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Abstract

The entry point of this master thesis is the context-based Web-Information-

Agent Back to the Future Search (bttfs) which was developed with the goal of

shortening the period of vocational adjustment while working on different

projects at once as well as providing different functionalities for finding

and re-finding relevant sources of information. bttfs supports the learning

of a context-based user profile in two different ways. The first way is to

learn the user profile by the use of a cosine-distance function applied on the

Term Frequency-Inverse Document Frequency (tf-idf) document vectors

and the second approach is to learn the user profile with a one-class Support

Vector Machine (svm). Furthermore, the Information Retrieval methods Best

Matching 25 (bm25), Term Frequency (tf), and tf-idf are used on the created

model, to determine the most relevant search queries for the user’s context.

The central question answered in this thesis is stated as follows:

”Is it possible to anticipate a user’s future information need by exploiting the past

browsing behavior regarding a defined context of information need?”

To answer this question the methods above were applied to the AOL-

dataset1, which is a collection of query logs, that consists of roughly 500.000

anonymous user sessions. The evaluation of the first scenario showed that

1AOL, 2017.
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bttfs could predict future query-phrases with a word length from one to five

with 9.38% decreasing to 1.29% with an increasing word length of the query-

phrases. The evaluation of the second scenario yielded promising results

ranging between 19.85% - 18.22% matching rate on average, for the first

three single word queries that appeared in advancing order on the timeline

of the user actions. The best results for both scenarios could be gained with

a combination of the cosine-distance learning function and the tf weighting

function. While the difference in performance between the cosine-distance

method and the svm method appeared to be insignificant, tf and tf-idf

outperformed bm25 in both of the tested scenarios. Regarding the gained

results, it can be stated, that the future information need of a particular

user can be derived from prior browsing behavior in many cases, when

the context of information need remained in the same context. Therefore,

there are scenarios in which systems like bttfs can aid and accelerate the

user’s information generation process by providing automated context-

based queries.
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1. Introduction

With the introduction of the World Wide Web in 1989, no one could have

known, how profound its impact on our lives would be. These days it

is nearly impossible to find aspects of daily life that remain untouched

by the influences of the internet. The number of people using various

types of internet services like social media, E-commerce, education services,

information services, and entertainment services is increasing rapidly. While

only 1% of the world population was connected to the internet in 1995, the

number of worldwide internet users has grown to over 40% (3.8 billion) of

the world population in 2018.1

Besides the continuous growth of people using the internet also the amount

of content and web pages on the internet is advancing. The number of

unique hostnames first reached the 1 billion mark in 2014 and had already

grown to 1.3 billion in 2018. The tremendous amount of unique hostnames

combined with the shift from analog to digital the amount of data that is

accessible on the web started to grow tremendously.2

In recent years, more new data was created than in the entire previous

history of the web and predictions state that there will be a growth of

1internetLiveStats, 2018.
2internetLiveStats, 2018.
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1. Introduction

data on the internet to around 40 zettabytes in 2020.3 Nevertheless, the

handling of this large amount of data, also referred as Big Data can be seen

as challenging.4 Due to the quantity and mainly unstructured form of Big

Data, traditional software seems unreasonable to handle Big Data properly.

Moreover, the methods of Information Retrieval need to adapt, to keep up

with the changing environment. Therefore, in the fast pace of the digital

age, there is a great need for technologies which assist the people to save

time in their everyday life.

Regarding the retrieval of information, popular search engines like Google,

Bing, and Yahoo perform very well already. Nevertheless, the search queries

that are entered into a search engine are mainly written by humans and

are hence inadequate and error-prone in many cases. Although most search

engines offer search suggestions or auto-completion which are mainly based

on the personal browsing behavior, on search engine query logs, on the

location of the user’s computer and the most common phrases other persons

searched for, there are still cases in which these features do not perform

very well.56

The context in which a search query generation is performed can be stated

fundamental for the result. If someone researched on ”India” for a project

and then changed the personal context by searching for a holiday destination,

it is very likely that a search engine will suggest terms regarding holidays

in India, while the change of the user’s context was not recognized. This

behavior can be seen in Figure 1.1, where the Google search engine suggests

to complete the phrase ”holiday destination” with ”in india”, ”near delhi”,

3Forbs, 2018.
4Anuradha et al., 2015.
5Bhatia, Majumdar, and Mitra, 2011.
6Venkataraman et al., 2016.
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or ”near mumbai” within the first five suggestions. As a result, there is a

need for the possibility to define a personal context, rather than be forced

into a context-based on previews operations made.

Figure 1.1.: This figure shows that Google search engine suggests to complete the phrase

”holiday destination” with ”in india”, ”near delhi”, or ”near mumbai” within

the first five suggestions, while India was only a relevant topic in the context of

a previous search.

In this thesis the context-based Web-Information-Agent BttFS - Back to the

Future Search is presented. bttfs was developed with the goal of shortening

the period of vocational adjustment while working on different projects at

once as well as providing various functionality for finding and re-finding

relevant sources of information. Furthermore, bttfs enables the user to

create profiles for various contexts as well as connecting keywords to the

profiles. The system then creates a context-exclusive browsing history. Be-

sides the possibility of viewing all visited pages, it is feasible to mark pages

as important, highlight keywords on websites, crawl the web pages to obtain

suggestions for other possibly valuable web pages for the active context as

well as export as well as import profiles to share the gathered information

with peers. Furthermore, the pages which were considered as important by

the user act as relevance feedback to assist the learning of the user’s profile,

while the crawled web pages are used as test data for the machine learning

3



1. Introduction

algorithms, to expand the collection of documents, which hold relevant

information for the user’s context. The created document collection is then

used to create new search queries, which are submitted to the Google search

engine to assist the user’s information retrieval process.

It should lie in everyone’s interest, to use search engines on the internet

in the most efficient ways possible. In a time, where humans’ impact on

the climate can no longer be denied, it is more important than ever, to use

resources appropriately. Only in January of 2018, the internet’s infrastructure

created emissions over 80 million tons of co2 and at the same time, around

95 million megawatt-hours (mwh) of electricity were used to maintain the

internet and its services. Millions of businesses around the world, make use

of search engines like Google on daily bases. There are roughly 3.5 billion

searches on Google per day which leads to 1.2 trillion searches per year,

while over 1000 computers process every search query that is committed to

Google to obtain a result in under 0.2 seconds.7 Every single search query

that was not inserted into a search engine, because the information need on

a topic was already satisfied, aids the saving of resources and due to the

massive amount of searches people perform on daily bases, the potential

that lies within is tremendous. However, also the amount of time that could

be saved in our everyday life by performing more specific and context-based

searches should not be neglected. If the average searching time of all Google

users could be reduced by one second, the total conversed time per year

would be over 38.000 years.

Therefore it can be said that the enhancement of working efficiency would

lead to an enormous economization potential regarding working hours,

capital and co2 emissions.

7internetLiveStats, 2018.
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Thus the central question to be focused on in this thesis can be stated as

follows: ”Is it possible to anticipate a user’s future information need by exploiting

the past browsing behavior regarding a defined context of information need?”
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2. Background

2.1. Organizing Information

The archiving, organizing, and re-finding of information can be challenging,

due to the mainly heterogeneous and unstructured form of information.

Back in around 3.000 bc, the Sumerians already stored clay tables with a

cuneiform inscription at special places and used early classification methods

for re-finding particular clay tables.1 The development, storing, and retriev-

ing of information was always an important part of humanity. However,

inventions like paper, the printing press, and computers elevated the need

for storing and re-finding information to a new level.2 While traditional

libraries often archive books sorted alphabetically, by genre, author, key-

words, or even by color this task is more complex for documents on the

Web, due to the unfiltered and heterogeneous form of the data. Therefore

in the field of Information Retrieval various approaches, like the usage of

weighting functions were developed, to find the relevant information in a

collection of documents.

1Kramer, 1963.
2Singhal et al., 2001.
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2. Background

2.1.1. Weighting Functions

Weighting functions are commonly used to weight the terms in a document

of a collection, to retrieve the most relevant documents that are related to a

given query. However, in this thesis, the weighting functions are used for

extracting a ranked list of keywords out of a document collection to generate

search phrases that could be relevant in the context of the collected corpus

of documents. While over the years various types of ranking functions

were developed, the most straightforward methods regarding Information

Retrieval are namely tf and the Boolean model. While tf counts the raw

amount of appearances of a search word or search-phrase within the docu-

ment collections, the Boolean model states merely if a query was present in

a document. However, these methods seem inappropriate in many cases,

since there is no real consideration of term weightings. For example, the tf

approach does not consider, in how many documents of a collection a word

occurs. Therefore, common words like ”the” or ”is” are inappropriate to

distinguish relevant and non-relevant documents.3

The more advanced methods tf-idf and bm25 consider the Inverse Docu-

ment Frequency (idf), which is a measure of how much information a query

term provides. Considering a document collection of N documents were a

query term ti occurs in nd of them, then the idf weight for the query term ti

is calculated:45

id f (ti) = log(N/nd),

which is only one of many variants for calculating the idf values. Therefore,

with idf, terms are considered more relevant when appearing in only

3Schütze, Manning, and Raghavan, 2007.
4Schütze, Manning, and Raghavan, 2007.
5Salton and Buckley, 1988.
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2.1. Organizing Information

a small subset of the document collection, which means high-weighted

terms are more significant to distinguish between relevant and non-relevant

documents.6 By combining the id f (ti) weight of a term with the frequency

the term occurs in a document fti,d, the tf-idf weights of each word in a

document ti,d can be calculated:7

t f id f (ti,d) = fti,d id f (ti).

While there are various types of bm25 implementation, one of the most

popular instantiations for calculating the bm25 weights for a term in a

document sti,d looks like this:

bm25(ti,d) =
fti,d (k1 + 1)

fti,d + k1 (1− b + b |D|
avDt )

id f (ti),

where |D| is the document length in words, avDt is the average amount of

words per document, while k1 and b are free parameters used for optimiza-

tion.8910

2.1.2. Learning User-Profiles with Positive Relevance

Feedback

Most traditional learning functions use positive and negative examples

of training data to learn a model. However, there are scenarios in which

a model has to be trained in the absence of negative learning data. Ap-

plications that are based on Relevance Feedback tend to lower the user’s

6Robertson, 2004.
7Salton and Buckley, 1988.
8Robertson, 2004.
9Sanderson, 2010.

10WikiBM25, 2018.
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2. Background

experience and usability if positive as well as negative feedback is required.

Also for huge datasets like the data on the web, there would be a need for a

considerable amount of negative training data for algorithms to create the

right classifications. Therefore, to not create an overhead of feedback-tasks

for the users, bttfs only uses positive Relevance Feedback to learn the

user-profiles.

Both of the methods for learning a user profile, that were applied in this

thesis use training data in the form of tf-idf weighted vectors, were each

vector represents one document of the positive training data. Each tf-

idf weight of one of these vectors represents a separate dimension in a

multidimensional vector space. This form of representing documents is

called the vector space model.11

One straight forward approach of determining new documents as closely

related to the documents gained with the user’s Relevance Feedback, is to

calculate the cosine similarity between them. The cosine similarity of two

vectors of the vector space model is the cosine of the enclosed angle of the

vectors. To determine the cosine similarity of a document vector ~q and a

document vector ~dj as seen in Figure 2.1 the cosine function is applied as

follows:

cosSim(~dj,~q) =
∑N

i=1 wi,j wi,q√
∑N

i=1 w2
i,j

√
∑N

i=1 w2
i,q

,

where wi,j are the weights of the document vector ~dj and wi,q are the weights

of the document vector ~q.1213

11Salton, Wong, and Yang, 1975.
12Singhal et al., 2001.
13WikiCoSDistance, 2018.
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2.1. Organizing Information

Figure 2.1.: This Figure shows the vectors ~q and ~dj in the vector space were cosSim repre-

sents the cosine similarity between them.

Since tf-idf weights cannot be negative, cosine distance of two vectors in

the positive vector space will yield outcomes bound in [0,1], where 0 can

be interpreted as not related, while 1 can be interpreted as an exact match.

If the cosine measure exceeds a defined threshold, the document will be

categorized as closely related to the user’s context and is furthermore added

to the existing user profile.14

Another method for learning a user profile with only positive learning

examples is to use a one-class Support Vector Machine (svm). As an unsu-

pervised learning algorithm one-class svm is used for learning a decision

function. Furthermore, these function is deployed for novelty detection by

the classification of new data as ether different or similar to the training

dataset. The proportion of outliers and class members plays a crucial role in

one-class svm and, therefore, requires a certain knowledge (or guessing) of

14WikiCoSDistance, 2018.
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2. Background

the expected outlier ratio in the interval (0, 1].151617 Given a set of training

data consisting of vectors xi ∈ Rn, i = 1, ..., l with no information about the

class, the primal problem of one-class svm can be stated as1819 :

min
w,ξ,p

1
2

wTw− p +
1
vl

l

∑
i=1

ξi

subject to wTφ(xi) ≥ p− ξi,

ξi ≥ 0, i = 1, ..., l.

The dual problem is:

min
α

1
2

αTQα

subject to 0 ≤ αi ≤ 1/(vl), i = 1, ...l,

eTα = 1,

where Qi j = K(xi, xj) = φ(xi)
Tφ(xj). The decision function is:

sgn(
i=1

∑
l

αiK(xi, x− p).

15SciKitLearn, 2018.
16Muller et al., 2001.
17Stradling, 2018.
18Chang and Lin, 2011.
19Dreiseitl et al., 2010.

12



2.2. State-Of-The-Art

2.2. State-Of-The-Art

2.2.1. Machine Learning

Several well-known machine learning techniques like Bayesian classifier,

Nearest Neighbor, and Neural Nets to name just a view, can be used to

learn a user profile, though most traditional approaches rely on a training

set that includes positive as well as negative features. However, for systems

which rely on relevance feedback to generate the training data, negative

features seem to have an unfavorable impact on the usability, due to the

overhead that would be created regarding the user’s tasks. Therefore in this

thesis, the focus lies on one-class classification methods that support the

learning of user profiles with only positive learning examples.

Three different types of one-class classification methods, namely the boundary-

based methods, the density estimations, and the reconstructed methods

can be defined. However, in all one-class classification methods, two spe-

cific components can be found. The one component is a measure for the

distance, probability or resemblance of an object to a target class, while

the other component is a threshold on this resemblance, probability, or

distance. Objects of the test data-set are then considered similar, depended

on the used methods, if either the resemblance value is larger than the given

threshold, or if the calculated distance to the target class is smaller than

the threshold. The main differences between most one-class classification

models lie within the definition and optimization of the distance measure or

probability measure as well as in the optimization of the used threshold.20

While several one-class classification methods exist, only a limited set of

20Tax, 2001.
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2. Background

various methods are stated in this chapter. However, the chosen methods

will cover a wide range of possible approaches of one-class classification.

Boundary-Based Methods

The boundary methods mentioned in this thesis are the k-centers method

and the k-nearest neighbor method. In the k-centers method, k small spheres

with equal radii are used to cover the dataset.21 The centers µk of the spheres

are positioned on the training data objects, to minimize the maximum

distance of all minimum distances between the training objects and the

centers. To fit the model to the training data xi, the following error is

minimized:22

εk-center = max
i

(min
k
||xi − µk||2).

The one-class nearest neighbor classifier was derived from the well known

two-class nearest neighbor classifier, to be able to classify data with only

positive learning data. The nearest neighbor algorithm stores all provided

examples of the training dataset and uses it as its model. For a given test

data example z the distance d(z, y) is calculated to its nearest neighbory(y =

NN(z)) so that z belongs to the target class if:

d(z, y)
d(y, NN(y))

< δ,

where NN(y) stands for the nearest neighbor of y and the default value of

δ is 1. For the implementation of the one-class k-nearest neighbor method,

the average distance of the k nearest neighbors is considered.23

21Ypma and Duin, 1998.
22Tax, 2001.
23Yousef, Najami, and Khalifav, 2010.
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2.2. State-Of-The-Art

Density Estimation Methods

A straightforward approach to obtain a one-class classifier is to create a

density model of the data24 and to use a threshold on this density. A model

that applies this strategy is, for example, the Gaussian model. To fit the data

well the density estimation methods often need a high amount of test data,

owing to the high dimensionality of the samples and the complexity of most

density models.25

The most straight forward density estimation model in one-class classifi-

cation is the one-class Gaussian model. It is assumed that the target data

form a multivariate normal distribution. Therefore, the probability density

function for a test sample z in the multidimensional space, can be calculated

as:

p(z) =
1

(2Π)n/2|Σ|1/2 e(−1/2(z−µ)TΣ−1(z−µ)),

where Σ is the covariance matrix and µ the mean of the target class, which

were estimated from the training data.26

Reconstructed Methods

The reconstructed method to be mentioned in this thesis is k-means clus-

tering27. This method was not constructed for one-class classification in the

first place but with the aim to model the data. After a model is chosen and

fitted on the data, new objects can be described by a state of the generating

24Tarassenko et al., 1995.
25Tax, 2001.
26Yousef, Najami, and Khalifav, 2010.
27Bishop, 1995.
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2. Background

model. While most reconstructed methods tend to make assumptions re-

garding their distribution in the subspaces or the clustering characteristics

of the data, the methods mainly differ on how they define their subspaces

or prototypes, their optimization routine, and their reconstruction error.

K-means clustering, as one of the most simple reconstructed methods, as-

sumes that the data is clustered. To characterize these data prototype objects

µk are used which are mainly represented by the closest prototype vector

measured by the Euclidean distance. For the optimization of the placing of

the prototypes, k-means clustering minimizes following error:28

εk-m = ∑
i

(min
k
||xi − µk||2).

The k-means clustering method and k-center method which was mentioned

in section 2.2.1 tend to look quite similar to each other they differ in the error

which is minimized. While k-means averages the distances to the prototypes

of the objects, the k-centers method tries to optimize the spheres regarding

centers and radii to accept all data with a main focus on the worst-case

objects. Another difference between k-means and k-centers can be found in

the way the spheres are placed. While k-means allows free positioning of

the spheres’ centers, the k-centers method places the centers of the spheres

per definition.29

28Tax, 2001.
29Tax, 2001.
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2.2. State-Of-The-Art

2.2.2. Web-Agents

With the invention of the World Wide Web, the main tasks of Information

Retrieval started to shift from local document collections towards the enor-

mous amount of unstructured data that can be found on the internet today.

Therefore new technologies had to be developed, to fit the new environment

that was created by the internet. In September of 1990, the first pre-web

search engine called Archie was launched. The purpose of Archie was to

index File Transfer Protocol (ftp) archives, to allow the user to find distinct

files. As a result of limited storage space, Archie only provided listings of

the files but not the content of each document.30 The first early web search

engine that used an indexer and a crawler, which are the essential features

of today’s search-engines, was called JumpStation and was released in 1993.

While JumpStation did not provide any ranking to the found results, it

used headings and document titles for the indexing of web pages by the

use of a simple linear search.31 With the launch of the Altavista web search

engine in 1995 the usability for searching the web improved tremendously.

Altavista was not only one of the first search engines to support natural

language queries, but also to generate search tips to aid the users in their

search process.32

While initial indexing and search tools for the internet provided some sat-

isfaction to the users, their ability to filter, categorize and interpret the

gathered data was insufficient. Therefore Web-Agent technologies were

developed to apply different Information Retrieval strategies on the inho-

mogeneous and mostly unstructured data the web provides and also to

30P. Deutsch and A.Marine, 2018.
31New, 2018.
32WordStream, 2018.
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overcome the limitations of early search engines.33 Over the last decades,

an increasing number of web search engines, web directories, web search

portals, as well as different Web-Agent technologies were developed. More-

over, new techniques and search methods were evolved as well as adapted

from previews search engines to generate the powerful search engines we

use today.

WebACE

The Web-Agent WebACE was proposed in 1998 with the aim to explore

and categorize documents on World Wide Web. The main functionality of

WebACE is the automatic categorization of a document set, combined with

methods for creating new search phrases. These queries are then used to

search for new related documents, which are filtered to retrieve a document

set that is most closely related to the starting set.34

As seen in Figure 2.2, WebACE consists of a profile creation module, a clus-

tering module, a query generator, a search mechanism, a filter, and a cluster

updater. The profile creation module builds a custom user profile, while

a user is browsing content on the internet. Among other things, the user

interest on a specific document is determined by the time a user spent on

viewing it. Once a decent corpus of essential documents is built, WebACE

reduces the documents to document-vectors, which are passed to the cluster-

ing module. To create the document clusters WebACE uses Association Rule

Hypergraph Partitioning Algorithm35 and Principal Component Divisive

33Han, Boley, et al., 1998.
34Han, Boley, et al., 1998.
35Han, Karypis, et al., 1997.
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Partitioning36. WebACE then uses and the intersection of tf and document

frequency (df) to generate new search queries out of the created clusters.

Furthermore, the generated queries are passed to the search mechanism

which searches for similar documents that could be interesting to the user.

The obtained documents are gathered, and WebACE offers different options

how the newly obtained documents can be used. They can be clustered

to filter out the least relevant ones, used to updated existing clusters by

the insertion of the new documents, or to completely re-cluster both of the

clusters. The user then has the option to add newly found pages to the

profile.37 For a list of the clustering and query generation methods that are

used by WebACE see Table 2.1.

Algorithms used (WebACE)

Clustering Methods
Association Rule Hypergraph Partitioning

Principal Component Divisive Partitioning

Query Generation
TF

DF

Additional Methods –

Table 2.1.: Algorithms used by the Web-Agent WebACE

36Boley, 1998.
37Han, Boley, et al., 1998.
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Figure 2.2.: WebACE Architecture
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SurfAgent

The Web-Agent SurfAgent was introduced, to generate a profile based

information agent to act as a framework for the evaluation of alternative

algorithms used for Information Retrieval. As seen in Figure 2.3 SurfAgent

follows the basic architecture for personalized web information agents. The

main concepts of SurfAgent rely on learning a user profile and applying

different query generation methods on the learned document collection.

The created queries are then submitted to the Google search engine to verify

the resulting pages concerning the matching of the user’s interests.38

SurfAgent uses term tf-idf vectors, just like many other Web-Agents, to

represent each of the different topics of the user’s interest. As the user

provides relevance feedback, the system learns new topics of interest and

adds tf-idf vectors of the new relevant documents to the already created

vectors. Critical components of SurfAgent are the dissemination thresholds,

which are associated with each vector. These thresholds are used when new

documents are filtered by the systems. New documents are only considered

relevant if the similarity between the vector of a new document and the

given profile vectors exceed the associated threshold. To learn a user profile,

SurfAgent uses one of two approaches. The first way is to associate relevance

feedback with the topic of interest explicitly. To create less overhead for the

user, incremental clustering with the Doubling algorithm39can be used for

the automatic classification of new examples. Regarding query generation,

several interchangeable methods like, tf-idf, tf, and probabilistic or were

38Gabriel L Somlo and Adele E Howe, 2001.
39Charikar et al., 2004.
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tested in SurfAgent, to name just a view.4041 A detailed list of all essential

methods that are used by SurfAgent can be viewed in Table 2.2.

Algorithms used (SurfAgent)

Clustering Methods

Doubling algorithm

Similarity function (dissemination thresholds for

TF-IDF vectors)

Query Generation

Uniform (Unif)

Boley’s method42 (The intersection of the k top

ranked terms of two result sets are selected,

where TF is used to on the one set and DF on the

other.)43

TF

Probabilistic TF

OR

Probabilistic OR

TFI-DF

Probabilistic TF-IDF

Additional Methods Relevance Feedback

Table 2.2.: Algorithms used by the Web-Agent SurfAgent

40Gabriel L Somlo and Adele E Howe, 2001.
41Gabriel L. Somlo and Adele E. Howe, 2003.
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Figure 2.3.: SurfAgent Architecture
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WebMate

Hence the fast development of the World Wide Web and the time-consuming

task of generating useful information by browsing the Web, ”WebMate: A

Personal Agent for Browsing and Searching” was introduced in 1998.44

WebMate’s architecture as seen in Figure 2.4 includes a stand-alone proxy

for monitoring the user’s actions and an applet controller that handles

the interactions with the user. WebMate uses multiple tf-idf vectors for

the different domains of user interests. In contrast to many other systems

that use the user profiles for extracting useful information, WebMate uses

the generated tf-idf vectors of the users-interests to learn the user profile

incrementally and continuously. To not bother the user with too many

unnecessary actions, relevance feedback is only used to identify documents

of interest. Therefore tf-idf vectors with higher weights for particular

Hypertext Markup Language (html) tags like titles and headlines, as well

as a cosine similarity approach, are used. Besides the typical tasks like

creating a user profile and catching the most valued information for a user

from closely related pages, WebMate also offers the possibility to use the

gathered data, to create a personalized newspaper for the user. One way to

determine essential pages, which are added to the personal newspaper, is

to use the user’s relevance feedback. Subcategories or links from marked

pages and their content will be parsed, constructed into tf-idf vectors and

added to the personal newspaper if the cosine distance to the user profile

exceeds a certain threshold. The other way is applied if the user does not

provide any feedback on essential websites. In this case, WebMate uses

the highest-ranked keywords regarding their term-frequency. Given that

44Chen and Sycara, 1998.
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single keywords are usually too general, a Trigger Pairs Model4546 is used

to create a more precise search query out of correlating words. Furthermore,

the created search query is committed to search engines like Altavista or

Yahoo. The pages returned by the search engine are compared to the user

profile regarding similarity and are added to the personal newspaper if

the similarity is higher then the threshold.47 A detailed list of all essential

methods that are used by WebMate can be viewed at Table 2.3.

Algorithms used (WebMate)

Clustering Methods TF-IDF vectors with cosine similarity

Query Generation Trigger Pairs Model

Additional Methods Relevance Feedback

Table 2.3.: Algorithms used by the Web-Agent WebMate

45Gauch and Futrelle, 1994.
46Rosenfeld, 1994.
47Chen and Sycara, 1998.
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Figure 2.4.: WebMate Architecture
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3. BttFS - Back to the Future

Search

Back to the Future Search is a context-based Web-Information-Agent. The

primary goal of bttfs is to shorten the period of vocational adjustment on

distinct projects. To fulfill this goal, BttFS assists the user by storing informa-

tion about visited web pages and supports relevance feedback for important

pages that were visited. The user profile is continuously learned and ex-

tended by the system, with the use of either a cosine-distance approach1 or

a one-class Support Vector Machine. Furthermore, bttfs performs different

ranking techniques namely, tf, tf-idf, and bm25 on the learned user profile

to provide new context-based search queries to the user on demand. Also,

BttFS provides the possibility to view a statistics page with high-value

information about the profile, regarding keywords, visited web-pages, and

suggested web-pages, which could be important for the user’s context, while

bttfs’s crawling function was used.

The implementation of bttfs includes a WebExtension for the Mozilla

Firefox and uses the WebExtension JavaScript Application Programming

1In this thesis, the terms ”cosine-distance approach” or ”COS” are used interchangeably

for the used method of learning the user profile with the help of cosine-distance.
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Interfaces (api)2, which is for the most part compatible with the extension

api used by Opera and Google Chrome.3 A WebExtension can be seen as a

software program that allows the customization of a web-browser’s content

regarding appearance and functionality. The main web technologies such

extensions are built on are: JavaScript (JS), Hypertext Markup Language

(HTML) and Cascading Style Sheets (css).4 More precisely, extensions con-

sist of so-called content scripts and background scripts. Content scripts can

only run in the context of a certain web page and are limited to the standard

Document Object Model (dom) - (api) as well as a very small subset of the

WebExtensions apis. Contrary, the background scripts can access the whole

palette of WebExtension JavaScript apis and hold most of the software’s

internal logic. For content scripts and background scripts to communicate

and pass data to each other a messaging system with event listeners was

used. The native messaging api, which is part of the WebExtension apis,

plays an essential role in the implementation of BttFS since it allows the ex-

change of data between the WebExtension and native program applications.

In bttfs, a python application is used to learn the user’s profile, to store

the user’s data, and to create new search queries that are important for the

user’s context. Those queries are then passed to the WebExtension, where

the new search phrase is inserted into the Google search engine, and the

results are displayed to the user.

2MDN, 2018.
3MDN, 2017.
4Google, 2018.
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3.1. BttFS - Architecture

bttfs consists of several components, which can be seen in Figure 3.1. bttfs

is composed of a WebExtension component and a native python application.

The WebExtension is used to handle the user interactions with bttfs, acts

as the interface to the web and holds the main logic for manipulating web-

content like marking the user’s keywords on visited web-pages, creating

the statistic page of a profile, and collecting relevance feedback. The native

python application component holds the main storage logic of bttfs and is

used for the more complex operations like learning user profiles, expanding

learned user profiles, and the creation of search queries out of the user’s

context by the use of the different ranking functions.

Whenever a user has created a profile, the basic elements of the profile like

the username, the corresponding keywords, the specified profile logo, as

well as the preferred profile learning method and the preferred ranking

function, are stored in the browsers internal storage by the WebExtension.

While the user browses the web, the provided relevance feedback is used to

generate the training data for the profile learning algorithms. These training

data are passed to the bttfs’s native python application, which stores them.

Whenever the user chooses to use the WebExtension’s crawl function, the

crawled pages are stored if they include any of the context related keywords,

which the user associated with the profile. These crawled pages are used

to create the test data for the profile learning algorithms and are as well

passed to the native application where they are stored.

Furthermore, when the WebExtension is used to generate a search query

suggestion for the first time, information about the active user profile like

the username, the method to use for the profile learning task, as well as
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the ranking function type, is passed to the native application. The native

application then, based on the transferred information, learns the active

user profile with the stored training data and expands the learned profile

with the use of the stored test data. The learned user profile is stored by

the native application, and with the use of the selected ranking function, a

context-based search query is generated. This search query is then passed

from the native python program to the WebExtension. bttfs then opens a

new browser window, where the search query is already entered into the

Google search engine to display the search query and the gained results to

the user. The resulting search query can differ, depending on the used user

profile learning algorithm as well as the used ranking method. Whenever

a search query was generated, when the profile was already learned, the

profile is continuously updated and expanded by the system.

Figure 3.1.: This Figure shows a simplified version of BttFS’s architecture.
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3.2. BttFS - Functionality

As seen in Figure 3.2, bttfs allows the user to create a context-based pro-

file and to provide different keywords that should be associated with the

profile’s context. While it is possible to create variable profiles for different

contexts, only one profile can be active at a given time. Furthermore, the

user can choose, which algorithm should be used by the bttfs to learn the

user’s profile and which ranking function should be applied, to generate

new search queries. Also, the user can provide an icon-URL, to customize

the profile visually.

Whenever a profile was selected, the browsing behavior of the user is

monitored by bttfs. Not only the visited pages are stored by the system,

but also pages the user marked as important. These pages are interpreted

as positive relevance feedback and are used to build a collection of learning

data, which are used to train the machine learning algorithms, which

are used by bttfs. While the web is browsed by the user, the system

offers the opportunity to crawl all links that appear on a distinct web-page.

Furthermore, these web-pages are used as the test data for the machine

learning algorithms. The user profile is continuously expanded by the time

a crawled web-page is classified as relevant by the learning algorithms.

Additionally, BttFS uses all crawled pages to create a suggestions table for

pages that could potentially be interesting for the users’ context based on

the tf of the keywords in the visited web-pages. The gathered information

regarding the user profile namely the user’s browsing behavior, the profile

data, as well as the suggested web-pages can be viewed on a profile unique

statistics page, as seen in Figure 3.3 .
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Figure 3.2.: This Figure shows an extract of BttFS’s settings page. The profiles ”QueryGe-

nartion” and ”Machine Learning” were created. The active profile is ”Machine

Learning,” and the corresponding keywords are shown. The active method for

the learning of the profile is COS, and the and the ranking function for the

search query generation is TF.
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Figure 3.3.: This Figure shows BttFS’s statistics page for the profile ”Machine Learning”.
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Moreover, bttfs supports the import and the export of profiles from other

users to shorten the period of vocational adjustment, by benefiting from

other user’s browsing history. The system also saves the scripts and the

html of a web page that was visited, marked as important by the user,

or suggested by the system. Since the content of web pages can change

over time, the storage allows the system to recover the original viewed or

suggested web page to regain the already found information. However, the

most important feature bttfs provides to the user is an automated search

query generation process that can be started by the user on demand. The

system then creates a search query, that could be interesting to the user

regarding the context of the user’s profile. The automatic query creation is

based on the relevance feedback the user provides to the system, by marking

pages as important. These pages are furthermore used as the training dataset

for the chosen learning algorithm. Additionally, the pages that were crawled

by the system are used as test data, which are used to expand the profile’s

data corpus. The content of the created corpus is then used to generate

search queries, which are directly passed to the Google search engine, to

provide new relevant web pages to the user.

3.3. BttFS - Creating a Search Query

To generate a custom search query with BttFS for the user’s context, as a first

step, a user profile has to be learned by the system. After relevance feedback

for a vital web-page was given by the user, the html of this page is parsed

with the python library BeautifulSoup5. Furthermore, all scripts of the web-

page and other non-text content nodes are deleted, so only the pure text of

5Soup, 2018.
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the web-page remains. bttfs uses a ”window of opportunity” with a length

of 10, which means only words of the web-page are stored, that were either

appearing within the range of 10 words in front and within 10 words behind

of a keyword that is connected with the user’s profile. Therefore, it can be

assured that only words are recognized and processed that have a direct

connection to the keywords that define the user’s context. Additionally,

the Natural Language Toolkit (nltk)6 and WordNet7 is used for further

processing of the stored words, like the checking of the words for spelling

correctness, the stemming of the words, as well as the deleting of stop-

words, due to the leak of information they provide. After the processing

of all relevant web-pages is finished, the documents are crafted into tf-

idf vectors, where each word of a document represents a dimension in a

multidimensional space were the maximum dimensionality is based on the

total words in the corpus. Moreover, the tf-idf vectors are used to learn

a user profile either with the cos or svm method. After a user profile was

learned successfully, web-pages that were crawled by bttfs are used as the

test data for the learning algorithms to expand the user profiles data model.

The more relevance feedback was given by a user, and the more websites

were crawled by the system, the higher the possibility for BttFS becomes for

predicting search phrases that are relevant to the user’s context correctly.

Furthermore, ranking functions like tf, tf-idf, or bm25 are used on the

learned user profile data, to generate a ranked list of the most valuable

search phrases, for the user’s context. Also, a pseudo-random function is

used to generate search queries with a random word length between three

and five. The search phrase created tend to be slightly different, depending

on the machine learning algorithm and the combined ranking function.

6NLTK, 2018.
7Miller, 1995.
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In the course of this thesis, two distinct scenarios were tested on the data

of the AOL-dataset1. A user session in this dataset consists out of n user

actions2. For both tested scenarios, the first ten user actions of a user were

utilized to learn the profile and to define the context of the user-session. The

remaining user actions of the user include the search phrases and keywords

that BttFS tries to predict. While the number of user actions of the 796 tested

users varies, the methodology for learning a user profile and defining the

context of the search remained equal for every user.

The first scenario is called ”Exact Query-phrase Matching”. The goal of this

scenario was to determine if BttFS could predict the exact query-phrase a

user would create in the future 3 when only the prior browsing behavior

of the user is known, and on the other hand, to identify how well the used

learning and weighting functions would perform for this task. If BttFS

could predict a user’s future search-queries accurately, there would be

considerable potential for accelerating and assisting the user’s information

generation process.

1AOL, 2017.
2In this context, one ”user action” equals one distinct line of the AOL-dataset.
3”Future query-phrases” refers to the user actions of the dataset which were not used

for learning the user-profile.
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The second scenario namely ”Single Query-word Matching”, was performed

to test the accuracy of the used machine learning methods and weighting

functions of BttFS for predicting single keywords within the user’s future

search-phrases, when only the prior browsing behavior of a user is known.

Precisely predicting a whole search-query of a user can be very demanding

and is getting harder the further a search-query lies in the future of a

user-session. However, to assist the satisfaction of the user’s information

need, the predicting and suggesting of relevant keywords regarding the

user’s context, can already have a positive impact on the user’s information

gathering process.

The main algorithms used by bttfs for learning a user’s profile for the

two scenarios stated above are the cosine distance approach cos and the

one-class svm approach. For the results which are shown in subsection 4.2

and subsection 4.3, the threshold used in the cos method was chosen as

0.2, which means if the output of the cosine distance algorithm is greater

than the defined threshold, a web page was categorized as important for the

user’s context. Furthermore, the parameters used for the one-class svm were

chosen as the following: nu = 0.1 (lower bound of the fraction of support

vectors and upper bound on the fraction of training errors), kernel = RBF

(radial basis function) and gamma = 0.1 (kernel coefficient).45

4SCIKit, 2018.
5Stradling, 2018.
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4.1. The Dataset

The dataset that was analyzed in this thesis is the AOL-dataset. This dataset

is a collection of over 500.000 user sessions where each user session is sorted

by the submit time of the query. Furthermore, the dataset provides query

log data that are based on real users and consists of around twenty million

web queries. Every line of the AOL-dataset includes an anonymous user

identifier (id), the query that was issued by the user, the time at which the

query was submitted for a search, the rank of the search result provided

by the search engine (only present if a user clicked on the search result),

and the URL of the webpage (only present if a user clicked on a search

result). An extract of the used dataset can be viewed in Table 4.1.6 Since

the AOL-dataset consists of real data of users, which used a search engine

to find content on the internet, the user sessions can vary considerably

regarding length and on how many search results were considered relevant

by the user. Therefore, to represent a real user that uses bttfs correctly,

only user sessions were inspected, that met a pre-defined set of minimal

requirements.

To learn a user profile for every user session of the dataset, the first 10

actions that were performed by a user were examined. Furthermore, the

first ten keywords a user entered into the search engine were extracted for

each user session. These words were considered essential for the user and

got stored by BttFS to define the context of the user’s information gathering

process. If there was a minimum of four visited webpages within the first

10 actions, these webpages were considered as relevance feedback and were

also stored by bttfs as the pre-set of important webpages for the user’s

6AOL, 2017.
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AnonID Query QueryTime IR ClickURL

1104295 us gover-

ment

2006-03-09

11:15:05

3 http://www.gpoaccess.gov

1104295 wells fargo 2006-03-09

11:24:07

1 http://www.wellsfargo...

1104295 jerry

springer

show

2006-03-09

12:16:33

1 http://www.jerryspring...

1104295 solgar 2006-03-09

13:13:54

1 http://www.solgar.com

1104295 national vita-

min co.

2006-03-09

20:00:35

2 http://www.nationalvit...

1104295 clipperton is-

land

2006-03-10

07:31:00

1 http://www.cia.gov

1104295 rivilla

gigedo

is.

2006-03-10

07:32:49

1104295 revillagigedo

is.

2006-03-10

07:33:08

1 http://www.seawatch.org

1104295 revillagigedo

is.

2006-03-10

07:33:08

9 http://www.1911encyclo...

1104295 tuamotu is. 2006-03-10

07:41:01

1 http://www.manihi.com

Table 4.1.: Excerpt of the AOL-dataset
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context. Accordingly, bttfs used these pages as the training dataset to learn

the user profile ether with the cos or the svm method. Subsequently, the first

six web-links that each of the stored pages contained were crawled and used

as the test dataset to expand the user’s profile. For a better understanding

of the used parameters for learning a user profile of the AOL-dataset see

Table 4.2.

List of Parameters: Usage:

First 10 actions of a user Quantity of used data for

learning a user profile

First 10 consecutive keywords of Query7 Interpreted as context-

keywords, to define the

context of a user session

All webpages (min. 4) of ClickUrl8 within

the first 10 actions of a user

Training data for learning

a user profile

First 6 webpages linked from each training

data sample

Test data for expanding the

user profile

Table 4.2.: Parameters for learning a user profile of the AOL-dataset

Furthermore, there are two different ways of how the data got analyzed. For

the first scenario that is discussed in Section 4.2, the user actions 11 to 15

were used, to extract the complete queries that the user made per action to

check, how many search phrases bttfs could predict correctly after learning

the user profile. For the second way, which is discussed in Section 4.3, also

the user actions 11 to 15 were examined, and the first ten unique keywords

7The terms ”Query” refers to the excerpt of the AOL-dataset in Table 4.1
8The terms ”ClickUrl” refers to the excerpt of the AOL-dataset in Table 4.1
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were stored, to analyze how well bttfs could predict these keywords after a

profile was learned.

It has to be noted that only 796 user sessions of the AOL-dataset provided

enough information to learn a user profile with bttfs. This is since the

AOL-dataset contains a large number of user sessions that consist of a small

amount of user actions and are therefore not suitable to be analyzed.

4.2. Exact Query-Phrase Matching

In this scenario, it was tested how well bttfs could predict the exact query-

phrases of 796 users, which were committed to a search engine after the

user profiles were learned. The query-phrases of the users were checked

for correctness by the use of a spelling checker and stopwords within the

phrases were deleted, due to the lack of information that they provide.

Furthermore, only search phrases with a word count between one to five

were tested, since these lengths were the most common for the tested 796

users as seen in Figure 4.1.

For this scenario, the user profiles were learned either by the use of the

cos method or the svm method. Further, one of the weighting functions tf,

tf-idf, or bm25 was applied to the data of the user profile to receive the

ten best ranked unique keywords for the used method. These ten keywords

state the prediction of BttFS for the corresponding user-session. After the

predictions of BttFS is created, the future search-phrases of a user were

compared with BttFS’s prediction. The test system counts the user provided

search-phrase as matched by BttFS if all of the words the user’s search query

consists of are found in the ten keywords that were predicted by BttFS.
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Figure 4.1.: This plot shows the used query-phrases regarding the word count per query-

phrase for all tested 796 users.
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The results of this scenario do not only allow to measure how many search-

phrases were predicted correctly by BttFS but also to determine which of the

applied profile learning technique performed best, as well as which of the

combinations of learning algorithm and weighting function outperformed

the others. To figure out, which of the two techniques for learning a user

profile in bttfs yields the better results for this scenario, three different plots

where created. As seen in Figure 4.2, if tf is used as a weighting function,

the cos method for learning the user profile performed better for search

phrases with a word length between one and four, while the svm method

only outperformed cos at a word length of five. However, Figure 4.3 shows,

that the svm method to some extent outperforms cos, when tf-idf is used

for the query-phrase generation. If the bm25 method is used to create the

query-phrases, also cos yields the better overall results than svm as seen

in Figure 4.4. Due to these results, it can be stated that for this scenario the

COS method performed slightly better than the svm method for learning

the user-profiles when combined with either tf, tf-idf, or bm25.

To determine which of the utilized query generation methods namely tf,

tf-idf, and bm25 performed best for the search-phrase creation scenario,

two plots were generated. These plots allow the comparison of the query

generation methods by the relative number of matches that they were able

to perform for all 796 tested user sessions.

When the user profiles were learned with the cos method, as seen in

Figure 4.5, the tf method for search-query generation even performed better

than in the svm variant. The result shows that tf outperformed tf-idf and

bm25 for each search phrase length by a fair amount. bm25 was again found

to underperform, while tf-idf showed similar results for profiles which

were learned either with the cos method or with the svm method.
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As seen in Figure 4.6, if the user profiles were learned with the svm method,

the query generation methods tf and tf-idf performed equally well for

search-phrases with a word count of one and three. tf yielded a slightly

better result for a word count of two, and increasingly better results for

word counts four and five when compared to tf-idf. The bm25 method

could compete with neither tf nor tf-idf and seemed to underperform for

all tested search-query lengths.

Summarized it can be said, that for this scenario where the exact query-

phrase matching for search phrases with a word count between one and

five was tested, bttfs yielded the best results with a combination of the cos

method for learning the user profiles and the tf method for creating the

search phrases. Other combinations like svm with tf or tf-idf also seemed

to yield proper results for this task. The bm25 method underperformed for

both applied profile learning techniques, which was rather unexpected. For

the general performance of bttfs in this scenario, it can be stated that bttfs

performed best for search-phrases with lower length, while the matching

accuracy is reduced with every additional word that extends the length of

the search phrase.
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Figure 4.2.: This plot shows how the methods for learning the user profiles, COS and SVM

performed relative to each other, while TF was used to generate the predictions.

X-axis: Length in words of the exact query-phrases the users submitted to the

search engine. Y-axis: Amount of exact query-phrase that was matched by BttFS

(in %).
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Figure 4.3.: This plot shows how the methods for learning the user profiles, COS and

SVM performed relative to each other, while TF-IDF was used to generate

the predictions. X-axis: Length in words of the exact query-phrases the users

submitted to the search engine. Y-axis: Amount of exact query-phrase that was

matched by BttFS (in %).
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Figure 4.4.: This plot shows how the methods for learning the user profiles, COS and

SVM performed relative to each other, while BM25 was used to generate

the predictions. X-axis: Length in words of the exact query-phrases the users

submitted to the search engine. Y-axis: Amount of exact query-phrase that was

matched by BttFS (in %).
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Figure 4.5.: This plot shows the results for the IR methods TF, TF-IDF, and BM25. The

user profiles were learned with COS. X-axis: Length in words of the exact

query-phrases the users submitted to the search engine. Y-axis: Amount of

exact query-phrase that was matched by BttFS (in %).

49



4. Results

1 2 3 4 5
Query-phrase (with n words)

0

2

4

6

8

Ex
ac

t q
ue

rie
s m

at
ch

ed
 (i

n 
%

)

SVM: Line Plot for 796 Users
TF
TFIDF
BM25

Figure 4.6.: This plot shows the results for the IR methods TF, TF-IDF, and BM25. The

user profiles were learned with SVM. X-axis: Length in words of the exact

query-phrases the users submitted to the search engine. Y-axis: Amount of

exact query-phrase that was matched by BttFS (in %).
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4.3. Single Query-Word Matching

In this scenario, it was tested how well bttfs could predict the first ten single

query-words that appeared in a user-session for all 796 tested users after

the user profile was learned. It was assured that all of the ten mentioned

keywords were distinct and checked by a spelling checker. Furthermore,

numbers and stopwords were excluded, due to the lack of information they

provide, when they do not belong into any context. For this scenario, the

user profiles were also learned either by the use of the cos method or the

svm method. Further, the keyword ranking methods tf, tf-idf, and bm25

were applied to the user profile to generate a list of the ten best-ranked

keywords for each of these methods. If at least one of the keywords typed

by a user was found within the list of the ten best-ranked words of the

keyword generation methods, it was counted as a match for the respective

method and the respective keyword position.

The results of the second scenario allow to measure the performance of

bttfs concerning single query-word matching, to determine which of the

profile learning functions cos or svm performed better in this scenario,

as well as which of the combinations of learning algorithm and query

generation method outperformed the others. To figure out, which of the

two techniques for learning a user profile in bttfs yields the better results

for the second scenario, just like in scenario one, three different plots where

created. As seen in Figure 4.7, the cos method for learning user profiles

yielded slightly better results than the svm method, when tf was used as

the keyword ranking function for the user profiles. While the difference

between cos and svm seems to be marginal for the keywords four to ten, the

first three keywords that appeared in the timeline of the user session were

reasonably better predicted when the cos method was applied. Contrary to
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this observation, Figure 4.8 shows, that if tf-idf was used as the ranking

function, cos was outperformed by svm for nearly every keyword position.

Only keywords three, four, five, and ten were equally or better matched by

the cos method. As seen in Figure 4.9, for the bm25 ranking function, the

svm method yielded slightly better results than the cos method. As a recap,

it can be said that svm performed better when combined with the ranking

functions tf and bm25, while cos outperformed svm when combined with

the tf-idf function.

To analyze the performance of the utilized keyword ranking functions for

the second tested scenario, again two plots were generated. These plots

allowed to determine the performance of the keyword ranking functions tf,

tf-idf, and bm25 in a direct comparison. The performance was measured by

the relative amount of single keyword matches bttfs was able to produce

for the first ten keywords in the user’s timeline, by the use of the different

keyword ranking functions, after a profile was learned. This procedure was

repeated for each of the 796 tested users. As seen in Figure 4.10, if the

user profiles were learned with the svm method, the ranking function tf

outperformed tf-idf and bm25 for every keyword. While tf-idf performed

similarly to tf for keywords that appeared subsequently in the timeline,

tf-idf was outperformed perceptible for early keywords in the timeline.

Like in the first scenario, bm25 performed considerably worse than the other

two mentioned ranking functions. This trend also continues for profiles,

which were learned with the cos method, as seen in Figure 4.11. The best

performance of bttfs for this scenario can be found in the combination

of the cos learning function and the tf ranking function where the first

three keywords of the timeline of 796 tested users were correctly predicted

between 18% to 20% on average. Furthermore, the results showed, that the

further a used keyword lies in the future the less likely it gets for bttfs to
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create the right prediction.
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TF : Line Plot for 796 Users
SVM
COS

Figure 4.7.: This plot shows how the methods for learning the user profiles, COS and SVM

performed relative to each other, while TF was used to generate the predictions.

X-axis: Keyword to match (sorted by the appearance in the timeline) Y-axis:

Amount of keywords, that were matched by BttFS within the first ten results

(in %)
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TF-IDF : Line Plot for 796 Users
SVM
COS

Figure 4.8.: This plot shows how the methods for learning the user profiles, COS and

SVM performed relative to each other, while TF-IDF was used to generate

the predictions. X-axis: Keyword to match (sorted by the appearance in the

timeline) Y-axis: Amount of keywords, that were matched by BttFS within the

first ten results (in %)
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Figure 4.9.: This plot shows how the methods for learning the user profiles, COS and

SVM performed relative to each other, while BM25 was used to generate the

predictions. X-axis: Keyword to mach (sorted by the appearance in the timeline)

Y-axis: Amount of keywords, that were matched by BttFS within the first ten

results (in %)
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SVM: Line Plot for 796 users
TF
TFIDF
BM25

Figure 4.10.: This plot shows the results for the IR methods TF, TF-IDF, and BM25. The

user profiles were learned with the SVM method. X-axis: Keyword to match

(sorted by the appearance in the timeline) Y-axis: Amount of keywords, that

was matched by BttFS within the first ten results (in %)
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Figure 4.11.: This plot shows the results for the IR methods TF, TF-IDF, and BM25. The

user profiles were learned with the COS method. X-axis: Keyword to match

(sorted by the appearance in the timeline) Y-axis: Amount of keywords, that

was matched by BttFS within the first ten results (in %)
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4.4. BttFS Usability Test

To evaluate the usability of bttfs, a friendly user test with four volunteers

was carried out. The test was set up in a private environment where each

participant had a time frame of 45 minutes to resolve all given tasks. The first

task was to choose a topic of interest on which the participant‘s knowledge

finding process would be based. In the second task, the participants had

to create a user-profile in bttfs. To create this profile it was mandatory

to provide five keywords that explained the context of their information

need on the previously chosen search topic. While the context-based search

profile was active in bttfs the participants browsed the web for 20 minutes

to find information on their topic of interest.

In addition, every volunteer had to mark five web-pages in bttfs as impor-

tant, which provided useful information for the chosen topic. In the next

step, the crawl function of bttfs was used on the marked pages. The crawl

function, on the one hand, provided information to the user regarding use-

ful linked pages and on the other hand to extend bttfs’s user profile. After

all previous tasks were completed, the participants had to use the ”create

search phrase” functionality of bttfs multiple times. For every search phrase

provided by bttfs the participants had to evaluate the first three results

shown by the search engine, in order to determine if the suggested search

phrase yielded relevant or irrelevant information regarding the participant’s

search context.
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After the experiment was done, each volunteer had to answer four ques-

tions:

1. Did bttfs’s functionalities assist your search?

2. Would you use bttfs on a regular basis?

3. Was bttfs easy to use?

4. Were the search-queries provided by bttfs helpful for your information-

finding process?

4.4.1. BttFS Usability Test Results

The answers to the first question ”Did bttfs’s functionalities assist your

search?” given by the study participants ranged from ”strongly agree” to

”disagree”. It could be seen that more advanced users were able to acquire

knowledge on their search context faster and used assisting features of

bttfs like marking the keywords on the given web-page more often than

the study participants which had a non-technical background. However,

the participants that do not search the web on a regular basis felt highly

assisted by bttfs and the provided keyword suggestions.

The second question ”Would you use bttfs on a regular basis?” caused a

spread of opinions under the participants. On the one hand, the participants

mainly agreed, that bttfs provided helpful features for their knowledge

generation process, on the other hand, most participants agreed that they

would use bttfs only for complex topics that would need a lot of research.

The question ”Was bttfs easy to use?” was mainly answered with ”agree”.

While the creation of the user profile and the context keywords felt not

very intuitive for one person, all participants agreed, that the usage of bttfs
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felt natural while they were searching the web. The usage of functions like

marking keywords, crawling important pages, viewing the statistics page

of their search, as well as getting provided search phrases by the system

seemed to fit seamlessly into the participant’s search process.

The fourth questions ”Were the search-queries provided by bttfs helpful

for your information-finding process?” again showed a spread of opinions.

Two participants chose ”strongly agree” or ”agree”, while the answer of

the other two participants ranged from ”neither agree nor disagree” to

”disagree”. While some search contexts allowed bttfs to provide good

keyword suggestions, the search-context of one user seemed to push bttfs

into one direction, which ended in very similar keyword suggestions due to

the narrow context.

From the participants’ feedback, it can be distributed, that bttfs can assist

the information finding process. However, bttfs could be more efficient

in some cases. The creating of search phrases regarding the user’s context

could be adapted, so already found or viewed pages could be excluded

from the search, in order to have no redundancy in the users’ search process

and the data that bttfs provides. Another problem that could be identified

regarding bttfs’s usability was, that more advanced profiles, in terms of

big data and large stored text amounts, can lead to bad performance for

generating the search query for the user.

The exact distribution of answers of the participants to the survey questions

is shown in Table 4.3.
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Question
Strongly

agree
Agree

Neither

agree

nor

disagree

Disagree
Strongly

disagree

Did bttfs’s functionalities

assist your search?
2 - 1 1 -

Would you use bttfs

on a regular basis?
1 1 1 - 1

Was bttfs easy to use? 1 3 - - -

Were the search-queries

provided by bttfs helpful for

your information-finding process?

1 1 1 1 -

Table 4.3.: This table shows the amount of participants that chose a particular answer to

the given question.
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As the results of the first scenario showed (Section 4.2), bttfs was able to

predict the exact search queries with a word amount ranging from one

to five with a best accuracy between 9.38% to 1.61%. The whole set of

results for the first scenario can also be viewed in Table 5.1. While a 9.38%

matching-rate for single word queries seems to be a decent value, search

phrases with five words got only matched occasionally by bttfs. One reason

for this can be found in fact, that bttfs was optimized for context-based

search. Therefore, the learning of a user profile and the extraction of search

queries tend to rank, or weight query terms heavier when associated with

the user’s context. The used dataset, however, did not assure context-based

web-searches for the whole user-session, and therefore the created results

tend to be worse than hoped for. Another reason, why bttfs tends to

underperform for search phrases containing more than three words, can be

found in the small learning dataset that was used when learning the profiles

for each user session. Due to the diverse form of the AOL-Dataset regarding

the different length of the user sessions, only a bare minimum of data for

learning a user profile was used by bttfs. Otherwise too many user-sessions

would have been sorted out by the test-system for not meeting the minimal

set of requirements. Therefore, both algorithms for learning a user profile

would potentially perform better in the long run if more training and test
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Query -

phrase

TF &

COS

TF-IDF &

COS

BM25 &

COS

TF &

SVM

TF-IDF &

SVM

BM25 &

SVM

length = 1 9.38 8.98 6.25 8.98 8.98 5.86

length = 2 5.91 5.51 3.35 5.71 5.51 3.94

length = 3 3.02 1.95 1.42 2.49 2.49 1.07

length = 4 1.65 0.47 0.24 1.18 0.47 0.24

length = 5 1.29 0 0 1.61 0.32 0

Table 5.1.: This table shows the exact results for all methods used for the 1st scenario. (All

values stated in %)

data would be available like in a real-term scenario, however, to proof this

point more data has to be gathered and analyzed in additional studies.

These considerations are also valid for the results that were shown in the

second scenario that was discussed in Section 4.3. However, the combination

of the cos learning function and the tf ranking function yielded promising

results ranging between 18.22% - 19.85% matching rate on average, for the

first three single word queries that appeared in advancing order on the

timeline of the user actions. Regarding these results, bttfs predicted the

second future search word a user would type in 19.85% of all observations

and the third future keyword a user would type in 19.35% of all cases.

The whole set of results for the second scenario can be viewed in Table 5.2.

When examining the results, a trend can be seen that keywords that are

closer to the present are predicted better by bttfs than keywords that appear

further in the future of a user session. However, the general performance

of bttfs for the second scenario showed promising results. With further

optimization of the learning functions and additional weighting functions

even better results could be yielded.
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When considering the central question of this thesis:

”Is it possible to anticipate a user’s future information need by exploiting the past

browsing behavior regarding a defined context of information need?”

The results of both scenarios tend to enforce an affirmative answer to this

raised question. bttfs was able to predict the future user behavior correctly

in some of the given cases and accelerated in performance when only single

keywords or low-length search phrases had to be matched. Therefore it can

be stated, that a future information-need of a particular user can in many

cases be derived from the past browsing behavior when the context of the

information need stays constant. The possibility to switch between different

profiles (search contexts) seems to aid the user in order to get helpful search-

term suggestions by bttfs for the particular context. Therefore, it can be

stated that bttfs can aid the user in an information generation process.
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Keyword
TF &

COS

TF-IDF &

COS

BM25 &

COS

TF &

SVM

TF-IDF &

SVM

BM25 &

SVM

#1 18.22 13.82 11.43 16.46 13.82 11.31

#2 19.85 13.94 11.43 18.22 14.82 12.19

#3 19.35 15.08 12.19 18.34 15.20 11.93

#4 14.07 11.56 7.66 13.44 11.31 8.42

#5 9.92 8.54 6.66 9.67 8.17 6.91

#6 7.66 5.90 4.27 7.41 6.66 6.03

#7 6.91 5.40 5.53 6.78 6.16 4.02

#8 5.90 4.27 3.89 6.41 6.03 4.65

#9 6.16 4.65 4.02 6.16 5.28 3.64

#10 4.02 3.89 2.64 3.52 3.52 2.51

Table 5.2.: This table shows the exact results for all methods used for the 2nd scenario. (All

values stated in %)
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This thesis was built around the context-based Web-Information-Agent

bttfs. Besides all the features bttfs provides to aid the user’s information

finding and re-finding process, the primary focus of this thesis was centered

on the automatic search phrase creation for the user’s context, that bttfs

provides. In more detail, the different methods for learning a user profile

as well as the different weighting schemes, which were used in bttfs’s

automated search phrase creating-process, were evaluated by their overall

performance and their performance relative to each other. This generated

knowledge was used to answer the central question of this thesis:

”Is it possible to anticipate a user’s future information need by exploiting the past

browsing behavior regarding a defined context of information need?”

6.1. What Has Been Done in this Thesis?

In the first part of chapter 2, the weighting schemes, and the machine learn-

ing approaches, that are used by BttFS to create automated search queries

for the user’s context to assist the user’s information finding process, were

presented. The weighting functions tf, tf-idf, and bm25 were discussed in
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more detail and commonly used standard formulas of these functions were

presented. Furthermore, it was discussed how bttfs learns and expands a

user profile with a cosine-similarity method or a one-class Support Vector

Machine when only positive relevance feedback was used to keep bttfs’s

usability on a high level.

In the second part of chapter 2, three prior Web-Agents namely: WebACE,

SurfAgent, and WebMate were described, to provide an overview of their

architecture, functionalities, and the methods that were used for learning a

user profile and aiding the user’s information finding process. Furthermore,

in the third part of chapter 2 selection of one-class classification methods

like the k-centers method the k-nearest neighbor method, the one-class

Gaussian model, and the k-means clustering.

In chapter 3, bttfs’s architecture, as well as its main functionalities were

pointed out. bttfs consists of two main parts. A WebExtension component

that handles the user-interactions and acts as the interface to the Web, and a

native python application component that holds the main logic for learning

and expanding user profiles as well as the creation of search phrases for

the user’s context if demanded. However, besides the context-based search

phrase creation, bttfs also aids the user with multiple functionalities for

finding and re-finding information. For example, bttfs allows the user to

mark the keywords, which define the context of a profile, on Web-pages for

faster recognition. Furthermore, bttfs allows the user to mark Web-pages

as important, crawl sub-links of essential Web-pages, get suggestions for

pages that could be interesting for the user’s context. As well as to view a

profile own statistics page that includes high-value information about the

personal browsing behavior and a personalized browsing-history for the

context of the active profile.

68



6.1. What Has Been Done in this Thesis?

In chapter 4, the AOL-dataset was explained, which was used to test the

precision of bttfs’s search phrase creation functionality in two different

scenarios. Beforehand, the AOL-dataset was adjusted, to meet minimum

requirements per user-session, for bttfs to have enough data for each

user to learn a user profile and to have enough data left to perform the

prediction tests. Therefore, the AOL-dataset was reduced to 796 individual

user-sessions, which were tested in an exact query-phrase matching scenario

and a single query-word matching scenario. For the exact query-phrase

scenario, it was tested how well bttfs could predict exact query-phrases the

users’s entered into a search engine when only the prior browsing behavior

of a user was learned. For the single query-word matching scenario, it

was tested how well bttfs could predict single keywords within the users

query-phrases after the prior browsing behavior was learned. Furthermore,

the chapter 4 also includes a friendly user test, which was carried out to test

the usability of bttfs. Therefore, four volunteers had to perform different

tasks, to test and various aspects of bttfs in real scenarios.

In chapter 5, the results for both of the mentioned scenarios were analyzed

and interpreted. In general, it can be stated, that bttfs generated the best

results for both scenarios when cos was used for learning a user profile and

tf was applied as the weighting function. The exact search-phrase matching

scenario did yield decent results for phrases with a word count between

one and three but underperformed for search-phrases with a word count of

four and five. However, this could be explained by the fact, that the used

AOL-dataset does not assure one single context per user-session, while

bttfs was optimized for the use within one particular context. The single

query-word matching scenario, however, yielded promising results. With

the combination of cos and tf, the first three keywords of the timeline of

796 tested users were correctly predicted between 18% to 20% on average.
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Furthermore, the results showed, that the closer to the present a keyword of

the timeline appeared the more likely the keyword was predicted correctly

by bttfs.

6.2. What Can Be Concluded from this Thesis?

When considering the performance regarding the 796 tested user-session

of the AOL-dataset, the results showed that the svm method for learning

a user profile was slightly outperformed by the cos method. However, the

difference between the two methods turned out to be insignificant in some

cases. Moreover, the results showed that the tf weighting function seemed

to yield the best results for both scenarios. Therefore, it can be stated that

the cos method for learning a user profile, in combination with tf as the

chosen weighting function produced the most promising results.

The results also showed that bttfs’s performs superiorly for predicting

single keywords correctly, then for predicting whole search phrases. While

the scenario where bttfs was tested for matching single keywords in a user-

session yielded better results as expected, bttfs seemed to under-perform

in the scenario, were whole search phrases should be matched.

When considering the central question of this thesis: ”Is it possible to anticipate

a user’s future information need by exploiting the past browsing behavior regarding

a defined context of information need?”

The results that were acquired in this thesis tend toward an affirmative

answer to this question since bttfs was able to predict the future user

behavior correctly in some of the given cases and accelerated in performance
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6.2. What Can Be Concluded from this Thesis?

when only single keywords or low length search phrases had to be matched.

Therefore, when the context of the information need of a user stays constant,

future information need can be derived from prior browsing behavior.
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7. Future Work

The results gained in this thesis showed that bttfs was able to predict

future search phrases of many tested users-sessions to a certain degree.

However, the used AOL-dataset did not assure a particular context per user-

session which naturally could lead to slightly biased results, since bttfs

was developed with the primary goal to run with one specified context per

created user-profile. Therefore, experiments with a dataset that only contains

context-specific data per user could aid to determine bttfs potential for

matching future query phrases and single keywords of users, based on their

prior browsing behavior, in an even more accurate way.

Furthermore, bttfs showed the possibility of accelerating a user’s informa-

tion generation process, by assisting the user with automated search queries

that can be stated as relevant for the user’s context. Work could be invested,

to implement even more advanced techniques for learning a user profile

and weighting the keywords, to gain even more precision on the automatic

generated search queries.

Another way to improve bttfs in the future could be based on more cus-

tomized methods for every single user. Due to the user-related relevance

feedback and context defining keywords, which are needed by bttfs, it is

in no way assured that bttfs can obtain excellent results for every specific
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7. Future Work

user. If the relevance feedback of a user is broad and vague, the density

and accuracy of the user’s context could be weakened, which could lead to

automated search queries, generated by bttfs, that are not satisfying for a

user. Therefore, an expansion of bttfs could be planned for automatic con-

text keyword creation to define a user’s context automatically. Furthermore,

an alternative could be found for replacing the need of bttfs for relevance

feedback of a user, with an own system component, to minimize relevance

feedback that tends to very subjective for each user.
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Appendix A.

Further Resources

This chapter includes further resources that were not considered in this

thesis or appeared in a strongly shortened fashion concerning their length,

however, could be interesting for the reader of this thesis.
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Appendix A. Further Resources

Figure A.1.: This Figure shows a screenshot - excpert of BttFS when the ”Mark Keywords”

option was used.
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Figure A.2.: This Figure shows a screenshot - excpert of BttFS when the ”Crawl” option

was used. In the bottom right a notification of BttFS can be seen, where the

best crawled web-page is shown regarding TF of the profile’s keywords.
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Appendix A. Further Resources

Figure A.3.: This plot shows how often an exact query-phrase was predicted correctly by

BttFS. X-axis: Length in words of the exact query-phrases the users submitted

to the search engine. Y-axis: Amount of exact query-phrase that was matched

by BttFS (in %).
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Figure A.4.: This plot shows how often an exact query-phrase was predicted correctly by

BttFS. X-axis: Length in words of the exact query-phrases the users submitted

to the search engine. Y-axis: Amount of exact query-phrase that was matched

by BttFS (in %).
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Appendix A. Further Resources

Figure A.5.: This plot shows how often an exact query-phrase was predicted correctly by

BttFS. X-axis: Length in words of the exact query-phrases the users submitted

to the search engine. Y-axis: Amount of exact query-phrase that was matched

by BttFS (in %).
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Figure A.6.: This plot shows how often an exact query-phrase was predicted correctly by

BttFS. X-axis: Length in words of the exact query-phrases the users submitted

to the search engine. Y-axis: Amount of exact query-phrase that was matched

by BttFS (in %).
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Appendix A. Further Resources

Figure A.7.: This plot shows how often an exact query-phrase was predicted correctly by

BttFS. X-axis: Length in words of the exact query-phrases the users submitted

to the search engine. Y-axis: Amount of exact query-phrase that was matched

by BttFS (in %).
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Figure A.8.: This plot shows how often an exact query-phrase was predicted correctly by

BttFS. X-axis: Length in words of the exact query-phrases the users submitted

to the search engine. Y-axis: Amount of exact query-phrase that was matched

by BttFS (in %).
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Appendix A. Further Resources

Figure A.9.: This plot shows how often an single query-keyword was predicted correctly

by BttFS. X-axis: Keyword to match (sorted by the appearance in the timeline)

Y-axis: Amount of keywords, that was matched by BttFS within the first ten

results (in %).
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Figure A.10.: This plot shows how often an single query-keyword was predicted correctly

by BttFS. X-axis: Keyword to match (sorted by the appearance in the timeline)

Y-axis: Amount of keywords, that was matched by BttFS within the first ten

results (in %).
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Appendix A. Further Resources

Figure A.11.: This plot shows how often an single query-keyword was predicted correctly

by BttFS. X-axis: Keyword to match (sorted by the appearance in the timeline)

Y-axis: Amount of keywords, that was matched by BttFS within the first ten

results (in %).
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Figure A.12.: This plot shows how often an single query-keyword was predicted correctly

by BttFS. X-axis: Keyword to mach (sorted by the appearance in the timeline)

Y-axis: Amount of keywords, that were matched by BttFS within the first ten

results (in %).
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Appendix A. Further Resources

Figure A.13.: This plot shows how often an single query-keyword was predicted correctly

by BttFS. X-axis: Keyword to match (sorted by the appearance in the timeline)

Y-axis: Amount of keywords, that was matched by BttFS within the first ten

results (in %).
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Figure A.14.: This plot shows how often an single query-keyword was predicted correctly

by BttFS. X-axis: Keyword to match (sorted by the appearance in the timeline)

Y-axis: Amount of keywords, that was matched by BttFS within the first ten

results (in %).
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