TU

Grazm
Gerd Berger, BSc

Design and Implementation of a
Test-Pattern Generator for Printhead
Adjustment of Digital Inkjet Printers

Master’s Thesis
to achieve the university degree of
Master of Science

Master's degree programme: Computer Science

submitted to

Graz University of Technology
Institute for Technical Informatics

Supervisor

Ass.Prof. Dipl.-Ing. Dr.techn. Christian Steger

Advisor

Ass.Prof. Dipl.-Ing. Dr.techn. Christian Steger

Dipl.-Ing. Georg Klima
(Durst Phototechnik Digital Technology GmbH)

Graz, November 2018

Affidavit

I declare that I have authored this thesis independently, that I have not
used other than the declared sources/resources, and that I have explicitly
indicated all material which has been quoted either literally or by content
from the sources used. The text document uploaded to TuGrRAZOnNline is
identical to the present master’s thesis.

Date Signature

Kurzfassung

Die Durst Phototechnik Digital Technology GmbH ist eine Osterreichische
Firma aus Lienz, Osttirol, die sich auf digitale Tintenstrahldrucksysteme
spezialisiert hat. Ihr Portfolio reicht von ihrem Kern-Segment, dem Grof3-
formatdruck tiber Wellpappe- und Textil- bis hin zu Label- und sogar
Keramikdruck.

Ahnlich wie bei einfachen Biirodruckern miissen auch bei den Indus-
triedrucksystemen die Druckkopfe adjustiert werden. Zu diesem Zweck
werden spezielle Testmuster gedruckt welche Ungenauigkeiten bei der Aus-
richtung zeigen welche dann von Servicemitarbeitern behoben werden.

In dieser Arbeit wird ein System entworfen und implementiert, welches das
Erzeugen dieser Testmuster automatisiert und wiederkehrende Aufgaben
bei der Druckkopfjustage beschleunigt. Der erste naive Algorithmus zum
Exportieren der Testmuster war nicht performant und wurde deshalb durch
einen Plane-Sweep Algorithmus ersetzt, welcher spater durch Multithread-
ing verbessert wurde.

Abstract

The Durst Phototechnik Digital Technology GmbH is an Austrian company
located in Lienz, East Tyrol, specialized in digital inkjet printing systems.
Their portfolio range from their main segment, the large format printing
over corrugated and textile to label and even ceramics.

Similar to simple office printers, the printheads of those industry printing
systems must also be adjusted. For this purpose, special test patterns are
printed to show inaccuracies in the adjustment which are eliminated by the
service staff.

In this work, a system was designed and implemented to automate the gen-
eration of those test patterns and speed up the recurring tasks of printhead
adjustment. The first naive algorithm for exporting the test patterns was not
performant and therefore replaced by a plane-sweep algorithm which was
later improved with multithreading.

Acknowledgments

This thesis was created in 2018 at the Institute for Technical Informatics at
Graz University of Technology and in cooperation with Durst Phototechnik
Digital Technology GmbH in Lienz.

First, I would like to thank Durst Phototechnik Digital Technology GmbH,
especially DI Wolfgang Knotz for the great opportunity to do this work as
well as DI Georg Klima for his professional technical assistance.

I also would like to thank Prof. Christian Steger for his supervision not only
for this thesis but also previous work.

Furthermore, I would like to thank my parents and family not only for their
financial but also for their mental support during my life. Without their
support, I would not have been able to pursue an academic degree.

Last but not least, my thanks go out to my friends for their support and
motivation during the whole studies.

Gerd Berger Graz, November 2018

Contents

Abstract il
1 Introduction 1
1.1 Motivation o oo oo oo 1

1.2 Stateofthe Art 3

1.3 Objective 3

1.4 Structure of the Thesis 4

2 Literature Research 6
2.1 Keep It Simple, Stupido 0o L 6
2.2 Dynamic Class Loading 6
23 FileFormats 7
24 TIFF . . .o 8
2.5 Scanline Principle and Plane-Sweep Algorithm 11
2.6 Design Patterns Revisited 12
2.6.1 Serializer. oo 13

2.6.2 Factory Pattern 14

2.6.3 Prototype L 15

264 Singleton. 16

26,5 Composite Lo 16

26.6 Strategy o o 17

267 Visitor e 18

2.6.8 Whole-Part 20

2.6.9 Publisher-Subscriber aka Observer 20

2.6.10 Concluding Remarks on Design Patterns 20

27 Plmplldiom 23
28 SmartPointers 23
2.9 The Property System 24
2.10 Rule of Three/Five/Zero. 24

Vi

Contents

3 Design
3.1 Specification o oL o
3.2 UserStories
3.2.1 User Storiesfor Users
3.2.2 User Stories for Developers
33 GUI . ..o
3.4 System Architecture
3.5 Printer Configuration File
3.6 Pattern Definition File
4 Implementation
4.1 Development Workflow
42 UlClasses
421 MainWindow Lo L.
4.2.2 PatternSection. oL,
4.2.3 PatternDefinitionSection
4.2.4 PropertiesSection L.
43 CoreClasses
431 FilelO.
4.3.2 ISerializable
4.3.3 Pattern Definition.,
43.4 Printer o o o
4.3.5 Print Primitives
43.6 TestPatterns.
437 Exporter
4.4 Main Function and Commandline Execution
45 CaseStudy o
5 Use Cases
51 Addinganew Printer
5.2 Adding a Property to a Test Pattern
5.3 Creating a new Print Primitive
5.4 Creating anew Test Pattern

6 Conclusion and Future Work

Bibliography

Vii

71
71
73
75
76

78
80

List of Figures

Ps250HS o oo 2
Printhead of the Rho 1xxx Series HS 3
Class Diagram of Serializable Interface 13
Class Diagram of Factory Pattern 14
Class Diagram of Prototype Pattern 15
Class Diagram of Singleton Pattern. 16
Class Diagram of Composite Pattern 17
Class Diagram of Strategy Pattern 18
Class Diagram of Visitor Pattern 19
Class Diagram of Whole-Part Pattern 21
Class Diagram of Observer Pattern 21
User Stories e 27
GUI of TestPatternGenerator 33
Components of TestPatternGenerator 34
Overview of Ul Classes 35
Overview of Core Classes 35
Printer Configuration for Ps250 HS 37
Pattern Definition of SlotOffset for P5 250 HS 38
Class diagram of MainWindow 40
Class diagram of PatternSection 41
Class diagram of PatternDefinitionSection 42
Class diagram of PropertiesSection 42
CoreClasses 44
Class diagram of FilelO 45
Class diagram of ISerializable 46
Class diagram of PatternDefinition 47

viil

49

4.10
4.11
4.12
4.13
4.14
4.15
4.16
4.17
4.18
4.19
4.20
4.21
4.22

4.23

5.1
5.2
53
5-4
55

List of Figures

Class diagram of Printer and associated classes 48
Class diagram of print primitives 50
Class diagram of patterns 54
NozzleWarmup pattern 56
NozzleWarmup pattern printed with Ps 250 HS 56
Adjusting Printhead Rotation 57
Rotation pattern 58
RotationPattern printed with Ps 250 HS 59
RotationPattern printed with Rho 13xx 60
SlotOffset 61
SlotOffset printed 62
SlotOffsetPattern printed zoomed 63
Exporter 63
Sequence Diagram of Export Workflow 65
Folder Structure of Exported Files 67
Slot Arrangement Rho163 TS 72
Printhead Configuration Rho163TS 72
Printer Configuration of Rho 163 TS 74
SlotOffsetPattern original and with 1pxlines 75
NozzleTest Pattern 77

List of Tables

2.1

3.1

4.1
4.2

Used TIFFTags, 10
Versions of Used Technologies 26
Comparison of Algorithms on Laptop 69
Comparison of Algorithms on Workstation 70

1 Introduction

Like normal home and office printers, industrial printers also need adjust-
ments after delivery e.g. after changing the printer cartridge. While in the
home and office area one predefined test site is printed and some properties
are set in the printer software, the process for industrial printers is more
complex.

The digital inkjet printers developed by the Austrian company Durst Pho-
totechnik Digital Technology GmbH which is part of the Durst Phototechnik
AG from Brixen, Italy"' are worldwide leading systems. They are separated
into five segments:

Large Format Print
Label

Ceramics

Textile

Corrugated

For each segment there exist various different printer systems. The newest
development from Durst, a large format printer named P5 250 HS is shown
in Figure 1.1.

1.1 Motivation

The printers differ not only in terms of the material on which it is printed
but also if they are one pass or multi pass printers, the color and type of
the inks and even how the drying of the ink works. They have a different

Twww.durst-group. com

www.durst-group.com

1 Introduction

Figure 1.1: P5 250 HS. Image taken from [Duri8a].

amount and layout of more than one hundred printheads with up to four
different colors on each.

A printhead from the Rho 10xx and Rho 13xx series is illustrated in Fig-
ure 1.2 where 1 and 2 are adjustment screws and 3 are fixing screws. On
the right, the layout of the slots is shown. As can be seen, for this printhead
two colors (cyan and black) are used.

What they have in common for all printers is that after replacing old print-
heads, the new ones have to be adjusted mechanically and through software.
For this purpose there exist test patterns for the different adjustment tasks
which are, e.g., rotation or slot offset. These test patterns are basically equal,
but differ in some details like the number of printheads and their layout.

The creation of such adjustment patterns is very time consuming and error-
prone. Since it has to be done for each new printer of each category, it would
be a major benefit to have the possibility to generate those patterns.

1 Introduction

Figure 1.2: Printhead of the Rho 1xxx Series HS. Image taken from [Dur18b].
1.2 State of the Art

Creating test patters is a very time consuming and error-prone task which
is done using Adobe Photoshop?. The technician who wants to create test
patterns for a new printer must have a precise knowledge of the layout of
the printheads. Usually, he or she takes the pattern for a similar printer and
modifies it. Most patterns consist of a lot of individual lines with a width of
one pixel. The space between these lines also differs but always have to be
exact. Once the basic pattern for one printhead is created, the work consists
of a lot of copy and paste work. One Printer could easily have 128 individual
printheads. Finally, labels must be added to make it possible to identify the
printheads and other parameters. Additional to the images, the printer also
needs a configuration file, where the media advance is specified.

1.3 Objective

In this work, a software should be designed and implemented which allows
the generation of test patterns. It should be possible to create a test pattern,

*https://www.adobe.com/at/products/photoshop.html

https://www.adobe.com/at/products/photoshop.html

1 Introduction

modify some properties and export it to be printed on various systems.
The TestPatternGenerator should help different departments like customer
service and quality management to save time by automating the test pattern
generation and also by reducing possible errors in the test pattern.

The software should not only provide a Graphical User Interface (GUI) to
create these test patterns but also be able to be called from another tool, e.g.,
the printer software on the workstation.

Target platforms are Microsoft Windows3 (desktop PCs of users) as well as
Red Hat Enterprise Linux# (workstations of printers).

The main challenges to address are:

e Usability: The software should be easy to use not only for technicians
but also for customers.

e Flexibility: One tool should be enough to create test patterns for all
types of printers.

e Expandability: Adding a new printer should not require a new soft-
ware version. Adding new patterns should not afford big changes in
the software.

In this thesis, we address these challenges and explain the design and
implementation of the TestPatternGenerator.

1.4 Structure of the Thesis

In Chapter 2 used technologies, algorithms and design patterns are ex-
plained.

In Chapter 3 the design of the solution is shown. The technological require-
ments, the user stories and the overall system architecture are discussed. At
the end of the chapter, the GUI is described.

The implementation is described in Chapter 4. As the main part, the differ-
ent implemented classes, especially the print primitives and the test patterns

3https://www.microsoft.com/en-us/windows
4https://www.redhat.com/en/technologies/linux-platforms/enterprise-linux

https://www.microsoft.com/en-us/windows
https://www.redhat.com/en/technologies/linux-platforms/enterprise-linux

1 Introduction

are explained. Since an iterative development process was chosen, the chap-
ter concludes with a comparison between the different implementation
approaches.

The following Chapter 5 deals with some use cases which could occur more
frequent. The most important ones, adding a new printer and a new test
pattern are explained as well as adding a property to an existing test pattern
and creating a new print primitive.

The thesis closes with Chapter 6 in which the whole work is recapitulated
and an outlook to future work is given.

2 Literature Research

In this chapter, we describe concepts and technologies used for the design
and the implementation of the TestPatternGenerator. It starts with the Keep
it Simple, Stupid (KISS) principle, over dynamic class loading and file for-
mats for serialization. After that, TIFF itself and how it is used is explained,
followed by a section about the scanline principle and plane-sweep algo-
rithm, followed by a repetition of the most important design patterns for
this work. The chapter closes with an overview over the PImpl Idiom, smart
pointers, Qt’s property system and the rule of three/five/zero.

2.1 Keep It Simple, Stupid

The fundamental principle, on which the whole design and implementa-
tion is based on, is KISS. An overview of this principle, variations and
alternatives are given in [Fou18]. The basic thought of KISS applied to the
TestPatternGenerator is that the tasks, the user needs to fulfill should be
done as simple as possible. The main functionality of the tool is to generate
test patterns for printers. Therefore the GUI should provide the possibility
to select a test pattern and a printer to export it. Additional settings to adjust
the test pattern should be as little as possible.

2.2 Dynamic Class Loading

Since the software should be as flexible as possible, loading classes dynami-
cally should also be considered. The part where it could be used is for the
different test patterns. Norton describes in his article ([Noroo]) how to use

2 Literature Research

the concept of polymorphism and dynamic class loading for adding and
working with classes loaded at runtime, respectively.

This approach could provide an immense improvement in flexibility and
expandability for a software because adding a class, e.g., a new test pattern,
would not require a complete rebuild. Since the test pattern also depends
on the printer configuration, it could occur that for a new test pattern, also
the configuration files of the printers have to be changed. For example by
adding a new reference property. Therefore it could not be guaranteed that
a certain version of the software could handle a newly added test pattern.
Also, it is not very likely that new patterns are needed very often after
all basic patterns are implemented. Due to these reasons, the concept of
dynamic class loading was not implemented in this software. It is also
considered to implement a so-called generic test pattern, where the user
could define his own test pattern consisting of print primitives. This could
be serialized and deserialized and would make the dynamic class loading
obsolete.

2.3 File Formats

There exist a wide range of different file formats suitable for serialization.
The most common ones are XML, JSON and YAML. A documentation of
these file formats can be found at [Bra+o8], [Int17] and [BENog].

Keshavarzi and Bayer [KB11] give a short overview of these formats and
compare them. They state that JSON and YAML are simpler and also shorter
and therefore repress XML more and more.

Nurseitov et al. [Nur+og] also compare XML and JSON. They made a case
study where they created a simple client-server application where XML-
encoded and JSON-encoded objects are sent from the client to the server
and measure the transmission time and resource utilization. The results of
the two tested scenarios were that the transmission of objects using JSON is
up about 50 times faster than using XML.

Although JSON would be the faster technology with more compact files, the
decision was made to use XML. The main reason for this is that we aim to

2 Literature Research

follow the KISS principle and to keep the number of different technologies
as small as possible. Two other tool for test-patterns already works with
XML and a future version of the TestPatternGenerator should be able to
work with it.

2.4 TIFF

The Tagged Image File Format (TIFF) was created by Aldus Corporation
in 1986 which was later purchased by Adobe Systems Incorporated. A
complete specification of TIFF can be found at [Assg9z2] where also the
structure and other details about the TIFF are explained. Worth mentioning
here is just that a TIFF has a header containing the byte order, “An arbitrary
but carefully chosen number (42) that further identifies the file as a TIFF file.”
([Assgz2, p. 13]) and the offset to the first image file directory. Additionally, a
complete tag-reference of the TIFF could be found at [SYS18].

For writing the files, LibTIFF in the latest version 4.0.9 is used which could be
downloaded from https://download.osgeo.org/libtiff/. Examples, how
the library could be used are provided under [Sys17]. Since the dimensions
of the resulting test-images are very big, the files could not be written at once
and therefore they must be written line by line. This is called scanline-based
image I/0O. The creation of a file follows the following steps:

https://download.osgeo.org/libtiff/

2 Literature Research

1. Open File:
For opening a tiff file, TIFFOpen is used, which takes two arguments,
a filename and a mode parameter for read, write or append. It returns
a handle which is used in the subsequent steps or NULL if opening
the file failed.

2. Write Tags:
TIFFSetField is used to write the different tags into the header directory
of the file. This method takes the handle, the name of the tag and
one or two parameters for the values. It returns 1 if the operation was
successful or o if not.

3. Write Lines:
To write the lines into the file, TIFFWriteScanline is used. This method
takes the handle, the buffer and the row number as parameter. It
returns 1 if the write was successful or -1 if an error was detected.

4. Close File:
TIFFClose closes the file specified by the handle.

The tags which are needed for the printer to interpret the images cor-
rectly are described in Table 2.1. The descriptions and types are taken from
[SYS18]. Note that all tags except TIFFTAG_BITSPERSAMPLE and TIFF-
TAG_EXTRASAMPLES allow one value. TIFFTAG_BITSPERSAMPLE de-
fines the number of bits per component, e.g., an RGB image could have a dif-
ferent number of bits for each color component, but since LibTIFF does not
support it, only one value for all components is set. TIFFTAG_EXTRASAMPLES
allows N values where the first specifies the number of extra samples.

0T

Tag

Description

Type

Values

TIFFTAG_IMAGEWIDTH

The number of columns in the image, i.e., the number
of pixels per row.

SHORT or LONG

width of the test pattern

TIFFTAG_IMAGELENGTH

The number of rows of pixels in the image.

SHORT or LONG

height of the test pattern

TIFFTAG_SAMPLESPERPIXEL | The number of components per pixel. SHORT 8

TIFFTAG_BITSPERSAMPLE Number of bits per component. SHORT 8

TIFFTAG_PLANARCONFIG How the components of each pixel are stored. SHORT PLANARCONFIG_CONTIG = 1

TIFFTAG_COMPRESSION Compression scheme used on the image data. SHORT COMPRESSION_LZW = 5

TIFFTAG_ORIENTATION The orientation of the image with respect to the rows | SHORT ORIENTATION_TOPLEFT = 1
and columns.

TIFFTAG_RESOLUTIONUNIT | The unit of measurement for XResolution and YReso- | SHORT RESUNIT_INCH = 2
lution.

TIFFTAG_XRESOLUTION The number of pixels per ResolutionUnit in the Im- | RATIONAL x-resolution of printer
ageWidth direction.

TIFFTAG_YRESOLUTION The number of pixels per ResolutionUnit in the Im- | RATIONAL y-resolution of printer
ageLength direction.

TIFFTAG_PHOTOMETRIC The color space of the image data. SHORT PHOTOMETRIC _SEPARATED = 5

TIFFTAG_ROWSPERSTRIP

The number of rows per strip.

SHORT or LONG

1

TIFFTAG_EXTRASAMPLES

Description of extra components.

SHORT

four extra samples with value
EXTRASAMPLE_UNSPECIFIED = o

Table 2.1: Used TIFF Tags

UoJeasay auniessi g

2 Literature Research
2.5 Scanline Principle and Plane-Sweep Algorithm

Using the scanline principle on a given set of data means that the algorithm
goes through the input only once and it only takes the currently relevant
elements into account. The plane-sweep algorithm uses this principle to find
intersections of lines or planes.

As Bentley shows in his book Programming Pearls [Ben86, pp. 69 sqq.] in
Chapter 7, the choice of the algorithm is essential for the runtime of the
program. Bentley explains this with different algorithms to solve the subset
sum problem. The fourth algorithm, using the scanline principle, iterates
over the array with n elements only once and has a time complexity of
O(n). Bentley compares this algorithm with other, naive algorithms and
also shows that constant factors, e.g., by using better hardware for worse
algorithms, did not pay off for a bigger problem size.

Nievergelt and Preparata already explained in 1982 in their article “Plane-
Sweep Algorithms for Intersecting Geometric Figures” [NP82] the increasing
importance of algorithms for computer-aided design. They explain the plane-
sweep algorithm on two examples, the region-finding algorithm and an
algorithm for the intersection of convex maps.

As described in Section 4.3.5, the test patterns consist of a big number of
print primitives. To write the data of the different print primitives to the
output file, they have to be iterated. In the previous section, it is described
that the TIFF files are written line after line. Iterating over all primitives in
each line is a big overhead since not all print primitives are relevant for all
lines. To reduce the effort for retrieving the individual data, a modification
of the plane-sweep algorithm was implemented. The basic idea for using
this algorithm came from Aichholzer and his lecture "Entwurf & Analyse
von Algorithmen” ([Aic15]). In Chapter 5.3 he explains how it is used to
find intersecting line segments.

The algorithm maintains two data structures. The begin-, end- and intersection-
points of the lines are called events. The X-structure contains the X-coordinates
of all known events which are not yet reached by the scanline. Additionally,
the information if it is a start-, end- or intersection-point must be stored.
This structure must be sorted in ascending order all the time. For example,

11

2 Literature Research

in the beginning it contains the X-coordinates of the start- and end-points
of all line segments. The Y-structure contains all segments which are hit by
the scanline. The segments are sorted by their Y-coordinates.

Algorithm:

1. Get minimum m from X and remove it

2. If m is a start point, add the segment to Y
if m is an end point, remove it from Y
if it is an intersection point, exchange the two segments in Y

3. For all new neighboring segments, check if they intersect and if so,
add the intersection point to X and report the intersection

The plane-sweep algorithm is event-driven and has a complexity of O((n + k) log(n))
in time and O(n + k) in space where n is the number of line-segments and k
is the number of intersections. For a detailed analysis check [Aic15].

The Encyclopedia of GIS is a reference of topics which concern geographic
information systems. In Volume 2, Wood and Kim [Wood:2015]) give an
overview of the plane-sweep algorithm. There are a lot of application areas
like in robotics and motion sensing, computer graphics and in spatial
databases. The example in the book deals with the intersection of geometric
shapes represented by their minimum bounding rectangles. These minimum
bounding rectangles are also separated in two sets and only intersections
from different sets are considered.

The advantage of using the plane-sweep approach in this work is shown in
a case study in Subsection 4.5, where the export duration of the test patterns
for the three supported printers using different algorithms are compared.

2.6 Design Patterns Revisited

This section gives a brief overview of all implemented design patterns and
those which were considered. It is not the aim of this work to explain design
patterns in detail, but the essence of some selected should be brought to
mind. Additionally, the idea where and why the design pattern could be

12

Reader

2 Literature Research

Serializable

Figure 2.1: Class Diagram of Serializable Interface. Image adapted from [Rie+97].

used is explained. More details about the actual implementation is given in

Writer

wiiteTodMitern
readFromi{Reader)

I

Customer

Account

the corresponding classes in Chapter 4.

2.6.1 Serializer

In the serializer design pattern ([Rie+97]) an interface is used to define
methods for serializing and deserializing objects. To perform these tasks,
a reader and a writer are used and each class implementing this interface
is able to store and restore their data. The class diagram of the serializable

interface is shown in Figure 2.1.

This design pattern is used throughout the whole software. It is used to

load a Printer and save and load a PatternDefinition.

13

2 Literature Research

Client
Uses askfor a new ohject
Froduct
yiy
|
==realize== |
|
Coaoncrete Product Factory
creates

createProduct() ; Product

Figure 2.2: Class Diagram of Factory Pattern. Image adapted from [Des18].

2.6.2 Factory Pattern

The factory pattern is used for object creation. All products are in an
inheritance hierarchy and derived from a virtual root-class. A factory class
provides a method which is responsible for the object creation. Usually, it
takes the type as a parameter and returns a concrete product as root-object.
In Figure 2.2 the class diagram of this pattern is shown and additional
information can be found at Object Oriented Design [Des18]. The advantage
of this design pattern is that the effort of object creation is encapsulated
within a factory class.

Similar to the factory pattern is the factory method defined by Gamma et
al. [Gam+94, pp. 107 sqq.]. It is more general because the design explicitly
allows sub-classing the factory and to change the behavior of the method

14

2 Literature Research

Client Frototype
prototype
p= prntnmpe-bolunegb}____ Operation(Clane
ConcretePrototype ConcretePrototype
Cloned Cloneg
clane return copy Dfselfll} _________ o)

Figure 2.3: Class Diagram of Prototype Pattern. Image adapted from [Gam+94, p. 119].

for object creation. For the sake of completeness, also the abstract factory
([Gam+o94, pp. 107 sqq.]) should be mentioned. Here also the factory classes
are in an inheritance hierarchy and responsible to create a group of objects.

The creation of the test patterns is done using the factory pattern. It
was also considered to implement a factory for creating the different
PrintPrimitives but due to little benefit this idea was rejected.

2.6.3 Prototype

The next creational pattern is the prototype ([Gam+94, pp. 117 sqq.]) where
all objects implement a clone method. If the client needs an object, it simply
calls this method from a prototype. The big advantage of this design pattern
becomes visible if the objects have a lot of properties and a lot of similar
objects have to be created. The prototype has set the common properties
and is just copied. One drawback is that implementing the clone method is
error prone especially if during the implementation, the properties of the
objects change a lot. The class diagram can be found in Figure 2.3.

15

2 Literature Research

Singletan

uniguelnstance
singletonData

static Instacne
SingletonOperation
GetSingletonDatad

‘|Instanceﬂ| returns the uniquelnstanceb]

Figure 2.4: Class Diagram of Singleton Pattern. Image adapted from [Gam+94, p. 127].

The prototype pattern is implemented within the PatternFactory which
has the advantage that the setup of all print primitives have only be done
once.

2.6.4 Singleton

The last design pattern concerning object creation which is mentioned here
is the singleton ([Gam+94, pp. 127 sqq.]). As the name says, there exists
only one instance of a singleton. This is done by making the constructor of
the class private and also hold a private instance of the class as a member.
Additionally, it provides a method for retrieving this instance. This method
checks if the private member is already set. If not, an object is created and
set to it and afterwards, the instance is returned. Figure 2.4 shows the class
diagram of the singleton.

The PatternFactory is implemented as a singleton which is necessary
because of the usage of the prototype pattern.

2.6.5 Composite

The composite [Gam+94, pp. 163 sqq.] is a structural design pattern. The
intention is to let the client use objects and compositions of objects uniformly.

16

2 Literature Research

Client Component
Ciperation(
Add(Component)
RemaoveiCompanent)
GetChild{inty
Leaf Composite
children
Cperationd | —— - Cperation{
: AddiComponent)
rf 0 " “or all child : Remaove(Campanent)
perfarm Operation() for all chi renﬁ___ getChildgnt

Figure 2.5: Class Diagram of Composite Pattern. Image adapted from [Gam+94, p. 164].

The part-whole hierarchy forms a tree structure. The class diagram of this
pattern is shown in Figure 2.5.

The design pattern was considered to be implemented in the print primi-
tives. The basic class is PrintPrimitive. Subclasses are among others Line,
Rectangle, Label and LineBlock which consists of a set of separate lines.
This approach was not implemented because it would not eliminate the
problem of too many objects for a test pattern as explained in Subsec-

tion 4.3.5.

2.6.6 Strategy

The strategy is a behavioral design pattern [Gam+94, pp. 315 sqq.]. It is
used to make algorithms interchangeable by defining a base strategy and
derive concrete strategies. The class diagram can be found in Figure 2.6.

17

2 Literature Research

Context Strategy
strateny
Contextinterfaced Algarithminterfaced
i
ConcreteStrategyd ConcreteStrategyB ConcreteStrategyC
Algorithminterfacen Algorithminterfaced Algarithminterface

Figure 2.6: Class Diagram of Strategy Pattern. Image adapted from [Gam+94, p. 316].

This design pattern is used for the exporting functionality. We have a base
Exporter class and several inherited exporters. In the first version only one,
namely the TiffExporter was implemented.

2.6.7 Visitor

Another behavioral design-patter is the visitor ([Gam+94, pp. 331 sqq.]).
Concrete visitors are derived from a base visitor class and operate on an
object structure. The benefit of this design pattern is that the operations on
the objects can be changed without changing the objects itself. Figure 2.7
shows the class diagram of the visitor pattern.

18

Client

Wisitar

6T

WisitConcreteElementAlConcreteElementa)
VisitConereteElementB{ConcrateElementE)

Concretelisitor

VisitConcreteElementA(ConcreteElementa)
VisitConcreteElementB(ConcreteElementB)

ConcreteVisitor2

VisitConcreteElementA{ConcreteElement4)
VisitConcreteElementB{ConcreteElementB)

ObjectStructure

Element

Figure 2.7: Class Diagram of Visitor Pattern. Image adapted from [Gam+94, p. 334].

Acceptivisitor

ConcreteElementA

ConcreteElementB

Acceptivisitor vy
OperationAd

AcceptiVisitorv)
OperationBy

UoJeasay auniessi g

2 Literature Research

Palsberg and Barry [P]g8] explain the visitor pattern and compare it with
two other approaches (instanceof and type cast, and dedicated methods)
using a Java example. They also demonstrate how to implement the Visitor
“without relying on accept methods and without knowing all classes of the
objects in advance.” ([P]98, p. 1]).

The idea was to implement the export functionality for the different print
primitives of a test pattern using the visitor but since there will not be many
new exporters, the cost-benefit ratio would not pay off.

2.6.8 Whole-Part

Buschmann et al. [Bus+96, pp. 225 sqq.] explain that Whole-Part uses struc-
tural decomposition to help structuring and to encapsulate parts of a unit. It
also provides an interface to the rest of the system. For example, a geometric
figure consist of individual lines, rectangle etc. To rotate it, only the rotate
method of whole figure must be called. The rotation of the individual parts
is done by the figure itself. The class diagram of this pattern can be found
in Figure 2.8.

2.6.9 Publisher-Subscriber aka Observer

An important design pattern used by Qt in its signal-slot implementation is
known as Publisher-Subscriber [Bus+96, pp. 339 sqq.] or Observer [Gam+94,
PpP- 293 sqq.]. Subscribers, as their name says, subscribe to changes of a
certain property of a publisher who holds a list of the subscribers. When this
certain property is changed, all subscribers are informed about the change.
In Figure 2.9 the class diagram of this pattern is shown.

2.6.10 Concluding Remarks on Design Patterns

Using design patterns could be a great benefit for a company. Riehle de-
scribes this in his paper “Lessons Learned from Using Design Patterns in
Industry Projects” ([Rie11]). He gained experience as a developer, in-house

20

2 Literature Research

Fartd

semices10
Semices20

Client YWhole
callzService ombhbines

o] ..other Parts D}
doTask(semvicel(

semice2d

Farti

semiceM10
semniceM20

Figure 2.8: Class Diagram of Whole-Part Pattern. Image adapted from [Bus+96, p. 229].

Subject Observer
ohservers
Attachi{Ohserver) Updated
Detach{Observery
in Motif, call Updateq of all nbsenrersbk _____ Motify()
ConcreteSubject Concrete0bserver
subject
subjectState ohserverState
in GetStated) return subject State B} ______ GetState) Updated
SetState ()

in Update(set ohserverState = subject—>GetStateO%

Figure 2.9: Class Diagram of Observer Pattern. Image adapted from [Gam+94, p. 294].

21

2 Literature Research

consultant and architect in various companies and explains the usage of
design patterns in industrial projects. There are three types of design pattern
usage:

The primary use is in the communication between the developers. When they
talk about a problem, architecture or implementation they use a design
pattern based vocabulary which makes communication much easier.

The second and obvious usage is in the implementation of the software. De-
sign patterns “provide a more comprehensive “bigger” picture of the design
and yet are specific enough to lead to code based on prior experiences.”
([Rie11, p. 5]). One big advantage of the usage of design patterns in the code
is, that other developers know them and therefore could understand the
code faster.

The last field where design patterns are used is in the documentation.
Here the advantage lies in the fact that the developers, who make the
documentation, use the design pattern vocabulary and therefore others,
who read it, know what is meant more quickly.

He also mentions that the projects benefited from design patterns and that
firm-specific design language arose. Components of this language are firm-
specific variations of design patterns, firm-specific patterns, the architecture
of the firm’s products and firm’s programming practices.

Khomh and Guéhéneuce have a more critical view of the usage of design
patterns. In their paper ([KGo8]) they analyzed the impact of design patterns
on different quality attributes of software development. The attributes are
separated into three classes, namely those which are related to design, to
implementation and to runtime. They estimated the impact of design pat-
terns on those quality attributes by creating a questionnaire and analyzing
the answers of twenty expert software engineers. They conclude that not all
design patterns improve the quality of a software and therefore should be
used with caution.

Ten years later, they published a retrospective paper ([KG18]) where they
report and reflect studies on the impact of design patterns on software
development. Khomh and Guéhéneuce give an overview of the different

22

2 Literature Research

types of design patterns and identified seven fields in software development
where they occur.

Knowledge Sharing
Development Tools
Formalization
Forward Engineering
Reverse Engineering
Documentation

Quality

REEOR L o

2.7 Plmpl ldiom

In his book “Thinking in C++, Volume 1” [Eckoo], Eckel explains a technique
named Cheshire Cat. This technique is used to reduce compile time by
moving data into a private structure. Similar to this, in the PImpl idiom
[Ref18a] not only data is hidden in a private structure but a complete private
class capsules private data and methods. This is used especially for libraries
to make the Application Programming Interface (API) stable for changes
of the memory footprint. Another advantage of the PImpl idiom is that the
private members of a class are not visible in the class definition and in the
interface, respectively.

In the implementation of Qt, this technique is widely used. Here it is
called D-Pointer [Wik17] and primarily used for binary compatibility and
also to hide implementation details, keep the header file clean and faster
compilation.

2.8 Smart Pointers

Smart pointers are standard pointers where the memory management is
done by the system. In Qt there exist different types of smart pointers
which are described in their wiki [Wik18]. One of them is the QScoped-
Pointer where the object is deleted when the pointer gets out of scope. A

23

2 Literature Research

detailed description of it could be found in the Qt Documentation Archives
[Ltd17a].

In this project, the private pointer of the PImple Idiom is stored in a
QScopedPointer to ensure that all data stored in the private class are deleted

properly.

2.9 The Property System

Qt provides a property system [Ltd17b] which is based on its Meta-Object
System and very useful for serialization. In the objects, the properties
which have to be serialized are declared using the Q_PROPERTY macro. The
corresponding getters and setters should be declared as well. Afterwards,
all properties could be iterated using the QObject’s member metaObject ().
A detailed explanation of how this is used is given in Section 4.3.2.

2.10 Rule of Three/Five/Zero

In the C++ Reference [Ref18b], the rule of three states that if you need a
user-defined destructor, it is almost certainly that also a user-defined copy
constructor and copy assignment operator is needed.

Stroustrup and Sutter explain in their C++ Core Guidelines [SS18] that you
should only implement default operations if you really need them. This is
known as the "Rule of Zero”. Additionally to this, the “Rule of Five” says
that “If you define or =delete any default operation, define or =delete them
all” ([SS18]).

24

3 Design

This chapter describes the design of TestPatternGenerator. The first section
contains the specification given by Durst. It explains restrictions of the used
technologies and defines additional requirements. Afterwards, use cases
are identified and described. In the next section, the overall structure and
concepts of the software are explained, followed by the definition of the
printer configuration file and the pattern definition file. The chapter closes
with the design of the graphical user interface.

3.1 Specification

There are several requirements given by Durst which have to be met. These
requirements have been identified with the development manager and
through talks with members of the quality and customer service department,
which are the future users of the software.

The restrictions for the used software and libraries arise from the fact
that they are currently used in these versions. By using them, there are
no problems concerning licensing and other developers are used to it. As
programming language, the C++ 11 standard was chosen with Qt in version
4.8 and LibTiff version 4.0.8. The coding was done using NetBeans IDE
version 8.2 and cmake 3.11.2 as build tool. An overview of the used versions
is shown in Table 3.1

As already explained in Section 1.3, the main issues which must be ad-
dressed by the software are usability, flexibility and expandability. To meet
these requirements the design should allow to easily add new printers to
the program without recompiling it. Also implementing new test patterns
should not affect existing classes except where it is necessary.

25

3 Design

Technology Version
C++ 11
Qt 4.8
LibTiff 4.0.9
cmake 3.11.2
NetBeans IDE 8.2

Table 3.1: Versions of Used Technologies

3.2 User Stories

There are two different perspectives on the software which are illustrated
in Figure 3.1. At first, there is the perspective from a user of the system (a)
who needs to export test patterns to calibrate the printer. Another one is the
developer’s perspective (b) who is interested in an easy way to extend the
software with new printers and test patterns and in adding new print prim-
itives as easy as possible. A special case is where the TestPatternGenerator
is used by the printer software to generate test patterns on the printer itself.
These use case is covered by the last user story in Subsection 3.2.1 named
“Run in Commandline”.

3.2.1 User Stories for Users

The following user stories are from the perspective of the user of the TestPat-
ternGenerator. These users are technicians from customer service, quality
management and from the assembling department who need to adjust the
printheads.

The different parts of the GUI which are referred in the following user
stories are explained in Section 3.3.

26

3 Design

Import PrinterConfiguration

Create PatternDefinition
Save PatternDefinition
Load PatternDefinition

User

Runin Commandline

Add TestPattern

Change Properties

Change Printer Clear Pattern List

(a)

Create PrinterConfiguration

Create new PrintPrimitive

Create new TestPattern

Create new Exporer

Develaper

Add new Property to PatternDefinition

Add new Propery to TestPattern

(b)

Figure 3.1: User Stories

27

3 Design

Import a Printer Configuration

Actuator User

Description After clicking on “Import Printer”, a file dialog opens where
the user can select the printer configuration file (.dpc). This file is
then stored in the installation directory and an entry is added in the
registry.

Consequences A new printer is available in the combo box for selecting
printers.

Create a Pattern Definition

Actuator User

Description After clicking on "New Pattern Definition”, a new pattern
definition is created. This pattern definition is empty and all properties
are set to the defaults. If another pattern definition was open, it is
deleted and lost if not saved previously by the user.

Consequences A new and empty pattern definition was created.

Save a Pattern Definition

Actuator User

Description After clicking on ”"Save Pattern Definition”, a file dialog opens
where the user can specify the location and name at which the pattern
definition should be stored.

Consequences A pattern definition file (.dpd) is created containing all test
patterns and properties.

Load a Pattern Definition

Actuator User

Description After clicking on “Load Pattern Definition”, a file dialog opens
where the user can select the pattern definition file.

Consequences The specified pattern definition is loaded and shown on the
GUL

28

3 Design

Add a Test Pattern

Actuator User

Description With a double-click on an entry in the patterns list on the left,
the corresponding pattern is added to the pattern list from the pattern
definition.

Consequences A test pattern is added to the pattern list.

Change Properties of the Pattern Definition

Actuator User

Description The properties of the pattern definition are shown in the table
on the right. With a double-click on one entry, the user can change it.
After clicking outside the table, the changed value is written to the
property.

Consequences The property is changed.

Change Properties of a Test Pattern

Actuator User

Description To change the property of a pattern, the user needs to select the
pattern in the pattern list. Afterwards, the properties of the selected
pattern are shown under the properties of the pattern definition in the
table on the right. Changing a property now works like changing a
property of the pattern definition.

Consequences The property is changed.

Clear the Pattern List

Actuator User

Description With a click on the button “Clear” all test patterns are removed
from the pattern list from the pattern definition.

Consequences The pattern list is empty.

29

3 Design

Change the Printer

Actuator User

Description Changing the printer is as simple as selecting it in the printer
combo box.

Consequences A new printer is selected for which the pattern definition is
exported to.

Export TIFF

Actuator User

Description After clicking on “Export TIFF”, a file dialog appears where
the user selects the place to export to. A progress dialog appears and
the files are written to the specified location. If the pattern definition
did not contain any test pattern, nothing happens.

Consequences A folder containing the tiff images and an expose (.exp) file
is created.

Run in Commandline

Actuator User

Description Additional to the standard usage of the TestPatternGenerator
it is also possible to run it in the command line. Here, no GUI is
shown and the specified pattern definition is exported to the specified
location.

Consequences A folder containing the tiff images and an expose file is
created at the specified location.

3.2.2 User Stories for Developers

The developers extend the TestPatternGenerator with new printers, test
patterns, exporters, etc. Their main focus lies on the software implementation
of this tool and how to improve it. The user stories concerning them are
explained in the following.

30

3 Design

Create a Printer Configuration

Actuator Developer

Description To import a new printer, a printer configuration file (.dpc)
has to be created. This is a simple XML file containing a name, the
resolutions, mappings for color channels and the definition of the
printheads. A detailed definition is given in Section 3.5.

Affected Classes none

Consequences A new printer configuration for importing into the TestPat-
ternGenerator was created.

Create a new Print Primitive

Actuator Developer

Description For a new print primitive the base class PrintPrimitive has to
be subclassed. The bounding rectangle must be set and the getLine
method overwritten. This method returns an unsigned char*. Because
the test patterns and print primitive are build together, it is ensured
that all needed print primitives exist for the corresponding test pattern.

Affected Classes PrintPrimitive

Consequences The new printPrimitive could be used in the test patterns.

Create a new Exporter

Actuator Developer

Description Each exporter is derived from the abstract class Exporter. The
only method which must be implemented is exportTo which contains
the export logic. Each exporter has its own action in the export menu
on the main window. To add a newly created exporter, a QAction has
to be added and a method calling the exportTo method from the new
exporter should be created.

Affected Classes Exporter, MainWindow

Consequences The newly created exporter is available under the export
menu.

31

3 Design

Create a new Test Pattern

Actuator Developer

Description A new test pattern must be derived from PrintheadPattern
which is derived from Pattern. Since Pattern implements the interface
ISerializable, the methods serialize and deserialize should be
implemented and also the method type must be filled with the correct
String. The most important method init must be implemented prop-
erly to add the required print primitives. After the new test pattern is
implemented, it must be added to the PatternFactory in the method
patterns, where a QStringList of all available test patterns is returned
and in the method pattern where an instance of the desired test pattern
is returned.

Affected Classes Pattern, PrintheadPattern, PatternFactory

Consequences The new test pattern is shown in the pattern list on the left
and is available to use.

Add a new Property to the Pattern Definition

Actuator Developer

Description For adding a new property to the pattern definition, the devel-
oper creates it in the pattern definition header file using the Q_PROPERTY
macro. In the private class, the corresponding member-variable as well
as getter and setter methods must be created. The loading and storing
using the serializer pattern is done automatically.

Affected Classes PatternDefinition

Consequences The added property is available in the properties for pattern
definition on the right side.

Add a new Property to a Test Pattern

Actuator Developer

Description Similar to adding a property to the pattern definition, it could
be done with a pattern. Create the definition with the Q_PROPERTY
macro, add member-variable and add getter and setter methods respec-
tively. As for the pattern definition, serialize and deserialize should

32

3 Design

B tpgen — O X
File Import Expert Help

MNozzleTest P5 250 HS - Name Value
MozzleWarmup i

Rotation Clear objectMame

Shutiiset Rotation name P5_250_HS_Rotation

Test
width 25250

height 6016
patternSpacing 30

printer D P53 250 HS

Figure 3.2: GUI of TestPatternGenerator

not be touched.

Affected Classes corresponding pattern class

Consequences The added property is available in the properties for the
pattern on the right side.

3.3 GUI

Like the overall design of the system, also the GUI design follows the KISS
principle. The main focus is on a clear structure to ensure an intuitive and
easy use. The GUI, which is shown in Figure 3.2, consists of a menu bar and
three sections.

The menu bar is separated into four menus. The first one named “File”
provides the functionality for creating a new pattern definition, open an
existing one and saving it. With import, a new printer configuration can be
loaded into the TestPatternGenerator. Under the menu “Export” the different
exporters can be found. In the first version, there is only the TiffExporter.
Finally, with “Help” a dialog with additional information can be shown like
in many other applications.

33

3 Design

fogencui F-—————— } fipgencore

Figure 3.3: Components of TestPatternGenerator

The left section contains a list of the available test patterns. With a simple
double-click, they are added to the pattern definition. The section in the
center represents a pattern definition. On top, the target printer can be
selected with the combo box. Underneath a button to clear the pattern list of
the pattern definition can be found. The rest of the section contains the list
of the test patterns which the current pattern definition contains. The last
section is used to display and change the properties of the pattern definition
and the selected test pattern.

3.4 System Architecture

The system is basically separated into two components as shown in Fig-
ure 3.3. The core lasses contain the classes for printers, print primitives,
test patterns and the pattern definition. The UI classes on the other hand,
contain the main window, the three sections for displaying a list of available
test patterns, the pattern definition with the selected test patterns and for
displaying their properties.

Figure 3.4 shows a diagram of the Ul classes. PatternDefinitionSection
and PropertiesSection need separate models for their list and table respec-
tively. Detailed descriptions of the classes could be found in Section 4.2.

An overview of the core classes could be found in Figure 3.5. The classes
PrintPrimitive, Pattern and Exporter are abstract base classes. The com-
plete class diagram and detailed information about each class could be
found in Section 4.3.

34

3 Design

PatternSection

1
M ainin oy ple—————— PatternDefinitionSection PatternListMadel
1 1 1 1
y———— I E—
1
e EE—
FropertiesSection PropertiesTahleModel
1 1 1
-~

Figure 3.4: Overview of Ul Classes

Nozzlerow Printhead Printer PatternDefinition
4 1 1.* 1 1 1
- R

1

—<
1
1

PrintFrirmitive - 1 Pattern 1 Exporter Filelo
o g 1 1

Figure 3.5: Overview of Core Classes

35

3 Design
3.5 Printer Configuration File

Information about a printer, especially the geometry of their printheads
is provided to the system with so-called printer configuration files. These
files have to be written by a technician and are separated into three parts.
The first contains general information about the printer itself such as name,
resolutions and color channels. The second part defines enumerations which
are used to simplify the definition of the printheads. Finally, the last part
contains the information about the printheads itself. A part of a printer
configuration (in this case for a P5 250 HS) is shown in Figure 3.6.

The name is needed in the printer selection on the GUI. The resolutions
are written with the TiffExporter into the exported image files. The color
channels contain a mapping to the different tiff channels used by the printer.
This is a simplification to have more meaningful values for the colors of
the different nozzlerows. Most printers have more equal printheads, one
under another, with the same layout except the y position. In this case, the
enumerations are used to simplify it. An enumeration has an id, a start-
and end-number and a spacing between the previous printhead. Only the
tirst printhead is specified, the rest of them are generated automatically. A
printhead definition has an id, which could also contain an enumeration.
The geometry defines the position and size of the printhead in pixels and
pixelSpacing defines the spacing between the nozzles of one nozzlerow.
Some test patterns need a reference for each printhead. these references are
defined in the alignment-references section with a name and the id of the
reference printhead. Finally, each printhead contains a list of nozzlerows
with a specific color and nozzle count. They also have a geometry similar
to the geometry of the printhead. Note, that the X-coordinates (of the
nozzlerows and printheads) are not the real coordinates of the physical
device. In this simplification, a nozzlerow has only a width of one pixel and
there is no space between them. The last element is printheads, where only
an id is specified (containing an enumeration), the reference printhead and
a position where it is anchored.

36

LY i IO NS I I o Y S Y % T

= =
[E———

==
o Lo

= = =
w1 em

%]
[=

[I % D T 6 N G R 8 T o I O I i]
8 s B o RS I TR o [T R Y % T]

Ly
[]

[FE RN L R]
LA s L

La
=1

[u:]

s s W
[I i RN]

s s s
LA s L

Lo
=1 "

o

o s
[el T

3 Design

El<printer:>

=

=

<name>P5 250 HS</name>

<rescluticon x="800" y="800" mediaRdvance=""/>

<ocolorChannels:
<channel color="cyan" tiffchannel="0"/>
<channel color="magenta" tiffchannel="1"/>
<channel color="yellow" tiffchannsl="2"/>
<channel color="black" tiffchann=l="3"/>
<channel color="lightcyan" tiffchannsl="6"/>
<channel color="lightmagenta" tiffchannsl="7"/>
<channel color="white" tiffchannsl="4"/>
<channel color="label" tiffchannsl="3"/>

</colorChannelss>

<enumeraticns>
<counter id="4X1 " start="1" end="8" spacing="0"/>
<counter id="4#X2 " atart="1" end="8" spacing="0"/>
<counter id="$X3 " start="1" end="8" spacing="0"/>
<counter id="4X4 " start="1" end="8" spacing="0"/>
<counter id="4#X35 " start="1" end="8" spacing="0"/>
<counter id="#X6é " start="1" end="8" spacing="0"/>
<counter id="$X7 " start="1" end="8" spacing="0"/>
<counter id="4#X8 " start="1" end="8" spacing="0"/>
<counter id="4X9 " start="1" end="8" spacing="0"/>
<counter id="#X10 " start="1" end="8&" spacing="0"/>
<counter id="4#X11 " start="1" end="8" spacing="0"/>
<counter id="#X12 " start="1" end="8" spacing="0"/>
<counter id="#X13 " start="1" end="8" spacing="0"/>
<counter id="4#X14 " start="1" end="8" spacing="0"/>

</enumerations>

<printhead id="A7.1/#X1 ">
<gecmetry H="0" y="0" width="4" height="752" pixelSpacing="8"/>
<alignment-references>
<ref name="slotOffset" reference="A1.1/1"/>
<falignment-references
<nozzlerow color="white" nozzleCount="94">
<geometry x="0" v="0" width="1" height="94"/>
< /nozzlerows
<nozzlerow color="white" nozzleCount="94">
<geometry x="1" v="4" width="1" height="94"/>
</nozZzlerow>
<nozzlerow color="white" nozzleCount="94">
<gecmetry x="2" y="2" width="1" height="9%4"/>
</nozzlerow>
<nozzlerow color="white" nozzleCount="94">
<geometry x="3" yv="6" width="1" height="9%4"/>
</nozzlerow>
</printhead>
<printheads id="AT7.1/4X1 " reference="A7.1/1" position="bottom"/>

Figure 3.6: Printer Configuration for P5 250 HS
37

3 Design

pacing="30">
mupWidth="250">

<patterndefinition printerID="P5 250 HS" name="P5 250 HS SlotOffset" pat
2 <pattern linsWidth="3" type="5lotOffset" border="0" spacing="500" nozz
: <printheads/>
</pattern>
</patterndefinition>

Figure 3.7: Pattern Definition of SlotOffset for P5 250 HS

3.6 Pattern Definition File

The pattern definition file is used for saving and loading generated pattern
definitions including their test patterns and properties. These files are only
generated by the TestPatternGenerator and are very short compared to the
printer configuration files. An example of such a pattern definition file is
shown in Figure 3.7.

The pattern definition contains a name which is used for the file- and folder
names in the exporter, the id of the selected printer and since it could
contain more than one test pattern, a spacing between the different test
patterns is defined. The properties of the test pattern depend on the type
of the pattern. In this case, a SlotOffset, the line width of the pattern, a
border before and after the test pattern, the spacing between the different
parts of the test pattern and the width of the nozzle warmup section is
defined. The printheads section is not needed in the first version of the
TestPatternGenerator, like explained in Section 4.3.6, but was kept to be
prepared for future improvements.

38

4 Implementation

In this chapter, the implementation of the TestPatternGenerator is discussed.
It starts with the development workflow, followed by descriptions of the Ul
classes and the core classes with the test patterns and the tiff-exporter. The
chapter closes with a case study where different algorithms of the exporter
are compared in terms of runtime.

4.1 Development Workflow

The development process for this software followed an iterative workflow
where the KISS principle has always been kept in mind. First, the basic
classes FileIO, PatternDefinition, the classes for the print primitives, the
first patterns and the first exporter have been created. These parts of the
software are explained in the following sections. To work with them properly,
also a basic GUI was build which is explained in Section 3.3.

While for the first pattern, the NozzleWarmupPattern, just simple lines were
needed, the next patterns need more than that. The RotationPattern consists
of a very big number of lines. For the P5 250 HS, there are already 1000 lines
for each printhead and there are 112 printheads. Needless to say, that this
number of objects could hardly be managed with this software. To solve
this problem, we create a new print primitive which combines a number of
lines — the LineBlock was created. Like this, several PrintPrimitives had
been created and also the software itself changed over time.

Another idea was to create a factory for the print primitives to reduce the
number of parameters for the different print primitives. The factory should
store the properties for media advance and direction and set them in the
created PrintPrimitive. The reasons that it was not implemented are that

39

4 Implementation

the signatures of the constructors for the different PrintPrimitive vary so
much and it would indeed reduce the number of parameters by two, but it
would also reduce the clarity of the patterns. If a developer has to change a
pattern, it is easier to see these properties at first glance.

4.2 Ul Classes

In the following subsections, all classes of the GUI are explained. An
overview of how they are linked was already shown in Figure 3.4. The
main class is the MainWindow which contains the menu bar and the three
sections for the test patterns, the pattern definition and the properties.

4.2.1 MainWindow

This class is derived from QMainWindow and provides the functionality for
creating, saving and loading pattern definitions, importing printer configu-
rations and exporting into tiff files. These functions are provided through
QMenus in a QMenuBar. The three sections the MainWindow contains are
placed in a QSplitter and the communication between them is done via
signals and slots, Qt’s implementation of the publisher-subscriber pattern.
The class diagram of this class is shown in Figure 4.1.

hainiind owe

PatternSection® patternSection
PatternDefinitionSection* patternDefinitionSection
FProperiesSection” properiesSection

signal; void printersChanged(
public slot void loadPrinter{const QString & id)
public slot void selectedPatternChanged(

Figure 4.1: Class diagram of MainWindow

40

4 Implementation

4.2.2 PatternSection

The PatternSection is a QWidget containing a QListWidget where all test
patterns are represented. With a double click, a pattern is selected and the
corresponding signal is emitted. This is a quite small class and its diagram
is shown in Figure 4.2.

PatternSection

signal: void addPattern{QStting type)

Figure 4.2: Class diagram of PatternSection

4.2.3 PatternDefinitionSection

The most interesting GUI class is PatternDefinitionSection which is
shown in Figure 4.3. It holds members of the selected printer and the pat-
tern definition. To display the containing test patterns, it needs a list model
named PatternListModel which provides the data shown in a QListView.
When the selected printer changes, the new printer is set to the test patterns
of the pattern definition and also to the PatternFactory. This has to be
done to ensure, that the correct test pattern is created.

41

4 Implementation

FatternDefinitionSection PatternListiodel

QString filePath Qlist=Pattern*= patterns
QComhoBox printerSelection 1 1
Printer® printer

FatternDefinition® patternDefinition
PatternListtodel* listvodel
QListview listview

Pattern* selectedPattern

int rowCounticonst OModelindex& parent)

QVatiant datafconst GModelindexs indexint role = Qt:DisplayRole)
woid setPatterns{QList=Pattern*= patterns)

void addPatterniPattern® pattern)

void clearPattems(

PatternDefinition™ patternDefinition

void setPatternDefinition (PatternDefinition™ patternDefinition)
QString filePathg)

void setFilePath(const @Sting& path)

Pattem® selectedPattern()

signal: void printerChanged{const @String& printerlD)

signal: void selectionChanged)

public slot void selectedPrinterChanged{const QString& printeriD)
puhblic slot void printersChanged(

public slot: void addPattern(@String type)

Figure 4.3: Class diagram of PatternDefinitionSection

4.2.4 PropertiesSection

The last component of the GUI is the PropertiesSection. As shown in
Figure 4.4, it contains a QObject and uses the PropertyTableModel to display
the object’s properties in a QTableView. The PropertyTableModel provides
all properties of the specified object using Qt’s property system.

PropertiesSection PropertyTableModel
Q0bject” ohject .1 1 aohjectt object
PropertyTableModel™ tableModel int propertyCount

GTabletiew” tableview int roweCount{const GModelindexs parent= QModellindex)

void et0bjectiQObject™ object) int columnCount{canst QModelindexé parent = QModelindex))

Gvariant headerData(int section, Gt Orientation orientation,int rale)

Gariant data(const GModelindex& index,int role = Qt:DisplayRole)

hool setDatalconst GModellndex& index, const @Yariant& value,int role = Qt:EditRole)
Git:temFlags flags{const QModellndex& index)

void setObjectiGOhject* object)

Figure 4.4: Class diagram of PropertiesSection

42

4 Implementation
4.3 Core Classes

The following subsections explain various classes. Figure 4.5 gives an
overview of the core classes. There are three separate hierarchies with
the base classes PrintPrimitive, Pattern and Exporter. PrintPrimitive
has five direct subclasses representing the basic units of which a pattern
consist. Derived from Pattern, the PrintheadPattern is the base for four
test patterns. PrintheadPattern is currently not used but was inserted to
meet the future goal to only export a test pattern for only a few printheads.
The third one is Exporter which is the base for TiffExporter. The Exporter
uses the class FileI0 to write the exported files. Another part is the Printer
class which represents a physical printer. It consists of a number of print-
heads which again consist of up to four nozzlerows. The central class of
the whole structure is the PatternDefinition. It contains a list of patterns,
holds an instance of the selected printer and uses the Exporter.

43

144

MOzZle oy

Printhead Printer
1.4 1 1.% 1 1
 EE— E—
PrintPrifnitive Pattern
1.% 1 1
I E—

Figure 4.5: Core Classes

FatternDefinition

1

Exporter

Fileld

uonejusws|dw|

4 Implementation

4.3.1 FilelO

The class where the whole input and output to the file system is im-
plemented is FileIO. As shown in the class diagram in Figure 4.6, it
has four methods for saving and loading a PrinterConfiguration and
a PatternDefinition. Since creating a PrinterConfiguration is not sup-
ported yet, this method is still empty and just returns false.

Filel

savePrinterConfiguration(printer ; Printer fileFath ; String) : Boolean
[oadPrinterConfigurationifilePath : String) : Printer
savePatternDefinition{patternDefinitian : PatternDefinition filePath : String) : Boolean
[oadPatternDefinition(filePath String) : PatternDefinition

Figure 4.6: Class diagram of FileIO

Considerations have been made to implement this class as a singleton,
but since no states or anything other needs to be stored it has not been
necessary.

4.3.2 ISerializable

This simple interface defines methods to serialize and deserialize an object.
The only parameter for both classes is a QDomElement. While in the serialize
method, the QDomElement is filled with data from the object, the deserialize
method sets the properties of the object according to the data from the
retrieved QDomElement. The class diagram of this interface is shown in
Figure 4.7.

45

4 Implementation

ISengiizable

virtual hool serialize(@DomElement elerment)
wirtual hoal deserialize(@DomElement element)

Figure 4.7: Class diagram of ISerializable

4.3.3 Pattern Definition

A PatternDefinition is the basic object the user works with. It holds
properties like a name, a spacing between the single patterns, the id of the
selected printer and also a list of patterns. The class diagram is shown in
Figure 4.8.

46

4 Implementation

PatternDefinition : QOkject, ISerializable

Q5ting name
GList=Pattern™= patterns
intwidth

int height

int patternSpacing
Q5tring printerlD

virtual bool serialize(@DomElement element)

virtual bool deserialize(@DomElement element)

Q5ting name

void sethlamelconst QString& name)

GList=Pattern*= patternsg)

void setPatterns{const Qlist=Pattern®=& pattarns)

void addPattern{Pattern* pattern)

void clearPatterns(

int width

int heightf

int patternSpacing

void setPatternSpacingiint patternSpacing

Q5ting printerlD

vaoid setPrinterlD{const QString& printerlD)

Q5et=PrintPrimitive: Direction= directions{@String mediafdvance)
QList=Q5ting= mediaAdvancesd

unsigned char® getlinedint index, PrintPrimitive::Direction direction = PrintPrimitive:: UNI Q5tring mediaAdvance ="0_0")
void updateSize(d

Figure 4.8: Class diagram of PatternDefinition

The PatternDefinition also implements the serialization interface. Accord-
ing to the definition in Section 4.3.2 the object data is serialized into the
QDomElement or deserialized from it.

The serialization of the standard properties works straight forward, while
the pattern list is iterated and for every single pattern, the correspond-
ing serialization method is called. The pattern class itself implements
the ISerializable interface. For the deserialization, the properties of the
PatternDefinition are set and for each pattern-entry in the XML file, the
PatternFactory creates a new object from which the deserialization method
is called and this deserialized object is added to the PatternDefinition.

Exporting a pattern using the TIFFExporter, for each mediaAdvance and
direction a different file is needed as described in Section 4.3.7. To get the

47

4 Implementation

information, which directions and media advances are needed, the two
methods directions and mediaAdvances are needed. The method directions
returns a QSet containing the directions which are needed for the containing
patterns. For example, the RotationPattern only needs to be printed in one
direction while the SlotOffsetPattern contains parts for both directions, uni
and bidi. It needs the mediaAdvance as a parameter since not for each
mediaAdvance the same directions are needed. The method mediaAdvance
does not need any parameters and returns a QList containing the strings of
the needed mediaAdvances.

4.3.4 Printer

One of the most important parts providing the flexibility of this software is
the Printer class. The user has the possibility to select between different
installed printers. For this purpose, the classes shown in Figure 4.9 are
used.

Printer Printhead MNozzlerow
GString name Qsting o Qsting ia
int resalution: QRect boundingRect QRect boundingRect
int resolutiony int pixe|Spacing int nozleCount
int resalutionMediaAdvance QMap=QSting, OString> references QString color
GMap=GString, int- colorkiap GList<NozzleRow> nozlerows
QMan<QStimg, Printhead™ printheads virtual bool serialize(@DomElement elementy
virtual bool serialize(@DomElement elementy vittual bool deserialize(@DomElement element)

wirtual bool serialize(@DomElement element) . [virtual bool deserialize(@DomElement element) 4 QString id{)

virtual bool deserialize(@DomElement element) Qstring idg waid QStringd.id)
QString named woid setid{const QStrina& id) GRect boundingRect()
int resolutionX(QRect boundingRect() woid i QRect&
int resolution(y woid I GRects I int nozzleCountl
int resolutionMediafdvanceq) int pixelSpacing(void setNozleCount(int nozzleCount}
QMap=QString, int= colomapd woid setPixelSpacinadint pixelSpacing) Qistirng colorf)
QMap=Q8tring, Printhead™> printheads(QMap=Q8String, QString> references() woid setColor(const @String& color)
void i QMap=QSting, Printhead*=& void selReferences(const GMap<QSting, QSiring=4& references)
Printhead” printhead(QString i) QList<Nozzlerow*> nozlerows(

vaid QL & nozlerow)

Figure 4.9: Class diagram of Printer and associated classes

Each printer has a name, resolutions in X and Y-direction and for the
media advance, and a colormap where the mapping between the colors
of the printer and the channel in the tiff is done. Also, each printer has a
number of printheads with an id, a geometry stored as a boundingRect,
pixelSpacing where the amount of pixels between two vertical nozzles is
stored. It also could have a map of references, where it is defined for which

48

4 Implementation

pattern which other printhead is used as a reference. And finally, it can
consist of a number of so-called nozzlerows. These are the smallest unit of a
printer in this software model and represent a collection of nozzles with the
same color. They also have a boundingRect, the number of nozzles stored in
nozzleCount and a color.

These information is loaded from the printer configuration file which was
explained in Section 3.5 using the class FileIO.

4.3.5 Print Primitives

The basic units of the patterns are the so-called print primitives. The different
print primitives implemented for the test pattern generator are explained in
the following. The hierarchy of the print primitives classes can be seen in
the class diagram in Figure 4.10.

49

09

PrintPrimitive

@Rect boundingRect
QString medizAdvance
PrintPrimitive::Direction dirsction

QRect boundingRect(

woid wRectiORect i il
int leflg

int rightQ

inttop(y

int bhottam{

int width()

intheight(

QSting mediaddvanced)

void setMediaAdvance(@String mediaAdvace)
Directiondirection(

woid setDirection(Direction direction : Integer)
vitual unsigned char® getlinednt index)

Line

Rectangle Lahel LineBlock Block
QFoint start QFointtopLeft QFoint topLeft QFointtopLeft QFointtopLeft
QPnint end QPoint hottomRight Lahel:Orientation orientation QPoint hottomRight QPoint hottomRight
int linewyidth int linevvidth QString text GQlList=int= lines Qlist=int= horizontalPattern
int colorChannel int colorChannel int pixelSize QList=int> colorChannels QList=int» verticalP attern

virtual unsigned char* getline(int indesx)

witual unsigned char® getlinedint index)

int colorChannel

virtual unsigned char® getlinedintindex)

QList=int= pattern

int linehicth
LineBlock:Orientation otientation
int pixelSpacing

QList=int= colorChannels
Block:Crientation orientation

virtual unsigned char* getLine(int index)

wittual unsigned char” getlinednt indes)

Figure 4.10: Class diagram of print primitives

|dw| ¢

uoijejuswo

4 Implementation

PrintPrimitive

The root class for all print primitives is called PrintPrimitive. It contains
the general properties for the print primitives, the media advance and an
enum for the direction which could be unidirectional or bidirectional.

Additionally to the standard getter and setter methods, there are methods
for getting values of left, right, top, bottom, width and height. These are
just to simplify working with the print primitives by providing direct access
to these properties.

One important method of all primitives is getLine. As mentioned before,
the tiff files are written line by line and for this purpose, the virtual method
getLine is used to retrieve the data at the given index.

Each derived print primitive must calculate their bounding rectangle them-
selves and set it properly.

Line

The first implemented print primitive is a simple line. It is defined by two
QPoint members defining the start and the end of the line and two integers
for the line width and the color channel on which it is going to be printed.
Since all lines are parallel to the axis, there are only horizontal and vertical
lines supported. If future demands occur, this could be easily adapted by
simply modifying the getLine method.

Rectangle

The next print primitive, the rectangle, is mostly used to frame the different
parts of the patterns to distinguish them from each other. The signature of
this class is similar to that of the Line. The two QPoint members represent
the top left and bottom right point of the rectangle. The two integers define
the line width and the color channel.

51

4 Implementation

Label

Since the adjustments are performed on all printheads, the different patterns
consist of a lot of similar looking blocks of print primitives. E.g. the slot
offset is measured for each printhead in both directions, unidirectional and
bidirectional. Due to this, it is essential that the different parts of the pattern
can be distinguished quickly. For this purpose, the Label is used.

A QPoint defines its top left position, the enumeration Orientation states
whether it should be printed horizontally or vertically. The text is set as
QString and two integers define the pixel size of the text and the color
channel.

LineBlock

Most patterns consist of lots of single lines. The implementation of the
first prototype has shown that creating a test pattern with a composition
of single lines is very memory intensive since each line is an individual
object. Due to this fact, the need for a more complex structure arose and the
LineBlock was created.

Similar to Rectangle, two QPoints define the top left and bottom right
position of the LineBlock. The property lines is a list of integers containing
the indices of the lines starting by zero. QList<int> colorChannels define
the color channels for the different lines. With pattern, which is also a list of
integers, a pattern for the lines could be defined, e.g., to create dotted lines.
The line width can also be defined as well as the orientation and the pixel
spacing which defines when the pattern is repeated.

After implementing the next print primitive, the Block, this becomes obso-
lete and is removed from the test patterns to simplify them.

Block

The Block is quite similar to the LineBlock, but the developer has the
possibility to define a horizontal and a vertical pattern. The orientation is

52

4 Implementation

only used to define whether the list color channels are applied horizontally
or vertically. The top left and bottom right coordinates are equal to those of
the LineBlock.

Remarks on Print Primitive

Considerations have been made to create a primitives factory where general
properties like direction and mediaAdvance could be defined only once
they change and the individual properties of the primitives have to be set
after creation. This approach would make the object creation simpler, but it
would reduce the clarity in the pattern classes.

4.3.6 Test Patterns

The central and most important part of the test pattern generator are of
course the patterns themselves. For all different types of adjustments, which
have to be done for a printer, there are individual test patterns. In the first
version, only a limited number have been implemented which are described
in the following.

One important requirement was that it should be easy to add new patterns,
and to ensure this, a pattern class hierarchy, which can be seen in Figure 4.11
and a factory for creating patterns was created.

PatternFactory

The PatternFactory is implemented as a singleton and is responsible for
the pattern creation. It implements the prototype pattern and holds a map
of test patterns. When a test pattern is retrieved, the factory returns a copy
of the stored object if it exists, otherwise a null-pointer is returned.

After creating a new pattern, the registerPatterns method must be up-
dated. The new test pattern just needs to be inserted into the map of
test-patterns using a unique name.

53

4 Implementation

Pattern

Printer* printer
int border 1.7
intwicth

int height : Integer
intspacing

wirtual hool serialize(QComElement element)

wirtual bool deserialize(@DomElement element)

wirtual QString typel)

Printer* printer(y

woid setPrinter(Printer printer)

QList=PrintPrimitive™> printPrimitivesUni{Q3tring mediaAdvance)

woid setPrintPrimitive sUni(@String mediafdvance QList=PrintPrimitive*= printPrimitives)
alList=PrintPrimitive™= printPrimitivesBidi(QString mediaAdvance)

woid setPrirtPrimitivesBidi(QSting mediadvance, ALISPHntPrimitive™ printPrimitives)
woid addPrintPrimitive(PrintPrimitive™ printPrimitive)

clearPrintPrimitives

QList=PrintPrimitive™= currentPrintPrimitives)

update CurrentPrintPrimitives{int index,PrintPrimitive::Cirection direction O5tring mediaAdvance : Integer)

PatternFactary

Printer® printer

woid setPrinter(Printer* printer)
Fattern™ pattern{QString type)
@EtringList patterns(

resetScanline()

int borderd

woid setBarderint bo
intwidthcy

int height
intspacing(
woid setSpacingfint 5

QList=int= scanlinek:
QSet=PrintPrimitive

wirtual void updated

rider)

woid sebiidthiint width)

woid setHeight(int height)

pacing)
vents()
Cirection= directions(Q5tring mediaAdvance]

QSet=y0String = medizAdvances(
witual unsigned char* getlinedint index,PrintPrimitive :Direction direction, QString mediaAdvance)

PrintheadPattern
Qstringlist printheads

wirtual hool serialize(@ComElement element)
wirtual bool deserialize(QDomElement element)
wirtual Q5tring typel)

QStringList printheads{

woid setPrintheads(Q5tringList printheads)
woid addPrinthead(QString id)

woid removePrinthead(@String idy

MNozleWarmupPattern

RutationPattern

SlotOffisetPatten

int pattern\Width

int nozleWarmupWidth

virtual bool serialize(QDomElement elerment)
virtual hool deserialize(QDomElerment elerment)
virtual GString typed

int pattenridth()

void setPatterniWidth(int patternididth)

virtual bool serialize(QDomElerment element)

virtual hool deserialize{@DomElement elementy
virtual @String type

int nozleWarmupWidth

void setMozzleVWarmupwidthiint nozleWarmupividthy

int nozzleWarmupiidth
int lineWidth

wirtual hool serialize(@0DomElement element)
wirtual bool deserialize{@DomElement element)
wirtual QString type()

int nozzlevWarmupWWidth()

woid setMozleWarmupwWidth(int nozzleYarmup\Width)

int lineAidth)
woid setlineWidth{int line\Width)

Figure 4.11: Class diagram of patterns

54

4 Implementation

Pattern

This is the base class for all patterns. It has properties for the user to specify
the border left and right to the pattern and also for spacing between different
parts of a pattern. It contains data structures for storing the different print
primitives. These are two separate QMaps (for each direction) where the
mediaAdvance is the key, and a QList of PrintPrimitive is the value.

As mentioned earlier in this paper, getting the data of a line is done using the
plane-sweep algorithm, where only the print primitives which are currently
(at the specified index) visible is considered.

PrintheadPattern

The class PrintheadPattern is needed to create a pattern only for a few
individual printheads. For this purpose this class is derived from Pattern
and contains a list of printheads. For the first version, the patterns are
exported for all printheads but it is planned to expand this functionality in
a future version.

NozzleWarmupPattern

The first implemented pattern is used for a simple nozzle warmup. Before
printing patterns for the adjustments, it is necessary to print with all nozzles
to get them to the operating temperature. A part of the created pattern is
shown in Figure 4.12.

As can be seen, it consists of simple vertical lines for each color channel. It
uses all eight channels from the tiff, but since they cannot be interpreted,
four of them are shown white. The printers, however, interpret the different
channels according to their setup, but it is still possible that some are not
used.

How the printed pattern looks like is shown in Figure 4.13. The photo was
taken with a magnification factor of 2o0.

55

4 Implementation

Figure 4.12: NozzleWarmup pattern

Figure 4.13: NozzleWarmup pattern printed with P5 250 HS

56

4 Implementation

Figure 4.14: Adjusting Printhead Rotation. Image taken from [Dur18a].

RotationPattern

The next pattern is used to adjust the rotation of the single printheads. As
described in Chapter 1, each printhead consists of different slots containing
the nozzles. To check the rotation, lines printed by three nozzles are required.
Two lines are the references and one measuring line, which have to be
between the reference lines. If one looks at the individual nozzles in y
direction (from top), they are arranged one after another. To see the rotation
better, it is useful to choose the different nozzles in a way that their distance
in X-direction is maximal.

Figure 4.14 gives an overview how the rotation of a printhead is done. If the
measuring line is closer to the lower reference line, like in the left sketch,
the printhead must be rotated counterclockwise. If it is closer to the upper
reference line, the printhead must be rotated clockwise and if its right in
between the measuring lines, the rotation is perfect.

A part of the generated pattern is shown in Figure 4.15. The label on the left
side indicates which printhead is concerned, in this case, the first printhead
of the second row on the left side. It is followed by four sections of lines. In
the first one, lines are printed with all nozzles. The second section contains
only the reference lines, followed by a section containing only the measuring
lines. Finally, in the fourth section, the measuring and the referencing lines

57

4 Implementation

A1.1/2

Figure 4.15: Rotation pattern

are printed. Because this is the most important one, it has twice the size of
the other sections.

Figure 4.16 shows the printed pattern. In (a) and (b) parts of the four sections
are shown with a magnification factor of 20, while in (c) a more detailed
view (magnification factor of 200) of the transition from section three to four
is shown.

The following Figures 4.17 show the pattern printed with a Rho 13xx. This
printer has two different colors per printhead. Similar to Figure 4.16 the
four parts are shown in (a) — (c) with a magnification factor of 20 and (d)
shows the transition from section three to four with a magnifaction factor
of 200.

SlotOffsetPattern

In contrast to the RotationPattern, the SlotOffsetPattern is not used for a
mechanical adjustment of the printhead. It is used to set the time adjustment
when the different printheads fire their nozzles. For this purpose, a reference
printhead is needed, e.g., for the P5 250 HS it is the first black printhead on
the left.

58

4 Implementation

(a) (b)

(©)

Figure 4.16: RotationPattern printed with P5 250 HS

59

4 Implementation

©

Figure 4.17: RotationPattern printed with Rho 13xx

60

4 Implementation

86421012468+

(a) Reference

A2.11
UNI

(b) Measurement

A2.1/1 -86421012468+

UNI Sosos s

(c) Measurement

Figure 4.18: SlotOffset

Another difference to the RotationPattern is that this pattern cannot be
produced with only one image file. For each row of printheads and for
each direction, a separate file is needed to print the reference and after
printing the references for all rows seen in (a) of Figure 4.18, another two
files are needed to print the measurement for both directions (b). For the
Ps5 250 HS, this sums up to eighteen files (two times 8 for the references and
two measurements). Figure (c) shows the two parts overlapped.

How the printed pattern looks with a magnification factor of 20 can be seen
in Figure 4.19. As can be seen, the adjustment for this slot would be +1.
In Figure 4.20 the printed offset can be seen with a magnification factor of

61

4 Implementation

Figure 4.19: SlotOffset printed

200.

4.3.7 Exporter

After creating a pattern definition, it has to be exported for printing it on the
different printers. For this purpose, there exists the abstract class Exporter
which defines the virtual function exportTo. It takes a QString containing
the export path and a pointer to the PatternDefinition which should be
exported. In the first version, only the TiffExporter was implemented
which is explained in the following.

In Figure 4.21 the class diagram of the exporters can be seen.

TIFFExporter

The TiffExporter was created to export a pattern definition into tiff images
and an additional expose (.exp) file. There could be more image files, be-
cause for each different media advance and for each direction a different
file is needed. For example, the reference for the slot offset must be printed
separately for all printhead rows and also for each direction. The measure-
ment is then printed on top of the references. The .exp file tells the printer

62

4 Implementation

(a) (b)
(© (d)

Figure 4.20: SlotOffsetPattern printed zoomed

Exporter

expartTofpath | String pattermDefingion : PatternDefinition : QOMfect, 1Serializabla) | Booleah

TiffExporter

Figure 4.21: Exporter

63

4 Implementation

which image to print and how much media advance is needed before the
next image.

Figure 4.22 shows a simplified sequence diagram of how the exporter
works. After creating the Exporter and calling the export method, it gets
the information about the printer, i.e., resolution in X- and Y-direction
and a list of the printheads. Additionally, the width, height, a list of the
mediaAdvances and a list of the needed directions are fetched from the
pattern definition. Now, for each mediaAdvance and direction, a separate
file is created and in a loop, which iterates over the total height of the
test pattern, the information for the specified index is written into the file.
The pattern definition iterates over all containing patterns where also the
getLine method is called and the results are concatenated to a line for
the exporter which is written to the file. Finally, the different patterns also
retrieve the necessary data from their print primitive.

Figure 4.23 shows the folder structure of the exported patterns. The exported
tiff files have the following naming convention:

<name>_<mediaAdvance>_<direction>.tif

name Name of the exported pattern definition specified in the GUI or as a
parameter in the commandline.

mediaAdvance The first number is the media advance in pixels, the second
is a counter. The counter is needed because sometimes two images
with the same media advance must be printed in a separate pass.

direction This indicates in which direction the file should be printed.

64

q9

Inainiindow

lterate over mediaddvances
far each direction
iterate over height

iterate over patterns

iterate over print primitives

’
1 s J
1 i s
I " Py ’ i
| IPrinter [PatternDefinition ' IPattern ’
1 J /
1 i f‘
1 ‘
I r 7
1 ; !
1 & !
1 ! ,'
i
1
creats IExponer ‘, {’
B i
A ‘
! f
expott : :
; ‘ A
i’ 7 7
i " ! B
» get properties i ¢
I
! L s J’
S | 0 ’
K) " ! i
i 1 get properie: [.
J
¢ b A i !’
Eoommmmmm o m - T I St e ' ‘
: 1 N I ;
’ i ‘\ : ¥
—l B getlingdinde:) ! N
[\ getlinegindex) i
!
. N getLinedndex)
L
i = P —
!
\ e
e~ [I
1
.
\ 1
\ '
Y '
v v
\ i
Lt | |
v i
v '
. '
\ '
' '
) v
1 1 | —
')
) 1
wite files

x resolution
v resolution
printheads

widih
height
mediaAdvances

directions

Figure 4.22: Sequence Diagram of Export Workflow

|dw| ¢

uoijejuswo

4 Implementation
4.4 Main Function and Commandline Execution

Depending on the number of arguments, the main function decides whether
the GUI is shown and the TestPatternGenerator starts as usual or the
execution should be done without GUI. With the commandline execution,
the user story “Export TIFF” defined in 3.2.1. In this case, several arguments
are required. The command looks as follows:

tpgen.exe <path-to-pattern-definition> <output-path> <name> /
[printer-id]

The printer id is optional and could be used to overwrite the target printer
specified in the pattern definition. After running this command, the given
pattern definition is automatically exported to the specified output path
with the specified name.

4.5 Case Study

The export algorithm essentially influences the duration of exporting a test
pattern. In this case study, three algorithms are compared. The first one is
a naive algorithm where for retrieving the information for each line every
print primitive was taken into account. The second algorithm is based on the
plane-sweep algorithm which was described in Section 2.5. Since this was
still too slow for exporting big test patterns like the SlotOffset to printers
with a lot of printheads, multithreading was implemented when fetching
the line data from the pattern definition. Because the labels are generated
using a QPainter and this does not work outside the GUI-thread, they are
moved into a separate tiff file where multithreading was disabled.

The program was tested on a Lenovo T570 laptop with an Intel® Core™ i7-

7500U CPU 2.70GHz with four cores and 16 GB DDR4 2400 RAM, running
Windows 10 Pro. The measured execution times for the different algorithms
and test patterns can be found in Table 4.1. Additional to this it was also
tested on a workstation used for the P5 250 HS. It is a Dell Precision 5820
Tower with an Intel® Xeon™-2145 CPU 4.50GHz with eight cores with
hyperthreading and 16 GB DDR4 2666 RAM, running Red Hat Enterprise

66

4 Implementation

v P5_250_HS
b test_MozzleWarmup
|| test_MNozzleWarmup_0_0_uni.tif
W test_Rotation
|| test_Rotation_0_0_uni.tif
W test SlotOffset
|ud| test SlotOffset_0_0_bidi.tif
|| test_SlotOffset_0_0_unitif
|| test_SlotOffset_752_0_bidi.tif
|| test_SlotOffset_732_0_unitif
|| test_SlotOffset_1504_0_bidi.tif
|| test_SlotOffset_1304_0_uni.tif
|| test_SlotOffset_2256_0_biditif
|| test_SlotOffset_2236_0_uni.tif
|| test_SlotOffset_3008_0_biditif
|id| test SlotOffset 3008_0_uni.tif
|| test_SlotOffset_3760_0_bidi.tif
|| test SlotOffset 3760_0_uni.tif
|| test SlotOffset_4512_0_bidi.tif
|| test_SlotOffset_4312_0_uni.tif
|| test SlotOffset_5264_0_bidi.tif
|| test_SlotOffset_3264_0_unitif
|| test SlotOffset_5264_1_bidi.tif
|| test_SlotOffset_3264_1_unitif
v | | [Dateien]
i testbet
g test_NozzleWarmup.exp
g test_Rotation.exp
g test_SlotOffset.exp

Figure 4.23: Folder Structure of Exported Files
67

4 Implementation

Linux Workstation version 6.2 (Santiago). The measured execution times
from the workstation can be found in Table 4.2. The format of the times is
hours:minutes:seconds:milliseconds.

The difference between the number of the print primitive of the different
test patterns vary very much and so does the execution time. For example,
the NozzleWarmup has only a few print primitives so the execution time
is in the range of milliseconds. Due to the small execution time of this test
pattern, the values are not very meaningful and therefore not considered in
further analysis.

The average improvement from the naive algorithm to the plane-sweep algo-
rithm is about 2.5 on the laptop and 2.0 on the workstation. The biggest im-
provement can be observed for the export of the SlotOffset for the Rho 13xx.
This is not only because the SlotOffset is the biggest test pattern regarding
the number of print primitives, but also the Rho 13xx is the printer with the
most printheads in this case study. But also for the other printheads and
test patterns, a significant improvement by the factor of about 2.0 can be
seen both for the execution on the laptop and also on the workstation.

The difference from the second to the third algorithm, where multithreading
was used, is more significant on the workstation because the workstation
uses hyperthreading and the TestPatternGenerator works on 16 cores com-
pared to 4 cores on the laptop. The average improvement on the laptop is
about 1.9 and on the workstation 5.8 where the biggest can be observed for
the NozzleTest.

One important thing that can be seen when comparing the export of the
Rotation for the P5 250 HS on the laptop and the workstation. With the
naive algorithm, the workstation with much better hardware is only by
a factor of about 1.2 faster than the laptop while the improvement of the
plane-sweep algorithm has a factor of about 1.9. It can be concluded that
the choice of the algorithm is much more important than the hardware.

68

69

Threaded

Printer TestPattern Naive Algorithm | Plane-sweep Algorithm Plane-sweep Algorithm
P5 250 HS | NozzleWarmup 0:00:00:616 0:00:00:484 0:00:00:356
P5 250 HS | NozzleTest 0:27:11:837 0:12:47:085 0:07:15:380
P5 250 HS | Rotation 0:12:22:955 0:06:23:246 0:03:11:468
P5 250 HS | SlotOffset 2:26:15:274 0:46:01:189 0:27:28:455
Rho 13xx NozzleWarmup 0:00:00:578 0:00:00:203 0:00:00:141
Rho 13xx NozzleTest 1:04:47:752 0:30:57:722 0:12:17:391
Rho 13xx Rotation 0:28:55:352 0:14:57:365 0:06:40:820
Rho 13xx SlotOffset 6:11:59:134 1:02:52:582 0:52:25:940
Rho 163 TS | NozzleWarmup 0:00:00:291 0:00:00:161 0:00:00:150
Rho 163 TS | NozzleTest 0:01:09:516 0:00:31:977 0:00:15:419
Rho 163 TS | Rotation 0:00:30:958 0:00:21:970 0:00:12:122
Rho 163 TS | SlotOffset 0:07:09:427 0:03:33:377 0:02:01:325

Table 4.1: Comparison of Algorithms on Laptop

uonejusws|dw|

0L

Printer TestPattern Naive Algorithm | Plane-sweep Algorithm Plane-srfvl:;e;iel(;orithm
P5 250 HS | NozzleWarmup 0:00:00:082 0:00:00:080 0:00:00:032
P5 250 HS | NozzleTest 0:22:52:067 0:10:50:750 0:00:51:026
P5 250 HS | Rotation 0:10:04:819 0:05:21:375 0:00:55:002
P5 250 HS | SlotOffset 1:26:10:680 0:35:26:692 0:09:20:338
Rho 13xx NozzleWarmup 0:00:00:154 0:00:00:079 0:00:00:029
Rho 13xx NozzleTest 0:55:08:170 0:26:23:034 0:03:13:782
Rho 13xx Rotation 0:23:47:654 0:12:36:798 0:01:58:348
Rho 13xx SlotOffset 3:22:47:665 1:21:20:483 0:23:21:304
Rho 163 TS | NozzleWarmup 0:00:00:080 0:00:00:079 0:00:00:029
Rho 163 TS | NozzleTest 0:00:52:708 0:00:26:014 0:00:05:965
Rho 163 TS | Rotation 0:00:22:055 0:00:17:077 0:00:05:826
Rho 163 TS | SlotOffset 0:04:09:472 0:02:46:282 0:00:59:096

Table 4.2: Comparison of Algorithms on Workstation

uonejusws|dw|

5 Use Cases

In this chapter, the four use cases which are most likely to occur are ex-
plained. The most important one is definitely adding a new printer because
Durst produces printers for five segments and permanently improves and
adapts them. Other use cases are adding a new property to an existing
test pattern or creating a new test pattern. With the creation of a new print
primitive, a less common one is also explained.

5.1 Adding a new Printer

The first use case to be described is the need for a new printer support. The
software was primarily developed for the latest printer developed, namely
the P5 250 HS. As a reference, to show that a large variety of printers could
be supported, the Rho 13xx series was also included. During the work on
this thesis, a test pattern for a different printer, the Rho 163 TS was needed.
Since it was a major requirement to this software, to easily add new printers,
this was a very welcome use case to test the flexibility of this tool.

The slot arrangement of this printer is shown in Figure 5.1. As can be seen,
it has four different printhead layouts where the colors of the slots are
mirrored. On the first printhead, only the slots three and four with the
colors red and blue are present, on the second one, all four slots with yellow,
magenta, cyan and black are present. The third printhead has the same slot
arrangement as printhead two, but the colors are mirrored, the fourth one
only has the slots one and two with the colors blue and red.

In total, this printer has eight printheads positioned in two rows as shown
in Figure 5.2.

71

5 Use Cases

A1/1 A2/1 A3/1 A4/1
3 3 3
] L L [] L
4 == 4 4)
s B el R R 8
(0 i d
s s - s
[L amn O
G O O
[i J
s s — s
e 85— =
[] [] []
O a []
[] [] []
[] [] O
[] [| []
O a []
[] [] []
[] [] O
[] [] [|
© [] . [] @ []
30pl 30pl 30pl
=2 . 30pl =2 . 30pl =2 O 30pl
— |30pl — |30p! —— |30pl
30p! — 30pl — 30pl —

-A1/2

Figure 5.1: Slot Arrangement Rho 163 TS. Image taken from [Dur18c].

-A1/1

-A2/2

-A2/1

SA3/1)

-A4/1

-A3/2

-A4/2

Figure 5.2: Printhead Configuration Rho 163 TS. Image taken from [Dur18c].

72

5 Use Cases

The printer configuration for the first two printheads is shown in Figure 5.3.
As can be seen, the X position of the first slot from the first printhead is not
zero, as in the other configurations, but two. This is because there are only
the slots two and three available on this printhead. The other printheads are
defined equivalently.

Adding this printer to the TestPatternGenerator is as easy as clicking on the
”Printer Configuration” in the Import menu and selecting the new printer
configuration file in the file dialog.

Creating this printer configuration took about two hours including the
testing if everything is correctly configured and all patterns work properly
with this configuration.

5.2 Adding a Property to a Test Pattern

Another use case that appeared after finishing the implementation was
to add the possibility to set the width of the lines from the SlotOffsetPat-
tern. The original pattern (a) and with the one-pixel lines (b) is shown in
Figure 5.4.

Fortunately, changing the pattern was not that much effort. The costly part,
the calculation of the positions of the different parts of the test pattern
was not affected and setting the lines for the LineBlocks just needed a
small change namely adding a loop over the lineWidth and subtracting the
lineWidth from the space between the different lines. The listing with the
changes can be found in Listing 5.1.

73

A = Lo [

LEI LRk R C I U 5 N o N T T 5 N T N)
o U 8 R e e T R -

33

5 Use Cases

<printhead id="A1l/4X1 ">
<geometry x="0" v="0" width="4" height="2048" pixelSpacing="8"/>
= <alignment-references>

<ref name="slotOffset" reference="AZ/1"/>

B <falignment-references>

= <nozzlerow id="RB#X1 51" color="red" nozzlsCount="256">
<gecmetry x="2" y="0" width="1" height="256"/>

o </nozzlerow>

= <nozzlerow id="RB#X1 52" color="blue" nozzleCount="256">
<geometry x="3" y="6" width="1" height="256"/>

- </nozzlerows

- </printhead>

<printheads id="A1/4X1 " reference="A1l/1" position="bottom"/>

<printhead id="A3/#X2 ">
<gecmetry X="4" y="0" width="4" height="2048" pixelSpacing="8"/>
<alignment-references>
<falignment-references>
— <nozzlerow 1d="YM#XI 51" color="yellow" nozzleCount="256">

<gecmetry x="0" y="2" width="1" height="256"/>
<Snozzlerow>
= <nozzlerow 1d="YM#XZ 52" color="magenta" nozzlsCount="256">
<gecmetry x="1" y="4" width="1" height="256"/>
</nozzlerow>
= <nozzlerow i1d="CE#X2Z 51" color="cyan" nozzlsCount="256">-
<geometry X="2" y="0" width="1" height="256"/>
<fnozzlerows
= <nozzlerow 1d="CE#XZ 52" color="black" nozzlsCount="236">
<gecmetry x="3" y="6" width="1" height="256"/>
E </nozzlerow>
= </printhead>

<printheads id="A2/4X2 " reference="A2/1" position="bottom"/>

Figure 5.3: Printer Configuration of Rho 163 TS

74

5 Use Cases

86421012468+ 864210124684

@ (b)

Figure 5.4: SlotOffsetPattern original and with 1px lines

for (int i = 0; 1 < 11; ++i) {
for (int k = 0; k < m_lineWidth; k++) {
lines << j++;
colorChannels << colorChannel;

j += (31 - 2 * offset);

Listing 5.1: Changes in SlotOffset Pattern

Since the serialization and deserialization of the different classes are done
using Qt’s property system, adding a new property did not entail changes
in other classes as the pattern itself.

5.3 Creating a new Print Primitive

A new print primitive should be derived from PrintPrimitive. The only
methods which has to be implemented are getLine which returns the
data for exporting, and calculateBoundingRect which is used to set the
dimensions for the bounding rectangle. It is also necessary to call the setters
for direction, mediaAdvance and boundingRect from the base class in the
constructor with the proper values.

75

5 Use Cases

There is no need to register it somewhere. Since the different patterns are
part of the software and have to be compiled with it (no dynamic loading), it
is guaranteed that all print primitives, used by the pattern, are available. The
only time, where it could be critical is when a pattern definition is stored
with a newer version of the TestPatternGenerator containing a new pattern,
and it is opened later by an older version where this specific pattern is
not available. But this problem is targeted with the PatternFactory. When
deserializing a pattern definition, the different patterns specified in the
definition file are created with the factory which returns no object if the
specified pattern is not registered.

5.4 Creating a new Test Pattern

The last use case which occurred was creating a new test pattern. The
aim of the NozzleTest is to check all nozzles if they work properly. The
implementation of this test pattern is straightforward, subclass it from
PrintheadPattern, implement the serialization interface and the initialization
method.

The pattern itself is quite easy, as for each nozzle just one line is printed.
For testing purposes, it is important, that the different printheads can be
identified. This is done by adding labels and the first and last nozzles of
a printhead print longer lines. A part of the test pattern exported for the
Rho 163 TS is shown in Figure 5.5.

Adding this newly generated test pattern is as easy as adding a new entry
in registerPatterns in the PatternFactory as shown in Listing 5.2.

QString name =
NozzleTestPattern::staticMetaObject.className ();

m_patterns.insert (
name.split(":").last().split("Pattern").first (),
new NozzleTestPattern ());

Listing 5.2: Pattern Registration in PatternFactory

76

5 Use Cases

A2/2

Figure 5.5: NozzleTest Pattern

The member variable m_patterns is a QMap where the key is a QString and
the value is of the base type Pattern. Since the key must be unique, the

class name of the test pattern, without the namespaces and the appendix
"Pattern”, was selected.

Implementing this new pattern (including the new print primitive, times-
tamp, and testing it) took about half a day.

14

6 Conclusion and Future Work

In this master thesis, we have designed and implemented a TestPattern-
Generator used for printhead adjustments of various digital printing sys-
tems. The main target was to create a flexible and easy to use software.
This was achieved by separating the information of the printers and the test
patterns. To have the possibility to add new printers without recompiling
the software, their definition is provided through configuration files in XML
format. The test patterns are composed of different print primitives which
contain the main functionality for retrieving the data to export it. The central
part is the pattern definition which contains the test pattern and can be
stored and loaded.

Since during this thesis the design and the implementation of the basic
system for test pattern creation was developed, there are still some parts
open to implement.

The most important one is to implement the missing test patterns for
the printhead adjustment. Only with a complete set of test patterns the
solution gains the whole benefit. The next testpatterns to implement are the
following:

e Y-Alignment
e Y-Distance
e Voltage Match

The next extension would be the possibility to create your own patterns
using the print primitives. For this purpose, a new component, e.g., pattern
designer, would be suitable. With this designer, an experienced technician
could create his own patterns. With this possibility, it would be easy to
target future needs without recompiling the whole software. And if there is
also the possibility to export and import new self-defined test patterns, it

78

6 Conclusion and Future Work

would be possible to share them with other users or, if the test pattern is
generally needed, to quickly integrate it into the software.

One last extension is another export function. Currently, effort at Durst is
made to automate the evaluation of some patterns. For this purpose, camera
systems are used to take photos of the printed pattern. To analyze and get
information out of them, a definition of the printed pattern is needed. This
definition is currently supplied by XML files with a specific structure. An
XML-exporter which creates this definition files should be added to the
software.

The integration of the TestPatternGenerator into the existing printer software
is also a pending task. For this purpose, all required test patterns should
be implemented and tested and the printer configurations for the different
systems have to be created.

79

Bibliography

[Aic15]

[Asso2]

[BENo9]

[Ben86]

[Bra+08]

[Bus+96]

[Des18]

[Duri18a]

[Duri8b]

Oswin Aichholzer. “Entwurf & Analyse von Algorithmen.”
University Lecture. 2015 (cit. on pp. 11, 12).

Adobe Developers Association. TIFF. [Online; accessed 25. Sep.
2018]. June 1992. URL: https : //www . adobe . io/ content /
udp/en/open/standards/TIFF/_jcr_content/contentbody/
download/file.res/TIFF6.pdf (cit. on p. 8).

Oren Ben-Kiki, Clark Evans, and Ingy dot Net. YAML Ain't
Markup Language (YAML™) Version 1.2. [Online; accessed 2. Oct.
2018]. Oct. 2009. URL: http://yaml.org/spec/1.2/spec.pdf
(cit. on p. 7).

Jon Bentley. Programming Pearls. New York, NY, USA: ACM,
1986. ISBN: 0201500191 (cit. on p. 11).

Tim Bray et al. Extensible Markup Language (XML) 1.0 (Fifth
Edition). [Online; accessed 2. Oct. 2018]. Nov. 2008. URL: https:
//www.w3.org/TR/xml (cit. on p. 7).

Frank Buschmann et al. Pattern-Oriented Software Architecture
- Volume 1: A System of Patterns. Wiley Publishing, 1996. 1SBN:
978-0-471-95869-7 (cit. on pp. 20, 21).

Object Oriented Design. Factory Pattern. [Online; accessed 26.
Sep. 2018]. May 2018. URL: https : //www . oodesign . com/
factory-pattern.html (cit. on p. 14).

Durst. “Ps5 250 HS - Service Manual Print head GMA.” 2018
(cit. on pp. 2, 57).

Durst. “Rho 1012, Rho 1030, Rho 1312, Rho 1330 - Service
Manual Print head.” 2018 (cit. on p. 3).

80

https://www.adobe.io/content/udp/en/open/standards/TIFF/_jcr_content/contentbody/download/file.res/TIFF6.pdf
https://www.adobe.io/content/udp/en/open/standards/TIFF/_jcr_content/contentbody/download/file.res/TIFF6.pdf
https://www.adobe.io/content/udp/en/open/standards/TIFF/_jcr_content/contentbody/download/file.res/TIFF6.pdf
http://yaml.org/spec/1.2/spec.pdf
https://www.w3.org/TR/xml
https://www.w3.org/TR/xml
https://www.oodesign.com/factory-pattern.html
https://www.oodesign.com/factory-pattern.html

[Duri8c]

[Eckoo]

[Fou18]

[Gam+94]

[Int17]

[KB11]

[KGo8]

[KG18]

[Ltd17a]

Bibliography

Durst. “Rho 163 TS, Rho 163 TS HS - Service Manual Print
head.” 2018 (cit. on p. 72).

Bruce Eckel. Thinking in C++, Volume 1, 2nd Edition. Addison-
Wesley Professional, Jan. 2000. ISBN: 978-0321334879 (cit. on
p- 23).

Interaction Design Foundation. KISS (Keep it Simple, Stupid) - A
Design Principle. [Online; accessed 25. Sep. 2018]. Sept. 2018. URL:
https://www.interaction-design.org/literature/article/
kiss-keep-it-simple-stupid-a-design-principle (cit. on
p- 6).

Erich Gamma et al. Design Patterns: Elements of Reusable Object-
Oriented Software. Addison-Wesley Professional, 1994. ISBN: o-
201-63361-2 (cit. on pp. 14—21).

ECMA International. The JSON Data Interchange Syntax. [Online;
accessed 2. Oct. 2018]. Dec. 2017. URL: http: //www . ecma -
international.org/publications/files/ECMA-ST/ECMA-404.
pdf (cit. on p. 7).

Kaveh Keshavarzi and Thomas Bayer. XML, J[SON und YAML
im Vergleich. [Online; accessed 7. May 2018]. July 2011. URL:
https://www.predic8.de/xml-json-yaml.htm (cit. on p. 7).

Foutse Khomh and Yann-Gaél Guéhéneuc. “Do Design Patterns
Impact Software Quality Positively?” In: 2008 12th European
Conference on Software Maintenance and Reengineering. Apr. 2008,
Pp- 274—278. DOIL: 10.1109/CSMR.2008.4493325 (cit. on p. 22).

Foutse Khomh and Yann-Gaél Guéhéneuc. “Design patterns
impact on software quality: Where are the theories?” In: 2018
IEEE 25th International Conference on Software Analysis, Evolution
and Reengineering (SANER). Mar. 2018, pp. 15-25. DOL: 10.1109/
SANER.2018.8330193 (cit. on p. 22).

The Qt Company Ltd. QScopedPointer Class | Qt 4.8. [Online;
accessed 26. Sep. 2018]. Dec. 2017. URL: http://doc.qt.io/
archives/qt-4.8/qgscopedpointer.html (cit. on p. 24).

81

https://www.interaction-design.org/literature/article/kiss-keep-it-simple-stupid-a-design-principle
https://www.interaction-design.org/literature/article/kiss-keep-it-simple-stupid-a-design-principle
http://www.ecma-international.org/publications/files/ECMA-ST/ECMA-404.pdf
http://www.ecma-international.org/publications/files/ECMA-ST/ECMA-404.pdf
http://www.ecma-international.org/publications/files/ECMA-ST/ECMA-404.pdf
https://www.predic8.de/xml-json-yaml.htm
https://doi.org/10.1109/CSMR.2008.4493325
https://doi.org/10.1109/SANER.2018.8330193
https://doi.org/10.1109/SANER.2018.8330193
http://doc.qt.io/archives/qt-4.8/qscopedpointer.html
http://doc.qt.io/archives/qt-4.8/qscopedpointer.html

[Ltd17b]

[Noroo]

[NPS2]

[Nur+o9]

[PJ98]

[Ref18a]

[Ref18b]

[Rie+97]

[Rie11]

[SS18]

Bibliography

The Qt Company Ltd. The Property System | Qt 4.8. [Online;
accessed 26. Sep. 2018]. Dec. 2017. URL: http://doc.qt.io/
archives/qt-4.8/properties.html (cit. on p. 24).

James Norton. “Dynamic Class Loading in C++.” In: Linux J.
2000.73es (May 2000). 1SSN: 1075-3583. URL: http://dl.acm.
org/citation.cfm?id=348902.349180 (cit. on p. 6).

Jirg Nievergelt and Franco P. Preparata. “Plane-sweep Algo-
rithms for Intersecting Geometric Figures.” In: Commun. ACM
25.10 (Oct. 1982), pp. 739—747. ISSN: 0001-0782. DOI: 10.1145/
358656 . 3568681. URL: http://doi.acm.org/10.1145/358656.
358681 (cit. on p. 11).

Nurzhan Nurseitov et al. “Comparison of JSON and XML data
interchange formats: a case study.” In: Caine 9 (2009), pp. 157-
162 (cit. on p. 7).

Jens Palsberg and C. Barry Jay. “The essence of the Visitor pat-
tern.” In: Computer Software and Applications Conference, 1998.
COMPSAC '98. Proceedings. The Twenty-Second Annual Interna-
tional. Aug. 1998, pp. 9—15. DOI: 10.1109/CMPSAC.1998.716629
(cit. on p. 20).

C++ Reference. PImpl. [Online; accessed 11. Oct. 2018]. Sept.
2018. URL: https://en.cppreference.com/w/cpp/language/
pimpl#cite_note-1 (cit. on p. 23).

C++ Reference. The rule of three/five/zero. [Online; accessed 12.
Oct. 2018]. Oct. 2018. URL: https://en.cppreference.com/w/
cpp/language/rule_of_three (cit. on p. 24).

Dirk Riehle et al. Serializer. [Online; accessed 27. Sep. 2018].
1997. URL: https://www.ubilab.org/publications/print _
versions/pdf/plop-96-serializer.pdf (cit. on p. 13).

Dirk Riehle. “Lessons Learned from Using Design Patterns in
Industry Projects.” In: 2 (Jan. 2011), pp. 1-15 (cit. on pp. 20, 22).

Bjarne Stroustrup and Herb Sutter. C++ Core Guidelines. [Online;
accessed 12. Oct. 2018]. Sept. 2018. URL: https://github.com/
isocpp/CppCoreGuidelines/blob/master/CppCoreGuidelines.
md#Rc-zero (cit. on p. 24).

82

http://doc.qt.io/archives/qt-4.8/properties.html
http://doc.qt.io/archives/qt-4.8/properties.html
http://dl.acm.org/citation.cfm?id=348902.349180
http://dl.acm.org/citation.cfm?id=348902.349180
https://doi.org/10.1145/358656.358681
https://doi.org/10.1145/358656.358681
http://doi.acm.org/10.1145/358656.358681
http://doi.acm.org/10.1145/358656.358681
https://doi.org/10.1109/CMPSAC.1998.716629
https://en.cppreference.com/w/cpp/language/pimpl#cite_note-1
https://en.cppreference.com/w/cpp/language/pimpl#cite_note-1
https://en.cppreference.com/w/cpp/language/rule_of_three
https://en.cppreference.com/w/cpp/language/rule_of_three
https://www.ubilab.org/publications/print_versions/pdf/plop-96-serializer.pdf
https://www.ubilab.org/publications/print_versions/pdf/plop-96-serializer.pdf
https://github.com/isocpp/CppCoreGuidelines/blob/master/CppCoreGuidelines.md#Rc-zero
https://github.com/isocpp/CppCoreGuidelines/blob/master/CppCoreGuidelines.md#Rc-zero
https://github.com/isocpp/CppCoreGuidelines/blob/master/CppCoreGuidelines.md#Rc-zero

Bibliography

[Sys17] Simple Systems. LibTIFF - TIFF Library and Ultilities. [Online; ac-
cessed 25. Sep. 2018]. Dec. 2017. URL: http://www.simplesystems.
org/libtiff (cit. on p. 8).

[SYS18] AWARE SYSTEMS. TIFF Tag Reference. [Online; accessed 25.
Sep. 2018]. May 2018. URL: https://www . awaresystems . be/
imaging/tiff/tifftags.html (cit. on pp. §, 9).

[Wik17] Qt Wiki. D-Pointer. [Online; accessed 8. May 2018]. Aug. 2017.
URL: http://wiki.qt.io/D-Pointer (cit. on p. 23).

[Wik18] Qt Wiki. Smart Pointers. [Online; accessed 11. Oct. 2018]. Oct.
2018. URL: https://wiki.qt.io/Smart_Pointers (cit. on p. 23).

83

http://www.simplesystems.org/libtiff
http://www.simplesystems.org/libtiff
https://www.awaresystems.be/imaging/tiff/tifftags.html
https://www.awaresystems.be/imaging/tiff/tifftags.html
http://wiki.qt.io/D-Pointer
https://wiki.qt.io/Smart_Pointers

	Abstract
	Introduction
	Motivation
	State of the Art
	Objective
	Structure of the Thesis

	Literature Research
	Keep It Simple, Stupid
	Dynamic Class Loading
	File Formats
	TIFF
	Scanline Principle and Plane-Sweep Algorithm
	Design Patterns Revisited
	Serializer
	Factory Pattern
	Prototype
	Singleton
	Composite
	Strategy
	Visitor
	Whole-Part
	Publisher-Subscriber aka Observer
	Concluding Remarks on Design Patterns

	PImpl Idiom
	Smart Pointers
	The Property System
	Rule of Three/Five/Zero

	Design
	Specification
	User Stories
	User Stories for Users
	User Stories for Developers

	GUI
	System Architecture
	Printer Configuration File
	Pattern Definition File

	Implementation
	Development Workflow
	UI Classes
	MainWindow
	PatternSection
	PatternDefinitionSection
	PropertiesSection

	Core Classes
	FileIO
	ISerializable
	Pattern Definition
	Printer
	Print Primitives
	Test Patterns
	Exporter

	Main Function and Commandline Execution
	Case Study

	Use Cases
	Adding a new Printer
	Adding a Property to a Test Pattern
	Creating a new Print Primitive
	Creating a new Test Pattern

	Conclusion and Future Work
	Bibliography

