
Alexander Steinmaurer

Revising a Game-Based Learning Platform for
Computational Skills in Education

Diploma Thesis

to achieve the university degree of

Magister der Naturwissenschaften

Teacher training programme: Computer Science and Computer Science Management

submitted to

Graz University of Technology

Supervisor

Assoc.Prof. Dipl.-Ing. Dr.techn. Christian Gütl

Institute of Interactive Systems and Data Science
Head: Univ.-Prof. Dipl.-Ing. Dr. Stefanie Linstaedt

Graz, December 2019

Alexander Steinmaurer

Überarbeitung einer spielebasierten Plattform
für Computational Skills im Unterricht

Diplomarbeit

zur Erlangung des akademischen Grades

Magister der Naturwissenschaften

Unterrichtsfach: Informatik und Informatikmanagement

eingereicht an der

Technische Universität Graz

Betreuer

Assoc.Prof. Dipl.-Ing. Dr.techn. Christian Gütl

Institute of Interactive Systems and Data Science
Head: Univ.-Prof. Dipl.-Ing. Dr. Stefanie Linstaedt

Graz, December 2019

Affidavit

I declare that I have authored this thesis independently, that I have not used other
than the declared sources/resources, and that I have explicitly indicated all material
which has been quoted either literally or by content from the sources used. The text
document upoaded to tugrazonline is identical to the present master‘s thesis.

Date Signature

Eidesstattliche Erklärung

Ich erkläre an Eides statt, dass ich die vorliegende Arbeit selbstständig verfasst, andere
als die angegebenen Quellen/Hilfsmittel nicht benutzt, und die den benutzten Quellen
wörtlich und inhaltlich entnommenen Stellen als solche kenntlich gemacht habe. Das
in tugrazonline hochgeladene Textdokument ist mit der vorliegenden Masterarbeit
identisch.

Datum Unterschrift

v

Abstract

This thesis describes the further development and introduction of a pedagogical
concept in sCool. The sCool system consists of two components: a mobile video game
for students and a web application for educators. It was initially developed in 2017

in a cooperation between Graz University of Technology and Westminster University
(UK). The general approach of the game is divided into two parts: concept-learning
and practical working. In the first part of the game the students learn concepts in
a textual way and in the second they have to apply the concepts using the Python
programming language. The creation of the content can be done in a web application
that is designed especially for educators. The combination of both components provides
a highly adaptive tool to teach computational skills.

To receive a tool with both an encouraging game environment a learner-centered
pedagogical concept some improvements are necessary. The thesis discuss the pre-
evaluation that was conducted in two (academic) secondary schools in order to develop
requirements and a concept for a further version. In terms of this pre-evaluation aspects
like game engagement, emotions, and game-related questions were asked. Based on
this findings the development of a revised sCool version started. This version extends
the existing game environment with different game element to provide additional
concepts in computational skill teaching. The development also covers the work on the
web application to make the new concepts as highly adaptive as possible.

A central part of this thesis is the evaluation of the further developed sCool version.
In four workshops different aspects of the game has been evaluated in order to target
the appropriate person group and to figure out if the new version lead to a better
understanding of the concepts. One of the evaluations has been conducted with ten
computer science teachers to receive feedback about the overall pedagogical concept.
The other three experiments were taken in a primary school, an academic secondary
school and a university.

The evaluation showed that the pedagogical concept is a key element for successful
education. In the scope of this evaluation it seems that the appropriate age group are
10-14 years old children since they enjoyed both playing the game and learning with
sCool. The revised version of the game helps to teach more concepts and improved
some usability issues in order to get a more playable game.

vii

Zusammenfassung

Die vorliegende Diplomarbeit beschreibt die Weiterentwicklung und Einführung eines
didaktischen Konzepts in sCool. Es besteht aus zwei Komponenten: einem mobilen
Videospiel und einer Webanwendung. Ursprünglich wurde das Spiel 2017 in einer
Zusammenarbeit zwischen der Technischen Universität Graz und der Westminster
University entwickelt. Das Spiel gliedert sich in zwei Teile: einem Konzeptteil und
einem praktischen Teil. Im Konzeptteil lernen die SchülerInnen verschiedene Konzepte
kennen, die sie im zweiten Teil mithilfe der Programmiersprache Python anwenden
können. Die Erstellung der Inhalte erfolgt in einer Webanwendung, die speziell für
PädagogInnen entwickelt wurde. Die Kombination beider Komponenten bietet ein
äußerst anpassungsfähiges Werkzeug, zur Vermittlung von Computational Skills.

Damit das Spiel eine möglichst motivierende Spielumgebung aber auch ein lern-
erzentriertes didaktisches Konzept zur Verfügung stellt, sind einige Anpassungen
notwendig. Zu Beginn der Diplomarbeit wird eine Vorevaluierung an zwei Schulen
der Sekundarstufe I beschrieben. Diese dient als Basis für die Entwicklung einer
weiteren Version. Im Rahmen dieser Vorevaluierung werden unterschiedliche As-
pekte wie zum Beispiel Engagment, Emotionen und spielbezogene Fragen untersucht.
Basierend auf diesen Erkenntnissen wird mit der Weiterentwicklung der bestehenden
Spieleumgebung begonnen. Es werden zusätzliche Spielelemente eingeführt, um neue
Konzepte zu unterstützen. Die Weiterentwicklung umfasst außerdem die Arbeit an der
Webanwendung, um die neuen Konzepte möglichst anpassungsfähig zu gestalten.

Ein zentraler Bestandteil dieser Arbeit ist die Evaluierung der neuen sCool-Version. In
vier Workshops wurden verschiedene Aspekte des Spiels evaluiert, um die Zielgruppe
herauszufinden und festzustellen, ob die neue Version zu einem besseren Verständnis
der Konzepte führt. Eine der Evaluationen wurde mit zehn InformatiklehrerInnen
durchgeführt, um Feedback zum didaktischen Gesamtkonzept zu erhalten. Die anderen
drei Experimente wurden an einer Volksschule, einer Sekundarstufe I und einer
Universität durchgeführt.

Die Evaluierung ergab, dass das pädagogische Konzept ein zentrales Element beim
Erlernen von Computational Skills mithilfe von sCool ist. Die Evaluierung zeigte
außerdem, dass die Zielgruppe zwischen 10 und 14 Jahre alt ist, da diese SchülerInnen
sowohl Spaß am Spielen mit sCool hatten, aber auch gerne etwas Neues lernten. Die
weiterentwickelte Version des Spiels hilft dabei, zusätzliche Konzepte zu vermitteln
und durch außerdem wurden einige Usability-Probleme behoben, damit das Spiel
noch ansprechender wird.

ix

Acknowledgement

Firstly I would like to express the deepest appreciation to my supervisor Assoc. Prof.
Dr.techn. Christian Gütl. His support, professional experience and advice during all
project phases guided and motivated me through the whole thesis. I also want to thank
him for the great opportunity to do some of the research in Melbourne.

During my research stay at the Royal Melbourne Institute of Technology Christopher
and France Cheong gave me a warm welcome and supported the project by providing
a meaningful input. Thank you for this great time in Australia.

Finally I want to give special thanks to my parents - Ingrid and Ernst - for supporting
me with a matter of course through my whole study, my girlfriend Vanessa for her
saintly patience and of course my best friends Thomas and Patrick.

xi

Contents

Abstract vii

Zusammenfassung ix

Acknowledgement xi

Abbreviations xxv

1 Introduction 1
1.1 Aims and Objectives . 1

1.2 Methodology and Contribution . 2

1.3 Structure . 3

2 Background and Related Work 5
2.1 Cognitive Perspective . 5

2.2 Computational Skill Teaching . 8

2.2.1 Computational Skills . 9

2.2.2 Computer Science in Austrian School Education 12

2.2.3 Digital Basic Education in Austria 14

2.2.4 Computer Science in other countries 15

2.3 Gamification . 16

2.3.1 Gamification in Education . 17

2.3.2 Tools for Gamification . 18

2.4 Game-Based Learning . 20

2.4.1 Game Design . 20

2.4.2 Game Frameworks . 22

2.4.3 Learning Theories in GBL . 23

2.5 Game-Based Learning in Computer Science 24

2.5.1 CodeCombat . 25

2.5.2 LightBot . 28

2.5.3 CodeMonkey . 28

2.5.4 Grasshopper . 30

2.5.5 sCool . 30

2.5.6 Overview . 33

2.6 Summary . 34

xiii

Contents

3 Game-Based Learning with sCool 37
3.1 Game Design . 37

3.1.1 Concept-learning Mode . 39

3.1.2 Practical mode . 39

3.1.3 Web Application . 41

3.1.4 Gamification Elements . 41

3.2 Implementation . 42

3.2.1 Practical mode . 42

3.2.2 Web Application . 47

3.3 Summary . 54

4 Pre-Evaluation 57
4.1 Pedagogical Concept . 57

4.2 Experiment 1: New Secondary School . 61

4.3 Experiment 2: Academic Secondary School 63

4.4 Findings and Limitations . 66

4.4.1 Game Mechanics and User Interface 69

4.4.2 Pedagogical Concept . 69

4.5 Summary . 71

5 Requirements and Concepts 73
5.1 Requirements . 73

5.1.1 Functional Requirements . 73

5.1.2 Non-Functional Requirements . 74

5.2 Pedagogical Concepts . 75

5.2.1 Onboarding . 75

5.2.2 Field Types . 76

5.2.3 Robot Interaction . 76

5.3 Summary . 77

6 Development 80
6.1 Robot Mission . 80

6.1.1 Field Types . 81

6.1.2 Keyboard . 84

6.1.3 Playground . 86

6.1.4 Onboarding . 87

6.1.5 Robot Storage . 88

6.2 Web Application and API . 90

6.2.1 Field Types . 91

6.2.2 Consent Message . 92

6.2.3 Skill Unlocking . 93

6.2.4 Robot Storage . 95

6.2.5 Web Application Multiuser Usage 95

6.3 Summary . 97

xiv

Contents

7 Evaluation 99
7.1 Scope . 99

7.2 Instruments and Setup . 100

7.2.1 Game Engagement Questionnaire 101

7.2.2 Computer Emotion Scale . 101

7.2.3 Game-related questions . 101

7.3 Participants . 102

7.4 Experiments and Results . 102

7.4.1 Teacher’s Evaluation . 102

7.4.2 Experiment 1: Primary School . 106

7.4.3 Experiment 2: Secondary School 109

7.4.4 Experiment 3: Royal Melbourne Institute of Technology 116

7.5 Discussion and Limitations . 121

8 Lessons Learned 126
8.1 Literature . 126

8.2 Development . 126

8.3 Didactics . 127

9 Conclusion and Future Work 130
9.1 Conclusion . 130

9.2 Future Work . 131

Bibliography 133

Appendix 140
A.1 Intro Worksheet . 141

A.2 Revision Worksheet . 142

A.3 Variables Worksheet . 143

A.4 Pre-Test Primary School . 144

A.5 Post-Test Primary School . 145

A.6 Questionnaire for Primary School . 146

A.7 Questionnaire Pre-Evaluation . 147

A.8 Experiment Documentation Primary School 148

A.9 Experiment Documentation Secondary School 152

A.10 Experiment Documentation RMIT . 156

A.11 Consent Form . 163

xv

List of Figures

2.1 Example on Classic Conditioning adapted after Green Wood, Wood, and
Boyd (2005) . 7

2.2 Example on Operand Conditioning adapted after Skinner (1938) 7

2.3 Algorithm Designing Process adapted after Kant (1985) 11

2.4 Austrian School System adapted after Austrian Federal Ministry of
Education and Research (2016) . 13

2.5 International Comparison of Computer Science Education (After Grandl
and Ebner, 2017) . 16

2.6 The dimensions of gaming/playing and whole/parts (After Deterding
et al., 2011) . 17

2.7 Four types of players (Arkün Kocadere and Çağlar Özhan, 2018) 22

2.8 Challenge/Skill Diagram (After Csikszentmihalyi, Abuhamdeh, and
Nakamura, 2014) . 24

2.9 Exploratory Learning Model (adapted after De Freitas and Neumann,
2008) . 25

2.10 CodeCombat - User Interface . 26

2.11 CodeCombat - Teacher’s Dashboard . 27

2.12 CodeCombat Game elements . 27

2.13 Lightbot Maze Game . 28

2.14 CodeyMonkey - Coding Adventure: Using CoffeeScript to reach the
bananas . 31

2.15 CodeMonkey - Teacher’s Dashboard: Student’s progress 31

2.16 CodeMonkey - Coding Chatbots: Programming a chatbot using Python 31

2.17 Learning Coding with Grasshopper . 32

2.18 sCool - Practical mode . 33

3.1 sCool - System Architecture (adapted after Steinmaurer, Pirker, and Gütl
(2019b)) . 38

3.2 sCool Game Types . 40

3.3 Practical mode . 46

3.4 Hierarchical Course Tree . 47

3.5 This view shows the New Course button to create a new course and
displays a list with all available courses for a given user. 49

3.6 Overview of the concept-learning tasks in the corresponding skill. . . . 49

3.7 Overview of the practical tasks in the corresponding skill. 49

3.8 Form to create a new concept-learning mission. 50

xvii

List of Figures

3.9 Creation of practical mission. 50

3.10 List of all enrolled users in the course. 52

3.11 Learning progress of a single student. 52

3.12 Database model of the Course entity and related entities. 55

3.13 JSON object of a sample course. 55

4.1 Student while playing the concept-learning part of the game. 62

4.2 Two students going through the game tutorial. 62

4.3 Results of Game Engagement Questionnaire at Experiment 1. 64

4.4 Results of Computer Emotion Scale at Experiment 1. 64

4.5 Results of Situational Motivation Scale at Experiment 1. 64

4.6 Results of Game Engagement Questionnaire at Experiment 2. 67

4.7 Results of Computer Emotion Scale at Experiment 2. 67

4.8 Results of Situational Motivation Scale at Experiment 2. 67

4.9 Robot Missions with the tasks objective. 71

5.1 Sketch of sCool’s onboarding system. 75

5.2 UML diagram of the robot object. 78

6.1 Hierarchy of the field types. 82

6.2 Playground with all possible field types enabled. 83

6.3 The keyboard in the robot missions in version 1 (after A. Kojic (2017)). . 85

6.4 The keyboard with the changed labels in version 2. 85

6.5 Calculation of disk’s position related to the level of difficulty (adapted
after A. Kojic (2017)). 86

6.6 Visual representation of a sample field type array. 87

6.7 General view of the onboarding popup. 88

6.8 Screenshot of an example where the robot storage is used. 89

6.9 Screenshot of the web application’s back-end with field configuration. 91

6.10 Consent message that appears after registration. 93

6.11 Issue with skill unlocking when the player reached 100%. 94

6.12 Table Skills with the corrupted Order column. 94

6.13 Add data to the robot storage via web application. 96

6.14 Transmitting the robot storage over the REST API. 96

7.1 Duration of the teacher’s professional experience. 104

7.2 Requirements for an educational app in class. 104

7.3 Overview of programming languages that are used in school. 105

7.4 List of programming concepts that are hard to understand for students. 105

7.5 Printed version of the sCool playing field for primary school. 107

7.6 Pre-test of a randomly chosen group consisting out of three girls. . . . 111

7.7 Post-test of a randomly chosen group consisting out of three girls. . . . 111

7.8 Result of Game Engagement Questionnaire at the Graz International
Bilingual School. 114

xviii

List of Figures

7.9 Result of Computer Emotion Scale at the Graz International Bilingual
School. 114

7.10 Results of the Game Engagement Questionnaire at RMIT. 119

7.11 Results of the Computer Emotion Scale at RMIT. 119

7.12 Evaluation of user feedback on RMIT experiment. 121

xix

Listings

3.1 Processing Python Code . 44

3.2 Generation of Disk Position . 45

3.3 Pass Objects to IronPython . 45

3.4 Configuration of Routing in MVC. 48

3.5 Sample class model for the course model. 51

6.1 Robot collides with a box on the playing field. 81

6.2 Robot collides with the disk on the playing field. 81

6.3 Populating algorithm for the playground. 82

6.4 Receiving the type of a certain field with the coordinates. 84

6.5 Calculating the disk’s y-coordinate. 86

6.6 Tutorial messaging system. 88

6.7 Initialization of the robot’s storage. 90

6.8 Robot collision model. 91

6.9 Add collided object to the RobotCollisions list. 92

6.10 Server-sided processing of the consent data. 92

6.11 Skill unlocking condition. 93

6.12 Enrolling students to courses. 95

7.1 Data analysis for Game Engagement Questionnaire in R 100

xxi

List of Tables

2.1 Dimensions of Computational Thinking (adapted after Weintrop et al.
(2016)) . 12

2.2 Comparison of gamification elements in analysed tools. 20

2.3 Comparing different game-based coding tools. 34

3.1 This table lists all possible API calls and includes the paths, http method,
methods and an explanation of the behaviour. 53

4.1 This table gives an overview of all relevant information for each experi-
ment (adapted after Steinmaurer, Pirker, and Gütl, 2019b). 58

4.2 This table shows all given tasks in the course Basic Coding (adapted after
Steinmaurer, Pirker, and Gütl, 2019b). 59

4.3 This table shows the schedule of the experiment. 61

4.4 This table shows the results of the game related questions of Experiment
1. 65

4.5 This table shows the results of the game related questions of Experiment
2. 66

4.6 Results of open-ended questions of both experiments. 70

5.1 This table shows possible field types. 77

7.1 This table shows the course design of the sCool course in primary school.108

7.2 This table shows the results of the game-related questions in primary
school. 110

7.3 This table shows the learning content of the experiment at the Graz
International Bilingual School. 112

7.4 This table shows the learning content of the experiment at the Graz
International Bilingual School. 113

7.5 This table shows the results of the game-related questions at the experi-
ment at the Graz International Bilingual School. 115

7.6 This table shows the course design at the sCool course on RMIT. 118

7.7 This table shows the results of the game-related questions at RMIT. . . 120

7.8 This table shows the results of the game performance. 120

7.9 This table contains the summary of the user’s feedback at RMIT. 122

xxiii

Abbreviations

API Application Programming Interface

CAS Computing At School

CES Computer Emotion Scale

CSS Cascading Style Sheets

ECDL European Computer Driving License

ER Entity Relationship

GEQ Game Engagement Questionnaire

HP Health Points

HTML HyperText Markus Language

HTTP Hypertext Transfer Protocol

ICT Information and Communications Technology

JS JavaScript

JSON JavaScript Object Notation

LMS Learning Management System

MVC Model, View, Controller

orm object-relational mapping

PBL problem-based-learning

PEP8 Python Enhancement Proposals

xxv

Abbreviations

REST Representational State Transfer

RMIT Royal Melbourne Institute of Technology

SIMS Situational Motivation Scale

SQL Structured Query Language

STEM Science, Technology, Engineering , Mathematics

UI User Interface

XP Experience Points

xxvi

1 Introduction

“Computational thinking is a fundamental skill for everyone, not just for computer scientists.
To reading, writing, and arithmetic, we should add computational thinking to every child’s
analytical ability” (Wing, 2006). This quote by Jeannette Wing is often cited regarding
computational thinking. Wing demands to extend the traditional cultural techniques
by computational skills. Former US president Barack Obama goes one step further and
wants everyone from kindergarden to high school to learn computer science (Smith,
2016). The importance of computational skills is emphasized by politics, industry, and
education. These are key abilities in a century were the significance of data is higher
than ever before.

The approach of A. Kojic et al. (2018) was to create an educational video game based on
procedural content generation (PCG) algorithms to make an encouraging game play. By
using PCG algorithms the map, game objects and sound can be generated in a pseudo-
random way which makes it more replayable. The game was created as a mobile video
game to make it highly accessible in schools and to support micro-teaching sequences
(Steinmaurer, Pirker, and Gütl (2019b)). Initially, it was designed for STEM education
but the focus of the video game is on programming and computational skills since it
has a code editor where coding in the Python programming language is possible.

1.1 Aims and Objectives

The main purpose of this thesis is to continue the work on the mobile video game sCool
in a pedagogical perspective. sCool should provide educators with the possibility to
encourage and motivate students to learn computational skills and coding in particular.
Since the game’s learning content is highly adaptive, educators can create individual
courses for their classes. To provide the teachers as many possibilities in content
creation and support the players with an user-centered learning environment an
appropriate pedagogical concept is required. This thesis is divided into three main
phases where this process is presented:

1. Conducting a pre-evaluation of sCool version 1 and a first pedagogical concept
in order to analyse usability, game engagement, emotions, and the pedagogical
concept.

1

1 Introduction

2. Further development of sCool (version 1) to improve the game regarding the
pre-evaluation and revise the pedagogical concept.

3. Evaluate version 2 of sCool with different target groups to analyse game-related
aspects and the pedagogical concept.

The sCool system consists out of two components: a web platform for educators where
they can create courses and analyse the student’s progress and the mobile video game.
Both components are connected via an application programming interface (API) in
order to provide the video game with content and to transmit the learning analytics
to the server. In the game the process of learning is divided into two fields. The first
part are the concept-learning missions where the players explore a world and receive
concepts in a textual form. The second part are the robot missions where the players
have to apply the concepts to solve tasks. These tasks can be solved by using the Python
programming language. The focus of this thesis is on the practical part of the game
where concepts have to be applied. In order to enable a motivating game environment
and to provide additional programming concepts the robot missions will be extended.
The web application has to be considered as well in this further development, since it
is used for content creation and learning analytics.

1.2 Methodology and Contribution

This research is based on the work of A. Kojic (2017) and M. Kojic (2017), which
developed version 1 of sCool and the web application. In their thesis they made a first
user study for both components. Further research was conducted (Steinmaurer, Pirker,
and Gütl (2019a)) to make a pre-evaluation in an educational context. This evaluation
included two experiments in different secondary schools. For the introduction of a
pedagogical concept a comparison of related work should show common game-based
learning frameworks in research. Similar approaches and tools should be compared in
order to get an idea of possible concepts for the revision.

The result of the project should be a further developed version of sCool. The introduced
pedagogical concept should help both students and teachers in terms of education.
Since different experiments will be conducted in different phases of the project the
in-game courses should consist of best practice examples and guide future users of
the web application to create a meaningful course. The additional learning documents
(worksheets, evaluation forms, etc.) should also be evaluated and revised in order to
get examples for documents that can be used in class. The web application is the tool
that educators use for creating an own course respectively individual concepts. To help
them at this task a web application with multi-user support, a comprehensive content
creation and a sophisticated evaluation of learning analytics should be provided.

2

1 Introduction

1.3 Structure

This thesis consists of nine chapters that describe different phases of the project. Chapter
2 represents the theoretical part of the thesis. In this part different learning theories
and central terms like Computational Skills and Gamification are described in terms of
learning and the school system. Chapter 3 is about the mobile video game sCool. It
covers the version 1 of the game and explains the architecture, implementation and
game types. In chapter 4 the results of two pre-evaluation of version 1 are presented.
The pre-evaluations lead to requirements and a concept for version 2. These aspects
are introduced in chapter 5 of this thesis. Chapter 6 covers technical specifications
on the implementation and the further-development of version 2. In chapter 7 the
evaluation of version 2 will be presented and the related research questions are going
to be answered. Chapter 8 and 9 summarize the learned lessons and give suggestions
for future development on sCool.

3

2 Background and Related Work

This section discusses different perspectives about computational skills and the skills
that are related to computer science. The key concepts will be introduced and described
in terms of computational skills. This section also covers the current situation of
computer science education in the Austrian school system and compares it with other
countries. Another thematic priority is game-based learning and cognitive aspects of
learning. At the end of the section five game-based tools were introduced. The tools
focus on teaching computational skills but with different game elements and didactic
approaches.

2.1 Cognitive Perspective

There are different models and hypothesis that aim to describe the complex process
of learning. Each of these learning theories covers a theoretical approach that should
explain an aspect of learning. The most common theories are behaviorism, cognitivism,
and constructivism.

Behaviorism
The role of the learner in this theory is a passive one. The learner only responds
to different stimuli (Siang and Rao, 2003). In behaviorism the mental processes are
not considered - the learner is seen as a black box that response to a stimuli with
a certain behavior. Based on this response future stimuli will be affected and so a
new behaviour has been learned. Despite the decrease in behavioristic methods in
traditional educational contexts they are still a common approach in video gaming.
The player performs a certain action and based on this stimuli follows a response. This
theory is dominated by two key concepts: classical conditioning (Pavlov and Anrep,
1927) and operant conditioning (Skinner, 1938).

The classical conditioning goes back to Pavlov (1897) who observed the behaviour of
dogs Pavlov’s dog. In Pavlov’s theory learning is divided into three different phases.
The first phase is before the conditioning is happening. An unconditioned stimulus
(UCS) leads to an unconditioned response (UCR). The term unconditioned means
that no learning took place in this situation to reach this response. There is also a
neutral stimulus (NS) that leads to no certain behaviour. In the second phase (during
conditioning) the neutral stimulus (NS) is followed by the unconditioned stimulus

5

2 Background and Related Work

(UCS) that leads to the unconditioned stimulus (UCR). The last phase takes place
after the conditioning. The neutral stimulus (NS) was transformed to a conditioned
stimulus (CS) that results in a conditioned response (CR). In a game-related context
this could mean (see Figure 2.1): Every time a player faces an enemy (UCS) he attacks
(UCR) him, but the player will not fire if he hears a certain noise (NS). During the
conditioning the noise (NS) is rendered before the player can see the enemy (UCS). But
as soon as the enemy is displayed the player will attack him. In this way the noise will
warn the player against an enemy. After the conditioning the player will fire (CR) as a
conditioned behaviour on the appearing noise (CS). (Green Wood, Wood, and Boyd,
2005)

According to Skinner (1938) learning occurs as a result of punishment and reinforce-
ment. The behaviour can be changed (increased or decreased) with punishment and
reinforcement (Becker, 2015). To decrease a behaviour it is necessary to add positive
or remove negative punishment. Vice versa if a behaviour should be increased it is
required to add a positive or remove a negative reinforcement. An example therefore
is earning points for right and losing points for wrong behaviour (see Figure 2.2).

Cognitivism
The term cognitivism subsumes different cognitivistic trends. The common idea is that
learning is an active process (not passive like in behaviorism). The behavioristic black
box will be opened and the mental processes are focused. These processes are abilities
like thinking, problem-solving, knowing or memorizing. A key concept in cognitivism
is knowledge. It is seen as a schema and learning “results when information is stored in
memory in an organized, meaningful manner” (Ertmer and Newby, 2008).

In terms of video games this means that the player’s perception is the element of central
attention in a game environment (Cardona-Rivera and Young, 2014). An important
concept in this context is affordance theory (Gibson, 1979) that describes the possibilities
that are given from an environment to indicate which actions are feasible without
mental afford. Cardona-Rivera and Young (2014) describe three elements that are
necessary for a game environment that support players: i) real affordances, ii) perceived
affordances, and iii) feedback. Real affordance on the one hand means the actual
possibilities that an environment can offer. This type of affordance is intended by the
designer. On the other hand perceived affordances describe what the player thinks is
possible. This is often depending on previous experiences in gaming situations (e.g.
behaviour when a user press a button). The third element is feedback and is also
manipulated by the designer. Feedback should help the player to get an idea of an
environments capabilities (real affordance) by increasing the perceived affordances.

Constructivism
In this paradigm the learner constructs knowledge based on environment and experi-
ence (Warren and G. Jones, 2017). The task of the teacher is to engage students to learn
by exploring. This exploration process involves a sociocultural dimension in where
collaboration becomes a central element to share and organize knowledge with others.

6

2 Background and Related Work

Figure 2.1: Example on Classic Conditioning adapted after Green Wood, Wood, and Boyd (2005)

Figure 2.2: Example on Operand Conditioning adapted after Skinner (1938)

7

2 Background and Related Work

Since the central aspect is the construction of knowledge, constructivistic approaches
are suitable in engineering class. Students can build their own solutions based on their
knowledge and experience.

Constructivism is also related to problem-based-learning (PBL). Learners are faced with a
certain open-ended problem and they have to construct an appropriate solution. An
important aspect is that the problem should be “complex, ill-structured, and open-ended;
to support intrinsic motivation, they must also be realistic and resonate with the student’s
experiences” (Hmelo-Silver, 2004). In this context the role of the teacher has changed
compared to the traditional context. The teacher gets the role of a facilitating tutor
that provides an engaging environment and guides the student’s learning process so
they are provided with a higher level of autonomy (N. J. Kim, Belland, and Axelrod,
2019). Teachers have to find interesting problems that are manageable for the students
with transparent learning goals (Allen, Donham, and Bernhardt, 2011). Good problem-
solving learning is especially promoted when learners can make use of existing learning
materials. Furthermore, collaborative working has a positive impact on the problem-
solving process. Student learn to distribute the problem among other persons. This can
be achieved especially with interdisciplinary problems. In this way students also realize
social aspects of working in groups and learn to appreciate everyone’s effort. Similar to
real-world problems there should not by only one possible solution. The problem has to
be complex enough that there are many possible solutions (Utecht, 2003). Hmelo-Silver
(2004) states five fields in which students will be supported through PBL:

1. construct an extensive and flexible knowledge base
2. develop effective problem-solving skills
3. develop self-directed, lifelong learning skills
4. become effective collaborators
5. become intrinsically motivated to learn

The PBL approach can increase problem-solving skills and critical thinking. It also
supports the transfer of knowledge to problems in a similar category. The students are
confronted with the problem and have to invest much effort in the solution. This leads
to a self-directed way of working where the students acquire different hard and soft
skills (breaking down problems, collaborate, analytical thinking, ...). But the self-reliant
way of working is also a point of criticism in PBL. When learners are not familiar
with the field of problem or do not have prior knowledge, they cannot know what is
important. This means that the teacher in the role of the tutor has to adjust the problem
with the existing knowledge of the students.

2.2 Computational Skill Teaching

In today’s society nearly everyone is using computers in certain ways. This already
starts in preschool age when children are using toys with a basic circuit which ac-

8

2 Background and Related Work

complish a task based on simple calculations. In nearly every age group technology
permeates our daily lives. A fundamental understanding for technology can be helpful
to make use out of it. To achieve such an awareness and comprehension schools make
a significant contribution in digital education. There is a large number of different
approaches and tools to integrate computational skill teaching to school subjects. This
variety of tools covers content for learners in a wide age range and can be even used
in preschool age. (Janka, 2008; E.-C. Foerster, K.-T. Foerster, and Loewe, 2018)

2.2.1 Computational Skills

The term computational thinking was first defined by Wing (2006): “Computational
thinking involves solving problems, designing systems, and understanding human behavior, by
drawing on the concepts fundamental to computer science. Computational thinking includes a
range of mental tools that reflect the breadth of the field of computer science.”

Computational thinking covers a various set of skills that are necessary for solving
complex problems in a structured way. This should not be an ability reserved to
computer scientists, it is vital for everyone to perform analytical thinking and includes
new strategies to think about problems. Especially in a century where the generation
and collection of data is getting more and more important it is also unavoidable for
today’s school students to learn how to manage this amount of data and think about
it in a critical way. This enormous amount of data faces society with new challenges.
The so called four C’s of the 21st Century Skills (critical thinking, creativity, collaboration,
communication) are defining a set of skills that are necessary in the digital age. The
direct use of technology (like computers) is not required for these skills because it
is much more a higher-order way of thinking (Mueller et al., 2017). Riley and Hunt
(2014) define problem-solving as a skill set compromising i) problem definition, ii)
logical reasoning, iii) decomposition, and iv) abstraction. There is a huge number of
different characteristics defining the different skills involved in computational thinking
but the vital elements are similar. Code.org (2019b), BBC (2019), and Google (2019)
define i) decomposition, ii) pattern recognition, iii) generalization and abstraction, and
iv) algorithm design as four key techniques in computational thinking.

Decomposition
Decomposition means breaking a complex problem into smaller manageable parts. In
this way each separated part can be solved in a specific way (divide and conquer). By
solving many small problems the complex main problem can be understood better.
This is a vital aspect in programming because a program can be parted in individual
tasks that can be solved. A possible approach is for example dividing a problem into a
set of similar subproblems and solve them recursively. The idea of decompose a large
task into smaller units is a central ability in other subjects as well. Possible applications
therefore could be language classes where it is necessary of breaking a large text into

9

2 Background and Related Work

more undestandable paragraphs or physics classes where an electric circuit is divided
to smaller units. (Curzon and McOwan, 2017)

Pattern Recognition
Recognizing patterns is an essential skill in terms of computational thinking. After
decomposing a certain problem there are patterns or similarities in information. If
subproblems share the same characteristics, the task of solving problems can be
simplified by a solution in a way that it fits for another pattern class or rather a
subclass. A given pattern can be matched with a set of rules and according to them a
certain instruction can be carried out. When new patterns appear, existing matches can
be used to solve them. Finding patterns in information is essential in many parts of
computer science to analyse data according to given features. (Curzon and McOwan,
2017)

Generalization and Abstraction
Abstraction is the ability of refining problems, and consists of two different aspects:
removing detail and generalisation. The idea of removing details is to hide irrelevant
parts and raise the focus on certain details. This also means filtering out some char-
acteristics from an object in order to concentrate on the vital aspects and increase
efficiency. The aim of abstracting is to receive a general concept. This can be achieved
by detecting common features or properties in a model. Abstraction is used in dif-
ferent paradigms such as object-orientation, control abstraction, data abstraction, etc.
Abstraction is a fundamental principle in computer science and software engineering
to handle complex situations. Through abstraction a model can be created that gives
an idea about the given problem. (Kramer, 2007)

Algorithm Design
Algorithm design is the ability to formulate instructions step by step to solve a
given problem (Tucker, 2003). This step combines other computational skills (for
example decomposition) to granulate a complex problem into a subset of smaller
problems (refining solution). The algorithm design can be formulated in pseudo code
or diagrams. Especially pseudo code is a notation that can be used in a form that even
young or unexperienced learners can work with, because it can be seen as sequence
of instructions used for example in recipes or manuals. According to Kant (1985)
the algorithm designing process “combines cleverness in problem solving, knowledge of
specific algorithm design principles, and knowledge of the subject matter of the algorithm”.
This includes different sub processes in algorithm design (see Figure 2.3).

The above mentioned skills can be applied in various fields that are not just linked
to computer science. They can be seen as a universal and structured way of solving
problems. Some concepts can even be learned in a preschool age in easy ways. Most
of these skills are part of the K-12 curriculum (prrimary and secondary education)
and are taught in many schools. The Computer Science Teachers Association (2017)
introduced standards for computer science education in K-12 (CSTA K–12 CS Standards)
that are designed to start already in elementary school level. This standards lists five

10

2 Background and Related Work

Figure 2.3: Algorithm Designing Process adapted after Kant (1985)

elementary concepts for students and elaborate them in each level according to their
age and learn progress:

• Computing Systems
• Networks and the Internet
• Data and Analysis
• Algorithms and Programming
• Impact of Computing

The CSTA K–12 CS Standards are the base for the ACM Model Curriculum for K-12

Computer Science. In this model recommendations computer science is defined as
“the study of computers and algorithmic processes, including their principles, their hardware
and software designs, their applications, and their impact on society” (Tucker, 2003). All
above mentioned curricula (recommendations) also cover the impact of computing
on society and culture in each level of the curriculum. Wing (2008) emphasizes the
correlation between science, technology and society, since all these drivers depend on
each other.

In literature the four computational skills that were initially defined by Wing (2006)
are very common. Furthermore, there are other approaches to define a skill set for
computational thinking that differ from Wing. Kazimoglu et al. (2012) created a game
framework that teaches computational skills in a game-based way. For this purpose they
defined a set of five different skills and assigned each skill a task in their framework.

11

2 Background and Related Work

This skills are more general than the previous stated approaches and can be seen as a
complete workflow. These abilities are i) problem solving, ii) building algorithms, iii)
debugging, iv) simulation, and v) socializing. In their model problem solving includes
using computational models, identifying problems and deciding if the problem is
solvable in a computational way. The algorithm should be abstract enough that it fits
for different problems of the same class. Debugging includes the ability to identify
and analyse issues in the created algorithm and re-think the strategies. In a next step
these algorithms are used to create models for simulations. The simulations will help
to consider the level of abstraction. During all of these steps socializing takes place to
create strategies for working on problems together with other learners.

Another popular approach is the subdiversion of computational thinking into three
dimensions (Table 2.1) that are vital in K-12 education (Lye and Koh, 2014; Weintrop et
al., 2016). The first dimension (computational concepts) is about understanding main con-
cepts in coding. The concepts do not depend on the actual programming language; they
are universal concepts. These concepts are for example commands, conditions, loops,
events, or data. The second dimension (computational practices) describes strategies that
occur when solving problems like debugging, abstracting, or modularizing. The third
dimension (computational perspectives) is the learner’s understanding of technology and
its impact and relationship on themselves and others.

Dimension Examples
Concepts Variables, Statements, Flow Control
Practices Iteration, Recursion, Abstraction, Generalization, Modularity
Perspectives Expressing and Questioning

Table 2.1: Dimensions of Computational Thinking (adapted after Weintrop et al. (2016))

2.2.2 Computer Science in Austrian School Education

Compared to school systems in other countries (European and international) the
Austrian school systems differs in some aspects. This distinction covers for example
the terms for the different school types (National Agency Erasmus+ Education, 2014).
Figure 2.4 gives an overview of the current school system in Austria and uses the
official terms from the Austrian Federal Ministry of Education, Science and Research.
Austrian pupils attend primary school for four years. Compared to countries like
Denmark, Latvia or Sweden the pupils have to attend school for nine years. Another
difference is the total time of compulsory education: it is nine years in Austria whereas
the majority of Europa provide children 10-12 years of education.

12

2 Background and Related Work

Figure 2.4: Austrian School System adapted after Austrian Federal Ministry of Education and Research
(2016)

In Austrian secondary schools the subject computer science is mandatory in the ninth
grade (secondary level 2). The curriculum’s framework is regulated by the federal
ministry. This curriculum provides two hours per week computer science class in both
semesters. Furthermore, many secondary schools (especially schools with focus on
STEM education) offer computer science as an elective subject in grade 6, 7, and 8. The
curriculum defines different modules and competences that should be covered. It is up
to the teacher to define the specific learning content of the subject in coordination with
the school students.

The curriculum formulates four main aspects for both the mandatory and the elective
subject that should be covered in computer science class. The following list contains
the content of the ninth grade (Austrian Federal Ministry of Education and Research,
2000):

• Computer Science, Human and Society: School students learn the influence of
computer systems on today’s society and economy. This aspect also covers the
knowledge of information security and copyright.

• Computer Systems: School students know about the structure of computer
systems and are able to explain digital devices. They also know about the
functionality of operating systems and have the ability to connect computers to
networks.

13

2 Background and Related Work

• Applied Computer Science: School students know different standard software
for creating documents, presentations, spreadsheets, and visualisation. Comput-
ers can be used to retrieve, analyse, structure, and process information.

• Practical Computer Science: School students know about basic concepts of com-
puter science and have the ability to design algorithms and implement them
into a programming language. They know about machines, data structures, and
different algorithms and are able to create simple data models using a database.

2.2.3 Digital Basic Education in Austria

In the Austrian school system the value of digitalization has highly increased over the
last years. Therefore, the Austrian federal ministry of education, science and research
started to work on the so called masterplan for digitalization in summer 2018. Various
experts and other federal ministries are involved in the implementation which is
planned to be finished in 2023. The masterplan covers three major fields of action in the
school education. (Austrian Federal Ministry of Education and Research, 2018)

The first part is about teaching guidelines and existing syllabi and aims to revise existing
syllabi in all grades and all school types. It also includes the introduction of a new
subject called digital basic education (Digitale Grundbildung) in Austrian secondary level
1 (new secondary school and academic secondars school). This subject was introduced
in the school year 2017/18 with 2-4 hours per week in four years. The content can be
taught as part of other subjects (integrated teaching) or as separate lessons. It covers a
large number of abilities in different disciplines of computer science (Austrian Federal
Ministry of Education and Research, 2019):

• social aspects through media change in digitalization
• digital and media competences
• operating systems and applications
• media design
• communication and social media
• security
• problem solving skills
• computational thinking

The second part will focus on the ICT infrastructure and a modern school administra-
tion. Therefore, the schools will be provided with suitable equipment (mobile devices,
broadband, WiFi, electronic boards) and tools (learning management systems, eBooks,
etc) to bring digitalization to all parts of education (including students, teachers and
parents). The third part is about training and development of all teachers in the field
of digitalization (Austrian Federal Ministry of Education and Research, 2019).

14

2 Background and Related Work

2.2.4 Computer Science in other countries

This section draws a comparison between computer science education in different
countries in Europe and internationally. The following countries share a new approach
of ICT/computational skill teaching in the curricula and are often supported from
organisations to promote computer science education. The UK introduced the subject
computing which covers a variety of computational skills. Sweden’s national curricu-
lum was revised in 2018 in order to focus on digital competences. Australia has two
different subjects in the F-10 curriculum where the main concepts of computer science
are taught. In addition chapter 7 covers an experiment that was conducted in an
Australian University. The USA is pioneer in computer science education science since
the initiative CS for all already began in 2016.

Since 2014 the UK implemented the subject computing for all national schools beginning
in key stage 1 (5 years old) until key stage 4 (16 years old). Key stage 1 and 2 are at
primary school and key stage 3 and 4 are secondary school. The subject is separated in
three fields: computer science, information technology, and digital literacy. The aim of
the subject is to teach computational thinking and related skills (decomposition, pattern
recognition, abstraction, pattern generalisation, and algorithm design; Kamp, 2014).
Besides new learning content a focus was on teacher education to bring knowledge to
the pupils. Sentance and Csizmadia (2017) observed teaching strategies that teachers
were using in this new subject. The top three strategies mentioned by the teachers
are: unplugged strategies (learning away from the computer), reference to particular
software and relational to real world activities. Besides the national curriculum, the
community Computing At School (CAS) promotes computer science in schools. CAS is a
part of the British Computer Society and supports teachers with different resources
and guidelines. (Peyton-Jones, Mitchell, and Humphreys, 2013)

In 2018 the Swedish national curriculum was revised to bring digital competences
and programming into K-9 school level (Heintz et al., 2017). Since 1994 the subject
technology was taught in Sweden. The revised version is based on the European
DigComp framework and concerns three main topics in the curriculum: technological
solutions, working methods for developing technical solutions, and technology, man, society
and the environment. The subject combines different aspects in technology and also
covers computer hardware, construction, electric circuits, etc. (Skolverket, 2018)

The national curriculum F-10 (foundations until level 10) of Australia covers the learn-
ing area technologies each school year. This area covers two subjects: digital technologies
and design and technologies. In both subjects the school students should learn how to
create solutions, learn thinking skills (systems thinking, design thinking, and compu-
tational thinking) and project management. The main concepts in the subject digital
concepts are: i) abstraction, ii) data collection, representation and interpretation iii)
specification, algorithms and implementation, iv) digital systems, and v) interactions
and impacts. (Australian Curriculum and Authority, 2015)

15

2 Background and Related Work

Figure 2.5: International Comparison of Computer Science Education (After Grandl and Ebner, 2017)

In 2016 president Obama started the CS For All initiative which should engage students
from kindergarten to high school (K-12) to learn computer science. As part of the
initiative a comprehensive funding, teacher training, etc was provided (Smith, 2016).
Besides government measures many organisations also focused on engaging computer
science education. These organisations also developed different curricula and recom-
mendations for computer science class. The nonprofit organisation Code.org (2019a)
has the vision “that every student in every school has the possibility to learn computer science,
just like biology, chemistry, or algebra”. Code.org is supported by many companies like
Microsoft, Facebook, Google, Amazon, etc. Together with other supporters like the
Association for Computing Machinery or Computer Science Teachers Association the
K-12 Computer Science Framework has been developed which has five core concepts: i)
computing systems, ii) networks and the Internet, iii) data and analysis, iv) algorithms
and programming, and v) impacts of computing (Science, 2019).

2.3 Gamification

Deterding et al. (2011) defines gamification as “the use of game design elements in non-game
contexts.” This means gaming elements are applied in situations that usually have no
game context. Another central aim of gamification is to increase the engagement of the
learner (S. Kim et al., 2018, p. 29). Figure 2.6 classifies gamification and differentiates it
to similar areas. For this purpose the two dimensions playing/gaming and whole/parts
were considered.

In order to distinguish gamification from game-based learning it just introduces game-
like elements (elements or mechanics) into a non-gaming setting. This should make
the traditional context more engaging. This should also lead to a better progress in
learning and to a higher motivation to solve a given task (Huotari and Hamari, 2012).
There is a large number of game mechanics that can be added in terms of gamification
(Brull and Finlayson, 2016; S. Kim et al., 2018):

• Points
• Badges
• Levels
• Leaderboards
• Progression Bars

16

2 Background and Related Work

Figure 2.6: The dimensions of gaming/playing and whole/parts (After Deterding et al., 2011)

• Certificates
• Story
• Avatar (selection and customization)

2.3.1 Gamification in Education

The overall purposes of gamification is “first to encourage desired learning behaviours
[...] the latter to engage students in learning” (Ibanez, Di-Serio, and Delgado-Kloos,
2014). According to Raymer (2011) there are three central aspects for a gamified
environment:

• Goals and objectives: The environment should provide a balanced relation
between skill and challenge in order to reach an adequate level of flow.

• Feedback: Feedback means a verbal or non-verbal message that provides infor-
mation about the performance. There are two types of feedback: positive and
negative. Positive feedback can be used to support, encourage and emphasize the
strengths. Negative feedback is about weaknesses and insufficient performance.
An important aspect when developing a gamified environment is to consider the
way the feedback is given because it has a major impact on the learners. (S. Kim
et al., 2018)

• Rewards: Rewards are used to keep the player’s motivation high and appreciate
their progress. According to S. Kim et al. (2018) rewarding elements can be:

17

2 Background and Related Work

points, levels, progression, badge, virtual/physical goods, gifts, virtual currency,
etc.

In a literature review of gamification in different Science, Technology, Engineering
, Mathematics (STEM) subjects, Ortiz, Chiluiza, and Valcke (2016) figured out that
especially in the field of computer science gamified approaches are most common. The
majority of these approaches is using a combination of different gamification elements
(in particular points, badges, and leaderboards). In a computer science context this
combination of badges, points and leaderboards is quite common (Narasareddygari,
Walia, and Radermacher, 2018). Piteira, Costa, and Aparicio (2018) introduced a
theoretical gamification framework for online learning coding courses consisting of
following dimensions: “target audience, general goals, learning outcomes, topics, contents,
gamification, cognitive absorption, flow, and personality”.

The World Government Summit (2016) broke down gamification into a set of three
elements: mechanical, personal, and emotional. Mechanical means clear defined goals
and structured challenges. This should be an incremental process where the challenge
is getting harder. Elements to acknowledge and reward the progress in an environment
can be badges. Another vital gamification feature in terms of mechanical elements
is onboarding. This is necessary to help the learners to become acquainted with the
system and it also relieves the teachers. Since the first minutes on a new system are the
most important it is rather necessary to engage them (Zichermann and Cunningham,
2011). Personal elements in a gamified system can be avatars, leaderboards and social
engagement loops. The usage of avatars (self-representation within a system) empha-
sizes the creativity and the individuality of the players. In an educational context it
can be seen as an alter ego used to have a different form of identity. Leaderboards
are used to show the rank of a user in a gamified environment. They can show the
name, avatar, rank, scores and other in-game metrics. Since leaderboards compare with
other users the usage in an educational context is controversial. The last mentioned
category concerns the player’s emotions. This covers mainly the flow while performing
an activity (see Section 2.4.3) (World Government Summit, 2016).

2.3.2 Tools for Gamification

Since gamification means the use of gaming elements in a non-gaming context it is not
necessary to use tools. Nevertheless, there is a large number of different tools that are
applied in school education. This section will introduce three different tools that can
be used in terms of gamification in (school) education.

The web-based tool ClassCraft1 is a gamified Learning Management System (LMS).
It has a fantasy theme in which the players create an avatar and work together in
teams to make achievements. At the beginning teachers create a class and explain the

1https://www.classcraft.com/de/

18

2 Background and Related Work

rules. When school students reach different goals they gain Experience Points (XP) and
for their behaviour they either gain or lose Health Points (HP) . XPs can be assigned
for getting a question right or helping others. It is up to the teachers to define the
purpose of the points. For instance XP can be used to level up or to unlock real-life
powers like additional time for homework or eating in class. All school students play
in teams and so they are engaged to collaborate in order to achieve success. The tool
also provides teachers with different tools that can gamify various tasks in class. They
can use a sound volume indicator to record the noise level in the class to reward or
punish the teams. (Glod, 2017) ClassCraft also can map the experience points to make
grading easier and transparent. The tool can also be used for submitting homework
or assignments and giving feedback. All in-game metrics (XP, HP, achievements) are
transmitted in real-time so teachers can work with ClassCraft during class (Papadakis
and Kalogiannakis, 2017).

SoloLearn2 is a platform (web, Android and iOS) for learning coding. They provide
different languages like Python, Java, or HTML in individual courses. Each course
contains lessons which represent different concepts and quizzes that are taken after a
lesson. When all questions of the quiz are answered correctly a new lesson is unlocked.
In contrast to similar coding platforms SoloLearn has added some gamification ele-
ments. After completing a lesson the players receive a certain amount of XPs. These
points are also a virtual currency that can be used to skip questions or get hints. The
players may get rewarded with badges for different achievements and level up. Since
each user has a public profile (avatar) the achievements of other players can be seen.
SoloLearn also provides a leaderboard where the top learners and users with fewer
points but close to the high score are displayed. (SoloLearn, 2019)

The platform Kahoot!3 is a platform where teachers can create quizzes and surveys
or use already existing templates. There are different types of questions (regular quiz,
true or false, puzzle, slide, etc.) that can include different media types (images, videos,
etc.). Each single question can be assigned to a maximum number of points. When
the quiz is created players can assign to the quiz with a pin. There are two main
possibilities to access the quiz: i) live ii) as homework. When playing the game live in
class a quiz can be joined by entering the pin in the app or the web browser. When the
teacher starts the quiz the questions are displayed on the computer (respectively video
projector). The learners have to answer the questions on their devices. Depending on
the answer and the response time all players receive points. After each question the
current leaderboard is displayed. (Tan, Ganapathy, and Mehar Singh, 2018) Besides
the live mode it is also possible to create a homework challenge. Teachers can create
a quiz with an expiration date and hand out the pin. The players receive points for
right questions and are also displayed in a leaderboard. When using the app it is also
possible to unlock achievements (badges) in the game. (Kahoot! 2019)

2https://www.sololearn.com/
3https://kahoot.com/

19

2 Background and Related Work

In Table 2.2 the above mentioned tools are listed and the most common gamification
elements are compared.

Tool Points Badges Levels Leader-
boards

Progres-
sion
Bars

Certifi-
cates

Story Avatars

ClassCraft x x x x x x x x
SoloLearn x x x x x x x
Kahoot! (live) x x x x

Table 2.2: Comparison of gamification elements in analysed tools.

2.4 Game-Based Learning

The idea to use games in school education has already been there for decades. A
comprehensive number of tools in nearly every field of education makes it more and
more easy for teachers to use them in school. These approaches help both teachers and
students in an educational context. The teachers can be supported with already existing
best-practice example (like curricula for example) and meaningful learning analytics.
Learners are supported thtough extrinsic motivation to learn new concepts in a playful
way. Tools can also provide students immediately with additional information and
make the assessment easy as well.

2.4.1 Game Design

Playing and games are a natural way for humans to learn. Learning is something that
happens the whole life and it does not depend on what is learned. In contrast, the term
education is socially and culturally defined. Playing not always pursues an educational
purpose, but it is always connected to learning (Becker, 2015, p. 6). Education does not
claim to be entertainment or fun. But when combining playing and education it can be
an engaging possibility for the learner (Rishipal, Saraff, and Kumar, 2019). According
to Becker (2015) and Reinders (2012) a game has following characteristics:

• interaction,
• rules,
• one or more goals and objectives,
• narrative,
• outcome and feedback,

20

2 Background and Related Work

• conflict and competition
• quantifiable measure of progress,
• recognizable ending.

Lazzaro (2004) observed the emotions that were occurring during playing and con-
nected these emotions to different experiences:

• Hard fun: People who enjoy hard fun play games to challenge themselves. They
play to see how good they play the game and want to beat the high score. They
are mainly driven by failure and success to enjoy playing.

• Easy fun: This type of fun is related to simply enjoying the game. Players are
curious and want to explore the game. They want to dive into the narrative and
are immersed by the story.

• Altered states: This experience is related to the emotions of a player while being
in the game. The game helps to change the internal experience and they feel
different when playing. Games are played to feel better for example.

• People factor: The key to the playing experience in this group is enjoying the
social component while playing the game. These group of players also play even
if they do not like the game just to spend time with other people.

This means that not every player feel the same way while playing. The players can also
be classified based on their interests while playing the game. Bartle (1996) introduced
four different groups of players regarding their interest (see Figure 2.7. The x-axis has
two characteristics and goes from players to the world (or environment). On the other
hand the y-axis goes from acting to interacting. Each player type has a stronger interest
in the graph. The killers have a high tendency to the acting-axes and the players-axes.
Their focus is competition and conflict with other players; mainly to demonstrate ability
and see others lose. This amount of players that fall in this category is less than 1%.
The second category with a high tendency in acting are the achievers. Compared to the
killers they have a low interest in players and are more interested in the environment.
Their focus is about rewards and prestige in the game. This could be for example
by getting to a higher level, collecting badges/items or leading the ranking. Bartle
(1996) estimates that about 10% of players are part of this category. The third group
are the socialites with a strong tendency to players and interacting. They are driven
by a social aspect and want to collaborate with other players to achieve something
together. They mostly enjoy the social interaction that takes place in the game or in
various communication channels (newsfeed, chat, etc). About 80% of all players belong
to this group. The last group (about 10% of players) are the explorers that are more
into the game’s environment and the interaction. Their focus is on exploring as much
as possible and to discover new secrets. They get engaged by hidden achievements
and are willing to also accomplish repetitive tasks in order to unlock something new
(Zenn, 2017; Schneider et al., 2016).

21

2 Background and Related Work

Figure 2.7: Four types of players (Arkün Kocadere and Çağlar Özhan, 2018)

2.4.2 Game Frameworks

Game frameworks can be used to identify game design elements in a video game. A
model-driven approach is the MDA (mechanics, dynamics, and aesthetics) framework
(Hunicke, Leblanc, and Zubek, 2004). The MDA framework is a link between the
designer and the player but seen in a different perspective. The designers begin with
the game’s mechanics and will then work on the dynamics aspect of the game. The
exterior level is the aesthetics that are on the surface. From a player’s perspective
the model is seen in a reverse view: The first layer of interaction is the experience of
the aesthetic part. After the players are getting familiar with a game they are able
to understand the dynamics and in further consequence also the mechanics. When
designing a game it can be useful to consider both the player and the designer aspect.
(Hunicke, Leblanc, and Zubek, 2004; Bohyun, 2015)

• Mechanics: Are the basic components of a game that reflect the general rules.
All possible basic actions (represented by algorithms and data structures) in the
game are part of the mechanics.

• Dynamics: The dynamics focus on the interaction of the players with the game
mechanics. The mechanics are about the behaviour on input and output over time.
Examples for dynamics are for example time pressure or sudden consequences
during the game.

22

2 Background and Related Work

• Aesthetics: This component refers to the player’s experience when interacting
with the game. Hunicke, Leblanc, and Zubek (2004) list a (optionally expand-
able) taxonomy of types of aesthetics: sensation, fantasy, narrative, challenge,
fellowship, discovery, expression, and submission.

2.4.3 Learning Theories in GBL

The term flow goes back to Csikszentmihalyi, Abuhamdeh, and Nakamura (2014):
“Flow is a subjective state that people report when they are completely involved in something to
the point of forgetting time, fatigue, and everything else but the activity itself. [...] The defining
feature off low is intense experiential involvement in moment-to-moment activity. Attention is
fully invested in the task at hand, and the person functions at his or her fullest capacity.”

Csikszentmihalyi defines three different kinds of experiences: flow, boredom, and
anxiety. The full capacity is given when a person is in flow. This state can be reached
when the appropriate balance between skill and challenge is reached. If one of both
parameters strongly exceeds, the person gets anxious or bored. In total Csikszentmiha-
lyi brings up eight different states (see Figure 2.8) in four quadrants that can appear
in any activity. Especially in the field of education a state of flow would mean the
best outcome for the learner. The state of flow occurs mostly when a person is highly
intrinsically motivated and does not feel required to learn new content because of
external factors (G. M. Jones, 1998). An area where flow has a relevant character are
video games. For this purpose Radoff (2011) adapted the eight states according to
gaming: flow, arousal, control, relaxation, anxiety, worry, apathy, and boredom. Equal
to Csikszentmihalyi’s model Radoff declares flow as “optimal mental state in which there
is a balance between the challenge of the game and the player’s skill”. Additionally G. M.
Jones (1998) defines eight characteristics for a high level of flow in gaming:

• a task that can be completed
• the ability to concentrate on the task
• that concentration is possible because the task has clear goals
• that concentration is possible because the task provides immediate feedback
• the ability to exercise a sense of control over actions
• a deep but effortless involvement that removes awareness of the frustrations of

everyday life
• concern for self disappears, but sense of self emerges stronger afterwards
• the sense of the duration of time is altered

This model of elements involving the level of flow was adopted by Sweetser and
Wyeth (2005) regarding gaming (GameFlow model). The model consists of eight different
elements: i) the game, ii) concentration, iii) challenge player skills, iv) control, v) clear
goals, vi) feedback, vii) immersion, and viii) social interaction. If the game is too
complicated or too easy the player is not in a state of flow.

23

2 Background and Related Work

Figure 2.8: Challenge/Skill Diagram (After Csikszentmihalyi, Abuhamdeh, and Nakamura, 2014)

Csikszentmihalyi also showed that it is necessary to provide immediate feedback
and specify clear goals. It is also important to enable self-determination and let the
learners make decisions to reach a flow engaging state. De Freitas and Neumann
(2008) developed the exploratory learning model (Figure 2.9) containing five steps that
occur while exploratory learning in a game-based learning context. The model is
based on Kolb’s (1984) learning cycle where learning starts with a concrete experience.
Afterwards the learners should get engaged to reflect the experience regarding learning.
This step leads to think about the concepts, abstract and conceptualise the thoughts.
The last step is the active experiment where the learners apply the learned knowledge.
De Freitas and Neumann (2008) describe a cycle that is a similar approach but expands
it by learning in immersive environments. The advantage of such an environment is
the possibility for social interactions with other learners which leads to social interactive
learning.

2.5 Game-Based Learning in Computer Science

In computer science and particular in coding class there are many game-based learning
tools available. There are mainly three categories of games (Combéfis, Beresneviuius,
and Dagiene, 2016):

• Coding: The focus is on learning how to code. A central part is to understand the
language and syntactical features. Objectives are for example learning how to
fix broken code or writing code that fulfills a certain task. This code is usually

24

2 Background and Related Work

Figure 2.9: Exploratory Learning Model (adapted after De Freitas and Neumann, 2008)

submitted and the system provides feedback. The feedback can be a notification
showing whether the task is passed or failed, but it can also be on a high
elaborated level.

• Algorithmic thinking: In algorithmic thinking the focus is not on learning a
particular programming language and relating concepts. The system provides
various problems that have to be solved in a technical way. This can be reached
by using a programming language (or a technical notation) or other concepts
like command blocks. The main objective is to solve a given problem (searching,
sorting, path finding).

• Creating games: Learners create a game using a technical notation (for example
a programming language or blocks). In this way they learn computational skills
that are necessary to create a game.

In the next section some tools were described that follow a game-based learning ap-
proach for teaching compuational skills. These tools share some similarities regarding
game design and didactic concepts. The usage and the target audience is slightly
different in the following tools. These key features of all games will be observed and
analysed. Table 2.3 shows the main characteristics for each game and compares them
with each other.

2.5.1 CodeCombat

CodeCombat4 is an open-browser-based game where players can learn coding with var-
ious programming languages (for example Python or JavaScript) and the fundamentals

4https://codecombat.com/

25

2 Background and Related Work

Figure 2.10: CodeCombat - User Interface

of computer science (S. Kim et al., 2018, p. 127). It is a two-dimensional role-playing
game (see Figure 2.10) where the players control a character by programming it. There
is no clear defined narrative in the game but the environment and the enemies of
the player (dessert, ice, dungeon) change. Each concept is represented by a map of a
certain world with different locations that are represented by levels. The two major
elements in a level are the graphical representation of the maze and the coding editor
(see Figure 2.12). Players learn concepts like algorithms, loops, conditions or objects.
Besides coding the students can also create their own games and levels and share them
with other players. In different levels students learn the concepts step by step. The
game also includes different gamification elements like experience or ranking. With
increasing experience the player is also rewarded with new items and can upgrade
their avatar. The tool provides visual feedback and hints to support the player.

CodeCombat provides a web-based tool for educators called Teacher Dashboard. The
teacher dashboard at Figure 2.15 illustrates the possibilities to manage courses and
students. Teachers can create different courses for each class and adapt them according
to their needs. This tool also makes it possible to receive assessment and see the
individual progress of each student.

26

2 Background and Related Work

Figure 2.11: CodeCombat - Teacher’s Dashboard

(a) CodeCombat Dungeon

(b) Programming Editor in Python

Figure 2.12: CodeCombat Game elements

27

2 Background and Related Work

(a) Game Board (b) Programming Editor

Figure 2.13: Lightbot Maze Game

2.5.2 LightBot

LightBot5 is an educational puzzle game for learning computational skills. It can be
played on both mobile devices and web browsers. The main idea is that the player
controls a robot with different command blocks without writing a single line of
programming code. Each block represents a certain command that the robot should
fulfill. The aim is to navigate over a field, overcome obstacles and illuminate all
necessary fields. According to Yaroslavski (2014) the game can be used to learn
sequencing, overloading, procedures, recursive loops, and conditionals. Similar levels
are grouped together to courses where different concepts can be learned. LightBot has
seven command blocks: moving forward, turn left, turn right, light field, jump, call
procedure 1, and call procedure 2. The players drag and drop the blocks into an editor
and the commands are executed successively. There are additional editor slots for two
procedures. In this way it is possible to write a function and call it in the code. This
allows to create a loop-like structure (recursive procedures). Figure 2.13 demonstrates
two missions with different levels of difficulty and available command blocks.

When learning with LightBot it is not necessary to create a user. It can be played in the
browser or on a mobile device. All levels and concepts are already predefined and so
it is not possible for educators to adapt the content. The game is also fully client based
and so there are no learning analytics for teachers.

2.5.3 CodeMonkey

CodeMonkey6 is a comprehensive web-based educational game; teaching coding and
computational skills. It enables to learn different concepts among the K-12 curriculum
with various modules. CodeMonkey supports curricula like CSTA K-12 curriculum or

5https://lightbot.com/
6https://www.codemonkey.com/

28

2 Background and Related Work

the national curriculum of England. Students can learn the programming languages
Python and CoffeeScript. It covers the following topics in computer science: “objects,
function calls, arguments, loops, variables, arrays, for loops, function definitions, boolean
conditions, until loops, if and if-else conditions, boolean operators, keyboard and mouse events”
(CodeMonkey 2019).

Currently CodeMonkey supports the following game modes:

• Coding Adventure: Students learn programming with CoffeeScript (see Figure
2.18). The aim of the game is to navigate a mokey over a two-dimensional grid to
reach bananas. They have to pass obstacles by using programming concepts. This
mode includes three different courses: fundamentals (statements, loops, objects,
arrays, and statements), functions and conditions (functions, conditions, bool
logic), and logic and events (operators, return values, triggers).

• Banana Tales: In this course the players have to bring a baby monkey bananas
with the programming language Python. During these levels they learn program-
ming concepts and other skills in computer science (classes, strings, lists, sorting).
The game also provides hints and supports the players in different ways (code
completion, numbered two-dimensional grid, ...).

• Coding Chatbots: This course teaches how to program a chatbot in Python. It
is suitable for kids at the age of 13 years and older. Apart from basic concepts
like functions, control structures, and primitive data structures players also learn
advanced skills like complex data structures and server side programming. Figure
2.16 illustrates a comprehensive example of a sophisticated chatbot in Python.

• Challenge Builder: Students can create their own challenges with a level editor
and share them. In this way the students are engaged to work together with
others and solve different mazes. When creating a level students have to think
about the concepts and game elements that others can use. So they move from
learning to creating. The shared levels are also solved in CoffeeScript similar to
the coding adventure mode.

• Dodo Does Math: This course deals with 2nd-4th grade skills in maths and
coding. The course is divided into three different parts: distances, angles, and
multiplication. By using a very basic CoffeeScript syntax the students solve maths
problems.

• CodeMonkey Jr.: This mode is especially for young learners (pre-school age)
because it motivates them to deal with computational thinking. CodeMonkey
Jr. is an app for iOS and Android where the skills are learned in a block-based
approach. Compared to the other game modes no knowledge on CoffeeScript or
Python is necessary since the game deals with a small set of command blocks.

• Game Builder: The game builder supports three different game types (platformer,
frogger, and sprite animation) to teach creating games. School students learn
concepts like event handling, parameters, loops, sprites, and animations. They
design and create games that can be shared with other players.

The tool also provides a large functionality for educators. It supports a full classroom

29

2 Background and Related Work

management system for teachers which includes the creation of a curriculum and
automatic grading. The students can be assigned to classrooms and teachers can
manage them. Figure 2.15 shows the progress of the students that are enrolled in the
selected course. Teachers can export the results or receive a more detailed analytic.

2.5.4 Grasshopper

The mobile video game Grasshopper7 (see Figure 2.17) is an app for learning JavaScript.
It is mainly designed for adult learners. Grasshoppper covers the fundamentals of
JavaScript (instructions, functions, variables, loops, arrays, objects, ...) and animations
(shapes, D3 library, callback functions, and animations). Each concept is represented
by different tasks a player has to solve. This tasks are mainly:

• Drawing: The library D3 is used to draw different shapes (for example flags)
• Coding: By reference to an explanation and an example solution a certain code

should be written.
• Concept-learning: A certain concept is explained with text, code examples or

images.
• Single-choice: A single-choice question is asked based on previous learned

concepts. This question is often a code listing and a corresponding question.

There are many gamification elements in the game that can help the player to stay
engaged. The players can unlock different skills and receive various achievements. The
app also supports micro-learning sequences since every course covers tiny lessons. To
keep the player’s attention and promote consistent learning, it is also possible to set a
daily reminder.

Despite Grasshopper being a game for mobile devices, the keyboard was optimized in
a convenient way. The players can pick code suggestions from a predefined list. All
declared variables are contained in this list so it is not necessary to type much code.
Each group of different language elements is represented in a different color. So it is
possible to distinguish between variables, strings or control structures. All available
commands are linked to a brief description of their functionality.

2.5.5 sCool

The mobile video game sCool was initiated in 2017 as a collaboration between Graz
University of Technology and Westminster University (A. Kojic et al., 2018). It is a
game-based learning tool for computational skills. sCool is mainly designed for mobile
devices (currently Android devices) but is also available for Microsoft Windows. There
are two different parts of the game that pursue different objectives. The game has

7https://grasshopper.codes/

30

2 Background and Related Work

Figure 2.14: CodeyMonkey - Coding Adventure: Using CoffeeScript to reach the bananas

Figure 2.15: CodeMonkey - Teacher’s Dashboard: Student’s progress

Figure 2.16: CodeMonkey - Coding Chatbots: Programming a chatbot using Python

31

2 Background and Related Work

(a) Code Editor (b) Concept-learning

Figure 2.17: Learning Coding with Grasshopper

a coherent narrative structure that combines both modes together. A space mission
failed and the shuttle crashed on a foreign planet. The players are in the role of a space
team member and have to support the crew to repair the shuttle and escape from
the planet. In the concept-learning part the players are introduced to new concepts.
This is achieved by a procedural generated game world where the players have to
find disks that represents concepts. The disks are guarded by enemies that have to be
defeated. After collecting all disks the concepts are presented in a textual form. After
reading the text the learners have to answer a related question. The second playing
mode are the practical missions where the players have to apply the previous learned
concepts. The playground is represented via a two-dimensional grid where they have
to control a robot. The overall goal in each level is to reach a disk and solve different
tasks on the way. To control the robot the players have to use certain instructions that
represent commands in the Python programming language. To simplify the task of
coding, blocks can be dragged into an editor. After dragging the block is converted
into a command in Python that can be executed by the robot. Next to this existing code
blocks it is possible to use a virtual keyboard to write one’s own code (Steinmaurer,
Pirker, and Gütl, 2019b).

A key feature of sCool is its adaptive content that can be modified by the educators.
Therefore, a web platform is used where each course is represented in a hierarchical
skill-tree. The teachers can define the content for both the concept-learning part
and the practical missions. In this way they can provide a very individual learning
experience that can be geared to the needs of the course. This web platform also

32

2 Background and Related Work

Figure 2.18: sCool - Practical mode

provides a comprehensive assessment and analytics tool for the courses. The educators
can analyze the learning progress of each individual player and can receive information
regarding the communication with the system.

2.5.6 Overview

After considering the different educational video games it can be concluded that each
tool has its certain purpose and focus on learning. Table 2.3 shows that the games
distinguish in the designated educational use and the level of complexity. In nearly
every game the fundamental idea is similar, since the player is controlling an avatar
(monkey, robot or warrior) with the use of programming skills and solve different
tasks. The major purpose of LightBot for example is to focus on logical skills like
sequencing or functions. Therefore, no certain programming language was used and
the instructions were based on blocks. The tasks always remain the same but the
difficulty increases the more concepts are learned. Grasshopper is more complex in
both graphics and content and so the aim of the game is different. Compared to other
games it does not focus on a story or a learning avatar. With its clear and handy
tasks it mainly addresses adult learners. The players have to write simple code in
JavaScript that is linked to a certain task (for examples drawing a flag). CodeMonkey
and CodeCombat have the most complex narrative of the observed games. Based on
this narratives different tasks can be solved while programming. Due to the complexity
the games are available on a web browser because it is often necessary to type more
lines of code. The approach of sCool is to split concept-learning and practical learning
into separate parts. In this way it is possible for students to explore and learn concepts
and apply them afterwards in a practical mission.

33

2 Background and Related Work

Game Platform Language Concepts Dashboard
CodeCombat browser Python

and
JavaScript

Fundamentals, Con-
trol Flow, Objects, Al-
gorithms

yes

LightBot browser, An-
droid, iOS

block
based

Fundamentals, Con-
trol Flow, Recursion

no

CodeMonkey browser Python
and Cof-
feeScript

Fundamentals, Con-
trol Flow, Algorithms,
Objects, Events

yes

Grasshopper Android, iOS JavaScript Fundamentals,
Control Flow, Anima-
tions, Graphics

no

sCool Android, Win-
dows

Python Fundamentals, Con-
trol Flow, Algorithms,
Objects

yes

Table 2.3: Comparing different game-based coding tools.

Another difference is the possibility of assessment and evaluating. Lightbot does not
support any feedback when failing and allows endless repetitions. There are no hints
when the players do not know further. Grasshopper gives the user visual feedback and
provides hints on the basis of the input. sCool provides the player with textual feedback
or interpreter output to make aware of errors. CodeCombat and CodeMonkey have
a comprehensive dashboard for educators. In this dashboard it is possible to define
courses and see the student’s progress. The learning objectives are always predefined
by the system and the educators do not have a possibility to define their own content
and see the student’s input and metrics for a particular task. The most distinctive
feature of sCool is its adaptive content that can be modified according to the teacher’s
concept.

2.6 Summary

There is a major advantage in using educational video games in a learning situation in
school. Especially when it comes to computational skills and computer science there is a
large number of tools and approaches. In literature there are mainly four skills that are
related to computational thinking (decomposition, pattern recognition, generalization
and abstraction, and algorithm design). These skills are also covered in many countries
K-12 curricula. Some authors suggest to add another (social) component that describes
the socializing that takes place to create problem solving strategies with others.

34

2 Background and Related Work

When it comes to learning there is a large number of theories that try to explain
different aspects of human learning. The most common approaches are behaviorism,
cognitivism and constructivism. The introduced video games are based on one (or
more) of these learning theories. The objective in CodeCombat for example is to explore
a fantasy world. Exploring and building are central aspects in the constructivistic
approach where the students have to solve a certain task. Another central aspect of
learning is being involved in an activity. A high level of flow can be reached when
there is a good balance between challenge and skill. When the state of flow is reached
learning can be seen as an engaging activity.

The theories and approaches that were considered in this chapter represent the basis
for the further development of sCool. To reach a higher level of player’s engagement,
additional gamification and flow increasing elements were developed. The redesign of
the pedagogical concept was adapted to the learning activities. This should motivate
students to remain engaged when playing the game and impart knowledge in a
learner-centered way.

35

3 Game-Based Learning with sCool

This chapter will introduce the educational mobile game sCool and explain the game
design and implementation. The system consists of several components interacting
with each other to provide an adaptive learning environment.

3.1 Game Design

The mobile video game sCool was developed in cooperation between Graz University
of Technology and Westminster University (A. Kojic et al., 2018). It is a game-based
tool to engage school students in learning computational skills. sCool consists of two
different components: the mobile game and the web application. Figure 3.1 shows
the architecture of the sCool environment. The mobile game consists of two game
modes, each with a certain aim: i) concept-learning mode and ii) practical mode.
The web application takes an important role since it provides the game with the
learning content and all collected data concerning learning is sent to the server. All
communication between the mobile game and the web application is transmitted over
a Representational State Transfer (REST) API in JavaScript Object Notation (JSON)
format. After each level all game-related data will be synchronised with the server. In
this way educators have access to the learning analytics in real-time.

The game has a coherent story that links the different game types within the game. The
overall game theme is space and exploring a foreign planet. A space shuttle crashed
on a foreign planet and parts of it got lost. The players slip into the role of a space
crew member and have to repair the shuttle. For this purpose they have to explore the
planet and collect different pieces of information. Each piece of information represents
a learning content that helps the players to understand a certain concept. When the
players passed the concept-learning missions and understand this content, they apply
their knowledge in the practical missions. In this game type they have to control a
robot by using the programming language Python and understand computational
thinking skills.

37

3 Game-Based Learning with sCool

Figure 3.1: sCool - System Architecture (adapted after Steinmaurer, Pirker, and Gütl (2019b))

38

3 Game-Based Learning with sCool

3.1.1 Concept-learning Mode

In the concept-learning mode the students are faced with the mission of discovering a
hostile planet (A. Kojic et al., 2018). In this three-dimensional game mode the players
are controlling a character over a game map (see Figure 3.2a). The map consists of four
interactive game elements: character, enemies, disks, and first aid boxes. The aim is to
collect different pieces of information in form of disks. These disks contains different
information that is needed to escape the planet. Each map has at least two disks that
are defended by enemies. Both the game map and the playground are generated based
on procedural content generation algorithms (Cellular Automata and Perlin Noise) so
that they are different every time, which makes the game more re-playable. The level
of difficulty can be pre-defined in the web application, so the missions will get more
complex. When the level of difficulty is increased the size of the playable map will
be extended and the number of collectable disks will change as well. After collecting
all disks new content is presented in textual form (see Figure 3.2b). The player has
to go through this text and answering a following single choice question (see Figure
3.2c). When this question is answered correctly - the mission qualifies as passed -
otherwise the whole level has to be repeated until it is done right. In this way the
learning concepts are studied by completing the levels. When a task is passed the
players receive a certain amount of virtual currency (coins). They can use it to answer
questions they got wrong before or buy something in the in-game store.

Besides this game type there is another mode called platformer (Pöckelhofer, 2019). It
is up to the players to decide which type they rather want to play since the learning
content is equal in each type. The concept of the two-dimensional game map is
based on the above mentioned game type. The players have to explore a world with
different platforms and search for disks (see Figure 3.2d). The disks and platforms are
protected by two types of enemies (movable and static) that can harm the player. After
successfully passing the level the concept is presented in the same (textual) form with
a final question.

3.1.2 Practical mode

In the practical mode the players have to apply the previous learned concepts (A. Kojic
et al., 2018). There are two main components: the game environment and the user
interface. The game environment is represented by the squared playground where the
robot is placed (see Figure 3.2e). The environment has three interactive game objects:
a robot, obstacles and a disk. Starting from the player’s position the disk has to be
reached. On the playing field a number of obstacles (boxes) is placed that have to be
avoided.

The user interface enables the interaction with the game environment by giving
the robot certain instructions. The robot can be controlled via different command

39

3 Game-Based Learning with sCool

(a) Exploration Map (b) Learn Content

(c) Final Question (d) Platformer

(e) Practical Mode (f) Coding in Practical Mode

Figure 3.2: sCool Game Types

40

3 Game-Based Learning with sCool

blocks that get dropped into a code editor (see Figure 3.2f). Each block represents an
instruction in Python that is executed by the robot. There are four different block types:
print, variable declaration, move, and control structures. It is also possible to change
the code in the editor via a virtual keyboard to generate custom output. The editor also
includes a debugging tool that analyses the code and passes the interpreter’s output
to the user. This makes it possible to program in the practical mode.

3.1.3 Web Application

The .NET-based web application is a platform for educators (A. Kojic et al., 2018).
Teachers can use it to provide new educational content, create new courses or edit
existing courses. Each course is represented as hierarchical skill-tree. These skills are
superior elements for all concept-learning and practical tasks. Different concepts can
be mapped to a specific skill tree. The content and the degree of difficulty can be
declared in the web application and the maps are generated based on these parameters.
A distinction is also made between concept-learning and practical tasks on the web
platform. In the concept-learning part educators can define learning content and the
corresponding single choice question for the players. Additionally, the difficulty level
for the exploration mode is appointed, so the map is generated according to that value.
For the practical tasks, educators can define the tasks’ goal and their reference output.
This solution represents the expected output of the Python code to successfully finish
the level. In this section it is also possible to define the accessible command blocks in
the levels.

The web platform also provides an assessment and analytics tool for educators to
analyse the student’s learning process and gain a detailed evaluation of the course.
Educators can see different metrics for each user. This makes it possible to see number
of attempts, provided code, time duration, etc.

3.1.4 Gamification Elements

sCool implements a couple of elements that make the game more re-playable. These
gamification elements should engage the players to make more achievements in the
game (S. Kim et al., 2018, p. 127).

• Virtual Currency: After successfully passing a concept-learning or practical task
the players receive coins.

• Avatars: The coins can be used to customize the avatar. The players can change
the avatar’s appearance (color, face, etc.) and buy additional equipment like
weapons or clothes.

• Leaderboard: A highscore list with a course wide ranking will display the user’s
name and points.

41

3 Game-Based Learning with sCool

• Experience Points: After passing a level the experience points are increased,
which can lead to a new level in the game.

3.2 Implementation

This section covers selected aspects of the implementation of sCool (A. Kojic, 2017;
M. Kojic, 2017). In terms of this thesis the focus will be on implementation features
that are part of the further development in the didactical concept. The mobile video
game is built with the Unity game engine and written in C#. The web application
was built using ASP.NET MVC web framework. The UI was developed on the base of
HyperText Markus Language (HTML), Cascading Style Sheets (CSS), and JavaScript
(JS). Several libraries and frameworks were used in addition: jQuery and Bootstrap
for the functionality of the platform and design, Flot UI and Morris.js was used for
displaying the learning analytics and charts. The communication between web platform
and video game is done by ASP.NET Web API framework. This framework supports
the REST interface and the serialization with JSON.

3.2.1 Practical mode

In the practical mode the players can apply the learned concepts from the explorative
(concept-learning) mode (M. Kojic, 2017). Therefore, they have to solve tasks program-
matically. The coding tasks are done with the programming language Python. To use
Python within the game environment the open-source implementation IronPython1 is
used. This implementation is fully written in C# and provides access to Python in the
.NET framework or Mono. The practical mode is divided into two main component
groups: game environment and user interface system. Since sCool is mainly developed
for mobile devices, certain design decisions were taken that will be explained in this
section.

The UI system consists of the following components (see Figure 3.3a):

• Code blocks
• Editor
• Virtual Keyboard
• Scrollbar
• Constraint Label
• Tabs

– Description Tab
– Code Tab

1https://ironpython.net/

42

3 Game-Based Learning with sCool

– Output Tab

• Buttons

– Run Button
– Tutorial Button
– Menu Button
– Open/Close Button

The communication between the environment and the player happens in the editor
window. In total there are three different editor behaviours that differ in the application
area. The description tab formulates the task’s objective according to the content that
the teachers define at the web platform. The actual programming takes place in the
code tab where the players are able to interact with the code editor. There are two ways
to write code into the editor: code blocks and virtual keyboard. The code blocks are a
placeholder for a code that will be displayed in the editor when a button is dragged
and dropped. Each block represents a command in the Python programming language.
In total there are four categories of blocks: print command, variable declaration, move
commands (left, right, up, down), and control flow (loops and conditions). Beside
using blocks the players can write Python code with the virtual keyboard. The virtual
keyboard’s layout is orientated on a native keyboard so that all users are familiar
with the handling. Figure 3.3b shows all possible keys that can be used on the virtual
keyboard. By pressing the shift button the characters appear in upper case. There
is also a comprehensive range on special characters that are necessary in terms of
programming (for example for using logical expressions). The output tab is opened
when the users press the run button. Before the code is executed it is passed to the
Python interpreter that performs a syntax check first. The corresponding message
from the interpreter (true/success or false/fail) is displayed in the editor window (see
Figure 3.3c). Listing 3.1 shows how the code is processed before it is passed to the
Python interpreter. First it is formatted into an interpretable string and in line 12 the
code is passed to the IronPython interpreter. According to the result when interpreting
the code (succeed or error) the output is presented into the output editor.

The game environment consists of a 15x15 grid presented in the playing field, and its
elements can be accessed by programming (M. Kojic, 2017). On top of the playground
there are three interactive components:

• Robot: The robot can be controlled by giving commands in the language Python.
• Disk: To finish a given level the disk has to be reached.
• Blocks: The robot has to avoid these obstacles on the way to the disk.

The spawning point of the robot is static in the lower middle of the playing field
(M. Kojic, 2017). In every practical mission the number of boxes is 15. The position is
generated randomly using the .NET Random library. The position of the disk depends
on the level of difficulty (see Listing 3.2). The disk’s x position is randomly generated

43

3 Game-Based Learning with sCool

between position 1 to 15. The y position is set on base of the given level of difficulty.
The playground is divided into thirds to place the disk.

1 publ ic void ContentForCompiler ()
2 {
3 typedCode = ” ” ;
4 RemoveRedSeparator () ;
5 Text [] t e x t = GetComponentsInChildren<Text > () ;
6 foreach (Text t in t e x t) {
7 i f (t . transform . parent . name != ”CodeLineNumber ”)
8 typedCode += GetIndent (t) + t . t e x t + ”\n ” ;
9 }

10 s t r i n g [] re s = PythonBase . Ins tance . Run(typedCode) ;
11 outputTxt . t e x t = e r r o r T x t . t e x t = ” ” ;
12 i f (re s [0] == ” true ”) {
13 playBtn . Se tAct ive (t rue) ;
14 outputTxt . t e x t = re s [1] ;
15 } e l s e {
16 playBtn . Se tAct ive (f a l s e) ;
17 e r r o r T x t . t e x t = r es [1] ;
18 }
19 }

Listing 3.1: Processing Python Code

44

3 Game-Based Learning with sCool

1 i n t AdjustY ()
2 {
3 i n t y ;
4 i f (PracticeManager . Ins tance . pr ac t i ce Task . D i f f i c u l t y < 50)
5 {
6 y = Random . Range (1 0 , 1 4) ;
7 }
8 e l s e i f
9 (PracticeManager . Ins tance . prac t i ceTas k . D i f f i c u l t y >= 50 &&

10 PracticeManager . Ins tanc e . prac t i ceTas k . D i f f i c u l t y < 80)
11 {
12 y = Random . Range (5 , 1 0) ;
13 }
14 e l s e
15 {
16 y = Random . Range (0 , 5) ;
17 }
18 re turn y ;
19 }

Listing 3.2: Generation of Disk Position

In every practical task it is necessary to reach the disk. Additionally the teachers can
determine that a certain output has to be provided by the players. When the disk is
reached (or rather the box collider is triggered) a CompareStrings method is called that
compares the given output and the reference string with each other.

Apart from reserved language elements in Python it is possible to call additional
objects. For the robot to be able to move on the playing field the players need to use
one of four moving commands (robot.up, robot.down, robot.left, robot.right). The
object robot is a C# object that is passed into the IronPython environment. The method
SetVariable passes the object robot into IronPython and makes it accessible in the code
editor (see Listing 3.3). In this way properties and methods (especially moving the
robot) of this object can be accessed.

PythonBase . In s tance . Scope . S e t V a r i a b l e (” robot ” ,
value : Robot . Ins tance) ;

Listing 3.3: Pass Objects to IronPython

45

3 Game-Based Learning with sCool

(a) User interface of the practical mode.

(b) Virtual keyboard with all possible
(lower case) keys.

(c) Output tab with syntax errors.

Figure 3.3: Practical mode

46

3 Game-Based Learning with sCool

Figure 3.4: Hierarchical Course Tree

3.2.2 Web Application

The application is written in ASP.NET MVC web framework2, HTML5, CSS, and
different JavaScript libraries (A. Kojic, 2017). The application is hosted on Microsoft’s
cloud computing platform Azure3. As central storing technique a Microsoft SQL
database system is used. This database stores all relevant information regarding the
game content and the analytics. The courses are structured in a hierarchical tree (see
Figure 3.4). Each course consists of one or more skills that represent concepts. A skill
can have either a concept-learning part or a practical mission. Different aspects of
this skill can be learned in several concept-learning levels where the learners receive
information about this concept. The educators can create tasks to apply these concepts
in a practical way.

Web Platform
The web application provides educators with the opportunity to manage and analyze
all courses and users (A. Kojic, 2017). With the ASP.NET Model, View, Controller (MVC)
framework a separation of data and business logic, user interface, and user interaction
handling is possible. ASP.NET Core MVC supports routing which allows to define
URL patterns that are routed to a certain controller. Listing 3.4 shows that all URLs
must have a certain pattern: {controller}/{action}/{id}. The first parameter after the

2https://docs.microsoft.com/en-us/aspnet/core/mvc/views/overview?view=aspnetcore-3.0
3https://azure.microsoft.com/en-gb/

47

3 Game-Based Learning with sCool

domain name has to be the name of the controller, the second one defines the action
that has to be performed and the third is a identifier for the action.

1 publ ic s t a t i c void Regis terRoutes (RouteCol lec t ion routes)
2 {
3 routes . IgnoreRoute (”{ resource } . axd/{* pathInfo } ”) ;
4

5 routes . MapRoute (
6 name : ” Defaul t ” ,
7 u r l : ”{ c o n t r o l l e r }/{ a c t i o n }/{ id }” ,
8 d e f a u l t s : new { c o n t r o l l e r = ”Home” , a c t i o n = ” Index ” ,
9 id = UrlParameter . Optional }

10) ;
11 }

Listing 3.4: Configuration of Routing in MVC.

The generation of the View component is done with the Razor view engine4. Razor
provides a markup syntax that can be embedded into C# code. In this way a template
with corresponding data generates HTML output. Following routes can be used in
order to generate views:

• Account
• Courses
• Home
• Manage
• PracticeTask
• Skills
• Students
• TheoryTask

The course management enables to create, modify or delete courses (A. Kojic, 2017).
Figure 3.5 shows the New Course button to create a new one. When pressing this button
the educators are asked to fill in a title and description. This course is assigned to the
educator and is only accessible within the account. Each course consists of a certain
number of skills that are based on each other. If at least 66% of all tasks within a skill
is reached the next skill will be unlocked. Every skill may involve concept-learning
and/or practical tasks. They are listed under the corresponding skill (see Figure 3.6
and 3.7) and can be created individually. As Figure 3.8 shows each concept-learning
mission has a title, description, task, answers, and a level of difficulty. The practical
missions (see Figure 3.9) consist out of a title, description, task, solution, level of
difficulty, and enabled blocks.

4https://docs.microsoft.com/en-us/aspnet/core/mvc/views/razor?view=aspnetcore-3.0

48

3 Game-Based Learning with sCool

Figure 3.5: This view shows the New Course button to create a new course and displays a list with all
available courses for a given user.

Figure 3.6: Overview of the concept-learning tasks in the corresponding skill.

Figure 3.7: Overview of the practical tasks in the corresponding skill.

49

3 Game-Based Learning with sCool

Figure 3.8: Form to create a new concept-learning mission.

Figure 3.9: Creation of practical mission.

50

3 Game-Based Learning with sCool

In the course and student analysis tool various statistics can be used to see the learning
progress of each student. Figure 3.10 lists all users that are enrolled in the course. For
a more detailed overview all statistics to concept-learning and practical tasks can be
accessed (see Figure 3.11). In this way it is possible to analyse the overall performance
in the game. Every single attempt (provided code and answers) can be seen on the
web platform.

Interface
The communication between the client and server takes place over a REST API and
is using the HTTP methods GET, PUT, and POST for receiving and manipulating
data (A. Kojic, 2017). There are two types of requests: those which deal with the data
(courses, tasks, highscores, etc.) and those which handle the student objects (register,
list students, assign courses, etc.). Table 3.1 gives an overview of all possible API
requests.

Since the data is stored in a relational database the JSON objects that are used for
the communication are created for each request. The web platform implements an
Entity Framework approach for object-relational mapping. This enables the usage of a
complex JSON data structure within an object class. Each model class is mapped to
a corresponding table in the database. All model classes are derived from BaseEntity
which extends all objects with two properties: CreatedAt and UpdatedAt. This makes it
possible to automatically add and update date and time. Listing 3.5 shows the model
class for a course which consists of different properties. Figure 3.13 shows the JSON
object that is serialized with the content of the Microsoft SQL database. Figure 3.12

shows the entity Course and the corresponding entity in an Entity Relationship (ER)
diagram.

1 publ ic c l a s s Course : BaseEnt i ty
2 {
3 publ ic Course ()
4 {
5 S k i l l s = new Lis t<S k i l l > () ;
6 Enrol leds = new Lis t<Enrolled > () ;
7 }
8 [Key]
9 publ ic i n t CourseId { get ; s e t ; }

10 [Required]
11 publ ic s t r i n g T i t l e { get ; s e t ; }
12 publ ic s t r i n g Descr ipt ion { get ; s e t ; }
13 publ ic v i r t u a l Applicat ionUser User { get ; s e t ; }
14 publ ic v i r t u a l I C o l l e c t i o n <S k i l l > S k i l l s { get ; s e t ; }
15 publ ic v i r t u a l I C o l l e c t i o n <Enrolled> Enrol leds { get ; s e t ; }
16 }

Listing 3.5: Sample class model for the course model.

51

3 Game-Based Learning with sCool

Figure 3.10: List of all enrolled users in the course.

Figure 3.11: Learning progress of a single student.

52

3 Game-Based Learning with sCool

Students

api/Students/:id GET Receive the student object with all en-
rolled courses and the related skill
tree. The tree stores the learning data
and all concept-learning and practical
tasks.

api/Students/:id PUT Modify a student object.
api/Students/ POST Create a new student object and enroll

it in all courses of all administrators.
Data

api/Data/GetTheoryTask GET Receive information about a user’s
practical-learning tasks. This will in-
clude all tasks and the level of knowl-
edge.

api/Data/AnswerTheoryTask POST Calculate various values regarding
learning and unlocking new skills (if
threshold is exceeded).

api/Data/GetPraticeTask GET Get all practical tasks related to a cer-
tain user.

api/Data/AnswerPracticeTask POST Calculate the given data from the prac-
tical missions and update the learning
objects.

api/Data/Highscores GET Generates an ordered list (name and
points) of all students that are enrolled
in a certain course.

api/Data/JoinCourse GET Enroll for a certain course, based on a
given token.

api/Data/SaveDetails GET Update name or email address of a
certain user based on the student id.

Table 3.1: This table lists all possible API calls and includes the paths, http method, methods and an
explanation of the behaviour.

53

3 Game-Based Learning with sCool

The database consists of the following entities that are used in terms of the sCool
system:

• Courses: Stores all titles and descriptions of courses.
• Enrolleds: Joining table that assigns the enrolled courses to the according users.
• Learnings: Contains all parameters regarding learning and analytics.
• Logs: JSON objects are stored with different information of the sCool video game.
• PracticeStatistics: All relevant information regarding the practical mode (answers,

disk position, entered code, etc.) is stored.
• PracticeTask: Definition of each practical mission with objectives and various

settings.
• Skills: Record the skills and matches them to the corresponding course.
• Students: Name and email address of all registered students.
• TheoryStatistics: All relevant information regarding the concept-learning mode

(various positions, results, points, etc.) is stored.
• TheoryTask: Stores information to generate the concept-learning levels.

3.3 Summary

sCool has a comprehensive architecture that consists of a mobile video game and a
web platform. The mobile video game has a concept-learning part and a practical part.
Each part serves a certain purpose in terms of learning. In the concept-learning part
learners acquire new skills in an explorative way. In the practical missions the learned
skills have to be applied using the programming language Python to control a robot
on a playing field.

The learning content is highly adaptive and can be modified by the educator using
the web platform. The web platform includes a course management and a learning
analytics tool. In the course management the learning content and all corresponding
tasks can be created and modified. The learning analytics can help the educator to see
the progress in the game and see the overall performance.

The communication between the mobile video game and the server happens over a
REST API. This API is using HTTP methods (GET, PUT and POST) and JSON objects
to send and receive data.

54

3 Game-Based Learning with sCool

Figure 3.12: Database model of the Course entity and related entities.

Figure 3.13: JSON object of a sample course.

55

4 Pre-Evaluation

The introduced mobile video game sCool was evaluated in two Austrian schools.
The aim of this evaluation was to receive information about engagement, emotions,
motivation, usability, and didactic aspects. The first section covers the game’s peda-
gogical concept and framework. It also covers the study design, the instruments and
the procedure. Afterwards both experiments, the study participants and the results
will be introduced. Finally, the findings of both experiments regarding all investigated
aspects will be summarized. Some parts of this chapter are based on the case studies
of Steinmaurer, Pirker, and Gütl (2019a) and Steinmaurer, Pirker, and Gütl (2019b).

4.1 Pedagogical Concept

Before working with sCool in an educational context it was necessary to develop a
pedagogical concept. For this purpose two schools were selected to perform a pre-
evaluation. The aim was to develop and test this new concept and evaluate the usage
in classroom. Therefore, a user-centered survey regarding usability, game engagement,
motivation, emotions, and gender-specific aspects was conducted. Another vital aspect
was to find out if the video game can help school students to learn computational skills.
For the practical part a real world example was used to create a game that engages
its players. The following list contains the research questions that were related to the
study:

• RQ1: Can sCool be used in school regarding usability and acceptability?
• RQ2: Do school students get motivated for coding by using sCool?
• RQ3: Are school students able to abstract the learned concepts in sCool and apply

them to similar problem classes?

Settings and Instruments
A number of standardised questions were included in the final questionnaire to provide
a comprehensive evaluation of different aspects related to sCool.

• Game Engagement Questionnaire (GEQ) (Brockmyer et al., 2009)
• Computer Emotion Scale (CES) (Kay and Loverock, 2008)
• Situational Motivation Scale (SIMS) (Guay, Vallerand, and Blanchard, 2000)
• gender-related aspects

57

4 Pre-Evaluation

Experiment 1 Experiment 2

School Type New Secondary School Academic Secondary
School (Lower Cycle)

Grade 7th 8th
Participants 18 pupils (11 girls, 7 boys) 12 pupils (6 girls, 6

boys)
Groups 9 groups 8 groups
Age 12-14 (M=12.72; SD=0.73) 13-15 (M=13.75;

SD=0.59)

Table 4.1: This table gives an overview of all relevant information for each experiment (adapted after
Steinmaurer, Pirker, and Gütl, 2019b).

• game-related questions
• open-ended questions

Both experiments were conducted in a workshop in schools with pupils. The sCool
course was created in advance in coordination with the computer science teachers using
the sCool web platform. The game-related data was sent to the sCool web application
while students were playing the game. It is stored in a Microsoft SQL database
and can be analysed by the web platform. All user-related data was collected using
Google Forms1. After the experiment the questions related to the Game Engagement
Questionnaire, the Computer Emotion Scale, and the Situational Motivation Scale
was analysed by the open-source programming language R. It was mainly used to
categorize all factors and evaluate the mean and standard deviation on the likert-based
data. The game-related questions were analysed using Google Forms and Excel. The
open-ended questions were examined and classified according to common features.

Procedure
The framework conditions for both groups were equal. Both classes had to do the same
course in sCool. The time limitation in each class was 100 minutes (double lessons)
for the whole experiment. At the beginning of the class the project and sCool was
introduced briefly. After the introduction the school students had to form groups of
two with at least one Android device. The game was installed using a download link
of the game. After installing the game all groups were handed out an introduction
worksheet (see Appendix) containing the first instructions and a brief explanation
of their tasks. This sheet introduced the character Rob the Robot that acts as a guide
through the game. Table 4.1 gives an overview of the general information for each
experiment.

The school students had a total of 50 minutes for playing the sCool game. Within the
given time they should complete five concept-learning and three practical missions.
In the concept-learning part the following concepts were introduced: commands,

1https://www.google.com/forms/about/

58

4 Pre-Evaluation

Task Concepts Difficulty
Concept-Learning Tasks

1 Which command is used that Rob can
say ”Hello you”?

Print 20%

2 How can Rob store the word ”Mon-
day” in a variable?

Variables, Strings 30%

3 What is the result of the following
calculation? x = (31 - (2*3))

Variables, Arith-
metic

40%

4 How can Rob print the value of the
variable ’donut’?

Print, Strings, Vari-
ables

50%

5 What code is used to count from 1 to
10?

Print, Loops 60%

Practical Tasks
1 Print the name of the Robot. Print 20%
2 Store the result of the calculation

21+(3*3) in a variable and print it.
Print, Variables,
Arithmetic

40%

3 Count from 20 to 30. Print, Loops 55%

Table 4.2: This table shows all given tasks in the course Basic Coding (adapted after Steinmaurer, Pirker,
and Gütl, 2019b).

variables, strings, basic arithmetic, and loops. The practical tasks were designed to
review these concepts and apply them. Table 4.2 shows all tasks and the objectives in
the game. After working with the game for 50 minutes the school students were asked
to solve a worksheet (see Appendix) with a coding task. This task was similar to the
previous one in the game. The aim of this worksheet was to figure out if the school
students were able to transform the learned concepts and apply them to a similar
field. The worksheet’s task was to fix the robot’s broken calculation module. They had
to count from 3 to 30 in steps of 3 (three times table) in the programming language
Python. The school students were informed that they do not have to pay attention to
accurate syntax. (Steinmaurer, Pirker, and Gütl, 2019b)

The concept-learning and practical tasks cover different basic computational skills.
After the students have passed the corresponding level they receive a new concept in
a text form. The system asks them a question relating to the concept they have just
learned. The concepts are embedded into the narrative and the space theme. In this
way students should realize that the concepts can be applied in a coding context and
that learning does fulfill a certain purpose. The school students should learn:

• How to print strings and variables,
• the idea of variables and assigning variables,
• fundamental arithmetic operations with variables, and
• repetition of certain commands.

59

4 Pre-Evaluation

With the aim to make students aware of syntactical features and capabilities of the
code, snippets are attached to the textual concept. The level of difficulty is increased
at 10 percentage for each concept-learning task, thereby the number of disks (and
enemies) is also increased as well and so challenge and skill stay balanced. The practical
tasks are designed to apply the knowledge of the previous learned tasks and solve a
given problem. The overall goal in all sCool’s practical missions is to reach the disk.
In the first level the robot’s name has to be printed out as well. This simple task is
feasible with basic knowledge and should engage students to get familiar with the
user interface (especially the blocks and code editor). The second level combines the
concepts commands, variables and arithmetic. The aim is to make a calculation using
a variable and print its result. The final task combines all previous learned concepts
and also includes loops. In the last concept-learning mission the students learn how to
count from one to ten. In the practical mission they are asked to do a similar task but
count from 20 to 30. (Steinmaurer, Pirker, and Gütl, 2019a)

After the school students completed the worksheet they were asked to fill in an online
questionnaire. All questionnaires were provided on Google Forms and answered
individually. The questions covered some general questions, motivation, engagement,
emotions, gender-specific questions and open-ended questions (see Appendix).

In cooperation with the school’s computer science teacher a didactic consideration was
created to formulate the workshop’s goals, its didactic concept, and the procedure:

After a brief welcome and project presentation the distributed and signed consent
documents will be handed in again. Afterwards the teachers will explain the installation
of the game and provide the students with a handout. This handout should also give
an overview of the two game types and introduce the character Rob the Robot. Since
the game is only available on Android devices, groups of two will be formed so there
will be at least one device per group. The students should also work together to
explore and learn together. The group building will not be done by the teachers so
students feel more comfortable with their peers. As soon as every group is finished
with the installation the menu and user interface will be explained briefly. After this
introduction the students are free to play the game for 50 minutes. If questions appear
the students are asked to discuss them within the class and if it is not possible to
resolve them the teachers will help them. After 50 minutes all students have to solve
the worksheet individually. Thereby, they are faced with a coding task that is built on
the previous learned concepts. This will show if it is possible to abstract the learned
concepts and apply them in a similar problem class. After 10 minutes the students are
asked to hand in the worksheet and do the prepared questionnaire. Since the class is in
the ICT room the questionnaire will be provided via Google Forms. After completing
all questions a conclusive discussion round will be held where all students can tell
their experiences before they leave class. Table 4.3 gives an overview of the planned
scheduling for the workshop. 2

2This didactic consideration was developed together with the computer science teacher.

60

4 Pre-Evaluation

Time Task Method Media
5’ welcome, introduction of

the project, hand in the con-
sent documents

frontal -

10’ installation of sCool, hand
out introduction worksheet

in plenum handout

10’ introduce sCool and game
modes, form groups

frontal, in plenum smartphone

50’ play sCool and support if
necessary

group smartphone

10’ work on worksheets individual work worksheet
10’ answer questionnaire individual work questionnaire, computer
5’ final discussion round and

goodbye
in plenum -

Table 4.3: This table shows the schedule of the experiment.

The following didactical objectives were defined:

• Learn basic skills in programming
• Improve algorithmic/computational thinking
• Encourage social learning
• Consider practical aspects of computer science
• See smartphones and apps as a strategy to acquire learning content

4.2 Experiment 1: New Secondary School

The experiment was conducted at a 7th grade class on the New Secondary School in
Steinerkirchen (Upper Austria) on 1st March 2018. In total the group consisted out of
18 school students (11 girls and 7 boys). Since there is no regular computer science
class in the school, the students attended the elective course ECDL, where they practice
for the European Computer Driving License. The class is taught in a double lesson
(in total 100 minutes). The school does not have a WiFi connection available so it was
necessary to organize a WiFi hotspot for the class. In advance it was also necessary to
hand out the consent form for the parents. (Steinmaurer, Pirker, and Gütl, 2019a)

Results and Discussion
The results of the Game Engagement Questionnaire (Brockmyer et al., 2009) show that the
school students were highly immersed (M=3.78, SD=1.55) while playing the game (see
Figure 4.3). Another important factor in terms of learning is the level of flow (M=3.53,
SD=1.50) which is the optimal experience and indicates a good balance between chal-
lenge and skill (Csikszentmihalyi, Abuhamdeh, and Nakamura, 2014). The Computer

61

4 Pre-Evaluation

Figure 4.1: Student while playing the concept-learning part of the game.

Figure 4.2: Two students going through the game tutorial.

62

4 Pre-Evaluation

Emotion Scale (Kay and Loverock, 2008) is a twelve item questionnaire which results in
the four base emotions that appear while learning a software: happiness, anger, anxiety,
and sadness (see Figure 4.4). Playing sCool was mainly related with positive feelings
(happiness, M=3.39, SD=0.63) while negative emotions (anger, anxiety, and sadness)
are minor. The Situational Motivation Scale (Guay, Vallerand, and Blanchard, 2000)
defines four types of motivation that are drivers for people to act (see Figure 4.5). The
identified regulation is related to a form of extrinsic motivation. This means a person
has identified and accepted something as important which influences the behaviour
(Ryan and Deci, 2000). Its high level (M=5.26, SD=1.85) can be traced back to the overall
context of the experiment. Since the experiment was taken in class the whole setting
was not just self-regulated. Nevertheless, the level of identified regulation and intrinsic
motivation (M=5.72, SD=1.27) is much higher than amotivation and external regulation
which means that the motivation is not fully driven by external factors.

According to Steinmaurer, Pirker, and Gütl (2019a) all groups were able to succeed
at all five concept-learning tasks. Only 33.39% of the groups were able to pass the
task at the first try which can be traced back to the fact that many students skipped
reading the instructions. Eight out of nine groups (88.89%) were able to pass the first
practical mission. Another seven groups (77.78%) could master the second level were
they had to do a simple calculation. The third task was successfully passed by just
three groups (33.34%). After completing all tasks in the game the groups were asked
to solve the worksheet. No group was able to solve the task and just one group had an
approximate solution approach. The groups stated that they were not able to apply the
concepts to another area.

Table 4.4 shows the results of the game related questions in the questionnaire. Most
of the school students answered that they learned something new while playing the
game and that they are encouraged to learn more about programming. Despite all
school students were German-speaking they answered that the game’s language was
understandable. Most of the open-questioned feedback (5 out of 18) was related to the
robot missions: “Make the control at the robot missions easier.”, “The robot missions were to
complicated, it would be great to improve it.”

4.3 Experiment 2: Academic Secondary School

After running the first experiment (pilot test) in a New Secondary School the second
pre-evaluation was conducted on the 20th June 2018 at a 8th grade Academic Secondary
School in Graz (Styria). The group consisted out of 12 students (6 boys and 6 girls).
Compared to the school students of the first group they were more familiar with game-
based learning approaches in school since they attended the elective course computer
science where they tried different (mobile) tools for learning. Three out of twelve
(25%) students also answered that they already have some experience in programming

63

4 Pre-Evaluation

Figure 4.3: Results of Game Engagement Questionnaire at Experiment 1.

Figure 4.4: Results of Computer Emotion Scale at Experiment 1.

Figure 4.5: Results of Situational Motivation Scale at Experiment 1.

64

4 Pre-Evaluation

Strongly
Agree

Agree Undecid-
ed

Disagree Strongly
Dis-
agree

The game’s structure is coher-
ent

7 5 5 1 0

The game’s control is easy to
use

5 5 6 2 0

The usage of the keyboard
was easy

13 3 1 1 0

The language is understand-
able

4 7 7 0 0

The levels were easy to master 8 6 3 1 0

I learned something while
playing the game

10 5 3 0 0

sCool encouraged me to learn
more about programming

12 3 2 1 0

The work sheet was easy to
solve

7 2 6 2 1

Table 4.4: This table shows the results of the game related questions of Experiment 1.

(Scratch and Java). The school had a better IT infrastructure and in this way the school
students could use the school’s WiFi. (Steinmaurer, Pirker, and Gütl, 2019b)

The framework conditions remain the same than in the first experiment. The lesson
lasted 100 minutes and the procedure is equal to the schedule in table 4.3. Since the
majority of the students had Android devices there were eight groups in total.

Results and Discussion
The results of the Game Engagement Questionnaire (Brockmyer et al., 2009) show that
the school students were less engaged than the students in the first experiment (see
Figure 4.6). The class is more experienced with game-based learning tools than the first
group. This could be the cause for the lower level of engagement. When considering
the Computer Emotion Scale (Kay and Loverock, 2008) the predominantly feelings are
linked to happiness (M=2.556, SD=0.97) (see Figure 4.7). The results of the Situational
Motivation Scale (Guay, Vallerand, and Blanchard, 2000) show a high level of external
regulated (M=3.98, SD=2.17) motivation (see Figure 4.8). Similar to the first experiment
this could be caused by the experiment’s educational context.

All groups were able to pass each concept-learning task in the game (Steinmaurer,
Pirker, and Gütl, 2019b). They could also finish the missions quite quickly since the
first group has finished after 10 minutes. All groups could manage to solve the given
practical tasks. The solution approach of the third task was different by the used
concepts: Five groups used a for loop to count from 20 to 30. Three groups wrote
the whole output into the print command. After the practical tasks the groups were

65

4 Pre-Evaluation

Strongly
Agree

Agree UndecidedDisagree Strongly
Dis-
agree

The game’s structure is coher-
ent

1 6 4 1 0

The game’s control is easy to
use

2 2 4 3 1

The usage of the keyboard
was easy

2 4 1 3 2

The language is understand-
able

2 2 1 5 2

The levels were easy to master 1 3 5 1 2

I learned something while
playing the game

1 5 4 0 2

sCool encouraged me to learn
more about programming

1 1 1 4 5

The work sheet was easy to
solve

0 1 4 3 4

Table 4.5: This table shows the results of the game related questions of Experiment 2.

handed out the worksheet with the programming task. Just one group had a solution
approach that contained a (for) loop. All others groups could not find an appropriate
solution.

Table 4.5 shows the results of the game related questions. When playing the game
(especially the robot missions) the groups had issues with the control and the keyboard:
“In my opinion the control is not easy.”, “I would improve the control since it is stuck or not
working well.” Most questions during the lesson occurred in relation to the control or
the keyboard. The group also had problems with the game’s language and asked for
a german game version: “Please add a german synchronisation”, “german translation”. A
female student had a gender-specific response: “it would be cool to rename Rob or
change the gender”.

4.4 Findings and Limitations

The findings of both pre-evaluations will be the foundation for the further development
of sCool and its pedagogical concept. During both experiments the users and their
interaction with the system was observed and all results are gathered on base of:

• game-related questions
• open-ended questions

66

4 Pre-Evaluation

Figure 4.6: Results of Game Engagement Questionnaire at Experiment 2.

Figure 4.7: Results of Computer Emotion Scale at Experiment 2.

Figure 4.8: Results of Situational Motivation Scale at Experiment 2.

67

4 Pre-Evaluation

• feedback while playing
• discussion round

When comparing both experiment groups the overall game performance of the Aca-
demic Secondary School was better since all school students were able to complete
both concept-learning and practical tasks. The results of the worksheets were similar as
no group was able to do the calculation without help. The results in game engagement,
emotions, and motivation were also divergent. The flow factor of the group in exper-
iment 1 was around M=3.53 (SD=1.50) whereas the second group had a mean flow
value of M=1.78 (SD=1.26). Both groups associated mainly positive feelings (happiness)
with sCool. The level of anger in the second group was the second highest feeling
(M=1.722, SD=1.09). While working with the school students it could be observed that
they often got stuck or had questions regarding control and keyboard which led to
a higher level of frustration, anger and irritability. The dominating motivation at the
first group was intrinsic (M=5.72, SD=1.27) followed by identified regulation (M=5.26,
1.85). In the second group the level of intrinsic motivation (M=2.958, SD=1.54) was
rather small in comparison of amotivation (M=3.14, SD=1.89) and external regulation
(M=3.97, SD=2.17).

Table 4.6 illustrates the results of the feedback from the open-ended questions. It
contains the result of both experiments. The feedback is categorized in the following
categories:

• Controls: This category contains feedback regarding the control in the game
(or certain game types) or the keyboard. This category compromises especially
feedback concerning issues with the virtual keyboard.

• Design: One answer was given regarding the design which requested “better
graphic”.

• Game Play: The feedback contains general suggestions for more (and harder)
levels but also specific propositions like additional enemies.

• Instructions: All response to this category is related to the robot missions. The
students had problems to understand the tasks and the user interface.

• Language: All feedback related to to language asked for a german translation of
the game, since it would make the game more understandable.

• User Interface: The structure of the game (menu and navigation) was not intuitive
enough.

• Questionnaire: A single person asked for a shorter questionnaire.
• Gender: A girl requested to change the name of the robot or its gender.

The overall evaluation shows that the acceptance is high since most of the students
stated that they were encouraged to learn more about programming and learned some-
thing new. The evaluation also shows that there is room for improvement regarding
usability since many issues occurred regarding the controls and instructions (RQ1).
The school students have predominantly positive feelings connected with sCool. The
level of negative emotions was lower than the positive ones in both experiments. When

68

4 Pre-Evaluation

considering the situational motivation the findings in both experiments diverge. As
a result of the school (respectively the workshop) setting the situational motivation
seem to be regulated external since the students have to attend. For that reason the
Situational Motivation Scale will not be used in future experiments conducted in
schools (RQ2). No group was able to apply the learned concepts to a different problem
class. In terms of the experiment it was not able to solve the calculation task on the
worksheet. This can be traced back to the fact that the task was to hard for the students
and that it was not possible to learn certain concepts within 50 minutes. For future
workshops it would be useful to have more room for learning and practicing (RQ3).

Du, Wimmer, and Rada (2018) and Wangenheim et al. (2017) conducted related ex-
periments and came to similar results. Coding in class with a game-based approach
increases the motivation for programming and computer science. To receive an encour-
aging and sustainable experience for students it is necessary to present the concepts in
an understandable way and provide a system (in terms of the user interface) that is in-
tuitive. To achieve a high motivation and a long lasting understanding in programming
it is necessary to spend more time in coding and learning concepts.

4.4.1 Game Mechanics and User Interface

The evaluation showed that many problems and questions occurred related to the
game mechanics and the user interface. The school students seemed a bit lost when
they started playing the game. This was noticeable since there were many questions
regarding the first steps in the game. They had less questions about the explorative
game type. The students often failed at the final questions at the first attempt because
they skipped the textual explanation of the concepts (Steinmaurer, Pirker, and Gütl,
2019b).

The most issues occurred during the programming tasks in the robot missions. The
objective screen shows the task in the corresponding mission (see Figure 4.9). The
students answered that they were not sure what to do exactly. They had problems to
understand what they should do in particular. The students also stated that they did
not know how to do the coding and what to type. In terms of the user interface the
drag and drop mechanism was not intuitive and they missed feedback respectively
support from the system.

4.4.2 Pedagogical Concept

The pedagogical concept was created together with a secondary school teacher and
included the worksheets and the certain learning content in the game. The students
answered that the introduction sheet was helpful for a first orientation. Many students
were able to pass all missions and apply the learned concepts but they could not

69

4 Pre-Evaluation

Feedback Game Mode Category
1 I really like the game and will con-

tinue playing it at home.
sCool -

2 better keyboard Robot Missions Controls
3 In my opinion the control is not

easy.
Robot Missions Controls

4 Make the control easier. Robot Mission Controls
5 I would improve the control since

it is stuck or not working will.
sCool Controls

6 Make the control at the robot mis-
sions easier.

Robot Mission Controls

7 better graphic sCool Design
8 more shooting Exploration Game Play
9 other enemies Exploration Game Play
10 That not that many bears shoot you

and you can hide.
Exploration Game Play

11 make the game more interesting. sCool Game Play
12 more levels sCool Game Play
13 the levels should be longer and

harder
sCool Game Play

14 It would be cool to rename Rob or
change the gender.

sCool Gender

15 shorten the theory and make it
callable while programming (it is
hard to recognize everything)

Robot Mission Instructions

16 Programming in the robot missions
is to complicated

Robot Mission Instructions

17 Make the robot missions easier and
not so complicated

Robot Mission Instructions

18 Open the programming again to
make it more noticeable

Robot Mission Instructions

19 The robot missions were to compli-
cated for me.

Robot Mission Instructions

20 please add a German synchronisa-
tion

sCool Language

21 German translation sCool Language
22 German translation sCool Language
23 Select between German and En-

glish
sCool Language

24 German translation sCool Language
25 make the questionnaire shorter - Questionnaire
26 simpler structure of game and app sCool User Interface

Table 4.6: Results of open-ended questions of both experiments.

70

4 Pre-Evaluation

Figure 4.9: Robot Missions with the tasks objective.

transfer the concepts to a similar problem on another medium (paper instead of
smartphone). Some students respond that they could not recognize the concepts and
asked for a recall: “make it callable while programming (its hard to recognize everything)”.

4.5 Summary

The pre-evaluation of sCool covers two different school types. The first experiment
was conducted at a New Secondary School and the second at an Academic Secondary
School. The performance and the results of the questionnaires were different in both
school types. Group 1 was not familiar with game-based approaches in education
whereas group 2 was experienced with different tools. For this purpose the students of
group 2 were less engaged while playing the game but achieved the better results in
terms of the tasks.

Both groups provided constructive feedback for possible improvements in both the
game mechanics and the pedagogical concept. Since many questions occurred while
programming in the robot missions improvements of this game type are recommended.
The school students answered that they had questions regarding the user interface and
their objectives.

Hardly any group was able to solve the worksheet with the practical task. Therefore,
the pedagogical concept has to be altered accordingly.

71

5 Requirements and Concepts

Based on both pre-evaluations new requirements and a revised pedagogical concept
was created. The new concept should make it easier and more intuitive to introduce
concepts and make them understandable for school students. Since a major part of the
actual programming takes place in the robot missions it was decided to improve this
particular game mode. The results of the pre-evaluation showed that many students did
not know what they had to do and they also had questions regarding the user interface
as well. The current pedagogical scope of the game covers just a few computational
skills and so new concepts should be introduced in addition.

5.1 Requirements

In this section the functional and non-functional requirements regarding the game will
be mentioned. The requirements can be grouped into functional and non-functional
requirements. The functional requirements provide information about the function-
ality of a system and about the behaviour in certain situations. The non-functional
requirements are about constraints of the system. (Sommerville, 2010)The requirements
mainly cover the robot missions and the web application as well.

5.1.1 Functional Requirements

In the following list all functional requirements are stated that have to be considered
for the further development of the pedagogical concept. The list includes requirements
for both robot missions and the web application.

• Tutorial: Since many of the given feedback was concerning the game’s instruc-
tions and the user interface, a tutorial should help players to get an orientation
in the game. It should be triggered by events and occur only the first time when
a certain behaviour is happening. The tutorial should fit in the already existing
user interface and be intuitive as well.

• Simple course creation: The current web application allows educators to create
courses in an easy way. Nevertheless, it is necessary to make slightly changes in
order to extend the platform for new requirements. The tutorial system should
not be part of the web application since it is part of the game itself.

73

5 Requirements and Concepts

• Lightweight Application Programming Interface (API): The extension of new
functionality in the game (for example new field types) makes it necessary to
extend the existing JSON API. To satisfy the non-functional requirements and to
keep the usability and response time on an appropriate level it is vital to provide
a lightweight API.

• Valid Python commands: In terms of didactics the commands in the robot
missions should be at least valid Python commands. The commands should be
oriented towards common Python coding standards. The Python Enhancement
Proposals (PEP8)1 covers the Style Guide for Python Code: “Function names should
be lowercase, with words separated by underscores as necessary to improve readability.
Variable names follow the same convention as function names.”

• Coordinates: To support the usage of arrays, each field on the playfield should
be addressable. Cartesian coordinates are recommended for an understandable
navigation on the field.

5.1.2 Non-Functional Requirements

There are a few aspects to consider to keep the code base and the system architecture
clean and lightweight. In terms of collaboration a readable and modular code base is
important for future development. The redesign of the pedagogical concept should
improve usability and make it more intuitive. The following list contains the most
important non-functional requirements and extends the requirements of A. Kojic
(2017).

• Usability: One of the most important non-functional requirements is the usability
since many of the given feedback was about issues with it. A clearly designed
user interface supports the players interacting with the system. Usability is a key
requirement for the sCool platform because an understandable user interface
enhance the players satisfaction with the system.

• Modularity: The already existing code base should stay modular and clean. A
modular structure should minimise the maintenance afford and make collabora-
tive working easier. The components should be created in an modular way to be
opened for extension.

• Security: Since the whole sCool architecture contains data of students it is
important to keep the system secure. This concerns on the one hand the web
platform and on the other hand the game itself. The sCool game should also be
protected from attempts to cheat within the game.

• Level of Difficulty: In order to create a motivating and engaging game experience
an even balance between skill and challenge should be given. The educators can
control this aspect by setting a certain level of difficulty for each task. The robot
missions should be generated according to this value.

1https://www.python.org/dev/peps/pep-0008/

74

5 Requirements and Concepts

Figure 5.1: Sketch of sCool’s onboarding system.

5.2 Pedagogical Concepts

The revision of the pedagogical concept covers three major changes. An onboarding
system was introduced which should help players to understand the robot mission’s
user interface. The introduction of different field types and an interactive environment
(playground, robot, etc.) brings a number of additional possibilities. In this way it is
possible to work with concepts like arrays, loops and conditions in a meaningful way.
The third concept is the ability to access different attributes and methods of the robot.
This can help students to get an understanding for object-orientated aspects.

5.2.1 Onboarding

Some of the feedback was concerning the user interface and missing instructions.
To help students reach a better understanding for the robot missions an onboarding
should be included. Depending on the needs of the user the instructions should be
displayed. The messages should only appear the first time a certain behaviour occurs.
This means that all messages should be event triggered. Figure 5.1 shows a sketch of a
message that is displayed when a certain event is triggered.

The onboarding should cover an explanation of the user interface and the basic
interaction with the system. For this purpose all messages are part of the sCool
environment and will not be adaptable in the web application.

75

5 Requirements and Concepts

5.2.2 Field Types

To reach a better understanding of data types so called field types are introduced.
Currently there is one (blank) type of field on the playboard. The following elements
can be placed on the fields:

• Robot
• Disk
• Box

It is not possible to interact with the environment and ask for certain types of fields.
The introduction of field types has the advantage to use various concepts in an intuitive
way. Different types of fields will also change the way how players will interact with
the system. There are two practical ways to address a certain field:

1. Cartesian coordinates: With the usage of Cartesian coordinates all fields can be
asked before runtime with the playing field’s x- and y-coordinates (e.g. field-
Type(x,y)). The advantage is to consider the exact path and solution approach
beforehand. The playing field is seen as a two dimensional array and so the
students learn how to access elements in an array, learn about different data
types and array-related algorithms (searching a field, looping over a sequence,
etc.). The disadvantage is, that coordinates make the interaction static since the
player can not make decisions during runtime (for example avoid an obstacle).

2. Adjacent fields: The usage of adjacent fields enable an enormous flexibility
during runtime. The player can ask for the field type of an adjacent field (e.g.
fieldType(left)). The advantage is to enable dynamic decisions during runtime
since the players can interact with the environment (avoid boxes). The disad-
vantage is that it is more difficult to integrate this approach into a pedagogical
concept.

After considering both approaches the first one (Cartesian coordinates) was chosen:
Before the robot makes the moves the whole code is interpreted first. In this way it is
not possible to make dynamic decisions during coding.

Table 5.1 lists six (possible) additional field types and shows concepts that can be
integrated in the courses.

5.2.3 Robot Interaction

All commands that are executed by the robot are part of the robot object. The available
commands are: Left(), Right(), Up(), and Down(). To cover other concepts as well a few
additional commands were added:

76

5 Requirements and Concepts

Field Description Concept
Hidden This field is invisible for the

player and punish for passing
it.

Array, Conditions

Teleport When the robot is entering this
field he is placed to the opposite
teleport field.

Array

Bonus When passing this field the
player receives a reward (coins).

Array, Loops

Slow The number of steps are de-
creased when passing the field.

Array, Loops

Fake There are fake disks on the play-
ing field that punish the player.

Array, Conditions

Invert This field inverts the moving
commands.

Conditions, Sequencing

Table 5.1: This table shows possible field types.

• Robot.storage: The players can access the robot’s storage which acts as a memory
for external values. In this way educators can store different information in the
memory that can be used for a large number of tasks. The values can be both
elementary data types (integers, characters, etc.) or complex types (lists). This
also gives the possibility to give meaningful tasks in the robot missions since the
educators can decide how the input and the output should be.

• Directions: When analysing the pre-evaluation it showed that some players
tried to pass the number of steps as parameters in the moving commands (e.g.
Robot.Left(3) for three steps to the left). This parameter can also support beginners
to use an easier way of looping in contrast to a for/while loop.

• Randomization: Another important concept in computer science is the generation
of random numbers. This can be useful for different tasks on the playing field.
The function Robot.rand number(int min, int max) provides the possibility that the
robot can compute random numbers.

Figure 5.2 shows an UML diagram with the most important attributes and methods of
the robot object.

5.3 Summary

This chapter gives an overview of the requirements and concepts that are the results of
the pre-evaluation. Some of the mentioned requirements are an extension of already
existing requirements (A. Kojic, 2017; M. Kojic, 2017) and some are new. Significant
functional requirements are for example the tutorial (or onboarding) system and a

77

5 Requirements and Concepts

Figure 5.2: UML diagram of the robot object.

simple course creation. The onboarding system should be an flexible, event triggered
system that can be used for all needed components. In order to have a flexible and fast
communication between the web application and the sCool video game a lightweight
API is necessary. The transmitted object should have less overhead and transfer just
relevant data.

Usability is a central non-functional requirement because it contributes to the accep-
tance of the users. It is important to provide an easy user interface and give clear
instructions that are understandable for the players. The players should also enjoy
the game and not get unchallenged while working on the tasks. A balanced level of
difficulty should challenge the school students in an appropriate way. sCool is a flexible
and modular tool and open for further extension. For this reason a clean code base
and a modular approach is central to extend additional concepts and game types.

The further development of the pedagogical concept covers three different parts: on-
boarding, field types and object interaction. This should help to improve the current
concept, extend the abilities of the system and help the players to get a better un-
derstanding for computational skills and coding in general. The tutorial should help
beginners with the first steps in the game and guide them. It should explain the
user interface of the robot missions and the basic interaction with the system. The
coordinates and object interaction brings new capabilities into the game. It helps to
create meaningful tasks with conditions, arrays, loops, variables, and objects.

78

6 Development

This chapter covers the further development and implementation of the revised peda-
gogical concept. This concept is the result of two pre-evaluations that were conducted
at two secondary schools. During the course creation a few issues could be found
in both the web platform and the sCool game. This issues had to do with usability
aspects, where the participants had particular questions or affected some functionality
that did not work like expected.

This chapter is divided into two sections: Robot Missions and Web Application and API.
The first section deals with the revised pedagogical concept and solutions for minor
issues in the scope of usability. Both aspects are described in chapter 5. The second
part covers all changes related to the web application and the API. This chapter shows
essential code listings and figures that explain the further development of sCool.

All used technologies are already predetermined by the given sCool environment.
These technologies are described in chapter 3, A. Kojic (2017) and M. Kojic (2017). The
video game is based on Unity 3D and the C# programming language. On the server-
side the web application was initially created with the ASP.NET MVC web framework
and the C# programming language. As central storing technique a Microsoft SQL
database is used. Video game and web platform are connected via a REST API. The
exchange of the data occurs via JSON. The whole web platform is hosted on the
Microsoft Azure cloud computing platform.

To avoid ambiguity and get a clear separation between both game versions, the sCool
version before re-design and further development will be called version 1. The game
version that will be introduced in this chapter is referenced as version 2.

6.1 Robot Mission

The extension and improvement of the robot mission is a central aspect of the peda-
gogical concept since the actual programming takes place in this part of sCool. This
section introduces field types and shows implementation details and its pedagogical
advantages. The introduction of an onboarding system was the result of several user-
related questions concerning the user interface. The text-based onboarding system
guides first-time players through the programming workflow. The players are using
a virtual keyboard for programming that is part of the sCool user interface. Some

80

6 Development

of the experiments’ response was related to usability aspects of the keyboard. The
two-dimensional playground is a key element for the player because the interaction
with the robot and the environment happens here. Version 1 has some minor issues,
that can confuse the player. The last introduced concept is the robot’s storage where
educators can pre-define some external data that can be used in the game.

6.1.1 Field Types

In the robot missions of version 1 was no distinction between field types (see Chapter
3). A field can be occupied by the player, a box or the disk. The fields have no specific
type and there are just two possibilities of interacting with the objects:

1. Robot collides with box: When the robot hits the box the OnCollisionEnter event
is triggered. In this case the robot stops and the players get a visual feedback
that a collision happened (see Listing 6.1). In this case the number of attempts is
decremented by one.

1 void OnColl is ionEnter (C o l l i s i o n c o l l i s i o n)
2 {
3 i f (c o l l i s i o n . gameObject . name == ”Robot ”)
4 {
5 SoundEffects . Ins tanc e . ObstacleSound () ;
6 Robot . Ins ta nce . Stop () ;
7 ShakeScreen . shakeTime = 1 f ;
8 c o l l i s i o n . c o l l i d e r . enabled = f a l s e ;
9 }

10 }

Listing 6.1: Robot collides with a box on the playing field.

2. Robot collides with disk: When the disk is reached the disk’s OnTriggerEnter
event is called. In this case the state of the game is set to finished and the given
output is compared with the reference output provided from the server (see
Listing 6.2).

1 void OnTriggerEnter (C o l l i d e r other)
2 {
3 i f (other . name == ”Robot ”)
4 PlaygroundManager . Ins tanc e . FinishReached (t rue) ;
5 }

Listing 6.2: Robot collides with the disk on the playing field.

In order to implement new pedagogical concepts an extension of the field types was
necessary. Figure 6.1 shows the hierarchy of the field types. Each different field is

81

6 Development

Figure 6.1: Hierarchy of the field types.

derived from the FieldType. The playground is represented by a two-dimensional array
of the type FieldType. When the playground is generated the fields are populated (see
Listing 6.3). The populating algorithm randomly selects a field on the playground
and checks if the field is free or is already occupied. In version 1 the playground was
created with one disk, one player and a total of 15 boxes. Now it is possible to let the
educator decide how many fields of a certain type should appear on the map. The
method PopulateFields(FieldType.FieldTypes, GameObject, int) is called for three types of
fields: boxes, coins, and hidden fields.

1 publ ic void PopulateF ie lds (FieldType . FieldTypes type ,
2 GameObject go , i n t number)
3 {
4 f o r (i n t i = 0 ; i < number ; i ++)
5 {
6 i n t x , y ;
7 do
8 {
9 x = Random . Range (0 , 1 4) ;

10 y = Random . Range (0 , 1 4) ;
11 }while (f ie ldType [x , y] != FieldType . FieldTypes . EmptyField) ;
12 f ie ldType [x , y] = type ;
13

14 GameObject newGo = I n s t a n t i a t e (go) ;
15 Vector3 pos = newGo . transform . p o s i t i o n ;
16 pos . x = (x − 7) * 2 ;
17 pos . z = (7 − y) * 2 ;
18

19 newGo . transform . p o s i t i o n = pos ;
20 newGo . SetAct ive (t rue) ;
21 }
22 }

Listing 6.3: Populating algorithm for the playground.

EmptyField

82

6 Development

Figure 6.2: Playground with all possible field types enabled.

Per default every field on the playground is an empty field. If it is assigned differently
the type is changed. All fields that remain empty after the field population are walkable
fields without any specific behaviour.

Box
A box is an obstacle that can be placed on any non-occupied field. The number of boxes
can be regulated by the educators over the web application. When a box is reached the
player gets a visual feedback and the number of attempts is decreased by one.

Disk
Each mission has exactly one disk that is placed according to the level of difficulty.
When the disk is reached the player’s output is compared with the reference output. If
both values are equal the mission is passed.

Coin
This field type extends the rewarding system. The number of coins can be configured
by the web application. When a coin is collected the number of total coins is increased
by 30 and the coin disappears from the playground (see Figure 6.2).

HiddenField
The hidden field is not visible for the player on the field. This field punish the player
for passing it, by dividing the number of total coins in half. The player can find the
field only by using the robot’s field type(int,int) function.

Player
The player object is the only movable object on the playground. It can be controlled by

83

6 Development

the moving commands. All other objects do have colliders that are activated when the
robot object collides with them.

To receive information about a certain field on the playground the player can use the
Robot.field type(x,y) function. This function is part of the robot object and is accessible
in the Python environment. The method returns the type of a certain field in relation
to its value at the playground array (see Listing 6.4).

1 publ ic s t r i n g f i e l d t y p e (i n t x , i n t y)
2 {
3 re turn PlaygroundManager . Ins t ance . f ie ldType [x , y] . ToStr ing () ;
4 }

Listing 6.4: Receiving the type of a certain field with the coordinates.

6.1.2 Keyboard

The virtual keyboard is a key element for tasks in the robot missions. It is used to write
the actual code in the coding editor. The keyboard is based on a regular qwerty layout
and has the following buttons on the default view:

• lower case letters (a-z)
• special characters
• dot
• space
• horizontal cursor
• enter
• semicolon
• delete
• shift

This makes it possible to write text in a simple way into the editor. Figure 6.3 shows
the keyboard of the game screen in version 1. Two issues occurred with the screen
during pre-evaluation: i) it was confusing how to switch to special characters and ii) the
ambiguous functionality of the blank button on the second last column in the first row.
It was decided to make a more meaningful label for i) to provide information about the
button. Since the button should change between a view with letters and a view with
numbers and special characters the label of the button should be renamed regarding
this functionality (see Figure 6.4). The blank button in ii) represents a semicolon but
the label on the button is not visible. Figure 6.4 shows the enabled labeling for the
button.

84

6 Development

Figure 6.3: The keyboard in the robot missions in version 1 (after A. Kojic (2017)).

Figure 6.4: The keyboard with the changed labels in version 2.

85

6 Development

Figure 6.5: Calculation of disk’s position related to the level of difficulty (adapted after A. Kojic (2017)).

6.1.3 Playground

Besides the introduction of the above mentioned field types other changes have been
made on the playground as well. During the pre-evaluation some students gave the
feedback that the disk position remains simple, despite the higher level of difficulty.
The x-coordinate of the disk is generated randomly between 1 and 15. Listing 6.5 shows
the updated generation of the y-coordinate. Depending on the level of difficulty the
position is set in the related third (see Figure 6.5).

1 i n t AdjustY ()
2 {
3 i n t y ;
4 i f (PracticeManager . Ins tance . pr ac t i ce Task . D i f f i c u l t y < 50) {
5 y = Random . Range (1 0 , 1 4) ;
6 } e l s e i f (PracticeManager . Ins tan ce . prac t i ceTa sk . D i f f i c u l t y
7 >= 50 && PracticeManager . Ins tan ce . prac t i ceTa sk . D i f f i c u l t y
8 < 80) {
9 y = Random . Range (5 , 1 0) ;

10 } e l s e {
11 y = Random . Range (0 , 5) ;
12 }
13 re turn y ;
14 }

Listing 6.5: Calculating the disk’s y-coordinate.

Related to the map generation another issue was reported by some students: A box
was placed on the disk field which made the mission unsolvable. When inventing field

86

6 Development

Figure 6.6: Visual representation of a sample field type array.

types the populating algorithm was revised in order to check if the desired position is
free or occupied. If the position is free the coordinate in the two-dimensional array is
set to the field. Figure 6.6 shows an example of a graphical representation of the field
type array. This two-dimensional array must have at least a player and a disk field. If
the educators do not declare a certain specification via the API all positions remain
EmptyFields.

6.1.4 Onboarding

The onboarding system should provide further instructions and help players. It should
be a guide for the first steps and an introduction to the user interface and the program-
ming environment. The messages should be triggered by certain events and open for
extension in a flexible way. Figure 6.7 shows the general tutorial screen that appears
when a certain event is triggered.

The TutorialManager component handles the behaviour of the instruction messages
and can be added to any game object (e.g. buttons or colliders). It stores all text in a
dictionary of type TutorialEntry. A TutorialEntry consists of a text and an optional key
to a next TutorialEntry object. In this way it is possible to create a linked list among
related instructions. When a certain event is triggered the TriggerEvent(string) method
is called with the dictionaries key (see Listing 6.6). The entry is added to a general list
in the GameController where the index of all previous displayed messages is stored.
When pressing the button Got it! the popup is closed and will not be showed again. All
information regarding onboarding is stored locally and not transmitted to the server.

87

6 Development

Figure 6.7: General view of the onboarding popup.

1 publ ic void TriggerEvent (s t r i n g eventName)
2 {
3 i f (! I s P r a c t i t c a l T u t o r i a l S h o w n (eventName))
4 {
5 animator . SetBool (' ' IsOpen ' ' , t rue) ;
6 getTutorialByKey (eventName) ;
7 AddPracticalTutorialShown (eventName) ;
8 }
9 }

10

11 publ ic void CloseEvent ()
12 {
13 animator . SetBool (' ' IsOpen ' ' , f a l s e) ;
14

15 s t r i n g followUp = getFollowingElement (c u r r e n t T u t o r i a l) ;
16 i f (followUp != n u l l)
17 {
18 t h i s . TriggerEvent (followUp) ;
19 }
20 }

Listing 6.6: Tutorial messaging system.

6.1.5 Robot Storage

The robot storage is a way to pass external data to the game. In this way educators
can define some input that is available in the game. This input can be specified in
the web application and is passed over the REST API to the game. It is stored as an
attribute of type object in the robot instance. Since the value has the type object, it can
have any data type. In this way it is possible to pass lists, strings, numbers, letters, etc.
Listing 6.7 shows how the storage is initialized regarding the API’s input. The storage
should close an educational gap in order to support concepts that were not usable in a

88

6 Development

Figure 6.8: Screenshot of an example where the robot storage is used.

meaningful context in version 1 (for example conditions). The robot storage makes it
possible to work with the following concepts:

• Data Types: The value (or values) in the storage can be both elementary or
complex data types. Since it is an object list it can contain any data type. In this
way the list can be treated as a regular list which makes it possible to ask for the
data type of a single element or perform operations on a specific data type (e.g.
concatenation of items, arithmetic operations on integer numbers).

• Conditions: In version 1 the usage of condition was problematic since there were
less application areas. When using the storage, conditions can be applied to the
values in the store (e.g. find a maximum value in a list, comparing a value in the
storage with a calculated value).

• Repetitions: There are several domains where it make sense to repeat an action
(for example moving the robot a given number of times). Using lists in combina-
tion with the robot storage extends the application area of loops since they can
be iterated (e.g. checking if an element is in a list or summing up all numbers in
a list).

• Lists: Lists are a common concept in computer science and Python as well. A pre-
defined list makes it possible to use already existing lists and perform operations
on them (e.g. indexing lists, slice lists, add/remove elements).

89

6 Development

1 o b j e c t I n i t i a l i z e S t o r a g e (s t r i n g value)
2 {
3 Lis t<o b j e c t> tempStorage = new Lis t<o b j e c t > () ;
4 s t r i n g [] s t r L i s t = value . S p l i t (' , ') ;
5 foreach (var s t r in s t r L i s t)
6 {
7 t r y
8 {
9 tempStorage .Add(Convert . ToInt32 ((s t r . Trim ()))) ;

10 } catch (FormatException) {
11 t r y
12 {
13 tempStorage .Add(Convert . ToDouble ((s t r . Trim ()))) ;
14 } catch (FormatException) {
15 tempStorage .Add(s t r . Replace (' \ ' ' , ' ')
16 . Replace (' \ ' ' ' , ' ') . Trim ()) ;
17 }
18 }
19 }
20

21 i f (s t r L i s t . Length == 1)
22 {
23 re turn tempStorage [0] ;
24 }
25 re turn tempStorage ;
26 }

Listing 6.7: Initialization of the robot’s storage.

Figure 6.8 shows that the value in the storage can be accessed via the attribute
(robot.storage). There is a distinction between integers, floating-point numbers, strings
and lists. The elements are internally parsed into the related data type and in this way
it is possible to perform all operations on the specific data type.

6.2 Web Application and API

The re-design of the pedagogical concept made it necessary to make some improve-
ments on the web application and API since it provides the educators more capabilities.
This section also describes issues that occurred while preparing and creating courses
and presents solutions.

90

6 Development

Figure 6.9: Screenshot of the web application’s back-end with field configuration.

6.2.1 Field Types

The introduction of different field types brings new possibilities for educators to
generate the playground. There are three field types that can be pre-defined in the web
application: boxes, coins and hidden fields. Figure 6.9 shows the configuration of the
field types. According to the number of occurrence the fields are generated randomly
on the playing field.

To provide a meaningful and comprehensive analysis in the web application it is
necessary to log the field types into the database. Each time the robot collides with
a certain field (box, hidden field, coin, finish) the OnCollisionEnter method adds a
RobotCollision object to the RobotCollisions list. This object stores the position, time and
name of the obstacle (see Listing 6.8). Listing 6.9 shows an example of the logging after
the robot collided with a coin object.

1 publ ic c l a s s RobotCol l i s ion
2 {
3 publ ic s t r i n g Time ;
4 publ ic s t r i n g P o s i t i o n ;
5 publ ic s t r i n g Obstacle ;
6 }

Listing 6.8: Robot collision model.

91

6 Development

1 Assets . WebServices . Models . Request . RobotCol l i s ion rc =
2 new Assets . WebServices . Models . Request . RobotCol l i s ion () ;
3 rc . P o s i t i o n = transform . p o s i t i o n . ToStr ing () ;
4 rc . Obstacle = ' ' Coin ' ' ;
5 rc . Time = System . DateTime . UtcNow . ToStr ing () ;
6 PracticeManager . Ins tanc e . pract iceResponse .
7 RobotCol l i s ions .Add(rc) ;

Listing 6.9: Add collided object to the RobotCollisions list.

6.2.2 Consent Message

The consent message was a constraint for the experimental usage of sCool on the Royal
Melbourne Institute of Technology (RMIT). Within the scope of the Ethics Approval
Application it was necessary to inform the participants of the experiment about the
collection of data and provide an opt-out. The participants can choose if they allow the
collection of data or if they disagree. In order to let the players decide what happens to
their data this option is also part of the sCool game version 2. In this way the players
can play the game without being worried about any privacy concerns.

The consent message screen appears straight after the sCool registration popup (see Fig-
ure 6.10). According to the players response (yes or no) a flag in Students.IsConsentGiven
is set. When the flag is set to false it is not allowed to analyse the data.

Listing 6.10 shows the server-side registration of the consent data for a certain user.
The Student object is updated according to the provided boolean value. The data is
transmitted via HTTP GET to the REST API.

1 [HttpGet]
2 [Route (' ' api/Data/GiveConsent ' ')]
3 publ ic IHttpAct ionResul t GiveConsent (i n t studentID ,
4 bool IsConsentGiven)
5 {
6 Models . Student student = db . Students . Find (studentID) ;
7 i f (s tudent == n u l l)
8 re turn NotFound () ;
9

10 student . IsConsentGiven = IsConsentGiven ;
11 db . SaveChanges () ;
12

13 re turn Ok (' ' ' ') ;
14 }

Listing 6.10: Server-sided processing of the consent data.

92

6 Development

Figure 6.10: Consent message that appears after registration.

6.2.3 Skill Unlocking

During the pre-evaluation a major issue occurred since sCool did not unlock the next
concepts (see Figure 6.11). The next concept should be unlocked when the player
reached more than 66% in the concept-learning or the practical missions (see Listing
6.11). In the table Skills each skill has an internal order that appears in the web
application and the game. By increasing the number by one it acts as a pointer to the
following skill (Skills.Order + 1). If a certain skill is updated the order of the selected
skill is overridden with zero which destroys the ordering mechanism. Figure 6.12

shows the column Order where order is overridden with zero at the updated rows.
This issue could be resolved by keeping the order when updating the data record.

1 i f ((type == ' ' theory ' ' && learn ing . P r a c t i c e
2 . GetMeasure (db , l earn ing . UpdatedAt) > unlockLimit) | |
3 (type == ' ' p r a c t i c e ' ' && learn ing . Theory
4 . GetMeasure (db , l earn ing . UpdatedAt) > unlockLimit))
5 {
6 UnlockNextSki l l (db , l earn ing) ;
7 a l . A b i l i t y = B ;
8 a l . R e I n i t () ;
9 }

Listing 6.11: Skill unlocking condition.

93

6 Development

Figure 6.11: Issue with skill unlocking when the player reached 100%.

Figure 6.12: Table Skills with the corrupted Order column.

94

6 Development

6.2.4 Robot Storage

The robot storage allows educators to pass various textual data into the game. When
creating a practical mission the input field Robot Storage allows textual input. Figure
6.13 shows that it is possible to process either single or complex values (lists that are
separated by commas). Figure 6.14 illustrates that the data is transmitted as string over
the interface.

6.2.5 Web Application Multiuser Usage

The web application is supposed to be used by several educators. This makes it
necessary that every user can create own courses and manage the students. The creation
of a new web user can be done at Register in the web application. The educator has to
fill out a form with the email address and a password. After the form is completed the
registration has finished and the user can work with the web application.

Until the user is not assigned as administrator the creation of new courses is possible
but they will not appear in the students course list in sCool. The students should be
enrolled to all courses of all administrators if the courses are not set as invisible.

This approach led to an issue since the course enrollment worked just for one educator
with the admin flag. Listing 6.12 shows the resolving by assigning all new registered
sCool users the courses of all administrators.

1 var adminUsers = db . Users . Where (u => u . IsAdmin == true) ;
2 var courses = adminUsers . SelectMany (a => a . Courses) ;
3

4 foreach (var c in courses)
5 {
6 i f (c . I s V i s i b l e)
7 {
8 Enrol led e = new Enrol led () ;
9 e . Act ivated = true ;

10 e . Course = c ;
11 e . Student = student ;
12 db . Enrol leds .Add(e) ;
13 }
14 }
15

16 db . SaveChanges () ;

Listing 6.12: Enrolling students to courses.

95

6 Development

Figure 6.13: Add data to the robot storage via web application.

Figure 6.14: Transmitting the robot storage over the REST API.

96

6 Development

6.3 Summary

This chapter introduced the further development of the pedagogical concept in sCool.
The improvements in the robot missions make it possible to apply new computational
skills. The introduction of field types can lead to a better understanding for concepts
like loops, conditions or arrays. The different field types should also increase the
game’s diversity and lead to a more engaging game type. They are represented by a
hierarchical structure where each field has a different behaviour. The web application
enables a configuration of the number of field types which can help the educators
to create adaptive content. Version 1 of sCool had a few issues at the playing field
(e.g. placing the disk). In version 2 these issues were fixed to offer the players a game
where they can fully focus on the tasks in the game. The onboarding system should
make the functionality of the user interface more understandable and reduce regarding
questions. This should be achieved by an event-triggered tutorial system. Depending on
the complexity of an instruction it can be a single message or a sequence of messages.
Another way to help students understanding the user interface is the simplification
of the keyboard. The order of the buttons was changed and some ambiguities were
resolved.

The mobile video game sCool is attached to the web application since there is a perma-
nent communication. This makes it necessary to adapt the web platform as well. A key
requirement of the overall sCool platform is to provide a highly adaptive video game.
To achieve this goal the new concepts had to be integrated into the web application as
well. The web application is now capable to make some configurations regarding the
playground fields. The educators can also pass external data into the video game via
the API. Since the web application combines course creation and analysing of learning
analytics it should but easy to use. Version 1 of the web application had issues when
it comes to multiuser support. This issue was resoled to make sCool available for a
broader user group.

A central aspect of the further development was to extend and improve the existing
code base and work with the same technologies. The ASP.NET MVC web framework
made an extension of the existing application easy. A high level of abstraction could be
reached by using the object-relational mapping (orm) framework Entity Framework. This
framework provides a straightforward handling for serialization and deserialization of
the game objects.

97

7 Evaluation

This chapter covers the evaluation of the further development on sCool (version 2). Four
evaluations will be presented with different target groups. All experiments included a
questionnaire with questions answering aspects of the corresponding research focus.
Each survey included at least some general and game-related questions (see Chapter
4), to see how the game has been improved from version 1 to version 2.

The first section covers the general scope of the evaluation and introduces the research
questions. The used instruments for data collection and analysis will be presented in
detail. In the following section the target groups and their participants are described.
The central aspect of this chapter is the evaluation of all experiments where each
is described in detail and the gathered data is going to be analysed to receive a
meaningful result. All collected information is considered in terms of the research
questions to get a general view of the evaluation.

7.1 Scope

The general structure was similar in all evaluations. The overall duration was between
two and four hours were the participants had to solve different tasks. In all experiments
the students had between 50 to 60 minutes for working with sCool and solving both
the concept-learning and practical tasks. Since there is a huge variety between the
participating educational institutes the introduced concepts had to be presented in a
suitable way for each group of students. The general learning content was the same in
all experiments and covered commands and loops. The presentation of the content in
terms of phrasing and simplicity was based on the age group. There are three research
questions that should be answered for the evaluation of the further developed sCool
video game:

• RQ1: Is the chosen pedagogical concept suitable for the particular target group?
• RQ2: What is the appropriate age group for sCool?
• RQ3: Will the game’s re-design lead to a better understanding of the game?

99

7 Evaluation

7.2 Instruments and Setup

Since the target groups of the evaluation were different, the instruments had to be
adjusted for each experiment. Some general questions regarding gender, age, and
smartphone usage were asked in each experiment. In the secondary school and on
RMIT two standardised questionnaires were used: Game Engagement Questionnaire
(Brockmyer et al., 2009) and Computer Emotion Scale (Kay and Loverock, 2008). Game-
related questions were asked in all evaluations. In addition, all questionnaires provided
the possibility to write an open-ended answer about the overall game experience and
give feedback.

The way of data collection depended on the age group. The pupils in primary school
got a sheet of paper with all questions on it (see Appendix). The data was manually
transferred to a Microsoft Excel Spreadsheet and analysed. In secondary school the
data was collected using Google Forms. The students could answer with their own
mobile devices or the computers in the school’s ICT room. The data from Google
Forms was converted into a comma-separated file and added to a spreadsheet as well.
Due to the RMIT’s privacy policy it was necessary to use the approved web application
Qualtrics1. The tool is hosted inside the RMIT infrastructure. The data was exported into
a Microsoft Excel Spreadsheet for further analysis. The evaluation of the standardised
questionnaires (GEQ and CES) was done using the programming language R. Listing
7.1 shows the code for analysing the Game Engagement Questionnaire.

1 absorpt ion <− colSums (Data [Data [, 1] \%in\%
2 c (' 4 ' , ' 1 3 ' , ' 3 ' , ' 8 ' , ' 9 ') ,] [, − c (1 , 2 , 8)])
3 flow <−colSums (Data [Data [, 1] \%in\%
4 c (' 1 9 ' , ' 1 0 ' , ' 6 ' , ' 1 8 ' , ' 5 ' , ' 7 ' , ' 1 1 ' , ' 1 4 ' , ' 1 5 ') ,]
5 [,− c (1 , 2 , 8)])
6 presence <− colSums (Data [Data [, 1] \%in\%
7 c (' 2 ' , ' 1 2 ' , ' 1 6 ' , ' 1 ') ,] [, − c (1 , 2 , 8)])
8 immersion <− colSums (Data [Data [, 1] \%in\%
9 c (' 1 7 ') ,] [, − c (1 , 2 , 8)])

10

11 df = data . frame (cbind (absorption , flow , presence , immersion))
12 f o r (i in seq (1 , 4)) {
13 p r i n t (mean(c (rep (5 , df [1 , i]) , rep (4 , df [2 , i]) ,
14 rep (3 , df [3 , i]) , rep (2 , df [4 , i]) , rep (1 , df [5 , i]))))
15 p r i n t (sd (c (rep (5 , df [1 , i]) , rep (4 , df [2 , i]) ,
16 rep (3 , df [3 , i]) , rep (4 , df [3 , i]) , rep (5 , df [4 , i]))))
17 }

Listing 7.1: Data analysis for Game Engagement Questionnaire in R

1https://www.qualtrics.com

100

7 Evaluation

7.2.1 Game Engagement Questionnaire

The Game Engagement Questionnaire (Brockmyer et al., 2009) consists of 19 items.
Each item is related to a certain kind of engagement: absorption, flow, presence, and
immersion. The 19 items are rated on a likert scale from 1 to 5.

• Absorption: This means to be totally engaged in an activity with an altered state
of consciousness.

• Flow: The term flow goes back to Csikszentmihalyi, Abuhamdeh, and Nakamura
(2014) and means a balance between skill and challenge. Being into the state of
flow has a positive impact on learning.

• Presence: Presence is linked to a regular state of consciousness and being aware
of the virtual environment that the person is in.

• Immersion: Immersion is a state of consciousness where the person is totally
engaged in a virtual environment.

7.2.2 Computer Emotion Scale

The Computer Emotion Scale (Kay and Loverock, 2008) is a survey that covers 12

different emotions. The participants were asked how often a certain feeling occurred
while interacting with a system: None of the time, Some of the time, Most of the time,
All of the time. This number of occurrence can be mapped to values from 1 to 4 and
represented on a likert scale. The twelve emotions are grouped together to superior
emotions:

• Happiness: Satisfied, Excited, Curious
• Sadness: Disheartened, Dispirited
• Anxiety: Anxious, Insecure, Helpless, Nervous
• Anger: Irritable, Frustrated, Angry

7.2.3 Game-related questions

In every experiment the same game-related questions were asked. This questions cover
game and learning experience with the sCool video game.

• The game’s structure is coherent
• The game’s control is easy to use
• The usage of the keyboard was easy
• The language is understandable
• The levels were easy to master
• I learned something while playing the game
• sCool encouraged me to learn more about programming

101

7 Evaluation

• The work sheet was easy to solve
• The type of game is fun
• The character Rob is appealing
• The theme space is interesting
• Playing the game was pleasing
• Programming was fun

7.3 Participants

The evaluation of the mobile video game sCool was done with several participants
through multiple age and educational groups. The youngest group were pupils of
a 4th grade primary school in Graz. In total 14 pupils (9-11 years old) attended this
experiment. The experiment was also taken in a 7th grade academic secondary school
in Graz with 28 pupils (12-14 years old). The last evaluation was done on the Royal
Melbourne Institute of Technology (RMIT) in Australia with 25 students.

7.4 Experiments and Results

In this section four evaluations will be introduced regarding sCool as a tool for learning
computational skills. The first evaluation was in the scope of a workshop with ten
computer science teachers. The video game was presented and the teachers could
give feedback based on their professional experience. In a cooperation between Graz
University of Technology and the Viktor Kaplan primary school two workshops were
held. The aim was to motivate pupils for computer science and coding using sCool.
The next experiment took place at the Graz International Bilingual School where sCool
was used with two groups in computer science class. The last experiment covered the
usage of sCool in tertiary education on the Royal Melbourne Institute of Technology
(RMIT). In the bachelor’s programme of the School of Business IT and Logistics a
learning activity was conducted where students worked with sCool as revision on
previous learned concepts.

7.4.1 Teacher’s Evaluation

The teacher’s evaluation was part of the event Tag der Informatik Fachdidaktik 2019
hosted by the University of Teacher Education Styria on March, 23th 2019. This event
is an exchange for all teachers that are interested in the field of computer science to
attend workshops with different topics.

102

7 Evaluation

The title of the hosted workshop was sCool - Game-based learning in Computer Science
Class. In 90 minutes sCool was introduced to ten teachers of different school types. The
goal of the workshop was to present the mobile video game sCool, the web platform
and to evaluate the game and the teaching documents with teachers.

In the first 15 minutes sCool was introduced. They were also shown the teaching
documents for the different school types and the worksheets in order to discuss the
pedagogical usage. After this introduction they could play the game on both windows
computers and their mobile devices. During these 45 minutes the teachers played the
course that was created for the secondary schools in the pre-evaluation (see Chapter 4).
In the last 30 minutes the teachers answered a survey regarding their experience in
programming class and sCool as game-based tool for coding. The workshop ended
with a discussion about coding in school and the teachers opinion on using sCool in
class.

Six teachers (60%) are teaching at a new secondary school and the other four partici-
pants (40%) teach at vocational schools. The relation between female (50%) and male
(50%) teachers was even. Figure 7.1 shows that the teachers professional experience
is highly divergent. Seven teachers (70%) respond that they use apps in class and
eight teachers (80%) are teaching programming in computer science class. The teachers
that use apps in class also answered what requirements they have for an educational
app (see Figure 7.2). Figure 7.3 illustrates which programming languages are used in
school. Five teachers (62.5%) are using a block-based approach (Scratch or PocketCode)
and also work with the programming language JavaScript. Only two teachers (25%)
are working with the Python programming language. Another question regarding
programming is aimed to figure out what concepts in programming are hard to under-
stand for students. Seven teachers (87.5%) respond that abstraction and generalisation
are hard to understand followed by decomposition and algorithm design (75%). Just
two teachers (25%) think that data types and recursion are hard to understand and a
single person (12.5%) respond that loops are hard to understand (see Figure 7.4).

The teachers were also asked questions regarding sCool in school: Eight teachers
(80%) respond that they would use sCool in class. All participants answered that
they would use it in order to introduce programming and computational skills and
motivate students in this way. All teachers who would use sCool in school (80%)
agreed that sCool would fit best for secondary school lower cycle (5th to 8th grade),
and two of them respond that they would use it for primary school or higher cycle
too. All participants answered that they would use provided teaching documents and
worksheets in class. Two participants respond with textual feedback to the open-ended
questions:

• If you have multiple access and the internet connect is poor (like in most schools), the
communication with the server takes too long.

• Great game for the beginning!

103

7 Evaluation

Figure 7.1: Duration of the teacher’s professional experience.

Figure 7.2: Requirements for an educational app in class.

104

7 Evaluation

Figure 7.3: Overview of programming languages that are used in school.

Figure 7.4: List of programming concepts that are hard to understand for students.

105

7 Evaluation

7.4.2 Experiment 1: Primary School

The experiment in primary school was conducted at the Viktor Kaplan school in Graz.
The computer science teacher of the school works with pupils in an elective course on
different technological topics. In terms of this cooperation two workshops on sCool
and computational skills was scheduled for two school lessons. The 4th grade class
consisted of 14 pupils (7 girls and 7 boys) in the age of 9 to 11. The children had no
further knowledge on coding or computational skills.

The first workshop was about fundamental concepts in programming (commands and
sequences) with the goal to motivate the children to work with sCool. Figure 7.5 shows
the printed two-dimensional playing field of sCool with all relevant game elements.
For about one hour sCool was introduced in an unplugged way without using mobile
devices. In this way several concepts like moving on the playing field, commands,
and loops could be explained simple. Each student had to solve a basic task on the
printed playing field before the class was allowed to use mobile devices. This was
done to ensure that everyone understands the commands and the concept of moving.
The second half of the first workshop was about getting into sCool and solving basic
tasks.

The second workshop was about coding in sCool. Before the students were allowed to
work with the game they had to do a pre-test (see Appendix) in small groups. In this
pre-test the pupils had to move the robot on a two-dimensional field and solve two
tasks. They were allowed to use the commands in any notation they want. Afterwards
the children could start playing the game for 60 minutes. After this time they had to
solve a post-test (see Appendix) with a similar task to the pre-test but with obstacles
and a larger playing field.

The research interest of this experiment was to figure our if the students are able to
solve the post-test in a meaningful way which shows if they learned something while
playing the game. This means the focus was on transferring the learned concepts onto
the post-test and not on the performance in the game itself. Another aspect was to
figure out how the pupils liked the game. Therefore, the game-related questions were
asked in an adapted questionnaire for primary school (see Appendix).

Course Design
At the beginning of the workshop the pupils had to work with a printed 9x9 playing
field. This playing field is extended by arrow cards, repeating cards, box cards a robot
card, and a disk card. Each student had to do a task on this playing field first to
understand the main principles of the commands. Afterwards the students could play
missions in sCool to get familiar with the control. They did not play the practical
missions, they were just playing the concept-learning tasks. In the next workshop the
students started with a pre-test where they had to solve a simple task: Rob the Robot
has deliver two astronauts with food on a 10x10 playing field. Therefore, they were
allowed to use any notation they want. In the next step the students played twelve

106

7 Evaluation

Figure 7.5: Printed version of the sCool playing field for primary school.

sCool missions (seven concept-learning and five practical missions) described in table
7.1. After playing the game they had to solve the post-test and answer the questionnaire.
In contrast to the pre-test the students had to deal with a larger playing field (14x14)
and different obstacles. They had to collect three different items (screw-nut, lightbulb,
and a screw) and bring them to the space shuttle.

Results
The second workshop started with the pre-test that was done in small groups with
two or three pupils. All seven groups had 10 minutes to work on the task. All groups
were able to solve the pre-test in a meaningful way. The pupils did not have to use any
certain notation for the commands. Five groups (71.43%) used loop-like commands
where they wrote the number of repetitions and the direction next to each other (see
Figure 7.6). The other groups (28.57%) wrote all commands down. After the pre-test the
students played the sCool course for one hour. Within the given time every group was
able to solve all tasks in the game. Especially the boys were highly motivated through
the in-game store and wanted to buy better equipment. To reach more virtual currency
they even repeated different missions (in particular those with higher difficulty to
receive more coins). Since the scope of the task in the post-test is more complex than in
the pre-test the pupils were encouraged to use loops. Despite the students did not have
to use a certain notation for the commands all groups wrote Python code. Seven groups
used for loops (see Figure 7.7) and one group used the step argument of the moving
commands. All groups were able to solve the given tasks in the programming language
Python. The pupils were allowed to use their phones to check the commands.

107

7 Evaluation

Task Concepts Difficulty
Concept-Learning Tasks

1 What has Rob to collect? Commands 15%
2 In how many directions can Rob go? Commands 20%
3 Rob receives three moving commands,

how many steps did he take?
Commands 25%

4 Which of these commands can Rob
execute?

Commands 40%

5 Recap - Can you remember what the
valid command is?

Commands 30%

6 What command is used to repeat a
command?

Commands, Loops 60%

7 Which loop repeats a command seven
times?

Commands, Loops 70%

Practical Tasks
1 Reach the disk using the arrow keys. Commands 30%
2 The disk is very far away. Neverthe-

less, try to reach it.
Commands 55%

3 The disk is still far away. Commands, Loops 65%
4 Reach the disk using loops, so you do

not have to use the arrows for each
step.

Commands, Loops 75%

5 The disk is at its furthest points - try
to reach it using loops, it is worth it!

Commands, Loops 95%

Table 7.1: This table shows the course design of the sCool course in primary school.

108

7 Evaluation

Table 7.2 shows the results of the game-related questions. 11 pupils (78.57%) respond
that they like the type of game and think that the structure is coherent. 9 persons
(64.29%) think that programming was fun. The number of pupils that answered “I
learned something while playing the game” is low (4 students; 23.38%) and six pupils
(42.86%) said that they did not learn anything while playing the game. This can be
traced back to the circumstance that the pupils did not know exactly that they learned
something while playing. All groups were able to solve the post-test with loops, which
shows that they actually learned something. The questionnaire included a section for
open-ended feedback as well. The following feedback was given:

• Aim for enemies
• More levels, more characters, more weapons
• More advanced enemies per level, stronger weapons, other maps
• More enemies, colors for the characters, different weapons, more colorful levels
• Hide from the enemies, less shooting range for enemies, build houses
• Rob should have more enemies, otherwise it is getting boring! It should be more

action. The weapons that are more expensive should be better.
• More faces, colours and clothes, for the character; Less shooting range for the

enemies because then you can hide. More levels.
• More levels

7.4.3 Experiment 2: Secondary School

The experiment was conducted at the Graz International Bilingual School (GIBS) in Graz.
In total 28 pupils (16 girls, 12 boys) in the age of 12-14 attended the experiment within
the computer science class. The computer science class is splitted into two groups with
two different teachers. In each group the experiment was scheduled for a double lesson
(100 minutes). The school had Android tablets were sCool was installed beforehand
in order to use this devices. The ICT infrastructure made it also possible to use the
school’s WiFi. For this experiment a modified schedule of the pre-evaluation (see
Chapter 4.1) was used but the time for playing was increased since the game was
already installed. After playing the game a worksheet (see Appendix) had to be solved
where the students had to do a basic task using loops. Due to the school’s privacy
policy the attendance of the final questionnaire was voluntary. In total 12 students
filled out the questions provided via Google Forms.

Course Design
The content of the course was created in order to provide a motivating introduction to
computational skills and coding. Table 7.3 shows that there were mainly two concepts
that were introduced to the class: commands and loops. The course consisted of eight
concept-learning missions (five about commands and three about loops) and seven
practical tasks (three about commands and four about loops). The level of difficulty

109

7 Evaluation

Agree Undecid-
ed

Disagree

The game’s structure is coher-
ent

11 3 0

The game’s control is easy to
use

4 8 2

The usage of the keyboard
was easy

8 4 2

The language is understand-
able

12 2 0

The levels were easy to master 7 6 1

I learned something while
playing the game

4 4 6

sCool encouraged me to learn
more about programming

6 3 5

It was easy to solve the work-
sheet after playing the game

8 6 0

This type of game is fun 11 3 0

The character Rob is appeal-
ing

10 1 3

The theme space is interesting 6 4 4

Programming was fun 9 3 2

Table 7.2: This table shows the results of the game-related questions in primary school.

110

7 Evaluation

Figure 7.6: Pre-test of a randomly chosen group consisting out of three girls.

Figure 7.7: Post-test of a randomly chosen group consisting out of three girls.

111

7 Evaluation

Task Concepts Difficulty
Concept-Learning Tasks

1 Rob is looking for ... Commands 20%
2 How can Rob print some text? Commands 40%
3 In which directions is Rob able to walk? Commands 25%
4 You tell Rob: ”go left”, ”go left”, ”go

right” and ”go right”. How many steps
did Rob?

Commands 26%

5 What command do Rob understand? Commands 27%
6 Can you remember a valid command? Loops 30%
7 What is the command for a loop? Loops 31%
8 Which loop is repeating a command

seven times?
Loops 33%

Practical Tasks
1 Use the arrow keys to reach the disk. Commands 20%
2 Reach the disk again Commands 50%
3 Reach the disk and print ”Rob” Commands 82%
4 Use the for loop to reach the disks. Loops 72%
5 The disk is far away again - maybe you

should use some loops again?
Loops 81%

6 Repeat Robs name five times and reach
the disk

Loops 85%

7 Since we used loops for repeating com-
mands maybe Robs steps could also be
counted? Play around and try to count-
ing the steps!

Loops 90%

Table 7.3: This table shows the learning content of the experiment at the Graz International Bilingual
School.

was chosen according to the corresponding concept and should guide the students to
use loops in more advanced levels.

Results
Overall 23 groups worked on the tasks in sCool. Table 7.4 shows how the groups had
performed in the game. Nearly every group was able to solve the concept-learning
tasks of the first concept (commands). The hardest level seemed to be the second one
(91.30%; 21 groups), where they had to answer how a text is printed in Python. Both
first practical levels could be solved by everyone. The last one was only passed by
69.57% (16 groups) of both groups. In this mission they had to reach a disk and print
the robot’s name. The concept-learning missions at the second concept (loops) could
be solved by at least 86.96% (20 groups). The table also shows that the majority was
able to solve the first and the second level. The fourth level was just passed by 47.83%

112

7 Evaluation

Commands
Concept-Learning

Level 1 Level 2 Level 3 Level 4 Level 5

100% 91.30% 100% 100% 100%
Practical

Level Level 2 Level 3

100% 100% 69.57%
Loops

Concept-Learning
Level 1 Level 2 Level 3

86.96% 91.30% 86.96%
Practical

Level 1 Level 2 Level 3 Level 4

95.65% 86.96% 52.17% 47.83%

Table 7.4: This table shows the learning content of the experiment at the Graz International Bilingual
School.

(11 groups). In this level they had to use loops and optionally count the steps before
reaching the goal. In total 12 groups (52.17%) used for loops for the practical tasks in a
meaningful way.

Figure 7.8 shows the results of the Game Engagement Questionnaire. The level of
immersion is highest (M=3.33; SD=0.66) which means that the players were engaged
in the virtual environment. The level of presence (M=2.75; SD=0.74) is lower than the
immersion which means that the students were aware that they are in this kind of
environment. The level of flow (M=2.17; SD=0.77) is an indicator for the process of
learning. Related to the feelings that came up to the players the Computer Emotion
Scale was used for analysing (see Figure 7.9). When it comes to positive feelings
(satisfaction, excitement, and curiosity) they occurred the most (M=2.35; SD=0.81).
Feelings related to anger (M=0.65; SD=0.73) appear most commonly when it comes to
negative feelings.

In terms of game-related questions table 7.5 shows the results. Seven students (58.33%)
agreed that the control is easy to use and that the levels were easy to master. Compared
to the results of the learning analytics in table 7.4 this value is reasonable. The number
of students which answered that they were encouraged by sCool to learn more about
programming is low (4 persons; 33.33%). The work sheet could just be solved by three
groups (25%) and all of them used for loops. Despite this low success rate the number of
students (9 persons; 75%) that answers that the work sheet was easy to solve is high.

113

7 Evaluation

Figure 7.8: Result of Game Engagement Questionnaire at the Graz International Bilingual School.

Figure 7.9: Result of Computer Emotion Scale at the Graz International Bilingual School.

114

7 Evaluation

Strongly
Agree

Agree Undecid-
ed

Disagree Strongly
Dis-
agree

The game’s structure is coher-
ent

4 3 4 1 0

The game’s control is easy to
use

3 4 3 2 0

The usage of the keyboard
was easy

2 3 4 2 1

The language is understand-
able

3 3 3 2 1

The levels were easy to master 3 4 4 0 1

I learned something while
playing the game

1 4 2 1 4

sCool encouraged me to learn
more about programming

1 3 3 1 4

The work sheet was easy to
solve

3 6 2 0 1

This type of game is fun 0 12 2 0 2

Programming was fun 2 6 6 0 2

Table 7.5: This table shows the results of the game-related questions at the experiment at the Graz
International Bilingual School.

115

7 Evaluation

7.4.4 Experiment 3: Royal Melbourne Institute of Technology

The third experiment was conducted at the Royal Melbourne Institute of Technology
(RMIT) in Australia. As part of the Bachelor’s course Information Systems Solutions
and Design the learning activity with sCool was part of a revision of previous learned
concepts.

The course is compulsory for the undergraduate programme of various study pro-
grammes at the School of Business IT and Logistics (BITL) on RMIT. Overall 118

students were enrolled to this course. Within the scope of the course the students learn
programming in Python and during the semester they create a business application
with a graphical user interface (using TKinter) and connect it to a SQLite database.
The course consists of an one hour lecture and a two hour lab. In the lab students must
fulfill different tasks to learn the course contents and have the possibility to ask either a
professor or the student assistant for advice. In the previous course lessons they learned
the fundamentals of programming in Python (functions, conditions, loops, functions)
and started with object-oriented programming. In week five the students had to submit
an assignment that covered all the fundamentals of programming which means all
enrolled students had some experience in programming before the experiment.

As part of this course in academic week six (August 26th to 30th, 2019) a learning
activity was conducted to revise the programming fundamentals with sCool. To engage
as many students as possible the experiment was personally introduced in week five
in the lab and the students were also informed via RMIT’s learning management
system Canvas. The learning activity was held in all five lab classes in week six. Due
to organizational reasons the activity was planned for 75 minutes in total. According
to the schedule the first 15 minutes were for introducing sCool and installing the
software on the devices. Since not every student had an Android device they could
use their own notebooks with Microsoft Windows as well. After the students got the
instructions they had 50 minutes to work with the game. In the last 10 minutes the
students completed the survey.

In total 34 students in five lab classes played the video game and 25 persons conducted
the survey. The attendance of the activity was voluntary so the students could leave at
any time.

Course Design
The course’s content was in coordination with the learning content of the lecture
Information Systems Solutions and Design. Table 7.6 shows the design of the practical
missions in the course. In total the course consisted of eight concept-learning and eight
practical tasks. These tasks are parts of three concepts: basics, data types, and control
structures. The basic skill should introduce the players into the sCool environment
and Python. The goal is to get familiar with the robot’s moving command, its storage
and the print command. This tasks cover sequencing, printing, and basic arithmetic
operations. After the players have finished this concept they unlock the skill data

116

7 Evaluation

types. This skill consists of three tasks as well. The learning objectives are lists, data
types and field types. Field types are the in-game equivalent of data types and should
help learners to understand the idea of data types. The students also had to apply
conditions and loops in a simple way to interact with lists. The third skill was about
control structures in a more complex way because it was necessary to use both loops
and conditions. The last task was to write an algorithm to find the maximum out of a
given list of integer numbers.

Results
The attendance at the learning activity and the questionnaire was voluntary for the
students. In contrast to the experiments in school the way of working was fully self-
determined. Many students finished after a few minutes or worked on other projects
parallel. In this way a comparison of the students is hardly possible.

In terms of engagement (see Figure 7.10) the Game Engagement Questionnaire (Brock-
myer et al., 2009) showed that there was a high level of presence (M=2.86, SD=0.71)
and immersion (M=2.8, SD=0.64). This means that the students were both aware of the
virtual environment and engaged into it. The level of flow (M=2.41, SD=0.74) provides
information about the degree of challenge and skill which is an indicator for an optimal
learning experience. The Computer Emotion Scale (Kay and Loverock, 2008) shows
that the players connect sCool mainly with the positive emotion happiness (M=2.35,
SD=0.81). Negative feelings like sadness (M=1.46, SD=0.65), anxiety (M=1.44, SD=0.72),
and anger (M=1.65, SD=0.73) are nearly equal (see Figure 7.11).

Table 7.7 shows the response to the game-related questions. 18 students (72%) agreed
that they learned something while they were working with sCool. Since the sCool
course was designed as a revision of already learned concepts the students could learn
something in the game. Another 13 students (52%) answered that they were encouraged
by sCool to learn more about programming and also 13 persons (52%) stated that
programming was fun for them. This evaluation also shows that approximately half of
the students (12 persons; 48%) were not satisfied with the keyboard.

Nevertheless, table 7.8 shows the performance of all 34 students. Every student was
able to pass the first concept-learning task successfully. The other tasks were also
completed by the majority of the students. When it comes to the practical missions just
76.47% (26 students) could solve the first task. In the second task it was just 67.64%
(23 students) and the last task could be solved by more than the half of the students
(52.94%; 18 students). The second skill was harder for the students since just 32.35%
(11 students) solved all concept-learning levels. In the practical missions the second
level was the easiest, since 32.35% (11 students) solved it as well. The first task was
solved by just 14.70% (5 students) and the last level was completed by just a single
student (2.94%). No student reached the third concept (control structures).

The results of the open-ended questions were grouped into five different categories.
Figure 7.12 shows that most of the feedback was regarding the game’s control (and

117

7 Evaluation

Basics
1 Collect the Disk In the first task simply collect the disk by using the

command blocks (arrows) for controlling. Drag and
drop them into the editor and Rob will move.

2 Hello World Your mission is to reach the disk and let Rob print
”Hello Rob”. Therefore, you can use the print com-
mand block. Hint: If the way seems to be very long,
you could probably use a parameter for the moving
commands.

3 Calculating Help Rob doing a calculation. He has a value in
his storage (robot.storage). Can you help Rob to
calculate the 5th power of the stored value? Unfor-
tunately, he is very poor at mental arithmetic.

Data Types
1 Working with lists Rob stores a list with all planets that he already ob-

served. Could you check if he has already explored
the planet ”Melmac”? If he was already there, Rob
should print ”Yes”, if he wasn’t print ”No”.

2 Lists and elements In Robs memory (robot.storage) is a list with dif-
ferent data types stored. Print each element of this
list.

3 Field Types On the playfield are so called ”hiddenFields”. Rob
should avoid these fields because when he trav-
els this field, you will lose half of your coins.
Sadly, these fields are not visible, so you should
probably scan the playfield for them. When you
are done reach the disk and print the total num-
ber of all appearing ”hiddenFields”. Hint: You
can access the type of a field via the command
robot.field type(x coordinate, y coordinate).

Control Structures
1 Counting up Unfortunately, the calculation module of Rob got

destroyed during has crash. Can you help him re-
write this module so he can count from 0 to 100

in steps of 5 (i.e. 0 5 10 15 ... 95 100) and print
this before reaching the disk? Hint: The command
range(min, max, steps) takes three arguments.

2 Tiny calculation Rob made a few temperature measurements and
stored all in his internal memory (robot.storage).
Can you write a program to calculate the highest
temperature in the memory (using control struc-
tures) and print this temperature?

Table 7.6: This table shows the course design at the sCool course on RMIT.

118

7 Evaluation

Figure 7.10: Results of the Game Engagement Questionnaire at RMIT.

Figure 7.11: Results of the Computer Emotion Scale at RMIT.

119

7 Evaluation

Strongly
Agree

Agree Undecid-
ed

Disagree Strongly
Dis-
agree

The game’s structure is coher-
ent

3 14 3 5 0

The game’s control is easy to
use

3 12 1 6 3

The usage of the keyboard
was easy

1 8 4 8 4

The language is understand-
able

5 12 6 2 0

The levels were easy to master 4 9 8 4 0

I learned something while
playing the game

7 11 4 3 0

sCool encouraged me to learn
more about programming

5 8 9 2 1

This type of game is fun 4 12 5 1 2

The character Rob is appeal-
ing

2 10 9 3 1

The theme space is interesting 4 13 7 0 1

Playing the game was pleas-
ing

4 8 11 2 0

Programming was fun 4 9 9 2 1

Table 7.7: This table shows the results of the game-related questions at RMIT.

Basics
Concept-Learning Practical

Level 1 Level 2 Level 3 Level 1 Level 2 Level 3

100% 85.29% 91.17% 76.47% 67.64% 52.94%
Data Types

Concept-Learning Practical
Level 1 Level 2 Level 3 Level 1 Level 2 Level 3

32.35% 32.35% 32.35% 14.70% 32.35% 2.94%

Table 7.8: This table shows the results of the game performance.

120

7 Evaluation

Figure 7.12: Evaluation of user feedback on RMIT experiment.

keyboard) and instructions. Despite the onboarding system many students had ques-
tions regarding the user interface. Many of the asked questions were explained at the
tutorial. Since many students had to work with Microsoft Windows devices the virtual
keyboard was hard to use. The most common request was a hint function that can be
called if the player has no idea what to do in a task. Despite the students were familiar
with Python programming they respond that they had problems with understanding
the error messages from the Python interpreter. Table 7.9 includes the summary of the
students feedback with the corresponding groups.

In total more than half of all participants were able to complete the basic skill (in 50

minutes). Some of the participants quitted earlier since attending was voluntary. About
a third of all participants could complete the concept-learning missions of the concept
data types. The same percentage of students was also able to solve the second task
where they had to output a given list. Just one student was able to reach and pass
level three (search on game board). Not a single student started with the third concept
(control structures).

7.5 Discussion and Limitations

Based on the evaluation of the three conducted experiments in total 67 students were
asked different questions regarding sCool. The evaluation also covers the results of the
teacher’s workshop where 10 teachers where asked about sCool. Since the experiments
were done with different person groups a comparison of the overall performance
would not be expedient. The aim of the evaluation was to to figure out how the
pedagogical concept in each group helps to understand the learning content in sCool
better (RQ1). This aspect is related to the question regarding the target group for

121

7 Evaluation

Controls/Keyboard

• virtual keyboard was hard to use (espe-
cially on Windows)

• confusing keyboard layout
• keyboard is overlapping parts of the

screen

Instructions

• missing description of the navigation
(menu)

• description of levels
• onboarding/Tutorial
• hints in the game
• error messages (from Python interpreter)

hard to read
• spelling errors

User Interface

• navigation in the menu
• code editor (especially indentation)
• renaming of buttons to make it more

understandable (quit dialogue)

Game Play

• some concept-learning missions are un-
solvable

• additional game types
• more (and more complex) levels
• more programming during game (in

some cases they seem put-on)

Design
• improvements of graphics
• static design (especially in platformer

levels)

Table 7.9: This table contains the summary of the user’s feedback at RMIT.

122

7 Evaluation

sCool (RQ2). The introduction of a pedagogical concept and the further development
of the practical missions should make the game more intuitive and help players
understanding computational skills. This aspect brings up the question if version 2 of
the game is more understandable than version 1 (RQ3).

The set up of the workshops was adapted for each particular group. The pupils in
primary school did not have any previous knowledge in programming. This made it
necessary to lead them to this topic in a more playful and child-orientated way. The
concepts in the game were presented with Rob the Robot who accompanies the players
through the whole game. The unplugged approach should also help the children to
understand the fundamental ideas of coding in a playful way. The coherent usage of
the space theme through the game and all learning documents are a common theme
and make it easier to apply the concepts in different situations. When comparing
pre-test and post-test it was obvious that the students were able to learn something
new. Compared to the overall concept in primary school it was necessary to adapt the
content for the secondary school in order to create an age-appropriate course. Instead
of using an unplugged approach the students should learn the necessary skills in the
game. Since some students in secondary school already had prior knowledge in coding
a worksheet was provided instead of pre- and post-tests. The concepts were introduced
in the game’s concept-learning part. In total 23 groups attended the experiment but
just three groups were able to find a solution for the final worksheet. At the experiment
on RMIT sCool was used as a revision of the learned concepts. Therefore, the focus
was on applying the concepts rather than introducing them. The game’s content was
created in coordination with the lecture notes. Just a third of all students solved all
concept-learning missions of the second skill. In this context it should be mentioned
that the learning activity was voluntary which also had an impact on the willingness
to finish the experiment. In summary the best results were achieved when it comes to
a combination of different media to explain concepts (RQ1).

At the teacher’s workshop the questionnaire contained an estimation in which type
of school they think sCool would fit best. 80% of the teachers answered that it would
be best in secondary school lower cycle (5th to 8th grade). Students in this grades
are usually between 10 and 14 years. When comparing the game-related questions
regarding enjoyment of playing sCool the answers between the schools and university
is similar. The students on RMIT were encouraged most to learn more about program-
ming (52%) compared to primary school (42.86%) and secondary school (33.3%). The
primary school children (78.57%) and secondary school (75%) enjoyed the type of game
more than RMIT students (66.6%). The responds in primary school was the highest
when answering the questions programming was fun (64.29%). In secondary school (50%)
and on RMIT (52%) the results are nearly even. The results show that students of all
age groups are enjoying the game and learned something while playing. In primary
school the focus was more on the playing aspect of the game since the children spent
most of the time in the planet exploration mode. In secondary school the students
played both modes and also were able to apply the learned concepts in the game and

123

7 Evaluation

even some could solve the worksheet. The students on RMIT also enjoyed playing
sCool but more in terms of diversion in the regular lab class. Since sCool was not
evaluated in a secondary school higher cycle this group of students cannot be minded
in this consideration. According to the estimation at the teachers workshop and the
evaluation, probably the most appropriate group are students between 10 and 14 years
(RQ2).

A major aspect of sCool’s re-design was to make the interaction with the robot
mission’s user interface easier. For this purpose an event-triggered onboarding system
was created (see Chapter 6). At the experiment on RMIT the sCool video game was
not introduced before playing to figure out how self-explaining the system is. When
analysing the game-related questions 37.5% answered that the controls are not easy to
understand and 48% responded that the keyboard is not easy to use. The evaluation of
the open-ended answers regarding improvements showed that most requests wished
for an improvement of the controls and the keyboard and more instructions and
assistance in the game. During the experiments it could be observed that many
students simply skip the text-based tutorial. Some general questions regarding the
control (for example problems with finding the number or special characters) could be
resolved in version 2. Since many students played with Microsoft Windows notebooks
they requested for a keyboard support. In summary the usage of the user interface
was improved slightly but there is room for improvements in future versions (RQ3).

124

8 Lessons Learned

This chapter summarizes the issues and experiences during the whole project. It covers
literature, development, and didactics

8.1 Literature

One of the most important parts of the further development on sCool was the intro-
duction of a pedagogical concept. There is a large number on different game-based
tools and platforms with the aim to teach coding or computational skills in general.
To receive a comprehensive overview of the most common tools, related papers and
studies were considered. The results of this search were gathered and all tools were
analysed in order to evaluate the relevance in terms of this work. The approaches
of these tools vary greatly in the pedagogical concept. Some of the tools provide a
complex environment and support students, teachers, and parents. Other tools are
much simpler and have a focus on a certain concept. For the creation of the pedagogical
concept in sCool these tools were analysed and were considered in the concept. When
it comes to the presentation of certain concepts in programming there is a lack of
literature. Nevertheless, there are lots of case studies that introduce or evaluate certain
tools. A comprehensive general study is missing which gives an overview of teaching
concepts in programming.

To get an understanding which skills should be part of the pedagogical concept several
definitions were considered. In literature there are many classifications on the terms
computational think and computational skills. Despite this great amount of definitions
the core concepts always remain similar. For the development of the pedagogical
concept the skills decomposition, pattern recognition, generalization and abstraction
and algorithm design were considered during the design phase.

8.2 Development

The sCool platform consists of two separate components that are connected with each
other over a REST API. The mobile video game sCool is written in C# and uses the
Unity game engine. The game has two game modes with different purposes. The

126

8 Lessons Learned

concept-learning part presents the players new concepts in a textual way. In the robot
missions they have to apply the previous learned concepts in a practical way. The
main focus of this work was to improve the practical mode to improve the system’s
capability in coding. For the extension of some game elements it was necessary to
create models with the open-source 3D computer graphics software Blender. Some
of the improvements also led to an extension of the programming models in order to
support the learning analytics of the new characteristics as well.

The second component of the sCool platform is the web application. It is written in C#
using the web framework ASP.NET. The infrastructure is hosted on Microsoft’s Azure
cloud computing platform. Some of the new concepts in the video game required
some modification on the web application and the interface as well. This made it
necessary to change the existing code and migrate the database according to the new
requirements. While conducting the experiments in school some performance issues
occurred while connecting to the server which slowed down the game. Three reasons
caused this problem: i) the WiFi connection in schools is often very slow since it has a
high network traffic, ii) the REST API transmits to many data overhead, and iii) due
to scaling mechanisms the Microsoft Azure platform handles the first requests slow
before vertical scaling.

During the development process other students worked on sCool as well. This made it
necessary to think about an efficient way of collaboration. The web-based application
Bitbucket supports version control via Git and was used initially for sCool. The amount
of users per repository is limited in this application which made it necessary to move
the code base to Gitlab. All involved developers worked on different parts of the game
in this way merge conflicts could be avoided. In order to keep the master always clean
and buildable it was decided to use a feature branch workflow.

8.3 Didactics

In many phases of the project didactic aspects had to be considered. In scope of the
pre-evaluation a first concept was introduced. During the experiments some valuable
observations could be made. Textual concepts or instructions are often skipped since
the students want to start playing immediately. This led to a lack of understanding the
concepts and the user interface. The consequence was to simplify the user interface and
make the learning content more appealing. Despite the introduction of the onboarding
system some questions regarding interaction with the user interface still could not be
resolved.

When an experiment is conducted as part of a school lesson the workshop’s structure
is a key element for motivation and a good performance. The best results could be
achieved when different media was combined in order to explain concepts in several
ways. It is important for students to understand the meaning of a concept and its

127

8 Lessons Learned

purpose. Another relevant factor is the presentation of the concepts and the tasks.
Constantly reflection of the instructions and pretesting can avoid misconceptions
beforehand.

128

9 Conclusion and Future Work

This chapter concludes the key elements and characteristics of this project. It will also
give an outlook and will discuss future improvements in terms of the sCool video
game, the web application and the pedagogical concept.

9.1 Conclusion

The overall aim of this project was to introduce a pedagogical concept and to improve
the already existing sCool platform. In the first phase of the project a pre-evaluation
was conducted in two secondary schools to figure out how students get motivated
by sCool and if they can apply the learned concepts. Therefore, a course was created
and different worksheets that should support students while learning. The result of
this evaluation was that it is necessary to improve some of the game mechanics and
the pedagogical concept. In a next step the requirements were considered and the
concept was developed. Key elements of this improvement are the introduction of
an onboarding system and the extension of the robot missions to make the system
more capable for meaningful coding. Based on this concept the implementation of
the concepts started. In the practical part of the game the students have to apply the
learned concepts. Therefore, sCool receives tasks over a REST API which are defined by
educators beforehand. The creation of a highly adaptive content is one of sCool’s core
features. The extension of the existing system provides more possibilities to include
additional concepts in the practical part of the game. In order to keep the system as
adaptive as possible the interface has to be adjusted as well. Apart from the additional
concepts some minor improvements in terms of user interaction were necessary to
increase the level of usability and make the system more intuitive. After the process of
development further evaluations were scheduled. These experiments were conducted
with three different groups: primary school students, secondary school students and
university students. The general objectives were: analysing if the chosen pedagogical
concept is suitable for the particular group, targeting the appropriate age group for
sCool and evaluating the re-designed version of sCool. The pedagogical concept was
different for each group of students and the results were described and compared.

Version 2 of sCool still provides a highly adaptive platform where course content can
be created and analysed. The web application in version 1 had some issues with the
usage of multiple educators. In order to open the system in the future for schools

130

9 Conclusion and Future Work

and educators it was necessary to make some improvements. The extended concept
of version 2 brings many additional concepts into sCool which makes it possible to
introduce new concepts in the the practical mode and to create more comprehensive
tasks.

9.2 Future Work

Despite the work on sCool’s usability there can be additional improvements. The
results of the evaluation showed that there are still issues with the user interface. The
most feedback was given related to the controls of the code editor and the keyboard.
Instead of sCool’s virtual keyboard a native keyboard would lead to a more naturally
interaction with the system since the players are more familiar with it. There is also
room for additional functionalities like setting the cursor position without the keyboard
or using additional code blocks to simplify coding. The results also showed that it
is necessary to provide more instructions in the game and add a help function for
additional hints. This can prevent frustration when a player is stuck in the game.

The experiments also showed that there is a high request on using sCool for other
platforms as well. sCool version 2 is currently available for Android and Microsoft
Windows. A platform independent version of the game would give everyone the ability
to work with sCool. Some of the design decisions have been made for mobile devices
(for example the virtual keyboard and dragging and dropping the code blocks) which
should be reconsidered when using sCool on other platforms as well.

The ICT infrastructure of schools can be very different and cause problems like slow
response times or connection issues. Before sCool can be used effectively in class it
is necessary to improve both interface and connection. The current version of sCool
requires a permanent connection to the server to synchronise the data. Since not every
school is provided with a WiFi connection or has a satisfying internet connection an
asynchronous communication between game and web application is recommended.

When evaluating the experiments the impact of a pedagogical workshop design on the
success rate can be seen. Therefore, it is necessary to improve not only technical but also
social aspects. A well considered workshop design can help students to understand
concepts and explain them by different media. In terms of a successful workshop
for all participating students it is also of prime importance to mind a gender equal
education.

131

Bibliography

Allen, Deborah E., Richard S. Donham, and Stephen A. Bernhardt (2011). “Problem-
based learning.” In: New Directions for Teaching and Learning 2011.128, pp. 21–29.
issn: 02710633. doi: 10.1002/tl.465.

Arkün Kocadere, Selay and Şeyma Çağlar Özhan (July 2018). “Gamification from
Player Type Perspective: A Case Study.” In: Educational Technology & Society 21,
pp. 1436–4522.

Australian Curriculum, Assessment and Reporting Authority (2015). F-10 curriculum.
Technologies. url: https://www.australiancurriculum.edu.au/f-10-curriculum
/technologies/introduction/.

Austrian Federal Ministry of Education, Science and Research (2000). Lehrpläne der
AHS. url: https://bildung.bmbwf.gv.at/schulen/unterricht/lp/lp_ahs.html.

Austrian Federal Ministry of Education, Science and Research (Aug. 2016). Education
in Austria. url: https://bildung.bmbwf.gv.at/enfr/school/bw_en/bildungsweg
e2016_eng.pdf?6kdmda.

Austrian Federal Ministry of Education, Science and Research (Sept. 2018). Masterplan
Digitalisierung. url: https://bmbwf.gv.at/fileadmin/user_upload/Aussendung/
Masterplan_Digitalisierung/Masterplan_Digitalisierung_Presseinformatio

n.pdf.
Austrian Federal Ministry of Education, Science and Research (Jan. 2019). Digitale

Grundbildung. url: https://bildung.bmbwf.gv.at/schulen/schule40/dgb/
index.html (visited on 01/14/2019).

Bartle, Richard (1996). “Hearts, clubs, diamonds, spades: Players who suit MUDs.” In:
Journal of MUD research 1.1.

BBC (Jan. 2019). Introduction to computational thinking. url: https://www.bbc.com/
bitesize/guides/zp92mp3/revision/1 (visited on 01/27/2019).

Becker, Katrin (Jan. 2015). Choosing and Using Digital Games in the Classroom – A Practical
Guide. isbn: 9783319122229.

Bohyun, Kim (2015). “Chapter 3. Game Mechanics, Dynamics, and Aesthetics.” In:
vol. 51. 2. doi: https://doi.org/10.5860/ltr.51n2.

Brockmyer, Jeanne H. et al. (2009). “The development of the Game Engagement
Questionnaire: A measure of engagement in video game-playing.” In: Journal of
Experimental Social Psychology 45.4, pp. 624–634.

Brull, Stacey and Susan Finlayson (Aug. 2016). “Importance of Gamification in Increas-
ing Learning.” In: The Journal of Continuing Education in Nursing 47.8, pp. 372–375.
doi: https://doi.org/10.3928/00220124-20160715-09.

133

https://doi.org/10.1002/tl.465
https://www.australiancurriculum.edu.au/f-10-curriculum/technologies/introduction/
https://www.australiancurriculum.edu.au/f-10-curriculum/technologies/introduction/
https://bildung.bmbwf.gv.at/schulen/unterricht/lp/lp_ahs.html
https://bildung.bmbwf.gv.at/enfr/school/bw_en/bildungswege2016_eng.pdf?6kdmda
https://bildung.bmbwf.gv.at/enfr/school/bw_en/bildungswege2016_eng.pdf?6kdmda
https://bmbwf.gv.at/fileadmin/user_upload/Aussendung/Masterplan_Digitalisierung/Masterplan_Digitalisierung_Presseinformation.pdf
https://bmbwf.gv.at/fileadmin/user_upload/Aussendung/Masterplan_Digitalisierung/Masterplan_Digitalisierung_Presseinformation.pdf
https://bmbwf.gv.at/fileadmin/user_upload/Aussendung/Masterplan_Digitalisierung/Masterplan_Digitalisierung_Presseinformation.pdf
https://bildung.bmbwf.gv.at/schulen/schule40/dgb/index.html
https://bildung.bmbwf.gv.at/schulen/schule40/dgb/index.html
https://www.bbc.com/bitesize/guides/zp92mp3/revision/1
https://www.bbc.com/bitesize/guides/zp92mp3/revision/1
https://doi.org/https://doi.org/10.5860/ltr.51n2
https://doi.org/https://doi.org/10.3928/00220124-20160715-09

Bibliography

Cardona-Rivera, Rogelio E. and R. Michael Young (Aug. 2014). “A Cognitivist Theory
of Affordances for Games.” In: DiGRA ཉ - Proceedings of the 2013 DiGRA
International Conference: DeFragging Game Studies. isbn: ISSN 2342-9666. url: http:
//www.digra.org/wp-content/uploads/digital-library/paper_74b.pdf.pdf.

Code.org (2019a). About us. url: https://code.org/about.
Code.org (Jan. 2019b). CS Fundamentals Unplugged. url: https://code.org/curriculu

m/unplugged (visited on 01/27/2019).
CodeMonkey (2019). url: https://app.codemonkey.com/faqs (visited on 09/18/2019).
Combéfis, Sébastien, Gytautas Beresneviuius, and Valentina Dagiene (2016). “Learning

Programming through Games and Contests: Overview, Characterisation and Dis-
cussion.” In: vol. 10. Vilnius University Institute of Mathematics and Informatics,
pp. 39–60. doi: 10.15388/ioi.2016.03.

Computer Science Teachers Association (2017). CSTA K-12 Computer Science Standards.
url: http://www.csteachers.org/standards (visited on 08/21/2019).

Csikszentmihalyi, Mihaly, Sami Abuhamdeh, and Jeanne Nakamura (2014). “Flow.”
In: Flow and the Foundations of Positive Psychology: The Collected Works of Mihaly
Csikszentmihalyi. Dordrecht: Springer Netherlands, pp. 227–238. isbn: 978-94-017-
9088-8. doi: 10.1007/978-94-017-9088-8_15. url: https://doi.org/10.1007/
978-94-017-9088-8_15.

Curzon, Paul and Peter W. McOwan (2017). The Power of Computational Thinking.
WORLD SCIENTIFIC (EUROPE). isbn: 978-1-78634-183-9. doi: 10.1142/q0054.

De Freitas, Sara and Tim Neumann (2008). “The use of ‘exploratory learning’ for
supporting immersive learning in virtual environments.” In: Computers & Education
52, pp. 343–352. doi: 10.1016/j.compedu.2008.09.010.

Deterding, Sebastian et al. (2011). “From Game Design Elements to Gamefulness:
Defining ”Gamification”.” In: Proceedings of the 15th International Academic MindTrek
Conference: Envisioning Future Media Environments. MindTrek ’11. Tampere, Finland:
ACM, pp. 9–15. isbn: 978-1-4503-0816-8. doi: 10.1145/2181037.2181040.

Du, Jie, Hayden Wimmer, and Roy Rada (Feb. 2018). “Hour of Code: A Case Study.”
In: vol. 16. 1, pp. 51–60. url: http://proc.iscap.info/2017/pdf/4343.pdf.

Ertmer, Peggy and Timothy Newby (Oct. 2008). “Behaviorism, Cognitivism, Con-
structivism: Comparing Critical Features From an Instructional Design Perspec-
tive.” In: Performance Improvement Quarterly 6, pp. 50–72. doi: 10.1111/j.1937-
8327.1993.tb00605.x.

Foerster, Emmy-Charlotte, Klaus-Tycho Foerster, and Thomas Loewe (Apr. 2018).
“Teaching Programming Skills in Primary School Mathematics Classes: An Evalua-
tion using Game Programming.” In: 9th IEEE Global Engineering Education Conference
(EDUCON 2018). doi: 10.1109/EDUCON.2018.8363411. url: http://eprints.cs.
univie.ac.at/5494/.

Gibson, J.J. (1979). The ecological approach to visual perception. Boston, MA, US: Houghton
Mifflin.

134

http://www.digra.org/wp-content/uploads/digital-library/paper_74b.pdf.pdf
http://www.digra.org/wp-content/uploads/digital-library/paper_74b.pdf.pdf
https://code.org/about
https://code.org/curriculum/unplugged
https://code.org/curriculum/unplugged
https://app.codemonkey.com/faqs
https://doi.org/10.15388/ioi.2016.03
http://www.csteachers.org/standards
https://doi.org/10.1007/978-94-017-9088-8_15
https://doi.org/10.1007/978-94-017-9088-8_15
https://doi.org/10.1007/978-94-017-9088-8_15
https://doi.org/10.1142/q0054
https://doi.org/10.1016/j.compedu.2008.09.010
https://doi.org/10.1145/2181037.2181040
http://proc.iscap.info/2017/pdf/4343.pdf
https://doi.org/10.1111/j.1937-8327.1993.tb00605.x
https://doi.org/10.1111/j.1937-8327.1993.tb00605.x
https://doi.org/10.1109/EDUCON.2018.8363411
http://eprints.cs.univie.ac.at/5494/
http://eprints.cs.univie.ac.at/5494/

Bibliography

Glod, Gilles (2017). Gamification: Using game design and game elements in the EFL classroom.
url: https://files.classcraft.com/classcraft-assets/research/gamificati
on-gilles-glod-2017.pdf.

Google (2019). Computational Thinking for Educators. url: https://computationalt
hinkingcourse.withgoogle.com (visited on 08/21/2019).

Grandl, Maria and Martin Ebner (June 2017). “Informatische Grundbildung – ein
Ländervergleich.” deutsch. In: Medienimpulse 2017.2, pp. 1–9. issn: 2307-3187.

Green Wood, Ellen, Samuel E. Wood, and Denise Boyd (2005). The World of Psychology.
5th ed. Boston, MA: Allyn and Bacon. isbn: 0-205-43055-4. url: http://catalogue.
pearsoned.co.uk/samplechapter/0205361374.pdf.

Guay, Frédéric, Robert J. Vallerand, and Céline Blanchard (Sept. 2000). “On the Assess-
ment of Situational Intrinsic and Extrinsic Motivation: The Situational Motivation
Scale (SIMS).” In: Motivation and Emotion 24.3, pp. 175–213.

Heintz, Fredrik et al. (2017). “Introducing Programming and Digital Competence in
Swedish K-9 Education.” In: Informatics in Schools: Focus on Learning Programming.
Ed. by Valentina Dagienė and Arto Hellas. Cham: Springer International Publishing,
pp. 117–128. isbn: 978-3-319-71483-7.

Hmelo-Silver, Cindy E. (Sept. 2004). “Problem-Based Learning: What and How Do
Students Learn?” In: Educational Psychology Review 16.3, pp. 235–266. issn: 1573-
336X. doi: 10.1023/B:EDPR.0000034022.16470.f3. url: https://doi.org/10.
1023/B:EDPR.0000034022.16470.f3.

Hunicke, Robin, Marc Leblanc, and Robert Zubek (2004). “MDA: A formal approach
to game design and game research.” In: In Proceedings of the Challenges in Games AI
Workshop, Nineteenth National Conference of Artificial Intelligence. Press, pp. 1–5.

Huotari, Kai and Juho Hamari (2012). “Defining Gamification: A Service Marketing
Perspective.” In: Proceeding of the 16th International Academic MindTrek Conference.
MindTrek ’12. Tampere, Finland: ACM, pp. 17–22. isbn: 978-1-4503-1637-8. doi:
10.1145/2393132.2393137. url: http://doi.acm.org/10.1145/2393132.2393137.

Ibanez, M., A. Di-Serio, and C. Delgado-Kloos (July 2014). “Gamification for Engaging
Computer Science Students in Learning Activities: A Case Study.” In: IEEE Trans-
actions on Learning Technologies 7.3, pp. 291–301. doi: 10.1109/TLT.2014.2329293.

Janka, Pekárová (2008). “Using a Programmable Toy at Preschool Age: Why and
How?” In: Workshop proceedings of International Conference on Simulation, Modeling
and Programming for Autonomous Robots. Venice, Italy, pp. 112–121.

Jones, Gary Marshall (1998). “Creating Electronic Learning Environments: Games,
Flow, and the User Interface.” In: url: https://files.eric.ed.gov/fulltext/
ED423842.pdf.

Kahoot! (2019). Kahoot! url: https://kahoot.com/ (visited on 10/23/2019).
Kamp, Peter (2014). Computing in the national curriculum. A guide for secondary teachers.

url: https://www.computingatschool.org.uk/data/uploads/cas_secondary.
pdf.

135

https://files.classcraft.com/classcraft-assets/research/gamification-gilles-glod-2017.pdf
https://files.classcraft.com/classcraft-assets/research/gamification-gilles-glod-2017.pdf
https://computationalthinkingcourse.withgoogle.com
https://computationalthinkingcourse.withgoogle.com
http://catalogue.pearsoned.co.uk/samplechapter/0205361374.pdf
http://catalogue.pearsoned.co.uk/samplechapter/0205361374.pdf
https://doi.org/10.1023/B:EDPR.0000034022.16470.f3
https://doi.org/10.1023/B:EDPR.0000034022.16470.f3
https://doi.org/10.1023/B:EDPR.0000034022.16470.f3
https://doi.org/10.1145/2393132.2393137
http://doi.acm.org/10.1145/2393132.2393137
https://doi.org/10.1109/TLT.2014.2329293
https://files.eric.ed.gov/fulltext/ED423842.pdf
https://files.eric.ed.gov/fulltext/ED423842.pdf
https://kahoot.com/
https://www.computingatschool.org.uk/data/uploads/cas_secondary.pdf
https://www.computingatschool.org.uk/data/uploads/cas_secondary.pdf

Bibliography

Kant, E. (Nov. 1985). “Understanding and Automating Algorithm Design.” In: IEEE
Transactions on Software Engineering 11.11, pp. 1361–1374. issn: 0098-5589. doi:
10.1109/TSE.1985.231884.

Kay, Robin H. and Sharon Loverock (2008). “Assessing emotions related to learning
new software: The computer emotion scale.” In: Computers in Human Behavior 24.4,
pp. 1605–1623.

Kazimoglu, Cagin et al. (2012). “Learning Programming at the Computational Thinking
Level via Digital Game-Play.” In: Procedia Computer Science 9, pp. 522–531. issn:
18770509. doi: 10.1016/j.procs.2012.04.056.

Kim, Nam Ju, Brian R. Belland, and Daryl Axelrod (2019). “Scaffolding for Optimal
Challenge in K–12 Problem-Based Learning.” In: Interdisciplinary Journal of Problem-
Based Learning 13.1. doi: 10.7771/1541-5015.1712.

Kim, Sangkyun et al. (2018). Gamification in Learning and Education: Enjoy Learning
Like Gaming. Advances in Game-Based Learning. Cham: Springer International
Publishing. isbn: 9783319472829. doi: 10.1007/978-3-319-47283-6.

Kojic, Aleksandar (2017). “Design and Implementation of an Adaptive Multidisci-
plinary Educational Mobile Game.” Master’s Thesis. Graz University of Technol-
ogy.

Kojic, Aleksandar et al. (2018). “sCool - A Mobile Flexible Learning Environment.” In:
pp. 72–84. doi: 10.3217/978-3-85125-609-3-11.

Kojic, Milos (2017). “Procedural Content Generation in a Multidisciplinary Educational
Mobile Game.” Graz University of Technology.

Kolb’s, David (Jan. 1984). Experiential Learning: Experience As The Source Of Learning And
Development. Vol. 1. isbn: 0132952610.

Kramer, Jeff (2007). “Is abstraction the key to computing?” In: Communications of the
ACM 50.4, pp. 36–42. issn: 00010782. doi: 10.1145/1232743.1232745.

Lazzaro, Nicole (2004). “Why We Play Games: Four Keys to More Emotion Without
Story.” In: url: http://www.xeodesign.com/xeodesign_whyweplaygames.pdf
(visited on 09/03/2019).

Lye, Sze Yee and Joyce Hwee Ling Koh (2014). “Review on teaching and learning
of computational thinking through programming: What is next for K-12?” In:
Computers in Human Behavior 41, pp. 51–61. issn: 0747-5632. doi: https://doi.org/
10.1016/j.chb.2014.09.012. url: http://www.sciencedirect.com/science/
article/pii/S0747563214004634.

Mueller, Julie et al. (2017). “Assessing Computational Thinking Across the Curriculum.”
In: Emerging Research, Practice, and Policy on Computational Thinking. Ed. by Peter J.
Rich and Charles B. Hodges. Cham: Springer International Publishing, pp. 251–267.
doi: 10.1007/978-3-319-52691-1_16. url: https://doi.org/10.1007/978-3-
319-52691-1_16.

Narasareddygari, Mourya Reddy, Gursimran Singh Walia, and Alex David Rader-
macher (Aug. 2018). “Gamification in Computer Science Education: a Systematic
Literature Re-view Gamification in Computer Science Education: A Systematic
Literature Review.” In:

136

https://doi.org/10.1109/TSE.1985.231884
https://doi.org/10.1016/j.procs.2012.04.056
https://doi.org/10.7771/1541-5015.1712
https://doi.org/10.1007/978-3-319-47283-6
https://doi.org/10.3217/978-3-85125-609-3-11
https://doi.org/10.1145/1232743.1232745
http://www.xeodesign.com/xeodesign_whyweplaygames.pdf
https://doi.org/https://doi.org/10.1016/j.chb.2014.09.012
https://doi.org/https://doi.org/10.1016/j.chb.2014.09.012
http://www.sciencedirect.com/science/article/pii/S0747563214004634
http://www.sciencedirect.com/science/article/pii/S0747563214004634
https://doi.org/10.1007/978-3-319-52691-1_16
https://doi.org/10.1007/978-3-319-52691-1_16
https://doi.org/10.1007/978-3-319-52691-1_16

Bibliography

National Agency Erasmus+ Education (2014). url: https://www.bildungssystem.at/
en/ (visited on 08/22/2019).

Ortiz, Margarita, Katherine Chiluiza, and Martin Valcke (July 2016). “Gamification in
Higher Education and STEM: A Systematic Review of Literature.” In: pp. 6548–
6558. doi: 10.21125/edulearn.2016.0422.

Papadakis, Stamatios and Michail Kalogiannakis (Oct. 2017). “Using Gamification for
Supporting an Introductory Programming Course. The Case of ClassCraft in a
Secondary Education Classroom.” In:

Pavlov, I.P. and G.V. Anrep (1927). Conditioned Reflexes: An Investigation Of The Physio-
logical Activity Of The Cerebral Cortex. Dover Publications. isbn: 9780486430935.

Peyton-Jones, Simon, Bill Mitchell, and Simon Humphreys (2013). Computing at school
in the UK. url: https://www.microsoft.com/en-us/research/wp- content/
uploads/2016/07/ComputingAtSchoolCACM.pdf.

Piteira, Martinha, Carlos Costa, and Manuela Aparicio (Apr. 2018). “Computer Pro-
gramming Learning: How to Apply Gamification on Online Courses?” In: Journal
of Information Systems Engineering & Management 3. doi: 10.20897/jisem.201811.

Pöckelhofer, Oliver (2019). “sCool - Procedurally Generated Levels For A New Plat-
forming Game Mode.” Bachelor’s Thesis. Graz University of Technology.

Radoff, Jon (2011). Game on: Energize your business with social media games. Indianapolis,
Ind.: Wiley. isbn: 9780470936269. url: http://site.ebrary.com/lib/alltitles/
docDetail.action?docID=10513718.

Raymer, Rick (Sept. 2011). “Gamification: Using Game Mechanics to Enhance eLearn-
ing.” In: eLearn 2011.9. issn: 1535-394X. doi: 10.1145/2025356.2031772. url:
http://doi.acm.org/10.1145/2025356.2031772.

Reinders, Hayo (2012). Digital games in language learning and teaching. New language
learning and teaching environments. Basingstoke: Palgrave Macmillan. doi: 10.
1057/9781137005267. url: http://www.palgraveconnect.com/pc/doifinder/10.
1057/9781137005267.

Riley, David D. and Kenny A. Hunt, eds. (2014). Computational thinking for the modern
problem solver. Chapman & Hall/CRC textbooks in computing. isbn: 978-1-4665-
8779-3.

Rishipal, Sweta Saraff, and Raman Kumar (2019). “A Gamification Framework for
Redesigning the Learning Environment.” In: RECENT ADVANCES IN COMPU-
TATIONAL INTELLIGENCE. Ed. by Raman Kumar and Uffe Kock Wiil. Vol. 823.
Studies in Computational Intelligence. [S.l.]: SPRINGER NATURE, pp. 93–105. isbn:
978-3-030-12499-1. doi: 10.1007/978-3-030-12500-4{\textunderscore}6.

Ryan, Richard M. and Edward L. Deci (2000). “Intrinsic and Extrinsic Motivations:
Classic Definitions and New Directions.” In: Contemporary Educational Psychology
25.1, pp. 54–67. issn: 0361-476X. doi: https://doi.org/10.1006/ceps.1999.
1020. url: http://www.sciencedirect.com/science/article/pii/S0361476X
99910202.

Schneider, Marvin Oliver et al. (2016). In: pp. 617–623. url: http://www.sbgames.org/
sbgames2016/downloads/anais/157721.pdf.

137

https://www.bildungssystem.at/en/
https://www.bildungssystem.at/en/
https://doi.org/10.21125/edulearn.2016.0422
https://www.microsoft.com/en-us/research/wp-content/uploads/2016/07/ComputingAtSchoolCACM.pdf
https://www.microsoft.com/en-us/research/wp-content/uploads/2016/07/ComputingAtSchoolCACM.pdf
https://doi.org/10.20897/jisem.201811
http://site.ebrary.com/lib/alltitles/docDetail.action?docID=10513718
http://site.ebrary.com/lib/alltitles/docDetail.action?docID=10513718
https://doi.org/10.1145/2025356.2031772
http://doi.acm.org/10.1145/2025356.2031772
https://doi.org/10.1057/9781137005267
https://doi.org/10.1057/9781137005267
http://www.palgraveconnect.com/pc/doifinder/10.1057/9781137005267
http://www.palgraveconnect.com/pc/doifinder/10.1057/9781137005267
https://doi.org/10.1007/978-3-030-12500-4{\textunderscore }6
https://doi.org/https://doi.org/10.1006/ceps.1999.1020
https://doi.org/https://doi.org/10.1006/ceps.1999.1020
http://www.sciencedirect.com/science/article/pii/S0361476X99910202
http://www.sciencedirect.com/science/article/pii/S0361476X99910202
http://www.sbgames.org/sbgames2016/downloads/anais/157721.pdf
http://www.sbgames.org/sbgames2016/downloads/anais/157721.pdf

Bibliography

Science, K12 Computer (2019). K12 Computer Science. url: https://k12cs.org/.
Sentance, Sue and Andrew Csizmadia (Mar. 2017). “Computing in the curriculum: Chal-

lenges and strategies from a teacher’s perspective.” In: Education and Information
Technologies 22.2, pp. 469–495. issn: 1573-7608. doi: 10.1007/s10639-016-9482-0.
url: https://doi.org/10.1007/s10639-016-9482-0.

Siang, Ang Chee and Radha Krishna Rao (Dec. 2003). “Theories of learning: a com-
puter game perspective.” In: Fifth International Symposium on Multimedia Software
Engineering, 2003. Proceedings. Pp. 239–245. doi: 10.1109/MMSE.2003.1254447.

Skinner, B.F. (1938). The Behavior of Organisms: An Experimental Analysis. Oxford, Eng-
land: Appleton-Century.

Skolverket (2018). Curriculum for the compulsory school, preschool class and school-age
educare. url: https://www.skolverket.se/getFile?file=3984.

Smith, Megan (2016). Computer Science For All. url: https://obamawhitehouse.archiv
es.gov/blog/2016/01/30/computer-science-all.

SoloLearn (2019). SoloLearn. url: https://www.sololearn.com (visited on 10/23/2019).
Sommerville, Ian (2010). Software Engineering. 9th. USA: Addison-Wesley Publishing

Company. isbn: 0137035152, 9780137035151.
Steinmaurer, Alexander, Johanna Pirker, and Christian Gütl (2019a). “sCool – Game-

Based Learning in Computer Science Class: A Case Study in Secondary Education.”
In: International Journal of Engineering Pedagogy (iJEP) 9.2, p. 35. doi: 10.3991/ijep.
v9i2.9942.

Steinmaurer, Alexander, Johanna Pirker, and Christian Gütl (Apr. 2019b). “sCool –
Game-Based Learning in Computer Science Class: A Case Study in Secondary
Education.” In: International Journal of Engineering Pedagogy 9.2, pp. 26–50. doi:
https://doi.org/10.3991/ijep.v9i2.9942.

Sweetser, Penelope and Peta Wyeth (July 2005). “GameFlow: A Model for Evaluating
Player Enjoyment in Games.” In: Comput. Entertain. 3.3, pp. 3–3. issn: 1544-3574. doi:
10.1145/1077246.1077253. url: http://doi.acm.org/10.1145/1077246.1077253.

Tan, Debbita, Malini Ganapathy, and Manjet Kaur Mehar Singh (Mar. 2018). “Kahoot!
It: Gamification in Higher Education.” In: Pertanika Journal of Social Science and
Humanities 26, pp. 565–582.

Tucker, Allen (2003). A Model Curriculum for K–12 Computer Science: Final Report of the
ACM K–12 Task Force Curriculum Committee. Tech. rep. ACM Order No.: 104043.
New York, NY, USA.

Utecht, Jeffrey R. (2003). Problem-Based Learning in the Student Centered Classroom. url:
http://www.jeffutecht.com/docs/PBL.pdf (visited on 08/28/2019).

Wangenheim, Christiane Gresse von et al. (2017). “Teaching Computing in a Multidisci-
plinary Way in Social Studies Classes in School: A Case Study.” In: International Jour-
nal of Computer Science Education in Schools 1.2, p. 3. doi: 10.21585/ijcses.v1i2.9.

Warren, Scott and Greg Jones (2017). Learning Games: The Science and Art of Develop-
ment. Advances in Game-Based Learning. Cham and s.l.: Springer International
Publishing. isbn: 9783319468273. doi: 10.1007/978-3-319-46829-7.

138

https://k12cs.org/
https://doi.org/10.1007/s10639-016-9482-0
https://doi.org/10.1007/s10639-016-9482-0
https://doi.org/10.1109/MMSE.2003.1254447
https://www.skolverket.se/getFile?file=3984
https://obamawhitehouse.archives.gov/blog/2016/01/30/computer-science-all
https://obamawhitehouse.archives.gov/blog/2016/01/30/computer-science-all
https://www.sololearn.com
https://doi.org/10.3991/ijep.v9i2.9942
https://doi.org/10.3991/ijep.v9i2.9942
https://doi.org/https://doi.org/10.3991/ijep.v9i2.9942
https://doi.org/10.1145/1077246.1077253
http://doi.acm.org/10.1145/1077246.1077253
http://www.jeffutecht.com/docs/PBL.pdf
https://doi.org/10.21585/ijcses.v1i2.9
https://doi.org/10.1007/978-3-319-46829-7

Bibliography

Weintrop, David et al. (Feb. 2016). “Defining Computational Thinking for Mathematics
and Science Classrooms.” In: Journal of Science Education and Technology 25.1, pp. 127–
147. issn: 1573-1839. doi: 10.1007/s10956-015-9581-5. url: https://doi.org/10.
1007/s10956-015-9581-5.

Wing, Jeannette (Mar. 2006). “Computational Thinking.” In: Commun. ACM 49.3, pp. 33–
35. issn: 0001-0782. doi: 10.1145/1118178.1118215. url: http://doi.acm.org/10.
1145/1118178.1118215.

Wing, Jeannette (Nov. 2008). “Computational thinking and thinking about computing.”
In: Philosophical transactions. Series A, Mathematical, physical, and engineering sciences
366, pp. 3717–25. doi: 10.1098/rsta.2008.0118.

World Government Summit (2016). Gamification and the Future of Education. url: https:
//www.worldgovernmentsummit.org/api/publications/document?id=2b0d6ac4-

e97c-6578-b2f8-ff0000a7ddb6.
Yaroslavski, Danny (July 2014). How does Lightbot teach programming. url: https :

//lightbot.com/Lightbot_HowDoesLightbotTeachProgramming.pdf (visited on
09/18/2019).

Zenn, Jacqueline (Nov. 2017). Understanding Your Audience – Bartle Player Taxonomy.
url: https://gameanalytics.com/blog/understanding-your-audience-bartle-
player-taxonomy.html.

Zichermann, Gabe and Christopher Cunningham (2011). Gamification by Design: Im-
plementing Game Mechanics in Web and Mobile Apps. 1st. O’Reilly Media, Inc. isbn:
1449397670, 9781449397678.

139

https://doi.org/10.1007/s10956-015-9581-5
https://doi.org/10.1007/s10956-015-9581-5
https://doi.org/10.1007/s10956-015-9581-5
https://doi.org/10.1145/1118178.1118215
http://doi.acm.org/10.1145/1118178.1118215
http://doi.acm.org/10.1145/1118178.1118215
https://doi.org/10.1098/rsta.2008.0118
https://www.worldgovernmentsummit.org/api/publications/document?id=2b0d6ac4-e97c-6578-b2f8-ff0000a7ddb6
https://www.worldgovernmentsummit.org/api/publications/document?id=2b0d6ac4-e97c-6578-b2f8-ff0000a7ddb6
https://www.worldgovernmentsummit.org/api/publications/document?id=2b0d6ac4-e97c-6578-b2f8-ff0000a7ddb6
https://lightbot.com/Lightbot_HowDoesLightbotTeachProgramming.pdf
https://lightbot.com/Lightbot_HowDoesLightbotTeachProgramming.pdf
https://gameanalytics.com/blog/understanding-your-audience-bartle-player-taxonomy.html
https://gameanalytics.com/blog/understanding-your-audience-bartle-player-taxonomy.html

Appendix

140

Rob the Robot

Missions

Help Rob on his exploration missions on
the foreign planet to collect all disks.
Beware of the enemies trying to protect
the floppy disks. If you are injured try to
find a first aid kit, it will help you. When
gathering the floppy disks, you will
learn different commands and concepts
to control the robot.

In the Robot Missions you have to help
the Robot collect a single disk. To do
this, you must apply all the theoretical
knowledge from the Planet Exploration
missions. Simply drag and drop the
command blocks into the workspace to
control the robot.

Good luck on your mission!

Hello, I am Rob the Robot. I am a

research robot and explore foreign

planets. During a space mission I had

a quite bumpy landing. At this crash

all previous collected information was

scattered around the whole planet.

Can you help me collect all missing

disks so I can continue my missions?

A.1 Intro Worksheet

141

Rob the Robot

and the delayed departure

Ready for take-off in …

Now it is done! You finally helped Rob to find all missing disks, so he can fly back to the earth – thank you so much!

Unfortunately, there was an error while reading the disks and so the start sequence could not be loaded correctly – it

seems like Rob cannot start. Apparently, there is a problem with the calculation module that is needed for the flight

back. Rob has to do different calculations but is not possible to solve them. He needs a program that performs different

multiplications. The broken program was responsible for calculating the three times table. Can you help Rob to re-

write the program, so he can finally escape from the planet and take back home all collected research results?

Output

Rob’s output should look like this:

3, 6, 9, 12, 15, 18, 21, 24, 27, 30

Calculating finished

Code

Hint

Here are some useful commands for your mission:

print("Hello Rob!")
steps = 12
name = "Rob"

for x in range(5)
 print(x)
 robot.Left()

A.2 Revision Worksheet

142

Robs fight against

forgetfulness

Rob the Robot needs also variables. With these variables he can remember certain information, such as his name or the number
of steps he has already taken.

Imagine …

Rob wants to take different measurements on a foreign planet. However, he can only make a total of 10 steps in any direction
before recharging his battery. Charing the battery will then take a few hours and means he needs to get enough sunlight. So, he
has to device these steps well.

Each variable consists out of three parts:

• name: What is the variables name?

• data type: What is stored in the variable? A number? A letter? A word?

• value: What is the variables content?

number steps = 10

Can you complete the missing data for Rob so he can arrive his destination?

I am sure you know the lowercase letters (x, y, z) from math class. The so-called placeholders (or variables) are

written instead of numbers. The value of these variables can also change they does not remain constant. This

is very similar in computer science. A variable can store any value (numbers, characters, words or even whole

sentences). The name of the variable remains, but the value can change at any time.

data type

name

value

steps = 7

robot.Left()

steps = 6

robot.Left()

steps = ___

robot.Left()

_______ = ____

robot.Left()

robot.Down()

robot.Down()

print("Rob has " + _______ + " steps left")

A.3 Variables Worksheet

143

Robs Delivery Service

Commands

The crew of the spaceship has been on a foreign planet for a few days now. The food supplies are slowly

running out and it is time to get some food. The team commits Rob to collect the food on the planet and

bring it back to the astronauts. Can you help him pick up the food first and then bring it to the right

person? The cereal bar belongs to the yellow astronaut and the noodle bowl to the red one.

A.4 Pre-Test Primary School

144

Rob the Mechanic

Commands

During the space shuttles crash some parts got lost. All these parts are widely scattered now, and they

seem to be lost. Can you help Rob to collect the pieces and then bring them back to the spaceship? Try

to avoid the obstacles in the field (rocks and boxes) because Rob cannot pass them.

(

A.5 Post-Test Primary School

145

sCool Questionnaire

General Questions

Gender O Boy O Girl

Age _________ Years

Do you possess a smartphone? O Yes O No

What are your top three apps?
1. _________________
2. _________________
3. _________________

How many hours a day do you
spend on your smartphone?

_________ Hours

Game-related Questions

The game’s structure is coherent. ☺
The game’s control is easy to use. ☺
The usage of the keyboard was easy. ☺
The language is understandable. ☺
The levels were easy to master. ☺
I learned something while playing the game. ☺
sCool encouraged me to learn more about
programming. ☺

The work sheet was easy to solve. ☺
The type of game is fun. ☺
The character Rob is appealing. ☺
The theme space is interesting. ☺
Programming was fun. ☺

Miscellaneous
Do you have further ideas for improvement?

__
__
__
__

A.6 Questionnaire for Primary School

146

Questionnaire sCool

Thank you for participating in this survey. This survey is being conducted to improve sCool and the

concepts for future courses and get an insight into how it helps you learn the content. Your responses are

anonymous and will be solely used for evaluation and research purposes. Your participation is completely

voluntary. Completion of this survey implies your consent for the purposes stated above.

General Questions

1. What is your gender?

Male

Female

2. How old are you?

3. What was your name on sCool?

4. Do you have an own smartphone?

Yes

No

5. If you, which smartphone do you have?

Apple

Samsung

HTC

Huawei

LG

Sony

Nokia

6. How often do you use your phone? (per day)

less than 1 hour

1 - 3 hours

3 - 5 hours

5 - 7 hours

more than 7 hours

7. Do you play games on your smartphone?

Yes

No

A.7 Questionnaire Pre-Evaluation

147

Experiment Documentation

Schedule

Time Task Method Media

Day 1

10’ welcome, introducing the project frontal -

5’ explaining sCool unplugged frontal sCool unplugged

5’ solving a sample task together in plenum sCool unplugged

50’ solving different tasks in plenum sCool unplugged

5’ hand out devices in plenum smartphone

20’ work with sCool in the concept-learning part
to make pupils familiar with user interface

group smartphone

5’ hand in devices, goodbye in plenum -

Day 2

5’ welcome frontal

10’ running pre-test group pre-test

60’ work on the sCool course group smartphone

10’ running post-test group post-test,
smartphone

10’ fill out questionnaire individual questionnaire

5’ goodbye in plenum -

General Information

School type: Primary School

Grade: 4th Grade

Concepts: Commands, Sequences, Loops

Time: Two double lessons (200 min total)

Students: 7 boys and 7 girls

Goals: The goal is to introduce the children in a motivating way into programming

and computer science. In this workshop they should learn what commands

are and see that there are real-life examples for commands to. The students

should also know that commands can be grouped together and that the

order of execution matters. It is also important that they understand the

idea of repeating certain commands.

A.8 Experiment Documentation Primary School

148

Concept-learning tasks

Basics

#1 Rob the Robot 15%

Description
Rob is a research robot, crashed on a foreign planet. Help him collecting all disks to escape.
Question
What has Rob to collect?
Answers

- Disks
- CDs
- USB sticks

#2 Control Rob 20%

Description
Rob can be controlled with the arrow buttons. When you are playing the ‘Robot Missions’ you
simply have to drag and drop the block buttons on the left. Rob can move up, down, left, and right.
Question
In how many directions can Rob walk?
Answers

- four directions
- five directions
- two directions

#3 Instructions 25%

Description
Rob can understand simple commands like ‘move to the right field’. Each single line represents an
instruction. The commands will be executed sequentially.
Question
Rob receives three moving commands, how many steps did he take?
Answers

- 3
- 2
- 1

#4 Give Rob instructions 40%

Description
Rob can understand many commands. All commands do have the same structure:
robot.command(). The first part is the word ‘robot’ followed by a dot (robot.). In this way, Rob
know that he has to do something. After the dot is the instruction that should be executed. Each
command is closed by two brackets. Caution: Rob is very exact when it comes to the right spelling
– be case sensitive.
Question
Which of these commands can Rob execute?
Answers

- robot.left()
- robotLeft()
- robot.left

Loops

#5 Recap 30%

Description
In the previous lessons you learned that Rob is able execute different commands. In some cases, it
is very useful to repeat commands.
Question
Can you remember what the valid command is?

149

Answers
- robot.Left()
- robot.left()
- robot.LEFT

#6 Loops 60%

Description
To repeat certain commands, it is possible to use loops. Loops are used for repeating various
commands. Therefore, you can use the command ‘for’.
Question
What command is used to repeat a command?
Answers

- for
- für
- schleife

#7 for loops 70%

Description
A for loop looks like this: ‘for x in range(5):’. In this way the command is repeated five times. Each
loop is closed by a colon. This colon means that each command after it will be repeated.
Question
Which loop repeats a command seven times?
Answers

- for x in range(7):
- for x in range(6):
- for x in range(8):

Practical tasks

Basics

#1 First attempts of walking 30%

Task
Reach the disk using the arrow keys.
Available Commands
Left, Right, Up, Down

#2 Hiking Day 55%

Task
The disk is very far away. Nevertheless, try to reach it.
Available Commands
Left, Right, Up, Down

#3 Hiking Again 65%

Task
The disk is still far away – you know what to do.
Available Commands
Left, Right, Up, Down

Loops

#4 Marching 75%

Task
Reach the disk using loops, so you do not have to use the arrows for each step.
Available Commands
Left, Right, Up, Down, For

#5 Far Journey 95%

Task
The disk is at its furthest points - try to reach it using loops, it is worth it!

150

Available Commands
Left, Right, Up, Down, For

151

Experiment Documentation

Schedule

Time Task Method Media

10’ welcome, introducing the project frontal -

5’ hand out devices in plenum smartphone

60’ solving different tasks in plenum smartphone

10’ fill out the worksheet group worksheet

10’ fill out questionnaire individual questionnaire

5’ hand in devices, goodbye in plenum -

General Information

School type: Secondary School

Grade: 7th Grade

Concepts: Commands, Loops

Time: One double lesson (100 min total)

Students: 12 boys and 16 girls

Goals: The goal of this experiment is to motivate and encourage students for coding

in the Python programming language. This workshop will be an introduction

since the class will continue working on programming in Visual Basic after

this workshop.

A.9 Experiment Documentation Secondary School

152

Concept-learning tasks

Basics

#1 Rob the Robot 20%

Description
Rob is a research robot, that crashed on a foreign planet. By finding all disks he can escape the
planet. Can you help him?
Question
Rob is looking for ...
Answers

- disks
- USB sticks
- CDs

#2 Print 40%

Description
In many cases it would be very useful that Rob would say something. Therefore, he can use the
command "print("Hello")". Watch out: Quotes are necessary to write a text.
Question
How can Rob print some text?
Answers

- print("Hi, my name is Rob")
- print(Hi, my name is Rob)
- shout("Hi, my name is Rob")

#3 Moving Around 25%

Description
Rob can be controlled with blocks. Each block represents a direction (up, down, left and right) that
Rob can walk in the "Robot Missions". To let Rob walk simply drag and drop the blocks into the
large area (editor).
Question
In which directions is Rob able to walk?
Answers

- up, down, left and right
- north, east, south and west
- just up and down

#4 Commands 26%

Description
With different commands like "go right" you can tell Rob what to do. Each command is
represented into a single line of text. The commands are executed one by one.
Question
You tell Rob: "go left", "go left", "go right" and "go right". How many steps did Rob?
Answers

- Four
- Three
- Two

#5 Controlling Rob 27%

Description
Rob can understand a few commands. All these commands do have a similar structure (like
grammar in other languages): robot.DoSomething(). The first part of the command is always the
word "robot" followed up by a dot (robot.). So, Rob knows that you talk to him. Next to the dot is
the certain instruction that Rob should execute. Each command is completed by parenthesis:
robot.Up(). Watch out: Rob is very case sensitive! (robot.Left() vs. robot.left())

153

Question
What command do Rob understand?
Answers

- robot.Left()
- robotLeft()
- robot.left()

Loops

#6 Revision 30%

Description
At the first missions you learned that Rob can execute certain commands. In some cases, it is very
usefull to repeat them.
Question
Can you remember a valid command?
Answers

- robot.Left()
- robot.left()
- ROBOT.LEFT

#7 Loops 31%

Description
To repeat certain commands Rob is using loops. In each loop the number of repetitions have to be
declared. To repeat something Rob uses the word "for".
Question
What is the command for a loop?
Answers

- for
- repeat
- loop

#8 for loop 33%

Description
Here you can see a for loop: "for x in range(5):" With this command a command will be repeated
five times. The last character is a colon, that tells Rob to repeat the following instructions.
Question
Which loop is repeating a command seven times?
Answers

- for x in range(7):
- for x in range(6):
- for x in range(8):

Practical tasks

Basics

#1 Attempts At Walking 20%

Task
Use the arrow keys to reach the disk.
Available Commands
Left, Right, Up, Down

#2 Go Hiking 50%

Task
The disk seems to be far away - let's try to reach it again!
Available Commands
Left, Right, Up, Down

154

Loops

#3 Walk with Rob 72%

Task
Use the for loop to reach the disks.
Available Commands
Left, Right, Up, Down, For

#4 Long Journey 81%

Task
The disk is far away again - maybe you should use some loops again?
Available Commands
Left, Right, Up, Down, For

#5 Talk with Rob 82%

Task
When Rob reaches the disk he should print his name (remember, he is very case sensitive).
Reach the disk and print "Rob"
Available Commands
Left, Right, Up, Down, For

#6 Repeating 85%

Tasks
Rob can also repeat his name a certain number of times. Can you say his name five times before
he reaches the disk?
Available Commands
Left, Right, Up, Down, For, Print

#7 Count Steps 90%

Tasks
Since we used loops for repeating commands maybe Robs steps could also be counted? Play
around and try to counting the steps!
Available Commands
Left, Right, Up, Down, For, Print

155

Experiment Documentation

Schedule

Time Task Method Media

10’ welcome, introducing the project frontal -

5’ installing the software on student’s devices in plenum devices

50’ solving different tasks in plenum devices

10’ fill out questionnaire individual questionnaire

General Information

School type: RMIT University

Concepts: Commands, Data Types, Loops, Conditions

Time: One lab class (75 min total)

Students: 34 students

Goals: In this workshop sCool should be used as a revision of the previous learned

concepts in the lab class. The students previously learned about commands,

data types, loops, and conditions.

Re co

A.10 Experiment Documentation RMIT

156

Concept-learning tasks

Basics

#1 Commands 10%

Description
A command is a single instruction a program should do. It is mostly a verb followed by a bracket
that describes the action (e.g. walk_ahead() or delete_letter()).
Question
What is a valid command in Python?
Answers

- robot.left()
- robot.left
- robot.left{}

#2 Rob’s Storage 30%

Description
Rob has an integrated memory where sometimes vital information is stored. This memory can be
accessed via robot.storage. It can contain strings, lists or numbers.
Question
How can Rob's memory be accessed?
Answers

- robot.storage
- storage
- robot.memory

#3 Talk with Rob 55%

Description
In many cases it would be very useful that Rob would say something. Therefore, he can use the
command print("Hello"). It is also possible to print the content of variables. In this case no quotes
within the brackets are needed.
Question
How can Rob print some text?
Answers

- print("Hi, my name is Rob")
- print(Hi, my name is Rob)
- shout("Hi, my name is Rob")

Loops

#4 Data Types 40%

Description
Each variable has a certain data type that describes what kind of value is stored (string, number,
list). With the command type() you can get the type of this variable. In addition to variables each
field of the game board has also a type that can be asked with the command robot.field_type().
Question
Which command will print the data type of its variable?
Answers

- print(type(var))
- type(var)
- print(var)

#5 Lists 45%

Description
A list is a collection where many different objects (even with different data types) can be stored.
Such a list could store a collection of measurements (temperature, brightness, ...) that Rob made
on a planet. In Python the items of a list are stored between square brackets.

157

Question
What is a valid list declaration?
Answers

- measurements = [50, 0.3, 6.2, "high"]
- measurements = <50, 0.3, 6.2, "high">
- measurements = {50, 0.3, 6.2, "high"}

#6 Access Lists 55%

Description
The elements of a list can be accessed via its index or can be iterated through a 'for' loop. >> for
element in lst: Hint: It is also a good idea to use the for loop to repeat a command (like moving on
a playfield). It is also possible to check if a certain element is in a list with the membership
operator 'in'. >> if 'a' in lst:
Question
What is the output? lst = ["a", "b", "c"] print("a" in lst)
Answer

- True
- a
- “False”

Control Structures

#7 Conditions 60%

Description
With the keyword 'if' it is possible to evalute the logical condition of an expression. If the result of
the expression is 'True' the indented block is entered. If the result is 'False' the block will be
skipped, or an 'else' block can be used. if 2 == 2: >>print("Numbers are equal!") else:
>>print("Numbers are not equal!")
Question
This is an alternative way to formulate conditions. What is the output? print('True') if (2+3 <= 3)
else print('False')
Answers

- False
- True
- Equal

#8 Looping 80%

Description
Another important concept to control the flow of a program are loops. With the 'for' loop it is
possible to iterate over a given sequence of numbers. For this purpose you could use the 'range'
function. for x in range(5) >> print(x)
Question
What is the output of the following loop? for num in range(1,3): print(num)
Answers

- 1 2
- 1 2 3
- num

Practical tasks

Basics

#1 Collect the disk 10%

Task
In the first task simply collect the disk by using the command blocks (arrows) for controlling. Drag
and drop them into the editor and Rob will move.

158

Available Commands
Left, Right, Up, Down

#2 Hello Rob 55%

Task
Your mission is to reach the disk and let Rob print "Hello Rob". Therefore, you can use the print
command block. Hint: If the way seems to be very long, you could probably use a parameter for
the moving commands.
Available Commands
Left, Right, Up, Down, Print

#3 Simple Calculation 60%

Task
Help Rob doing a calculation. He has a value in his storage (robot.storage). Can you help Rob to
calculate the 5th power of the stored value? Unfortunately, he is very poor at mental arithmetic.
Robot Storage
18
Available Commands
Left, Right, Up, Down, Print

Data Types

#4 Working with Lists 40%

Task
Rob stores a list with all planets that he already observed. Could you check if he has already
explored the planet "Melmac"? If he was already there, Rob should print "Yes" , if he wasn’t print
"No".
Robot Storage
"Earth", "Mars", "lmc", "X12", "Jupiter", "Grux", "B1252", "Soilyj", "Switq", "Knoedl", "Grz",
"Winq", "Ljop9"
Available Commands
Left, Right, Up, Down, For, If, Variables, Print

#5 Lists and Elements 50%

Task
In Robs memory (robot.storage) is a list with different data types stored. Print each element of this
list.
Robot Storage
38.8, "Temperature", "Soil", 12, "Sandy Surface"
Available Commands
Left, Right, Up, Down, For, Variables, Print

#6 Field Types 70%

Task
On the playfield are so called "hiddenFields". Rob should avoid these fields because when he
travels this field, you will lose half of your coins. Sadly, these fields are not visible, so you should
probably scan the playfield for them. When you are done reach the disk and print the total
number of all appearing "hiddenFields". Hint: You can access the type of a field via the command
robot.field_type(x_coordinate, y_coordinate).
Available Commands
Left, Right, Up, Down, For, If, Variables, Print

Control Structures

#7 Counting Up 30%

Tasks
Unfortunately, the calculation module of Rob got destroyed during has crash. Can you help him re-
write this module so he can count from 0 to 100 in steps of 5 (i.e. 0 5 10 15 ... 95 100) and print
this before reaching the disk? Hint: The command range(min, max, steps) takes three parameters.

159

Available Commands
Left, Right, Up, Down, For, If, Variables, Print

#8 Tiny Calculation 50%

Tasks
Rob made a few temperature measurements and stored all in his internal memory (robot.storage).
Can you write a program to calculate the highest temperature in the memory (using control
structures) and print this temperature?
Robot Storage
5,30,8,3,80,64,99,2,30,5,78,98,5,45,6,85,15,90
Available Commands
Left, Right, Up, Down, For, If, Variables, Print

160

8. If yes, which games do you prefer?

9. Have you ever played an educational game on your smartphone?

Yes

No

10. If yes, which game?

11. How do you like the usage of apps in school?

This would encourage me.

This would not have any impact on my motivation.

This would discourage me.

12. Which media do you use for learning?

Schoolbook

Books

Educational Games (without computers)

Educational Games (on computers)

Social Media (Facebook, Twitter,...)

WhatsApp

YouTube Other:

13. Do you have experience in programming?

Yes

No

14. If yes, in which programming language?

161

15.

 Strongly

Agree

Agree Undecided Disagree Strongly

Disagree

The game's structure is coherent
The game's control is easy to use
The usage of the keyboard was easy
The language is understandable
The levels were easy to master
I learned something while playing the game
sCool encouraged me to learn more about

programming

The work sheet was easy to solve

16. Do you have further suggestions for improvement?

17. Questions about sCool

 Strongly

Agree

Agree Undecided Disagree Strongly

Disagree

The type of game is fun

The character Rob is appealing
The theme ‘space’ is interesting
Playing the game was pleasing
Programming was fun

18. How could the game get more fun?

162

Einverständniserklärung

Sehr geehrte Eltern!

Im Rahmen einer Untersuchung an der Technischen Universität Graz wird der praktische

Einsatz von sogenannten „Educational Apps“ – also Anwendungen für Smartphones, die

SchülerInnen auf spielerische Weise beim Lernen unterstützen sollen – erprobt. Dabei

werden mithilfe von Fragebögen und Testfragen unterschiedliche Daten erhoben, die

benötigt werden, um aufschlussreiche Ergebnisse darüber zu erhalten und zur

Weiterentwicklung herangezogen werden. Die Informationen werden insbesondere für

statistische Auswertungen verwendet und die Erkenntnisse daraus werden publiziert. Die

Daten werden ausschließlich für diesen wissenschaftlichen Zweck benötigt und es erfolgt

keine Weitergabe von personalisierten Daten!

Ich erkläre mich hiermit einverstanden, dass die anonymisierten Daten meines Kindes für

die Forschungsarbeit am „Institute of Interactive Systems and Data Science“ der

Technischen Universität Graz verwendet werden dürfen.

Vielen Dank für Ihre Mithilfe!

Alexander Steinmaurer

 Name des Kindes (Vorname + Nachname)

__________________________ __________________________

 Ort und Datum Unterschrift

1

A.11 Consent Form

163

	Abstract
	Zusammenfassung
	Acknowledgement
	Abbreviations
	Introduction
	Aims and Objectives
	Methodology and Contribution
	Structure

	Background and Related Work
	Cognitive Perspective
	Computational Skill Teaching
	Computational Skills
	Computer Science in Austrian School Education
	Digital Basic Education in Austria
	Computer Science in other countries

	Gamification
	Gamification in Education
	Tools for Gamification

	Game-Based Learning
	Game Design
	Game Frameworks
	Learning Theories in GBL

	Game-Based Learning in Computer Science
	CodeCombat
	LightBot
	CodeMonkey
	Grasshopper
	sCool
	Overview

	Summary

	Game-Based Learning with sCool
	Game Design
	Concept-learning Mode
	Practical mode
	Web Application
	Gamification Elements

	Implementation
	Practical mode
	Web Application

	Summary

	Pre-Evaluation
	Pedagogical Concept
	Experiment 1: New Secondary School
	Experiment 2: Academic Secondary School
	Findings and Limitations
	Game Mechanics and User Interface
	Pedagogical Concept

	Summary

	Requirements and Concepts
	Requirements
	Functional Requirements
	Non-Functional Requirements

	Pedagogical Concepts
	Onboarding
	Field Types
	Robot Interaction

	Summary

	Development
	Robot Mission
	Field Types
	Keyboard
	Playground
	Onboarding
	Robot Storage

	Web Application and API
	Field Types
	Consent Message
	Skill Unlocking
	Robot Storage
	Web Application Multiuser Usage

	Summary

	Evaluation
	Scope
	Instruments and Setup
	Game Engagement Questionnaire
	Computer Emotion Scale
	Game-related questions

	Participants
	Experiments and Results
	Teacher's Evaluation
	Experiment 1: Primary School
	Experiment 2: Secondary School
	Experiment 3: Royal Melbourne Institute of Technology

	Discussion and Limitations

	Lessons Learned
	Literature
	Development
	Didactics

	Conclusion and Future Work
	Conclusion
	Future Work

	Bibliography
	Appendix
	Intro Worksheet
	Revision Worksheet
	Variables Worksheet
	Pre-Test Primary School
	Post-Test Primary School
	Questionnaire for Primary School
	Questionnaire Pre-Evaluation
	Experiment Documentation Primary School
	Experiment Documentation Secondary School
	Experiment Documentation RMIT
	Consent Form

