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Abstract
We study the renormalization group flow of the Standard Model of Elementary Particle
Physics gauge-Yukawa sector including minimal, parametrized, antiscreening contribu-
tions from new physics which render the Standard Model ultraviolet complete. Besides
the gauge sector, we consider a two generation quark Yukawa sector where we take
flavour mixing effects into account. The competition between the Standard Model run-
ning and the antiscreening new-physics terms results in a sophisticated system of fixed
point solutions. We explore to what extent the observed low energy flavour structure
of the standard model can be deduced from the renormalization group evolution of this
model. We show that there exist fixed point solutions which put constraints on the
mass spectrum of the quarks in the infrared while yielding phenomenologically viable
renormalization group trajectories.

Kurzfassung
Wir untersuchen den Renormierungsgruppenfluß des Eich-Yukawa-Sektors im Standard-
modell der Elementarteilchenphysik unter Einbindung von minimalen, parametrisierten,
anti-abschirmenden Beiträgen neuer Physik, welche eine Ultraviolettvervollständigung
des Standardmodells ermöglichen. Neben dem Eichsektor berücksichtigen wir einen
Yukawasektor mit zwei Quarkgenerationen inklusive Flavourmischungseffekten. Das
Zusammenspiel von Standardmodell und anti-abschirmenden Termen erzeugt ein kom-
plexes System von Fixpunktlösungen. Wir untersuchen in welchem Ausmaß die beo-
bachteten Niedrigenergieflavourstrukturen des Standardmodells von der Renormierungs-
gruppenentwicklung dieses Modells abgeleitet werden können. Wir zeigen, dass es Fix-
punktlösungen gibt, welche das Massenspektrum der Quarks im Infraroten einschränken
und gleichzeitig eine phänomenologisch brauchbare Renormierungsgruppentrajektorie
liefern.
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1. Introduction
The Standard Model (SM) of particle physics is a quantum gauge field theory (QFT)
which describes the weak, strong and electromagnetic interactions between all experi-
mentally known elementary particles employing non-Abelian and Abelian gauge groups.
Even though there is an astounding agreement between experiment and theory, the SM
cannot be viewed as a fundamental theory of nature. Besides others, one of the reasons
for this is the fact that the SM is not valid at arbitrary high energy scales. At the per-
turbative level, the renormalization group (RG) running of the Abelian gauge coupling
leads to a Landau pole, where the gauge coupling becomes infinite and perturbation
theory breaks down [1]. A similar phenomenon occurs in the Yukawa sector of the SM
[2]. There are hints that the impossibility of finding a suitable ultraviolet (UV) comple-
tion of the SM persists even beyond perturbation theory1, a circumstance which would
render the SM trivial. Hence, the SM should be considered an effective field theory: A
QFT which is valid in a certain range of energies, but fails to describe physics at any
other scale. In order to render the SM fundamental, i.e., valid at all scales, new beyond-
the-standard-model (bSM) physics have to be incorporated into the theory, which alter
the RG flow of the SM couplings. Such bSM physics could be, for example, gravity, dark
matter, grand unified theories etc.
Besides the lack of a suitable UV completion, the SM suffers from an "aesthetic"

problem: It contains a large number of free parameters whose values have to be fixed
by comparing them to experimental data and cannot be derived from first principles.
The majority of these parameters stem from the Yukawa sector of the SM and are on
account of the fermionic matter content. The fermions in the SM are grouped into
three generations of quarks and leptons, adding up to a total of 12 particles. The
masses of these particles range from sub-meV (neutrinos) over the sub-MeV domain
(e.g. the electron mass: me ≈ 0.511 MeV) to more than a hundred GeV (top quark mass:
mt ≈ 173 GeV). The SM itself neither explains the individual masses of the particles nor
the large disparity between them. In addition to this intriguing mass spectrum, another
phenomenon arises from the Yukawa sector of the SM: From experiment, we conclude
that the eigenstates of the weak interaction are not equal to mass (or energy) eigenstates
but rather linear superpositions of them. This is known as flavour mixing. Just like for
the mass spectrum, we do not have an explanation for the observed mixing patterns.
There have been several attempts in the past to derive both the mass spectrum of the
fermions in the SM as well as the observed mixing patterns, but so far none of these
have been entirely successful.
In this thesis, we study whether a minimalistic parametrization of new physics can

1see, e.g., [3–5]
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CHAPTER 1. INTRODUCTION

provide a phenomenologically viable UV completion of the SM and explore to what
extent the characteristics of the fermionic mass spectrum and mixing patterns can be
deduced from the RG evolution of the respective SM couplings. We will focus on a toy
model with two generations of quarks rather than the full SM, as this is sufficient to
demonstrate the central findings we have made. An extension to three generations of
quarks has been started in [6] and the investigation of a model containing the leptonic
sector of the SM is subject to future works.
The cornerstone of this thesis is a modification of the SM β-functions of the form2

[7–9]
β (g) = βSM (g)− fgg (1.1)

where g is a SM coupling constant and fg parametrizes the new physics contribution to
the RG running of g. This new physics contribution is effectively decoupled from the
SM at low energies, but becomes significant once a mass threshold MNP is exceeded. In
this thesis, we will assume that this new physics scale coincides or almost coincides with
the Planck scale, MNP ≈ MPlanck. Even though the bSM term −fgg originally stems
from a study of asymptotically safe quantum gravity coupled to the SM3, we stress that
in this thesis we do not specify the actual physics that generate such terms. We simply
suppose that there is some new physics which renders the SM in this way UV complete,
while describing the observed physics in the infrared (IR). The interplay between the
SM β-functions βSM (g) and the bSM contribution −fgg gives rise to an intricate system
of RG fixed point (FP) solutions, the study of which will be the main part of this work.
Not only does it provide a UV completion of the theory, it also puts constraints on the
flavour structure, i.e., the mass spectrum and mixing pattern, in the IR.
The bSM term in Eq. (1.1) is linear in the coupling g and is hence the dominant term

for g � 1, as the leading term of the SM β-function βSM (g) is O (g3). Furthermore, we
assume that the bSM contribution to the running of the SM couplings is antiscreening,
i.e., −fg < 0 for µ > MNP. This has, as discussed in Section 3.1, the effect that now
there exists an asymptotically safe RG trajectory for the Abelian gauge coupling – a
crucial feature of our model, as an interacting fixed point of the Abelian gauge coupling
not only solves its Landau pole problem but also breaks the symmetry of the system
of β-functions of the quark Yukawa couplings with respect to an exchange of up- and
down-type flavour indices. This, in turn, extends to the fixed point solutions as well,
with a given FP solution no longer being necessarily symmetric for up- and down-type
quarks. Besides, the bSM contributions to the running of the SM couplings are minimal
and universal in the sense that the contribution in the gauge sector is parametrized by
one parameter fg, and the contribution in the Yukawa sector is parametrized by one
parameter fy, which is equal for all quarks. This means that the assumed new physics
part in the running of the couplings is completely parametrized by two free parameters,
fg and fy.
This thesis is organized as follows: In Chapter 2 we lay out the fundamentals on

2Throughout this thesis, we will use perturbative one-loop β-functions for βSM (g). A short overview
of the effects of the respective two-loop terms is given in Chapter 5.

3see [7–9] and references therein.
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CHAPTER 1. INTRODUCTION

which this work is build. We start with a discussion of the fermionic matter content
of the SM and continue with a review of the Yukawa sector, where we introduce quark
flavour mixing described by the Cabibbo-Kobayashi-Maskawa (CKM) matrix [10, 11].
We proceed with a recapitulation of the renormalization group in QFT. Here, we will
be predominantly concerned with the concept of RG fixed points and their implications
for the predictivity of a quantum field theory. The chapter will be concluded with the
derivation of the necessary perturbative one-loop β-functions of the gauge and Yukawa
couplings in the SM as well as of the CKM matrix elements.
In Chapter 3 we will introduce the major features of our approach by reviewing the

study of a top-bottom-system as performed in [9]. We will demonstrate how low energy
values of coupling constants can be calculated from non-vanishing UV fixed points, an
important observation that places significant constraints on the IR values of – otherwise
free – couplings. Specifically, we show how a modification of the SM β-functions of
the form Eq. (1.1) can provide an asymptotically safe RG trajectory of the Abelian
gauge coupling. As a consequence, the difference in the weak hypercharges of up- and
down-type quarks generates unequal interacting UV fixed points for the top and bottom
quarks. We then show that there exists a RG trajectory which connects this UV fixed
point with IR values that are – to a great degree – phenomenologically viable.
Chapter 4 forms the main part of this thesis. We extend the study of the previous

gauge-Yukawa system to a model with two generations of quarks, which we will study
in detail. Mixing effects now have to be taken into account, which will introduce a new
layer of complexity to the theory. After exploring the fixed point solutions of this model,
a phenomenologically viable RG flow – extending the discussions of Chapter 3 to two
generations – will be presented. The chapter will be concluded by a discussion of the
poles appearing in the β-functions of the squared moduli of the CKM matrix elements
– a non-perturbative property of the RG evolution of the CKM matrix, stemming from
its unitarity, which further restrains the values of the SM couplings in the IR.
We will conclude this thesis in Chapter 5, where we summarize our findings and give

an interpretation of our results. We also provide a brief outlook on the study of a sys-
tem containing three generations of quarks, based on the studies in [6], and on future
possible extensions of this work. The Appendices contain additional information as well
as details on the calculations performed in the main text.

The main results of this thesis are – together with some extensions to three generations
– published in [6], which has been prepared by a collaboration including the author and
the supervisor of this thesis.
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2. Basic Concepts

2.1. Standard Model of Particle Physics
The Standard Model (SM) of particle physics is a non-Abelian gauge theory based on
the symmetry group1 SU(Nc)C ⊗ SU(2)L ⊗ U(1)Y [12]. It constitutes the theoretical
description of all known elementary particles and their interactions via the strong and
electroweak forces. In the following, we will give a brief overview of those sections of the
SM which will concern us the most in the upcoming chapters. We start by reviewing
the fermionic matter content of the SM.

2.1.1. Fermionic Matter Content
The fermionic matter fields in the SM consist of quarks and leptons and are organized
into three generations (cf. Tab. 2.1). Each generation contains two quarks (up- and
down-type quark) and two leptons (charged lepton and neutrino), where the difference
between up- and down-type quarks and charged leptons and neutrinos lies in the U(1)Y
hypercharge of the respective right-handed SU(2)L singlets. Quarks are strongly inter-
acting particles and transform as colour-triplets under SU(3)C, while the leptons do not
interact via the strong force and hence transform as singlets under SU(3)C transforma-
tions. As the SM is a chiral theory, the fermion fields are split into left-handed (l.h.) and
right-handed (r.h.) Weyl-spinors. The left-handed fields transform as doublets under
SU(2)L transformations, while the right-handed fields transform as singlets. A summary
of the transformation properties of the fermion fields present in the SM is given in Tab.
2.2. For later use the respective properties of the Higgs particle are included.
The three generations of fermions in the SM are identical in terms of their gauge

group representations. Their difference lies solely in their flavour quantum numbers and

1In the SM, Nc = 3.

Generation up-type down-type charged lepton neutrino

1 up (u) down (d) electron (e) electron neutrino (νe)
2 charm (c) strange (s) muon (µ) muon neutrino (νµ)
3 top (t) bottom (b) tau (τ) tau neutrino (ντ )

Table 2.1.: Generation structure of fermions in the SM [13].
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CHAPTER 2. BASIC CONCEPTS 2.1. STANDARD MODEL OF PARTICLE PHYSICS

particle chirality gauge group representation

up-type l.h. (3, 2) 1
6

r.h. (3, 1) 2
3

down-type l.h. (3, 2) 1
6

r.h. (3, 1)− 1
3

charged lepton l.h. (1, 2)− 1
2

r.h. (1, 1)−1

neutrino l.h. (1, 2)− 1
2

r.h. (1, 1)0

Higgs complex scalar (1, 2) 1
2

Table 2.2.: The matter content of the SU(Nc)C⊗SU(2)L⊗U(1)Y Standard Model (cf. [12]),
given for Nc = 3. In the third column, the gauge group representations of the respective
particles are given in the form (a, b)c. Here, a is the representation of the colour group
SU(3)C under which the particle transforms: 3 means the particle transforms as a colour-
triplet, i.e. in the fundamental representation of SU(3)C and 1 means the field transforms
as a colour-singlet, i.e. it is invariant under SU(3)C-transformations. b denotes the
representation of SU(2)L, where 2 corresponds to the fundamental representation (left-
handed doublets) and 1 means the fields transform as singlets (right-handed singlet).
The subscript c represents the U(1)Y hypercharge of the respective particle.

– an observation that is of central interest to us – the masses of the respective quarks
and leptons [13]. In Tab. 2.3, we list the most recent quark2 mass estimates from
the particle data group booklet [14]. As one can see, the mass spectrum of quarks in
the SM spans a range of five orders of magnitude: the heaviest quark, the top quark,
is approximately 105 times heavier than the lightest quark, the up quark. The mass
ratios within generations vary as well: mu/md ≈ 0.5, mc/ms ≈ 13 and mt/mb ≈ 40.
Notice that in the first generation, the up-type quark is lighter than the down-type
quark, a circumstance that is not present in the other two generations. The SM does
not yield an explanation for the masses of fermions observed in the laboratory. They
are free parameters of the theory and are fixed by comparing them to experiment. The
fermionic mass spectra – together with the mixing patterns – remain one of the most
intriguing enigmas of the SM. In this thesis, we will infer potential constraints on the
mass spectrum and mixing patterns of quarks by studying RG fixed point solutions of
a minimally parametrized bSM model.

2From now on, we will focus on quarks and ignore leptons for the most part.
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CHAPTER 2. BASIC CONCEPTS 2.1. STANDARD MODEL OF PARTICLE PHYSICS

quark mass / MeV

up (u) 2.16± 0.49± 0.26
down (d) 4.67± 0.48± 0.17
charm (c) 1 270± 20
strange (s) 95± 11± 5
top (t) 172 900± 400

bottom (b) 4 180± 30± 20

Table 2.3.: Quark mass estimates taken from [14]. The masses are calculated in the MS
scheme at a renormalization scale of µ = 2 GeV for light quarks (u, d, s) and µ = mQ for
heavy quarks (c, b). The value of the top quark mass is the particle data group’s (PDG)
average of direct measurements from LHC and Tevatron Runs (see [14] for details). The
first given error is statistical, the second (if given) is systematic.

φ

ψ

ψ

Figure 2.1.: Yukawa interaction vertex.

2.1.2. Yukawa Sector3

Yukawa couplings describe interactions between a scalar field and a fermion and are of
the form ∼ yφψψ, where y is the coupling constant of the interaction (cf. Fig. 2.1).
In the SM, fermions acquire their masses through their coupling to the Higgs via the
so-called Brout-Englert-Higgs effect [16–18]. A general Yukawa Lagrangian describing a
theory with Ng generations of fermions reads [19–21]

LYUK = QLΦ̃YuuR +QLΦYddR + lLΦYeeR + lLΦ̃YννR + h.c. (2.1)

where the Yukawa coupling matrices Yu,d,e are general complex, non-Hermitian Ng×Ng

matrices
Yu,d,e,ν ∈ CNg×Ng (2.2)

3For a comprehensive review of the topics presented in this section the reader may refer to [12, 13, 15].
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CHAPTER 2. BASIC CONCEPTS 2.1. STANDARD MODEL OF PARTICLE PHYSICS

W

dj

ui

Vij

Figure 2.2.: Weak charged current interaction vertex.

and Φ̃ ≡ iσ2Φ∗ is the conjugate Higgs doublet. QL and lL are the left-handed SU(2)L
doublets of the quarks and leptons, respectively, and uR, dR, eR and νR are the right-
handed SU(2)L singlets. Note that generational indices are suppressed in Eq. (2.1).
The fact that the Yukawa matrices are general, rather than diagonal, matrices has far

reaching consequences: Phenomenology tells us that – in the SM – the eigenstates of the
weak interactions4 are not equal to the mass (or energy) eigenstates. The eigenstates
of the weak interactions are those states which are produced in weak interactions like,
e.g., weak charged current interactions (cf. Fig. 2.2). Those states form an orthonormal
basis and – in the most general case – the Yukawa matrices will be general complex
Ng × Ng matrices with respect to this basis. After spontaneous symmetry breaking,
we expect to have mass terms of the form ∼ m(i)ψiψi in the Lagrangian. Hence, the
general, complex Yukawa matrices Yu,d,e,ν have to be diagonalized, i.e., a change of basis
has to be performed. The eigenstates with respect to this basis are the mass (or energy)
eigenstates, i.e., the propagating states. The disparity between the flavour and mass
eigenstates gives rise to phenomenons such as flavour mixing and flavour oscillations,
which we will discuss in the following.
In order to diagonalize the Yukawa matrices, we notice that one can always write a

complex matrix as a product of a Hermitian and a unitary matrix [13]:

Y i = Hi U i = U †i Yi U i U i , i ∈ {u, d, e, ν} . (2.3)

Here, Hi is a Hermitian matrix, U i and U i are unitary matrices and Yi is a diagonal
matrix. The diagonal matrices Yu,d contain the physical quark Yukawa couplings

Yu = diag (yu, yc, yt, . . .) , Yd = diag (yd, ys, yb, . . .) , (2.4)

which are – after SSB – related to the physical fermion masses via [21]

Yu =
√

2
v

diag (mu,mc,mt, . . .) , Yd =
√

2
v

diag (md,ms,mb, . . .) , (2.5)

4also referred to as flavour eigenstates
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CHAPTER 2. BASIC CONCEPTS 2.1. STANDARD MODEL OF PARTICLE PHYSICS

where v is the vacuum expectation value of the Higgs, v = 246 GeV.
In general, it is not possible to diagonalize all Yukawa matrices simultaneously, i.e.

Uu 6= U d , U e 6= U ν . (2.6)

This has a net effect on the weak charged current interactions. For example, the terms
in the Lagrangian that generate the charged current interactions between a up- and a
down-type quarks are of the form [13]

uLdL = u′LUuU
†
d d
′
L = u′LV d′L , (2.7)

where primed fields are fields in the mass basis and V is the Cabibbo-Kobayashi-
Maskawa (CKM) matrix5 [10, 11] defined as [12, 24]

V ≡ UuU
†
d . (2.8)

The charged current vertices are proportional to the elements of this matrix (cf. Fig.
2.2). The W± bosons now couple any up-type quark with all down-type mass eigenstate
quarks because the weak doublet partner of ui is a superposition of down-type mass
eigenstates6 : 

d

s

b

 =


V11 V12 V13

V21 V22 V23

V31 V32 V33



d′

s′

b′

 =


Vud Vus Vub

Vcd Vcs Vcb

Vtd Vts Vtb



d′

s′

b′

 . (2.9)

This phenomenon is called flavour mixing. Flavour eigenstates produced in weak in-
teractions are hence a superposition of mass eigenstates. As we know from quantum
mechanics, a state that is a superposition of energy eigenstates is generally no longer a
stationary state. For states produced in weak interaction, this gives rise to a phenomenon
which is called flavour oscillation7.
The CKM matrix V is a Ng × Ng unitary matrix. It therefore has N2

g independent
real parameters. In case of V however, we can absorb some of those parameters into
unobservable global quark phases [12]. With two quarks per generation, we can redefine
2Ng parameters as quark phases, leaving us with 2Ng − 1 relative and 1 global phase,
hence reducing the number of independent CKM parameters to (Ng − 1)2. In the usual
parametrizations, those are Ng(Ng−1)/2 rotation angles and (Ng−1)(Ng−2)/2 complex
phases.
In case of Ng = 2, the CKM matrix reduces to a rotation matrix characterized by a

single parameter: the Cabibbo angle θC [10]. In case of Ng = 3, the CKM matrix is
usually parametrized by 3 rotation angles and 1 CP violating complex phase. In Sec. 2.3,

5An analogous effect in the leptonic sector is described by the so called Pontecorvo-Maki-Nakagawa-
Sakata (PMNS) matrix [22, 23]

6It is purely conventional to define the matrix in terms of down-type flavour and mass eigenstates. A
definition in terms of up-type eigenstates would be just as valid.

7see, e.g., [13] for a review on this topic.
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we will derive, following the argumentation of Sasaki [25], the one-loop β-functions of the
quadratic matrix elements |Vij|2. This is convenient, as the matrix elements |Vij|2 also
appear in the β-functions of the physical Yukawa couplings. Furthermore, the quadratic
entries |Vij|2 are, unlike the angles and phases, convention independent. In order to see
that the knowledge of the quadratic entries |Vij|2 is equivalent to the knowledge of the
angles and phases, we recall the unitarity conditions for a Ng ×Ng matrix:∑

i

VijV
∗
ik = δjk ,

∑
j

VijV
∗
kj = δik , ∀ i, j, k = 1, . . . , Ng . (2.10)

From the N2
g real parameters |Vij|2, the above unitarity conditions show that only (Ng−

1)2 of them are independent. Therefore, there are just as much independent quadratic
entries |Vij|2 as there are independent angles and phases in V [25].
As stated above, generally it is not possible to diagonalize all Yukawa matrices sim-

ultaneously (cf. Eq. (2.6)). Hence, the CKM matrix is – in the general case – not equal
to the unit matrix:

V 6= 1 . (2.11)

The PDG lists the experimentally determined magnitudes of the CKM matrix elements
as8 [14]:

{|Vij|} =


0.97420± 0.00021 0.2243± 0.0005 (3.94± 0.36)× 10−3

0.218± 0.004 0.997± 0.017 (42.2± 0.8)× 10−3

(8.1± 0.5)× 10−3 (39.4± 2.3)× 10−3 1.019± 0.025

 . (2.12)

It turns out that the CKM matrix is diagonally dominant and close to – but not equal
to – the unit matrix. While there have been efforts in the past to explain this observed
structure9, so far there has been no completely successful attempt. In this thesis, we
study whether the RG evolution of a minimally parametrized bSM theory can provide
further insight into this problem.

2.2. Renormalization Group
In this section, we will introduce the renormalization group (RG). We will derive the
notion of running couplings, β-functions, fixed points and RG flows in theory space,
which will allow us to make statements about the predictivity of quantum field theories.
Though most of the presented concepts are general features of the renormalization group,
we will start with the RG in the context of perturbative calculations in QFT [1, 29–31],
as the RG β-functions used in this work will be calculated within perturbation theory.
For a more complete introduction to these topics see, e.g., [32–37].

8for details, see [14]
9An example would be, e.g., [26–28]
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CHAPTER 2. BASIC CONCEPTS 2.2. RENORMALIZATION GROUP

2.2.1. Renormalization Group Equations
In the perturbative calculation of n-point correlation functions within a given QFT, di-
vergent integrals over virtual loop momenta may occur, which render the perturbation
expansion ill-defined [36]. In order to find a well-defined perturbation expansion10, one
first needs to regularize the divergent integrals by, e.g., introducing a momentum cut-off
Λ or by analytic continuation of the space-time dimension d [38, 39]. The regulariza-
tion procedure has the effect that the (formerly divergent) coefficient functions of the
perturbative expansion are now finite as long as the regulator is not removed. These
coefficient functions can be split into a finite, regular part and a "singular" part, which
is that part that diverges if the regulator is removed. As a next step, one renormal-
izes the theory by introducing suitable counter-terms in the Lagrangian. This causes a
reparametrization of the theory: All the bare parameters of the theory (couplings and
masses) can be expressed in terms of (multiplicative) renormalization constants and (fi-
nite) renormalized couplings. In addition, the fields themselves are rescaled as well. The
counter-terms are chosen such that they exactly cancel the singular parts of the coeffi-
cient functions when one calculates the – now finite – renormalized correlation functions
from the renormalized Lagrangian. As the singular parts cancel exactly, the regulator
can be removed after the renormalization step.
The counter-terms themselves are divergent as well and can also be split into a sin-

gular and a regular part. While the singular part is fixed by requiring the renormalized
correlation functions to be finite, the regular parts are completely arbitrary. A renor-
malization scheme is a prescription for choosing these finite parts [40]. As the choice of
renormalization scheme is arbitrary, physical quantities must not depend on it. Yet, the
results of calculations change if the finite parts of the counter-terms are altered. This
apparent problem can be solved by realizing that a change of renormalization scheme
can be compensated by changing the values of the renormalized parameters of the theory
[40]. Hence, a change of renormalization scheme changes the parametrization of the the-
ory rather than the theory itself [33]. One way of changing the renormalization scheme
is to vary the value of µ, the dimensionful renormalization scale which is generically
introduced in the renormalization procedure. The invariance of a theory with respect
to a change in the renormalization scale µ is described by the renormalization group11

(RG) [1, 29–31, 42–45].
In order to fully determine the theory, one fixes the renormalized couplings and masses

at a renormalization point µ such that one recovers experimental results. If the theory
is perturbatively renormalizable, the number of required experimental data is finite and
one needs exactly as much data points as there are free parameters in the theory12.
The theory is then described by a set of parameters at a scale µ: (µ; {gi} ,m). What
happens if we change this (arbitrary) scale, i.e., perform a scale transformation µ→ µ′?
We remember that a change in scale is nothing but a change of the finite parts of

10we assume the theory is, in fact, (perturbatively) renormalizable.
11Generally speaking, the RG is only a semigroup, as the RG transformations employed are not neces-

sarily invertible [41].
12cf. Sec. 2.2.2
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the counter-terms, i.e., a change in regularization scheme. Hence, as discussed above,
physical quantities (like, e.g., S-Matrix elements) have to be invariant under such a scale
transformation. From this requirement, we can infer that the numerical values of the
parameters of the theory have to change in order to ensure that physical quantities are
indeed invariant if µ is changed [33]:

(µ; {gi} ,m) → (µ′; {g′i} ,m′) , (2.13)
F ({gi} ,m;µ) = F ({g′i} ,m′;µ′) , (2.14)

where F is some physical quantity.
We are now going to derive the renormalization group equations (RGE) that describe

the change of the parameters under a change in the scale µ, such that the theory itself
stays invariant. The renormalized n-point correlation functions Gn defined by

Gn (x1, . . . , xn; {gi} ,m, µ) ≡ 〈T φ (x1) . . . φ (xn)〉 , (2.15)

where T is the time-ordering operator and which are related to the bare n-point correl-
ation functions via

Gn (x1, . . . , xn; {gi} ,m, µ) = Z
−n

2
φ GB

n

(
x1, . . . , xn;

{
gBi
}
,mB

)
(2.16)

with Zφ the field renormalization constant defined by

φ = Z
− 1

2
φ φB . (2.17)

Now assume an infinitesimal change in the renormalization scale:

µ → µ′ = µ+ dµ . (2.18)

From Eq. (2.14) we conclude
µ

dF
dµ = dF

dt = 0 , (2.19)

where we defined the dimensionless renormalization group time t ≡ log (µ/Λ) with Λ
some reference scale. The total derivative with respect to t can be expressed as [33]

d
dt = ∂

∂t
+
∑
i

∂gi
∂t

∂

∂gi
+ ∂m

∂t

∂

∂m
. (2.20)

Given that the bare correlation functions are independent of the renormalization scale µ,
i.e., they are renormalization group invariant, we end up with the following equation13

13Here, we assumed only a single field φ on the right-hand side of Eq. (2.15). If there are several
kinds of fields φi with different field renormalization constants Zφi

, the total pre-factor on the right-
hand side of Eq. (2.16) has the form

∏
i Z
−ni/2
φi

where ni is the number of fields φi appearing in
the correlation function Gn1...nm

. Accordingly, an additional sum appears in the Callan-Symanzik
equation Eq. (2.22).
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[33];

dGn

dt = d
dt

(
Z
−n

2
φ GB

n

)
=
(

d
dtZ

−n
2

φ

)
GB
n

=
(
−n2Z

−n
2

φ Z−1
φ

dZφ
dt

)
GB
n

= −n2
d logZφ

dt Gn . (2.21)

Using Eq. (2.20) then yields the Callan–Symanzik equation [29–31]:[
∂

∂t
+
∑
i

β (gi)
∂

∂gi
+ γmm

∂

∂m
+ n

2γ
]
Gn (x1, . . . , xn; {gi} ,m, µ) = 0 . (2.22)

Here, we defined the following renormalization group coefficients14:

β (gi) ≡
∂gi
∂t

, (2.23)

γm ≡
1
m

∂m

∂t
, (2.24)

γ ≡ d logZφ
dt . (2.25)

The β-functions defined in Eq. (2.23) are of special importance to us. They describe the
running of the couplings in the Lagrangian, i.e., their dependence on the renormalization
scale µ. The β-functions can be calculated either using perturbation theory or non-
perturbatively, using, e.g., the functional renormalization group [47–51]. They constitute
a system of differential equations, the solution of which describes a RG trajectory in
theory space, i.e., a set of equivalent parametrizations of the theory. RG trajectories
and RG fixed points are the topics of the next subsection.
We finish this subsection with a few comments on the renormalization scale µ. In

order to fully determine a renormalized theory, one has to fix the renormalized coupling
constants. This is typically done by defining a renormalized coupling as the value of
a matrix element at some arbitrary renormalization point, e.g., at some specific kin-
ematic configuration of the external momenta [52]. The matrix element depends on
some energy scale Q that is characteristic for the process: a center-of-mass energy, a
set of Mandelstam variables, a momentum transfer, etc. As the renormalization scale
µ is completely arbitrary, there is no a priori correspondence with the energy scale of a
14If a mass independent renormalization (MIR) scheme, i.e. a renormalization scheme where the

counter-terms are independent of the renormalized mass m, is applied, these functions only depend
on the coupling constants {gi} and are independent of m [46]. Furthermore, they only implicitly
depend on µ via the couplings. An example of a MIR scheme is the (modified) minimal subtraction
(MS) scheme [38, 39].

18



CHAPTER 2. BASIC CONCEPTS 2.2. RENORMALIZATION GROUP

process. However, in order to preserve the validity of the perturbative expansion, one is
advised to choose µ to be of order Q.
In order to see this, we note that dimensional analysis tells us that the powers of

the coupling constants in the perturbative expansion are accompanied by logarithmic
terms15 of the form ∼ log µ/Q. Hence, the condition that the coupling is small, i.e.
g � 1, is not sufficient to guarantee that higher order terms are negligible. Rather, the
combination of coupling and logarithmic term has to be small:∣∣∣∣∣g log µ

Q

∣∣∣∣∣� 1 . (2.26)

This is the case if – in addition to the smallness of g – the renormalization scale µ is
chosen16 to be of order Q:

µ ∼ O (Q) . (2.27)
The renormlization scale µ can then be thought of as being indicative of a "typical"
energy scale of a process.
Substituting the bare couplings with renormalized couplings defined at some renor-

malization scale µ has the consequence that the integrals over virtual loop momenta
are effectively cut off around µ [52]. This bridges the gap to the Wilsonian idea of the
renormalization group [43–45]. The fact that we have to keep µ ∼ O (Q) in order to
keep the perturbative expansion valid is not a coincidence but reflects a general property
of the renormalization group: The physics happening at a certain scale is best described
by the degrees of freedom present at this scale. The dynamics of such effective degrees
of freedom are described by an effective theory [37]. Hence, phenomena at a scale µ are
conveniently described by subsuming degrees of freedom of higher energies into a repara-
metrization of the theory, i.e. of the coupling constants and masses. In Wilsonian RG,
phenomena at a length scale ∼ k−1 are described by integrating out high energy modes
with momenta p > k. This results in an effective theory which governs the dynamics of
the low energy modes with p < k. We will employ some ideas of the Wilsonian version
of the RG in the following subsection.

2.2.2. Theory space, Fixed Points, and Predictivity
A renormalization group flow or renormalization group trajectory is a solution to Eq.
(2.23). It constitutes a subset of the theory space of the respective QFT. The theory space
of a given theory is defined as the space spanned by coupling constants {gi} representing
all interactions17 allowed by symmetries and field content of the theory. This space is in
general infinitely dimensional.
Renormalization group fixed points (FP) are special elements of a theory space. At

a RG fixed point, all β-functions vanish simultaneously and the theory becomes scale
15for details and constraints on this assertion see, e.g., [33, 36, 52].
16An example of this would be to define µ2 != s2 = t2 = u2 in some 2→ 2 process.
17In the context of QFT, it is the space spanned by all possible operators of the field(s), which are

invariant with respect to the theory’s symmetry group [51].
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invariant:
βi ({gj})

∣∣∣∣
?

= ∂gi
∂t

∣∣∣∣∣
?

= 0 ∀ i , (2.28)

where a subscript ? indicates that the expression is to be evaluated at a FP. One dis-
tinguishes between two kinds of fixed points: If the point where all couplings vanish
(gi = 0 ∀ i) is a FP, it is called a non-interacting FP, as it corresponds to a free theory.
As the (Euclidean) path integral is then Gaußian, this FP is also called a Gaußian FP.
Contrary to this, a FP where the coupling constants take finite values is called an inter-
acting or non-Gaußian FP. If some, but not all couplings at a FP are (non-)vanishing,
one also speaks of partially (non-)Gaußian FPs.
A FP can either be located in the IR or in the UV. In this thesis, we will be pre-

dominantely concerned with UV fixed points. A theory that posseses an UV FP of any
kind is said to be UV-complete and is well-behaved and predictive at all scales [53].
The notion of a QFT with a fixed point in the UV leads to the concept of asymptotic
safety [54]. A special case of asymptotic safety is asymptotic freedom [55–57], where the
RG flow emanates from a Gaußian FP in the UV, i.e., all interactions are dynamically
switched off at high energies. This is the case for, e.g., non-Abelian gauge theories in
four space-time dimensions.
In the vicinity of a FP, we can linearize18 the β-functions [58–60]:

βi ({gj? + δgj}) = βi ({gj?}) +Mijδgj +O
(
δg2

j

)
=Mijδgj +O

(
δg2

j

)
(2.29)

withMij the stability matrix defined as

Mij ≡
∂βi
∂gj

∣∣∣∣∣
?

. (2.30)

Choosing a basis σi = (T−1)ij δgj in whichMij is diagonal,∑
ij

(
T−1

)
ai
MijTjb = δabϑb , (2.31)

the linearized β-functions can be written as [53]:

∂σi
∂t

= ϑiσi ⇒ σi (t) ∝ eϑit =
(
µ

Λ

)ϑi

. (2.32)

The eigenvalues ϑi of Mij are called scaling exponents. The eigenvectors σi are called
eigendirections19. One can now classify the eigendirections σi in theory space according
to the sign of the scaling exponents ϑi [53]:

18We assume the β-functions are sufficiently well behaved.
19Generally, the eigendirections of the stability matrix will not align with the directions of the couplings
{gj}. One is then interested in the projections onto the couplings {gj}.
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• ϑi > 0: A slight deviation from the fixed point is driven back to the fixed point
during the flow towards the IR. At the same time, a slight deviation from the fixed
point is driven away from the fixed point during the flow towards the UV. σi is
then called an irrelevant direction.

• ϑi < 0: A slight deviation from the fixed point is driven away from the fixed point
during the flow towards the IR. At the same time, a slight deviation from the fixed
point is driven back to the fixed point during the flow towards the UV. σi is then
called a relevant direction.

• ϑi = 0: One has to investigate higher orders to know the behaviour of the couplings.
σi is then called a marginal direction. Depending on the higher order behaviour,
one further distinguishes between marginally relevant, marginally irrelevant and –
if the scaling exponent is zero at all orders – exactly marginal directions.

Note that the discussion of relevant and irrelevant directions is always meant with respect
to a specific FP, namely the FP at which Eq. (2.29) and (2.30) are evaluated.
The relevant directions span the so called critical manifold, a submanifold of theory

space. It is defined as the set of points in theory space that can be reached by a RG tra-
jectory emanating from the FP20. The study of RG flows close to UV critical manifolds
is important in order to make statements about the predicivity of a QFT. The physical
action of QFT is the quantum effective action Γ [Ψ], which takes all quantum correc-
tions into account and includes all possible interactions. In contrast to the (unphysical)
bare action S [Ψ], which is generally polynomial in the fields and contains only a few
couplings, the effective action entails infinitely many terms. Given that, in order to fully
determine the theory, one would need to fix every of the infinitely many coupling con-
stants by relating them to an amplitude at some kinematic configuration of the external
momenta, one would naïvely infer from this that QFT is inherently non-predictive, as
we would need infinitely many data points to specify a theory. This is, however, in
disagreement with perturbation theory, where one starts from the bare action S [Φ] –
containing a finite amount of couplings – from which the propagators and vertices of
the theory are built. In perturbation theory, all couplings gn associated with an n-point
amplitude An are also non-trivial, but they can be calculated from the finitely many
(renormalized) couplings included in the bare action [37]. This makes a perturbatively
renormalizable field theory predictive, as only a finite amount of couplings has to be
fixed by comparing it to experimental data in order to fully determine the theory.
The explanation for this lies in the characteristics of the RG flow in the vicinity of the

critical manifold. Consider some RG trajectory in theory space, starting somewhere off
of the critical manifold at some very high UV scale ΛUV (cf. Fig. 2.3). The RG flow is
then quickly driven towards the FP along an irrelevant direction (remember that – along
an irrelevant direction – small deviations from the FP are driven back to the FP during
the flow towards the IR). Close to the FP, the relevant directions become significant
20If not stated otherwise, we always consider the direction of the RG flow to be from the UV to the

IR. This choice of direction is motivated by the fact that IR physics emerges from the (microscopic)
UV physics [61].
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critical manifold

g2

g3

g1

FP

ΛUV

μ≪ΛUV

Figure 2.3.: Example of a RG flow in the vicinity of a fixed point. The critical manifold
(green) of the FP (red dot) is spanned by the relevant directions. In this example,
we have one irrelevant direction (denoted by an in-going black arrow) and two relevant
directions (denoted by out-going black arrows). The arrows show the direction of the flow
from the UV to the IR. The flow starts off the critical manifold at some high scale ΛUV
and is driven towards the FP, from which it flows away again along the critical manifold.
For the sake of presentability, we only considered a "truncated", three dimensional theory
space. This figure was adapted from [61].

and drive the RG flow away from the FP along the critical manifold. The deviation
of the RG flow from the critical manifold is O (µ2/Λ2

UV) [37], which becomes small for
µ � ΛUV. Hence, during the flow towards the IR, an interval of values of an irrelevant
coupling in the UV is mapped onto a smaller interval of values in the IR [61]. In the limit
ΛUV →∞ the RG flow is confined to the (finite dimensional21) critical manifold and the
flow is mapped onto a single value in the IR. As the critical manifold is parametrized by
the relevant couplings, the flow of the irrelevant couplings can be expressed in terms of
the flow of the relevant ones in the limit ΛUV →∞. Hence, the irrelevant couplings are
completely determined and not free parameters of the theory. The only free parameters

21The critical manifold has a dimension equal to the number of relevant (in the context of perturbation
theory: perturbatively renormalizable) couplings [37].
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left are the relevant couplings, which have to be fixed using experimental data. This is
exactly the justification for only including perturbatively renormalizable – i.e., relevant
– terms in perturbation theory, where relevant and irrelevant are meant with respect to
a Gaußian UV FP: The irrelevant higher-order couplings are driven towards the free FP
and hence no longer play a role in the IR22 [61]. The fact that irrelevant couplings are
not free parameters of the theory will play an important role in the discussion of the top
and bottom quark masses within our minimally parametrized bSM model (cf. Chapter
3).

2.3. Perturbative SM β-functions
In this section, we will present all necessary one-loop β-functions within perturbation
theory. While this section is intended to demonstrate the overall results as well as
important intermediate steps, a detailed derivation is performed in Appendix A. The
results of the corresponding two-loop calculations – as performed in [6] – are presented in
Appendix B. The β-functions are calculated using dimensional regularization and MS-
scheme. For a demonstration of the procedure of calculating gauge coupling β-functions
using dimensional regularization and MS/MS-scheme within non-Abelian gauge theories
(specifically, quantum chromodynamics) see, e.g., [62].

2.3.1. Gauge couplings
We start this section with a derivation of the β-functions of the gauge couplings gY ,
g2 and g3 for the U(1)Y, SU(2)L and SU(3)C gauge groups, respectively. The one-loop
β-function of a gauge coupling g of a (simple) gauge group G is given by23 [1, 19, 20, 55–
57, 62, 63]

β(g) = −
{11

3 C2(G)− 4
3κS2(F )− 1

3S2(S)
}

g3

16π2 . (2.33)

Here, κ = 1
2 for 2-componentWeyl-fermions24 and κ = 1 for 4-component Dirac-fermions,

as a Weyl-fermion contributes only as half a Dirac-fermion to the counterterm in the
perturbative renormalization procedure. F and S denote the representations of the
gauge group G under which the fermion and scalar fields transform. Details on the
group theoretical factors appearing in Eq. (2.33) as well as their specific values in the
SM are given in Appendix A.1. Using their calculated values given in Tab. A.1, we end

22In statistical physics, this is known as universality: Certain macroscopic properties of a system are
independent of the microscopic details.

23The coefficient of the scalar part S2(S) is 1
3 for complex scalar fields and 1

6 for real scalar fields.
24As noted by Cvetič et al. [64], Machacek and Vaughn [19, 20] used 2-component spinors as defined

in [65].
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Figure 2.4.: Example of Feynman diagrams contributing to the renormalization constants
used in the calculation of the one-loop β-functions of the gauge coupling g in a general
gauge theory based on a simple (non-Abelian) gauge group G with scalar, fermion and
vector boson fields. Continuous, curly, dotted and dashed lines represent fermions, gauge
bosons, ghosts and scalars, respectively.

up with the following one-loop β-functions for the gauge couplings in a SM-like theory25:

β(g3) = −
(11

3 Nc −
4
3Ng

)
g3

3
16π2 , (2.34)

β(g2) = −
(22

3 −
4
3Ng −

1
6NH

)
g3

2
16π2 , (2.35)

β(gY ) = −
(
− 2

3

Ng∑
i=1

{
3
[(
Y (i)
uR

)2
+ 2

(
Y (i)
qL

)2
+
(
Y

(i)
dR

)2
]

+

+
[(
Y (i)
eR

)2
+ 2

(
Y

(i)
lL

)2
] }
− 2

3NH (YH)2
)
g3
Y

16π2 . (2.36)

Here, Nc is the number of colour charges of the strong interaction, Ng is the number of
fermion generations and NH is the number of complex scalar Higgs doublets. Y

(i)
uR(dR)

25In the case of SU(5) normalization, which is often used in the literature, the hypercharges have to be
multiplied by a factor

√
3
5 [66].
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Figure 2.5.: Example of Feynman diagrams contributing to the renormalization constants
used in the calculation of the one-loop β-functions of the Yukawa couplings. Continuous,
curly and dashed lines represent fermions, gauge bosons and scalars, respectively.

denotes the hypercharge of a right-handed up(down)-type quark, Y (i)
eR

denotes the hy-
percharge of a right-handed charged lepton and Y

(i)
qL(lL) denotes the hypercharge of a

left-handed quark (lepton).

2.3.2. Yukawa couplings and CKM matrix elements
We now derive the one-loop β-functions of the Yukawa couplings in the mass eigen-
basis. As a byproduct of the diagonalization process, we will also obtain the one-loop
β-functions of the CKM matrix elements. Details on the calculations are given in Ap-
pendices A.2 and A.3.
The one-loop β-functions for the general quark Yukawa matrices26 Yu,d read [20, 21,

64, 67–70]:

β
(
Yu

)
= 1

16π2

(
−AuYu + 3

2YuY†uYu −
3
2YdY†dYu +NcTr

[
YuY†u + YdY†d

]
Yu

)
,

(2.37)

β
(
Yd

)
= 1

16π2

(
−AdYd + 3

2YdY†dYd −
3
2YuY†uYd +NcTr

[
YuY†u + YdY†d

]
Yd

)
,

(2.38)

with

Au = 3
([
Y 2
uR

+ Y 2
qL

]
g2
Y + 3

4g
2
2 + (N2

c − 1)
Nc

g2
3

)
, (2.39)

Ad = 3
([
Y 2
dR

+ Y 2
qL

]
g2
Y + 3

4g
2
2 + (N2

c − 1)
Nc

g2
3

)
. (2.40)

26For the notational convention used here, see Section 2.1.2.
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Diagonalization of these equations (cf. Appendix A.2) yields the β-functions of the
physical Yukawa couplings (cf. Eq. (2.4)):

β (yui ) = yui
16π2

−Au + 3
2 (yui )2 − 3

2
∑
j

(
ydj
)2
|Vij|2 +NcTr [YuYu + YdYd]

 , (2.41)

β
(
ydi
)

= ydi
16π2

−Ad + 3
2
(
ydi
)2
− 3

2
∑
j

(
yuj
)2
|Vji|2 +NcTr [YuYu + YdYd]

 , (2.42)

where the superscripts u and d denote whether yi is the i-th generation up- or down-type
quark, respectively. The one-loop β-functions of the quadratic CKM matrix elements
|Vij|2 are obtained from diagonalizing Eq. (2.37) and (2.38) (cf. Appendix A.3) and are
given by:

β
(
|Vij |2

)
=

3
(
ydj
)2

16π2

∑
k 6=j

1(
ydk
)2 −

(
ydj
)2

2 (yui )2 |Vij |2 |Vik|2 + 2
∑
m6=i

(yum)2 <
{
VmjV

∗
mkV

∗
ijVik

}−
− 3 (yui )2

16π2

∑
k 6=i

1
(yui )2 − (yuk )2

2
(
ydj
)2 |Vij |2 |Vkj |2 + 2

∑
m6=j

(
ydm
)2 <

{
VimV

∗
kmV

∗
ijVkj

}+

+ 3 |Vij |2

16π2

{
(yu

i )2 +
(
ydj
)2 −

∑
m

(yum)2 |Vmj |2 −
∑
m

(
ydm
)2 |Vim|2

}
. (2.43)

As shown in Appendix A.3, the differences in the denominators appearing in the β-
functions of the squared moduli of the CKM matrix elements are due to the unitarity
of the CKM matrix. They lead to poles in the β-functions for degenerate Yukawa
couplings, i.e. yui = yuk and ydk = ydj . This is a non-perturbative property of the RG
flow of the CKM matrix elements, as it is a consequence of the unitarity of the CKM
matrix and one would not expect to see (squared) couplings appearing in denominators
within a perturbative expansion. The effect of these poles to the running of the Yukawa
couplings is discussed in detail in Section 4.3.
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3. One Generation Model
This chapter is a summary of refs. [7–9] and serves as a setup for the study of a two
generation model.

The Standard Model of particle physics is not UV complete as it suffers from Landau
poles in the Abelian U(1)Y gauge coupling [1] as well as in the Higgs-Yukawa sector [2].
As there are hints that this problem persists even beyond perturbation theory [3–5],
one has to assume that there must be some beyond-the-Standard-Model (bSM) physics
happening at higher energies which renders the SM UV complete. In this thesis, we
suppose that there exists such new physics that contributes to the RG evolution of the
SM couplings. However, we will not specify what kind of new physics we are dealing
with: Neither the field content nor the symmetries of the bSM sector will be defined1.
Instead, we introduce a set of new scale dependent parameters fg,y (µ) which we use to
parametrize the contribution of the aforementioned bSM physics to the RG running of
the SM couplings. More specifically, we modify the SM β-functions in the following way
[7–9]:

β (x) = βSM (x)− fxx . (3.1)
As the work in thesis is restricted to a study of a gauge-Yukawa system, x represents
either a gauge coupling gi or a Yukawa coupling yj.
The parametrization of the new physics contribution is minimal in the sense that it is

independent of any internal symmetries [6], i.e. there is one parameter fg for the gauge
couplings and one parameter fy for the Yukawa couplings, leaving us with a total of 2 new
parameters2. The parameters fg,y depend on the RG scale µ. In the spirit of effective field
theories, we assume that their contribution is significant above a certain mass threshold
MNP and negligible below it. Hence, we approximate their scale dependence as

fg,y (µ) = fg,y ·Θ (µ−MNP) , fg,y = const. > 0 . (3.2)

Note that these new-physics contributions are scale invariant above MNP. Throughout
this thesis, we will useMNP = MPlanck =

√
~c

8πG ≈ 1018 GeV for any numerical integrations
of the β-functions. The new-physics contribution to the running of the gauge and Yukawa
couplings is linear in the couplings, hence it dominates for small values of the couplings.
Furthermore, it is strictly negative in the UV regime (µ > MNP = MPlanck) as fg,y > 0.

1Mind that in the original works [7–9] the new contributions stem from asymptotically safe quantum
gravity. However, we stress that in this thesis we are agnostic about the origin of these bSM
contributions.

2A study of a model where fy is no longer symmetric with respect to the fermion generations has been
done in [6].
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This means the new-physics contribution is antiscreening. The sign of the new-physics
contribution is motivated by the requirement of a UV complete gauge sector. As the
one-loop β-function of the Abelian gauge coupling gY already has a positive coefficient
and hence suffers from a Landau pole problem, we need a negative term to counter the
screening character of the SM contribution.
The interplay between the SM β-functions βSM (x) and the new-physics-contribution
−fxx generates new zeros of the full β-functions β (x), i.e. new fixed points. In the
following chapters, we will study the fixed point solutions of this minimally parametrized
bSM model and their implications on the structure of the SM model gauge and Yukawa
couplings in the IR. We start with a truncated, one generation3 top-bottom system [7–9],
as it will allow us to demonstrate the core mechanism that generates the new fixed point
solutions. In the succeeding chapters, we will extend our study to models with more
than one generation.

3.1. Fixed Points of Gauge Couplings
Before we investigate the Yukawa sector, it is important to study the gauge sector in
detail, as the results we obtain at one-loop order are universal and also hold for the two
and three generation models. Upon inserting the SM values of Nc, Ng, NH and the weak
hypercharges in Eq. (2.34) to (2.36) we end up with the following one-loop β-functions:

βSM (g3) = −7 g3
3

16π2 , (3.3)

βSM (g2) = −19
6

g3
2

16π2 , (3.4)

βSM (gY ) = 41
6

g3
Y

16π2 . (3.5)

At one-loop order, the β-functions of the gauge couplings are independent of all Yukawa
couplings as well as all other gauge couplings. Furthermore, they are monomials in the
respective couplings. Hence, only a completely free fixed point is a valid fixed point
solution: g3? = g2? = gY ? = 0. Furthermore, the coefficients in the β-functions of the
non-Abelian gauge couplings are negative, while the coefficient in the β-function of the
Abelian gauge coupling is positive. The signs of these coefficients are the reason for
the well-known running behaviour of Abelian and non-Abelian gauge couplings: The
finite IR values of the non-Abelian couplings are driven towards zero in the UV, resu-
lating in asymptotic freedom [55–57], while the Abelian coupling increases in the UV

3A disclaimer on the terms used in the text: By "one generation model", we actually mean a full
three generational model but all contributions of the Yukawa couplings from other generations are
neglected. Specifically, in the β-functions of the top-bottom system, the values of Ng and NH
appearing in the gauge β-functions Eq. (2.34) to (2.36) are still the same as in the full SM, but
the Yukawa couplings of the up-, charm-, down- and strange-quarks are neglected in Eq. (2.41) and
(2.42). Also, any leptonic contributions to the running of the Yukawa couplings is completely ignored
throughout this thesis. The term "two generation model" used in Chapter 4 has to be understood
in an analogous way.
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# g2
Y ? g2

2? g2
3? ϑY ϑ2 ϑ3 viable

1 0 0 0 −fg −fg −fg �

2 96
41fgπ

2 0 0 2fg −fg −fg �

3 0 −96
19fgπ

2 0 −fg 2fg −fg �

4 0 0 −16
7 fgπ

2 −fg −fg 2fg �

5 96
41fgπ

2 −96
19fgπ

2 0 2fg 2fg −fg �

6 96
41fgπ

2 0 −16
7 fgπ

2 2fg −fg 2fg �

7 0 −96
19fgπ

2 −16
7 fgπ

2 −fg 2fg 2fg �

8 96
41fgπ

2 −96
19fgπ

2 −16
7 fgπ

2 2fg 2fg 2fg �

Table 3.1.: UV fixed point solutions in the gauge sector at one-loop level. ϑi denote the
scaling exponents of the respective couplings gi. As the β-functions of the gauge coup-
lings are decoupled, the stability matrixMij is already diagonal and the eigendirections
coincide with the couplings gi. The last column indicates whether the fixed point is
phenomenologically viable or not, according to the discussion in the text.

and subsequently hits a Landau pole at some high scale, resulting in a breakdown of
perturbation theory. With respect to the Gaußian UV fixed point, the non-Abelian
couplings are marginally relevant, while the Abelian coupling is marginally irrelevant.
If we now modify the SM β-function Eq. (3.3) to (3.5) according to Eq. (3.1) we

obtain the following β-functions:

β (g3) = −7 g3
3

16π2 − fgg3 , (3.6)

β (g2) = −19
6

g3
2

16π2 − fgg2 , (3.7)

β (gY ) = 41
6

g3
Y

16π2 − fggY . (3.8)

In the UV regime (µ > MNP) fg (µ > MNP) = fg = const. > 0 and the β-functions
are now polynomials in the gauge couplings, which allows for non-trivial fixed point
solutions. The full system of UV fixed point solutions for the gauge couplings is shown
in Tab. 3.1.
Let us now discuss these fixed point solutions. Each of the three β-functions yields

two fixed point solution for the corresponding gauge coupling: a vanishing and a non-
vanishing fixed point. All possible fixed point solutions for the gauge sector are the
combinations of vanishing and non-vanishing fixed points for the respective gauge coup-
lings, as shown in Tab. 3.1. As the β-functions of the gauge couplings are decoupled,
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the stability matrixMij is already diagonal (σi = δgi) and its eigenvalues read:

ϑY = ∂β (gY )
∂gY

∣∣∣∣∣
?

= 41
2
g2
Y ?

16π2 − fg , (3.9)

ϑ2 = ∂β (g2)
∂g2

∣∣∣∣∣
?

= −19
2

g2
2?

16π2 − fg , (3.10)

ϑ3 = ∂β (g3)
∂g3

∣∣∣∣∣
?

= −21 g2
3?

16π2 − fg . (3.11)

The scaling exponents at the fixed points of the respective gauge couplings are given in
Tab. 3.1.
We now discuss the physical viability of these fixed point solutions. We first note

that the non-trivial fixed point of the Abelian gauge coupling necessarily has a different
sign than the non-trivial fixed points of the non-Abelian gauge couplings. Obviously the
fixed points of all couplings have to be real in order to be physical. Hence, all fixed point
solutions where the Abelian fixed point as well as at least one non-Abelian fixed point
are non-vanishing are inevitably non-physical. This rules out the fixed point solutions
5, 6 and 8 in Tab. 3.1. Since fg > 0, the fixed point solutions 3, 4 and 7 are also ruled
out, as they would contain imaginary fixed points. The remaining two fixed points in
Tab. 3.1 are then in fact phenomenologically viable. Fixed point number 1 represents a
completely free, Gaußian fixed point and can be matched to the observed IR values, as
all three gauge couplings are then relevant, i.e., free parameters. Fixed point number 2
has a non-vanishing fixed point of the Abelian gauge coupling. Given that fg > 0, this
leaves us with an IR attractive interacting fixed point for the Abelian gauge coupling
and asymptotically free non-Abelian couplings.
Out of the two phenomenologically viable fixed point solutions, fixed point #2 is the

more interesting one – for two reasons: First of all, the Abelian gauge coupling gY is
an irrelevant coupling with respect to this fixed point. As its fixed point value is non-
zero, i.e. gY ? > 0, there exists an asymptotically safe, non-trivial RG trajectory which
is given purely in terms of the relevant couplings. In fact, as we only considered one-
loop β-functions, the RG flow is actually constant in the UV regime4. Only for scales
µ < MNP there is a deviation from scale invariance in the Abelian gauge coupling, as
the new physics contribution is turned off and gY ? is no longer a fixed point (cf. Fig.
3.1). As gY is an irrelevant coupling with respect to this fixed point, it is no longer a
free parameter of the theory (cf. Sec. 2.2.2): In the UV regime, its value at all scales
can be calculated purely in terms of the relevant directions (at one-loop order, this
dependence is trivial), while in the IR regime, the UV initial condition of the RG flow
can be calculated from first principles. Note that fixed point solution #1 in Tab. 3.1
also allows for a UV completion of the gauge sector, but with respect to this fixed point
the Abelian gauge coupling is relevant, i.e. it is still a free parameter of the theory.
Beside this enhanced predicitivity, fixed point #2 has another interesting feature:

As the Abelian gauge coupling gY takes a finite value at the fixed point, there are
4In other words, the critical manifold in the "truncated", three-dimensional theory space has no
curvature and is parallel to the g2-g3-plane.

30



CHAPTER 3. ONE GENERATION MODEL 3.1. FIXED POINTS OF GAUGE COUPLINGS

105 1010 1015 1020 1025 1030 1035 1040

0.0

0.2

0.4

0.6

0.8

1.0

1.2

μ [GeV]

g
a
u
g
e
c
o
u
p
li
n
g
s

1040 1050 1060 1070 1080 1090 10100

0.0

0.2

0.4

0.6

0.8

1.0

1.2

μ [GeV]

gY

g2

g3

Figure 3.1.: RG flow of gauge couplings for fixed point solution #2 in Tab. 3.1 and
fg = 9.7× 10−3 [9]. In the UV regime (µ > MNP = MPlanck) the Abelian gauge coupling
gY takes a constant value. The asymptotically free character of the non-Abelian gauge
couplings g2,3 is amplified by the antiscreening nature of the bSM term −fggi. Below the
scale of new physics, the RG running of the couplings is governed by the usual SM one-
loop β-functions and the Abelian gauge coupling is no longer scale invariant. Choosing
suitable initial conditions of the RG flow of the relevant non-Abelian couplings in the
UV, their measured IR values can be accomodated. This result was obtained in [7–9].

residual gauge interactions in the far UV. This of course affects the RG evolution of other
couplings via diagrams where gauge bosons occur, including the Yukawa couplings. The
fact that there is a leftover contribution of the Abelian gauge coupling in the β-functions
of the Yukawa couplings results in a breaking of the up-type-down-type symmetry of
the fixed point solutions in the Yukawa sector due to the unequal hypercharges of up-
and down-type quarks (cf. Sec. 3.2). For these reasons, we will for the rest of this thesis
assume that the gauge couplings take the fixed point values of fixed point solution #2
in Tab. 3.1.
In Fig. 3.1 we show a RG trajectory emanating from fixed point #2 in Tab. 3.1.

In the UV regime (µ > MNP = MPlanck) the Abelian gauge coupling sticks to its fixed
point value, while the non-Abelian gauge couplings gain finite values towards the IR.
Below the scale of new physics, the usual one-loop SM running sets in and the Abelian
gauge coupling is no longer scale invariant. At one-loop level, the β-functions of the
gauge couplings are independent of each other. This simplifies the fine-tuning of the
initial conditions in the UV in order to accomodate the observed IR values. As the
non-Abelian couplings are relevant couplings, we can always recover their IR values by
choosing suitable initial conditions of the RG flow. In this case, the initial conditions
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are choosen such that one matches the following values5 at µ = mt [63]:

g2 (mt) = 0.64822 , (3.12)
g3 (mt) = 1.1666 . (3.13)

The Abelian gauge coupling on the other hand is not a free parameter and is completely
fixed by its fixed point value. However, the fixed point value of gY dependes on fg, hence
we can accomodate the observed IR value of the Abelian gauge coupling by choosing a
suitable value for the parameter fg. In order to match the value6 of gY at µ = mt [63],

gY (mt) = 0.35760 (3.14)

we have to choose fg = 9.7× 10−3 [7–9].

3.2. Fixed Points of Yukawa Couplings
We are now going to take a look at the Yukawa sector, or more specifically, at a simplified
top-bottom system in the style of [7–9]. Inserting the SM values of Nc and the weak
hypercharges into Eq. (2.41) and (2.42), ignoring the Yukawa couplings of the lighter
quarks (yu, yc, yd, ys) and adding the linear bSM term according to Eq. (3.1) we end
up with the following one-loop β functions:

β (yt) = yt
16π2

(
−
[17
12g

2
Y + 9

4g
2
2 + 8g2

3

]
+ 9

2y
2
t + 3

2y
2
b

)
− fyyt , (3.15)

β (yb) = yb
16π2

(
−
[ 5
12g

2
Y + 9

4g
2
2 + 8g2

3

]
+ 9

2y
2
b + 3

2y
2
t

)
− fyyb . (3.16)

Notice that the only reason why the above system of equations is not invariant under
an exchange of flavour indices t↔ b is the coefficient of the Abelian gauge coupling. It
is defined as the sum of the squared weak hypercharges of the left-handed SU (2)L quark
doublet and right-handed up- or down-type SU (2)L quark singlet:[

Y 2
uR(dR) + Y 2

qL

]
g2
Y . (3.17)

As the hypercharge of the right-handed up-type singlet is different than the hypercharge
of the right-handed down-type singlet, this term explicitly breaks the up-type-down-type
symmetry of Eq. (3.15) and (3.16). This is an important observation when it comes to
the fixed point solutions of the full top-bottom-gauge system.
Let us consider fixed point solution #1 in Tab. 3.1, i.e. the Gaußian fixed point of

the gauge couplings. For a RG trajectory emanating from this fixed point, all gauge
interactions vanish in the far UV. This means that at the UV fixed point, the symmetry

5The value for g2(mt) is computed at two loops in the MS scheme in [63]. The value for g3(mt) is
computed at two loops in the electroweak gauge interactions, four loops in QCD and three loop
matching at the top mass mt to the full SM (cf. [63]).

6The value for gY (mt) is computed at two loops in the MS scheme in [63].
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# y2
t? y2

b? ϑ1 ϑ2

1 0 0 −fy −fy
2 32

9 fyπ
2 0 2fy −2

3fy

3 0 32
9 fyπ

2 2fy −2
3fy

4 8
3fyπ

2 8
3fyπ

2 2fy fy

Table 3.2.: UV fixed point solutions of the top and bottom Yukawas for asymptotically
free gauge couplings, gY ? = g2? = g3? = 0. As the β-functions (Eq. (3.15) and (3.16))
are in this case symmetric under an exchange t ↔ b, so is the system of fixed point
solutions.

# y2
t? y2

b? ϑ1 ϑ2

1 0 0 − 5
82fg − fy −17

82fg − fy
2 16π2

9

(
17
41fg + 2fy

)
0 17

41fg + 2fy 1
123 (fg − 82fy)

3 0 16π2

9

(
5
41fg + 2fy

)
5
41fg + 2fy − 23

123fg −
2
3fy

4 4π2
(

23
123fg + 2

3fy
)

4π2
(
− 1

123fg + 2
3fy

)
1

164 (33fg+246fy+s1) 1
164 (33fg+246fy−s1)

Table 3.3.: UV fixed point solutions of the top and bottom Yukawas for interacting
Abelian gauge coupling, gY ? = 96

41fgπ
2, g2? = g3? = 0. Both the β-functions (Eq.

(3.15) and (3.16)) and the system of fixed point solutions are not symmetric under
an exchange t ↔ b. The square root appearing in the scaling exponents is given by
s1 =

√
1273f 2

g + 1804fgfy + 6724f 2
y .

breaking term ∼ g2
Y does not contribute to the running of the top and bottom Yukawas.

Hence, close to the Gaußian fixed point of the gauge couplings, Eq. (3.15) and (3.16)
become symmetric under the exchange t ↔ b. This is reflected in the UV fixed point
solutions with asymptotically free gauge couplings for the gauge-Yukawa system given
in Tab. 3.2: The system of fixed point solutions is also symmetric under the exchange
t ↔ b. Note that, while the whole set of fixed point solutions is symmetric under an
exchange t ↔ b, a particular choice of fixed point solution may break that symmetry.
Also, the RG trajectories themselves will generally not be symmetric either. For example,
during the flow towards the IR, the Abelian gauge coupling gains a finite value and the
symmetry breaking term in the β-functions of the top and bottom Yukawas contributes
to the their RG flow.
At the fixed point #2 in Tab. 3.1, the symmetry breaking term ∼ g2

Y is still present in
the β-functions of the top and bottom Yukawas. This results in a system of fixed point
solutions that itself is not symmetric in the exchange t↔ b as shown in Tab. 3.3. Fixed
point solution #4 in Tab. 3.3 features IR attractive, interacting UV fixed points for the
top and bottom Yukawa couplings. Together with the gauge couplings, out of the five
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Figure 3.2.: RG flow of the top and bottom Yukawa couplings for fixed point solution
#4 in Tab. 3.3. In the UV regime (µ > MNP = MPlanck) the Yukawa couplings are not
scale invariant. Choosing fy = 1.188× 10−4 [9], the measured quark pole masses can be
approximately recovered. This result was obtained in [9].

couplings gY , g2, g3, yt and yb, only two couplings – the non-Abelian gauge couplings
g2,3 – are free parameters. The other couplings are fixed at all scales via the running of
g2,3.
Fig. 3.2 shows the RG flow of the top and bottom Yukawa couplings emanating from

fixed point solution #4 in Tab. 3.3. Both Yukawa couplings take finite values at the UV
fixed point and are irrelevant couplings. As the β-functions of the Yukawa couplings Eq.
(3.15) and (3.16) depend on both the gauge couplings and other Yukawa couplings, the
critical manifold is now curved and – unlike the Abelian gauge coupling at one loop order
– the Yukawa couplings are not scale invariant in the UV regime (µ > MNP = MPlanck).
Their deviation from scale invariance is parametrized by the running of the relevant
couplings g2,3 and they start to flow away from their fixed points as soon as the non-
Abelian couplings gain considerable finite values [9]. Due to the interacting fixed point
of the Abelian gauge coupling, the fixed point values of the top and bottom Yukawas
in the interacting fixed point solution are no longer equal, as they get a correction from
the gauge sector:

y2
t? : 8

3fyπ
2 → 8

3fyπ
2 + 92

123fgπ
2 , (3.18)

y2
b? : 8

3fyπ
2 → 8

3fyπ
2 − 4

123fgπ
2 . (3.19)

This results in a splitting of the fixed point values of the top and bottom Yukawas,
which then obey the relation [9]:

y2
t? − y2

b? = 1
3g

2
Y ? . (3.20)

As a last step, we have to convert the running Yukawa couplings in the IR into pole
masses to see whether one recovers the correct masses of the quarks from the UV fixed
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point structure. The running Yukawa coupling yMS
f (µ) of a fermion f in the MS-scheme

is related to the pole mass mf via the relation [63, 71]:

yMS
f (µ) = 2 3

4

√
GF mf

[
1 + δ

(1)
f (µ) + δ

(2)
f (µ) + . . .

]
, (3.21)

where GF = 1.16638×10−5 GeV−2 [14] is the Fermi constant given by v =
(
21/4√GF

)−1
.

The scale dependent terms δ(n)
f (µ) describe the n-loop corrections to the tree-level rela-

tion yMS
f = 2 3

4
√
GF mf . In this thesis, we consider the first correction to the tree-level

relation, i.e. we include δ(1)
f (µ). The expressions for δ(1)

f (µ) are given in Appendix B.1.
For the RG flow of the top and bottom Yukawas emanating from fixed point #4 in Tab.
3.3 shown in Fig. 3.2, we have chosen the value of fy to be fy = 1.188× 10−4 [9]. From
this, one obtains yt (mt) = 0.964 and yb (mt) = 0.0176. This translates – according to
Eq. (3.21) at one-loop order – to pole masses of mt = 174.4 GeV and mb = 4.3 GeV,
which is reasonably close to the measured values.
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4. Two Generation Model
We are now going to extend the study of the one generation model done in [7–9] and
presented in Chapter 3 to a two generation model, where we incorporate charm and
strange quarks into our theory. This chapter will be the main part of this thesis: We now
have to take flavour mixing effects into account, as the CKM matrix for a two generation
system is generally no longer trivial. We will discuss the effects of the running mixing
parameters on the running of the Yukawa couplings and discuss upper bounds on the
masses of the second generation quarks from poles in the β-functions stemming from the
unitary of the CKM matrix.
As we restrict this study to a two generation model in the sense that we ignore any

contribution of a third generation of quarks, the CKM matrix reduces to a 2× 2 matrix
parametrized by a single real parameter:

V =
V11 V12

V21 V22

 ,
{
|Vij|2

}
=
 |V11|2 1− |V11|2

1− |V11|2 |V11|2

 . (4.1)

Alternatively, one could parametrize this matrix using a rotation angle, i.e., the Cabibbo
angle θC [10], which is related to V11 via

V11 = cos θC . (4.2)

Upon inserting the SM values of the parameters into Eq. (2.41), (2.42) and (2.43)
and adding the linear bSM term according to Eq. (3.1), we end up with the following
β-functions in the two generation system:

β (yt) = yt
16π2

{
−Au + 9

2y
2
t + 3

2y
2
s

(
1 + |V11|2

)
+ 3

2y
2
b

(
2− |V11|2

)
+ 3y2

c

}
− fyyt , (4.3)

β (yc) = yc
16π2

{
−Au + 9

2y
2
c + 3

2y
2
b

(
1 + |V11|2

)
+ 3

2y
2
s

(
2− |V11|2

)
+ 3y2

t

}
− fyyc , (4.4)

β (yb) = yb
16π2

{
−Ad + 9

2y
2
b + 3

2y
2
c

(
1 + |V11|2

)
+ 3

2y
2
t

(
2− |V11|2

)
+ 3y2

s

}
− fyyb , (4.5)

β (ys) = ys
16π2

{
−Ad + 9

2y
2
s + 3

2y
2
t

(
1 + |V11|2

)
+ 3

2y
2
c

(
2− |V11|2

)
+ 3y2

b

}
− fyys , (4.6)

with

Au =
(17

12g
2
Y + 9

4g
2
2 + 8g2

3

)
, (4.7)

Ad =
( 5

12g
2
Y + 9

4g
2
2 + 8g2

3

)
, (4.8)
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# y2
t? y2

c? y2
b? y2

s? |V11|2? allowed range

1 16
15 (fg + 2fy)π2 0 16

615 (−19fg + 82fy) π2 0 0 fy ≥ 19
82fg

2 4
123 (11fg + 82fy) π2 32

41fgπ
2 4

123 (−13fg + 82fy) π2 0 1 fy ≥ 13
82fg

3 4
123 (23fg + 82fy) π2 0 4

123 (−fg + 82fy) π2 0 1 fy ≥ 1
82fg

4 t4 0 b4 s4 V4 fy = 7
82fg

5 t5 c5 b5 0 V5 fy = 43
82fg

6 4
123 (35fg + 82fy) π2 0 4

123 (11fg + 82fy) π2 −32
41fg 1 –

Table 4.1.: Classes of discrete fixed point solutions of the two generation model for
the partially interacting gauge coupling fixed point g2

Y ? = 96
41fgπ

2 and g2
2? = g2

3? = 0.
Note that each of these fixed point solutions exists in four versions corresponding to
a permutation of flavour indices t ↔ c and b ↔ s. Out of these quartets, only the
representatives obeying the phenomenological ordering y2

t? > y2
c? and y2

b? > y2
s? are

presented. In the last column, we state the allowed values of fy in order to guarantee
y2
i? ≥ 0 ∀ i ∈ {t, c, b, s}. The definitions of the fixed point values t4,5, c5, b4,5, s4 and
V4,5 are given in the text.

and for the squared modulus of the CKM matrix element |V11|2:

β
(
|V11|2

)
= 3

16π2 |V11|2
(
1− |V11|2

){[(
y2
c + y2

s

)
−
(
y2
t + y2

b

)]
− 2y2

c

y2
s − y2

b

y2
c − y2

t

− 2y2
s

y2
c − y2

t

y2
s − y2

b

}
,

(4.9)
where we used, exploiting the unitarity of the CKM matrix V ,

2<
{
VimV

∗
kmV

∗
ijVkj

}
= −2 |Vim|2 |Vkm|2 . (4.10)

for Ng = 2.
Regarding the quadratic CKM matrix element, we note that there is no additional

new-physics contribution appearing in the β-function. This is because in our ansatz the
new physics contribution to Eq. (2.37) and (2.38) is linear in the Yukawa matrices, i.e.
∼ fyYu,d and hence of the same form as the gauge contribution. The diagonalization of
these terms does not introduce any mixing terms, as they do not contain products of
up- and down-type matrices (cf. Appendix A.3).

4.1. Fixed Point Solutions
We are now going to discuss the fixed point solutions of this model. Just like in Section
3.2, we assume the gauge couplings take the partially interacting fixed point solution
#2 in Tab. 3.1. Again, the consequence of this is the breaking of the up-type-down-
type symmetry of the β-functions and hence of the fixed point solutions (cf. discussion
in Section 3.2). Upon solving the fixed point equations, one obtains 20 discrete fixed
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# y2
c? y2

b? y2
s? |V11|2? allowed range

0a
(

140
123fg + 8

3fy
)
π2 − y2

t?

(
44
123fg + 8

3fy
)
π2 − y2

t? −32
41fgπ

2 + y2
t? 0 fy ≥ 13

82fg

0b
(

140
123fg + 8

3fy
)
π2 − y2

t? −32
41fgπ

2 + y2
t?

(
44
123fg + 8

3fy
)
π2 − y2

t? 1 fy ≥ 13
82fg

Table 4.2.: One parameter families of solutions (fixed lines) parametrized by the squared
top Yukawa fixed point y2

t?. These fixed lines collapse to a quartet of discrete solutions
if one includes two-loop terms in the β-functions (cf. discussion in [6]).

# y2
t?/
(

16
15π

2
)

y2
c?/

(
16
15π

2
)

y2
b?/

(
16
15π

2
)

y2
s?/

(
16
15π

2
)

|V11|2?

1a fg + 2fy 0 1
41 (−19fg + 82fy) 0 0

1b fg + 2fy 0 0 1
41 (−19fg + 82fy) 1

1c 0 fg + 2fy 0 1
41 (−19fg + 82fy) 0

1d 0 fg + 2fy 1
41 (−19fg + 82fy) 0 1

Table 4.3.: Quartet of fixed point solution #1 in Tab. 4.1. The solutions are related
to each other by permutations of the flavour indices of quarks with equal singlet hyper-
charge: t ↔ c and b ↔ s. The fixed point value of the squared modulus of the matrix
element, |V11|2?, is either 1 or 0, representing a diagonal or anti-diagonal mixing matrix,
respectively.

point solutions and two one-parameter families of solutions, i.e., fixed lines. The discrete
solutions are given in Tab. 4.1, the two fixed lines in Tab. 4.2. We start by discussing
the discrete fixed point solutions and will give a few comments on the fixed lines later
on.
As stated above, the up-type-down-type symmetry of the β-functions is broken due

to the terms stemming from the Abelian gauge contributions in the case of the partially
interacting fixed point in the gauge sector. This observation is independent of the number
of generations considered. For Ng > 1, however, there exists a permutation symmetry
with respect to the interchange of flavour indices with equal singlet hypercharge. For
Ng = 2, that is t ↔ c and b ↔ s. This symmetry is reflected in the fixed point
solutions: They appear in quartets of t↔ c and b↔ s permutations. Take, for example,
fixed point solution #1 in Tab. 4.1. As given in Tab. 4.1, only the solution with the
(phenomenological) ordering y2

t? > y2
c? and y2

b? > y2
s? is presented. However, there exist

three additional permutations of this solution as shown in Tab. 4.3.
Note that in Tab. 4.3, the squared modulus of the CKM parameter is either 1 or

0. These cases correspond to the case of no mixing and have the effect of effectively
interchanging the roles of the down-type quarks, b ↔ s. By no mixing, we mean that
a flavour eigenstate quark is related to exactly one mass eigenstate quark and is not a
superposition of several mass eigenstates. In a two generation model, there are only two
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ways of realizing this, namely a diagonal and an anti-diagonal mixing matrix:

V ? =
1 0

0 1

 or V ? =
0 1

1 0

 . (4.11)

The two matrices in Eq. (4.11) constitute a faithful representation of the permutation
group of two objects [6] – in our specific case, of the two down-type quarks. By virtue of
the β-function in Eq. (4.9), |V11|2? = 0 and |V11|2? = 1 are always fixed point solutions of
the squared modulus of the CKM matrix element, independent of the fixed point values
of the Yukawa couplings. As the β-function of |V11|2 does not contain any new-physics
contributions, the observations made by Pendleton and Ross in [72] also hold here: The
fixed point |V11|2? = 1 is IR attractive, given that the Yukawa couplings of one generation
are strictly larger (smaller) than the Yukawa couplings of the other generation: y2

t > y2
c

and y2
b > y2

s (or y2
t < y2

c and y2
b < y2

s). Similarly, the fixed point |V11|2? = 0 is IR repulsive
under these conditions.
Let us now discuss the discrete fixed point solutions given in Tab. 4.1 in more detail.

As stated above, each of the solutions presented in the table exists in four permutations
of the flavour indices with equal singlet hypercharge (an example was given in Tab. 4.3).
Within each of these quartets, the fixed point of the squared modulus of the CKM matrix
element takes two values. We will now go through each of the six classes of discrete fixed
point solutions one by one and give comments on their phenomenological viability.
Fixed point #1 in Tab. 4.1 is a phenomenologically viable fixed point solution

and will be discussed in greater detail in Section 4.2. Here, we will study the RG flow
emanating from this fixed point down to the IR and check to what degree one can recover
the measured quark masses. This fixed point solution obeys the following relation, which
should be compared to Eq. (3.20) for the one-generation case:

y2
t? − y2

b? = 2
3g

2
Y ? . (4.12)

Fixed point #2 is an endpoint of one of the fixed lines given in Tab. 4.2. One of the
fixed point values in this solution, 32

41fgπ
2, only depends on the gauge sector parameter fg

and is hence fixed by the value of fg from the gauge sector. For the phenomenologically
viable choice fg = 9.7 × 10−3, the numeric value of this fixed point is approximately
0.075, which is a significantly too large value in every permutation of this fixed point
solution. Hence, we conclude that this fixed point is phenomenologically not viable.
Fixed point #3 is the trivial extension of the one generation fixed point solution #4

in Tab. 3.3 and has already been studied in [9]. The Yukawa couplings of the second
generation quarks have vanishing fixed point values and the quadratic CKM matrix
element is equal to 1 at the fixed point. The free fixed point of the strange Yukawa
is IR attractive and one exactly recovers ms = 0 in the IR. The vanishing fixed point
of the charm quark is IR repulsive. The fixed point of |V11|2 is – as discussed above –
also IR attractive as the third generation (top and bottom) is larger than the second
generation (charm and strange). This fixed point approximately reproduces the correct
phenomenology: The charm Yukawa is a relevant coupling and its IR value can be
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accommodated by choosing suitable initial conditions in the UV. The top and bottom
Yukawas emerge from the same fixed point as in the one generation case and – due to
the smallness of the charm Yukawa throughout the RG flow – their RG trajectories are
hardly altered in comparison to the one generation case. The CKM matrix is in this case
diagonal at all scales, while small but non-vanishing mixing is observed in experiment.
The strange Yukawa is zero at all scales as it corresponds to an irrelevant coupling. This
is in contradiction to experiment, where a small but nevertheless finite strange mass was
found.
The expressions of the fixed point values in fixed point #4 are given by:

t4 = 16
1107 (65fg + 82fy) π2 , (4.13)

b4 = 8
1107 (−21fg + 246fy − r) π2 , (4.14)

s4 = 8
1107 (−21fg + 246fy + r) π2 , (4.15)

V4 = 1
2 + r

2 (65fg + 82fy)
, (4.16)

with r given by
r =

√
3 (7fg − 82fy) (65fg + 82fy) . (4.17)

Requiring all Yukawa couplings to be real, i.e., y2
i? ≥ 0 ∀ i ∈ {t, c, b, s} as well as r ∈ R

and assuming fg > 0, we conclude that fy = 7
82fg has to be fulfilled. Inserting this value

of fy into the expressions of the fixed point, we end up with:

t4 = 128
123fgπ

2 = 4
9g

2
Y ? , (4.18)

b4 = 0 , (4.19)
s4 = 0 , (4.20)

V4 = 1
2 . (4.21)

The expressions of the fixed point values in fixed point #5 are given by:

t5 = 8
1107 (87fg + 246fy − s) π2 , (4.22)

c5 = 8
1107 (87fg + 246fy + s) π2 , (4.23)

b5 = 16
1107 (−43fg + 82fy) π2 , (4.24)

V5 = 1
2 −

s

2 (43fg − 82fy)
, (4.25)

with s given by
s =

√
3 (43fg − 82fy) (29fg + 82fy) . (4.26)

40



CHAPTER 4. TWO GENERATION MODEL 4.2. AN EXAMPLE OF AN RG FLOW

Requiring again all Yukawa couplings to be real, i.e., y2
i? ≥ 0 ∀ i ∈ {t, c, b, s} as well as

s ∈ R and assuming fg > 0, we conclude that fy = 43
82fg has to be fulfilled. Inserting

this value of fy into the expressions of the fixed point, we end up with:

t5 = 64
41fgπ

2 = 2
3g

2
Y ? , (4.27)

c5 = 64
41fgπ

2 = 2
3g

2
Y ? , (4.28)

b5 = 0 . (4.29)

Both fixed point solutions #4 and #5 are phenomenologically not viable.
Fixed point #5 can immediately be regarded as phenomenologically not viable, as

it contains the strictly negative quadratic fixed point value −32
41fg.

Besides the discrete fixed point solutions, there also exist two one parameter families
of solutions, or fixed lines (cf. Tab. 4.2). If one would study the two-loop running of the
Yukawa couplings, these fixed lines would collaps into a quartet of discrete fixed point
solutions (cf. discussion in [6]). Also, as stated above, fixed point solution #2 in Tab.
4.1 is an endpoint of one of these fixed lines. Hence, treating fixed point solution #2
as an element of one of the fixed lines, we end up with a total of 5 discrete fixed point
solution, each of which appears in a quartet. The total number of discrete solutions is
therefore 20, while the number of fixed lines is 2.
In Tab. 4.4 we present the scaling exponents for the two generation model at the

phenomenologically interesting fixed point solutions #1 and #3. There are three ir-
relevant directions for fixed point #1 and four irrelevant directions for fixed point #3.
These correspond to an IR attractive UV fixed point for the Abelian gauge coupling as
well as the top and bottom Yukawa couplings. For fixed point solution #3, we have an
additional irrelevant direction, corresponding to the IR attractive Gaußian fixed point
of the strange Yukawa.

4.2. An Example of an RG Flow
We are now going to discuss fixed point solution #1 in Tab. 4.1 in greater detail.
The four permutations of this fixed point are given in Tab. 4.3. In the following, we
will consider the permutation #1a, as this will give us the phenomenologically correct
hierarchy of the quark masses in the IR. The reason for this is the fact that the ordering
of the up-(down-)type Yukawas at the UV fixed point is preserved throughout the flow
to the IR. This is because of the nature of the β-functions of the squared moduli of the
CKM matrix elements (Eq. (2.43); (4.9) for Ng = 2). Due to the unitarity of the CKM
matrix, poles appear in these β-functions if two or more up-(down-)type Yukawas are
equal (cf. Section 2.3.2). A thorough discussion of this mechanism will be presented
in Section 4.3. For now, we shall be content with the notion that the ordering of the
up-(down-)type Yukawa couplings at the UV fixed point will be maintained in the IR.
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FP #1 FP #3

ϑ1 2fg 2fg
ϑ2 −fg −fg
ϑ3 −fg −fg
ϑ4 − 2

205 (11fg + 82fy) 3
41fg

ϑ5 − 1
205 (11fg + 82fy) − 3

41fg

ϑ6 − 1
205 (11fg + 82fy) 11

82fg + fy

ϑ7
1

205

[
3 (11fg + 82fy) + 1

164

[
3 (11fg + 82fy) +

+2
√

1246f 2
g + 2(11fg)(82fy) + (82fy)2

]
+2
√

1273f 2
g + 2(11fg)(82fy) + (82fy)2

]
ϑ8

1
205

[
3 (11fg + 82fy)− 1

164

[
3 (11fg + 82fy)−

−2
√

1246f 2
g + 2(11fg)(82fy) + (82fy)2

]
−2
√

1273f 2
g + 2(11fg)(82fy) + (82fy)2

]

Table 4.4.: Scaling exponents for the phenomenologically interesting fixed point solutions
#1 and #3 in Tab. 4.1. As fg > 0 and fy > 0, most scaling exponents are strictly
positive or negative. However, the sign of ϑ8 for fixed points #1 and #3 depends on
the precise values of the parameters fg and fy. They are positive for fy > 19

82fg and
fy >

1
82fg, respectively, which are just the allowed ranges for the fixed point solutions

#1 and #3 (cf. Tab. 4.1), excluding the lower bound, at which the scaling exponents
are zero. There are three irrelevant directions for fixed point #1 and four irrelevant
directions for fixed point #3, assuming fy takes an allowed value.

The full set of (quadratic) fixed point values is given by:

g2
Y ? = 96

41fgπ
2 , (4.30)

g2
2? = g2

3? = 0 , (4.31)

y2
t? = 16

15 (fg + 2fy) π2 , (4.32)

y2
b? = 16

615 (−19fg + 82fy) π2 , (4.33)

y2
c? = y2

s? = 0 , (4.34)

|V11|2? = 0 . (4.35)

As our analysis is at one-loop order, the β-functions in the gauge sector are independent
of the Yukawa couplings and CKM matrix elements. Hence, their RG flow is exactly the
same as the one in the one generation case (cf. Section 3.1). In the Yukawa sector, the
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Figure 4.1.: RG flow of Yukawa couplings and quadratic CKM matrix element for fixed
point solution #1 in Tab. 4.1. The charm and strange Yukawa as well as the quadratic
CKM matrix element are relevant couplings with vanishing fixed point value, while the
top and bottom Yukawas are irrelevant couplings with interacting UV fixed points. The
top Yukawa is too large, leading to an overestimate of the top mass of about 10%. The
running of the CKM parameter is extremely slow (note that |V11|2? = 0).

top and bottom Yukawas are again irrelevant couplings just like in the one generation
case or at fixed point #3 in Tab. 4.1. For the second generation quarks however, we note
that now both of them are relevant couplings. This is due to the fixed point value of
the squared CKM matrix element |V11|2? = 0: In the β-function of the strange Yukawa,
Eq. (4.6), the contribution of the largest Yukawa coupling, the top Yukawa coupling,
is of the form ∼ y2

t

(
1 + |V11|2

)
. If the fixed point value |V11|2? changes from 1 to 0, the

screening contribution of the top Yukawa to the running of the strange Yukawa is halved
close to the fixed point. This has the effect that the strange Yukawa is now relevant,
which means that a correct, finite strange mass can be accommodated as well.
Fig. 4.1 shows an RG flow emanating from fixed point solution #1 in Tab. 4.1. In

order to roughly recover the observed quark masses, fy = 19
82fg + 5.9× 10−8 = 2.24762×

10−3 has been chosen. Upon choosing suitable initial conditions for the charm and
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strange Yukawas, this leads to the following values of the Yukawa couplings at the
top mass scale: yt(mt) = 1.07, yb(mt) = 0.0165, yc(mt) = 4.48 × 10−3, and ys(mt) =
2.32 × 10−4. This translates – according to Eq. (3.21) – to the following pole masses:
mt = 191.8 GeV, mb = 4.1 GeV, mc = 1.29 GeV and ms = 96 MeV. As one can see, in
comparison to the one generation case, the top mass is overestimated by approximately
10%. This is mainly due to a larger fixed point value: In the one generation case,
yt? = 0.27, while in the two generation case yt? = 0.39. Even though the running of
the top Yukawa is slower in the two generation case, this significantly larger fixed point
value still causes a too large value in the IR, leading to a high top mass. From Fig.
4.1, we further note that the running of the squared modulus |V11|2 is extremely slow.
Even though the UV fixed point value of the squared CKM matrix element is 0, one can
hardly recognize a deviation from scale invariance in Fig. 4.1 over a range of 10100 GeV.
The initial condition in the far UV was chosen such that |V11|2 (mt) = 0.99.

4.3. Mass Bounds, Poles and Unitarity
As already mentioned in Section 2.3.2 and Appendix A.3, differences of (squared) Yukawa
couplings appear in denominators in the β-functions of the squared moduli |Vij|2 of the
CKM matrix elements, Eq. (2.43), which are of the form:

1
(yui )2 − (yuk )2 , i 6= k , (4.36)

1(
ydi
)2
−
(
ydk
)2 , i 6= k . (4.37)

These denominators are non-perturbative in nature: They arise due to the requirement of
an unitary CKM matrix and do not stem from a perturbative expansion in the couplings
(cf. Appendix A.3). For degenerate Yukawa couplings, the β-functions of |Vij|2 hit
a pole1 and are hence non-analytic on the hypersurfaces in theory space defined by
y
u(d)
i = y

u(d)
k for i 6= k.

This has an important consequence: The RG trajectories of the Yukawa couplings
emanating from a point in theory space where all Yukawa couplings are non-degenerate
(or, at least, all degenerate Yukawas are zero) will never cross each other during the
flow towards the IR, i.e. yu(d)

i (t) 6= y
u(d)
k (t), i 6= k, for t <∞. In order to illustrate this,

the RG flow of the bottom and strange Yukawa couplings as well as of the quadratic
CKM matrix element |V11|2 as calculated in Fig. 4.1 is shown in Fig. 4.2. In the far UV,
the bottom Yukawa stays at its fixed point value, while the strange Yukawa increases
towards the IR. As the difference y2

b − y2
s decreases, the running of the quadratic CKM

matrix element accelerates. This has the consequence that |V11|2 transitions from the
1There is an exception to this: The point in theory space where all or some up-(down-)type Yukawa
couplings are zero can be approached continously as long as yu(d)

i (t) 6= y
u(d)
k (t), i 6= k, for t < ∞

[6]. Therefore more than one up-(down-)type quark can be asymptotically free as long as their RG
trajectories do not cross at finite scales.

44



CHAPTER 4. TWO GENERATION MODEL 4.3. MASS BOUNDS, POLES AND UNITARITY

0 200 400 600 800 1000 1200 1400

10-6

10-5

10-4

0.001

0.010

0.100

1

Log10[μ/GeV]

Y
u
k
a
w
a
c
o
u
p
li
n
g
s

yb

ys

|V11
2

Figure 4.2.: RG flow of bottom and strange Yukawa couplings as well as the squared
modulus of the CKM matrix element, |V11|2. In the far UV, the bottom Yukawa sticks
to its fixed point value, denoted by a gray dotted-dashed line. As soon as the strange
Yukawa comes close to the bottom Yukawa, the denominator in the β-function of |V11|2
becomes small and |V11|2 is driven towards the IR fixed point |V11|2? = 1. This reverses
the roles of the bottom and strange Yukawas: Now, the running of the strange Yukawa
freezes while the running of the bottom Yukawa is accelerated. This has the consequence
that the IR value of the strange Yukawa is bounded from above (cf. discussion in the
main text). The transition of the fixed point scaling regimes happens around some
transition scale µtrans ≈ 10700 GeV, denoted by a gray dashed line.

fixed point |V11|2? = 0 in the UV to the fixed point |V11|2? = 1 in the IR. As already
discussed in previous sections, a change of |V11|2 from 0 to 1 in a two generation model
has the effect of interchanging the roles of the bottom and strange Yukawa. In the case
of the RG flow shown in Fig. 4.2 we start at a fixed point that is IR attractive in the
bottom and IR repulsive in the strange, i.e., fixed point solution #1a in Tab. 4.3. As
the CKM matrix transitions from anti-diagonal to diagonal as the denominators become
small, the roles of the bottom and strange Yukawa are swapped. Now, the strange
Yukawa is irrelevant, while the bottom Yukawa is relevant. As one can see from Fig.
4.2, this happens around a transition scale µtrans.
In order to illustrate this mechanism in a clearer way, we plotted the RG flow of the

bottom and strange Yukawa couplings as well as of the quadratic CKM matrix element
|V11|2 for exaggerated initial conditions and values of fy in Fig. 4.3. In this plot, the
value of fy and the initial conditions in the UV were chosen such that they produce
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Figure 4.3.: RG flow of bottom and strange Yukawa couplings as well as the squared
modulus of the CKM matrix element |V11|2 for exaggerated initial conditions and values
of fy. The flow of the couplings is qualitatively the same as in Fig. 4.2, but the transition
between the scaling regimes is much more pronounced. The two gray dotted lines denote
the scales at which the flow diagrams in Fig. 4.4 are evaluated: The left dashed line
corresponds to µ = 10150 GeV and the right dashed line corresponds to the transition
scale of this specific flow, µtrans ≈ 10600 GeV. The value of fy and the initial conditions
in the UV were chosen such that they produce a prominent transition of the scaling
behaviour, rather than the correct IR values of the couplings.

a prominent transition of the scaling behaviour, in particular, fy = 19
82fg + 1.9 × 10−5.

One should therefore not be concerned with the IR values of the couplings, as the
parameters were not tuned to recover the phenomenological values. However, Fig. 4.3
demonstrates the mechanism that prevents crossing of up-(down-)type Yukawas during
the flow towards the IR. In the far UV, the irrelevant bottom Yukawa is effectively scale
invariant2, while the relevant, asymptotically free strange Yukawa increases towards the
IR. As soon as the strange Yukawa comes close to the bottom Yukawa at the transition
scale µtrans, the quadratic CKM matrix element |V11|2 is rapidly driven towards the IR
attractive fixed point |V11|2? = 1. In the sub-transtition regime, µ < µtrans, the roles of
the bottom and strange are inverted.

2There are, of course, slight deviations from the fixed point value at all finite scales as the relevant,
asymptotically free couplings are all non-zero at finite scales and parametrize the deviation from
scale invariance of the irrelevant couplings. However, this deviation is, as can be seen in Fig. 4.3,
very small.
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Figure 4.4.: Flow diagrams of the RG flow in Fig. 4.3. In the left panel, the yb-ys-plane
is shown at the UV fixed point #1 in Tab. 4.1. In the middle panel, we show the flow
at the transition scale µtrans = 10600 GeV. In the left panel, we show the flow in the "IR"
at a scale µ = 10150 GeV. The dot represents the current position of the flow shown in
Fig. 4.3 in a plane parallel to the yb-ys-plane at the respective scale. The diagonal line
represents the hypersurface defined by yb = ys at which the β-function of |V11|2 becomes
non-analytic. The arrows in the flow diagrams all point towards the IR.

We can further illustrate the characteristics of this change in scaling behaviour by
looking at the flow diagrams of this model at different RG scales µ. In the present two
generation model, we have a total of eight running couplings: three gauge couplings,
four Yukawa couplings and one squared modulus of the CKM matrix element. In the
spirit of the discussion presented in Section 2.2.2, we therefore consider a "truncated"
eight-dimensional theory space spanned the aforementioned couplings. The system of
β-functions – evaluated at different points in theory space, i.e., at different values of the
eight couplings – describes a vector field in theory space governing the RG evolution of
the model at hand. Flow diagrams – like, e.g., in Fig. 4.4 – are depiction of such vector
fields3.
In order to provide further inside into the mechanism presented in this section and for

the sake of presentability, we will only consider a two-dimensional cut through the eight-
dimensional theory space. More precisely, we are interested in planes in theory space
that are parallel to the yb-ys-plane. A convenient way to imagine such two-dimensional
cuts is to consider a three dimensional theory space spanned by the couplings gx, gy and
gz. One could then, for example, be interested in the flow diagram in a plane parallel
to the gx-gy-plane, whose intersection with the gz-plane is given by the value of gz at
some specific RG scale µ, gz (µ). For a different value of the RG scale, µ′, the plane
might shift along the gz-axis as, in general, gz(µ) 6= gz(µ′). Hence, – even though the
vector field in the full three-dimensional theory space is obviously independent of the
RG scale µ – the projection of the vector field onto the two-dimensional cuts parallel to

3In flow diagrams presented in this work, arrows always point towards the IR, i.e., the vector field
describes the RG flow from the UV towards the IR.
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the gx-gy-plane generally changes with a change in the RG scale µ.
In Fig. 4.4 we plotted the projections of the vector field onto such two-dimensional

cuts parallel to the yb-ys-plane, which we will in the following refer to as "flow diagrams
in the yb-ys-plane", for the flow depicted in Fig. 4.3 at three different values of the RG
scale µ. In the left panel, we show the flow diagram in the yb-ys-plane at the UV fixed
point #1 in Tab. 4.1, i.e., for µ → ∞. All couplings other than yb and ys are set to
their respective fixed point values as given in fixed point solution #2 in Tab. 3.1 for
the gauge couplings and fixed point solution #1 in Tab. 4.1 for the Yukawa couplings,
respectively. The dot represents the position of the RG flow in the two-dimensional cut
at the respective scale. In the left panel, the dot marks the UV fixed point values of
the bottom and strange Yukawas. As one can see, the yb- and ys-axes pretty much align
with irrelevant and relevant directions, respectively (cf. Section 2.2.2). As the couplings
flow towards the IR, the RG trajectory approaches the hypersurface defined by yb = ys,
denoted by the diagonal line in the flow diagrams. As the RG trajectory gets close to
this hypersurface at the transition scale µtrans = 10600 GeV, the quadratic CKM matrix
element quickly flows towards its IR fixed point |V11|2? = 1. The flow diagram in the
yb-ys-plane at µtrans is shown in the middle panel. Here, all couplings other than yb and
ys take their values at the scale µtrans according to their RG evolution for exaggerated
values of fy and initial conditions, specifically:

gY (µtrans) = 0.473 , (4.38)
g2 (µtrans) = 9.45× 10−7 , (4.39)
g3 (µtrans) = 7.85× 10−7 , (4.40)
yt (µtrans) = 0.387 , (4.41)
yc (µtrans) = 1.153× 10−4 , (4.42)

|V11|2 (µtrans) = 0.503 . (4.43)

At the transition scale, the couplings flow along the hypersurface defined by yb = ys.
Below the transition scale, the roles of the bottom and strange Yukawa are effectively
swapped. The right panel in Fig. 4.4 shows the flow diagram in the yb-ys-plane at a
scale µ = 10150 GeV < µtrans, where the couplings take the following values:

gY
(
10150 GeV

)
= 0.473 , (4.44)

g2
(
10150 GeV

)
= 2.20× 10−2 , (4.45)

g3
(
10150 GeV

)
= 1.82× 10−2 , (4.46)

yt
(
10150 GeV

)
= 0.385 , (4.47)

yc
(
10150 GeV

)
= 4.91× 10−4 , (4.48)

|V11|2
(
10150 GeV

)
= 0.99 . (4.49)

This flow diagram looks similar to the flow diagram in the left panel if it was mirrored
along the diagonal line yb = ys. This of course just reflects the effective interchange of
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the bottom and strange Yukawa. Note that the flow diagram in the right panel is not
exactly a mirrored version of the flow diagram in the left panel. This is due to the fact
that during the flow towards the IR, all other couplings – including the relevant ones
– have already deviated from their fixed point values. As the values of these couplings
influence the flow of the bottom and strange Yukawas, the RG flow at scales below the
transition scale, µ < µtrans, is not related to the RG flow at scales above the transition
scale, µ > µtrans, by a simple permutation of the flavour indices, b↔ s.
The non-analyticities at degenerate Yukawa couplings appearing in the β-functions

of the squared moduli of the CKM matrix elements are an important piece of non-
perturbative information, only emerging if one includes at least a second generation
in their study. They impose restrictions on the IR values of the asymptotically free
Yukawa couplings in the IR in the form of upper bounds. We will present a more
thorough discussion on this topic in the following concluding chapter.
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5. Conclusion and Outlook
In this thesis, we have been concerned with two problems of the SM: First of all, how can
one achieve an UV completion of the gauge and Yukawa sectors of the SM? Secondly,
can we shed light on the intricate flavour structure observed in experiment, i.e., the
fermionic mass spectra as well as the mixing patterns, whose roots are not explained
by the SM itself? The approach presented in this thesis to tackle both these problems
simultaneously was based on modifying the renormalization group running of the gauge
and Yukawa couplings, thereby creating new (interacting) renormalization group fixed
points in the UV.
The modification of the running was obtained by adding antiscreening terms to the

β-functions of the gauge and Yukawa couplings in the style of [7–9], which parametrize
the – yet unspecified – bSM physics. By adding an antiscreening new-physics term to
the β-functions of the gauge couplings, an UV safe RG trajectory of the Abelian U (1)Y
coupling can be achieved1. The antiscreening character of the bSM term counters the
screening nature of the SM β-function, resulting in – depending of the precise choice of
the value of the bSM parameter fg – either a free or interacting fixed point value of the
Abelian gauge coupling. By choosing the bSM parameter fg such that the SM running
and the new-physics term cancel at an interacting fixed point, the value of the Abelian
gauge coupling becomes fixed at all scales in terms of the non-Abelian couplings and the
parameter fg. This effectively results in a reparametrization of the gauge sector, which
is now UV complete.
Residual Abelian gauge interactions in the far UV give rise to new fixed point struc-

tures in the Yukawa sector, as can be demonstrated by a top-bottom-gauge system, the
study of which was first performed in [7–9] and is summarized in Chapter 3: Due to
the fact that the Abelian gauge contribution to the running of the Yukawa couplings is
non-zero at the fixed point, the system of β-functions is no longer symmetric under an
interchange of up-type and down-type flavour indices within a generation. This is due to
the unequal U (1)Y hypercharges of right-handed up- and down-type quarks and has the
effect that also the system of fixed point solutions no longer exhibits this symmetry. In
the case where the Abelian gauge coupling is asymptotically free, the fixed point values
of the top and bottom Yukawas at the fixed point where both the top and the bottom
are interacting are degenerate. In the case where the Abelian gauge coupling emanates
from an interacting, IR attractive fixed point in the UV, this degeneracy is lifted. It
turns out that – with a suitable choice of the value of the parameter fy – the splitting of
the fixed point values in the UV due to the interacting Abelian gauge coupling results in
a phenomenologically viable RG trajectory, where the IR values of the Yukawa couplings

1cf. Chapter 3 and [7–9].
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translate to the correct pole masses within a reasonable margin. The residual Abelian
gauge interactions hence generate a non-trivial flavour structure at the UV fixed point.
This structure is not present for vanishing Abelian contributions, as then up- and down-
type quarks are indistinguishable at the fixed point. Just like for the Abelian gauge
coupling, the interacting fixed point in the Yukawa sector is IR attractive in both the
top and the bottom, meaning that the flow of the Yukawa couplings is parametrized in
terms of the relevant non-Abelian couplings and the bSM parameters fg and fy.
The investigation of the one generation model demonstrates that the antiscreening

bSM terms could provide a UV completion of the gauge and Yukawa sector while also
generating new, predictive UV fixed points. The predictiveness of the interacting fixed
points is a consequence of an enhanced symmetry, in this case of the scale symmetry at
the fixed point [6]: As is often the case in physics, a symmetry constrains the interactions
of a theory. In the case at hand, the irrelevant couplings are fixed purely in terms of the
relevant ones, allowing us to derive the values of the top and bottom Yukawas as well
as of the Abelian gauge coupling at all scales from the fixed point structure.
The extension of this study to a system with two generations was the main task per-

formed in this thesis, where we investigated whether the mechanism introduced for the
one generation case in [7–9] also works in a multi-generation system. By introducing
a second quark generation, we have to take flavour mixing into account, which plays a
crucial role in the RG evolution of the Yukawa couplings. A naïve extension of the phe-
nomenologically viable fixed point studied in the one generation case yields a vanishing
strange Yukawa coupling at all scales and no finite strange mass can be accommodated2.
Furthermore, for this fixed point solution the mixing is trivial at all scales and no devi-
ations from a fully diagonal CKM matrix can be achieved. However, there exists a fixed
point in the two generation case that yields at least a qualitatively viable RG trajectory
(cf. Fig. 4.1): Starting with an anti-diagonal CKM matrix at the UV fixed point, there
exists a fixed point with interacting, IR attractive fixed points for the top and bottom
Yukawas and asymptotically free charm and strange Yukawas. As the CKM matrix is
now anti-diagonal at the UV fixed point, both Yukawas from the second generation are
IR repulsive. While viable IR values of the charm and strange Yukawa couplings as
well as of the squared modulus of the CKM matrix element can be accommodated, the
flows of the top and bottom Yukawas are again fixed by the relevant couplings. While
the large mass splitting of the top and bottom quark is again qualitatively described,
the top pole mass is predicted to be roughly 10% larger than the experimental value.
This is because the fixed point value of the top is significantly larger for this fixed point
solution than for the naïve extension of the one generation fixed point.
The study of the two generation case furthermore reveals an important piece of non-

perturbative information about the running of the CKM matrix: Due to the unitarity of
the CKM matrix, poles appear in the β-functions of the squared moduli |Vij|2 if at least
two up-type (down-type) Yukawa couplings are degenerate3. This has the consequence

2Note, however, that we did not take the dynamically generated mass from strong interactions into
account [6].

3Mind the exception of vanishing Yukawas as discussed in Section 4.3.
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that the trajectories of two up-type (down-type) Yukawas can not cross during the flow
towards the IR, meaning that the generational hierarchy of up-type (down-type) quarks
at the UV fixed point is conserved at all scales. For the particular case of the two
generation model with UV fixed point #1 in Tab. 4.1, this means yt(µ) > yc(µ) and
yb(µ) > ys(µ) for all values of the RG scale µ. We therefore have – in addition to the
predictive, interacting fixed points of the heavy quarks – an additional (albeit weaker)
constraint on the flavour structure in the IR. The value of the Yukawa coupling of an
up-type (down-type) quark of generation i is effectively bounded from above by the
fixed point value of the next heavier up-type (down-type) quark Yukawa. Notice though
that this only holds when the deviation of the relevant couplings from their (vanishing)
fixed point values is small. As soon as, e.g., the non-Abelian gauge couplings start to
deviate from the Gaußian fixed point significantly, the Yukawa couplings may flow to
values larger than the fixed point value of the next heavier quark. Finally, we note that
the transition scale µtrans, i.e. the scale where the system transitions from one scaling
behaviour to another as the denominators in the β-functions of the squared moduli of the
CKM matrix elements become small, typically lies several hundred orders of magnitude
above the Planck scale, which begs the question how physical they really are and whether
these transitions are just mathematical properties of the RG flow of the system.
Before we give an outlook on a study treating the phenomenologically interesting

case of three generations, we now briefly discuss the stability of the presented fixed
point solutions upon including higher order corrections, following the discussion in [6].
The mechanism that induces fixed points in the model discussed here is the interplay
between the SM β-functions and the newly introduced, antiscreening bSM terms. We
are only interested in fixed point solutions that arise from this balancing of SM and
bSM contributions and not in fixed points that are mere artifacts of the perturbative
expansion. As argued in [6], a fixed point that fulfils these conditions must reduce to
the free fixed point in the limit fg → 0 and fy → 0. Furthermore, for small parameters
fg and fy, the fixed point solutions should be near Gaußian such that higher order loop
contributions do not alter the fixed point values significantly [6]. A study of the effects of
two-loop corrections to the one-loop β-functions used in this thesis has been performed
in [6], and it was shown that the fixed point solutions discussed in this work are in fact
stable upon inclusion of two-loop terms. New fixed point solutions that are artifacts of
the perturbative expansion do arise, but their values lie way beyond the perturbative
regime. The two-loop β-functions for a two generation model are presented in Appendix
B.3.
The next step beyond a two generation model is of course the phenomenologically

interesting case of a three generation model. A partial study of such a model has been
performed in [6]. The system of one-loop β-functions of a three generation model is
significantly more complicated than the system for the two-generation model. In fact,
the system of equations is so involved that even with computer algebra systems it is
a non-trivial task to find the complete set of analytic fixed point solutions. In [6], the
study of the fixed point solutions was hence reduced to solutions where the mixing is
minimal, i.e. where the CKM matrix is some unitary matrix with only ones and zeros
as entries at the fixed point. The fixed point patterns of the CKM matrix then once
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again form a faithful representation of the permutation group, like in the case of two
generations. The main findings made in this work also hold for a three generation
model: A non-vanishing Abelian gauge coupling breaks the symmetry of up- and down-
type flavours within a generation. Furthermore, poles again appear in the β-functions
of the squared moduli of the CKM matrix elements, preventing a crossing of up-type
(down-type) Yukawa couplings during the flow towards the IR. The one-loop β-functions
for a model containing three generations are given in Appendix B.2. For a detailed study
of a three generation model see [6].
In summary, we showed in this thesis that the extension of the studies performed in

[7–9] to a model containing two generations of quarks where we include flavour mixing
effects is possible in the sense that there exists a qualitatively similar RG trajectory: The
large splitting between top and bottom quarks due to the unequal Abelian hypercharges
at non-vanishing Abelian gauge coupling is still present, while the correct IR values of
the charm and strange quark as well as of the CKM matrix element can be accommod-
ated. Hence, the model can in fact yield a phenomenologically viable mass hierarchy in
the IR. We also demonstrated how a multi-generational model and the then necessary
introduction of flavour mixing effects adds another layer of complexity to the theory:
Two fixed point solutions exist for the 2 × 2 CKM matrix, one at which the matrix is
diagonal and one at which the matrix is antidiagonal. These fixed point structures form
a representation of the permutation group and have the effect of interchanging the roles
of the bottom and strange quarks. This, together with a symmetry of the system of
β-functions under the exchange of top and strange quarks results in a quartet structure
of the fixed point solutions. Furthermore, the unitarity of the CKM matrix prohibits
a crossing of up-type (down-type) Yukawas during the flow towards the IR, which fur-
ther restricts the flavour structure in the IR. However, unlike in the case of only one
generation, the RG study of the two generation model consistently predicts a top mass
that is roughly 10% larger than the observed top mass, given that one strarts from
the fixed point solution where all other running quantities can can be tuned to reach
their phenomenological values in the IR. Another conclusion that we can draw from this
work is that the inclusion of a second generation together with mixing effects does not
a provide more predictivity than the one generation model: The number of irrelevant,
i.e. uniquely fixed directions is the same in the two generation model as in the one gen-
eration model. While the Abelian gauge coupling as well as the top and bottom quark
Yukawas are still irrelevant, the newly added running couplings (yc, ys and |V11|2) have
to be relevant with respect to a fixed point where they have vanishing fixed point values
in order to accommodate their correct IR values. As discussed in [6], this also seems
to be the case for a model containing three generations of quarks. Lastly, we note that
the running of the newly added couplings is extremely slow and their sclaing exponents
are generally very small. This has the effect that the typical scales where the system
changes its running behaviour when one comes close to the poles in the β-functions of
|Vij|2 lie hundreds of orders of magnitude above the Planck scale, which might suggest
that this transition is rather a methematical property of the system of equations than
a truly physical situation. The model we studied in this thesis is hence interesting in
detail, but fails to extend the promising results of the one generation model.
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As for future work on this topic, we note that so far we completely ignored the leptonic
sector of the SM. It would be interesting to study whether the flavour structures for the
leptonic sector arise in a similar fashion as they do in the quark sector. Besides the
leptonic sector, the research of possible bSM theories that could generate antiscreening
terms as studied here is of great interest. Originally, these terms stem from asymptot-
ically safe quantum gravity, but there is no reason to exclude other bSM theories, like,
e.g., GUTs, from the considerations.
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A. Derivation of β-functions
In this Appendix we show details on the calculation of the β-functions used in the main
text.

A.1. Gauge Couplings
In the following, we discuss the group theoretical factors appearing in Eq. (2.33). We
follow the definitions given in [19, 20].
The representation matrices τa for the generators of the gauge group G satisfy the Lie

algebra relation
[τa, τ b] = i

∑
c

fabcτ c , (A.1)

with fabc the structure constants. The quadratic Casimir operator C2 is defined as [73]

C2 ≡
∑
a

τaτa . (A.2)

Its eigenvalue C2(G) in the adjoint representation of G is given by∑
cd

facdf bcd = C2(G)δab . (A.3)

The Dynkin index [73, 74] S2(R) of an irreducible representation R is defined by

Tr τaτ b = S2(R)δab , (A.4)

and satisfies the relation
d(G)S2(R) = d(R)C2(R) , (A.5)

with d(R) the dimension of the representation R and d(G) the dimension of the Lie
algebra g of G.
We now calculate these group theoretic factors for a SM-like theory with gauge group1

SU(3)C ⊗ SU(2)L ⊗ U(1)Y. The results are summarized in Tab. A.1. The eigenvalues of
the quadratic Casimir operator for a group SU(N) are given by:

C2 (SU(N)) = N . (A.6)

As U(1)Y is an Abelian group, its structure constants vanish and its adjoint representa-
tion is zero, hence C2 (U(1)Y) = 0. For S2(F ), i.e. the Dynkin index of the representation

1In case that the gauge group is not simple but a direct product group G =
⊗

i Gi, a sum over the
index i appears in the definition of the Casimir and Dynkin index, cf. [19, 20].
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Group C2 S2(F ) S2(S)

SU(3)C 3 2Ng 0
SU(2)L 2 2Ng

1
2NH

U(1)Y 0 ∑Ng

i=1

{
3Q(i) + L(i)

}
2 NH (YH)2

Table A.1.: Group theoretic factors for a theory with gauge group SU(3)C ⊗ SU(2)L ⊗
U(1)Y. Q(i) =

(
Y (i)
uR

)2
+2

(
Y (i)
qL

)2
+
(
Y

(i)
dR

)2
and L(i) =

(
Y (i)
eR

)2
+2

(
Y

(i)
lL

)2
, cf. Eq. (A.10).

of the gauge group under which the fermion fields transform, we have to take a look at
the transformation properties of the fields, cf. Tab. 2.2. In case of G = SU(3)C, we
note that only the quarks transform in a non-trivial way. Using the usual Gell-Mann
matrices 1

2λ
A as the representation matrices of the generators of SU(3)C in the funda-

mental representation we obtain

S2(F ) = 4Ng Tr
(
λ1

2 ·
λ1

2

)
= 4Ng Tr

(
λ2

2 ·
λ2

2

)
= . . . = 4Ng Tr

(
λ8

2 ·
λ8

2

)
= 2Ng ,

(A.7)
where the factor 4 stems from the fact that there are two left-handed and two right-
handed quarks per generation. For the SU(2)L group, we find similar results: All left-
handed fields transform as SU(2)L-doublets, whereas all right-handed fields transform as
SU(2)L-singlets. There are 3 left-handed quark doublets (3 colours) and 1 left-handed
lepton doublet per generation. Using the usual Pauli matrices 1

2σ
A as the representation

matrices of the generators of SU(2)L in the fundamental representation, we obtain

S2(F ) = 4Ng Trσ
1

2 ·
σ1

2 = 4Ng Trσ
2

2 ·
σ2

2 = 4Ng Trσ
3

2 ·
σ3

2 = 2Ng . (A.8)

Under local U(1)Y transformations, the left- and right-handed fermions as well as the
complex scalar SU(2)L doublets transform as

ψi → ψ′i = eiYiθ(x)ψi , (A.9)

where the ψi is any field and Yi are the generators of U(1)Y, the so called (weak) hyper-
charges [12]. As the generators of U(1)Y are simply numbers, all we have to do to get
S2(F ) is to add up the squares of all hypercharges:

S2(F ) =
Ng∑
i=1

{
Nc

[(
Y (i)
uR

)2
+ 2

(
Y (i)
qL

)2
+
(
Y

(i)
dR

)2
]

+
[(
Y (i)
eR

)2
+ 2

(
Y

(i)
lL

)2
]}

. (A.10)

Here, Y (i)
uR(dR) denotes the hypercharge of a right-handed up(down)-type quark, Y (i)

eR
de-

notes the hypercharge of a right-handed charged lepton and Y (i)
qL(lL) denotes the hyper-

charge of a left-handed quark (lepton), which get an additional factor 2 as there are two
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left-handed fields per generation. In addition, every quark hypercharge gets a factor
Nc = 3, accounting for the number of different colours in which the quarks appear. The
superscript i labels the different fermion generations.
For the scalar Dynkin index S2(S) we note that the complex scalar Higgs doublet is

a SU(2)L doublet and hence transforms also as an element of the representation space
of the fundamental representation of SU(2)L. We conclude that S2(S) = 1

2NH with NH

the number of complex scalar Higgs doublets in the Lagrangian. For the Abelian group
U(1)Y we again have to add up the respective hypercharges which yields S2(S) = 2NH

where YH is the hypercharge of the complex scalar Higgs (YH)2. There is also a factor
2 accounting for the doublet structure of the Higgs. As the Higgs doublet transforms
trivially under SU(3)C transformations, the respective Dynkin index vanishes.

A.2. Yukawa Couplings
We now demonstrate how to diagonalize Eq. (2.37) and (2.38). The Hermitian matrices
Zu (t) = YuY†u and Zd (t) = YdY†d at RG time t0 can be diagonalized using a unitary
transformation:

Zu (t0) = U †LZu (t0) UL , Zd (t0) = D†
LZd (t0) DL , (A.11)

with

Zu (t) = diag
(
y2
u (t) , y2

c (t) , y2
t (t) , . . .

)
, Zd (t) = diag

(
y2
d (t) , y2

s (t) , y2
b (t) , . . .

)
,

(A.12)
where t ≡ log (µ/Λ). At another RG time t1 6= t0, the Yukawa matrices Yu,d have
evolved according to the β-functions Eq. (2.37) and (2.38) and one needs a different
set of unitary transformations given by U ′L and D′

L in order to diagonalize the squared
Yukawa matrices Zu,d. Hence, the diagonalizing unitary matrices UL and DL also
depend on the RG time t:

UL → UL (t) , DL → DL (t) (A.13)

Assuming that all matrices are smooth functions of the RG time t, after an infinites-
imal time step dt Eq. (A.11) reads:

Zu (t+ dt) = U †L (t+ dt) Zu (t+ dt) UL (t+ dt)

=
(

U †L (t) + dU †L (t)
)(

Zu (t) + dZu (t)
)(

UL (t) + dUL (t)
)

=
(

U †L (t) + β
(
U †L

)
dt
)(

Zu (t) + β (Zu) dt
)(

UL (t) + β (UL) dt
)
,

(A.14)

and analogous for the down-type matrix:

Zd (t+ dt) =
(

D†
L (t) + β

(
D†

L

)
dt
)(

Zd (t) + β (Zd) dt
)(

DL (t) + β (DL) dt
)
.

(A.15)
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Given that they are unitary at any RG time t, we require the matrices UL and DL to
be unitary after an infinitesimal RG time step dt:

1
!= UL (t+ dt) U †L (t+ dt) = U †L (t+ dt) UL (t+ dt) (A.16)

⇒ 1 = UL (t) U †L (t) +
(

dUL (t)
)

U †L (t) + UL (t)
(

dU †L (t)
)

= 1+ β (UL) U †L (t) dt+ UL (t)
(
β (UL)

)†
dt , (A.17)

1 = U †L (t) UL (t) +
(

dU †L (t)
)

UL (t) + U †L (t)
(

dUL (t)
)

= 1+
(
β (UL)

)†
UL (t) dt+ U †L (t) β (UL) dt . (A.18)

and analogous for the down-type matrix. From this, we can deduce the unitarity condi-
tions:

β
(
ULU †L

)
= β (UL) U †L + UL

(
β (UL)

)†
= 0 , (A.19)

β
(
U †LUL

)
=
(
β (UL)

)†
UL + U †Lβ (UL) = 0 , (A.20)

β
(
DLD†

L

)
= β (DL) D†

L + DL

(
β (DL)

)†
= 0 , (A.21)

β
(
D†

LDL
)

=
(
β (DL)

)†
DL + D†

Lβ (DL) = 0 . (A.22)

β-functions that satisfy the conditions (A.19) to (A.22) describe a unitary evolution of
UL and DL, i.e. matrices that are unitary at an initial RG time t0 and which evolve
according to β-functions that satisfy the conditions (A.19) to (A.22) are unitary at all
times. This obviously holds for any unitary matrix A:

β
(
AA†

)
= β (A) A† + A

(
β (A)

)†
= 0 , (A.23)

β
(
A†A

)
=
(
β (A)

)†
A + A†β (A) = 0 . (A.24)

The CKM matrix V is given by

V (t) ≡ UL (t) D†
L (t) . (A.25)

The general quark Yukawa matrices can be diagonalized by using two unitary matrices:

Yu = U †LYuUR , Yd = D†
LYdDR . (A.26)
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Upon inserting these relations into Eq. (2.37) and (2.38), we can extract the β-functions
for the diagonal matrices Yu,d (following the procedure in [24]):

β
(
Yu

)
= dYu

dt = d
dt
[
U †LYuUR

]
=

= 1
16π2

− AuU †LYuUR + 3
2U †LYuYuYuUR −

3
2D†

LYdYdDLU †LYuUR+

+NcTr
[
U †LYuYuUL + D†

LYdYdDL
]

U †LYuUR

 . (A.27)

The left-hand side of the above equation can be written as:
d
dt
[
U †LYuUR

]
= dU †L

dt YuUR + U †L
dYu

dt UR + U †LYu
dUR

dt . (A.28)

Now, we can multiply Eq. (A.28) from the left with UL and from the right with U †R.
This yields

UL
d
dt
[
U †LYuUR

]
U †R = UL

dU †L
dt Yu + dYu

dt + Yu
dUR

dt U †R . (A.29)

Adding the Hermitian conjugate of this equation yields

UL
d
dt
[
U †LYuUR

]
U †R + h.c. = UL

dU †L
dt Yu + dYu

dt + Yu
dUR

dt U †R+

+ Yu
dUL

dt U †L + dYu

dt + UR
dU †R

dt Yu . (A.30)

Performing the same algebraic operations on the r.h.s of β
(
Yu

)
, we get

ULβ
(
Yu

)
U †R + h.c. = UL

d
dt
[
U †LYuUR

]
U †R + h.c. =

= 1
16π2

− 2AuYu + 3YuYuYu −
3
2ULD†

LYdYdDLU †LYu−

− 3
2YuULD†

LYdYdDLU †L + 2NcTr [YuYu + YdYd] Yu

 ,

(A.31)
where we also used the invariance of the trace under cyclic permutations. We can now
write

UL
dU †L
dt Yu + Yu

dUL

dt U †L + 2dYu

dt + UR
dU †R

dt Yu + Yu
dUR

dt U †R =

= 1
16π2

− 2AuYu + 3YuYuYu −
3
2ULD†

LYdYdDLU †LYu−

− 3
2YuULD†

LYdYdDLU †L + 2NcTr [YuYu + YdYd] Yu

 . (A.32)
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As a next step, we want to study the equations for the diagonal elements of the above
matrix differential equation. In order to do so, we rewrite the above equation as

UL
dU †L
dt Yu + Yu

dUL

dt U †L + 2dYu

dt + UR
dU †R

dt Yu + Yu
dUR

dt U †R =

= UL
dU †L
dt Yu + dUL

dt U †LYu + 2dYu

dt + UR
dU †R

dt Yu + dUR

dt U †RYu−

−
[

dUL

dt U †L,Yu

]
−
[

dUR

dt U †R,Yu

]

= 2dYu

dt −
[

dUL

dt U †L,Yu

]
−
[

dUR

dt U †R,Yu

]
(A.33)

and

1
16π2

− 2AuYu + 3YuYuYu −
3
2ULD†

LYdYdDLU †LYu−

− 3
2YuULD†

LYdYdDLU †L + 2NcTr [YuYu + YdYd] Yu

 =

= 1
16π2

− 2AuYu + 3YuYuYu − 3YdYdYu + 2NcTr [YuYu + YdYd] Yu+

+ 3
2
{
V
[
V †,YdYd

]
,Yu

} . (A.34)

Next we note that the commutator of a diagonal matrix Λ = diag(λ1, λ2, λ3, . . .) and
an arbitrary matrix M has vanishing diagonal entries:

Sij =
∑
k

ΛikMkj =
∑
k

λiδikMkj = λiMij , (A.35)

S̃ij =
∑
k

MikΛkj =
∑
k

Mikδkjλj = λjMij , (A.36)

⇒ Sii = S̃ii ,

⇒ [Λ,M ]ii = Sii − S̃ii = 0 , (A.37)
⇒ {Λ,M}ii = Sii + S̃ii = 2Sii = 2S̃ii . (A.38)

This allows us to write down the one-loop β-functions of the diagonal elements of the
Yukawa matrix Yu from Eq. (A.33) and (A.34):

β (yui ) = yui
16π2

−Au + 3
2 (yui )2 − 3

2
∑
j

(
ydj
)2
|Vij|2 +NcTr [YuYu + YdYd]

 , (A.39)
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which is the same result as in [25]. An analogous calculation for the down-type Yukawa
matrix yields [25]:

β
(
ydi
)

= ydi
16π2

−Ad + 3
2
(
ydi
)2
− 3

2
∑
j

(
yuj
)2
|Vji|2 +NcTr [YuYu + YdYd]

 . (A.40)

A.3. CKM Matrix Elements
In order to calculate the one-loop β-functions of the quadratic matrix elements |Vij|2 =
VijV

∗
ij , we first note that

d |Vij|2

dt = V ∗ij
dVij
dt + Vij

dV ∗ij
dt = V ∗ij

dVij
dt +

(
V ∗ij

dVij
dt

)∗
= 2<

{
V ∗ij

dVij
dt

}
. (A.41)

Furthermore, derivation of V with respect to the RG time t yields

dV

dt = UL
dD†

L
dt + dUL

dt D†
L

= ULD†
LDL

dD†
L

dt + ULU †L
dUL

dt D†
L

= ULD†
LDL

dD†
L

dt + UL

(
dU †L
dt UL

)†
D†

L

= ULD†
LDL

dD†
L

dt −UL

(
U †L

dUL

dt

)†
D†

L

= ULD†
LDL

dD†
L

dt −UL
dU †L
dt ULD†

L

= V DL
dD†

L
dt −UL

dU †L
dt V (A.42)

⇒ dVij
dt =

∑
k

Vik
(

DL
dD†

L
dt

)
kj

−
(

UL
dU †L
dt

)
ik

Vkj

 , (A.43)

where we used Eq. (A.19) to (A.22). Multiplying with the complex conjugate matrix
element V ∗ij yields

V ∗ij
dVij
dt = |Vij|2

(
DL

dD†
L

dt

)
jj

− |Vij|2
(

UL
dU †L
dt

)
ii

+

+
∑
k 6=j

V ∗ijVik

(
DL

dD†
L

dt

)
kj

−
∑
k 6=i

(
UL

dU †L
dt

)
ik

V ∗ijVkj . (A.44)

As a next step, we need to calculate the expressions for the non-diagonal elements of
UL

dU†
L

dt and DL
dD†

L
dt . In order to do so, we use

dZu

dt = dU †L
dt ZuUL + U †L

dZu

dt UL + U †LZu
dUL

dt . (A.45)
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Multiplying this with UL from the right and U †L from the left, we obtain:

UL
dZu

dt U †L −
dZu

dt = UL
dU †L
dt Zu + Zu

dUL

dt U †L . (A.46)

Using Eq. (A.19) and (A.20), this can be written as:

UL
dZu

dt U †L −
dZu

dt =
[
UL

dU †L
dt ,Zu

]
. (A.47)

We are interested in the off-diagonal elements of the above equation. The off-diagonal
elements of a commutator of a diagonal matrix Λ = diag(λ1, λ2, λ3, . . .) and an arbitrary
matrix M are given by (i 6= j):

[M ,Λ]ij =
∑
k

(MikΛkj − ΛikMkj)

=
∑
k

(Mikδkjλj − λiδikMkj)

= λjMij − λiMij

= (λj − λi)Mij . (A.48)
Hence: [

UL
dU †L
dt ,Zu

]
ij

= −
[
(yui )2 −

(
yuj
)2
] (

UL
dU †L
dt

)
ij

=
(

UL
dZu

dt U †L

)
ij

⇒
(

UL
dU †L
dt

)
ij

= −1
(yui )2 −

(
yuj
)2

(
UL

dZu

dt U †L

)
ij

, i 6= j , (A.49)

where we used that β (Zu) has vanishing off-diagonal elements. After evaluating
(
UL

dZu

dt U †L
)
ij

using Eq. (2.37) and (2.38) and performing the same calculation for the down type
matrices, one obtains the relations [25]:(

UL
dU †L
dt

)
ij

= 3
32π2

(yui )2 +
(
yuj
)2

(yui )2 −
(
yuj
)2

(
V YdYdV

†
)
ij
, i 6= j , (A.50)

(
DL

dD†
L

dt

)
ij

= 3
32π2

(
ydi
)2

+
(
ydj
)2

(
ydi
)2
−
(
ydj
)2

(
V †YuYuV

)
ij
, i 6= j , (A.51)

for the non-diagonal elements. This yields

V ∗ij
dVij
dt = |Vij|2

(
DL

dD†
L

dt

)
jj

− |Vij|2
(

UL
dU †L
dt

)
ii

+

+ 3
32π2

∑
k 6=j

V ∗ijVik

(
ydk
)2

+
(
ydj
)2

(
ydk
)2
−
(
ydj
)2

(
V †YuYuV

)
kj
−

− 3
32π2

∑
k 6=i

(yui )2 + (yuk )2

(yui )2 − (yuk )2

(
V YdYdV

†
)
ik
V ∗ijVkj . (A.52)
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The difference of squared Yukawa couplings appears in the denominators of Eq. (A.50)
and (A.51) because of the commutator in Eq. (A.47). We can write Eq. (A.47) using a
commutator because of Eq. (A.19) to (A.22), which in turn are due to the unitarity of
UL and DL. The poles in the β-functions of the CKM matrix elements are therefore a
consequence of unitarity.
Next, we use (

V †YuYuV
)
kj

=
∑
l,m,n

V †kl (Yu)lm (Yu)mn Vnj

=
∑
l,m,n

V †kl δlm y
u
m y

u
m δmn Vnj

=
∑
m

(yum)2 VmjV
∗
mk , (A.53)(

V YdYdV
†
)
ik

=
∑
l,m,n

Vil (Yd)lm (Yd)mn V
†
nk

=
∑
l,m,n

Vil δlm y
d
m y

d
m δmn V

†
nk

=
∑
m

(
ydm
)2
VimV

∗
km . (A.54)
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Hence,

V ∗ij
dVij
dt = |Vij|2

(
DL

dD†
L

dt

)
jj

− |Vij|2
(

UL
dU †L
dt

)
ii

+

+ 3
32π2

∑
k 6=j

(
ydk
)2

+
(
ydj
)2

(
ydk
)2
−
(
ydj
)2
∑
m

(yum)2 VmjV
∗
mkV

∗
ijVik−

− 3
32π2

∑
k 6=i

(yui )2 + (yuk )2

(yui )2 − (yuk )2
∑
m

(
ydm
)2
VimV

∗
kmV

∗
ijVkj (A.55)

= |Vij|2
(

DL
dD†

L
dt

)
jj

− |Vij|2
(

UL
dU †L
dt

)
ii

+

+ 3
32π2

∑
k 6=j

(
ydk
)2

+
(
ydj
)2

(
ydk
)2
−
(
ydj
)2

(yui )2 |Vij|2 |Vik|2 +
∑
m 6=i

(yum)2 VmjV
∗
mkV

∗
ijVik

−
− 3

32π2

∑
k 6=i

(yui )2 + (yuk )2

(yui )2 − (yuk )2

(ydj )2
|Vij|2 |Vkj|2 +

∑
m6=j

(
ydm
)2
VimV

∗
kmV

∗
ijVkj


= |Vij|2

(
DL

dD†
L

dt

)
jj

− |Vij|2
(

UL
dU †L
dt

)
ii

+

+
3
(
ydj
)2

16π2

∑
k 6=j

1(
ydk
)2
−
(
ydj
)2

(yui )2 |Vij|2 |Vik|2 +
∑
m6=i

(yum)2 VmjV
∗
mkV

∗
ijVik

−
− 3 (yui )2

16π2

∑
k 6=i

1
(yui )2 − (yuk )2

(ydj )2
|Vij|2 |Vkj|2 +

∑
m 6=j

(
ydm
)2
VimV

∗
kmV

∗
ijVkj

+

+ 3 |Vij|2

32π2

{
(yui )2 +

(
ydj
)2
−
∑
m

(yum)2 |Vmj|2 −
∑
m

(
ydm
)2
|Vim|2

}
+

+ 3
32π2

∑
k

∑
m 6=j

(
ydm
)2
VimV

∗
kmV

∗
ijVkj +

∑
m6=i

(yum)2 VmjV
∗
mkV

∗
ijVik

 . (A.56)

The last line vanishes, as

∑
k

∑
m6=j

(
ydm
)2
VimV

∗
kmV

∗
ijVkj +

∑
m 6=i

(yum)2 VmjV
∗
mkV

∗
ijVik

 =

=
∑
m 6=j

∑
k

(
ydm
)2
VimV

∗
kmV

∗
ijVkj +

∑
m 6=i

∑
k

(yum)2 VmjV
∗
mkV

∗
ijVik

=
∑
m6=j

(
ydm
)2
VimV

∗
ij

(
V †V

)
mj

+
∑
m6=i

(yum)2 VmjV
∗
ij

(
V V †

)
im

=
∑
m6=j

(
ydm
)2
VimV

∗
ijδmj +

∑
m 6=i

(yum)2 VmjV
∗
ijδim = 0 , (A.57)
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where we used the unitarity of V . We further note that because of the relations in Eq.
(A.19) to (A.22), UL

dU†
L

dt and DL
dD†

L
dt are anti-Hermitian matrices, hence there diagonal

elements are purely imaginary. Taking the real part of the expression for V ∗ij
dVij

dt then
finally yields the β-function for the quadratic CKM matrix element |Vij|2:

β
(
|Vij|2

)
=

3
(
ydj
)2

16π2

∑
k 6=j

1(
ydk
)2
−
(
ydj
)2

2 (yui )2 |Vij|2 |Vik|2 + 2
∑
m 6=i

(yum)2 <
{
VmjV

∗
mkV

∗
ijVik

}−
− 3 (yui )2

16π2

∑
k 6=i

1
(yui )2 − (yuk )2

2
(
ydj
)2
|Vij|2 |Vkj|2 + 2

∑
m6=j

(
ydm
)2
<
{
VimV

∗
kmV

∗
ijVkj

}+

+ 3 |Vij|2

16π2

{
(yu

i )2 +
(
ydj
)2
−
∑
m

(yum)2 |Vmj|2 −
∑
m

(
ydm
)2
|Vim|2

}
, (A.58)

which is the same result as in [25].
We now show that this β-function guarantees a unitary RG-evolution of the CKM

matrix. First, we recall the unitarity conditions for a Ng ×Ng matrix:∑
i

VijV
∗
ik = δjk ,

∑
j

VijV
∗
kj = δik , ∀ i, j, k = 1, . . . , Ng . (A.59)

In order to guarantee a unitary RG-evolution, we require:

β

(∑
i

|Vij|2
)

=
∑
i

β
(
|Vij|2

) != 0 , ∀j = 1, . . . , Ng , (A.60)

β

∑
j

|Vij|2
 =

∑
j

β
(
|Vij|2

) != 0 , ∀i = 1, . . . , Ng . (A.61)
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We start by writing β
(
|Vij|2

)
using Eq. (A.55) and summing over rows:

∑
i

β
(
|Vij|2

)
= 2

∑
i

<
{
V ∗ij

dVij
dt

}

= 3
16π2

∑
i

∑
k 6=j

(
ydk
)2

+
(
ydj
)2

(
ydk
)2
−
(
ydj
)2
∑
m

(yum)2 <
{
VmjV

∗
mkV

∗
ijVik

}
−

− 3
16π2

∑
i

∑
k 6=i

(yui )2 + (yuk )2

(yui )2 − (yuk )2
∑
m

(
ydm
)2
<
{
VimV

∗
kmV

∗
ijVkj

}

= 3
32π2

∑
k 6=j

(
ydk
)2

+
(
ydj
)2

(
ydk
)2
−
(
ydj
)2
∑
m

(yum)2 ∑
i

(
VmjV

∗
mkV

∗
ijVik + V ∗mjVmkVijV

∗
ik

)
−

− 3
32π2

∑
m

(
ydm
)2∑

i

∑
k 6=i

(yui )2 + (yuk )2

(yui )2 − (yuk )2

(
VimV

∗
kmV

∗
ijVkj + V ∗imVkmVijV

∗
kj

)

= 3
32π2

∑
m

(yum)2 ∑
k 6=j

(
ydk
)2

+
(
ydj
)2

(
ydk
)2
−
(
ydj
)2

(
VmjV

∗
mk + V ∗mjVmk

)
δjk−

− 3
32π2

∑
m

(
ydm
)2∑

i

∑
k 6=i

(yui )2 + (yuk )2

(yui )2 − (yuk )2

(
VimV

∗
kmV

∗
ijVkj + V ∗imVkmVijV

∗
kj

)
.

The first term is zero because of the Kronecker delta δjk and the sum ∑
k 6=j. In the

second term, every combination of indices i and k appears two times, due to the double
sum ∑

i

∑
k 6=i. However, because of the minus in denominator, the members of such pairs

differ in their sign. Hence, the individual terms cancel each other and we conclude that∑
i

β
(
|Vij|2

)
= 0 . (A.62)

The same holds if we sum over columns.
We conclude that the β-function in Eq. (A.58) describes a unitary RG evolution. A

set of mixing parameters |Vij|2 that satisfy the unitarity conditions in Eq. (A.59) at an
initial RG time t0 and evolve according to eq. (A.58) satisfy the unitarity conditions at
all times. The fact that Eq. (A.58) satisfies the unitarity conditions in Eq. (A.60) and
(A.61) is again due to the minus sign in the denominators.
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B. Miscellaneous Expressions
In this Appendix we present the full expressions of quantities which are used in the main
text.

B.1. One-loop Expressions of δf
The running Yukawa coupling yMS

f (µ) of a fermion f in the MS-scheme is related to the
pole mass mf via the relation [63, 71]:

yMS
f (µ) = 2 3

4

√
GF mf

[
1 + δ

(1)
f (µ) + δ

(2)
f (µ) + . . .

]
. (B.1)

The one-loop contribution δ(1)
f (µ) can be split into a weak, electromagnetic and strong

part:
δ

(1)
f (µ) = δW

f (µ) + δQED
f (µ) + δQCD

f (µ) . (B.2)

These contributions are given by [71]:

δQCD
f (µ) = N2

c − 1
2Nc

g2
3(µ)

16π2

(
3 log

m2
f

µ2 − 4
)
, (B.3)

δQED
f (µ) = Q2

f

g2
2 (µ)
16π2

(
1− M2

W

M2
Z

)(
3 log

m2
f

µ2 − 4
)
, (B.4)

δW
t (µ) = GFm

2
t

8π2
√

2

[
−
(
Nc + 3

2

)
log m

2
t

µ2 + Nc

2 + 4− M2
H

4m2
t

+ M2
H

2m2
t

(
M2

H

2m2
t

− 3
)

log M
2
H

m2
t

−

− 8
(
M2

H

4m2
t

)2 (4m2
t

M2
H

− 1
) 3

2

arccos MH

2mt

]
, (B.5)

δW
b (µ) = GF

8π2
√

2

{
m2
t

[(
−Nc + 3

2

)
log m

2
t

µ2 + Nc

2 −
5
4

]
+ M2

H

4

}
, (B.6)

δW
f (µ) = GF

8π2
√

2

[
Ncm

2
t

(
− log m

2
t

µ2 + 1
2

)
+ M2

H

4

]
, (f = u, d, s, c) , (B.7)

where Qf is the electric charge of the fermion f and MW,Z,H are the masses of the
W boson, Z boson and Higgs boson, respectively. Note that these expressions were
calculated in [71] in the limit were MH and mt are large in comparison to the masses
of all other fermions in the SM. Also, we have ignored any threshold effects (for details,
see [71]).
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B.2. One-loop β-functions for Ng = 3
In this section of the Appendix we present the one-loop β-functions for a three generation
model. We write all β-functions in terms of the four squared moduli of the CKM matrix
elements |V11|2, |V22|2, |V12|2 and |V21|2.

β (yt) = yt
16π2

{
− Au + 9

2y
2
t + 3y2

u + 3y2
c + 3

2y
2
d

(
1 + |V11|2 + |V21|2

)
+ 3

2y
2
s

(
1 + |V12|2 + |V22|2

)
+

+ 3
2y

2
b

(
3− |V11|2 − |V22|2 − |V12|2 − |V21|2

)}
− fyyt , (B.8)

β (yc) = yc
16π2

{
− Au + 9

2y
2
c + 3y2

u + 3y2
t + 3

2y
2
d

(
2− |V21|2

)
+ 3

2y
2
s

(
2− |V22|2

)
+

+ 3
2y

2
b

(
1 + |V21|2 + |V22|2

)}
− fyyc , (B.9)

β (yu) = yu
16π2

{
− Au + 9

2y
2
u + 3y2

c + 3y2
t + 3

2y
2
d

(
2− |V11|2

)
+ 3

2y
2
s

(
2− |V12|2

)
+

+ 3
2y

2
b

(
1 + |V11|2 + |V12|2

)}
− fyyu , (B.10)

β (yb) = yb
16π2

{
− Ad + 9

2y
2
b + 3y2

d + 3y2
s + 3

2y
2
u

(
1 + |V11|2 + |V12|2

)
+ 3

2y
2
c

(
1 + |V21|2 + |V22|2

)
+

+ 3
2y

2
t

(
3− |V11|2 − |V22|2 − |V12|2 − |V21|2

)}
− fyyb , (B.11)

β (ys) = ys
16π2

{
− Ad + 9

2y
2
s + 3y2

d + 3y2
b + 3

2y
2
u

(
2− |V12|2

)
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2
c

(
2− |V22|2

)
+

+ 3
2y

2
t

(
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− fyys , (B.12)

β (yd) = yd
16π2

{
− Ad + 9
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2
d + 3y2

s + 3y2
b + 3

2y
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u

(
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)
+

+ 3
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2
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− fyyd , (B.13)

with

Au =
(17

12g
2
Y + 9

4g
2
2 + 8g2

3

)
, (B.14)

Ad =
( 5

12g
2
Y + 9

4g
2
2 + 8g2

3

)
. (B.15)
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β
(
|V11|2

)
= 3y2

d
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+
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+
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+

+ y2
b

(
|V11|2 + |V22|2 + |V12|2 + |V21|2 − 2 |V21|2 |V11|2 − |V12|2 |V21|2 − |V22|2 |V11|2 − 1
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+
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Here, we used the following expression for the real parts <
{
VimV

∗
kmV

∗
ijVkj

}
for Ng = 3

[25]:
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∗
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= 1− |Vim|2 − |Vkm|2 − |Vkj|2 − |Vij|2 + |Vim|2 |Vkj|2 + |Vkm|2 |Vij|2 .

(B.20)
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B.3. Two-loop β-functions for Ng = 2
For the sake of completeness, we present the two-loop β-functions of the gauge and
Yukawa couplings as well as the quadratic CKM matrix element for Ng = 2 as calculated
in [6].

β
(
g2
Y

)
= g2

Y

16π2

(
41
3 g

2
Y + g2

Y

16π2

[199
9 g2

Y + 9g2
2 + 88g2

3 −
17
3 (y2

t + y2
c )−

5
3(y2

b + y2
c )
])

, (B.21)

β
(
g2

2

)
= g2

2
16π2

(
−19

3 g
2
2 + g2

2
16π2

[
3g2
Y + 35

3 g
2
2 + 24g2

3 − 3(y2
t + y2

c ) + 3(y2
b + y2

c )
])

, (B.22)

β
(
g2

3

)
= g2

3
16π2

(
−14g2

3 + g2
3

16π2

[
11
3 g

2
1 + 9g2

2 − 52g2
3 − 4(y2

t + y2
c )− 4(y2

b + y2
c )
])

, (B.23)

β
(
y2
t

)
= y2

t

16π2

[
2(Y2(S)−Gu) + 3y2

t − 3y2
b |V11|2 − 3y2

s(1− |V11|2)
]

+

+ y2
t

(16π2)2

[
3y4
t − 5

2y
2
t

(
y2
b |V11|2 + y2

s(1− |V11|2)
)

+ 11
2 y

4
b |V11|2 + 11

2 y
4
s(1− |V11|2)+

+ 2Auuy2
t + 2Aud

(
y2
b |V11|2 + y2

s(1− |V11|2)
)

+ 2Bu
]
, (B.24)

β
(
y2
c

)
= y2

c

16π2

[
2(Y2(S)−Gu) + 3y2

c − 3y2
s |V11|2 − 3y2

b (1− |V11|2)
]

+

+ y2
c

(16π2)2

[
3y4
c −

5
2y

2
c

(
y2
s |V11|2 + y2

b (1− |V11|2)
)

+ 11
2 y

4
s |V11|2 + 11

2 y
4
b (1− |V11|2)+

+ 2Auuy2
c + 2Aud

(
y2
s |V11|2 + y2

b (1− |V11|2)
)

+ 2Bu
]
, (B.25)

β
(
y2
b

)
= y2

b

16π2

[
2(Y2(S)−Gd) + 3y2

b − 3y2
t |V11|2 − 3y2

c (1− |V11|2)
]

+

+ y2
b

(16π2)2

[
3y4
b −

5
2y

2
b

(
y2
t |V11|2 + y2

c (1− |V11|2)
)

+ 11
2 y

4
t |V11|2 + 11

2 y
4
c (1− |V11|2)+

+ 2Addy2
b + 2Adu

(
y2
t |V11|2 + y2

c (1− |V11|2)
)

+ 2Bd
]
, (B.26)

β
(
y2
s

)
= y2

s

16π2

[
2(Y2(S)−Gd) + 3y2

s − 3y2
c |V11|2 − 3y2

t (1− |V11|2)
]
+

+ y2
s

(16π2)2

[
3y4
s −

5
2y

2
s

(
y2
c |V11|2 + y2

t (1− |V11|2)
)

+ 11
2 y

4
cX + 11

2 y
4
t (1− |V11|2)+

+ 2Addy2
s + 2Adu

(
y2
c |V11|2 + y2

t (1− |V11|2)
)

+ 2Bd
]
. (B.27)

73



APPENDIX B. MISCELLANEOUS EXPRESSIONS B.3. TWO-LOOP β-FUNCTIONS FOR NG = 2

β
(
|V11|2

)
= 3

16π2 |V11|2
(
1− |V11|2

){[(
y2
c + y2

s

)
−
(
y2
t + y2

b

)]
− 2y2

c

y2
s − y2

b

y2
c − y2

t

− 2y2
s

y2
c − y2

t

y2
s − y2

b

}
−

− 2
(16π2)2 |V11|2

(
1− |V11|2

) [ 1
y2
t − y2

c

{
(y2
b − y2

s)
(1

2y
2
t y

2
c + y4

t + y4
c −Aud(y2

t + y2
c )
)
−

− (y4
b − y4

s)(y2
t + y2

c )
}

+

+ 1
y2
b − y2

s

{
(y2
t − y2

c )
(1

2y
2
by

2
s + y4

b + y4
s −Adu(y2

b + y2
s)
)
− (y4

t − y4
c )(y2

b + y2
s)
}]

,

(B.28)

with

Gu = 17
12g

2
1 + 9

4g
2
2 + 8g2

3 (B.29)

Gd = 5
12g

2
1 + 9

4g
2
2 + 8g2

3 , (B.30)

Y2(S) = 3(y2
t + y2

c ) + 3(y2
b + y2

s) , (B.31)

Auu =
(

223
48 g

2
1 + 135

16 g
2
2 + 16g2

3

)
− 9

4Y2(S) , (B.32)

Add =
(

187
48 g

2
1 + 135

16 g
2
2 + 16g2

3

)
− 9

4Y2(S) , (B.33)

Aud = 5
4Y2(S)−

(
43
48g

2
1 − 9

16g
2
2 + 16g2

3

)
, (B.34)

Adu = 5
4Y2(S)−

(
79
48g

2
1 − 9

16g
2
2 + 16g2

3

)
, (B.35)

Bu = −χ4(S) + 1187
216 g

4
1 − 23

4 g
4
2 − 108g4

3 − 3
4g

2
1g

2
2 + 19

9 g
2
1g

3
2 + 9g2

2g
2
3 + 5

2Y4(S) , (B.36)
Bd = −χ4(S)− 127

216g
4
1 − 23

4 g
4
2 − 108g4

3 − 9
4g

2
1g

2
2 + 31

9 g
2
1g

3
2 + 9g2

2g
2
3 + 5

2Y4(S) , (B.37)

χ4(S) = 9
4

[
3
(
y4
t + y4

c

)
+ 3

(
y4
b + y4

s

)
−

− 2
3
(
y2
t y

2
b |V11|2 + y2

t y
2
s(1− |V11|2) + y2

cy
2
s |V11|2 + y2

cy
2
s(1− |V11|2)

) ]
, (B.38)

Y4(S) =
(17

12g
2
1 + 9

4g
2
2 + 8g2

3

) (
y2
t + y2

c

)
+
( 5

12g
2
1 + 9

4g
2
2 + 8g2

3

) (
y2
b + y2

s

)
. (B.39)

74



Acknowledgement
Firstly, I would like to express my gratitude to my supervisor Reinhard Alkofer for his
guidance and valuable support during the creation of this thesis. Furthermore, I would
like to offer my special thanks to Astrid Eichhorn, Aaron Held, Carlos M. Nieto and
Roberto Percacci for the fruitful collaboration and giving me the chance to work with
them on this exciting topic. I am grateful to the Paul-Urban foundation for financial
support.

75



List of Figures
2.1. Yukawa interaction vertex. . . . . . . . . . . . . . . . . . . . . . . . . . . 12
2.2. Weak charged current interaction vertex. . . . . . . . . . . . . . . . . . . 13
2.3. Example of a RG flow in the vicinity of a fixed point. The critical manifold

(green) of the FP (red dot) is spanned by the relevant directions. In this
example, we have one irrelevant direction (denoted by an in-going black
arrow) and two relevant directions (denoted by out-going black arrows).
The arrows show the direction of the flow from the UV to the IR. The
flow starts off the critical manifold at some high scale ΛUV and is driven
towards the FP, from which it flows away again along the critical manifold.
For the sake of presentability, we only considered a "truncated", three
dimensional theory space. This figure was adapted from [61]. . . . . . . . 22

2.4. Example of Feynman diagrams contributing to the renormalization con-
stants used in the calculation of the one-loop β-functions of the gauge
coupling g in a general gauge theory based on a simple (non-Abelian)
gauge group G with scalar, fermion and vector boson fields. Continuous,
curly, dotted and dashed lines represent fermions, gauge bosons, ghosts
and scalars, respectively. . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

2.5. Example of Feynman diagrams contributing to the renormalization con-
stants used in the calculation of the one-loop β-functions of the Yukawa
couplings. Continuous, curly and dashed lines represent fermions, gauge
bosons and scalars, respectively. . . . . . . . . . . . . . . . . . . . . . . . 25

3.1. RG flow of gauge couplings for fixed point solution #2 in Tab. 3.1 and
fg = 9.7× 10−3 [9]. In the UV regime (µ > MNP = MPlanck) the Abelian
gauge coupling gY takes a constant value. The asymptotically free char-
acter of the non-Abelian gauge couplings g2,3 is amplified by the anti-
screening nature of the bSM term −fggi. Below the scale of new physics,
the RG running of the couplings is governed by the usual SM one-loop
β-functions and the Abelian gauge coupling is no longer scale invariant.
Choosing suitable initial conditions of the RG flow of the relevant non-
Abelian couplings in the UV, their measured IR values can be accomod-
ated. This result was obtained in [7–9]. . . . . . . . . . . . . . . . . . . . 31

3.2. RG flow of the top and bottom Yukawa couplings for fixed point solution
#4 in Tab. 3.3. In the UV regime (µ > MNP = MPlanck) the Yukawa
couplings are not scale invariant. Choosing fy = 1.188 × 10−4 [9], the
measured quark pole masses can be approximately recovered. This result
was obtained in [9]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

76



List of Figures List of Figures

4.1. RG flow of Yukawa couplings and quadratic CKM matrix element for
fixed point solution #1 in Tab. 4.1. The charm and strange Yukawa as
well as the quadratic CKM matrix element are relevant couplings with
vanishing fixed point value, while the top and bottom Yukawas are ir-
relevant couplings with interacting UV fixed points. The top Yukawa is
too large, leading to an overestimate of the top mass of about 10%. The
running of the CKM parameter is extremely slow (note that |V11|2? = 0). . 43

4.2. RG flow of bottom and strange Yukawa couplings as well as the squared
modulus of the CKM matrix element, |V11|2. In the far UV, the bottom
Yukawa sticks to its fixed point value, denoted by a gray dotted-dashed
line. As soon as the strange Yukawa comes close to the bottom Yukawa,
the denominator in the β-function of |V11|2 becomes small and |V11|2 is
driven towards the IR fixed point |V11|2? = 1. This reverses the roles of the
bottom and strange Yukawas: Now, the running of the strange Yukawa
freezes while the running of the bottom Yukawa is accelerated. This has
the consequence that the IR value of the strange Yukawa is bounded from
above (cf. discussion in the main text). The transition of the fixed point
scaling regimes happens around some transition scale µtrans ≈ 10700 GeV,
denoted by a gray dashed line. . . . . . . . . . . . . . . . . . . . . . . . . 45

4.3. RG flow of bottom and strange Yukawa couplings as well as the squared
modulus of the CKM matrix element |V11|2 for exaggerated initial con-
ditions and values of fy. The flow of the couplings is qualitatively the
same as in Fig. 4.2, but the transition between the scaling regimes is
much more pronounced. The two gray dotted lines denote the scales at
which the flow diagrams in Fig. 4.4 are evaluated: The left dashed line
corresponds to µ = 10150 GeV and the right dashed line corresponds to
the transition scale of this specific flow, µtrans ≈ 10600 GeV. The value
of fy and the initial conditions in the UV were chosen such that they
produce a prominent transition of the scaling behaviour, rather than the
correct IR values of the couplings. . . . . . . . . . . . . . . . . . . . . . . 46

4.4. Flow diagrams of the RG flow in Fig. 4.3. In the left panel, the yb-ys-plane
is shown at the UV fixed point #1 in Tab. 4.1. In the middle panel, we
show the flow at the transition scale µtrans = 10600 GeV. In the left panel,
we show the flow in the "IR" at a scale µ = 10150 GeV. The dot represents
the current position of the flow shown in Fig. 4.3 in a plane parallel to
the yb-ys-plane at the respective scale. The diagonal line represents the
hypersurface defined by yb = ys at which the β-function of |V11|2 becomes
non-analytic. The arrows in the flow diagrams all point towards the IR. . 47

77



List of Tables
2.1. Generation structure of fermions in the SM [13]. . . . . . . . . . . . . . . 10
2.2. The matter content of the SU(Nc)C⊗SU(2)L⊗U(1)Y Standard Model (cf.

[12]), given for Nc = 3. In the third column, the gauge group represent-
ations of the respective particles are given in the form (a, b)c. Here, a is
the representation of the colour group SU(3)C under which the particle
transforms: 3 means the particle transforms as a colour-triplet, i.e. in the
fundamental representation of SU(3)C and 1 means the field transforms
as a colour-singlet, i.e. it is invariant under SU(3)C-transformations. b
denotes the representation of SU(2)L, where 2 corresponds to the fun-
damental representation (left-handed doublets) and 1 means the fields
transform as singlets (right-handed singlet). The subscript c represents
the U(1)Y hypercharge of the respective particle. . . . . . . . . . . . . . . 11

2.3. Quark mass estimates taken from [14]. The masses are calculated in the
MS scheme at a renormalization scale of µ = 2 GeV for light quarks (u,
d, s) and µ = mQ for heavy quarks (c, b). The value of the top quark
mass is the particle data group’s (PDG) average of direct measurements
from LHC and Tevatron Runs (see [14] for details). The first given error
is statistical, the second (if given) is systematic. . . . . . . . . . . . . . . 12

3.1. UV fixed point solutions in the gauge sector at one-loop level. ϑi denote
the scaling exponents of the respective couplings gi. As the β-functions
of the gauge couplings are decoupled, the stability matrixMij is already
diagonal and the eigendirections coincide with the couplings gi. The last
column indicates whether the fixed point is phenomenologically viable or
not, according to the discussion in the text. . . . . . . . . . . . . . . . . 29

3.2. UV fixed point solutions of the top and bottom Yukawas for asymptotic-
ally free gauge couplings, gY ? = g2? = g3? = 0. As the β-functions (Eq.
(3.15) and (3.16)) are in this case symmetric under an exchange t ↔ b,
so is the system of fixed point solutions. . . . . . . . . . . . . . . . . . . 33

3.3. UV fixed point solutions of the top and bottom Yukawas for interacting
Abelian gauge coupling, gY ? = 96

41fgπ
2, g2? = g3? = 0. Both the β-

functions (Eq. (3.15) and (3.16)) and the system of fixed point solutions
are not symmetric under an exchange t ↔ b. The square root appearing
in the scaling exponents is given by s1 =

√
1273f 2

g + 1804fgfy + 6724f 2
y . . 33
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4.1. Classes of discrete fixed point solutions of the two generation model for
the partially interacting gauge coupling fixed point g2

Y ? = 96
41fgπ

2 and
g2

2? = g2
3? = 0. Note that each of these fixed point solutions exists in

four versions corresponding to a permutation of flavour indices t ↔ c
and b ↔ s. Out of these quartets, only the representatives obeying the
phenomenological ordering y2

t? > y2
c? and y2

b? > y2
s? are presented. In

the last column, we state the allowed values of fy in order to guarantee
y2
i? ≥ 0 ∀ i ∈ {t, c, b, s}. The definitions of the fixed point values t4,5, c5,
b4,5, s4 and V4,5 are given in the text. . . . . . . . . . . . . . . . . . . . . 37

4.2. One parameter families of solutions (fixed lines) parametrized by the
squared top Yukawa fixed point y2

t?. These fixed lines collapse to a quartet
of discrete solutions if one includes two-loop terms in the β-functions (cf.
discussion in [6]). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

4.3. Quartet of fixed point solution #1 in Tab. 4.1. The solutions are related
to each other by permutations of the flavour indices of quarks with equal
singlet hypercharge: t ↔ c and b ↔ s. The fixed point value of the
squared modulus of the matrix element, |V11|2?, is either 1 or 0, represent-
ing a diagonal or anti-diagonal mixing matrix, respectively. . . . . . . . . 38

4.4. Scaling exponents for the phenomenologically interesting fixed point solu-
tions #1 and #3 in Tab. 4.1. As fg > 0 and fy > 0, most scaling expo-
nents are strictly positive or negative. However, the sign of ϑ8 for fixed
points #1 and #3 depends on the precise values of the parameters fg and
fy. They are positive for fy > 19

82fg and fy >
1
82fg, respectively, which are

just the allowed ranges for the fixed point solutions #1 and #3 (cf. Tab.
4.1), excluding the lower bound, at which the scaling exponents are zero.
There are three irrelevant directions for fixed point #1 and four irrelevant
directions for fixed point #3, assuming fy takes an allowed value. . . . . 42

A.1. Group theoretic factors for a theory with gauge group SU(3)C⊗ SU(2)L⊗
U(1)Y. Q(i) =

(
Y (i)
uR

)2
+ 2

(
Y (i)
qL

)2
+
(
Y

(i)
dR

)2
and L(i) =

(
Y (i)
eR

)2
+ 2

(
Y

(i)
lL

)2
,

cf. Eq. (A.10). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
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