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Abstract

In recent years, Time-of-Flight (ToF) sensors for 3D imaging have become popular for
consumer industries. Due to their low power consumption and affordable costs, they can
be easily embedded in smartphones and cars. In this Master’s thesis, we examine the
applicability of ToF sensors for reliable face recognition. Due to the low resolution of
the sensor, we will explore possible login distances and also the impact of sunlight. Face
recognition is getting more and more important to the human lifestyle. Many techniques
were developed to face this problem. For example, Eigenfaces in the early 1990s and
Local Binary Pattern Histogramming (LBPH) some years later. State-of-the-art nowadays
are neural networks. They can outperform nearly all algorithms which have been devel-
oped for different areas. Face recognition with ToF sensors received only a little attention
from the research community. With our ToF camera (Picoflexx), we can record more than
just depth data, for example, we additionally get the amplitude data (greyscale image)
and noise information of the specific pixel. We will show how well a Convolutional
Neural Network (CNN) performs on noisy depth and greyscale images on a very low res-
olution. We developed a preprocessing pipeline to address the challenges with a small
set of training data. To meet the company requirements of Infineon, we implemented an
Android-based prototype application to demonstrate our results on a consumer smart-
phone in real-time.
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Kurzfassung

In den letzten Jahren wurden Time-of-Flight (ToF) Sensoren für die 3D-Bildgebung in
der Konsumgüterindustrie populär. Aufgrund des geringen Stromverbrauches und der
geringen Kosten sind sie problemlos in Smartphones und Autos integrierbar. In dieser
Masterarbeit untersuchen wir die Anwendbarkeit von ToF-Sensoren für eine zuverläs-
sige Gesichtserkennung. Aufgrund der geringen Auflösung des Sensors untersuchen wir
die möglichen Arbeitsdistanzen und auch den Einfluss von Sonnenlicht. Die Gesicht-
serkennung wird für den täglichen Lebensstil immer wichtiger. Viele Techniken wurden
entwickelt, um dieses Problem zu lösen. Zum Beispiel Eigenfaces in den frühen 1990er
Jahren und Local Binary Pattern Histogramming (LBPH) einige Jahre später. Neuronale
Netze können heutzutage nahezu alle Algorithmen übertreffen, die für verschiedene
Bereiche entwickelt wurden. Die Gesichtserkennung mit ToF-Sensoren ist ein kaum er-
forschtes Gebiet. Mit unserer ToF-Kamera (Picoflexx) können wir nicht nur die Tiefen-
daten aufnehmen, wir erhalten zusätzlich die Amplitudendaten (Graustufenbild) und
Rauschinformationen des jeweiligen Pixels. Wir zeigen, wie gut ein Convolutional Neu-
ral Network (CNN) bei sehr geringer Auflösung mit verrauschten Tiefen und Graustufen-
bildern zurecht kommt. Wir haben eine Vorverarbeitungs-Pipeline entwickelt, um der
Herausforderung mit nur wenigen Trainingsdaten entgegenzutreten. Um den Anforderun-
gen des Unternehmens Infineon gerecht zu werden, haben wir einen Android-basierten
Prototypen implementiert, um unsere Ergebnisse an einem Consumer-Smartphone in
Echtzeit zu präsentieren.

Schlüsselwörter: Time-of-Flight, Gesichtserkennung, Smartphone
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Chapter 1

Introduction

To gain access to a system, it is necessary to enter a key or a password. Another option is a
chip card which allows access to the system. The disadvantage of these approaches is that
a loss of the information could lead to an abuse of the system. Face recognition is a bio-
metric verification method and is more reliable than traditional methods [SNG14]. Clas-
sical approaches compare one login image to many other images of a database (Eigenfaces
[TP91] or Fisherfaces [Luo+99]). Neural networks can identify an individual with fewer
data. No solution is faultless, to increase the security of a biometric system, combinations
of different biometric systems (multi-modal approaches) can be made to make the login
more secure [SNG14].

Car sharing becomes more and more popular. Due to the active build-in near-infrared
light source of our Time-of-Flight (ToF) camera, we can log in in the dark. With face
recognition, trusted users can start the car while others can’t. The vehicle can adjust the
seat to the needs of different users automatically. The suppression of the near-infrared
spectrum of the sun makes it possible to take images under strong sunlight. Due to the
design of our sensor, we can get depth information and the greyscale image. We hypothe-
sise that the solution with this sensor and the depth information is more secure compared
to standard 2D face recognition. At the time of writing this thesis, we could not find any
publication which uses the ToF data and neural networks for face recognition entirely.
For this, we explore the usage of ToF for reliable face recognition. Additionally, we build
a demonstrator based on Android. This is another challenge, because of the limited re-
sources and a lack of power on the embedded device. The number of smartphones rises
with each year1. Apple introduced with the iPhone X face recognition with 3D data into
a smartphone. This work aims to build a reliable face recognition which is suitable for a
smartphone with a ToF 3D sensor. Due to the rising sales of smartphones in the coming
years, we hypothesise that our solution can lay the foundation stone for ToF and neural
networks for smartphones. To face this problem, we searched for relevant and related
literature. Much research is done with solutions based on RGB data but not for ToF. For
this, we evaluate modified RGB based solutions with our ToF data. Next, we assess the
sensor quality. Due to the low resolution of our sensor, we decided to use state-of-the-
art verification methods like neural networks. We use TensorFlow as a framework due
to the compatibility to Android. To make the neural network training faster, we use a
preprocessing pipeline which segments the face from the background. It is necessary

1https://de.statista.com/statistik/studie/id/3179/dokument/smartphones-statista-dossier/

1
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CHAPTER 1. INTRODUCTION

to build up a database with ToF data to train the network. No public database is avail-
able with ToF data or aligned 2D and 3D ToF data. We used a pre-trained, modified
AlexNet [KSH12] with a specified metric as evaluation and evaluated the recorded RGB
data of the smartphone front camera from our individuals in the database. We compare
the results against our trained network on ToF data. Overall, the ToF trained network
clearly outperformed the modified AlexNet. We could not reach the accuracy of trained
state-of-the-art RGB networks like FaceNet [SKP15].

This thesis is structured as follows. First, we review the ToF principle, neural net-
works basics, state-of-the-art neural networks and classical methods for face recognition.
In Chapter 3 we evaluate the best sensor parameters and give an overview of our created
design. Next, we introduce the implementation of our preprocessing pipeline and CNN’s
in Chapter 4. Chapter 5 shows the results of the implementation. Finally, Chapter 6
concludes and discusses potential future directions.
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Chapter 2

Background

Research is done with face detection based on Microsoft Kinect and CNN’s [Bal+18]. Face
recognition is not well researched with ToF, i.e. we discovered researches with Iterative
Closest Point (ICP) [MBO07] and face prints based on depth data [MW09]. No research
has been done with ToF and CNN’s for face recognition at the moment we write this
work.

In this chapter, we explain some basics of ToF, how a digital image is structured and
how a convolutional neural network (CNN) works. We summarise the basics of the layers
in neural networks and how a network can learn similarities. We summarise important
values to monitor a CNN to gain a well-trained network. Last, we explain state-of-the-art
CNN’s and also methods which are based on ToF data and aligned 2D and 3D data from
a laser scanner.

2.1 ToF Basics

In this section, we briefly summarise the working principle of our used ToF camera (Pi-
coflexx). The camera operates with the indirect ToF principle, and this means that the
camera emits modulated near-infrared light. The objects reflect the emitted light, and
the sensor detects the reflected beams. For this, the camera sends out eight phase shifted
signals. Four signals are modulated with 60 MHz and another four with 80 MHz. Both
measurements use the phase shifts with 0°, 90°, 180° and 270°. In Figure 2.1 we illus-
trate the indirect ToF principle which is based on phase difference measurement. The
reference signal (0°) is compared with the received modulated optical signal, and this
results in a phase difference. This difference is proportional to the distance [Alm18]. In
contrast, the direct ToF principle measures the travelled time of the emitted signal back
to the sensor. After some post-processing, i.e. resolve unambiguous pixel, lower the noise
level with neighbourhood filtering and thresholds, the result is a depth image and an am-
plitude (greyscale) image. With the used framework of the camera, it is possible to obtain
more processed data. For example, it is possible to retrieve data for every pixel like noise,
x and y coordinate (to the camera), intermediate data during the preprocessing pipeline
and raw data. To get intermediate and raw data, it is necessary to register a special key at
sensor registration on the host system. In this work, we focus on amplitude, depth and
noise data. In Figure 2.2 we illustrate these data.

3
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Figure 2.1: The indirect ToF working principle is based on phase differ-
ence measurements. The emitted light is reflected from objects in the scene,
and this results in a phase difference compared to the reference signal. Af-
ter some post-processing, the result is a greyscale (bottom) and depth image
(top). Darker pixels in the depth image are closer to the sensor. Adapted
from [Dru+15].

Figure 2.2: Example of ToF data, on the left side we illustrate the amplitude
data, in the middle the depth data and on the right side a typical noise image.
Note that bright pixels in the depth image indicate a higher distance. We
observed that the noise data is stronger influenced by reflecting backgrounds
than amplitude and depth data.
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RECOGNITION CHAPTER 2. D.I.N.N.F.R

Figure 2.3: Illustration of a 2D digital image. Image adapted with changes
from [AS15].

2.2 Basics about a Digital Image, Neural Networks and Face Recog-
nition

In this section, we present the structure of a digital image. Next, we briefly explain how a
convolutional neural network works. We give an overview of how convolution operates,
max pooling works and present three activation functions. Additionally, we describe
details about metric learning. Last, we summarise face recognition methods based on
RGB data and an approach which uses classical algorithms for face recognition on ToF
depth data.

2.2.1 Digital Image

To manipulate and process images, a digital device needs digital data. The digital image
can be presented as

f (x,y) =


f (0,0) f (0,1) . . . f (0,N − 1)
f (1,0) f (0,1) . . . f (1,N − 1)
...

... . . .
...

f (M − 1,0) f (M − 1,1) . . . f (M − 1,N − 1)

 ,
where f(x,y) denotes the intensity function, M the number of rows and N the number of
columns [AS15].

In Figure 2.3 we illustrate an example of a simple image. In the second half of the
image, the digital values between zero and 255 are presented. Higher values are assigned
to the white tone and lower values to black tone. 255 is the highest possible value and
represents white, and zero leads to the darkest value black.

An RGB (red, green, blue) image is a stacked image with three channels. In our work,
we won’t use RGB data directly. Instead, we stack amplitude, depth and other sensor
data together to one image.
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Figure 2.4: Classical CNN structure. The input image is on the left side,
followed by convolution and pooling layers. The last two layers represent
the fully connected layer and output layer. Figure taken from [Pen+16].

2.2.2 Convolutional Neural Network

In this section, we briefly explain the basics of neural networks and essential values for
training. We summarise what convolution means in relation with images, how infor-
mation reduction is possible and how activation function works. Next, we explain the
basics of metric learning and discuss important characteristics to monitor a network for
successful training.

2.2.2.1 Convolution, Pooling and Activation Functions

Convolution is a technique to manipulate the input data. The idea behind this technique
is an information reduction, and only the most important information should be passed
to the next layer of the network. For this, we shift a matrix over the input data and
multiply the data with the values of the matrix. We denote this matrix now as a kernel.
The kernel for image manipulation is initialised with different techniques. Initialising
the kernel with random values is possible. In the end, this can lead to dead neurons due
to unsuitable values. Another possibility to avoid this problem is an initialisation with
the XAVIER initialiser [GB10]. The authors summarise that this initialisation leads to a
significantly lower test error, which is the result of a well-proceeded training. The neural
network learns this kernels for image manipulation.

In Figure 2.4 we illustrate a classical CNN structure. The input image is represented
on the left side. The convolutional layer is the result of the image manipulation with
the kernel onto the input image. More kernels lead to more manipulated images. We
summarise now in more detail the steps in a classical neural network.

We define kernels with a certain size and place these kernels onto the input image.
Next, we multiply the kernel value with the input image value. This step is necessary for
each channel, for this, we have two kernels for two channels. The result of this multipli-
cation is a new, modified image. Last, we sum up the pixels of the modified images. The
result of the summation is the new value in the new image.

On the left side in Figure 2.5 we illustrate the input image (input layer). Followed
by 5x5 kernels. Each kernel consists of 16x16 pixels. These kernels are learned from the
neural network. The last illustration is the result after shifting the 25 kernels with con-
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Figure 2.5: Cropped input image on the left side from our ToF camera. Next
illustration reflects 25 learned kernels from a neural network in the early
state. The last image is the result of the kernel shifting over the input image.

(a) Horizontal edge
detector.

(b) Horizontal edge
detector.

(c) Diagonal edge de-
tector.

(d) Diagonal edge
detector.

Figure 2.6: Illustration of different kernels with the visible colour flow.
These gradients in these examples represent learned edge detectors. On the
left side of a pair the learned kernel is illustrated. Red represents amplitude
data, green depth data and blue noise data. A colour flow from top to bottom
illustrates a horizontal edge detector. On the right side of a pair we visualise
a schematic illustration of the learned kernel. Best viewed digitally.

volution over the input image. For example, the first kernel (1,1) leads to the first image
(1,1) in the last illustration. Networks can learn edge detectors, and they can also learn
to use the channels in a specific way. In Figure 2.6 we illustrate some learned detectors.
First coloured kernel (a) represents a horizontal learned edge detector. Red colour repre-
sents the amplitude data, green the depth data and blue the noise data. A gradient from
the top (blue) to bottom (green) is visible. Next kernel (b) illustrates another learned
horizontal edge detector. The colour flow is inverted to the first kernel. In illustration (c)
the gradient from top left to bottom right is recognisable. The colour changes from red
to blue, in mid there is a horizontal green line. This detector represents a diagonal edge
detection. Last illustration (d) represents another diagonal edge detection. The colour
flow on top left corner starts with blue (noise) and changes to red (amplitude) and green
(depth).

Pooling is an operation in neural networks to reach an invariance against small changes,
e.g if input data is noisy [Ras17]. We can distinguish between two well-known methods.
The first method is called max pooling. For this, we take the highest value inside a spec-
ified kernel. This highest value is the new entry in the output. Figure 2.7 illustrates this.
With mean pooling a mean calculation over the kernel is necessary. The resulting mean
value is the new entry in the output.

A neuron can receive many input data (with different weighted strength) and sums
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Figure 2.7: Mean and max pooling. Kernel size is 3x3. Max value in the first
kernel is eight. For average or also called mean pooling the resulting value is
3.78. Figure adapted from [Ras17].

them up. The result is an output (activation), with a certain strength. To control the
firing neurons, it is necessary to use activation functions. The network sends each pixel
value through the activation function. In Figure 2.8 we summarise some widely used
activation functions [GBC16].

Rectified Linear unit activation function (ReLu)
This function is widely used because the calculation is simple, i.e. all values less
than zero obtain the value zero, and all positive values are unchanged. The side
effect is that many zero values can occur in the network weights because of the
elimination of negative values to zero. Dead neurons can be the result. An advan-
tage of ReLu is, that no oversaturation of positive values occur, because the values
can pass as they are. We illustrate this function in Equation (2.1). The output can
be calculated as

f (x) =

x, if x ≥ 0.

0, if x < 0.
(2.1)

where x is the input value to the function [GBC16].

Sigmoid activation function
The logistic sigmoid thresholds high and low values as the threshold function, it
is possible to obtain values between the lower and upper limit. The output can be
calculated as

f (x) = σ (x) =
1

1 + e−x
, (2.2)

where x is the input value to the function [GBC16].

Leaky Rectified Linear unit activation function (ReLu)
This function is currently prevalent because it won’t eliminate negative values. In-
stead, it shrinks down the values drastically to small values. Dead neurons should
not occur as in the ReLu function. Leaky ReLu leads to higher performances in sev-
eral networks [MHN13]. We illustrate this function in Equation (2.3). The output
can be calculated as

f (x) =

x, if x ≥ 0.

β · x, if x < 0.
(2.3)
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Figure 2.8: An illustration of different activation functions in CNN layers.
Generally, neural networks use non-linear functions. ReLu set all negative
values to zero, and all positive values can pass as they are. The logistic sig-
moid function set high values to a particular value. Values between can pass
with a modification. Last activation function is the leaky ReLu. This activa-
tion function is widely used because it won’t lead to dead neurons as the ReLu
function. Negative values can pass with less strength, and positive values can
pass as they are. Illustration based on [GBC16].

where x is the input value and β a certain multiplication value for the negative
values [GBC16].

2.2.2.2 Metric Learning

We need metrics to compare two results in a specific way together. For this, we evaluate
three different metrics which can be used for face recognition. The cosine similarity is
simple and additionally widely used for document classification [LPS16]. Triplet Loss is
suitable for face recognition to train a network to distinguish between entirely unseen
individuals [SKP15]. Last, we summarise weighted χ2 and Siamese network distance
which is used in DeepFace [Tai+14].

Cosine similarity
The cosine similarity measures the cosine angle between the two vectors. A co-
sine of zero degrees results in one, that means two identical vectors have one as
similarity. The cosine similarity is defined as

Cos(α) =
AxB
|A|x|B|

, (2.4)

where A and B are the two vectors for comparison. Two completely different vectors
result in -1 [LPS16].

Triplet Loss and SiameseTripletLoss

The basic idea of Triplet Loss is to learn embeddings, where similar examples are
close and different are further apart. For this, a CNN must calculate a facial feature
vector for each image. With Triplet Loss, we compare two vectors together. For this,
we subtract both vectors from each other and calculate the square over the resulting
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Figure 2.9: On the left side we illustrate the positive, negative and anchor
feature vector. These three feature vectors build one triplet. After the Triplet
Loss training, the network should be able to separate images from the same
individual and from different individuals (more distance to the reference im-
age). Figure based on [SKP15].

vector. With a summation over the resulting vector, we receive a threshold for the
similarity between the two images (facial feature vectors). In Equation (2.5) and
(2.6) we illustrate this in a more mathematical way. The distance between two
vectors can be calculated as

~D =


a0
.
.
an


A

−


l0
.
.
ln


L

, (2.5)

where
(
·
)
A

is the anchor (reference feature vector) and
(
·
)
L

the login vector to the
system. After the square operation the result is the distance in a d-dimensional
Euclidean space [SKP15].

The similarity can be calculated as

SIM =

N∑
i=0

~D2
i , (2.6)

over the distance vector from before, where N is the dimension. With the resulting
similarity and a certain threshold we can distinguish between the same individual
or if it is another one.

In Figure 2.9 we illustrate the triplet generation on the left side. For this, the CNN
calculate the feature vectors of the images. We use two feature vectors of the same
individual (anchor = reference image, positive image = another image of the same
individual) and a negative one (different individual).

As described in Equation (2.5), we calculate the distance between two facial feature
vectors with help of the distance calculation. The positive distance between anchor
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vector (reference image) and positive vector (another image of the same individual)
can be calcualted as

~Dp =


a0
.
.
an


A

−


p0
.
.
pn


P

, (2.7)

where
(
·
)
A

is the feature vector of the reference image and
(
·
)
P

the feature vector of
the same individual, but another image.

The negative distance between anchor vector (reference image) and negative vector
(image of another individual) can be calcualted as

~Dn =


a0
.
.
an


A

−


n0
.
.
nn


N

, (2.8)

where
(
·
)
A

is the feature vector of the reference image and
(
·
)
N

the feature vector of
a different individual.

We select this positive and negative image randomly. In FaceNet [SKP15], a genera-
tion of triplets is used which lead to faster convergence. Due to the restrictions to a
standard system, we can’t generate triplets as in FaceNet. The loss for our optimiser
is defined as

TL =
∑

max(0, || ~Dp||22 − || ~Dn||
2
2 +α), (2.9)

where α is the additional margin between the positive and negative distances [SKP15].
This additional separation makes the learning harder and the verification better.
For example, FaceNet uses an alpha value of 0.2.

Another potential improvement of Triplet Loss could be the "improved Triplet
Loss". Zhang et al. [Zha+16] created a modified Triplet Loss. Additionally, we
need the distance between the positive and negative feature vector as in Equation
(2.10). We define the distance between these two vectors as

~Dpn =


p0
.
.
pn


P

−


n0
.
.
nn


N

. (2.10)

This modified Triplet Loss is denoted as SymTriplet Loss. The SymTriplet Loss for
one triplet is defined as

SymTL =max(0, ||~Dp||22 −
1
2
· (||~Dn||22 + ||~Dpn||22) +α). (2.11)

The improvement is around half a per cent, and this experiment is based on face
detection [Zha+16]. The authors used an alpha value of 1.0.
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Weighted χ2 and Siamese network distance
The DeepFace [Tai+14] network use weighted χ2 distance and Siamese network
distance. The DeepFace network outputs normalised vectors between zero and one.
Additionally, the vector is very sparse. The weighted χ2 similarity is defined as

χ2(f1, f2) =
∑
i

wi(f1[i]− f2[i])2

f1[i] + f2[i]
. (2.12)

where f1 and f2 are the output vectors of the DeepFace network. The weight param-
eters (w) are learned with the help of a linear Support Vector Machine (SVM) [Hea+98].

Another technique is the Siamese network distance. This is an end-to-end metric
learning approach. Two networks run with shared parameters on two images. To
calculate the Siamese network distance it is necessary to take the absolute distance
between two vectors, then map the features with a fully connected layer into a sin-
gle logistic unit (same and not the same individual) [Tai+14]. The Siamese networks
distance is defined as

d(f1, f2) =
∑
i

αi · |f1[i]− f2[i]|, (2.13)

where f1 and f2 are the feature vectors of the network and α a learned parameter
from the network. DeepFace use standard cross entropy loss for back propaga-
tion [Tai+14].

2.2.2.3 Characteristics for Neural Network Training

To monitor the training of a neural network, it is necessary to take care of some parame-
ters. The network training needs an optimiser. For this, we send the training data filled
in batches to an optimiser. This optimiser makes a gradient update and changes the
weights of the network.

The loss is one of the most important values to observe. It reflects how well the
network learns and also if the learning rate is too high or low. Figure 2.10 (a) gives an
overview of how different learning rates can influence the loss function. A converged loss
function means that the network learned well. No convergence after many epochs means
that the network could not learn well and the learning rate is too high. The loss is based
in most cases on a batch. We split the train set into batches and send this batches to the
optimiser. This batch-wise evaluation during the forward pass can lead to wiggle in the
loss function. If a batch contains the whole data set, the wiggle is minimal because the
optimiser computes a gradient update on this one batch which includes the entire data
set [Kar18]. A too high learning rate can lead to an exploding loss (orange curve). The
weights get extreme values, and it is time to stop the training. The blue curve illustrates
a too low learning rate. With a high learning rate the loss can’t converge, the green curve
represents this. A well-chosen learning rate leads to a loss function as the red curve
illustrates [Kar18].

Overfitting means that the network learned the training data quite well, but it can’t
perform as well on the validation data. The network will only receive unknown data, and
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(a) Visualisation of different learning
rates. Figure taken from [Kar18].

(b) Visualisation of overfitting. Figure
taken from [Kar18].

Figure 2.10: Monitor learning and overfitting of a neural network. On
the left side, the orange curve illustrates a too high learning rate for the
optimiser, red a good learning rate. On the right side, the red curve il-
lustrates the training accuracy and the green curve the validation accuracy.
This represents slightly overfitting. The blue curve represents strong overfit-
ting [Kar18].

the aim is that the network performs with nearly the same performance and accuracy on
unknown data as on the known training data. Figure 2.10 (b) illustrate samples how we
can monitor if a network overfits. If the validation accuracy is almost as good as the
training accuracy, then the network learned well. The red and green curve illustrates
this. If the validation curve looks like the blue curve, then the training is not successful
because the network learned the training data nearly perfect but can’t handle unknown
data with this performance [Kar18].

Figure 2.11 illustrates how one of our created networks looks like on the last con-
volutional layer (left side) after training with a too high learning rate. Bright areas of
activations indicate that the neural network has not learned features. The kernels (in the
middle with size 16x16 pixels each) have no structure. The loss exploded up to 5,000,000
(right side).

Figure 2.12 illustrates on the left side the kernels of the first layer from a network. The
kernels are very noisy. The background is in most cases a too high learning rate which
leads to unconverged networks. Another symptom is very low weight regularisation
penalty [Kar18]. The kernel looks noisy, and no clear edge detection is visible. On the
right side, we illustrate the kernels from AlexNet [KSH12]. It is one of the most popular
networks. The AlexNet contains smooth and structured kernels, and this is the result of
a well-trained network.

2.3 Face Recognition

Face recognition systems focused in general on two-dimensional approaches [MW09].
Security cameras and smartphones have usually built in 2D sensors. According to Hill
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Figure 2.11: The network learned no features due to a too high learning
rate. Bright white areas of activations are visible (left side). The middle
image illustrates the kernels (five in each row) in the first layer. The kernels
are very noisy, and no structure is visible. Right side illustrates the loss over
50 iterations, where one iteration is based on one batch. The loss exploded to
values over five million.

Figure 2.12: On the left side, we illustrate noisy kernels. Wrong learning
rate and no convergence can lead to this result. Also, very low weight regular-
isation penalty can be one symptom. Right side illustrates a network which
learned from well-chosen hyperparameters. The kernels are clear, smooth
and edge detections are visible. This illustration is based on AlexNet. Figure
adapted from [Kar18].
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et al. [HSA97], human brains can have difficulties with face recognition from 2D data
only. With one 2D image, it is not possible to accurately determine physical dimensions,
orientation and location of the face relative to the sensor [MW09]. Facial expressions and
make up is another potential problem. Face recognition can be categorised into three
major approaches [MBO07]:

Holistic approach
Holistic approaches match the face as a whole against other faces. Examples for
this method are Eigenfaces [TP91], Fisherfaces [BHK97], Independent Component
Analysis [Luo+99], SVM [Hea+98] and neural networks [MBO07]. Cartoux et al. [WPW03]
researched face profile matching in the 1980s with laser scanners. One disadvan-
tage of laser scanner systems is that the subject must retain without motion until
the scanning process is finished.

Region based approach
Feature or region based approaches match regions like eyes, noses and mouth against
each other. One advantage of region-based approaches is that it can be more pow-
erful in the case of variations in illumination and expression [MBO07].

Hybrid matching approach
The hybrid approach use aligned 2D and 3D data for the face recognition [MBO07].
This approach can score with higher performance than the 2D or 3D methods with-
out the combination. Mian et al. [MBO07] claim that 3D face recognition is more
sensitive to facial expressions than 2D data. The verification rate can drop with
emotions around 15–22 per cent [MBO07].

In this section, we illustrate methods to verify a face with ToF data and also state-of-
the-art solutions with RGB data. First, we summarise the NIRFaceNet [Pen+16] and the
FaceNet [SKP15]. The NIRFaceNet is trained on near-infrared images. This network uses
a classification algorithm. This means the network is only able to classify a new input
image within existing and known individuals which occur during training. We want a
face recognition which can distinguish two completely unknown individuals. To face
this problem, we use for training Triplet Loss. Less research is done with ToF and face
recognition. For this, we evaluate in this section a depth based face recognition with ToF
data only. We summarise a paper where the authors use aligned 2D and 3D data. We
use the same principle because of the aligned ToF data. The authors process the aligned
data with a preprocessing pipeline to verify an individual with classical methods. We
use some approaches form this paper.

2.3.1 Near Infrared FaceNet

In this section, we briefly summarise the Near Infrared FaceNet (NIRFaceNet). The CNN
is a modified version of the GoogLeNet [Sze+15]. The GoogLeNet is build up with 27
layers, the NIRFaceNet with eight. The main idea behind both networks is the inception
layer structure which can extract features from images. In Figure 2.13 we visualise an
inception module. The design of the module includes four paths. On the left side, the
one-by-one convolution takes place. This one-by-one convolution plays two roles in the
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Figure 2.13: Inception module for feature extraction from
GoogLeNet [Sze+15]. Figure taken from [Sze+15].

feature extraction. First, this one-by-one convolution increase the non-linearity of the
network and the wealth of information is preserved from the upper layer. Second, it
can reduce the calculation load before the multi-scale convolution extract the upper fea-
tures [Pen+16]. The path with max pooling and the one-by-one convolution with a stride
of one (shift the kernel by just one pixel), maintain the resolution from the path before
and extract more texture details. The authors of NIRFaceNet removed the five by five
path because it can dimish the small features of the image and it takes more time to train
the network [SKP15; Pen+16]. The authors claim that a five by five convolution needs
2.78 times more computation time than a three by three convolution. The authors use
MatLab 2015 and Caffe for the implementation. The paper is published around one year
before we started with this work. The training itself took around 30 hours on a DELL
PRECISION T3600. The used CPU is a Xeon E5-1620, 64 gigabyte RAM and a Nvidia
Quadro 600. The used batch size is 35, and the dropout rate is set at 50%. We couldn’t
figure out which optimiser is used by the authors. We believe that the authors used Ada-
Grad [DHS11] or ADAM [KB15] optimiser because the Google FaceNet is published one
year before and they use AdaGrad. In the end, the network runs for 350.000 iterations.
In Figure 2.14 we illustrate three examples of the Chinese Academy of Sciences Institute
of Automation (CASIA) database. The database contains 3940 images from 197 different
individuals with a resolution of 640x480 for each image. The authors don’t mention the
distance to the camera, and it seems that the range is always the same and also that the
background is nearly entirely black. We believe that this setup makes the recognition
and training more accessible. Additionally, the authors removed the images in which
people wear glasses. The training set is split as follows: Three images of each candidate
were taken, this results in 597 train images with 197 different individuals. The authors
use data augmentation to generate more training images out of these 597. We explain
data augmentation in more detail at the end of this section. The test set contains 2739
images. The authors created nine different test sets, for example, one set without ex-
pressions and one with added Gaussian noise. The design of the NIRFaceNet contains
a Softmax classifier, and this restricts the network to classify each new incoming image
to 197 classes (different individuals). We can’t use the Softmax classifier for our work.
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Figure 2.14: Three examples of a candidate from the Chinese Academy
of Sciences Institute of Automation (CASIA) Database. The database con-
tains different emotions and viewpoints of an individual. Figure taken
from [Pen+16].

Figure 2.15: Illustration of NIRFaceNet. Figure based on [Pen+16].

Instead, we use another technique as in FaceNet. We explain FaceNet in the next sec-
tion in more detail. We illustrate the complete NIRFaceNet in Figure 2.15. The network
contains a prefiltering at the beginning with a five-by-five convolution and a stride of
two to reduce the whole image with edge detectors. With the next layer (max pooling
with stride two and size of three by three) another reduction of the image takes place,
i.e. only the most reliable information can survive. Additionally, an invariance against
small changes and noise are the result of max pooling. The next layers are the inception
modules without the five-by-five convolution paths from GoogLeNet. In the end, another
max pooling layer is placed before the Softmax classifier. The authors don’t use fully con-
nected layer due to performance reasons. In Table 2.1 we summarise the network from
Figure 2.15. On the left side, we illustrate the layer, next the type is illustrated, followed
by the properties (parameters for the layers) and last the resulting output of each layer.
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Table 2.1: NIRFaceNet architecture. On the left side, we illustrate the layer
number. Next, we illustrate the type of the layer, followed by the properties
(Z means kernel size, LR means leaky ReLu, S means stride, K the amount of
kernels). Last we summarise the output size of the layer.

Layer Type Properties output size
— Input 112x112 —
Layer 1 Conv1 Z: 5x5, LR, S: 2x2, K: 64 56x56
Layer 2 Maxpool Z: 3x3, S: 2x2 28x28
— Local response

normalisation
— 28x28

Layer 4 Conv2dA Z: 1x1, LR, S: 1x1, K: 64 28x28
Layer 3 Conv2dB Z: 1x1, LR, S: 1x1, K: 64 28x28
Layer 4 Conv2dC Z: 3x3, LR, S: 1x1, K: 128 28x28
Layer 3 Maxpool Z: 3x3, S: 1x1 28x28
Layer 4 Conv2dD Z: 1x1, LR, S: 1x1, K: 64 28x28
— Concat Conv2dA, Conv2dC, Conv2dD —
Layer 5 Maxpool Z: 3x3, S: 2x2 14x14
Layer 7 Conv2dA Z: 1x1, LR, S: 1x1, K: 128 14x14
Layer 6 Conv2dB Z: 1x1, LR, S: 1x1, K: 128 14x14
Layer 7 Conv2dC Z: 3x3, LR, S: 1x1, K: 192 14x14
Layer 6 Maxpool Z: 3x3, S: 1x1 14x14
Layer 7 Conv2dD Z: 1x1, LR, S: 1x1, K: 128 14x14
— Concat Conv2dA, Conv2dC, Conv2dD —
Layer 8 Maxpool Z: 3x3, S: 2x2 7x7
— Softmax — 197
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2.3.1.1 Data Augmentation

For a neural network, an essential part for training is data augmentation. We can prevent
overfitting with purposeful data augmentation. For example, a network could learn that
one type of a car always directs in the same direction, or one car still has the same colour.
To prevent this, we can flip our data or change the brightness for example. Another ad-
vantage of data augmentation is that we can generate more training data. For example,
flipping the images doubles our database of training images. In this section, we present
some useful data augmentation steps. As mentioned, horizontal flipping the images dou-
ble the database. We believe that horizontal flipping is not profitable for face recognition
because the user won’t log in to a smartphone if the rotation is around 180 degrees. To
overcome this issue, it is also possible to read out the gyro sensors from the smartphone
and rotate the image. Vertical flipping is also not a good choice because we believe that
a face is generally not completely symmetric and with vertical flipping, we would learn
the network to be invariant against symmetry and maybe lose valuable information. The
horizontal and vertical scale is helpful because the face also has variable parts like the
mouth. We believe that stretching an image could counteract this issue. Another essen-
tial augmentation technique for our face recognition is to rotate an image. Theoretically,
we should never have a rotated image as input to our CNN due to our preprocessing
pipeline. It is possible that the landmark detection fails, and the preprocessing pipeline
outputs incorrect rotated images. With rotation, we can generate more train images, and
we can also verify the input image correctly because small rotations of some degree won’t
influence our system. Contrast and brightness augmentation are in our case useful be-
cause due to our active illumination unit it is possible that the teeth reflect much more
light than the face itself, i.e. that the illumination unit lowers the illumination time. With
brightness and contrast augmentation we can simulate a behaviour like this.

In Figure 2.16 we illustrate an individual with data augmentation from the NIR-
FaceNet paper. The first image (a) represents the image from the database, the second
image with added motion blur, next two images with different Gaussian blur in different
strength. First two images in the second row are the result of added salt and pepper noise
with different intensities. Last two images are the result of added Gaussian noise with
varying intensity.

We obtain blurred images from our sensor, for this, we won’t use additional blurring
effects. The authors claim that the addition of Gaussian noise with a density of 0.001
leads to the best results (the successful login rate to the system differs around one per
cent with a noise density of 0.01 instead of 0.001).

2.3.1.2 Dropout as Regularisation Technique

A technique to improve the generalisation (performance on unknown data) is to set a
dropout rate in the fully connected layer. The idea is to disable neurons in the training
phase, and the network must handle the data with this handicap. With each run neurons
are deactivated during training. After training, the network gets back all the neurons and
should perform better, because it can handle the data with fewer neurons too. For exam-
ple, NIRFaceNet uses 50% dropout and GoogLeNet from 40 to 70% [Sze+15]. Dropout
generally performs better on deep networks [Sze+15]. Due to a higher login rate with our
data and our CNN’s we are still using dropout combined with data augmentation. Addi-

19



2.3. FACE RECOGNITION CHAPTER 2. D.I.N.N.F.R

Figure 2.16: Data augmentation. The first image illustrates the input image,
and the next image is prepared with motion blur. Following two images are
prepared with Gaussian blur in a different strength. First two images in the
second row are manipulated with salt and pepper noise in different inten-
sity. Last two images are prepared with Gaussian noise in different intensity.
Figure taken from [Pen+16].

tionally, adding noise is a strategy to construct new input images and make the network
more resistant to noise [GBC16].

2.3.2 FaceNet

FaceNet is trained on a private database with around 260 million images. DeepFace [Tai+14]
in contrast, is trained on 4,4 million images from 4030 different individuals. FaceNet
uses two different architectures, a Zeiler&Fergus [ZF14] based and an inception based
architecture. The Zeiler&Fergus architecture generally represents the classical network
architecture. It consists of convolution, non-linear activation functions like ReLu or leaky
ReLu, LRN and max pooling. This construct is repeated to go deeper. In FaceNet a one-
by-one convolution is additionally added. Second architecture is based on the inception
architecture. Both networks need the same amount of Floating Point Operations Per
Second (FLOPS), the inception based variant has fewer parameters. The results are sim-
ilar. FLOPS are important for our mobile platform. The Zeiler&Fergus network is 22
layers deep and has 140 million parameters with 1.6 billion FLOPS per image. The in-
ception based approach has around 7 million parameters and 1.6 billion FLOPS. FaceNet
learns facial features with triplets (two positive images (same individual) and a nega-
tive one (not same individual) for training). For comparison, Softmax is a classifier and
can only sort the new login image into a category of N individuals which occur during
training. DeepFace uses a weighted χ2 distance and Siamese network distance. Recall
again Section 2.2.2.2 for more details. FaceNets weights are initialised randomly and use
Stochastic Gradient Descent (SGD) for backpropagation with AdaGrad [DHS11]. For the
non-linear activation functions, ReLu is used. The embedding dimension of the facial
feature vector is 128 and the input size 220 by 220 pixels with RGB data.

The full batch with triplets is delivered to the CNN architecture and the optimiser.
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Table 2.2: FaceNet architecture. On the left side, we illustrate the type of
the layer, followed by the properties (Z means kernel size, S means stride, K
represents the amount of kernels, LRN means Local response normalisation).
Last we summarise the output size of the layer.

Type Properties output size
Input 220x220x3 —
Conv2d Z:7x7, S:2, K: 64 112x112 x64
Maxpool Z: 3x3, S: 2x2 56x56x64
LRN — 56x56x64
Inception(2) Z: 3x3, K: 192 56x56x192
LRN — 56x56x192
Maxpool Z: 3x3, S: 2x2 28x28x192
Inception(3a) Z: 1x1, K: 64; Z: 3x3, K: 128; Z:5x5 , K: 32 28x28x256
Inception(3b) Z: 1x1, K: 64; Z: 5x5, K: 128; Z:5x5 , K: 64 28x28x320
Inception(3c) Z: 5x5, K: 256; Z:5x5 , K: 64 14x14x640
Inception(4a) Z: 1x1, K: 256; Z: 3x3, K: 192; Z:5x5 , K: 64 14x14x640
Inception(4b) Z: 1x1, K: 224; Z: 5x5, K: 224; Z:5x5 , K: 64 14x14x640
Inception(4c) Z: 1x1, K: 192; Z: 5x5, K: 256; Z:5x5 , K: 64 14x14x640
Inception(4d) Z: 1x1, K: 160; Z: 5x5, K: 288; Z:5x5 , K: 64 14x14x640
Inception(4e) Z: 5x5, K: 256; Z:5x5 , K: 128 7x7x1024
Inception(5a) Z: 1x1, K: 384; Z: 3x3, K: 384; Z:5x5 , K: 128 7x7x1024
Inception(5b) Z: 1x1, K: 384; Z: 5x5, K: 384; Z:5x5 , K: 128 7x7x1024
Average pooling — 1x1x1024
Fully-connected — 1x1x128
L2 normalisation — 1x1x128

FaceNet uses an online triplet generation, i.e. during runtime with a particular combi-
nation of triplets. It means they search for a certain amount of positive samples of the
same individual in a batch, mixed with random negative samples. Next FaceNet uses
L2 normalisation on the embedding vector. The result is a normalised 128-dimensional
face feature vector. The network learns a direct mapping from face images to a Eu-
clidean subspace, and this distances directly correspond to a measure of the face similar-
ities [SKP15]. The verification needs feature vectors from the network. With two feature
vectors from two images, we can calculate the similarity between these two vectors. We
illustrate the deepest inception based version of FaceNet in Figure 2.2. This version is 24
layers deep, and the complete training took around 2000 hours on a server cluster with
thousands of CPUs.

In Figure 2.17 we illustrate 14 examples of the same individual from the FaceNet
test set. We recognised that two images in the last row are identical, we believe this is
a mistake in the paper. The private database contains images with different illumina-
tion and viewpoints of the individuals. With our sensor, we are less independent of the
illumination due to our active illumination unit in the camera.
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Figure 2.17: FaceNet test set examples. Figure adapted from [SKP15].

2.3.3 Spherical Intersection Profiles (Face Print)

In this section, we summarise Spherical Intersection Profiles [MW09]. This method is a
face recognition approach which uses 3D data. The first step is to detect the nose with
the help of 2D and 3D data. Therefore the depth data are filtered for distances which
are interesting for face recognition, i.e. distances which are far away from the camera or
extremely close are filtered and won’t appear in the test set for verification. Horizontal
and vertical boundaries of the region of interest are determined by detecting the top of
the head. With the help of anthropometric data (i.e. knowings body-specific dimensions)
and the depth map, the final head position can be determined. With the help of am-
plitude and depth data, the nose is detectable by searching for specific brightness (for
example brightest point in a frontal face due to the closer distance to the camera) and
geometric characteristics. After segmenting the essential regions of the image, the ver-
ification step is done with spherical intersections. Figure 2.18 illustrates the spherical
intersection technique for face cropping. It starts with the nose tip and recognises data
points in the 3D point cloud which relates to the radius from the nose tip. This radius
changes and takes different layers from the 3D point cloud. It is not necessary to rotate
the face due to the radius principle from the nose tip. Compared to ICP, this technique is
faster and won’t lead to convergence problems. Compared to other technologies, like Ex-
tended Gaussian Images [Hor84], it also retains spatial information [MW09]. To increase
the quality of the depth data (i.e. lower noise) the authors use supersampling on the ToF
data. After finding the faceprints (spherical intersection set), the authors normalise the
set by a rotation transformation that means that the data directs to a specified direction.
Next important step is to do symmetric optimisation since the human face is highly sym-
metric, i.e. the faceprint can be optimised by detecting a plane of bipartite symmetry.
We don’t argue with the argument that the face is highly symmetric and won’t use this
idea. If we mirror the half of the face from one side to the other side than the face is not
entirely the same. In Figure 2.19 we illustrate how a face print looks like with marked
symmetry points. On the right side, there are three face prints located from different hu-
mans. It is visible that the face prints are not looking the same. An optimisation allows
the changing of the reference face print with each correct login into the system. Login
data with lower noise level reach higher importance and can change the existing model
more than images with high noise level [MW09]. To compare face prints, the average
Euclidean distance between two corresponding points is calculated. The authors used
a SwissRanger SR3000 ToF camera with a resolution of 176x144 pixels. The database
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Figure 2.18: Spherical intersections started with a certain radius from nose
tip. Figure taken from [MW09].

Figure 2.19: The left image illustrates a face print (white lines) with symme-
try points in yellow. Midpoints of spheres are marked in cyan. On the right
side, the three smaller images illustrate three face prints of three different
humans. The faceprints are different. Figure adapted from [MW09].

consists of ten humans at a fixed distance of one meter to the camera and with images at
various angles. The preprocessing without capturing takes around 32 ms for one frame
(on an Intel Centrino 1,8 GHz). This solution is suitable for real-time applications. No
false positive or true positive statistics are mentioned. The release of the paper is from
the year 2009. At the time we write this thesis, not much research has been done in the
area of face recognition with ToF. This solution is entirely based on ToF with an older
camera than our model and with less resolution. We believe that a rejection classifier
in the early stages of the preprocessing pipeline could be an improvement. Another im-
provement could be the optimisation of the reference model with each login. We can
summarise improvements like a fast rejection classifier in the early state with spherical
face prints, fast face detection with the help of the nose detection on ToF data and the
optimisation of the reference image with each successful login to the system.
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Figure 2.20: Aligned 2D and 3D data. Example from FRGC v2.0. Figure
taken from [MBO07].

2.3.4 Multimodal (2D and 3D) Hybrid Approach for Face Recognition

Mian et al. [MBO07] created a multimodal approach where they use 2D and 3D data for
face recognition. They use the FRGC v2.01 database which contains laser scanned indi-
viduals from a Minolta Vivid laser scanner. The resolution is 480x640, and the distance
varies. The individuals are recorded frontal (with small variations) and from shoulder
level up. The database contains the x, y, z, depth confidence data and the coloured image.
No individual wears glasses. Exposure and emotions vary slightly. The coloured images
are registered to the 3D data. The authors mentioned that they found some not correct
registered faces in the database. The authors use a test set with 4,007 images based on
466 subjects. In Figure 2.20 an image of the FRGC v2.0 with variation is illustrated. The
authors picked out an image where the 3D data has some holes (right side). First, the
created preprocessing pipeline detects the nose with a coarse to fine approach. In Figure
2.21 (a) a horizontal slice is illustrated. The point with the highest altitude is selected
with triangles. With spherical cropping (Figure 2.21 (b)) from the nose tip it is possible
to segment the inner face. The radius for the sphere is selected with 80 mm. Second, hole
filling and spike removing with the neighbourhood is computed. For hole filling, cubic
interpolation is used and for z-axis filtering a median filter. The third step contains a
uniform resampling of 2D and 3D data on a one mm square grid. The authors claim that
this step is significant because all faces end up in the same resolution.

The authors use 3D data for pose correction. Due to the registration of 2D and 3D
data, it is possible to rotate the 2D data in the same way as the 3D data. They use for this
purpose the Hotelling transformation which is related to the Principal Component Anal-
ysis (PCA). They calculate the covariance matrix based on 3D data. After performing
Hotelling transformation on the covariance matrix, the output is a matrix with eigenvec-
tors and a diagonal matrix of eigenvalues. If the covariance matrix converges to the iden-
tity matrix, then the pose correction process is finished. As a low-cost rejection classifier
in early steps they use holistic (complete face) 3D Spherical Face Representation (SFR)
combined with Scale-invariant feature transformation (SIFT) [Low04] to reject a face fast
in early stages. The last step is the recognition of the remaining faces with a modified
ICP. They prepare the data and crop the eyes, forehead and the nose because these parts
of the face are relatively less sensitive to expressions. Figure 2.22 illustrates the outcome

1https://www.nist.gov/programs-projects/face-recognition-grand-challenge-frgc
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Figure 2.21: Visualisation of the nose detection. Best viewed digitally. Fig-
ure taken from [MBO07].

Figure 2.22: Illustration of the outcome of face segmentation of the prepro-
cessing pipeline. Faces are compared with a modified ICP algorithm. The
result is on the top side of the image pairs. Note that a lower score reflects a
higher similarity. The left comparison illustrates the same humans and right
side two different humans. Figure taken from [MBO07].

of the face segmentation with pose correction and modified ICP matching scores (top
side of images).

In Figure 2.23 we visualise the complete pipeline. On the top half is the processed
reference image and on bottom half the incoming data from the login image. First, a
quick rejection is calculated with SIFT and SFR as mentioned before. If the login image
passes this rejection classifier, then a comparison of the image takes place with the mod-
ified ICP algorithm. The authors created three versions of the pipeline, the first includes
the whole pipeline as described in Figure 2.23, the next only contains the 3D matching
of nose and forehead (Figure 2.24 illustrates this) and the last version fuses 3D matching
engine with SIFT and SFR matching. The first version is the most efficient and the last the
most accurate. The authors claim very high login rates (around 99 per cent) to the sys-
tem. Improvements are better nose detection, skin detection, more robust illumination
normalisation [MBO07].

We can summarise some ideas for our project: We hypothesise that the crop of the
face helps the CNN for learning. Generally, a neural network can learn this by itself, but
we can improve the network with the segmentation to make the learning independent of

25



2.3. FACE RECOGNITION CHAPTER 2. D.I.N.N.F.R

Figure 2.23: Complete processing pipeline of the multimodal approach.
Figure taken from [MBO07].

Figure 2.24: Figure (a) illustrates the whole face, (b) the segmented forehead
and (c) the segmented nose. Figure taken from [MBO07].
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the background. The idea of the aligned texture (2D) and 3D (depth) data is also usable
for our approach. It is possible to use the results of 2D algorithms (landmark detection
for example) on 3D data. We can conclude, for example, the fast rejection classifier, hole
filling and the 3D nose tip detection to remove the slow face detection in our approach.
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Chapter 3
Prototype

Our work aims to show that face recognition is possible with the Picoflexx ToF camera
on Android platform. The solution must be reliable, and additionally, an acceptable lo-
gin rate is targeted. Due to the low resolution and noisy data, it is a hard challenge to
realise this project. RGB-based approaches like FaceNet [SKP15], NIRFaceNet [Pen+16]
and AlexNet [KSH12] reach high success rates in face recognition and object classifica-
tion. Our restriction on the low resolution of the ToF camera, the interdependency to
the smartphone and no existing training, validation or test set makes it more difficult.
It is not possible to build deep networks like FaceNet on an Android device due to the
computational limitations. We focus in our work on a network with fewer layers like the
NIRFaceNet and take the verification part from FaceNet due to the restriction to Softmax
in the NIRFaceNet. Additionally, the design of the NIRFaceNet is based on near-infrared
data. We research the best parameters to fine tune the ToF camera to achieve higher
quality. Next, we build a preprocessing pipeline which helps the network to learn faster,
i.e. the pipeline segments unwanted information and prepare the data for the network
to reach better learning. In the end, a neural network can learn this segmentation by
itself. To reach faster learning with fewer data and to reach better results, we decided to
segment the faces from the background. We structured this chapter as follows: First, we
summarise our setup. Second, we evaluate the best exposure of the sensor for face recog-
nition and tune the parameter to reach higher quality. Last, we give a design overview of
the created prototype.

3.1 Requirements

Our setup consists of an Android smartphone with a mounted Picoflexx ToF camera.
In Figure 3.1 we summarise how we realised the prototype. We use the same sensor
which is built in Google Tango1 phones. Our complete setup is illustrated in Figure 7.1
(appendix). Due to the active light source, we believe in an advantage in our verification
compared to solutions without active illumination unit. A potential problem is the low
resolution of the camera. We decided to segment the background from our data due
to the fast computation and to make the learning and verification independent of the
environment.

The prototype requires an Android device with operating system version 6.0 or later.
We use the equipment as illustrated in Table 3.1.

1https://www.lenovo.com/at/de/tango/
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(a) Front view of our mobile
setup.

(b) Back view of our mobile
setup.

Figure 3.1: Samsung Galaxy S7 with mounted Picoflexx ToF camera.

Table 3.1: Implementation requirements.

Program/Device Version
Android-Studio 2.3.3
CUDA 9.2
CMAKE 3.6.4111459
LLDB Debugger (LLDB) 2.3
Linux Fedora 27 64-Bit
Matlab 2016b
Native Development Kit (NDK) 15.1.4119039
OpenCV2 3.2
Photonic Mixing Device (PMD) ToF sensor Picoflexx
PMD Royale framework 3.5.0
Python 3.6
PyntCloud3 0.0.1
Samsung S7 Android 7.0
Tensorbord logging4 —
TensorFlow 1.8
Windows 10 64-Bit

3 https://pyntcloud.readthedocs.io/en/latest/
2 https://opencv.org 4 https://gist.github.com/

gyglim/1f8dfb1b5c82627ae3efcfbbadb9f514

30

 https://pyntcloud.readthedocs.io/en/latest/
 https://opencv.org
https://gist.github.com/gyglim/1f8dfb1b5c82627ae3efcfbbadb9f514
https://gist.github.com/gyglim/1f8dfb1b5c82627ae3efcfbbadb9f514


3.2. QUALITY EVALUATION OF SENSOR DATA CHAPTER 3. D.E.A.I

Figure 3.2: Exposure time of 50 µs. Note, that many details like the flow
from chin to mouth isn’t visible anymore. Less outliers occur.

3.2 Quality Evaluation of Sensor Data

Due to the default sensor settings, which are suitable for general applications, it is nec-
essary to fine tune the sensor parameters for face recognition. First, we evaluate the best
exposure, because different exposures influence the quality of the data. Higher exposure
leads to less noise but also more outliers (called flying pixels). Second, we evaluate the
best parameter settings of the Royale framework. For this, it is necessary to register a
code to the framework to reach a higher access level to the sensor.

3.2.1 Best Exposure for Face Recognition

An exposure of 50 µs leads to fewer outliers and less environmental influence. The side
effect is a low surface quality. In Figure 3.2 we illustrate a face from two different views
with an exposure of 50 µs. In Figure 3.3 we illustrate a face from the side view with 2000
µs exposure time. Many outliers are visible, and the face contour is more detailed as with
50 µs.

In Figure 3.4 (left) we illustrate a measurement with only one single shot. In the
middle, we visualise the calculated image over three shots with the median. The last
image is processed with the mean of all three images. We decided to capture three images
because with ten frames per second and a certain verification time it is not possible to
take more images in a reasonable time for the login process. We hypothesise that the
calculated median version is the best one. The colour illustrate the scaling, the median
variant has a smoother surface than the single shot version, and the range of data is
similar. The mean calculated version changed the data more significantly.

In Figure 3.5 we illustrate the standard deviation over three images. The largest error
is 3,9 mm. This indicates that the noise level is severe. In the case of face recognition,
high quality of the data is desired and needed.
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Figure 3.3: Exposure time of 2000 µs. Face from side view. Good quality of
face surface, many outliers (flying pixels) occur around the face.

Figure 3.4: Cropped faces of one individual. On the left side, we illustrate
a single shot from the framework. In the middle, we demonstrate the calcu-
lated image with the median over three login images. On the right side, we
illustrate three shots combined with mean calculation.
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Figure 3.5: Standard deviation over three continuous captured images. The
largest error is 3,9 mm. We recorded this image from a frontal view, and in
the middle, we visualise the nose. The strongest standard deviation occurred
around the nose.

3.2.2 Sensor Parameter Tuning

We can fine-tune our sensor with different parameters with the help of the framework.
We briefly explain our changes and the impact on the data. In Figure 3.6 we illustrate the
recorded face with default parameters. The nose is sharp, and longer then the real subject
had (this effect often occurred). In Table 3.2 we compare the possible changeable values
of our ToF framework with the default parameters and our tuned parameters. Parts of
the description can be found in the Royale documentation. After these changes, the nose
artefacts disappeared. Additionally, one flag (UseValidateImage) sets the pixel value to
zero if the confidence is low, and this can lead to holes in the face.

In Figure 3.7 we illustrate a single shot without parameter tuning. A noisy surface is
recognisable. Additionally, an unwanted peak occurs on the nose tip. In Figure 3.8 we
illustrate another single shot of the same individual with fine-tuned parameters. A small
side peak on the nose occurred. Generally, the surface is more detailed and less noisy.
We captured these measurements with five frames per second and with auto exposure.
To build a database, we use these fine-tuned parameters, but we changed the frame rate
to ten frames per second due to a faster recording time. This step is invented due to
time reasons of the recorded individuals. Additionally, a higher frame rate is necessary
for a login to the system in a shorter time. In the end, the quality drops slightly due to
the higher frame rate because the highest possible exposure with ten frames per second
is 1000 µs. Additionally, we recorded the measurement from Figure 3.7 and 3.8 with-
out background reflections. With background reflections, the auto exposure lowers the
illumination time, and a very noisy surface is the result. In our dataset we discovered
combined results, i.e. measurements with high and low quality. We hypothesise that
this is a good combination because the network can learn from images with high and
low noise level. Additionally, the impact of the sun leads to noisy images and with this
quality changing in our datasets we hypothesise that a login in the sun is possible.
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Table 3.2: Default and tuned parameters for our face recognition system.

Flags Def. New Description
RemoveFlyingPixel True True Removes flying pixel on final depth. Compared with

the left/right neighbour or top/bottom neighbour.
The threshold depends on FlyingPixelsF0 and Flying-
PixelsF1.

FlyingPixelsF0 0.018 0.01 Scaling factor for lower depth value normalisation.
Value: distance

FlyingPixelsF1 0.14 0.03 Scaling factor for upper depth value normalisation.
Value: distance

FlyingPixelsFarDist 4.5 2.0 Upper normalised threshold value for flying pixel de-
tection. Value: distance

FlyingPixelsNearDist 1.0 0.1 Lower normalised threshold value for flying pixel de-
tection. Value: distance

MPIFlagAverage True True To increase quality a 3x3 median filter is placed on
depth and amplitude data if flag UseMPIFlagAmp-
Bool and/or UseMPIFlagDistBool is set. Makes
thresholding more reliable. MPI means Multi-Path-
Interference -> systematic error.

MPIFlagAmp True True Activates MPI flag for amplitude data.
MPIFlagDist True True Activates MPI flag for depth data.
MPIAmpThreshold 0.3 0.5 Threshold for amplitude discrepancy. Value: ampli-

tude.
MPIDistThreshold 0.1 0.1 Threshold for distance discrepancy. Value: distance.
MPINoiseDistance 3.0 2.0 Soft scaling factor. Avoid noise triggered misinter-

pretation. Value: distance. This factor is multiplied
as a margin with the two values above.

NoiseThreshold 0.07 0.2 Upper limit to generate distance out of noisy raw
data. If the 3D image has a strange behaviour in
near range, use this value for optimisation. Max: 0.2,
Value: distance.

LowerSaturationTh 400 200 Lower limit for raw data. Value: amplitude.
UpperSaturationTh 3750 4090 Upper limit for raw data. Value: amplitude.
AdaptNoiseFilter True True Activated flag reduces distance noise with spatial fil-

ters, based on calculated distance noise.
AdaptNoiseFilter 2 2 Kernel size based on value. One means a 3x3 kernel

with noise reduction factor of around 2.5, value two
uses a kernel with 5x5 and reduces noise by a factor
of around 3.5. Max: 2.

UseValidateImage True False Activates output image validation. True sets invalid
pixels to zero. We deactivated this flag due to many
holes in near face images.

UseFilter2Freq True True Activates two frequency filtering. Only avaliable on
some use cases. Uses eight phase images to determine
real distance.
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Figure 3.6: The nose of the subject has an unwanted peak. Wrong parame-
ters can lead to this phenomenon.

3.3 Design Overview

In this section, we give an overview of how we designed our system to reach high per-
formance. We use Linux and Windows for our project with TensorFlow [Aba+15], due
to the compatibility to Android. First, we illustrate our build prototype and describe the
functionality. Second, we summarise how our prototype records the tuned data from the
Royale framework. Third, we describe how Java and C++ collaborate with TensorFlow.
Last, we describe the capturing process of the individuals. In Figure 3.9 we illustrate
the first prototype of our application which can capture and preprocess the data. We
describe in more detail the created GUI and the functionality of our prototype.

JavaCameraView
With the JavaCameraView we visualise the captured front camera image. On the
right side of the JavaCameraView, we display the ToF camera data.

Start and stop camera
It is possible to start the camera without the capturing process, to prepare the user
for the measurement. The individual can see himself on display. If problems occur,
the candidate can stop the camera.

Take pictures, start pipeline and verification
With these buttons, the candidate can start the capturing process for training, the
pipeline for preprocessing and the verification itself. With this construction, it is
possible to change the filename with the GUI and analyse different data.
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(a) Illustration of a cropped face from the side view. A noisy surface is recognisable. Note
that a peak on the nose occurred.

(b) Illustration of a cropped face from the bird’s view. A noisy surface is recognisable. Note
that a peak on the nose occurred.

Figure 3.7: Visualisation of the face from a distance of around 32 cm and
different views. The default parameters lead to a noisy surface with outliers
in the area of the nose. We recorded this measurement with five frames per
second and auto exposure. Additionally, we recorded this measurement in
an environment without strong background reflection.
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(a) Illustration of a cropped face from the side view. The surface is structured, and the sharp
peak on the nose disappeared.

(b) Illustration of a cropped face from the birds view. The surface is structured, and the
sharp peak on the nose disappeared.

Figure 3.8: Visualisation of the face from a distance of around 35 cm and
different views. The tuned parameters lead to a more structured face com-
pared to the default parameters. We recorded this measurement with five
frames per second and auto exposure. Additionally, we recorded this mea-
surement in an environment without strong background reflection. Note that
the peak on the nose is tiny, compared to the default parameters.
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Figure 3.9: Prototype for recording individuals and preprocess the data.
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Figure 3.10: Changeable sensor parameters with the GUI. A higher access
level to the camera is necessary.

Emotions, different distances and other elements
It is possible to change the emotion within four categories and three different ranges.
This allows us to capture the candidate with 12 different variations. Additionally, it
is necessary to fill in a name to label the data. Last, the number of shots is change-
able.

For the sensor fine-tuning we implemented an additional Android Activity [Kün16]
to change the parameters from the sensor itself. For this, it is necessary to use the higher
level code for the sensor which is accessible for employees of Infineon and PMD. It is
possible to change the same values as in Section 3.2.2.

We save each recorded image in binary format. On binary file has precisely the size
of 299 kilobytes. A recording with 250 images took around two minutes and generates
around 1600 MB of data (299 kilobytes · 250 · images (amplitude, depth, noise, x, y,
depth confidence (six times intermediate data and nine times raw data))). In the end, we
decided to capture the amplitude data, depth, noise, x, y, and depth confidence. These
data are the most promising data to train a neural network. The recording is around one
minute faster per candidate. With different emotions and distances, this results in a 1900
MB (average) sized folder of data per individual. Additionally, it is possible to record all
mentioned data (intermediate and raw) with a flag in the GUI.

In Figure 3.11 we illustrate the internal capturing process. The connected ToF camera
capture the data within the C++ part on Android. We split this data and save them
individually to examine the data after the recording.

In Figure 3.12 we illustrate the major parts of our application. With Java, we control
the GUI interaction to the user. Additionally, we manage the application rights, i.e. con-
trol the front camera, save data to the storage and control the USB port to the ToF camera.
We build a connection to TensorFlow for Android to deliver the preprocessed data to the
neural network. After receiving the feature vectors from the network it is possible to
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Figure 3.11: Visualisation of the capturing process on Android. The ToF
camera delivers the standard level one data (amplitude, depth, noise, depth
confidence, x and y). Level two access is needed to store the intermediate and
the raw data. Several single shot instances result in a complete session.
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calculate the similarity between two individuals. In C++ we configure the sensor with
the tuned parameters. Additionally, we implemented the whole preprocessing pipeline
in C++ and stored the captured and the preprocessed data to the storage.

The Java part includes the following:

GUI
With the help of the GUI, it is possible to change the sensor parameters and to start
the capturing process with a certain amount of images. This amount is adjustable
with the GUI. Additionally, information of the folder to save, emotions and the dis-
tance can be delivered to C++ with the help of the GUI. Java sends this information
with Java Native Interface (JNI) calls to C++. After the C++ part finished with the
sensor configuration, it sends back the current image from the sensor. The GUI can
display this image in the JavaCameraView.

Manage application rights
With Java, we control the rights of our created application. For example, different
Android versions need different storage management rights. Additional we con-
trol the front camera to capture the RGB images of the individuals. This step is
necessary to test an RGB based network onto the data.

Control neural network
We control our created neural network with the help of the TensorFlow wrapper
functions. The wrapper function calls a C++ function. Due to maintainability, we
don’t use the C++ API directly.

Calculate similarity between individuals
We use the designed CNN to extract facial features. These features are represented
in a high dimensional space. Our application calculates the similarity between two
input images with the help of a particular metric.

Control front camera
With the help of OpenCV, we can control the front camera. Our application saves
the RGB image to the storage in the PNG format.

The C++ part includes the following:

Configure and communicate with the sensor
As described in Section 3.2.2, with the help of C++ and the unique employee access
code to the camera we can change the sensor parameters. Additionally, we capture
incoming frames as in Figure 3.13 described. Our application alternate the captur-
ing between ToF camera and front camera with the help of JNI calls. This capturing
process should guaranty that the ToF image is similar to the front camera image.

Capture and store data
We capture the data in a format as visualised in Figure 3.11. After the complete
capturing of a set with a certain amount of images, the application saves the cap-
tured session to the storage. For this, each image is saved separately to the storage
as a binary file. This method is not that efficient than saving all data into one file,
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Figure 3.12: Collaboration of Java, C++ and TensorFlow.
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Figure 3.13: Illustration of capturing process. Each candidate is asked to
move the smartphone around their face and take images as in this illustra-
tion. The continuous capturing from left to right should cover all login posi-
tions of a user. The candidates were asked to take this curves from different
distances.

but with this separation, we can evaluate each image independently with the help
of our created MatLab and Python scripts.

The individuals started the capturing process from top left of their face and moved
the smartphone with the mounted ToF camera to the right side. If the individuals
reached a position as in Figure 3.13, then they should move to the mid of their face
and stop at the end position as illustrated. The smartphone captures around 250
images. If the candidates finished the s-curve than they can move the smartphone
free over the whole face. Additionally, to the ToF data, we capture the RGB data
from the front camera from the same view.

Preprocessing pipeline
Inspired by [MBO07] and [SKP15] we decided to create a preprocessing pipeline
to separate the face from unwanted information. We hypothesise that we need
less training samples because we removed potential problem sources. In the end,
the network has two options: Learn the high-frequency border of the face after
the cropping or the facial features itself. We break the high-frequency parts with
our created pipeline and the used data augmentation (recall data augmentation in
Section 2.3.1.1). In the end, the network must learn facial features. Generally, a
network can learn the facial features without help, but with this segmentation, we
help the network during the learning process, and we potentially need less training
samples.

TensorFlow is used for:

Compute facial features
After the preprocessing pipeline finished the computation, the application sends
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the processed data to the CNN. We build an interface to receive the data from Java.
After the transmission of the data, we activate the CNN and fetch back the feature
vector. With a specific metric, we can compare the two output vectors from two
images together. Two images of the same individual should lead to a close range
and two different individuals to a high distance.
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Chapter 4
Verification Pipeline

In this chapter, we discuss our designed preprocessing pipeline. Additionally, we dis-
cuss the created CNN architectures, the neural network implementation on our Windows
computer and data augmentation.

4.1 Preprocessing Pipeline

The aim of our work is a face recognition system which is suitable on an Android smart-
phone. For this, it is necessary to build most parts in C++ because we need high per-
formance. Java is an interpreted language and not suitable for this requirement on our
system. Our complete preprocessing pipeline is developed in C++ and also usable on
our Linux system. Another problem is that not every function is ported from standard
C++ to the Native Development Kit (NDK) which allows us to build C++ applications on
Android. Due to this restriction, we started our whole implementation on Android and
to not lose the focus on the performance of the smartphone. Another challenge is that
the measurement should not be susceptible to errors because a stable demonstrator is the
desired result.

In Figure 4.1 we illustrate our final preprocessing pipeline. We briefly explain the
steps through the pipeline. After receiving the whole data vector, we iterate over all
image sets. If an error occurs then the preprocessing pipeline drops this image set and
iterates over the next. If the image set with amplitude, depth, noise, x, y and depth
confidence passes the loading step, then we also check if the images contain information,
i.e. the maximum value of the image must be higher than zero. With this check, we
can prevent corrupted images. If the image is damaged, then the pipeline also drop the
current image set. We use OpenCV for face detection with Haar-Cascades due to the high
performance. We use for facial landmark detection an modified C++ implementation
from GitHub1. If the face detection fails then also the landmark detection fails. If more
than eight missing pixels in the inner face occur then the pipeline discard the image
set. This step is necessary to prevent a potential rejection from the CNN in early stages
because a rejection in our preprocessing pipeline is faster. If all rejection steps are passed,
then our pipeline removes unwanted pixels in background and foreground which can’t
belong to the face. With our detected landmarks in amplitude data, we can take the depth
data at the same pixel position and measure important points in the face. For example,

1https://github.com/memory/face-alignment
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the nose, chin or head foreground. These areas are potentially the nearest points to the
camera. After a first segmentation of the face from the background and some outliers,
we shift the nearest point to zero. The idea is to stretch the whole face between zero
and 255. Next, we rotate the whole face to zero degrees. In the next step, we use our
noise image to create a binary mask dynamically for the precise segmentation of the face.
This step is necessary because a neuronal network appreciates well-scaled data. If we
remove all strong outliers, then we can scale the data with more precision from zero to
255. We prepare different borders for our neural network training because we want to
evaluate the impact of different backgrounds and also to break the edge from the face to
the background. We use geometric transformations for upscaling (cubic) and shifting the
face in the middle of the 128x128 image. Due to our aligned 2D and 3D data, we can use
the same methods for all data. Only the z-axis filtering is processed on depth data with a
bilateral filter with a kernel size of 5 by 5. In the end, we save our preprocessed data on
the storage. We don’t send the data directly to Java because we can monitor the output of
our preprocessing pipeline on the file system for each image.

Face and Landmark Detection

First, we load a Haar-Cascade from OpenCV for face detection. OpenCV face de-
tector detects the inner face. For the landmark detection algorithm, we need the
outer face. For this purpose, we use a scaling factor on the resulted bounding box
(which includes the inner face, i.e. the eyes, nose and mouth) of around 30% to
get the outer face (hairline, chin and ears) [Wan+10]. Next, we load the trained
model file. With this file, we can build up the random forest. We use histogram
equalisation on amplitude data to get better face and landmark detection results.
Generally, the landmark detection works as expected, but also on RGB data prob-
lems occurred. In Figure 4.2 on the left side we illustrate how glasses influence the
landmark detection on ToF data. We discovered the same effects with RGB images.
The eyes and nose are detected imprecisely. We highlight this with arrows. On the
right side of the figure, we illustrate a slightly right shifted dot mask due to wrong
landmark detection. If it is not possible to recognise a face or landmarks, then the
pipeline discard the image set and iterate over the next. Additionally, we measure
the amount of over-saturated pixels in inner face. If more then eight pixels are
missing then we discard the dataset. This value was determined empirically due to
many observations in real images.

Remove Back and Foreground and Shift Face to Origin

We remove in an early state unwanted information, based on our face and landmark
detection. Due to the 2D and 3D alignment of our data we can use the detected 2D
landmarks and use them in our 3D image. We read out the nose tip, chin and
forehead and remove everything in front of them, i.e. we set the specific pixel value
to zero for all data (amplitude, depth, noise, x, y and depth confidence). Due to
the imprecise landmarks we set a five per cent margin (from origin to the closest
point in the face), i.e. we remove everything in front of the nearest location with
a margin. With this technique, we shouldn’t get holes in the face due to wrong
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Figure 4.1: Complete preprocessing pipeline.
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Figure 4.2: Problems with glasses for the landmark detection. Additionally,
wrong detected landmarks are possible due to the blurred greyscale images
from the camera.

detected landmarks. Additionally, we shift the whole face with the closest point to
zero. This step is necessary to reach better scaling. In Figure 4.3 we illustrate the
fore and background removing with followed zero shift of the face.

Rotate Face

To rotate the data, we need the processed landmarks. Other approaches ([MW09;
MBO07]) find the nose and the face, for example, with 3D data (recall Section 2.3.3
and 2.3.4). In Equation (4.1) we calculate the distance between two eyes. We take
the outer eye corners and measure the distance

∆dx = lex − rex , (4.1)

between two eyes, where lex is the x coordinate of the left eye and rex the x coordi-
nate of the right eye. In Equation (4.2) we measure the height difference

∆dy = ley − rey , (4.2)

between two eyes, where ley is the y coordinate of the left eye and rey the y coordi-
nate of the right eye. In Equation (4.3) we calculate the angle between the two eye
corners. The angle is calculated as

θrad = tan−1
(
∆dy
∆dx

)
. (4.3)

This results in a radiant value. For the rotation matrix (Equation (4.4)) we need
degrees. For this, a conversion from radiant to degree is necessary. The rotatation
matrix to rotate an image is defined as

R(θ) =
[
cos(θ) −sin(θ)
sin(θ) cos(θ)

]
, (4.4)
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Figure 4.3: Remove outliers and unwanted information in front of the nose
and background with a five per cent margin. This step is necessary to remove
strong background reflections which we can’t remove with the binary mask
in the next step. Next, we shift the closest point (nose) and the whole face
with a five per cent margin to nearly zero.

Figure 4.4: Rotation of the data with facial landmarks. Distance measure-
ment between eye corners in height and width. With the resulting angle, a
rotation of all data (due to the alignment of 2D and 3D data) is possible.

where θ denotes the angle in degree. With warpAffine from OpenCV and the rota-
tion matrix we rotate all data.

In Figure 4.4 we visualise on the left side the cropped image without rotation. We
illustrate the result after rotation in the middle with amplitude data and the last
image with depth data.

Dynamic Bitmask Creation
In Figure 4.5 we illustrate with Pyntcloud2 and 3D data from the camera how out-
liers in front of a glass wall influence the data. The image contains two humans.
Outliers occur if the sensor gets multiple depth information in one pixel and the
distance is not entirely distinguishable. Nothing is around these two humans, and
strong outliers occur. Strong background reflections can lead to this effect. Our
demonstrator should be able to handle all day situations. Due to this requirements,

2https://pyntcloud.readthedocs.io/en/latest/
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Figure 4.5: Different views of a face to demonstrate the outliers which oc-
curred with two humans in front of a glass wall. From left to right: frontal
view of two people, bird view and the view from the side.

we decided to segment the face with our noise image.

To segment the face reliably from additional unwanted data (i.e. noise and outliers)
we use our noise image provided by the Royale framework. In Figure 4.6 we visu-
alise the noise image from around 20 cm distance to the camera. The whole face has
almost the same noise level, the outliers (right side with zoomed-in window) have
higher noise values. For this, we segment high values with thresholding. We crop
the face as in Figure 4.7. On the left side, we visualise the created coarse binary
mask with the help of the detected landmarks. Next image illustrates the cropped
noise image. We determine the highest noise level in the inner face (third image).
Next, all values above the threshold are removed from the outer face (last image).
In Equation (4.5) we illustrate our thresholding. The noise image pixel value can
be calculated as

N (x,y) =
{

0, if N (x,y) > τ
N (x,y), otherwise

, (4.5)

where τ is our determined threshold (highest noise value) from the inner face. The
pixel value of the noise image gets the value zero if the value is higher than the
determined threshold. Next, we create a binary mask with the segmented noise
image. In Equation (4.6) we summarise how we generate the binary mask. The
current mask value at the same position as the noise value is determined as

B(x,y) =
{

1, if N (x,y) , 0
0, otherwise

. (4.6)

To remove some additionally, unwanted artefacts (like parts of the ears), we use the
erode operation. In Figure 4.8 on the left side we illustrate the created binary mask,
on the right side, we illustrate the binary mask after the erode operation. Removed
ears and a slightly smaller face is the result. This smaller face is desired because
at the edges of the face occur the strongest outliers, with erode operation we can
remove them. With the created binary mask we crop out all data, i.e. amplitude,
depth, noise, x, y and depth confidence.
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Figure 4.6: Noise data of a face image. We used pseudocolour for the visu-
alisation. On the left side, we illustrate the face from around 20 cm distance.
Right side a zoomed-in window. Note, that the whole face has nearly the
same noise level. The background has a strong difference in the noise data.

Figure 4.7: Steps for the dynamical bitmask creation. On the left side, we
illustrate the binary mask with the help of the facial landmarks. Next image
visualises the cropped noise image with this binary mask. The third image
represents the inner face. We evaluate the highest noise value in this inner
face and threshold the whole face on this value. The last image represents
the resulting bitmask after thresholding.
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Figure 4.8: On the left side, we visualise the coarse binary mask. On the
right side, we illustrate the binary mask after the erode operation. The result
is a smaller binary mask with less disturbing outliers.

(a) Hard edes after
cropping.

(b) Smoothed edges on
the greyscale image.

(c) Hard edes after
cropping (based on
depth data).

(d) Smoothed edges on
the depth image.

Figure 4.9: Breaking the hard edges around the face to prevent the edge
learning of the network. Note that we changed the colour of the border for
the visualisation.

Prepare Different Border and Smooth Edges
In this section, we summarise our approach for breaking the hard edges around the
face. The CNN should not be able to focus on the edges of the face because this
could lead to many false positive logins. In the end, the network should learn the
facial features and not the edges around the face.

In Figure 4.9 we illustrate on the left side (a) the cropped face after the dynamical
bitmask segmentation. Image (b) visualise with a border how our algorithm in the
preprocessing pipeline move along the sharp edges around the face. The pipeline
smooth the edges with a margin of three pixels, for better visualisation we doubled
the width in image (b and d). Image (c) illustrates the depth image after cropping
and image (d) the smoothed edges.
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Figure 4.10: Visualisation of three different backgrounds.

We smooth the edges of the current pixel value I(x,y) as

I(x,y) =
{
I(x,y)+I(x+1,y)+I(x−1,y)

3 , if I(x+ 1, y)∨ I(x − 1, y) == 0
I(x,y), otherwise

. (4.7)

Initially, we constructed three different backgrounds. In Figure 4.10 we show smoothed
edges and removed background, random noise on the background and average bor-
der. For the average border, the mean value over the whole face is calculated. We
hypothesise, it is easier to break the high-frequency parts with a specially prepared
background due to the strong difference between background and face. We have
not prepared the local binary pattern (LBP) because further research is possible
with the LBP images and face recognition as in [MS11].

Geometrical transformation

Upscaling won’t make our data better, but we hypothesise that our verification will
be better because a neural network needs centred data for better learning. We shift
the face into the middle of the image, and we upscale the data to 128x128 pixels.
In Figure 4.11 we give an overview of how different distances change in quality. In
Figure 4.12 we illustrate different distances from the depth images of Figure 4.11.
With increasing distance, the quality gets worse.

In Figure 4.13 we illustrate the scalings up to 128x128 of the data at different dis-
tances. In the case of the first image, the distance is around 30 cm, and the upscale
for this is 139 per cent. Next image is captured from a range of about 40 cm. The
upscale to 128x128 pixels is 186 per cent. The third image needs an upscale of 241
per cent from a distance of 50 cm to reach the dimensions of the last image which
represents the face with 128x128 pixels.

Local Binary Pattern
The LBP is popular for face recognition [MS11]. It is error prone if the image is
noisy. Due to the noisy data of our sensor we want to evaluate if a CNN can handle
this LBP with noisy data. Additionally, we hypothesise that more information for
training leads to higher verification performance. We evaluate the LBP and com-
binations with other channels in Chapter 5. In Figure 4.14 we illustrate on the top
left the amplitude image. Next, we visualise example values on the bottom left.
We threshold with the value in the middle of the kernel the other values. The local

53



4.1. GEOMETRIC TRANSFORMATION CHAPTER 4. VERIFICATION PIPELINE

(a) Measurement
from a distance of
around 30 cm.

(b) Measurement
from a distance of
around 40 cm.

(c) Measurement
from a distance of
around 50 cm.

Figure 4.11: We illustrate three different captured distances from a frontal
view, with rising distance the quality getting more and more blurred and
noisy. We enumerate the images from top to bottom: the first image is our
greyscale image, the second is the depth image, the third row illustrates the
noise image and the last image is our handcrafted LBP. Image (a) is captured
from a distance of around 30 cm. The quality is acceptable. Figure 4.11 (b)
illustrates the measurement from a distance of 40 cm, it is possible to see an
apparent loss in quality in the depth image (best viewed digitally). In the
greyscale image at the top, we can see that the image is more blurred. In the
second row, our depth image is noisier and also our noise and LBP image.
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(a) Depth image from sideview at a distance from around
30 cm.

(b) Depth image from sideview at a distance from around 40 cm.
Note, that the chin is not clearly visible.

(c) Depth image from sideview at a distance from around 50 cm.
A quality drop is recognisable.

Figure 4.12: Three different distances, with rising distance the quality
drops. In (a) we illustrate the depth image from side view at 30 cm distance.
In (b) we illustrate the depth image from 40 cm distance. A quality drop in
the surface is recognisable, for example, the chin is not clearly visible. At a
distance of 50 cm (image (c)), the contour is not that detailed as at 30 or 40 cm
distance. This quality drop can lead to less performance in the verification.
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Figure 4.13: Visualisation of the scalings from different distances. The first
image is captured from a range of around 30 cm away from the camera. The
upscaling factor is 1.39. The second image from left is captured from about
40 cm, and our upscaling factor is around 1.86. The third image from a
distance of around 50 cm has the highest scaling factor, upscaling to 128
pixels in height results in the scaling of approximately 2.41.

binary value L can be calculated as

L(x,y) =
{

1, if I(x,y) ≥ τ
0, otherwise

, (4.8)

where τ is the threshold. The resulting binary matrix is illustrated in the middle of
the image. The LBP values must be concatenated together. For this, the first value
(zero) is the last value after the concatenation [MS11]. The result in decimal is
118. This value represents the value in the LBP image. Our LBP implementation is
inspired by OpenCV and a GitHub implementation3 which relates to the OpenCV
implementation.

4.2 Reference Image Selection

To improve the quality of the reference images, we select the best reference images for
the verification out of a set. For this, we calculate for all captured reference images the
feature vectors with the help of the trained CNN. Next, we calculate the mean value over
all reference vectors and sort the reference images according to the distance from the
mean reference vector. The best reference image is the image with the closest distance to
the mean vector. We hypothesise that most login images score feature vectors near the
mean reference vector. We take as reference images the best image, one in the middle
and the worst one (highest distance to mean vector) as our reference images. In the next
chapter, we evaluate the results for the best reference image selection. In Figure 4.15 we
illustrate the sorted images and the selection of the desired images.

3https://github.com/bytefish/opencv

56

https://github.com/bytefish/opencv


4.2. REFERENCE IMAGE SELECTION CHAPTER 4. VERIFICATION PIPELINE

Figure 4.14: Generation of LBP. Figure based on [MS11].

Figure 4.15: Illustration of referenece image selection. We select the im-
ages with following distances to the mean feature vector: take the best image
(nearest distance to mean), the worst one and one between them.
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Table 4.1: Neural network with a standard structure. We denote this version
as CNNV1. Large kernels in the first layer can learn local features.

Layer Type Properties output size
— Input 128x128 —
— BN input: 128x128 128x128
Layer 1 Conv2d Z: 16x16, S: 1x1, K: 25 128x128
Layer 2 Maxpool Z: 2x2, S : 2x2 64x64
Layer 3 Conv2d Z: 16x16, S: 1x1, K: 25 64x64
Layer 4 Maxpool Z: 2x2, S: 2x2 32x32
Layer 5 Conv2d Z: 16x16, S: 1x1, K: 25 32x32
Layer 6 Maxpool Z: 2x2, S: 2x2 16x16
Layer 7 Conv2d Z: 16x16, S: 1x1, K: 25 16x16
Layer 8 Maxpool Z: 2x2, S: 2x2 8x8
Layer 9 Fully connected 1000 1000
Layer 10 Fully connected 128 128

4.3 CNN Architectures

In this section, we summarise the created networks. We created different CNN architec-
tures with different backgrounds. At the beginning of this section, we summarise the
used techniques for training, followed by the network architectures itself.

For all our experiments we use Batch Normalisation (BN) because in literature we
discovered that a faster convergence during training and higher verification performance
is the result [TTC18; XJT17; Lau+16; IS15]. Additionally, the BN in the first layers of the
CNN can improve the performance of the computation between 30–50% [Dua+18]. Each
layer is dependent on the layer before. Deep networks bear under the internal covariate
shift, a lower learning rate during training and careful initialisation of the parameters is
necessary [IS15]. The idea behind BN is that it normalises each training batch and face
the problem of the covariate shift. We use in all experiments for the convolutional layers
the leaky ReLu activation function and XAVIER initialiser [GB10]. Additionally, we use
the ADAM [KB15] optimiser for the weight manipulations. We shorten for the next tables
the kernel size with Z, stride with S and the number of kernels with K.

In Table 4.1 we illustrate the CNNV1. The kernels in the first layers are large with a
size of 16x16 pixels. We hypothesise that a feature extraction with this large kernels is
possible. In the last layers, we placed two fully-connected layers (inspired by FaceNet
[SKP15]). In Table 4.2 we illustrate the CNNV2. The kernels in the first layers are
small with a size of 5x5 pixels. With these small kernels, it is possible to learn edge
detectors. In the last layers, we placed three fully-connected layers. In Table 4.3 we il-
lustrate the CNNV3. The structure is identical to CNNV2, expect in the last layers, we
placed two fully-connected layers. The CNNV2 version has one fully-connected layer
more, and we evaluate the impact of this additional layer in the next chapter. Inspired
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Table 4.2: Neural network with a standard structure. We denote this version
as CNNV2. Small kernels in the first layer can learn edge detectors.

Layer Type Properties output size
— Input 128x128 —
— BN input: 128x128 128x128
Layer 1 Conv2d Z: 5x5, S: 1x1, K: 25 128x128
Layer 2 Maxpool Z: 2x2, S: 2x2 64x64
Layer 3 Conv2d Z: 9x9, S: 1x1, K: 25 64x64
Layer 4 Maxpool Z: 2x2, S: 2x2 32x32
Layer 5 Conv2d Z: 16x16, S: 1x1, K: 25 32x32
Layer 6 Maxpool Z: 2x2, S: 2x2 16x16
Layer 7 Conv2d Z: 16x16, S: 1x1, K: 25 16x16
Layer 8 Maxpool Z: 2x2, S: 2x2 8x8
Layer 9 Fully connected 1000 1000
Layer 10 Fully connected 1000 1000
Layer 11 Fully connected 128 128

Table 4.3: Neural network with a standard structure. We denote this version
as CNNV3. Small kernels in the first layer can learn edge detectors.

Layer Type Properties output size
— Input 128x128 —
— BN input: 128x128 128x128
Layer 1 Conv2d Z: 5x5, S: 1x1, K: 25 128x128
Layer 2 Maxpool Z: 2x2, S: 2x2 64x64
Layer 3 Conv2d Z: 16x16, S: 1x1, K: 25 64x64
Layer 4 Maxpool Z: 2x2, S: 2x2 32x32
Layer 5 Conv2d Z: 16x16, S: 1x1, K: 25 32x32
Layer 6 Maxpool Z: 2x2, S: 2x2 16x16
Layer 7 Conv2d Z: 16x16, S: 1x1, K: 25 16x16
Layer 8 Maxpool Z: 2x2, S: 2x2 8x8
Layer 9 Fully connected 512 512
Layer 10 Fully connected 128 128
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Table 4.4: Neural network with a standard structure. We denote this version
as CNNV4. Large kernels in the first layer can learn local features. FaceNet
inspires the fully-connected layers.

Layer Type Properties output size
— Input 128x128 —
— BN input: 128x128 128x128
Layer 1 Conv2d Z: 16x16, S: 1x1, K: 25 128x128
Layer 2 Maxpool Z: 2x2, S: 2x2 64x64
Layer 3 Conv2d Z: 16x16, S: 1x1, K: 25 64x64
Layer 4 Maxpool Z: 2x2, S: 2x2 32x32
Layer 5 Conv2d Z: 16x16, S: 1x1, K: 25 32x32
Layer 6 Maxpool Z: 2x2, S: 2x2 16x16
Layer 7 Conv2d Z: 16x16, S: 1x1, K: 25 16x16
Layer 8 Maxpool Z: 2x2, S: 2x2 8x8
Layer 9 Fully connected 256 256
Layer 10 Fully connected 128 128

by the Zeiler&Fergus [ZF14] architecture in FaceNet, we placed a 256 and 128 dimen-
sional fully-connected layer as the last layers (Table 4.4). The structure before is identi-
cal to CNNV1. In Table 4.5 we illustrate the CNNV5. The kernels in the first layers are
sized as in CNNV1 and CNNV4 with a size of 16x16 pixels. We placed only one fully-
connected layer because the NIRFaceNet [Pen+16] has no fully-connected layer, but we
need one for the 128 feature embedding. The performance improvement is higher be-
cause of the removed fully-connected layer. In Table 4.6 we illustrate our CNNV6. We
paced large kernels for feature detection in the first layer. In the last layer, we placed a
fully-connected layer with 1000 entries and one with only a face embedding dimension
of 64. We hypothesise that a smaller embedding can improve the performance on our
small network. In contrast, FaceNet uses 128 on a deep network with a big database
for training. In Table 4.7 we illustrate our NIRFaceNetV1 with fewer kernels than the
original NIRFaceNet [Pen+16] implementation. The aim is to reach high performance
with fewer parameters to improve the calculation time on a smartphone. We use two
fully-connected layers as FaceNet with the Zeiler&Fergus architecture. In Table 4.8 we
illustrate our NIRFaceNetV2 with fewer kernels than the original implementation with
the same aim as in NIRFaceNetV1. For this architecture, we use one fully connected
layer as in CNNV5 to improve the computation performance. In Table 4.9 we illustrate
our NIRFaceNetV3, which represents the original NIRFaceNet with removed SoftMax
layer. We use one fully-connected layer as in NIRFaceNetV2 to improve the performance
and to realise the Triplet Loss training. In the end, we use in V3 more kernels but only
one fully-connected layer.
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Table 4.5: Neural network with a standard structure. We denote this ver-
sion as CNNV5. Large kernels in the first layer can learn local features. NIR-
FaceNet inspires the single fully-connected layer.

Layer Type Properties output size
— Input 128x128 —
— BN input: 128x128 128x128
Layer 1 Conv2d Z: 16x16, S: 1x1, K: 25 128x128
Layer 2 Maxpool Z: 2x2, S: 2x2 64x64
Layer 3 Conv2d Z: 16x16, S: 1x1, K: 25 64x64
Layer 4 Maxpool Z: 2x2, S: 2x2 32x32
Layer 5 Conv2d Z: 16x16, S: 1x1, K: 25 32x32
Layer 6 Maxpool Z: 2x2, S: 2x2 16x16
Layer 7 Conv2d Z: 16x16, S: 1x1, K: 25 16x16
Layer 8 Maxpool Z: 2x2, S: 2x2 8x8
Layer 9 Fully connected 128 128

Table 4.6: Neural network with a standard structure. We denote this version
as CNNV6. Large kernels in the first layer can learn local features.

Layer Type Properties output size
— Input 128x128 —
— BN input: 128x128 128x128
Layer 1 Conv2d Z: 16x16, S: 1x1, K: 25 128x128
Layer 2 Maxpool Z: 2x2, S: 2x2 64x64
Layer 3 Conv2d Z: 16x16, S: 1x1, K: 25 64x64
Layer 4 Maxpool Z: 2x2, S: 2x2 32x32
Layer 5 Conv2d Z: 16x16, S: 1x1, K: 25 32x32
Layer 6 Maxpool Z: 2x2, S: 2x2 16x16
Layer 7 Conv2d Z: 16x16, S: 1x1, K: 25 16x16
Layer 8 Maxpool Z: 2x2, S: 2x2 8x8
Layer 9 Fully connected 1000 1000
Layer 10 Fully connected 64 64
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Table 4.7: Inception based neural network. We used NIRFaceNet and mod-
ified the network (two fully connected layers, fewer kernels, different stride,
no max pooling between inception modules and removed Softmax). We de-
note this version as NIRFaceNetV1.

Layer Type Properties output size
— Input 128x128 —
— BN input: 128x128 128x128
Layer 1 Conv2d Z: 5x5, S: 1x1, K: 16 128x128
Layer 2 Maxpool Z: 3x3, S: 1x1 128x128
— Local response normalisation — 128x128
Layer 3 Conv2dA Z: 1x1, S: 1x1, K: 16 128x128
Layer 3 Conv2dB Z: 1x1, S: 1x1, K: 16 128x128
Layer 3 Conv2dC Z: 3x3, S: 1x1, K: 32 128x128
Layer 4 Maxpool Z: 3x3, S: 1x1 128x128
Layer 4 Conv2dD Z: 1x1, S: 1x1, K: 16 128x128
— Concat Conv2dA, Conv2dC, Conv2dD —
Layer 5 Conv2dA Z: 1x1, S: 1x1, K: 16 128x128
Layer 5 Conv2dB Z: 1x1, S: 1x1, K: 16 128x128
Layer 5 Conv2dC Z: 3x3, S: 1x1, K: 32 128x128
Layer 6 Maxpool Z: 3x3, S: 1x1 128x128
Layer 6 Conv2dD Z: 1x1, S: 1x1, K: 16 128x128
— Concat Conv2dA, Conv2dC, Conv2dD —
Layer 7 Maxpool Z: 3x3, S: 2x2 64x64
Layer 8 Fully connected 256 256
Layer 9 Fully connected 128 128
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Table 4.8: Inception based neural network. We used NIRFaceNet and mod-
ified the network slightly (one fully connected layer, fewer kernels, no max
pooling between inception modules and removed Softmax). We denote this
version as NIRFaceNetV2.

Layer Type Properties output size
— Input 128x128 —
— BN input: 128x128 128x128
Layer 1 Conv2d Z: 5x5, LR, S: 1x1, K: 64 128x128
Layer 2 Maxpool Z: 3x3, S: 2x2 64x64
— Local response normalisation — 64x64
Layer 3 Conv2dA Z: 1x1, S: 1x1, K: 16 64x64
Layer 3 Conv2dB Z: 1x1, S: 1x1, K: 16 64x64
Layer 3 Conv2dC Z: 3x3, S: 1x1, K: 16 64x64
Layer 4 Maxpool Z: 3x3, S: 1x1 64x64
Layer 4 Conv2dD Z: 1x1, S: 1x1, K: 16 64x64
— Concat Conv2dA, Conv2dC, Conv2dD —
Layer 5 Conv2dA Z: 1x1, S: 1x1, K: 16 64x64
Layer 5 Conv2dB Z: 1x1, S: 1x1, K: 16 64x64
Layer 5 Conv2dC Z: 3x3, S: 1x1, K: 32 64x64
Layer 7 Maxpool Z: 3x3, S: 1x1 64x64
Layer 7 Conv2dD Z: 1x1, S: 1x1, K: 16 64x64
— Concat Conv2dA, Conv2dC, Conv2dD —
Layer 8 Maxpool kernel: 3x3, S: 2x2 32x32
Layer 9 Fully connected 128 128
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Table 4.9: Inception based neural network. This represents the original
version of NIRFaceNet with removed Softmax.

Layer Type Properties output size
— Input 128x128 —
— BN input: 128x128 128x128
Layer 1 Conv2d Z: 5x5, LR, S: 2x2, K: 64 64x64
Layer 2 Maxpool Z: 3x3, S: 2x2 32x32
— Local response normalisation — 32x32
Layer 3 Conv2dA Z: 1x1, S: 1x1, K: 64 32x32
Layer 3 Conv2dB Z: 1x1, S: 1x1, K: 64 32x32
Layer 3 Conv2dC Z: 3x3, S: 1x1, K: 128 32x32
Layer 4 Maxpool Z: 3x3, S: 1x1 32x32
Layer 4 Conv2dD Z: 1x1, S: 1x1, K: 64 32x32
— Concat Conv2dA, Conv2dC, Conv2dD —
Layer 5 Maxpool Z: 3x3, S: 2x2 16x16
Layer 5 Conv2dA Z: 1x1, S: 1x1, K: 128 16x16
Layer 5 Conv2dB Z: 1x1, S: 1x1, K: 128 16x16
Layer 5 Conv2dC Z: 3x3, S: 1x1, K: 192 16x16
Layer 6 Maxpool Z: 3x3, S: 1x1 16x16
Layer 6 Conv2dD Z: 1x1, S: 1x1, K: 128 16x16
— Concat Conv2dA, Conv2dC, Conv2dD —
Layer 7 Maxpool Z: 3x3, S: 2x2 8x8
Layer 8 Fully connected 128 128
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4.4 Approach

NIRFaceNet is trained on 597 near-infrared images. To increase the size of the training
database, data augmentation is used. FaceNet is trained on an extensive database with
RGB data, the authors from NIRFaceNet claim that they get better results with a shallow
structure network on a smaller database compared to FaceNet. Additionally, they use op-
timised parameters for standard systems (batch size of 35 instead of 1500 like FaceNet).
Last, NIRFaceNet is suitable for the smartphone. We modify the NIRFaceNet to iden-
tify unknown individuals, for this, we removed the Softmax layer and integrated another
metric learning approach like Triplet Loss from FaceNet. We use BN for faster and better
training, and we use max pooling from NIRFaceNet instead of L2 pooling from FaceNet.
We found two reasons for this: first, NIRFaceNet is created for less training data and
score a slightly better performance than deep networks like GoogLeNet [Sze+15]. Sec-
ond, the network is trained on near-infrared data. Additionally, the network has feature
extraction modules (inception modules) with removed five by five layer, and this makes
the training faster. In the end, the NIRFaceNet is a newer version of a CNN as FaceNet
and GoogLeNet or DeepFace [Tai+14]. Due to this reasons, we align our ToF CNN much
more to the NIRFaceNet.

4.5 TensorFlow

We use TensorFlow [Aba+15] as the framework for neural networks in our project due
to the compatibility to Android. In Figure 4.16 we illustrate how we implemented our
TensorFlow solution for training. First, we load the images from the storage. Next, we
stack the data together like an RGB image. We generate a stacked image for the ref-
erence image, a stacked image for the positive image (same individual) and a negative
image (different individual). We build up three CNN structures with shared parameters,
and this means we need less memory but the computation time of three networks. The
network outputs a feature vector with the facial features for the reference (anchor), the
positive and negative sample. We calculate the loss with Triplet Loss and backpropagate
the gradients with the ADAM optimiser.

After the training, we freeze the model to use it on Android. For this, we created a
Python program which loads the model, removes all unnecessary weights and optimise
it for Android. Additionally, we created the API to send the data from Android to the
network model. The API takes flattened images with the specified amount of data (am-
plitude, depth, noise, LBP). It is necessary to flatten the whole image to 16384 pixels
(128x128).

Inspired by NIRFaceNet, we use data augmentation to generate additional images for
the training of the network. Another effect is to prevent overfitting because a changing
of the data with random rotation, noise and brightness can face the problem. Another
critical point to use data augmentation is to reach a resistance against small rotations
if the landmark detection fails or if the noise level rises outdoors. In Figure 4.17 we
illustrate four images with data augmentation during a training run. The first image is
based on amplitude data, the second image on depth data. Next image represents the
noise image, and the last image is the generated LBP.
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Figure 4.16: Visualisation of the code we created in Python and TensorFlow.
First, we load the images and stack them together to one image. Next, we gen-
erate anchor images (reference image), positive images (same individual) and
negative samples (different individual). We send this data to the constructed
networks and receive the feature vectors for each image. Note, that we use
shared parameters, this means, we build up three networks which share the
parameters between them. This leads to less memory consumption. We cal-
culate the loss with the three feature vectors, and the optimiser backpropa-
gates the gradients of the CNN’s. Illustration design is inspired by OpenFace
from GitHuba. Visited on 17.11.2018

ahttp://bamos.github.io/2016/01/19/openface-0.2.0/
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Figure 4.17: Single channels with data augmentation, from left to right:
amplitude, depth, noise data and LBP.

Table 4.10: We augment our data with a rotation of ±6◦, little brightness
and contrast adjustments and add Gaussian noise to prevent overfitting. The
random contrast adjustment factor is between the lower bound (0.5) and the
upper bound (1.5). The random brightness adjustment factor is between -0.1
and 0.1.

Description Range
Rotation ±6◦

Brightness max delta: 0.1
Contrast lower = 0.5, upper = 1.5
Gaussian noise standard deviation: 0.005

We use for data augmentation the parameters as illustrated in Table 4.10. The image
rotation is around ±6◦. We use little brightness and contrast adjustment because strong
reflections on objects like the teeth or the eyes can lead to a dark image due to the auto ex-
posure. Additionally, we add Gaussian noise to break high-frequency parts in the image
and additionally prevent the network from learning the edges around the face.
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Chapter 5
Evaluation

In this chapter, we evaluate our created database, the preprocessing pipeline, weaknesses
in the face and landmark detection and different network architectures. Additionally, we
assess the best hyperparameters, the final implementation on Android and we evaluate
the impact of the sun. Last, we try to fool our solution with printed images. We tested
AlexNet [KSH12] on the captured and cropped front camera images to compare the RGB
based network, which is trained on objects, against our solution. This trivial test reflects
the impact of some aspects like image quality and resolution on the network. A com-
monly used technique in neural networks is transfer learning. With this technique, it
is possible to use pre-trained network weights and modify or retrain the network with
these parameters. We use a pre-trained AlexNet1 for the front camera benchmark, but
we didn’t use transfer learning for our ToF based solution because we could not find
networks which are trained on these data. Due to the restrictions to our Android smart-
phone, it is not possible to build deep networks like FaceNet [SKP15] and guarantee a
login in a user-friendly time. The preprocessing pipeline should be fast enough that lo-
gin in an accurate time is possible. Due to time reasons, we won’t optimise our solution to
reach the maximum performance, but we always keep in mind the performance problem.
At the end of this chapter, we summarise some performance statistics.

5.1 Dataset

We have to build a prototype as in Chapter 3 described to capture the individuals as de-
sired. We record amplitude, depth, noise, depth confidence, x and y data. We captured
47 different individuals with different emotions, i.e. neutral, happy, sad and angry. This
lead to 30,845 ToF images which passed the restrictions and sanity checks in our pre-
processing pipeline (recall Section 4.1). Most of the rejections caused by oversaturated
pixels and undetected faces in the image due to a too strong side view.

Our data set is split into a training set, a validation set and a test set. We divided the
captured 47 individuals as follows: 33 into the training set, 6 into the validation and 8
to the test set. This results in a split of 80% for training, 11% for validation and 9% for
testing (based on the resulted images). The training set consists of 24773 images. With
our validation set, we have tuned the hyperparameters of the networks. The validation
set includes 3418 images. Additionally, we monitored with the training and validation

1http://www.cs.toronto.edu/~guerzhoy/tf_alexnet/
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Figure 5.1: Visualisation of four individuals in the training set. Different
distances, pose and emotions are recognisable. Odd columns represent the
greyscale images, even columns the depth images. Note that bright pixels in
the depth image indicate more distance.

set overfitting, i.e. if the login rate rises in training but falls on the validation set. We
sample each 20th image from the training set to monitor the training. The last set, the
test set, should reflect the real world and the generalisation ability of the network to
completely unseen data. This set contains 2654 images.

In Figure 5.1 we visualise a small part of the training data of four different individu-
als. We always visualise a pair of data, i.e. amplitude and depth data. We didn’t visualise
the noise data, because most images are incredibly dark and not useful for this visualisa-
tion. Different pose and different facial expressions are recognisable in the training set.
Depending on the distance and background, bright pixels indicate more distance and
dark pixels a closer distance to the camera. In Figure 5.2 we visualise four individuals of
the validation set. Again we visualise a pair of amplitude and depth data. Different pose
and distances are recognisable. Illumination changes, as in image five in the first row, are
caused by the strong background reflection. Due to this effects, we use data augmenta-
tion to overcome this illumination changing. In Figure 5.3 we visualise four individuals
of the test set. We build this dataset with the same settings as the training and validation
set. We captured different pose, emotions and distances. Our recorded RGB dataset con-
sists of around 43,000 images (33.496 images for training, 4951 for validation and 4522
for testing). In Figure 5.4 we illustrate samples of the RGB test set. Three individuals
didn’t want to capture the RGB images. We replaced these three candidates with three
individuals from the training set.

Due to the rejections in the preprocessing pipeline, we lost many ToF measurements.
Additional, we lost images due to problems during the recording, i.e. the participants
forgot to move the smartphone with mounted ToF camera correctly, which led to back-
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Figure 5.2: Examples of the validation set. Different distances, pose and
emotions are recognisable. Odd columns represent the greyscale images,
even columns the depth images. Note that bright pixels in the depth image
indicate more distance.
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Figure 5.3: Samples of the test set. Different distances, pose and emotions
are recognisable. Odd columns represent the greyscale images, even columns
the depth images. Note that bright pixels in the depth image indicate more
distance.
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Figure 5.4: Visualisation of two individuals from the recorded RGB images.
Different distances and poses are recognisable.

ground images without a face on the recording. Many of these images are rejected from
the pipeline. Additionally, strong movements blurred the images and holes in the image
occurred due to pixel oversaturation. The OpenCV face detection could not find faces
from a strong side view.

5.2 Preprocessing Pipeline

In this section, we evaluate our created preprocessing pipeline. For this, we briefly sum-
marise the steps of the preprocessing pipeline and additionally, we demonstrate some
problems of the pipeline and last, and we illustrate correct processed outputs.

If the captured image passes all the sanity checks, then our pipeline starts with the
preprocessing. This step speeds up the whole computation of the pipeline because we
discard unreliable data in very early steps. One sanity check includes an inspection if
the face or landmark detection went wrong. We use for the landmark detection an im-
plementation from Github2 which is based on [Ren+14] and a model which is trained
with RGB data on images from the LFW Database [Hua+07]. We expect more errors
on the low-quality ToF data because on the one hand it is not trained on this data and
on the other hand the resolution is much lower than the dataset from LFW. In Figure
5.5 we illustrate some examples for failed face and landmark detections to give a better
understanding. It is possible that OpenCV mistakenly recognises a face, i.e. the result-
ing bounding box won’t include a face. Instead, a neck or one eye is the result. Figure
5.6 illustrates a failed landmark detection from frontal view. The green line indicates
the correct position of the eyes and the yellow line the detected position. In the valida-
tion set we counted around 6% wrong detected faces and landmarks, i.e. if the face or
landmarks are detected wrong as in Figure 5.5 or 5.6 illustrated. The recorded test set
contained around 5% wrong detected results. Generally, most problems occurred with
wrong detected landmarks. It is possible that the neural network rejects samples with
wrong detected faces and landmarks. To face this issue, we augmented the training data
with random rotation between ±6◦. This value is determined empirically and is based on
the validation set. If the landmark detection results in wrong captured landmarks, then
this leads to a wrong rotated face as in Figure 5.6.

2https://github.com/memoiry/face-alignment
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Figure 5.5: First five images illustrate failed face detections, and the last
two images illustrate failed landmarks.

Figure 5.6: Wrong detected landmarks. The nose, mouth and one eye are
incorrect detected. The green line illustrates the expected result, yellow line
the real results

If the face and landmark detection provide a face and landmarks, then the prepro-
cessing pipeline compute the input for the CNN. After a coarse fore and background
removal, the pipeline rotates the face with the landmarks. In the next step, a dynamical
mask with the noise data is created to segment the face with more precision. If the face
has more than eight missing pixels in the inner face, then the pipeline discard these one
dataset due to reliability reasons. Missing pixels can occur due to oversaturation in the
pixel itself. If the illumination unit sends out too strong light beams, then this oversat-
uration occurs. After the created dynamical mask we use the erode operation to reach a
more precise and smaller bit mask, i.e. we shrink the created dynamical mask slightly.
If eight pixels are missing at the same position in the captured face (for example at the
nose tip or around the eyes), then the erode operation resize this hole. In Figure 5.7 we
illustrate some problems with the preprocessing pipeline. The first row visualises the
amplitude data, second row the according depth data. In the first two images, a hole in
the area of the eyes occurred, due to the dynamic mask we crop out the same hole in the
depth data for example. The last image illustrates a hole in the area of the nose. Due
to these problems, it is possible that the captured face getting rejected from the neural
network. This effect happens if the auto exposure can’t regulate the illumination unit
fast enough to an exposure which is reliable. For example, a fast movement from 50 cm
to 30 cm can lead to this problem. In Figure 5.8 we illustrate 21 images of one individual
of the validation set. The faces are rotated and cropped correctly.
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Figure 5.7: Illustration of oversaturated pixels which lead to a hole in some
regions of the face. First two images illustrate an oversaturation in the area of
the eyes and the last image at the nose tip. This oversaturation leads to some
holes in the face. Less than eight oversaturated pixels can pass the sanity
checks of the pipeline. If all oversaturated pixels are located at the same
place, then the erode operation resizes the hole and lead to these images.

Figure 5.8: Correct processed images of our created preprocessing pipeline.
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5.3 Comparison of FaceNet and NIRFaceNet

Important values to evaluate verification results are the Recall (R), False Discovery Rate
(F), Precision (P ), Accuracy (A), Negative Predictive Value (N ) and the F1 measure (F1) [Mos17].
For this evaluation we need the True Positive (TP), True Negative (TN), False Positive (FP)
and False Negative (FN) values. TP represents the images which should log in to the sys-
tem, TN represents the correct rejected images, FP represents the individuals who logged
in to the system, but they should not be able to log in. An FP prevention is the aim of a
face recognition system. The FN value represents the rejected images which should log
in to the system, but they are not able to log in. We briefly summarise some values to
compare face recognition systems together [DG06; SR15; Mos17]. The Recall represents
the successful login rate to the system. The Recall is defined as

R =
TP

TP + FN
. (5.1)

The False Discovery Rate for face recognition is typically 0.001. With this value the
performance of different networks can be measured. The False Discovery Rate can be
calculated as

F =
FP

FP + TN
. (5.2)

The Precision reflects the real login candidates compared to all logins to the system.
A high Precision is important for face recognition because no FP should enter the system.
The Precision is calculated as

P =
TP

TP + FP
. (5.3)

The Accuracy reflects the correct classification rate of the network. The Accuracy is
calcualted as

A =
TP + TN

TP + FN + TN + FP
. (5.4)

The Negative Predictive Value represents the correct rejections in relation to all rejec-
tions (TN = correct rejection, FN = should log in but get rejected). The Negative Predic-
tive Value can be calculated as

N =
TN

TN + FN
. (5.5)

F1 is the harmonic mean of Recall and Precision and can be calculated as

F1 =
2 ∗ P ∗R
P +R

. (5.6)

NIRFaceNet
NIRFaceNet [Pen+16] is built as a network for near-infrared face recognition. This
network uses Softmax for the classification. The network scored on the Chinese
Academy of Sciences Institute of Automation (CASIA) database identification rates
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Figure 5.9: Recall values for the different FaceNet networks on LFW
database. Version NNS2 is usable for the smartphone, the Recall is less than
70 per cent. Adapted from [SKP15].

around 95–98 per cent. This is three to five per cent higher than the trained
GoogLeNet on the same data. The authors summarise that the shallow structure
network outperformed the deeper networks. The network needed 30 hours of train-
ing with a DELL PRECISION T3600. The used CPU is a Xeon E5-1620, 64 gigabyte
RAM and a Nvidia Quadro 600. Recall Section 2.3.1 for more details.

FaceNet
FaceNet [SKP15] is designed for RGB data. The inception based version is 24 layers
deep. The network is trained on a private database with around 260 million images.
With 2.6 million images and 700 hours of training on a server cluster, the network
scored a Recall of 76.3% on the test set. With 26 million images in the training set,
the network reaches a Recall of 85.1%. An amount of 260 million images increases
the Recall by just 1.1%. A wrong labelled image can lead to problems with smaller
False Discovery Rates than 0.0001. Overall, the training of the network took around
2000 hours [SKP15].

In Figure 5.9 we illustrate the performance of FaceNet on the database of LFW. NN2
is the deepest network with the most FLOPS and NNS2 the version for smartphones
with fewer FLOPS per image. NN2 score with more than 90% and the smartphone
version scored less than 70%.

5.4 Experiments with Neural Networks

In this section, we illustrate methods to visualise and monitor the training of a neural
network with TensorFlow [Aba+15]. Additionally, we evaluate the impact of more train-
ing data, the networks from Chapter 4 and the best hyperparameters for these networks.
To monitor the training of the network with TensorFlow, we sample every 20th image of
the training set. We didn’t use these images for training itself. With these images and
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Figure 5.10: 3D T-SNE visualisation of the individuals in the training set.
One individual is represented by one colour. T-SNE projects high dimen-
sional space onto low dimensional subspace for visual inspection. Separation
problems between two individuals are marked with red arrows.

the validation set, we can prevent overfitting due to early stopping. Additionally, to de-
termine values as the Recall or Precision, we compare all images against the reference
images. This should reflect the real login situation with one reference image and many
login images. We used for all our experiments the well known ADAM [KB15] optimiser
and the XAVIER [GB10] initialiser. We experimented with SGD [RM51] like FaceNet but
the convergence was slower, and hyperparameter tuning with additional parameters is
necessary [Li18].

5.4.1 Monitor the Training of Neural Networks

Monitoring the training of a network is essential. Wrong hyperparameters like the alpha
value for the Triplet Loss, the embedding dimension with the resulting face features or
the learning rate can influence the results of the trained network. T-SNE [Rog+17] can
visualise the high dimensional space of the embeddings in 2D or 3D space. With the help
of this visualisation, we can monitor the learning progress because different individuals
should be separated from each other. In Figure 5.10 we visualise problems in an early
stage of the training (marked with red arrows). Points with the same colour belong to
the same individual, and one point reflects one tested image in our training set. If two
colours are close together, then the network has problems with the separation of the
individuals. With more iterations over the training set the network learns a more efficient
separation as Figure 5.11 illustrates. Due to 3D visualisation, it is possible to rotate the
separation results and evaluate them coarsely. In our experiments, an intersection-free
visualisation is not possible with the 2D or 3D T-SNE.

The learning rate is another essential parameter for the training of a neural network.
The optimiser manipulates the weights of a network. The learning rate influences this
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Figure 5.11: 3D T-SNE visualisation of our individuals in training set after
around 200,000 iterations. The separation of the individuals is visible. Due
to 3D visualisation, it was not possible to illustrate these separations without
intersections.

optimisation. We set the learning rate to values where the loss converges to zero (recall
Section 2.2.2.3 or [Kar18]). We configured our red channel with amplitude data, green
with depth and blue channel with noise data. In Figure 5.12 we illustrate the effect of
a wrong learning rate. Learning rates higher than 0.0003 in our experiments led to un-
stable networks. The first image illustrates the learned kernels of the network. Recall
Section 2.2.2.3 or [Kar18] for better understanding how a well-trained network should
look like. The kernel matrix (5x5) has nearly homogeneous coloured kernels. Next three
images visualise the output of the layers in the network, where each layer consists of con-
volution, leaky ReLu and max pooling. Generally, a neural network should reduce the
important information to a minimum and remove the unwanted information with each
layer. In this case, the network is not able to reduce the information. The last layer should
separate the essential information, i.e. brighter values indicate stronger activations in the
network. Typically small areas should be firing. In our example, many neurons are firing.
The loss exploded for this network to values up to 6.000.000. In Figure 5.13 we illustrate
how a trained network should look like. The first image illustrates the input image to the
network with three channels. The second image visualises the five by five matrix with the
learned kernels. Each kernel has 16 x 16 pixels with three channels. Red represents the
amplitude data, green the depth and blue the noise data. Structured kernels are visible.
With the visualisation of the kernels, it is possible to determine the used and combined
channels from the network in each kernel. The third image is the result of the input im-
age with the manipulation of the learned kernels. It represents the output after the first
layer which contains convolution with the learned kernels, the activation function (leaky
ReLu) and max pooling. Next three images till the next input image represent the output
after the next layers. In the last layer, some activations occurred. The network tries to fo-
cus on the nose, the chin and eyes for example. For better understanding, we visualise a
second input image with the output of the layers. To highlight the focused face features,
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Figure 5.12: Exploded loss function because the learning rate is too high.
Kernels have the same structure. No edge detectors are visible. Whole areas
of activation functions are firing in the last layer. Typically small areas are
firing.

Figure 5.13: The first image represents the input image. The second image
illustrates the learned kernels with three channels (red = amplitude, green
= depth and blue = noise data). Placing the kernels on the reference image
with convolution technique followed by max pooling and leaky ReLu leads to
the third image. Next three images illustrate the deeper layers of the network
with convolution. Note that the kernels are structured.
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Figure 5.14: Illustration of the data in the neural network. The first column
illustrates the images after the first layer of the network with three different
individuals. Next column represents the second layer where the network
detected the eyes. Next column indicates a detected nose in the last layer of
the network. The last column visualises a forehead detector in the last layer.

Figure 5.15: At the beginning of the training, a uniformly initialised kernel
with the help of Xavier initialiser is visible. The kernels change during train-
ing, and this indicates that learning happened in the network. The bias in
the second row should change to values nearly to the width of the kernels.

we visualise in Figure 5.14 the results in the layers of a neural network. The network
concentrated on the eyes, nose and forehead of the individuals. The activations illustrate
this focused points of interest. We illustrate the output image of the first convolutional
layer of three different individuals in the first column. Next column represents the eyes
detector after the second layer. The third row illustrates a nose detector after the last
layer. The last row visualises a forehead detector.

The change in the kernels itself is important for neural network training. In Fig-
ure 5.15 we illustrate this with histograms and TensorFlow [Aba+15]. The kernels are
uniformly initialised. With rising iterations and training, the histograms change to a
normal distribution with high values in the centre. The second row illustrates the chang-
ing in the bias weights. This bias is only an offset which is added to manipulate the data.
In the last stages of the training phase, the bias should be in the same width as the convo-
lution kernels from the first row. No change in the histograms is the result if no learning
takes place. After 105.000 iterations the histograms changed their shape as Figure 5.16
illustrates. The original shape is illustrated in Figure 5.15, after 105.000 iterations it
changed the shape to a normal distribution. This is an indicator that learning happened.
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Figure 5.16: Histograms of kernels after 105.000 iterations. At iteration
zero, the histograms are distributed uniformly. With rising iterations, the
kernels changed to a normal distribution. These changes indicate that the
network changes the kernels. Note that a restart of the training changes the
colour of the visualisation in TensorFlow.

TensorFlow visualises relevant information which indicates the ongoing training of
the neural network. For this experiment, we set the learning rate to 0.0001 and use the
CNNV1. In Figure 5.17 the orange curve visualises the start of the training, a restart of
the training is represented by the red curve. We restart the network from the last train-
ing step with lowered learning rate if the loss can’t converge to zero. The loss function
in the first image falls as expected (orange curve). The mean negative value indicates the
mean over the negative distances to the reference image. With rising iterations, the net-
work learns a better separation and the negative values rise. The mean positive value is
built over the positive distances and the reference image. During training, this positive
mean distance should be lower than the negative mean value. The first illustration in
the second row represents the triplets with resulting loss per iteration. Last two images
visualise the false positive rate coupled with the success rate of the system. We used in
early steps a False Discovery Rate of 0.1 to evaluate a threshold for the false positive and
success rate calculation. If a network looks promising, then we set the False Discovery
Rate to 0.001 as in literature is used to compare them.

5.4.2 Data Dependency

For this experiment, we evaluate the impact of the number of training images in the
database. We started the first training run with 28 different individuals. We use the am-
plitude, depth and noise data and use the CNNV1. Generally, the used network and
channels are not that important for this experiment because we expect the same be-
haviour for different network architectures. In Figure 5.18 we summarise how a different
amount of individuals in the training set influence the training progress and the results
on the validation set. The orange curve illustrates the training set of 28 individuals and
the blue curve illustrates the training set with 33 individuals. We can summarise that
the training set with more individuals (blue curve) leads to a higher Precision of around
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Figure 5.17: The orange curve illustrates the start of our network from zero,
after 47.500 iterations we restarted the training from the last training step to
get new triplets and change the learning rate. We used the CNNV1 for this
demonstration. Mean negative and positive value differs strong, this means
the network learned facial features to separate different individuals. The
loss-leading triplets counter indicates the triplets which cause a loss. The
false positive rate is based on the validation set and a False Discovery Rate
of 0.1. The last image illustrates the success rate based on the calculated
threshold.

1.5%. The false positive rate is 0.87% lower with a training set with five individuals
more. In the original FaceNet paper [SKP15], the authors summarise that more training
images lead to significantly better results. We can conclude the same result that more
individuals in the training set lead to better results.

5.4.3 Impact of Initialisation

In this section, we evaluate how three starts with entirely the same setup influence the
result. Our used network is the CNNV1 with three channels (amplitude, depth, noise).
We trained the network for 30,000 iterations with a learning rate of 0.0001. For all runs,
the loss flow is nearly identical. We can summarise that the initialisation is important
for the results of the network based on the Recall. In Table 5.1 we summarise values to
compare the three runs reliably. For this, we use a False Discovery Rate of 0.001 for com-
parison. The Precision, which includes the FP, is one of the most important values. The
Precision is on par, and the Accuracy and Negative Predictive value differ slightly. To
differentiate the values with more precision, it is necessary to complete even more train-
ing runs. Additionally, we hypothesise that the networks need more training iterations
to reach stable values and better convergence. Due to time reasons, it is not possible to
evaluate all networks with more iterations. The triplet selection can also influence the
results [WB18]. We believe that the calculated threshold from the False Discovery Rate
can also influence the Recall stronger due to the separation of the TP and FN with less
training runs. In our experiments the triplet selection is randomly chosen, this can lead
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Figure 5.18: Illustration how more individuals influence the training of the
network. The visualisations are based on the training and validation set. The
loss converges with nearly the same behaviour. The mean negative and pos-
itive value is much higher with fewer individuals. Note that five more indi-
viduals lead to a 1.5% higher Precision and a 1% lower false positive rate.

to zero loss and convergence, but for the comparison in our tests against one reference
image to all login images, it can influence the result stronger. We must remark, that this
experiment is done after the evaluations of Section 5.5.1.2 due to the unstable results.

5.5 Impact of Different Architectures

In this section, we evaluate different architectures. First, we evaluate the standard archi-
tecture approaches. Second, we evaluate the inception based networks. Additionally, we
analyse the impact of standard batch filling to Triplet Loss, the best hyperparameters of
the network architectures and compare the final results of the standard and inception
based networks against a pre-trained AlexNet on RGB data.

5.5.1 Evaluation of Standard CNN’s

In this section, we evaluate different standard architectures with the best hyperparame-
ters. Additionally, we figured out that the standard batch filling is not suitable for Triplet
Loss. For this, we create an improved batch filling technique to solve this problem. We
evaluate the standard batch filling version without data augmentation at the beginning.
Next, we evaluate the improved batch filling and use data augmentation.
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Table 5.1: Comparison of three identical runs. Our used network is the
CNNV1 with three channels (amplitude, depth, noise) and a False Discovery
Rate of 0.001. The Precision, which is one of the most important values of the
network, scored on par. The result based on the Recall differs up to 18 per
cent. Additionally, the Accuracy and Negative Predictive Value are compare
able. We trained the network for 30,000 iterations. We discovered unstable
behaviour with these few training iterations.

Run Nr. τ P R F1 A N
1 0.61769 99.19% 70.79% 82.63% 95.03% 94.48%
2 0.64849 99.24% 74.78% 85.30% 95.70% 95.20%
3 0.51859 99.06% 56.79% 72.19% 92.71% 92.04%

5.5.1.1 Standard Batchfilling

Based on the CNNV1, we demonstrate how the network performs with standard batch
filling. Illustration 5.19 is segmented in two parts: On top, we illustrate the loss function
along 11,000 iterations. One iteration consists of a batch size of 50 triplets. For the
Triplet Loss, we set an alpha value as a margin between positive and negative distances of
0.4. This value is determined empirically. The second row illustrates the mean negative
and positive value. Both values are rising, and the negative value is higher than the
positive value, i.e. the network separates the individuals with a margin between positive
and negative samples. The success rate falls on the training and validation set after
11,000 iterations. The batch filling with zero loss triplets cause this problem, and a
falling success rate after thousands of iterations is the result.

In Figure 5.20 we restarted the network training for 20,000 iterations from the last
training point. The first image visualises the loss function. Less loss occurs, it looks like
the network learned well. The loss is most of the time zero because the batch is filled
with random triplets which won’t lead to a loss. The loss-leading triplets illustration
reflects the triplets in one batch which cause a loss. We figured out that only around
one per cent leads to a loss, this results in the flow of the loss function. The last image
illustrates the falling success rate of the network because of the ADAM optimiser and
the zero loss triplets. With rising iterations, the success rate falls, and it looks like over-
fitting. In the end, standard batch filling and the optimiser caused the problem. It is
necessary to generate triplets as in FaceNet. In FaceNet, the triplet generation is during
runtime (online), i.e. searching for triplets which violate Equation (2.9) during training.
In the next section, we illustrate the improved batch filling technique. In Figure 5.21 we
test all channels with standard batch filling. Overall the performance is not suitable for
verification. The success rate is low compared to the false positive rate. The LBP scored
with the lowest false positive rate but also the lowest success rate. The combination of
all channels (amplitude, depth, noise and LBP) scored with the highest success rate. We
hypothesise that more channels lead to more loss at the beginning with standard batch
filling. The network can learn better with more channels in a certain time.
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Figure 5.19: CNNV1 with falling loss function after 11,000 iterations on
top, bottom line f.l.t.r: The first image illustrates the rising negative mean
distance between negative and reference image. The second illustration vi-
sualises the rising positive mean value between positive and the reference
image. Note that negative distances are higher than positives. The third il-
lustration reflects the success rate on the train set (we sample one image after
20). We are not using these images for training. The last illustration visualise
the success rate on the validation set.

Figure 5.20: Restart of training with CNNV1 and three channels from last
training checkpoint. The loss function is close to zero. The loss-leading
triplets illustration visualise the inefficient training, i.e. the batch is filled
with around one per cent loss leading triplets. The success rate begins to fall,
and this is a problem with the filled batches and the optimiser.
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Figure 5.21: Comparison of different channels and combinations with stan-
dard batch filling.

Figure 5.22: Improved batch filling. Only triplets which cause a loss can
pass to the optimiser over the full batch. Green indicates a zero loss triplet
and violet a triplet which leads to a loss.

5.5.1.2 Improved Batch filling, Data Augmentation and Different Borders

To overcome the problem with the falling success rate, we created an improved batch
filling technique. In Figure 5.22 we illustrate the improved batch filling. We stack up
non zero loss triplets and then put this to the optimiser. On the left side, we illustrate the
batch. The violet rectangles represent the triplets which cause a loss. Green rectangles
won’t lead to a loss, and they are ignored. In the end, the success rate won’t fall with
rising iterations because the optimiser gets non zero loss triplets within the whole batch.
FaceNet uses an online triplet generator (during runtime). Due to the restrictions to a
standard system, we hold on until a batch is full of data. We hypothesise a generation of
triplets leads to significant higher CPU load. FaceNet used 1000 CPU cluster with 2000
hours of CPU time for training.

We use data augmentation to build up a bigger training set, i.e. we generate more
data from the existing training set with image rotation, noise and brightness changing.
For further experiments, we use data augmentation.
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Table 5.2: We used the network CNNV1 with a learning rate of 0.0003 and
trained the network for 30,000 iterations with a training set of 33 individuals.
We set the False Discovery Rate to a low value, and we compare the results
with different backgrounds. The network training without background im-
ages scored the highest Recall. Note that rounding leads to the same Precision
for the noise border and no background version.

Background τ P R F1 A F N
Average border 0.31573 100.00% 32.03% 48.52% 88.67% 0.00 88.03%
Noise border 0.18537 99.91% 33.63% 50.32% 88.93% 6.26e-5 88.28%
No background 0.32011 99.91% 34.17% 50.93% 89.02% 6.22e-5 88.36%
No segmentation 0.58925 99.88% 21.80% 35.93% 86.48% 5.27e-5 85.95%

Additionally, we evaluate different border around the face. After cropping we set
the background to zero (black), and a very sharp edge around the face occurs. During
training we observed the activation functions and bright areas of activations occur which
belong to the background and edges around the face. We hypothesise that a neural net-
work concentrates in early training steps strong on these high-frequency parts. After
more extended training, the network concentrates on features in the face like nose and
eyes. With adding an average border or noise to the background, the network starts in
earlier steps to learn the facial features. To overcome this problem, we evaluated this
behaviour with data augmentation.

In Table 5.2 we summarise the results based on the validation set of six individuals.
The used network architecture is the CNNV1. We trained the network for 30,000 itera-
tions with data augmentation, a batch size of 50 and an alpha value of 0.5. We prepared
all data with the preprocessing pipeline. For the version without background segmen-
tation, we removed the dynamical bitmask creation step in our preprocessing pipeline
to obtain the background. Additionally, we figured out that the depth data are less well
scaled due to the strong outliers around the face in many measurements. The training
without background separation or preparation leads to lowered results. We hypothesise
that the network focused on the background which is in all measurements of one individ-
ual the same. Additionally, we believe that with more training data, temporal variations
between measurements and more iterations the network focuses on the facial features
also without background removing. We observed nearly no improvements between the
prepared borders. We change the rotation, illumination, contrast and add Gaussian noise
to the whole image. Recall Table 4.10 for the used values for the data augmentation.
We choose as the best variant the version with no border (black background) because it
scored the best results. For further work, we use the black background (no border), data
augmentation and the improved batch filling.

5.5.1.3 Performance of Standard CNN Architectures

In this section, we evaluate the created CNN architectures from Chapter 4. We set the
False Discovery Rate to a low value. We use an alpha value of 0.5, an embedding di-
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Table 5.3: Comparison of the created network architectures. Precision and
Accuracy are nearly equal, CNNV1, CNNV2 and CNNV5 performed with the
highest Recall and F1. We used a learning rate of 0.0003 and four channels
(amplitude, depth, noise, LBP). The False Discovery Rate is set to low values.

Network τ P R F1 A F N
CNNV1 0.30513 99.93% 46.00% 63.00% 91.00% 6.35 e-05 90.25%
CNNV2 0.20476 100.00% 44.10% 61.20% 90.68% 0.0 89.94%
CNNV3 0.28969 99.78% 14.41% 25.19% 85.73% 6.35 e-05 85.38%
CNNV4 0.30179 99.88% 25.43% 40.54% 87.57% 6.35 e-05 87.02%
CNNV5 0.66320 99.92% 43.14% 60.27% 90.52% 6.35 e-05 89.79%
CNNV6 0.15118 99.89% 28.35% 44.46% 88.05% 6.35 e-05 87.47%

mension of 128, a batch size of 50 and train the networks for 50,000 iterations with four
channels (amplitude, depth, noise and LBP). In Table 5.3 we summarise the results of six
different CNN architectures based on the validation set. CNNV1, CNNV2 and CNNV5
perform on par. All variants scored with a low False Discovery Rate and high Precision.
We decided to use CNNV1 for further experiments due to the best results.

5.5.1.4 Channel Dependency

In Table 5.4 we compare all channels and combinations. We sort the results based on the
Precision and not alphabetically. The highest values in all comparisons score the combi-
nation of amplitude, depth and LBP. We believe that this combination scored the highest
values due to the high single channel performance of amplitude and LBP. We combine
the depth channel with the other channels to get higher security at login. A combination
of amplitude and LBP is not a good combination due to the missing depth information.
A fooling with a printed image can be the consequence. The single amplitude channel
score with the second best performance. The noise and depth data and the combination
scores the last places. These channels negatively influence the results based on the Pre-
cision and Recall (which reflects the successful login rate to the system). We hypothesise
that the network focuses on different channels with different intensity during training.
Additionally, the initialisation of the kernels can strongly influence the results. For this,
the combination of amplitude, depth and noise data scored with less performance than
the amplitude and depth combination.

5.5.1.5 Hyperparameter Tuning

For successful training, it is necessary to evaluate the best hyperparameters. These are
parameters which are not changeable by the network itself. We train all our networks
for the experiments for 30,000 iterations with a learning rate of 0.0001. To compare the
networks, we set the False Discovery Rate to 0.001. This False Discovery Rate is the com-
monly used value to compare different networks. We choose the three channel variant
with amplitude, depth and noise for the evaluation. We found the following reasons for
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Table 5.4: Performance comparison of different channels with the CNNV1.
The amplitude single channel score with the highest Precision and Recall,
followed by the LBP, noise and depth. We used for this experiment a learning
rate of 0.0003.

Channel P R F1 A N
Amplitude & Depth & LBP 99.13% 64.95% 78.48% 94.06% 93.44%
Amplitude 99.11% 64.29% 77.99% 93.52% 93.33%
Amplitude & Depth 98.98% 55.33% 70.98% 92.46% 91.79%
Amplitude & Depth & Noise & LBP 98.97% 55.04% 70.75% 92.41% 91.74%
Amplitude & Depth & Noise 98.88% 50.25% 66.64% 91.61% 90.94%
LBP 98.82% 45.27% 62.09% 90.79% 90.12%
Noise 98.02% 28.32% 43.94% 87.96% 87.45%
Noise & Depth 97.41% 21.49% 35.21% 86.82% 86.42%
Depth 96.24% 14.63% 25.41% 85.86% 85.40%

Table 5.5: We use for this experiment the CNNV1 with three channels (am-
plitude, depth and noise). We tune the hyperparameter alpha to get the best
results for the Recall and Precision. We use a batch size of 50, a learning rate
of 0.0001 and a False Discovery Rate of 0.001. An alpha value of 0.4 scored
with best results.

Alpha τ P R F1 A N
0.3 0.254610 98.80% 46.95% 63.65% 91.06% 90.40%
0.4 0.648494 99.24% 74.79% 85.30% 95.70% 95.20%
0.5 0.901617 99.20% 71.24% 82.93% 95.11% 94.55%
0.6 0.746631 98.96% 54.44% 70.24% 92.31% 91.64%

that: to monitor the kernels with TensorFlow, we need one, three or four channels. The
combination of four channels needed more computation time and memory on the sys-
tem. Due to the influence of the kernel initialisation, it is possible that with more runs
the combination of amplitude, depth and noise score with a higher Recall than the am-
plitude and depth combination. Generally, the used channels are not that important for
this experiment because we expect the same behaviour for all channels.

In Table 5.5 we compare different alpha values with our CNNV1 and three channels
(amplitude, depth and noise). The alpha value sets a margin between the positive and
negative distance. We summarise that an alpha value of 0.4 lead to the best results. With
the next experiment, we evaluate the best batch size for the network. We use the same set
up as before (CNNV1, three channel and an alpha value with 0.4). In Table 5.6 we sum-
marise the results for a batch size of 35 and 50. We figured out that a higher batch size
leads to a higher Recall with nearly identical Precision and Accuracy. The next hyperpa-
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Table 5.6: Comparison of different batch sizes with CNNV1 and three chan-
nels (amplitude, depth and noise). A batch size of 50 scored with best results.

Batch size τ P R F1 A N
35 0.420540 99.12% 60.98% 75.51% 93.40% 92.75%
50 0.648494 99.24% 74.79% 85.30% 95.70% 95.20%

Table 5.7: Evaluation of different embedding sizes with CNNV1 and three
channels. The hyperparameter alpha is set to 0.4 and the batch size to 50. An
embedding dimension of 128 performs better than an embedding dimension
with 64 or 256.

Embedding size τ P R F1 A N
64 0.447732 98.84% 48.60% 65.16% 91.34% 90.67%
128 0.648494 99.24% 74.79% 85.30% 95.70% 95.20%
256 0.560403 99.00% 56.48% 71.92% 92.66% 91.98%

rameter for the further experiments is a batch size with 50. With the next experiment, we
evaluate different embedding dimensions. We use an embedding dimension of 64, 128
and 256. In Table 5.7 we summarise the results of the different values. We conclude the
same result as in FaceNet, an embedding dimension of 128 scored with the best results.

After these experiments, we figured out that an alpha value with 0.4, a batch size of 50
and an embedding dimension of 128 leads to the best results. For comparison, FaceNet
uses an alpha of 0.2 and batch sizes with 1500 triplets and an embedding dimension of
128. We can’t use these batch sizes due to the limitation to a standard system.

5.5.2 Evaluation of Inception based CNN’s

Due to the (near-infrared based) amplitude and depth data of the sensor we searched for
networks which can handle this combination of data. We figured out from the section
before that the amplitude data scored with best results. However, it is necessary to com-
bine the amplitude data with the depth data due to security reasons. In the end, this
combination lowers the results. The derivation of FaceNet for smartphones is similar to
the modified NIRFaceNet, except the networks are trained on RGB data, and instead of
max pooling, they use average pooling. We removed the Softmax layer of the original
NIRFaceNet and implemented the Triplet Loss from FaceNet. Both network architec-
tures use the inception layer technique from GoogLeNet [Sze+15]. We figured out from
the experiments with the standard CNN architectures that the training is unstable due
to the kernel initialisation and not enough training runs. Additionally, we figured out,
that the inception based networks needed more training iterations to reach zero loss. For
this, we train all our inception based networks for 100,000 iterations and a learning rate
of 0.0001.

91



5.5. IMPACT OF DIFFERENT ARCHITECTURES CHAPTER 5. EVALUATION

Table 5.8: Evaluation of one channel (amplitude) and two-channel (ampli-
tude and depth) with NIRFaceNetV1. The single channel performance is bet-
ter based on Recall and F1. We trained both variants for 100,000 iterations
with an alpha of 0.6, embedding dimension of 128 and a batch size of 35.

Channel τ P R F1 A N
Amptlitude 0.26884 98.96% 54.57% 70.35% 92.33% 91.66%
Amptlitude & Depth 0.21983 98.72% 40.52% 57.46% 90.00% 89.35%

First, we evaluate the training of the modified NIRFaceNetV1 with one and two chan-
nels. Next, we tune the hyperparameters alpha, dropout, embedding and batch size.
Last, we evaluate the best network architecture out of the three created architectures.

5.5.2.1 Performance on Different Channels

After the comparison of the channel combinations with the CNNV1 from the section
before, we experiment with one and two-channel combinations with the modified NIR-
FaceNet. In this section, we evaluate the impact of one channel (amplitude) and two
channels (amplitude and depth) on the NIRFaceNetV1. We train the network for 100,000
iterations. We use a learning rate of 0.0001 and a False Discovery Rate of 0.001. In Table
5.8 we summarise the results based on the validation set. The Precision is nearly equal,
and the Recall differs around 14%. In the end, the negative influence of the depth data
is nearly equal as in the experiment with the CNNV1 (Recall drop of 11%). For security
reasons, we use for further experiments the two-channel variant for training. Security is
more important for the project than a high login rate to the system.

5.5.2.2 Hyperparameter Tuning

In this section, we evaluate different hyperparameters and their impact on the NIR-
FaceNetV1 based approach. We evaluate the impact of different batch sizes and alpha.
Additionally, we evaluate the impact of dropout because NIRFaceNet and GoogLeNet
use high dropout rates (40 to 70%). FaceNet, in contrast, uses no dropout. After hyper-
parameter search we evaluate three different architectures of the modified NIRFaceNet,
i.e. with two different fully connected layers and different amount of kernels.

In Table 5.9 we evaluate the impact of different batch sizes on the modified NIR-
FaceNet. We evaluate these batch sizes with the NIRFaceNetV1 and set the iterations to
100,000. The authors of NIRFaceNet use a batch size of 35. We experimented with a
batch size of 35 and 50. Smaller batch sizes are better for training on standard systems.
We figured out that a batch size with 35 leads to the best results. The Precision is nearly
identical for both versions. The Recall, which is an indicator for the successful login rate
to the system, differs between 9–14%. Due to this experiment, we set the batch size to
35 for further tests and the channels to two (amplitude and depth). After the compar-
ison of the batch size, we evaluate the impact of the hyperparameter alpha. This value

92



5.5. IMPACT OF DIFFERENT ARCHITECTURES CHAPTER 5. EVALUATION

Table 5.9: Evaluation of different batch sizes with NIRFaceNetV1. The al-
pha value is set to 0.6 and the embedding dimension to 128. We evaluate the
impact of the batch size on one and two channels. A smaller batch size per-
formed better based on Recall and Precision. Additionally, the single chan-
nel performance of amplitude data is higher than the combination with the
depth channel. We trained the network for 100,000 iterations with a learning
rate of 0.0001.

Channel Batch
size

τ P R F1 A N

Amplitude 35 0.26884 98.96% 54.57% 70.35% 92.33% 91.66%
Amplitude 50 0.40313 98.44% 34.13% 50.68% 88.93% 88.35%
Amplitude,
depth

35 0.21983 98.72% 40.52% 57.46% 90.00% 89.35%

Amplitude,
depth

50 0.13895 97.80% 25.46% 40.40% 87.48% 87.01%

is the margin between positive and negative distances. This value hampers the training
because the network must separate the individuals with an additional margin. We use an
alpha value of 0.2 as suggested in FaceNet. For the experiments, we raised alpha in 0.1
steps till 0.7. We discovered no improvement from step 0.6 to 0.7. We do not expect any
increase with higher alpha. To confirm this assumption we set alpha to 1.0. Again, one of
the most important values is the Precision. For this, we compare all alpha values based
on the Precision and the Recall. Alpha with 0.6 scored with best results. For the further
experiments, we set alpha to 0.6. In Table 5.11 we compare the NIRFaceNetV1 with dif-
ferent dropout settings and 100,000 iterations. In the first row, we illustrate the results
with 0% dropout. Next row illustrates the result with 10% dropout and last row with
50% dropout as suggested in NIRFaceNet. Based on the Precision we figured out that all
variants performed nearly equal. Compared to the Recall, which reflects the successful
logins to the system, we choose 10% as the best hyperparameter. The last hyperparame-
ter in the experiment is the embedding dimension. The embedding vector represents the
learned facial features. In Table 5.12 we illustrate the results for the NIRFaceNetV1 with
100,000 iterations and a learning rate of 0.0001 for each test. We used an alpha value of
0.6 and 10% dropout. We figured out that the embedding dimension with a size of 64
scored best on the validation set. Compared to the deep FaceNet we believe that the com-
plexity reduction of the modified NIRFaceNet leads to this result. We set the embedding
dimension for the last hyperparameter to 64 for further experiments.

5.5.2.3 Performance of Different Inception based CNN Architectures

In Table 5.13 we compare different network architectures with the evaluated hyperpa-
rameters based on the validation set. We summarise the hyperparameters: Batch size
with 35, alpha value with 0.6, a dropout rate of 10% and the embedding dimension
with 64. Recall Section 4.3 for an overview of the created NIRFaceNet derivations.
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Table 5.10: Based on the NIRFaceNetV1, we test the impact of different
alphas. We trained the network for 100.000 iterations with a learning rate of
0.0001 and an embedding dimension of 128. An alpha value of 0.6 scored
with best results.

Alpha τ P R F1 A N
0.2 0.04714 96.58% 14.96% 25.76% 85.72% 85.44%
0.3 0.10826 98.27% 29.69% 45.92% 88.24% 87.70%
0.4 0.11372 98.04% 28.54% 44.21% 88.00% 87.48%
0.5 0.16396 98.18% 28.44% 44.10% 87.99% 87.47%
0.6 0.21983 98.72% 40.52% 57.46% 90.00% 89.35%
0.7 0.17937 97.93% 24.96% 39.78% 87.41% 86.94%
1.0 0.29993 98.11% 27.36% 42.78% 87.80% 87.30%

Table 5.11: In this experiment, we evaluate the best dropout rate with NIR-
FaceNetV1, 100,000 iterations training and a learning rate of 0.0001. We set
the alpha value to 0.6 and the embedding dimension to 128. 10% dropout
led to the best results.

Dropout τ P R F1 A N
0% 0.29108 98.50% 35.46% 52.15% 89.15% 88.56%
10% 0.36178 98.64% 41.46% 58.38% 90.15% 89.51%
50% 0.21983 98.72% 40.52% 57.46% 90.00% 89.35%

Table 5.12: Testing of different embedding sizes with NIRFaceNetV1. The
embedding dimension with 64 scored in the experiment with the best results.

Embedding τ P R F1 A N
32 0.21594 98.71% 44.00% 60.87% 90.57% 89.92%
64 0.25750 98.91% 49.27% 65.78% 91.45% 90.78%
128 0.36178 98.64% 41.46% 58.38% 90.15% 89.51%
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Table 5.13: Comparison of different network architectures of the modified
NIRFaceNet. Overall, all versions performed nearly equal, V1 and V3 per-
formed slightly better than V2.

NIRFaceNet τ P R F1 A N
NIRFaceNetV1 0.25750 98.91% 49.27% 65.78% 91.45% 90.78%
NIRFaceNetV2 0.36161 98.80% 47.17% 63.96% 91.10% 90.43%
NIRFaceNetV3 0.32377 98.85% 49.05% 65.56% 91.41% 90.74%

NIRFaceNetV1 has two fully-connected layers and fewer kernels than NIRFaceNetV2
and NIRFaceNetV3. NIRFaceNetV2 has more kernels in the first layer and only one
fully-connected layer. NIRFaceNetV3 represents the original NIRFaceNet with removed
Softmax. Overall, nearly all networks performed similarly. The NIRFaceNetV1 scored
slightly better than the NIRFaceNetV3. We use for further training the NIRFaceNetV3
because the network has only one dense layer but more kernels. We hypothesise that this
network is more flexible and with more training more efficient.

We summarise the best setup: alpha value with 0.6, embedding dimension of 64,
batch size with 35 and a dropout rate of 10%. Additionally, we use the inception based
architecture NIRFaceNetV3 for further training.

5.5.3 Final Results of Networks

In Table 5.14 we illustrate the results of the two-channel (amplitude and depth data)
NIRFaceNetV3 after 500,000 iterations of training and the CNNV1 after around 200,000
iterations of training with three channels (amplitude, depth and noise data). The valida-
tion set contains six individuals and the test set eight. We started the networks generally
with a learning rate of 0.0001. If we discover no changes in the kernels or no improve-
ment in the false positive rate compared to the Recall, then we lower the learning rate.
Next used learn rate is set to 0.00005 and for the last iterations at 0.00001. The NIR-
FaceNetV3 needed around 60 hours of training to reach zero loss. The CNNV1 needed
around 21 hours of training. Recall our setup and hardware specifications in Chapter 7.

The CNNV1 and NIRFaceNetV3 perform nearly on par. Due to the inception based
structure of NIRFaceNet, the training is more time-consuming. Additionally, we can
conclude the influence of the weight initialisation of the kernels. In Table 5.7 the CNNV1
reached more than 70% login rate to the system. With training from scratch again we
reached 55% for the CNNV1 on the validation set. To differentiate the deviation with
more precision, it is necessary to complete even more training runs. We figured out that
the inception based networks are more stable during training. The AlexNet (which is not
trained on faces) performed poorly. We use a pre-trained AlexNet for this test with cosine
similarity on the FC7 feature vector with 4096 entries. We can conclude that the network
training and the quality of the data is an essential aspect for the results. We choose the
NIRFaceNetV3 for our Android prototype due to the best performance.
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Table 5.14: Comparison of CNNV1 (trained with amplitude, depth and
noise data), NIRFaceNetV3 (trained with amplitude and depth data) and
AlexNet (trained with RGB data on objects). The validation set consists of
six people, the test set of eight.

Network τ P R F1 A N
CNNV1 Valid 0.48348 99.06% 55.62% 71.24% 92.51% 91.84%
CNNV1 Test 0.40206 98.57% 54.71% 70.37% 94.24% 93.92%
NIRFaceNetV3 Valid 0.49192 99.12% 62.52% 76.68% 93.66% 93.02%
NIRFaceNetV3 Test 0.37158 98.71% 60.73% 75.20% 94.99% 94.68%
AlexNet Valid 0.00536 94.49% 08.66% 15.87% 84.69% 84.54%
AlexNet Test 0.00379 86.50% 04.53% 8.62% 87.88% 87.99%

5.6 Android Application

In this section, we evaluate the created Android application. We evaluate the possible
login distances and the result of the reference image selection. Additionally, we test the
Android application in the real world with nine new individuals (they are not included
in the training, validation or test set). Three individuals left the company at the moment
we write this work. It is not possible to evaluate the candidates of the test set again with
the Android application. Next, we evaluate the possibility to login in strong sunlight.
Last, we evaluate the solution against images from the computer monitor and printed
images from a high-quality laser printer.

5.6.1 Distance Evaluation and Reference Image Selection

In this section, we evaluate possible login distances. Additionally, we evaluate the refer-
ence image selection against randomly selected reference images.

In Table 5.15 we summarise the results of the possible login distances. For this exper-
iment, we used the NIRFaceNetV3 and tested three individuals from different distances.
A frontal login with the same facial expression and the same distance as the reference
image lead to high login rates. Reference images from 40 cm distance lead to the high-
est login rates from different distances. A reference image of around 30 cm distance to
the camera leads to the worst results if the distance rises with the login. It is nearly im-
possible to log in to the system at a distance of around 50 cm. We hypothesise that a
login image between the boundary distances of 30 and 50 cm can compensate the quality
changes with different distances.

We experimented with a Microsoft Surface Pro 5 and discovered that it is not possible
to log in (after 40 attempts) with a reference image where the individual wears glasses.
The device noticed that many login attempts failed. The Microsoft Surface suggested to
capture more reference images to improve the login to the system. We adapted this solu-
tion for our system to get higher login rates. For this, we capture more reference images
and save them to the database. Inspired by the Microsoft Surface, we experimented with
an own creation of a reference image selection. The successful login strongly depends
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Table 5.15: Successful login attempts at different distances and frontal mea-
surements with the same facial expressions as the reference image. The re-
sults are based on three individuals. We captured one reference image and
three login images.

Reference
distance [cm]

Login dis-
tance 30 cm

Login dis-
tance 40 cm

Login dis-
tance 50 cm

30 5/5, 4/5, 5/5 3/5, 5/5, 3/5 0/5, 1/5, 0/5
40 5/5, 4/4, 4/5 5/5, 5/5, 5/5 5/5, 4/5, 5/5
50 3/5, 3/5, 4/5 4/5, 4/5, 4/5 5/5, 5/5, 5/5

Table 5.16: Comparison of reference image selection (three images out of
five) against a random reference image for 59 login attempts. The reference
image selection score with around 19 per cent higher login rate.

Method Attempts Rejected attempts Login rate
Random image 59 20 66.10%
Best reference selection 59 9 84.75%

on the reference image. The recognition is harder if the reference image differs strongly
from the login images. If the individual winks with the eyes or moves the smartphone
faster during the image capturing, we figured out that some images are not usable for a
login to the system. We capture five images and take three images out of this five images.
The best one, the worst one and on in the middle (Recall Section 4.2). We hypothe-
sise that reference images in different qualities can improve the successful login to the
system. Additionally, the computation time increase due to the comparison with more
reference images. We compare each login image with the three reference images of the
same individual. We captured 59 login attempts with a random reference image and 59
attempts with the reference image selection (three out of five). We summarise in Table
5.16 that the login rate to the system increase by around 19% with the reference image
selection.

5.6.2 Real-World Tests

In this section, we evaluate the Android application with indoor tests, outdoor tests and
try to fool our solution with printed images and images from the computer monitor. Ad-
ditionally, we evaluate different thresholds and the impact on the test set. With different
thresholds, it is possible to login with different facial expressions and from side view.

5.6.2.1 Indoor Tests

In this section, we test the application indoor with nine candidates who don’t belong to
the training, validation or test set. In Table 5.17 we summarise the experiment with the
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Table 5.17: Login results at different distances with individuals who don’t
belong to the training, validation or test set. The average login rate is about
70% with frontal images and without facial expressions.

Subject Reference
distance [cm]

Login dis-
tance [cm]

Gender Successful logins

1 40 30-50 m 10/13
2 30-40 30-50 f 4/5
3 30-50 30-50 f 7/10
4 30-50 30-50 m 6/10
5 30-50 30-50 m 8/10
6 30-50 30-50 m 6/10
7 30-50 30-50 m 6/9
8 30-50 30-50 m 3/5
9 30-40 30-50 m 8/10

test candidates. The average login success rate is about 70%.
We tested different individuals with our application. It was not possible for anyone to

log into the system as a false positive one. With the low threshold, it is possible that login
attempts from the individual which should be able to login to the system are refused.

5.6.2.2 Strong Sunlight

Due to influences of the sun to the system, we experimented with the solution in the
sunlight. We captured the reference images indoor with the reference image selection.
We illustrate six login attempts in Figure 5.23. In Figure 5.23 (a) the login image is very
noisy, one eye is closed, and the image is rejected. Next five images (b – d) are accepted.
The distance varies between 30 and 50 cm. The reference image is on the left side of an
image pair. In Figure 5.24 we illustrate the depth, noise and LBP image. The first row
represents the indoor reference image and last row the depth, noise and LBP image from
Figure 5.23 (f).

In Figure 5.25 we illustrate the outdoor depth image from Figure 5.24 from side view.
The login is possible, and the confidence level is low, i.e. the resulted similarity value is
close to the threshold. We believe this login image is accepted because the training set
included reflecting surfaces in the background of the individuals, i.e. the auto exposure
lowered the illumination time and noisy images are the result. The contour is visible
(lips, chin, nose and forehead) and potentially the reason why the network could identify
the individual correctly.

5.6.2.3 Printed Image Fooling

We printed out four images for this test with a high-quality laser printer from Ricoh
(Model: MP C3003). We experimented with 32 login attempts with one printed RGB,
and 48 login attempts with three printed ToF (greyscale) images. We printed out im-
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(a) Rejected image in
sunlight at a distance of
around 50 cm.

(b) Accepted image in
sunlight at a distance of
around 40 cm distance.

(c) Accepted image in
sunlight at a distance of
around 50 cm.

(d) Accepted image in
sunlight at a distance of
around 50 cm.

(e) Accepted image in
strong sunlight at a
distance of around 30 cm.

(f) Accepted image in
strong sunlight at a
distance of around 50 cm.

Figure 5.23: Verification in sunlight. Time: 10:30 AM. We captured the
reference images indoor (left side of an image pair). The first image getting
rejected, one eye is closed, and the image has visibly bad quality. The five
other login attempts are accepted. Sunlight leads to more noise, and the
quality of the data is lowered drastically.

(a) Indoor captured reference images. On the left side,
we visualise the depth image, in the middle the noise
image and last the LBP.

(b) Depth, noise and LBP image captured outdoor.

Figure 5.24: The indoor images are less noisy than the outdoor images. The
quality drop is visible in each image. Additionally, holes in the noise image
occured.
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Figure 5.25: Accepted depth image under strong sunlight. Note that it is
harder to log in with strong sunlight due to the impact of the sun on the
quality of the data. The silhouette is generated from the indoor image.

Figure 5.26: Test with a printed image from the front camera. The applica-
tion rejected all (32) login attempts.

ages which the network accepted within login attempts. In Figure 5.26 we illustrate the
outcome from the preprocessing pipeline of the printed RGB image which belongs to
an accepted ToF image. The reflection influence the result, i.e. the depth image is not
a plane. Instead, it has some contours which look like a deformed face. The distances
between the reference and printed login image differed between 1.19 and 4.07 with an
average value of 2.14. In Figure 5.27 we illustrate four attempts with the three printed
ToF greyscale images which the network initially accepted during a login attempt with
the real individual. The amplitude image changes the colour and contour depending
on the reflection back to the camera and the viewpoint. The depth image has no reliable
face contours. The noise image looks like a real noise image directly from the camera. We
experimented with 48 login attempts with these three images. No effort was successful.

We experimented to capture the accepted login image from a computer monitor
(Samsung 27", C27F396F). The preprocessing pipeline rejected all attempts because no
face could be found due to the strong reflection on the monitor. The active illumination
unit caused this issue. In our experiments, it was not possible to login from a computer
monitor.
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Figure 5.27: Test with printed images from the ToF camera. The application
rejected these images.

5.6.2.4 Final Prototype

In this section, we summarise details about the prototype on Android. We use the NIR-
FaceNetV3 for the experiments. In Figure 5.28 (a) we visualise the first prototype version
on the smartphone. On the top left the saved reference image is illustrated and on the
right side the login image. These images are from two different individuals. It is possible
to take a reference image (REF.) and a login image (LOGIN). Additionally, the user can
change the reference image and start the pipeline (START PIPELINE) and verification
(VERIFICATION) independent for more flexibility. The text box visualises the calculated
distances between the two individuals. The calculated distances are very high (differs
around a value of two or three). Zero means that both images are identical and values
from zero to the threshold that it is the same individual. Figure 5.28 (b) illustrates the
start screen of the final prototype. The implemented slider (right top) change the thresh-
old as follows:

Slider position: Very Low (τ = 0.44036)

Login images from the side view and with facial expressions are possible. The
successful login rate to the system is around 69% with a False Discovery Rate of
0.007 (based on test set). Figure 5.29 (a, b) illustrates two login attempts from
different views.

Slider position: Lower (τ = 0.40000)
Frontal login images with facial expressions are possible. The successful login rate
to the system is around 65% with a False Discovery Rate of 0.003 (based on test
set). Figure 5.29 (c) illustrates a login attempt with facial expressions.

Slider position: Medium (τ = 0.37158)
Frontal login images without facial expressions are accepted. The successful login
rate to the system is around 61% with a False Discovery Rate of 0.001 (based on test
set).

Slider position: Hard (τ = 0.31572)
Very similar frontal login images are possible The successful login rate to the sys-
tem is around 53% with a False Discovery Rate of 0.0 (based on test set). Figure
5.28 (c) illustrates a login attempt with a similar image as the reference image.
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(a) First prototype with two
different network architec-
tures (CNNV1 and NIR-
FaceNetV3). Best viewed
digitally.

(b) Start screen of final pro-
totype.

(c) Correct classified login
image with slider position
"Hard".

Figure 5.28: Prototype at early stage (left side) and final prototype (in the
mid). The right side represents a login attempt with a very similar image as
the reference image.

5.6.3 Performance compared with different Devices

In this section, we evaluate the performance with different Android smartphones. In
Table 5.18 we compare two smartphones and their performance on the preprocessing
pipeline and the neural network. We measured the preprocessing pipeline computation
time with the face detection from OpenCV, the landmark detection and the preprocessing
time of the amplitude, depth, noise, x, y and LBP data. Additionally, we measured the
computation time of the CNN for one feature vector (based on a two-channel image). The
real measurement needs more time because the activation of the ToF illumination unit
and the capturing process with the ToF camera need around 1–1.5 seconds depending
on the system. The data saving process which stores the data to the storage need some
milliseconds additionally.

The Samsung Galaxy S9+ computes the six images with the preprocessing pipeline
around 156% faster than the Galaxy S7. Additionally, the computation of the feature
vectors is 122% faster.

5.7 Additional Insights

In this section, we evaluate the impact of the L2 normalisation on the output feature vec-
tor and additionally the impact of Batch Normalisation (BN) in the first layer. In FaceNet,
L2 normalisation is used on the output feature vector. In contrast, NIRFaceNet uses max
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(a) Login from side view
with slider position "Very
Low".

(b) Login from side view
with slider position "Very
Low".

(c) Frontal login with facial
expressions and slider posi-
tion "Lower".

Figure 5.29: The slider position "Very Low" change the threshold and log in
from different views is possible. With the slider position "Lower" it is possible
to login with facial expressions.

Table 5.18: Performance comparison between different smartphones. We
measured the computation time of around 100 images and averaged the
value. Additionally, the computation time depends on the system utilisa-
tion. The pipeline result is based on six processed images (amplitude, depth,
noise, LBP, x, y) with face and landmark detection included. The result of the
CNN (NIRFaceNetV3) computation time is based on one feature vector with
two channels.

Test phone Pipeline avg. [ms] NIRFaceNetV3 avg. [ms]
Samsung S7 255.3 71.56
Samsung S9+ 163.5 58.70
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Table 5.19: Training with L2 and Batch Normalisation (BN). We used the
NIRFaceNetV3 with 100,000 iterations for training. We denote max pooling
as M and L2 normalisation as L.

Exp.
Nr.

Additional
settings

τ P R F1 A N

1 Standard NIR-
FaceNetV3

0.32377 98.85% 49.05% 65.56% 91.41% 90.74%

2 With M, BN
and L

0.30126 98.82% 45.15% 61.97% 90.77% 90.10%

3 Without M,
with BN and L

0.35096 98.72% 44.22% 61.08% 90.61% 89.95%

4 Without M
and BN, with
L

1.61715 99.22% 72.73% 83.93% 95.36% 94.82%

5 With M, with-
out BN and L

1.02426 99.10% 63.08% 77.09% 93.75% 93.12%

pooling. In Table 5.19 we summarise the experiments with the different settings. For
this, we modified the NIRFaceNetV3. We can summarise that the NIRFaceNetV3 with
max pooling performs slightly better than the modified version with L2 normalisation.
Due to the excellent results in the literature, we are surprised that the removing of BN
leads to a higher Recall. We observed the described effect of faster training. The loss
function converged faster with BN. In Figure 5.30 we illustrate on the left side the loss
function of the version with BN and on the right side without BN.

This effect needs further research to find the dependency. We believe the used ToF
data and channel combinations can lead to this effect. We can’t find research with CNN’s
and ToF data for face recognition to explain this effect in more detail. Additionally, we
experimented with logins without environmental light or sunlight. We could not find
any problems or differences, compared to the login with environmental light indoors.

The last experiment is an experiment with Softmax and ToF data. We trained the NIR-
FaceNetV3 with Softmax. We observed a significant faster training due to more efficiency
of Softmax compared to Triplet Loss. Wojke et al. [WB18] claim that Triplet Loss train-
ing is depended on triplet selection and generally more challenging to train a network.
We removed the Softmax layer after around 100,000 training iterations and retrained the
network with Triplet Loss for around 30,000 iterations. The discovered effect: the results
are nearly equal with 130,000 iterations (Softmax and Triplet Loss) and 500,000 itera-
tions (Triplet Loss). Additionally, we discovered more structure in the kernels of the first
layer. In the end, we could not reach better results, but the training is faster. In Figure
5.31 we visualise kernels of the NIRFaceNetV3 and CNNV1 with trained Softmax and a
restart with Triplet Loss.

Additionally, we experimented with a newer camera (build in 2018) of the same se-
ries as our ToF camera (release date 2017). The new version has fewer outliers with the
same sensor settings. We believe that a better calibration of the sensor can lead to fewer
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Figure 5.30: On the left side we illustrate the loss of the network from Table
5.19 and experiment number three, on the right side, we visualise the loss of
experiment number four. Note that the loss function converged faster with
BN.

Figure 5.31: Kernel structure of NIRFaceNetV3 (left) and CNNV1 (right) af-
ter Softmax and Triplet Loss training. The red channel represents the ampli-
tude data, green the depth data and blue the noise data. For the two-channel
version of NIRFaceNetV3, we filled the third channel with zero values to vi-
sualise the kernels.
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outliers. In Figure 5.32 we illustrate on the left side the captured images from the old
camera model and on the right side with the new version of the camera.

Figure 5.32: Our used camera (year 2017, left) compared to the new camera
(year 2018, right). Note that strong outliers occurred around the face with
the old model.
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Chapter 6

Conclusion

In this chapter, we conclude our work and present ideas for further directives. We sum-
marise the created setup and environment, the best-determined login distances, attempts
to fool the solution and the impact of the depth channel on the results. Additionally, we
give insights into the new sensor generation and improvements for our face recognition
system.

6.1 Summary

In this Master’s thesis, our aim was to build a face recognition prototype on Android.
The solution should be reliable, easy to use and the False Discovery Rate should be low
to prevent a wrong log in to the system. For this, we explored the possibility of ToF for
face recognition. With our experiments, we figured out that face recognition with ToF
data is reliably possible. Due to the restriction on Android smartphones, we are limited
in computational power. It is not possible to use deep networks like FaceNet [SKP15] for
verification within a time in which the user accepts the face recognition system.

We build up a database with ToF and RGB data to train and evaluate different net-
works. For this, we captured 47 individuals. We implemented a preprocessing pipeline
that segments the faces and prepares the data for the CNN. We figured out a performance
drop with the unsegmented background by around 11% (login rate to the system based
on the validation set). Backgrounds with prepared random noise and average borders
calculated from the face have no mentionable influence on the result compared to the
entirely removed background variant. We hypothesise that the network focuses on the
background in earlier training because the environment for the individual is the same
in the captured images. We believe that more training data and temporal variations be-
tween measurements can solve this problem. In the end, the background segmentation
requires more processing power but can improve and speed up the network training.
Additionally, we can summarise that the initialisation is essential for the results of the
network and differed many per cent with identical starts. In our experiments, we figured
out that the inception based derivatives are more stable during training, but they needed
more training iterations to reach zero loss. This additional training can also lead to more
stable results. Another potential problem could be the triplet selection for the Triplet
Loss training which is different for each new run. To differentiate the results with more
precision, it is necessary to complete even more training runs.
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We figured out that the distance and quality of the reference image are crucial to the
results. A login at the same distance as the reference image led to the best results. With
a reference image from 40 cm distance to the camera, we reached high login rates from
different login distances (30–50 cm). Expressions and side views lowered the results.
Additionally, the reference image selection for the comparison itself is important. For our
experiments, we used one reference image from the validation or test set and compared
them against the login images of the associated set.

We are unable to evaluate the exact effects of different emotions because not all in-
dividuals labelled their emotions correctly. Additionally, not all candidates showed the
same facial expressions constantly over the entire capturing process. To allow a login
with different emotions, we needed a lower threshold. For this, we configured a slider in
the Android GUI which changes the threshold of the login system. With a rising thresh-
old, a login with facial expressions and slightly from the side view is possible. The false
positive rate increases with rising threshold.

One potential application for verification is car unlock with ToF. Logins in darkness
due to the active near-infrared illumination unit and logins in strong sunlight (due to
ambient light suppression) are possible. Based on these experiments, we believe that
face recognition in cars is possible and could open up new research areas with ToF. For
example, face recognition for car sharing and the monitoring of different individuals in
a car.

In our experiments, we were unable to fool our face recognition system with printed
images. We tried 80 login attempts with different distances, images and viewpoints.
We received low similarities. We used images for this experiment which were accepted
during login with the real individual. The resulted depth image from the printed image
looks like a deformed face. We hypothesise that fooling the system with a printed image
is not possible due to the observations of the distances between the reference and printed
login image. In our experiments, we were also unable to fool the application with images
from the computer monitor due to the strong reflection from the monitor which is caused
by the active illumination unit from the camera. Additionally, we figured out that the
amplitude data without the depth channel perform with around 14% higher login rates.
Mian et al. [MBO07] summarise that 2D images combined with high-quality 3D laser
scanned images can improve the login rate to the system. We hypothesise that a less
noisy depth channel can improve our solution and additionally improve the security.
With the current ToF sensor generation, the depth channel lowered the performance of
the system. FaceNet for smartphones reached a Recall between 51.9–67 (private test set
with one million images and LFW test set). Our solution performed with a Recall of
around 60% on the captured ToF test set with 2654 images.

6.2 Outlook

The preprocessing pipeline processed around 5–6% wrong faces and landmarks. This in-
cludes, for example, wrong landmarks from the side view, a neck or one eye which should
represent the face. Generally, these examples are rejected and lowered the performance
of our system. We hypothesise that a trained face and landmark detection on ToF data
can improve our solution (CNN’s like [HR17] for example).
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Figure 6.1: Wavelength of sunlight. The sun has less impact at 940 nm
wavelength where the new sensor generation operates. Our current ToF cam-
era has a 850 nm illumination unit. Figure based on [Arn+13].

The authors in FaceNet [SKP15] summarise that more training images lead to better
performance. In our experiments, we figured out that five more individuals improved the
Precision of the system by around 1.5%. We hypothesise that more training images can
further improve the performance of the system. Additionally, we believe that rejection
classifiers as in [MW09] would accelerate the face recognition process in early stages.

The next sensor generation of our used ToF sensor (which should be released in 20191)
operates with a wavelength of 940 nm. In this area, the sun has less influence. We
hypothesise that this can improve the login rate outdoors. In Figure 6.1 we illustrate the
wavelength of the sun.

We hypothesise that an auto exposure that focuses on the face and not on the whole
image can improve the solution further. Strong reflections in the background lead to
a lowered auto exposure and noisy images. Additionally, we figured out that a pre-
training of the network with Softmax, followed by TripletLoss training can reduce the
training time of the network. Wojke et al. [WB18] summaries that the triplet selec-
tion is important for the success of the training. We believe that also Triplet Loss can
change the results with each training run from scratch due to the random combination
of triplets. Developing an effective sampling strategy is complex and additionally, time-
consuming. [WB18]. For this, we expect better results with an intelligent triplet selection
algorithm.

In [Nah+18] the possibility of pulse measurement with ToF is explored. Another
protection mechanism of the system could be the liveness detection. Measuring the pulse
with contact and remote photoplethysmography is possible.

An interesting research direction would be the investigation of deeper networks to

1https://www.pmdtec.com/html/pdf/press_release/PR_20180109_pmd_IFX_new_imager_final.pdf
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ToF. With this thesis, we were limited to shallow networks which can be deployed in our
smartphone prototype. State-of-the-art are very deep networks, so we expect significant
improvements with deeper architectures.
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Chapter 7
Appendix

We illustrate the complete setup of our project in Figure 7.1. It consists of two computers.
We use the Windows computer for high-quality graphics with Matlab and also to train
the networks. We use Linux Fedora for Android programming and to monitor the output
of the smartphone with the Python 3D libraries. To save and archive all the results, we
use a one terabyte HDD due to the big size of the recordings. The used CPU for training
is an AMD Ryzen 2700x (eight core) and Geforce 1080 GTX graphics card with 8 GB
VRAM and CUDA 9.2 libraries.

Figure 7.1: Complete setup. Due to fewer troubles we decided to use Win-
dows for Tensorflow [Aba+15] and high-quality visualisation with Matlab.
We used Linux for Android programming.
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Nomenclature

A . . . . . . . . . . . . . . . Accuracy

BN . . . . . . . . . . . . . Batch Normalisation

CNN . . . . . . . . . . . Convolutional Neural Network

F1 . . . . . . . . . . . . . . F1 measure

F . . . . . . . . . . . . . . . False Discovery Rate

FN . . . . . . . . . . . . . False Negative

FP . . . . . . . . . . . . . False Positive

ICP . . . . . . . . . . . . Iterative Closest Point

LLDB . . . . . . . . . . LLDB Debugger

LBPH . . . . . . . . . . Local Binary Pattern Histogramming

NDK . . . . . . . . . . . Native Development Kit

N . . . . . . . . . . . . . . Negative Predictive Value

P . . . . . . . . . . . . . . . Precision

PCA . . . . . . . . . . . . Principal Component Analysis

PMD . . . . . . . . . . . Photonic Mixing Device

R . . . . . . . . . . . . . . . Recall

SIFT . . . . . . . . . . . Scale-invariant feature transformation

SFR . . . . . . . . . . . . Spherical Face Representation

ToF . . . . . . . . . . . . Time-of-Flight

TP . . . . . . . . . . . . . True Positive

TN . . . . . . . . . . . . . True Negative
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