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Abstract

The imaging of quantitative MRI parameters enables an objective comparison

of the investigated tissues on the basis of physical properties and is therefore

considered an invaluable component of precision medicine. Recent work shows

that long scan times for qMRI can be reduced to a fraction through data

subsampling and model-based reconstructions. However, reconstruction with

nonlinear models can be time-consuming and thus makes them an ideal candi-

date for deep learning methods. There have only been very few approaches of

mapping MRI parameters by means of deep learning, and only one, where a

model-augmented neural network is used to estimate M0 and T2 maps. In this

master’s thesis, a U-Net is proposed that estimates M0 and T1 maps from a

corresponding set of subsampled Variable Flip Angle (VFA) images, comprising

the physical model consistency term that incorporates the signal model into

the objective function. The acceleration potential is shown on numerical brain

phantoms and on retrospectively subsampled in vivo measurements via transfer-

learning for cartesian subsampling of R = 1.89, R = 3.43 and R = 5.84. It is

further shown that prior knowledge of B1 can be included in the signal model

but it is even possible to estimate B1 inhomogeneity maps in a separate output

channel of the neural network. A comparison between learning the parameter

maps in image domain or in k-space was performed, showing that training

in image domain yields significantly better results without any backfolding

artifacts.

Keywords: quantitative MRI, Deep Learning, U-Net, VFA, accelerated MRI
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Kurzfassung

Die Bildgebung quantitativer MR Parameter gewährleistet einen objektiven

Vergleich der untersuchten Gewebe auf Basis von physikalischer Eigenschaften.

Neuere Forschungsarbeiten konnten zeigen, dass lange Scanzeiten für quan-

titative Bildgebung mittels Unterabtastung der gemessenen Daten und mod-

ellbasierter Rekonstruktion auf einen Bruchteil reduziert werden können. Die

Rekonstruktion mithilfe nichtlinearer Modelle ist jedoch zeitintensiv und ist da-

her ein idealer Kandidat für Deep Learning basierte Fitting Methoden. Bisher

gibt es nur wenige publizierte Methoden, um MR Parameter mittels Deep

Learning zu bestimmen und darunter nur einen Ansatz, welcher das neuronale

Netzwerk mit dem Modell der Signalgleichung erweitert, um M0 und T2 zu quan-

tifizieren. Im Zuge dieser Masterarbeit wurde ein U-Net implementiert, welches

M0 und T1 aus einer Serie von unterabgetasteten Gradientenecho Bildern mit

variablen Kippwinkeln bestimmt, wobei physikalische Information über die

Signalgleichung in der Kostenfunktion enthalten ist. Anhand von numerischen

Gehirnphantomen und retrospektiv unterabgetasteten in vivo Messdaten wird

das Potenzial der Methode im Bezug auf beschleunigte Messdaten gezeigt.

Weiters ist es möglich, bereits bekanntes Wissen über B1 in das Signalmodell zu

integrieren, oder B1 direkt in einem separaten Ausgangskanal des Netzwerkes zu

lernen. Der abschließende Vergleich zwischen Lernprozess im Bildbereich und im

k-Raum lieferte deutlich bessere Ergebnisse im Bildbereich ohne verbleibende

Artefakte durch Aliasing.

Schlüsselwörter: quantitative MRT, Deep Learning, U-Net, VFA, beschleu-

nigte MRT
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1 Introduction

1.1 Preface

Over the last decades, Magnetic Resoncance Imaging (MRI) has become a very

important imaging technique in medicine as it enables wide-spread applications

in diagnostics and research while being non-invasive. Unlike Computed Tomog-

raphy (CT), MRI does not require X-rays and offers a significant advantage

when imaging soft-tissue structures, but it also has some major drawbacks

including longer acquisition times and higher cost. A major benefit of CT is

that the resulting images are expressed in Hounsfield Units (HU), where the

attenuation coefficients are scaled to contain quantitative information on the

X-ray attenuation by the tissue [21].

Quantitative Magnetic Resoncance Imaging (qMRI), an important method

that has emerged out of conventional MRI, may provide useful insight into

the progression of certain diseases, where degradation might not be visible

in a conventionally weighted MRI scan. Especially diagnosis and progression

of neuro-degenerative diseases, such as multiple sclerosis and Alzheimer’s dis-

ease, could be improved with quantitative MRI [11]. This will become even

more important as these diseases show an increasing prevalence. As qMRI

is based on directly estimating tissue properties, the pseudo proton density

M0 and the longitudinal and the transversal relaxation times, T1 and T2, it

mainly displays physical tissue parameters and does not account for differences

2



1 Introduction

amongst scanners, allowing thus a more objective comparison and evaluation of

tissue. There are various well-established methods that can be used to estimate

these parameters, such as the conventional Look-Locker Method [28] based

on inversion-recovery [37] or saturation-recovery spin echo sequences [7]. A

different method, the variable flip angle (VFA) technique [10], relies on two or

more spoiled gradient recalled echo (SPGR) images that are measured with

different flip angles. After acquiring the data, an optimization algorithm, typi-

cally based on nonlinear least-squares or on a linearization procedure, is crucial

to recover the sought parameter maps. Two major disadvantages of qMRI are

the longer imaging and reconstruction times needed to recover parameter maps

from acquired images.

These are among the reasons that make qMRI an ideal candidate for deep

learning approaches. In the recent years, machine learning has started to spark

a lot of interest in the field of medical imaging [18, 2, 20, 47], which has mainly

been credited to the increase of computational power of graphical processing

units. This massive improvement enables researchers to construct neural net-

works that are used in image segmentation, image reconstruction and denoising

applications, to name but a few. Another reason for the hightened popularity

of deep learning is due to the availability of big data and the development of

user-friendly machine learning libraries such as TensorFlow [30], Keras [6] and

PyTorch [33].

With this enormous upsurge of artificial intelligence (AI) in the domain of

medical imaging and the above-mentioned obstacles of long reconstruction

times in qMRI, the question naturally arises, whether it is possible to combine

these two techniques to develop a faster method of predicting paramter maps

than the technical and physical limits until now would allow it.

3



1 Introduction

1.2 Aim of this Thesis

The aim of this master’s thesis is to investigate whether the parameter maps for a

VFA sequence can be predicted by means of a deep learning approach as opposed

to conventional fitting routines. A U-Net, which is a special convolutional neural

network with an encoder-decoder architecture, is implemented to estimate

pixelwise M0 and T1 maps. The network is targeted to learn the relation

between an input set of variable flip angle (VFA) images and the corresponding

parameter maps for anatomical brain slices. The neural network is trained

on generic phantom data and is then fine-tuned with measured in vivo data

according to the method of transfer-learning. Transfer-learning is a commonly

used tool for small training datasets where a larger, similar dataset is taken to

pre-train the neural network. Further, a comparison between training the U-Net

in image space versus training it in k-space is made to investigate whether this

has any major effects on the final results in the subsequent inference phase.
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2 Background

2.1 Inverse Problems in Medical Imaging

Inverse problems are prevalent in all fields of sciene and can in its most basic

form be formulated as

y = A(x) (2.1)

The aim of solving an inverse problem is to estimate underlying parameters

of a given measurement or observation. It is therefore sought to recover the

quantity of interest x from an observation y which are related by a potentially

nonlinear operator A. In the domain of MRI, the most basic example of an

inverse problem is the recovery of an image given measured data in k-space.

However, this also includes further applications such as image denoising and

quantitative MRI. For qMRI, this reconstruction process is mathematically

expressed as

x∗ ∈ arg min
x

1

2
||PFCS(x)− d||22 (2.2)

where d is the measured k-space data, x are the sought parameter maps, C

models the coil sensitivities, F is the fourier transform, P is a sampling pattern

and S is a specified signal equation depending on the sequence which was

used. The usage of the `2-norm is justified by the fact that Gaussian noise is

assumed for k-space data. For a spoiled gradient echo sequence (SPGR) the

signal equation relates the signal to flip angles and parameters and reads as

5



2 Background

follows

S = M0
sin(α)(1− e−TR/T1)
1− cos(α)e−TR/T1

(2.3)

If one would like to map T2, the signal equation would be a different one than

for mapping T1 and could be modelled as a monoexponential decay with Echo

Time (TE) such as

S(T2) = M0e
−TE/T2 (2.4)

2.2 qMRI and Relaxation Times

In a very broad sense, the miracle of MRI leads back to the detection of protons

H1 in tissue whereof there is a large abundance in the human body. Applying

an external main magnetic field B0 leads to the proton spins aligning along B0.

Spin is a fundamental property of particles (atomic and subatomic), but will not

be dealt with further in this master’s thesis. When a radiofrequency (RF) pulse

is switched on, the magnetization is flipped according to the flip angle α and

the spins dephase. This introduces the fundamental concept of relaxation. The

nuclear spins absorb the deposited RF energy and get into an excited state thus

changing the orientation of the net magnetization vector M . The spins are then

located in the transversal plane. They precess about the longitudinal axis at the

Larmor frequency which is governed by the gyromagnetic ratio γ (42.58MHz
T

for water protons) and the main magnetic field strength B0 according to

ω = γB0 (2.5)

As soon as the RF pulse is turned off, the process of relaxation sets in, which

consists of simultaneous longitudinal and transversal relaxation.

Longitudinal or spin-lattice relaxation is guided by the longitudinal relax-

ation time constant T1 and accounts for the recovery of the initial value M0 of

the net magnetization. The energy that has been given to the system must leave

6



2 Background

it again in the course of T1 relaxation by being transferred to the surrounding

lattice such as neighbouring nuclei, atoms and molecules. This recovery process

can be described mathematically by the following equation and is depicted in

Figure 2.1.

Mz(t) = M0(1− e−t/T1) (2.6)

One can see from the above equation and in Figure 2.1 that T1 is a time

constant indicating a recovery of 63.2% of the original net magnetization after

one timespan of T1.

Figure 2.1: Process of T1 relaxation (Figure taken from Ridgway [35]).

The second relaxation process is transversal or spin-spin relaxation which brings

about the decay of the transversal magnetization. Mathematically, it is also

based upon a simple exponential decay.

Mxy(t) = M0e
−t/T2 (2.7)

7



2 Background

T2 relaxation is a very complex process due to a loss in phase coherence of the

spins that were tipped into the xy-plane. According to the exponential decay

of transverse magnetization, it is solely this interaction between the spins that

leads to dephasing.

In practice, since the main magnetic field can never be completely homo-

geneous, B0 varies slightly with ∆B0 depending on the spatial location which

directly influences the Larmor frequency of the spins. Due to these small dif-

ferences in resonant frequencies of neighbouring spins, additional dephasing

is brought about which is summarized by the time constant T ∗2 . The relation

between T2 and T ∗2 is shown in Equation 2.8. In Figure 2.2 the process of

dephasing spins is illustrated and the curves of T2 and T ∗2 are shown where it

can be clearly seen that T ∗2 -decay is faster due to additional dephasing from

B0 inhomogeneities. T ∗2 -decay is a reversible process since the inhomogeneities

are constant in time and space. Therefore, applying a 180◦ RF pulse after

dephasing leads to a resulting spin echo.

1

T ∗2
=

1

T2
+

1

T2′
=

1

T2
+ γ∆B0 (2.8)
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2 Background

Figure 2.2: Process of T2 relaxation (Figure taken from Ridgway [35]).

Another parameter that is associated with qMRI is the proton density PD.

According to Leroi [24], it is defined by the concentration of protons that undergo

resonance and thus are responsible for the signal in MRI. This emphasizes

the fact that all images have intensities which are proportional to the proton

density. Since this is a proportionality factor, it is sometimes combined with

other factors such as coil sensitivities and field inhomogeneities and it is then

referred to as pseudo proton density M0 as it is not solely a physical density

anymore.

2.3 Conventional Methods in qMRI

There exist a lot of different T1 mapping techniques, where three very well-

known and established methods are inversion recovery (IR), Look-Locker (LL)

9



2 Background

and the variable flip angle (VFA) method. As stated by Taylor et al. [41], the

general principle in T1 mapping requires several images with different parameter

settings, such as different T1 weighting by variable flip angles α, and to then fit

these images to a predefined signal equation. Referring to the work by Stikov

et al. [40], the inversion recovery and the variable flip angle techniques will be

discussed in more detail in the following sections.

2.3.1 Inversion Recovery T1 Mapping

IR T1 mapping is the oldest method based on a spin-echo sequence and is

considered to be the gold standard in T1 mapping [37]. The sequence, which

is illustrated in Figure 2.3, consists of two RF pulses, where the first is an IR

pulse that flips the equilibrium magnetization M0 by 180◦. After waiting for an

inversion time (TI) during which the flipped magnetization recovers, a second

pulse of 90◦ is applied to flip the magnetization into the transverse plane. This

is followed by the readout phase.

Figure 2.3: IR T1 mapping (Figure taken from [40]).

The acquired signal S in its most general form results from the following relation

shown in Equation 2.9. The parameters a and b relate to proton density and

10



2 Background

contain information on the deviation from an ideal 180◦ pulse. According to

Taylor et al. [41], approximating the course of the longitudinal magnetization

is approximated surprisingly well using this simple model with one exponential

function.

S = a+ b exp
−TI
T1 (2.9)

2.3.2 Variable Flip Angle T1 Mapping

The variable flip angle (VFA) technique is based on a spoiled gradient-echo

sequence and can also be used to acquire 3D T1 maps in a clinically acceptable

time frame (< 30 min according to Cheng and Wright in [5]). The authors

highlight its advantages as a low power deposition in comparison to spin echo

techniques and low spatial distortion compared to EPI sequences. As described

by Stikov et al. [40], at least two gradient-echo measurements with constant

TR and TE and varying flip angles αi are required. The relation between signal

intensity, parameters, and flip angles is described by Equation 2.10. The factor

k is a proportionality constant incorporating effects such as coil sensitivity

and T ∗2 relaxation and it is usually combined with the proton density into one

parameter that will be fitted, i.e. the pseudo proton density.

S = M0 sin(α)
1− e−TR/T1

1− cos(α)e−TR/T1
(2.10)

Choosing n different flip angles leads to n measurements that allow for a fitting

procedure of this equation. The sequence diagramm can be seen in Figure

2.4.
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Figure 2.4: VFA sequence for T1 mapping (Figure taken from Stikov et al. [40]).

Two important issues discussed by Stikov et al. [40] have yet to be mentioned.

This is first and foremost the fact that this relation assumes perfect flip angles,

which in practice can not be achieved due to B1 inhomogeneity. Thus, a B1

field map is required to be able to account for the spatial inhomogeneity of the

radiofrequency field. Especially at higher field strengths (≥ 3T ), this becomes

an urgent issue. Furthermore, the above equation also assumes perfect spoiling

i.e. the complete disruption of residual transversal phase coherences that might

still persist at the end of TR. Since most sequences have a rather short TR

to render them clinically feasible, this demands for a good spoiling technique

apart from choosing a long TR. This could theoretically be achieved by gradient

spoiling, where the amplitude of the gradient is varied randomly and, more

important and effective, RF spoiling. This means that the phase of the RF

pulse is incremented in a predefined relation.

12
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2.4 Fitting Methods

2.4.1 Iterative Fitting Methods

Based on the formulated inverse problem for qMRI, which consists of a model-

based data fidelity term and a regularization term and is shown below in

Equation 2.11, an optimization algorithm has to be chosen to find the optimal

parameters x.

x∗ ∈ arg min
x

1

2
||PFCS︸ ︷︷ ︸

A

(x)− d||22 + λR(x) (2.11)

These problems are often ill-posed. According to Jacques Hadamard in 1902

[14], a well-posed problem must have the following three properties:

• Existence: a solution exists

• Uniqueness: the solution is unique

• Stability: the solution’s behaviour changes continuously with the data

As soon as any of the above three properties is violated, a problem becomes

ill-posed. The forward operator A is nonlinear due to the nonlinear signal

equation and there are several possible choices for the regularization term, such

as the `2 norm or Total Variation (TV). The undersampling pattern enhances

the ill-posedness of the problem and therefore does not allow for a simple

analytic solution with the inverse operator A−1.

This calls for iterative algorithms and there are many different algorithms

available depending on the specific problem. The most basic first-order method

is gradient descent, which can be used if the underlying problem is differen-

tiable. It is based on the fact that for a differentiable function, the gradient

at any point will always yield the direction of biggest increase. Therefore,

the idea is to take a small step into the negative direction of the gradient

13
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and to iteratively repeat this procedure to find the minimum of a function.

Algorithm 1: Gradient Descent

1 Initialize stepsize t, starting point f 0

2 Define threshold ε for stopping criterion

3 while stopping criterion is not yet met do

4 fn+1(x) = fn(x)− t∇fn(x)

Gradient Descent can be used to solve simple and differentiable problems. There

are many other algorithms which are based on the principle of gradient descent.

Some examples are conjugate gradient descent, which additionally requires the

search directions to be orthogonal to each other, and Newton’s method, which

uses second order derivative information and fits a quadratic function in every

iteration, both methods yielding faster convergence than plain gradient descent.

There are also more sophisticated methods to select the stepsize t than setting

it to a fixed scalar such as diminishing stepsizes and backtracking line search

procedures.

2.4.2 Analytic Methods

The analytic method to map T1 based on three different flip angles from a VFA

sequence was first proposed by Blüml et al. [4] in 1993 and it is also described

very detailed by Deoni et al. [10] and Cheng and Wright [5]. A correction scheme

for T1 is included in [5] to compensate for inaccurate knowledge of the flip

angles due to B1 field inhomogeneities. The authors start by transforming the

equation of a spoiled gradient echo sequence into a linear form of Yi = mXi + b

14
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with slope m and bias b.

Si = M0 sin(αi)
1− E1

1− cos(αi)E1

Si − Si cos(αi)E1 = M0 sin(αi)−M0 sin(αi)E1

Si
sin(αi)

− Si cos(αi)E1

sin(αi)︸ ︷︷ ︸
SiE1

tan(αi)

= M0 −M0E1︸ ︷︷ ︸
M0(1−E1)

Si
sin(αi)

=
SiE1

tan(αi)
+M0(1− E1)

(2.12)

The result of rearranging the SPGR equation has a linear form, where Yi =
Si

sin(αi)
, Xi = Si

tan(αi)
, m = E1, and b = M0(1− E1). Therefore, a linear equation

is obtained, where a set of 3 input-output pairs {Xi, Yi}3i=1 that were measured

with the three flip angles αi can be used for fitting. A linear regression on this

equation yields values of bias b and slope m. M0 can directly be calculated as

M0 =
b

1−m
(2.13)

T1 can be obtained by rewriting the expression for the slope m as

T1 = − TR

ln(m)
(2.14)

Figure 2.5 shows the errors that can occur in the linear regression on a low

and high angle (αL and αH) due to random noise. This leads to shifted data

points, whereas the measured magnitude signal will be larger, and thus the true

slope gets over- or underestimated as indicated by the dashed and dotted line,

depending on whether the noise affects the low or the high angle. This in turn

introduces errors in T1. If high SNR points are taken into consideration and

more than two angles are measured, the random noise will have less influence.

Solving for T1 analytically as shown above is an accurate method but might

bring about problems related to SNR if smaller flip angles are used. It should

be noted that when imaging over a large range of T1 values, multiple angles αi

deliver better results in a more uniform precision [5].
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Figure 2.5: T1 estimation from linear regression on two different angles αL, αH (Figure taken

from Cheng and Wright [5]).

2.5 Neural Networks

2.5.1 Idea

The basic idea of neural networks was inspired by information flow within the

human brain. Electrical signals are transmitted from dendrites via chemical

synapses to neurons and are carried on along the axon. This mechanism is the

principle for a neural network, which receives multiple inputs, combines them

and passes them through some activation function. This process is depicted in

Figure 2.6.
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Figure 2.6: A biological neuron and a most basic neural network. (Figure taken from [45]).

According to Csáji [8], neural networks can be trained to learn an input-output

mapping, where the weights of a neural network are adaptively changed de-

pending on the surrounding environment. By using activation functions for the

neurons, a nonlinearity is introduced into the model and allows to model more

complex, physical processes.

The universal approximation theorem, as shown by Csáji [8], states that a

multilayer feedforward network with at least one hidden layer containing finite

number of hidden units can approximate any continuous function on a compact

(i.e. closed and bounded) subset of Rn. This makes them universal approxima-

tors and also implies the variety of functions that can be approximated. In a

mathematically rigorous way this was formulated by Csáji [8] as follows

Theorem 1 Let φ(.) be an arbitrary activation function. Let X ⊆ Rm and X

is compact. The space of continuous functions on X is denoted by C(X). Then
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∀f ∈ C(X),∀ε > 0 : ∃n ∈ N, aij, bi, wi ∈ R, i ∈ {1, ..., n}, j ∈ {1, ...,m}:

(Anf)(x1, ..., xm) =
∑n

i=1wiφ(
∑m

j=1 aijxj + bi)

as an approximation of the function f(.); that is

||f − Anf || < ε

2.5.2 Network Architectures

Multilayer Perceptron

A Multilayer Perceptron (MLP) defines any feedforward neural network with an

input layer, at least one hidden layer and an output layer, each layer followed by

a potentially nonlinear activation function. In Figure 2.7 a very basic example

of an MLP with one hidden layer can be seen.

Figure 2.7: Simple MLP with one hidden layer.
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For simplicity, the input layer will further be denoted as x, the output layer as

y, z will be the weighted output from the previous layer, and a the activated

output. The input layer contains two units, it is therefore composed of x =

(x
(1)
1 , x

(1)
2 ) and due to the fact that there is no activation function it holds that

x = a(1) = z(1). The hidden layer has three hidden units with an activation

function. In this case it is the sigmoid function which is defined as

σ(x) =
1

1 + e−x
(2.15)

The weights are labelled in such a way that wij represents the weight from the

previous layer i to the successive layer j. The output z(2) can be written as the

following matrix-vector product.z
(2)
1

z
(2)
2

z
(2)
3

 =

w
(1)
11 w

(1)
21

w
(1)
12 w

(1)
22

w
(1)
13 w

(1)
23

(a(1)1

a
(1)
2

)
+

b
(1)
1

b
(1)
2

b
(1)
3

 (2.16)

The result in the input layer is then element-wise passed on to the activation

function, in this case the sigmoid function, which maps all input values into

the range of [0, 1].

a(2) = σ(z(2)) (2.17)

Finally, the weighted result from the units in the hidden layer get summed up

in the output layer, which can again be written as a matrix-vector product.

(
z
(3)
1

z
(3)
2

)
=

(
w

(2)
11 w

(2)
21 w

(2)
31

w
(2)
12 w

(2)
22 w

(2)
32

)a
(2)
1

a
(2)
2

a
(2)
3

+

(
b
(2)
1

b
(2)
2

)
(2.18)

Since the activation function in this layer is again chosen as the element-wise

sigmoid function (this does not have to be the same activation function as in

the previous layer), this leads to

a(3) = σ(z(3)) (2.19)
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The final output y is then

y = a(3) = σ(W (2) σ(

z(2)︷ ︸︸ ︷
W (1)a(1) + b(1))︸ ︷︷ ︸

a(2)

+b(2)) (2.20)

From this it can be seen that nonlinear activation functions are crucial, oth-

erwise the layers in a neural network could always be combined to one single

layer leading to only one input and one output layer without a hidden layer.

The universal approximation theorem requires at least one hidden layer to

approximate any continuous function.

Convolutional Neural Network

Convolutional Neural Networks (CNNs) are neural networks that are based

on the mathematical operation of convolutions. According to Goodfellow et al.

[13], for an image, which is a discretized two-dimensional array I(i, j), a two-

dimensional kernel K is typically used to perform weighted average operations

over a range of ±m,n at each location, which can be formulated as

S(i, j) = (K ∗ I)(i, j) =
∑
m

∑
j

I(i−m, j − n)K(m,n) (2.21)

CNNs first came up in a paper in 1999 by LeCun et al. [23], the proposed

architecture is shown in Figure 2.8. The basic idea is to extract features from

images rather than injecting all the pixels of an image into a feedforward neural

network at once, which would require a huge amount of weights for several

hundred input pixels.
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Figure 2.8: Architecture of first CNN as proposed by LeCun et al. [23].

CNNs brought about the ideas of a local receptive field where each layer receives

inputs from a small neighbourhood in the previous layer. This enables the

detection of basic shapes, edges, and corners and higher-order information can

be extracted as the information gets fed along the different layers. Another

huge advantage is the fact that much less parameters for the filter kernels are

required to be learned due to shared weights as opposed to fully connected

neural networks, where each unit in the previous layer is connected to each

unit in the successive layer. According to Goodfellow et al. [13], a typical layer

of a CNN consists of three stages: convolutions, an activation function, and a

pooling function. The task of the activation function is usually to introduce

a nonlinearity to the linear activations produced by the convolutions. The

final pooling operation then helps to include geometric invariance to local

translations by employing subsampling such as taking the maximum number

or the average number in a small local neighbourhood.

Extensive theoretical background on how and why CNNs work that well and

to what extend they can be used as approximators for functions has not not

been present earlier. Recently, it was shown by Zhou [46] that they are indeed

universal and can thus approximate any continuous function to an arbitrary

accuracy provided the neural network is deep and large enough.
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2.5.3 Backpropagation Algorithm

The backpropagation algorithm will be shown for the simple multilayer percep-

tron above. Each neural network has a loss function, wherefore there exist a

lot of different possibilities. In this case, the loss function is composed by the

sum of squared differences, i.e.

L(y, y∗) =
1

2
||y − y∗||2 (2.22)

In order to train a neural network with gradient-based optimization schemes,

the parameter updates are calculated in each iteration in order to adapt the

network’s parameters. The aim is therefore to find the derivatives of the loss

function with respect to the network parameters θ = {W (1), b(1),W (2), b(2)} by

means of the chain rule.

∂L
∂W (2)

=
∂L
∂a(3)︸ ︷︷ ︸
y−y∗

∂a(3)

∂z(3)︸ ︷︷ ︸
σ′(z(3))︸ ︷︷ ︸

δ(3)

∂z(3)

∂W (2)︸ ︷︷ ︸
a(2)

T

(2.23)

The first part is named δ(3) since it keeps reappearing in all of the other

derivations as well. The derivative of the sigmoid activation function is σ′(x) =
e−x

(1+e−x)2
and will simply be written as σ′ in the derivation.

δ(3) = diag(σ′(z(3)))(y − y∗) (2.24)

This leads to the final result for the first derivation.

∂L
∂W (2)

= δ(3)a(2)
T

(2.25)

The second derivation is quite similar to the previous one and reads as follows.

∂L
∂b(2)

=
∂L
∂a(3)

∂a(3)

∂z(3)︸ ︷︷ ︸
δ(3)

∂z(3)

∂b(2)︸ ︷︷ ︸
1

= δ(3) (2.26)
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Next, computing the derivative with respect to W (1) yields

∂L
∂W (1)

=
∂L
∂a(3)

∂a(3)

∂z(3)︸ ︷︷ ︸
δ(3)

∂z(3)

∂a(2)
∂a(2)

∂z(2)︸ ︷︷ ︸
δ(2)

∂z(2)

∂W (1)︸ ︷︷ ︸
a(1)

T

(2.27)

δ(2) is therefore defined as follows.

δ(2) = diag(σ′(z(2)))W (2)T δ(3) (2.28)

The complete derivation is then given by

∂L
∂W (1)

= δ(2)a(1)
T

(2.29)

Due to the fact that ∂z(2)

∂b(1)
= 1 the derivation for the last network parameter is

calculated as follows.
∂L
∂b(1)

= δ2 (2.30)

After the gradients have been derived they can be used in a gradient-based

optimization procedure, which aims to iteratively find the minimum of our

objective loss function. In the case of gradient descent the update rule for

the different network parameters θi with a stepsize η is generally denoted as

follows.

θt+1
i = θti − η

∂L
∂θi

(2.31)

2.6 Previous Approaches of Deep Learning in

Quantitative MRI

There have not been many approaches to incorporate deep learning methods

into qMRI. However, the work of Liu et al. [26] will be briefly summarized since

it is related very closely to the work done in this master’s thesis. Furthermore,
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a short overview of the work of Sabidussi et al. [34] will be given, which

was presented at the European Society for Magnetic Resonance in Medicine

and Biology in 2019. Both of the following approaches entirely work with

convolutions in image domain.

MANTIS: Model-Augmented Neural neTwork with

Incoherent k-space Sampling for efficient MR T2 mapping

Liu et al. [26] proposed a model-augmented neural network to map T2. The

proposed framework is depicted in Figure 2.9. They implemented a U-Net,

which is a special type of CNN, to predict the proton density PD - referred

to as I0 - and T2 from a multi-echo spin echo sequence with retrospectively

undersampled input images. The relation between the signal equation and the

parameters at the jth echo time is as follows

Sj(I0, T2) = I0 · e−TEj/T2 (2.32)

A signal model fidelity term was added to the loss function to obtain a cyclic

loss that ensures that predicted parameter maps actually produce the acquired

input data. This additional term serves as a regularizer in optimizing the neural

network parameters as shown below. The matrix E consists of the Fourier

transform and a successive undersampling pattern, while C denotes the output

of the U-Net and dj is the k-space measurement for the jth echo time. The

constants λdata and λcnn are empirically chosen as 0.1 and 1.0.

θ∗ = arg min
θ

(
λdata

[ t∑
j=1

||ESj(C(iu|θ))− dj||22
]
+λcnn

[
||C(iu|θ)− (I0, T2)||2

])
(2.33)
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Figure 2.9: MANTIS framework with two loss components by Liu et al. [26].

The authors used a randomized undersamling pattern scheme to render the

network more robust with respect to reconstructing images acquired with differ-

ent undersampling patterns. They compared their approach with conventional

iterative reconstruction approaches and were able to demonstrate improved

reconstruction performance for acceleration factors R = 5 and R = 8.

A deep learning approach to T1 mapping in quantitative MRI

In [34], Sabidussi et al. presented their work at the European Society for

Magentic Resonance in Medicine and Biology in 2019, where they use a ResNet

(as proposed by He et al. [16]) to predict T1 maps from Inversion Recovery (IR)

input data. A residual building block with its basic functionality is illustrated

in Figure 2.10. As explained in [16], it represents the following relation

y = F(x, {Wi}) + x (2.34)

where y and x are the output and input of the layer and the function F is

the residual mapping that is learned by the network. This seems to offer a

huge advantage for deep convolutional networks with an increasing number of
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layers, where it is easier to learn a residual mapping than unreferenced func-

tions. Especially with deep networks, initialization of weights becomes crucial

and increasingly more difficult if no previous knowledge can be incorporated.

Problems with vanishing or exploding gradients might be amplified through the

increasing number of layers. Thus, using residual blocks might provide remedy

in these situations.

Figure 2.10: Residual building block [16].

Figure 2.11 depicts the implemented ResNet architecture by Sabidussi et al.

[34]. As an input 10 T1-weighted images from an IR experiment were used,

whereas groundtruth and parameter maps were created by assigning T1 and

M0 values to brain slices. The relation between signal intensity and parameter

maps is given by

fn(A,B, T1) = A+Be−TIn/T1 (2.35)

with n = 1, ..., N , TIn inversion times, whereas A and B relate to proton

density and inversion efficiency [34]. The ResNet was then able to predict T1,

A, and B maps from the series of fully-sampled IR input images.

26



2 Background

Figure 2.11: Neural network architecture for T1 mapping by Sabidussi et al. [34].

2.7 Motivation

First of all, the enormous increase of deep learning in so many different areas

of science and in particular in medical imaging suggests that it bears a huge

potential to be used in future qMRI. Whereas this hype can at times be

tempting to simply use machine learning whereever and whenever possible, it
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certainly has its valid point in qMRI, where the time factor plays a crucial

role and is still among the largest obstacles. Moreover, the theoretical work on

multilayer perceptrons (Section 2.5.1) but also more recently on convolutional

neural networks (Section 2.5.2) prepares the ground for combining CNNs and

qMRI since any continuous function can be approximated by a large and deep

enough CNN. This guarantees the theoretical possibility of approximating M0

and T1 maps from a VFA sequence, however, to an arbitrary accuracy. Further

inspired by the novel developments of mapping MR parameters with neural

networks (Section 2.6) the next step seems to be obvious to expand it to

mapping parameter maps from a VFA sequence, where the relation between

signal intensity and parameters is more complex than the underlying exponential

function in the previous works. The implemented neural network and training

procedure will therefore be described in the following section.
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3.1 U-Net

3.1.1 Idea & Training Procedure

The original U-Net was proposed by Ronneberger et al. [36] to tackle a seg-

mentation problem for biomedical images. The aim was to develop a neural

network architecture that allows for localization in the output as it is often

required in image processing rather than single class labels in classification tasks.

The proposed architecture is shown in Figure 3.1. The U-Net has the typ-

ical downsamling path consisting of convolutions, activation functions and

pooling layers but without a fully connected layer at the last stage. Instead,

the bottleneck marks the start of a successive upsampling path by alternately

using transposed convolutions to enlarge the feature maps and convolutions

followed by activation functions. This procedure is accompanied by skip con-

nections, which ensure better localization by concatenating layers from the

downsampling path with the respective layers from the upsampling path. The

exemplary network in Figure 3.1 outputs 2 segmentation maps.
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Figure 3.1: Original U-Net architecture [36].

The main advantage of U-Nets is routed in the fact that location information

from the contractive path is combined with structural and textural information

from the expansive path. Since they are trained in an end-to-end manner,

this enables a pixel-by-pixel output and a per-pixel localization. Furthermore,

learning only convolution kernels makes the architecture computationally more

efficient since these kernels are independent of the in-plane size of the input

image and no dense layers have to be used. Moreover, max pooling aims to

increase the receptive field in each downsampling layer, however, at the cost of

losing spatial information to some extend. This is the reason why skip connec-

tions are useful to restore this lost information in the subsequent upsampling

layers.
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The fact that the advantages of the U-Net architecture were widely recog-

nized and that they have successfully been used in many problems so far have

encouraged the decision to also use it for learning T1 and M0 maps in this

work. This is supported by the universal approximation theorem, which was

discussed in section 2.5.1, according to which it must theoretically be possible

to estimate parameter maps from a set of VFA input images.

Figure 3.2 illustrates the training process for the U-Net during which the

filter kernels θ are updated iteratively. The network receives input images

which are then propagated through the U-Net to produce a prediction, which

is compared with a set of reference parameters by means of a loss function L.

The parameters θ are then updated by calculating the gradients ∂L
∂θ

by means

of backpropagation for a gradient-based optimization scheme.

Figure 3.2: Training Procedure.

Hyperparameters are chosen prior to the learning process and include parame-
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ters such as number of epochs, batch size, initial stepsize α, split ratio between

training and test set, and decay rates β1, β2. The decay rates were set to the

default values of the optimizer whereas hyperparameters such as initial stepsize

and batch size were selected subsequently to a grid search procedure. After

one epoch the network has seen the whole training dataset once, whereas its

parameters get updated each time after encountering a training data batch.

3.1.2 Image Domain

In Figure 3.3 the implemented architecture derived from the original U-Net can

be seen. Unlike the U-Net by Ronnerberger et al. [36] this network was not used

to create segmentation maps but to estimate parameter maps of M0 and T1 by

means of pixelwise regression. The input is a series of 10 variable flip angle (VFA)

images with constant flip angles αi = {1◦, 3◦, 5◦, 7◦, 9◦, 11◦, 13◦, 15◦, 17◦, 19◦},
which were chosen to cover a wide range of possible T1 values.

The feature maps were limited to a number of 20 in the first step as op-

posed to the original U-Net and the proposed network has one stage less in

depth. These measures were simply taken to prevent overfitting as much as

possible by reducing the number of learnable parameters by the U-Net. This

ensures a balance between learnable and training parameters.

32



3 Methods

Figure 3.3: Implemented U-Net architecture.

This network architecture has a total of 838 860 learnable parameters. How

much information is available for training will therefore depend on the number

of training samples. Taking as an example a training set of 895 images of size

216 × 216, one obtains 41 757 120 training parameters, although it has to

be taken into account that a lot of pixels (about 30 − 40%) are background

pixels and thus do not contain information. In the following pages, the essential

components of the U-Net are described in more detail.

Weight Initialization

A very basic strategy is to initialize the convolutional filter kernels of the net-

work by randomly drawing from a Gaussian distribution with a fixed standard
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deviation. However, if the initialization is not good - be it random or chosen in

a specific way such as initializing all weights with zeros - the minimization of

the network’s loss function might not converge. The signal either explodes or

vanishes and is rarely useful in the successive layers. The gradients in backprop-

agation will consequently also be extremely large or small, which significantly

impedes convergence.

There are other, more sophisticated weight initialization schemes such as

Xavier weight initialization [12] and He weight initialization as proposed by He

et al. [17]. While Xavier weight initialization was developed for linear activation

functions, convolutional neural networks often use the Rectified Linear Unit

(ReLu) function as an activation function, which will be described below. This

is where He weight initialization [17] comes into play. The method is based

on the variances within each layer, where the authors derive the following

relation.

Var[yL] = Var[y1]

( L∏
l=2

1

2
nlVar[wl]

)
(3.1)

Here, nl represents the number input units in the weight tensor of the current

layer l. The factor 1
2

stems from the ReLu activation function which sets half of

the signal to 0 at the end of each layer, which is the only difference to Xavier

initialization. Since the input signals should not change in magnitude when

being passed through the network, the variance for the layer L should be the

same as in layer 1. This is achieved by setting the whole product of the variances

from all the layers to a certain scalar, e.g. 1
2
nlVar[wl] = 1,∀l. Therefore, all

weights should have a Gaussian distribution with µ = 0 and σ =
√

2/nl.

Convolutions

The convolutions used in all layers in this work have a 3×3 kernel in-plane, and it

is exactly the entries of these filters which will be learned in the training process.
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In Figure 3.4, an example of a convolution process between two successive

layers is shown. In this case, there are 3 channels in the input layer and one

channel in the output layer. Therefore a filter kernel that is of dimension 3 in

its depth is needed, leading to a 3× 3× 3 filter in case of setting the spatial

kernel size to 3× 3. This results in a total of 27 learnable parameters.

Figure 3.4: Example of a convolution taken from Saha [1].

In the first layer of the proposed U-Net in Figure 3.3, convolution kernels of size

3× 3× 20 are needed, since the input layer has 20 channels which correspond

to the real and imaginary channels of the 10 VFA input images. To obtain a

number of 20 feature maps in the next layer, a total of 20 convolutions filters,

each of size 3× 3× 20, is required.

Activation Function

Figure 3.5 shows the activation function used in the U-Net, which is a ReLu

function. According to Nwankpa et al. [31] it is the most commonly used
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activation function and ensures faster computation since no exponentials and

divisions are required for computation.

ReLu(x) = max(0, x) =

x for x > 0

0 else
(3.2)

Its main advantage is claimed to be the fact that it eliminates the vanishing

gradient problem, which can be observed more frequently with other activation

functions. This becomes obvious by considering the derivative. For nonnegative

inputs the gradient will always be 1, whereas for other activation functions

such as the sigmoid function, the gradient might take on values much smaller

than 1 which are successively multiplied with each other and therefore lead to

vanishing gradients.

∂ReLu(x)

∂x
=

1 for x > 0

0 else
(3.3)

Figure 3.5: ReLu activation function.
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The problem of vanishing gradients still persists for cases where a neuron’s

output is negative, which will be set to 0 with a ReLu activation function.

These neurons will then be inactive and do not pass on information in the

backpropagation process. A strategy to combat this issue would be to use

activation functions such as the Leaky ReLu (f(x) = max(αx, x)) where α

is a very small negative slope. This gives the affected neurons the chance to

reactivate. However, from a different perspective, one could also argue that

it is this feature of ReLus that ensures their biological plausibility by adding

nonlinear behaviour to the activation function.

Batch Normalization

Batch normalization is an essential component in each convolutional layer. The

concept was first introduced by Sergey Ioeffe and Christian Szegedy in 2015

[19]. They recognized that during training, the input distribution of each layer

is altered since the weights of previous layers have changed. The authors refer

to this as internal covariate shift and therefore suggest to normalize the inputs

to each layer. This allows for higher learning rates and makes the network less

sensitive to unsuitable initialization. They propose to normalize a layer x with

its expectation and variance over the current batch by

x̂(k) =
x(k) − E[x(k)]√

V ar[x(k)]
(3.4)

Simply normalizing each input layer might change what the respective layer

can represent, therefore, it is essential to add a transformation with the learned

parameters γ(k) and β(k), the new standard deviation and the new mean, to

scale and shift the normalized value as follows.

y(k) = γ(k)x̂(k) + β(k) (3.5)
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This results in the following algorithm for a mini-batch B = {x1...m} by Ioeffe

and Szegedy [19].

Algorithm 2: Batch Normalization

1 Input: mini-batch B = {x1...m},
2 parameters to be learned: γ, β

3 Output: {yi = BNγ,β(xi)}
4 µ← 1

m

∑m
i=1 xi // mini-batch mean

5 σ2
B ← 1

m

∑m
i=1(xi − µB)2 // mini-batch variance

6 x̂i ← xi−µB√
σ2
B+ε

// normalize

7 yi ← γx̂i + β ≡ BNγ,β(xi) // scale and shift

Max Pooling

As described by Goodfellow [13], max pooling takes the maximum value within

a specified rectangular neighbourhood. It is used to render detected features

invariant to small translations of the input, this indicates that even though the

input is changed by a small amount, the output values would remain more or

less the same. This concept is illustrated in Figure 3.6 taken from Goodfellow

[13], where max pooling with a specified width of 3 and a stride of 2 is used.

Using a stride greater than 1 leads to a reduced representation size which is

how the max pooling layer is used to downsample feature maps.

Figure 3.6: Max pooling with downsampling taken from Goodfellow [13].
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Upsampling

A very common method to upsample the feature maps in the expanding path

is using transposed convolutions, which enlarge the spatial dimensions. An

example to illustrate this process with a 3× 3 convolution kernel and a stride

of 2 is given in Figure 3.7 by Pröve [3].

Figure 3.7: Example of a transposed convolution taken from Pröve [3].

As described by Odena et al. [32], transposed convolutions might lead to

checkerboard artifacts. This happens if the transposed convolution has an

uneven overlap, because the kernel size is not divisible by the stride, which is

the spacing between successive filter movements along the input image. This

overlap might persist in both dimensions of the image and creates a characteristic

checkerboard artifact in the resulting feature map. Neural networks, according

to Odena et al. [32], are often not capable of learning to compensate for the

consequently arising overlapping patterns, especially if multiple channels are

present. Exemplary feature maps when using deconvolution as a means of

upsampling in the implemented U-Net are shown in Figure 3.8. These are

feature maps from the upsampling path in the first layer above the bottleneck

with spatial feature map dimensions 54× 54.

39



3 Methods

Figure 3.8: Checkerboard artifacts with deconvolution in an exemplary deeper layer with

spatial feature map dimensions 54× 54.

Therefore, the implemented U-Net uses nearest neighbour interpolation to

upsample the feature maps in the upsampling path. The interpolution results

in a resized image and is then followed by a standard convolution with a 3× 3

kernel as a solid alternative approach, as proposed by Odena et al. [32].

Loss Function

The cost function L(f(x|θ), y) is a function that measures the deviation of the

predicted output by the neural network f(x|θ) given parameters θ from the

target output y. In this work it was chosen to be the mean squared error.

L(θ) =
n∑
i=1

||f(xi|θ)− yi||22 (3.6)

To update the parameters θ throughout the learning process, the gradient of the

loss function with respect to all the parameters is used for backpropagation.

Regularization

Regularization is a commonly employed technique to prevent neural networks

from overfitting and to introduce any given prior knowledge into the model. In
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this master’s thesis, the regularization for the loss term in the U-Net consists

of a data consistency term to ensure physical validity following the work of

Liu et al. [26]. Due to the fact that the relation between signal intensity and

parameter maps is known as stated in Equation 2.10 in Section 2.3.2, this can

be included in the model. The loss function is shown below, where λUNet = 1.0

and λdata = 0.1 were taken from Liu et al. [26].

L(θ) = λUNet||UNet(Sα,u|θ)−(M0, T1)||22+λdata
∑
α

||F−1PFSα(UNet(Sα,u|θ))−Sα,u||22

(3.7)

UNet(Sα,u|θ) denotes the ouput of the U-Net given undersampled VFA input

data and network parameters θ, F−1 and F are the (inverse) fourier transform

operators, and P is the undersampling pattern. In every iteration the network

makes sure that the parameter maps predicted by the currently learned filter

configuration yield the images that the network received as an input. This is

how the physical model is incorporated and it prevents the neural network from

predicting parameter maps that do not make sense physically but would still

lead to a low loss value if only the simple `2 loss term from Equation 3.6 was

used.

Batch Gradient Descent

In his book on Deep Learning [13], Ian Goodfellow describes the different

possibilities of updating the weights in machine learning optimization.

• batch/deterministic gradient methods: all training samples are pro-

cessed at once in one large batch

• stochastic gradient methods: a single sample is used at a time

• minibatch gradient methods: more than one and less than all training

samples are taken to adapt the weights, these methods are commonly

referred to as stochastic methods
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Taking only one sample at a time could lead to oscillating convergence behaviour

and only yields an approximation for the parameters, whereas processing all

training samples at one time is rarely possible due to hardware limitations.

Therefore, for practical purposes, parameter updates are usually based on batch

gradient methods, where a smaller number of samples is randomly taken from

the training data each time.

Adaptive Moment Estimation

Adaptive Moment Estimation (Adam) is a method for stochastic optimization

proposed by Kingma and Ba [22]. Being a first-order gradient method, Adam

uses the first- and second-order moment estimates of the gradients to obtain

individual adaptive learning rates. The algorithm described in their paper reads

as follows.
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Algorithm 3: Adam

1 Require: stepsize α, exponential decay rates for moment estimates

β1, β2 ∈ [0, 1), stochastic objective function with parameters θ

2 Initialize: parameters θ0, 1st moment vector m0 ← 0, 2nd moment

vector v0 ← 0, timestep t← 0

3 while θt not converged do

4 t← t+ 1

5 gt ← ∇θft(θt−1) // gradients w.r.t. stochastic objective

at time t

6

7 mt ← β1 ·mt−1 + (1− β1) · gt // update biased first moment

estimate

8

9 vt ← β2 · vt−1 + (1− β2) · g2t // update biased second raw

moment estimate

10

11 m̂t ← mt
1−βt1

// bias-corrected first order moment estimate

12

13 v̂ ← vt
1−βt2

// bias-corrected second raw moment estimate

14

15 θt ← θt−1 − α · m̂t√
v̂t+ε

// update parameters

16 return θt

This algorithm minimizes the objective function f(θ) with respect to its param-

eters θ in stochastic minibatches. First it updates the moving averages mt of the

gradient and vt of the squared gradient with the help of the hyperparameters

β1, β2 ∈ [0, 1). The moving averages are estimates of the 1st moment (mean)

and the 2nd raw moment (uncentered variance) of the gradient, which then

also get bias-corrected to prevent them from being biased towards 0 due to

their initialization. In each iteration, these corrected moment estimates are
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then used to update the parameters with stepsize α. The parameter ε is held

very small (ε = 1e− 8) and prevents a possible division by 0.

3.1.3 k-space Domain

Figure 3.9 illustrates the U-Net architecture that was used for learning the

parameters M0 and T1 in k-space, wherefore the architecture was only slightly

modified. For the input channels, the 10 complex k-space channels from the

VFA image series were split into real and imaginary channels and were then

concatenated, this accounts for the 20 input channels that can be seen in

the diagram. The U-Net then learns the convolution filter parameters for

the feature maps in k-space. In the final layer, the 4 feature maps for the

parameters {R(M0),R(T1), I(M0), I(T1)} are combined to produce 2 complex-

valued parameter maps M0 and T1 in k-space, onto which the inverse fourier

transform is applied to obtain the sought parameter maps in image space. The

loss function operates on the predicted and the target parameter maps in image

domain. For this architecture there are 840 680 learnable parameters in the

filter kernels.
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Figure 3.9: Implemented U-Net architecture in k-space.

3.2 Transfer-learning

Transfer-learning [9] is the process of using a pre-trained neural network to

retrain either the whole network or a set of specified, usually later layers with a

new dataset. It is a common tool if the training dataset is rather small, which

is why a larger, different dataset is used to pre-train the network which then

serves as a good initialization for the final network. The underlying idea is that

the network learns to distinguish basic features and shapes of an image in the

first layers whereas the specific details are learned in later layers, therefore the

first layers could potentially be reused for the new dataset.

Dar and Çukur [9] propose a transfer-learning approach for training a neural
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network with accelerated MRI data. The basic training was performed with a

larger dataset in the source domain, which was followed by domain transfer

including fine-tuning of the learned weights. They demonstrate the feasibility

of transfer-learning between T1- and T2-weighted images and between natural

and MR images.

There are different approaches to transfer-learning. One can either retrain

the last few layers of the neural network, replace the final output layer by a new

one or take arbitrarily many layers for fine-tuning up to the point where the

whole network is retrained by the target dataset and the pre-trained network is

thus used as an initialization. In this work, the output layer of the U-Net was

replaced by a new layer with randomly initialized weights due to the fact that

the brain phantom and in vivo data had some differences in their numerical

target values ranges. The complete network was therefore retrained, but the

pre-trained network was used to initialize the weights.

3.3 B1 Inhomogeneity Maps

Since the B1 field is spatially not homogeneous, it needs to be compensated

for. This is especially important in qMRI, where an imperfect B1 field leads to

spatial variations in flip angles which then has a direct impact on the signal

equation. The reference parameter maps were corrected for B1 inhomogeneities

prior to training, thus the U-Net implicitely aims to learn a correction scheme

for the parameter predictions.

Being able to learn the B1 inhomogeneity maps in a separate channel would be

highly beneficial for future in vivo applications since acquiring B1 inhomogene-

ity maps for flip angle correction usually requires a whole new measurement.

Therefore, an additional output channel was specified for the existing U-Net
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which aims to estimate the B1 inhomogeneity map for each slice. Reference

B1 inhomogeneity maps were generated with Bloch-Siegert B1 mapping [25]

to use as groundtruth maps for training on in vivo data. For training on the

brain phantom, reference B1 inhomogeneity maps were numerically produced

by means of a smooth 2D curved function with values ranging in [0.8, 1.15], to

model the deviation from the nominal B1 field.

3.4 Systematic Errors

To simulate more realistic scenarios, a few systematic error cases were tested

for with the trained U-Net. Therefore, the U-Net was trained in image domain

on the numerical brain phantom data without any acceleration. Different error

scenarios were then created and sent through the trained U-Net in an inference

stage. Systematic errors included scaling M0 by a constant factor, B1 inhomo-

geneity resulting in imperfect flip angles, motion during the measurement, a

fake tumor located in the white matter, the three undersampling cases and

added noise levels of 2%, 5% and 10%.

3.5 Data Acquisition

3.5.1 Generic Phantom

A numerical brain phantom [27] with 120 slices each of size 216 × 216 was

created, where some random examples of phantom parameter maps can be seen

in Figure 3.10.
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Figure 3.10: Exemplary parameter slices of phantom.

Further, a set of 25 slices from 35 measured brain volumes was available.

Therefore, T1 and M0 maps per slice for each patient were generated by assigning

each pixel the tissue with the highest probability according to underlying

segmentation masks for white matter, grey matter and cerebrospinal fluid.

Some random examples are shown in Figure 3.11.

48



3 Methods

Figure 3.11: Exemplary parameter slices.

3.5.2 In Vivo Data

The single-coil in vivo data was acquired for four healthy volunteers with scan

parameters shown in Table 3.1 by using a VFA sequence with the same flip

angles of {1◦, 3◦, 5◦, 7◦, 9◦, 11◦, 13◦, 15◦, 17◦, 19◦} as for the phantom data. This

resulted in a total of 420 slices, which were split accordingly into 90% training

and 10% test data. Dealing with in vivo data immediately implies that due to

B+
1 inhomogeneities the flip angles will not be perfect as implied by the spatial

dependency in Equation 3.8 below and are therefore compensated for by flip

angle correction within the signal model.

Si(x) = M0 sin(αi(x))
1− e−TR/T1(x)

1− cos(αi(x))e−TR/T1(x)
(3.8)

The reference parameter maps were generated using iterative model-based

reconstruction without spatial regularization [29].
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Table 3.1: Sequence parameters of the 3D-SPGR sequence for four volunteers.

TR TE FOV Scan Matrix Bandwidth

in ms in ms in mm×mm×mm in a.u. in Hz

Volunteer 1 4.86 1.97 224× 224× 64 224× 224× 64 108 640

Volunteer 2 4.8 1.95 224× 224× 64 224× 224× 64 110 880

Volunteer 3 4.8 1.95 224× 224× 64 224× 224× 64 110 880

Volunteer 4 4.8 1.95 224× 224× 64 224× 224× 64 110 880

3.6 Data Preprocessing

3.6.1 Normalization

In general, there exist different approaches to attain consistent input data,

such as either normalizing the data to a certain interval or standardizing to a

mean µ and standard deviation σ. Standardization, also referred to as z-score

normalization, centers the training data about µ = 0. This is usually sufficient

and additional normalization to a certain range is not necessary if ReLu activa-

tion functions are used, since their derivative is always 1 for a positive input.

Normalization to an interval is more crucial if an activation function such as

the sigmoid function is used, since its derivative for larger input values is close

to 0, at the cost of removing information by scaling all input to the same interval.

Therefore, for both training in image space and in k-space, the input data was

standardized to µ = 0 and σ = 1. To achieve this target, the global mean and

standard deviation of the whole dataset was used. Standardization in k-space

was exerted for real and imaginary channels together to preserve differences
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amongst the respective channels. The target parameter maps M0 and T1 were

both normalized to be in the range [0, 1] to compensate for the different value

ranges they each live in.

Gaussian noise of 2% from the channel with the highest signal intensity was

added to all the numerical phantom data in order to simulate noise similar to

in vivo noise levels. This approximation is valid given the fact that noise in the

raw k-space data is assumed to be Gaussian distributed.

3.6.2 Undersampling Method

A regular 1D undersampling pattern was chosen to retrospectively subsample

the data in k-space. Therefore, five percent of the central k-space lines were

kept to enhance the available low frequency information and additionally every

2nd, 4th or 8th line of the remaining k-space was taken whereas the other lines

were set to 0. This yields effective acceleration rates of R = 1.89, R = 3.43 and

R = 5.84. Likewise, one can say that 52.78%, 29.167% and 17.13% of k-space are

filled for each of the respective subsampling scenerios. These subsampling masks

were equally applied to the VFA images within each slice. The three different

sampling patterns can be seen in Figure 3.12. The sampling patterns were

then shifted to match the location of the k-space center before the subsequent

multiplication with k-space data.
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Figure 3.12: Sampling masks for acceleration factors R = 1.89, R = 3.43 and R = 5.84.

Applying these sampling masks to the images, i.e. multiplying them with the

k-space data, produces spatial aliasing or wrap-around artifacts in the results

in image domain. This is due to the fact that taking every nth k-space line is

a violation of the Nyquist criterion. Skipping k-space lines leads to a worse

resolution in k-space ∆k and this in turn decreases field of view (FOV) in

image domain due to the relation:

∆k =
1

FOV
(3.9)

What follows are the typical backfolded images, an example of which can be

seen in Figure 3.13.

Figure 3.13: Aliased images for acceleration factors R = 1.89, R = 3.43 and R = 5.84.
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3.7 Quantitative Evaluation

In addition to a qualitative evaluation of the images, quantitative measures on

all anatomical structures were taken to enable a more objective comparison.

Among them is the Structural Similarity Index (SSIM) proposed by Wang et

al. in 2004 [44]. For two images x and y, i.e. a predicted image and its reference

image, it is defined as follows

SSIM(x, y) =
(2µxµy + C1)(2σxy + C2)

(µ2
x + µ2

y + C1)(σ2
x + σ2

y + C2)
(3.10)

C1 and C2 are constants stabilizing the division, which are defined as C1 =

(K1L)2 and C2 = (K2L)2, where L is the dynamic range of the pixel values

and K1 � 1 and K2 � 1 are small constants. µx and σ2
x are the mean and

the variance of an image x, whereas σxy denotes the covariance of x and y, i.e.

how much these two images vary together. As explained by Wang et al. [44],

the SSIM is based on the assumption that human visual perception usually ex-

tracts structural information from an image and it thus incorporates structure,

luminance and contrast terms in its error measure. The SSIM was calculated

by using the module measure from the open-source image processing library

scikit-image [42]. Therefore, the constants K1 and K2 were taken from the

original paper [44] and thus set rather arbitrarily to K1 = 0.01 and K2 = 0.03,

which yielded the best performance according to Wang et al. [44].

The second quantitative measure that was used to evaluate images is the

normalized root-mean-square error (nRMSE) for a predicted image ŷ and its

reference image y.

nRMSE =
1

ymax − ymin

√∑N
i=1(ŷi − yi)2

N
(3.11)

The nRMSE is the normalized version of the root-mean-square error, which

in its most basic form consists of the squared, pixelwise difference between

prediction and reference image.
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4.1 Numerical Simulation

4.1.1 Image Domain

Table 4.1 contains the hyperparameters for training the U-Net in image do-

main.

Table 4.1: Experimental setup in image domain.

Hyperparameters

#training samples 895

#test samples 100

Epochs 1800

Batch size 8

Stepsize α 0.001

Decay rate β1 0.9

Decay rate β2 0.999

Figure 4.1 shows reference and predicted parameter maps for undersampled

VFA images of the brain phantom. The quantitative results are given in Table

4.2.
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Figure 4.1: Reference and predicted T1 and M0 for different acceleration factors. The top

row shows the undersampled input image series for R = 5.84. Bottom left and

right figures show reference and predicted T1 and M0, respectively, with pixelwise

relative difference maps below.

Table 4.2: nRMSE and SSIM for estimated M0 and T1 maps for acceleration factors R = 1.89,

R = 3.43, R = 5.84.

Acceleration
factor

nRMSE (%) SSIM (%)

M0 T1 M0 T1

R = 1.89 0.47 1.01 99.7 97.18

R = 3.43 1.62 2.8 96.74 94.52

R = 5.84 2.96 5.72 93.1 90.76

Figure 4.2 shows exemplary learned filter kernels of the first convolution in

image domain. Since the input contains 20 channels and the successive layer

is required to have 20 feature maps, this leads to a total of 20 3 × 3 × 20

convolution kernels.
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Figure 4.2: 20 learned filter kernels of size 3×3×20 of the first convolution in image domain.

4.1.2 k-Space Domain

Table 4.3 contains the hyperparameters for training the U-Net in k-space

domain.
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Table 4.3: Experimental setup in k-space.

Hyperparameters

#training samples 895

#test samples 100

Epochs 1000

Batch size 12

Stepsize α 0.001

Decay rate β1 0.9

Decay rate β2 0.999

Figures 4.3 and 4.4 show the predicted parameter maps without acceleration

and with acceleration of R = 1.89, whereby the U-Net was trained on k-space

data. Table 4.4 provides the corresponding quantitative results. Quantitative

measures were only taken with respect to all anatomical structures and the

background was excluded, since it does not contain information of interest.

Figure 4.3: Reference and predicted M0 and T1 for training on phantom data in k-space

without acceleration. For both parameter maps the pixelwise relative difference

map is shown on the right.
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Figure 4.4: Reference and predicted M0 and T1 for training on phantom data in k-space

data with acceleration R = 1.89. For both parameter maps the pixelwise relative

difference map is shown on the right.

Table 4.4: nRMSE and SSIM for estimated M0 and T1 maps for learning on k-space data

without acceleration (R = 1.0) and with acceleration factor R = 1.89.

Acceleration
factor

nRMSE (%) SSIM (%)

M0 T1 M0 T1

R = 1.0 0.5 0.56 99.15 94.38

R = 1.89 2.39 4.23 93.28 90.02

4.2 Transfer-learning with in vivo data

Table 4.5 contains the hyperparameters for training the pre-trained U-Net on

in vivo data in image domain.
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Table 4.5: Experimental setup for transfer-learning on in vivo data.

Hyperparameters

#training samples 378

#test samples 42

Epochs 1200

Batch size 8

Stepsize α 0.001

Decay rate β1 0.9

Decay rate β2 0.999

Figure 4.5 shows reference and predicted parameter maps for undersampled

VFA in vivo images of a healthy volunteer. The network was pre-trained with

the brain phantom training dataset and used as an initialization for a transfer-

learning scheme with the acquired in vivo data. The respective quantitative

results are given in Table 4.6.
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Figure 4.5: Reference and predicted T1 and M0 for different acceleration factors. The top

row shows the undersampled input image series for R = 5.84. Bottom left and

right figures show reference and predicted T1 and M0, respectively, with pixelwise

relative difference maps below.

Table 4.6: nRMSE and SSIM for estimated M0 and T1 maps for fine-tuning in vivo data for

acceleration factors R = 1.89, R = 3.43, R = 5.84.

Acceleration
factor

nRMSE (%) SSIM (%)

M0 T1 M0 T1

R = 1.89 2.28 2.45 86.42 92.26

R = 3.43 2.76 3.07 81.21 88.82

R = 5.84 3.12 3.56 81.09 86.52

Figure 4.6 shows the line plots for the selected line of the reference and generated

T1 map shown at the top.
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Figure 4.6: Line plots along selected line through reference and generated T1 for acceleration

factor R = 1.89. Top left and right figures show the reference map for T1 and the

generated map for T1, respectively, including the chosen line for the line plots.

Figure 4.7 shows the reference and generated T1 from the same slice, comparing

the two parameter maps in more detail and highlighting some of the remaining

artifacts in the prediction map.

Figure 4.7: Reference (left) and generated (right) T1 for acceleration factor R = 1.89 showing

remaining artifacts.
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4.3 B1 Inhomogeneity Maps

Table 4.7 contains the hyperparameters for training the U-Net in image domain

with an additional output channel for the B1 inhomogeneity map.

Table 4.7: Experimental setup in image domain for parameter and inhomogeneity maps.

Hyperparameters

#training samples 895

#test samples 100

Epochs 1600

Batch size 8

Stepsize α 0.001

Decay rate β1 0.9

Decay rate β2 0.999

Figure 4.8 shows predicted M0 and T1 maps and the additionally predicted

B1 inhomogeneity map with the respective groundtruth maps for accelerated

(R = 1.89) VFA input images. The corresponding quantitative results can

be found in Table 4.8. Figure 4.9 shows some exemplary feature maps of the

trained U-Net of an earlier and a later layer.
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Figure 4.8: Reference and predicted M0 (top row), T1 (middle row), and B1 (bottom row)

with acceleration factor R = 1.89 for brain phantom data.

Table 4.8: nRMSE and SSIM for estimated M0, T1 and B1 inhomogeneity maps for for

acceleration factor R = 1.89 for brain phantom data.

Acceleration
factor

nRMSE (%) SSIM (%)

M0 T1 B1 M0 T1 B1

R = 1.89 0.57 1.24 0.52 99.53 96.2 99.95

Figures 4.10 and 4.11 depict predictions for M0, T1, and B1 for two exemplary

in vivo brain slices. The parameter and inhomogeneity maps were generated

via transfer-learning from the pre-trained network. Corresponding quantitative

values can be found in Table 4.9. The experimental setup is summarized in

Table 4.5.
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(a) Feature maps of an early layer.

(b) Feature maps of the penultimate layer.

Figure 4.9: (a) Feature maps of an early layer after the first convolution with the input. Each

feature map is the result of a 3× 3× 20 convolution with all 20 input channels.

(b) Feature maps of the penultimate layer.

Figure 4.10: Reference and predicted M0 (top row),T1 (middle row) and B1 (bottom row)

with acceleration factor R = 1.89 for in vivo data sample 1.
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Figure 4.11: Reference and predicted M0 (top row),T1 (middle row) and B1 (bottom row)

with acceleration factor R = 1.89 for in vivo data sample 2.

Table 4.9: nRMSE and SSIM for estimated M0, T1 and B1 inhomogeneity maps with accel-

eration factor R = 1.89 for brain phantom data.

Sample
Acceleration

factor
nRMSE (%) SSIM (%)

M0 T1 B1 M0 T1 B1

1 R = 1.89 2.53 5.06 2.84 94.78 86.96 99.7

2 R = 1.89 2.36 2.58 2.07 85.48 89.84 97.92

4.4 Systematic Errors

In addition to the previous experiments, a few systematic erros were simulated

in the input images and were fed into the trained U-Net in inference stage. The
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U-Net was trained in image domain on the numerical brain phantom data with

hyperparameter settings as listed in Table 4.1. The corresponding reference

and predicted parameter maps of the exemplary slice that was used amongst

all cases is shown in Figure 4.12, where no systematic error was added. Table

4.10 summarizes quantitative results for all simulated scenarios.

Figure 4.12: Reference and predicted parameter maps with pixelwise relative difference error

maps of exemplary slice, where no systematic errors have been added.

Figure 4.13 shows qualitative results for multiplying M0 and thus directly the

input image series by a constant factor of 10, which corresponds to a different

scaling factor in an experimental setting.
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Figure 4.13: Reference and predicted parameter maps with pixelwise relative difference error

maps for multiplying M0 and S by a constant factor.

Figure 4.14 shows qualitative results for a simulated B1 inhomogeneity, even

though the U-Net never encountered input data comprised of imperfect flip

angles during training. The nominalB1 deviation is in the range of [0.85, 1.15].

Figure 4.14: Reference and predicted parameter maps with pixelwise relative difference error

maps for simulated B1 inhomogeneity.
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Figure 4.15 shows qualitative results for simulated motion during the mea-

surement. This implies that the input images were rotated in-plane, whereas

movement in the third dimension was not taken into account. The first case

(left) considers a constant rotation of 8◦ for the flip angles {α = 11◦ : 2◦ : 19◦}
and the second case (right) deals with random motion of α ∈ [−10◦, 10◦], ∀α.

Figure 4.15: Reference and predicted parameter maps with pixelwise relative difference error

map for two cases of simulated motion. On the left, a constant rotation for the

last five flip angle measurements is induced and on the right, random motion

during the entire measurement is simulated.

Figure 4.16 shows qualitative results for a fake tumor embedded in white matter.

Figure 4.17 depicts corresponding line plots through the tumor of the reference

and the generated T1 map.
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Figure 4.16: Reference and predicted parameter maps with pixelwise relative difference error

map for a simulated tumor.

Figure 4.17: Line plots through reference and predicted T1 parameter map for a fake tumor.

Top left and right figures show the reference and the predicted T1 map including

the chosen line for the line plots.
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Figure 4.18 shows qualitative results for accelerated VFA data for R = 1.89,

R = 3.43, R = 5.84. In this case, undersampled data was fed into the U-Net,

which was only trained on fully sampled data, thus it does not know how

to correct for the undersampling artifacts that it has never encountered in

training.

Figure 4.18: Reference and predicted parameter maps with pixelwise relative difference error

maps for accelerated VFA data for R = 1.89, R = 3.43, R = 5.84 from a U-Net

that was trained on fully sampled data.

Figure 4.19 shows qualitative results for noisy VFA data for 2%, 5%, 10% noise

with respect to the flip angle with maximum signal intensity.

Figure 4.19: Reference and predicted parameter maps with pixelwise relative difference error

maps for VFA input data with 2%, 5%, 10% noise.
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Table 4.10: nRMSE and SSIM for estimated M0 and T1 parameter maps for different sys-

tematic error cases.

Scenario
nRMSE (%) SSIM (%)

M0 T1 M0 T1

normal 0.49 0.22 99.18 93.21

constant factor 0.49 0.22 95.44 93.21

B1 inhomogeneity 3.57 1.81 97.8 92.68

constant motion 6.12 14.32 82.77 76.58

random motion 7.42 13.14 82.31 75.63

tumor 0.94 1.18 98.98 93.66

R = 1.89 3.63 6.44 90.82 86.4

R = 3.43 5.41 9.77 85.05 80.45

R = 5.84 9.37 11.93 80.67 77.23

2% noise 0.63 0.29 96.97 93.99

5% noise 1.11 0.67 91.46 91.3

10% noise 2.96 3.1 83.71 83.62
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5.1 Numerical Simulation

5.1.1 Image Domain

Figure 4.1 and Table 4.2 demonstrate that quantifying M0 and T1 by means of

a U-Net in image domain is possible. This was generally expected since there

was recent work already done in this field, as briefly discussed in Section 2.6.

Both of these two works, the first one learning T2 maps and the second work

learning T1 maps from an IR experiment, use the underlying rather simple

exponential relationship between signal intensity and parameters. In this case,

when fitting T1 from VFA images, the relation that the neural network has to

approximate is more complex and not as straightforward as in the previous

works. Nevertheless, the outcomes are promising with respect to future use

of deep learning in clinical qMRI. Incorporating the signal model into the

objective function ensures the physical validity of the model and thus includes

valuable prior knowledge that should not be neglected.

Introducing undersampling into the input images as depicted in Figure 4.1

yields typical backfolding artifacts which are manifested in image domain. The

U-Net was shown to be capable of removing these artifacts in addition to

performing parameter mapping. Obviously, the smaller the acceleration factor

R, which corresponds to less k-space lines being discarded, the better the final
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reconstruction results. Even for an acceleration factor of R = 5.84, where only

every 8th line of k-space was kept in addition to a fully sampled k-space center,

the quantitative results shown in Table 4.2 are still reasonably good considering

the accurate structures visible in Figure 4.1. However, at this stage, one can

qualitatively see that the amount of pixelwise outliers has increased in Figure

4.1.

Considering the quantitative results given by the normalized root-mean-square

error nRMSE and the Structural Similarity Index SSIM, one can observe that

for M0 the error is slightly lower and the SSIM is a little better than for T1.

This might have two different causes. On the one hand, the neural network

receives more information during training from the complex-valued M0 target

maps in the form of real and imaginary channels as opposed to T1 references,

which are simply real-valued. On the other hand, which is probably the decisive

aspect, the relation between signal intensity and T1 is of a much more complex

nature and is nonlinear, unlike the linear scaling between M0 and the signal

intensity.

An example of learned filter kernels from the first convolution is shown in

Figure 4.2, which show a lot of different characteristics. In general, they can

not really be classified into certain expected filter types, since there are many

more convolutions to follow which in combination achieve to learn the desired

mapping. The deeper the layer and the more convolutions the input data has

gone through, the larger the receptive field due to intermediate max pooling

layers. The receptive field is the region of pixels that is relevant in a convolution,

in this case the 3× 3 neighbourhood in each pixel is defined as its receptive

field. Deeper convolution kernels will therefore contain more abstract kernels

which can hardly be interpretated by the human visual perception. They might

therefore seem to be very random, but this level of complexity can simply not

be captured by human understanding.
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5.1.2 k-Space Domain

So far, no approaches of combining deep learning and qMRI by shifting the

learning process into k-space exist. This is comprehensible given the fact that

CNNs are mainly based on convolutions, where the most basic idea is that

features such as shapes and edges from images get detected and extracted. In

k-space these typical image-like structures are not present as such. Nevertheless,

training the U-Net on fully sampled k-space input data works surprisingly

well and the reconstructed parameter maps are very accurate, which is shown

in Figure 4.3 and in Table 4.4. It seems to be capable to learn the mapping

between input VFA series and parameter maps in k-space.

However, as soon as any undersampling is included in the input data, the

method breaks down and the final results always contain backfolding artifacts,

as depicted in Figure 4.4. It is understandable, considering that regular under-

sampling patterns, as they were used in this work, remove whole lines of k-space.

The U-Net is then targeted to fill up the missing k-space lines by means of many

convolutions, however, these convolution operations only have 3×3 filter kernels.

It is a difficult task to extract information from only few k-space lines which

are each surrounded by zero-filled lines, if only such small filter kernels are used.

Another important aspect is, as mentioned above, the fact that convolutions

are aimed to detect actual geometric shapes, which are not present as such in

k-space. It is therefore reasonable that such local operations, each working on a

small neighbourhood, are not able to recover missing k-space lines in addition

to mapping the input k-spaces to the output parameter maps. Therefore, the

results for learning the parameter maps in k-space for fully sampled input data

is remarkably good given the fact that almost the same architecture as in image

domain is used. One might now think about simply using larger filter kernels,

however, this rapidly introduces overfitting issues as this leads to an enormous

increase in learnable parameters. This can then only be compensated for by
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introducing massive amounts of training data, which is known to be difficult to

accomplish when working with medical image data.

Hypothetically, letting the network learn the parameter mapping in k-space,

does seem to offer the advantage that k-space data also contains inherent

symmetries which could be exploited in the learning process. There have in

general been approaches with non-local layers as explained by Wang et al. [43],

which could potentially improve the current results significantly. In this work,

a non-local, globally operating layer is placed immediately at one of the first

layers of the architecture and is supposed to learn to fill up the missing k-space

lines, followed by the regular U-Net which can then map the parameters from a

more or less fully sampled k-space. Although this is a global layer, it is different

to a fully-connected layer, since non-local neural networks consider relationships

between different sites in an image [43] and fully-connected layers use learned

weights. Using a fully-connected layer at the beginning, which receives input

images of size 216× 216, would exceed the available memory, this is a reminder

that especially in deep learning there are definitely hardware limits that pose

restrictions at times.

There are also other ideas to improve the network without using a global

layer. It might be possible to obtain better results by including dilated convolu-

tions, which are regular convolutions with an increased receptive field. If many

dilated convolutions with varying receptive fields in parallel were combined, this

could produce better parameter maps with less undersampling artifacts, how-

ever, the problem still remains that these are still all local operations in k-space.

There exists another approach including deep learning in k-space, coming

from the field of accelerating parallel MRI [39] and from standard image re-

construction problems [38]. Both of these works have in common that they

employ a regular U-Net in k-space followed by another U-Net in image domain.

They are therefore not operating solely in k-space and have the opportunity
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to correct remaining artifacts in image domain with the second U-Net. This

raises the question whether it is actually possible to shift the complete learning

process into k-space domain whilst keeping the proposed U-Net architecture.

Another approach by Han et al. [15] works exclusively in k-space by rear-

ranging k-space data into a low-rank Hankel matrix. The network’s task is

then to learn to fill up the missing points in k-space using low-rank Hankel

matrix completion. This approach works entirely in k-space and produces good

results. However, it is computationally more expensive in the preprocessing step.

In general, one must not forget that k-space does not contain locatable intensity

values as they are present in an ordinary image but rather spatial frequencies.

Therefore, each individual point in k-space holds information on all pixels in

the image. If a point in k-space is not predicted accurately by means of a

neural network, this can have drastic effects in the reconstructed final image

as opposed to a few mismatched pixels in image domain, which can often be

neglected. Mapping MRI parameters in k-space is in theory a good idea and

seems feasible, however, extreme care with regards to the used methods has to

be taken to ensure satisfactory results.

5.2 Transfer-learning with in vivo data

Transfer-learning is a powerful method if not enough training data is available.

This was also the case in the course of this work, as it is usually very challenging,

especially in the medical domain, to obtain sufficient amounts of in vivo training

data. As shown in the results in Figure 4.5 and in Table 4.6, the predicted

values for T1 and M0 are in good agreement with the reference. Structures are

accurately reconstructed even though the network had only limited amount

of data for training. The pixelwise relative difference maps show that there

is more noise present which is only natural considering the fact that in vivo
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images were used. Despite the decent quantitative results, there are still some

backfolding artifacts remaining in the predictions. They are not very prominent

due to noise for increasing acceleration. Unlike for the brain phantom, the

quantitative values for T1 are better than for M0. This is most likely traced

back to the fact that measurements from different volunteers were used, leading

to different numerical ranges for the pseudo proton density M0. Care had to be

taken with regard to the scaling process to remove the substantial differences

in M0 ranges.

Figure 4.6 shows the intensity profile along a selected line of a generated

T1 map in comparison to its reference T1 map. The course of intensity values

along the selected line through the whole brain closely follows the reference

line plot. This seems to be the case amongst the whole range of different T1

values. Figure 4.7, which shows the prediction and reference T1 maps from the

same slice as in Figure 4.6, highlights some of the remaining artifacts. The

labelled artifact (1) is clearly from the undersampling procedure, but artifacts

(2) and (3) reveal minor structural changes in the prediction in comparison to

the reference parameter map. It is not possible to locate the reason for their

occurrence, as this might be due to backfolding, but it could also be due to the

fact that the network was not trained well enough or was not able to generalize

optimally on unseen data.

Further research on the amount of retrained layers would be necessary to

optimize transfer-learning in clinical applications, since it could possibly also

suffice to re-train only the upsampling path of the network or the last few

output layers. However, if an approach like this is used, extreme care needs to

be taken with respect to the original training data, since the two datasets must

not be too different regarding numerical ranges and underlying structure.
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5.3 B1 Inhomogeneity Maps

As can be seen in Figure 4.8 and in Table 4.8, the results for learning addi-

tional B1 inhomogeneity maps together with the parameter maps for the brain

phantom data are surprisingly good and show accurate inhomogeneity maps.

The network is able to distinguish outputs with anatomical structure like the

parameter maps and those with smooth structures such as the inhomogeneity

map, even though accurate flip angle knowledge is required for conventional

fitting approaches.

Figure 4.9 shows exemplary feature maps of two different layers of the trained

U-Net. One can cleary see that the feature maps of the earlier layer still contain

backfolding artifacts which have not yet been corrected for. Moreover, the

feature map holding information on the inhomogeneity map is embedded into

the anatomical structures of the parameter maps. In contrast, the feature maps

from the deeper layer, which is in fact the penultimate layer, contain isolated

information on the parameter maps and on the B1 inhomogeneity map, which

indicates that the network was successful in separating the respective structures

from each other.

Figures 4.10 and 4.11 and Table 4.9 show qualitative and quantitative results

for predicting parameter and inhomogeneity maps by means of transfer-learning.

The procedure for transfer-learning is the same as before with the small addition

of adding a separate output channel for learning the B1 inhomogeneity maps.

The B1 inhomogeneity map for the second sample is predicted very accurately

and no remaining error can be detected in the pixel-by-pixel difference map.

This is also the case for the first sample. However, since the groundtruth maps

for the first sample were reconstructed from measurements which went through

substantial undersampling, the reference map contains blocky areas in the

frequency encoding direction. This effect is improved in the prediction by the
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trained U-Net, where the overall structure is much smoother. Furthermore,

some remaining structures of the parameter maps including undersampling

artifacts can be detected in the predicted B1 map, indicating that for the

approach of transfer-learning, the predictions for B1 are not entirely separable

from the parameter maps.

In general, the results for predicting B1 maps from measured in vivo data

were expected to be of such a good quality, since the in vivo training data is

compiled from four volunteers with a groundtruth B1 map for each training

slice. Since all reference maps are very similar to either one of the displayed

inhomogeneity maps in Figures 4.10 and 4.11, it comes to no surprise that the

results are indeed very good. It would therefore be interesting to include more

measurements from other volunteers into the training process and to use one

entire measurement originating from only one person as test data.

5.4 Systematic Errors

Multiplying M0 and thus also the signal from the SPGR equation by a constant

factor should not have any influence on the prediction, since the input data

is standardized and the output labels are required to be in the range [0, 1].

The predicted parameter maps in Figure 4.13 seem to qualitatively confirm

this idea, however, the quantitative values for M0 have slightly deteriorated

as listed in Table 4.10. The reason why the SSIM has seemingly decreased is

due to the fact that this measure is taken with respect to the denormalized

images, after they have been scaled back to their original values. Regarding

the original prediction as displayed by the trained U-Net, there is no difference

in the SSIM with respect to the reference in Figure 4.12. However, when M0 is

scaled by a constant factor, this directly influences its mean µ and standard

deviation σ and has in consequence an effect on the nonlinear relation of the
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SSIM and µ and σ. Therefore, this can only be observed for M0, whereas the

quantitative measures for T1 remain unchanged.

Feeding the network with a VFA input series with a B1 inhomogeneity also has

a huge influence on the predictions as depicted in Figure 4.14, if the network

was not specifically trained to recognize the inhomogeneities. The trained U-

Net does not know how to deal with imperfect flip angles since it has never

encountered them in training and therefore is not able to capture this feature in

the resulting predictions. The influence of the B1 inhomogeneity can be clearly

seen in the pixelwise relative difference map.

The possibility that a patient moves during an exam was simulated in two

different scenarios. In the first case, it can be assumed that after five flip angle

measurements the patient moved in such a way that a constant rotation of 8◦

was imposed on the following five flip angle measurements. The second case

considers motion where the patient moves arbitrarily, inducing a random rota-

tion of [−10◦, 10◦] for each measurement. As expected and as shown in Figure

4.15, this introduces blurring into the predictions and the anatomical structures

are not resolved distinctly anymore. The random motion leads to predictions

which are even more blurred and also to worse quantitative results, as listed in

Table 4.10. This is likely due to the fact that for constant motion the network

receives at least five input images which are not shifted whereas for random

motion, none of the input images is in its original position. In general, these

motion artifacts could potentially be learned by the U-Net provided sufficient

data is included in the training set. This could either be with a constant motion

behaviour, which should be fairly straightforward for the network to learn, or

an entirely randomized motion pattern, which corresponds to a more realistic

scenario.

In Figure 4.16 the predictions for a fake tumor in white matter are shown. The

tumor introduces new intensity values to the parameter maps that the trained
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U-Net has not seen before, which is especially critical for phantom data due

to discrete value pools. Therefore, it is evident that this can not be predicted

correctly by the network as this scenario has never occurred during training.

Figure 4.17 depicts a line plot of the intensity values for T1 through the tumor

showing that it is only the tumor values that can not be estimated accurately.

The reference map contains a smooth transition of the values from the border

of white matter to the center of the tumor, which can not be captured by the

network. One might argue that the U-Net should be able to predict pathologies

such as a tumor accurately, even though it has not encountered it in training,

by interpretating the input image series and its intensity course. This is contra-

dicted by the fact that the network learns solely based on convolutions which

aim to detect structure in the input rather than only focusing on the change of

the intensity course in the input VFA images.

Figure 4.18 shows results for feeding subsampled VFA input data into the

U-Net which was not trained on accelerated data. This is done for the three

cases of R = 1.89, R = 3.43 and R = 5.84 and obviously, the network can not

achieve to correct for the consequently arising backfolding artifacts. The higher

the acceleration factor, the worse the predicted parameter map. This behaviour

is also emphasized by quantitative results in Table 4.10.

The final scenario which was evaluated deals with different noise levels that

were added to the VFA input series. The predictions can be seen in Figure 4.19.

For adding noise such as 2% the results are quantitatively and qualitatively very

good since this is in the range of added noise during the training. However, if

this is increased up to a noise level of 15%, the network fails to recover denoised

parameter maps, since it was not trained on this task. Nevertheless, displayed

anatomical structures are still accurate, which is supported by quantitative

values in Table 4.10.
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While deep learning has already seen a huge boost in standard medical image

processing applications such as image segmentation and classification and fur-

ther in accelerated multi-coil reconstruction problems, there have been only very

few approaches of incorporating it into quantitative MRI. This master’s thesis

has shown the potential of learning M0 and T1 maps with a model-augmented

U-Net.

For learning parameter maps on training data in image domain, the good

qualitative and quantitative results show the enormous potential of using deep

learning in qMRI. A comparison to learning on k-space data led to the conclu-

sion that with the present architecture it is more meaningful to learn on data

in image domain. However, there might be possible future options to enhance

the architecture and render it more suitable for k-space learning, as discussed

in Section 5.1.2.

It was shown that it is possible to additionally learn B1 inhomogeneity maps

in conjunction with the parameter maps, which can be included in the signal

model of the objective function. Being able to learn B1 inhomogeneity maps

offers a great perspective for future applications since this would indeed spare

the need for an additional measurement.

The network, after being trained on numerical brain phantom data, was trans-

ferred to work on single-coil in vivo brain data of four volunteers by means of
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transfer-learning. This method has in the past shown to yield good results in

case of limited training data. The pre-trained model serves as a good initial-

ization point for further training with in vivo data. The acceleration potential

of three scenarios with different acceleration factors of up to approximately

6 was shown for phantom as well as for in vivo data. Future research on the

amount of re-trained layers would be interesting to further enhance the results

and completely remove remaining backfolding artifacts to render it a clinically

feasible method.

There are other existing architectures, such as ResNet, which was briefly

mentioned as a previous approach of learning T1 maps [34]. This could po-

tentially also provide very good results as this type of architecture is usually

employed for deeper networks with many layers. However, since the U-Net

produced satifactory results and the architecture seems justifiable for qMRI,

no other architectures were implemented and tested.

Other possible improvements include the incorporation of receive coils into the

fitting process, an issue which is rarely dealt with in deep learning based recon-

struction problems. Furthermore, the subsampling strategy could be adapted to

non-cartesian sampling patterns as they are used with compressed sensing based

algorithms which require incoherent artifacts in some transform domain.
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