on the work of J. Egger et al. [89].

The resulting polyhedra after each refining step can be seen in figure 32.

Figure 32: Polyhedra with 12, 32, 92, 272, 812 and 2432 surface points.
Adapted from [89].
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5.1.1.4 Displacement Algorithm for Vertices

In order to obtain the typical irregular shape of a glioblastoma, a special
displacement algorithm was applied to the vertices of the refined polyhedron.

First, a vertex Vinitial was randomly selected according to a uniform distribu-
tion. After that, the distance between Vinitial and the center of the polyhedron
was increased, which resulted in an elevation of the respective vertex, see fig-
ure 33. To provide a smooth deformation, the remaining vertices were also
displaced accordingly, see figure 34. In order to determine the displacement
strength for each vertex, which should decrease by distance to Vinitial, all ver-
tices were assigned to corresponding displacement levels k, according to the
minimum number of edges that were required to reach Vinitial. For example,
vertices which were directly adjacent to Vinitial were assigned to displacement
level k=1. Finally, the displacement of Vinitial and the remaining vertices was
obtained by multiplying the x-, y- and z-coordinate of each vertex with factor
ε(k) , which was defined as follows:

ε(k) =


1 + d, for k = 0

1 + d ·m, for k = 1

1 + d ·m2k, for k > 1

(22)

where k denotes the displacement level of a vertex, d indicates the initial
strength of displacement, which is randomly chosen according to a uniform
distribution on the interval [1, 2.5], and m is a decay factor of 0.97.

Figure 33: Elevation of a randomly
chosen vertex Vinitial

Figure 34: Subsequent displacement
of remaining vertices.
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Since the object in figure 34 still does not represent the shape of a tumor well,
the process of randomly choosing a vertex, displacing it and subsequently
displacing the remaining vertices, was repeated for altogether seven times.

Two examples of generated synthetic brain tumors can be seen in figure 35.

Figure 35: Examples of generated brain tumors using the proposed method.

Finally, the resulting synthetic tumors were inserted into healthy 3D brain
MR images with the help of standard MeVisLab modules. To comply with
the basic features of glioblastomas in post-contrast T1-weighted brain MRI
data, the synthetic tumor had to be further processed, which was also done
using standard MeVisLab modules. A detailed description of the implemen-
tation can be found in chapter 5.1.2.
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5.1.1.5 Simulating the Tumor Mass Effect

The aim of the proposed method was not only to generate synthetic glioblas-
tomas and insert them into healthy brain MRI data, but also to simulate
mass effects, which are caused by the growing tumor.

A simplified tumor mass effect was simulated by deforming the brain area
surrounding the synthetic glioblastoma, according to a dense vector field. To
this end, the ”ImageWarp” Module of MeVisLab was used, which is shown
in figure 36.

Figure 36: MeVisLab ”ImageWarp” module.

All explanations of this module are based on the ”MeVisLab Documenta-
tion” [90].

The ”ImageWarp” module has two inputs. An image volume is connected to
input 0 and a vector field is connected to input 1, where the sizes of input 0
and input 1 must be equal. A warped image of the same type as the one at
input 0 is provided at the output.

Backwards deformation is performed by the module. This means that vec-
tors in the vector field are associated with voxels in the output image. A
vector in the vector field shows the position of a voxel in the input image,
where the value for the corresponding output voxel can be found. Usually,
this position lies between the voxel grid of the input image, therefore inter-
polation (bi-linear (2D) or tri-linear (3D)) is required to find the value. The
”ImageWarp” module loops over all voxels of the output image, finds the
corresponding positions in the input image via the vector field and interpo-
lates the values using linear interpolation.
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Since the force that is applied to the brain by the tumor mass is an outward
radial force that originates from the initial tumor region, the required dense
vector field was constructed in the following way:

First the 3D euclidean distance transform of the synthetic tumor was calcu-
lated to receive a gradually decreasing deformation intensity from the tumor
center to the border. Then a gradient filter was applied to the euclidian
distance transform, leading to a dense vector field that can be utilized for
the deformation process. A simplified visualization of the resulting gradient
vectors can be seen in figure 37.

Figure 37: Vector field, where yellow arrows indicate the gradient direction.

As the outward radial force that is applied to the brain weakens by distance,
another step was necessary: The euclidian distance transform was normal-
ized and multiplied with a factor, which could be varied between 10 and 25
(depending on the desired strength of deformation). The result of this com-
putation was then multiplied with the previously calculated gradient field.
This caused the deformation to be stronger at the tumor center and approach
zero at the border.
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5.1.2 Implementation

The network built in MeVisLab consists of several ML modules (blue) and
macro modules (brown). ML modules are page-based and provide a demand-
driven processing of voxels, while macro modules were used to combine the
functionality of standard MeVisLab modules. The complete network can be
seen in figure 38.

Figure 38: Complete MeVisLab Network.

The specific function of each module and the internal networks are described
in detail in the following sections. All explanations of standard MeVisLab
modules are based on the ”MeVisLab Documentation” [90].
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5.1.2.1 ML Modules

The blue ML modules that can be seen in figure 38 are the ”LoadBrainMRI”
module as well as the ”GenerateTumor” module.

• ”LoadBrainMRI”: This module was used to load an existing MR
image of a healthy subject.

• ”GenerateTumor”: This module was used to generate synthetic
glioblastomas. At the ouput, the synthetic tumor is provided as vi-
sual scene graph (inventor scene). See chapters 5.1.1.2 and 5.1.1.3 for
a more detailed description of the implemented algorithm.

5.1.2.2 ”ReformatAndAdjustIntensity” Module

The ”ReformatAndAdjustIntensity” module is a so-called macro module.
This module groups and combines other module types to achieve a specific
desired function.

The internal network of the ”ReformatAndAdjustIntensity” module can be
seen in figure 39.

Figure 39: Internal network of ”ReformatAndAdjustIntensity” module.
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The aim of this module was to adapt the intensity values of the loaded MR
image to a reference intensity range. This is done to simplify further image
processing steps. The intensity was adapted by using the standard ”Scale”
module of MeVisLab, which scales the input image value to another interval.

There are three primary imaging planes that are utilized in MR imaging,
namely axial, sagittal and coronal. To simplify further image processing
steps and the insertion of a synthetic tumor, the module was also used to
reformat the loaded MR image to axial view, which was achieved by applying
the ”OrthoReformat3” module.

5.1.2.3 ”SetSeedPoint” Module

The ”SetSeedPoint” module was used to manually set a seed-point at which
the synthetic glioblastoma was subsequently inserted. This was done to en-
sure that the tumor was located within the brain region and could be achieved
by simply clicking on the desired position in the MR image.

For this purpose, the standard MeVisLab ”OrthoView2D” module - which
provides a 2D view displaying the input image in three orthogonal viewing
directions - was utilized, see figure 40.

Figure 40: ”OrthoView2D” module (three orthogonal viewing directions).
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5.1.2.4 ”MarkerList” Module

The internal network of the ”MarkerList” Module can be seen in figure 41.

In order to save the selected seed-point, its x-, y- and z- coordinates were
stored in a marker-list-container by using the MeVisLab ”XMarkerListCon-
tainer” module.

The module ”SoView2DMarkerEditor” allows interactive placement, editing
and showing of markers.

Markers are stored in voxel coordinates, however, in order to use the position
of the seed-point for inserting the synthetic tumor, the marker was required
in world coordinates. Therefore, the coordinates were converted using the
MeVisLab ”WorldVoxelConvert” module.

Figure 41: Internal network of ”MarkerList” module.
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5.1.2.5 ”ProcessTumor” Module

The internal network of the ”ProcessTumor” module can be seen in figure
42. It was used for further processing the generated tumor, inserting it into
a provided MR image, and creating the corresponding ground truth.

Figure 42: Internal network of ”ProcessTumor” module.
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Initially, the synthetic tumor had to be scaled and translated according to the
selected seed point. This was done with the help of a ”SoScale” and a ”So-
Translate” module. By using a parameter connection between the ”World-
VoxelConvert” module and the ”SoTranslate” module, the parameters were
synchronised with the converted coordinates of the selected seed-point, which
were saved in the marker-list. After that, the visual scene graph of the tumor
had to be voxelized (filled voxelisation). This was done with the MeVisLab
”VoxelizeInventorScene” module, which allows a filled voxelization of closed
surfaces, using a scan line algorithm.

As can be seen in figure 42, the ”VoxelizeInventorScene” module was on the
one hand used to further process the artificial glioblastoma and on the other
hand to automatically create the ground truth.

The corresponding ground truth segmentation was created by using the filled
voxelization of the synthetic glioblastoma and applying the ”IntervalThresh-
old” module to it, which processes an image by filtering values that lie be-
low/above a certain intensity value threshold. This threshold was set to
0.2. Voxels below this threshold were set to zero, whereas voxels above this
threshold were set to one. This yields an exact ground truth of the synthetic
tumor. Since the model of the ground truth was still in RGB format, the
MeVisLab ”ColorModelConverter” module was used to convert it to gray
scale.

To depict the characteristics of a glioblastoma in post-contrast T1-weighted
(T1Gd) MR images, a filled voxelization of the visual scene graph of the
tumor was performed, where a dark gray fill color was used to represent
necrosis. After that, a border was added to the tumor, where a light gray
fill color was used to represent the contrast-enhanced surface. The accord-
ing fill colors were based on the statistics of real glioblastomas. After the
voxelization process, the voxelized tumor was slightly blurred, to smooth the
edges between the fill color and the edge color. Then, the synthetic glioblas-
toma was converted to gray scale. In addition, the intensity of the tumor
was increased by a factor of 1000, which could be slightly varied to manually
modify the intensity of the synthetic glioblastoma. In order to add some tex-
ture to the tumor core, as it is seen in real T1Gd MRI data, the underlying
structure of healthy brain tissue was exploited. The amount of texture that
was added to the synthetic tumor was controlled by the ”RegulateTexture”
module. After that, gaussian noise (µ = 50, σ = 20) was added in order to
obtain a more realistic appearance of the lesion.
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The resulting image was then multiplied with the previously calculated ground
truth (which was blurred by the ”GaussianBlur” module in the same extent
as the tumor itself) so that only voxels within the tumor region were inserted
into the MR image, see figure 43b.

In the top left corner of figure 42, one can see a group of several modules that
were used to cut out the brain area of the MR images, exactly at the position
where the tumor would later be inserted, see figure 43a. This was achieved
by multiplying the MR image, with the inverted ground truth. It is impor-
tant to note that the ground truth was blurred using the ”GaussianBlur”
module in the same extent as the tumor itself to ensure that the cut out area
corresponded exactly to the position of the inserted tumor; additionally the
edge between brain mass and tumor was smoothed.

Finally, the MR image with the cut out area and the completely processed
synthetic glioblastoma were added using the ”Arithmetic2” module, which
performs arithmetic operations on two images.

Figure 43: a.) Area at which tumor will be inserted, is cut out of MRI.
b.) Completely processed synthetic glioblastoma
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5.1.2.6 ”SetSeedPoint2” & ”MarkerList2” Module

As already mentioned in chapter 5.1.1.4, a brain tumor causes displacement
and compression of the surrounding healthy brain tissue. The ”SetSeed-
Point2” module was used to manually set a seed-point (by clicking on the
desired position in the image) which indicated the center of brain tissue de-
formation. This strategy was necessary since the skull was not automatically
detected by the algorithm. When the synthetic tumor was located close to
the skull, the center of deformation could be further shifted towards the mid-
dle of the brain, leading to realistic looking results.

The function of the ”MarkerList2” module equals exactly the function of the
”MarkerList” module, which is described in chapter 5.1.2.4.

5.1.2.7 ”DeformationOfBrainMass” Module

The internal network of the ”DeformationOfBrainMass” module is illustrated
in figure 44. It was used to simulate a tumor mass effect, which is discussed
in chapter 2.3.2. To reduce computational effort, a simple sphere with vari-
able radius (”SoSphere” module) was used instead of the visual scene graph
of the actual synthetic tumor, in order to calculate the deformation.

Initially, the visual scene graph of the sphere had to be voxelized (filled
voxelisation). This was achieved by the MeVisLab ”VoxelizeInventorScene”
module. After that, the euclidian distance transform of the voxelized sphere
was computed by using the ”EuclideanDistanceTransform” module. This
was done to receive a gradually decreasing deformation from center to bor-
der. Then, the ”itkGradientImageFilter” module was applied, which resulted
in a dense vector field. Since the outward radial force that is applied to the
brain by a growing tumor mass weakens by distance, the result of the eu-
clidian distance transform was normalized and multiplied with a factor that
could be varied between 10 and 25, depending on the desired strength of
deformation.

Finally, the result was multiplied with the previously calculated gradient
field. This yielded a stronger deformation at the center of the vector field
which approached zero at the borders. The dense vector field was then used as
input for the ”ImageWarp” module, which deforms the MR image accordingly
and is further explained in chapter 5.1.1.5.
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Figure 44: Internal network of ”DeformationOfBrainMass” module.
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5.1.2.8 ”SaveSlices” Macro Module

The ”SaveSlices” module is an adapted version of the ”SaveAsSingleSlices”
module from the work of B. Pfarrkirchner et al. [91].

MR images had to be connected to the first input of the module, while the
corresponding ground truth image had to be connected to the second one.

The internal network of ”SaveSlices” can be seen in figure 45. It was used to
save the final brain MRI data containing the synthetic glioblastoma as well
as the corresponding ground truth as single slices.

The MeVisLab ”SubImage” module was utilized to extract sub-images from
the input image (either the MR image or the segmentation mask). A python
script was used to iterate over the single slices, which were saved to a selected
file format by using the MeVisLab ”ImageSave” module.

The panel of the ”SaveSlices” module can be seen in figure 46. It allowed to
select the path, where the single slice images and ground truth images were
to be saved. Additionally, the file format could be chosen (TIFF or PNG).

Figure 45: Internal network of
”SaveSlices” module.

Figure 46: Panel of ”SaveSlices” mod-
ule.
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5.2 Brain Tumor Segmentation

This section gives a description of methods and datasets that were used to
perform automatic segmentation of glioblastomas in MR images.

5.2.1 Available MRI Datasets

For this thesis, data was provided by the University Hospital of Giessen and
Marburg in Germany and by the Human Connectome Project, WU-Minn
Consortium (Principal Investigators: David Van Essen and Kamil Ugurbil;
1U54MH091657) funded by the 16 NIH Institutes and Centers that support
the NIH Blueprint for Neuroscience Research; and by the McDonnell Center
for Systems Neuroscience at Washington University.

5.2.1.1 Real Data

Post-contrast T1-weighted MR images of 14 patients suffering from glioblas-
toma multiforme were available for this work. Manual slice-by-slice segmen-
tation has been performed by clinical experts to obtain the corresponding
ground truth, where white foreground pixels (value 1) indicate the enhanc-
ing tumor as well as the necrotic tumor core; and black background pixels
(value 0) represent everything else. Figure 47 illustrates four example MR
images, along with their manually created ground truth segmentation.

Figure 47: Excerpt from the available real MRI dataset, illustrating four MR
images (top) along with their manually created ground truth (bottom).
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A detailed overview of the dataset - including acquisition parameters - is
given in table 1. The column ’Side Length of Voxels’ indicates the in-plane
resolution, whereas the column ’Slice Thickness’ indicates the voxel depth.
Dimensions of the whole 3D MR image are given by the columns ’Image
Height’, ’Image Width’ and ’Number of Slices’ respectively. Finally, the
number of slices containing a tumor is indicated by the column ’Slices incl.
Glioblastoma’.

Table 1: Overview of available real MRI data.

Case
Side Length Slice Image Image Number Slices incl.

of Voxels Thickness Height Width of Slices Glioblastoma
mm mm voxel voxel

1 1.133 1.199 256 256 144 36
2 0.488 1.000 512 512 160 51
3 0.976 1.000 256 256 160 42
4 0.976 1.000 256 256 160 60
5 0.586 2.000 512 512 80 10
6 0.488 1.000 512 512 160 43
7 0.976 1.000 256 256 160 37
8 0.488 1.000 512 512 160 36
9 0.586 2.000 512 512 95 42
10 0.586 2.000 512 512 88 11
11 0.488 0.999 512 512 176 28
12 1.000 1.000 256 256 176 41
13 0.976 1.000 256 256 160 39
14 0.976 1.000 256 256 160 35

To sum up, there were 2039 real MRI slices available, out of which 511 slices
contained glioblastomas.

These real MR images were used for evaluating the performance of the seg-
mentation network. To this end, the dataset was split into validation and
test data; specifically, the MRI data of ten patients was used as test set and
the rest was used as validation set.
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5.2.1.2 Synthetic Data

To supplement the previously discussed real MRI dataset, which was not
large enough to successfully train a deep neural network, synthetic MR im-
ages were generated as described in section 5.1.

Artificial glioblastomas were inserted into 200 MR images of healthy subjects,
of which 80 were post-contrast T1-weighted and 120 were native T1-weighted.
These 3D MR images consisted of 260 image slices, where each slice was of
dimension 260x310. The side length of each voxel as well as the slice thick-
ness was 0.7mm.

Figure 48 illustrates four synthetic MR images, along with their automati-
cally created ground truth. Again white foreground pixels (value 1) indicate
the enhancing tumor as well as the necrotic tumor core; and black back-
ground pixels (value 0) represent everything else.

Figure 48: Excerpt from the synthetic MRI dataset, illustrating four MR
images (top) along with their automatically created ground truth (bottom).

This synthetic MRI dataset containing 52000 slices, of which 13158 slices in-
clude an artificial glioblastoma, was used to train the segmentation network.
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5.2.2 Data Preprocessing

Prior to training the segmentation network, several preprocessing steps were
performed on the MRI data; including the removal of non-brain tissue (also
called skull stripping), resizing of the MR images, contrast enhancement, as
well as intensity normalization.

Skull Stripping:

Brain extraction, also known as skull stripping, is the first step in many brain
image processing applications and refers to the removal of non-brain tissue,
such as skull, eyes, fat, muscles and skin, from the 3D MRI volume of the
whole head, see figure 49. These non-brain tissues could otherwise compli-
cate further image processing and analysis steps.

Figure 49: Illustration of the skull-stripping principle in sagittal view. Left:
MRI of the whole head. Right: brain area to extract (indicated in red).

A common and accurate method for skull stripping in T1- and T2-weighted
brain MR images, called brain surface extraction (BSE), was proposed by
D.W. Shattuck et al. [92]. It is an edge-based technique that employs
anisotropic diffusion filtering and operates using a 2D Marr-Hildreth edge
detector, which applies low-pass filtering with a Gaussian kernel to the im-
age and localizes zero crossings in the Laplacian of the filtered result. Edges
between brain and skull are relatively well defined, however, non-brain struc-
tures such as the brain stem or optic nerves interrupt these boundaries.
Therefore, these connections are broken using a morphological erosion opera-
tor. After the whole brain area is detected, a corresponding dilation operator
is applied to reverse the effect of the previous erosion. Finally, a morpholog-
ical closing operator is used to further improve the result.
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For this thesis, brain extraction of all MR images was accomplished using
the software tool BrainSuite, which provides the previously described brain
surface extraction (BSE) method. BrainSuite is a useful image processing
and analysis tool that offers a collection of open source software and al-
lows largely automated processing of MR images of the human brain. It is
produced and distributed as a collaborative project between Dr. David W.
Shattucks research group at the Ahmanson-Lovelace Brain Mapping Center
at the University of California, Los Angeles and Dr. Richard M. Leahys
Biomedical Imaging Group at the University of Southern California.

Figure 50 illustrates a skull stripped MR image in axial view, sagittal view
and coronal view.

Figure 50: Illustration of MR image before (top) and after brain extraction
(bottom). Left: axial view; middle: sagittal view, right: coronal view.
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Resizing and Zero Padding:

As can be seen in section 5.2.1, the available MR images used for training
and testing the segmentation network exhibit different dimensions. To in-
troduce a standard, the scans were rescaled to 256x256x260, indicating the
image width, image height, and number of image slices, respectively. This
was accomplished by rescaling the image, such that the larger dimension (ei-
ther image width or height) equalled 256 pixels. Subsequently, the smaller
dimension was zero padded on both sides to also exhibit a length of 256 pixels.

This approach prevents distortion and translation of the underlying brain
structure when resizing the image. It is important to note that all images
were reformatted to axial view prior to rescaling.

An example of the rescaling approach and the subsequent zero padding for
one slice can be seen in figure 51.

Figure 51: Illustration of rescaling approach for one slice. Left: original
image; middle: image resizing, so that the larger dimension equals 256 pixels;
right: zero pading at both sides of smaller dimension to obtain an image of
256x256.

Lanczos resampling was used to resize the available MRI volumes. This in-
terpolation method uses a convolution kernel to interpolate pixel values of
the input image in order to calculate the pixel values of the output image.
The convolution kernel is defined as a sinc function, which is windowed by
the central lobe of a second longer sinc function.

For MR image volumes with less than 260 slices, the number of slices was
also adjusted accordingly.
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Contrast Adjustment

In order to further enhance the contrast of the available MRI data and reduce
the variation between post-contrast T1-weighted and native T1-weighted im-
ages, histogram equalization and gamma correction was performed.

The application of both methods on an example image is shown in figure 52.

Figure 52: Illustration of the contrast adjustment on an example image.

Normalization

Since MRI intensities are not standardized, intensity normalization is an
essential step in the preprocessing chain for automatic segmentation tech-
niques. It allows for data from different MRI scanners, obtained with varying
acquisition parameters and scanning protocols, to be processed by the same
automatic algorithm.

To this end, min-max normalization was conducted on each single slice, which
performs a linear transformation on the given data. Specifically, it maps
intensity value i of image I to i′ in the range [minnew,maxnew] by calculating:

i′ =
i−minI

maxI −minI
(maxnew −minnew) +minnew (23)

where maxnew and minnew are the new minimum and maximum values of I.

The new intensity value range was specified to be [0, 1], hence, the equation
can be simplified as follows:

i′ =
i−minI

maxI −minI
(24)
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5.2.3 Architecture of the Segmentation Network

The network architecture used for the segmentation task of this thesis was
based on the U-Net, which is discussed in section 4.2. The standard U-Net
architecture, proposed by O. Ronneberger et al. [71] , was slightly modified
to provide a better fit for the segmentation problem at hand. A detailed
illustration of the employed network can be seen in figure 53. It comprises
an initial contracting path (convolutional encoder part) and a subsequent
expanding path (convolutional decoder part).

The contracting path comprises repeated application of convolution blocks
followed by 2x2 max pooling operations for down-sampling. Convolution
blocks in the contracting path consist of two 3x3 convolutions, each followed
by a batch normalization layer, ReLU activation function and a dropout
layer. The number of feature maps is doubled at each down-sampling step.
The expanding path consists of repeating blocks, in which feature maps are
up-sampled to expand the dimension and subsequently concatenated with
the corresponding feature map of the contracting path. These so called
’skip-connections’ allow to combine coarse- and fine-level features, in order
to recover spatial information lost during down-sampling. In contrast to
the standard U-Net architecture, no 2x2 convolution is applied after the up-
sampling step. Each of these blocks is followed by a regular 3x3 convolution,
a batch normalization layer, ReLU activation function and a dropout layer.
Finally, a 1x1 convolution is applied at the last layer of the network followed
by a sigmoid activation function, in order to obtain a pixel-wise segmentation
mask of the same size as the input image.

Besides omitting the 2x2 convolution in the expanding path of the network
and the additional application of batch normalization and dropout after each
regular 3x3 convolution, one important modification is that ’same padding’
was used for convolutions instead of ’valid padding’. This yielded a segmen-
tation mask, which exhibits the same size as the input image. In contrast,
with ’valid padding’ (as used in the standard U-Net), the output image would
be smaller than the input by a constant border width.

The network architecture consists of 23 convolutional layers and was designed
for gray scale input images of dimension 256x256, as can be seen in figure
53. In the lowest resolution feature maps exhibit a size of 16x16, with a
maximum number of 256 feature channels.
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Figure 53: Illustration of the network architecture used for the segmentation
task of this thesis. Each blue box represents a multi-channel feature map;
dark blue boxes correspond to copied feature maps. The x-y dimensions
of each feature map and the corresponding number of feature channels are
denoted within each box.

5.2.3.1 Double Convolution Layers

Another modification of the standard U-Net architecture was the application
of double convolution layers, which means that there were two subsequent 3x3
convolutions before each activation to increase the receptive field. According
to G. Kim [93], applying two successive 3x3 convolutions is equivalent to
having one 5x5 convolution, but at the same time requires less computational
effort by a factor of 25/9.

However, preliminary evaluations showed that this modification did not sig-
nificantly improve the segmentation performance of the model for the task at
hand, while increasing the computation time. Therefore, this modification
was not employed in the final architecture used for this thesis.
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5.2.4 Implementation Details

The implementation was realized using Python 3.6, the open-source machine
learning framework TensorFlow 1.6 and the high-level API Keras 2.1.5. Fur-
ther information regarding the functionality of TensorFlow and Keras can
be found in section 3.4.

An overview of the content and function of each project file is given below.

• architecture.py: In this file, the previously described model architec-
ture was defined using Keras. Furthermore, multi-GPU training and
loading of pre-trained weights was managed.

• data generator.py: This custom-written data generator enabled real
time data feeding and preprocessing during the training and testing
phase and is described in detail in the following section.

• losses.py: Standard and custom loss functions, which are further dis-
cussed in the following section, were defined in this file.

• metrics.py: Evaluation metrics to compute similarity measures be-
tween network predictions and ground truth, which were used for vali-
dating the performance of the segmentation network, were implemented
in this file. These metrics included, the Dice similarity coefficient, the
Hausdorff distance, as well as sensitivity and specificity.

• segmentation.py: This script was used for both training and testing
the deep neural network model defined in ’architecture.py’. The ac-
cording training and testing procedures are discussed in detail in sec-
tion 5.2.5 and 5.2.6, respectively. Custom callbacks for saving model
weights and log-values were also implemented in this file.
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5.2.5 Training the Segmentation Network

In order to optimize the trainable parameters of the segmentation network,
a supervised learning approach was employed. Therefore, the generated syn-
thetic input images along with their corresponding ground truth segmenta-
tions were used to train the model. A detailed description of the training
procedure is provided in the following sub-sections.

5.2.5.1 Hardware

Multi-GPU training was performed on a GPU-Cluster equipped with eight
NVIDIA R© Tesla R© K20Xm GPUs, each having 6GB GDDR5 graphics mem-
ory. During the training phase data was prepared and provided in parallel
by an Intel R© Xeon R© CPU E5-2630 v2 with 6 cores.

5.2.5.2 Loss Function

As already discussed in section 3.2.5, the learning problem of a neural network
can be formulated as the minimization problem of a loss function, which
represents the distance between the network output and the desired output
and is chosen according to the present task.

A common choice for segmentation networks is the cross entropy loss. In
particular, as the task of this thesis is to segment an image into foreground
and background pixels, the binary cross entropy loss is suitable to perform
a pixel-wise binary classification, resulting in an output which can be inter-
preted as a probability value between zero and one. The binary cross-entropy
loss is defined as follows:

LCE = −
N∑
n=1

{tnln(pn) + (1− tn)ln(1− pn)} (25)

where N is the number of pixels of the predicted segmentation image pn ∈ P
and the corresponding ground truth image tn ∈ T .

When the predicted output value of the model diverges from the actual value,
the cross entropy loss increases. An ideal model would produce a cross en-
tropy loss of zero.
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It is important to note that in medical images the region of interest (fore-
ground) is usually quite small, as it was the case for MR images processed
in this thesis. This leads to a significant class imbalance in the data. Hence,
when using the conventional cross-entropy loss, the learning process is likely
to get trapped in local minima, which hampers training. The data used in
this work, for example, exhibited around 100 times more background pixels
than foreground pixels. This results in a model with a strong bias towards
background pixels, whereas foreground regions are often not detected well.

To overcome this issue, a loss based on the Dice similarity coefficient (sec-
tion 3.3.3) was utilized, similar to the one proposed by F. Milletari et al. [94].

The employed Dice loss is defined as follows:

LDice = 1− 2 ·
∑N

n=1 pntn∑N
n=1 pn +

∑N
n=1 tn

(26)

where N is the number of pixels of the predicted segmentation image pn ∈ P
and the corresponding ground truth image tn ∈ T .

Since the aim was to maximize the Dice coefficient, the loss was defined as
1−DSC, in order to obtain a minimization problem, which could be solved
by gradient descent optimization. The definition of the Dice coefficient in
this loss is equivalent to the classic definition discussed in section 3.3.3, how-
ever, no threshold was applied to the network output, which made the Dice
loss differentiable and allowed for direct implementation in an optimization
algorithm based on backpropagation.

Preliminary tests showed that better segmentation results could be achieved
on the validation set, when using the Dice coefficient loss instead of the cross
entropy loss. Furthermore, even slightly better results could be obtained
on the validation set, when cross entropy loss and Dice coefficient loss were
combined. The employed combined loss, which was eventually used for the
segmentation task of this thesis, is defined as follows:

L = LCE + LDice (27)
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5.2.5.3 Optimizer

The aim of the training process was to tune the internal parameters of the
network so as to minimize a loss function. Hence, the choice of a suitable
optimizer was essential to enable proper learning and fast convergence.

In order to select a suitable optimizer for the task at hand, the performance
of several gradient descent optimization algorithms has been evaluated in
preliminary tests. An introduction to gradient descent optimization can be
found in section 3.2.5.

A short overview of the investigated optimizers, adapted from [95], is given
below, followed by a direct comparison of the corresponding convergence
curves, which were acquired in preliminary evaluations.

• SGD (Stochastic Gradient Descent):

Stochastic gradient descent computes the gradient of the loss function
with respect to the trainable parameters for each training example. In
practice the term SGD is also used, when mini-batch gradient descent
is performed, as it was in this work. Mini-batch gradient descent per-
forms an update for every mini-batch of all training examples and is
commonly employed when training a neural network. However, SGD
does not perform well in valleys of the loss function, where the surface
is much steeper in one dimension than in another, which is usually the
case around local minima. In such settings, SGD starts to oscillate and
only makes small progress in direction of the local minimum.

• RMSprop (Root Mean Square Propagation):

RMSprop is an adaptive learning rate method which restricts the pre-
viously mentioned oscillations. It divides the learning rate by an expo-
nentially decaying average of squared gradients, which has the effect of
balancing the step size. Therefore, RMSprop usually converges faster
than SGD. Furthermore, it is quite memory-efficient since it just stores
rolling averages.
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• Adam (Adaptive Moment Estimation):

Adam is another adaptive learning rate method, which computes adap-
tive learning rates for each network parameter. However, in contrast
to RMS prop, which only stores an exponentially decaying average of
past squared gradients, Adam also stores an exponentially decaying
average of past gradients. Therefore, Adam can be seen as a com-
bination of RMSprop (exponentially decaying average of past squared
gradients) and momentum (exponentially decaying average of past gra-
dients). This optimization method is computationally efficient and suit-
able for large datasets and networks with many parameters.

• Nadam:

Nadam combines Adam and Nesterov accelerated gradient (NAG).
NAG introduces some kind of foresight, which means that the gra-
dient is not calculated with respect to the current network parameters
but instead with the approximated future position of the parameters.

Figure 54 shows a comparison of the smoothed convergence curves for the
previously described gradient descent-based optimization algorithms, applied
to the present segmentation task. It is clearly visible that Adam and Nadam
outperformed both SGD and RMSprop. Since Nadam converged even slightly
quicker than Adam, it was the optimizer of choice for this thesis.

Figure 54: Comparison of the smoothed convergence curves for different
optimizers. Blue: SGD, orange: RMSprop, green: Adam, red: Nadam.
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5.2.5.4 Real-time Data Feeding

Typically, the entire dataset for training (or testing) a neural network is
loaded at once, which is both memory and time-consuming for a large amount
of available data. For very large datasets, such as the one used in this thesis,
even the best configuration will not allow to load all data at once, due to
limited memory space. Therefore, an efficient solution to this issue had to
be found.

A convenient way to cope with this problem, was to generate the dataset on
multiple cores in real time and directly feed it to the segmentation network.
To this end, a custom Python class named DataGenerator was implemented,
to enable real-time data feeding.

The implemented generator allowed to create batches of arbitrary size di-
rectly from source files, which means that there was no need to separately
store data in a NumPy array. Hence, to uniquely identify samples of the
dataset, the local paths of all MR images and the corresponding ground
truth segmentations of a specified directory were stored in lists. These lists
were sorted to guarantee that each image and its associated segmentation
mask were stored at the same position and therefore have the same ’ID’.

Generators are iterators that do not store all data in memory but generate
it on the fly. Typically, the keyword ’yield’ is used instead of ’return’ when
working with data generators, which ensures that exactly one batch is gen-
erated and fed to the network each time the generator is called by the envi-
ronment. During data generation, the dataset was divided into N partitions,
where N = number of samples / batch size. For each batch, specific images
and their corresponding segmentation masks were loaded from the previously
described lists in a predefined exploration order. This exploration order was
shuffled at each new epoch, in order to provide a random exploration scheme.

Since the implementation allows for multiprocessing, data generation did not
become the bottleneck in the training process. Using this method, data could
be generated in parallel by the CPU and then directly be fed to the GPU.
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5.2.5.5 Training Process

Training of the previously presented segmentation network was performed in
the file segmentation.py. Before the training process was started, the number
of epochs, the desired batch size and the number of GPUs to be employed,
had to be specified. Furthermore, a batch size of 64 was used and the number
of epochs was set to 40, where each epoch represented an iteration over the
entire dataset. The employed model was trained from scratch, using eight
GPUs for efficient multi-GPU training. Pre-trained weights were only loaded
for testing the final segmentation performance of the network after the entire
training process, which is further discussed in section 5.2.6.

The previously generated synthetic 2D MR images of size 256x256 along with
their corresponding ground truth segmentations (see section 5.1) were used
in axial view to train the network. The current segmentation performance
was validated after each epoch using a validation dataset consisting of 1040
MR images of real patients suffering from glioblastoma multiforme. To this
end, separate data generators were created for training and validation data.
Since training and testing are both implemented in the file segmentation.py,
the variable ’training’ either had to be set to ’TRUE’ to train the model or
to ’FALSE’ to initiate the final model evaluation.

The employed deep learning model was defined in architecture.py. Before
it could be trained, multi-GPU training had to be enabled using the Keras
method utils.multi gpu model(), which replicates a model on different GPUs.
In particular, this method implements single-machine multi-GPU data paral-
lelism. This means that the model’s input was divided into sub-batches and
a copy of the model was applied to each sub-batch. Every model copy was
then executed on a dedicated GPU. Finally, the results were merged back
into one batch of original size on the CPU. Thus, this method allowed quasi-
linear speed-up. Furthermore, the learning process had to be configured
before training the model, which was done via the model.compile() method
of Keras. This method receives three arguments: the optimizer, the loss
function and a list of evaluation metrics. As already mentioned in previous
sections, a combined loss consisting of cross-entropy loss and Dice loss was
employed and Nadam was used as optimizer. The Dice similarity coefficient
as well as sensitivity and specificity (implemented in metrics.py) were utilized
as evaluation metrics during the training phase.
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Several custom Keras callback functions were implemented in segmenta-
tion.py to accomplish specific tasks at given stages of the training phase.
Such functions can be used to get a view on internal states and statistics of
the model during training. In the case of this work, they were used to save
model weights whenever the validation loss decreased at the end of an epoch
and to store log-values of the training process for later illustration.

Finally, the learning process of the network was started using the Keras
method model.fit generator(), which trained the model on data generated
batch-by-batch by the implemented data generator described in section 5.2.5.4.
For better efficiency, the data generator operated in parallel. A list of the pre-
viously defined callback functions and the data generators for both training
and validation data were passed as arguments to the model.fit generator()
method. The relevant methods of the implemented callbacks were then called
at the according stage of training. The initial learning rate was set to 0.001
and dropout was applied as specified in section 5.2.3, using a dropout rate
of 0.3.

In each update step, a pixel wise error was computed using a sigmoid activa-
tion function over the final layer of the network combined with the employed
loss function. Network weights were then adapted accordingly. During the
entire training phase, 32480 weight updates were performed.

During each epoch, a running average of the training loss and evaluation
metrics was printed to enable convenient monitoring of the learning process.
When the validation loss decreased, the current model was saved at the end
of an epoch using the Keras method model.save weights(), which saved the
weight parameters as a HDF5 file.

In deep neural networks with many convolutional layers, a good weight-
initialization is essential for successful training. Therefore, weights were ini-
tialized using a Glorot uniform initializer, also known as Xavier uniform ini-
tializer, which draws samples from a uniform distribution within the range
[−a, a], where a is defined as

√
6/(uin + uout), where uin denotes the number

of input units in the weight tensor and uout denotes the number of output
units in the weight tensor.
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5.2.6 Testing the Segmentation Network

In order to provide an unbiased evaluation of the final model, the segmenta-
tion network was tested on unseen data consisting of 1040 real MR images of
patients suffering from glioblastoma multiforme. The test dataset was only
used to asses the generalization ability of the fully trained model.

5.2.6.1 Hardware

Testing was conducted on a single NVIDIA R© Tesla R© K20Xm GPUs, having
6GB GDDR5 graphics memory. During the testing phase data was prepared
and provided in parallel by an Intel R© Xeon R© CPU E5-2630 v2 with 6 cores.

5.2.6.2 Evaluation Process

Testing the previously trained segmentation network was also conducted in
the file segmentation.py. In order to evaluate the final model, the variable
’training’ had to be set to FALSE. It is important to note that dropout was
deactivated during the testing phase.

For the testing process, pre-trained weights were loaded by theKerasmethod
model.load weights(), which expects a path to previously stored weights of
the model and loads these weights from the specified HDF5 file.

The evaluation of the entirely trained segmentation network was performed
using the Keras method model.predict(), which generates output predictions
for given input samples. The method expects the input data as a NumPy
array and returns a NumPy array of predictions. Therefore, the test images
and their corresponding ground truth segmentations had to be stored in
NumPy arrays prior to the testing process. Furthermore, the batch size had
to be specified, which was again set to 64.

Using the predicted network output along with its corresponding ground
truth, specific evaluation metrics were computed, namely the Dice similarity
coefficient, the sensitivity, the specificity, and the Hausdorff distance, which
are discussed in section 3.3.3.
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The corresponding methods for computing these evaluation metrics were im-
plemented in the file metrics.py. Each of these methods received the predicted
segmentation of the network as well as the ground truth segmentation and
calculated a certain similarity measure. Since the output of the sigmoid ac-
tivation function was in the range of (0, 1), a threshold of 0.5 was applied to
the network output, in order to obtain a binary prediction.

As proposed by G. Csurka et al. [96], measuring per-image scores for seg-
mentation tasks is important, since evaluations over the whole test dataset
do not allow to distinguish models that perform moderately on all images
from models that perform very well on some images and very bad on others;
whereas plotting histograms of per-image scores allows such a differentiation.
Furthermore, they argue that the use of per-image scores enables compari-
son to a specified threshold, which can be useful in real applications, where
a minimum level of quality is usually expected.

In order to perform an additional per-image evaluation, Dice coefficient, sen-
sitivity, specificity and Hausdorff distance were computed for each individual
test image and corresponding histograms were created to represent the ac-
cording score distribution.
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6 Results

This chapter presents the final results of this thesis. In section 6.1, examples
of the synthetic training dataset are illustrated, which were created using
the proposed data generation method (discussed in section 5.1). The actual
segmentation results, obtained with the presented deep convolutional neural
network, are provided in section 6.2. The segmentation performance of the
model was assessed for the entire test dataset and additionally per-image
evaluation was performed. Furthermore, several test images along with their
predicted segmentation mask and ground truth are illustrated.

6.1 Synthetic MRI Data

In this section, results of the proposed method for generating MRI data
containing synthetic glioblastoma multiforme and a simulated tumor mass
effect are provided. In total, a training dataset consisting of 52000 images
was generated with the presented approach. All images illustrated in this
section are already skull stripped, which is discussed in section 5.2.2.

6.1.1 Simulation of the Tumor Mass Effect

Figure 55a shows an image of a healthy brain without a simulated tumor
mass effect, whereas figure 55b illustrates the same MR image including a
simulated tumor mass effect in the upper right area of the brain.

Figure 55: a.) healthy brain without tumor mass effect; b.) the same MR
image demonstrating a simulated tumor mass effect in the upper right area.
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6.1.2 Generated Synthetic Glioblastomas

Figure 56a illustrates a representative selection of synthetic MR images con-
taining artificially generated glioblastomas as well as a simulated tumor mass
effect, along with their automatically created ground truth. For comparison
purposes, six real MR images of patients suffering from glioblastoma multi-
forme and their manually obtained ground truth segmentations are shown in
figure 56b.

Figure 56: a.) synthetic MR images containing artificially generated glioblas-
tomas as well as a simulated tumor mass effect, along with their automat-
ically created ground truth; b.) real MR images of patients suffering from
glioblastoma multiforme with manually obtained ground truth.
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6.2 Segmentation Results

This section contains a concise overview of the segmentation results achieved
with the proposed method. Results of per-image evaluation - as previously
discussed - are provided in section 6.2.1.

The presented segmentation network was trained with 52000 synthetic 2D
MR images and tested on 2600 real 2D MR images. Training was performed
for 40 epochs, which corresponds to 32480 individual update steps. Figure
57 illustrates the smoothed convergence curves of the training loss and the
training Dice coefficient, respectively. On average, the model took 10 hours
to train with multi-GPU utilization.

Figure 57: Smoothed convergence curves of training loss (a) and training
Dice coefficient (b).
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The final segmentation performance of the fully trained network was evalu-
ated by computing the Dice similarity coefficient (DSC), the Hausdorff dis-
tance (HD), as well as sensitivity and specificity of the network output for the
given test dataset. The according evaluation results are presented in table 2.

Table 2: Evaluation of segmentation results for the presented segmentation
network, which was trained with 52000 synthetic MR images and tested on
2600 real MR images. Dice similarity coefficient (DSC), Hausdorff distance
(HD), sensitivity and specificity were computed as evaluation metrics.

Training Steps
Test DSC Test HD Test Sensitivity Test Specificity

% pixels % %

32480 82.449 9.002 73.447 99.987

All results in table 2 are obtained over the entire test dataset. Additionally,
per-image evaluation is provided in the following section.

6.2.1 Per-image Evaluation

As discussed in section 5.2.6, per-image evaluation is essential in order to be
able to better assess the results achieved with the proposed method. Other-
wise, it would, for example, not be possible to distinguish between a model
that performs moderately on all test images and a model that performs very
well on some test images and very bad on others.

To this end, Dice similarity coefficient, sensitivity, specificity and Hausdorff
distance were computed for each test image independently and histograms
were created to visualize the per-image evaluation score distribution of the
model. The corresponding histograms can be seen in figure 58.

In figure 59 qualitative segmentation results are provided, which show a rep-
resentative selection of test images illustrating the predicted segmentation
along with the actual ground truth segmentation.
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Figure 58: Histograms of per-image evaluation scores. Top left: histogram of
Dice similarity coefficient; top right: histogram of Hausdorff distance; bottom
left: histogram of specificity; bottom right: histogram of sensitivity.

89



Figure 59: Selection of test images illustrating the predicted segmentation
(red) along with the actual ground truth segmentation (blue).
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7 Discussion and Future Outlook

In the proposed work, an approach for fully automatic brain tumor seg-
mentation was presented, using a deep convolutional neural network trained
with synthetically generated data. In particular, this work focused on the
segmentation of glioblastoma multiforme in MRI data. A method for gen-
erating brain MR images containing synthetic glioblastoma multiforme and
a modified U-Net architecture for automatic segmentation of the lesion were
presented. The deep convolutional neural network was trained solely with
synthetic MRI data and was subsequently tested on real MR images of pa-
tients suffering from glioblastoma multiforme.

7.1 Synthetic Data Generation

Since deep neural networks require a large training dataset, in order to learn
a task and generalize from training samples to the entire domain of unseen
data, MR images containing synthetic brain tumors along with the underlying
ground truth segmentation were generated with the help of MeVisLab and
the method presented in section 5.1.

In general, it is much easier to receive and use data of healthy subjects than
diseased ones, due to privacy concerns amongst other things. With the pro-
posed method, it was possible to generate realistic-looking brain tumors and
insert them into healthy brain MR images. Furthermore, it was possible to
simulate a tumor mass effect by using image deformation. The corresponding
ground truth was created automatically in a very precise way. Finally, the
resulting ”hybrid” MR images could be used to train a deep convolutional
neural network for automatic tumor segmentation.

In clinical practice of oncology and diagnostic medicine, typically only the
enhancing tumor and necrotic core are segmented, since these regions are of
primary interest. Delineation of other structures is usually not performed,
since the segmentation of the surrounding edema, for example, is extremely
challenging and will therefore not represent the truth very well [19]. Due to
this reason, the data generation approach was restricted to simulating the
enhancing tumor and necrotic core.
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One advantage of inserting synthetic brain tumors into MR images is that
the position, shape and size of the lesion is already exactly known; hence,
it is very easy to automatically create a precise ground truth segmentation.
Another advantage of the proposed method is that different artificial tumors
can be inserted into the same image, thereby maximizing the size of the
resulting dataset. In this work, an easy application for data generation, in-
cluding one-click seed point selection and saving individual 2D image slices
via MeVisLab, was introduced. Generating artificial brain tumors, creating
the corresponding ground truth and simulating the tumor mass effect was all
done in one step, which made it possible to generate a large synthetic MRI
dataset for training a deep neural network.

Related work in the field of generating artificial brain tumors is often focus-
ing on more complex approaches (biomechanical models, reaction-diffusion
processes guided by diffusion tensors etc.), which to some extent try to simu-
late tumor growth on cell level [23],[80],[82]. The aim of the presented tumor
generation technique was to empirically generate sufficiently realistic brain
MR images containing synthetic glioblastomas and, furthermore, to auto-
matically create the corresponding ground truth segmentation, which could
subsequently be used to train a deep neural network. The precise modeling
of brain tumor growth on cell level was beyond the scope of this work. The
proposed method is simple but nevertheless allows to simulate all crucial
characteristics of a glioblastoma multiforme, such as the enhancing tumor
and necrotic core, as visible in post-contrast T1-weighted brain MR images.

The synthetic MR images were examined by a neurosurgeon with many years
of experience in the diagnosis and treatment of brain tumors and were judged
to be very realistic and consistent with the MR images of true glioblastomas,
as they are seen in clinical routine. Although the synthetic data was con-
sidered to be not distinguishable from real MR data of glioblastomas by
an experienced neurosurgeon, blind testing should be conducted in a future
study to ensure the quality of the synthetic images.

A further adaptation of the proposed approach could be to simulate the
effect of Gadolinium on brain tissue in non-contrast enhanced T1-weighted
MR images. Another extension would be to simulate enhancing areas inside
the necrotic core, in order to provide a larger range of reasonable tumor
appearances. Furthermore, the proposed method may also be applied to
other areas of clinical oncology and diagnostic medicine, for example, the
simulation of liver tumors [97].
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7.2 Brain Tumor Segmentation

The network architecture used for the segmentation task of this thesis was
based on the well-known U-Net architecture proposed by O. Ronneberger et
al. [71]. The original architecture was slightly modified to provide a better
fit for the segmentation problem at hand.

The employed network comprised an initial contracting path (convolutional
encoder) and a subsequent expanding path (convolutional decoder). The
main modifications included omitting the 2x2 convolution in the expanding
path of the network and the additional application of batch normalization
and dropout layers after each regular 3x3 convolution.

Another important adaptation is that ’same padding’ was used for convolu-
tions instead of ’valid padding’, which resulted in a segmentation mask that
exhibited the same size as the input image. In contrast, with ’valid padding’
(as used in the standard U-Net) the output image would be smaller than the
input by a constant border width.

In total, the utilized network architecture consisted of 23 convolutional layers
and was designed for gray scale input images of dimension 256x256. In the
lowest resolution, feature maps exhibited a size of 16x16, with a maximum
number of 256 feature channels.

Prior to the actual training and evaluation process of the neural network,
several preprocessing steps were performed on the employed MRI data, in-
cluding the removal of non-brain tissue, resizing of MR images, contrast
enhancement, as well as intensity normalization.

The presented segmentation network was trained with 52000 synthetically
generated 2D MR images and tested on 2600 real 2D MR images. Training
was performed for 40 epochs, which corresponds to 32480 individual update
steps. On average, the model took 10 hours to train with multi-GPU uti-
lization. A combined loss function, comprising the sum of cross-entropy loss
and Dice loss, together with the Nadam optimizer was used for the learning
process of the network.
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Assessing the segmentation results given in section 6.2, one can see that it
was possible to achieve a Dice coefficient of 82.449%, a Hausdorff distance
of 9.002, a sensitivity of 73.447% and a specificity of 99.987% on the test
dataset. These results prove that it is possible to train a deep convolutional
neural network for brain tumor segmentation solely on synthetic data.

Analyzing the histograms in figure 58, which illustrate the per image evalu-
ation of the model, it can be seen that the segmentation of most test images
resulted in a Dice coefficient between 90% and 100%, a Hausdorff distance
between 0 and 10 pixels, a sensitivity between 90% and 100%, and a speci-
ficity between 90% and 100%.

However, there is also a not negligible number of images from the test set
that resulted in a Dice coefficient between 0% and 10% and a sensitivity
between 0% and 10%, which indicates that certain tumor structures could
not be identified as such or were only partially detected by the model.

Inspecting the qualitative segmentation results, it became apparent that most
of these incorrectly segmented images only contain a very small area of tumor,
with low tissue contrast. Furthermore, it could be observed that tumor
structures that exhibit a large and diffuse enhancing area inside the necrotic
core were also more difficult to segment for the model. Additionally, a couple
of false positives were produced for brains with very large lateral ventricles,
which also reflects in a higher Hausdorff distance. The very high specificity
indicates that the model is very good at segmenting background. However,
due to the class imbalance of foreground and background in the employed
MR images, this metric is naturally quite high.

The representative selection of qualitative segmentation results of test im-
ages, shown in figure 59, illustrates that for MR images of tumors with good
soft tissue contrast, a defined enhancing margin, and a nearly homogeneous
necrotic core, the predicted segmentation result is quite precise. For some
individual cases, the prediction produced by the model seems to follow the
outline of the tumor even better than the manually obtained ground truth
segmentation. In contrast, however, tumor structures that demonstrate a
more diffuse enhancing margin and an inhomogeneous necrotic core, seem
to be more difficult to segment for the model and were therefore sometimes
only partially detected.
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The results obtained in this work are not directly comparable to the results of
the MICCAI BraTS challenge, where both high grade and low grade glioma
are segmented in multimodal MRI data and segmentation of the whole tumor
(non-enhancing tumor, enhancing tumor, necrotic core, peritumoral edema),
tumor core (non-enhancing tumor, enhancing tumor, necrotic core) and the
enhancing tumor alone is required. In contrast, the aim of this thesis was to
segment the enhancing tumor together with the necrotic core in post-contrast
T1-weighted MR images. The segmentation task at hand is probably most
relatable to segmenting the tumor core in the MICCAI BraTS challenge.

For this thesis, the segmentation network was trained and tested using 2D
images, since clinical experts are typically only interested in single MRI slices
and not in 3D volumes. Furthermore, training a 3D network architecture re-
quires even more data and is always associated with more computational
effort. However, future work could still include a modification of the pre-
sented network to enable 3D training with a focus on efficient processing of
the image volumes, since this approach could further improve the results by
exploiting information of the whole volume content. Moreover, segmentation
predictions of different network architectures could be combined for a more
robust performance.

Another interesting extension of the proposed approach would be to addi-
tionally perform unsupervised domain adaptation with adversarial networks,
as proposed by K. Kamnitsas et al. [98]. This may result in a segmentation
method that is more invariant to differences between synthetic training and
real test data. In particular, domain-invariant features could potentially be
obtained by learning to counter a separate adversarial network, which aims
to classify the domain of the given input data by observing the activations
of the actual segmentation network.
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